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CHAPTER 1

Magnetism and Strong Correlations

1.1 Introduction

The ability of some materials to attract others has fascinated many people for
over 2500 years. Perhaps the widest known legend is by Pliny the elder, who
described how the shepherd “Magnes” stuck with his iron nails in his shoes to
a black stone while he pastured his flocks. Besides this legend the first definite
statements were by Thales of Miletus about 585 B.C., saying that lodestone, the
naturally occurring mineral magnetite Fe3Oy4, can attract iron [1]. The name
magnetite most probably comes from the old Greek city “Magnesia” in Asia
Minor, where large depositions of the magnetic mineral could be found [1,2].
Since then there have been developed many explanations and applications of
the phenomenon magnetism. The first widely known application is the com-
pass, which was most likely invented in China and was then used since the 11th
century in Europe [1,2]. William Gilbert, who was an English physicist and
natural scientist, wrote in 1600 “De Magnete” [3], in which he describes exper-
iments and phenomenology of magnets and also states that the earth itself is
a big magnet explaining the compass. This was the first modern attempt to
understand magnetism. In the 19th century a big breakthrough was achieved
by many scientists!, who noticed and explained the connection between elec-
tricity and magnetism [4]. But still the origin of remanent magnetism could
not be explained. It was not before the development of the quantum theory of
materials [5] and the discovery of the spin in the first half of the 20th century
that the way was free for explaining and describing the source of magnetism.

The application of magnetic fields is today indispensable. What began with the

'to mention some of them: C Oersted, J Biot, F Savart, A Ampere, M Faraday and J
Maxwell
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compass, is nowadays used in power production, means of transportation and
computer devices like storage and memory. Today’s magnetic materials used in
electronics are not some stones found in nature, but precisely engineered thin
films and multilayer structures on the nanometer scale [6]. The guiding princi-
ples today are “smaller and faster”. Thus the exact study and understanding of
the underlying physics in the nowadays used materials and structures is crucial
for designing new devices.

Today’s theories about the origin of magnetism rely on the concepts of charge,
spin and quantum mechanics developed in the early 20th century [5]. The
pioneers of the quantum theory noticed that the angular momentum and the
spin of electrons can form magnetic moments, which eventually align. This
arrangement of moments is the origin of the magnetic fields observed around
permanent magnets [1]. The widely known magnetism often actually denotes
ferromagnetism in which all magnetic moments are aligned parallel. But in gen-
eral it is clear that the moments may align in more complicated arrangements,
if this is energetically favorable. In this work I will use the term “magnetic or-
dering” in the sense of some periodic, long range alignment of spins regardless
of the definite arrangement.

The Curie temperature of iron, the temperature below which the magnetic
moments are aligned parallel, is 1043K [7]. One should now ask, what is the
force, which is responsible for this order. From a classical electrodynamics
lecture [4], one knows that magnetic moments act on each other via a dipole
interaction. One can simply estimate the strength of this interaction in iron
to be 0.1K [7]. For sure, this force is too weak to produce such a high Curie
temperature. As it will become clear below, the reasons for the alignment are
actually the Coulomb interaction between electrons, and the Pauli exclusion
principle.

If one looks at the periodic table of elements and searches for the elements,
which show ferromagnetic behavior at room temperature one will only find Fe,
Co, Ni. All three have partially filled d-orbitals. When looking for chemical
compounds, which order at room temperature or below, one must notice that
often partially filled d- or f-orbitals are involved. So there are three major
groups showing magnetic ordering: transition metals, transition metal oxides
and rare earth elements as well as actinides and their compounds [7]. Besides
these groups one should also mention that some organic compounds including
transition metal atoms can show magnetic ordering [7].

1.2 Transition Metal Oxides

The above discussion results in the obvious question: How is magnetic ordering
connected to d-orbitals? Consider the 3d-orbital atomic wave function in a
transition metal. The wave function of a free atom can always be written as
a product of a radial part and a spherical harmonics. The 3d-orbitals have
angular momentum [ = 2. As the 1s—, 25—, 2p—, 3s— and 3p-orbitals have
different angular momentum, the 3d-orbitals are orthogonal to them because
of their spherical harmonics. Thus the radial part of the wave function has
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Figure 1.1: Cubic perovskite structure of a typical transition metal oxide. The green
spheres are the transition metal atoms (M), which are surrounded by octahedra of
oxygen drawn as small blue spheres. The big red spheres represent the A-atoms of
AMO:s.

no node and does not “extend” as far as the 3s- or 3p-orbitals. In contrast,
the 4s-orbitals with angular momentum [ = 0 extend very far from the nucleus
of the atoms. The 4s-orbitals lie energetically lower than the 3d-orbitals and
are filled before them. The electrons in the 4s-bands are most important for
screening the Coulomb interaction in the 3d-band [8,9]. When the energy
difference between both bands is large, the screening is very poor leading to a
strong Coulomb interaction between the d-electrons. On the other hand, the
3d-orbitals extend less and thus have only a small overlap with each other.
Therefore the bandwidth is much smaller, resulting in a tendency to localize,
which can lead to more pronounced correlation effects.

The following elements are most important when studying the physics of 3d-
transition metals: Ti, V, Cr, Mn, Fe, Co, Ni and Cu. These elements often form
compounds with oxygen [10]. The typical structure of transition metal oxides
is the cubic perovskite like AMOsg, see figure 1.1, where the transition metal
atoms (M), green spheres, are surrounded by an octahedra of oxygen atoms (O),
blue spheres. The A-atoms, red spheres, represent some heavy elements. These
compounds can contain partially filled d-shells, which turn out to be especially
important for explaining their physical properties. The transition metal atoms
are situated in an octahedral environment. Crystal field theory predicts in
this case, that the 5-fold degenerate d-orbitals split into 3-fold ta,-levels and
2-fold eg-levels [7]. In figure 1.2 one can see the level splitting of d-orbitals in
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Figure 1.2: Energetic splitting of the d-orbitals in different symmetry groups. The
energy is in arbitrary units, as the picture is only supposed to illustrate the splitting.
The exact position of the levels depend on the specific system. Left: 5-fold degenerate
levels in spherical symmetry. Next: Splitting in octahedral symmetry into a to,- and
eg-band. The ty4-levels have lower energy in a cubic perovskite. Next: Splitting in
tetragonal symmetry, as it occurs in a static Jahn-Teller distortion [11]. Right: Shape
and classification of the d-orbitals. The spread in “z”-direction is color coded. The
pictures at the bottom show typical configurations between one d- and a neighboring
p-orbital showing that the overlap is largest for the e4-levels.
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octahedral and tetrahedral environment. On the right side of the figure one can
see the basic shape of the d-orbitals. In the cubic perovskite the orbitals of the
tag-wave functions point to the corners of the cube while the e -wave functions
point to the faces of the cube where the oxygen atoms are located. In this
configuration the ty4-levels are lower in energy due to the repulsive electrostatic
interaction with the occupied p-orbitals of oxygen. The splitting of to,- and
eg-orbitals can be as large as 2 —3eV [10]. In transition metal oxides the direct
overlap between the d-orbitals of neighboring sites is often negligible. The
hopping of the electrons from one transition metal atom to another is mediated
by the oxygen surrounding these [10]. The strength of this process depends on
the exact positions and the energy levels of the oxygen and the transition metal
atoms, but it can be assumed to be small. From this fact it is clear that the
electrical resistivity of these compounds can show interesting properties. Band
theory predicts that a partially filled band is always a metal, but it was already
reported in 1937 by J. de Boer and E. Verwey [12,13] that many transition metal
oxides with partially filled d-orbitals are very poor metals or even insulators [14].
In a very simplified picture one can imagine that at low temperatures in a half-
filled band one electron sits at each lattice site. If now an electron moves through
the lattice, it has to pay an extra energy when it visits a site where an electron
is already located. For strong enough repulsive interaction, this will prevent the
electrons from moving at all [13]. This is an example of a Mott insulator, which
is due to strong repulsive electron-electron interactions. An insulator formed by
a partially filled shell will have localized electrons, which may form magnetic
moments due to their spin and angular momentum. As this localization is
a collective phenomenon of the electrons there are correlations between them
eventually aligning the magnetic moments. This shows the close connection
between strong correlations, metal insulator transition and magnetism. In the
following I will address some particular interesting examples of transition metal
oxides. Some of the phenomena discussed in the next paragraphs will appear
again later in this thesis.

1.2.1 Light Transition Metal Oxides

A prominent example showing a metal insulator transition is Vanadiumoxide,
V203 [14, 15], for with the phase diagram is depicted in figure 1.3. For low
temperatures and low pressure an antiferromagnetically ordered state is real-
ized. Applying pressure does not change the local electron-electron interaction
in this compound, but it changes the overlap between the electronic wave func-
tions thus changing the bandwidth. Therefore the ratio between the interaction
and the bandwidth is tuned. Strikingly, for moderate temperatures a param-
agnetic metal insulator transition, a drop in the resistivity of several orders of
magnitude, can be observed. The transition can be triggered by changing the
pressure, temperature or chemical substitution. Vanadiumoxide crystallizes
in the corundum-structure, which introduces frustration to the system [14].
Frustration means here that there are competing magnetic interactions, which
cannot all be satisfied simultaneously. This effect can be the reason, why the
antiferromagnetic state in VoOg becomes quickly unstable, when increasing the
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Figure 1.3: Phase diagram of V503 redrawn after D. McWhan et al. [15]. For low
temperatures the system forms an antiferromagnetic insulator which becomes unstable
towards a paramagnetic metal with increasing pressure. Interestingly, for tempera-
tures between 200 K< T < 400 K a pressure dependent paramagnetic metal insulator
transition is observed.

temperature and a paramagnetic metal insulator transition can be observed.

Other light transition metal oxides with perovskite structure are, for exam-
ple, R1_;A,TiO3 and R;_,A, VO3 (R: trivalent cations, A: divalent cations)
with their parent compounds like YTiO3 and LaVOj. In these substances the
tag-bands are filled with one or two electrons respectively, thus being partially
filled. Nevertheless both materials are insulators [16,17]. They are appropri-
ate systems for experimental investigation of the paramagnetic metal insulator
transition triggered by doping [18]. For example, with increasing hole con-
centration in Laj_,Sr,TiO3, one can observe a metal insulator transition for

x = 0.05.

1.2.2 Cobaltates

Cobaltates have been studied because of their quite unique magnetic and trans-
port properties. For example, NaCo204 shows a large thermoelectric effect [19].
A thermoelectric device creates a voltage, when there is a temperature gradient
present in the material. The discussed applications are manifold, for example
utilization of waste heat or power supply for deep space probes [20]. The d-
orbitals in Cobaltates are filled with five to six electrons [10, 14]. There is a
strong competition between different electron configurations, so-called valence-
fluctuations [21]. At low temperatures all electrons occupy the energetically
lower t9,-band forming a low spin configuration. But it is also possible that
one or two electrons occupy the es-band forming intermediate or high-spin
configurations. The competition between these states lead to very interesting
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Figure 1.4: Magnetic susceptibility y versus temperature of LaCoOg3 showing the non-
magnetic ground state and the transition to the high spin state, indicated by the
maximum in the curve. (This is a sketch redrawn after M. Imada et al. Rev. Mod.
Phys. 70 1039 (page 1235) [14])

transport and magnetic behavior of LaCoO3 shown in figure 1.4 [14,22,23]. At
low temperatures this compound is a non-magnetic insulator with low-spin state
meaning the #2,-band is fully occupied. However, for increasing temperature the
spin state changes and the magnetic susceptibility shows a maximum at about
100 K. LaCoO3 and the hole-doped Laj_,Sr,CoO3 are excellent examples how
the different orbitals can influence the physics.

1.2.3 Cuprates

High-temperature (high-T¢) superconductivity was first discovered in 1986 in
the copper oxide Laj g5Bag 15CuOy [24,25]. High-T¢ superconductivity refers
to compounds with transition temperatures T > 30K and is a very active
field in physics. Today a large number of cuprate compounds showing high-T¢
superconductivity are known. Their structure is typically a layered perovskite
structure with CuOq layers [14,25]. Soon after the discovery it was evident
that strong electron correlations are important in these compounds [25, 26].
LasCuOy4 is an antiferromagnetic insulator with a Néel-temperature around
Tn = 300K. The degeneracy of the eg-orbitals is lifted due to the anisotropy,
which mainly originates from the two-dimensionality. LasCuO4 has 9 electrons
in the d-orbitals leading to a completely filled t54- and dg,2_,2-shell while the
remaining dg2_,2-shell is half-filled. The half-filled band combined with the
insulating behavior is a strong evidence for the importance of strong electron
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correlations. The superconductivity arises when a small amount of hole-carriers
are introduced by doping for example with Ba [25]. For some compounds the
transition temperature can be higher than T' = 77 K, the boiling point of nitro-
gen [27].

1.2.4 Manganites

The last interesting material class which I want to introduce here, are the
manganites [14,28-31]. They became famous because of the colossal magneto
resistance effect. This is a large change in resistivity upon changing the strength
of the magnetic field near the Curie temperature. If one now considers, that
reading and writing of memory in a computer or other electronic devices use
exactly such resistance changes, one can easily imagine, why these materials
receives so much interest. Manganites are composed of MnOg3 octahedra with
perovskite structure. The manganese d-orbitals have no direct overlap with
each other. The overlap is mediated by the inbetween lying oxygen atoms.
A typical example for a manganite compound is La;_,Ca,MnQOgs. Figure 1.5
shows a sample picture and some particular important experiments. All three
pictures correspond to Lag 75CagosMnOg. The experiments were performed at
the University of Gottingen by S. A. Koster and V. Moshnyaga. The upper
left picture shows a photograph of such a sample, while the upper right picture
shows a high resolution transmission electron microscopy image of this com-
pound, which was grown on MgQO. In this picture a superstructure of La and
Ca was found. Both upper pictures are supposed to give the reader an impres-
sion how the samples look like, for which the experiments are performed. The
lower pictures show the results of three typical experiments. The resistivity is
plotted versus the temperature. For zero magnetic field, the resistivity increases
for decreasing temperatures until the sample reaches its Curie temperature. At
the Curie temperature there is a sudden drop in the resistivity. By applying a
magnetic field of H = 5T one can increase the Curie temperature. The resis-
tivity of the system shows a much smaller initial increase, but now decreases
at higher temperatures. This change is called the colossal magneto resistance
effect [29], as the resistivity around the Curie temperatures changes several or-
der of magnitude. The lower panels show the ferromagnetic magnetization of
this compound for low temperatures and a ferromagnetic hysteresis curve, when
applying a magnetic field. Such phase transitions into magnetic phases will be
the principal focus of this work.

Additionally, the phase diagram of this compound is shown in figure 1.6. The
manganese d-orbitals are filled with n = 4 — = electrons. The electronic con-
figuration is such that strong electron-electron interactions including strong
ferromagnetic Hund’s coupling play an important role [33,34]. Three of the
4 — x electrons occupy the ?94-orbitals. Ferromagnetic Hund’s coupling forces
them to align forming a S = 3/2-spin. As the exchange between the ty,-states of
different manganese atoms is negligible, these states can be treated as localized
spins, which couple ferromagnetically to the eg;-band. The remaining electrons
occupy the eg-band. There is a hopping of the eg-electrons between differ-
ent manganese atoms. Similar as in VoOs, the screening is not very efficient
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Figure 1.5: All three pictures correspond to Lag 75Cag.05MnO3. Top Left: Picture of a
sample, taken by S. A. K&ster at the University of Gottingen. Top Right: High Resolu-
tion Transmission Electron Microscopy image of such a sample. The Lag.75Cag.25MnOg
thin film is grown on MgO. Remarkably, V. Moshnyaga et al. found a perovskite su-
perstructure due to La/Ca ordering. (Reprinted with permission from V. Moshnyaga
et al. Phys. Rev. Lett. 97, 107205 (2006). COPYRIGHT 2006 by American Physical
Society [32]) Bottom: The picture shows three experiments, performed by S. A. Koster
and V. Moshnyaga, in the ferromagnetic region of this compound. The upper panel
shows the resistance R for two different magnetic fields H. The middle panel shows
the ferromagnetic magnetization M via temperature 7" and the lower panel shows a
ferromagnetic hysteresis curve M (H).
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Figure 1.6: Magnetic Phase diagram of Laj;_,Ca,MnQOgs. Redrawn after S. Cheong
and H. Hwang “Ferromagnetism vs. Charge/Orbital Ordering” in Colossal magneto
resistive oxides by Y. Tokura [29].

leading to strong Coulomb interaction in the es-band. For understanding the
physics of manganites, the Jahn-Teller distortion is crucial [35,36]. The sym-
metry reduction leads to the situation that the e,-band is further split. This
distortion especially occurs, if there is one eg4-electron at one site, correspond-
ing to quarter-filling. The low temperature magnetic phase diagram is shown
in figure 1.6 [29]. LaMnOj is known to be a A-type antiferromagnet, meaning
a ferromagnetic coupling in the orthorhombic planes and an antiferromagnetic
coupling perpendicular. For small z of Ca doping, the Jahn-Teller distortion
is very strong, splitting the energy of the eg-orbitals, and the system forms a
canted antiferromagnetic state (CAF), which is orbitally ordered. For larger
doping the system undergoes a transition to a ferromagnetic insulator (FI) and
later for 0.2 < z < 0.5 to a ferromagnetic metal (FM). This is the regime,
where the CMR effect can be observed, as the paramagnetic phase above the
Curie temperature is an insulator. For x > 0.5 there are less than 0.5 electrons
per site in the eg-band, and the system forms an antiferromagnetic state again
(AF), where the electrons are localized in stripes. Such a charge ordering is
denoted with (CO) in the phase diagram. At the end of the La;_,Ca,MnOgs
series is CaMnOg, which is like LaMnO3 an antiferromagnetic insulator (AF).
This phase diagram obviously shows the competition between charge, spin and
orbital order in the case of manganites.
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1.3 Hubbard Model

How should one describe such systems? A complete Hamiltonian would com-
prise the kinetic energy of each nuclei, the kinetic energy of each electron, the
Coulomb interaction between the nuclei, the Coulomb interaction between the
electrons and the nuclei and the Coulomb interaction between all electrons.
As I want to describe macroscopic effects, in which at least 10*® particles are
involved, the mentioned Hamiltonian is supposed to describe everything from
plasma physics at high temperatures, every possible composition of the parti-
cles including solids and molecules, to low temperature collective phenomena
like superconductivity and magnetism. As it is impossible and not intended to
solve the emerging equations, the problem has to be drastically simplified: A
solid consists of ions and electrons forming a three dimensional crystal. Since
the ions are much heavier than the electrons, the velocity of the the nuclei
is of the order 10™* — 107 smaller than the velocity of the electrons, which
motivates to think of the ions as forming a rigid lattice. This ansatz is de-
noted as Born-Oppenheimer approximation [37]. With this approximation one
completely rules out the possibility of melting and other lattice effects. Thus,
structural changes as can be seen in manganites will not be taken into account
in this work. Also phonons arising from lattice vibrations [37] are neglected in
this thesis.

A model suitable for describing strongly interacting electrons on a lattice is the
Hubbard model [38-40]. One way of motivating it, starts in the single electron
picture trying to identify low temperature degrees of freedom and to extract
interaction parameter ab initio. Therefore one attempts to solve for the one-
electron band-structure for the given periodic potential formed by the crystal
structure. A method able to do so is the Density Functional Theory [41-43].
From the bands near the Fermi energy, which are the d-bands in transition
metal oxides being most important for the low temperature physics, one can
now construct Wannier functions. These states are well localized around each
nucleus. With these states one can calculate the proper values for the electron-
electron interaction [44-49] and set up a model Hamiltonian for the d-bands.
I will now present another way for setting up a model Hamiltonian [50,51] for
degenerate bands. This way is a bit less rigorous, but it helps understanding
the underlying principles. The complete Hamiltonian is the sum of the single
particle Hamiltonian H7 and the interaction part Hy;

H = Hy + Hy.

One starts from the d-orbital wave functions of the transition metal ¥; ., »(7),
where 7 labels the site, m labels the orbital quantum number, ¢ the spin quan-
tum number, and r corresponds to the position. The corresponding second
quantized operator cjm , creates an electron with this wave function. One can
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now write the single particle Hamiltonian as
_ T
Hr = Z Z Z tiﬁmci,m,acj,m,a’
ij m o

P / B, (r )(—%vuvm) U (). (1.1)

A problem with this approach is that it is difficult to determine the effective
potential V(7). If one assumes it to be the periodic potential of the nuclei, t;;
will be negligible, because the transition metal atoms are far apart from each
other. The exchange between different sites ¢ and j is mediated by the oxygen
p-orbitals. Thus, if one really wants to calculate the coupling between different
sites, one has to include hopping processes mediated by the oxygen into the
potential V(). The usual and simplest way is to guess some value for t;;.
Typical values are less than 1eV taking into account experiments on transition
metal oxides.

The electron-electron interaction can be written as

_ i T
Hy = Z Z Z Uml"'m‘lci,mhmCi7m2,02ci,m3,asci,m4,a4

7 Mi...M4 01...04

Uni i = / &P / BroWt, (1)U (1)U (11 — 12) Uy (r2) Uy (7).

(1.2)
Here as well, one cannot simply write U (r] — as the bare Coulomb
interaction, as one would neglect the screening effects of tLe remaining s- and p-

electrons. If one would calculate U with the bare Coulomb interaction one finds
values of about U =~ 20eV [9], which are too large to describe real experiments.
From experiments one can extract typical values of U = 4 — 8¢V for transition
metal oxides [9].

The two particle interaction can be assumed to be purely local, because the
direct overlap between d-orbitals of different sites is negligible and screening
effects reduce the interaction range. In equation (1.2) are several different
matrix elements included. Due to the symmetry of the d-orbitals only even
powers of the wave functions ¥,, lead to non-vanishing matrix elements [51].
The two particle interaction thus reads

ZZUmnzanzml
+Z Z Ulmnz,l,anzm —o

i l<m,o
+ E E (Uim — Jim) i 1,6Mim.o
i I<m,o
T T
B Z Z Jlmci,l,aci,l,—aci,m,faci,m,a
i l<m,o

1 _
+§ Z Z JlmCi,l,cfci,l,—crci,m,—crci,m,o—

i lym,o
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Um = /d3T1/d3T2‘\Pm(T1)‘2U(‘T1 —T2|)|‘I’m(7‘2)|2
U = /d3r1/d3rg\\lll(r1)|2U(|r1—r2|)|\IJm(r2)|2
Jlm = /dg’rl/d3T2‘IlZ<(T1)\IJ:Z(T2)U(|T1 —T2|)\Ifl(7‘2)\11m(7‘1).

The operator n = cfc is the density operator for an electron. Since the interac-
tion is local and spin independent, the position index ¢ and the spin index ¢ are
neglected in the integrals. If one now assumes that the interaction parameters
are the same for all d-orbitals, writing U = U,,, U’ = U, and J = J},,, one
can further collect terms and ends up with

Hy = Uzznzanzml+<U/__J>Z Z N 1,6 m,o’

i I<m,o,0’

_QJZZS” Szm—i_ JZZCZ,Z,TCZ,Z,lczml zmT (13)

i l<m 7

The first two terms in equation (1.3) are intra-orbital and inter-orbital density-
density interactions. The third term is a spin-spin interaction between different
orbitals. It can be written as

o 1
S-S = 5(5?5,; + 5,7 S) + 57z,

with spin-raising and -lowering operators ST and S~. The last term in equa-
tion (1.3) is a pair hopping term. In this work I will neglect this pair hopping
term. This must be regarded as approximation to the real multi-orbital Hub-
bard model [52] and is done for numerical reasons. When neglecting this term,
one can introduce an additional conserved orbital quantum number. As I will
show later, this dramatically reduces the numerical effort. The spin-spin inter-
action, third term in equation (1.3), corresponds to the ferromagnetical Hund’s
coupling. Hund’s rules state that all orbitals are first single occupied with elec-
trons of parallel spin. This is represented by the spin-spin interaction, which
lowers the energy if electrons occupy different orbitals with parallel spin. Of
course, occupying different orbitals also avoids the energetic costs of the density-
density interactions. The Hund’s rule was not introduced artificially into this
Hamiltonian but arises quite naturally from the general form of the two parti-
cle interaction. If all five d-bands are equivalent, the following equation for the
interaction parameters holds [51]:

U=U+2J.

The multi-orbital Hubbard model [50,51] is now the sum of the non-local single
particle term (1.1) and the local interaction term (1.3)

H = Hy + Hy. (1.4)

In some cases there is effectively only one d-band left at the Fermi energy. In
this situation one can use the one-orbital Hubbard model [38-40], defined as

H = Ztm zcr ]U+UZnZTnZJ, (15)

15,0



20

Magnetism and Strong Correlations

The interaction term now consists only of the intra-band interaction U. Made
up of only two terms the model looks very simple. But the appearance is de-
ceiving. There are only very few rigorous results [53-55]. The Hubbard model
exhibits various phenomena like the metal insulator transition, antiferromag-
netism, ferromagnetism and superconductivity, stating only some.

The model is easy to handle in the extreme limits of vanishing hopping, ¢t = 0, or
vanishing interaction U = 0. For vanishing interaction, U = 0, one reproduces
the energy bands for the d-orbitals from which the Hubbard model can be
derived. The precise band structure depends on the lattice. The physics is
determined by non-interacting electrons which fill the bands up to the Fermi
energy. For a half-filled band the system shows metallic behavior. The other
extreme case is a vanishing hopping amplitude ¢, but a finite and repulsive
electron-electron interaction U > 0. There is no coupling between the atoms.
The ground state is a distribution of the electrons onto the atoms, trying to
avoid double occupancies, if possible, and is therefore highly degenerate. This
ground state is clearly insulating. The competition between both terms in
equation (1.5), the tendency of delocalization versus localization, leads to the
interesting phenomena just mentioned above for different materials.

In this thesis I will focus on the one-orbital Hubbard model (1.5) and the two-
orbital Hubbard model, in which the orbital index in equation (1.3) can take
only the values m = {1,2}. The two-orbital Hubbard model is a very good
model for describing the physics of a correlated egs-band. It takes into account
the strong local electron-electron interactions, the hopping from one atom to
another, and the orbital degeneracy. More precisely, it represents the situation
of transition metal oxides with octahedral symmetry, where the Fermi energy
lies within the eg-band. The model completely neglects the t94-band. The
coupling of the ta,-band to the e,-band due to Hund’s coupling can be very
strong as in the case of manganites [33]. Furthermore, the model does not
include any coupling between the electrons and the lattice. The lattice, given
by the hopping parameter ¢;;, is fixed and there is no coupling to phonons
created by lattice vibrations. So one cannot expect to see all the aspects of
transition metal oxides. Nevertheless, as I will show in this work, the two-
orbital Hubbard model shows a very interesting ground state phase diagram
with different ordered phases. It is the basic model for investigating the physics
of strongly correlated electron systems including orbital degeneracy [50,51].

1.4 Exchange Interactions

After introducing the model and its parameters I will shortly discuss two very
important exchange mechanisms between different transition metal atoms. The
exchange is mediated by the oxygen p-orbitals. Oxygen has the strong tendency
to fill its p-orbitals to establish a completely filled shell like Neon [10]. Thus,
one can assume that after an electron has moved from an oxygen atom to a
transition metal atom, immediately another electron will fill up this p-shell of
the oxygen. This results in a rather weak hopping amplitude ¢ between the
transition metal d-orbitals. The resulting coupling between the two transition
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metal atoms is called indirect exchange. One remarkable point is, that although
there is no magnetic interaction between both transition metal atoms, there is
a tendency for aligning the spins of the electrons either parallel or antiparallel
depending on the precise situation. As I will show now, this alignment is only
due to the Coulomb interaction and the Pauli exclusion principle. The most
important processes in transition metal oxides are called super exchange and
double exchange.

Super Exchange

I will firstly address the super exchange [56,57]. It is called like this, because
it extends the normally short range direct exchange to a longer range. For a
better understanding, I will look at the relevant states of two transition metal
atoms. The situation is such that there is only one possible state at each of
the two atoms. Altogether there are two electrons in the system. Thus we can
assume that the basis for this problem consists of 6 states, reading

1) =1D1l D2, 12) =11l D2, [3) =111l )2,
[4) =1 1)1l T2, 15) = T1)1[0)2, [6) =10)1] T1)2,

where the index at each “ket” represents the index of the atom and the arrow
denotes the alignment of the electron. The case of an empty atom is denoted
as |0). I assume that there is a strong but finite repulsive interaction with
amplitude U, if two electrons are situated at the same atom. This is the case for
the states |5) and |6). Secondly, there is a possible hopping of an electron from
one atom to the other with amplitude —t¢. There are no spin flip interactions.
Thus the Hamiltonian matrix can be written as

00 0o 0o 0 O

00 0 0 0 O
00 0 0 —t —t
H_OOOO—t—t
00 —t —t U 0
00 —t —t 0 U

While the parallel configurations, states |1) and |2), have ground state en-
ergy £ = 0, there is one mixed state, mainly consisting of the states with
spin up at one atom and spin down at the other atom, which has energy
E = %U — %\/ U? 4+ 16t2 ~ —8% for large U. This energy gain of an antipar-
allel spin state is called super exchange, and can lead to an antiferromagnetic
ground state in an extended system, where all nearest neighbor electrons are
aligned antiparallel. A well known example for a transition metal oxide with
antiferromagnetic structure due to super exchange is NiO [1].

Double Exchange

Indirect exchange can also lead to a ferromagnetic coupling. A first clear sign
was found in 1950 in the manganite compound La;_,Ca,MnOs [58]. The results
could be explained by the indirect exchange called double exchange [59-61]. The
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Figure 1.7: Typical situation of a double exchange process. For each transition metal
atom “T” there is one localized magnetic moment and one itinerant level. Oxygen “O”
acts as intermediary for the hopping.

O 7
(@]

situation is such that there is a localized moment at each transition metal atom
and one electron, which can move from one atom to another by hybridization
through the oxygen atom, see figure 1.7. One can imagine that the localized
moments are formed by a half-filled #54-shell and the itinerant electron occupies
an eg-state. An important point is that there is only one itinerant electron for
two transition metal atoms, which couples locally via Hund’s coupling to the
local moments. As there are no spin flip processes, I assume that the single
electron is an up-electron. A basis for this problem is given by

|1> = | ﬂ7T>1| ﬂ>0>2> |2> = | ﬂ70>1| ﬂ>T>2> |3> = | ‘U7T>1| ﬂ>0>2>
|4> = | ‘U70>1| ﬂ>T>2> |5> = | ﬂ7T>1| ‘U’>0>2> |6> = | ﬂ70>1| ‘U’>T>2>
|7> = | li7T>1| ‘U’>0>2> |8> = | l%0>1| ‘U’aT>2>
where the double arrow represents the localized moment and the small arrow

the electron which is either at atom 1 or atom 2. The Hamilton matrix for this
problem reads,

-J -t 0 0 0O 0 0 O
-t —-J 0 0 0O 0 0 O
0 o J -t 0 0 0 0
7 0 o -t -J 0 0 0 0
0 o o0 o0 —-J -t 0 0
0 o o o —t J 0 0
0 0O 0 O o 0 J -t
0 0O 0 O o 0 -t J

The ground state of this system is a combination of the first two states with
energy ' = —J —t, where J > 0 is the Hund’s coupling and ¢ the hopping
amplitude. This state is clearly a “ferromagnetic” state, as both moments and
the electron point into the same direction.

1.5 Types of Magnetic Order

These very simplified models already show that depending on the exact sit-
uation magnetic moments may align parallel or antiparallel. In general, for
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S

F-type

C-type G-type

Figure 1.8: Different possible magnetic orders for a simple cubic lattice. Red arrows
correspond to up electrons and blue arrows to down electrons. See text for explanation.

real materials more complex arrangements are possible. The phase diagram of
La;_,Ca,MnQOgs, chapter 1.2.4, is a characteristic example. Figure 1.8 shows
some common spin arrangements for a cubic lattice [29]. The F-type denotes an
ordinary ferromagnetic state, while in the A-type electrons in one layer are or-
dered ferromagnetically but the layers itself are ordered antiferromagnetically.
In the C-type the moments lying along the z-direction are aligned ferromagnet-
ically. The G-type order represents a Néel-state in which all nearest neighbors
are aligned antiparallel. Nevertheless, these four types are only very simple
examples. In nature the situation if often more complex involving charge, spin
and orbital degrees of freedom. In figure 1.8 only situations were shown where
the moments are parallel or antiparallel. But the direction of the moments may
change by a smaller angle than 180° leading to a canted state or an order with a
periodicity larger than two. In the latter case one speaks of spin density waves.

1.6 Outline

The further outline of this work is as follows. In the next two chapters I will
explain the theoretical foundations of the later calculations. I will introduce the
dynamical mean field theory and the Bethe lattice, for which I performed the
calculations. As the dynamical mean field theory relates the lattice problem
onto a quantum impurity model, I will present in chapter 3 the numerical
renormalization group and the density matrix renormalization group, which
both can be used for solving impurity models.

After introducing their theoretical concepts in chapter 3, chapter 4 directly
addresses a comparison of both impurity solvers for some selected situations,
which must be handled when trying to calculate magnetic phases within the
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dynamical mean field theory.

Finally, chapter 5 and 6 are dedicated to the results for the magnetic phases
of the Hubbard model. Chapter 5 deals with the one-orbital situation. The
possible magnetic states are analyzed over a wide range of the interaction pa-
rameters also varying the form of the electron hopping ¢;;. The form of the
hopping parameter is changed by introducing a next nearest neighbor hopping
term, which has influence on the metal insulator transition, the antiferromag-
netic Néel-state, and the possible ferromagnetic states. Chapter 6 analyzes the
magnetic properties of the two-orbital Hubbard model. There one can observe
the competition of the just mentioned super exchange and the double exchange
for fillings of (n) ~ 1.5. Besides this, quarter filling represents a situation, where
one can observe a clash of several different phases corresponding to the spin,
charge, and orbital degrees of freedom. Finally, I will summarize this work and
give a short outlook.



CHAPTER 2

Dynamical Mean Field Theory

2.1 Introduction

This chapter gives an introduction to the Dynamical Mean Field Theory, which
I have used for solving the lattice model. I will discuss the mathematical deriva-
tion of the method and the approximations made. As the main goal of this work
is the calculation of magnetic phase diagrams of the Hubbard model and prop-
erties of the system within these phases, I will show how to stabilize magnetic
ordered solutions. In the last section of this chapter, I will introduce the lattice
for which the calculations were performed.

2.2 Cavity Construction

For the sake of simplicity of the derivation, I will use a simple example. So let
me first introduce the Ising model [62,63]. Let there be a number of independent
variables o; = {—1,1}. One can assume these variables to be spins on a lattice.
The Hamiltonian for this model reads

H = %ZJZ‘J'O'Z‘O']' - hZO'Z
,] %

The constants J; ; represent a coupling between the spins, and h is a homo-
geneous magnetic field acting on all spins. The property, which completely
describes the physics and behavior of the system in equilibrium for a given
temperature 7T, is the free energy F' or the partition function Z, respectively,

Z(ﬁv J’L,]?h) = ,{ZZ.} €xXp (_ﬁH)

1
F(ﬁvjz,]ah) = _Blogzv
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where § = 1/(kpT). Expectation values and correlation functions can be easily
calculated by derivatives of the free energy. For example the magnetization,
given by M = %" Tr (0 exp (—H))/Z, can be written as

A= B iy, h)

dh

The magnetization represents an order parameter for the ferromagnetic phase
transition occurring in this model [62,63]. The Ising model at 7" = 0 with
ferromagnetic coupling J; ; < 0 between nearest neighbors only is clearly fer-
romagnetic. The lowest energy configuration is such, that all spins are aligned
in the same direction. At this point the system is Zs symmetric, meaning that
the ground state is twofold degenerate. The value of all spins is simultaneously
either 0 = 1 or 0 = —1. At very high temperatures, J; ; < kT, the system
will be in the paramagnetic state, where all spins are in principle decoupled
and thus M = 0. The existence of a finite temperature, T' > 0, below which
the spins begin to order, critically depends on the dimension of the system. For
dimension d = 1, the spins align only for 7" = 0 [62, 63|, while for d = 2 the
system exhibits a finite temperature phase transition, as found by Onsager [64].
Already for the three dimensional system there is no analytical solution to this
problem.
For strongly interacting electrons on a lattice, as introduced in chapter 1.3, the
situation is even more difficult. Nevertheless, there are numerical and analytical
methods to study strongly correlated electron systems. A numerical method
that is able to directly simulate a lattice model is Quantum Monte Carlo [65—
67]. But Quantum Monte Carlo is limited to small systems and simulations
of rather high temperatures due to the computational effort. Besides this,
there are parameter regions where the simulations will fail because of the sign-
problem [68,69]. There are also other approaches like exact diagonalization,
which is limited to even smaller clusters. These examples are by no means all
in the zoo of possible methods for such systems. I wanted to illustrate that
there are different methods all having advantages and disadvantages. There
is no best method for the model I am intending to study. An overview about
analytical and numerical methods for interacting quantum systems focusing on
metal insulator transitions can be found in M. Imada [14].
In this work I use the dynamical mean field theory. Using this approach it is
possible to scan through the whole parameter region, temperature and interac-
tion parameters. I am able to identify and analyze different phases. Of course,
this method has also some drawbacks. Besides the approximations, which I will
state below, there are also sometimes problems stabilizing ordered phases. I
will come back to this point later.
The aim of any mean field theory is to relate the lattice problem to a pure local
problem, called impurity problem, by partially tracing out all degrees of freedom
but one site, here denoted as “site 0”. This is called a cavity construction [70].
For this purpose, one splits the trace of the partition function into a part
containing only degrees of freedom of “site 07, 7r(, and one part containing
the rest of the system, 7r o. The Hamiltonian is split into three parts: Hy
containing only parts of the single site 0, HOC parts which connect the single
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site to the rest of the system and H® the rest of the system, which contains
no degrees of freedom from the single site. The partition function for the Ising
model can then be written as

Z = Trexp(—pH)
= T ~BHo) Tr ~BHY ~BHC
ﬂﬁ[eXp( B 0){é§[eXP( BHy') exp(—f ﬂ],
since it denotes a classical model. Expanding exp(—3HY'), one finds

Z = Trexp(—pH)

1
{g} [exp(ﬂ 00) {67:} [exp 5200 ;(Jo + Jio)o

exXp —ﬂ %ZJZ‘]'Uin—hZUi ]

i,j#0 i#0

1 1
= Tr h Tr E — | —6= E i i0)03
{(;ﬂ} [eXp(B UO) {67:} [n:O n! ﬂQUO i#O(JO ' JO)J

1
exp —B 5 Z Jijo'io'j —hZO'i ]]
0,j70 i70

If one now performs the trace over the system without site 0, one can perform
a cumulant expansion and obtains

Z = ’{Zg*} [exp (ﬂhao + Z (90)

i1...0n

Here ()€, denotes the cumulant within the cavity system. Until now every-
thing is exact. But nothing was gained, as the new action contains all powers
of g and infinite many cumulant expectation values have to be calculated.

The first approximation is to assume that the expectation value in the system
without site 0 is the same as in the system with site 0, so (Y. = (-)eum. The
next step is to neglect all terms in the sum for n > 1. Both approximations
can be justified by an infinite coordination number z and an infinite extended

lattice. One ends up with the following formula

7 = {’ﬁ"} exp (—ﬂao (—h + % Z(Joi + Ji0)<0i>>> )

1

where (0;)cum = (0;) holds. Analyzing a homogeneous system with interactions
between z nearest neighbors only

9

T — T — J 11is nearest neighbor of 0
0P 00 else
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the partition function for the Ising model in the mean field approximation reads
Z =T [exp(—Bo(—h + 2J(0)))]

where (o) has to be calculated self-consistently. It can be shown that this
formula is exact in the limit of an infinite dimensional lattice, in the sense of
an infinite coordination number z. There one has to scale zJ — J* = const for
z — 00 [70]. Calculating the expectation value (o) finally yields the familiar self-
consistency equation in the Weiss molecular field theory of the ferromagnet [71]

m = tanh (=3(—h + J*m)).

A spontaneous magnetization, h = 0 but m # 0, can occur for 5|J*| > 1 leading
to a finite temperature phase transition at 1" = |J*|/kp.

2.3 Dynamical Mean Field Theory

The next step is to formulate this theory for a quantum mechanical system like
the Hubbard model [70,72-80]. I will present a derivation for the one-orbital
Hubbard model, as the calculations do not change for a multi-orbital Hubbard
model. The main difference between both Hamiltonian is the local interaction
part, which is absorbed unchanged into the effective action derived. The par-
tition function must now be written as a functional integral over Grassmann
variables [81]

Z = /l_IDcJr Dc; , exp(—5)

8
s = [ ar (X ne, 1)+ Ytiel o (r)ey, ()
0

1,0 1J,0
—H E ni,a + U § 2% nzl
1,0

The imaginary time argument 7 of the Grassmann variables will be dropped
in the following formulas. With respect to a single site 0, one again splits up
the action into the part of the single site Sy, the part connecting the single site
with the lattice Sg , and the rest of the action S¢. Expanding the action in the
S§' part, one again obtains an effective action for the single site [70]

Seff = / dr <Z CO 0' CO o + UTL(] 110, l)
+ Z Z Z / dTll : dT]n (tozl CO o tOZn Cg; o

anl 11]

C,con
Gi1---jn (Til e Tjn)tﬁoco,a e tjnocop) .
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Instead of the expectation values (o, ...0;,) in the Ising model, the effective
field is now given by the connected Green’s functions of the cavity system
G One can now perform the same approximations as above and neglect
all terms with n > 2 in this action. This results in an effective field, which only
contains the one-particle Green’s function, see textbook definition [82],

GOr—1) = —(Te(r) ()

Cliw = ﬁexin Cir
G<n>—/0 p(iwnT)GE(7)

c 1
O =y (2.1)
in the action of the cavity Hamiltonian (-)¢. The third line in equation (2.1)
follows from analytic continuation of the the second line introducing the self-
energy of the system () [81]. I can neglect the subscript “con”, as the usual
one-particle Green’s function equals the definition of the connected one-particle
Green’s function. The effective action is now given by

B
Seff = /0 deT’Z cg’a(f) (0 — p)o(1 — T')-l-z tiotjoGiCj(T —7') | co0()
o ij#0

B
+ / drUng 1 (7)o, (7).
0

The effective field G%(T) depends on the imaginary time 7, hence the name
dynamical mean field theory. Although this problem contains only degrees of
freedom of a single site, there is no explicit solution for arbitrary Gg This
effective single site problem corresponds to a quantum impurity problem. The
relation between this effective action and that of a quantum impurity model is
shown in the next chapter. There I will also discuss two numerical approaches
to obtain the one-particle Green’s function for such models.

At this point I will bring this effective action into a more appropriate form
introducing the effective field G:

B
Soff = —/ drdr’ Z cg’agfl(T —7')¢g + Unoinoy.-
0 g

Fourier transformation and analytic continuation with respect to 7 of the non-
interacting part of this action yields

G w+i0) ;= w+i0+ p— Y toito; G (w + i0).
ij

The shape of the lattice only enters in the sum over all Green’s functions
> i tOitojGS(w +10). Doing the Fourier transformation in the lattice sites [70],
one ends up with

-1
Gl (w+i0) = Z(w—l—z'O)—l—(/dew_i_io_i_uf(;)(w_i_io)_e) (2.2)
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where p(e) is the density of states of the non-interacting lattice problem. One
uses here that the self-energy is purely local ¥;; = ¥6;; [75-77]. The complete
lattice structure and all hopping terms are included in p(e). This integral is the
only point in the DMFT, where the lattice structure enters.

As one cannot calculate the Green’s function (2.1) explicitly for an arbitrary
impurity action, I will solve the self-consistency equation (2.1,2.2) by an itera-
tive procedure. Starting with an arbitrary self-energy, which can be zero, one
calculates the effective action and solves the corresponding impurity problem
for a new self-energy. This must be repeated until the self-energy does not
change anymore. This procedure is shown in figure 2.1.

Summarized, one has done the following approximations: One neglects all terms
of higher order than one in the expansion of the effective action, and one assumes
the self-energy to be local. One should ask, how good are these approximations?
Are they controlled and is there a limit, where these equations are exact? The
answer to the last question is affirmative. In the limit of infinite dimensions or
infinite coordination number, the dynamical mean field theory becomes exact.
The crucial point in this limit is that one has to scale the hopping parameter
tij as

i3] *

to get a non-trivial solution for the physical properties of the system [75]. Taking
the limit z — o0, one can proof that all non-local contributions to the self-
energy vanish and that the truncation of the terms in the effective action is
exact [75].

The DMFT must be considered as an approximation for real materials. Never-
theless, calculations showed that within the DMFT a large amount of physical
properties of, for example, transition metal compounds can be analyzed, and
also compared to experiments at least qualitatively, sometimes even quantita-
tively [83-87]. The actual structure of the lattice does appear in the DMFT
equation only through the local density of states. It has a profound effect on
the details of the resulting physics. In particular, different lattice types are
still discriminated by the actual form of the DOS and asymmetries give rise
to competitions between interactions. Therefore the DMFT is a good starting
point to analyze and understand the very difficult many body effects seen in
real materials.

2.4 Magnetic solutions

2.4.1 Ferromagnetism

In this work I will concentrate on magnetically ordered states. With the DMFET
I am able to solve the lattice problem and obtain the lattice Green’s function
or self-energy. In the above equations the effective field G (2.2) was completely
spin independent. Due to the SU2 symmetry of the Hamiltonian, one cannot
expect to obtain a magnetically ordered state as solution. To achieve this,
one has to calculate independent effective fields for the spin-up and spin-down
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Projecting the Cavity-Construction
impurity self-energy

onto the lattice

Bath

Figure 2.1: Tterative DMFT-loop. The lattice is projected onto an impurity problem.
The solution of the impurity calculation is projected back onto the lattice. This is
repeated until convergence.



32

Dynamical Mean Field Theory

components [70]

G Hiwn) = Zg (iwy) + </ deiw” -~ _p(zec)r(iwn) § 6) —1 |

Additionally, it is important to break the SU2 symmetry of the system in the
very first iteration by applying a small magnetic field [70]. After the first
iteration I switch off the magnetic field and continue as described in figure 2.1.
If the system possesses a ferromagnetic instability, it will evolve into a self-

consistent solution with ¥4 # 3| and a polarization p = |Z;Zi| > 0. The

occupations can be calculated from the self-energy by

X . ple)
na:_;/dwf(W)‘jm/dew—l—iO—l-M_Za(w)_6’

where f(w) denotes the Fermi-function.

2.4.2 Antiferromagnetism

I will also present solutions with antiferromagnetic long-range order. The im-
portant point is, that this ordered state is non-homogeneous; neighboring sites,
A and B, have different self-energies [70,73]. Focusing on the Néel-state, the
following relation holds

YAo = 2B, —0- (2.3)

To derive the proper equation for the effective field, one has to assume that the
lattice is bipartite. This means that one can divide the lattice into two sublat-
tices, and each site of the A-sublattice has only B-sites as nearest neighbors.
Then one can show that the self-consistency condition still holds, but now in
matrix form of the two sublattices [70,73]. The Green’s function entering must
be calculated by matrix inversion

G(¢a,Cn) = / dep(e)((g‘éa gga>_HT>_l

_ / dep(e) <Cj‘g Q:U)_l. (2.4)

The matrix Hr represents the hopping term between the sublattices. Using
equation (2.4) one can now calculate the new effective fields for both spin com-
ponents and sublattices. As relation (2.3) holds for the two sublattices, one still
needs to solve only one impurity problem per DMFT iteration, as interchanging
spin labels yield the solution for the other sublattice.

2.5 Bethe lattice

In this last section of the chapter, I will introduce the Bethe lattice, for which
I have performed the calculations. The lattice itself is very artificial. The
construction of the Bethe lattice with coordination number z is very easily
done in shells:
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e Begin with drawing one site, which is shell 0.
e Connect the first site with z neighboring sites, building shell 1.

e Connect all sites of the last shell with z — 1 new sites, building the new
shell.

e There are no closed loops.

Because of this symmetric construction of the shells and the important point
that there are no closed loops, implying that there is only one way from site A to
site B, many models can be solved exactly for the Bethe lattice [88]. However,
for the Hubbard model this is in general not the case, but one can solve the
model without two particle interaction U = 0 [70]. Moreover, one is able to
calculate the density of states (DOS) of the lattice, which is essential for the
DMEFT. As the Bethe lattice is bipartite, I am able to perform antiferromagnetic
calculations.

The DOS p(e) is given by the imaginary part of the local Green’s function as
p(e) = —1/mImG(e+1i0). The hopping parameter is assumed to be independent
of the site indices and non-vanishing only between nearest neighbors, t;; = ¢.
The local Green’s function can be written as [89]

GO =¢— 3 a0

1€ENN

GO is the Green’s function for the lattice, where site 0 is removed. But for
infinite coordination number GZ(-?)(C) = G4(¢) = Goo(¢) holds and is indepen-
dent of the lattice site. Performing the appropriate scaling ¢ =: % yields

Goy (€) = ¢ — (t)%Goo(¢). One can now simply solve for G := Gyp, obtaining

G(O) = gz (C+VO=AEP)

1
= — VA2 - Wl 2.5
p) = VAP = (2.)
Thus the DOS of the Bethe lattice (2.5) with nearest neighbor hopping only is
a semi-ellipse. One should note, that the Hilbert transformation from equation
(2.2) can be performed by inserting the argument into the local Green’s function
(2.5).

2.5.1 Bethe lattice with next nearest neighbor hopping

DMFT calculations depend sensitively on the DOS. The shape of the DOS can
be tuned by introducing next nearest neighbor hopping, as shown in figure 2.3.
I will now derive the DOS for the Bethe lattice with nearest neighbor (NN) and
next nearest neighbor (NNN) hopping. I will call the hopping operator between
NN-sites H; and the hopping operator between NNN-sites Ho. One can express
the NNN-hopping term through the NN-hopping term. In infinite dimensions
one obtains [90,91]
Hy = (H)?> - 1.
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Figure 2.2: Upper panel: Part of the Bethe lattice with coordination number z = 4.
The colors reveal the bipartite structure of the lattice. Lower panel: Bethe lattice
including next nearest neighbor bonds. In the lower panel it becomes apparent that
the next nearest neighbor bonds act between sites with the same color (sites of the
same sublattice). This introduces frustration to the Néel-state.
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This equation states that the eigenstates of the Hamiltonian H = H; + Ho
equal that of H; alone. Let t; be the amplitude for the NN-hopping and t9 for
the NNN-hopping. The local Green’s function can thus be evaluated to [90,91]

0wt = e

ple)
/dEC —he—ta(2 - 1)
= L Gla+b(0) — Gla—b(O)

2t206(Q)
1
_ 21—
p(e) 5 €
_ —h
“T o,

b(¢) = /(/ta+a®+ 1. (2.6)

The third line in equation (2.6) was gained by partial fraction decomposition
of the second line. G(() (without subscript) represents the Green’s function
for to = 0 given by equation (2.5). The DOS of the system without and with

3 T — tZItl:O T T T — t2/t1:03 T
— 41701 — t)=06
— t/t=0.2 — =l
2_ —— —]
2
Q
1_ —4— —]
O L L I L L L I L I L I L
-1 -0.5 0 0.5 1 -0.5 0 0.5 1
w/W wWwW

Figure 2.3: DOS in infinite dimensions for the Bethe lattice with NN-hopping ¢; and
NNN-hopping t5. The left panel shows the situation for ;—f < i, in which no singularity
is present. The right panel shows i—2 > % with a singularity at the lower band edge.

The functions are normalized with tile bandwidth W.

next nearest neighbor hopping can be seen in figure 2.3. The black curve in the
left panel shows the semi-elliptic DOS of the Bethe lattice with NN-hopping
only, while the other curves correspond to a finite to > 0. When examining the
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t,/t,=0.2

-0.08 -0.07 -006 -0.05 -0.04 -0.03 -0.02 -0.01 0

w
t,/;=0.25
4t ]
2t i
0
2+ 1
4+

-0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0

w
t/t;=0.3
4t ]
2+ ]
0
2 ]
4+ K

-0.08 -0.07 -006 -0.05 -0.04 -0.03 -0.02 -0.01 0

Figure 2.4: The Green’s function for NN- and NNN-hopping is given by a sum of
two Green’s function for NN-hopping only. These three plots show the arguments of
the NN-Green’s function for different values of NNN-hopping. (See also the text for
explanation) The black and the red curves are (a + b(w))? — 4 and (a — b(w))? — 4,
respectively. The NN-hopping is in all three panels ¢; = 0.05. The blue vertical line
represents the singularity at w3 while the green vertical line represents the position of
the roots of both functions at ws.
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spectral function, p(w) = —13ImGy, 1, (w+10), one finds the following three key
values for w

w1 = 3ty + 2t
w2 = 3t2 - 2t1
G
= —— —to. 2.7
w3 7, (2.7)

Equation (2.6) has only a non-vanishing imaginary part, if (a + b(w))? —4 < 0
or (a—b(w))?—4 < 0 holds, which are the square root arguments of the Green’s
function for NN-hopping entering. Both functions can be seen in figure 2.4. The
frequency wq is the upper frequency at which the imaginary part of equation
(2.6) vanishes. This means that p(w) is zero for w > wy. The vertical lines in
figure 2.4 represent we and ws. At frequency ws there is a root in the arguments.
For % < i (upper panel in figure 2.4) both functions are positive for w < we
resulting in a vanishing imaginary part of equation (2.6) and thus vanishing
spectral function. Frequency ws is the lower end of both functions. For w < ws
both functions become imaginary, which does not lead to a finite contribution to
the spectral function, as it cancels out. For i—f > % both functions are shifted to
negative values and there is always a negative argument for wg < w < wo. Thus

b 1

the lower band edges of the spectral function is given by wo (w3) for =<1

(% > i) The frequency ws is exactly the point where b(ws) = 0. Looking
in equation (2.6) one sees that there is a @—term resulting in a square-root

singularity for i—f > i at w = w3. This can be seen in figure 2.3. In the left
panel the situation i—f < i is plotted. There is no singularity. In the right panel
there is always a singularity at the lower band edge, exactly at w = w3. From

the considerations one can derive the bandwidth of the DOS to be

W — 4t1 t2/t1 < 1/4
T\ 2ty +4te + 13/ (4t) to/t; > 1/4

In the case of next nearest neighbor hopping antiferromagnetic calculations
are possible, too. The hopping Hamiltonian entering in equation (2.4) now

reads [90,91]
~ (ta(e 1) ti€
HT o < t16 t2(62 - 1) ’

As I will show later, the asymmetry and especially the singularity have great
influence on the DMFT calculations. Introducing the next nearest neighbor
hopping leads to frustration of the antiferromagnetic Néel-state and thus to
completely different magnetic ground states.
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CHAPTER 3

Impurity Solver - Theoretical
Background

3.1 The Anderson Impurity Model

In the last chapter I derived an effective action for the Hubbard model within
DMFT. This action consists of only one interacting site coupled to non-inter-
acting electrons in a bath, which has to be solved self-consistently. In this chap-
ter I will introduce the single impurity Anderson model [92], which is strongly
related to this effective action and discuss two strategies, how one can solve
this model numerically. In this work I have in particular used two matrix
based renormalization group techniques. One is the Numerical Renormaliza-
tion Group (NRG) [93,94], the other is the Density Matrix Renormalization
Group (DMRG) [95,96]. I will explain, how both methods work and what their
advantages and disadvantages are.

The Anderson impurity model describes a magnetic atom embedded into a
conduction band. It can be written as

_ T T T T
Hppg = Z FChoCho T Z €dCq,5Ca0 + UCa1Ca1C,1Ca,
ko o
T T
+ Z Vi (Cﬁ,acdﬂ + cd,cfcﬁ,) , (3.1)
ko
where cg . (CE U) creates (annihilates) an electron in the conduction band with

quantum number (E, o) and energy €;. In this Hamiltonian k represents a
three-dimensional momentum vector. The impurity itself is represented by the
operators cj;a (¢4,), Where €4 is the energy level and U the amplitude for a
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density-density interaction on the impurity. Finally, there is a hybridization be-
tween the impurity and the conduction band given by V.. The Anderson model,
and related with it the Kondo model [97-99], became famous for describing the
physics of the Kondo problem. This effect occurs, when the resistivity of, for
example, gold with embedded cobalt atoms is measured [100]. For low temper-
atures an unusual increase of the resistivity is found. This physical situation
can be correctly described and understood with Hamiltonian (3.1) [93,98].
The Anderson Hamiltonian is most often simplified by expanding the conduc-
tion operators into spherical harmonics and assuming that only the s-wave
states are coupled to the impurity level [93,94,101,102]. Thus the Hamiltonian
can be written in the following form

D
HAnd = Z/ de Gcz,ace,a + Z 6dcjl,acd,a + chi,Tcd,TcIlylcdvl
o -D o
D
+30 [ AV sy +pcer) (32
— J_

The s-wave band of the conduction electrons is here assumed to have energies
between —D and D. The Hamiltonian (3.2) can be visualized as in figure 3.1.

DA

=
Bath
Energy e

—-D

Figure 3.1: Visualization of the Anderson model. An impurity site, with parameters
U and €4, is coupled via a hybridization to a bath of non-interacting electrons.

In equation (3.2) I can formally integrate out the non-interacting conduction
band, deriving an effective action for the impurity level [103]

ZZC twy + €q + dev( ©)p(e) c, +Uch c, .ch ¢
Seff,And = do | Wn —¢ ) Cdo T V1%, 1,1

Wn “n

(3.3)
where all operators turned into Grassmann variables. This action (3.3) has the
same form as the effective DMFT action, see chapter 2.3. I should mention
here that p(e) is different to the density of states of the lattice in the DMFT. It
is the DOS of the bath in equation (3.2), generated by the dispersion ;. I will
now define the coupling between the impurity level and the conduction band
as h(e) :== V(e)y/p(e). Comparing with the effective action in the DMFT, one
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can identify
h 2
Gy (iwwn) = iwon + €a + / de M

Wy, — €

As Gy is an analytic function in the upper and lower complex plane, one can
solve for the coupling

e \/_ng_<+0> -

™

With equation (3.4), I related the DMFT self-consistency loop with the An-
derson model. The Anderson model is a fully quantum mechanical many body
problem and there is no exact solution for calculating dynamical properties.
Nevertheless, for getting an approximate solution for the Anderson model a
bundle of techniques are available [98].

I will introduce matrix based renormalization group techniques in the next sec-
tion. They are completely in the spirit of the renormalization group in statisti-
cal mechanics for critical behavior. For example, in the block spin renormaliza-
tion [93] one replaces small clusters of spins with only one new spin representing
the whole small cluster. Doing this iteratively one can look for fixed points in
this calculation, which describe the physics in the thermodynamic limit.

A similar principle is used in the NRG/DMRG. Here, one starts with only a
very small part of the whole problem, which can be diagonalized exactly. Then,
by truncating the already diagonalized part and adding new degrees of freedom
and repeated diagonalization, one can calculate iteratively an approximation
for the complete system.

3.2 Discretization of the Band States

Before one can apply NRG/DMRG as impurity solver one has to rewrite the
Hamiltonian (3.2) as an one-dimensional chain of non-interacting sites coupled
to one interacting site (see figure 3.2). The Anderson Hamiltonian can be

HImp HC
to t to t3 2
00
Figure 3.2: Single impurity Anderson model in form of a chain. The impurity site is

unchanged. The non-interacting bath is rewritten to a semi-infinite chain with nearest
neighbor hopping. Hpp,p, and He correspond to equation (3.5).

written as
HAnd = HImP+HC
_ t t t
Himp = Zﬁdcd,acd,ﬁr Ucy1€4,1¢4,,a,)

g
1 1
He = Z/l de 601,566,0 + Z /1 de h(e) (clﬂcdﬁ + 62,00670) , (3.5)
g ag
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where the conduction band energies have been scaled so that D = 1. I will
now rewrite the integral in Ho as a discrete sum. For this purpose the interval
[—1,1] has been divided into disjoint intervals:

~1,1] = U[Wl,i>wu,i]'

On each interval an orthonormal basis W; j, : [wy;, wy ] — R is set up so that
[ deV; (€)W s (€) = 6; 40k k7. One can expand a function within this basis set.
For W, ;, one can use normalized Legendre polynomials or a local Fourier basis.
With these functions, one defines new operators

Ciko = /dece,aqji,k(e)
Ceo = Zci,k,aqji,k(ﬁ)- (36)

1,k

These operators follow the usual anti-commutator relations, as the basis is
orthonormal [93,101,102]. One can now rewrite (3.5)

HC = Z eiykvk/c;k,aci,k’,a + Z hi,k (Cz,k,crcd,a + cji,crci,k,cr)
kK i,0 kji,o
€ikk = /dee‘l’i,k(e)\llivk/(e)

hip = / deh(€) Wi (e). (3.7)

Analyzing equation (3.7), one can see, that each operator ¢; j , couples to the
impurity ¢4 . This kind of Hamiltonian is usually referred to as star geometry.
For real calculations, one has to truncate the orthonormal basis set to only
a few basis functions. This must be done for assuring that the number of
sites is finite. Finally, one can tridiagonalize Ho (3.7) with a Householder
algorithm [104] bringing it into chain geometry, as can be seen in figure 3.2.

3.3 Numerical Renormalization Group

3.3.1 Discretization within the NRG

The Numerical Renormalization Group (NRG) was developed by Kenneth Wil-
son [93] in order to explain the Kondo effect. Some years later the method
was applied to the Single Impurity Anderson Hamiltonian by H. Krishna-
Murthy [101,102]. An overview of this method and recent developments can be
found in R. Bulla et al. [94].

The main point in the NRG algorithm is that one has to use a logarithmic mesh
for the discretization of the conduction band. The reason for this will become
clear below. Hence, the intervals have the form

Iny = [#A"0FD £A™] peN
L, = |[A—(F) _A—7
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The constant A > 1 is a free parameter, setting the logarithmic discretization
of the intervals. The goal of the logarithmic discretization is to have a very
good resolution, meaning very small intervals, near the Fermi energy ¢ = 0.
Usually, one uses values for the discretization of approximately A ~ 2. As
described above, one sets up an orthonormal basis within each interval. For
NRG calculations one neglects all terms but the constant function in each in-
terval. It can be shown that the coupling between the different orthonormal
functions is small [93]. Nevertheless, it is a rather rude approximation, es-
pecially when using A = 2, which is only justified a posteriori by the results
gained [93,94,101,102]. On the other hand, using only the constant function
on each interval, it can be shown that the solution is exact for A — 1. So it is
recommendable always to check the results by doing a calculation with smaller
A. If nothing changes, one can assume to have a good approximation.

One can now transform the conduction band Hamiltonian H. into the form
of a linear chain with the unchanged impurity at the beginning of the chain
(see figure 3.2). The important point of the logarithmic discretization and
this mapping is that the coupling constants ¢; decrease exponentially along
the chain. This exponential decrease is of great importance, as the iterative
diagonalization is doomed to fail, if this property is not given. I will explain
this in more detail in the next section.

In real calculations the chain is cut after N-sites. For NRG-calculations typical
chain lengths are of the order of N = 15 — 100 sites. Although N = 15 sites
sounds very few, as the degrees of freedom grow exponentially, there are already

4% = 1073741824

degrees of freedom. This number is too large for a direct diagonalization, so
one is forced to use iterative diagonalization schemes.

3.3.2 lterative diagonalization

The iterative diagonalization procedure of this semi-infinite chain is visualized in
figure 3.3. One begins with setting up the complete Fock space for the impurity
site. As the number of states is small, it can be diagonalized completely. Taking
the new eigenstates one can set up the basis for the impurity coupled to the first
site of the chain. The new Fock space is just a tensor product of the eigenstates
of the impurity and a Fock space basis for the first site. Diagonalizing this
small cluster again yields the eigenstates, which are used to set up the new basis
including the next site. This is done iteratively as can be seen in figure 3.3. The
problem is that the number of states in the Fock space grows exponentially. For
a complete diagonalization one is usually limited to about three or four sites of
the lattice. In order to continue one has to truncate the Fock space. In NRG
calculation one takes the Nk energetic lowest Fock space states. Only these
are used to set up the new Fock space including the next site. As a result, one
can continue to iteratively diagonalize the chain always truncating the space to
the energetic lowest Ng states. The reason why this truncation scheme works
here is that the coupling of the next site to the already diagonalized part of the
chain is weak compared to the current energetic scale. The coupling between
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Energy

Iteration

Figure 3.3: Iterative diagonalization procedure in the NRG. See the text for description.

the states should be small compared to the difference between the energetic
lowest and highest state. Loosely speaking, the next site is supposed to be
only a small perturbation for the already diagonalized chain. This is ensured
by the exponential decrease of the hopping amplitude ¢;, which comes from the
logarithmic discretization of the bath states in the beginning. This iteration
procedure can be written as

Hy = AW-1/2 (Hlmp + 1 Z(c;acoﬂ + cagcdﬂ)
o

N N-1
A . T T
+ Z €iCi xCi g T Z tz+1(0i,acz’+1,a + Ci+1,aci,0)

1=0,0 1=0,0

HN+1 = \/KHN + AN/26N+1 Z CJ]rV+1,aCN+1,a

N/2
ANty Z(C—EV,UCN-‘FLO' + C;V+1,UCN,U)

g

H = lim A-W-1D2py, (3.8)

N—oo

This defines a renormalization group transformation R [93,101,102]
Hyy1 = R[HN], (3.9)

which transforms a Hamiltonian Hpy into another Hamiltonian Hpyyi. The
prefactor AV=1/2 has been introduced in equation (3.8) to compensate the
decreasing of the hopping parameters ¢;. Thus, the energy levels remain of the
same order of magnitude ensuring a constant numerical diagonalization error.
Even if one is able to continue iteratively diagonalizing the semi-infinite chain,
one has to stop at some point. There are two criteria when to stop the calcula-
tion. The first criterion is given when the calculation has reached a fixed point,
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meaning, that the energy levels of Hy equal Hy 2 and do not change anymore.
The energy levels may change from even to odd iterations even when the fixed
point is reached. When the zero temperature fixed point is reached, one can
stop the iterative procedure and one is able to calculate zero temperature prop-
erties. Care must be taken, as also meta-stable fixed points may exist. The
other criterion for stopping the procedure applies if one is interested in finite
temperature results. As the coupling decreases exponentially, also the imposed
energy scale decreases. At some point the changing of the energy levels will be
smaller than the energy scale defined by the temperature. The changes in the
position of the energy levels by further diagonalizing the chain will not change
the Boltzmann weights in the calculation of thermodynamical properties for
the given temperature anymore. This is the point when one can stop the di-
agonalization of the chain. Further diagonalization will not change the finite
temperature results.

3.3.3 Calculation of impurity properties

The calculation of static expectation values on the impurity is straight for-
ward [94]. One simply sets up the matrix for the corresponding operator at
the beginning of the iterative diagonalization. This matrix is always updated
during the procedure into the current basis. Using the energy values and the
corresponding Boltzmann weights one is able to calculate thermodynamic static
expectation values. Let A be the operator of interest, 5 = k;BLT the inverse tem-
perature, Z the partition function, and |i) a state from the current basis with
energy F;. Then the expectation value reads

(4) = 5 3 exp(=GE) il Al

In this formula the sum is supposed to run over a complete basis set, which is
difficult to determine, as the basis is truncated during the iterative diagonaliza-
tion. For thermodynamic properties it is often a very good approximation to
assume that the only relevant contributions for a given temperature come from
the chain with the length, where the temperature equals approximately the
characteristic energy scale of the last site [94]. A more sophisticated approach
will be shown below.

The calculation of dynamical properties is a little bit more subtle. At the
end of the calculation one is able to calculate static expectation values and
has found the eigenstates and the corresponding energies. Thus one is able to
use Lehmann’s formula to calculate spectral functions for an operator A. The
retarded single particle Green’s function for fermionic operators is given by

Gap(t) = —iO(t) Tr p[A(t)B(0) + B(0)A(t)] . (3.10)

If there were no truncation during the diagonalization, using Laplace transfor-
mation, one would obtain

N e

Z"j
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where p = exp(—(H)/Z was inserted. Furthermore, the partition function is
given by Z = ). exp(—fE;), and ( is a complex variable. The spectral function
obtained by this reads

pan(w) = 5 S GIAIBIi)exp(~BE) + exp(~0E;)0(w + Bi — Ey).

1,J

The problematic point in this formula is that the sum over ¢, j must be over a
complete basis set. If one uses this formula only with the basis set of the last
iteration, one will use only a very tiny fraction of a complete basis due to the
truncation during the iterative diagonalization. Consequently, the calculated
spectral function will contain only frequency points very close to w = 0. All
high energy features will be lost. But adding all iterations of the chain will give
an over-complete basis. It will include a double counting of some states, which
must be accounted for by some regulation process [105,106]. This regulation
procedure is in some way arbitrary and introduces a new and uncontrolled
approximation.

To overcome this regulation one has to identify a complete basis set. The idea,
how to do this in the NRG chain, was by F. Anders and A. Schiller [107,108].
It was tested for equilibrium Green’s functions by RP, T. Pruschke and F.
Anders [109] and separately by A. Weichselbaum and J. von Delft [110]. The
new approach does focus on a Wilson chain of length N. In the beginning of the
iteration procedure a complete basis can be simply identified as a tensor product
of all single site Fock space states. Before the first truncation in the iterative
diagonalization procedure at site m < N, the eigenstates of the diagonalization
Wy yield a complete basis set of the chain of site m. If one performs a tensor
product with a basis for the rest of the chain m <k < N,

1 N
km®¢;€TLJ:—1 '®¢]€N’

one still obtains a complete basis set. Here W' is an eigenstate of the chain of
length m and wm“l a basis state of the single site m + 1. If one now truncates
the chain at length m, one neglects these states times a complete basis for the
rest of the chain, when trying to build up a complete basis set. The part of the
basis, which is created by the kept states, the states which are not truncated,
is not changed by the diagonalization. The kept states will be changed in the
diagonalization of the chain of length m + 1. But a tensor product of all states
in m + 1 with a complete basis for the Fock space for m + 1 < k < N spans
the same space as the kept states at length m times a basis for the Fock space
m < k < N:

Span Z Z v ® 1/1,2n++ll .® 1/1;]:1[\, =

kme€kept kEmy1,... kN

son (Y wptlevprie s,

km+1 km+2,....kN
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Thus, one can identify a complete basis set which consists of all truncated states
times a basis for the rest of the chain, where they have been truncated. In the
last step of the iterative diagonalization all states are supposed to be truncated.
In the following, the notation for a state shall be:

|\IJ> = |mvkm¢l> = |mvkm> ® ‘l>>

where m labels the chain site, k,, is the index of the eigenstates at this site
and [ is an index for a state in the basis for the rest of the chain. After the
truncation of a state, denoted as |-)7yunc, the impurity properties inherent in
this state are not changed anymore as the state is decoupled from the rest of
the chain

Trunc(ma kml A ‘Almp‘ma ka ) l2>Tr1mc = <m> km1 ‘Almp‘ma kmg >5l1,l2 .

Thus the environment states |I) do not change the expectation values of an
impurity operator after the truncation. If one now inserts a complete basis set
consisting only of truncated states in equation (3.10), one question must still
be clarified: What is the expectation value of two states truncated at different
sites m and m’ in the chain for m < m/. A state truncated at site m’ can be
written as a linear combination of kept states at site m

|m/7 k;r“ l>Trunc - Z Z (I)km,l’|mu kmu l/>,

km€kept U

where the [’ is labeling environment states. &, 1 are coefficients in the orthog-
onal matrices of the diagonalization. Thus the contributions of combinations
of states truncated at different shells m < m’ can be accounted for. One has
to take the combinations of the truncated state k,, in shell m and all the kept
states in the same shell, as the environment states do not change the expectation
value with an impurity operator.
Although the environment states do not change these direct expectation values
with an impurity operator, they influence the value of the density operator.
Their influence on it can be taken into account with the reduced density matrix
[111]

P};fnd,k;n = Z(mv kmv l|p|m, k‘l;w l>

l

The contributions of a state to the static or dynamical expectation value of the
impurity can be calculated correctly at the site, where the state is truncated.
For calculating magnetic solutions within the NRG, it is essential to use the
reduced density matrix p"? [111]. A small magnetic field can strongly influence
the ground state properties of an impurity calculation. Calculating dynamical
properties without using the reduced density matrix did often dramatically
underestimate the influence of the magnetic field.
In summary, when doing a calculation using a complete basis set, one must take
all the contributions of all truncated states and all states of the last iteration.
In the end this can be easily understood. All kept states are only refined in the
following iterations. Thus contribution between two kept states can be taken
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into account in later iterations. Defining |m,i) as a state in iteration m, the
Green’s function can be written as

N
Gap(©) = Y D" ((miilAlm.j) oy m. k| Blm, i)
m=0175,k
il Al k) m, B, ) )
’ ' o ' ' (+ E; — Ey,
N
pap(@) = > ({m.ilAlm, o35 (m, k Blm, i)

m=0175,k

+(m,i|Alm, k>p§§d<m, k|B\m,j>> d(w— E; + Ey), (3.11)

where now the summations ), ., is such, that at least one of the states [m,1)
or |m, k) is a truncated state. The spectral function is again given by pap(w) =
—%ijAB(w +140).

This formula can now be applied to the NRG diagonalization. After diago-
nalization of the complete chain, one sets up the density matrix and iterates
backwards from the end of the chain, setting up the reduced density matrix
for each site. For each iteration one applies equation (3.11) and collects all the
delta peaks for the spectral function. To gain a smooth spectrum, one has to
replace the delta peaks in equation (3.11) by continuous functions. As the dis-
cretization was done on a logarithmic scale, it is quite common to use Gaussian
functions on a logarithmic scale for doing this broadening [94]

e (1) :
S = B) = — g o= exp (= Gog(lel/E) /1)) ,
where b is a broadening parameter, whose value is typically b ~ 0.3 — 0.8. For
frequencies below the smallest energetic discretization A~(V=1/2 it is advisable
to use Lorentzians instead of logarithmic Gaussians. The reason is that pure
logarithmic Gaussians will always result in p(w = 0) = 0. As one can think
of the smallest energetic discretization as a finite temperature, it is justified to
use a Lorentzian here.
The same complete Fock space treatment can be used for calculating static ex-
pectation values, too [110]. One can determine the exact Boltzmann weight to
each Fock space state in the complete basis set. This will lead to the situation
that more than only one NRG shell contributes to thermodynamical proper-
ties. The advantage of this procedure is, that one can calculate properties at
arbitrary temperature with precise Boltzmann weights.

3.3.4 Calculating the Self-energy

For the DMFT self-consistency equation one needs the self-energy of the im-
purity. The expression for the self-energy can be derived by equations of mo-
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tion [112]

k
0 = €6, 4 VG, . (O
L= (-G, 4 (O-UFRQ-AG, 4 ()
1
A — 2
(©) g (s
F,(¢) = Qw%ﬁ%w%JQ
finally yielding
. (9 I
:ZAO__UG%JL«) (3.12)

with the notation of equation (3.1) and the Green’s function G 4 g for operators
A and B. Thus, the self-energy of the impurity can be calculated as a quotient
of two Green’s functions, which in turn can be calculated within the scheme
just derived in this chapter.

3.3.5 Two-orbital Anderson model

In the last sections I have dealt with the single impurity Anderson model.
But focusing on a two-orbital Hubbard model within DMFT, it is essential
to introduce the two-orbital Anderson model, as DMFT will map the multi-
orbital lattice model onto a multi-orbital Anderson model. The local part of
the Anderson Hamiltonian is the same as in the Hubbard model. Thus the
Hamiltonian for the two-orbital Anderson model reads

Hung2 = Hco+ Hipyp

2 2
Hrpp = § E 6dnd,m,a+UE Nd.m, 1 MNd,m,|
m=1

m=1 o

1 - S
+ (U/ — §J) an71,and72’a/ — QJSd,l . Sd72

o,0’

2 D
He = Z Z/D de 6CI,n’L,o'ce,m,a

m=1 o
2 D
+ Z Z / 5 de V(E)M(szpcd’mva + cj;’m’acgm’a%
m=1 o -

where each operator has an additional orbital quantum number m. Operators
acting on the impurity are labeled with “d”. This model can be mapped, as
shown above, on an one-dimensional chain, where each site has a local Fock
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space consisting of 16 states due to the two degenerate conduction bands. Thus
the complete Fock space grows with the number of sites N as 16V. To get
reasonable results for static and dynamic properties within the NRG, I kept
up to 5000 states per iteration. For one complete diagonalization and the
calculation of spectral functions one needs up to 16GB main memory and several
processor hours computing time on a multi-core-processor. In contrast, for an
one-orbital model often 1000 — 2000 states and 1GB main memory are enough.
For the calculations in the two-orbital model I used three conserved quantum
numbers: particle number N, total Sz of the spin components and total orbital
quantum number 7. If one would include the above mentioned pair hopping
term into the Hamiltonian the orbital quantum number would not be conserved
anymore. This would result in larger quantum number subspaces during the
iterative diagonalization and thus larger amount of main memory and time for
the computation.

3.4 Density Matrix Renormalization Group

I developed a new Density Matrix Renormalization Group (DMRG) code. 1
especially focused on solving impurity problems like the Anderson impurity
model. The main reason for this development was to get some independent
results with a method different from the NRG for the magnetic phase dia-
gram in the Hubbard model. DMRG was originally designed for treating one-
dimensional systems [95,96,113,114]. But as I have shown above, an impu-
rity model like the Anderson model can be mapped onto a one-dimensional
chain [93]. In contrast to the NRG, no logarithmic discretization must be used
for the mapping within the DMRG. For this method one can freely choose the
intervals. This allows for more freedom and one is able to properly control the
accuracy of the discretization. DMRG can then be used for diagonalizing this
chain representing the Anderson impurity model [115-118].

3.4.1 Iterative diagonalization

Similar to the NRG, also in the DMRG the chain is diagonalized iteratively.
Here too, the Fock space grows exponentially reaching very quickly a size, which
cannot be diagonalized anymore in suitable time. One has to truncate the Fock
space selecting a smaller number of states, which will build up the next iteration.
This is done in a way best fitting the aim of the procedure. In the NRG the
states with the lowest energies were selected to create the next Hamiltonian.
The reason for this was the exponentially decreasing hopping parameters and
the focus on the low energy eigenstates of the problem. In the DMRG the
hopping parameters can have arbitrary values. Selecting the lowest eigenstates
in smaller blocks for building up larger blocks fails because of wrong boundary
conditions [119]. In DMRG the new states for an enlarged block are calculated
using the ground state of the whole system. From the ground state one can
build up the reduced density matrix [120] for the enlarged block. Let me assume
the whole system is build up from four blocks, see figure 3.4. The middle blocks
B2 and B3 correspond to single sites containing only a very limited number of
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i) = |i1) ® [i2) k) = |iz) @ ig)

Figure 3.4: One iteration step in DMRG. The blocks are named B1, B2, B3 and B4
with states [i1), |i2), |i3) and |i4). A basis set is formed by tensor product for the two
left blocks and two right blocks, respectively.

states. The remaining blocks B1 and B4 represent all sites of the left or the
right part. Both are supposed to already contain a truncated Fock space. I will
now explain the method how to build up the next enlarged block.

Each block consists of a finite number of states |ig). From these states the
Hamiltonian for the whole system can be set up. For this Hamiltonian one
searches the ground state by the Lanczos method or some similar technique
[121,122]. Assuming the chain is represented by 4 blocks the ground state can
be written as

U= PBipisulit) @ liz) © lis) @ |ia).

11,12,13,14

One can now combine both left blocks forming one new block |i) = |i1) ® |ia).
The same is done for the two right blocks. As a result, one can write the ground
state in the states of the two big blocks

U= "ahili) @ k).

ik

From the coefficients 1); j, one can now form the reduced density matrix for the
left blocks

pig =Y Virlik, (3.13)
K

where i, j are indices of the left block, k an index of the right block and 1); j, is
assumed to be real. This matrix p; ; is supposed to have a maximal dimension
of about dim p;; ~ 1000, as one has to diagonalize this matrix completely in
each iteration.

Let me assume that I want to calculate the expectation value of a bounded

operator ||A| = maxy ‘%‘ = c4 acting only in the left enlarged block.

This expectation value is given by the trace of the operator times the density
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operator p. As the operator acts only at the left block, the density operator
corresponds to equation (3.13). As p is a symmetric matrix one can write it
as p = »_; |\i)Ai(N\i], where the eigenvalues are supposed to be ordered from
large to small. One wants to truncate the dimension of the block from dim p;;
to m < dim p;;, thus taking the eigenstates with the largest eigenvalues. The
expectation value can be written as

(A) = TrpA

m
ZN(M\AP\O-
1=0

%

The error of the truncation for this operator can be easily approximated by

m dim
(A) =Y NAN) = D Niea
=0 i=m-+1

being proportional to the sum of the neglected smallest eigenvalues. Thus the
eigenstates with the largest eigenvalues of the density operator best describe
the operator A [113]. This holds for every bounded operator, especially for the
part of the Hamiltonian describing the system of the two blocks. One can also
argue that these states best describe the ground state wave function [123] or
maximize the quantum entanglement [124].

The algorithm now works as follows: First one calculates the ground state
of four single sites. From this a combined block including two single sites is
created. So the new system consist of the combined block and three single sites
from which a combined block of three sites is created. Going on like this the
whole chain can be built up. After setting up the whole chain, one can use
the same algorithm to improve the basis stored in each combined block by first
enlarging the left blocks and later the right blocks. Iterating this procedure
one can get a very accurate ground state wave function of an one-dimensional
chain. With this wave function one can calculate static expectation values or
correlation functions of the chain. Of course, this includes expectation values
of the impurity itself.

3.4.2 Calculation of dynamical properties

The DMRG focuses on the ground state of the system. Omne usually is not
able to calculate more than a very few excited states. Therefore, one is not
able to use Lehmann’s formula for calculating spectral functions. The easiest
way calculating a spectral function is using a Lanczos expansion of the spectral
function [125,126] calculating the first few moments. But this expansion fails
for more complex dynamical spectral functions.

An alternative approach is the correction-vector method [126,127]. A very
elegant way of formulating it, also improving its accuracy, was introduced by
E. Jeckelmann [128]. The Laplace transformed retarded Green’s function (3.10)
for T'= 0 can be written as

Gap(C) = <\P1AC%HB\\P>,
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where W is the ground state of the chain. For numerical calculation it is neces-
sary that ( = w + in has positive finite imaginary part 7. Instead of inverting
the operator (w + in — H) one sets up the following equation for the state |Y')

(Bo +w—H)* +n*)|Y) = —B|¥), (3.14)

where Ej is the ground state energy of the chain. From this one can calculate
the spectral function by

plw) = —%Jm(\mA\Y).

One can now formulate this linear equation as a minimization problem [128] of
the following functional

W (w,n) = (®|(Eo +w — H)? + n°|®) + 2n(®| B|V).

The state |®), which minimizes this functional equals the solution to the equa-
tion (3.14)
[Prin) = [Y).

With this approach it is possible to calculate the spectral function of the An-
derson model by using the DMRG.

3.4.3 Algorithm

At the end of this section I will summarize the DMRG algorithm. First, one
brings the Anderson impurity Hamiltonian into the discrete form of a linear
chain. In contrast to the NRG it is possible to discretize the conduction band,
for example, in linear intervals resulting in non-exponentially decreasing hop-
ping parameters. By this one can control the resolution of the conduction band.
As usual, the only interaction between spin-up and spin-down electrons occur
on the impurity. Thus it is possible to build up the chain with all the up-
electrons to the left, the impurity sites in the middle and the down-electrons to
the right. This results in a small local Fock space consisting of only two states:
no electron or one electron. This accelerates the whole procedure. One now
uses the DMRG for finding the ground state |¥) of the whole chain. By increas-
ing and decreasing the size of the outer combined blocks, called sweeping, one
improves the basis set used for setting up the Hamiltonian and finally is able
to calculate a very accurate ground state wave function. With |¥) it is possible
to compute static expectation values, such as the occupation of the impurity.
When calculating the spectral function one cannot simply use the basis set just
gained for the ground state. This will give a very poor result for the spectral
function as the basis set is optimized for the ground state and cannot describe
the exited state B|¥) very well. For each frequency w, one has to calculate the
exited state B|VU) and the state |Y) as defined in equation (3.14). One has to
improve the basis set by sweeping for these two states and the real part of the
spectral function |X) given by

_H—Eo—w

1 X) p

1Y),
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This means that one includes not only the ground state wave function into the
reduced density matrix but also these three exited states [128]. The density
matrix is then simply written as sum

pij = op > WHTG,
p k

where p labels the four states and «y, is some amplitude for the importance of
the state. In my calculations I usually used o = 0.4 for the ground state and
a = 0.2 for each of the exited states. By sweeping for each frequency point one
improves the basis set and is finally able to calculate the spectral function.
The coefficient n results in a Lorentzian broadening of the spectral function.
Decreasing n results in a worse convergence to the solution of the equation for
the correction-vector (3.14). Not only more time is needed for finding the solu-
tion, one also has to include more states m in the density matrix for calculating
a stable solution.



CHAPTER 4

NRG and DMRG Spectral Functions
for the Impurity Model

4.1 Introduction

This chapter deals with a comparison between the numerical renormalization
group (NRG) and the density matrix renormalization group (DMRG) as im-
purity solvers. Both methods were introduced in chapter 3. The NRG is well
established for calculating spectral functions for one- or two-orbital Anderson
models [94,105]. These kind of calculations have been done for approximately
20 years. In contrast, the DMRG algorithm, which was used here for the com-
putation of spectral functions, is rather young existing in this form for only 10
years [126-128]. Calculations for impurity systems have been performed for 5
years [115,116]. From this fact it is clear that one should test the DMRG as
impurity solver before using it in the framework of the DMFT. Intensive tests
were performed in the Ph.D. thesis of C. Raas [129].

As the DMRG spectral functions are Lorentz-convoluted, it is recommendable
to look at the deconvolution of the data. Therefore, I will give a short introduc-
tion into the topic of deconvolution in this chapter. Finally, I will compare the
spectral functions of the DMRG and the NRG for different interaction strengths,
doping and magnetic fields. All three parameters are important, when using
the DMRG in the framework of the dynamical mean field theory for calculating
magnetic phase diagrams. Based on these results I will discuss the strengths
and the weaknesses of the DMRG as an impurity solver.
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Figure 4.1: Spectral functions from DMRG calculations for the STAM for I' = 0.07 and

different interaction strengths. Friedel sum rule states p(0) = = ~ 4.54 in this case.

T =
Within the DMRG a broadening of n = 0.05 was used.

The single impurity Anderson model (STAM), as introduced in chapter 3, reads

D
Hpna = Z / 5 de 602006,0 + Z deIz,aCd,a + Uc:ri,TCd,Tc:ri,lcd,l
o - e

D
3 / deV () /POl pey + b e
o -D 7 7

A constant coupling V' (e)/p(€) = const between the conduction band and the
impurity is chosen throughout this chapter. The hybridization is defined as

I =7V(e)2p(e) =nV?p for €€ [-D,D].

Figure 4.1 shows spectral functions of the STAM for different interaction strengths
obtained by the DMRG. The general form of the spectral functions agrees very
well with the known results [98]. One can see the resonance at the Fermi en-
ergy, w = 0, called Kondo resonance. For large enough interaction strengths,
additional high energy peaks, called Hubbard peaks, are visible. The spectral
weight is transferred from the central peak to the Hubbard peaks when increas-
ing the interaction. But already in this figure one should notice that the Friedel
sum rule [98], which states that the half-filled STAM spectral function is pinned
at w = 0 to p(0) = =, is not fulfilled. I will discuss the spectral functions in
more detail later in this chapter.
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Figure 4.2: Left: Bath spectral function obtained by the diagonalization of the hopping
chain. Two different discretization schemes were used. The black (red) line corresponds
to linear (linear and logarithmic) intervals. The broadening 7 = 0.05 was used. Right:
U = 0, ' = 0.07 spectral function of the STAM. The black points and the red line
are obtained by diagonalizing the hopping chain. The green curve represents the exact
solution to the STAM. For the DMRG calculations a discretization into 81 intervals was
used.

4.2 Used Discretization Schemes

Before using either the NRG or the DMRG for the SIAM, one has to discretize
the band states (chapter 3). The discretization for the DMRG is quite arbitrary.
In figure 4.2 I show two resulting bath Green’s functions and the non-interacting
impurity spectral function. The bath spectral function represents the form of
the bath, which couples to the impurity. The results throughout this chapter
were done for a constant bath spectral function pg(e) = 0.5 for e = [—1,1]. 1
have tested two kinds of discretization schemes in the DMRG. The black line
in the left panel of figure 4.2 corresponds to a pure linear discretization, while
the red line corresponds to a linear discretization for large frequencies |w| > 0.1
and a logarithmic discretization for |w| < 0.1. The reason for the logarithmic
part is to improve the resolution around the Fermi energy. The bath spectral
functions were calculated by exact diagonalization of the chain by

ot

plo +in) = —~3m <‘Ifo ‘If0> | (4.1)

C e —

w4+ —H
where ¢! creates an electron on the last site of the bath sites, which directly
couples to the impurity. I have used the same broadening 7 in this calculation as
in the DMRG calculations. One can see, that this approach quite nicely repro-
duces a nearly constant bath continuum near w ~ 0. The discrepancy between
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0.5 and 0.48 as well as the curvature at the band edges can be explained by the
broadening. The logarithmic broadening shows slight oscillations around the
point, where I changed from linear to logarithmic discretization. Throughout
this chapter I used 81 intervals for the discretization of the bath continuum.
The complete DMRG chain with splitting of the spin-up and the spin-down
states to the left and right of the impurity adds up to 164 sites. The right
panel in figure 4.2 corresponds to the non-interacting SIAM, U = 0. The red
line and the black points, which lie exactly on the red line, are the calculated
and broadened spectral function in discretized form. “Exact” means that the
hopping chain was diagonalized without DMRG. The green curve corresponds
to the exact spectral function of the STAM. The DMRG reproduces the exact
spectral function, which can be obtained after the discretization of the bath
states. The difference between the exact curve and the discretized spectral
function is due to the discretization and the broadening.

4.3 Deconvolution

Due to numerical reasons and finite size effects, see chapter 3, it is not possible
to use equation 4.1 for arbitrary small broadening n within the DMRG. From

G(z) = <\1:0 - \Ifo>
_ /p(_W) do

w
. 1.
= plw+in) = —;Jm

ol

C

p(w/) dw/
w+in — w’
(«)

n P ’
1) 2>] 4.2
7r/(w—w’)2+772dw (4.2)

one can see, that the spectral function calculated within the DMRG is con-
voluted with a Lorentzian. Deconvolution is an ill-posed problem due to two
reasons. The first reason is a physical one: The unbroadened spectral function
of a finite system, like the finite chain used within DMRG, consists of a finite
number of delta-peaks. Of course, this number is rather big. Nevertheless,
finite size effects will most likely be visible. As one is interested in the spectral
function, when there is a continuum of bath states, these finite size effects are
undesirable. Therefore, it is actually not the goal to do a complete deconvo-
lution. But even if a complete deconvolution would be the goal, it would be
numerically impossible. The mathematical reason for this is the sensitivity on
the input data points. Only small changes in p(w 4 in) can lead to rather big
changes in p(w). As the inversion of the integral is done numerically, errors
will occur. Another way to formulate the last statement is, that within a given
error for the inversion there is more than one solution.

4.3.1 Matrix Inversion

A straight forward idea for the deconvolution is to consider the spectral function
as a discrete set of points. Thus the integral in equation (4.2) can be written as
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a matrix operation. Let p; = p(w;) with w;11 — w; = de, one can approximate
equation (4.2) as
. n Pj
w; +1in) = — ——————de =: Ljpj,
P( i "7) - zj: (wi _ w]')Q T ?72 ijPj
defining the matrix of the Lorentz-convolution L;;. This matrix can in principle
be inverted. Thus the desired spectral function can be calculated by

pj = L' p(wi + in).

If one uses a fine mesh in frequency space, the matrix L;; will have eigenvalues,
which are approximately zero thus making an inversion practically impossi-
ble. Pseudo-inverse techniques can be applied yielding results for the spectral
function. These deconvoluted spectral functions have commonly two problems:
They are not positive definite and they show strong oscillations. Thus better
methods should be used for deconvolution [129].

4.3.2 Maximum Entropy Ansatz

A method, which is frequently used for analytic continuation of Quantum Monte
Carlo (QMC) data or image restoration, for example, in astronomy, is Maximum
Entropy [130-132]. This kind of analytic continuation is closely related to
deconvolution as both methods try to invert the same integral. But in the
analytic continuation of QMC data one tries to calculate p(w) from G(iw).
The Shannon information entropy is written as

Slp(w)) = - [ dep(w)log %

in which D(w) is the default model. The entropy without any further conditions
is maximal for p(w) = D(w). Throughout this thesis I use a constant default
model D(w) = 1. The same default model was used in the deconvolution of
DMRG data in the work of C. Raas [129] and P. Dargel [133]. The reason
for using a constant default model is the wish for a least biased deconvolution
strategy. Finding the maximum is done under the condition that p(w) is con-
sistent with the IV calculated data points p(w; + in), which are supposed to be
deconvoluted, meaning

p(wi +1in) = g/%dw. (4.3)

Using Lagrange-multipliers \; to enforce this condition, one can find the ex-
tremum of the entropy by

3S[p(w)]
plw

op(w)
1
_ /dw —1ogp<w>—1+§&§m>
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giving an ansatz for the spectral function as

1
p(w) = exp (ZZ: AZ%m) .

This ansatz includes N free parameters J);, which can be calculated by equa-
tion (4.3). Thus one has to solve N non-linear coupled equations yielding the
parameters \;. For the results shown in this chapter the system of equations
was solved by steepest descent until the desired precision of about

1 1 _ w ?
NX2[p(W)] = XZ: <p(wi +in) — g / %dw) < 0.0002

was gained.

The algorithm can be improved by additional assumptions. For example, one
can enforce the norm [ dwp(w) = 1 being always fulfilled. Another point is to
assume error afflicted data. Then one can include the variance

Xlo@)] =Y <p(“’i ) - ;/%dwf

i
into the functional, which is maximized, yielding

Q = S[p(w)] — A’ [p(w)].

The constant A can then be used for tuning the resulting p(w), so that x? equals
the magnitude of the assumed errors.

Figure 4.3 shows an example for a deconvolution. I assume no errors in the pure
DMRG data. The black line corresponds to the DMRG output for a SIAM with
I' = 0.07 and U = 0.8. The blue line represents the NRG spectral function.
One should notice two things: The Kondo-peak is strongly smeared out in
the DMRG-data. On the other hand, the Hubbard satellites are much better
resolved within the DMRG than in the NRG. Using now deconvolution on the
DMRG data, all peaks become stronger. Nevertheless the Kondo peak having a
width of T ~ 0.008 cannot be resolved. Moreover, in the deconvoluted spectral
function additional oscillations occur, as can be seen at w =~ +0.15. These
oscillations are unphysical and due to the deconvolution. Similar oscillations
occur in much stronger form in the matrix based deconvolution. It is usually
very difficult to get rid of these artifacts. Therefore, it is very important to have
knowledge about this fact, so that one can interpret this oscillations properly.

4.4 Comparison between DMRG and NRG

4.4.1 Single Impurity Anderson Model

I will now present several results which show spectral functions for the STAM.
In all figures I have used I' = 0.07. The initial DMRG broadening was always
n = 0.05. Figure 4.4 shows the spectral function for different ratios between the
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Figure 4.3: Spectral functions for U = 0.8 and I" = 0.07. One can see the pure DMRG
output and the comparison between the complete Fock space (CFS) NRG and the
deconvoluted DMRG spectral function. The initial DMRG broadening was 1 = 0.05.

interaction strength and the hybridization I'.  Continuous lines correspond to
deconvoluted DMRG results and the dashed lines correspond to NRG results.
The lower panel in figure 4.4 shows a magnification of the frequencies around the
Fermi energy w = 0. Two things should be obvious: The DMRG results resolve
the Hubbard bands at large frequencies very well. But the Kondo resonance
at w = 0 is resolved very badly. For the NRG results the opposite statement
is true. Due to the logarithmic broadening in the NRG, the Hubbard bands
are completely smeared out. Both facts hold true for all figures shown in this
chapter. Quite recently it was possible to increase the resolution of the NRG
by a special kind of z-averaging [134]. Figure 4.5 shows the spectral functions
for U/T" = 11.2. There are two DMRG calculations included corresponding
to a linear discretization and a logarithmic discretization. The height of the
Kondo peak within the logarithmic discretization is reduced, thus failing to
improve the resolution of the low energy features. This is not astonishing, as
the height is mainly limited by the broadening 7. Additionally, I have included
in figure 4.5 the NRG spectral functions using the ordinary NRG broadening
(CFS NRG) and the high resolution broadening (HR NRG). One can see how
the high resolution NRG can resolve the Kondo peak as well as the Hubbard
bands with very high accuracy.

For calculating magnetic phase diagrams within the DMFT using the DMRG as
an impurity solver, it is necessary that the DMRG is able to calculate spectral
functions away from half-filling and is able to handle magnetic fields. Figures
4.6 and 4.7 show that both cases can be treated using the DMRG. Figure 4.6
shows the comparison between the DMRG and the NRG for different on-site
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Figure 4.4: Spectral functions for I' = 0.07 and different interaction strengths. Contin-
ues lines correspond to the DMRG, dashed lines to the NRG. The lower panel shows a
magnification of the upper panel around the Fermi energy w = 0.
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Figure 4.5: Spectral functions for I' = 0.07 for U/I' = 11.2. The black and the
red line correspond to deconvoluted DMRG results with either linear discretization or
logarithmic discretization of the conduction band. The green line represents the high
resolution NRG explained in the text (This data was provided by Rok Zitko). The blue
line corresponds to the complete Fock space NRG. The inset shows a magnification of
the region around the Fermi energy.
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Figure 4.6: Spectral functions for the SIAM with I' = 0.7, U = 0.8, T} ~ 0.008, and
different on-site energies.

3k w T ‘ " |- =~ NRG Minority |

2.5 _ --- NRG Majority H

N B/'=0.007 — DMRG Minority ||

i —— DMRG Majority |
1.5

Figure 4.7: Spectral functions for the SIAM with I' = 0.7, U = 0.8, T} =~ 0.008, and
different magnetic fields.
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energies, resulting in different occupations of the impurity. Within the NRG
results one can see, how the spectral weight is shifted to the right, but one
cannot see any substructures in the Hubbard bands. In contrast, within the
DMRG results one can nicely see, how the left Hubbard band moves into the
Kondo resonance.

Figure 4.7 depicts the results for two different strengths of the magnetic field. In
the beginning of the NRG, there was the problem that the NRG dramatically
underestimated the effect of small magnetic fields. This problem was firstly
solved by introducing the reduced density matrix [111]. The reduced density
matrix ensures the correct influence of the ground state on the high energy
features in the spectral function. As in the DMRG the correct ground state
is used for each frequency, such problems are supposed to be absent. This
statement is proven in figure 4.7. The splitting of the majority and minority
spin spectral functions is comparable in strength for both methods. Thus the
DMRG is able to handle small and large magnetic fields acting on the impurity.

4.4.2 Two-Orbital Anderson Model

2.5 x

p(w)

0.5

e ===
i

Y5

15

Figure 4.8: Two-orbital Anderson model for U = 0.4, J = 0, U’ = 0.4, and two different
hybridizations I'. Continuous lines are DMRG results, dashed lines NRG results.

Finally, it is an interesting question to see, if the DMRG can handle the multi-
orbital Anderson model. An intensive study for a simplified two impurity An-
derson model was done by S. Nishimoto et al. [135]. Figure 4.8 shows the results
for the two-orbital Anderson model. The construction of the one-dimensional
chain was such, that the Fock space states of one orbital were to the left of
the impurity and the states of the other orbital to the right. Figure 4.8 and
4.9 shows that it is possible to do multi-orbital impurity calculations using the
DMRG. Interestingly, the deconvoluted DMRG spectral functions in figure 4.8
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Figure 4.9: Two-orbital Anderson model for U = 0.4, J = 0.1, U’ = 0.2, and two
different hybridizations I' = 0.125 (left) and I" = 0.031 (right).

with J = 0 have more spectral weight at the Fermi energy w = 0 than the
NRG. This is in contrast to the calculations in the one-orbital Anderson model.
As the Friedel sum rule is supposed to hold in this case, one can see, that
the DMRG fulfills the sum rule more accurately. For I' = 0.125 the sum rule
predicts p(0) = 2.54, and for I' = 0.196 it predicts p(0) = 1.62. Two-orbital
calculations using the NRG have the big problem, that the Fock space must
be built up from 16 states at the same time. Although the shown NRG re-
sults were done with N = 5000 states kept after the truncation, this number
corresponds to Nx = 70 states in the one-orbital model. This explains the
discrepancies of the NRG results to the Friedel sum rule. Another aspect in the
spectral functions are the band edges at w = +1. They are again completely
smeared out in the NRG due to the large broadening at large frequencies. The
DMRG spectral function nicely resolve these band edges. Finally, figure 4.9
shows results for J = 0.1. Finite Hund’s coupling has a profound consequence
on the spectral function. The Kondo temperature can be considerably reduced
by it [52]. The left panel in figure 4.9 shows the spectral function for relatively
large hybridization I, for which no Hubbard peaks are present. In this situation
the NRG and the DMRG are very similar. In the right panel one can see the
spectral functions for a small hybridization I'. The Kondo temperature is very
small. It can still be resolved by the NRG, but the DMRG fails. In the DMRG
spectral function one can see additional substructures in the Hubbard bands.
But it is very difficult to say, if these structures are real or effects of the de-
convolution. One should perform additional calculations with other conduction
band discretization to check this result.
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4.5 Summary

In this chapter I compared results for the spectral functions of the NRG and
the DMRG. As the NRG is well established for calculating spectral functions
for arbitrary interaction strengths, impurity occupation, and magnetic fields,
I mainly tested the DMRG algorithm in this chapter. I have shown that the
DMRG is able to calculate dynamical properties of a STAM reliably. The main
problem for the DMRG is the broadening, which can be comparable to the
width of the Kondo resonance, thus eventually failing to correctly resolve the
low energy features. On the other hand, the DMRG resolves the high energy
features like the Hubbard bands very well, at least better than within the NRG.
Of course, one should mention that also in the NRG there are ways to improve
the resolution of the Hubbard bands [134]. A way to improve the resolution
within the DMRG is deconvolution. Although possible, there are limits to what
extend structures can be resolved. As the focus of this thesis lies on magnetic
phases, which are mainly stabilized due to the high energy features, there is the
hope, that the DMRG can deal with these situations.

One very big advantage of the DMRG to the NRG could be seen in the two-
orbital Anderson model. As the discretization within the DMRG and also the
construction of the chain is rather arbitrary, one has the possibility to split the
local Fock space states in the DMRG. This leads to a reduction of the number
of states during one iterative diagonalization. In the DMRG, it is possible
to separate the band states for each spin and orbital direction, as they are
only interacting with each other directly on the impurity. This enables one to
perform calculations for even more than two orbitals, as the chain size increases
only linearly with the number of orbitals.



CHAPTER D

One-orbital Hubbard model

5.1 Introduction

In this chapter I will present my results for the situation, when there is effec-
tively only one orbital left at the Fermi level. This can occur in the case of
further symmetry reduction from cubic perovskite to tetragonal structure [14],
see chapter 1.2. Assuming that there is no Hund’s coupling between the par-
tially filled orbital and the remaining localized electrons, or the remaining bands
are completely filled or empty like in the case of cuprates [14], this situation
can be modeled by the one-orbital Hubbard model (chapter 1.3)

H = Z tijc;r’acj’a — “Z ni o + UZni,Tni,l,
13,0 1,0 7

where t;; describes the hopping of the electrons, y is the chemical potential, and
U the amplitude for the electron-electron interaction. The model was already
introduced in the first chapter. In this chapter I will examine the effects of
all three parameters: Changing the form of the hopping, the ratio between
hopping and interaction strength, and the occupation of the system by tuning
the chemical potential .

All calculations in this chapter were performed within DMFET for a Bethe lattice.
In the second section I will address the Hubbard model with nearest neighbor
(NN) hopping only, resulting in a semi-elliptic DOS. In the third section I
compare DMRG with NRG results for this model. Finally, in the last section
of this chapter I will introduce an additional next nearest neighbor (NNN)
hopping t2 # 0 leading to an asymmetric DOS. As shown in chapter 2.5, the
semi-elliptic density of states for NN-hopping becomes asymmetric and finally
develops a singularity at the lower band edge for to > 0 and t9/t; > 1/4. For
to < 0 the DOS is reflected at w = 0 compared to to > 0. All the results remain
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Figure 5.1: Metal insulator transition within DMFT for a Bethe lattice with semi-
elliptic DOS. The left side of the figure shows the evolution of the spectral function
p(w) with increasing interaction strengths U/W = (1,1.5,1.505,1.6) for T'= 0. The
right side shows the first order transition lines from a metal to an insulator (right line)
and from an insulator to a metal (left line). At T/W ~ 0.01 there is a critical point,
above which there is only a cross-over between metallic and insulating solutions.

valid with occupation n =1 —x — n =1+ x for to — —to. Therefore I will
assume through out this chapter ¢o > 0.

Most of the results in this chapter are published in Physical Review B [136] and
New Journal of Physics [137].

5.2 Semi-elliptic Density of States

5.2.1 Metal Insulator Transition

Assuming that there is only NN-hopping ¢, the Bethe lattice has a symmet-
ric semi-elliptic DOS, see chapter 2.5. The bandwidth W = 4t of the non-
interacting system is in the following used as the energy unit. The calculations
are performed with DMFT/NRG for a half-filled system n = 1 using the NRG
discretization parameter A = 2, and Ng = 1000 kept states (see chapter 3).
As T will show now, the paramagnetic metal insulator transition (PMIT) is
strongly connected to the magnetic phase diagram of the Hubbard model. The
PMIT is a numerically well analyzed phenomenon within DMFT [106,138-141].
The results obtained in my own calculations can be seen in figure 5.1 and are
summarized as follows: When approaching the PMIT from the metallic phase
a three peak structure develops with two Hubbard bands and a quasi-particle
peak at the Fermi-energy w = 0 [106,138]. The width of the quasi-particle peak
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decreases for increasing interaction strengths. Finally at a critical interaction
strength the quasi-particle peak vanishes. Thus an insulator is formed. The
PMIT occurs for an interaction strength of about U/W =~ 1.5 at T = 0. The left
panel of figure 5.1 shows the evolution of the spectral function for increasing
interaction strength U for T/W = 2-10~%. When starting the DMFT self-
consistency with an insulating medium, obtained from calculations with large
interaction strength, the transition occurs at a lower critical value of the interac-
tion, at which the gap vanishes. The right side of figure 5.1 shows these PMIT
transition lines. The right line shows the transition starting with a metallic
self-energy, while the left line corresponds to the transition when starting with
an insulating self-energy. Between both lines there is a hysteresis region, where
both insulating and metallic solutions can be stabilized. Therefore, the transi-
tion is of first order for temperatures below the critical temperature. Above the
critical temperature there is a smooth cross-over between the metallic and the
insulating phase. As I did not perform any A — 1 scaling in the NRG, the tran-
sition lines and the critical endpoint do not exactly lie upon the DMFT/NRG
results by R. Bulla et al. [106,138], but they are very close to them.

5.2.2 Magnetic Phase Diagram

The Hubbard model at half-filling exhibits super exchange, as described in
chapter 1.4. Therefore it is not surprising to find a strong tendency towards
antiferromagnetism. The antiferromagnetic phase in the Hubbard model at
half-filling is a well analyzed fact, too [142-145]. It can be shown by per-
turbation theory that for an unfrustrated lattice, to = 0, an antiferromag-
netic phase exists at half-filling and 7" = 0 for any finite interaction strength
U > 0 [142,143]. The paramagnetic metal insulator transition, shown in fig-
ure 5.1, has a smaller critical temperature than the Néel-temperature of the
antiferromagnetic phase [70,140, 146, 147]. This means that the PMIT is com-
pletely covered by the antiferromagnetic phase at half-filling. For analyzing the
PMIT in this model the antiferromagnetic phase has to be suppressed artifi-
cially during the DMFT self-consistency cycle by, for example, averaging the
spin components of the effective medium. A phase diagram, as seen in V503
(chapter 1.2.1), cannot be seen in the Hubbard model with semi-elliptic DOS.
It has been argued that frustration might be able to suppress the antiferromag-
netic phase revealing the PMIT [70, 147, 148]. I will come back to this point
later in this chapter.

Besides antiferromagnetism, Nagaoka ferromagnetism was found in the Hub-
bard model [144,149-151] for a simple cubic lattice. Interestingly, it is impos-
sible to stabilize this kind of ferromagnetic phase for a Bethe lattice. In the
rigorous derivation of Nagaoka for this ferromagnetic state [149], closed loops
in the lattice structure are essential. As the Bethe lattice does not possess any
closed loops this absence of Nagaoka ferromagnetism is in complete agreement
with the theory. The interesting fact is, that the lattice structure only enters
the DMFT calculation via the DOS. So changing the DOS from Gaussian with
exponentially “long tails” for the hyper-cubic lattice, where Nagaoka ferromag-
netism has been observed, to the semi-elliptic DOS with finite support, averts
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Figure 5.2: Antiferromagnetic polarization for a semi-elliptic DOS and T/W = 2-10~%.
The phase diagram was calculated with metallic starting medium in the upper panel
(insulating starting medium in the lower panel). The antiferromagnetic Néel-phase
(yellow color) exists only exactly at half-filling. Black is the paramagnetic phase away
from half-filling and the white part the incommensurate spin density wave (IC). The
horizontal black lines correspond to the critical values of U/W = 1.5 (upper panel)
and U/W =~ 1.2 (lower panel) of the PMIT. In the lower panel the transition lines of
the calculation with metallic starting medium are included. The phase diagrams were
created by fitting of approximately 200 data points distributed in each phase diagram.
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the existence of this ferromagnetic state. This stresses the influence of the
lattice on the DMFT calculations.

The phase diagram for very low temperature T/W = 2 - 10~4, different inter-
action strengths and chemical potentials can be seen in figure 5.2. Both panels
show the antiferromagnetic polarization p = ny — n|, which is colored yellow
corresponding to magnitudes larger than p > 0.8. These phase diagrams were
created by using different starting media for the DMFT calculation. The upper
panel in figure 5.2 corresponds to a metallic starting medium, while the lower
panel corresponds to an insulating starting medium. The media influence the
critical value of the interacting strength U/W at which the metal insulator tran-
sition occurs in the paramagnetic phase (figure 5.1). In both phase diagrams
the antiferromagnetic phase exists only exactly at half-filling. This Néel-state
is pinned to n = 1 and does not change upon slightly changing the chemical
potential. Looking at the metallic starting medium, the paramagnetic metal
insulator transition would occur for U/W ~ 1.5, which is now covered by the
antiferromagnetic state. Nevertheless, the magnetic phase diagram changes at
this point. For interaction strengths below this value, the paramagnetic phase,
represented by the black color, adjoins directly the antiferromagnetic phase at
half-filling. The transition is of first order as both occupation and polarization
jump, as can be seen in figure 5.3. There exists no stable solution for occupa-
tions between n ~ 0.85 and n = 1. This region can be interpreted as phase
separated between a paramagnetic solution away half-filling and an antiferro-
magnetic solution at half-filling [142-144]. The situation completely changes
for interaction strengths above the critical value of the paramagnetic metal in-
sulator transition, U/W = 1.5. If one changes the chemical potential u for
U/W > 1.5, one will find a region of parameters where the DMFT calculations
do not converge, neither to an antiferromagnetic state nor to a paramagnetic
state. This regions lies between the paramagnetic phase and the antiferromag-
netic phase at half-filling. An example for a DMFT calculation in this region
can be seen in figure 5.4. Both occupation and polarization oscillate with the
DMFT iteration, and no convergent solution can be found. If one uses for exam-
ple Broyden mixing [152] during the DMFT self-consistency circle, one can find
a meta-stable solution, for the doped antiferromagnetic state. But as one stops
using the mixing technique, the solution starts to iterate away and soon begins
to oscillate again. This phase is usually interpreted as an incommensurate spin
density wave, as found in these regions earlier by other authors [145,153-156].
Changing the chemical potential leads to a phase transition from the Néel-
state at half-filling to this incommensurate phase and later into a paramagnetic
phase. The phase diagram is symmetric towards half-filling, due to the sym-
metric DOS. Therefore the same behavior can be seen for electron doping.
Although the PMIT is covered by the antiferromagnetic phase, it is an inter-
esting observation that it can be seen in the magnetic phase diagram, as at
this point the phase separated region vanishes and the incommensurate mag-
netic phase emerges. This shows the close connection between both phenomena.
That this transition occurs at the same interaction values is not by chance, can
be seen in the lower panel of figure 5.2. The antiferromagnetic phase diagram
depends on the starting medium, too. The lower panel shows the same calcula-
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tions as before, but for an insulating starting medium. The critical interaction
strength for the PMIT lies at U/W =~ 1.2. The transition in the magnetic
phase diagram between the phase separated region and the incommensurate
phase occurs now at an interaction strength slightly above U/W = 1.2. This
discrepancy between both critical values of the interaction strength can be
most likely explained by a finite resolution effect in the data points. I have
additionally included the transition lines of the antiferromagnetic and the in-
commensurate phase with metallic starting medium into the figure. So one can
very nicely see, how the incommensurate phase starts at smaller interaction
strengths.  One should notice, that for weak interaction strengths there is a
hysteresis region, where one can obtain either an antiferromagnetic solution at
half-filling or a paramagnetic solution away from half-filling. This is a common
feature for a first order transition and can be seen in more detail in figure 5.3.
The interaction value, at which the transition occurs, depends on the starting
medium.

The incommensurate spin density state (IC) exists for temperatures below
T/W = 0.01, see figures 5.6 and 5.5. If there is a close relation between the tran-
sition temperature of the IC phase and the critical temperature of the PMIT is
difficult to determine, as the temperature resolution of the data points is bad
in this region. Interestingly, the transition value between the phase separated
and the IC phase seems to remain at U/W =~ 1.5 for increasing temperature,
while the PMIT interaction value moves towards smaller values of U/WW. When
increasing the temperature it eventually becomes possible to dope the antifer-
romagnetic phase. This can be seen in the color gradient in figures 5.5 and 5.6,
signaling a decreasing polarization, at the antiferromagnetic phase boundaries.
The reason, why the IC-boundary remains at U/W ~ 1.5, is most likely due
to this effect. The phase boundaries are smeared out and a doped antiferro-
magnetic phase is stabilized by increasing the temperature. For a temperature
T/W = 0.03, figure 5.6, the IC phase has completely vanished and the antifer-
romagnetic polarization smoothly decreases from half-filling towards its phase
boundary away from half-filling.

5.2.3 Spin Density Waves

In the last section I have shown that regions of non-convergent DMFT calcula-
tions exist in the magnetic phase diagram. I have interpreted these regions as
incommensurate spin density waves, as evidence for these were given by other
authors [145,153-156]. I will show here, that it is in principle possible to stabi-
lize such phases for a Bethe lattice with NN-hopping. In the theoretical part on
the Bethe lattice in chapter 2.5, I have used the following equation for deriving
the local Green’s function Goo(()

Go Q) =¢ =12 > G(0) — ¢ — (t)*Goo(©). (5.1)

1ENN

where ¢ is the hopping amplitude, z the coordination number of the lattice, and
the scaling ¢ =: % for z — oo holds. One assumes a homogeneous lattice,
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Figure 5.3: First order transition from the paramagnetic state away from half-filling to
the antiferromagnetic Néel-state at half-filling for T/W = 2-10~%, U/W =1 and two
different starting media in the DMFT calculation.
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Figure 5.4: Non-convergent DMFT calculation for T/W = 2- 1074, U/W = 2, and
w/W = 0.28. The occupation and magnetization oscillate with the iteration number.
No convergent state can be found.
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Figure 5.5: Magnetic phase diagram for 7'/W = 0.007. The IC phase still exists for
U/W > 1.5. For small interaction strengths the jump of the magnetization at the
phase boundary vanishes and there is now a smooth transition.
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Figure 5.6: Magnetic phase diagram for T'/W = 0.03. The IC phase has completely
vanished.
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Figure 5.7: Bethe lattice with coordination number z = 4 and a ABC-structure. Each
A-site contacts three B-sites and one C-site.

which leads to GE? )(C ) = Goo(¢). One can now assume a phase with broken
symmetry, in which neighbors have different self-energy.

For a bipartite lattice one can immediately write down the equations for an AB-
structure, because an A-site has only B-neighbors and vice versa. For longer
periods it is more difficult to find a lattice division supporting, for example,
an ABC-structure. But it is possible to define such structures for a Bethe
lattice, where A-sites have direct contact to almost only B-sites and all B-
sites contact almost only C-sites and so on. Almost only means that each
A-site contacts one C-site and z — 1 B-sites (see figure 5.7). From this lattice
structure one can now set up the equation for each lattice site using equation
(5.1). For a finite coordination number the sum over the nearest neighbors in
equation (5.1) has contributions of two different Green’s functions. But in the
limit z — oo and the proper scaling of the hopping parameter there remains
only one contribution. So there are N equations for N different local Green’s
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Figure 5.8: Stable spin density state away half-filling in the Kondo-lattice model with
period N = 14. The upper panel shows the occupation for each of the 14 lattice sites.
The lower panel shows the magnetization of the electrons and of the spins.

functions, which define a closed set of equations

Gi'(¢) = G- (1)’Ga()
Gy (&) = G- ({)°Gs(¢s)
G5 (&) = G—(t)?Ga(Ca)

Gy (Cv) = v = ()°Gi(Q).

This can be solved yielding N local Green’s functions from which the new media
for the next DMFT iteration are calculated. For an AB-structure this procedure
yields the same new media as the matrix inversion shown in chapter 2.4.2 about
DMFT.

Unfortunately, one cannot tell from a non-convergent solution, what is the
correct period stabilizing the solution. Even though one can read off such
a period in figure 5.4, this does not mean that using this will work. This
means that one has to try different periods N and hope to find the correct
one. For one DMFT iteration for periodicity N, one has to solve N different
Anderson models. This makes long periods a heavy numerical task. By the end
of this thesis I did not succeed in stabilizing a spin density wave in the Hubbard
model for strong interaction. But it was possible in another project to stabilize
such state in the Kondo-lattice model within DMFT. In this model there is a
local spin S, which is coupled to the electrons via a spin-spin interaction with
amplitude J, instead of a local density-density interaction. The model can be
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where §' is the spin operator for the electrons at each site. Also in this model
there is an antiferromagnetic phase at half-filling, which eventually becomes
unstable towards a spin-density wave [157] (and references within). Figure 5.8
shows an example for a stable spin density wave for J/W = 0.5, u/W = —0.225,
T =~ 0, and periodicity N = 14. One should notice that the occupation and
magnetization seems to oscillate with a period of N ~ 3, which however did
not stabilize the system.

The example given shows that such order is possible. Nevertheless, the method
used for stabilizing such states cannot be recommended, as the numerical effort
is very high. Additionally, such solutions seem to be rather unstable towards
numerical errors, making it very hard to find them.

5.3 Comparison of DMRG and NRG

In principle the DMRG is an alternative to the NRG as impurity solver for the
DMEFT [115-118]. For the Bethe lattice it is possible to formulate the DMFT
self-consistency equation as [70]

Gl (z) = °G(2),

in which ¢ is the hopping parameter in the Hubbard model, G(z) the impu-
rity Green’s function and G the effective medium of the DMFT. Hence, for the
Bethe lattice it is not necessary to calculate the self-energy for determining the
effective medium. As it is simpler within the DMRG to calculate the impu-
rity Green’s function than calculating the self-energy, I used this formulation
of the self-consistency. In the DMRG one usually calculates G(w + in). Even
though the self-consistency can be formulated for arbitrary 7, for determining
the hopping parameters from the effective medium, which are needed in the
next DMRG calculation, one needs G~!(w + i0). Therefore a deconvolution
must be performed after every impurity calculation. The PMIT was analyzed
within the DMFT and DMRG as impurity solver in several works [158-160].
They showed that it is possible to use DMRG as impurity solver for DMFT
and discussed spectral features close to the Mott transition. I will here concen-
trate on magnetic phases. Because the antiferromagnetic phase at half-filling is
the most pronounced magnetic phase in the one-orbital Hubbard model, I will
concentrate on this state.

Figure 5.9 shows the antiferromagnetic DMFT results for U/W = {0.5; 0.8;
1.0; 1.5} and half-filling. The solutions were calculated separately with the
DMRG and the NRG. The DMRG was performed for a bandwidth of W = 0.2
and a broadening n = 0.05. The shown DMRG results are already deconvo-
luted. For the NRG calculations, I used the same bandwidth and the usual
frequency dependent broadening with b = 0.8, as described in chapter 3.3.3.
For U/W = 0.05 (upper left panel) the antiferromagnetic gap is too small to be
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Figure 5.9: Antiferromagnetic DMFT calculations performed with DMRG and NRG as
impurity solver for different interaction strengths U/W. The DMRG results are already
deconvoluted. For U/W = 0.5 the gap is to small to be resolved by the DMRG. Thus
the DMRG failed to stabilize the antiferromagnetic phase.

resolved by the DMRG. The gap-width for this interaction strength, as calcu-
lated by the NRG, is A 4r =~ 0.015. With the mentioned Lorentzian broadening
this cannot be resolved and is too small even after deconvolution. Thus the solu-
tion of the DMFT with DMRG for this interaction is a half-filled paramagnetic
metal. In contrast, the NRG can resolve this gap resulting in an antiferromag-
netic insulator with strong van-Hove singularities at the gap edges. For stronger
interactions DMFT with DMRG can stabilize the correct solution, meaning an
antiferromagnetic state. If one looks carefully, one will notice that even if there
is an antiferromagnetic solution for U/W = 0.8 and U/W = 1.0, DMRG fails
to really open the gap. The DMRG results would actually predict an antiferro-
magnetic metallic state for these intermediate interactions. The reason for this
is again the broadening. The gap-width in both system has the same order of
magnitude as the broadening 7. Only for stronger interactions U/W > 1.5 one
can clearly see a gaped antiferromagnetic state in the DMRG calculations. The
interaction strengths, at which the DMRG is able to open the gap and form an
antiferromagnetic solution, depend on the ratio n/W. Using smaller broaden-
ing will make it possible to better resolve the low frequency parts including the
antiferromagnetic gap. But using a smaller broadening n will, of course, result
in a heavier numerical task.

Another big difference between the spectral functions of the NRG and the
DMRG is the structure of the Hubbard bands. As the broadening in the NRG is
large for large frequencies, the Hubbard bands do not show additional structures
for U/W > 0.8. In the NRG one can only see for U/W = 0.5 van-Hove
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Figure 5.10: DMRG and NRG doped spectral function for U/W =1 and T ~ 0. The
left panel shows the paramagnetic solution for u/W = 0.1. The right panel shows
antiferromagnetic solutions for p/W = 0.3.

singularities and a shoulder in the Hubbard bands. The DMRG results include
always two structures in each Hubbard band. There are theoretical results
on additional structures in the antiferromagnetic state [153,161-164]. These
additional structures are created by virtual movement of electrons or holes in
long paths. If the structures found here are related to this must be further
investigated. It is possible that they are only artifacts of the interplay between
broadening and deconvolution. All shown results in figure 5.9 were calculated
using the same broadening 17 = 0.05. One should do the same calculations using
different 7. If the structures remain at their positions, they are most likely of
physical origin.

Besides the antiferromagnetic behavior for different interaction strengths, one
should also compare the doping behavior. Figure 5.10 shows the spectral func-
tions of antiferromagnetic calculations for two different chemical potentials
w/W = 0.1 and u/W = 0.3. For U/W = 1 the system jumps directly from
a paramagnetic metal away from half-filling into an antiferromagnetic insulator
at u/W ~ 0.27, as I have discussed above. Notice that although the NRG
solution in the left panel of figure 5.10 is half-filled, it is asymmetric. The
DMFT/DMRG calculations show a change in their behavior at approximately
the same value of the chemical potential. In contrast to the NRG results, DMRG
stabilizes a metallic antiferromagnetic state away half-filling. The filling of the
system is (n) ~ 0.9 and lies therefore exactly in the phase separated region in
the DMFT/NRG calculations. Although one cannot be completely sure, there
is strong evidence for phase separation between the paramagnetic metal and the
antiferromagnetic insulator in this parameter regime [142-144]. The reason for



80

One-orbital Hubbard model

the stable antiferromagnetic metal is most likely again the interplay between
the broadening and deconvolution.

5.4 Frustrated Bethe Lattice
5.4.1 Half-Filling

I will now introduce frustration to the antiferromagnetic state. Frustration is
one of the main arguments when explaining, why the PMIT reaches out of the
antiferromagnetic dome in V9Os (chapter 1.2.1). This leads to the situation
that not all interactions can be saturated. The simplest example is a triangle,
in which all bonds are antiferromagnetic. If two of the three sites are in a Néel-
state the third site has a bond to an up-site and one to a down-site. Therefore it
cannot saturate both bonds. V20Og3 crystallizes in a corundum structure, which
is a frustrated three-dimensional lattice [14].

The calculations performed here are done for a Bethe lattice with NN- and
NNN-hopping. Including both hopping terms into the Hamiltonian creates tri-
angles in the lattice (see chapter 2.5). The major difference within the DMFT
to NN-hopping only is that the DOS becomes now asymmetric and develops a
van-Hove singularity at the lower band edge for to/t; > 1/4. 1 will first ana-
lyze the results for half-filling. There were already calculations within DMFT
for a frustrated Bethe lattice. But most of the old calculation used the so
called two-sublattice frustrated model [70,147,148,165-167], which results in a
particle-hole symmetric DOS even with frustration. As side effect, this way of
introducing frustration leaves the paramagnetic phase unchanged. For the frus-
trated antiferromagnetic ordered system, on the other hand, there exists a lower
critical value for the interaction U, which increases with increasing frustration.
It was furthermore found that the Néel-temperature decreases with increas-
ing frustration such that the PMIT eventually outgrows the antiferromagnetic
phase [147]. In early calculations using this way of introducing frustration
based on exact diagonalization studies or Hartree-Fock of the two-sublattice
fully frustrated model [70,166,167], the authors also found parameter regions
in the phase diagram, where an antiferromagnetic metal appeared to be stable.
However, this antiferromagnetic metallic phase was later traced back to numer-
ical subtleties in the exact diagonalization procedure and shown to be actually
absent from the phase diagram [147].

The first attempt to study the Hubbard model for the Bethe lattice with the
correct inclusion of NN- and NNN-hopping has been performed rather recently
in 2007 by M. Eckstein et al. [168] within the self-energy functional approach
[169]. The authors particularly focused on the PMIT for t9/t; = 3/7 and found
phase separation between the insulating and metallic phase.

In this part of the work I will investigate the PMIT as well as the antifer-
romagnetic phase at half-filling and concentrate on the competition between
the paramagnetic phase including the PMIT and the antiferromagnetic phase
at intermediate and high grades of frustration. I especially look at the case
to — t1 and raise the question, if the scenario of the outgrowing PMIT, pro-
posed in [147], still holds for the correct asymmetric density of states. The cal-
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Figure 5.11: The transition lines for the PMIT for different frustrations as function of
temperature and interaction strength. For each frustration the right line represents the
transition from the metal to the insulator, while the left line represents the transition
from the insulator to the metal. Symbols mark the calculated data points, the lines
are fits meant as guide to the eye.

culations were done using Wilson’s NRG as the impurity solver for the DMFT,
with A = 2, Ng = 1800 states kept per NRG step and a logarithmic broaden-
ing, b = 0.8, to obtain spectral functions. Note that the paramagnetic results
are obtained by artificially suppressing an antiferromagnetic instability. The
occupation was kept fixed at n = 1+£0.005 by adjusting the chemical potential.
In contrast to the case with to = 0 it is not possible to achieve n = 1 here within
numerical precision due to the asymmetric DOS. For increasing to/t; — 1 the
PMIT is shifted towards lower interaction strengths and also lower temper-
atures, see figure 5.11. While the shift in the interaction strength is rather
moderate, there is a large difference in the temperature of the critical endpoint
between the unfrustrated and highly frustrated system. A shift of the same
magnitude was also reported by M. Eckstein et al. [168]. This observation, of
course, renews the interest in the question, to what extent long-range hopping
can help to push the paramagnetic MIT out of the expected antiferromagnetic
phase for reasonable magnitudes of f5 to create a phase diagram similar to the
one found for Vo03. The scenario proposed by R. Zitzler et al. [147] relied on
the fact that the paramagnetic phase largely remains unaltered with increasing
to. As the Néel-temperature for the antiferromagnet is reduced at the same
time, the PMIT can eventually outgrow the antiferromagnetic phase. Due to
the reduction of the critical point of the PMIT this must be analyzed more
carefully now.
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5.4.2 Antiferromagnetism at half-filling

I will now allow for antiferromagnetic ordering in the calculations. Figure 5.12
shows the resulting phase diagrams for ty/t; = 0.6 (upper panel) and ty/t] =
0.8 (lower panel) for different temperatures and interaction strengths. The
phase diagrams were constructed by fitting the magnetization to the actually
calculated data points. This of course means that the phase boundaries shown
here must be considered as guess only. However, as one does not expect any
strange structures to appear, this guess will presumably represent the true
phase boundary within a few percent. The full lines in figure 5.12 are the
PMIT transitions. Note that for both diagrams the same division of axes was
chosen.

In contrast to the Hubbard model for a bipartite lattice with to = 0, there
now exists a finite critical value UAF > 0, below which no antiferromagnetism
can be stabilized even for temperature 7' — 0. With increasing frustration
the paramagnetic-antiferromagnetic transition is shifted towards higher inter-
action strengths and lower temperatures, while the PMIT is shifted towards
lower interactions strengths. So obviously the PMIT is shifted towards the
phase boundaries of the antiferromagnetic dome. So far this is the expected
effect of the NNN-hopping which introduces frustration to the antiferromag-
netic exchange. However, note that although t/t; = 0.8 represents already
a very strongly frustrated system, the PMIT still lies well covered within the
antiferromagnetic phase.

I will now have a closer look at the paramagnetic-antiferromagnetic transition.
Here, R. Zitzler et al. [147] made the prediction that one has to expect a first
order transition close to the critical UfF at low temperatures; while at larger
values of U again a second order transition was found. Figure 5.13 shows the
staggered magnetization for different temperatures and interaction strengths
at fixed to/t; = 0.8. The upper panel collects data for the transition at low
temperatures at the lower edge of the antiferromagnetic phase. The full lines
represent the transition from the paramagnetic to the antiferromagnetic state
with increasing interaction strength for two different temperatures, while the
dashed lines represent the transitions from the antiferromagnetic to the para-
magnetic state with decreasing interaction strength. In the upper panel (low
T') one can clearly see a hysteresis of the antiferromagnetic transition. This
hysteresis as well as the jump in the magnetization are clear signs for a first or-
der transition. This antiferromagnetic hysteresis is very pronounced for strong
frustration but numerically not resolvable for example for t5/t; = 0.2. The
hysteresis regions seems to shrink with decreasing ¢5 and eventually cannot be
resolved anymore with numerical techniques. Note that such a hysteresis is also
found in the two-sublattice fully frustrated model [147], which means that this
is quite likely a generic effect in frustrated systems at intermediate coupling
strengths. The lower panel in Fig. 5.13 shows the staggered magnetization
for temperatures just below the corresponding Néel-temperatures and at large
interaction strengths. Here the magnetization vanishes smoothly, which is the
behavior expected for a second order phase transition. In summary I thus find
a first order transition at the critical interaction UAF, where the antiferro-
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Figure 5.12: The upper (lower) panel shows the T'— U phase diagram for t5/t; = 0.6
(t2/t1 = 0.8). The colored area represents the antiferromagnetic phase, while the
black area represents the paramagnetic phase. The lines show, where the PMIT in
the paramagnetic phase would occur. The phase diagrams were constructed by fitting
the magnetization to approximately 70 calculated data points. Additional calculations
were performed to find the PMIT-lines.
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Figure 5.13: Staggered magnetization versus interaction U/W for two different tem-
peratures and to/t; = 0.8. In the upper panel there are two transition lines for each
temperature, representing either increasing or decreasing interaction strength. The
region between both lines embodies a hysteresis region. The lower panel shows the
transition for large interaction strengths and high temperatures. Here no hysteresis
region can be found, but a smooth transition. The lines are meant as guide to the eye.

magnetism sets in, and a second order transition for large Coulomb parameter
U > W. The merging from both transition lines is an interesting point in
itself. There must be a critical point where the first order transition changes
into a second order transition. It is however not possible to resolve this merging
within DMFT/NRG. The magnetization of the system becomes very small in
this region, so it is not possible to distinguish between a (tiny) jump and nu-
merical artifacts of a smoothly vanishing order parameter. Consequently, one
cannot decide anymore of what order the transition is.

Antiferromagnetic metallic states at half-filling were reported in earlier pub-
lications [148, 165-167] and later ruled out again. In my calculations I saw
no evidence for an antiferromagnetic metallic state at half-filling. Especially
for strong frustration ¢5/t; ~ 0.8 the system jumps directly from a paramag-
netic metallic solution into an antiferromagnetic insulating solution with large
magnetization. In the papers cited, the region showing an antiferromagnetic
metallic solution broadens with increasing ¢5. This prediction I clearly cannot
confirm, as discussed above. Only in systems with small to intermediate frustra-
tion there are narrow interaction regimes where I observe a small finite weight
at the Fermi level. One must however consider that the occupation number is
not exactly one but only within 0.5%, which influences the position of the gap.
It was also sometimes difficult to stabilize a DMF'T solution in these regions. In
summary, I cannot see any clear signs for an antiferromagnetic metallic state at
half-filling in my calculations. If any exists, then only for rather low frustrations
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in a very small regime about the critical interaction U‘C4F . To what extent these
rather special conditions can then be considered as realistic for real materials
is yet another question.

5.4.3 Nearly fully frustrated system

In the last part concerning half-filling I want to study the situation, in which
t; and to are comparable in strength. Interestingly, there has been no attempt
to calculate the phase diagram on a mean-field level in the strongly frustrated
model ¢ty & t;. Therefore, before discussing the results of the DMFT calcula-
tions for strongly frustrated systems let me try to gain some insight into the
physics I must expect, by inspecting classical spins on a Bethe lattice with NN-
interaction .J; and NNN-interaction Jo. In this calculation I firstly assume a

A\

—=

Figure 5.14: Left: Bethe lattice z = 3 with sites numbered according to the vector
spins on the right. The nearest neighbors of site 1 must lie on a circle so there is an
angle # between 1 and 2. Similarly the nearest neighbors of one of the 2-spins must lie
on a circle including the 3-spins and the 1-spin.

Bethe lattice with coordination number z. The last parameter entering is the
angle 6 between NN-spins. Although the initial assumption that two neigh-
boring spins form an angle § may seem somewhat restrictive, I am not aware
of other configurations with lower total energy [170]. I want to minimize the
energy with respect to this angle. According to figure 5.14 the NN-spins of one
spin, must lie on a circle. The spins ending on the circle are all NNN-spins of
each other. Due to the antiferromagnetic interaction Js, one can assume that
they want to maximize the angle between them. Since there are z spins on each
circle, they will have an angle 27/z projected on the circle. Using now simple
trigonometry, the angle between NNN-spins  is given by

2 — (2R% — 2R%cos(27i/2))
2
= cos()? + sin(6)* cos(2mi/2),

cosy =
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Figure 5.15: Left: Energy E/J; via the nearest neighbor angle 6 for two ratios of Ja/J;.
Right: Nearest neighbor angle 0, which minimizes the energy for different ratios
Jo/ 1

where ¢ runs from 0 to z — 1, giving the different positions on one circle, and
R = sin(#) is the radius of the NN-circle. Inserting this into the Hamiltonian

E=J Y SSi+hk Y 8
,JENN ,JENNN

one finds for the energy

E/2N = Jyzcos(0)

z—1
+ Jaz Z (cos(0)? + sin(0)? cos(2mi/z)) .
i=1

Performing now the limit 2 — oo and scaling J1z — Jj and Joz — J3 /2, as it
is done for the hopping amplitudes in DMFT, one finally obtains for the energy
per lattice site

E.—(0)/(2N) = J; cos() + J3 cos(h)>.

The energy depending on 6 can be seen in figure 5.15. If both interactions
Ji and J3 are antiferromagnetic the ferromagnetic configuration of the spins
represented by 6 = 0 is always a maximum. The Néel-state § = m is the
stable minimum for J3/J; < 1/2, because d*E(§ = 7)/d6* = J; — 2J5. The
angle minimizing the energy for J3/J; > 1/2 is found to be § = arccos(—%),
corresponding to a periodically modulated spin state. In this very simplified
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Figure 5.16: Ground state (T' = 0) phase diagram for different strengths of frustration
as function of the interaction. The black line within the magnetic phase signalizes the
end of the hysteresis region for increasing and decreasing interaction. The phase bound-
aries of the incommensurate (IC) phase, white region, are only qualitative (explanation
in text).

situation the ground state changes from a Néel-state for J3/Jf < 1/2 to a
ground state with periodicity with longer than two sites for J3/J;7 > 1/2.
For the fully frustrated system J;" = J3 the stable ground state configuration
corresponds to 6 = 120°.

In DMFT calculations I can only allow for solutions commensurate with the
lattice, for which I can derive a formula for the lattice Green’s function. This
however will possibly be inconsistent with the spin structure favored by the
system. If, for example, I perform a calculation focusing on the ferromagnetic
solution within a parameter regime, where the system wants to order antiferro-
magnetically, DMFT will not converge. To investigate spin density wave states
with periodicity of more than two lattice sites, one has to set up the correct
DMEFT self-consistency equations respecting the lattice structure, as can be
seen in chapter 5.2.3. While for a Bethe lattice with infinite coordination num-
ber and NN-hopping only it is straightforward to extend the DMFT equations
to commensurate magnetic structures with periodicity of more than two lattice
sites, I did not succeed in devising a scheme that allows for such calculations for
systems with NNN-hopping. The NNN-hopping makes it impossible to uniquely
identify the connectivity of the respective sublattices. A method proposed by
M. Fleck et al. [156] for the two-dimensional cubic lattice is not applicable in
this case.

I thus only allowed for paramagnetic, ferromagnetic and antiferromagnetic solu-
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Figure 5.17: Magnetic phase diagram T — U for to/t; = 0.98 for insulating starting
medium including the PMIT as blue lines. The PMIT lies within the hysteresis re-
gion of the magnetic phase, but clearly outgrows it in temperature. The white region
designates the IC-phase.

tions in my calculations. The resulting phase diagrams for ¢t — ¢; are shown in
figures 5.16 and 5.17. Figure 5.16 displays the ground states for different grades
of frustration and interaction strengths. For t5/t; < 0.95 the phase diagram
always has the same structure as for small and intermediate to. The critical
interaction strength UAF necessary to stabilize the Néel-state increases and for
all values above UAT T find an antiferromagnetic phase with a hysteresis region
at the phase boundary. For 0.95 < t5/t; < 1 the critical value U2 one needs
to stabilize the Néel-state increases dramatically. For 9 = ¢; finally one does
not find an antiferromagnetic Néel-state for any interaction strength U. The
DMFT calculations however indicate that in this range of t5/t; there actually
does exists another magnetic phase. Namely, for sufficiently small temperatures
one obtains a finite spin polarization in every DMFT iteration. However, the
DMEFT does not converge to a unique state as a function of the DMFT itera-
tion (see also Fig. 5.4). In the phase diagrams in figures 5.16 and 5.17 I have
left this regime white designating an IC phase. In this parameter regime the
Néel-state becomes unstable towards the behavior shown in figure 5.4. Here
one can switch between a conventional Néel-state and the IC phase by only
a small change of the interaction strength. Note, that the phase boundaries
shown in the figure must be taken with some care as I cannot compare the
energies of the Néel-state and this IC phase to properly determine the phase
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boundaries. As I observe precisely the same behavior for all investigated val-
ues to/t; = {0.96,0.97,0.98,0.99,1.0} I am convinced that the ground state in
this region is an incommensurate state, as to be expected from the results for
classical spins. Similar observations also hold for finite temperatures as shown
in figure 5.17, where the T'— U phase diagram for fixed t9/t; = 0.98 is dis-
played. For increasing interactions and 7" = 0 there is first a transition from
a paramagnetic metal to the IC phase and for U/W = 1.6 from the IC phase
to the Néel-state. For increasing temperature the IC phase eventually becomes
unstable towards the Néel-state. In Fig. 5.17 one can also see the PMIT lines.
The PMIT lies within the hysteresis region of the magnetic phases but clearly
outgrows both magnetic phases. This is the scenario described in R. Zitzler et
al. [147].

5.4.4 Doped System

As to becomes finite the DOS becomes asymmetric and consequently the mag-
netic phase diagram becomes asymmetric with respect to half-filling, too. How-
ever, for sufficient small values of o, the magnetic phase diagram will still look
very similar to that of the unfrustrated system shown in figure 5.2, with two
notable exceptions: For the hole doped side of the phase diagram, the incom-
mensurate magnetic phase sets in at smaller values of the interaction, while on
the electron doped side it starts for larger values of the interaction. Thus, for
electron doping the phase separation between the antiferromagnetic state at
half-filling and the paramagnetic state at n > 1 prevails for stronger interac-
tion strengths. Already for t2/t; = 0.2 I find no incommensurate phase on the
electron doped side for U/W < 3. As already stated above [136,147,165-167],
in order to stabilize the antiferromagnetic phase for a finite NNN-hopping one
needs a finite interaction strength UAF > 0.

For 1/4t; < to < t; one obtains a strongly asymmetric DOS showing a square-
root singularity at the lower band edge. Here one can expect, and observe, a
radically different phase diagram. Figures 5.18 and 5.19 show the antiferro-
magnetic phase diagrams for t5/t; = 0.6. The first picture shows the magnetic
phases for different chemical potentials /W in the same manner as in figure 5.2.
In contrast to to = 0, in the frustrated system the antiferromagnetic Néel-state
can now be hole-doped at T" = 0. Therefore, I show the same phase diagram
in figure 5.19 again, in which the occupation was substituted for the chemical
potential. The boundaries of the IC-phase must be taken with care again, as
this phase cannot be stabilized. It is interesting to note that the IC-phase is
replaced by a doped antiferromagnetic phase. On the electron doped side of
the phase diagram, I find neither an IC-phase nor the doped antiferromagnetic
phase.

On further increasing the frustration to to/t; = 0.8, see figure 5.20, the Néel-
state does extend to large values of the doping ((n) = 0.72), i.e. strong frustra-
tion seems to stabilize the Néel-state away from half-filling. The IC phase, on
the other hand, completely vanished from the phase diagram. If one inspects
figures 5.19 and 5.20 more closely, one sees that the antiferromagnetic state
actually sets in away from half-filling for increasing interaction strength, i.e.
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Figure 5.18: Antiferromagnetic ground state (I = 0) phase diagram t/t; = 0.6 for
different chemical potentials p and interaction strengths U. The color encodes the
magnetization. The white region represents the IC phase.
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Figure 5.19: The same as in figure 5.18. As the antiferromagnetic phase exists now
away from half-filling the chemical potential was substituted by the occupation (n).
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Figure 5.20: Antiferromagnetic ground state (7' = 0) phase diagram for to/t; = 0.8.
The color encodes the magnetization. The IC-phase present for to/t; = 0.6 has van-
ished.
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Figure 5.21: Ground state magnetization for to/t; = 0.8 and U/W = 0.75. The
upper panel shows the occupation and the lower panel shows the antiferromagnetic
magnetization ny —n.
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Figure 5.22: Antiferromagnetic ground state (7' = 0) phase diagram for to/t7 = 1,
fully frustrated system. There is an antiferromagnetic phase, which exists only away
from half-filling. For strong enough interaction there is a IC-phase at half-filling, white
region.

UAF (n) has its minimum at n < 1. At half-filling one finds for this values of
interaction a paramagnetic metal. On the electron doped side, one only finds
a paramagnetic state, which is still phase separated to the antiferromagnetic
state at half-filling.

As discussed previously for half-filling, for large to/t; > 0.96 there appears
a new phase which, motivated by a 120°-order expected for a classical spin
system at this level of frustration, can be interpreted as such a spin density
wave order. Figure 5.22 shows the phase diagram for to = 1, i.e. a with respect
to antiferromagnetic order fully frustrated spin system. The parameter region
for large interaction left blank denotes precisely this spin density wave state,
which also can be hole doped. What is most remarkable and rather mysterious,
even for the fully frustrated system I find a stable antiferromagnetic Néel-state
for fillings between 0.55 < n < 0.8. To ensure that this result is not a numerical
artifact, I performed several calculations at different temperatures and with
different NRG parameters like discretization or states kept. However, for low
enough temperatures I always find this antiferromagnetic island. I will come
back to this point after discussing the ferromagnetic phase diagram.

5.4.5 Ferromagnetism in the Frustrated system

As already mentioned, while antiferromagnetism is the “natural” order occur-
ring in single-band systems as studied here, ferromagnetic order is usually only
obtained under more restrictive conditions. In this part I therefore want to
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focus on possible ferromagnetic solutions in the frustrated system.

One of the first heuristic treatments of metallic ferromagnetism was by E. Stoner
[171]. He gave the criterion UDp > 1 for stabilizing ferromagnetism, where U
is the value of the on-site Coulomb interaction and Dpg is the value of the
density of states at the Fermi level. Already in this criterion one sees that
ferromagnetism is created by the interplay of the kinetic energy, characterized
by Dp, and the Coulomb interaction, characterized by U. A rigorous result
was obtained by Nagaoka [149], who proved the existence of ferromagnetism for
U = oo and “one hole” for certain lattices.

In the beginning of the 1990’s, A. Mielke and H. Tasaki proved the existence
of ferromagnetism under certain conditions on the dispersion, known as “flat
band ferromagnetism” [172,173]. Here the ferromagnetic ground state appears
due to a dispersion-less (flat) lowest lying band. This flat band introduces a
huge degeneracy of the ground state for U = 0, which is lifted by the Coulomb
interaction. A nice overview about this topic and other rigorous results for
ferromagnetism can be found in the work of H. Tasaki [174].

Remembering the singularity in the DOS for t5/t; > 0.25, the situation present
in this system is very similar to the “flat band” scenario. Former studies for
an asymmetric DOS [175-178] already showed the existence of ferromagnetism
in such situations. Consequently, one has to expect ferromagnetism in this sys-
tem, too. Indeed, Figure 5.23 shows the ferromagnetic polarization p = ZH—%’
color encoded over the occupation n = n; + n| and the interaction strength
at low temperature (7/W = 2-10~%). The NNN-hopping for this system is
ta/t; = 0.6. The ferromagnetic state is fully polarized. =~ One sees, that the
singularity in the DOS alone cannot create ferromagnetism. Here one again
needs a finite interaction strength of approximately U/W ~ 0.3, which however
is a realistic number for transition metal compounds of both the 3d and 4d
series. In figure 5.24 1 depict the lower and upper critical occupation between
which the ferromagnetic state is stable as function of the interaction strength.
Below the lower critical occupation, the DMFT simulations do not converge
independent of the interaction strength. I believe that this is a numerical prob-
lem due to the singularity in the DOS: If the Fermi level lies very close to the
singularity, which is the case for n — 0, the slope of the DOS at the Fermi level
is very large. Small differences in the position of structures in the interacting
Green’s function will consequently have a great influence. However, I cannot
rule out the possibility of the existence of another phase in this regime. The
occupation number jumps in this region between almost zero and a larger value,
and cannot be stabilized. The behavior can only be seen at low temperatures
and for to/t; > 0.25, where the singularity in the DOS is sufficiently strong and
not smeared out by temperature broadening.

At the upper critical occupation and low interaction strengths the system jumps
from a fully polarized ferromagnet to a paramagnetic phase. For strong interac-
tion the upper occupation is large enough such that the system directly changes
from a ferromagnetic state into the incommensurate phase or the Néel-phase.
As I already noted, the “flat band” scenario indicates that the ferromagnetic
state is intimately connected to the appearance of the van-Hove singularity at
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Figure 5.23: Ferromagnetic ground states (7" 2 0) for t2/t7 = 0.6. Color coded is the
polarization p = (ny —ny)/(n +ny).
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Figure 5.24: Upper and lower critical occupation between which the ferromagnetic
phase exists for to/t; = 0.6 and T = 0.
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Figure 5.25: Ferromagnetic polarization for T/W = 2-10~* for t5/t; as the singularity
moves into the band. The upper panels show plots for a DOS without singularity.
Note that with increasing ¢2/t; the interaction one needs to stabilize the ferromagnet
decreases.

the lower band edge. I will therefore look somewhat closer on the relation of
the formation of a ferromagnetic state and the appearance of the singularity in
the DOS. Figure 5.25 shows the polarization versus the occupation for different
NNN-hopping t3/t; and interaction strengths close to the appearance of the
singularity in the DOS. The upper panels represent a situation where there
is no singularity present in the DOS. The interaction needed to stabilize a
ferromagnetic state in these systems without singularity is strongly increased.
For the case of to/t; = 0.2 I found no ferromagnetic phase for interactions as
strong as U/W = 10. As soon as t9/t; > 0.25, the critical interaction strength
lies below U/W = 1. Increasing NNN-hopping t5 as well as increasing the
interaction strength favors the ferromagnetic state as it becomes more extended
to larger occupations. In the DMFT/QMC study of J. Wahle et al. [175] a
peak at the lower band edge was enough to stabilize a ferromagnetic phase
at moderate interaction strengths. In my calculations the tendency towards
ferromagnetism dramatically decreases for a DOS without singularity.

5.4.6 Energies for the different magnetic states

A careful look at the phase diagrams reveals, that there are parameter regions,
where one seemingly can obtain both an antiferromagnetic as well as a fer-
romagnetic solution to the DMFT equations. This is rather unusual because
conventionally DMFT will show oscillating behavior if one performs a ferro-
magnetic calculation in a regime with antiferromagnetic ground state and vice
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versa.
To decide which of the two solutions is the thermodynamical stable state, one
has to compare their respective free energies. As the calculations were done
practically at T" = 0, I calculate the energy of the system, given by

<]HV—> = <I]<[T> + % > (nagnay),

7

where Hrp is the kinetic energy and N the number of sites. The interaction
term U is purely local and thus can be taken from the converged impurity
calculation.

The kinetic energy, on the other hand, can be calculated from the expression

= 7 d6e(®)p(6) / w (‘9 e (R RN}

—00 —00

where (¢, 0) is the lattice self-energy, 6 a suitable variable to label the single-
particle energies on the lattice under consideration, and p the chemical po-
tential. Within DMFT, the lattice self-energy is approximated by a local self-
energy, i.e. one may set 3((,0) = ¥X((¢). Furthermore, for the Bethe lattice
with infinite coordination €(6) = 16 + t2(6* — 1) and p(#) = 5=v/4 — 62 holds.
Substituting €(#) by € in the integral, the resulting DOS takes on the form given
in chapter 2.5.

Since the Néel-state is defined on an AB lattice, one has to distinguish between
the inter- and intra-sublattice hopping terms, and the formula for the kinetic
energy takes on the form

00 0
) _ —%Jm / dfp(0) / dw <t19(GAB(w +1in) + Gpa(w + 1))

(6% = 1) (Gaa(w +in) + Gop(w +in))

Note that with the definition of the matrix Green’s function this formula can
be put into the compact matrix form

(Hr) -
N = ——Jm/d&e /dwz w—i—m

N A R TG VR U
Glw + Zn)]ij = ( T —2t10 ¢ — t2(192 -1 ) j
(olw) = wHp—3(w+1in)

The energies of the converged solutions for to = t; and U/W = 2.5 can be
seen in figure 5.26. The antiferromagnetic solution could be stabilized in this
parameter region for occupations 0.55 < n < 0.8. From figure 5.26 it becomes
now clear that the ferromagnetic state has the lowest energy for n < 0.6. For
0.6 < n < 0.75 the antiferromagnetic state takes over as the ground state, but
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Figure 5.26: Ground state energies for paramagnetic, antiferromagnetic, and ferromag-
netic states in the fully frustrated system for U/W = 2.5. The energy was divided by
the number of sites and the non-interacting bandwidth W.

is nearly degenerate with the paramagnetic state. For fillings larger than 0.8
no staggered magnetization can be stabilized any more.

Thus, the energy calculations reveal two things. Firstly, an antiferromagnetic
Néel-state indeed seems to form away from half-filling in the fully frustrated
system. Secondly, the energy differences are extremely small, in particular the
antiferromagnet and paramagnet are de facto degenerate over the full parameter
regime where the former exists.

To understand this at first rather irritating observation let me recall the well-
known fact that in strongly frustrated systems it is a common feature to have a
large number of degenerate ground state configurations, which also can include
magnetically ordered ones [174]. Thus, the degeneracy of the antiferromagnet
and the paramagnet hints towards the possibility that there may exist a larger
number of other magnetically ordered states in this parameter region. Unfor-
tunately I am not able to search for and in particular stabilize those magnetic
phases with the technique at hand.

5.5 Summary

In this chapter I analyzed the magnetic properties of an one-orbital Hubbard
model within the DMFT for a Bethe lattice with infinite coordination. The
unfrustrated Bethe lattice with semi-elliptic DOS shows antiferromagnetic be-
havior at T' = 0 only exactly at half-filling. Interestingly, the doping dependence
of the antiferromagnetic phase changes from phase separation between the an-
tiferromagnetic insulator at half-filling and the paramagnetic metal away from
half-filling for weak interactions towards an inbetween lying incommensurate
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spin-density phase for strong interactions. This change happens exactly at the
same interaction strength at which in the paramagnetic phase the metal insu-
lator transition occurs. This means that one can see signs of the PMIT even in
the antiferromagnetic phase, which actually completely covers the PMIT. One
must note, however, that for finite 7" this transition does not trace the PMIT,
which maybe due to a stabilization of a doped antiferromagnetic phase, but
creates room for discussion.

Furthermore, I proposed a way how to stabilize such spin-density waves for a
Bethe lattice. Unfortunately, one has to test for each period separately and the
calculation seem to be rather unstable.

For the frustrated Bethe lattice the magnetic phases change. The phase diagram
becomes asymmetric towards half-filling. While for hole-doping an antiferro-
magnetic phase exists away from half-filling, for electron doping the phase sep-
arated region becomes more and more extended. For increasing frustration the
antiferromagnetic doped state replaces finally the incommensurate spin density
wave at the hole doped side of the phase diagram. Additionally, one now needs
a finite interaction strength Ué‘lF > 0 for stabilizing the antiferromagnetic state.
Interestingly, for the fully frustrated system, there still exists an antiferromag-
netic Néel-phase away from half-filling. The Néel-state can be stabilized in the
same parameter region as the ferromagnetic state. Comparing the energies of
the possible states, there seems to be a transition from the ferromagnetic to the
antiferromagnetic state. But the latter one is energetically almost degenerate
to the paramagnetic state. Thus frustration seems to stabilize different states
in this parameter region. It is an intriguing possibility, that there could be
more degenerate magnetic states in this regime, stabilized due to the frustra-
tion. As I am, however, only able to look for homogeneous or Néel-states, this
is only speculative, nevertheless motivating further studies of magnetic order
in the single-band Hubbard model with different methods to solve the DMFT
equations. However, for these studies the Bethe lattice may not be a suitable
choice any more, as the definition of a wave vector @ to identify the various
possible spin structures is not possible here.



CHAPTER 6

Two-Orbital Hubbard Model

6.1 Introduction

Finally, I will present results for the two-orbital Hubbard model, describing two
correlated degenerate bands. It was introduced in chapter 1.3, reading

H = Hpr+ Hy

2
_ i
Hr = ) > > tijmClmeCimer

ij m=1 o

2 2
Hy = UZ Z i m, 1 im,| + <U, — %J) Z Z Zni,l,ani,m,a/

i m=1 i Lm=1 gg’
<m
—2J§ g Sit - Sim-
i l<m

The operator Hy represents the kinetic energy corresponding to the hopping of
the electrons with amplitude ¢;;. I assume throughout this chapter that there is
only nearest neighbor hopping and that the hopping amplitudes are degenerate
for both bands resulting in equal bandwidths W = 4¢. The calculations were
again performed for a Bethe lattice with semi-elliptic density of states. The
interaction Hy consists of three different terms: an intra-band density-density
interaction with amplitude U, an inter-band density-density interaction with
amplitude U’ — %, and a spin-spin interaction with amplitude —2J, representing
the ferromagnetic Hund’s coupling for J > 0. In the calculations shown in
this chapter, I mainly concentrate on U/W = 4, which is a good guess for
transition metal oxides [9]. I will vary the Hund’s coupling J and the inter-
orbital interaction U’ and analyze their effects for different occupations of the
system.
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The two-orbital Hubbard model is an appropriate model for describing the
electronic correlations in manganites, as introduced in chapter 1.2.4. The phase
diagram of Laj_,Ca,MnOj3 can be seen in figure 1.6. It shows a very rich phase
diagram consisting of magnetic and orbitally ordered phases. Due to the cubic
crystal symmetry the d-orbitals split into a threefold degenerate ?54,- and a
twofold degenerate eg,-band, which for the coordination present in perovskites
has the higher energy compared to the ty,-band. In La;_,;Ca,MnO3 one has
to distribute 4 — x electrons per site to the d-states according to Hund’s rules.
Thus, the electronic situation in this compound can be modeled by a partially
filled eg4-band below quarter-filling and a half-filled t5,-band, which couples via
Hund’s coupling ferromagnetically to the e4-electrons. The hopping between the
tog-states is very small and thus the to,-states are often modeled as localized
S = 3/2 spins. Besides this electronic part the lattice degrees of freedom and
especially Jahn-Teller distortions are important to correctly describe the physics
of manganites.

The aim of this chapter is to understand the role of the electronic degrees
of freedom in the complex phase diagram of the manganites. In particular, to
what extent the strongly correlated e,-band is sufficient to reproduce the general
features. Thus the investigations done here completely neglect the to4-spin and
the coupling to the lattice. Based on such an investigation, one can include
additional interactions, like the coupling to the to4-spin (or band) respectively
the strong interaction with the lattice step by step, properly identifying for
which particular features they are actually responsible. As I will discuss, already
this simplified situation shows very complex ground state properties, involving
the coupling of charge, spin and orbital degrees of freedom [179].

In the second section of this chapter, I will show calculations for two site clusters,
in which the whole lattice consists of only two sites. The third section describes
the magnetic ground state diagram of the two-orbital Hubbard model. In this
section I focus on occupancies larger than one electron per lattice site. The
final section concentrates on the quarter-filled system. Quarter-filling is a very
special situation for the two-orbital Hubbard model. Exactly at quarter-filling,
I can observe four different long range ordered phases. There is a competition
of two different ferromagnetic states, an antiferromagnetic state, and a charge
ordered state. Between the two ferromagnetic states one can find a metal
insulator transition (MIT). These results are submitted for publication [180].

6.2 Two Site Cluster

Before studying the Hubbard model for a Bethe lattice within the DMFT, 1
will present some calculations for a two site cluster. This means that the whole
lattice consists of only two sites, each built up from two orbitals. Altogether
the system can be occupied by 8 electrons. But as the system is particle hole
symmetric, I will only discuss the subsystems with 4 or less electrons. Even
though one cannot expect to see the whole physics of the Hubbard model, one
can get some insight into what one can expect.

The ground state of four electrons for a two site cluster, meaning half-filling, is
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Figure 6.1: Exact diagonalization of a two site cluster with ¢t = —0.05, U = 0.8,
U’ = 0.6, u = —0.3 and 3 electrons in the system. For small Hund’s coupling the ground
state is a low spin configuration, while for large Hund’s coupling the low and high
spin configurations are degenerate. For scaling the x-axis, I have used the bandwidth
W = 0.2 of the free DOS in the next section.
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Figure 6.2: Exact diagonalization of a two site cluster with ¢t = —0.05, U = 0.8,
U =0.6, u = —0.3 and 2 electrons in the system. The states with one electron in each

orbital are degenerate ground states. I used again W=0.2 for scaling the x-axis.
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an antiferromagnetic state due to super exchange. Of course, one must be care-
ful with the expression “antiferromagnetic” in a two site cluster. The ground
state is a superposition of several possible states. The principal contributions
come from the states, where one site consists of two up-electrons and the other
of two down-electrons, and its interchanged configuration. If for a real lattice,
like the Bethe lattice, long range order can persist, critically depends on the
lattice and the temperature. For example, as seen in chapter 5, frustration can
prevent the system from forming an antiferromagnetic Néel-state. But in the
calculations for a two site cluster, the states, from which an antiferromagnetic
Néel-state would be built up, possess the lowest energy.

Figure 6.1 shows the ground state energies of the two site cluster with three
electrons in the system. The interaction parameters are similar to the param-
eters, which are chosen in the next sections. The Hund’s coupling is varied to
see its influence on the ground state energy. The configuration with all three
electrons in the same orbital has the highest energy, as one state must be dou-
ble occupied and the local intra-band interaction U is the largest interaction
parameter. The remaining two configurations are such that two electrons are
in the same orbital and the third electron occupies the other orbital. There is
one ferromagnetic state with all spins aligned and therefore S, = 3/2, and one
mixed state with S, = 1/2. Of course, the configurations with interchanged
S,-components, S, = —1/2 and S, = —3/2, exhibit the same energy. There
is a level crossing in the quantum number subspace of S, = +1/2 at approxi-
mately J/W = 0.5. For Hund’s coupling J below this value, the ground state
is a doublet of S, = +1/2 states. Above this value the ground state is fourfold
degenerate consisting of one state from the S, = +1/2 subspace and one state
from the S, = £+3/2 subspace each. The states from the S, = £+3/2 subspace
represent the possibility of a ferromagnetic state in an extended system. This
shows the importance of the Hund’s coupling J for ferromagnetism in this sys-
tem. One will see in the next section, that also in an extended system there is a
ground state transition towards a ferromagnetic phase for occupation (n) ~ 1.5
when increasing J.

In figure 6.2 one can see the ground state energies for the case, when there are
altogether two electrons on both sites, representing quarter-filling. There are
four quantum number subspaces under consideration. Quantum number S, = 0
corresponds to the situation of one up electron and one down-electron, while
for S, = 1 both electrons possess spin component S, = 1/2. The subspace
with both electrons having S, = —1/2 is degenerate to the last one. The same
discrimination can be done for the orbitals. As the pair hopping term was
neglected in this work, one can introduce a conserved orbital quantum number
T.. T, = 0 means, that one electron is in the orbital, represented by m = 1
in the Hamiltonian, and the other electron occupying m = 2. For T, = 1
both electrons occupy the same orbital. The ground state energies in figure 6.2
show that there is a degenerate ground state with 7, = 0. The configuration
corresponds to a triplet state in the spin space, but the S, = —1 state is not
shown here. In an extended bipartite lattice this configuration can result in a
Néel-state for the orbital occupation: On the A-sites of the lattice the electrons
sit on the m = 1 orbital, while on the B-sites the electrons sit on m = 2. T will
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Figure 6.3: Antiferromagnetic magnetization m = ny — n| versus the temperature for
U/W =4, J/W =1, and U'/W = 2 at half-filling. The transition does only change a
little upon varying U’ or J.

show results on such states later in this chapter about quarter-filling.
Calculations with altogether only one electron are not shown here, as all inter-
action terms vanish. Thus all states possess the same energy of £ = —u + .

6.3 Magnetic Phase Diagram

For an extended system like the Hubbard model for a Bethe lattice the situation
is different from the two site cluster. Even though the ground state of the two
site cluster consists of aligned spins, it is a priori not clear, if the ground state
is ferromagnetical for an infinite lattice. I will here only present results for
the semi-elliptic free density of states (DOS) of the infinite dimensional Bethe
lattice, corresponding to a bipartite situation. All results are obtained within
the DMFT with the NRG as impurity solver. The two-orbital model is an
extreme case for using the NRG. The calculations were performed parallelized
on eight-core multiprocessor architectures using up to 15 GB memory. For all
calculation the NRG parameters A = 2.0 and Ng = 4000 — 5000 were used.

As the intra-orbital density-density interaction U is usually the strongest in-
teraction present, the system is a good candidate for super exchange at half-
filling [51] (chapter 1.4). And indeed, the system forms an antiferromagnetic
insulator at half-filling. The temperature dependence of the antiferromagnetic
magnetization m = ny —n| is shown in figure 6.3.  With increasing tem-
perature the magnetization vanishes smoothly, signaling a second order phase
transition. The transition temperature and the characteristics of the transi-
tion mainly depend on the intra-orbital interaction U. As in the one-orbital
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Figure 6.4: Magnetic ground state phase diagram, U/W = 4, T/W = 2-107%, for
(n) = 1.5 (upper panel) and (n) = 1.2 (lower panel). For stabilizing a ferromagnetic
phase, one needs a finite Hund’s coupling J > 0. For (n) = 1.5 the incommensurate
phase extending from half-filling, is still present. This phase has vanished for (n) =
1.2. The points denote the parameters, at which calculations were done. The phase
boundaries are only schematic.
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Hubbard model for the unfrustrated Bethe lattice, this antiferromagnetic Néel-
state cannot be doped. The antiferromagnetic state becomes unstable towards
an incommensurate spin density wave, when changing the chemical potential
. This was already shown for such strong interaction strengths in chapter 5
for the one-orbital Hubbard model.

The phase diagram of the one-orbital Hubbard model with semi-elliptic DOS,
corresponding to a Bethe lattice without frustration, does not show any other
ordered phases. In contrast, there are parameter regions in the two-orbital Hub-
bard model, which are dominated by double exchange (chapter 1.4), showing
large regions of ferromagnetism [33,181-187]. I have shown in the last section
for three electrons in a two site cluster, that there is a ground state transition
when increasing J and that the state with parallel aligned electrons becomes
the ground state for large enough ferromagnetic Hund’s coupling J. The same
holds true for the Bethe lattice. For (n) = 1.5, there is a transition from the
incommensurate phase to a ferromagnetic phase for increasing Hund’s coupling,
see figure 6.4. The incommensurate phase shows the same non-convergent be-
havior in the DMFT as described in the last chapter. This phase extends up
to half-filling, where it is displaced by the antiferromagnetic Néel-state. For
(n) = 1.2 the incommensurate phase has completely vanished. This phase is
most probably due to antiferromagnetic tendencies at half-filling, which are
in the doped system incommensurable with the filling of the lattice and van-
ish when doping too far away from half-filling. The ferromagnetic state, on the
other hand, is stabilized by the Hund’s coupling J. Interestingly, strong Hund’s
coupling alone is not enough. For U/W = 2 the ferromagnetic tendency in the
parameter region for (n) = 1.2 — 1.5 decreases rapidly. For U/W = 2 it is only
possible to stabilize a ferromagnetic phase for J/W = U’'/W = 2, which, how-
ever, is a questionable large Hund’s coupling J compared to U. For lower values
of the Hund’s coupling and U/W = 2 the phase diagram for (n) = 1.0 — 1.5
is dominated by a paramagnetic metallic phase. In contrast, for U/W = 4
the ferromagnetic phase covers most of the magnetic phase diagram for fill-
ing (n) = 1.2. Ouly for low Hund’s coupling the paramagnetic phase is the
only stable one. The ferromagnetic phase diagrams for the whole occupation
and temperature range and U/W = 4, J/W = 1, U’ = 2 (upper panel) and
U/W =4, JJW = 1.5, U =1 (lower panel) can be seen in figure 6.5. In both
diagrams the ferromagnetic polarization p = % is color coded. The white
region denotes the already mentioned incommensurate phase. For better com-
parison, the same division of axis was chosen in both diagrams. Therefore, one
can see how the ferromagnetic phase becomes more extended to larger values
of hole doping when increasing the Hund’s coupling. For J/W > 1.5 the fer-
romagnetic phase extends to fillings less than quarter-filling (n) = 1. This will
become important in the next section. So far, the magnetic phase diagram of
the two-orbital Hubbard model consists of an antiferromagnetic phase at half-
filling, which becomes unstable towards an incommensurate spin density wave
when doping, and eventually changes to a ferromagnetic state at occupation
(n) ~ 1.5 if the Hund’s coupling J is large enough.
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Figure 6.5: Magnetic ground state phase diagram for U/W =4, J/W =1, U’ /W =2
(upper panel) and U/W =4, J/W = 1.5, U'/W =1 (lower panel). The ferromagnetic
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polarization p = a8 color coded. The white region corresponds to the incommen-
surate phase. In this parameter region the DMFT calculations did not converge. Both
phase diagrams were created by fitting of approximately 30 points each. Notice that
for both diagrams the same division of axis was chosen.
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6.4 Quarter-Filling

6.4.1 Ferromagnetic Metal Insulator Transition

Quarter-filling, like half-filling, represents a very special point for the two-orbital
Hubbard model. In a classical picture there is one electron per site, which
can choose between two orbitals. This picture already makes clear that orbital
degeneracy and fluctuations play an important role for quarter-filling. This was
confirmed by the two site cluster calculation of the last section. In figure 6.6,
I show the ferromagnetic ground state phase diagram for (n) = 1 as function
of U" and J. The intra-orbital interaction was U/W = 4. As noted before, for
strong Hund’s coupling one obtains the orbitally homogeneous ferromagnetic
phase discussed in figure 6.5. However, for large enough repulsive inter-orbital
density-density interaction U’, T observe that the ferromagnetic spin alignment
is accompanied by an antiferro-orbital order of the conventional Néel-type [182,
183,187-191]. The phase diagram at (n) = 1 is mainly covered by ferromagnetic
phases. Only for small values of the Hund’s coupling a paramagnetic phase can
be found as a ground state. Figure 6.7 shows the spectral functions of both

Paramagnet

0.5 1
Hund's coupling J/W

Figure 6.6: Ferromagnetic phase diagram for U/W = 4 and (n) = 1. The calcula-
tions were done at the parameters denoted by the black points. Therefore the phase
boundaries are only schematic.

ferromagnetic states. The left (right) panel shows the configuration and the
spectral function of the homogeneous (orbitally ordered) phase. These results
were obtained at T/W = 2-10~%. The Fermi energy corresponds to w = 0. Thus
one can observe a dramatic difference in the behavior of both states at the Fermi
energy. The majority spin of the homogeneous ferromagnetic state has large
spectral weight at the Fermi level, showing metallic behavior. In contrast, the
orbitally ordered ferromagnetic state possesses a gap at the Fermi energy. There
is no spectral weight. Thus the orbitally ordered ferromagnet is an insulator.
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Figure 6.7: Spectral functions and schematic occupation of the orbitals within both
ferromagnetic phases. Left: Homogeneous ferromagnetic state at J/W = 1.5 and
U’'/W = 1. Right: Orbitally ordered ferromagnetic state at J/W = 0.5 and U’ /W = 3.
Note the different axis divisions.

The evolution of the spectral function of the orbitally ordered ferromagnetic
state and the gap size can be seen in figure 6.8. One can observe how the
gap size linearly shrinks and finally closes at U’/W ~ 1.4. Thus, by varying
Hund’s coupling J or U’ one can observe a metal insulator transition (MIT)
between two almost fully polarized ferromagnetic phases. Note that this metal
insulator transition is very different from the usual paramagnetic one, which
appears in the Hubbard model as function of U in the paramagnetic state. The
observed MIT within the ferromagnetic phases, however, is due to a strong inter-
orbital density-density interaction, which is responsible for driving the orbital
ordering. The usual intra-orbital Hubbard interaction U plays a minor role in
this transition. There is a first order transition between the orbitally ordered
ferromagnetic state and the homogeneous one: both the magnetic and orbital
polarization show jumps when crossing the phase boundary, which can be seen
in figure 6.9. Note that both states are nearly fully polarized; the orbitally
ordered ferromagnetic state has p = % =
p = 0.82. This means that the jump in the magnetization is comparatively
small. A more important aspect is that the orbitally ordered ferromagnetic
phase is an insulator, while the homogeneous one is a metal.

Both states show very different dependence on the chemical potential. For
the homogeneous ferromagnetic phase I already showed, when discussing figure
6.5, that its filling can be varied smoothly. The dependence on the chemical
potential of the orbitally ordered ferromagnet on the other hand is completely

1, while the homogeneous has
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Figure 6.9: Dependencies of the occupations on U’ near the metal insulator transition
for U/W =4 and J/W = 1. The black points denote the polarization of the ferromag-
netic state. The red and green points show the occupation for the majority spin for

the upper and lower orbital.
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Figure 6.10: Dependence of the orbitally ordered ferromagnetic state for J/W = 0.5
and U’/W = 3 upon changing the chemical potential ;. The upper (lower) panel shows
the occupation (polarization) of the system.

different and can be seen in figure 6.10. The plot shows that for a critical
chemical potential the filling of the system jumps from approximately (n) = 0.88
to quarter-filling (n) = 1. At the same critical chemical potential also the
polarization jumps from a non-polarized state to a nearly fully polarized. In
other words, there is a first order transition between a paramagnetic phase with
filling less than one and an orbitally ordered ferromagnetic state at quarter-
filling. Consequently the electronic system shows phase separation between
these states and the precise physics will depend on additional interactions,
like long-range Coulomb interaction, or additional degrees of freedom like the
lattice. For electron doping this orbitally ordered ferromagnet becomes unstable
towards an incommensurate spin density wave. Unfortunately, it is very hard
to stabilize such a spin density wave in our calculations, so that I am not able
to study the exact nature and energetic stability of this phase.

With respect to effects like the colossal magneto resistance effect in manganites,
introduced in chapter 1.2.4, it should be very interesting to look at the temper-
ature dependence of the orbitally ordered ferromagnetic state. In manganites a
ferromagnetic metal becomes unstable towards a paramagnetic insulating state
when increasing the temperature. The transition temperature can be tuned
by applying a magnetic field, which explains the large resistance change when
varying the magnetic field. The metal insulator transition observed in the two-
orbital Hubbard model provides the opportunity to see similar effects. The
question is, whether this MIT can be triggered by applying a magnetic field or
changing the temperature. Figure 6.11 shows the temperature dependence of a
state deep within the orbitally ordered ferromagnetic phase. The ground state of
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Figure 6.13: Proposed schematic T-U’ phase diagram for quarter-filling. The following
abbreviations are used: PM = paramagnetic meta; PI = paramagnetic insulator; OPI
= orbitally ordered paramagnetic insulator; OFI = orbitally ordered ferromagnetic
insulator; FM = ferromagnetic metal.

the system is the fully polarized orbitally ordered ferromagnetic state, already
shown above. When increasing the temperature, the ferromagnetic polariza-
tion vanishes, but the orbital order remains up to 7/W =~ 2-1072. Finally the
orbital order becomes unstable towards a paramagnetic insulator. Obviously,
the orbital order is the stronger ordering mechanism, persisting longer than
the ferromagnetic order when increasing the temperature. But as the system
remains in an insulating state, no temperature triggered ferromagnetic MIT
can be observed in this parameter region. The insulating paramagnetic region
reaches as high as T/W = 0.4. For a system with bandwidth W = 0.5eV,
this would imply a transition temperature of about 7" ~ 2400 K. Figure 6.12
shows the spectral functions in the orbitally ordered ferromagnetic phase near
the ferromagnetic metal insulator transition for different temperatures. The
orbital ordering now vanishes before the ferromagnetic transition occurs, and a
ferromagnetic metallic state is stabilized. Finally, this state becomes unstable
towards a paramagnetic metallic state. When increasing the temperature for
a state in the homogeneous ferromagnetic phase, the ferromagnetic polariza-
tion vanishes and a paramagnetic metal is formed. Therefore, the transition
temperatures of the ferromagnetic order and the orbital order change quite
independently when varying the interaction parameters. Additionally, there
has to be a paramagnetic MIT for high temperatures. Figure 6.13 shows a
schematic phase diagram, which can be drawn after the just discussed results.
Of course, the characteristics of the transition lines are here just proposed, but
they include both temperature evolutions shown in the figures 6.11 and 6.12.
For high values of the inter-orbital density interaction U’, there is the para-
magnetic metal insulator transition. For lower temperatures a transition to
the orbitally ordered paramagnet and the orbitally ordered ferromagnet can be
found. In contrast, for inter-orbital density interaction U’ close to the vanishing
of the orbital order at T" = 0, one can see the temperature driven transition
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Figure 6.14: Antiferromagnetism for J/W = 0.5 and U’/W = 3. The left panel shows
the doping dependence of the occupation and polarization for the antiferromagnet state.
The right panel shows the spectral function.

from the paramagnetic metal at high temperatures to the ferromagnetic metal
and later eventually to the orbitally ordered ferromagnetic insulator.

6.4.2 Antiferromagnetism and Charge Order

In the region of large U’, where the orbitally ordered ferromagnet is found, it
was also possible to stabilize an antiferromagnetic Néel-phase at quarter-filling.
As the system is dominated by ferromagnetic double exchange at quarter-filling,
one actually does not expect such a phase here. An antiferromagnetic phase
at quarter-filling was reported by T. Momoi [183] using an antiferromagnetic
Hund’s coupling. Like the orbitally ordered ferromagnet, this antiferromagnetic
phase also exists only exactly at quarter-filling. The spectral function and the
doping dependence can be seen in figure 6.14. The spectral function shows that
also this state is a perfect insulator. When trying to dope it, one again finds
phase separation to a paramagnetic metal away from quarter-filling. In order
to find out which state is the thermodynamically stable one, I calculated the
energy of both states. The result is that, as expected, the orbitally ordered
ferromagnet has the lower energy, thus is the thermodynamically stable one.
Nevertheless, the calculated energies are very small. Leaving out the chemi-
cal potential, which gives the same contribution for both states, the energy of
the orbitally ordered ferromagnet is (H) = —0.0135W/, and the energy of the
antiferromagnetic state is (H) = —0.0085W. This is, compared to the chemi-
cal potential, which gives contributions of (H) ~ —W, a very small splitting.
Looking at the different terms in the energy, the kinetic energy gives a larger
contribution for the antiferromagnetic state than for the ferromagnetic state,
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Figure 6.16: Spectral functions for the charge ordered state for U/W = 4, J/W = 2,
and different U’. The continuous (dashed) lines correspond to the occupied A-sites
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while the interaction terms increase the energy of the antiferromagnet. Varying
the parameters J and U’, I always find the antiferromagnetic state exhibiting
the higher energy.

For large Hund’s coupling J/2 > U’ the inter-orbital density-density interaction
becomes attractive. Although at a first glance such a large Hund’s coupling ap-
pears unphysical, one can have situations, for example Jahn-Teller coupling to
phonons, which can lead to additional contributions to J. In this case such an
attractive interaction can effectively be generated and the physics will change
dramatically. The first thing one notes is that it becomes very difficult to
stabilize fillings other than n = 2 or n = 0. Inspired by this difficulty, I inves-
tigated charge ordered phases in this parameter regime. And indeed for suffi-
ciently large Hund’s coupling J it is possible to stabilize a charge ordered state
at quarter-filling, with alternating almost doubly occupied and nearly empty
sites. The occupation of the different sites for this charge ordered phase can be
seen in figure 6.15. The vertical line marks the point, where the inter-orbital
density-density interaction changes from attractive in the left part to repulsive
in the right part. Remarkably, even for repulsive density-density interaction,
one can stabilize such charge ordered states. Of course, the occupation of neigh-
boring sites approach each other. The end of the curves denote the point, at
which it was impossible to stabilize this phase. From the two-orbital Anderson
model one knows that the Kondo temperature [52] decreases exponentially and
the doping dependence around quarter-filling becomes steeper for increasing
Hund’s coupling J. For an extended lattice this results in the charge ordered
state, even for repulsive interaction U’ —.J/2 > 0. The spectral functions in this
phase can be seen in figure 6.16. This charge density wave is a perfect insulator,
too. The electron number from neighboring sites add up to two, which means
that there is an average of one electron per site. When increasing U’, the gap
shrinks. Interestingly, the spectral function of the double occupied site possess
an additional peak at w/W ~ 5. As the broadening of the NRG is very large
in this regions, one cannot deduce the structure of these peaks or tell what is
the origin of them.

6.5 Summary

This chapter dealt with the situation of two interacting degenerate bands. It is
a basic model for an e,-band, as it can be found in transition metal oxides with
cubic symmetry. Like the one-orbital Hubbard model, the half-filled system
is dominated by super exchange resulting in an antiferromagnetic phase. I
especially looked at the interaction strength of U/W = 4. For this interaction
the system changes into an incommensurate spin density wave phase when
doping away from half-filling.

In contrast to the one-orbital Hubbard model, the multi-orbital Hubbard model
possesses a natural tendency towards ferromagnetism. For large enough Hund’s
coupling J and density-density interactions U and U’ the system forms a ho-
mogeneous ferromagnetic state at (n) ~ 1.5. Depending on the value of J this
phase can extend to occupations smaller than one.
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Quarter-filling is a very special point for the two-orbital Hubbard model. Be-
sides a homogeneous ferromagnetic metal, one can stabilize an orbitally ordered
ferromagnetic insulator for large U’. Thus one can find a ferromagnetic metal
insulator transition at quarter-filling. First studies in the temperature depen-
dence of the phases at quarter-filling seem to indicate that also a paramagnetic
metal insulator transition can be found. Such metal insulator transitions accom-
panied by a ferromagnetic phase transition provide the possibility to observe
similar effects as the colossal magneto resistance effect in manganites. There-
fore, the dependence of this MIT on temperature and magnetic field should be
studied in more detail. Of course, in the manganites the just mentioned phe-
nomenon occurs below quarter-filling and as a result of a transition between a
ferromagnetic metal and a paramagnetic insulator, but the ingredients for this
can already be found in this very simplified model. Including the neglected t94-
spin and the coupling to the lattice, one can expect to describe the manganites.
But as the strengths of the neglected effects depend on the exact manganite
compound, one can perhaps even hope that one can find a compound, which
nearly shows the effects analyzed in this chapter.

Besides the just mentioned two ferromagnetic phases at quarter-filling, I addi-
tionally observed an antiferromagnetic insulator and an charge ordered insula-
tor. The charge ordered state exists only for very strong Hund’s coupling, which
favors having two paired electrons at one site. In the same parameter region,
in which the orbitally ordered ferromagnet exists, I found an antiferromagnetic
insulator. But it seems as if this state has always the higher energy compared
to the ferromagnetic state.
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Summary and Outlook

This work dealt mainly with the topic of magnetic phases in the Hubbard model,
which is a minimal model for analyzing the competition between localization
induced by strong repulsive electron-electron interaction and delocalization in-
duced by the electron hopping. This competition and the Pauli principle are
the basic ingredients for magnetism as being observed in transition metal ox-
ides. Additionally, the orbital degeneracy of the d-orbitals plays an important
role in these materials. For better understanding the electronic properties in
these materials, I have analyzed the influence of different hopping processes,
the ratio between the interaction and the hopping, the filling of the lattice, and
the degeneracy of the orbitals. Thus, I tried to identify the influence of each of
the mentioned properties. For the purpose of calculating magnetic phases for
the Bethe lattice I used the dynamical mean field theory (DMFT). Being exact
in infinite dimensions it relates the lattice model to a quantum impurity model,
which has to be calculated self-consistently.

DMRG as an Impurity Solver

Most of my results were gained using the numerical renormalization group
(NRG), which is a well established method being able to calculate thermo-
dynamic and spectral functions for a wide range of parameters. Additionally,
I tested a newly developed code for the density matrix renormalization group
(DMRG) as an impurity solver. The DMRG has the ability to perform ground
state calculations for impurity models allowing for the calculation of ground
state expectation values. For computing dynamical spectral functions, the
DMRG uses an internal broadening, which results in a Lorentz convolution
of the spectral function. Compared to the NRG, this broadening is much larger
for frequencies near the Fermi energy, but smaller far away from it. Thus the
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DMRG is able to capture the behavior of the band edges and the substructures
in the Hubbard bands, but eventually fails to correctly resolve the Kondo peak
or small gaps at the Fermi energy. Unfortunately, this results in problems when
using the DMRG as impurity solver within the DMFT. It can be shown that
the half-filled one-orbital Hubbard model forms an antiferromagnetic insulator
for every finite repulsive value of the Hubbard interaction U > 0. This result
can be reproduced by the NRG, but the DMRG fails if the interaction value is
too small, resulting in a very small gap, which cannot be resolved anymore.
But the DMRG has a very big advantage to the NRG. For calculating dynamical
properties properly within the NRG, one is limited to the one- or two-orbital
case, because the local Fock space grows exponentially. Within the DMRG one
can further split up the local Fock space, resulting in a linear growth of the
chain length when increasing the orbital number. This is supposed to enable
one to perform calculations for multi-orbital Hubbard models, perhaps even
taking into account all 5 d-bands. Further studies on this subject should be
done.

One-Orbital Hubbard model

In my thesis I showed many results on magnetic phases for the one- and two-
orbital Hubbard model. The magnetic phase diagram of the one-orbital Hub-
bard model for a Bethe lattice with nearest neighbor hopping only is mainly
covered by an antiferromagnetic insulating phase exactly at half-filling and a
paramagnetic metallic phase away from half-filling. However, for large inter-
action strengths, there is an incommensurate spin density wave phase next to
half-filling, which mainly stems from the antiferromagnetic fluctuation at half-
filling. Interestingly, there is a transition from phase separation between the
antiferromagnetic phase and the paramagnetic phase to this incommensurate
phase exactly at the point, at which the paramagnetic metal insulator transition
would occur. This stresses the connection between metal insulator transitions
and magnetic phases. This incommensurate phase manifests itself in the DMFT
as a non-convergent solution. I proposed here a way how to stabilize such phases
for a Bethe lattice, but unfortunately the method seems to be rather unstable
and unreliable for finding such solutions. In order to better understand such
phases one should perform calculations for different lattices for which k-vectors
can be defined, so one can look directly for spin density wave states.

Introducing a next nearest neighbor (NNN) hopping for the Bethe lattice changes
the density of states, which becomes asymmetric and develops a singularity.
This imposes frustration to the Néel-state at half-filling. It was argued that
frustration helps pushing the metal insulator transition out of the antiferro-
magnetic dome. Increasing the frustration suppresses the Néel-temperature as
well as the critical end point of the paramagnetic metal insulator transition.
Only for NNN-hopping comparable in strength to the NN-hopping the para-
magnetic metal insulator transition reaches out of the magnetic phases when
increasing the temperature. This is the scenario seen in V203, but one still
needs very large values of NNN-hopping. Additionally, one can observe that
for such large NNN-hopping the Néel-state is replaced at half-filling by a spin
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density wave.

Surprisingly, for comparable NN- and NNN-hopping one can still stabilize an
antiferromagnetic Néel-state away from half-filling. Thus frustration changes
the filling at which a Néel-state is stable. Additionally, one can now find a
ferromagnetic state, which is due to the singularity in the free density of states.
Ferromagnetic states cannot be found for a Bethe lattice with semi-elliptic
density of states. First introducing a singularity into the density of states
makes ferromagnetic order possible. The ferromagnetic state reaches to the
parameter regions, where the antiferromagnetic state can be stabilized, too.
Comparing the energies of the ferromagnetic and the antiferromagnetic states
in the fully frustrated model, there seems to be a phase transition between the
ferromagnetic and the antiferromagnetic state. But the latter state has nearly
equal energy to the paramagnetic state in this region. One could think of the
possibility that in this parameter region even more magnetic states are stable
due to the imposed frustration. But this is only a conjecture.

Two-Orbital Hubbard model

Finally, I showed results for the two-orbital Hubbard model describing corre-
lations in a degenerate eg,-band. Close to half-filling, the model shows similar
physics as the one-orbital Hubbard model. But away from half-filling, the two-
orbital Hubbard model possesses even for symmetric free density of states the
tendency towards ferromagnetism due to the degenerate orbitals. The most
interesting point in the two-orbital Hubbard model is quarter-filling. There I
could observe a clash of four different long range ordered phases. There is a
phase transition between two different ferromagnetic states. One is a homo-
geneous metal, the other an orbitally ordered insulator. This phase transition
can, for example, be triggered by changing the interaction parameters. Thus a
metal insulator transition was found. Such transitions have always been very
popular in the research of strongly correlated materials. The metal insulator
transition observed here is strongly connected to the ferromagnetic phases ob-
served at quarter-filling. It should be very interesting to study the influence of
temperature and magnetic fields on this phase transition in more detail. If the
transition point can be changed by applying a magnetic field, it would directly
connect the resistivity to magnetic fields, which then can eventually be used
for measuring magnetic fields. Very similar effects can be seen in manganites
in the form of the colossal magneto resistance effect.

Besides these ferromagnetic states also antiferromagnetism and charge order
could be found at quarter-filling. Charge order can especially be found for very
large Hund’s coupling, which favors states where two electrons are paired on
one site.

This thesis explored some of the complexity, for which electronic correlations in
an one- and two-orbital Hubbard model can be responsible. But mentioning the
colossal magneto resistance effect in manganites, one should remember that the
coupling to the very localized t2,-states and to the lattice is of great importance.
Therefore, after studying the two-orbital Hubbard model, one should include
these degrees of freedom step by step. By this one can analyze the effects for
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which each coupling is responsible and finally build up a very powerful model
for manganites and other transition metal oxides.
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APPENDIX A

Calculation of the Ground State
Energy

In two parts of this thesis I calculate the kinetic energy of the DMFT solution.
Especially in the case of the frustrated lattice, the integrals are numerically
difficult, as singularities are involved. Therefore, parts of the integrals are
performed analytically improving the accuracy. I will now shortly describe how
one can treat the occurring integrals. The kinetic energy for T" = 0, see chapter
5.4.6, can be written as

o 0

(Hr) _ 1) :

N = _/ dﬂe(ﬂ)pw)_/ dw <—;> I = e(0) — S(w + 1)
e0) = t0+ta(0% 1)

o) = VAP

As the self-energy is a calculated set of data points, the frequency integral has
to be performed numerically. But the f-integral, can be performed exactly, in
which the self-energy enters only as a complex parameter. The #-integral can
be written as

Vi
¢ — (110 +t2(0%2 — 1))’

2
/d@ (t10 + t2(6% — 1))
-2

where ( = w + p — X(w + i0). This integral can be solved by transforming
it onto a complex contour by two consecutive substitutions. Firstly, writing
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0 = 2cos(¢) gives

0 ' 2 2sin(6)
/_7r dg2sin(¢) (2t1 cos() + ta(4 cos(¢)” — 1)) ¢ — (2t1 cos(0 + ta(4cos(0)? — 1)))

Secondly, one transforms this integral to the closed complex unit circle by sub-
stituting cos(¢) = (exp(i¢) +exp(—i¢)) and sin = £ (exp(i¢) —exp(—i¢)) and
using symmetry properties for performing the integral from ffﬂ Simultane-

ously one can write z = exp(i¢) and 1/z = exp(—i¢). The integral thus can be
written as

(A1)

Lot
2 Jg, C—(tl(z+%)+t2((z+%)2_1)> |

Sorting powers of z, this reads

“1 1 (=D (0P 4 2) + (P4 1)2 - 2Y)
E}é? (22 =t (2?4 2) = ta((2 +1)* = 2%)

The roots of the denominator polynomial can be found easily looking in equation
(A.1). Thus, one is able to use the residue theorem to evaluate this integral for
a given self-energy at frequency w. The remaining w-integration can then be
performed numerically.
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