
Context-Aware Intelligent User Interfaces
for Supporting System Use

Vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades Dr.-Ing.

von

Dipl.-Inform. Melanie Hartmann

geboren in Seeheim-Jugenheim

Referenten: Prof. Dr. Max Mühlhäuser (TU Darmstadt)
Prof. Dr. Rainer Malaka (Universität Bremen)

Tag der Einreichung: 4. Dezember 2009
Tag der mündlichen Prüfung: 18. Januar 2010

Darmstadt 2010
Hochschulkennziffer D17

i

Ehrenwörtliche Erklärung1

Hiermit erkläre ich, die vorgelegte Arbeit zur Erlangung des akademischen Grades
“Dr.-Ing.” mit dem Titel “Context-Aware Intelligent User Interfaces for Support-
ing System Use” selbständig und ausschließlich unter Verwendung der angegebenen
Hilfsmittel erstellt zu haben. Ich habe bisher noch keinen Promotionsversuch unter-
nommen.

Darmstadt, den 4. Dezember 2009

Melanie Hartmann

1Gemäß §9 Abs. 1 der Promotionsordnung der TU Darmstadt

Abstract

Two trends can be observed in current applications: the amount of functionality of-
fered is constantly increasing and applications are more often used in mobile settings.
Both trends often lead to a decrease in the usability of applications. This effect can
be countered by Intelligent User Interfaces that facilitate the interaction between
user and application. In order to support the user in an optimal way, the Intelligent
User Interface has to be aware of the user’s needs and adapt the provided support
to her current situation, i.e. her current context. The relevant context information
can thereby be gathered from the environment (e.g. her current location) or from
sophisticated user models that reflect the user’s behavior.
In this thesis, we present a novel approach of combining user and environmental

context information for supporting the system use. As context information is often
very error-prone and the user‘s workflow should not be disrupted by erroneous in-
teraction support, we adapt the presentation of the support to the reliability of the
context information. Therefore, we use different levels of proactivity from unobtru-
sive highlighting to automatically performing tasks. The presented approach –called
AUGUR– is application independent and is able to support the interaction for arbi-
trary existing applications, even across application boundaries. For that purpose, we
developed a novel application modeling language that is able to model applications
and their relationships to context. The application models can thereby be defined
by the application developer, learned by AUGUR, and augmented by the end-user.
The interaction can be facilitated by an Intelligent User Interface in two different

ways: on the one hand by supporting the entering of data and on the other hand by
simplifying the navigation within and between applications. For supporting the user
in entering data, we contribute three approaches based on (i) the user’s previous
interactions, (ii) the information represented in the application models, and (iii) the
semantics of the data required by the user interface and the context information
currently relevant for the user. For the latter, we developed a novel algorithm that
combines string-based and semantic similarity measures.
AUGUR supports the user’s navigation in three different ways: It can (i) guide the

user through an application, (ii) provide navigation shortcuts to other applications,
and (iii) reduce the user interface to the most relevant functionality for mobile use.

iv

For guiding the user, we developed a novel algorithm called FxL that is able to predict
the next relevant interaction element. For the interface adaptation, we introduce a
novel approach based on FxL to determine the elements that should be presented to
the user for mobile use according to her current situation.
We realized the developed concepts of AUGUR in a working prototype. Further, we

evaluated the usability of the context-aware support provided by AUGUR in a user
study, and showed that it can significantly increase the usability of an application.

Zusammenfassung

Heutige Anwendungen werden zum einen immer komplexer und zum anderen zu-
nehmend auf mobilen Endgeräten verwendet. Beide Faktoren beeinträchtigen häufig
die Gebrauchstauglichkeit der Anwendungen. Intelligente Benutzungsschnittstellen
wirken dem entgegen indem sie den Benutzer bei der Interaktion mit einer Anwen-
dung unterstützen. Um die optimale Unterstützung bieten zu können, muss sich die
intelligente Benutzungsschnittstelle an die Bedürfnisse des Benutzers und an seine
aktuelle Situation, d.h. seinen Kontext, anpassen. Kontextinformationen können
dabei aus der Umgebung des Benutzers gewonnen werden (z.B. sein aktueller Aufen-
thaltsort) oder aus Benutzermodellen, die das Verhalten des Benutzers widerspiegeln.
In dieser Arbeit präsentieren wir einen neuen Ansatz zur kontextsensitiven In-

teraktionsunterstützung, der sowohl den Umgebungs- als auch den Benutzerkontext
berücksichtigt. Da Kontextinformationen häufig fehlerbehaftet sind und der Ar-
beitsfluss des Benutzers nicht mit fehlerhafter Unterstützung gestört werden soll,
müssen wir die Zuverlässigkeit der genutzten Kontextdaten bei der Interaktionsun-
terstützung berücksichtigen. Daher passen wir die Darstellung der Interaktionsunter-
stützung an die Zuverlässigkeit der zugrunde liegenden Daten an. Die Darstellung
reicht von unaufdringlichem Hervorheben relevanter Elemente bis zur automatis-
chen Ausführung von Anwendungsschritten. Der vorgestellte Ansatz zur kontextab-
hängigem Interaktionsunterstützung, genannt AUGUR, ist anwendungsunabhängig
und kann den Benutzer auch über Anwendungsgrenzen hinweg unterstützen. Dies
wird durch eine neue Anwendungsmodelierungssprache ermöglicht, die uns erlaubt,
Anwendungen und ihren Zusammenhang zu Kontextinformationen zu modellieren.
Die Anwendungsmodelle können dabei vom Anwendungsentwickler erstellt werden
oder von AUGUR erlernt werden. Zusätzlich können sie jederzeit vom Endbenutzer
überprüft und erweitert werden.
Wir konzentrieren uns in der vorliegenden Arbeit auf die Unterstützung des Be-

nutzers bei der Dateneingabe und bei der Navigation in und zwischen Anwendun-
gen. Zur Unterstützung bei der Dateneingabe verwenden wir folgende Informa-
tionsquellen: (i) die bisherigen Interaktionen des Benutzers, (ii) das zugehörige An-
wendungsmodell und (iii) die Semantik der von der Anwendung benötigten Daten
und des aktuellen Kontexts des Benutzers. Für Letzteres haben wir einen neuen Al-

vi

gorithmus entwickelt, der zeichenfolgenbasierte und semantische Ähnlichkeitsmasse
kombiniert und neue Zusammenhänge erlernt.
Die Navigation des Benutzers wird von AUGUR auf drei verschiedene Arten

unterstützt: AUGUR kann (i) den Benutzer durch eine Anwendung führen, (ii) Nav-
igationsshortcuts zu anderen Anwendungen vorschlagen und (iii) automatisch eine
reduzierte Version der Anwendungsoberfläche für mobile Benutzung generieren. Um
den Benutzer durch eine Anwendung zu führen, haben wir einen neuen Algorithmus
namens FxL entwickelt, der in der Lage ist, das nächste relevante Interaktionsele-
ment auf Basis der bisherigen Interaktionen vorherzusagen. Für die Generierung
der reduzierten Benutzungsoberfläche stellen wir einen neuen Algorithmus basierend
auf FxL vor, der die Interaktionselemente bestimmen kann, die idealerweise dem
Benutzer angezeigt werden sollten.
Die entwickelten Konzepte wurden in einem Prototyp umgesetzt und getestet.

Darüberhinaus haben wir die Gebrauchstauglichkeit der kontextabhängigen Inter-
aktionsunterstützung in AUGUR in einer Benutzerstudie überprüft. Wir konnten
zeigen, dass eine solche Unterstützung die Gebrauchstauglichkeit einer Anwendung
signifikant erhöhen kann.

Acknowledgments

This work would not have been possible without the continuous support and encour-
agement of my colleagues, family and friends over the last years, which I would like
to acknowledge here.
First and foremost, I would like to thank my advisor, Max Mühlhäuser, for his

unlimited support, excellent advice and faith in my work. I am also grateful to
Rainer Malaka (Universität Bremen) for acting as second referee.
I am grateful to all at Telecooperation and RBG for providing me with a friendly

and supportive place to work. Especially, I would like to thank Daniel Schreiber for
all the fruitful discussions and support (It is really a pleasure working with you). I
am also grateful to all the other members in the Telecooperation Group who proof-
read papers and provided feedback (Andreas Behring, Dirk Schnelle-Walka, Felix
Flentge, Tobias Klug, Sebastian Ries, Jürgen Steimle to name only few of them).
I would also like to thank Manuel Görtz and Andreas Faatz from SAP research

for their support in the AUGUR project and all the others from SAP we cooperated
with. Furthermore, I would also like to acknowledge Holger Ziekow (HU Berlin),
Dominikus Heckmann (DFKI), Frederik Janssen (TUD), Anthony Jameson (DFKI),
and Christine Müller (Jacobs University Bremen) for their advice. Many thanks are
also due to Marcus Ständer, Matthias Beckerle and Markus Miche for their support
and for continuously supplying me with chocolate.
I am highly grateful to my brother and parents for their support and patience

during the course of this work. Finally, many thanks are due to Torsten Zesch for
his unlimited support and for standing all the stressful time with me when finishing
the thesis.

Contents

1. Introduction 1
1.1. AUGUR . 4
1.2. Main Contributions . 6
1.3. Publication Record . 7
1.4. Thesis Outline . 7

2. Basics and Requirements 11
2.1. Context . 11

2.1.1. Definition . 12
2.1.2. Categories of Context . 14
2.1.3. Difficulties in Using Context 15

2.2. Intelligent User Interfaces . 16
2.2.1. Definition and Models . 16
2.2.2. Classification of IUIs . 17
2.2.3. Classification of Personal Assistants 19
2.2.4. Classification of Interface Adaptations 20
2.2.5. Summary . 20

2.3. Requirements for Context-Aware IUIs 21
2.3.1. Challenges in Developing IUIs 21
2.3.2. Requirements for Using Context in IUIs 25

2.4. Chapter Summary . 26

3. State of the art 27
3.1. Classification of Personal Assistants 27
3.2. Knowledge-based Personal Assistants 28
3.3. End-user Programmed Personal Assistants 31
3.4. Learning Personal Assistants . 31
3.5. Chapter Summary . 34

4. High-Level Design 35
4.1. Conceptual Building Blocks . 35

x Contents

4.2. Models in the Knowledge Base . 38
4.2.1. Context Model . 38
4.2.2. User Model . 39
4.2.3. Application Model . 40

4.3. Interaction Support . 40
4.3.1. Content Support . 41
4.3.2. Guidance . 42
4.3.3. Navigation Shortcuts . 43
4.3.4. Interface Adaptation . 43

4.4. Representing Support . 43
4.5. Scenarios . 45
4.6. Chapter Summary . 46

5. Implementation 47
5.1. Interaction Support . 48

5.1.1. Content Support . 48
5.1.2. Navigation Support - Guidance 50
5.1.3. Navigation Support - Navigation Shortcuts 50
5.1.4. Interface Adaptation . 51

5.2. Controlling AUGUR . 52
5.3. Architecture . 54

5.3.1. Support Tier . 56
5.3.2. Knowledge Base . 57
5.3.3. Editors . 58

5.4. Chapter Summary . 58

6. Knowledge Models 59
6.1. Context Model . 59

6.1.1. Current Context . 61
6.2. User Model . 66

6.2.1. Usage Model . 66
6.3. Application Model . 67

6.3.1. Requirements for Application Modeling Language 68
6.3.2. Existing Application Modeling Languages 68
6.3.3. ATML: ApplicaTion Modeling Language 69
6.3.4. LabelFinder: Recognizing Labels 76
6.3.5. Visualization in the AUGUR Prototype 79
6.3.6. Summary . 81

6.4. Chapter Summary . 81

7. Content Support 83
7.1. Confidence in Content Support . 83
7.2. Content Support based on Previous Usage 84

Contents xi

7.3. Content Support based on Semantics 86
7.3.1. Requirements . 86
7.3.2. Related work . 87
7.3.3. Representing UI and Context Objects 88
7.3.4. Mapping textual representations 89
7.3.5. Measuring the Relevance of a Context Object 93
7.3.6. Confidence in Content Support based on Semantics 93
7.3.7. Evaluation . 94
7.3.8. Summary . 100

7.4. Content Support based on Modeled Relations 102
7.4.1. Relations in AUGUR . 102
7.4.2. Learning Direct Relations . 103
7.4.3. Learning Rules . 104
7.4.4. Computing Content Support based on Relations 110
7.4.5. Confidence in Content Support based on Relations 112
7.4.6. Summary . 113

7.5. Chapter Summary . 113

8. Navigation Support 115
8.1. Guidance . 115

8.1.1. Sequence Prediction . 116
8.1.2. Existing Algorithms . 117
8.1.3. FxL . 119
8.1.4. Confidence in Guidance . 120
8.1.5. Evaluating Sequence Prediction Algorithms 120
8.1.6. Evaluation . 122
8.1.7. Summary . 127

8.2. Navigation Shortcuts . 128
8.2.1. Learning Navigation Shortcuts 128
8.2.2. Confidence in Navigation Shortcuts 129
8.2.3. Summary . 129

8.3. Interface Adaptation . 130
8.3.1. Requirements . 130
8.3.2. Related Work . 131
8.3.3. Adaptation Process . 134
8.3.4. FxL*: Prediction Algorithm 135
8.3.5. Evaluation . 137
8.3.6. Summary . 140

8.4. Chapter Summary . 140

9. User Study 143
9.1. Experiment . 143

9.1.1. Technical Setup . 147

xii Contents

9.2. Results . 147
9.2.1. Efficiency . 148
9.2.2. Effectiveness . 150
9.2.3. Satisfaction . 150

9.3. Chapter Summary . 152

10.Conclusion 153
10.1. Contributions . 153
10.2. Revisiting Challenges . 156
10.3. Outlook . 159

A. Appendix A 163
A.1. DTD for ATML . 163
A.2. Questionnaires of the User Study . 165

A.2.1. General Questionnaire . 165
A.2.2. Questionnaire regarding Support 165

List of Figures 167

List of Figures 167

List of Tables 167

List of Tables 169

List of Algorithms 169

List of Algorithms 171

Bibliography 171

Bibliography 173

1
Introduction

Users of current applications face the problem of increasing interaction effort caused
by two main reasons. Firstly, applications are becoming more and more feature-laden
(as evidenced by Figure 1.1). Contrary to the intention, this increase in provided
functionality often leads to a decrease in the usability of the application (Sikora and
Swan, 1998). Secondly, applications are increasingly used in mobile or ubiquitous
computing settings. However, the devices used in these settings usually have limited
input and output capabilities. For example, a mobile phone only provides a small
screen and few or only very small buttons. This leads to increased effort which
hampers the entering of data and reduces the amount of information that can be

Figure 1.1. Number of top-level menu items in Microsoft Word, by release
(adapted from http://blogs.msdn.com/jensenh/archive/2005/10/24/
484131.aspx)

http://blogs.msdn.com/jensenh/archive/2005/10/24/484131.aspx
http://blogs.msdn.com/jensenh/archive/2005/10/24/484131.aspx

2 1. Introduction

conveyed to the user. Furthermore, mobility often leads to limited attention of the
user (Satyanarayanan, 2001). Users cannot always direct their full attention towards
the application, as this might be socially unacceptable (e.g. in a restaurant), or even
dangerous (e.g. while crossing a busy street). These problems can be countered with
Intelligent User Interfaces which support the user in performing her tasks.

Intelligent User Interfaces Intelligent user interfaces try to improve the efficiency,
effectiveness, and naturalness of human computer interaction by applying artificial
intelligence techniques. In this thesis, we focus on Intelligent User Interfaces that
support the user (i) in entering data (Content Support) and (ii) in navigating within
and between applications (Navigation Support).
Content support assists the user by suggesting data to be entered in input elements.

For example, if an address needs to be filled in an input element, the input element
could be linked to the user’s address database. Whenever the user clicks in the input
element, a list of addresses is presented to her from which she can choose the correct
one instead of having to type the address herself.
Navigation support guides the user through an application or provides explanations

about its functionality. For example, an Intelligent User Interface could highlight the
interaction element (e.g. a button or a link) that needs to be activated to finish the
current task. Another type of navigation support is to adapt the user interface
to facilitate access to the most relevant functionality and information. This helps
the user to cope with the increasing amount of features, to focus on the relevant
information, and to reduce the required effort, i.e. the required interaction costs.
For example, on a mobile device, the number of interaction elements presented to
the user should be reduced to the most relevant ones.
The amount of content or navigation support that should be provided by an Intel-

ligent User Interface strongly depends on the specific needs of a user. For example,
a novice user needs more assistance and a simpler interface than an expert user who
needs access to more advanced functionality.
Some tasks involve interaction with several applications, e.g. booking a trip often

involves looking up train connections, booking a hotel, etc. In order to provide
content and navigation support for those tasks, an Intelligent User Interface should be
able to operate with a variety of different applications, i.e. it should be application-
independent, and also offer support across application boundaries.

Context-Aware Support The user’s current needs are influenced by the context in
which the user performs a task. For example, a user usually performs different tasks
at home than in the office. Thus, Intelligent User Interfaces should be able to take
the current context of the user (e.g. her location) into account, i.e. they should be
context-aware. This ensures that the interaction support can be better adapted to
the user’s needs.
We refer to all information as context that can be used as auxiliary information

for facilitating the interaction, i.e. information which is not required for the normal

3

functionality. A formal definition of the term “context” is given in Chapter 2. We
distinguish between two types of context: user context and environmental context.
The user context contains all information describing the user, e.g. the individual
working habits of a user, which are represented in the form of user models.
The environmental context comprises all information that cannot be described in

a user model, but is related to the user’s current situation, e.g. the temperature of
a room or the user’s current location.
However, context information is often error-prone and hence also the support that

an Intelligent User Interface generates from this context information. For that reason,
an Intelligent User Interface which uses context information needs to cope with the
unreliable nature of context information. For example, it should not perform tasks
automatically that rely on uncertain context information.

Application Knowledge In order to support the interaction with an application,
an Intelligent User Interface needs knowledge about the application, i.e. which infor-
mation is required and which information is provided by an application. Depending
on how this knowledge is acquired, we distinguish between three types of Intelligent
User Interfaces (Maes, 1994): (i) knowledge-based, (ii) end-user programmed, and
(iii) learning Intelligent User Interfaces.
Knowledge-based Intelligent User Interfaces rely on elaborate models for each ap-

plication that provide reliable knowledge, but induce a huge modeling effort. This
prevents the provision of support for yet unknown applications. Moreover, inter-
action support provided by knowledge-based Intelligent User Interfaces cannot be
adapted to the individual user’s needs, as it relies on predefined knowledge.
End-user programmed Intelligent User Interfaces rely on the end-user to model the

required knowledge about the application. This allows the provision of user-adapted
support, but involves a large effort for the end-user. Additionally, it requires the
end-user to possess a good understanding of the Intelligent User Interface.
Learning Intelligent User Interfaces gather an application model from observing

the user’s interaction with the application. Thus, they are able to provide user-
adapted support and do not require any modeling effort. However, the user cannot
be supported right from the first interaction, as it takes some time to learn a reli-
able application model. Furthermore, learning Intelligent User Interfaces are usually
limited to providing support for one specific application.
As each approach has specific advantages and disadvantages, the best support can

be provided by combining the three approaches: An Intelligent User Interface should
(i) use application models if they are provided along with the application, (ii) enable
the end-user to easily modify the application models, and (iii) learn additional infor-
mation from observing the user and thus enhance and adapt the application models
over time.

We have seen that current applications face the problem of increasing interaction
costs due to (i) an increasing number of features, and (ii) being used on mobile and

4 1. Introduction

Figure 1.2. Conceptual building blocks of AUGUR

ubiquitous devices with limited interaction capabilities. The problem can be tackled
with Intelligent User Interfaces providing content and navigation support. In order
to support the user in an optimal way, Intelligent User Interfaces should take user
context and environmental context into account, and should combine the three main
approaches to acquire knowledge about the applications as described above. In
the next section, we introduce a novel approach to Intelligent User Interfaces that
considers all these conclusions.

1.1. AUGUR

In this thesis, we present a novel approach (called AUGUR) for using context infor-
mation in Intelligent User Interfaces. In contrast to existing approaches, we consider
the user context as well as the environmental context to provide content and navi-
gation support. Our approach is able to adapt its support to the reliability of the
context information. Furthermore, the provided support is not limited to a specific
application, but is able to facilitate the interaction with different applications by
using a proxy-based architecture. This means that all events evoked by the applica-
tion and by the user are routed through AUGUR. This enables AUGUR to provide
interaction support for existing applications without the need to modify them and
to provide support even across application boundaries.
Figure 1.2 gives an overview of the main conceptual building blocks of AUGUR. It

contains two main components: The Support Generator, which contains all algorithms
for generating context-aware content and navigation support, and the Knowledge
Base, which maintains all knowledge models required for that purpose. In this
section, we briefly introduce the knowledge models used by AUGUR and describe
how it provides content and navigation support.

1.1. AUGUR 5

Knowledge Models

In order to provide context-aware content and navigation support which is adapted
to the user’s needs, we at first require a model for the context and the user. The
context model is able to keep track of all context information which is currently
relevant for the user’s interactions. The user model contains information on how
the user interacts with applications. Moreover, we need an application model which
represents the relations between context elements and application elements. For that
purpose, we developed a novel application modeling language called ATML. The
ATML application models can be provided by the application developer (knowledge-
based approach), modified by the end-user (end-user programmed approach), and
learned by AUGUR from observing the user’s interactions (learning approach). Thus,
AUGUR combines the three approaches for acquiring knowledge about applications
discussed before.

Content Support

In order to facilitate the entering of information for the user, we can rely on a-
priori modeled information about the applications and their relations to context
information. However, these models are not able to reflect the usage patterns of an
individual user. Thus, AUGUR observes the user’s interactions to learn how the
user interacts with an application and adapts the application models accordingly.
Besides providing content support based on these learned and modeled relations be-
tween application elements and context information, AUGUR is able to generate
content support based on the user’s previous interactions and based on the seman-
tics of context and UI information. For the latter, AUGUR computes the semantic
relatedness of the elements in the UI with the context information currently relevant
for the user. AUGUR determines the best mapping between context elements and
application elements using a combination of string-based and semantic similarity
measures.

Navigation Support

AUGUR supports the user’s navigation in three different ways: (i) By guiding her
through an application, (ii) by providing navigation shortcuts, and (iii) by reducing
the user interface to the most relevant interaction elements. For guiding the user
through an application, AUGUR highlights the next relevant interaction element in
order to draw the user’s attention to it. This is especially useful for novice users
or when navigating in large menu structures. For predicting the next relevant in-
teraction element, we developed a sequence prediction algorithm called FxL. The
predictions are based on models of the user’s interactions with an application. For
novice users this model can be initiated with the data of an expert user to guide her
right from the beginning.
Additionally, AUGUR is able to generate an adapted version of a user interface for

mobile and ubiquitous use. For that purpose, it reduces the user interface to those

6 1. Introduction

elements that are currently relevant for the user’s interactions. For predicting the
most relevant interaction elements, we developed an algorithm called FxL*, which is
based on the FxL algorithm. It is able to take the user’s current interactions as well
as the device used into account.
Finally, AUGUR suggests shortcuts based on events triggered by an external con-

text event (e.g. an incoming phone call) or by the user interface (e.g. when address
information is presented). For example, if address information is contained in a user
interface, the Intelligent User Interface can suggest a shortcut to a map application
to look up the respective address.

1.2. Main Contributions

In this section, we give a brief summary of the main contributions of this thesis:

• Overall Concept: We developed an overall concept for integrating context
information into Intelligent User Interfaces. In this concept, we take user con-
text and environmental context into account, and combine the three main
approaches for building Intelligent User Interfaces (knowledge-based systems,
end-user programming, and learning systems). Our approach is able to provide
application-independent support across application boundaries, and to deter-
mine which context information is currently relevant for the user’s interactions.
In addition, we performed a user study to evaluate the effects of using context
information in Intelligent User Interfaces on the usability of an application.

• ApplicaTion Modeling Language (ATML): We developed a new language to
store relevant information about an application, e.g. about its interaction
elements and about its relations to context. We also developed an editor for
ATML to enable end-users with minimal technical experience to augment the
application models.

• FxL Algorithm: We developed this sequence prediction algorithm in order to
predict the next relevant interaction element in performing a task. FxL learns
from observing the user’s interactions, and is thus able to provide user-adapted
support. The algorithm is applied to guide the user through a user interface.
Thus, it facilitates the use of an application and reduces the user’s cognitive
load by drawing the user’s attention to the relevant interaction elements.

• Interface Adaptation using FxL* Algorithm: We developed an augmented ver-
sion of the FxL algorithm that is able to predict which parts of the user interface
are most relevant for the user in her current situation. Thus, it enables us to
generate a reduced version of a user interface. Depending on the available
screen size, we are able to generate a user-adapted version of the user interface
of the application which is better suited for mobile usage and thus facilitates
navigation.

1.3. Publication Record 7

• Semantic Mapping Algorithm: We tackled the problem of deciding which con-
text elements should be suggested as input to the user by applying semantic
similarity measures. For that purpose, we compare the textual descriptions
available for the UI and context elements. This requires a reliable detection of
the label of input elements. This is problematic for Web applications as the tag
for marking labels in HTML is scarcely used in practice. For that reason, we
developed an algorithm called LabelFinder which is able to identify the label
from the actual visual representation of the user interface of a Web application.

• AUGUR Prototype: We implemented all the developed concepts and algorithms
for a context-aware Intelligent User Interface in a working prototype applicable
to different (form-based) Web applications.

1.3. Publication Record

This thesis builds on a number of publications in peer-reviewed books, conferences,
journals, and workshop proceedings. In the book chapter Hartmann and Austaller
(2008), we give a general overview of context and its usage in context-aware appli-
cations. In Hartmann (2009), we summarize the challenges which have to be faced
when developing user-adaptive Intelligent User Interfaces.
The basic concepts of the context-aware Intelligent User Interface described in

this thesis were first presented in Hartmann et al. (2009). In this paper, we describe
how context information can be used for content and navigation support. We also
introduce the concept of a component for keeping track of all the context information
currently relevant for the user’s interactions. In Mühlhäuser and Hartmann (2009),
we contributed to the identification of problems arising when context information is
used for interaction support. In this paper, we stress that the user context as well
as the environmental context should be considered for that purpose. In Schreiber
et al. (2007, 2008), we report the results of a user study for evaluating the usability
of applications which are enhanced with context-aware interaction support.
In Hartmann et al. (2007), we present the application model that we developed

for specifying the relations between context and application. Improvements to the
model are presented in Hartmann and Schreiber (2009) and Hartmann et al. (2009).
The FxL algorithm for guiding the user is presented in Hartmann and Schreiber

(2007). Its extension for generating adapted user interfaces (called FxL*) is published
in Hartmann et al. (2008a); Hartmann and Schreiber (2008) and Hartmann and
Schreiber (2009). The semantic mapping algorithm for providing content support is
described in Hartmann et al. (2008b) and Hartmann and Mühlhäuser (2009).

1.4. Thesis Outline

Figure 1.3 illustrates the overall structure of this thesis. The light bulbs thereby refer
to the main contributions as listed in Section 1.2. In Chapter 2, we define the most

8 1. Introduction

Figure 1.3. Structure of this thesis

important concepts in this thesis –i.e. “context” and “Intelligent User Interfaces”–,
and relate our approach to the different research areas subsumed under the term
Intelligent User Interface. We also review challenges identified in literature for de-
veloping Intelligent User Interfaces, and identify requirements that arise when using
context information for supporting the user’s interaction. In Chapter 3, we give an
overview of state-of-the-art Intelligent User Interfaces which are related to the ap-
proach presented in this thesis, and analyze them with respect to the requirements
identified in Chapter 2. However, we focus here only on related work considering
complete Intelligent User Interface systems. The state of the art for the novel models
and algorithms introduced in this thesis is explained in the respective sections. We
decided in favor of this structure as we assume that the requirements we pose on the
different models and algorithms and thus the analysis of the respective state of the
art, can be better understood in this context.

Chapter 4 presents the overall design of the context-aware Intelligent User Inter-
face called AUGUR presented in this thesis. We introduce its different conceptual

1.4. Thesis Outline 9

building blocks, and show how they meet the identified requirements. In Chapter 5,
we then describe our reference implementation of AUGUR for Web applications.
Chapter 6 introduces the different models required for using context information

for providing interaction support. We put a special focus on the application model,
as it describes the relations between context and application elements. For the appli-
cation model, we give an overview of the state of the art. We show how our proposed
modeling language overcomes the shortcomings of existing languages regarding the
usage in context-aware Intelligent User Interfaces.
In Chapter 7, we give an overview of the algorithms for providing content sup-

port. We describe how we generate content support based on previous usage, on the
semantics of the context and UI elements, and on modeled relations. We also show
how these relations can be learned from observing the user’s interactions to reduce
the modeling effort and adapt the support to the user’s needs.
Chapter 8 presents the algorithms for providing navigation support, i.e. for guiding

the user through an application, for providing navigation shortcuts, and for adapting
the interface.
In Chapter 9, we describe the user study that we performed for evaluating the

impact of our context-aware Intelligent User Interface on the usability of an appli-
cation.
Finally, Section 10 concludes this thesis and discusses further research directions.

2
Basics and Requirements

In this chapter, we describe the basics for using context information in Intelligent
User Interfaces (IUIs). To get a common understanding, we first define the meaning
of the term “context” in the scope of this thesis (Section 2.1). We also introduce
the research area of IUIs and point out the aspects on which we focus in this thesis
(Section 2.2). In Section 2.3, we identify the challenges and requirements which we
have to consider when using context in IUIs.

2.1. Context

Humans use all kinds of information for characterizing their current situation, like the
current time, location, or the identity of persons nearby. They use the information
to adapt their behavior to the situation. For example, when we speak to a person,
we adapt what we say and how we say it to the social rank of the person (e.g. most
people would not say “that’s nonsense” to their boss, but they would say it to a
friend). None of this information is easily captured, represented, or processed by a
computer. However, this information is an extremely important knowledge source
for building IUIs, as it enables IUIs to provide support that is better adapted to the
current user needs. For example, knowing the current context enables an IUI to filter
information which is irrelevant to the current situation and thus to reduce the user’s
cognitive load. This is especially necessary in the area of Ubiquitous Computing,
where the user has to deal with a multitude of different computers and thus with a
multitude of possible distractions. Furthermore, the interaction costs in Ubiquitous
Computing settings are very high – much higher than in a desktop setting. Using
context information to better understand the user’s needs enables IUIs to better
support her interactions and thus to increase the usability of an application.
To support common understanding of the term context, we provide a definition

in Section 2.1.1. We review different categories of context from a computational
perspective and from a human computer interaction (HCI) perspective, and advocate
the combination of both to gather a better understanding of the user’s needs (Section
2.1.2). Finally, we point out which properties differentiate context from traditional
information sources (Section 2.1.3).

12 2. Basics and Requirements

2.1.1. Definition

The word “context” has its origins in the Latin word “contextus” meaning “to weave
together”, originally denoting the construction of a text. Nowadays, the term is
loaded with a variety of different meanings. According to Merriam-Webster’s Colle-
giate Dictionary2, context is defined as “the interrelated conditions in which some-
thing exists or occurs”. Even in computer science itself, context is used with a number
of different meanings. For example, context in context-free or context-sensitive gram-
mars refers to the symbols that surround a placeholder and determine which strings
can replace it. In contrast, “context” in the area of context-aware computing refers
to any auxiliary information that can be used to enhance an application, especially
focusing on the interaction with the user. The term “context-aware computing” be-
came popular in the mid-1990s, when researchers started to develop applications that
incorporated the current location of users. By then, location-awareness was regarded
as the most important subset of context-awareness and often used synonymously.
However, there were also a growing number of applications, such as navigation

systems, that did not regard location as auxiliary but rather as mandatory infor-
mation. These applications required location information in order to provide their
normal functionality and could not operate without it. As location-awareness was
still regarded as a subset of context-awareness, the latter lost its connotation of using
auxiliary information for enhancing the interaction. Thus, the term context became
even more difficult to define.
We illustrate the problem of defining context with an example application of a

booking process for train tickets. In Figure 2.1, we show some information sources
that are available when using the booking application. Some of the information is
mandatory for the normal functionality of the system (i.e. the customer number and
how many persons want to travel), some information cannot be processed by the
application (i.e. the temperature and which people are near the user), and some is
optional as it is just used as additional information (e.g. the user’s current location
and her calendar information). The latter information can be used to infer the station
of departure as well as the arrival and travel times, and saves the user from having
to enter this information manually.
We define context as follows:

Context characterizes the actual situation in which the application is
used. This situation is determined by information which distinguishes
the actual usage from others, in particular characteristics of the user
(her location, task at hand, etc) and interfering physical or virtual objects
(noise level, nearby resources, etc). We thereby only refer to information
as context that can actually be processed by an application (relevant infor-
mation), but that is not mandatory for its normal functionality (auxiliary
information).

2http://www.merriam-webster.com/

http://www.merriam-webster.com/

2.1. Context 13

Figure 2.1. Available information sources when using a booking application

Thus, we refer to context as the intersection of “Relevant Information” and “Auxiliary
Information” as visualized in Figure 2.2. In this way, our definition overcomes the
limitations of existing definitions which we discuss below.

The simplest definitions of context are given by enumerating all constituents of
context. For example, Schilit et al. (1994) attempted to define context by specifying
three categories of context: computing, user, and physical context. Chen and Kotz
(2000) later extended this definition by the time context (e.g. time of day, season of
the year).

A common problem of these definitions is that they do not specify a bound, for
which information can be referred to as context. According to these definitions
everything that fits into one of the categories can be named context, no matter
whether or not it has any relevance for the application. In our example application,
the temperature and the people nearby would also be referred to as context for the
application, even though the application cannot make use of it.

The most prominent context definition by Dey (2001) solves this problem by lim-
iting the context to all information that is relevant to the interaction between user
and application: “Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object that is considered rel-
evant to the interaction between a user and an application, including the user and
applications themselves” . In our example, all information that can be processed by
the application would be referred to as context (see “Relevant Information” in Figure
2.2). However, the definition has the shortcoming of defining context by means of
other ill-defined terms such as “situation” or “relevance”. Another problem that arises
from Dey’s definition is that even information that the application needs to fulfill its

14 2. Basics and Requirements

Figure 2.2. Classification of the different information sources from Figure 2.1

tasks, in our example the customer number and the number of people traveling, can
be referred to as context. Thus, every application could be called context-aware.
To sum up, we need a context definition that defines an upper and a lower bound

of what we consider as context for an application. The upper bound is needed to
exclude information that is irrelevant for the application, and the lower bound is
needed to exclude information that is mandatory for its normal functionality. These
bounds are defined in our definition, so it overcomes the limitations of the existing
definitions.

2.1.2. Categories of Context

The research in the context-aware computing community usually takes a computa-
tional view on context, because it often focuses on the derivation of context informa-
tion. For that reason, the widely used categorization (e.g. by Baldauf et al. (2007))
distinguishes between physically sensed, virtually sensed, and derived context:

• Physically sensed: Context information that is sensed from the real world,
e.g. temperature, acceleration, or location.

• Virtually sensed: Context information derived from software sources, e.g.
the location included in a calendar entry.

• Derived: Higher-level context information which is gathered by filtering, ag-
gregating, interpreting (e.g. mapping GPS coordinates to city names), or com-
bining context information (e.g. infer the user’s activity from her location and
her movements).

2.1. Context 15

The view of the HCI community is orthogonal to this computational perspective;
the considered context information can be roughly classified as user context and
environmental context:

• The User Context contains all information describing the user. User models
which are often used for that purpose can range from simple user profiles to
complex models that describe the emotional or cognitive state of the user (e.g.
Pantic et al. (2005); Susan and McEvoy (2003)). This also includes models
of how the user interacts with applications and which goals she is currently
pursuing. These more sophisticated models are usually learned from observing
the user and interpreting the interaction with the help of some predefined
background knowledge, e.g. about available goals.

• The Environmental Context comprises all information that cannot be de-
scribed in a user model, but is related to the user’s current situation, e.g. the
temperature of a room or her current location.

Until now, the HCI community focuses on the user context and does not take much
environmental context into account. In contrast, context-aware computing puts more
emphasis on the environmental context. The user context they consider is usually
limited to simple user profiles (e.g. the user’s mother tongue). Like Jameson (2001),
we argue that we have to consider both context sources – sophisticated user models
and environmental context – to bring us closer to understanding the user’s needs,
and thus to enable us to provide a level of support which is of maximum benefit for
the user.

2.1.3. Difficulties in Using Context

Context is difficult to use because it differs from most other data sources used in
traditional applications in the following properties:

• Context is gathered from heterogeneous sources which use different represen-
tations.

• Context is error-prone : Context is often acquired by external sensors that
can get out of reach, report unreliable data, or completely fail. Furthermore,
context is often inferred using machine learning approaches (e.g. activity recog-
nition or sophisticated user models as discussed in the previous section), which
induce additional uncertainty.

For those reasons, most applications available today do not take any context infor-
mation into account and if they do, they only consider a very limited number of
context sources, like location.
The problem of heterogeneous sources can be tackled by using a middleware which

provides a uniform context representation to the applications. In this thesis, we
present a uniform representation which is suitable for using context information in

16 2. Basics and Requirements

IUIs. However, we will not go into detail about how this uniform representation is
gathered from sensor information. We leave it up to the middleware used (e.g. the
Context Server described in Aitenbichler et al. (2007b)) to provide such a uniform
representation.
The problem of error-prone context information has to be addressed by every ap-

plication that uses context information. In Section 2.3, we describe the implications
of this property of context for the development of context-aware IUIs.

2.2. Intelligent User Interfaces

The area of Intelligent User Interfaces (IUIs) is a very heterogeneous research subject,
covering all kinds of different disciplines, which makes it difficult to give a general
definition. IUIs try to facilitate the interaction between user and computer by means
of artificial intelligence (AI). In contrast to traditional human computer interaction
(HCI), IUIs do not only focus on enabling the user to perform intelligent actions but
also on ways to incorporate knowledge to be able to assist the user in performing
actions. In contrast to traditional research in the area of AI, IUIs do not focus
on making the computer smart by itself (e.g. by developing sophisticated problem
solvers) but on making the interaction between computer and human smarter.
In this section, we give an overview of the research field of IUIs and relate the

approach in this thesis to the different research topics subsumed under the term IUI.
In Section 2.2.1, we give a definition of IUIs. As one of the most important building
blocks of IUIs are models, we further describe the models they rely on. In Section
2.2.2, we present a classification of IUIs based on a literature survey. We describe
the two research areas relevant to the approach presented in this thesis, i.e. Personal
Assistants and Interface Adaptation, in more detail (Section 2.2.3 and 2.2.4).

2.2.1. Definition and Models

Giving a clear definition of the term “Intelligent User Interfaces” is almost as difficult
as defining context, because already the term “intelligence” is hard to grasp. Malaka
(2008) refers to a technical solution as “intelligent” if it (i) has some built-in intelligent
computation that solves a problem for the user or (ii) enables the user to solve a
problem3. The goal of IUIs is to better support the user’s current needs by making
the interaction itself as well as the presentation of information more effective and
efficient. Based on the definition by Maybury and Wahlster (1998), we define IUIs
as follows:

Intelligent User Interfaces are human-machine interfaces that aim to
improve the efficiency, effectiveness, and naturalness of human machine

3Malaka (2008) only refers to “otherwise unsolvable problems”. However, this definition is too
strict, because Intelligent User Interfaces aim at facilitating the interaction and not enabling the
interaction in the first place.

2.2. Intelligent User Interfaces 17

interaction by representing, reasoning, and acting on models of the user,
domain, application, discourse, context, and media and device.

As stated by the definition, IUIs need models to be able to provide meaningful
support or adapt the interaction in a meaningful way. We provide below an overview
of the different types of models that can be used. Which models are available in an
IUI differs from system to system:

• User Model contains all information that was gathered about a user, e.g.
her skills, preferences, or how she usually interacts with an application. This
information can be either modeled or learned from observing the user. Besides
modeling individual users, IUIs sometimes also use models of a group of users
or of the average user.

• Context Model holds information about the current context of use, e.g. light-
ing conditions. As stated in the previous section, we also consider the user
model as context information. However, as the user model is of particular im-
portance for IUIs, we address these two models separately. We subsume all
information concerning the user context in the user model and all information
concerning the environmental context in the context model.

• Application Model contains available information about an application, e.g.
its structure, the goals that can be achieved, or help instructions.

• Domain Model contains knowledge of a given domain, e.g. the domain
‘travel’ for travel booking applications. This model contains semantic infor-
mation about the different terms that are used in this domain to enable the
IUI to interpret the user’s input.

• Discourse Model contains the description of the syntax, semantics, and prag-
matics of a dialog as it proceeds (Wahlster, 1988). This is especially important
for natural language systems.

• Media and device model states the capabilities of available in- and output
devices and properties of media. This comprises for example which modalities
can be provided by an interaction device, which modalities are needed by a
media, or the characteristics of the media e.g. its resolution. These models are
needed for example in multimodal environments to determine which modalities
should be used in a given setting.

2.2.2. Classification of IUIs

According to Jameson (2007), we distinguish between two main categories of IUIs
(see also Figure 2.3):

• IUIs that support the system use can perform parts of routine tasks on
behalf of the user, adapt the UI, and provide help.

18 2. Basics and Requirements

• IUIs for supporting information acquisition assist the user to find relevant
information, filter data for the user, or provide her with additional information.
Recommender systems or eLearning systems are examples of this category.

In this thesis, we focus on IUIs for supporting the system use. For that reason, we
take a closer look at the major research areas for this category of IUIs. We identified
the following five main research areas and briefly introduce each one of them:

• Personal Assistants support the user’s interaction by augmenting an ap-
plication with support information. They are also able to interact with an
application by themselves and thus perform tasks on behalf of the user. Their
support relies on models of the application that are either provided by the ap-
plication developer, the end-user, or that are learned from observing the user.
Personal assistants are often also called user interface agents, adaptive agents,
or learning apprentice systems.

• Help Systems can assist the user by explaining how to use an application. In
contrast to Personal Assistants, they do not require access to the functionality
of the application, as they do not perform any tasks by themselves.

• Programming by Demonstration Systems learn to perform a task accord-
ing to a few examples (usually only one) demonstrated by the user.

• Interface Adaptation Systems are able to generate UIs for an application
which are adapted to the needs of an individual user, the current context, or
the available in- and output devices.

• Post Desktop Interaction Systems try to provide a very natural interac-
tion for the user by supporting modalities other than the standard keyboard,

Figure 2.3. Classification of research areas of IUIs (gray research areas: Focus of
this thesis)

2.2. Intelligent User Interfaces 19

Figure 2.4. Support classes provided by personal assistants

mouse, and screen interaction. For example, they use natural language for
the communication or allow the user to interact via various input modalities.
Examples of post desktop interaction systems are multimodal user interfaces,
gesture- and sketch-based interfaces, or natural language interfaces.

Existing systems often fall into more than one of these research areas, e.g. many
personal assistants contain help systems or programming by demonstration systems.
In this thesis, we focus on Personal Assistants and how they can benefit from context
information as they provide the most profound support for facilitating system use.
In ubiquitous computing settings, the standard UIs are usually difficult to use due to
the limited screen space. To support also the interaction in those settings, we reduce
UIs to the given context. For that reason, we also contribute to the area of Interface
Adaptation. In the following sections, we point out how the user’s interaction is
supported in these two areas.

2.2.3. Classification of Personal Assistants

We analyzed the state of the art of personal assistants to identify in which ways
they support the user’s interactions. We found that we can distinguish between two
categories (see Figure 2.4):

• Navigation support helps the user in navigating within and between ap-
plications. This comprises guiding her through an application and providing
navigation shortcuts.

Guidance highlights interaction elements to draw the user’s attention to it. It
thus reduces the user’s cognitive load and is especially useful for navigation
in large menu structures or for novice users. Guidance is applied for example
in COLLAGEN (Rich et al., 2001) and AGUSINA (Amandi and Armentano,
2004).

Navigation shortcuts provide the user with shortcuts to applications she might
want to switch to depending on the information which is presented to her.
For example, a shortcut to a map application can be suggested if address

20 2. Basics and Requirements

information is presented. Navigation shortcuts are for example provided by
CyberDesk (Dey et al., 1997), onCue (Dix et al., 2006), and FolderPredictor
(Bao et al., 2006).

• Content support predicts which data should be entered, and suggests it to
the user or even fills it into the corresponding elements. This reduces the
required interaction costs for entering the data, which is especially important
for mobile applications (see Rukzio et al. (2008)). Content Support is applied
for managing meetings for example by LookOut (Horvitz, 1999) or CMRadar
(Modi et al., 2005) and used more generally for example by VIO (Zimmerman
et al., 2007) or Citrine (Stylos et al., 2004).

In some applications Task Automation is also named as an additional method
of supporting the interaction. The techniques needed to automate a task are the
same as for providing navigation or content support: The system has to know which
data to enter or where to navigate to. For that reason, we consider task automation
as content and navigation support that is executed in a very proactive way.

2.2.4. Classification of Interface Adaptations

Interface adaptation systems aim to generate interfaces that best fit the current usage
situation. Thereby, they can adapt what is shown to the user and how. Thus, we can
distinguish between the following two classes:

• Adapting the content (i.e. what to present) refers to adapting the displayed
information as well as the structure of the UI. For example, systems focusing
on this aspect can provide a reduced version of a UI for mobile usage or for
reducing the user’s cognitive load.

• Adapting the presentation (i.e. how to present) refers to adapting the
modality used and how the different interaction elements, e.g. buttons, are
presented. For example, systems focusing on this aspect increase the button
size for touch screen displays or for persons with disabilities. Another way of
supporting the interaction is to automatically generate UIs for another modal-
ity, e.g. using voice.

In this thesis, we focus on the content adaptation and on reducing the UI to relevant
interaction elements, as this is very important for the ubiquitous usage of applica-
tions. We also support to render the reduced UI using another modality, but we do
not support further adaptation features for this aspect.

2.2.5. Summary

In this section, we introduced the research area of IUIs. The approach presented in
this thesis falls into the research area of Personal Assistants. Personal assistants focus
on collaborating with the user to facilitate the entering of data (Content Support)

2.3. Requirements for Context-Aware IUIs 21

and navigation (Navigation Support). However, they do not provide any assistance
for the use of applications in mobile and ubiquitous settings. As the navigation
in these settings can be dramatically enhanced when using a reduced version of a
UI with the most relevant functionality, we also contribute to the research area of
Interface Adaptation. As stated before, our approach also supports the rendering of
the reduced UI using another modality, but we will not go into detail of this aspect.
To sum up, we focus on the following methods of supporting the user’s interaction:

• Content Support: Facilitate entering data

• Navigation Support: Facilitate the navigation by

– guiding the user (Guidance),

– providing Navigation Shortcuts, and by

– reducing the UI to the most important elements (Interface Adaptation).

2.3. Requirements for Context-Aware IUIs

In this section, we give an overview of the challenges and requirements that arise
when using context in IUIs, i.e. when building context-aware IUIs. This analysis
builds the basis for the development of the concepts and algorithms presented in the
remainder of this thesis.
In Section 2.3.1, we first present an overview of general challenges identified in

literature for developing IUIs. In Section 2.3.2, we list the additional requirements
which have to be faced when using context information for supporting the user’s
interaction.

2.3.1. Challenges in Developing IUIs

The main goal in developing IUIs is that they should be usable, useful, and trustable
(Myers, 2007). This aligns with the main problems identified by Maes (1994): Pre-
sentation, Competence, and Trust. Presentation is concerned with the human
computer interaction part of IUIs, whereas Competence focuses on the artificial
intelligence techniques that can be applied. The development of IUIs has to take
special care of Trust, as the user is not willing to delegate tasks to an IUI she does
not trust, thus rendering the IUI useless. In this section, we point out which chal-
lenges have to be faced when developing IUIs, and describe possible ways to cope
with them. We thereby focus on IUIs that are able to adapt their behavior to the
user’s needs. An overview of the identified challenges is given in Table 2.1. The
challenges are not disjunctive and heavily interrelated; they should just give some
of the focus points for developing IUIs. This list is not meant to be complete and
not all challenges have to be faced in each IUI, e.g. collaborative filtering systems
usually do not have to cope with the problem of little usage data.

22 2. Basics and Requirements

Presentation Interaction design

Unobtrusiveness

Adaptivity

Competence Little usage data

Changing user behavior

Trust Controllable behavior

Intelligibility

Privacy

Table 2.1. Challenges in developing IUIs

Presentation

For the presentation of IUIs, we at first need to consider how to design the inter-
action between the user and the IUI. Especially personal assistants are often only
augmentations of existing UIs. Thus, they have to be integrated into the existing
layout, offering the user a way to communicate with the assistant. In doing so, it
should not hamper the normal usage of the application. The interaction should also
support some kind of forgiveness that allows the user to easily correct previously per-
formed actions using an undo capability (Apple, 2008). Many researchers argue that
IUIs should fail softly – this means if the provided support is not (entirely) correct,
it should still move the user closer to the goal (Lieberman et al., 2004) and should
not cause problems when it is wrong (Dix et al., 2000). Furthermore, the design
of the interaction tackles whether and how the user can instruct the IUI (Norman,
1994) or whether an anthropomorphic agent is used to allow the user to communicate
with the IUI (Wexelblat and Maes, 1997). These issues are closely related to trust
issues that will be discussed later, i.e. how the user can control an IUI and which
expectations are raised by the IUI.
Another important factor regarding the presentation is unobtrusiveness (Jame-

son, 2007; Langley and Fehling, 1996). The intelligent support should not distract
the user from normal usage of the application. A counterexample is the Microsoft
Office Assistant, which is constantly moving and thus drawing the user’s attention
to it without providing any relevant help for the user’s current task. Wexelblat and
Maes (1997) propose reducing the distraction of the user by minimizing the amount
of interruptions and deferring interruptions until they are less disruptive. Another
way to cope with this issue is to support different levels of obtrusiveness (or proac-
tivity) depending on the information importance or the certainty in the action, e.g.
as applied by Horvitz (1999) and Maes (1994).
Furthermore, an IUI should be able to adapt its presentation to different users,

devices, and situations. For example, a novice user needs more explanations than an
expert user, or voice output is suitable for mobile usage, but not if the user is sitting
in a library. As the costs of interacting with applications via a mobile phone are

2.3. Requirements for Context-Aware IUIs 23

much higher than in a traditional desktop setting, more support may be desirable
in mobile settings. However, adaptivity not only influences the presentation of an
IUI, but also how much the user trusts the IUI or which demands an IUI puts on
the underlying algorithms (i.e. affecting the competence of the IUI).

Competence

The competence of an IUI is determined by the underlying algorithms. If an IUI
adapts its behavior to the individual user’s needs, its level of competence depends on
the amount of training data available. However, this is usually limited at the begin-
ning. Thus, the algorithms used for IUIs mostly have to be able to deal with little
usage data. For that reason, IUIs that just learn from observation are usually not of
great aid at the beginning (“slow-start problem”). This problem can be overcome for
example by relying on predefined models or by using a default model that is inferred
from the models of other users. However, the former requires a large modeling effort
by a developer and the latter can cause privacy problems (as discussed in the Trust
section).
A second problem is that the user’s behavior changes over time (Höök, 2000).

Especially the usage patterns of a novice user often dramatically differ from the
usage patterns of an expert. For that purpose, ageing can be used that decreases the
weight of older interactions.

Trust

It is much more challenging for IUIs to induce user’s trust in it than for traditional
user interfaces, because IUIs apply AI techniques whose results can often not be
directly foreseen by the user and thus reduce the user’s feeling of being in control of
the system.
The trust the user puts in an IUI is influenced by many factors, especially by

presentation issues as discussed before. We state below the main challenges identified
in literature that have to be considered when building trustable IUIs. At first, it is
essential that the user feels in control of the IUI. The user should be able to correct
and adjust the actions of an IUI, and to control its autonomy (Höök, 2000; Bellotti
and Edwards, 2001; Glass et al., 2008; Dey and Newberger, 2009). One possibility
to control the actions of an IUI is to require the user to approve or disapprove
every action (Cypher, 1991), or by letting the user specify confidence thresholds for
actions (Maes, 1994). However, requiring the user to always control the application
is usually not desirable as the users differ in their desire for control (Jameson and
Schwarzkopf, 2002) and too much control may lead to distraction and time-wasting
(Kay, 2001). The amount of control should also depend on the criticalness of the
task, e.g. for non-critical tasks, like filling data in input fields, a lower level of control
is needed than for automatically buying goods. Another factor that influences how
much control the user wants to exert is her trust in the IUI that (hopefully) evolves
over time. For all those reasons, an IUI should support variable levels of control that

24 2. Basics and Requirements

can also be adjusted by the user.
Another important issue for establishing the user’s trust in the IUI is intelligi-

bility, i.e. that the user is able to understand the actions of the IUI (Bellotti and
Edwards, 2001; Malaka, 2008; Dey and Newberger, 2009). As stated by Maes (1994),
a user is more likely to trust an IUI if she sees in advance what the agent would do.
A study of context-aware systems by Barkhuus and Dey (2003) also showed that
users become very frustrated when they do not understand why a system has per-
formed an action, or when they do not have the ability to fix it. One way to achieve
intelligibility is transparency, i.e. that the IUI helps the user understand its actions.
Transparency can be realized by an IUI by giving feedback of its actions (Maes,
1994), by being able to justify its actions, or by making the user aware of automatic
adaptations. Another way of increasing the intelligibility of an IUI is to give the
user access to the knowledge source that was used for providing support (Glass et al.,
2008). For example, Cook and Kay (1994) argue that the IUI should let the user
inspect and modify the user models used by the IUI. The intelligibility of its actions
should thus support the user in developing an appropriate model of the behavior of
the IUI (Malaka, 2008). In this way, it is not necessary to mediate a complete model
of the IUI, as “understanding comes from a careful blend of hiding and revealing
agent state and functioning” (Wexelblat and Maes, 1997). They argue for example
that for driving a car, it is also not necessary to have a complete model of how the
engine or the brakes work. This blend can be achieved by applying a black box in a
glass box system (Höök et al., 1996), i.e. complex inferences are hidden from view in
a black box system, whereas a simpler model is conveyed to the user, like cartoons as
used by Kozierok and Maes (1993). A good mental model of the behavior of an IUI
also influences how predictable its actions are perceived by the user, and finally which
expectations she has of the IUI (Glass et al., 2008). Erroneous higher expectations
can easily lead to disappointment among users and discourage them from using the
IUI. This is also one of the main reasons why many researchers argue against using
anthropomorphic agents, as they are perceived by the user to be similar to a human
being, and thus could also take responsibility for their actions.
Finally, for IUIs that share information between users, privacy has to be regarded.

The requirements that are posed on privacy differ between applications. For example,
the users of FireFly4, an application for sharing preferences for music or movies,
did not perceive this sharing as critical, whereas users of the Doppelgänger system
(Orwant, 1994), which provides personalized news by considering the type of news
that a colleague usually reads, had strong privacy concerns against the system. This
might be the case as the data differed in their level of importance to the user and
as the data in the Doppelgänger system, in contrast to the Firefly system, was
not anonymized. Besides anonymizing the data, another solution proposed for this
problem is to split the user model into a private and a public part (Cook and Kay,
1994).

4A company founded by a group of engineers from MIT media lab, including Pattie Maes, which
was sold to Microsoft in April 1998.

2.3. Requirements for Context-Aware IUIs 25

2.3.2. Requirements for Using Context in IUIs

Besides the general challenges for IUIs, we have to face additional requirements when
using context information in IUIs, that is for building context-aware IUIs. In our
opinion, considering the user’s context is the key to providing useful support, as the
required assistance often heavily depends on it. The relevant context can thereby be
gathered from the user’s environment as well as from models describing the user’s
behavior. For that reason, it is important to consider the environmental context as
well as the user context (see Section 2.1.2):

R1 (Awareness of user context and environmental context) An ideal
context-aware IUI should be able to consider user context as well as all kinds
of environmental context to support the user’s interaction in a user-adapted
way.

This also requires that the specific nature of context has to be taken into account,
i.e. that context information is often unreliable. For example, if physical context
sensors provide inaccurate values, or if the user’s behavior has changed. The pro-
vided support thus has to adapt to this uncertainty. This is especially important as
erroneous support can easily lead to losing the user’s trust (Tiernan et al., 2001).

R2 (Cope with error-prone context) An ideal context-aware IUI should be
able to cope with the error-prone nature of context information and adapt the
support according to the reliability of the data.

To get a better understanding of the user’s context, we also have to consider her
interactions. Many tasks a user performs involve the interaction with several ap-
plications. For example, booking travel often involves looking up train connections,
booking a flight, etc. using different applications. Information entered into one ap-
plication can be relevant context for another one. For that reason, we state that it is
important to support the interaction with all kinds of existing applications and not
just to focus on a single one.

R3 (Application-independence) An ideal context-aware IUI should be able to
facilitate the interaction for all kinds of applications.

R4 (Support across application boundaries) An ideal context-aware IUI should
be able to provide support across application boundaries.

We cannot expect that all applications the user interacts with are developed using our
approach. However, the interaction with applications is an important information
source for understanding the user’s context. For that reason, an ideal context-aware
IUI should be able to gather context information from existing applications. It
should also be able to provide interaction support for these existing applications to
gain wide applicability.

26 2. Basics and Requirements

R5 (Support for legacy applications) An ideal context-aware IUI should be
able to provide support for existing applications and gather information from
the user’s interaction with them.

Thus, a context-aware IUI should be able to cope with a variety of different applica-
tions and context information. Moreover, which context information is relevant for a
given application also depends on the individual user. It is impossible to foresee all
relevant relations between context and application at design time. However, these
relations can often be stated by the end-user herself. Moreover, it increases the user’s
trust in the system if she is able to control the provided support.

R6 (Involving end-user) An ideal context-aware IUI should enable the end-
user to specify additional information about an application and its relation to
context.

Manually specifying this information is a tedious task and not all end-users are
willing and able to provide this information. For that reason, it is important that
an ideal context-aware IUI is also able to learn the information from observing the
user’s interaction.

R7 (Learning capabilities) An ideal context-aware IUI should learn additional
information about an application and its relation to context from observing
the user’s interactions.

2.4. Chapter Summary

In this chapter, we presented our understanding of context and why it is an impor-
tant information source for IUIs. We refined the definition of context to overcome
the limitations of existing definitions. We advocated that we have to consider user
context as well as environmental context to support the user’s interactions in an op-
timal way. We introduced the area of IUIs and gave a categorization of the different
research areas subsumed under that term. We pointed out to which of these areas
this thesis contributes and elaborated on the features of the two relevant research ar-
eas, Personal Assistants and Interface Adaptation. Finally, we identified challenges
and requirements that have to be considered when using context information in IUIs.
In the next chapter, we analyze the state of the art and its shortcomings with respect
to those requirements.

3
State of the art

In this chapter, we give an overview of the state of the art of Intelligent User Interfaces
(IUIs). We thereby concentrate on the research area of Personal Assistants, as
this is the main focus of this thesis. The state of the art for the algorithms and
models needed for using context information in IUIs will be reported in Chapters 6
to 8, because the requirements we pose on the algorithms and models can be better
understood in the context of these chapters.
In Section 3.1, we introduce the three classes of personal assistants: knowledge-

based systems, end-user programming, and learning systems. In Sections 3.2 to 3.4,
we review the state-of-the-art systems for each of these three classes that are closest
related to our approach. Table 3.1 summarizes which requirements for context-aware
IUIs, which were identified in the previous chapter, are met by the different systems.

3.1. Classification of Personal Assistants

A personal assistant is an Intelligent User Interface that collaborates with the user
to facilitate the system use, and is able to perform tasks autonomously. Following
Maes (1994), we distinguish between three main classes of personal assistants:

• Knowledge-based systems that rely on extensive domain-specific knowledge
about the application and the user. This knowledge is used at runtime to
recognize the user’s plans, and to find a way to assist her in executing them.

• End-user programming enables the end-user to define how she wants to be
assisted in her tasks, for example by specifying rules on how emails should be
sorted.

• Learning systems use machine learning techniques to gather this knowledge
from observing the user’s interactions.

Each of these approaches has its own advantages and disadvantages. Knowledge-
based approaches rely on extensive domain knowledge, so they require great effort by
the knowledge engineer in advance. It is often also not possible to model all needed
knowledge at design time as not all ways of using it can be foreseen and the usage

28 3. State of the art

can vary from user to user. Knowledge-based approaches cannot be customized to
individual user habits and preferences as their knowledge is fixed. Moreover, it is
difficult for the user to gain a mental model of how the system works, thus reducing
the trust in the personal assistant.
End-user programming requires much understanding from the end-user and intro-

duces additional modeling effort. Approaches of this type can usually support the
interaction with a variety of applications.
Learning systems are able to provide assistance that is adapted to the specific

user’s needs. They have the drawback that they cannot provide adapted support
from the beginning, because they require initial training data (“slow start problem”).
They are furthermore mostly limited to one specific application.

3.2. Knowledge-based Personal Assistants

Existing knowledge-based approaches are used in two main application domains:
(i) For supporting the execution of a task by making suggestions or by explain-
ing steps (COLLAGEN and AGUSINA), and (ii) for providing navigation shortcuts
(CyberDesk, onCue, and Miro).
The COLLAGEN (COLLaborative AGENt) project by MERL (Mitsubishi Elec-

tric Research Laboratories) aims at building an agent that cooperates with a human
via dialogues (Rich and Sidner, 1997; Rich et al., 2001). It thereby tries to incor-
porate discourse strategies governed by the same principles that underlie human
collaboration. The knowledge for assisting the user is stored in hierarchical task
models whose elements are linked to GUI elements. In order to reduce the necessary
modeling effort, they also developed a task model learning algorithm that converts
a sequence of demonstrated actions into a task model (Garland et al., 2001). In this
learning process, the user can also annotate which actions are only optional in the
sequence. COLLAGEN can tell the user which steps she needs to perform. It can
also interpret the user’s input and thus perform tasks for the user. COLLAGEN is
integrated into several prototypes, e.g. DiamondHelp for networked home products
(Rich et al., 2006).
AGUSINA (AGent USer INteraction Architecture) is another knowledge-based

assistant developed by Amandi et al. (Amandi and Armentano, 2004). They focus
on building interface agents for any standard Web application without having access
to the Web application code itself. Thus, the agent and application code are strictly
separated in their architecture. They are connected by a task model. As building
these task models is a tedious task, they developed an algorithm for automatic task
model generation from given usage sequences (Eyharabide and Amandi, 2005). The
agent observes the user’s actions and computes, with the help of the predefined task
models, the currently active tasks. In addition, the observed actions are forwarded to
an intention detector that contains a Bayesian network to infer the current intentions
of the user (Armentano and Amandi, 2003). An intention is thereby defined as tasks
that can be performed within a specific task model, and can thus also be observed by

3.2. Knowledge-based Personal Assistants 29

C
on
te
nt
su
pp
or
t

N
av
ig
at
io
n
sh
or
tc
ut
s

G
ui
da
nc
e

A
w
ar
en
es
s
of
us
er
co
nt
ex
t
(R
1)

A
w
ar
en
es
s
of
en
vi
ro
nm
en
ta
l
co
nt
ex
t
(R
1)

C
op
e
w
it
h
er
ro
r-
pr
on
e
co
nt
ex
t
(R
2)

A
pp
lic
at
io
n-
in
de
p
en
de
nc
e
(R
3)

Su
pp
or
t
ac
ro
ss
ap
pl
ic
at
io
n
b
ou
nd
ar
ie
s
(R
4)

Su
pp
or
t
fo
r
le
ga
cy
ap
pl
ic
at
io
ns
(R
5)

In
vo
lv
in
g
en
d-
us
er
(R
6)

L
ea
rn
in
g
ca
pa
bi
lit
ie
s
(R
7)

Knowledge-
based

COLLAGEN • • • ◦

AGUSINA • • • • • •

CyberDesk • • • • •

onCue • • • •

Miro • • • • •

ActiveBadge • •

End-user
programming

Citrine • • • •

Context Rules • •

Learning

CAP • • • •

LookOut • • • •

CMRadar • • •

PTIME • • • •

Maxims • • • • •

CAIA • • •

Chusho • • • • •

VIO • • •

Folder Predictor • • •

Table 3.1. Overview of the state-of-the-art approaches with respect to the provided
support types and the requirements for context-aware IUIs (see Section 2.3.2,
◦: is able to learn task models from usage sequences, Context Rules subsumes
several systems with the same characteristics)

30 3. State of the art

the agent. The Bayesian network is also updated, thus involving learning of user’s
intentions (R7: +). The user can ask the agent for help or the agent can proactively
offer advice (this can be a suggestion, a warning, or a reminder), offer to take action,
act autonomously, or ask the user for missing information. For that purpose, the
application developer has to predefine triggers and actions for the various support
types. Thus, AGUSINA has only limited possibilities to adapt to the user’s needs
and preferences.
To sum up, these two systems are able to support the user in entering data and in

navigating for all kinds of applications (R3: +). However, their support cannot be
provided across application boundaries (R4:-) and they do not consider the environ-
mental context for that purpose (R1: -).

CyberDesk (Dey et al., 1997) is a context-aware data detector. It considers data
that the user has currently selected in the user interface, but time and location
information is also used. For example, if the user has selected an email address,
CyberDesk can suggest a shortcut for writing an email to this person. The incoming
context data is processed by converters that for example transform coordinates to
rooms or transform a string into a name object. If CyberDesk contains services that
are registered for the resulting type of data, CyberDesk provides shortcuts to them.
CyberDesk also allows the chaining of several services, or the combining of several
data types to make more powerful services. For example, if the user selects a name,
a service can be used to gain the corresponding email address so that the user can
be provided with a shortcut for writing an email.
Very similar to this work is onCue (Dix et al., 2006), an intelligent toolbar that

also suggests shortcuts for facilitating the processing of data. In contrast to Cy-
berDesk, it only considers the data in the user’s clipboard, and focuses on the pro-
vision of more complex services for visualizing data, e.g. for displaying a selected
table as a pie tree.
One drawback of these two data detectors is that they are hard to extend for

an end-user. For that reason, Faaborg and Lieberman developed a data detector,
Miro (Faaborg and Lieberman, 2006), which cooperates with a programming by
demonstration system called Creo5. The user can record macros for executing a
task with Creo. The data entered in the demonstration session is generalized using
semantic networks like ConceptNet (Liu and Davenport, 2004), e.g. it generalizes
“Coke” to “Soda” and “Food Brand”. Creo allows the end-user to state which of the
computed generalizations are really relevant for the task. Miro is then able to turn
all terms on a Web page that also map to one of those generalizations into hyperlinks
to the created macro.
The described data detectors are able to provide shortcuts for different applica-

tions, and can thus be considered to be application-independent (R3: +) and able to
provide support across application boundaries (R4: +). Most of the described data

5This system is not described in more detail because it falls in the “Programming by demonstration”
research area, which is not in the focus of this thesis.

3.3. End-user Programmed Personal Assistants 31

detectors also consider no or only some specific types of context (R1: -) and none of
them is able to cope with the error-prone nature of context (R2: -). Moreover, they
are not able to enhance themselves via observation (R7: -).

In the area of context-aware computing, few approaches exist for supporting the
system use with the help of personal assistants. The most prominent approach is the
Active Badge system by Want et al. (1992). This system tracks the location of all
users and displays this information to a receptionist who is responsible for forwarding
phone calls to the respective persons. In doing so it also displays the uncertainty of
the location estimation in order to provide more transparency to the receptionist. It
is therefore able to cope with error-prone context information (R2: +). However, it
is limited to one specific application (R3: -, R4: -) and cannot be enhanced by the
end-user (R6: -) nor learn additional support from observation (R7: -).

3.3. End-user Programmed Personal Assistants

There is a fluent passage between knowledge-based systems and end-user programmed
systems, as some knowledge-based systems also support the user to add new knowl-
edge and new functionality. However, they usually focus on users with some technical
background and who have some experience with the system, thus not on the end-user.
A system that focuses explicitly on supporting the end-user to add new functional-

ity is Citrine (Stylos et al., 2004). It facilitates the entering of contact information,
citations, and calendar appointments into forms via copy-and-paste. For that pur-
pose, it analyzes the information copied by the user with heuristic text parsers that
check for patterns and keywords to assign it to one of the mentioned data types.
The structured data can then be pasted into the corresponding form fields. Citrine
supports the entering of information into some existing Web applications, like Out-
look or the Palm Desktop. The user can further define by example which parts of
the data should be mapped to which field in a Web form. Thus, Citrine is able to
provide support for different Web applications (R3: +), but it considers neither user
context nor environmental context for that purpose (R1: -).
In the area of context-aware computing, several approaches exist that allow the

end-user to invoke actions depending on context changes using a graphical editor
(R6: +) (Humble et al., 2003; Korpipää et al., 2005; Dey et al., 2006) (here subsumed
as Context Rules). The user can specify rules like “if John is outside and the phone
rings in the kitchen, then turn up the phone volume”. Their applicability is rather
limited to predefined triggers and actions and cannot be extended for the use with
other applications (R3: -).

3.4. Learning Personal Assistants

Learning personal assistants are most often applied in two application domains: (i)
managing meetings and emails, and (ii) filling forms. One of the first representatives

32 3. State of the art

for systems for scheduling meetings is CAP by Dent et al. (1992). It assists the user
in organizing her appointments by suggesting values for the different attributes of
an appointment. For gaining the suggestions, they apply offline learning that can be
combined with hand coded rules (R6: +).
Another implementation for scheduling meetings is LookOut (Horvitz, 1999), a

tool for managing meetings integrated into Microsoft Outlook. It analyzes the user’s
incoming emails. If it contains a meeting request, LookOut tries to predict whether
the user wants to schedule a meeting and for which date. This data can then be used
to automatically fill all important information in the appointment form and thus to
reduce the user’s interaction costs, even if the predictions are not entirely correct.
LookOut supports different interaction modalities. The user can decide whether the
support should be provided automatically or just on demand. In the latter case,
LookOut only takes action if the user explicitly invokes it by clicking on an icon in
the system tray. In this mode, LookOut can further display an alerting symbol in
the system tray to indicate that it would have taken action if it were in automated
mode. In the automatic mode, the system takes the uncertainty, costs, and benefits
of taking an action into account to decide whether it should automatically perform an
action or ask the user. LookOut is therefore able to handle the uncertainty of context
(R2: +). However, it only considers the user context for that purpose (R1: +).
DARPA’s “Personalized Assistant that Learns” program funds two artificial intel-

ligence projects called CALO and RADAR that aim to build assistants that can sup-
port the user in her daily activities. In both projects a meeting scheduling assistant
was developed: CMRadar and PTIME. CMRadar (Modi et al., 2005) is a multi-
agent scheduling system. It is able to extract the relevant information for scheduling
a meeting from emails; it negotiates possible schedules with other CMRadar meet-
ing agents, visualizes these suggestions using RhaiCAL (Faulring and Myers, 2005),
and finally learns the user’s preferences from the user’s decisions. PTIME (Berry
et al., 2006) learns the user’s preferences from observation and from explicit instruc-
tions (e.g. “I like meetings in the morning”), and suggests several possible meeting
suggestions to the user.
Pattie Maes, one of the main advocates of learning personal assistants, also de-

veloped a tool for scheduling meetings (Kozierok and Maes, 1993). She and her
team further developed the electronic mail agent Maxims (Lashkari et al., 1994)
which assists the user in managing her emails. It learns to prioritize, delete, forward,
sort, and archive messages by observing the user’s interactions. Maxims memorizes
all situation-action pairs, and later uses them to make predictions using case-based
reasoning. Maxims also computes a confidence in the suggestions (depending on
how similar the examples are, how many examples the agent has memorized, etc.).
This confidence value is used to decide whether the predicted action should be sug-
gested to the user or even automatically executed (R2: +). For that purpose, the
user can specify two thresholds (“tell-me” and “do-it” thresholds). Another feature
that should increase the user’s trust in the system is that the displayed Maxims
icon communicates its internal state, e.g. how confident it is in a suggestion, via its
facial expression. To cope with the slow start problem, the user can explicitly teach

3.4. Learning Personal Assistants 33

Maxims by showing it an example situation and the corresponding action (R6: +).
In summary, all these meetings and email assistants consider only the user context

for their predictions (R1: -), and some are able to cope with the error-prone nature
of context (R2). However, they are all limited to the scope of a meeting application
(R3: -) and are thus not able to provide support across application boundaries (R4: -).

A more general application domain for learning personal assistants than scheduling
meetings is form filling. One of the first systems that focused on filling forms is CAIA
by Hermens and Schlimmer (1994). They built an adaptive system that is able to
predict defaults or string completion for filling out leave reports. They use the values
of surrounding fields as features for the learning process. However, the algorithms
only perform well when the forms are not filled in a random order. Moreover, this
approach is –like all previously presented learning approaches– limited to one specific
application (R3: -).
A more generic approach is taken by Chusho et al. (2002). They build cog-

nitive rules to enter information in Web forms. A cognitive rule has the form
IF #case THEN #action whereby the #case consists of the description and value
of the input field located around the target input field, e.g. IF (UPPER: (@address
TEXTFIELD), LEFT: @phone, RIGHT: NONE, LOWER: (@email Textfield)) THEN
@phone. To cope with the problem of synonyms, they introduce concept names like
@phone that refer to all possible stored synonyms for that concept. For determining
the correct concept for an input field, they compute for each of the four conditions
(upper, left, lower, right) which actions would result from it with the corresponding
probability. Out of these four probability distributions, they choose the action with
the highest confidence value. The list of keywords can be extended during usage,
however the user has to explicitly state which of the surrounding words is considered
as the keyword for the input field.
Another approach for form filling is taken by VIO (Zimmerman et al., 2007), a

mixed-initiative agent to support a webmaster in updating information in a database,
which was developed in the RADAR project. For that purpose, VIO analyzes incom-
ing email requests to suggest a form to the webmaster for changing the information
(e.g. the contact form) and also which values to change. It learns from observing the
user’s corrections and thus improves the support over time. The focus of VIO is to
understand the natural language input to map it to the Web forms; for that reason
they only support interactions that were triggered by an email request.
The latter two approaches are application-independent (R3: +), but are also not

able to provide support across application boundaries (R4: -). Furthermore, they
consider neither user nor environmental context information (R1: -).

Other learning personal assistants aim at facilitating the user’s navigation. Folder
Predictor (Bao et al., 2006), developed in the CALO project, aims at minimizing
the clicks needed to locate a file. It builds upon TaskTracer (Dragunov et al., 2005)
and TaskPredictor (Stumpf et al., 2005). TaskTracer traces various user activities in
Windows, including Microsoft Office and Internet Explorer. TaskPredictor is able to

34 3. State of the art

predict the task the user is currently working on from these traces. FolderPredictor
takes the information about the current task and about all folders that are associated
with this task, and assigns a weight to each folder that depends on the recency of
use. The three folders that minimize the expected click costs the most are then
suggested to the user in the left bar of the standard file selection menu of Windows.
This approach is thus again limited to a single application (R3: -), and it does not
consider any environmental context (R1: -).

3.5. Chapter Summary

In this chapter, we gave an overview of the state of the art of personal assistants and
showed that no existing approach meets all the requirements identified in Section 2.3.
In particular, there are no approaches that consider the user context as well as the
environmental context. In the area of personal assistants, only very few approaches
exist that consider environmental context at all.
Which context information is useful to support the user depends on her needs and

her current task. As discussed before, a context-aware IUI should for that reason
be able to learn which context information can be used to support the user which is
covered by learning systems (R7). Furthermore, the user should be able to inspect
and modify these relations between context and application which is targeted by
end-user programming approaches (R6). Finally, learning systems cannot provide
support right from the start, and end-user programming introduces high modeling
costs for the end-user. For that reason, the application developer should also be
able to provide some initial application models stating which context information is
relevant for the application (knowledge-based systems). The quality of these prebuilt
models is usually higher than the quality that can be achieved by pure machine
learning approaches or by end-user modeled data. For that reason, the best support
can be provided by combining all three existing approaches for building personal
assistants. However, current systems focus on only one of these approaches and
provide none or only very limited support for the others.
Furthermore, there are very few existing systems that consider the unreliability

of context, which we assume to be very important when using context information
in IUIs (R2). Many approaches also focus only on a single application and are thus
not application-independent (R3). Finally, only some approaches that are limited
to providing navigation shortcuts are able to provide support across application
boundaries at all (R4).
In the following chapters, we will present our own application-independent ap-

proach, which overcomes those limitations and considers the user as well as the
environmental context to provide content and navigation support.

4
High-Level Design

In this chapter, we present the conceptual building blocks of our approach for context-
aware IUIs which meets the requirements identified in Chapter 2. We will refer to
the combination of presented concepts as AUGUR. Chapter 5 illustrates the imple-
mentation of our approach in the AUGUR prototype. The underlying models and
algorithms are presented in detail in Chapters 6 to 8. In Chapter 9, we report on the
results of a user study for evaluating the usability of interaction support as presented
in this thesis.
In this chapter, we at first introduce the main conceptual building blocks of AU-

GUR (Section 4.1). In Section 4.2, we introduce the models required for the inter-
action support. Section 4.3 presents the different interaction support types provided
by AUGUR and which algorithms are required for their realization. Then, we point
out how AUGUR copes with the error-prone nature of context information by using
different presentations of the support types to reduce the adverse effect of erroneous
support (Section 4.4). Finally, we illustrate the capabilities of AUGUR with two
application scenarios in Section 4.5.

4.1. Conceptual Building Blocks

In this section, we give an overview of the major conceptual building blocks of AU-
GUR (see Figure 4.1), and how they reflect the requirements identified in Section
2.3. AUGUR consists of three major blocks: (i) The Support Tier, which generates
the required support (Support Generator) and adapts it accordingly (Representa-
tion Manager), (ii) the Knowledge Base, and (iii) Editors to enable the end-user
to inspect and modify the models in the Knowledge Base. The relations between
requirements and the conceptual blocks are summarized in Table 4.1, and will be
described in more detail below.
Models are the most important components of IUIs. As stated by requirement

R1 (Awareness of user context and environmental context), user context and envi-
ronmental context are important information sources for understanding the user’s
needs. For that reason, the Knowledge Base of AUGUR requires a context and a
user model. The context model stores all information which we referred to as en-

36 4. High-Level Design

Requirement Architectural Component

R1 (Awareness of user and Knowledge Base, containing

environmental context) User Model and Context Model

R2 (Cope with error-prone context) Representation Manager adapts

support to confidence in context

information

R3 (Application-independence)

R4 (Support across application boundaries) Proxy architecture

R5 (Support for legacy applications)

R6 (Involving end-user) Editors

R7 (Learning capabilities) Support Generator updates the

Knowledge Base

Table 4.1. Relations between requirements and architectural components

vironmental context and the user model provides user context. Moreover, AUGUR
requires an application model to store the relations between context and applica-
tions, and thus to be able to actually use context information for providing support.
A high level description of all three models is given in Section 4.2. In Chapter 6, we
elaborate on them and show how they overcome the shortcomings of state-of-the-art
models.
The second important building block of IUIs is the support generation (i.e. Support

Tier in Figure 4.1). As discussed in Section 2, we focus on supporting the user in
the following ways:

• Content Support: to assist the user in entering data

• Navigation Support: to guide the user through an application (Guidance),
to provide Navigation Shortcuts, and to adapt the UI to the user’s needs (Inter-
face Adaptation). For the interface adaptation, we thereby focus on reducing
the UI to most relevant UI elements.

In this thesis, we present novel algorithms for realizing these different support types
by incorporating user context as well as environmental context. The algorithms also
learn from observing users’ behavior to enable AUGUR to automatically enhance
the provided support (R7 - Learning capabilities). In Section 4.3, we describe the
different support types provided by AUGUR. In Chapters 7 and 8, we elaborate on
the underlying algorithms and compare them to state-of-the-art approaches.
According to requirement R2 (Cope with error-prone context), AUGUR has to be

able to deal with unreliable context information. AUGUR copes with this issue in
two different ways. Firstly, it adapts the provided support to the confidence of the
support information (Representation Manager in Figure 4.1). For example, AUGUR

4.1. Conceptual Building Blocks 37

Figure 4.1. Major conceptual building blocks of AUGUR

does not suggest context information as input to the user in which it has only low
confidence. This is described in more detail in Section 4.4. Secondly, AUGUR
visualizes the confidence in the support information to the user. This increases the
transparency of the provided support, and thus increases the user’s trust in AUGUR
(as discussed in Section 2.3.1).
In order to fulfill requirement R6 (Involving end-user), AUGUR enables the end-

user to provide additional information about applications and their relation to con-
text via integrated editors (Editors in Figure 4.1). The end-user can inspect the
models used by AUGUR, and modify them to adapt the support provided by AU-
GUR.
Finally, AUGUR needs to support the interaction with all kinds of existing appli-

cation (R3 - Application-independence, R5 - Support for legacy applications) and pro-
vide support across application boundaries (R4 - Support across application bound-
aries). In this thesis, we exemplify this by focusing on form-based applications.
AUGUR uses a proxy-based approach to fulfill all these requirements. It is thus able
to provide support for different existing applications without the need to modify
them. All user events are routed through AUGUR in order to trigger appropriate
support and to learn from observing the user’s interaction. AUGUR can be run in
two different modes (see Figure 4.2):

• Augmenting UI: AUGUR displays the original UI of the application, and
augments it with content and navigation support information.

• Generating adapted UI: AUGUR reduces the UI to the relevant UI ele-
ments, and presents it to the user in the desired representation language, e.g.
VoiceXML. The resulting UI is then also augmented with content and naviga-
tion support information.

In this way, the user has full control over whether interface adaptation is used or not.
This is important as the interface adaptation used in AUGUR generates a novel UI,

38 4. High-Level Design

Figure 4.2. Interface adaptation modes supported by AUGUR

and thus does not maintain the spatial stability of the UI, which is regarded as a
very important factor for usable adaptation (Gajos et al., 2006). However, rendering
the original UI on a small screen device or via voice is usually also not appropriate,
as it is difficult to access the relevant interaction elements in those cases. Thus, we
decided to leave it up to the user whether or not she wants to interact with a reduced
version of the UI.
In the following section, we provide details about the models used, and how the

support types are realized in AUGUR.

4.2. Models in the Knowledge Base

In this section, we give an overview of the data which is stored in the different models
and how it is gathered. In Chapter 6, we describe the models in more detail and
relate them to existing approaches.

4.2.1. Context Model

The context model manages all environmental context information. The context
model consists of two components: (i) Context Server that gathers and manages
all environmental context information and (ii) a component called Current Context
that keeps track of all context information currently relevant for the user and her
interactions.

• Context Server: The context server gathers context information from virtual
and physical sensors and derives higher-level context information from it. All
the context information is represented in a uniform way. This enables AUGUR
to treat it in the same way and thus facilitates the integration of novel context
sources.

4.2. Models in the Knowledge Base 39

In order to enable AUGUR to cope with error-prone context information, AU-
GUR needs to be aware of the quality of the context information. Thus, the
context representation has to include a quality metric. Buchholz et al. (2003)
suggest using the following quality dimensions: (i) probability of correctness,
(ii) trustworthiness, (iii) precision, (iv) resolution, and (v) up-to-dateness. On
the one hand, such a multi-dimensional representation allows for more accu-
rate quality estimation than a single quality dimension. On the other hand, it
puts greater demands on the application, and it is difficult to perceive by the
end-user. The most important constituents of quality information which are
applicable to all types of context information are its confidence (or probability
of correctness) and whether the information is up-to-date. All other quality
metrics are either not available for all context types (e.g. precision, resolution)
or hard to obtain (e.g. trustworthiness). AUGUR computes a single quality
measure for the context information from the confidence and up-to-date values,
i.e. the current confidence of the context information. This single-dimensional
representation enables AUGUR to use and represent the quality information
in a way which can be easily understood by the end-user.

• Current Context: The novel concept of the Current Context stores all con-
text information which is currently relevant for the user’s interaction. Current
Context contains information gathered from (i) the UI, (ii) the user’s inter-
action, as well as (iii) relevant environmental context information which is
provided by the integrated context server. The Current Context enables AU-
GUR to provide content support without requiring any knowledge about the
application in advance. For that purpose, it considers only the semantics of
the context information and tries to relate it to required input. Furthermore,
the Current Context enables AUGUR to focus on the relevant context infor-
mation to learn new relations between context and application for enhancing
the provided support.

4.2.2. User Model

Context information relating to the user is stored in the user model. AUGUR needs
to be aware of her preferences and of her behavior. Thus, the user model in AUGUR
contains the following two components:

• The preferences of the user regarding the behavior of AUGUR, which will be
explained in Section 4.4. This information is provided by the user herself.

• Usage Models for every application: A usage model describes how the user
interacted with an application in the past. It enables AUGUR to infer future
behavior of the user. It is the basis for the Guidance and the Interface Adapta-
tion feature of AUGUR, and is also used for providing Content Support. The
usage models are learned by AUGUR from observation. They can additionally
be initialized with usage models from expert users and adapted by AUGUR
during usage. This is especially useful for assisting novice users.

40 4. High-Level Design

4.2.3. Application Model

An application model stores information about an application. This comprises for
example information about the available interaction elements, and how they relate
to context information. The content of interaction elements can thereby depend on
context information (and on other UI elements) in two ways:

• Direct relations: The content of an interaction element directly corresponds
to the information provided by context information. For example, the point of
departure which needs to be entered corresponds to the user’s current location.

• Rules: The relation between context information and content of an inter-
action element can be described by simple IF-THEN rules. For example,
if location="at home" then from="Heidenreichstr." with location be-
ing context information and from an input element.

We could think of supporting more complex relations, e.g. using variables or mathe-
matical operations, but they are more difficult to model and to learn. Thus, we leave
this issue to future work.
In the ideal case, the application model is provided by the application developer

along with the application, otherwise it is learned by AUGUR from observation. The
end-user can augment it with additional information. Moreover, AUGUR constantly
tries to learn new information and relations from observing the user’s interactions.

4.3. Interaction Support

In this section, we describe the different support types provided by AUGUR, and
how they are triggered. As discussed before, interface adaptation is only applied if
AUGUR is used in the corresponding mode (Generating adapted UI). For the other
types, support is invoked as follows:

• At the start of an interaction with an interaction element, i.e. focusing
an interaction element, the generation of Content Support for the interaction
element is triggered. For example, if the user clicks on an input field, AUGUR
computes content support for this element, and thus tries to facilitate entering
data.

• At the end of an interaction (e.g. if the user clicks a button, or has entered
data in an input field) the generation of Guidance support for the current UI
is triggered. For example, if the user has entered data in an input element,
AUGUR highlights the next relevant interaction element.

• At the raise of an event a Navigation Shortcut is triggered if it is associated
with another application. The event can in this way be raised by external
context sources or by information present on the UI. For example, if address
information is contained in the current UI and “address” events are associated

4.3. Interaction Support 41

with a map application, AUGUR suggests a shortcut to the map application
to facilitate the navigation.

The start and end of an interaction can be invoked by the user or by AUGUR.
For example, if AUGUR highlights an interaction element (Guidance support), the
interaction with this element is started automatically.
In the following section, we describe the different support types in AUGUR, and

which algorithms are required for their realization.

4.3.1. Content Support

AUGUR is able to suggest content for interaction elements or even to fill it in auto-
matically. AUGUR is thereby able to provide content support for several interaction
elements at once. This is especially useful for mobile devices, where the interaction
costs for entering information are much higher than in traditional desktop settings.
For providing content support, AUGUR considers the user context as well as the
environmental context. Existing approaches build their content support either on
learned user models or on predefined relations for a single application. However, we
advocate considering also the semantics of the information which is currently rele-
vant to the user (i.e. the information stored in Current Context). This also enables
AUGUR to provide support for yet unknown applications. Thus, AUGUR uses the
following three ways to compute content support (see Figure 4.3):

Figure 4.3. Sources for providing content support

42 4. High-Level Design

• Previous Usage: AUGUR constantly tracks the user input, and uses it to
predict future user input. This is similar to the standard technique used in
modern Web browsers. The support of AUGUR goes beyond this by providing
content support which comprises several interaction elements. This can dra-
matically reduce the required interaction costs. Incorporating more advanced
user models is left for future work.

• Semantics: The context information which is currently relevant for the user
is an important information source for the data required by a UI. For example,
when booking a trip, the corresponding information (e.g. destination, dates) is
required as input by several applications. For that reason, we developed a novel
approach which analyzes the semantics of the data available in the Current
Context and the data required by the UI. If context information matches the
required input, it is offered as input to the user.

• Modeled Relations: AUGUR makes use of the relations specified in the
corresponding application model to suggest data gathered from context. As
stated before, AUGUR supports two types of relations: Direct relations, i.e.
which context information can be used as input for an interaction element,
and rules, which state interdependencies between elements. These relations
are also learned from observation.

For all content support elements returned by the three different sources, AUGUR
checks whether it conflicts with the information the user has already entered in the
UI. For example, if the user already entered “Frankfurt” in the “from” field, no content
support should be offered which suggests another value for the “from” field (unless the
user directly clicks on the “from” field and thus indicates that she wants to change
the data). Each content support element is associated with a confidence csupport

to enable AUGUR to decide whether this information should be suggested to the
user or not. All compliant content support elements are sorted by confidence and all
content support elements which are covered by another content support element with
higher confidence are removed. For example, content support element A suggests
“Darmstadt” for the “from” interaction element and “Frankfurt” for the “to” element.
A content support element B contains the same information as well as “12:00” for
the “time” interaction element. If csupport(A) = 80% and csupport(B) = 90%, only B
will be presented to the user as it covers all the data in A.

4.3.2. Guidance

AUGUR assists the user in navigating through an application by (i) highlighting
the interaction element she most probably interacts with next, or (ii) by clicking on
navigational elements on her behalf. For that purpose, we need an algorithm which is
able to predict this interaction element based on the user’s past behavior. For that
purpose, we developed a sequence prediction algorithm which also takes changing
user behavior into account and outperforms state-of-the-art approaches.

4.4. Representing Support 43

4.3.3. Navigation Shortcuts

As mentioned before, the presentation of navigation shortcuts is triggered by specific
events. These events are raised either

• by external context sources (e.g. an incoming phone call), or

• by a UI itself (e.g. if address information is presented on the UI).

For example, if a user wants to browse the details of every person that calls in her
address book, AUGUR can provide a shortcut to the corresponding UI as soon as
someone calls. AUGUR enables the application developer and the end-user to model
the relations between events and applications via its application model. However,
AUGUR is also able to learn new relations from observing the user.

4.3.4. Interface Adaptation

Interface adaptation is especially important for mobile use due to the limited screen
size and the limited attention of the user (Satyanarayanan, 2001). One possibility to
increase usability in these settings is to decrease the required amount of interactions,
e.g. key presses or scroll movements to fulfill a task with the application (Buchanan
et al., 2001). This can be achieved by reducing the UI to the most important parts.
For that reason, AUGUR is able to generate a reduced UI which is adapted to

the user’s needs and her current context. This generated UI also contains a link
to the unadapted UI, thus still providing access to the whole functionality of the
application. If the user wants to access functionality which is not yet present in the
application model of the application, she can always fall back to the unadapted UI.
AUGUR thus does not reduce the functionality of the application, but provides more
efficient access to the elements that are really relevant to the user. In this thesis, we
present a novel algorithm for determining which elements in a UI are relevant based
on the user’s past behavior and her current context.

4.4. Representing Support

The support types described in the previous section can be represented in different
ways, e.g. by suggesting input for interaction elements or by automatically filling
them. The different representations differ in their level of proactivity. On the one
hand, the required interaction costs decrease with increasing proactivity. For ex-
ample, the interaction costs for entering data are higher if data is suggested than
if it is automatically entered. On the other hand, the obtrusiveness increases with
increasing proactivity.
For Interface Adaptation, AUGUR does not consider different levels of proactivity.

The user can directly control whether interface adaptation is used by the mode in
which she invokes AUGUR (Generating adapted UI and Augmenting UI). For all
other support types AUGUR supports different levels of proactivity. Which level of

44 4. High-Level Design

Figure 4.4. Levels of proactivity depending on the confidence csupport in the support

proactivity should be chosen depends on the user’s preferences and on the confidence
csupport in the provided support which is provided along with the support information.
If a system automatically fills in erroneous data, the user quickly loses trust in the
system. This is especially important to consider for support which bases on unreliable
information like learned knowledge or context information. Two other factors that
can be taken into account are the interruptibility of the user and the potential benefit
of the support information for the user. However, we did not incorporate these two
factors, as they are difficult to estimate reliably, because they heavily depend on the
user’s perception. Furthermore, we wanted to keep our model as simple as possible
to enable the end-user to state her preferences with respect to the proactivity of
AUGUR.
The user can state thresholds for the confidence in the support to determine when

which level of proactivity is used (see Figure 4.4). This approach is similar to the one
taken by Horvitz (1999). Horvitz (1999) uses two thresholds for choosing the right
level of proactivity: One for suggesting actions to the user and one for automatically
executing them. We suggest taking a third threshold into account which is especially
relevant for navigation support (which was not considered by Horvitz (1999)): The
highlighting of interaction elements. We therefore distinguish between three levels
of proactivity:

• Highlight: Highlight elements to draw the user’s attention to it.

• Suggest: Display suggestions of which data to enter or where to navigate to.

• Automate: Automatically perform actions on behalf of the user, e.g to fill data
into input fields, select data from a drop-down menu, or click on navigational
elements.

Figure 4.5 shows an overview of all possible combinations of support types and
levels of proactivity. However, not all representations are applicable to all support
types: Guidance cannot be represented as Suggest and content support not as High-
light. Moreover, navigation shortcuts are never automatically followed to avoid the
user feeling that she has lost control of the system. For guidance the same problem
arises: AUGUR should not automatically click on any navigational element. How-
ever, the user can explicitly allow AUGUR to perform this action if the confidence
of AUGUR in this action is high enough, i.e. above tautomate.
The suitable level of proactivity for Navigation Shortcuts is thus chosen as follows:

If csupport > tsuggest, the shortcuts are directly displayed as suggestions to the user.
If thighlight ≤ csupport < tsuggest, an unobtrusive highlighting is used to inform the

4.5. Scenarios 45

Figure 4.5. Possible combinations of support types and levels of proactivity

user that navigation shortcuts are available. Otherwise, no navigation shortcuts are
presented.
For Guidance, the next interaction element is highlighted if csupport > thighlight. If

this element is a navigational element and csupport > tautomate, AUGUR automat-
ically clicks on it only if the user has stated that this action should be performed
automatically.
If the confidence in the most probable Content Support exceeds the threshold

tautomate and if there is only one content support with this confidence, its data is
automatically entered into the corresponding interaction elements, and the user is
made aware of this automatism by the elements being highlighted. Otherwise, all
data with a confidence above tsuggest is suggested to the user.

4.5. Scenarios

In order to illustrate the capabilities of AUGUR described in this chapter, we de-
scribe two brief examples of how AUGUR can support the user’s interaction for Web
applications.

Restaurant Reviewer

Jane is a restaurant reviewer. She always looks up the address of the restaurant
she has to review on her favorite restaurant website. Then she navigates to her
favorite map application and enters the address information of the restaurant. As
AUGUR has no prior information of any of these applications, it has to learn how
it can support Jane’s interactions from observation. After the first usage, AUGUR
has already learned that Jane might switch to the map application when address
information is available. Furthermore, AUGUR has learned that the street and city
information of the address information can be used as input for the map application.

46 4. High-Level Design

Thus, AUGUR would be able to support Jane’s interaction already at the second
usage. However, Jane has stated in her preferences that she does not want to be
disrupted by frequent proactive support. For that reason, AUGUR does not perform
any action, because it is not yet confident enough in the learned relations. During
further usage, AUGUR observes the relation more often and the confidence of AU-
GUR in it increases. When Jane navigates to the restaurant website containing an
address, AUGUR then suggests a navigation shortcut to the map application to her.
Jane clicks on the provided link. AUGUR suggests entering the address information
for her and Jane accepts. Jane decides that AUGUR should perform more actions
autonomously and changes her preferences accordingly. The next time she performs
the task and navigates to the map application, AUGUR automatically fills in the
address information for Jane in the map application.

Looking up a Train Connection

John wants to look up a train connection. For that purpose, he navigates to the
Deutsche Bahn website. AUGUR has already learned an application model and
usage model for this Web page from John’s past interactions. AUGUR guides him to
the first input field in which he has to enter data (the “from” field) by highlighting it.
As this field is associated with the user’s current location via the application model,
AUGUR suggests entering John’s current location. John accepts and AUGUR guides
him to the “to” input field. As AUGUR has learned from previous interactions that
the information for the “to”, “date’,’ and “time” field can be derived from John’s
calendar, AUGUR queries John’s calendar for all relevant data and suggests it to
John. John chooses one suggestion and all corresponding data is entered into the
corresponding fields. However, as John wants to arrive a bit earlier, he modifies the
time and submits the data.

4.6. Chapter Summary

In this chapter, we introduced the conceptual building blocks of AUGUR. We de-
scribed the general functionality of AUGUR and which models are required for that
purpose. Furthermore, we showed how the different support types are realized in
AUGUR, and illustrated the capabilities of AUGUR with two brief usage scenarios.
In the next chapter, we describe how all the presented concepts are realized in the
AUGUR prototype. In Chapters 6 to 8, we will then go into detail of the models
and algorithms used in AUGUR.

5
Implementation

In this chapter, we introduce the AUGUR prototype which implements all concepts
introduced in the previous chapter. The AUGUR prototype is able to augment any
existing form-based Web application with content and navigation support. Figure
5.1 shows an example screenshot of the AUGUR prototype, proactively augmenting
the Web page of Deutsche Bahn (German railways). It shows how the AUGUR
prototype augments the UI of a Web application by integrating suggestions that are
derived from context.

Although we focused on Web applications for the implementation, the developed
concepts are applicable to all kinds of interactive form-based systems. We decided
in favor of Web applications, as they are reaching the complexity of traditional
desktop applications thus increasing the need for interaction support. In addition,
many desktop applications are complemented or replaced by a Web version. Thus,

Figure 5.1. Screenshot of the Deutsche Bahn webpage (http://www.bahn.de)
that is augmented by the AUGUR prototype

http://www.bahn.de

48 5. Implementation

Figure 5.2. Presentations of support types for the different levels of proactivity

our approach can be applied for a wide range of existing applications. Moreover,
for supporting the user, we need to be able to observe her interactions with the
application and to influence the appearance of the UI (e.g. by highlighting elements
or inserting drop-down menus) which can be easily achieved for Web applications.
After introducing the prototype in Section 5, we present in Section 5.1 how the

different support types are realized in the prototype. In Section 5.2, we point out
how the end-user can adjust the support provided by AUGUR. In Section 5.3, we
describe the general architecture of AUGUR and its components.

5.1. Interaction Support

In the following, we present how we realized the support types in the AUGUR pro-
totype. We describe the concrete presentation of the various support types in the
AUGUR prototype using the different levels of proactivity. An overview of the dif-
ferent visualizations can be found in Figure 5.2.
In order to make the user aware of the uncertainty of the support, AUGUR visu-

alizes the confidence to the user for all support types. The confidence is visualized
with a shade of green, ranging from white for 0% confidence to dark green for 100%
confidence.

5.1.1. Content Support

The AUGUR prototype is able to suggest content for a single or multiple interaction
elements or to automatically fill it in corresponding interaction elements. If the user
accepts a suggestion or if the data is automatically filled in, the AUGUR prototype
highlights all affected interaction elements to make the user aware of the action. The
two supported levels of proactivity are

• Suggest : The suggestions are visualized as drop-down menu for the correspond-

5.1. Interaction Support 49

Figure 5.3. Example of suggested content support

ing interaction element (see Figure 5.3). If a suggestion refers to several inter-
action elements (combined content support), it displays the suggested content
as a list of key value pairs, whereby the key is the label of the interaction
element and the value the suggested data. Only the label for the currently
focused interaction element is omitted. For example, if the user focuses on the
“to” input element, the AUGUR prototype computes content support “Frank-
furt” for the “to” input element and “20:00” for the “time” field and displays
“Frankfurt time: 20:00”. As these combined suggestions are sometimes only
partially correct, the AUGUR prototype also suggests entering only the value
for the currently focused element (simple content support), in our example only
“Frankfurt” is suggested for the “to” input element. Thus, the user is able to
select step by step all correct parts provided by a combined content support.
The suggestions are grouped by the data they suggest for the interaction el-
ement in question (i.e. “Paris”, “Frankfurt” and “Berlin” for the example in
Figure 5.3). They are ordered by the confidence in the simple content support
for each group.

The AUGUR prototype visualizes the knowledge provenance for each content
support element to indicate how the data was derived: (i) “frequently used” for
suggestions gathered from previous usage, (ii) the context source for modeled
relations (e.g. “current location”), and (iii) “current context” for data from the
Current Context which semantically matches the input required by the UI.
The confidence in each suggestion is indicated by a green box for every content
support element. If the user hovers over this box the exact confidence value is
displayed.

If the user accepts a suggestion, the AUGUR prototype automatically fills in

50 5. Implementation

Figure 5.4. Example of automated content support. The filled data is highlighted
to make the user aware of the automatism.

the data in all affected interaction elements and highlights them. Thus, it can
dramatically reduce the required interaction costs especially with combined
content suggestions as one click is sufficient to enter data in several elements.

• Automate : AUGUR automatically fills in data in one or several interaction ele-
ments if the confidence in the support is high enough. To make the user aware
of this automatism, the AUGUR prototype highlights the affected interaction
elements using a red background color (see Figure 5.4). The confidence in the
action is displayed by a green border around the interaction element. We do
not use this green color for highlighting the interaction element itself as for all
the other support types, because uncertain actions would be highlighted in a
light green which would not sufficiently grab the user’s attention.

5.1.2. Navigation Support - Guidance

The AUGUR prototype assists the user in navigating through an application (i) by
highlighting the interaction element she most probably interacts with next or (ii) by
clicking on navigational elements on her behalf. This reflects two different levels of
proactivity:

• Highlight : highlight the interaction element by displaying a border around the
corresponding element. The color of the border reflects the confidence in this
support.

• Automate : the AUGUR prototype is able to automatically click on navigational
elements if the confidence in this action is high enough. However, this leads
to the problem that the user might feel to loose control of the system. To
avoid this, the user has to explicitly allow the AUGUR prototype to perform
this action for every relevant navigational element which can be stated in the
corresponding application model.

5.1.3. Navigation Support - Navigation Shortcuts

Navigation shortcuts are visualized as balloons (see Figure 5.5) containing a brief
description of the event (e.g. “Incoming Phone Call: Elke Halla (SAP)” in Figure
5.5) and the suggested shortcut (e.g. “Contact Page” in Figure 5.5). Further, a bar
at the top of the balloon indicates the confidence in the shortcut.
The navigation shortcuts can be presented in two levels of proactivity:

5.1. Interaction Support 51

(a) (b)

Figure 5.5. Representations for a navigation shortcut to the contact page of a caller
as (a) highlighting and as (b) suggestion

(a) Unadapted (b) Adapted

Figure 5.6. (a) Unadapted and (b) adapted user interface

• Highlight : Non-intrusive by making the AUGUR icon glow without displaying
the suggestion. Thereby, the color used as halo around the icon reflects the
confidence in this action. The glowing AUGUR icon makes the user aware that
navigation shortcuts are available, but without interrupting her workflow. For
displaying the suggestion the user just has to hover over the AUGUR icon.

• Suggest : Display the suggested navigation shortcut. The shortcut fades out
after a few seconds similar to the notifications used, for example by Microsoft
Outlook.

5.1.4. Interface Adaptation

Figure 5.6 shows an example of how the AUGUR prototype automatically adapts
the Web site of the Deutsche Bahn to the needs of an exemplary user. The user
can at any time switch to the unadapted version of the UI by following the link
“unadapted version”. This can be necessary if the desired functionality is not present
in the adapted version, e.g. because it is novel functionality, or the user does not
often use it.

52 5. Implementation

5.2. Controlling AUGUR

As we discussed in Section 2.3.1, one of the key usability issues when designing IUIs is
that the user can control its behavior. For that reason, the AUGUR prototype offers
various ways to control and adjust its behavior. To enable the user to communicate
with the AUGUR prototype, it embeds its icon – a little bird6 – in the UI as can
be seen in Figure 5.7. Right-clicking on this icon opens a menu which allows the
user to (i) provide and inspect additional information about the current application
(“Application Editor”), (ii) inspect and modify the information in her current user
context (“Current Context”), (iii) state her preferences regarding when and how the
AUGUR prototype should proactively approach her (“Preferences”), and (iv) activate
and deactivate the support. In the following, we briefly describe these four options.

Application Editor

With the application editor, the user can specify further information about the cur-
rent application, e.g. stating relations between context and interaction elements, or
annotating elements. Figure 5.8 shows an example screenshot of the application ed-
itor. We provide more details about the underlying application model and its editor
in Section 6.3.

Current Context

The Current Context stores all context information which AUGUR assumes to be
relevant for the user’s current interactions (an example screenshot is shown in Figure
5.9). This context is derived from the user’s interaction, from external context sources
(e.g. location tracking sensors), or from the UI of the application. The user can
inspect and modify the context information that is currently stored in her current
context. More details about the Current Context can be found in Section 6.1.1.

6 Referring to the augurs in ancient times who interpreted the will of the gods by studying the
flight of the birds.

Figure 5.7. Menu of the AUGUR prototype augmenting http://www.google.de

http://www.google.de

5.2. Controlling AUGUR 53

Figure 5.8. Screenshot of the application model editor integrated in AUGUR

Preferences

As stated before, the presentation of the different support types depends on the
confidence in the support information and on the preferences of the user. Figure 5.10
shows the dialog for adjusting the proactive behavior, i.e. for setting the thresholds
thighlight, tsuggest and tautomate. The user can adjust sliders for the confidence that is
necessary for the different levels of proactive support. With the exemplary settings

Figure 5.9. Screenshot of Current Context

54 5. Implementation

in Figure 5.10, computed navigation shortcuts are ignored if their confidence is below
10%, presented as Highlight (i.e. with a glowing AUGUR icon) if the confidence is
between 10% and 40% and presented as Suggest if the confidence is above 40%.

Figure 5.10. Dialog for specifying the thresholds for the proactive presentations

De/Activate Support

The user can easily activate or deactivate the proactive support of the AUGUR
prototype using this option. The AUGUR icon indicates whether support is currently
activated or not as can be seen in Figure 5.11.

(a) (b)

Figure 5.11. AUGUR icon indicating whether the proactive support is (a) enabled
or (b) disabled

5.3. Architecture

As described in Section 4.1, AUGUR uses a proxy-based architecture. The AUGUR
prototype receives user requests and forwards them to the corresponding Web appli-
cation. The returned HTML page is then received by the AUGUR prototype and a
modified version of the displayed UI is forwarded to the user. As discussed in Section
4.1, AUGUR can be run in two interface adaptation modes (see Figure 5.12):

(i) Augmenting UI: The AUGUR prototype augments the UI with additional
proactive features and shares a browser with the user.

(ii) Generating Adapted UI: The AUGUR prototype generates a reduced ver-
sion of the UI. For that purpose, it hosts the UI in an internal Web browser and
generates a reduced version of the UI in the desired representation language,

5.3. Architecture 55

Figure 5.12. Interface adaptation modes supported by the AUGUR prototype

e.g. VoiceXML. The events invoked by the user are forwarded by the AUGUR
prototype to the original UI hosted in the internal browser. Changes in the
original UI are in turn reflected back to the generated UI. The application on
the Web server cannot distinguish between input coming from the AUGUR
prototype and input coming from the user.

The AUGUR prototype is thus always coupled to the UI representation that is hosted
in a Web browser, either in an internal one or in the browser that is shared with the
user. This enables the AUGUR prototype to operate on the actual visual represen-
tation of the UI and not on its static representation that is given by its HTML code.
Thus, the AUGUR prototype is able to cope with highly dynamic Web pages using
scripting languages, AJAX, etc.
In order to provide proactive support, the AUGUR prototype requires push com-

munication, i.e. to send data to the browser without requiring the browser to ex-
plicitly demand for it. This is not supported by HTTP. For that reason, we use the
JavaScript library Bayeux7 that simulates push communication via HTTP. As these
JavaScript files need to be embedded in the UI of the Web application, we use a
proxy architecture that enables us to add these files in the HTTP responses returned
by the Web applications. These JavaScript files (i) inform the AUGUR prototype
which interaction elements are available and which user actions are invoked (e.g.
onfocus, onchange events), (ii) they are responsible for augmenting the UI with
proactive support, and (iii) integrate the AUGUR icon in the UI that allows the user

7Bayeux is a protocol for transporting asynchronous messages (primarily over HTTP) with low
latency, see http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html

http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html

56 5. Implementation

to interact with the AUGUR prototype itself, e.g. for setting preferences.

As described in Section 4.1, the architecture of AUGUR consists of a Support
Tier, a Knowledge Base, and Editors as shown in Figure 5.13. The Support Tier
is responsible for handling the communication between user and application. The
Knowledge Base provides all the knowledge that is required for that purpose. Finally,
Editors enable the end-user to access and modify the information stored in the
Knowledge Base.

5.3.1. Support Tier

The Support Tier intercepts the user’s input, forwards it to the application, inter-
prets the result returned by the application, and adapts the output accordingly. The
components that are needed for that purpose are (i) an interpreter for the events
invoked by the user and the application (Interpreter), (ii) a component that gener-
ates the required support information (Support Generator), and (iii) a component
to decide which proactive support should be included in the UI and which parts
of the application should be presented at all in the Generating adapted UI mode
(Representation Manager).

At first, the Interpreter handles incoming user events with the help of the Knowl-
edge Base. It possibly updates the user model and the application model of the
current application by adding new elements and new relations. Further, it trans-
forms the events into appropriate actions on the DOM tree of the Web browser.
Most events are not directly reported back to the Web application, e.g. entering text
in input fields is usually transmitted not until the user presses the submit button.
If the event is forwarded to the Web application, the response returned by the ap-
plication is then again processed by the Interpreter, e.g. to update the application
model, and sent to the Support Generator.

The Support Generator takes information about the user’s actions and the current
UI from the Interpreter (e.g. which UI elements are displayed) and generates inter-
action support. For that purpose, the Support Generator contains components for
computing navigation and content support, and for determining the most relevant
UI elements for the interface adaptation. In order to provide navigation shortcuts,
the Support Generator is subscribed to context events. The generated support is as-
sociated with a confidence value csupport which enables the Representation Manager
to adapt the support according to this confidence.

Finally, the Representation Manager takes the support information with the associ-
ated confidence information, and decides whether and how this support information
should be presented to the user. When interface adaptation is used, the Repre-
sentation Manger is also responsible to generate the adapted UI in the required
representation language (e.g. VoiceXML).

5.3. Architecture 57

Figure 5.13. Architecture of the AUGUR prototype

5.3.2. Knowledge Base

The Knowledge Base provides the information needed by the Support Tier. It
holds a repository of application models, the user model, and information about
current context.

Context Model As mentioned before, the context model consists of two compo-
nents: (i) a Context Server which provides all environmental context information
and (ii) the Current Context component that stores all context information cur-
rently relevant for the user’s interactions. To keep the context information, like
her location, in the Current Context up-to-date, the Current Context component is
subscribed to the respective context information at the context server.
As implementation of the Context Server, we use the Mundo Context Server pro-

vided by Aitenbichler et al. (2007b). It supports query- and subscription-based
access. It is based on the publish subscribe middleware called Mundo (Aitenbichler
et al., 2007a) that facilitates the communication with context sensors by supporting
various programming languages and communication protocols. This allows for easily
integrating new context sources. The Context Server provides the context informa-

58 5. Implementation

tion in a uniform representation and manages the corresponding metadata like the
confidence in the context information as will be described in Section 6.1.
As the UI is a valuable source for context information, the Context Server contains

JavaScript UI sensors for Web applications. The JavaScript files which are required
for that purpose need to be embedded in the UI code, or can run as Greasemonkey8

Scripts. They sense context data, and send it to the Context Server. The current UI
sensors are able to recognize microformats9 (a semantic markup for some standard
information like address or calendar information) and email addresses.

User Model The User Model contains the user’s preferences regarding the proactive
behavior of the AUGUR prototype and usage models reflecting how the user interacts
with applications.

Application Model Repository The Application Model Repository stores knowl-
edge about the applications the user interacted with via the AUGUR prototype.
This comprises knowledge about the structure of the application as well as semantic
information like labels and their relation to context information.

5.3.3. Editors

The user can inspect and modify parts of the models used by the AUGUR prototype
via the integrated editors. She can access the Current Context as part of the context
model, the user’s preferences as part of the user model and the application models.
This increases the user’s trust in the AUGUR prototype. Further, it enables the
end-user to enhance the provided support by providing additional information, e.g.
about the relations between context and application. Screenshots of the editors are
shown in Figures 5.8 to 5.10.

5.4. Chapter Summary

In this chapter, we illustrated how we realized all the concepts introduced in the
previous chapter in the AUGUR prototype. The AUGUR prototype is able to pro-
vide navigation and content support for arbitrary form-based Web applications. In
the next chapters, we will go into detail for the models and algorithms which are
needed to support the user in a meaningful way by incorporating user as well as
environmental context information.

8http://www.greasespot.net/
9http://microformats.org/

http://microformats.org/
http://www.greasespot.net/

6
Knowledge Models

In this chapter, we give an overview of the different models that are required for pro-
viding content and navigation support based on context information, i.e. the context,
application and user model. These models are used by the algorithms presented in
the next chapters to generate the interaction support for the user.
In Section 6.1, we describe how the context information in the context model is

represented, and introduce a new approach for keeping track of the context informa-
tion currently relevant for the user’s interactions. Section 6.2 lists the components
contained in the user model. In Section 6.3, we present a new application modeling
language for representing the relations between context and application elements.

6.1. Context Model

The context model comprises all environmental context information provided by the
integrated Context Server. Further, the context model stores all context information
relevant for the user’s current interactions in the Current Context. In the following,
we describe how context information is represented in AUGUR. In Section 6.1.1, we
describe which information is stored in the Current Context and how its relevance
for the user is computed.

Context Representation

The representation of the context information suitable for AUGUR has to meet two
requirements:

• R1CM (Understandability): The context representation needs to be com-
prehensible for the end-user. This results from the requirement R6 (Involving
end-user) stating that the end-user should be able to add additional informa-
tion about the application including which context information is related to
which interaction element.

• R2CM (Quality Indication): The context representation should indicate the
quality of the context information. This directly results from the general re-
quirement R2 (Cope with error-prone context), because AUGUR has to be

60 6. Knowledge Models

aware of the reliability of the context information to adapt the support accord-
ingly.

There exist five approaches to represent context information
(Hartmann and Austaller, 2008): key-value, markup-scheme, ontology-based, object-
based, and logic-based representations. According to Strang and Linnhoff-Popien
(2004) only object-oriented and ontology-based representations are able to inher-
ently support quality indications (R2CM). However, ontology-based representations
are often criticized of being too complex and difficult to understand (e.g. Robinson
et al. (2007)), thus contradicting R1CM (Understandability). For those reasons, we
decided in favor of object-oriented representations. Each context object Oi consists
of an object which represents the actual context information and additional meta-
data. The context information can range from a simple value (e.g. representing the
current temperature) to a more complex object (e.g. representing contact informa-
tion). The context information is represented as a set of context attributes cai with
their respective values vi, i.e. {(cai, vi)}. For referring to the value of the attribute
caj of a context object Oi, we will use the abbreviated form Oi.caj in the remainder
of the thesis.
To fulfill requirement R2CM , the metadata stored for a context object has to

provide an estimation of its quality. To keep the representation simple and under-
standable for the end-user (R1CM), we focus on a single quality measure as discussed
in Section 4.2.1, i.e. the current confidence cctx in the context object. The cur-
rent confidence depends on (i) the confidence in the context information as it was
initially sensed, i.e. cinit at time t0 and on (ii) the time past since the sensing. As
the confidence in a context object decays over time, the current confidence does not
correspond to its initial confidence cinit. We use linear approximation to estimate
the current confidence cctx at time t as follows:

cctx(t) =

{
cinit ∙ (1− t−t0

ttl) if t < (t0 + ttl)

0 else
(6.1)

thereby, ttl refers to the time to live of the context object. The time to live is
defined for every context type. To reduce the amount of information which needs to
be stored in a context object, we only store a reference to its type. The ttl value is
derived from a context type database in the context server which contains all meta-
information about a context type. Besides the ttl the context type database stores
for each context type:

• a human readable label: The label is used for providing additional information
to the user to make her aware of the knowledge provenance and thus to induce
the user’s trust in the context information (see Section 2.3.1).

• its potential attributes: This information is required when modeling relations
between context and interaction elements (see Section 6.3)

6.1. Context Model 61

Figure 6.1. Example context object of a calendar

• optionally some further descriptive texts: These texts are used for enabling
AUGUR to better understand the meaning of the context information and its
attributes, and thus to better map context information to interaction elements
based on its semantics (see Section 7.3).

A context object can furthermore contain details about its knowledge provenance
which is not reflected in the label of its context type. For example, a calendar
entry can provide details about its subject (e.g. “SP Meeting”). Figure 6.1 shows an
exemplary context object representing a calendar entry.
To sum up, each context object used in AUGUR has the following metadata:

• initial confidence in the represented context data (c0)

• timestamp of the context item (t0)

• type of the context information referring to an element in the context type
database, e.g. ctx:location.

• details (optional) about its knowledge provenance (e.g. the subject of the
calendar entry)

6.1.1. Current Context

The purpose of the Current Context component is to store all context objects Oi that
might be relevant for the user’s current interactions, formally Current Context=
{Oi}. The relevant context objects are used for content support and for learning
dependencies between context and application elements. In this section, we describe
which information is stored in the Current Context, how its relevance is modeled,
and how it is visualized in the AUGUR prototype.
All context objects Oi that might be relevant for the user can be retrieved from

the following sources:

62 6. Knowledge Models

• user input, i.e. data the user has entered or selected. This also includes data
that was automatically entered on behalf of the user. Entered data is sent to
the Current Context as soon as the data is submitted to the application, i.e.
as soon as the user clicks on a navigational element.

• the UI, i.e. data that is delivered by the UI sensors of the Context Server (see
Section 5.3), e.g. address and appointment information that are marked with
microformats tags.

• associated context data, i.e. related context objects like the calendar entry in
the train example. If the current application is associated with context data of
a given type via its application model, AUGUR subscribes to this information
and stores it in the Current Context. The corresponding context information
is then constantly updated by the Context Server.

Computing Relevance of Context Objects

For each context object, we need to be aware of its relevance ruser_ctx for the user
to provide only meaningful support. The computation of the relevance ruser_ctx has
to meet the following two requirements:

• R1UM : The relevance ruser_ctx in a context object in the Current Context
should decay over time. The decay prevents that the Current Context gets
overloaded with –in the meantime– irrelevant data.

• R2UM : If the user switches between applications, the context for the respective
application should get (re)activated, i.e. its relevance ruser_ctx should increase.
This is especially important when resuming interrupted tasks.

To our knowledge there exists no state-of-the-art system for supporting the user’s
interaction that considers the relevance of context information for the user. In this
section, we present a novel approach for mimicking the user’s short term memory, and
thus keeping track of the relevant information. We thereby build on the widespread
cognitive architecture ACT-R (Anderson and Lebiere, 1998) to meet requirement
R1UM . ACT-R models the activation of information in the user’s short term mem-
ory. In our application, the relevance of a context object is also determined by its
confidence cinit when being stored in the Current Context. Thus, we define

ruser_ctx = cinit ∙ a (6.2)

cinit is 1 for data that is gathered from the user’s input as we assume it to be correct.
For UI data and associated context data, cinit is cctx provided by the Context Server
(see Section 6.1). As soon as the user uses information from the Current Context,
i.e. fills it in input elements, cinit is set to 1 as the context information was then
confirmed by the user, and can thus be considered correct.

6.1. Context Model 63

Figure 6.2. Example calculation for the activation of context objects O1 and O2

In ACT-R, the activation a of an object is determined by its own base activation β
that decays over time and by the activation ai of all associated objects, the so-called
associated activation sources. For our application domain, we have to consider the re-
lations between applications and context information to address requirement R2UM .
This means that the activation sources for a context object are all applications which
are related to the context object. This comprises applications from which the data
was gathered, or that are associated with the given context type via their application
model. For future work, we could also consider the relations between the context
objects themselves. However, this would require a common ontology that can state
these relations, e.g. location is related to travel. The activation a of a context object
is defined as10

a = β +
∑

j

αj

with αj being the activation of an associated application. As stated before, the base
activation β and the activations αj decay over time. ACT-R models this fact with
the power law of forgetting

β = −ln(Δt/T)

and
αj = −ln(Δt/T)

where Δt is the time since last usage and T a time scaling factor (i.e. after time
T the activation level equals 0). To obtain only activation values between 0 and 1,

10ACT-R further considers the strengths of these associations. For simplification, we assume that
they are all equally strong.

64 6. Knowledge Models

Figure 6.3. Example activation flow using normal decay

we map all activation values > 1 to 1 and all values < 0 to 0. T and Δt are not
necessarily measured in real time, also alternative clocked measures can be used. For
our purpose, we use the user’s actions as clock. As the resulting cuser_ctx has to be
in [0, 1] again and a ∈ [0,∞[, we normalize this value with a = MIN{a/amax, amax}.
Thereby, amax is an upper bound for the activation value. We empirically determined
1.5 to be a good estimate for this value. If the confidence cuser_ctx of a context object
drops under the user-defined threshold tsuggest for suggestions, it is removed from
the Current Context, because it is then no more relevant for any content support.
Figure 6.2 shows an example calculation to illustrate the computation: a context

object “address” is associated with applications A and B and a context object “email”
with application C according to the respective application models. The user inter-
acted with the applications in the following order: A,C,B. This results in the different
activation values α1, α2, and α3. As the context objects are already in the Current
Context without being used, their base activation β1 and β2 has decayed to 0.3 and
0.5, respectively. This results in an activation for the context object “address” of 1.6
which is normalized to 1 and an activation value for the context object “email” of
1.2, normalized to 0.8.
To show that our proposed model meets R2UM and thus ensures that the context

for an application gets reactivated if the user switches to it, we illustrate it with
another example shown in Figure 6.3: At first the user is editing the contact of Mr.
Brown with application A, then Mr. White calls and the user has to switch to
application B. If the phone call is over, she switches back to application A where the
context object representing Mr. Brown should again be more relevant than the one
of Mr. White. If we use normal decay of the context objects without considering
the related applications, the context object Mr. White will get the higher activation
values, thus violating R2UM . If we however also consider the activation of the related

6.1. Context Model 65

Figure 6.4. Example activation flow considering the activation of the applications

applications as proposed before, this results in a flow of activation as illustrated in
Figure 6.4: If the user switches back to application A, the context object for Mr.
Brown is more activated, thus R2UM is met by our proposed approach.

Visualization in the AUGUR prototype In the AUGUR prototype, the user can
always inspect and modify which information is currently stored in the Current
Context (see Figure 6.5). Each context object is represented as a box. The relevance
ruser_ctx of a context object is visualized in its border color ranging from white
(relevance 0) to dark green (relevance 1). The user can edit and remove () context
objects, or increase the confidence in them (), i.e. setting ruser_ctx to 1.

All interaction elements that are associated with a context type via the corre-
sponding application model are grouped as one context object of this specific type.
In contrast to data from the UI and associated context, data gathered from the user
input is often not associated with a context type because this would require that the
context type is specified in the corresponding application model. In this case, it only
consists of a set of labels with associated values, each representing an interaction
element. They are grouped as an “Unknown” context object with an edit button ()
and we leave it up to the user to associate it with a context type (see Figure 6.5).

66 6. Knowledge Models

Figure 6.5. Example for Current Context with three context objects.

6.2. User Model

In this section, we present the user model applied in AUGUR. The user model
contains:

• the preferences of the user regarding the proactivity of the support (i.e. the
thresholds thighlight, tsuggest, and tautomate as described in Section 5.2)

• Usage Model U for every application: The usage model describes how the user
interacted with an application in the past to infer future behavior of the user. It
is the basis for the Guidance and the Interface Adaptation feature of AUGUR.
The corresponding algorithms will be described in Section 8.1 and 8.3.

In the following, we describe the Usage Model in more detail.

6.2.1. Usage Model

A usage model U(x) stores a model of the user’s interaction history with an ap-
plication x. Each action ai in the interaction history refers to an activity in the
corresponding application model. In the example application of looking for a train
connection, a typical usage sequence is to type in the place of departure, the desti-
nation and then to submit the form. We do not store the entire user history, but
only the frequency fr of observed sequences a1, ...an up to a predefined length n.
This reduces the amount of data to be stored, and suffices for obtaining a good per-
formance as will be shown in Section 8.1.6. The data is stored in a trie, because this
represents an efficient storage structure for sequence data. An example can be found
in Figure 6.6. After every observed action an, the usage trie is updated as described
in Algorithm 1. Thereby, Σ is the set of available actions in the application model
and α ∈ [0, 1] is an aging factor to reduce the influence of older sequences. The
update mechanisms thus increase the influence of the currently observed sequence in
comparison to all related sequences, i.e. all sequences with same prefixes. We do not

6.3. Application Model 67

Figure 6.6. Example Usage Model trie for 24 traces for the train booking application
with “from”,“to”, and “search” interaction element (for α = 0.9).

apply the aging to all stored sequences, because sequences that are not related to
the current task of the user should not be affected by the aging. For example, when
looking up a train connection this should not influence the parts of the usage model
that deal with setting the personal preferences on the Bahn website.

Algorithm 1 Update Usage Model

for (i : 1 to n− 1) do
for all (x ∈ Σ) do

fr(an−i...x)← α ∙ fr(an−i...x)
end for
fr(an−i...an)← fr(an−i...an) + 1

end for

6.3. Application Model

An Application Model represents all interaction elements which are available in an
application. In the case of form-based applications, these are the different form
elements and links. In the ideal case, an initial application model is provided by
the application developer as not all dependencies can be learned reliably solely from
observation. However, the initial application model can also be automatically created
by monitoring the user’s interaction with an application. In order to adapt the
support to the user’s needs and to reduce the effort for the user, the user’s interactions
are constantly observed to learn more relations between activities, states, and context
information.
In the following, we at first list requirements for an application modeling language

for context-aware IUIs (Section 6.3.1). In Section 6.3.2, we analyze existing modeling
languages in this respect. From this analysis, we come up with our own application
modeling language called ATML which overcomes the limitations of the existing lan-
guages (Section 6.3.3). As introduced in Section 5, we focus on Web applications for
the AUGUR prototype. However, for Web applications the most important informa-
tion for describing UI elements, i.e. their labels, cannot be directly determined from

68 6. Knowledge Models

the HTML representation of the UI. For that reason, we developed a novel approach
for extracting the label of UI elements from the visual layout (Section 6.3.4). This
algorithm called LabelFinder outperforms existing algorithms and is able to cope
with highly dynamic Web pages. In Section 6.3.5, we finally show how the ATML
models are visualized in the AUGUR prototype and how the user can modify them.

6.3.1. Requirements for Application Modeling Language

As we consider the end-user as an important information source for adding addi-
tional knowledge (R6 Involving end-user), the Application Model has to be easy to
understand and update for the end-user. Further, it has to support constructs for ad-
ditional semantic information (like relations to context) in a machine readable way.
Thus, we define the following requirements for an application modeling language
suitable for AUGUR:

• R1AM (Intuitive Visual Representation): The resulting application mod-
els have to be comprehensible for the application designer and for the end-user
with minimal IT experience (R6 Involving end-user). The easier it is to add
additional semantics, the easier it is to improve interaction support beyond the
state reachable with pure machine learning.

• R2AM (Model relations to context): As discussed before, context is a
primary information source for supporting the interaction with an application
(R1 Awareness of user context and environmental context). For that purpose,
the application modeling language has to be able to model relations between
context and interaction elements. These relations can be direct relations (i.e.
context information X can be used as input for interaction element Y) or it can
be specified by rules (e.g. if the location is at home, then enter “Heidenreichstr.”
in the “to” input element).

• R3AM (Mapping to existing UI): In order to fulfill R5 (Support for legacy
applications), the elements of the application model have to be connected to
the elements of an existing UI. This mapping should also be easy to perceive
for the end-user.

6.3.2. Existing Application Modeling Languages

In this section, we analyze how existing application modeling languages meet the re-
quirements we identified. Many application modeling languages are provided by the
model-based UI community. For example, the widespread ConcurTaskTree (CTT)
formalism by Paterno et al. (1997) structures an application into hierarchical tasks
that are connected with temporal relation operators. These tasks are coupled to
abstract UI elements like “select 1:n” and transformed into a concrete UI representa-
tion at runtime. Other examples of those languages are UIML (Abrams et al., 1999)
or XIML (Puerta and Eisenstein, 2002). Many of these languages also bring their

6.3. Application Model 69

R1AM R2AM R3AM

Model-based UI approaches (CTT, UIML, XIML) - - -

UML (Activity Diagrams, State Charts) • - -

XPDL ◦ - -

Table 6.1. Comparison of existing application modeling languages

own editor for specifying these models (e.g. (Paterno et al., 2008)), however they
are usually build for application developers and are not intuitive to understand for
end-users (R1AM : -). Furthermore, as their goal is to provide an application inde-
pendent representation, they cannot be linked to existing UI elements (R3AM : -).
Finally, they do not consider context information or model it only as attributes for
their elements, which makes relations between application and context difficult to
perceive and model for the end-user (R1AM : -, R2AM : -).
Application modeling languages that focus on the application itself like UML or

XPDL11 are more wide-spread. For that reason, there exist editors that are usually
more intuitive to understand for the end-user with minimal technical knowledge
(R1AM : o) than those from the model-based UI community. As UML models are
widely used, they are usually well understood by the end-user (R1AM : +). However,
they do not support relations to existing interaction elements (R2AM : -) or context
information (R3AM : -).
Table 6.1 summarizes the requirements that are met by the existing application

modeling languages. There are workaround solutions for most modeling languages
to meet the requirements R2AM and R3AM , e.g. by modeling every additional piece
of information as an extra attribute. However, these workarounds should be avoided,
as they introduce additional complexity into the resulting models. Thus, the most
important information cannot be seen at first glance, which decreases understand-
ability and thereby violates R1AM . For that reason, we decided to develop our own
application modeling language called ATML which we introduce in the next section.

6.3.3. ATML: ApplicaTion Modeling Language

In this section, we describe the application modeling language that we developed to
overcome the shortcomings of the existing modeling languages for usage in AUGUR.
Our application modeling language called ATML (ApplicaTion Modeling Lan-

guage)12 builds on UML diagrams. We use a combination of activity diagrams and
state charts, because this maps naturally to the user’s view of an application, where
states represent the different UIs of a form-based application (for Web application
these are the different Web pages), and activities represent the different interaction
elements available in this UI. The model is visualized as an overlay to the existing

11http://www.wfmc.org/xpdl.html
12Formerly also known as AUGUR Task Modeling Language

http://www.wfmc.org/xpdl.html

70 6. Knowledge Models

application. Each activity is displayed on top of the corresponding interaction ele-
ment to facilitate the perception of the mapping from application model elements to
UI elements (R3AM).
An overview of the node types and attributes of ATML can be found in Figure 6.7.

The application model is stored in an XML-format similar to XPDL (the correspond-
ing DTD can be found in Appendix A.1). In the following, we illustrate the elements
of our application modeling language with a simple example (see Figure 6.8): The
Deutsche Bahn website provides a UI for querying train connections (Figure 6.8 (a)).
It contains input elements for the place of departure (“from”), the destination (“to”),
the “date” and the “time” of the planned train travel. Further, the user can select
whether “date” and “time” state the time of departure or time of arrival using two
radio buttons (“departure” and “arrival”). The entered data can be submitted via
the “search” button. The search results are then displayed containing buttons for
purchasing the respective train tickets (Figure 6.8 (b)). In the following, we present
the different components of ATML using this example. We describe their attributes
and how the relations between them can be modeled. Most of the above attributes
are optional, but the more additional information is specified, the better assistance
can be provided.

State nodes Each state node in the application model refers to a UI. For our
running example, this are the “bahn.de” and the “Your timetable” state as illustrated
in Figure 6.9. The state is associated with a UI via a reference ref which is stored
as attribute of this node. For Web pages the URL itself is not a good choice for
the reference as the URL often contains many additional parameters (e.g. a session
key) that change from one usage of the application to the next. For that reason,
we cut off all the parameters of the URL. However, this sometimes generalizes too

Figure 6.7. Components of ATML and their attributes.

6.3. Application Model 71

much when applications offer different functionality that is just distinguished by a
parameter. Hence, we add the title of the Web page to the URL which usually
identifies the content on the current Web page better. For example, the Web page
of the Deutsche Bahn with the URL www.bahn.de/sth?sessionid=13&... and the
title Your timetable results in the id www.bahn.de/sth[Your timetable].

We also store the name of the UI as an attribute of the state node. This name
is used as title for generated UIs and eases the identification of the state for the
end-user when editing the application model. For Web pages, we store the title of
the page as name.

(a) Search

(b) Search results

Figure 6.8. Example screenshots of the DB website (http://www.bahn.de/) for
(a) searching train connections and for (b) displaying the results

http://www.bahn.de/

72 6. Knowledge Models

Figure 6.9. Control flow of the search UI of our running example

Activity nodes Each activity node is coupled to a UI element via the ref attribute
that unambiguously identifies the corresponding interaction element within a UI,
thus satisfying requirement R3AM . For Web applications, this is their XPath ex-
pression. Further, each activity node contains a label for the interaction element.
For Web applications, the label often cannot be directly gathered from the HTML
representation. For that reason, we developed an algorithm called LabelFinder (pre-
sented in Section 6.3.4) for inferring the label from the visual representation which
outperforms existing approaches.
Moreover, activities describing navigational elements, i.e. buttons and links, have

a boolean attribute automate which states whether AUGUR should automatically
click on these elements if the confidence in the corresponding navigation support is
high enough.

Control Flow The state nodes are linked via control flow relations to activity nodes
which correspond to the interaction elements on the UI. Activity nodes again are
linked to the state which the user reaches when executing the activity. For example,
navigational elements in Web applications usually lead to a new Web page, and thus
to a new state in the application model. However, for interaction elements for enter-
ing text this is usually the same state as before. For ease of readability the transition
from the activity to the state node is omitted in the graphical representation in those
cases. Figure 6.9 shows the ATML graph of the search UI of our example with all
its control flow relations.

Context nodes To represent context data, we introduce context nodes that repre-
sent specific context types. In our example, the input required by the application is
related to “location” and “calendar entry” context information. The location infor-
mation can be used to suggest content for the “from” field and the location, date and

6.3. Application Model 73

time of a calendar entry can be used as input for the “to”, “date” and “time” field.
The context data that is referred to by a context node can be limited by specify-

ing filters, i.e. conditions like “equals” or “contains” for each of its attributes. For
example, only those calendar entries are considered for which a location is stated
(i.e. its location attribute does not equal the empty string). The type attribute
of the context node refers to an element in a common context type database, e.g.
ctx:location (see Section 6.1).

Data relations Data relations connect these context nodes with activity or state
nodes, thus allowing to model direct relations as required by R2AM . Figure 6.10
shows the data relations for our running example. Data relations to activity nodes
are used for providing content support, data relations to state nodes for navigation
shortcuts. If a context node is linked to a state node, this means that a navigation
shortcut to the corresponding UI is suggested to the user if an event of the given
context type is raised. In the following, we go into detail of modeling direct relations
between context and activity nodes and its implications for the provided content
support.
An activity node can be linked to several context nodes, as often information can

be obtained from various context sources, e.g. the user’s location can be gathered
from location sensors or from entries in her calendar.
For context types that have more than one attribute, we have to specify which of

these attributes should be actually used to compute content support for an associated
interaction element. In our running example, we need to specify that the “location”
attribute of the “calendar entry” is related to the “to” interaction element. This
information is stated as additional attribute of the data relation. If the relevant
attribute is not specified, the user’s interactions are observed in order to infer the
missing information.

Figure 6.10. Data relations of the search UI of our running example

74 6. Knowledge Models

In many cases, a context node is linked to several activity nodes, like the “calendar
entry” in our example. If this context node is used for generating support, only data
for the associated interaction elements is suggested that is obtained from the same
context object. This means that the content of several context objects is not mixed.
For example, “location”, “date”, and “time” for one suggestion are always derived from
the same “calendar entry” object in our running example. If the user has already
entered data in one of the relevant interaction elements, only data is suggested that
matches this input. For example, if the user already entered the travel date, only
those locations from calendar entries are suggested as travel destinations whose date
matches the already entered value.
The direct relations between context and interaction elements can also refer to

fixed values. For example, if data from a calendar entry is suggested in our running
example, the “departure/arrival” option should be set to “arrival”, because the start
time indicated in a calendar entry usually does not consider the time needed for
traveling.
A context node can also be associated with an application without specifying any

data relations. This is the case if the user is unsure about the exact relation between
context and interaction elements, or if she is unwilling to provide this information.
The relevant data relations are then learned from observation. As it is not possible
to consider all context information that is potentially available, these “unbound”
context nodes state which context information should be considered in the learning
process.
If the data relations are learned from observation, they are not always reliable.

For that reason, we store for each learned data relation its confidence crelation in
terms of how often this relation has been observed, and how often this relation
could have been observed. The confidence in the relation influences the confidence
in the corresponding content and navigation support, and thus whether and how it
is presented to the user (see Section 5.1.1).

Rules Besides specifying these direct data relations between context and activity
nodes, we also want to be able to model more complex relations in form of rules
(R2AM). We define a rule as follows:
if (<contextAttribute>=<value>|<interactionElement>=<value>)+

then (<interactionElement>=<value>)+

with interactionElement being the id of an activity node. The rules are stored
in the corresponding context nodes. For example, in a context node describing
seminar talks, we could specify a rule like if advisor="Daniel Schreiber" then
area="Smart Interaction" (with advisor being an attribute of the context and
area the id for a UI element) which means that “Smart Interaction” is entered in the
area field if the advisor is “Daniel Schreiber”. Similar rules can also be specified for
state nodes to describe interdependencies between activities. The only difference is
that no <contextAttribute>=<value> conditions can be defined. As the rules can
also be learned, they are associated with a confidence value crule, similar to crelation

6.3. Application Model 75

Figure 6.11. Activity and UIContent nodes for the search result UI of our running
example

for data relations (for more details see Section 7.4.3).

UI Content node The UI is a valuable context source, however it is difficult to
determine which part of the UI can provide which context information. There exist
some semantic markup languages like microformats for address and appointment
information which can provide a hint of the meaning of the represented information.
This information is automatically used by the Context Server as described in Section
5.3. However, such semantic markup is not widely used, as it induces additional
modeling effort for the application developer. For that reason, ATML supports to
annotate relevant information in the UI using UIContent nodes. These are coupled
to the UI via the ref attribute (the XPath expression for Web applications) and are
linked to the corresponding state via a content relation. They can then be linked
to context nodes via data relations (see e.g. the address information in Figure 6.10).
If the user navigates to the corresponding UI, the data contained in the respective
part of the UI is interpreted as context information of this specified type and sent to
the context server which can then extract further information from it, e.g. address
information. An alternative approach is to use natural language processing on the
whole Web page to extract the relevant information. However, not all information is
as easy to identify as address information. For that reason, we limit the information
which needs to be analyzed, and allow the user to annotate it with the context type
which should be searched in the data.
The UIContent nodes are also required for generating a scaled down UI of an appli-

cation. In this case, we need to know which information provided by the application
is of interest to the user and should be displayed. However, this is very difficult to
determine for non-interactive elements like the timetable in our running example (see
Figure 6.11). For that purpose, they can also be annotated as UIContent nodes. As
not all UIContent nodes that provide context information are relevant for the user,
UIContent nodes have an additional attribute user relevant for tagging the elements
which should be displayed in a generated UI.

76 6. Knowledge Models

6.3.4. LabelFinder: Recognizing Labels

For the ATML representation of activities and for semantically mapping context to
UI elements (see Section 7.3.8), we need to be able to determine the labels of the
different interaction elements. The human readable label is the most descriptive
representation that is located somewhere near the input element in the visual rep-
resentation of a Web page (e.g. “from” in Figure 6.8 (a)). For Web applications,
the HTML syntax defines a tag label for marking a label that is associated to an
input element; however, it is rarely used in practice (only about 20% of the input
elements we used for evaluating the performance of label recognition approaches had
an associated label attribute).
As most Web forms are similar in their layout, we assume that we can define some

common heuristics that are applicable to a wide range of Web applications. Our
approach called LabelFinder thereby focuses on the actual visual layout. In contrast
to most existing approaches, it also considers the exact visual position of texts to
make it independent of the underlying HTML structure.

Related Work Some approaches for extracting the label rely on a high-level de-
scription of the UI that is extracted from the HTML representation. Kaljuvee et al.
(2001) apply string matching to find the best match for the input element’s name
attribute from the text elements surrounding the input element. He et al. (2004)
define heuristics to determine the best label. However, these approaches have the
drawback that they only consider a simplified textual representation of the website
and not its actual visual layout. Raghavan and Garcia-Molina (2001) address this
problem by rendering a pruned version of the HTML representation with a custom
layout engine for gaining the visual layout. However, this does not cope with the
growing complexity and dynamic layout of today’s Web applications, e.g. using
Ajax. Zhang et al. (2004) tackle this by using the HTML DOM API of a browser.
They introduce a grammar (called 2P grammar) that describes the visual patterns
in terms of directions (left, above, etc.). This grammar is used to gain a parse tree
for the UI. Their best effort parser combines multiple possible parse trees to get the
best representation of the Web page.
Another system working on the actual visual representation is CoScripter (Little

et al., 2007), a popular Firefox plugin for recording intelligent macros, which also
uses heuristics to assign a label to each input element. As CoScripter is publicly
available, we also use it as a baseline system for our evaluation.

LabelFinder For identifying the best label for each input element, we at first de-
termine all available input elements and all potential label candidates, i.e. all text
elements on the website. Every input element is represented by its coordinates, its
size, its type, and its HTML label attribute, if available. A label candidate is also
described by its coordinates and its size. Further, its representation contains its
textual content and its type as described in the following. The text elements are
often embedded into larger divisions, thus the exact position of the texts themselves

6.3. Application Model 77

Figure 6.12. Example form (http://www.usairways.com)

cannot be directly determined. For coping with this problem, we temporarily insert
a span tag around them, and determine its position. The type of the corresponding
label candidate is referred to as inner label candidate. However, as labels some-
times refer to various input elements and are thus not placed directly above all of
them (see e.g. “Pick-up date” in Figure 6.12), we also keep the position information
for the surrounding HTML tag that usually spans a greater section (outer label
candidate).
From the analysis of various forms, we found that most labels are positioned on

top or to the left of the corresponding input element. Checkboxes and radio buttons
often do not have an explicit label. Especially ungrouped checkboxes are hardly ever
explicitly labeled. For that reason, we also determine the labels of single checkboxes
and radio buttons that are usually located on their top or to their right. Thus,
grouped checkboxes and radio buttons have two possible labels: the group label or
the element label in the beginning.
In the following, we list the heuristics which we apply to determine the best label

candidate for an input element:

1. If the element has a corresponding label element, we take it as label.

2. We ignore

(i) all label candidates that are not located directly above or on the corre-
sponding side (depending on its type) of the input element, i.e. all candi-
dates that do not have a minimal predefined overlap in the corresponding
dimension,

(ii) all label candidates that have another label candidate between them and
the input element, and

(iii) outer label candidates, if an inner label candidate is available. For every
remaining label candidate we compute the minimal Euclidean distance d
between the input element and the label candidate. We take the square
root of the distance for the horizontal dimension, as the horizontal distance
grows much faster than the vertical distance (e.g. if another input element
is positioned between the element and the label candidate). Finally, we
take the label candidate with the smallest d.

http://www.usairways.com

78 6. Knowledge Models

3. For grouped checkboxes and radio buttons: If the distance d of the group label is
smaller than n pixels (we empirically determined n = 15 to yield good results),
we take it as the best label. Otherwise, we assign the label of the currently
checked element to the group, or the label of the first element if no element is
checked.

Figure 6.13. Overall performance of label recognition approaches

Evaluation For evaluating the heuristics, we use the IWRandom dataset UIUC
(2003) provided by Zhang et al. (2004). The dataset contains 33 forms randomly
sampled from the Web, mainly gathered from the website invisible-web.net. Two
forms were dropped as they were difficult to annotate even for humans.13 In total, we
analyzed 216 interaction elements. We compared the performance of our LabelFinder
with the results reported for the 2P Grammar by Zhang et al. (2004) and with the
labeling component used in CoScripter (Little et al., 2007). Figure 6.13 shows the
micro-average results in terms of precision, recall, and the resulting F -measure. The
F -measure is defined as:

F =
2 ∙ precision ∙ recall

precision + recall
(6.3)

LabelFinder reaches a precision of .88 and perfect recall, resulting in an F -measure
of .93. It thus clearly outperforms the label recognition of the 2P Grammar (F =.84)
and of CoScripter (F =.69).14 On the dataset that we also used for the evaluation
in Section 7.3.7, LabelFinder yields a precision of .95 and perfect recall resulting in
an F -measure of .97.

13Zhang et al. also used only 30 of the forms for their evaluation.
14The macro-average results are consistent with these findings.

6.3. Application Model 79

Figure 6.14. ATML Editor

6.3.5. Visualization in the AUGUR Prototype

For enabling even the end-user to easily modify the application models, and augment
it with additional knowledge, we developed an application model editor that is inte-
grated into the AUGUR prototype (see Figure 6.14). The editor is implemented as
an overlay to the corresponding Web page. The editor highlights all interaction ele-
ments that are currently contained in the application model, and shows all associated
State and Context nodes. It allows the user to add new Context nodes (by clicking
on) and to connect them to State and Activity nodes (). New UIContent
nodes can be inserted () and connected to Context nodes. Further, the user can
delete () application model elements and edit their attributes ().

The user can select whether she wants to see data links and/or control flow links
to keep the amount of visualized information as low as possible. Usually only data
links are required as the other control flow links are mainly relevant for internal use.
Further, the user can select whether new links which are suggested by the AUGUR
prototype should also be shown. These suggested relations are displayed using a
different color (green instead of blue for the fixed links). The hue of the line color
reflects the confidence in the suggestion (ranging from white to dark green) as shown
in Figure 6.15. The user can include these learned relations in the application model
via the attribute editor for the relations (, see Figure 6.16).

Finally, the user can select how the links should be visualized: as straight lines
(see Figure 6.15) or angled (see Figure 6.14). Straight lines can often be more easily
perceived, however these straight lines require a lot of memory, as they are not
supported by HTML and are for that reason made up of many small div elements.

80 6. Knowledge Models

Figure 6.15. ATML Editor with two learned relations (the location link with 75%
confidence and the link from calendar entry to time with 95% confidence)

Figure 6.16. Attribute editor for the “Location” link. It shows the confidence in the
link and allows the user to add the link to the application model by clicking
on the star.

6.4. Chapter Summary 81

R1AM R2AM R3AM

Model-based UI approaches (CTT, UIML, XIML) - - -

UML (Activity Diagrams, State Charts) • - -

XPDL ◦ - -

ATML • • •

Table 6.2. Comparison of existing application modeling languages with ATML

6.3.6. Summary

In this section, we presented a novel application modeling language ATML which
overcomes the shortcomings of existing modeling languages. ATML builds on the
intuitive representation of state charts and activity diagrams and visualizes the ap-
plication model as overlay to the existing application. This makes it more intuitive
to understand for the end-user (R1AM : +). Further, ATML explicitly visualizes
context elements (R2AM : +) and maps the application model elements to existing
UI elements (R3AM : +). Thus, it meets all the requirements which we identified in
Section 6.3.1. Table 6.2 summarizes the comparison with state-of-the-art approaches.
When using ATML for Web applications, we have to face the problem that the label

of the interaction elements can usually not be directly gathered from the correspond-
ing HTML representation. For that reason, we also introduced a novel approach for
extracting the label from the visual representation of a UI which outperforms state-
of-the-art approaches.
Finally, we illustrated how the ATML in the AUGUR prototype visualizes the

application models and enables the end-user to add further information.

6.4. Chapter Summary

In this section, we described the models applied in AUGUR, i.e. the context, user
and application model. We contributed a new approach to model the relevance of
context objects for the user in context-aware IUIs. Further, we introduced a novel
modeling language for applications which overcomes the shortcomings of existing
approaches and a new approach to extract labels from the visual representation of
HTML UIs.

7
Content Support

In Section 4.3.1, we identified three ways of providing content support: based on
(i) previous usage, (ii) the semantics of context and application elements, and (iii)
modeled relations between these elements. In this chapter, we present the algo-
rithms for providing content support in these three ways and how the confidence
csupport in their support is computed. In the following, we represent content sup-
port as a set of interaction elements ai with the corresponding predicted values vi,
i.e. C = {(ai, vi), ..., (aj , vj)}. As stated in Section 4.3.1, AUGUR considers the
content support provided by all three sources and drops all content support ele-
ments that conflict with the data the user has already entered in the UI. Further,
AUGUR removes all content support elements that are covered by another element
with higher confidence. The remaining content support elements with a confidence
csupport > tsuggest are finally provided as content support to the user.
In this chapter, we at first introduce how the confidence csupport in the content

support is computed in general (Section 7.1). The concrete computations for the
three ways of providing content support are described in the respective sections:
In Section 7.2, we describe how we realize content support based on previous usage.
Section 7.3 presents a novel algorithm for using semantic information to map context
information to interaction elements. In Section 7.4, we report how modeled relations
are used for providing content support and how new relations can be learned.

7.1. Confidence in Content Support

We define the confidence in content support as follows:

csupport = cdata ∙ crelation (7.1)

with cdata being the confidence in the data, and crelation the confidence in how well
this data sorts with the required input for the UI. The latter is especially important
for learned relations. We define crelation = 1 for all relations specified in the appli-
cation model that are added by the end-user or the application developer. For all
learned or computed relations, we discuss in the following sections how crelation is
derived.

84 7. Content Support

7.2. Content Support based on Previous Usage

In order to provide content support based on previous interactions, we need to know
which data the user already entered in the UI of an application. For that purpose,
we store this data for each state of an application. This log Lusage is a set of usages
Ui. Each usage Ui is in turn represented as a set of activities ai with corresponding
values vi which were entered by the user, i.e. Ui = {(a1, v1), ..., (an, vn)}.
The confidence in the relation between the entered data and the UI depends on

how often this relation has already been observed. For that purpose, we define the
confidence crelation for a content support C = {(ai, vi), ..., (aj , vj)} as its probability

crelation(C) =
|{Ui ∈ Lusage : C ⊆ Ui}|

max{|Lusage|,minusage}

Thereby, minusage is the minimal amount of usage sequences which need to be stored
for an application to provide relevant results. This accounts for the fact that content
support inferred from few observed usage sequences, is rather unreliable and should
thus be assigned a lower confidence value. We empirically determined minusage = 5
to be an appropriate value.
Algorithm 2 illustrates how the content support for an activity ai is computed

based on previous usage. At first, we determine all possible content support elements
C = {(ai, vi)} with crelation(C) > tsupport. Then, we compute all content support
elements with an additional activity-value pair (and also with crelation(C) > tsupport).
We repeat this procedure until no new content support elements can be found. The
union of all identified content support elements is the content support based on
previous usage.

Algorithm 2 Content Support based on Previous Usage

Purpose: Calculate content support for activity ai

Input: ai: activity for which content support is computed
Lusage = {Uj}: Set of usage sequences
tsupport: Threshold for displaying content support

CS1 = {C = {(ai, x)} : (∃Uj ∈ Lusage : {ai = x} ⊆ Uj) ∧ crelation(C) > tsupport}
k = 1
while CSk 6= ∅ do

CSk+1 = {C = Ck ∪ {(aj , x)} : Ck ∈ CSk ∧ crelation(C) > tsupport}
k + +

end while
return

⋃
i CSi

Confidence in Content Support based on Previous Usage

The data for the content support is gathered from previous usage of the user. As
this data was entered by the user, we assume that it is correct, i.e. cdata = 1. Thus,

7.2. Content Support based on Previous Usage 85

csupport(C) = crelation(C)

for content support based on previous usage.

86 7. Content Support

7.3. Content Support based on Semantics

The terminology used in the UI often differs from the one used to describe the
context. For example, the location information in a calendar entry has the label
“location” whereas the location information for the UI in Figure 7.1 (b) is labeled
with “To”. For that reason, we need a mapping process that is able to bridge the
existing vocabulary gap between the two representations. In this section, we con-
tribute a novel approach for mapping context information to UI elements relying on
the semantics of the data. Our approach combines the strengths of string-based and
semantic similarity measures, which rely on general knowledge bases like Wikipedia
or WordNet. Further, it is able to learn new relations from observing the user’s inter-
actions. At first, we identify requirements for the mapping process in context-aware
IUIs (Section 7.3.1). In Section 7.3.2, we compare our approach to related work. As
basis for the mapping process, we need a representation of the UI elements which is
described in Section 7.3.3. Most existing approaches only consider the label of the
UI elements. However, we show that the label does not provide sufficient informa-
tion for that purpose and that incorporating further information about UI elements,
like their tooltips, can dramatically increase the performance. In Section 7.3.4, we
present our novel mapping process. Section 7.3.5 describes how the relevance of a
context object for the UI can be determined based on the mapping, and defines how
the confidence csupport in the resulting content support is computed (Section 7.3.6).
Finally, we report on the evaluation of our mapping process in Section 7.3.7.

7.3.1. Requirements

For the mapping process, we cannot rely on UI elements that are already tagged
with a semantic concept (e.g. from a common ontology) nor on a large amount of
training data to learn these semantic concepts, because we want to be able to provide

(a) http://www.usairways.com/awa/cars/ (b) htp://www.rmv.de

Figure 7.1. Example forms

http://www.usairways.com/awa/cars/

7.3. Content Support based on Semantics 87

content support for arbitrary applications (R3 - Application-independence). Thus,
the mapping process has to meet the following requirements:

• R1sem: The mapping process shall not rely on pre-tagged data.

• R2sem: The mapping process shall not rely on initial training data.

• R3sem: The mapping process shall not rely on additional information about
the UI despite the information that can be directly gathered from the UI itself.

Further, the result of the mapping should enable the context-aware IUI to decide
which context object should be offered as content support to the user. For that
reason, the mapping should state a confidence value for the mapping between context
and UI.

• R4sem: The mapping shall report a confidence value for the relevance of a
context object for the UI to enable the context-aware IUI to distinguish between
relevant and irrelevant context objects.

7.3.2. Related work

The task of mapping context information to input elements is strongly related to on-
tology mapping (Kalfoglou and Schorlemmer, 2005) and database schema matching
(Rahm and Bernstein, 2001), where concepts have to be mapped to ontology entries
or column names, respectively. However, in these areas most approaches benefit from
additional information like constraints or instances that are more distinctive than
the information from the UI (R3sem: -) or they rely on a large amount of training
data (R2sem: -). Both is not available for context-aware IUIs. Also related is the
research on the deep Web15, as it is concerned with mapping textual representations
of several Web forms. For example, Wu et al. (2004) use cosine similarity for de-
termining the similarity of label and name attributes. However, their approach also
relies on a large corpus of training data (R2sem: -).
Other approaches for automatically filling in forms (e.g. Citrine (Stylos et al.,

2004)) either require apriori tagging of Web sites (R1sem: -), or a manually crafted
list containing the labels or names of input elements which refer to a semantic concept
(R3sem: -). Thus, these approaches can only be applied to a specific domain (e.g.
Stylos et al. (2004) focus on address information) or need explicit advice by the
user. Chusho et al. (2002) apply a more generic machine learning approach to learn
which content should be entered depending on which labels are located around the
UI elements. However, they only consider the elements’ labels for that purpose which
often does not convey enough information as will be shown in the following.

15Deep Web refers to all information in the Web that cannot be accessed via conventional search
engines following hyperlinks.

88 7. Content Support

Figure 7.2. Example formalization of two context objects and a UI

7.3.3. Representing UI and Context Objects

For mapping context information to UI elements, we first need a representation for
UI elements and context information that is stored in the Current Context. The
representation for context objects was already described in Section 6.1. The UI
representation available from our application models (see Section 6.3) only stores
the label of the elements. However, the label of the elements is often not sufficient
for unambiguously describing the element as it sometimes refers to several interaction
elements (e.g. “Pick-up date” in Figure 7.1 (a)) or does not convey much information
(e.g. “To” in Figure 7.1 (b)). For that reason, we take all available texts that describe
the element into account, in contrast to Chusho et al. (2002).
In the following, we point out which texts can be used to represent the various ele-

ments and how the representation is formalized. A visualization of the formalization
is shown in Figure 7.2.

Representing UI elements

For most UI representation languages, each UI element provides the following infor-
mation that can be used to represent the element:

• its label which is human readable (e.g. “Pick-up date” in Figure 7.1 (a))

• the name attribute of the input element that gives us its technical label, though
this is often not human readable (e.g. “pck” for the “Pick-up” element)16,

• the corresponding tooltip (“alt” attribute),

• the data that is prefilled to give the user a hint of what to enter (e.g. “Pick-up
location” is filled in the “Pick-up” element in Figure 7.1 (a)), and

• the values in drop down menus, radio buttons, or grouped checkboxes.

16 This attribute is often a camel case word consisting of several concatenated words like
“arrivalDate” because the attribute may not contain white spaces.

7.3. Content Support based on Semantics 89

For Web applications, name, tooltip, prefilled, and values can be extracted directly
from the HTML representation. The HTML syntax also defines a tag label for
marking a label of an input element; however, it is scarcely used in practice (only
about 20% of the input elements we used for the evaluation had an associated label
attribute). For that reason, we developed our own approach called LabelFinder for
extracting the labels by analysing the visual layout (see Section 6.3.4).
Each UI element Ei can thus be represented by a list of descriptive texts er (see

also Figure 7.2). These texts are ordered by their relevance r. This is important
as the best (initial) mapping can be determined if we consider only the most rele-
vant information. Further information should only be incorporated if this text does
not convey enough information. In initial experiments, we determined the follow-
ing order of relevance according to the expressiveness of the different attributes:
label, values, tooltip, prefilled, name. The individual texts er are separated into a
set of single words, so-called tokens. For example, the first element in the exam-
ple form in Figure 7.1 (a) is represented by its label, prefilled and name attributes
E1=(e1, e2, e3)=({Pick-up}, {Pick-up, location}, {pck}).
The entire UI is finally represented as a set of elements Ei with corresponding

values vi, i.e. {(E1,v1), (E2, v2), ...}. The values vi represent the data which needs to
be entered in the UI and thus the information we want to predict with our mapping
process.

Representing context objects

The Current Context contains all context objects Oj that might be relevant for the
user’s current interaction. As described in Section 6.1.1, this data is gathered from
(i) the user input, (ii) the UI, and (iii) from the Context Server. Each Oj consists of
a set of context attributes cai with associated values vi as introduced in Section
6.1. For example, the calendar entry in Figure 7.2 consists of a subject, a location,
and a date element. The goal of the semantic content support is to determine which
context object Oj from the Current Context can be used as input for the current UI
and which of its values vi should be suggested as input for which UI element Ei.
For the semantic mapping, we represent each attribute cai as a set of descriptive

texts Ai in analogy to UI elements. If the context object Oj was derived from the
user’s interaction, it is represented by the same attributes as the corresponding UI
element. If it was gathered from the Context Server, we have to rely on additional
information provided by the Context Server (see Section 6.1). This information is
at least a label like “start date” which we therefore take as most descriptive text e1.
Sometimes, additional information like a brief description is provided by the Context
Server which is used as additional descriptive text.

7.3.4. Mapping textual representations

Having determined the representation of the available input elements of a UI, we try
to find relevant objects in the Current Context that can serve as input for the UI

90 7. Content Support

elements, i.e. which vi should be suggested for which input element. As stated by
R3sem, we can only make use of the available textual descriptions as described in the
previous section to determine the mapping.

As basis for the mapping process, we first need a similarity measure that computes
the similarity between two tokens, e.g. between “Pick-up” and “Location” (see Com-
puting similarity of tokens). This similarity measure is then applied to determine
the similarity of two elements described by several descriptive texts (see Computing
similarity of elements), e.g. the elements A2 and E1 in Figure 7.2. The resulting sim-
ilarity value between elements is then used to determine the best mapping between
context and UI elements, e.g. which elements of O1 should be assigned to which
elements in the UI (see Mapping context and UI elements). Which of the context
object present in the Current Context (e.g. O1 and O2) should be finally suggested
to the user is described in Section 7.3.5.

Computing similarity of tokens

As basis for our mapping process, we need a similarity measure simtoken(a, b) which
computes the similarity between two tokens a and b on a scale from 0 to 1. For
simtoken, we can use similarity measures that are based on string comparison (string-
based measures) or that rely on an additional knowledge base, i.e. a domain
model, like Wikipedia17, Wiktionary18, or WordNet (Fellbaum, 1998) (semantic
measures). In contrast to string-based measures, the semantic measures recognize
similarities between strings from different terminologies (e.g. “destination” and “air-
port”). However, they are only able to provide similarity measures if the terms are
reflected in the underlying knowledge base. This means that they often do not rec-
ognize the similarity of strings that differ in their spelling variants (e.g. “e-mail” and
“email”) and cannot be applied to arbitrary new domains. In contrast, string-based
measures are able to cope with spelling variants and can be applied to new domains
without requiring any modeling. However, they are not able to bridge vocabulary
gaps when different terminologies are used.

In a preprocessing step, we turn all tokens in lower case representation, split camel
case words, and skip all tokens that only consist of one character. Further, we
lemmatize all tokens, i.e. use their canonical form (e.g. “mouse” instead of “mice”
and “run” instead of “ran”). This is necessary as the knowledge bases that are used
for the semantic measures only contain lemmas.

The distribution of the actual simtoken values over the [0,1] interval vary for the
different measures, e.g. for some measures 0.6 is a relatively low value. To ensure that
only really similar tokens are considered in the mapping process, we state a threshold
θ for simtoken for every similarity measure which we apply, i.e. if simtoken < θ, then
simtoken = 0.

17http://www.wikipedia.org
18http://www.wiktionary.org

http://www.wiktionary.org
http://www.wikipedia.org

7.3. Content Support based on Semantics 91

Computing similarity of elements

We compute the similarity simk(Ai, Ej) between two elements Ai and Ej as the
average similarity for every possible pair of tokens. Thereby, we take the k most
relevant descriptive texts into account. We limit the number of texts we consider,
because we first try to determine a mapping with the most relevant descriptive texts
(e.g. only considering the labels with k = 1), as we assume that it returns the best
results. Further descriptive texts are only considered for those elements that could
not be assigned in the first step (see Mapping context and UI elements). We define

simk(Ai, Ej) =

∑

a∈Xk
Ai

,b∈Xk
Ej

simtoken(a, b)

max(|Xk
Ai
|, |Xk

Ej
|)

with Xk
Ai

=
⋃

r≤k

er ∈ Ai and Xk
Ej

=
⋃

r≤k

er ∈ Ej . For example, for comput-

ing the similarity sim2(A2, E1) between A2 of the context object O1 and E1 of
the example in Figure 7.2, we determine at first X2

A2
= {Location,City,Room}

and X2
E1

= {Pick-up, P ick-up, location, pck}. If we use a string-based similarity
measure for simtoken that returns 1 if the tokens are the same and otherwise 0,
only simtoken(location, location) results in 1, all other similarity values in 0. Thus,
sim2(A2, E1) = 1/max(3, 4) = 1/4.

Mapping context and UI elements

For determining the mapping Mm between a context object Om and the UI, we first
identify the best assignments of context to UI elements using only the most relevant
descriptive text e1 (i.e. its label). We compute sim1(Ai, Ej) for every element
Ai ∈ Om and every element Ej ∈ UI. This results in a mapping like the one in
Figure 7.3 (a). Mm initially contains all pairs (Ai, Ej) with a similarity value greater
than 0. As we assume that each concept is only used once in a context object or in a
UI, the mapping has to be unambiguous. This means that for example the location
is only used for a single UI element. For that reason, we need to solve all generated
ties, i.e. to resolve all conflicts in the mapping. The Solve Ties process iterates
over all pairs (Ai, Ej) ∈ Mm ordered by their similarity value. Each pair that is in
conflict with the currently considered pair, is deleted from Mm. If two pairs have the
same similarity measure, both are deleted from the mapping. Figure 7.3 (b) shows
the result of Solve Ties for our example mapping.
All elements that are now unambiguously assigned to another element are excluded

from the following mapping iteration. We again compute the similarities between
the various remaining elements, but this time we take one more descriptive text into
account, i.e. we use sim2(Ai, Ej). Emerging ties are solved and the unambiguously
assigned elements also excluded from the next mapping iteration. The process is
repeated with further descriptive texts until all descriptive texts are considered, or

92 7. Content Support

Figure 7.3. Applying the mapping process to map a context object to a UI

all context or UI elements are assigned. The pseudo-code for the whole process
can be found in Algorithm 3. To further improve the performance of the mapping
process regarding the mapping quality, we suggest the following two extensions to
the process.

Second mapping step As stated before, string-based measures have the advantage
that they can be applied to arbitrary domains that use the same terminology, whereas
semantic measures can bridge the vocabulary gap between domains, but only if the
used knowledge base contains the required terms. To benefit from both types of
similarity measures, we extend our process with a second mapping step. We at first
determine a mapping with one type of measure and then try to map the unassigned
elements using the other type of measure. We expect that the string-based mappings
provide a better initial mapping than semantic measures, as they usually achieve
higher precision values than semantic measures. Thus, they should be applied for
the first mapping step and semantic measures for the second.

Learning related terms The existing vocabulary gap between a context and a UI
representation cannot always be bridged with the help of semantic similarity mea-
sures, as the knowledge base may not contain all relevant terms. For example, the
term “pick-up”, which is often used for car rental forms, is not contained in any of
the knowledge bases that we considered. For that reason, we further apply learning
in our mapping process. In those cases where the mapping could not be determined
automatically, we learn which terms are related to each other from observing the
user’s input. If we observe that the user has entered data in a UI element Ei that
corresponds to a value vi contained in the User Context, we store the label (e1) of
the corresponding Ai as related expression to the label (e1) of Ei. For example, if
the user entered “Zurich” for v1 in the UI in Figure 7.2, we store that “Pick-up” (the
label of E1) is related to “Location” (the label of A2). Note that these expressions
can also consist of several tokens (e.g. “Pick-up time”). simtoken(a, b) then returns
1 if the token a is contained in an expression that is related to an expression that
contains the token b.

7.3. Content Support based on Semantics 93

Algorithm 3 Mapping Context elements to UI elements

Purpose: Determine a mapping Mm between the elements of Om and the UI
Input: Set {Ai} of attributes of a context object Om

Set {Ej} of UI elements

1: CO = {Ai}; UI = {Ej}; k = 1; Mm = {};
2: kmax = max number of descriptive texts in CO and UI
3: while CO 6= ∅ ∧ UI 6= ∅ ∧ k ≤ kmax do
4: M = CO × UI
5: for all (Ai, Ej) ∈M do
6: Compute simk(Ai, Ej)
7: end for
8: Order all elements in M by their similarity simk

9: Solve Ties for M
10: for all (Ai, Ej) ∈M do
11: Remove Ai from CO
12: Remove Ej from UI
13: end for
14: Mm = Mm ∪M
15: k = k + 1
16: end while

7.3.5. Measuring the Relevance of a Context Object

Besides computing how a context object could be mapped to the UI, we also need
to determine the relevance of a context object for the UI (R3sem). The relevance
estimation enables a context-aware IUI to decide whether or not a context object
is relevant for the current UI and thus which context object should be offered as
content support to the user.
We define the relevance r(Oi) of a context object Oi for a UI as

r(Oi) = |Mi|/|Oi|

i.e. the amount of elements Aj of Oi which could be assigned to UI elements with
the mapping Mi. For example in Figure 7.3 (d), r(O1) is 3/4. The more elements
could be assigned, the more likely it is that Oi is relevant for the current UI.

7.3.6. Confidence in Content Support based on Semantics

The confidence in the content support C which results from mapping a context object
Oi to the UI, is determined as stated in Equation 7.1 as csupport =
cdata ∙ crelation. Thereby, cdata is the relevance ruser_ctx of the context object for
the user (see Section 6.1.1) and crelation(Oi) = r(Oi), i.e. the relevance of the con-
text object for the UI as defined in Section 7.3.5. Thus,

csupport(C) = ruser_ctx(Oi) ∙ r(Oi)

94 7. Content Support

7.3.7. Evaluation

In this section, we evaluate the performance of the proposed mapping process. We
examine (i) which similarity measure is best suited for the mapping process, (ii)
whether a combination of string-based and semantic measures increases the perfor-
mance, (iii) whether learning of related terms increases the performance, (iv) whether
the proposed mapping process outperforms approaches which only base on the label
of the UI elements, and (v) whether the proposed mapping process enables a context-
aware IUI to distinguish between relevant and irrelevant context objects (R4sem).
We evaluated the mapping process for a variety of Web applications. However, a

dataset containing possible context objects for a number of Web applications and
their mappings is hard to obtain. Furthermore, we want to be independent of how
the context information is actually represented. For that reason, we decided to use
the Web forms themselves as possible context representations. This means that we
take the representation given by a source Web form as a potential context object
and try to map it to a target Web form. The Web forms were taken from several
domains, whereby some of them are related domains, i.e. the same information
can be entered but they often use different terminology. For example, Web forms for
booking a hotel room and for booking a car are related, as they both need a start
and end date but use different terminology like “check in” and “pick up”. For the
evaluation within a single domain, we used every combination of source and target
Web form from this domain. For related domains, we combined one form from the
one domain with a form from the related domain.

Evaluation dataset We took 45 Web forms from 4 domains: car rental (consisting
of 7 Web forms), flights (12), hotels (9), and address (17). Most Web forms for the
cars, flights, and hotels domains were taken from the TEL-8 dataset of the UIUC
dataset (UIUC, 2003). Thus, we have four single domains (cars, flights, hotels, and
address) and three related domains (cars&flights, cars&hotels, hotels&flights).

Evaluation Metric In order to judge the quality of the resulting mapping, we have
to consider that often no direct mapping between elements is possible. For example,
one representation uses two fields for entering the name, one for the first and one
for the last name, while another representation uses only one field for the full name.
Assigning the element representing the first name to the one representing the full
name is not entirely correct, but it enables us to suggest at least half of the input
for the UI element. For that reason, we include these partially correct assignments
in our rating but with a lower weight than correct assignments. For each mapping,
we compute the precision and the recall as follows:

Precision =
correct + 0.5 ∙ partial

correct + 0.5 ∙ partial + wrong

Recall =
correct + 0.5 ∙ partial

maxScore

7.3. Content Support based on Semantics 95

In this formalization, correct denotes the number of correct assignments, partial the
number of partially correct assignments, and wrong the number of wrong assign-
ments. maxScore is the score that is reached by an optimal mapping.
In the following, we first list the similarity measures that we assessed in our com-

parison and describe the evaluation data set. Then, we report how the different
measures perform in a single domain and in related domains (Comparing similarity
measures). Next, we show that our proposed mapping process –including a second
mapping step using another similarity measure and including learning– increases the
overall quality of the mapping (Second mapping step and Learning related terms).
Finally, we determine how well our approach can distinguish a relevant from an ir-
relevant context object and is thus able to provide only relevant content support
(Distinguishing context objects).

Similarity measures String-based measures determine the similarity between two
strings by comparing their characters. We use two baseline string measures: The ex-
act string match measure (abbreviated as exact) returns 1 if the strings are exactly
equal, and 0 otherwise. The bounded substring match measure (b-substr) returns 1
if the strings have a shared substring of at least 3 characters that is a prefix or a suffix
of the other string (this matches strings like “arrival” and “arrive”). We also consider
three more sophisticated measures that return a value in the interval [0, 1]: (i) the
measure by Jaro (1995) (abbreviated as jaro) that takes typical spelling deviations
into account, (ii) an adaptation of the jaro measure by Winkler and Thibaudeau
(1991) (jaro-w) which increases similarity scores in the case of shared prefixes, and
(iii) the measure by Monge and Elkan (1996) (monge-elkan) that uses an affine gap
model penalizing many small gaps in the string match more than a large gap. For our
experiments, we implemented the exact and b-substr measures ourselves, and used
the SecondString library (Cohen et al., 2003) for the jaro, jaro-w, and monge-elkan
measures.

Semantic measures use knowledge bases for determining similarities, such as Word-
Net (Fellbaum, 1998), Wikipedia19, or Wiktionary20. A typical source of alternative
wordings for the same concept is the use of synonyms (e.g. “city” and “town”) or other
terms closely related by a lexical semantic relation such as hypernymy/hyponymy
or holonymy/meronymy (e.g. “city” and “New York”). Thus, we created a semantic
similarity measure that returns 1, if the target string is a direct synonym, hypernym,
hyponym, holonym, or meronym of the source string, and 0 otherwise. The measure
is very similar to the multitude of semantic similarity measures defined on WordNet
(see (Budanitsky and Hirst, 2006) for an overview). However, these measures rely
on special properties of WordNet, while the proposed measure can also be used with
other knowledge bases like Wiktionary. These measures are abbreviated in the fol-
lowing with wiktionary-rel and wordnet-rel. We do not use the relation measure

19http://www.wikipedia.org
20http://www.wiktionary.org

http://www.wiktionary.org
http://www.wikipedia.org

96 7. Content Support

with Wikipedia, as it does not contain explicitly labeled lexical semantic relations.
We also use a concept vector based measure (Qiu and Frei, 1993) for each knowl-
edge base, where the meaning of a string w is represented as a high dimensional
concept vector

−→
d (w) = (d1, ..., dN). Each vector element di represents a document

in the knowledge base, and the value of di is the string’s tf.idf score (Salton and
McGill, 1983) in the document. Semantic relatedness of two strings can then be
computed as the cosine of their corresponding concept vectors. We apply this to all
three knowledge bases, abbreviated in the following with wordnet, wikipedia, and
wiktionary.
For our experiments, we used (i) WordNet 3.0 together with the freely available

JWNL WordNet API21, (ii) the English Wikipedia dump from Feb 6th, 2007 to-
gether with the JWPL Wikipedia API8 (Zesch et al., 2008), and (iii) the English
Wiktionary dump from Oct 16th, 2007 with the JWKTL Wiktionary API22 (Zesch
et al., 2008).

For normalizing inflected forms of tokens, we used lemmatization as provided by
the TreeTagger (Schmid, 1995). We empirically determined the optimal value of the
threshold θ for including similarity values in the mapping process on a dataset that
is not used in the experiments. We used the following thresholds: 0.75 for the jaro,
jaro-w, and monge-elkan measures and 0.05 for wordnet, 0.4 for wikipedia, and 0.25
for wiktionary. All other measures return either 0 or 1, thus no threshold is needed.

Comparing similarity measures

At first, we compared the baseline performance of the different similarity measures
without using learning or a second mapping step. Table 7.1 shows the results for
the various similarity measures in terms of recall, precision, and F1-measure for the
four single domains. The results differ slightly on a very high level of performance
with an F1-measure between .76 and .87. The string-based measures slightly out-
perform the semantic measures. The semantic similarity measures based on concept
vector outperform the similarity measure based on relations for all knowledge bases
and domains. This confirms with recent research on semantic similarity measures
(Gabrilovich and Markovitch, 2007; Gurevych et al., 2007) which indicates that con-
cept vector based measures are superior to relation-based measures. For that reason,
we focus only on the concept vector based measures in the following.
Table 7.2 summarizes the results across related domains. The performance for the

related domains varies heavily, however there are also mostly only minor differences
between the various similarity measures. In that setting, the semantic measures
perform slightly better than the string-based measures.
As the b-substr measure has the best overall performance of all string-based mea-

sures, we consider this measure as representative for all string-based measure in the
remainder. As the semantic measures rely on different knowledge bases, we expect

21http://jwordnet.sourceforge.net/
22http://www.ukp.tu-darmstadt.de/software/JWPL

http://www.ukp.tu-darmstadt.de/software/JWPL
http://jwordnet.sourceforge.net/

7.3. Content Support based on Semantics 97

that they vary in their ability to bridge vocabulary gaps. For that reason, we still
take all three semantic measures based on concept vectors into account.

Second mapping step

In order to improve the quality of the mapping especially across related domains, we
evaluated whether a second mapping step with another similarity measure increases
the performance. We compared the results for using a string-based or a semantic
measure at first. As expected, we found that it yields better performance to use

Domain cars flights hotels address

P R F P R F P R F P R F

st
ri
ng
-b
as
ed

exact .93 .82 .87 .95 .72 .82 .88 .87 .87 .89 .71 .79

b-substr .94 .83 .88 .95 .76 .84 .87 .87 .87 .91 .79 .85

jaro .89 .80 .84 .90 .74 .81 .88 .88 .88 .82 .76 .79

jaro-w .89 .81 .85 .90 .73 .81 .87 .88 .88 .77 .75 .76

monge-elkan .94 .83 .88 .90 .75 .82 .86 .87 .86 .87 .81 .84

se
m
an
ti
c

wordnet .93 .82 .87 .93 .72 .81 .85 .86 .85 .84 .75 .79

wiktionary .93 .82 .87 .95 .72 .82 .88 .87 .87 .89 .75 .81

wikipedia .93 .82 .87 .86 .69 .76 .88 .87 .87 .82 .78 .80

wiktionary-rel .93 .82 .87 .95 .71 .82 .88 .88 .87 .86 .72 .78

wordnet-rel .93 .80 .86 .84 .47 .60 .86 .88 .87 .60 .48 .54

Table 7.1. Micro-average precision (P), recall (R) and F -measure for single do-
mains (best values in bold and blue)

Domain cars & hotels cars & flights hotels & flights

P R F P R F P R F

st
ri
ng
-b
as
ed

exact .84 .40 .54 .52 .10 .17 .62 .25 .35

b-substr .79 .39 .52 .50 .12 .19 .54 .24 .34

jaro .74 .40 .52 .48 .12 .19 .36 .24 .29

jaro-w .68 .39 .50 .41 .11 .18 .35 .24 .29

monge-elkan .73 .39 .51 .35 .12 .18 .44 .24 .31

se
m
an
ti
c wordnet .81 .44 .57 .46 .10 .17 .60 .25 .35

wiktionary .84 .40 .54 .52 .10 .17 .62 .25 .35

wikipedia .78 .42 .54 .48 .15 .23 .47 .25 .33

Table 7.2. Micro-average precision, recall and F -measure across related domains
(best values in bold and blue)

98 7. Content Support

a string-based measure first. For that reason, we only report here on the results
for using b-substr in the first mapping step and a semantic measure in the second
mapping step. To evaluate whether a second mapping step itself can increase the
performance, we also computed the performance when using b-substr for both steps.
Figure 7.4 shows the absolute increase or decrease in the F -measure for the second
mapping step compared to using only a single mapping step. A second mapping step
dramatically increases the performance by about 13% points for the cars&hotels
domain, no matter which similarity measure is used. This indicates that the second
mapping step itself can be of advantage, because sometimes some conflicting elements
are assigned in the first mapping step so that remaining elements can then be assigned
in the second step. Further, wikipedia increases the performance for the cars&flights
domain by 8% points. For the other domains the second mapping step has only
marginal influence on the results. This shows that a second mapping step has rarely
negative effects on the quality of the mapping, but can increase the performance
especially across related domains. As the combination of b-substr for the first and
wikipedia for the second mapping step yields the best results, we only report the
results for this combination in the following if not stated otherwise.

Learning related terms

Next, we determined the influence of learning related terms from observation on
the mapping quality. For the evaluation, we randomly selected 20 pairs of the ho-
tels&flights domain and successively computed the mapping while tracking the F -
measure for each mapping. This process was repeated 80 times and the results were
averaged. Figure 7.5 shows how the average F -measure increases with the number
of observed mappings. It shows that 4 observed mappings are already sufficient to
increase the F -measure relatively by 40% and 10 to reach an overall performance of
about 60%.

Figure 7.4. Absolute difference between the F -measure of a single mapping step
using b-substr and a two-step mapping process additionally using one of the
listed similarity measures for the second mapping.

7.3. Content Support based on Semantics 99

Figure 7.5. Average F -measure for the hotels&flights domain given the number of
observed mappings

Overall performance

To be able to estimate the influence of the different factors and to judge the overall
performance of the presented mapping process compared to approaches which only
consider the labels of the UI elements, we compare the F -measures for different con-
figurations for a single domain and across related domains. The result can be seen in
Figure 7.6. As a baseline, we use the standard approach that only considers the label
of the input elements (label). Using our approach with a single mapping step (single
mapping) already outperforms label by 44% for a single domain and by 89% across
related domains. Using a two-step mapping process with the similarity measures
b-substr and wikipedia (2nd mapping) further increases the results across related
domains by more than 13% without having an influence on the results in a single
domain. Finally, if related terms are additionally learned (2nd mapping+learning),
the average F -measure for single domains slightly decreases by 2.5%, however the
average F -measure across related domains dramatically increases by 60%.

(a) In a single domain (b) Across related domains

Figure 7.6. Overall performance of our mapping process

100 7. Content Support

Figure 7.7. Average r(Oi) for mapping a context object to a UI from the same,
from an unrelated or from a related domain.

Distinguishing context objects

Besides determining a good mapping for relevant context objects, it is also important
that the relevance values r(Oi) for irrelevant context objects are rather low, so that
a context-aware UI is able to distinguish relevant from irrelevant context objects
(R4sem). This means that in the ideal case the mapping process does not assign any
context element of an irrelevant context object to a UI element. To evaluate this
behavior for our proposed mapping process, we compare the average r(Oi) value for
a context object and a UI from the same domain, from related domains, and from
unrelated domains (i.e. hotels&identity etc.). As Figure 7.7 shows, the average r(Oi)
value for the same domain (76%) is three times as high as for unrelated domains
(27%). The average value for unrelated domains is comparably high, as there is
quite few information in the two domains that requires similar information, e.g. a
city name needs to be entered for stating the desired location of a hotel and the
address information. This accounts for about 10-20% of the erroneous assignments.
The results for the related domain (57%) is in between the two extremes. This shows
that it is unlikely that a context-aware UI using the proposed mapping process will
suggest an irrelevant context object to the user.

7.3.8. Summary

In this section, we presented a novel approach for mapping context objects to UI
elements. It does not require any pre-tagged data (R1sem) or large amount of training
data (R2sem) and can determine the mapping based only on the information available
in the UI and from the context objects (R3sem). Our approach outperforms existing
approaches that only rely on the labels of the UI elements. We showed that the
performance of the algorithm is increased if it learns related terms from observing
the user’s interaction. Further, it enables us to distinguish well between relevant and

7.3. Content Support based on Semantics 101

irrelevant context objects (R4sem).
We showed that the quality of mapping context elements to UI elements can be

increased by using semantic measures. Due to practical reasons it can however be of
advantage to use only string-based measures, as they require far less resources than
semantic measures: Semantic similarity measures need an additional knowledge base
which requires about 20MB up to several GB of disk space (WordNet: 23MB, Wik-
tionary: 42MB, Wikipedia: 6.6GB) and are much slower than string-based measures.
When applying the presented process for example on mobile devices, it is for that rea-
son of advantage to rely only on string-based measures or to use semantic measures
only for mapping the labels in a first step.

102 7. Content Support

7.4. Content Support based on Modeled Relations

In this section, we present how relations between context and interaction elements
are modeled (Section 7.4.1), learned (Section 7.4.2 and Section 7.4.3), and how they
are used for providing content support (Section 7.4.4). As stated before, AUGUR
supports two types of relations: (i) direct relations (i.e. context information X can
be used as input for interaction element Y) and (ii) rules (e.g. if the location is
at home, then enter “Heidenreichstr.” in the “to” input element). For learning new
rules to describe the relation between context and application elements, we build
on the Apriori algorithm for mining association rules and adapt it to our needs.
To our knowledge, the presented approach for providing content support is the first
approach which is able to use arbitrary context information (R1 - Awareness of user
context and environmental context) (see also Section 2.3).

7.4.1. Relations in AUGUR

As stated in Section 4.2.3, AUGUR supports two types of relations: direct relations
and rules.

Direct Relation A direct relation in AUGUR is defined as

<interactionElement>=(<contextAttribute>|<value>)

Direct relations specify which context attributes or fixed values can be used as input
for an interaction element. For example, the ATML model for the train booking
application shown in Figure 7.8 contains two direct relations: The “date” and the
“time” attribute of a calendar entry can be directly used as input for the date and
time input elements.

Figure 7.8. Example ATML model for the train booking example with direct rela-
tions and rules

7.4. Content Support based on Modeled Relations 103

Rules Rules are defined in AUGUR as

if (<contextAttribute>=<value>|<interactionElement>=<value>)+

then (<interactionElement>=<value>)+

Rules allow to state more complex dependencies between elements than direct re-
lations, e.g. if the current location is “at home’, suggest “Heidenreichstr.” for the
“point of departure” field for looking up the bus connections. The rules can state
conditions on context attributes as well as on other interaction elements.
Rules that consider context attributes are called context-specific rules and those

that only rely on interaction elements are called global rules for a UI. The example
in Figure 7.8 contains two rules: a context-specific rule which depends on data of
a calendar entry (if subject="Cinema" then to="Frankfurt") and a global rule
which only considers the content of interaction elements (if from="Frankfurt"
then to="Darmstadt").

7.4.2. Learning Direct Relations

In order to automatically enhance the provided support, AUGUR learns relations
between context and interaction elements from observation. Thereby, AUGUR is
able to cope with little training data. Relations are learned by comparing data
the user has entered with the data which was at that time available in the Current
Context. As soon as the user submits data to an application, i.e. as soon as she
clicks on a navigational element, the learning process is initiated. The pseudo-code
of the learning algorithm is presented in Algorithm 4. If a matching between an
attribute in the Current Context and entered data is found, AUGUR checks whether
the corresponding direct relation is already contained in the application model. If
this is not the case, AUGUR adds a new direct relation to the application model.
Further, AUGUR sets or updates the confidence crelation in the relation. crelation is
thereby defined as

crelation =
x

max{n,minrelation}

where n is the number of user interactions with the specific interaction element, x
captures how often the user entered context information of the same type during
these interactions and minrelation is a predefined minimal value which is required to
trust in the viability of the relation. The minimal support minrelation is required to
avoid that the confidence in a relation that has only been observed once, is 100%.
We empirically found that 5 is a good estimation for minrelation.
For example, the user enters five times a value in the “from” interaction element.

In three out of these five times, she entered the data that was also stored as the
“location” attribute of the “Location” information in the Current Context. Thus,
a new relation from context type “Location” to the “from” interaction element is
learned with crelation = 60%.
For learning relations by comparing input with the Current Context the corre-

sponding context information has to be present in the Current Context. For context

104 7. Content Support

Algorithm 4 Updating and learning direct relations

Purpose: Updating and learning new relations between activities and context nodes
Input: Set {(ai, vi)} of input entered in the current UI (with ai being the different

activities and vi the corresponding values)
Set {Oi} of elements in the Current Context (with Oi.caj denoting the values of
the different attributes caj of Oi)
Set R = {(ai, cnj , cak)} of direct relations between activities ai and attributes
cak of context nodes cnj

1: for all vi = Ok.caj do
2: if ∃cnl.(ai, cnl, caj) ∈ R ∧ cnl of same type as Ok then
3: update the confidence crelation in the direct relation (ai, cnl, caj)
4: else
5: introduce new context node cn of the same type as Ok

6: add (ai, cn, caj) to R
7: tag it with confidence crelation

8: end if
9: end for

sources that can only be accessed via queries, like the user’s address book, we have
to compare the entered data with all context objects available of this type. However,
this does not scale for large amount of data at runtime, thus it is stored in a log
Lrelations (which will be described in more detail in the next section) and left for
offline analysis.

7.4.3. Learning Rules

In this section, we describe how rules can be learned from observation. We use the
Apriori algorithm (Agrawal and Srikant, 1994) for identifying rules and adapt it to
our application domain. We evaluate which interestingness measure is best suited
for our needs and show how the algorithm is integrated in AUGUR.
For identifying rules, we rely on an extended version Lrelations = {Ui} of the log

Lusage introduced in Section 7.2. Each usage Ui does not only contain the values
entered in the different interaction elements as in Lusage, but also the values that
were present in the Current Context at that time, i.e.

Ui={(a1, v1), ..., (an, vn)} ∪ {(Oi.ac1, v1), ..., (Oi.acm, vm) : Oi ∈ Current Context}

The format for storing the context values thereby is <type>.<no>.<attribute>=
<value>, with <no> being a consecutive number to distinguish the different context
objects in the Current Context. For example,
Ui={from="Frankfurt",
to="Darmstadt",
CalendarEntry.1.location="Darmstadt",

7.4. Content Support based on Modeled Relations 105

CalendarEntry.1.time="12:00",
CalendarEntry.2.location="Berlin",
CalendarEntry.2.time="22:00",
Location.1.location="at home"}

with from and to being identifiers for activities (referring to interaction elements of
the application).
We want to find association rules in the database Lrelations which express depen-

dencies of the form “if X then Y ”, abbreviated X → Y , with the antecedent X and
consequent Y being sets of items. For example a context-specific rule for the “Loca-
tion” context type could state if location="at home" then from="Frankfurt",
to="Darmstadt". The consequent Y has to consist of at least one item (i.e. |Y | > 1).
In our case, an item is a key-value-pair like from="Frankfurt" or
CalendarEntry.location="Berlin" (ignoring the number to distinguish different
context objects). For our application domain, we pose the following requirements on
the rule-learning algorithm:

• R1rule: The items in the consequent of a rule may only contain items describing
interaction elements, not context information, as we only aim at predicting
values for interaction elements.

• R2rule: Further, the context objects used in the antecedent of a rule may only
be gathered from a single context object in the Current Context.

• R3rule: The algorithm has to support asymmetric rules, i.e. if the rule X → Y
was learned, Y → X is not necessarily a valid rule. For example, if the rule if
I go to the cinema, then I go to Frankfurt is true, this does not mean that the
rule if I go to Frankfurt, then I go to the cinema is also true.

• R4rule: The algorithm has to be able to cope with few usage data (see Section
2.3.1).

Apriori Algorithm

For identifying association rules, we apply the well known Apriori algorithm (Agrawal
and Srikant, 1994) for association rule mining and adapt it to our needs. Apriori
returns all rules that exceed a predefined minimal support minsupp and confidence
value minconf . Support for an itemset X is defined as the probability of its occur-
rence in the given log Lrelations, i.e.

support(X) = P (X) =
|{Y ∈ Lrelations|X ⊆ Y }|

|Lrelations|

The confidence in a rule is defined as its conditional probability:

confidence(X → Y) = P (Y |X) =
|{T ∈ L|X ∪ Y ⊆ T}|

|{T ∈ L|X ⊆ T}|

106 7. Content Support

The Apriori algorithm consists of two steps: (i) determining all itemsets with suf-
ficient support and (ii) extracting rules from these itemsets that exceed a predefined
minimal confidence minconf .
For identifying frequent itemsets, the Apriori algorithm at first determines

the set I1 containing all itemsets with one element (1-itemsets) with a support value
of at least minsupp. Next, Apriori calculates all candidates for I2 (set of 2-itemsets)
by combining the elements in I1.23 As already mentioned, we only consider rules
which contain items in the antecedent that are derived from the same context ob-
ject (R2rule). For that reason, we remove all itemsets from I2 with items from two
different context objects. For each remaining candidate set, its support is calculated
and only those elements are included in I2 whose support exceeds minsupp. This
process is repeated for I3, I4... until no additional frequent itemsets can be found,
i.e. Ik = ∅. The final set of frequent itemsets for our application is

⋃
k>1 Ik. Algo-

rithm 5 illustrates the Apriori algorithm for gathering the frequent itemsets with the
adaptations made for our application domain.

Algorithm 5 Apriori - Creating Itemsets

1: calculate I1 = {1-itemset x : support(x) > minsupp}
2: k=1
3: while Ik 6= ∅ do
4: k++
5: calculate set of candidates Ck with k elements by combining itemsets of Ik−1

6: remove all elements in Ck which contain items derived from different context
objects (Adaptation to fulfill R2rule)

7: Ik = {x ∈ Ck : support(x) > minsupp}
8: end while
9: return

⋃
i>1 Ii

In the second step, the Apriori algorithm generates association rules from
these frequent itemsets. At first, the confidence values for all rules X → Y with a
single item as consequent (i.e. |Y | = 1) are calculated. For our application, Y must
not contain context elements (R1rule). All of these rules with a confidence above
minconf form the set H1. Similar to the identification step, one more item is then
added to the antecedent in every iteration (forming Hk) until no more new rules
can be found with sufficient confidence. Algorithm 6 shows the pseudo code for this
algorithm.
The confidence of a rule is not always a good measure for the interestingness of a

rule (Brijs et al., 2003). For that reason, several other interestingness measures were
proposed (Tan et al., 2002). For identifying the measure which is most suited for
our application domain, we compared the performance for the most popular interest-
ingness measures which support asymmetric rules (R3rule). Besides the confidence

23Using an efficient subroutine called Apriori-Gen which will not be described in this thesis.

7.4. Content Support based on Modeled Relations 107

Algorithm 6 Apriori - Generating Rules

1: calculate H1 = {x ∈ {X → Y } : confidence(x) > minconf ∧ |Y | = 1 ∧
Y /∈ Current Context}

2: k=1
3: while Hk 6= ∅ do
4: k++
5: calculate set of candidate rules Ck fromHk−1 with k elements in the conclusion

(by moving one item from the condition of a rule to its conclusion)
6: remove all elements in Ck which contain an item derived from a context object

in the conclusion (Adaptation to fulfill R1rule)
7: Hk = {x ∈ Ck : confidence(x) > minconf}
8: end while
9: return

⋃
i Hi

measure, we consider the following metrics (using the definitions given in Tan et al.
(2002)):

• Laplace: laplace(X → Y) = n∙P (X,Y)+1
n∙P (X)+2 with n being the amount of entries in

the underlying log, i.e. |Lrelations|.

• Conviction: conviction(X → Y) = P (X)∙P (¬Y)
P (X,¬Y)

• Certainty: certainty(X → Y) = P (Y |X)−P (Y)
1−P (Y)

• Added value: addedV alue(X → Y) = P (Y |X)− P (Y)

• Klosgen: klosgen(X → Y) =
√

P (X,Y) ∙ (P (Y |X)− P (Y))

• J-Measure: jMeasure(X → Y) = P (X,Y) ∙ log P (Y |X)
P (Y) +P (X,¬Y) log P (¬Y |X)

P (¬Y)

• Gini Index: gini(X → Y) = P (X) ∙ [P (Y |X)2 + P (¬Y |X)2] + P (¬X) ∙
[P (Y |¬X)2 + P (¬Y |¬X)2]− P (Y)2 − P (¬Y)2

• Gain: gain(X → Y) = P (X,Y)− θ ∙ P (X) with θ ∈ [0, 1]

Evaluation Datasets For evaluating the performance of the different interestingness
measures for our application domain, we used two different datasets: (i) We created
our own Seminar Talks dataset and (ii) the Balloon dataset from the UCI repository
(Asuncion and Newman, 2007). Both datasets contain only few usage data to account
for requirement R4rule.
The Seminar Talks dataset contains 52 instances with 7 attributes (presenter,

topic, abstract, data, room, type, and advisor) which represent talks given in our
group. We identified six rules that describe the relations of the attributes based on
the knowledge we have about the structure of the group and the seminar talks, (e.g.
if advisor:"Daniel Schreiber" then group:"MSE").

108 7. Content Support

The Balloon dataset consists of four files with 16 instances each. Each instance
consists of four different attributes describing the conditions of an experiment and its
outcome. The instances were generated using some predefined rules, which differed
in the different files: The adult-stretch dataset relies on two simple rules of the form
if A then B, the adult+stretch dataset and the yellow+small dataset on a single
compound rule of the form if A and B then C, and the yellow+small-adult+stretch
dataset (abbreviated complex) on two compound rules of the form if A and B then
C. As the adult+stretch and the yellow+small dataset base on the same type of
rule, they provide about the same results for the interestingness measures. For that
reason, we report here only on the findings for the adult+stretch dataset. Although
the expressiveness and validity of the results obtained on this dataset is limited due
to the small amount of data and its artificial character, we expect some further
insights into the performance of the different interestingness measures.

Experiment We ran Apriori on the two datasets with the different interesting-
ness measures to determine which one is best suited for our application domain.
Due to the little amount of available data, we used an absolute support value of
minsupp = 3. We ordered the rules according to their interestingness using one of
the measures introduced above. For that reason, we did not exclude any rules in the
generating rules part of Apriori, i.e. we used the minimal confidence minconf of 0.0.
We used θ = 0.5 for the gain measure.
For comparing the results, we used the precision at n (P@n) measure, which

computes the precision when only the first n rules are considered. However, we have
to cope with the problem that the same confidence level is assigned to many rules.
This makes it often difficult to identify the n rules which should be considered. For
example, if the elements 4 to 8 have the same interestingness measure (see example
in Figure 7.9), P@5 cannot be directly computed. For that reason, we take the rules
with the same interestingness measure as the nth elements (i@n) proportionally into
account. This means for our example that we weight the amount of correct rules with
interestingness value i@5 with the factor 2/5. Thus, we calculate P@n as follows:

P@n=
|{x : x correct ∧ i(x) > i@n}|+ w ∙ |{x : x correct ∧ i(x) = i@n}|

min{n, |correctRules|}

with x being a rule, i(x) its interestingness, |CorrectRules| the amount of correct
rules in the dataset and the weight being defined as

w =
n− |{x : i(x) > i@n}|
|{x : i(x) = i@n}|

Results Table 7.3 and Table 7.4 provide an overview of the results obtained for the
different measures for our two datasets. Overall, the laplace and the jmeasure metrics
achieve the best results. As the results from the Balloon dataset are limited in their
expressiveness and validity, we focus on the results obtained by the Seminar Talks

7.4. Content Support based on Modeled Relations 109

Figure 7.9. Example calculation for precision at n measure for evaluating the asso-
ciation rules (with |correctRules| = 6). The rules in bold are correct.

dataset, and decided in favor of the laplace measure for learning rules. However, we
are aware that this decision is only based on a small dataset, and that it remains
unclear whether our assumptions hold for all scenarios. For that reason, the applied
interestingness measure can be easily exchanged in AUGUR.

Confidence in learned rules

The confidence crule in each rule x is calculated as follows:

crule(x) = laplace(x) ∙
support(x)

max{minrule, support(x)}

with minrule being a predefined parameter which allows to adjust the influence of
rules with low support. For example, if a high minrule value is used, the confidence
crule remains low until the rule was observed sufficiently often (i.e. at least minrule

times).

n 2 5 7 10

Confidence .40 .40 .46 .66
Laplace 1.00 .60 .66 .88

Conviction .40 .40 .46 .66
Certainty .40 .40 .46 .66

AddedValue .66 .40 .50 .73
Klosgen 1.00 .60 .50 .66
JMeasure 1.00 .60 .50 .50
GiniIndex .00 .00 .00 .00

Gain 1.00 .60 .50 .50

Table 7.3. P@n measures for the different interestingness measures on the Seminar
Talks dataset (best values in bold and blue)

110 7. Content Support

Dataset adult-stretch adult+stretch complex
n 2 5 7 2 5 7 2 5 7

Confidence .06 .11 .15 .06 .11 .15 .60 .60 .70
Laplace .37 .62 .87 .37 .62 .87 1.00 1.00 1.00

Conviction .06 .11 .15 .06 .11 .15 .60 .60 .70
Certainty .06 .11 .15 .06 .11 .15 .60 .60 .70

AddedValue .08 .13 .19 .08 .13 .19 1.00 .40 .50
Klosgen .50 .33 .33 .50 .33 .33 1.00 1.00 1.00
JMeasure .50 .66 .88 .50 .66 .88 1.00 1.00 1.00
GiniIndex .00 .00 .00 .00 .00 .00 .00 .00 .00

Gain .37 .62 .87 .37 .62 .87 .60 .60 .70

Table 7.4. P@n measures for the different interestingness measures on the Balloon
dataset (best values in bold and blue).

To ensure that AUGUR does not learn too many irrelevant rules, we only con-
sider rules with an interestingness measure above a given threshold. We empirically
determined a threshold of 0.8 on the two datasets used for the experiment.

7.4.4. Computing Content Support based on Relations

In this section, we describe the algorithm for computing content support based on
direct relations and rules. Algorithm 7 shows the simplified pseudo-code of the
algorithm.
At first, we only consider the content support based on direct relations. For that

purpose, we identify all context nodes which are directly linked to the activity ai

for which content support should be provided. In our example in Figure 7.8, this
is only the context node of type “Calendar Entry”. We query the Current Context
and the Context Server for all context objects which match the type and the filter
of these context nodes. Figure 7.10 illustrates the calculation of content support for
our example: the context objects O1 and O3 are provided by the Context Server
and O2 by the Current Context. A content support element is constructed from each
of the returned context objects which consists of values for all interaction elements
which are directly related to the respective context node (step (2) in Figure 7.10).
In our example, the resulting content support elements C1-C3 consist of values for
the “date” and “time” interaction elements.
If the different relations between context node and activities vary in their con-

fidence, several content support elements are created: At first a content support
element considering only the relation (or relations) with highest confidence, then an-
other content support element by including the relation (or relations) with the next
highest confidence and so on.
Next, we augment these recommendations by applying rules on them (step (3) in

7.4. Content Support based on Modeled Relations 111

Algorithm 7 Content Support based on relations

Purpose: Compute content support based on relations for activity ai

Require: Activity ai

1: CS = {}
2: //Consider direct relations (step (1) and (2))
3: ContextNodes ={all context nodes directly related to ai}
4: for all ContextNode ∈ ContextNodes do
5: for all Oi provided by Current Context and the Context Server that match

type and filter of ContextNode do
6: compute C ⊆ Oi consisting of suggestions for all activities directly related

to the ContextNode
7: CS = CS ∪ {C}
8: end for
9: end for
10:

11: //Consider rules (step (3))
12: repeat
13: CS′ = {}
14: for all r ∈ {context-aware rules of ContextNodes}∪

{global rules of the current state} do
15: for all C ∈ CS do
16: if C and information entered in UI match antecedent of r then
17: C ′ = C ∪ consequent of r
18: CS′ = CS′ ∪ {C ′}
19: end if
20: end for
21: end for
22: CS = CS ∪ CS′

23: until CS′ = ∅
24: return CS

Figure 7.10). For each rule, we check whether all of its conditions are met either
by the attributes of the corresponding context object (for the <contextAttribute>=
<value> conditions), by the currently entered values in the UI, or by the other
elements in the content support element (for the <interactionElement>=<value>
conditions). For example, in Figure 7.10 only the content support element C3 satisfies
the condition of rule r2. For all rules with satisfied conditions and whose conclusions
do not conflict with the already defined values of the content support element, a new
content support element is created containing all the information from the original
content support element augmented with the conclusions of the rule. In our example,
a new content support element C4 is created which contains all the information of
C3 augmented with the conclusion to="Frankfurt", i.e. with the additional element
(to,"Frankfurt"). After new content support elements are created, we again check

112 7. Content Support

Figure 7.10. Example calculation for content support

whether the conditions of further rules are satisfied and repeat this process until no
new content support elements can be found.
This augmentation of content support elements is also performed for all other

content support sources (Previous Usage and Semantics) by applying the global
rules. For example, if a content support element C={(from,"Frankfurt")} is com-
puted based on previous usage for our example in Figure 7.8, the global rule if
from="Frankfurt" then to="Darmstadt" is satisfied and a new content support
element C’={(from,"Frankfurt"), (to="Darmstadt")} is created.

7.4.5. Confidence in Content Support based on Relations

As stated in Equation (7.1), the confidence csupport for each content support element
is computed as

csupport = cdata ∙ crelation

The confidence cdata for each context object is provided by its context source, i.e.
the confidence in the context object if it is provided by the Context Server and its

7.5. Chapter Summary 113

relevance if it is gathered from the Current Context :

cdata =

{
cctx if context object provided by Context Server

ruser_ctx if context object provided by Current Context

For direct relations, crelation is given by the confidence in the link between context
and interaction element (90% for the example in Figure 7.8).
The confidence in a content support element C ′ which is derived from applying a

rule r on a content support element C is defined as:

csupport(C
′) = csupport(C) ∙ crule(r)

crule denotes the confidence value which is associated with rule r as described in
Section 7.4.3.

7.4.6. Summary

In this section, we presented how relations between context and application elements
can be learned from observation. We showed how the Apriori algorithm for mining
association rules has to be extended for context-aware IUIs. We evaluated which
interestingness measure is best suited for determining relevant rules for our case.
Further, we presented how (learned or modeled) direct relations and rules can be
used for providing content support. To our knowledge this is the first approach which
is able to consider arbitrary context information for providing content support.

7.5. Chapter Summary

In this chapter, we presented three approaches how content support can be generated
to facilitate entering information for the user. At first, we showed how this support
can be provided based on previous usage of the application. Then we presented a
novel approach which utilizes the semantics of UI and context information, which is
contained in their textual descriptions, to determine which context information can
be suggested as input to the user. The algorithm does not require any pretagging
or training data. Thus, it can be applied for generating content support for any
application right at the first usage. Finally, we presented how modeled relations
between context and application elements can be used for providing content support
and how new relations can be learned from observation.

8
Navigation Support

AUGUR is able to support the user’s navigation in three different ways: (i) guiding
her through an application, (ii) providing navigation shortcuts to other applications,
and (iii) generating a reduced version of a UI for ubiquitous usage. In this chapter,
we present the algorithms for these three navigation support types. For guiding the
user, we need an algorithm to predict the next relevant interaction element. For
that purpose, we developed a novel sequence prediction algorithm FxL (Section 8.1).
In Section 8.2, we present how navigation shortcuts triggered by context events are
realized in AUGUR and how new shortcuts are learned from observing the user.
Section 8.3 introduces a novel approach for generating a scaled down version of a UI
adapted to the user’s current interactions.

8.1. Guidance

Guidance aims at helping the user navigate through an application by highlighting
the next relevant interaction element (see Figure 8.1 for an example). This is espe-
cially useful when navigating in large menu structures or for novice users. It reduces
the cognitive load of the user by helping her to focus on the important parts of the
interface. For being able to guide the user, we need an algorithm that can predict
the next user action, a so-called sequence prediction algorithm (SPA). The predic-
tion is thereby based on the user’s past behavior. In order to guide novice users, the
prediction can be based on the past behavior of an expert user.

In this section, we give an overview of statistical methods for sequence prediction
that can be applied without any prior task knowledge. We give formal definitions of
state-of-the-art SPA algorithms, and then present our own approach. We show that
it outperforms existing approaches regarding its prediction accuracy. Further, we
compare the best performing algorithms with respect to the required memory and
processing time, as those factors are of great importance when used on small mobile
devices, and show that the FxL algorithm is also superior to related approaches in
this respect.

116 8. Navigation Support

Figure 8.1. Example for guiding the user in a menu structure

8.1.1. Sequence Prediction

Algorithms for sequence prediction were mainly developed in the area of data com-
pression. IUIs also make use of such predictions for facilitating interaction (e.g. in
an intelligent home environment (Gopalratnam and Cook, 2007)) or for assisting the
user by giving explanations (e.g. adaptive tutoring system (Künzer et al., 2004)).
The problem of predicting the next symbol (representing a user action) in an input

sequence can be formally defined as follows:

Sequence Prediction Algorithm (SPA): Let Σ be the set of possible
input symbols and let A = a1 . . . an, with aj ∈ Σ, be a sequence of input
symbols of which the first i symbols, that is a1 . . . ai, have already been
observed. An SPA decides at first whether it is able to make a prediction
and if so returns the probability for each symbol x ∈ Σ for x being the
next element in the input sequence. These values define a conditional
probability distribution P over Σ, where P (x|a1 . . . ai) is the probability
for the singleton subset of Σ containing x.

For applying an SPA for guiding the user, it has to satisfy certain requirements. At
first, it has to meet the requirements that we identified regarding the competence of
an IUI (see Section 2.3.1):

• R1SPA (few usage data): An SPA for context-aware IUIs should be able to
cope with few usage data.

• R2SPA (changing user behavior): An SPA for context-aware IUIs should
adapt to changing user behavior.

Further, the algorithm needs a high applicability. For example, in a mobile setting,
it is not feasible to display all available interaction elements on the small screens

8.1. Guidance 117

of mobile devices. Thus, we want to reduce complex interfaces to the interaction
elements that are most relevant. In such a setting, we need sequence prediction
algorithms with a high applicability. Thus, we formulate R3SPA as follows:

• R3SPA (high applicability): An SPA for context-aware IUIs should have
high applicability values.

Of course, the algorithms should also provide very accurate results

• R4SPA (high accuracy): An SPA for context-aware IUIs should provide high
accuracy values.

Finally, we also want to be able to run the algorithms on mobile devices with memory
and power restrictions.

• R5SPA (resource-conserving): An SPA for context-aware IUIs should be
fast and require few memory.

8.1.2. Existing Algorithms

In this section, we describe the four most prominent existing approaches of SPAs.
There are two ways of calculating the probabilities: on-demand or live. Algorithms
using the former method maintain a data structure to compute the probabilities.
They update the data structure after each symbol in the input sequence, whereas
the live algorithms directly update the probability distributions. In real-life settings,
the set of possible input symbols Σmay be unknown. We assume that the probability
of an unseen element is 0.

IPAM

The IPAM algorithm by Davison and Hirsh (1998) employs a first order Markov
model, i.e. it bases its predictions only on the last symbol in the input sequence.
IPAM maintains a list of unconditional probabilities Pipam(x), x ∈ Σ and a table
of conditional probabilities Pipam(x|y), x, y ∈ Σ. The table of conditional probabil-
ities is directly used as probability distribution for predicting the next symbol, i.e.
P (x|a1 . . . ai) = Pipam(x|ai). This live algorithm updates its probability distribution
as follows after observing the symbol ai+1 in the input sequence:

P ′
ipam(x|ai) =

{
α Pipam(x|ai) + (1− α) if x = ai+1

α Pipam(x|ai) otherwise

The new probabilities P ′
ipam(x|y) are computed for all x ∈ Σ from Pipam(x|y) using

an aging factor α and thus meeting requirement R2SPA. The probabilities Pipam(x|y)
for y 6= ai are not updated and the same equation holds for the unconditional prob-
abilities. If a symbol y was observed for the first time, its conditional probability
distribution is initialized with Pipam(x|y) = Pipam(x) for all x ∈ Σ and its uncondi-
tional probability is initialized with 0 before updating the probabilities as above.

118 8. Navigation Support

ONISI

Gorniak and Poole (2000) argue that the last action does not provide enough infor-
mation to predict the next action. Hence, they build an on-demand prediction model
called ONISI that employs a k-nearest neighbors scheme. They consider not only
the actions performed by the user, but also the corresponding user interface states.
They compute a probability distribution according to the k longest sequences in the
interaction history that match the immediate history. Gorniak and Poole found that
k = 5 was sufficient to gain optimal results in their example of a Web application (for
learning AI concepts). However, some actions are strongly correlated to the state in
which they are performed, but do not belong to long sequences. To account for this
fact, Gorniak and Poole weigh off the probability distributions determined by the
current state and by the longest sequences. For that purpose they use a weighting
factor β.

Ponisi(x|(s1, a1) . . . (si, ai)si+1) =

β
l(si+1, x)

∑
y l(si+1, y)

+ (1− β)
fr(si+1, x)

∑
y fr(si+1, y)

Thereby, l(s, a) returns how often the state action pair (s, a) occurred after the
longest k sequences that match the recent interaction history. In contrast, fr(s, a)
reflects how often action a occurred in the interface state s.

Jacobs Blockeel

Jacobs and Blockeel (2002) claim that the longest sequence in the interaction history
which matches the immediate interaction history is not always the best choice for
determining the probabilities of the next symbol, and that the ideal length cannot
be known in advance. Their live algorithm builds upon IPAM, but allows longer
premises in the table of conditional probabilities. For that purpose, they add a step
that is performed only after a correct prediction was made. If the algorithm made
a correct prediction for ai+1 after observing the sequence A = a1 . . . ai, new entries
for every C that is suffix of A with Pjb(x|C) > 0 are added to the probability table.
Let L be the longest suffix of the concatenation C ◦ ai+1 for which already an entry
Pjb(x|L) > 0 exists. This probability distribution is taken as the best estimation of
the new probabilities. Let Pjb be the probabilities that result after the IPAM update
step. Next the probabilities for all new premises C ◦ ai+1 are computed as

P ′
jb(x|C ◦ ai+1) = Pjb(x|L).

So the algorithm does not rely on a fixed order Markov model, but uses a mixed
order approach to compute the probability distribution of the next element. Using
the above equations, the sum of the probabilities over Σ is not always 1 and a
normalization has to be performed.

8.1. Guidance 119

ActiveLeZi

Another on-demand algorithm that considers several Markov models is ActiveLeZi
(Gopalratnam and Cook, 2007). It stores the frequency of input patterns in a trie
according to the compression algorithm LZ78, but uses a variable length window of
previously-seen symbols. The size of the window grows with the number of different
subsequences seen in the input sequence. When a new sequence is observed, which
is not yet stored in the database, the window size is increased accordingly if the se-
quence length exceeds the size of the current window. Let sufl be the suffix of length
l + 1 of the immediate interaction history A, that is ai−l . . . ai. The probabilities are
recursively defined as follows:

P 0
alz(x|A) =

fr(x)
∑

y∈Σ fr(x ◦ y)

P l
alz(x|A) =

fr(sufl ◦ x)
fr(sufl)

+
fr(sufl)−

∑
y∈Σ fr(sufl ◦ y)

fr(sufl)
P l−1

alz (x|A)

Thereby, fr(x) returns the frequency of the input pattern x as stored in the trie.
The probability distribution that is finally returned by ActiveLeZi is P k

alz where k is
the current size of the window.

8.1.3. FxL

We developed an algorithm using a mixed-order Markov model which is able to cope
with changing user behavior. The presented algorithm builds on the KO algorithm
(Künzer et al., 2004), but extends it with aging to meet R2SPA. Further, the KO
algorithm does not achieve high applicability values as it takes only frequencies of
subsequences into account that have a minimal support in the input sequence, thus
violating R4SPA.
The FxL algorithm operates on the Usage Model as presented in Section 6.2.1.

The Usage Model stores an n-gram trie with frequencies fr(a1...ai) of the different
input sequences a1...ai. fr(a1...ai) reflects how often a sequence a1...ai has already
been observed, whereby the influence of older sequences is decayed with an aging
factor α. To reduce the amount of data that needs to be stored and processed, only
sequences of a length up to a specified value k are taken into account.
For each symbol x ∈ Σ, we compute a score(x) by adding the absolute frequencies

of x succeeding any suffix (up to length k− 1) of a1...ai. As the longer suffixes yield
more reliable results than the shorter ones, the frequencies are assigned a weight
which corresponds to the length j of the suffix that is considered. Thus, the score is
computed as follows:

score(x) =
k−1∑

j=1

j ∙ fr(ai+1−j ...ai ◦ x)

120 8. Navigation Support

We call this approach FxL as the score for a symbol is calculated by multiplying
the frequency (F) of the symbols with the length (L) of their preceding suffixes. As
the scores for the symbols can sum up to a value greater than 1, they have to be
normalized to result in probability values P (x|a1...ai) ∈ [0, 1]:

P (x|a1...ai) =
score(x)

∑
y∈Σ score(y)

(8.1)

8.1.4. Confidence in Guidance

The confidence csupport in guidance support based on a sequence prediction algorithm,
is given by its probability, i.e. for using FxL

csupport(x) = P (x|ai+1−k...ai)

8.1.5. Evaluating Sequence Prediction Algorithms

In order to determine which of the presented algorithms is best suited for guiding the
user in context-aware IUIs, we already compared the algorithms regarding whether
they are able to adapt to changing user behavior (R2SPA). Further, we have to
evaluate their performance regarding the amount of required training data (R1SPA),
the applicability (R3SPA) the accuracy (R4SPA) of the algorithm, and the required
resource consumption (R5SPA). In this section, we point out how the accuracy and
applicability of an algorithm can be computed and which factors, beside the available
data, has to be taken into account.
In the literature, two measures are used to compute the accuracy of an SPA al-

gorithm: prediction accuracy prac and prediction probability prp. Albrecht et al.
(1998) state that the prediction probability provides finer-grained information about
the performance of an algorithm than the prediction accuracy, but that both mea-
sures produce generally consistent assessments. Both measures are computed by
assigning a score to every prediction made by the algorithm and averaging over the
number of predictions made by the algorithm, but they differ in the way the score is
computed. prac and prp is defined as follows for the input sequence a1...an:

prx(a1...an) =
1
m

n−1∑

i=0

evalx(a1...ai, ai+1)

wherem (≤ n) is the number of predictions made and evalx is the evaluation function
that returns the value for a single prediction (it returns 0 if no prediction was made
by the algorithm). The evalx function thereby differs for the two metrics:

• The prediction accuracy evalac considers only the symbols which are predicted
with maximal probability. We define the set Â as the set of all these symbols:
Âi+1 = {x ∈ Σ : ∀y ∈ Σ.P (x|a1 . . . ai) ≥ P (y|a1 . . . ai)}. The evalac function
for the prediction accuracy then returns a value reflecting whether the actual

8.1. Guidance 121

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

threshold

applicability
precision

Figure 8.2. Applicability and pre-
cision for different confidence
thresholds24

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 2 4 6 8 10 12 14

pa
rt

iti
on

 o
f d

at
a

[%
]

length of repeating sequence

Word
XD

Greenberg

Figure 8.3. Distribution of repetitive
sequences for the three real
datasets used in the evaluation

next symbol ai+1 is among these values Âi+1. Thus, evalac is 0 if ai+1 /∈ Âi+1

otherwise it is computed as evalac(a1...ai, ai+1) = 1
|Âi+1|

.

• In contrast, the evalp function for the prediction probability rates with which
probability the correct symbol was suggested, no matter if it has been assigned
a maximal probability or not: evalp(a1...ai, ai+1) = P (ai+1|a1...ai).

The applicability ap of an algorithm is defined as the ratio of input symbols the
algorithm was able to make a prediction for: ap = m/n.
As the algorithms are often evaluated on datasets containing the input sequences

of several users, the results have to be averaged over all users. This can be done
by computing the average over the results of all users weighing every user equally,
independent of the length of the corresponding sequence (macro-average), or by
averaging over all data (micro-average), emphasizing frequent users.
In order to judge the accuracy and applicability of the algorithm in different condi-

tions, we need to evaluate the algorithms depending on several parameters influencing
their performance. The most important parameters are:

1. dataset size available for training (referring to R1SPA)

2. distribution of repetitive sequences: We call a sequence repetitive if it is
not part of a longer repetitive sequence and has a minimal support of s, i.e. it
occurs at least s times in the corresponding dataset. The parameter s can be
a constant value or defined relatively to the dataset size.

3. noise in the repetitive sequences: Noise is introduced in a repetitive se-
quence if the user alters the sequence of actions. However, to measure noise
the repetitive sequences have to be known in advance.

122 8. Navigation Support

To facilitate the comparison of the different algorithms, it is useful to compile the
resulting performance metrics (pr and ap) in a single metric. One possibility is to
combine the applicability ap and prediction quality pr in a single measure, compa-
rable to the F -measure for precision and recall values. As one of our requirements
is high applicability, we decided to use a fixed applicability value to compare the
results regarding their prediction quality, and only use ap as additional parameter.
For measuring the prediction accuracy and prediction probability for a given applica-
bility, several (ap, pr) pairs have to be computed to infer the pr value corresponding
to the specified ap value from them. The (ap, pr) pairs can be obtained by evaluat-
ing the algorithm using several thresholds for the reported predictions. This means
that only predictions are taken into account which have a probability above this
threshold. We assumed (and also found) that a higher threshold leads to a decrease
in applicability and to an increase in the prediction accuracy of the algorithm (see
Figure 8.2). The required pr value for the desired applicability is finally computed
by linear interpolation of the (ap, pr) values. This approach is thus independent of
the actual threshold used and allows for a fair comparison between the algorithms.

8.1.6. Evaluation

For the evaluation of the SPAs, we used three datasets (Word, XD, and Greenberg)
containing real usage data. The Word dataset contains logs of MS Word usage25

described in (Linton et al., 2000). The Greenberg dataset (Greenberg, 1988) is
widely used in the literature, and contains more than 225,000 UNIX commands from
168 users divided into four categories depending on their computer experience. The
CrossDesktop26 dataset (abbreviated XD) contains log data from a Web application
for managing files and emails. It contains about 200,000 requests from 37 users, where
the usage varies heavily between the different users. Figure 8.3 shows the sequence
distribution for the real datasets Word, XD, and Greenberg used in our experiments
(whereby we used a minimal support s of 5). Additionally, we generated synthesized
datasets to evaluate the algorithms with respect to the parameters “distribution of
repetitive sequences” and “noise in repetitive sequences” that cannot be varied in
datasets containing real usage data.
We chose to macro-average the results for the different users because in our appli-

cation domain it is more important to optimize the results for the average than for
the frequent user. We only used prediction accuracy prac as evaluation metric for
presented results, because we are more interested in the prediction with the high-
est probability than in its actual probability value. However, we yield consistent
results if we use prediction probability prp, or if we micro-average the results. As
discussed in Section 8.1.5, we analyze the performance of the algorithms regarding

24The precision values for the threshold 100% are not shown because hardly any predictions are
made in this case. For that reason, the corresponding precision value is very unreliable and
fluctuates heavily.

25http://www.cs.rutgers.edu/ml4um/datasets/
26http://www.crossdesktop.com/

http://www.crossdesktop.com/
http://www.cs.rutgers.edu/ml4um/datasets/

8.1. Guidance 123

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 2 3 4 5 6

pr
ed

ic
tio

n
ac

cu
ra

cy
 [%

]

k

Word
XD

Greenberg

Figure 8.4. Evaluation over the maximum length k of considered suffixes for the
three real datasets (without training data)

the four parameters (i) dataset size available for training, (ii) distribution of repet-
itive sequences, (iii) noise, and (iv) applicability. In the presented results, we used
applicability levels of 90% if not stated otherwise.

Algorithms For most algorithms, we used the configuration which was empirically
determined by the authors, as we found that this led to good results on a small
training dataset. This means, we used α = 0.8 for IPAM, β = 0.9 and k = 5 for
ONISI, and α = 0.9 for FxL. For the FxL algorithm, we use k = 5 as the maximum
length of considered suffixes, but we found that the algorithms already reach their
optimum with k = 3 or k = 4 (as can be seen in Figure 8.4) and stay at that level
for greater k. For the evaluation, we have to limit the ONISI algorithm to a single
interface state, as the real datasets used in the experiments have no interface states
and no restriction for the order of actions.

Dataset size At first, we calculated the average prediction accuracies for the differ-
ent algorithms depending on the dataset size. Thereby, we included all predictions
in the performance evaluation (no training data). As the results in Figure 8.5 show,

Algorithm Prediction Accuracy [%]
Word XD Greenberg

FxL 50.0 58.6 43.8
ActiveLezi 47.9 56.7 41.8

IPAM 49.0 47.6 38.7
Jacobs Blockeel 48.3 52.2 41.9

ONISI 49.7 51.0 38.5

Table 8.1. Macro-average prediction accuracy prac for an applicability of 90% and
500 symbols (without training, best values in bold and blue)

124 8. Navigation Support

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

100 300 500 700

pr
ed

ic
tio

n
ac

cu
ra

cy
 [%

]
dataset size

FxL
ALZ

IPAM
JB

ONISI

(a) Word dataset

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

100 300 500 700

pr
ed

ic
tio

n
ac

cu
ra

cy
 [%

]

dataset size

FxL
ALZ

IPAM
JB

ONISI

(b) XD dataset

 0.25

 0.3

 0.35

 0.4

 0.45

100 300 500 700

pr
ed

ic
tio

n
ac

cu
ra

cy
 [%

]

dataset size

FxL
ALZ

IPAM
JB

ONISI

(c) Greenberg dataset

Figure 8.5. Performance on the different dataset with respect to dataset size

FxL performs best on all datasets followed by ActiveLeZi (ALZ). The mixed-order
Markov models (FxL, ALZ, and Jacobs Blockeel (JB)) outperform the other ap-
proaches on all datasets. Their accuracies increase with the dataset size, and reach
a relatively stable level when considering more than 500 symbols. Table 8.1 list the
prediction accuracy for all algorithms for 500 symbols.

Applicability We calculated prediction accuracy and applicability pairs or the dif-
ferent datasets as described before. Thereby, we used 20% of the data for training.
Figure 8.6 shows the result for the XD dataset. The charts for the Greenberg and
Word dataset are very similar to the chart for the XD dataset. For that reason,
they are omitted in this thesis. The figure shows that the prediction accuracy prac

decreases with growing applicability as was expected. FxL again outperforms the
other algorithms followed by ActiveLeZi.

8.1. Guidance 125

Distribution of repetitive sequences In Section 8.1.5, we already pointed out that
the three datasets differ in the underlying sequence distributions. To analyze the
algorithms regarding this parameter, we created synthetic datasets varying the se-
quence distribution with a dataset size of 500 symbols. Figure 8.7 shows the av-
erage prediction accuracies over 80 randomly generated datasets. Thereby, the x-
coordinate represents the sequence lengths that were repeated most often in the
dataset. The result is similar to the previous ones: The algorithms FxL and Ac-
tiveLeZi outperform the other algorithms, and the mixed-order algorithms perform
better than the other ones.

Noise At last, we have to consider the parameter noise for the evaluation. Thus,
we also created synthetic datasets that vary in their noise level. We used three oper-
ators to insert noise: an element from the original sequence could be (i) left out, (ii)
repeated up to 5 times, or (iii) exchanged with the following element. The versions of
the dataset differed with respect to the probability with which a noise operator was
applied on each element in the dataset. The results in Figure 8.8 show the decay in
the algorithms’ performances with rising noise levels and confirm our former results:
FxL and ActiveLeZi perform better than the other algorithms.

Storage and Computational Costs As stated in R5SPA, we also have to consider
the storage and computational costs of the algorithms. We compared these factors for
ActiveLeZi and FxL, as they provided the best results concerning the accuracy under
the different conditions. The storage costs of ActiveLeZi grow with the dataset size,
whereas the storage costs for the FxL algorithm are limited by the specified k and
the amount of possible user actions (|Σ|). Table 8.2 lists the average costs of the two
algorithms which performed best on the three real datasets, i.e. FxL and ActiveLeZi.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ed

ic
tio

n
ac

cu
ra

cy
 [%

]

applicability [%]

FxL
ALZ

IPAM
JB

ONISI

Figure 8.6. Prediction accuracy of the XD dataset for different levels of applicability
when using 20% training data

126 8. Navigation Support

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 4 6 8 10 12 14

pr
ed

ic
tio

n
ac

cu
ra

cy
 [%

]

Most frequently repeating sequence length

FxL
ALZ

IPAM
JB

ONISI

Figure 8.7. Performance regarding
sequence length

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5

pr
ed

ic
tio

n
ac

cu
ra

cy
 [%

]

noise

FxL
ALZ

IPAM
JB

ONISI

Figure 8.8. Performance of the al-
gorithms regarding different
noise levels

Thereby, “stored keys” reflects the keys contained in the main data structure used by
the algorithm. We list values for the FxL algorithms with k = 3 (FxL:3) and k = 6
(FxL:6). “Computing time [ms]” refers to the time which is needed in average for
a single prediction for the whole dataset. The results show that the FxL algorithm
uses less resources and can perform the computation more quickly than ActiveLeZi.

G
re
en
b
er
g

X
D

W
or
d

prediction FxL 46.2% 59.7% 51.4%
accuracy ALZ 42.7% 56.0% 48.5%

FxL:3 258 227 111
stored keys FxL:6 2061 1599 949

ALZ 2706 2743 1955

computing FxL 0.58 0.89 0.86
time [ms] ALZ 1.50 4.87 3.18

Table 8.2. Average performance values for the three datasets containing real usage
data. The prediction accuracy refers to the overall accuracy on the datasets
with 90% applicability and when using 20% of the data for training.

8.1. Guidance 127

8.1.7. Summary

In this section, we compared several sequence prediction algorithms which are re-
quired for guiding the user in context-aware IUIs. We presented a novel algorithm
called FxL based on mixed-order Markov models which uses aging to take changing
user behavior into account, thus satisfying R2SPA. We showed that FxL outperforms
the other approaches with respect to its accuracy (R4SPA) under various conditions
(varying applicability, dataset size, sequence distribution, and noise level). FxL fur-
ther provides the best accuracy values while maintaining high applicability (R3SPA).
The algorithm shows the best results even for small dataset sizes (R1SPA). We fur-
ther compared the computational time and memory consumption (R5SPA) of FxL
with the one of its closest competitor, ActiveLeZi. We showed that FxL is faster and
more resource-conserving than ActiveLezi, and thus the ideal candidate for guiding
users in context-aware IUIs.

128 8. Navigation Support

8.2. Navigation Shortcuts

The goal of navigation shortcuts is to support the user in switching to an application
that provides information which might be of interest for a user in a given situation
(see for example Figure 8.10). As discussed in Section 4.3.3, a navigation shortcut
can be triggered

• by external events, e.g. if someone calls, the user might want to switch to
the contact page of this person, or

• by information present on the current UI, e.g. if an address is shown, we
can suggest a shortcut to a map application for looking up this address.

The relations between context information and UIs are modeled via data relations
between context and state nodes in the application model. An example of such an
application model can be found in Figure 8.9. As soon as an event of the given
context type (here “Phone Call”) occurs, a navigation shortcut to the UI associated
with the corresponding state node is provided to the user. In case the context node
specifies filters, the navigation shortcut is only triggered if the event matches the
filters. For example, if a navigation shortcut should only be provided for incoming
phone calls from SAP.

8.2.1. Learning Navigation Shortcuts

For learning which navigation shortcuts should be provided to the user when an
event occurs, we need a log Levent to store the events and all navigation shortcut
candidates. The log Levent contains a set of eventlogs Ei = {ei, sj , sk...} with ei

being the context type of an event (e.g. “Phone Call”) and si the id of a navigation
shortcut candidate, i.e. the id of a UI (represented as the id of its state in the
application model). We consider all UIs as navigation shortcut candidates to which
the user navigated after the event was raised, because these UIs are likely to be in
a causal relation to the event. As the probability of a causal relation between an

Figure 8.9. Example ATML model
which contains a data relation
to be used for providing navi-
gation shortcuts

Figure 8.10. Example of a naviga-
tion shortcut

8.2. Navigation Shortcuts 129

event and the navigation to a UI decreases over time, we limit the learning process
to the next n UIs which are visited by the user within m minutes. For the AUGUR
prototype, we empirically determined n = 3 and m = 5 to be suitable values.
We define the confidence in a relation between an event e and a UI s as:

crelation(e, s) =
|{X ∈ Levent : {e, s} ⊆ X}|

max{|Levent|,minnavigation}

Therebyminnavigation is used to adjust the influence of relations with a low (absolute)
support. In case of a high minnavigation value, an event-state combination has to be
observed rather often to be suggested as navigation shortcut to the user.
For learning relations, AUGUR determines all {e, s} combinations with

crelation(e, s) > thighlight. All combinations with a confidence below this threshold
would never be considered for a navigation shortcut as their confidence is too low.
Thus, they do not need to be included in the application model. For each event-value
pair, AUGUR checks whether the corresponding relation is already contained in the
application model. If this is the case, AUGUR updates the confidence in the relation
accordingly, otherwise it adds a new relation to the application model.

8.2.2. Confidence in Navigation Shortcuts

The confidence in the navigation shortcut support csupport is computed analogue to
csupport for the content support (see Section 7) as csupport = cdata ∙ crelation, because
it also depends on the confidence in the event (cdata) and in the relation (crelation).
As the data is always provided by the Context Server, cdata = cctx. If the relation
between context and UI was modeled by the end-user or an application developer,
crelation = 1. The confidence in learned relations is determined by the learning
algorithm as described in the previous section. Thus,

csupport =

{
cctx if relation between UI element and context is modeled

cctx ∙ crelation if relation between UI element and context is learned

8.2.3. Summary

In this section, we presented how context is used by AUGUR to provide navigation
shortcuts. We further pointed out how new relations between context and applica-
tions can be learned to provide new navigation shortcuts.

130 8. Navigation Support

8.3. Interface Adaptation

The interaction costs for mobile usage of applications are usually much higher than
for traditional desktop settings. One possibility to increase the usability in these
settings is to decrease the required amount of interactions, i.e. key presses or scroll
movements to fulfill a task with the application and thus to facilitate the navigation.
This can be achieved by reducing the UI to the most important parts. To identify
the most relevant interaction elements, we developed a novel algorithm FxL* which
predicts the most relevant interaction elements based on the environmental context
(i.e. the device used) and the user context (i.e. how she usually interacts with an
application).
In the following, we at first list the requirements for a context-aware adaptation

process (Section 8.3.1), and give an overview of the state-of-the-art approaches for
adapting UIs in Section 8.3.2. In Section 8.3.3, we present the overall adaptation
process applied by AUGUR. Section 8.3.4 introduces the FxL* algorithm for com-
puting the relevant interaction elements for that purpose, based on the device used
and on the user’s current situation (i.e. the user context). In Section 8.3.5, we com-
pare this approach to approaches that do not take the user or her current situation
into account.

8.3.1. Requirements

For context-aware interface adaptation, the same requirements apply as identified in
Section 3.1, i.e.

R1 (Awareness of user context and environmental context) An ideal context-
aware interface adaptation should be able to consider all kinds of user and envi-
ronmental context for adapting the user interface in the optimal way. Thereby,
device information is one of the most important environmental context infor-
mation that needs to be considered.

R2 (Cope with error-prone context) An ideal context-aware interface adapta-
tion shall be able to cope with the error-prone nature of context information.

R3 (Application-independence) An ideal context-aware interface adaptation
should be able to facilitate the interaction for all kinds of applications.

R5 (Support for legacy applications) An ideal context-aware interface adap-
tation should be able to provide support for existing applications and gather
information from the user’s interaction with them.

R6 (Involving end-user) An ideal context-aware interface adaptation should en-
able the end-user to specify additional information which need to be considered
in the adaptation process.

R7 (Learning capabilities) An ideal context-aware interface adaptation should
learn how to adapt the user interface from observing the user’s interactions.

8.3. Interface Adaptation 131

The only requirement which does not need to be addressed for interface adaptation
is R4 (Support across application boundaries), because there is no need to transfer
information between applications for adapting the interface.

8.3.2. Related Work

The most common approach to generate adapted UIs is the usage of a platform
independent UI description language. This abstract UI description contains all
information necessary to transform it to a concrete UI for a given device.
Another approach is to specify adaptation rules for concrete UIs. For example,

to increase the size of all buttons, or to display only the five most relevant interaction
elements.
In the following, we give an overview of the most important related work in these

two areas. Table 8.3 summarizes which requirements are satisfied by the different
approaches. Thereby, simple user profiles are not considered as user context.

Platform independent languages

The goal of automatic device adaptation using platform independent languages is to
save development costs by automatically transforming a single UI description into
concrete UIs on a multitude of platforms. Abrams et al. (1999), Puerta and Eisen-
stein (2002), and Ziegert et al. (2004) propose notations that need to be instantiated
into a concrete UI for each target platform27.
XWeb (Olsen et al., 2000) introduces a device independent representation for UI

instances to reduce the modeling effort. In addition to device independence, Calvary
et al. (2003) aim at modality independence. For that reason, they introduce further
layers of abstraction. Most of these languages support the usage of environmental
context information for choosing the most appropriate UI representation (Limbourg
and Vanderdonckt, 2004; Vanderdonckt et al., 2008). However, the user context is
restricted to static user profiles like the user’s skills and preferences (R1: -). We
subsume all these approaches under the term MDA (model-driven architectures) in
Table 8.3.
A different approach is taken by the SUPPLE system. Gajos and Weld (2004)

consider interface adaptation as an optimization problem. For that purpose, they
take a functional UI description, a user model as well as the device context into
account (R1: +). The adaptation is performed by optimizing a cost function, which
is based on the predicted average costs for interacting with a UI on a device for
a given user. These interaction costs are thereby learned from observing the user
(R7: +).
As the platform independent languages only require a model of the application

for the adaptation process, these approaches can be applied to different applications
(R3: +). However, they introduce a high modeling effort. Further, existing applica-
tions usually do not provide a separate abstract UI description which can be used

27See Souchon and Vanderdonckt (2003) for a more detailed survey of such languages.

132 8. Navigation Support

A
w
ar
en
es
s
of
us
er
co
nt
ex
t*
(R
1)

A
w
ar
en
es
s
of
en
vi
ro
nm
en
ta
l
co
nt
ex
t
(R
1)

C
op
e
w
it
h
er
ro
r-
pr
on
e
co
nt
ex
t
(R
2)

A
pp
lic
at
io
n-
in
de
p
en
de
nc
e
(R
3)

Su
pp
or
t
fo
r
le
ga
cy
ap
pl
ic
at
io
ns
(R
5)

In
vo
lv
in
g
en
d-
us
er
(R
6)

L
ea
rn
in
g
ca
pa
bi
lit
ie
s
(R
7)

Platform independent
languages

MDA • •
SUPPLE • • • •

Adaptation rules

Highlight • • •
Palio • • •
MICA • ◦ •
UIDE • ◦ •
Findlater • ◦ •
Smyth • • • •

Table 8.3. Overview of the state-of-the-art approaches for interface adaptation with
respect to the identified requirements (* using static user profiles is not consid-
ered as user context, ◦: limited support, MDA subsumes several systems with
same characteristics)

to create a UI for interacting with the application. Thus, platform independent lan-
guages cannot be applied to existing applications without modifying the application
itself (R5: -).

Adaptation rules

In contrast to platform independent languages, systems that base on adaptation
rules operate on the concrete (platform-dependent) user interface level, and apply
adaptations on it. The Highlight system by Nichols et al. (2002) enables the end-
user to specify how the UI of a web application should be reduced to a mobile version.
For that purpose, the user can choose which parts of the UI should be displayed.
However, this approach does neither consider the environmental context (especially
the device context) nor the user context (R1: -). However, it enables the end-user
to control the adaptation (R6: +).

8.3. Interface Adaptation 133

The PALIO framework (Stephanidis et al., 2004) is targeted to information seek-
ing tasks. It automatically adapts the content and the UI to the user and de-
vice context. However, the user context is again restricted to simple user profiles
(R1: +). The PALIO framework transforms the UI into an XML representation
(if the UI is not already available as XML representation). Thus, it is application-
independent (R3: +). Adaptation rules are then applied to this representation. The
UI is transformed into a representation understandable by the user’s device (e.g.
HTML, WML) and sent to the user.
Several approaches exist that consider also user context information beyond profile

information. However, they only focus on desktop settings or on a few predefined
devices, thus they are not able to incorporate the environmental context, especially
not the device context (R1: -). For example,MICA (Mixed-Initiative Customization
Assistance) (Bunt et al., 2007) relies on an algorithm to suggest customizations of
the UI based on an automatic analysis of interaction costs. The user can then easily
switch between the full UI version and her personalized version. UIDE (Sukaviriya
and Foley, 1992) suggests the reordering of menu items based on evaluating possible
arrangements against a keystroke performance model considering the user’s previous
interactions.
Findlater and McGrenere (2008) add a personalized section to the menubar

of Microsoft Office that contains only options that are most relevant given the user’s
dynamic properties (e.g. the most recently used options). However, as they only used
two predefined devices to compare the users’ performance for this kind of adaptation
for desktop and for mobile devices, their approach does not automatically adapt to
the currently used device (R1: -). However, like the two previous approaches, it
enables the user to ignore the provided interface adaptations, thus accounting at
least a little for the unreliability of the context information (R2: o). Further, these
approaches depend on a specific application (R3: -).
Smyth and Cotter (2002) optimize the navigation by adapting the navigation

structures for wireless portals, especially for WAP portals. Thereby, they restrict
themselves to hierarchical applications, where every point in the application can
only be reached in a single way. However, these approaches in turn only optimize
for one device configuration. Thus they do not adapt to the environmental context
(R1: -).

Summary

Platform Independent Languages cannot be applied for AUGUR, as we want to pro-
vide support for arbitrary existing applications (R5 - Support for legacy applications).
Existing applications usually do not provide a separate abstract UI description which
can be used to create a UI for interacting with the application. For that reason, we
apply Adaptation Rules on concrete UI instances of the applications.
The user context used by existing approaches is often limited to static user prop-

erties, e.g. motor skill level or short sightedness. To our knowledge, there is no
approach that combines the adaptation to dynamic user context (like the user’s cur-

134 8. Navigation Support

Figure 8.11. Interface adaptation process of AUGUR

rent situation or which action she has executed at last) with the adaptation to the
device used. However, we state that considering the dynamic user context can en-
hance the adaptation process. This is also confirmed by our evaluation in Section
8.3.5. Especially for small screen devices, adaptation to the user’s dynamic context
is beneficial as was shown by Findlater and McGrenere (2008).

8.3.3. Adaptation Process

In this section, we present how AUGUR generates a reduced version of the UI which
is adapted to the user’s current needs. From observing the user, AUGUR has learned
how the user interacts with an application and has stored this information in the
usage models. This model is used for determining which elements are most relevant
for the user in her current situation. For that purpose, we developed the FxL*
algorithm as presented in the next section. It also considers the currently used device
by adjusting the amount of presented interaction elements to the available screen size.
However, there are also non-interactive elements that should be presented to the user,
e.g. the departure times for trains in our train booking example. This information
cannot be inferred from the usage model of the application. For that reason, we
introduced the UIContent nodes in the application modeling language (see Section
6.3) to annotate relevant non-interactive elements. On the one hand, this enables
the end-user to influence the adaptation process (R6: +). On the other hand, it
introduces additional modeling effort, because it is very difficult to automatically
identify the relevant non-interactive elements. However, this may be less important
in a ubiquitous computing environment as the feedback of the application may be
conveyed through the environment. For example interacting with a home control
system for changing the lighting condition gives implicit feedback by e.g. dimming
the light, thus making explicitly displayed feedback redundant.

8.3. Interface Adaptation 135

For generating the adapted UI, AUGUR at first determines which non-interactive
elements should be contained in that UI based on the application model. Then,
AUGUR calculates the most relevant interactive elements for the remaining space
using the FxL* algorithm. Further, an interaction element is added which enables
the user to trigger the calculation of the next interaction elements if not all relevant
interaction elements for a UI can be displayed at the same time. Finally, the auto-
matically generated UI always includes a link back to the non-adapted version of the
application. Thus, it does not hamper the normal usage of an application and copes
with the uncertainty of predictions based on context information in a limited way
(R2: o).
All the computed elements are then presented to the user. Thereby, AUGUR sup-

ports to render the UI in different representation languages like HTML or VoiceXML
depending on the interaction device used.
Figure 8.11 shows the overall adaptation process applied by AUGUR. The upper

part shows the original Web interface of the application, and how it is rendered on
mobile devices. Most interaction elements, including the input elements for looking
up a train connection, get more difficult to reach. The lower part shows how AUGUR
has tailored the UI of this application to the needs of an exemplary user which heavily
reduces the interaction costs for searching for a train connection.

8.3.4. FxL*: Prediction Algorithm

In Section 8.1, we presented our sequence prediction algorithm FxL which is able to
predict the next element in a sequence. However, for reducing the UI to the most
relevant functionality it is not sufficient to predict only the next action, but we need
to know the next n actions the user will most probably perform. Thereby, n depends
on the available display size and on how much additional information is presented,
i.e. how many interaction elements can be displayed. For example, if the user always
interacts with an application by performing the actions a, b, and c in that order
–abbreviated as abc– FxL can only predict that the next action will be a. For that
reason, we extend the FxL algorithm as described in the following. The (simplified)
pseudo-code of the resulting algorithm called FxL* is illustrated in Algorithm 8.
We explain its behavior with a simple example (see Figure 8.12): The original UI

displays the interaction elements a,b,c, and d, and the user only has a very small
screen device for displaying n = 2 elements. The user trace is efd (e and f are
interaction elements of the preceding UI). This example is shown in Figure 8.12. To
determine which interaction elements should be displayed to the user, we at first use
FxL to compute the most probable next actions x1, . . . , xn for the recent interaction
history a1 . . . ai. In our example, the most probable next actions are a (70%), c (20%)
and b (10%). For every possible next action xj , we apply FxL again on every sequence
a1 . . . aixj . The resulting probabilities are multiplied by P (xj |a1 . . . ai), i.e. the
probability for xj succeeding a1 . . . ai, as the probability of an action cannot exceed
the probability of its preceding action. In our example, we apply FxL for the sequence
efda which returns a with probability 30% and b with a probability of 70%. Thus,

136 8. Navigation Support

Algorithm 8 FxL*

Purpose: Calculates the probabilities for all possible actions in the global variable
Q, if n interaction elements can be displayed
The global variable pmin thereby denotes the probability of the nth probable action,
i.e. the action with the minimal probability that would currently be displayed.

Input: a1...ai sequence of most recent actions
p parent probability (initialized with 1)
n number of elements to be displayed

procedure FxL* (a1 . . . ai, p, n):
P (x|a1 . . . ai)⇐ (a1 . . . ai)
for all x do

q(x)⇐ P (x|a1 . . . ai) ∙ p
Q(x)⇐max(Q(x), q(x))
update pmin

if q(x) > pmin then
FxL*(a1 . . . aix, q(x), n)

end if
end for

end FxL*

the probability that action a is performed as second activity is 30% ∙70% = 21% and
for action b the probability is 70% ∙ 70% = 49%. Further, the resulting probabilities
are merged with the probabilities calculated so far: If a probability was calculated for
an action that is already stored, the maximum probability of both actions is taken.

Figure 8.12. Example calculation of FxL* if two elements can be displayed. As
result the interaction elements a and b would be presented.

8.3. Interface Adaptation 137

In our example, we do not update the probability of a as 21% < 70%, but we update
the probability of b to 49%. This process is repeated until no action can be found
which has a higher probability than the elements that would be currently displayed.
In our example, the elements a and b would be displayed. As no action with a higher
probability can be found, the algorithm terminates.

8.3.5. Evaluation

To evaluate our interface adaptation approach, we compared it to other strategies,
which do not adapt to individual users or to their current situation. We compared
four adaptation strategies:

• The static strategy displays the interaction elements which were most fre-
quently used in average over all users. This strategy is optimal for a non
user-adapted interface, as it optimizes for the average user for all situations.

• The user-adapted strategy takes the individual user into account, displaying
the actions the user has used most often. However, the user’s current situation
reflected by the immediate interaction history is not considered.

• The situation-adapted strategy in contrast considers only the interaction his-
tory ignoring the individual user. In this strategy, we compute a single usage
model for all users, and apply the FxL* algorithm to predict the next actions
for each user.

• The FxL* strategy combines user- and situation-awareness by applying FxL*
on the interaction model learned for each individual user.

We applied every strategy to the three sets of real usage data that we also used in Sec-
tion 8.1.6: The Greenberg dataset (Greenberg, 1988) containing UNIX commands,
the CrossDesktop dataset (abbreviated XD) with log data from a web application
for managing files and emails28, and the Word dataset containing logs of MS Word
usage29. Device context was modeled by varying the amount of elements n that
can be displayed at the same time (corresponding to different display sizes). As
dependent variable, we counted how often the action that was actually performed
next (given by the usage log), was found among the elements that were currently dis-
played according to the adaptation strategy applied. The elements that are displayed
were recalculated whenever an action was requested that was not present among the
current elements.
All strategies operate incrementally and update their usage model after each ob-

served action. In Figure 8.13, the macro-averaged results over all user traces of the
three different datasets are shown30. Table 8.4 summarizes the results for n = 5.

28http://www.crossdesktop.com
29http://www.cs.rutgers.edu/ml4um/datasets/
30We use the macro-average as we do not want to emphasize frequent users.

http://www.cs.rutgers.edu/ml4um/datasets/
http://www.crossdesktop.com

138 8. Navigation Support

(a) Word dataset

(b) XD dataset (c) Greenberg dataset

Figure 8.13. The evaluation results for the (a) Word, (b) XD, and (c) Greenberg
dataset. For the ease of readability, we omitted the results for the situation-
adapted strategy in (b) and (c) as they run very similar to the static strategy.
The y-axis represents the ratio of how often the next user action was present
on the currently displayed adapted UI with the given adaptation strategy.

8.3. Interface Adaptation 139

Adaptation Strategy Prediction Accuracy [%]
Word XD Greenberg

FxL* 70.4 72.0 70.5
user-adapted 57.2 62.9 40.4

situation-adapted 57.2 63.0 40.6
static 57.5 63.2 39.8

Table 8.4. Evaluation results for n = 5 (best values in bold and blue)

In the Word dataset, the static strategy performs only slightly worse than the user-
adapted and situation-adapted strategy. In the other two datasets, we could not
even detect a difference between the user-adapted and situation-adapted strategy.
This indicates that the frequently used actions for the given datasets are the same
for most users, but that there are no global usage patterns which are valid for all
users. For the ease of readability, we therefore omitted the results for the situation-
adapted strategy in the graphs. The user- and situation-adapted FxL* strategy
clearly outperforms the three other strategies (the difference in the hit ratio ranges
for n ∈ [2, 10] from 6.0% to 27.1% for the Word dataset, from 25.3% to 30.2% for the
Greenberg dataset, and from 3.2% to 15.2% for the XD data). The hit ratio for the
FxL* strategy ranges from about 47% to 86% for all datasets (Word: 48% to 83%,
Greenberg: 47% to 83% and XD: 50% to 86%). This shows that it is important to
take the user and her current situation into account in order to generate an adapted
UI.
The actual benefit of user-adapted UIs over its unadapted counterparts can be

estimated by comparing the interaction costs for the two UIs. The interaction costs
comprise the amount of clicks, navigational movements, and keys that need to be
pressed in order to interact with an element. If the action the user wants to perform
next, is part of the currently displayed UI in p percent of all cases, the user has to
switch to the unadapted UI in 1− p percent of all cases. We define that the average
costs for using one of the n elements in the adapted UI and for switching to the
unadapted UI are ca. We further define that the average costs for selecting an action
in the unadapted version are cu. The values of cu and ca depend on the individual
user. The benefit b of using the adapted UI can be calculated as difference between
the average costs for interacting with the unadapted UI (cu) and the average costs
for the adapted UI. Thereby, the average costs for interacting with the adapted UI
is ca in p percent of all cases, and ca + cu in all other cases, i.e. ca for selecting the
link to the unadapted version and cu for performing the operation in the unadapted
UI. Thus, the benefit of using an adapted UI is defined as

b = cu − [p ∙ ca + (1− p)(ca + cu)] = p ∙ cu − ca

This means that using an adapted UI is beneficial (i.e. b > 0) if ca/cu < p. For
example the adaptation with FxL* in the Word dataset is beneficial for displaying
four elements, if ca/cu < 0.62, i.e. if cu > 1.61 ∙ ca. This value can easily be reached,

140 8. Navigation Support

as the average interaction costs ca for interacting with one of four elements is much
lower than the average costs cu for interacting with one of more than 100 elements
(or even 1000 for the Greenberg dataset).

8.3.6. Summary

In this section, we presented a novel approach to generate UIs that are adapted to
individual users and their current situation. In the evaluation, we proved our claim
that it is beneficial to adapt to the user and her current situation to provide the
best UI. As our approach also takes the device used into account, it considers the
user context as well as the environmental context (R1: +). To our knowledge, it
is the first approach based on adaptation rules which considers all of these factors.
AUGUR accounts for the unreliability of context information used in the adaptation
process in a limited way: AUGUR enables the user to switch back to the unadapted
version at all times (R2: o). The proxy-based architecture of AUGUR enables it
to generate adapted UIs for all kinds of existing form-based applications (R3: +,
R5: +). The end-user can influence which elements are presented in the UI by
stating this information in the corresponding application model (R6: +). Finally,
AUGUR learns which elements are most relevant for the user from observing her
interactions (R7: +). Table 8.5 summarizes the requirements met by AUGUR.
However, the presented approach is just a first step towards generating reduced

UIs which are adapted to the user’s current situation. We only adapt which elements
should be presented to the user and not how they should be represented. For exam-
ple, a voice user interface poses different requirements on the representation than a
graphical user interface. To provide an ideal UI, these requirements have to be taken
into account and the representation of the UI has to be adapted accordingly.

8.4. Chapter Summary

In this chapter, we presented algorithms for generating navigation support based on
context information. We introduced a novel algorithm for guiding the user through
an application and showed that it outperforms state-of-the-art approaches with re-
spect to accuracy and computational costs. Further, we illustrated how context
information can be used for triggering navigation shortcuts. Finally, we described
a novel approach for generating a reduced UI containing only the most important
elements. In contrast to existing approaches, it is thereby able to consider the user’s
current situation as well as the device used.

8.4. Chapter Summary 141

A
w
ar
en
es
s
of
us
er
co
nt
ex
t*
(R
1)

A
w
ar
en
es
s
of
en
vi
ro
nm
en
ta
l
co
nt
ex
t
(R
1)

C
op
e
w
it
h
er
ro
r-
pr
on
e
co
nt
ex
t
(R
2)

A
pp
lic
at
io
n-
in
de
p
en
de
nc
e
(R
3)

Su
pp
or
t
fo
r
le
ga
cy
ap
pl
ic
at
io
ns
(R
5)

In
vo
lv
in
g
en
d-
us
er
(R
6)

L
ea
rn
in
g
ca
pa
bi
lit
ie
s
(R
7)

Platform independent
languages

MDA • •
SUPPLE • • • •

Adaptation rules

Highlight • • •
Palio • • •
MICA • ◦ •
UIDE • ◦ •
Findlater • ◦ •
Smyth • • • •
AUGUR • • ◦ • • • •

Table 8.5. Comparison of AUGUR with state-of-the-art approaches for interface
adaptation with respect to the identified requirements (* using static user
profiles is not considered as user context, ◦: limited support, MDA subsumes
several systems with same characteristics)

9
User Study

In this chapter, we describe the setup and the results of a user study that we per-
formed for evaluating the impact of context-aware interaction support as presented
in this thesis on the usability of an application. For that purpose, we gathered data
for measuring all three aspects of usability as defined in ISO 9241 (2000): the user’s
efficiency, effectiveness, and user satisfaction. We put a special focus on whether er-
roneous support has adverse effects on these factors, as context information is usually
very error-prone.
In Section 9.1, we describe the experimental setup, and in Section 9.2 the gained

results. In Section 9.3, we summarize the results, and draw conclusions for the
further development of context-aware Intelligent User Interfaces.

9.1. Experiment

For evaluating the effects of context-aware interaction support, we use three settings:

• no support: no context-aware interaction support - the baseline UI

• correct: correct interaction support is provided by the UI

• erroneous: erroneous interaction support is provided by the UI to reflect the
worst case of using error-prone context information

The participants of the study were asked to perform the same task twice with
different settings, so we performed both, in-between and within subject testing of
different settings. Thereby, one setting was always the no support setting, because
we wanted to avoid that the users build up a mental model of the support (i.e. all
suggestions are correct/wrong) which is not valid for the second try.
In the user study, we focused on the Guidance and Content Support interaction

support types. Thereby, Guidance was only evaluated in form of highlighting in-
teraction elements and not in the form of automatically following links. Content
Support was investigated with both possible representations: as suggestions and as
automatically filling data.

144 9. User Study

Figure 9.1. Procedure of the user study

We chose the example task of booking a train ticket for a certain day and time. We
wanted to make sure that the users were unfamiliar with the specific look of the UI.
For that reason, we chose to create our own mock-up of a ticket booking application
(see Figures 9.3 and 9.6), instead of using an existing application. To reduce the
influence of other factors beside the interaction support itself, we used a simplified
version of AUGUR: It was not controllable by the user, did not learn, and did not
display the knowledge provenance or any hints on the confidence in the interaction
support.

Procedure The whole study was performed in German. Figure 9.1 provides an
overview of the procedure of the experiment. At first, a short welcome page explains
the task. The participants also had to answer some initial questions about general
internet experience and experience with online ticket booking tasks. Next, the user
had to complete the ticket booking task twice with different settings. To avoid dis-
tortion of the results for the second try, we used the HTML directive autocomplete
off in all form fields, disabling the browsers built-in filling function. After complet-
ing the task, the users were asked to fill out a small questionnaire asking them to rate
how helpful and how disturbing they perceived the UI on a Likert scale from 0 to 5.
They were also asked to rate if they would like to work with such a UI again, and how
disturbing they think such a UI would be in the long run. The questionnaire after
performing the task in a try with no support did not contain the questions about
the disruptiveness and helpfulness of the UI, because it confused participants in the
pre-study. They found these questions difficult to answer if no additional support
was provided. The German questions used in the questionnaires can be found in
Appendix A.2.

9.1. Experiment 145

Figure 9.2. Reminder for the task in German. English translation: Your task, from:
Darmstadt, to: Frankfurt, date: 26.07.2007, departure: 18:30 or later, Bahn
Card: BC50 2nd class, BC number: 912837465, Ticket: 1 grown-up 2nd class

Task The user had to enter data into three web forms for booking a train ticket.
The data which is needed for successful completion of the task was displayed next
to the form as an image (see Figure 9.2) to prevent the users from using copy and
paste. The first form required to enter the place of departure and the destination
into two text entry fields, to choose the year, month, day and time of travel, and
whether to treat this time as arrival or departure time into six drop down boxes (see

Figure 9.3. First form of the task

146 9. User Study

Figure 9.4. Suggesting values for several input fields at once (A1: suggested content
support)

Figure 9.3). In the middle of the form, the user could select her means of travel,
but no change was required there for completing the task. Finally, the user had to
choose a specific discount option from another drop down menu. In the correct and
erroneous setting the UI provided the following interaction support:

A1 Suggest content support: Suggest values for the upper part of the form as shown
in Figure 9.4. In the erroneous setting, the suggested values did not completely
fit to the task set for the user.

A2 Guidance : Highlight the drop down element for the BahnCard (frequent trav-
eler card for the Deutsche Bahn) shown in Figure 9.5 as next action in the
correct setting.

A3 Guidance : Highlight the button for proceeding to the next step. In the erro-
neous setting, another button was highlighted.

In the next form, the user was asked to select the correct train connection. In the
correct and erroneous setting, the text passage “no online booking” was highlighted,
when the user tried to click on a connection that was marked as “no online booking”
(the first, second, and forth presented connection). We used this to investigate
whether additional help could facilitate the usage. However, we did not further head
in this direction (and also did not find any significant results). For that reason, we
will not go into details for this part.
In the third form (see Figure 9.6), the user had to enter her BahnCard number.

Thereby, she was supported in the correct and erroneous setting by the following
interaction support:

Figure 9.5. Example of facilitating the interaction by highlighting the next step (A2:
guidance)

9.2. Results 147

Figure 9.6. Third form of the task (A6: automated content support)

A4 Automated Content Support : Automatically fill the BahnCard number and
highlight the field, whereby the number filled in the erroneous setting was
incorrect.

9.1.1. Technical Setup

The train booking application was realized as Web application. The context-aware
interaction support as well as the logging was integrated via JavaScript files as de-
scribed in Section 5.3. The logfile stored accurate timing data, when the interaction
with an interaction element started. The data from the questionnaires was processed
and stored in a database by a script on the web server. The whole study was con-
trolled by a single script that randomly assigned settings to users. The participants
could perform the study remotely, they just needed to direct their browser to a short
URL which we sent to them. More details about the setup of the user study can be
found in (Schreiber et al., 2008).
In total, we collected data from 40 participants. Most of them were computer

science students or faculty members, but also persons without computer science
background participated.

9.2. Results

We now present the results of our evaluation study aimed at assessing the impact
of context-aware interaction support on the usability of a UI. Before subjecting the
data to statistical analysis, we took care in filtering outliers and strange data. For
example, two participants used a version of the Safari web browser, in which the
injected JavaScript files did not work as expected. For that reason, we excluded
their data for the correct and erroneous setting.
For analysing the data, we used One-way ANOVA with the measured times

for completing the action and error rates as dependent variables, and try and
setting as factors. We verified the homogeneity of variances using the Levene test
and used the Welch test instead of normal ANOVA in cases where we could not rely

148 9. User Study

Figure 9.7. Learning effect for the
different settings for the first
form (with 95% confidence in-
terval)

Figure 9.8. Learning effect for the
different settings for the third
form (corresponding to A4)
(with 95% confidence interval)

on homogeneity of variances. We report significance at a level of 0.05 as commonly
used for usability studies.
In the following, we describe the obtained results regarding the three aspects of

usability: efficiency, effectiveness, and satisfaction.

9.2.1. Efficiency

To measure the efficiency of the UI, we analyzed the measured total time for all three
forms of the study as well as for the subparts of the first form corresponding to the
different actions. An overview of the collected timing data is shown in Table 9.1. We
did not include the data for A2 as it was difficult to distinguish between the end of
A1 and the beginning of A2 based on the HTML events, and thus did not provide
reliable results.
The effects of try and setting on the time needed for completing the first and

third form of the task can be seen in Figures 9.7 and 9.8, respectively. It shows that
there is a significant difference between the first and second try for each form, as the
users learned how to interact with the application. For that reason, we present in the
following only the results of a single try (the second one). However, the overall results
and the results for the first try yielded comparable results if not stated otherwise.

Suggested Content Support

For correct suggestions of values in action A1, a significant benefit (F (2, 51) = 4.441,
p < .05) compared to no support could be observed as shown in Figure 9.9. This is
the case although the participants were not familiar with context-aware interaction

9.2. Results 149

1st Form 3rd Form

Setting Try Total σ A1 σ A3 σ Total / A4 σ

1 64.6 15.5 47.5 14.1 8.1 5.4 28.6 25.6
no support

2 50.7 24.6 40.6 15.6 3.2 2.2 18.7 19.7

1 56.9 24.8 29.6 16.4 7.6 7.0 12.4 8.4
correct

2 34.6 20.8 20.2 18.3 4.5 2.8 6.5 4.8

1 92.3 74.2 56.7 25.0 9.0 6.2 22.2 15.1
erroneous

2 70.1 19.9 58.6 25.1 7.4 2.3 16.7 6.6

Table 9.1. Recorded timing data. All values in seconds (best values in bold and
blue)

support. As expected, the time for completing this activity with a correct suggestion
is shorter than the time in the no support setting, while the time in case of a erroneous
suggestion is slightly increased.

Guidance

The times required for the action related to the guidance action A3 are very small
(see Figure 9.10), vary heavily, and are not consistent over the first and second
try (see Table 9.1). For those reasons, we cannot draw any meaningful conclusions
from the obtained results, and cannot note any significant differences between the
three settings. We assume that the highlighting was not sufficiently attracting the
attention of the users.

Figure 9.9. Average time for the ac-
tivity related to Suggested Con-
tent Support (A1) with 95%
confidence intervals

Figure 9.10. Average time for com-
pleting the activity related to
Guidance (A3) with 95% con-
fidence intervals

150 9. User Study

Figure 9.11. Average time for completing the activity related to Automated Content
Support (A4) with 95% confidence intervals.

Automated Content Support

In the third form, the “BahnCard number” field was filled with the correct number
in the correct setting and with a wrong number in the erroneous setting. Figure
9.11 shows that filling in a wrong number does not seem to have a negative effect
on the efficiency. A possible explanation is that automatically filling data in inter-
action elements leads to highlighting the element, thus provides guidance support.
Additionally, the inserted number serves as an example of which kind of data needs
to be entered.

9.2.2. Effectiveness

The effectiveness was measured as the amount of errors committed in the different
settings. In the erroneous setting, a wrong decision in A1 could easily lead to a
higher number of errors (3 to 8), as multiple input elements are filled at once. An
overview of the distribution of errors (again only for the second try) can be found
in Figure 9.12. It shows the relative amount of participants with the according
number of errors for each setting. On average there were only few errors at each
form, so no statistical significance for the influence of the setting or the try on the
number of errors was found. This might indicate that there is no significant malus
in effectiveness even for erroneous interaction support.

9.2.3. Satisfaction

The user satisfaction was evaluated with the questionnaires. The results can be seen
in Figures 9.13 and 9.14. The participants were asked to rate the support of the UI

9.2. Results 151

Figure 9.12. Distribution of the amount of errors for each setting

Figure 9.13. User ratings on a 0-5
Likert scale (best: 5) whether
the users perceived the UI
as helpful and whether they
would like to see more UIs
with interaction support

Figure 9.14. User ratings on a 0-5
Likert scale (best: 0) whether
the users perceived the inter-
action support as disruptive
(disturbed) and whether they
think they would perceive it
as disruptive on the long run
(disturbs longterm)

152 9. User Study

(“How much did the system support you in fulfilling your task?”) on a Likert scale
from 0 to 5, whereby 0 means “not at all” and 5 “very helpful”. We found that the
UI which provided correct context-aware interaction support is perceived as more
helpful than the no support UI with statistical significance (t(54) = 4.8, p < 0.05).
Our data also indicates that the interaction support is even perceived as more helpful
when erroneous data is used (t(40) = 2.34, p < 0.05).
The question, “Would you like to see more applications with this kind of assis-

tance?” was again answered on a Likert scale from 0 “not at all” to 5 “very much”,
the results for correct (n = 23,M = 3.35, SD = 1.56) and erroneous support
(n = 21,M = 2.67, SD = 1.43) show that interaction support is perceived posi-
tively by the users. Here again, the rating of the users in the erroneous setting was
not significantly lower than in the correct setting. This shows that users are not
irritated or frustrated by wrong suggestions in the way we provided them.
The next question asked was “How disturbing did you find the assistance of the

application?” (0 meaning “not at all disturbing” and 5 “very disturbing”). This
question was only answered by the participants in the correct and erroneous setting,
as participants of the pre-study in the no support setting were confused by this
question as they apparently did not receive any assistance. Participants felt only
mildly disturbed for both correct (n = 23,M = 1.22, SD = 1, 20) and erroneous
(n = 21,M = 2.00, SD = 1.45) support. Our next question targeted the users’
judgment whether the assistance would disturb in the long run. The scale ranged
from “not at all disturbing” to “very disturbing” like for the previous question. The
data shows that users rated the disruptive effect as rather low, even for the erroneous
support (for correct support: n = 23,M = 1.30, SD = 2.30, for erroneous support:
n = 21,M = 1.62, SD = 1.43).

9.3. Chapter Summary

In this chapter, we reported the results of a user study that we performed for evalu-
ating the effects of context-aware interaction support. We found significant benefits
in efficiency for correct interaction support. We could show that the efficiency and
the effectiveness of the users stayed stable or did not decrease significantly, when
erroneous interaction support was provided. Thus, carefully planned context-aware
interaction support is indeed beneficial, even though it may be erroneous sometimes.

10
Conclusion

The costs for interacting with modern applications are steadily increasing, due to (i)
the increase in the amount of provided functionality, which often leads to a decrease in
the usability of the application, and (ii) the increasing usage in mobile and ubiquitous
settings where we have to deal with higher interaction costs and reduced attention
of the user. This problem can be tackled by intelligent interaction support, e.g. by
guiding the user through an application, adapting the user interface, or facilitating
the input of data. In order to get a better understanding of the user’s needs and thus
to be able to support the user in an optimal way, we have to take her context into
account. The relevant context can be gathered from sophisticated user models (user
context) as well as from the environment (environmental context). However, existing
approaches only make use of either the user context or the environmental context. In
this thesis, we presented a novel approach (called AUGUR) which considers the user
as well as the environmental context to support the user’s interactions. AUGUR is
also able to provide content support and navigation support for different applications.
In this chapter, we first summarize the main contributions of this thesis, and how

it fulfills the requirements identified for context-aware IUIs (Section 10.1). In Section
10.2, we revisit the challenges identified for developing IUIs in general, and point out
how they are addressed by our approach. In Section 10.3, we discuss issues for future
research.

10.1. Contributions

Overall concept The overall concept of AUGUR is able to consider user as well as
environmental context for supporting the user in entering data and in navigating. For
that purpose, it incorporates a context server for providing environmental context
information, a user model for modeling the user’s behavior, and a component for
storing the Current Context, which keeps track of all context information that is
currently relevant for the user. To determine the relevance of the context information,
the Current Context mimics human memory based on the cognitive architecture
ACT-R.
However, when using context information for providing support, we have to con-

154 10. Conclusion

sider its error-prone nature. For that purpose, AUGUR provides different levels of
proactive support which differ in their obtrusiveness and in how much they reduce
the required interaction costs. For example, automatically filling data is perceived
as very obtrusive by most users, but can dramatically reduce the required interac-
tion costs. In choosing the appropriate level of proactivity, AUGUR takes the user’s
preferences as well as the confidence in the provided support into account.
AUGUR relies on application models for providing support. The application mod-

els store the relations between context elements and application elements. They are
used for determining which context information can be suggested as input for an
interaction element and which context events should trigger navigation shortcuts to
other applications. These models can be defined by the application developer, and
augmented by the end-user. AUGUR is able to automatically extend the model with
new relations learned from observing the user’s interactions. Thus, AUGUR com-
bines the three main approaches for building Intelligent User Interfaces (knowledge-
based, end-user programmed, and learning Intelligent User Interfaces). This enables
AUGUR to adapt its support to the user’s needs (either by explicit advice or by
learning from the user’s interactions). At the same time, AUGUR is still able to
benefit from rich application models provided by an application developer. The sup-
port improves over time, as more relations between context elements and application
elements are learned.
The approach taken by AUGUR is application-independent. It uses a proxy-based

architecture which enables it to keep track of all user events, because they are routed
through AUGUR. The proxy-based architecture also allows AUGUR to augment the
UI of the application to provide interaction support for all kinds of (form-based)
applications and across application boundaries.
We evaluated the effects of context-aware interaction support in a user study. The

results show that correct interaction support can significantly increase the usability
of an application. As context information is often error-prone, we also analyzed the
results of erroneous support on the usability. We found that erroneous support has
little or no adverse effect on the usability.

ApplicaTion Modeling Language (ATML) For modeling the relations between
context elements and application elements, we developed a new application mod-
eling language called ATML. It overcomes the shortcomings of existing modeling
languages that are not able to model relations to context information or to existing
UI elements to support legacy applications. ATML uses rules to specify the relations
between context elements and application elements. In the AUGUR prototype, we
implemented an editor for the application models which enables the end-user to easily
add new relations, or inspect and change relations that were automatically learned
by AUGUR from observing the user.

Semantic Mapping In order to be able to support the user in entering data, we
developed a semantic mapper which compares the context information present in the

10.1. Contributions 155

Current Context to the information required by the UI. Based on semantic similarity
measures it can determine which context information is relevant for the current UI
and suggest it as input to the user. In this way, the mapping process does not require
any premodeled information. The comparison relies on computing the similarity
between the textual descriptions of UI elements (e.g. their labels or tooltips) and
context information. We showed that considering all information available about
the elements provides better results than relying only on the labels of interaction
elements, as used by most existing approaches. Furthermore, we showed that it is
beneficial to combine string-based and semantic similarity measures, and to learn
new synonyms from observing the user’s interactions.
As the labels of UI elements cannot easily be determined for Web applications,

we developed and implemented an algorithm (called LabelFinder) that determines
the label of an element from the visual representation of the UI. We showed that it
outperforms state-of-the-art approaches.

FxL algorithm We developed the FxL sequence prediction algorithm to predict the
next relevant interaction element. This enables AUGUR to guide the user through
an application. We showed that the FxL algorithm outperforms state-of-the-art
sequence prediction algorithms with respect to accuracy and required resource con-
sumption.

Interface Adaptation using FxL* algorithm The FxL* algorithm is able to predict
the set of most relevant interaction elements. It is used to generate a reduced version
of a UI, which is adapted to the user’s current situation and to the output device
used. For determining the set of relevant elements, the FxL* algorithm repeatedly
applies the FxL algorithm, which only predicts the next step. We showed that
considering the user’s current situation, i.e. her last actions, can dramatically reduce
the interaction costs for the user.

AUGUR prototype We implemented AUGUR in a working prototype. The pro-
totype is able to provide support for all kinds of form-based Web applications. It
supports the user in entering data and in navigating through the application. AU-
GUR is thereby also able to cope with highly dynamic Web applications using AJAX.

To sum up, the approach presented in this thesis is able to consider both types
of context: User context and environmental context (R1 Awareness of user context
and environmental context). It is also able to adapt the provided support to the con-
fidence of the context information (R2 Cope with error-prone context). Our approach
is applicable to various (form-based) applications (R3 Application-independence, R5
Support for legacy applications) and across application boundaries (R4 Support across
application boundaries). In addition, AUGUR enables the end-user to augment and
inspect the models used for providing support (R6 Involving end-user). It is also able
to enhance the provided support by learning from the user’s interactions (R7 Learning

156 10. Conclusion

capabilities). Thus, AUGUR meets all the requirements identified for context-aware
IUIs as summarized in Table 10.1.

10.2. Revisiting Challenges

In this section, we review the main challenges which need to be addressed for de-
veloping IUIs as identified in Section 2.3.1. This comprises the presentation and
competence of the provided support, and how to induce user trust in an IUI. We
below point out how the different challenges are targeted by the approach presented
in this thesis.

Presentation The first challenge for the presentation is the interaction design of
the support: It should (i) not hamper the normal usage of the applications, (ii)
provide some kind of forgiveness, and (iii) fail softly. In AUGUR, all these three
requirements are met: AUGUR is designed as an overlay to existing applications
without affecting the actual functionality of the application, thus not hindering the
usage of the application. When AUGUR generates a reduced UI for an application,
it enables the user to easily access the full functionality, and thus still supports the
normal usage. The interaction support is furthermore designed in a way that can
be easily undone if it is wrong. If AUGUR provides erroneous suggestions, they can
easily be ignored. Finally, partly erroneous content support can also move the user
closer to her goal as it allows at least parts of the required data to be filled in.
The second challenge is unobtrusiveness. The interaction support in AUGUR is

designed in a way that does not disrupt the workflow of the user. For providing
navigation support it however has to make the user aware of the suggested link or
interaction element. For that reason, the provided support briefly flashes to make the
user aware of it, but that can easily be ignored. The user can also adjust the proactive
behavior of AUGUR by defining thresholds for the different levels of proactivity.
The third main challenge is to make the support adaptive : Adaptive to the user,

the device, and the current context. For that reason, AUGUR maintains a usage
model for predicting the user’s next actions and to generate reduced UIs that best
fit the user’s needs. Furthermore, the user can adjust the application models to her
needs, and AUGUR also augments these models with data learned from observing
the user. AUGUR also considers the currently used device when generating a reduced
UI by adapting the amount of displayed information and interaction elements to the
available screen size. Finally, AUGUR is aware of the current user and environmental
context and adapts the provided support (i.e. the navigation shortcuts and the
content support) accordingly.

Competence Regarding the competence of an IUI, we have to face two main chal-
lenges: little usage data and changing user behavior. The algorithms we presented
for the different support types are designed to cope with little usage data ; the con-
tent support based on semantic comparison even needs no usage data at all. The

10.2. Revisiting Challenges 157

C
on
te
nt
su
pp
or
t

N
av
ig
at
io
n
sh
or
tc
ut
s

G
ui
da
nc
e

A
w
ar
en
es
s
of
us
er
co
nt
ex
t
(R
1)

A
w
ar
en
es
s
of
en
vi
ro
nm
en
ta
l
co
nt
ex
t
(R
1)

C
op
e
w
it
h
er
ro
r-
pr
on
e
co
nt
ex
t
(R
2)

A
pp
lic
at
io
n-
in
de
p
en
de
nc
e
(R
3)

Su
pp
or
t
ac
ro
ss
ap
pl
ic
at
io
n
b
ou
nd
ar
ie
s
(R
4)

Su
pp
or
t
fo
r
le
ga
cy
ap
pl
ic
at
io
ns
(R
5)

In
vo
lv
in
g
en
d-
us
er
(R
6)

L
ea
rn
in
g
ca
pa
bi
lit
ie
s
(R
7)

Knowledge-
based

COLLAGEN • • • ◦

AGUSINA • • • • • •

CyberDesk • • • • •

onCue • • • •

Miro • • • • •

ActiveBadge • •

End-user
programming

Citrine • • • •

Context Rules • •

Learning

CAP • • • •

LookOut • • • •

CMRadar • • •

PTIME • • • •

Maxims • • • • •

CAIA • • •

Chusho • • • • •

VIO • • •

Folder Predictor • • •

AUGUR • • • • • • • • • • •

Table 10.1. Comparison of AUGUR with state-of-the-art approaches (◦: is able to
learn task models from usage sequences, Context Rules subsumes several
systems with same characteristics)

158 10. Conclusion

Figure 10.1. Realization of trust issues in the UI design of the AUGUR prototype

algorithms are also able to adapt its support to changing user behavior, i.e. they
constantly adapt to the user’s current behavior. The guidance feature further uses
aging to reduce the influence of older usage traces. Furthermore, the user is always
able to adapt the behavior to her needs using the integrated ATML editor.

Trust To induce user’s trust in an IUI, its behavior has to be controllable, intel-
ligible, and to maintain the user’s privacy. Figure 10.1 shows how some of these
challenges are reflected in the UI design of the AUGUR prototype.
For enabling the user to control the behavior of the IUI, AUGUR allows the user

to override or ignore erroneous behavior, i.e. erroneous highlighting or suggestions
can be simply ignored and the user can override erroneous data which was automat-
ically filled in by AUGUR. Moreover, the user can influence the interaction support
provided by AUGUR. She does this by modifying the underlying application models
or altering the proactive behavior of AUGUR by adjusting the confidence thresholds
accordingly.
In order to make an IUI intelligible to the user, its actions should be transparent

and the user should be able to access the knowledge sources to gain a better mental
model of the IUI. AUGUR realizes this by providing feedback about its confidence
in the different support actions and about the knowledge provenance of the support
(see Figure 10.1). The user can always access and inspect the underlying application
models and the data in her current context using the integrated editors. This should
enable the user to build a valid mental model of the IUI, which then results in
appropriate expectations of the support which can be provided by AUGUR.
Finally, privacy is not an issue for AUGUR, as AUGUR does not exchange infor-

mation with other IUIs. Furthermore, it can be run on the personal computer of a
user, thus giving the user full control of her data.

10.3. Outlook 159

10.3. Outlook

In this section, we point out in which ways AUGUR could be enhanced and suggest
some future research directions.

Enhancements to AUGUR AUGUR is just the first step for using context infor-
mation for facilitating data entry and navigation. There are many ways in which the
provided support could be enhanced. For example, AUGUR needs to be aware of
which information presented by a UI is relevant for the user, e.g. the departure times
of trains, to include it in the reduced version of the UI (see Section 6.3). However,
these non-interactive elements cannot be easily inferred from observing her interac-
tions as the user is usually only reading the information without interacting with it.
For that purpose, AUGUR requires that the relevant non-interactive elements are
modeled in the corresponding application model. Automatically identifying these
elements could decrease the required modeling effort. This could be realized for ex-
ample by observing the user’s gaze or by inferring this information from the scroll
and mouse movements of the user.
Furthermore, AUGUR only supports the usage of simple rules for describing the

relations between context and application elements. This could be extended by
supporting more complex relations, e.g. using variables, mathematical or string
operators. This would enable us to state relations to provide content support which
suggests firstName+" "+lastName for an interaction element.
The application models could also be automatically enhanced by identifying sim-

ilar applications and thus transferring the knowledge from one application model to
another. For example, the application model for Deutsche Bahn contains relations
from a calendar entry to the “to”, “date”, and “time” input elements. If the user is in-
teracting with a similar application that contains the same input elements, AUGUR
could infer that the calendar entry might also be relevant for this application and
suggest it as input to the user.
AUGUR could also make use of the application models of other users. Relations

contained in the application models of many users could be recommended to the
user or automatically incorporated. Exchanging the data with other users, can also
be applied for enhancing the guidance and interface adaptation. This is especially
useful if the user has not frequently used the application, which means that AUGUR
has only a limited and unreliable usage model of her behavior.
At the moment, AUGUR does not consider the goals and intentions of a user. If

AUGUR is able to automatically recognize the user’s intention and the application
models state which goals they can fulfill, AUGUR could apply planning algorithms
to guide the user to meet the desired goal.

Using context for other types of Intelligent User Interfaces In this thesis, we fo-
cused on using context information for facilitating data entry and navigating. How-
ever, context information can also be applied to all the other aspects of Intelligent
User Interfaces. Help texts can be automatically adapted to the current context, for

160 10. Conclusion

example “if you want to use the printer to your right, you have to choose Epson220”.
This facilitates the understanding of the help texts by the user. Furthermore, it
allows the help texts to be reduced to the parts really relevant for the user’s current
context. For example, cooking instructions could highlight the step which is relevant
for the current stage of the cooking process.
Programming by demonstration systems can also benefit from incorporating the

user’s current context. It can be used to better understand the user’s actions and to
generalize from observations. For example, if the user enters her current location as
“Darmstadt”, a context-aware programming by demonstration system could be able
to provide a generalized macro that always uses her current location as input.
Intelligent user interfaces for facilitating the information retrieval can also benefit

from context information. Recommender systems can take the current context into
account to adapt the recommendations. For example, if the user is searching for
a movie and many friends are present, a recommender system might not want to
suggest a romantic movie.

Ubiquitous use of Intelligent User Interfaces Most Intelligent User Interfaces for
providing content and navigation support focus on desktop applications. However,
providing proactive support in ubiquitous settings raises many new challenges: How
should the support be represented in these settings? For example, if voice output is
used, automatically suggesting a value is probably preferable to reading a lengthy list
of suggestions to the user. Another example is the interaction with smart products,
i.e. physical products that are able to communicate with the user but usually pro-
vide only very limited input and output capabilities. How should they proactively
approach the user to guide her through a task? How can the user provide feedback in
the most natural way? For those reasons, the provided support needs to be adapted
to the available input and output capabilities.
Furthermore, the amount of available context information in ubiquitous settings is

often much higher than in desktop settings. This leads to the problem of identifying
the relevant context information. To decrease the amount of context information
that needs to be considered, we could use a common context ontology that states re-
lations between different context elements and between context elements and tasks.
However, this induces a high modeling effort. For automatically gathering a con-
text ontology, we could rely on semantic analysis of texts describing tasks. If some
context information is often mentioned in conjunction with a task or other context
information, they might be related to each other.
Another problem that arises in ubiquitous computing settings is that users are

often involved in several tasks at the same time. For that reason, they often do not
pay full attention to the Intelligent User Interface. The proactive support should
thus also consider the interruptibility of a user. For example, it could defer proactive
suggestions until the user turns her attention back to the Intelligent User Interface.
Which level of proactivity is chosen should also consider the interaction costs of the
user. For example, if the user interacts with a mobile phone for entering data, she

10.3. Outlook 161

might prefer that the data is automatically entered even though it is more obtrusive
than only suggesting data.

A
Appendix A

A.1. DTD for ATML

<!ELEMENT atmlModel (s t a t e s | a c t i v i t i e s | wrappingNodes |
r e l a t i o n s)∗>

<!ATTLIST atmlModel name CDATA #IMPLIED>
<!ELEMENT s t a t e s (s t a t e)∗>
<!ELEMENT s t a t e (#PCDATA | r u l e)∗>
<!ATTLIST s t a t e

id ID #REQUIRED
r e f CDATA #REQUIRED
name CDATA #IMPLIED

>
<!ELEMENT a c t i v i t i e s (a c t i v i t y)∗>
<!ELEMENT a c t i v i t y (#PCDATA)>
<!ATTLIST a c t i v i t y

id ID #REQUIRED
r e f CDATA #REQUIRED
l a b e l CDATA #IMPLIED
automate (t rue | f a l s e) #IMPLIED

>
<!ELEMENT wrappingNodes (#PCDATA | context | uiContent)∗>
<!ELEMENT context (#PCDATA | f i l t e r | r u l e)∗>
<!ATTLIST context

id ID #REQUIRED
type CDATA #REQUIRED

>
<!ELEMENT uiContent (#PCDATA)>
<!ATTLIST uiContent

id ID #REQUIRED
r e f CDATA #REQUIRED
userRelevant (t rue | f a l s e) #IMPLIED

164 A. Appendix A

>
<!ELEMENT r e l a t i o n s (r e l a t i o n)∗>
<!ELEMENT r e l a t i o n (#PCDATA)>
<!ATTLIST r e l a t i o n

id ID #REQUIRED
type (CONTROL|DATA|UICONTENT) #REQUIRED
from IDREF #REQUIRED
to IDREF #REQUIRED
a t t r i b u t e CDATA #IMPLIED
i sSugge s t ed (t rue | f a l s e) #IMPLIED
observed CDATA #IMPLIED

>
<!ELEMENT f i l t e r (#PCDATA)>
<!ATTLIST f i l t e r

a t t r i b u t e CDATA #IMPLIED
opera t i on CDATA #IMPLIED

>
<!ELEMENT r u l e (#PCDATA| i f | then)∗>
<!ATTLIST r u l e

con f id ence CDATA #IMPLIED
i sSugge s t ed (t rue | f a l s e) #IMPLIED

>
<!ELEMENT i f (#PCDATA)>
<!ATTLIST i f

id IDREF #REQUIRED
>
<!ELEMENT then (#PCDATA)>
<!ATTLIST then

id IDREF #REQUIRED
>

A.2. Questionnaires of the User Study 165

A.2. Questionnaires of the User Study

A.2.1. General Questionnaire

Vorerfahrung
Bitte beantworten Sie vorab einige Fragen zu Ihrer Vorerfahrung und zur statistis-
chen Auswertung:

Ihr Geschlecht:
weiblich # männlich

Haben Sie Informatik oder ein verwandtes Fach studiert bzw. studieren es noch:
ja # nein

Wie häufig nutzen Sie das Internet?
(höchstens einmal im Monat) 1 # 2 # 3 # 4 # 5 # (täglich)

Haben Sie die Internetseite der Deutschen Bahn bereits genutzt, um nach Verbindun-
gen zu suchen?
(noch nie) 1 # 2 # 3 # 4 # 5 # (sehr häufig)

A.2.2. Questionnaire regarding Support

Wie wurden Sie bei der Erfüllung Ihrer Aufgabe durch die Anwendung unterstützt?
(schlecht) 0 # 1 # 2 # 3 # 4 # 5 # (sehr gut)

Wie störend fanden Sie die Hilfestellung der Anwendung?
(nicht störend) 0 # 1 # 2 # 3 # 4 # 5 # (sehr störend)

Wie störend glauben Sie wäre die Hilfestellung der Anwendung auf lange Sicht?
(nicht störend) 0 # 1 # 2 # 3 # 4 # 5 # (sehr störend)

Würden Sie Anwendungen mit dieser Art von Unterstützung gerne einsetzen?
(überhaupt nicht) 0 # 1 # 2 # 3 # 4 # 5 # (sehr gerne)

Haben Sie irgendwelche generellen Kommentare zur gesehenen Anwendung?

List of Figures

1.1. Number of top-level menu items in Microsoft Word 1
1.2. Conceptual building blocks of AUGUR 4
1.3. Structure of this thesis . 8

2.1. Available information sources when using a booking application . . . 13
2.2. Classification of the different information sources from Figure 2.1 . . 14
2.3. Classification of research areas of IUIs 18
2.4. Support classes provided by personal assistants 19

4.1. Major conceptual building blocks of AUGUR 37
4.2. Interface adaptation modes supported by AUGUR 38
4.3. Sources for providing content support 41
4.4. Levels of proactivity depending on the confidence csupport in the support 44
4.5. Possible combinations of support types and levels of proactivity . . . 45

5.1. Screenshot of the Deutsche Bahn webpage augmented by AUGUR . 47
5.2. Presentations of support types for the different levels of proactivity . 48
5.3. Example of suggested content support 49
5.4. Example of automated content support 50
5.5. Representatin of navigation shortcuts 51
5.6. (a) Unadapted and (b) adapted user interface 51
5.7. Menu of the AUGUR prototype augmenting http://www.google.de 52
5.8. Screenshot of the application model editor integrated in AUGUR . . 53
5.9. Screenshot of Current Context . 53
5.10. Dialog for specifying the thresholds for the proactive presentations . 54
5.11. AUGUR icon indicating the status of proactive support 54
5.12. Interface adaptation modes supported by the AUGUR prototype . . 55
5.13. Architecture of the AUGUR prototype 57

6.1. Example context object of a calendar 61
6.2. Example calculation for the activation of context objects O1 and O2 63

http://www.google.de

168 List of Figures

6.3. Example activation flow using normal decay 64
6.4. Example activation flow considering the activation of the applications 65
6.5. Example for Current Context with three context objects. 66
6.6. Example Usage Model trie . 67
6.7. Components of ATML and their attributes. 70
6.8. Example screenshots of the DB website 71
6.9. Control flow of the search UI of our running example 72
6.10. Data relations of the search UI of our running example 73
6.11. Activity and UIContent nodes for the search result UI 75
6.12. Example form (http://www.usairways.com) 77
6.13. Overall performance of label recognition approaches 78
6.14. ATML Editor . 79
6.15. ATML Editor with two learned relations 80
6.16. Attribute editor for the “Location” link 80

7.1. Example forms . 86
7.2. Example formalization of two context objects and a UI 88
7.3. Applying the mapping process to map a context object to a UI . . . 92
7.4. Effects of 2nd mapping step . 98
7.5. Effects of learning synonyms . 99
7.6. Overall performance of our mapping process 99
7.7. Average r(Oi) for mapping a context object to a UI 100
7.8. Example ATML model with direct relations and rules 102
7.9. Example calculation for precision at n measure 109
7.10. Example calculation for content support 112

8.1. Example for guiding the user in a menu structure 116
8.2. Applicability and precision for different confidence thresholds 121
8.3. Distribution of repetitive sequences 121
8.4. Evaluation over the maximum length k of considered suffixes 123
8.5. Performance on the different dataset with respect to dataset size . . 124
8.6. Prediction accuracy of the XD dataset for different levels of applicability 125
8.7. Performance regarding sequence length 126
8.8. Performance of the algorithms regarding different noise levels 126
8.9. Example ATML model for a data relation 128
8.10. Example of a navigation shortcut . 128
8.11. Interface adaptation process of AUGUR 134
8.12. Example calculation of FxL* . 136
8.13. Evaluation results for interface adaptation 138

9.1. Procedure of the user study . 144
9.2. Reminder for the task in German . 145
9.3. First form of the task . 145
9.4. Suggesting values for several input fields at once 146

http://www.usairways.com

List of Figures 169

9.5. Example of facilitating the interaction by highlighting the next step . 146
9.6. Third form of the task (A6: automated content support) 147
9.7. Learning effect for the first form . 148
9.8. Learning effect for the third form . 148
9.9. Average time for suggested content support 149
9.10. Average time for guidance . 149
9.11. Average time for automated content support 150
9.12. Distribution of the amount of errors for each setting 151
9.13. User ratings on helpfulness of interaction support 151
9.14. User ratings on disruptiveness of interaction support 151

10.1. Realization of trust issues in the UI design of the AUGUR prototype 158

List of Tables

2.1. Challenges in developing IUIs . 22

3.1. Overview of the state-of-the-art approaches 29

4.1. Relations between requirements and architectural components . . . 36

6.1. Comparison of existing application modeling languages 69
6.2. Comparison of existing application modeling languages with ATML 81

7.1. Precision, recall and F -measure for single domains 97
7.2. Precision, recall and F -measure across related domains 97
7.3. P@n measures for interestingness measures on Seminar Talks dataset 109
7.4. P@n measures for interestingness measures on Balloon dataset . . . 110

8.1. Macro-average prediction accuracy prac for sequence prediction . . . 123
8.2. Average performance of sequence prediction algorithms 126
8.3. Overview of state-of-the-art approaches for interface adaptation . . . 132
8.4. Evaluation results for n = 5 (best values in bold and blue) 139
8.5. Comparison of AUGUR with state-of-the-art approaches for interface

adaptation . 141

9.1. Recorded timing data . 149

10.1. Comparison of AUGUR with state-of-the-art approaches 157

List of Algorithms

1. Update Usage Model . 67

2. Content Support based on Previous Usage 84
3. Mapping Context elements to UI elements 93
4. Updating and learning direct relations 104
5. Apriori - Creating Itemsets . 106
6. Apriori - Generating Rules . 107
7. Content Support based on relations 111

8. FxL* . 136

Bibliography

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams, S. M., and Shuster, J. E.
(1999). UIML: An Appliance-Independent XML User Interface Language. In Pro-
ceedings of the 8th International Conference on World Wide Web, page 1695–1708,
Toronto, Canada. Elsevier North-Holland, Inc.

Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Mining Association Rules
in Large Databases. In Proceedings of the 20th International Conference on Very
Large Data Bases, pages 487–499, Santiago de Chile, Chile. Morgan Kaufmann
Publishers Inc.

Aitenbichler, E., Kangasharju, J., and Mühlhäuser, M. (2007a). MundoCore: A
Light-Weight Infrastructure for Pervasive Computing. Pervasive Mobile Comput-
ing, 3(4):332–361.

Aitenbichler, E., Lyardet, F., and Mühlhäuser, M. (2007b). Designing and Imple-
menting Smart Spaces. CEPIS Upgrade, VIII(4):31–37.

Albrecht, D. W., Zukerman, I., and Nicholson, A. E. (1998). Bayesian Models
for Keyhole Plan Recognition in an Adventure Game. User Modeling and User-
Adapted Interaction, 8(1-2):5–47.

Amandi, A. and Armentano, M. (2004). Connecting Web Applications with Interface
Agents. International Journal of Web Engineering and Technology, 1(4):454–470.

Anderson, J. R. and Lebiere, C. J. (1998). The Atomic Components of Thought.
Lawrence Erlbaum.

Apple (2008). Apple Human Interface Guidelines. http://developer.apple.com/
documentation/UserExperience/Conceptual/OSXHIGuidelines/index.html .

Armentano, M. and Amandi, A. (2003). Agents Detecting User’s Intention. In Pro-
ceedings of the Argentine Symposium on Artificial Intelligence (ASAI) , electronic
proceedings.

http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/index.html
http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/index.html

176 Bibliography

Asuncion, A. and Newman, D. (2007). UCI Machine Learning Repository. University
of California, Irvine, School of Information and Computer Sciences.

Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A Survey on Context-Aware
Systems. International Journal of Ad Hoc and Ubiquitous Computing, 2(4):263–
277.

Bao, X., Herlocker, J. L., and Dietterich, T. G. (2006). Fewer Clicks and Less
Frustration: Reducing the Cost of Reaching the Right Folder. In Proceedings of
the 11th International Conference on Intelligent User Interfaces , pages 178–185,
Sydney, Australia. ACM.

Barkhuus, L. and Dey, A. (2003). Is Context-Aware Computing Taking Control
Away from the User? Three Levels of Interactivity Examined. Lecture notes in
Computer Science, 2864:149–156.

Bellotti, V. and Edwards, K. (2001). Intelligibility and Accountability: Human Con-
siderations in Context-Aware Systems. Human-Computer Interaction, 16(2):193–
212.

Berry, P., Peintner, B., Conley, K., Gervasio, M., Uribe, T., and Yorke-Smith, N.
(2006). Deploying a Personalized Time Management Agent. In Proceedings of
the fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 1564–1571, New York, NY, USA. ACM.

Brijs, T., Vanhoof, K., and Wets, G. (2003). Defining Interestingness for Association
Rules. International Journal of Information Theories and Applications, 10(4):370–
376.

Buchanan, G., Farrant, S., Jones, M., Thimbleby, H., Marsden, G., and Pazzani,
M. (2001). Improving Mobile Internet Usability. In Proceedings of the 10th Inter-
national World Wide Web Conference, pages 673–680, Hong Kong, Hong Kong.
ACM.

Buchholz, T., Küpper, A., and Schiffers, M. (2003). Quality of Context: What it is
and why we need it. In Proceedings of the 10th HP-OPenView Workshop, Geneva,
Switzerland.

Budanitsky, A. and Hirst, G. (2006). Evaluating WordNet-Based Measures of Se-
mantic Distance. Computational Linguistics, 32(1).

Bunt, A., Conati, C., and McGrenere, J. (2007). Supporting Interface Customiza-
tion Using a Mixed-Initiative Approach. In Proceedings of the 12th International
Conference on Intelligent User Interfaces, pages 92–101, Honolulu, Hawaii, USA.
ACM.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdon-
ckt, J. (2003). A Unifying Reference Framework for Multi-Target User Interfaces.
Interacting with Computers, 15(20):289–308.

Bibliography 177

Chen, G. and Kotz, D. (2000). A Survey of Context-Aware Mobile Computing
Research. Technical report, Dartmouth College.

Chusho, T., Fujiwara, K., and Minamitani, K. (2002). Automatic Filling in a Form
by an Agent for Web Applications. In Proceedings of the 9th Asia-Pacific Software
Engineering Conference, pages 239–247. IEEE Computer Society.

Cohen, W., Ravikumar, P., and Fienberg, S. (2003). A Comparison of String Metrics
for Matching Names and Records. In Proceedings of the KDD Workshop on Data
Cleaning and Object Consolidation.

Cook, R. and Kay, J. (1994). The Justified User Model: A Viewable, Explained
User Model. In 4th International Conference on User Modeling, pages 145–150,
Hyannis, MA.

Cypher, A. (1991). EAGER: Programming Repetitive Tasks by Example. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems:
Reaching Through Technology, pages 33–39, New Orleans, LA, USA. ACM.

Davison, B. D. and Hirsh, H. (1998). Predicting Sequences of User Actions. In
Proceedings of the AAAI-98/ICML-98 Workshop on Predicting the Future: AI
Approaches to Time-Series Problems, pages 5–12. AAAI Press.

Dent, L., Boticario, J., Mcdermott, J., Mitchell, T., and Zabowski, D. (1992). A
Personal Learning Apprentice. In Proceedings of the 10th National Conference on
Artificial Intelligence, pages 96–103, San Jose, CA, USA.

Dey, A., Sohn, T., Streng, S., and Kodama, J. (2006). iCAP: Interactive Prototyping
of Context-Aware Applications. Lecture Notes in Computer Science, 3968:254–271.

Dey, A. K. (2001). Understanding and Using Context. Personal Ubiquitous Com-
puting, 5(1):4–7.

Dey, A. K., Abowd, G. D., Pinkerton, M., and Wood, A. (1997). CyberDesk: A
Framework for Providing Self-Integrating Ubiquitous Software Services. In Pro-
ceedings of the ACM Symposium on User Interface Software and Technology, pages
75–76, Banff, Alberta, Canada.

Dey, A. K. and Newberger, A. (2009). Support for Context-Aware Intelligibility and
Control. In Proceedings of the 27th International Conference on Human Factors
in Computing Systems, pages 859–868, Boston, MA, USA. ACM.

Dix, A., Beale, R., andWood, A. (2000). Architectures to Make Simple Visualisations
Using Simple Systems. In Proceedings of the Working Conference on Advanced
Visual Interfaces, pages 51–60, Palermo, Italy. ACM.

Dix, A., Catarci, T., Habegger, B., loannidis, Y., Kamaruddin, A., Katifori, A., Lep-
ouras, G., Poggi, A., and Ramduny-Ellis, D. (2006). Intelligent Context-Sensitive

178 Bibliography

Interactions on Desktop and the Web. In Proceedings of the International Work-
shop in Conjunction with AVI 2006 on Context in Advanced Interfaces , pages
23–27, Venice, Italy. ACM.

Dragunov, A., Dietterich, T., Johnsrude, K., Mclaughlin, M., Li, L., and Herlocker, J.
(2005). TaskTracer: A Desktop Environment to Support Multi-Tasking Knowledge
Workers. In Proceedings of the 10th International Conference on Intelligent User
Interfaces, pages 75–82. ACM Press.

Eyharabide, V. and Amandi, A. (2005). Automatic Task Model Generation for
Interface Agent Development. Inteligencia Artificial, 9(26):49–57.

Faaborg, A. and Lieberman, H. (2006). A Goal-Oriented Web Browser. In Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, pages
751–760, Montreal, Quebec, Canada. ACM.

Faulring, A. and Myers, B. A. (2005). Enabling Rich Human-Agent Interaction for
a Calendar Scheduling Agent. In CHI ’05 Extended Abstracts on Human Factors
in Computing Systems, pages 1367–1370, Portland, OR, USA. ACM.

Fellbaum, C. (1998). WordNet An Electronic Lexical Database. MIT Press, Cam-
bridge, MA.

Findlater, L. and McGrenere, J. (2008). Impact of Screen Size on Performance,
Awareness, and User Satisfaction with Adaptive Graphical User Interfaces. In
Proceeding of the 26th Annual SIGCHI Conference on Human Factors in Comput-
ing Systems, pages 1247–1256, Florence, Italy. ACM.

Gabrilovich, E. and Markovitch, S. (2007). Computing Semantic Relatedness using
Wikipedia-based Explicit Semantic Analysis. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, pages 1606–1611, Hyderabad,
India.

Gajos, K. and Weld, D. S. (2004). SUPPLE: Automatically Generating User In-
terfaces. In Proceedings of the 9th International Conference on Intelligent User
Interfaces, pages 93–100, Funchal, Madeira, Portugal. ACM.

Gajos, K. Z., Czerwinski, M., Tan, D. S., and Weld, D. S. (2006). Exploring the
Design Space for Adaptive Graphical User Interfaces. In Proceedings of the Working
Conference on Advanced Visual Interfaces, pages 201–208, Venezia, Italy. ACM.

Garland, A., Ryall, K., and Rich, C. (2001). Learning Hierarchical Task Models by
Defining and Refining Examples. In Proceedings of the 1st International Conference
on Knowledge Capture, pages 44–51, Victoria, British Columbia, Canada. ACM.

Glass, A., McGuinness, D. L., and Wolverton, M. (2008). Toward Establishing
Trust in Adaptive Agents. In Proceedings of the 13th International Conference on
Intelligent User Interfaces, pages 227–236, Gran Canaria, Spain. ACM.

Bibliography 179

Gopalratnam, K. and Cook, D. J. (2007). Online Sequential Prediction via Incremen-
tal Parsing: The Active LeZi Algorithm. In IEEE Intelligent Systems, volume 22,
pages 52–58, Los Alamitos, CA, USA. IEEE Computer Society.

Gorniak, P. and Poole, D. (2000). Predicting Future User Actions by Observing Un-
modified Applications. In Proceedings of the 17th National Conference on Artificial
Intelligence, pages 217–222.

Greenberg, S. (1988). Using Unix: Collected Traces of 168 Users. Research Report
88/333/45.

Gurevych, I., Müller, C., and Zesch, T. (2007). What to be? - Electronic Career
Guidance Based on Semantic Relatedness. In Proceedings of 45th Annual Meeting
of the Association for Computational Linguistics, pages 1032–1039.

Hartmann, M. (2009). Challenges in Developing User-Adaptive Intelligent User In-
terfaces. In Proceedings of the 17th Workshop on Adaptivity and User Modeling in
Interactive Systems, pages 6–11, Darmstadt, Germany.

Hartmann, M. and Austaller, G. (2008). Context Models and Context-awareness. In
Mühlhäuser, M. and Gurevych, I., editors, Ubiquitous Computing Technology for
Real Time Enterprises, pages 235–256. Information Science Reference.

Hartmann, M. and Mühlhäuser, M. (2009). Context-Aware Form Filling for Web
Applications. In Proceedings of the Third IEEE International Conference on Se-
mantic Computing ICSC, Berkeley, CA, USA.

Hartmann, M. and Schreiber, D. (2007). Prediction Algorithms for User Actions. In
Hinneburg, A., editor, Proceedings of Lernen Wissen Adaption, ABIS 2007, pages
349–354.

Hartmann, M. and Schreiber, D. (2008). Proactively Adapting Interfaces to Individ-
ual Users for Mobile Devices. In Adaptive Hypermedia and Adaptive Web-Based
Systems, pages 300–303.

Hartmann, M. and Schreiber, D. (2009). AUGUR: Interface Adaptation for Small
Screen Devices. In Advances in Ubiquitous User Modeling, pages 94–110. Springer.

Hartmann, M., Schreiber, D., and Kaiser, M. (2007). Task Models for Proactive Web
Applications. In Proceedings of WEBIST 2007, page 150–155. INSTICC Press.

Hartmann, M., Schreiber, D., and Mühlhäuser, M. (2008a). Tailoring the Interface
to Individual Users. In 5th International workshop on Ubiquitous User Modeling
at IUI’08, New York, NY, USA. ACM.

Hartmann, M., Schreiber, D., and Mühlhäuser, M. (2009). Providing Context-Aware
Interaction Support. In Proceedings of Engineering Interactive Computing Systems
(EICS), pages 123–132. ACM.

180 Bibliography

Hartmann, M., Zesch, T., Mühlhäuser, M. M., and Gurevych, I. (2008b). Using
Similarity Measures for Context-Aware User Interfaces. In Proceedings of the 2nd
International Conference on Semantic Computing, page 190–197. IEEE.

He, H., Meng, W., Yu, C., and Wu, Z. (2004). Automatic Integration of Web Search
Interfaces with WISE-Integrator. The VLDB Journal, 13(3):256–273.

Hermens, L. A. and Schlimmer, J. C. (1994). A Machine-Learning Apprentice for
the Completion of Repetitive Forms. IEEE Expert: Intelligent Systems and Their
Applications, 9(1):28–33.

Horvitz, E. (1999). Principles of Mixed-Initiative User Interfaces. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems: The CHI is
the Limit, pages 159–166, Pittsburgh, Pennsylvania, United States. ACM.

Humble, J., Crabtree, A., Hemmings, T., Åkesson, K., Koleva, B., Rodden, T., and
Hansson, P. (2003). “Playing with the Bits” User-Configuration of Ubiquitous
Domestic Environments. In UbiComp 2003: Ubiquitous Computing, pages 256–
263.

Höök, K. (2000). Steps to take before Intelligent User Interfaces become real. Journal
of Interacting with Computers, 12(4):409–426.

Höök, K., Karlgren, J., Wærn, A., Dahlbäck, N., Jansson, C., Karlgren, K., and
Lemaire, B. (1996). A Glass Box Approach to Adaptive Hypermedia. User Mod-
eling and User-Adapted Interaction, 6(2):157–184.

ISO 9241 (2000). ISO 9241-11: Ergonomic requirements for office work with visual
display terminals (VDTs).

Jacobs, N. and Blockeel, H. (2002). Sequence Prediction with Mixed Order Markov
Chains. In Proceedings of the Belgian/Dutch Conference on Artificial Intelligence .

Jameson, A. (2001). Modelling both the context and the user. Personal and Ubiq-
uitous Computing, 5(1):29–33.

Jameson, A. (2007). Adaptive Interfaces and Agents. In Jacko, J. A. and Sears,
A., editors, The Human-Computer Interaction Handbook: Fundamentals, Evolv-
ing Technologies and Emerging Applications, pages 305–330. Lawrence Erlbaum
Associates, Inc.

Jameson, A. and Schwarzkopf, E. (2002). Pros and Cons of Controllability: An Em-
pirical Study. In Proceedings of the Second International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems, pages 193–202. Springer-Verlag.

Jaro, M. A. (1995). Probabilistic Linkage of Large Public Health Data Files. Statistics
in Medicine, 14:491–498.

Bibliography 181

Kalfoglou, Y. and Schorlemmer, M. (2005). Ontology Mapping: The State of the
Art. In Semantic Interoperability and Integration, Dagstuhl Seminar Proceedings.

Kaljuvee, O., Buyukkokten, O., Garcia-Molina, H., and Paepcke, A. (2001). Efficient
Web Form Entry on PDAs. In Proceedings of the 10th International Conference
on World Wide Web, pages 663–672, New York, NY, USA. ACM.

Kay, J. (2001). Learner Control. User Modeling and User-Adapted Interaction, 11(1-
2):111–127.

Korpipää, P., Malm, E., Salminen, I., Rantakokko, T., Kyllönen, V., and Känsälä,
I. (2005). Context Management for End User Development of Context-Aware
Applications. In Proceedings of the 6th International Conference on Mobile Data
Management, pages 304–308, Ayia Napa, Cyprus. ACM.

Kozierok, R. and Maes, P. (1993). A Learning Interface Agent for Scheduling Meet-
ings. In Proceedings of the 1st International Conference on Intelligent User Inter-
faces, pages 81–88, New York, NY, USA. ACM.

Künzer, A., Ohmann, F., and Schmidt, L. (2004). Antizipative Modellierung des Be-
nutzerverhaltens mit Hilfe von Aktionsvorhersage-Algorithmen. MMI-Interaktiv,
(7):61–83.

Langley, P. and Fehling, M. (1996). The Experimental Study of Adaptive User
Interfaces. Technical report 98-3, Institute for the Study of Learning and Expertise,
Palo Alto, CA.

Lashkari, Y., Metral, M., and Maes, P. (1994). Collaborative Interface Agents. In
Proceedings of the Twelfth National Conference on Artificial Intelligence , Seattle,
WA. AAAI Press.

Lieberman, H., Liu, H., Singh, P., and Barry, B. (2004). Beating Common Sense
Into Interactive Applications. AI Magazine, 25(4):63–76.

Limbourg, Q. and Vanderdonckt, J. (2004). USIXML: A User Interface Description
Language Supporting Multiple Levels of Independence. In ICWEWorkshops, pages
325–338.

Linton, F., Joy, D., Schaefer, H., and Charron, A. (2000). OWL: A Recommender
System for Organization-Wide Learning. Educational Technology & Society, 3(1).

Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M., and Kandogan, E. (2007).
Koala: Capture, Share, Automate, Personalize Business Processes on the Web. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems ,
pages 943–946, New York, NY, USA. ACM.

Liu, H. and Davenport, G. (2004). ConceptNet: A Practical Commonsense Reason-
ing Toolkit. BT Technology Journal, 22(4):211–226.

182 Bibliography

Maes, P. (1994). Agents that Reduce Work and Information Overload. Communi-
cations of the ACM, 37(7):30–40.

Malaka, R. (2008). Intelligent User Interfaces for Ubiquitous Computing. In
Mühlhäuser, M. and Gurevych, I., editors, Ubiquitous Computing Technology for
Real Time Enterprises, page 470–486. Information Science Reference.

Maybury, M. T. and Wahlster, W., editors (1998). Readings in Intelligent User
Interfaces. Morgan Kaufmann Publishers Inc.

Modi, P. J., Veloso, M., Smith, S. F., and Oh, J. (2005). CMRadar: A Personal As-
sistant Agent for Calendar Management. In Agent-Oriented Information Systems
II, pages 169–181.

Monge, A. E. and Elkan, C. P. (1996). The field matching problem: Algorithms
and applications. In In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, pages 267–270.

Myers, B. A. (2007). A User Acceptance Equation for Intelligent Assistants. In AAAI
2007 Spring Symposium on Interaction Challenges for Intelligent Assistants .

Mühlhäuser, M. and Hartmann, M. (2009). Interacting With Context. In Worshop
on Quality of Context QuaCon’09.

Nichols, J., Myers, B. A., Higgins, M., Hughes, J., Harris, T. K., Rosenfeld, R., and
Pignol, M. (2002). Generating Remote Control Interfaces for Complex Appliances.
In Proceedings of UIST ’02, page 161–170. ACM Press.

Norman, D. A. (1994). How might people interact with agents. Communications of
the ACM, 37(7):68–71.

Olsen, J. D. R., Jefferies, S., Nielsen, T., Moyes, W., and Fredrickson, P. (2000).
Cross-Modal Interaction Using XWeb. In Proceedings of the 13th annual ACM
symposium on User interface software and technology, pages 191–200, San Diego,
California, United States. ACM.

Orwant, J. (1994). Heterogeneous Learning in the Doppelger User Modeling System.
User Modeling and User-Adapted Interaction, 4(2):107–130.

Pantic, M., Sebe, N., Cohn, J. F., and Huang, T. (2005). Affective Multimodal
Human-Computer Interaction. In Proceedings of the 13th annual ACM interna-
tional conference on Multimedia, page 669–676.

Paterno, F., Mancini, C., and Meniconi, S. (1997). Engineering Task Models. In
Proceedings of ICECCS ’97, page 69, Washington, DC, USA. IEEE Computer
Society.

Bibliography 183

Paterno, F., Santoro, C., Mantyjarvi, J., Mori, G., and Sansone, S. (2008). Authoring
Pervasive Multimodal User Interfaces. International Journal of Web Engineering
and Technology, 4(2):235–261.

Puerta, A. and Eisenstein, J. (2002). XIML: A Common Representation for Inter-
action Data. In Proceedings of the 7th international conference on Intelligent user
interfaces, page 214–215, San Francisco, California, USA. ACM.

Qiu, Y. and Frei, H. (1993). Concept Based Query Expansion. In Proceedings of
the ACM International Conference on Research and Development in Information
Retrieval.

Raghavan, S. and Garcia-Molina, H. (2001). Crawling the Hidden Web. In VLDB
’01: Proceedings of the 27th International Conference on Very Large Data Bases ,
pages 129–138, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Rahm, E. and Bernstein, P. A. (2001). A Survey of Approaches to Automatic Schema
Matching. VLDB Journal: Very Large Data Bases, 10(4):334–350.

Rich, C., Sidner, C., Lesh, N., Garland, A., Booth, S., and Chimani, M. (2006). Dia-
mondHelp: A New Interaction Design for Networked Home Appliances. Personal
Ubiquitous Computing, 10(2-3):187–190.

Rich, C. and Sidner, C. L. (1997). COLLAGEN: When Agents Collaborate with
People. In Proceedings of the first international conference on Autonomous agents ,
pages 284–291, Marina del Rey, California, United States. ACM.

Rich, C., Sidner, C. L., and Lesh, N. (2001). COLLAGEN: Applying Collaborative
Discourse Theory to Human-Computer Interaction. AI Magazine, 22(4).

Robinson, R., Henricksen, K., and Indulska, J. (2007). XCML: A Runtime Represen-
tation for the Context Modelling Language. In Proceedings of the Fifth IEEE In-
ternational Conference on Pervasive Computing and Communications Workshops ,
pages 20–26. IEEE Computer Society.

Rukzio, E., Noda, C., Luca, A. D., Hamard, J., and Coskun, F. (2008). Automatic
Form Filling on Mobile Devices. Pervasive Mobile Computing, 4(2):161–181.

Salton, G. and McGill, M. J. (1983). Introduction to Modern Information Retrieval.
McGraw-Hill, New York.

Satyanarayanan, M. (2001). Pervasive Computing: Vision and Challenges. IEEE
Personal Communications.

Schilit, B., Adams, N., and Want, R. (1994). Context-Aware Computing Appli-
cations. In In Proceedings of the Workshop on Mobile Computing Systems and
Applications, page 85–90. IEEE Computer Society.

184 Bibliography

Schmid, H. (1995). Probabilistic Part-of-Speech Tagging Using Decision Trees. In
International Conference on New Methods in Language Processing.

Schreiber, D., Hartmann, M., Flentge, F., Mühlhäuser, M., Görtz, M., and Ziegert,
T. (2008). Web Based Evaluation of Proactive User Interfaces. Journal on Multi-
modal User Interfaces, 2(1):61–72.

Schreiber, D., Hartmann, M., Flentge, F., Mühlhäuser, M., Ziegert, T., and Görtz,
M. (2007). Web Based Evaluation of Proactive Multimodal User Interfaces. In
Proceedings of International Workshop on Usability of User Interfaces.

Sikora, C. and Swan, R. (1998). Perceived Usability and System Complexity. Asia-
Pacific Computer and Human Interaction, pages 76–81.

Smyth, B. and Cotter, P. (2002). The Plight of the Navigator: Solving the Navigation
Problem for Wireless Portals. In Adaptive Hypermedia and Adaptive Web-Based
Systems, pages 328–337.

Souchon, N. and Vanderdonckt, J. (2003). A Review of XML-Compliant User Inter-
face Description Languages. In DSV-IS, pages 377–391.

Stephanidis, C., Paramythis, A., Zarikas, V., and Savidis, A. (2004). The PALIO
Framework for Adaptive Information Services. In Multiple User Interfaces. John
Wiley & Sons, Ltd.

Strang, T. and Linnhoff-Popien, C. (2004). A Context Modeling Survey. In Workshop
on Advanced Context Modelling, Reasoning and Management as part of UbiComp .

Stumpf, S., Bao, X., Dragunov, A., Dietterich, T. G., Herlocker, J., Johnsrude, K.,
Li, L., and Shen, J. (2005). Predicting User Tasks: I Know What You’re Doing!
In Proceedings of the 20th National conference on Artificial Intelligence, Workshop
on Human Comprehensible Machine Learning.

Stylos, J., Myers, B. A., and Faulring, A. (2004). Citrine: Providing Intelligent
Copy-and-Paste. In Proceedings of the 17th Annual ACM Symposium on User
Interface Software and Technology, pages 185–188, New York, NY, USA. ACM.

Sukaviriya, P. and Foley, J. (1992). Built-In User Modelling Support, Adaptive
Interfaces, and Adaptive Help in UIDE. Technical report, http://smartech.
gatech.edu/dspace/bitstream/1853/3680/1/92-25.pdf .

Susan, B. and McEvoy, A. T. (2003). An Intelligent Learning Environment with an
Open Learner Model for the Desktop PC and Pocket PC. Artificial Intelligence in
Education: Shaping the Future of Learning through Intelligent Technologies , pages
389–391.

Tan, P., Kumar, V., and Srivastava, J. (2002). Selecting the Right Interestingness
Measure for Association Patterns. In Proceedings of the eighth ACM SIGKDD

http://smartech.gatech.edu/dspace/bitstream/1853/3680/1/92-25.pdf
http://smartech.gatech.edu/dspace/bitstream/1853/3680/1/92-25.pdf

Bibliography 185

international conference on Knowledge discovery and data mining, pages 32–41,
Edmonton, Alberta, Canada. ACM.

Tiernan, S. L., Cutrell, E., and Czerwinski, M. (2001). Effective Notification Systems
Depend on User Trust. In Proceedings of Human-Computer Interaction–Interact,
pages Tokyo, Japan, 684–685.

UIUC (2003). The UIUC Web Integration Repository. Computer Science Depart-
ment, University of Illinois at Urbana-Champaign. http://metaquerier.cs.
uiuc.edu/repository.

Vanderdonckt, J., Mendonca, H., and Massó, J. P. M. (2008). Distributed User
Interfaces in Ambient Environment. In Constructing Ambient Intelligence, pages
121–130.

Wahlster, W. (1988). Distinguishing User Models from Discourse Models. Compu-
tational Linguistics, 14(3):101–103.

Want, R., Hopper, A., Falcão, V., and Gibbons, J. (1992). The Active Badge Loca-
tion System. ACM Transactions on Information Systems, 10(1):91–102.

Wexelblat, A. and Maes, P. (1997). Issues for Software Agent UI. Unpublished
Manuscript.

Winkler, W. E. and Thibaudeau, Y. (1991). An Application of the Fellegi-Sunter
Model of Record Linkage to the 1990 U.S. Decennial Census. Statistical Research
Report Series RR91/09, Washington, D.C.

Wu, W., Yu, C., Doan, A., and Meng, W. (2004). An interactive clustering-based
approach to integrating source query interfaces on the deep Web. In Proceedings
of SIGMOD, page 95–106.

Zesch, T., Müller, C., and Gurevych, I. (2008). Extracting Lexical Semantic Knowl-
edge from Wikipedia and Wiktionary. In Proceedings of LREC.

Zhang, Z., He, B., and Chang, K. C. (2004). Understanding Web Query Inter-
faces: Best-Effort Parsing with Hidden Syntax. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pages 107–118, New
York, NY, USA. ACM.

Ziegert, T., Lauff, M., and Heuser, L. (2004). Device Independent Web Applications
- The Author Once - Display Everywhere Approach. In ICWE, pages 244–255.

Zimmerman, J., Tomasic, A., Simmons, I., Hargraves, I., Mohnkern, K., Cornwell,
J., and McGuire, R. M. (2007). Vio: A Mixed-Initiative Approach to Learning and
Automating Procedural Update Tasks. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 1445–1454, New York, NY, USA.
ACM.

http://metaquerier.cs.uiuc.edu/repository
http://metaquerier.cs.uiuc.edu/repository

Wissenschaftlicher Werdegang der Verfasserin31

10/2000 – 02/2006 Studium der Informatik an der Universität Darmstadt

Nebenfach Psychologie

Abschluss: Diplom-Informatiker

Diplomarbeitsthema: Task-switching in Audio-based Systems

seit 02/2006 Wissenschaftliche Mitarbeiterin im Fachbereich Informatik

an der Technischen Universität Darmstadt

31Gemäß §20 Abs. 3 der Promotionsordnung der TU Darmstadt

	Introduction
	AUGUR
	Main Contributions
	Publication Record
	Thesis Outline

	Basics and Requirements
	Context
	Definition
	Categories of Context
	Difficulties in Using Context

	Intelligent User Interfaces
	Definition and Models
	Classification of IUIs
	Classification of Personal Assistants
	Classification of Interface Adaptations
	Summary

	Requirements for Context-Aware IUIs
	Challenges in Developing IUIs
	Requirements for Using Context in IUIs

	Chapter Summary

	State of the art
	Classification of Personal Assistants
	Knowledge-based Personal Assistants
	End-user Programmed Personal Assistants
	Learning Personal Assistants
	Chapter Summary

	High-Level Design
	Conceptual Building Blocks
	 Models in the Knowledge Base
	Context Model
	User Model
	Application Model

	Interaction Support
	Content Support
	Guidance
	Navigation Shortcuts
	Interface Adaptation

	Representing Support
	Scenarios
	Chapter Summary

	Implementation
	Interaction Support
	Content Support
	Navigation Support - Guidance
	Navigation Support - Navigation Shortcuts
	Interface Adaptation

	Controlling AUGUR
	Architecture
	Support Tier
	Knowledge Base
	Editors

	Chapter Summary

	Knowledge Models
	Context Model
	Current Context

	User Model
	Usage Model

	Application Model
	Requirements for Application Modeling Language
	Existing Application Modeling Languages
	ATML: ApplicaTion Modeling Language
	LabelFinder: Recognizing Labels
	Visualization in the AUGUR Prototype
	Summary

	Chapter Summary

	Content Support
	Confidence in Content Support
	Content Support based on Previous Usage
	Content Support based on Semantics
	Requirements
	Related work
	Representing UI and Context Objects
	Mapping textual representations
	Measuring the Relevance of a Context Object
	Confidence in Content Support based on Semantics
	Evaluation
	Summary

	Content Support based on Modeled Relations
	Relations in AUGUR
	Learning Direct Relations
	Learning Rules
	Computing Content Support based on Relations
	Confidence in Content Support based on Relations
	Summary

	Chapter Summary

	Navigation Support
	Guidance
	Sequence Prediction
	Existing Algorithms
	FxL
	Confidence in Guidance
	Evaluating Sequence Prediction Algorithms
	Evaluation
	Summary

	Navigation Shortcuts
	Learning Navigation Shortcuts
	Confidence in Navigation Shortcuts
	Summary

	Interface Adaptation
	Requirements
	Related Work
	Adaptation Process
	FxL*: Prediction Algorithm
	Evaluation
	Summary

	Chapter Summary

	User Study
	Experiment
	Technical Setup

	Results
	Efficiency
	Effectiveness
	Satisfaction

	Chapter Summary

	Conclusion
	Contributions
	Revisiting Challenges
	Outlook

	Appendix A
	DTD for ATML
	Questionnaires of the User Study
	General Questionnaire
	Questionnaire regarding Support

	List of Figures
	List of Figures
	List of Tables
	List of Tables
	List of Algorithms
	List of Algorithms
	Bibliography
	Bibliography

