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Zusammenfassung

Die sogenannte Cavity-Quantenelektrodynamik untersucht elektromagnetische Felder in
Hohlraumresonatoren und das Strahlungsverhalten von Atomen in solchen Feldern. Aus ex-
perimenteller Sicht stellt ein einzelnes Atom in einem Resonator hoher Finesse das einfachste
Beispiel für ein derartiges System dar. Aus theoretischer Sicht eignet sich dieses System beson-
ders zur Quanteninformationsverarbeitung, wobei die Zustände der Atome und des Lichtfeldes
als Quantenbits interpretiert werden. Die Wechselwirkung zwischen den Atomen und dem
elektromagnetischen Feld im Resonator ermöglicht dabei die kontrollierte quantenmechanische
Verschränkung der Quantenbits. In der vorliegenden Arbeit werden mehrere experimentelle
Schemata vorgestellt, bei denen eine Kette von Atomen einen oder mehrere Resonatoren ho-
her Finesse passiert, um Zustände mit Mehrparteienverschränkung zu erzeugen. Im ersten
Schritt werden zwei Schemata zur Erzeugung ein- und zweidimensionaler Cluster-Zustände
beliebiger Größe vorgeschlagen. Die beiden Schemata basieren auf der resonanten Wechsel-
wirkung einer Kette von Rydbergatomen mit einem oder mehreren Mikrowellenresonatoren.
Im zweiten Schritt wird ein Schema zur Erzeugung von Mehrparteien-W-Zuständen disku-
tiert, das auf der nicht-resonanten Wechselwirkung einer Kette von Dreizustandsatomen mit
einem optischen Resonator und einem Laserstrahl basiert. Alle Einzelschritte der vorgeschlage-
nen Schemata werden detailliert beschrieben. Darüber hinaus werden mehrere Techniken zur
Identifikation der quantenmechanischen Korrelationen in den erzeugten Zuständen begrenzter
Größe diskutiert.

Abstract

Cavity quantum electrodynamics is a research field that studies electromagnetic fields in
confined spaces and the radiative properties of atoms in such fields. Experimentally, the
simplest example of such system is a single atom interacting with modes of a high-finesse
resonator. Theoretically, such system bears an excellent framework for quantum information
processing in which atoms and light are interpreted as bits of quantum information and their
mutual interaction provides a controllable entanglement mechanism. In this thesis, we present
several practical schemes for generation of multipartite entangled states for chains of atoms
which pass through one or more high-finesse resonators. In the first step, we propose two
schemes for generation of one- and two-dimensional cluster states of arbitrary size. These
schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more
microwave cavities. In the second step, we propose a scheme for generation of multipartite
W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms
with an optical cavity and a laser beam. We describe in details all the individual steps which
are required to realize the proposed schemes and, moreover, we discuss several techniques to
reveal the non-classical correlations associated with generated small-sized entangled states.
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Introduction

Present-day computer technologies are based on the silicon microprocessor chips. The silicon
technology was pioneered in the early 1960s and since then, the chips have been dramatically
miniaturized along with staggering speed improvements. At the fundamental level, however,
this miniaturization will encounter problems once the size of the transistors will become com-
parable to the de Broglie wavelength of the electrons which carry the signals. One further
miniaturization, therefore, will inevitably hit the fundamental barrier at which one should
take into account the laws of quantum mechanics.

The pioneering proposal to perform a computation according to the laws of quantum me-
chanics was initially suggested by R. Feynman in the 1980s. He realized that it gets extremely
difficult and infeasible to simulate quantum systems by using conventional computers since the
required processing power increases exponentially with the size of system. He made, there-
fore, one radical proposal to simulate the quantum mechanics by using the quantum hardware.
Later on, D. Deutsch outlined the basic principles of quantum computation in Ref. [1] in which
the central idea was to encode the bits of information as quantum states. He anticipated that
quantum computation might outperform the classical computation if one exploits the ability
of a quantum mechanical system to exist in a superposition of two distinguishable states.

At that time, however, quantum computers were considered not more than an academic
curiosity. A key breakthrough was made in 1994 when P. Shor showed in Ref. [2] that a
quantum computer can factorize a large number into primes in a polynomial time rather
than exponential time. Since this factorization has been used as a basic ingredient in various
cryptographic protocols, the quantum computing has attracted an enormous attention and
interest. After Shor’s breakthrough, moreover, further evidence for the outperforming power
of quantum computers came in 1996 when L. Grover showed in Ref. [3] that the problem of
searching through an unstructured database could also be done much faster on a quantum
computer. Owning to these and others fascinating concepts, the field of quantum computation
and quantum information has been growing at amazing pace and has become an established
branch of research in physics with connections to mathematics and computer science [4].

In all the mentioned applications, moreover, the correlated superpositions of multipartite
states – the (so-called) entangled states, which involves two or more interacting quantum sub-
systems, play an essential role. Despite the fact that the notion of entanglement have been
known since the early days of quantum mechanics (see Refs. [5, 6]), it took nearly thirty
years until A. Aspect revealed experimentally the nonlocal character of simplest two-partite
entangled states [7]. Although a variety of more refined experiments have been carried during
the recent years, there is still an ongoing debate about the question if our world is actually
nonlocal at the microscopic level. We can conclude, therefore, that despite of its puzzling and
counterintuitive implications, the quantum entanglement has been found essential not only
in studying the non-classical behavior of composite quantum systems but also as one vital
resource in quantum information processing.
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INTRODUCTION

During the last decades, quantum optics turned to be one of the most rapidly developing
areas of modern physics in which the concepts of quantum information are manifested in the
most spectacular way. The general trend of this progress can be characterized by increasing of
the precision to manipulate single quantum systems and, moreover, by providing controllable
entanglement mechanisms for several such quantum systems. While the physical realization of
the basic quantum gates and algorithms in the framework of quantum optics has been achieved
[8, 53], the scaling of these schemes to larger systems remains still a great challenge. The major
difficulty originates to the fragility of quantum systems caused by the interaction with the
environment and which leads to the decoherence [9]. In atomic systems, moreover, the main
source of decoherence is spontaneous emission of the excited atomic state caused by its coupling
to the free-space electromagnetic background. One of the techniques developed to control the
spontaneous emission leads us into the area of cavity quantum electrodynamics (cavity QED)
which studies electromagnetic fields in confined spaces and the radiative properties of atoms
in such fields [10].

Cavity QED emerged in the 1970s with experimental studies of how the radiative properties
of atoms are modified when they radiate close to boundaries, i.e., when the atom is placed
inside a closed cavity [11]. The dynamics of the coupled atom-field system, however, remained
unexplored since the photons were lost much faster than the characteristic interaction times.
With the better resonators which were developed later on, a new epoch in cavity QED has been
marked. Namely, the coupling of an atom to the cavity mode has become a dominant effect
in the atom-field evolution [12]. The radiative properties of atoms in this (so-called) strong
coupling regime significantly differ from what was observed before. Spontaneous emission, for
instance, is replaced by periodic Rabi oscillation and becomes thus a reversible process [34].

In the recent years, furthermore, a remarkable progress has been achieved with regard to
fabrication of high-finesse resonators and coupling to them various atomic (ionic) systems or
even macroscopical objects. These achievements marked a new chapter in the physics of co-
herent light-matter interactions and triggered novel experimental developments in the area of
quantum optics. On the other hand, cavity QED bears an excellent framework for quantum
information processing in which atoms and cavity photon field are interpreted as bits of quan-
tum information (qubits) and their mutual interaction provides an exceptional entanglement
mechanism [38, 39, 40, 41, 42]. Owning to this entanglement mechanism, therefore, in this
thesis we present several practical schemes for generation of multipartite entangled states for
chains of atoms which pass through one or more high-finesse resonators.

In the first step, we propose schemes for generation of one- and two-dimensional cluster
states which represent a novel type of multi-partite entangled state introduced by H. J. Briegel
and R. Raussendorf in Ref. [48]. Apart from the fundamental interest in these states [50] and
their use in quantum communication protocols [51], the cluster states are the key ingredient for
one-way quantum computations [52]. In the recent years, the generation of cluster states has
attracted much attention and has become a research topic by itself. Using a linear-optical set-
up, for example, a proof-of-principle implementation of a four-qubit one-dimensional (linear)
cluster state has first been reported [53] and utilized in order to demonstrate basic operations
for the one-way quantum computing [54]. In the framework of cavity QED, moreover, different
schemes have been suggested to generate linear cluster states [47, 55, 56, 57]. In contrast to
the linear (one-dimensional) cluster states, however, the two-dimensional cluster states enables
one to perform also the quantum gates which act on two or more qubits simultaneously [52]
and, therefore, it may result in a viable alternative to the conventional (circuit) computations.
Up to the present, nevertheless, only a minor progress has been done in Ref. [58] in order to
generate small-sized two-dimensional cluster states in the framework of cavity QED.

2



INTRODUCTION

In the third part of this thesis, we describe our scheme to generate the linear (1 × N)
cluster state, and right afterwards, two schemes to generate the two-dimensional 2 × N and
3 × N cluster states. These schemes work in a completely deterministic way and are based
on the resonant interaction of a chain of Rydberg atoms with one (or more) microwave high-
finesse cavities which support two independent modes of photon field. While only one of
these cavities is required for the generation of linear and 2×N cluster states, two (and more)
cavities are needed to generate cluster states of larger size. For each scheme, we describe the
individual steps in the interaction of each atom with one of the cavity modes. We also make
use of a graphical language in order to display all these steps in terms of quantum circuits
and temporal sequences. In addition, we show how the last proposed scheme can be extended
to generate two-dimensional cluster states of arbitrary size, once a sufficiently large chain of
atoms and an array of cavities are provided. We briefly discuss the implementation of one-way
quantum computations by considering the setup similar to those utilized in the Laboratoire
Kastler Brossel (ENS) in Paris [34], and we conclude that our schemes are well suited for the
present-day developments in cavity QED.

In the above schemes, the atoms interact resonantly with one of cavity modes while passing
sequentially through an array of cavities such that only one atom is coupled to a mode at a
given time. One totally different regime of interaction can be realized if a chain of two or
more atoms is placed inside the cavity such that all the atoms are simultaneously coupled
to a slightly detuned (off-resonant) cavity mode. In this situation, the dipole-dipole type of
interaction can be realized as a consequence of the cavity photon exchange between the atoms.
This interaction, in turn, can be utilized as a controllable and deterministic entanglement
mechanism, in which the cavity plays the role of a data bus that mediates this interaction. By
considering this entanglement mechanism, in the second step we propose schemes for generation
of the W entangled states for a chain of N three-level atoms, in which the atoms are equally
distanced from each other and transported through the cavity by means of an optical lattice.
The W state is a particular case of a Dicke state [59] and it is known as the genuine entangled
state since it cannot be transformed into other entangled states under local operations and
classical communication protocols [22]. Moreover, the properties of the W state have been
explored in details during recent years [23, 24] and it was found important for such practical
applications like quantum teleportation, quantum dense coding, and quantum key distribution
[25, 26, 27]. Various experiments have been reported in the literature for generation of three-
qubit W states by using optical systems [28, 29], nuclear magnetic resonance [30], and ion
trapping techniques [31].

In the first part of this thesis, we describe our scheme to generate the state of W-class for
N initially uncorrelated atomic qubits encoded in the three-level atoms. This scheme works in
a completely deterministic way and is based on the dipole interaction between distant atoms
which are coupled simultaneously to an off-resonant optical cavity and a laser beam that acts
perpendicularly to the cavity axis. The two parameters that control this atom-cavity-laser
interaction are (i) the velocity of the atomic chain along the axis of the lattice and (ii) the
distance between the atoms. In the third part of this thesis, furthermore, we determine the
velocities and distances for which the initially uncorrelated atoms produce the WN states for
the chains consisting of N = 2, 3, 4 and 5 atoms. Apart from generation of the W states, we
analyze how robust are the generated entangled states with respect to small oscillations in the
atomic motion as caused by the thermal effects. Finally, we discuss the implementation of our
scheme by considering the setup similar to those utilized in the Institute of Applied Physics in
Bonn [20], and we conclude that our schemes can be adopted to the near-future developments
in cavity QED.
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Part I

Theory of the atom-light interaction

4



Chapter 1

Interaction of a two-level atom with
a single-mode cavity field

On the first sight, the theoretical description of interaction between a single atom and the light
field in the quantum regime is a formidable task since it involves many degrees of freedom
associated with complicated atomic level structure. For the most of our purposes, however, it
is justified to describe the atom as having only two electronic eigenstates, i.e., only two internal
levels are involved. This two-level approximation is valid since we consider the interaction of
an atom with a single-mode monochromatic light. In this case, the relevant atomic levels are
those which satisfy the conditions: (i) the energy difference associated with atomic transition
should match the energy of incident photon, and (ii) the selection rules do not inhibit the
transition. This simplified model has been proposed and solved analytically by E. T. Jaynes
and F. W. Cummings [13] in the early 1960s.

As we already mentioned, cavity QED is a field of research which studies interaction of a
single atom and electromagnetic field in confined spaces. The most interesting regime of the
atom-light interaction, moreover, is the (so-called) resonant interaction regime in which the
above two conditions are satisfied. Experimentally, this regime is realized by placing a single
atom inside the cavity with a very high quality of mirrors. Because of the mirrors quality and
strong electric-dipole coupling between the atom and confined light field, the cavity photon
can interact many times with the atom before it escapes. Theoretically, this regime provides
an exceptional entanglement mechanism (see below) of atoms and cavity photons which can be
interpreted as bits of quantum information (qubits). From this perspective, therefore, cavity
QED offers an excellent framework for quantum information processing.

In this chapter, we first describe the mode structure of monochromatic light that propagates
inside a planar cavity. We quantize the confined light and derive the Hamiltonian that governs
its evolution. Right afterwards, we introduce the coupling between a two-level atom and quan-
tized light and derive the Jaynes-Cummings Hamiltonian that describes the model mentioned
above. Moreover, we consider the situation in which both conditions (i) and (ii) are satisfied
and derive the evolution of composite wave-function associated with the coupled atom-cavity
system. We find that this evolution describes a time-varying entanglement between a two-level
atom and the cavity photon field. Finally, we analyze the effects of spontaneous atomic emis-
sion and cavity relaxation in order to understand how this time-varying entanglement evolves
in realistic environments.
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CHAPTER 1: Interaction of a two-level atom with a single-mode cavity field

Figure 1.1: Planar (Fabry-Perot) cavity that consists of two reflecting mirrors and which are
separated by distance L.

1.1 Quantized light field in a planar (Fabry-Perot) cavity

In this section we shall quantize the electromagnetic field inside a planar (Fabry-Perot) cavity
that is displayed in Fig. 1.1. This cavity consists of two perfectly reflecting plane mirrors
which are separated by an adjustable distance L. Specifically, we are interested in obtaining
the energy of the electromagnetic field and the electric field operator which, in the next sections,
will be used to derive the interaction Hamiltonian for the coupled atom-cavity system.

Inside the cavity, the electromagnetic field fulfills the Maxwell’s equations:

∇ ·E(r, t) = 0, (1.1a)

∇ ·B(r, t) = 0, (1.1b)

∇×E(r, t) = −∂B(r, t)

∂t
, (1.1c)

∇×B(r, t) =
1

c2
∂E(r, t)

∂t
(1.1d)

where E(r, t), B(r, t) are the vacuum electric and magnetic fields, respectively, and the vacuum
speed of light c = 1/

√
ε0 µ0 defines the electric permittivity ε0 and the magnetic permeability

µ0. By taking the curl of Eq. (1.1c) and substituting it in Eq. (1.1d), we find the equation1

∇2E(r, t)− 1

c2
∂2E(r, t)

∂t2
= 0, (1.2)

which describes the propagation of electromagnetic field in the vacuum.
Perfectly reflecting mirrors of a planar cavity are separated from each other by the distance

L such that the position of the mirrors along the z-axis are given by z− = −L/2 and z+ = +L/2
as displayed in Fig. 1.1. These perfectly reflecting mirrors, moreover, imply the vanishing of
the tangential component of electric field and the normal component of magnetic field on the
interior cavity sides

n(r±)×E(r±, t) = 0, and n(r±) ·B(r±, t) = 0, (1.3)

1In order to obtain this equation, the identity ∇×∇E(r, t) = ∇(∇·E(r, t))−∇2E(r, t) along with Eq. (1.1a)
has been used.
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1.1. Quantized light field in a planar (Fabry-Perot) cavity

where n(r±) are the normal vectors at the positions r± = (x, y, z±) on the mirrors. Since
the above boundary conditions are independent of time, it is possible to apply the separation
ansatz E(r, t) = N q(t)u(r) [14] which substituted in Eq. (1.2), leads to

∇2u(r)

u(r)
=

1

c2
q̈(t)

q(t)
, (1.4)

where dot denotes the time derivative and N denotes the normalization factor. Instead of
Eq. (1.4), equivalently, we can consider the system of two equations2

∇2u(r) + k2 u(r) = 0, (1.5a)

q̈(t) + ω2 q(t) = 0, (1.5b)

where k = |k| is the modulus of the wave vector and ω = c k is the wave frequency determined
by the wave vector.

The first equation from (1.5) is the Helmholtz equation which describes the cavity field
structure, while the second is equation for the classical harmonic oscillator. In order to simplify
further derivations, below, we consider the ansatz for the field structure

u(r) = x cos(k z), (1.6)

which describes a standing wave that propagates between the mirrors and is linearly polarized
in the x direction [see Fig. 1.1]. It can be readily checked that the function (1.6) fulfills
the Helmholtz equation (1.5a) and the boundary conditions (1.3) only for the discrete values
kℓ = (2 ℓ+1)π/L, where ℓ is an integer. These discrete values imply, in turn, the discrete set of
wave-functions uℓ(r) and the discrete wave frequencies ωℓ = c (2 ℓ+1)π/L which are supported
by the cavity. Any two functions uℓ(r) and uℓ′(r), moreover, satisfy the orthogonality condition

2

L

∫ z+

z−

uℓ(r) · uℓ′(r) dx = δℓ,ℓ′ . (1.7)

Recall that due to the separation ansatz that we have applied above, the electric field

Ec(r, t) = N qc(t)x cos(kc z), (1.8)

is given by both the field structure uℓ(r) and the oscillator q(t) that satisfies Eq. (1.5b).
Moreover, we have taken only one single mode (from the discrete set of modes) that corresponds
to the wave vector modulus kc and frequency ωc. Substituting expression (1.8) into Eq. (1.1c)
and using the oscillator equation (1.5b), we find the expression for the magnetic field

Bc(r, t) = −
∫

N
c2 kc

y q̈c(t) sin(kc z) dt = − N
c2 kc

y q̇c(t) sin(kc z). (1.9)

Having both the electrical and magnetic components, we can evaluate the field Hamiltonian

Hc =
1

2

∫ z+

z−

[
ε0E

2
c(r, t) +B2

c(r, t)/µ0
]
dx =

1

2

[
ω2
c q

2
c (t) + p2c(t)

]
, (1.10)

where pc(t) ≡ q̇c(t) and the normalization factor N =
√

2ω2
c

ε0 L
has been introduced. Hamiltonian

(1.10) is formally identical with the Hamiltonian for a classical harmonic oscillator of unit mass

2Note that we could choose here the negative sign instead of positive. However, this choice would lead to
the exponentially growing solutions for q(t), which are nor physically acceptable.
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CHAPTER 1: Interaction of a two-level atom with a single-mode cavity field

that oscillates with the frequency ωc, and where q(t) and p(t) are the position and momentum
of oscillator. Below, we shall omit for brevity all subscripts and introduce the dimensionless
complex amplitude

a(t) =
p(t)− ι̇ ω q(t)√

2 ~ω
⇒ q(t) = ι̇

√
~
2ω

[a(t)− a∗(t)] ; p(t) =

√
~ω
2

[a(t) + a∗(t)] , (1.11)

where ~ is the Planck’s constant. The oscillator equation (1.5b) implies the equation for the
complex amplitude ȧ(t) = −ι̇ ω a(t) with the general solution a(t) = a e−i ω t, where a ≡ a(0).
By substituting p(t) and q(t) together with solutions for a(t) into the Hamiltonian (1.10), we
find the energy of one single (oscillation) mode that corresponds to the frequency ω

H =
1

2
~ω (a∗ a+ a a∗) . (1.12)

The quantization of harmonic oscillator (1.10) is done by postulating the equal-time com-
mutation relations [q̂(t), p̂(t)] = ι̇ ~ and [q̂(t), q̂(t)] = [p̂(t), p̂(t)] = 0, where q̂(t) and p̂(t) become
the position and momentum operators of the oscillator. This procedure implies, therefore, that
the complex amplitudes a and a∗ become the operators â and â†, respectively, which satisfy
the commutation relations

[â, â†] = 1, and [â, â] = 0. (1.13)

By substituting the operators â and â† in the Hamiltonian (1.12) and using the commutation
relations (1.13), we find the quantized energy of a single-mode field that corresponds to the
frequency ω

Ĥ =
1

2
~ω
(
â† â+ â â†

)
= ~ω

(
â† â+

1

2
Î

)
. (1.14)

The same procedure applied to the electric field (1.8) yields the operator

Ê(r, t) = ι̇

√
~ω
ε0 L

(
â e−i ω t − â† ei ω t

)
x cos(k z), (1.15)

which describes the single-mode quantized cavity electric field inside a planar cavity.

Note that the quantization of the electromagnetic field arises solely due to the time-
dependent part q(t) of the electric field component, while the spatial part u(r) is purely classical
which satisfies the Helmholtz equation together with the boundary and orthogonality condi-
tions. The results of Ref. [15] ensure, moreover, that the Helmholtz equation for any finite
cavity shape has a complete and orthogonal set of eigenfunctions uℓ(r) which together with
the eigenvalues kℓ are completely determined by the cavity shape and replace the combination
{uℓ(r) = x cos(kℓ z), kℓ = (2 ℓ + 1)π/L} that we found for the planar (Fabry-Perot) cavity.
The quantization procedure we performed, therefore, remains valid for any finite cavity with
arbitrary shape and in order to summarize the obtained results in a form that is independent
on the cavity shape, we express the operator (1.15) in the form

Ê(r, t) = ι̇

√
~ω

2 ε0V

(
â e−i ω t − â† ei ω t

)
ϵ f(r), (1.16)

where ϵ is a real unit vector that denotes the field polarization, f(r) is a real scalar function
that describes the field structure, and V =

∫
|f(r)|2 d3r denotes the cavity mode volume.
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1.1. Quantized light field in a planar (Fabry-Perot) cavity

The structure of Hilbert space associated with operators â and â† is determined by the
positivity of Ĥ and, therefore, by the set of its positive eigenvalues En. It can be shown that

Ĥ â† |ϕn⟩ = (En + ~ω) â† |ϕn⟩ and Ĥ â |ϕn⟩ = (En − ~ω) â |ϕn⟩, (1.17)

which implies that â |ϕn⟩ is an eigenstate of Ĥ with the decreased energy (En − ~ω), while
â† |ϕn⟩ is an eigenstate of Ĥ with the increased energy (En + ~ω). The operator â is called
the annihilation operator since it decreases En exactly by the energy of one single photon ~ω.
In contrast, the operator â† is called the creation operator since it increases En by the energy
of one single photon. The positivity of Ĥ implies, moreover, that the field energy cannot be
decreased infinitely and, therefore, the Hilbert space must include the ground state |0⟩ which
satisfies the condition â|0⟩ = 0. This ground state, therefore, is called the vacuum state since
it contains no photons and it corresponds to the lowest energy ~ω/2 of the field.

Starting from the ground state, moreover, any quanta of energy (photons) can be produced
by multiple application of the (normalized) creation operator

|n⟩ = 1√
n!

(
â†
)n

|0⟩, (1.18)

where |n⟩ denotes the number (Fock) state which is defined as the eigenstate of Ĥ that cor-
responds to the eigenvalue ~ω(n+ 1/2). The relation (1.18) implies the action of operators â
and â† on the Fock states

â|n⟩ =
√
n|n− 1⟩, â†|n⟩ =

√
n+ 1|n+ 1⟩ (1.19)

and also ensures that the Fock states form an orthogonal basis of the Hilbert space in question

⟨n|n′⟩ = δn,n′ ,
∞∑
n=0

|n⟩⟨n| = Î. (1.20)

We conclude, therefore, that the Hilbert space associated with operators â and â† is spanned
by the Fock states and, further, we shall solely consider the Fock states in order to characterize
a quantum state of the cavity field.

1.1.1 Transverse cavity field components

So far, we assumed that the cavity field structure u(r) = ϵ f(r) is determined by the polariza-
tion ϵ and the real function f(r) = cos(k z) which describes a standing wave that propagates
between two planar mirrors. This scalar field fulfills the Helmholtz equation and the bound-
ary conditions (1.3) for discrete values kℓ = (2 ℓ + 1)π/L which imply, in turn, discrete wave
frequencies ωℓ = c (2 ℓ + 1)π/L supported by the cavity. Below, we shall demonstrate that
the light field of a cavity that consists of two spherical mirrors can support two transverse
components if the radii of mirrors coincides with the radii of curvature of the light wavefront.

In order to show this, we shall consider the more general ansatz

f(r) = Re
[
F (r) e−ι̇ kz

]
, (1.21)

where

F (r) = e−ι̇ Q(z)(x2+y2) e−ι̇ P (z). (1.22)

9



CHAPTER 1: Interaction of a two-level atom with a single-mode cavity field

Figure 1.2: (a) The cavity waist w is defined as the half-width of the Gaussian function
exp[−r2/w2] at the point where the amplitude is 1/e of its maximum value. (b) Cavity that
consists of two spherical mirrors which are separated by the distance L.

By substituting the ansatz (1.21) into the Helmholtz equation, we obtain

∂2F (r)

∂x2
+
∂2F (r)

∂y2
+
∂2F (r)

∂z2
− 2 ι̇ k

∂F (r)

∂z
= 0. (1.23)

Notice that the exponent e−ι̇ kz, which describes the standing wave propagating along the
z-axis, is factored out and the remaining z dependence of F (r) is caused basically by the
diffraction effects. Therefore, this z dependence of F (r) must be slow if compared to the optical
wavelength k and also if compared to the transverse variations of F (r). This assumption, which
is know as the paraxial approximation, allows us to express (1.23) in the form

∂2F (r)

∂x2
+
∂2F (r)

∂y2
− 2 ι̇ k

∂F (r)

∂z
= 0. (1.24)

According to the ansatz (1.22), moreover, we explicitly assumed that the transverse field
is characterized by the exponent which depends on (x2 + y2). The light wave that admits
such dependence on the transversal coordinates and is the solution of Eq. (1.24) is called the
Gaussian beam and it exhibits one minimal diffractive spreading of the light [61].

By substituting the ansatz (1.22) into the paraxial equation (1.24), we obtain the equations

k
dP (z)

dz
+ 2 ι̇ Q(z) = 0, 2Q(z)2 + k

dQ(z)

dz
= 0, (1.25)

which being solved and substituted back into (1.22) gives [62]

F (r) =
w

W (z)
exp

[
−x

2 + y2

W (z)2

]
exp

[
−ι̇ k (x

2 + y2)

2R(z)

]
exp

[
ι̇ arctan

(
λ z

π w2

)]
, (1.26)

where

W (z) = w

√
1 +

(
λ z

π w2

)2

and R(z) = z

[
1 +

(
π w2

λ z

)2
]

(1.27)

denote the width of the transverse Gaussian profile and the radius of curvature of the light
wavefront, respectively. In the above notation, moreover, we introduced the (so-called) beam
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1.2. Atom coupled to a cavity: Jaynes-Cummings Hamiltonian

waist w which is equal to the half-width of the Gaussian function at the point where the
amplitude is 1/e of its maximum value [see Fig. 1.2(a)]. The first exponent in (1.26) describes
the amplitude distribution across the light wave, the second term describes the structure
of nearly-plane wave (paraxial-spherical wave), and the third term is the Guoy phase that
describes the longitudinal phase delay of the beam.

Owning to the solution (1.26) of the paraxial equation (1.24), we substitute it into the
ansatz (1.21) and obtain the expression for the cavity field structure

f(r) =
w

W (z)
exp

[
−(x2 + y2)

W (z)2

]
cos

[
k z − k (x2 + y2)

2R(z)
+G(z)

]
, (1.28)

where G(z) = arctan[λ z/(π w2)] denotes the Guoy phase. It is clear, however, that the Gaus-
sian beam (1.28) will not form a standing wave inside a planar (Fabry-Perot) cavity. The
reason for this is that the wavefront of a Gaussian beam is not a plane wave but rather a
nearly-plane wave (paraxial-spherical wave) with the radius of curvature being characterized
by R(z). Therefore, instead of the planar cavity, we shall consider a cavity with two spherical
mirrors characterized by the same (constant) radii of curvature RM and which are separated
by an adjustable distance L (in the origin of x − y plane) as displayed in Fig. 1.2(b). There-
fore, if the radii of curvature of mirrors RM is equal to the radii of curvature of the wavefront
R(z) taken at z = z±, then the beam is reflected back into itself and a standing wave can be
produced.

Finally, we need to calculate the set of frequencies ωℓ supported by the cavity and which
should replace the set c (2 ℓ + 1)π/L found by us for a planar cavity. In order to proceed,
notice that the boundary conditions (1.3) imply that along the z-axis (in the origin of x − y
plane) the cavity can accommodate n + 1/2 wavelengths and, therefore, the cosine argument
of (1.28) must fulfill the condition(

kℓ z+ − k (x2 + y2)

2R(z+)
+G(z+)

)
−
(
kℓ z− − k (x2 + y2)

2R(z−)
+G(z−)

)
= π (2 ℓ+ 1). (1.29)

Since RM = R(z+) = R(z−), the above condition becomes kℓ L+G(z+)−G(z−) = π (2 ℓ+ 1)
and yields the set of wave numbers kℓ = [π (2 ℓ+1)+G(z−)−G(z+)]/L which are compatible
with the cavity boundary conditions. Owning to this set of wave numbers, we readily determine
the set of frequencies

ωℓ = c
π (2 ℓ+ 1) +G(z−)−G(z+)

L
(1.30)

which are supported by the cavity and which, in contrast to the planar cavity, involve the
difference between the Guoy phases taken at the cavity walls.

1.2 Atom coupled to a cavity: Jaynes-Cummings Hamiltonian

In the previous section we obtained the expressions (1.14) and (1.16) for energy and electro-
magnetic field which evolve freely inside a planar or spherical cavity. In this section we derive
the Hamiltonian that governs the interaction of cavity field coupled to a two-level atom.

We consider an atom at rest being placed inside a cavity which is characterized by the
cavity field structure f(r) and frequency ω = k c. We assume that the atom consists of
electrons surrounding its nucleus which form together a hard-core with one valence electron. If
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CHAPTER 1: Interaction of a two-level atom with a single-mode cavity field

Figure 1.3: The model of hydrogen-like atom consisting of a hard-core at position rc and one
valence electron at position re. Because of non-vanishing mass ratio between electron and
atomic core, the center-of-mass position r′ is shifted. See the text for details.

we denote by rc and re the positions of hard-core and valence electron, respectively, then the
interaction between atom and the intracavity field is governed by the dipole-field Hamiltonian

Ĥint = −q r̂ · Ê(r′, t), (1.31)

where q is the electric charge, Ê(r, t) is the electric field operator (1.16), r = re − rc denotes
the relative position of valence electron, and r′ = (me re + mc rc)/(me + mc) is the atomic
center-of-mass position [see Fig. 1.3]. Note that in the above Hamiltonian, we assumed that
the electric field depends on the position of atomic center-of-mass r′. This physically justified
assumption, which is known as the dipole approximation, is valid whenever the wavelength of
light field is large in comparison with the size of atom and implies that the variation of electric
field over the atom can be neglected.

The internal structure of a two-level atom is completely characterized by the states |g⟩
(ground) and |e⟩ (excited) which are accessible to the valence electron and which correspond
to the energies Eg = ~ωg and Ee = ~ωe, respectively (Eg < Ee). The states |g⟩ and |e⟩,
moreover, fulfill the orthogonality and completeness relations

⟨e|g⟩ = ⟨g|e⟩ = 0, ⟨g|g⟩ = ⟨e|e⟩ = 1, |e⟩⟨e|+ |g⟩⟨g| = Î (1.32)

and they represent the eigenstates of the atomic Hamiltonian

Ĥa = Eg |g⟩⟨g|+ Ee |e⟩⟨e| =
1

2
~ (ωe + ωg) Î + ~ωa σ̂z, (1.33)

where ωa = ωe − ωg is the atomic transition frequency and σ̂z = 1
2 (|e⟩⟨e| − |g⟩⟨g|). We use

relations (1.32) to express the Hamiltonian Ĥa-f = Ĥa+ Ĥint, which describes a two-level atom
coupled to the intracavity field, in the form

Ĥa-f = Î
[
Ĥa − q r̂ · Ê(r′, t)

]
Î = Ĥa − d

(
σ̂† ϵ∗a + σ̂ ϵa

)
· Ê(r′, t), (1.34)

where σ̂ = |g⟩⟨e| and σ̂† = |e⟩⟨g| denote the excitation lowering and rising operators, respec-
tively, and where we introduced the notation ⟨g|q r̂|e⟩ = d ϵa with d being the real dipole
matrix element of the atomic transition3 and ϵa being the unit complex vector that determines
the atomic transition polarization.

3In the expression (1.34), we used the fact that the diagonal matrix elements ⟨e|r̂|e⟩ and ⟨g|r̂|g⟩ of the dipole
operator vanish. This result can be readily demonstrated by considering the space representation of the diagonal
matrix elements and noticing that the complete integrand is anti-symmetric and, therefore, vanishes.
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1.2. Atom coupled to a cavity: Jaynes-Cummings Hamiltonian

In order to simplify our derivations, we need to specify the atomic transition polarization
ϵa. The simplified picture of the two-level atom that we have considered above, however, does
not tell anything about the polarization of the light that is emitted or absorbed during the
atomic transition. In any realistic hydrogen-like system, moreover, each atomic level |g⟩ or
|e⟩ consists of a manifold of almost degenerate sub-levels, which are labeled by the quantum
numbers me and mg, respectively. These quantum numbers give rise the revised dipole matrix
element ⟨g,mg|q r̂|e,me⟩ in which the transition polarization is determined by the values of
∆m = mg − me = {−1, 0,+1}. It can be shown [90], that the transitions with ∆m = +1
and ∆m = −1 produce the circular polarizations ϵ+a = 1√

2
(x+ ι̇y) and ϵ−a = 1√

2
(x− ι̇y),

respectively, while the transition with ∆m = 0 produces the polarization ϵπa = z which
coincides with the direction of light propagation.

In the second part of this thesis, we show that the atoms which are utilized in the typical
cavity-QED experiments support the circular polarization ϵ+a for the dipole matrix element
associated with the |g⟩ → |e⟩ transition. Placed inside the cavity, therefore, such an atom
couples to the cavity electric field

Ê(r, t) = ι̇ f(r)

[√
~ω

2 ε0V

(
â e−i ω t − â† ei ω t

)
x+

√
~ ω̃

2 ε0V

(
b̂ e−i ω̃ t − b̂† ei ω̃ t

)
y

]
, (1.35)

where
[b̂, b̂†] = 1, and [b̂, b̂] = [â, b̂] = [â, b̂†] = 0 (1.36)

and which involves both (orthogonally polarized) cavity modes in contrast to (1.16). The
cavity mode that is polarized along the x-axis (Cx mode) is characterized by the operators
{â, â†} and frequency ω, while the orthogonal mode that is polarized along the y-axis (Cy
mode) is characterized by the operators {b̂, b̂†} along with frequency ω̃. Notice that a perfectly
spherical shape of cavity mirrors implies that both cavity mode are strictly degenerate, i.e.,
ω = ω̃. However, due to various imperfections caused by the fabrication process, a birefringent
splitting between the orthogonally polarized cavity modes is produced and it makes one of the
modes to be detuned with respect to another, i.e., δ = ω− ω̃ > 0. Notice that since the cavity
frequency ω is usually very big if compared to the birefringent splitting δ, we can safely replace
ω̃ by ω in the terms where this frequency appears linearly√

~ ω̃
2 ε0V

∼=
√

~ω
2 ε0V

. (1.37)

By inserting the electric field operator (1.35) together with polarization ϵa = ϵ+a and (1.37)
in the Hamiltonian (1.34), we find

Ĥa-f = Ĥa − ι̇
~
2
σ̂†
[(
â e−i ω t − â† ei ω t

)
− ι̇

(
b̂ e−i ω̃ t − b̂† ei ω̃ t

)]
g(r′)

− ι̇
~
2
σ̂
[(
â e−i ω t − â† ei ω t

)
+ ι̇

(
b̂ e−i ω̃ t − b̂† ei ω̃ t

)]
g(r′), (1.38)

where we introduced the interaction frequency (atom-cavity coupling)

g(r) = g◦ f(r) = d

√
ω

ε0 ~V
f(r) (1.39)

between the atom and cavity modes. Notice also that the atom-cavity coupling is determined
entirely by the atomic dipole momentum, mode frequency, cavity field amplitude, and the
effective mode volume.
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CHAPTER 1: Interaction of a two-level atom with a single-mode cavity field

Hamiltonian (1.38) is further simplified by switching to the interaction picture with re-
spect to the time-independent part Ĥa, or equivalently, the time-dependent parts of (1.38) is

transformed by means of the unitary operator Ûa = exp
(
− ι̇

~ Ĥa t
)

ĤI = Û †
a

(
Ĥa-f − Ĥa

)
Ûa

= −ι̇ ~
2
g(r′)

(
σ̂†â ei∆ t − σ̂ â† e−i∆ t

)
− ~

2
g(r′)

(
σ̂† b̂ ei (∆+δ) t + σ̂ b̂† e−i (∆+δ) t

)
, (1.40)

where ∆ = ωa − ω is the difference between the atomic transition frequency and the field
frequency of mode Cx, to which we shall refer as the atom-cavity detuning. Note that in the
Hamiltonian (1.40), we neglected the terms σ̂ â e−i (ωa+ω) t, σ̂†â†ei (ωa+ω) t, σ̂ b̂ e−i (ωa+ω̃) t, and
σ̂†b̂†ei (ωa+ω̃) t since the contribution of these fast oscillating terms is averaged much rapidly if
compared to the slow oscillating terms and, therefore, these fast oscillating terms play a minor
role in the evolution of the coupled atom-cavity system4.

1.2.1 Resonant atom-cavity interaction

Hamiltonian (1.40) governs the interaction of a two-level atom with two (non-degenerate)
orthogonal modes of the quantized light field. The physically interesting regime of the atom-
cavity evolutions is the so-called resonant interaction regime, in which the atomic transition
frequency ωa matches the frequency of one of cavity modes, i.e., ωa = ω or ωa = ω̃. Let us
assume that the atom is tuned in resonance with mode Cx such that the detuning ∆ vanishes
and the Hamiltonian (1.40) becomes

ĤI = −ι̇ ~ g◦
2

(
σ̂†â− σ̂ â†

)
− ~

g◦
2

(
σ̂† b̂ ei δ t + σ̂ b̂† e−i δ t

)
, (1.41)

where we also assumed that the atomic center-of-mass is located at the point r′ = r′◦, in which
the cavity field amplitude is maximum, i.e., f(r′◦) = 1.

It is relevant to point out that for a large enough birefringent splitting δ, we can safely
neglect the second term in the Hamiltonian (1.41) and consider the atom interacting only
with the cavity mode Cx. In order to show this, we expand in series the evolution operator
associated with Hamiltonian (1.41) and keep the terms up to the second order. Then, by
performing the integration and retaining only the linear (in time) contributions, we express
this evolution operator in the form

ÛI ∼= Î− ι̇

~

∫ t

0
ĤI dt

′ − 1

~2

∫ t

0

(
ĤI

∫ t′

0
ĤI dt

′′

)
dt′ ∼= Î− ι̇

~
Ĥeff
I t ∼= exp

[
− ι̇
~
Ĥeff
I t

]
, (1.42)

where the effective Hamiltonian is given by

Ĥeff
I = −ι̇ ~ g◦

2

(
σ̂†â− σ̂ â†

)
− ~

g2◦
4 δ

(
σ̂σ̂† b̂†b̂− σ̂†σ̂ b̂ b̂†

)
. (1.43)

The second term of this (effective) Hamiltonian produces only the phase shifts

|e; n̄⟩ → exp

[
−ι̇ g

2
◦ (n̄+ 1)

4 δ

]
|e; n̄⟩ and |g; n̄⟩ → exp

[
ι̇
g2◦ n̄

4 δ

]
|g; n̄⟩, (1.44)

4This assumption, which is known as the rotating wave approximation, is valid whenever the applied elec-
tromagnetic field is nearly resonant with the atomic transition.
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1.2. Atom coupled to a cavity: Jaynes-Cummings Hamiltonian

which can be neglected if the condition δ ≫ g◦ is satisfied. In other words, the resonant
interaction between a circularly polarized atom and both (orthogonally polarized) cavity modes
reduces to the resonant interaction between the atom and mode Cx, whenever ∆ = 0 and the
birefringent splitting δ is sufficiently detuned with respect to the atom-cavity coupling g◦.
Therefore, we can safely describe the atom-cavity evolution by using only the first term of the
effective Hamiltonian (1.43)

Ĥx = −ι̇ ~ g◦
2

(
σ̂†â− σ̂ â†

)
. (1.45)

By a similar line of reasoning, furthermore, it can be shown that by adjusting (tuning) the
atomic transition in resonance with mode Cy, i.e., ∆ = −δ, the atom-cavity evolution is
governed by the Hamiltonian

Ĥy = −~
g◦
2

(
σ̂† b̂+ σ̂ b̂†

)
, (1.46)

and where the same condition, i.e., δ ≫ g◦, must hold true. Hamiltonian of the type (1.45)
or (1.46) was originally introduced and analyzed by E. T. Jaynes and F. W. Cummings in
Ref. [13] and is known in the literature as the Jaynes-Cummings Hamiltonian.

In order to solve the Schrödinger equations associated with Hamiltonians (1.45) and (1.46)

ι̇ ~
d|Ψx(t)⟩

dt
= Ĥx |Ψx(t)⟩, ι̇ ~

d|Ψy(t)⟩
dt

= Ĥy |Ψy(t)⟩, (1.47)

we assume the ansatz for the wave-functions

|Ψx(t)⟩ =

∞∑
n=0

[
Ψe,n
x (t)|e; n⟩+Ψg,n+1

x (t)|g; n+ 1⟩
]
+Ψg,0

x (t)|g; 0⟩, (1.48a)

|Ψy(t)⟩ =

∞∑
n=0

[
Ψe,n̄
y (t)|e; n̄⟩+Ψg,n̄+1

y (t)|g; n̄+ 1⟩
]
+Ψg,0̄

y (t)|g; 0̄⟩, (1.48b)

where the states |n⟩ and |n̄⟩ refer to the Fock spaces associated with the modes Cx and Cy,
respectively. By substituting this ansatz into (1.47), we obtain two closed systems of equations

Ψ̇e,n
x (t) = −g◦

√
n+ 1

2
Ψg,n+1
x (t); Ψ̇g,n+1

x (t) =
g◦

√
n+ 1

2
Ψe,n
x (t); Ψ̇g,0

x (t) = 0, (1.49a)

Ψ̇e,n̄
y (t) = ι̇

g◦
√
n̄+ 1

2
Ψg,n̄+1
y (t); Ψ̇g,n̄+1

y (t) = ι̇
g◦

√
n̄+ 1

2
Ψe,n̄
y (t); Ψ̇g,0̄

y (t) = 0, (1.49b)

where dot denotes the time derivative.

Equations (1.49) admit analytical solutions which together with the initial states |Ψx(0)⟩
and |Ψy(0)⟩ determine the time-evolution of wave-functions (1.48). We readily recognize,
moreover, that the evolution of states |g; 0⟩ and |g; 0̄⟩ is decoupled from the atom-cavity
dynamics and the wave-functions |Ψx(t)⟩ or |Ψy(t)⟩ remain trapped for the overall interaction
time if |Ψx(0)⟩ = |g; 0⟩ or |Ψy(0)⟩ = |g; 0̄⟩, respectively. We are interested, however, in the
atom-cavity evolution obtained for two initial states: (i) cavity is empty and the atom is
excited, i.e., |Ψe

x(0)⟩ = |e; 0⟩ and (ii) cavity contains one photon and the atom in ground state,
i.e., |Ψg

x(0)⟩ = |g; 1⟩. For these initial conditions, the wave-function (1.48a) evolves according

|Ψe
x(t)⟩ = cos (g◦ t/2) |e; 0⟩+ sin (g◦ t/2) |g; 1⟩, (1.50a)

|Ψg
x(t)⟩ = cos (g◦ t/2) |g; 1⟩ − sin (g◦ t/2) |e; 0⟩, (1.50b)
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CHAPTER 1: Interaction of a two-level atom with a single-mode cavity field

Figure 1.4: Schematic view of the experimental setup. A chain of Rydberg atoms is emitted
from the atomic source along the x-axis (in the origin of the y − z plane) such that only one
atom couples to the cavity at a time. The cavity is characterized by the resonant frequency ω
and position-dependent coupling strength g(x) = g◦ f(x).

and describes a coherent exchange of energy between a two-level atom and intracavity field.
The frequency of this exchange is given by the the vacuum Rabi splitting g◦, that is the
position-independent part of the atom-cavity coupling (1.39). For the same initial conditions,
i.e., |Ψe

y(0)⟩ = |e; 0̄⟩ and |Ψg
y(0)⟩ = |g; 1̄⟩, the wave-function (1.48b) evolves according

|Ψe
y(t)⟩ = cos (g◦ t/2) |e; 0̄⟩+ ι̇ sin (g◦ t/2) |g; 1̄⟩, (1.51a)

|Ψg
y(t)⟩ = cos (g◦ t/2) |g; 1̄⟩+ ι̇ sin (g◦ t/2) |e; 0̄⟩, (1.51b)

where the imaginary factor arises due to orthogonal polarization of the mode Cx with respect
to Cy. Note that expressions (1.50) and (1.51) describe the time-varying entanglement between
a two-level atomic and cavity photon field. For instance, the Bell state 1√

2
(|e; 0⟩+ |g; 1⟩) is

produced from the initial state |e; 0⟩ after the interaction time g◦ t = π/2 [see (1.50a)]. We
conclude, therefore, that by setting an appropriate interaction time and an initial atom-cavity
state, we can control the coherent exchange of energy in the coupled atom-cavity system and
generate various nonlocal states after the atom is removed from the cavity.

1.2.2 Effective atom-cavity interaction time

So far, we assumed that the atom is at rest inside the cavity such that the atomic center-of-
mass position is located at the point r′ in which the field structure f(r′) is maximum. By
inspecting the cavity field amplitude (1.28), it is seen that in order to fulfill this requirement
the r′z component must be located in the middle of cavity (at the field antinode), while the
components r′x and r′y must be located in the origin, i.e., r′ = {0, 0, 0} [see Fig. 1.2]. By
assuming the atom at rest, moreover, we simplified essentially the atom-cavity evolution such
that all degrees of freedom associated with the motion of atomic center-of-mass have been
excluded.

In practice, however, it is difficult to maintain the atom inside the cavity for a necessary
long period of time which, for instance, includes an appropriate atom-cavity interaction time
along with atomic trapping and cooling sequences. In the second part of this thesis we show,
moreover, that the atoms utilized in the typical cavity-QED experiments are initialized outside
the cavity and emitted with a well controlled velocity by the atomic source as displayed in
Fig. 1.4. Without loss of generality, we can assume that an (initialized) atom leaves the
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atomic source with a constant velocity υ along the x-axis such that the atomic trajectory is
always in the origin of z − y plane. By this assumption, therefore, the atom probes one single
transverse component of the cavity field structure while passing through the cavity

f(x) = exp
[
−x2/w2

]
, (1.52)

which is obtained from the amplitude (1.28) for z = y = 0. In this section, we shall analyze
how the atom-cavity evolutions (1.50) and (1.51) are affected by an uniform motion of an atom
that probes the field amplitude (1.52).

In order to proceed, we consider the Hamiltonian

Ĥc.m
I =

p̂2x
2M

+ ĤI

(
x̂′(t)

)
≡ Ĥc.m + ĤI

(
x̂′(t)

)
, (1.53)

in which the center-of-mass position x′ becomes a dynamical variable x̂′(t). The the first term
describes the constant kinetic energy associated with atomic center-of-mass motion, and the
second term is the atom-cavity interaction Hamiltonian (1.40) with x′ being replaced by x̂′(t).
According to the Hamiltonian (1.53), moreover, the atomic momentum is influenced only by
the second term which describes a coherent exchange of energy between a two-level atom and
the cavity field. This exchange implies, in turn, that each process of emission (absorbtion)
of a photon, that is characterized by the wave vector k, decreases (increases) the atomic
momentum by the amount of ~k. In many realistic situation, i.e., when the atom moves
with a high velocity, such modifications of the atomic momentum are negligible in comparison
to the atomic kinetic energy. This physically justified assumption allows us to separate the
atomic motion from the Hamiltonian (1.53) and describe it classically. The motion of an atom
that moves along the x-axis with a constant velocity υ, therefore, is given by the Hamiltonian
Hc.m = p2x/2M with x′(t) = ⟨x̂′(t)⟩ and px = ⟨p̂x⟩ = M ẋ′(t) which yields the equation of
motion

x′(t) = x′◦ + px t/M = x′◦ + υ t, (1.54)

where x′◦ = ⟨x̂′(0)⟩ denotes the mean of atomic center-of-mass position at t = 0. The obtained
equation of motion replaces the dynamical variable x̂′(t) in the Hamiltonian (1.53) and together
with function (1.52) leads to the resonant Hamiltonian (∆ = 0)

Ĥc.m
I = −ι̇ ~ g(t)

2

(
σ̂†â− σ̂ â†

)
− ~

g(t)

2

(
σ̂† b̂ ei δ t + σ̂ b̂† e−i δ t

)
(1.55)

with the atom-cavity coupling given by

g(t) = g◦ exp
[
−(x′◦ + υ t)2/w2

]
. (1.56)

As we explained in the previous section, we can safely neglect the second term in the Hamil-
tonian (1.55) and consider the atom interacting only with the cavity mode Cx

Ĥc.m
x (t) = −ι̇ ~ g(t)

2

(
σ̂†â− σ̂ â†

)
, (1.57)

whenever the condition δ ≫ g(t) is satisfied5. For the same condition, moreover, the Hamil-
tonian (1.53) together with amplitude (1.52) reduces to the resonant interaction of the atom

5In order to show this, one should (i) apply a Galilean boost to the Hamiltonian (1.53) and switch to the
frame that moves at the velocity −υ, (2) expand in series the evolution operator for obtained Hamiltonian and
follow the integration procedure we performed in the previous section, and (3) apply a Galilean boost to the
obtained Hamiltonian and switch back to the frame that moves at the velocity υ.
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with mode Cy

Ĥc.m
y (t) = −~

g(t)

2

(
σ̂† b̂+ σ̂ b̂†

)
, (1.58)

if the atomic transition is tuned in resonance with this mode (∆ = −δ). Note that below, we
chose the time origin, t = 0, when the atom crosses the cavity axis, i.e., x′(0) = x′◦ = 0. With
this choose, therefore, the Hamiltonians Ĥc.m

x (0) and Ĥc.m
y (0) coincide with Hamiltonians Ĥx

and Ĥy, respectively.
In order to solve the Schrödinger equations associated with Hamiltonians (1.57) and (1.58)

ι̇ ~
d|Ψx(t)⟩

dt
= Ĥc.m

x (t) |Ψx(t)⟩, ι̇ ~
d|Ψy(t)⟩

dt
= Ĥc.m

y (t) |Ψy(t)⟩, (1.59)

we express the wave-functions |Ψx(t)⟩ and |Ψy(t)⟩ in the limit t→ ∞

|Ψx(∞)⟩ = exp

[
− ι̇
~

∫ +∞

−∞
Ĥc.m
x (t) dt

]
|Ψx(0)⟩ = exp

[
− ι̇
~
Ĥc.m
x (0) t′

]
|Ψx(0)⟩, (1.60a)

|Ψy(∞)⟩ = exp

[
− ι̇
~

∫ +∞

−∞
Ĥc.m
y (t) dt

]
|Ψy(0)⟩ = exp

[
− ι̇
~
Ĥc.m
y (0) t′

]
|Ψy(0)⟩, (1.60b)

where

t′ =

∫ +∞

−∞
exp

[
−(υ t)2/w2

]
dt =

√
π w

υ
. (1.61)

The last parts of expressions (1.60a) and (1.60b) can be interpreted as the formal solution of
the Schrödinger equations

ι̇ ~
d|Ψx(t

′)⟩
dt′

= Ĥc.m
x (0) |Ψx(t

′)⟩, ι̇ ~
d|Ψy(t

′)⟩
dt′

= Ĥc.m
y (0) |Ψy(t

′)⟩ (1.62)

associated with (time-independent) Hamiltonians Ĥc.m
x (0) and Ĥc.m

y (0), and which coincide
with the Schrödinger equations (1.47) with t being replaced by t′. The ansatz (1.48) applied
for the wave-functions |Ψx(t

′)⟩ and |Ψy(t
′)⟩, furthermore, leads to the solutions (1.50) and

(1.51) with t being simply replaced by the effective atom-cavity interaction time t′ defined
above. It is clear now, that the atom-cavity evolutions (1.50) and (1.51) remain valid for an
uniform motion of an atom that probes the field structure (1.52). We can conclude, therefore,
that after the atom has crossed the cavity mode, the system has evolved as if the maximum
atom-cavity coupling has been applied during the effective interaction time t′. In order to
produce the Bell state 1√

2
(|e; 0⟩+ |g; 1⟩) from the initial state |e; 0⟩, for instance, an atom

should be emitted by the atomic source with the constant velocity υ = 2 g◦w/
√
π that readily

follows from the condition g◦ t
′ = π/2.

1.2.3 Damping of Rabi oscillations

The Jaynes-Cummings Hamiltonian (1.45) or (1.46) describes the coupled atom-cavity system
in the absence of dissipation, i.e. when the system is well isolated from the environment. In
reality, there are two main dissipation processes which should be taken into account: (i) inco-
herent decay of the excited atomic state caused by its coupling to the free-space electromagnetic
background and (ii) cavity field relaxation caused by the losses and scattering on cavity mirrors
which lead to the irreversible escape of cavity photons. The realistic atom-cavity evolution,
therefore, cannot be described by the Jaynes-Cummings Hamiltonian alone and a more general
formalism which handles both coherent and incoherent processes must be considered.
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In the presence of dissipations, moreover, the atom-cavity system cannot be treated inde-
pendently from the environment, which typically has a very broad band spectrum and remains
in a thermal equilibrium. However, since we are only interested in the dynamics of coupled
atom-cavity system, we trace over all environmental states in order to exclude the degrees of
freedom which are not relevant for us. The time evolution of the coupled atom-cavity system
(at zero temperature) is then described by the master equation [78]

˙̂ρ = − ι̇
~

(
Ĥtot ρ̂− ρ̂ Ĥ†

tot

)
+
(
κ â ρ̂ â† + γ σ̂ ρ̂ σ̂†

)
(1.63)

with

Ĥtot = −ι̇ ~ g◦
2

(
σ̂†â− σ̂ â†

)
− ι̇ ~

1

2

(
γ σ̂† σ̂ + κ â† â

)
, (1.64)

where γ and κ are the atomic spontaneous emission and cavity relaxation rates, respectively,
and ρ̂ is the density matrix of the system in question. The second parentheses in the master
equation is the quantum ‘jump’ operator, while the second parentheses in the Hamiltonian
(1.64) describes the non-hermitian evolution due to the dissipations discussed above and is
responsible for the incoherent processes.

In the case of vanishing spontaneous emission and cavity relaxation rates, the solution of
the master equation (1.63) coincides with Eqs. (1.50) and yields the oscillatory population
probability

Pe(t) = |⟨e|Ψe
x(t)⟩|2 =

1 + cos (g◦ t)

2
(1.65)

for initially excited atom and empty cavity. Using the master equation, we like to calculate
how the amplitude of these oscillations modifies in the case of non-vanishing spontaneous
emission and cavity relaxation rates. Similarly to the section 1.2.1, we introduce an ansatz
for the wave-function that describes the evolution of atom-cavity system and substitute it into
the master equation. Obviously, there are only three relevant states which are involved in this
evolution, namely, two ‘one-quanta’ states |e; 0⟩, |g; 1⟩, and one ‘null-quanta’ state |g; 0⟩. Since
the coupling between these two manifolds irreversibly populates the zero-quanta subspace and
thus is not interesting for us, we can assume the unnormalized one-quantum ansatz

|Ψu(t)⟩ = Ψe,0
u (t)|e; 0⟩+Ψg,1

u (t)|g; 1⟩ with |Ψu(0)⟩ = |e; 0⟩ . (1.66)

By substituting the density operator ρ̂ = |Ψu(t)⟩⟨Ψu(t)| into the master equation, we find
that the evolution of |Ψu(t)⟩ is governed by the effective non-hermitian Schrödinger equation

ι̇ ~
d|Ψu(t)⟩

dt
= Ĥtot |Ψu(t)⟩ , (1.67)

which implies the system of differential equations for amplitudes Ψe,0
u (t) and Ψg,1

u (t)

Ψ̇e,0
u (t) = −g◦

2
Ψg,1
u − γ

2
Ψe,0
u (t), Ψ̇g,1

u (t) =
g◦
2
Ψe,0
u − κ

2
Ψg,1
u (t), (1.68)

where dot denotes the time derivative and where Ψe,0
u (0) = 1 and Ψg,1

u (0) = 0 are the initial
conditions. At this point, it is useful to distinguish between two qualitatively different regimes.
In the first one, the decay rates κ and γ dominate over the atom-cavity coupling frequency g◦.
This is conventionally called the weak coupling regime (or bad cavity regime). In contrast, the
strong coupling regime (or good cavity regime) is characterized by the fact that the coherent
interaction between the atom and the cavity mode dominates over the irreversible dissipation
processes, i.e., g◦ ≫ κ and g◦ ≫ γ.
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Integrating the second equation from Eqs. (1.68), we obtain the formal solution

Ψg,1
u (t) =

g◦
2

∫ t

0
Ψe,0
u (t′) exp

[
k

2

(
t′ − t

)]
dt′ . (1.69)

The Eqs. (1.68), moreover, imply that Ψe,0
u (t) is slow-varying under the weak coupling condi-

tions, i.e., g◦ ≪ κ and g◦ ≪ γ. Therefore, we can evaluate Ψe,0
u (t) at the time t′ = t and remove

it from the above integral. For t ≫ κ−1, the remaining integral yields Ψg,1
u (t) ≈ g◦Ψ

e,0
u (t)/κ,

which being substituted into the first of Eqs. (1.68) and integrated, implies

Ψe,0
u (t) = exp

[
−1

2

(
γ +

g2◦
κ

)
t

]
, and Pweak

e (t) = exp

[
−
(
γ +

g2◦
κ

)
t

]
. (1.70)

According to the last expression, the upper electronic state population undergoes an exponen-
tial decay at the rate γ + g2◦/κ [compare to (1.65)], where the cavity contribution is g2◦/κ. For
a sufficiently high quality factor of cavity mirrors, this contribution predicts a considerable
enhancement of the spontaneous emission rate as compared to its free space value [10].

Below, we consider the strong atom-cavity coupling regime, i.e., when a photon emitted
into the cavity mode is likely to be reabsorbed before it escapes from the resonator. The
general solution of Eqs. (1.68) for arbitrary g◦, κ, and γ, is of the form

Ψe,0
u (t) = C+X+ e

λ+ t + C−X− e
λ− t, Ψg,1

u (t) = C+ Y+ e
λ+ t + C− Y− e

λ− t, (1.71)

where λ± and vectors {X, Y }± are the respective eigenvalues and eigenvectors of the matrix(
−γ/2 −g◦/2
g◦/2 −κ/2

)
, and where the constants C± are determined by the initial conditions. By

evaluating the eigenvalues of the above matrix, we obtain the expressions

λ± =
1

4

(
−κ− γ ±

√
(γ − κ)2 − 4 g2◦

)
(1.72)

which for the strong coupling conditions reduce to λ± = 1
4(−κ − γ ± 2 ι̇ g◦). Owning to this

result, we can conclude that the amplitude of the imaginary part of exponents from Eqs. (1.71)
is much larger than that of the real part. This implies, in turn, that the evolution of the upper
state population will consist of oscillations at the vacuum Rabi frequency which slowly decay
in time.

Furthermore, by evaluating the eigenvectors of the above matrix and taking into account
the initial conditions Ψe,0

u (0) = 1 and Ψg,1
u (0) = 0, we obtain the evolution of amplitude Ψe,0

u (t)

Ψe,0
u (t) =

e−
1
4
(κ+γ) t

4 ι̇ g◦

(
(κ− γ + 2 ι̇ g◦) e

ι̇ g◦ t/2 − (κ− γ − 2 ι̇ g◦) e
−ι̇ g◦ t/2

)
(1.73)

and which implies, in turn, the population probability of upper electronic state

P strong
e (t) = |⟨e|Ψu(t)⟩|2 = e−

1
2
(κ+γ) t

(
1 + cos (g◦ t)

2

)
. (1.74)

Indeed, the evolution of the upper state population consists of oscillations at the vacuum
Rabi frequency which exponentially decay in time. By comparing the probability (1.74) that
we obtained from the master equation with the the idealized Jaynes-Cummings probability
(1.65), it is clearly seen how the amplitude of these oscillations modifies in the case of non-
vanishing spontaneous emission and cavity relaxation rates. We conclude, therefore, that
the main modification is introduced due to the slow exponential decay given by the sum of
spontaneous emission and cavity relaxation rates.
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1.3 Summary

In this chapter, we introduced and described the interaction of a two-level atom with a single-
mode monochromatic light in the quantum regime. First, we obtained the expressions (1.14)
and (1.16) for energy and electromagnetic field which both evolve inside a planar or spherical
cavity. We demonstrated, moreover, that the light field of a spherical cavity supports two
transversal components encoded in the cavity field structure (1.28). Next, we derived the
Hamiltonian (1.40) that governs the interaction of confined photon field coupled to one two-
level atom. We explicitly assumed that the cavity supports two linearly and orthogonally
polarized modes of light (Cx and Cy) separated in frequencies by the birefringent splitting δ,
while the atom emits or absorbs the circularly polarized light during its transition.

We analyzed, furthermore, the situation in which the atomic transition frequency matches
the frequency of one of the cavity modes and we found that the atom-cavity evolution is
governed by the Jaynes-Cummings Hamiltonian (1.45) or (1.46), whenever the birefringent
splitting is sufficiently detuned with respect to the Rabi vacuum splitting. We found out that
A− Cx and A− Cy evolutions are given by the expressions

|e; 0⟩ → cos (g◦ t/2) |e; 0⟩+ sin (g◦ t/2) |g; 1⟩, (1.75a)

|g; 1⟩ → cos (g◦ t/2) |g; 1⟩ − sin (g◦ t/2) |e; 0⟩, (1.75b)

and

|e; 0̄⟩ → cos (g◦ t/2) |e; 0̄⟩+ ι̇ sin (g◦ t/2) |g; 1̄⟩, (1.76a)

|g; 1̄⟩ → cos (g◦ t/2) |g; 1̄⟩+ ι̇ sin (g◦ t/2) |e; 0̄⟩, (1.76b)

respectively, and both evolutions describe the time-varying entanglement of a two-level atom
with cavity photon field.

We analyzed then the situation in which an atom is prepared and initialized outside the
cavity and emitted with a well controlled velocity such that its trajectory crosses the cavity
at the antinode. In this situation, the atom probes one single transverse component of the
intracavity field while passing through the cavity. We found that the atom-cavity evolution
for an uniformly moving atoms is still given by the expressions (1.75) and (1.76), however,
the interaction time t must be replaced by the effective interaction time t′ given by (1.61).
Finally, we analyzed the effects of spontaneous atomic emission and cavity relaxation in order
to understand how the energy exchange of coupled atom-cavity system evolves in realistic envi-
ronments. In the next chapters, we shall interpret the atoms and cavity photons as qubits and
from this perspective, the atom-cavity evolution will enable us to generate various multipartite
entangled states with atomic qubits which pass sequentially through the cavity.
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Chapter 2

Interaction of three-level Λ-type
atoms with cavity and laser fields

In the previous chapter, we described the interaction of a single atom with monochromatic light
field in the quantum regime. We assumed the validity of two-level approximation and derived
the Jaynes-Cummings Hamiltonian that governs the evolution of coupled atom-light system.
By considering the resonant atom-cavity interaction regime, furthermore, we found that this
evolution provides a controllable entanglement mechanism of a two-level atom with the cavity
photon field and which, therefore, offers an excellent framework for quantum information
processing (see the third part).

In section 1.2.1, moreover, we showed that if one of cavity modes is tuned in resonance with
the atomic transition, then the second cavity mode produces only the phase shifts (1.44) which
can be neglected whenever the condition δ ≫ g◦ is satisfied. This observation allowed us to
exclude the contribution of the term quadratic in g◦ and describe the atom-cavity evolution by
using only the resonant Hamiltonian (1.45) or (1.46). Instead of tuning one of the cavity modes
in resonance with the atom, we could slightly detune both modes from the resonance such that
the effective Hamiltonian (1.42) contains only the terms quadratic in g◦. This situation, in
which there are no linear in g◦ terms, looks to be useless from the first sight since no energy
exchange between atom and cavity occurs. However, if we place two or more identical atoms
in the (detuned) cavity such that all of them are simultaneously coupled to the same light
modes, then the dipole-dipole interaction can be realized as a consequence of the virtual cavity
photon exchange between the atoms. This (cavity mediated) energy exchange, moreover, is less
sensitive with regard to decoherence effects since the cavity remain almost unpopulated during
the entire evolution. The scheme for generation of atom-atom entanglement that is based on
the described situation has been proposed in Ref. [21] and, later on, realized experimentally in
the framework of microwave cavity QED [39].

In this chapter, we first describe the interaction of a single atom with monochromatic light
field in the semiclassical regime. Right afterwards, we introduce and explain our scheme for
generation of atomic multipartite entangled states which is based on the off-resonant interaction
regime of three-level atoms placed inside the cavity and coupled simultaneously to a laser
beam. We perform the adiabatic elimination and find that the evolution of three-level atoms
is reduced to the evolution of effectively two-level atoms which interact with each other via a
two-photon exchange. Finally, by assuming that the atoms are moving uniformly through the
cavity and are equally distanced with respect to each other, we determine how this interaction
is characterized by atomic velocities and inter-atomic distances.
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2.1 Semiclassical atom-field interaction

The Hamiltonians (1.45) and (1.46) which we introduced in the previous chapter, describe
quantum mechanically both the internal atomic structure and the intracavity light field. In
many situations, however, it is justified to treat the light field classically. For instance, a laser
beam is a coherent radiation that consists of a large number of photons such that individual
photon fluctuations become negligible. Therefore, to a very good approximation which is
known as semiclassical approximation, the electromagnetic field produced by such a laser
beam is described classically by a plane (monochromatic) light wave that satisfies the Maxwell
equations (1.1), while the internal atomic structure is described quantum mechanically by the
Hamiltonian (1.33).

In the previous chapter, moreover, we analyzed the situation in which the electromagnetic
field propagates between the (planar or spherical) mirrors of a cavity. In contrast to the
situation with a cavity, the laser beam is well described by a plane (monochromatic) wave
which propagates infinitely in one spatial direction. Without loss of generality, we can assume
that the direction of propagation coincides with the positive direction of y-axis and, therefore,
the laser beam characterized by the frequency ωL is described by the electromagnetic field

Es(r, t) = ι̇ E◦
(
ϵL e

ι̇ (k y−ωLt) − ϵ∗L e
−ι̇ (k y−ωLt)

)
, (2.1)

which satisfies the equation (1.2) and where k = ωL/c denotes the wave number, ϵL is the
polarization, and E◦ is the real amplitude of laser field. Similarly to the previous chapter, we
assume that the atom consists of a hard-core and one valence electron and it interacts with
the field produced by a laser beam via the dipole-field Hamiltonian1

Ĥs
int = −q r̂ ·Es(r′, t), (2.2)

where r′ = {0, y′, 0} denotes the atomic center-of-mass position at which the atom is localized
during the interaction.

With the help of orthogonality and completeness relations (1.32), we express the interaction
Hamiltonian Ĥs

a-f = Ĥa + Ĥs
int in the form

Ĥs
a-f = Ĥa − ι̇d E◦

(
σ̂† ϵ∗a + σ̂ ϵa

)
·
(
ϵL e

ι̇ (k y′−ωL t) − ϵ∗L e
−ι̇ (k y′−ωL t)

)
, (2.3)

where σ̂ = |g⟩⟨e| and σ̂† = |e⟩⟨g| denote the excitation lowering and rising operators, respec-
tively, and which is further simplified by switching to the interaction picture with respect to
the time-independent part Ĥa

Ĥs
I = Û †

a

(
Ĥs

a-f − Ĥa

)
Ûa = −ι̇ ~ Ω◦

2

(
σ̂† eι̇∆L t e−ι̇ φ − σ̂ e−ι̇∆L t eι̇ φ

)
. (2.4)

In this Hamiltonian, ∆L = ωa − ωL is the difference between the atomic transition frequency
and the laser field frequency, and the Rabi frequency (atom-laser coupling)

Ω◦ =
2

~
d E◦ |ϵ∗a · ϵL| (2.5)

has been also introduced. Note that in the Hamiltonian (2.4), we have chosen the splitting
y′ = −(φ+ϑ)/k such that ei ϑ coincides with the phase of ϵ∗a·ϵL, and moreover, we neglected the
terms σ̂† e−ι̇ (k y

′−[ωL+ωa]t) and σ̂ eι̇ (k y
′−[ωL+ωa]t) because of the rotating wave approximation.

1Since the wavelength of laser light is much larger than the extent of wave-function associated to the atom,
the dipole approximation remains valid here as well.
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Hamiltonian (2.4) governs the interaction of a two-level atom with the field produced by
a laser beam. The physically interesting regime of the atom-laser evolution is the resonant
interaction regime, in which the atom-laser detuning ∆L vanishes and the Hamiltonian (2.4)
becomes

Ĥs
I = −ι̇ ~ Ω◦

2

(
σ̂† e−ι̇ φ − σ̂ eι̇ φ

)
. (2.6)

In order to determine the behavior of the atomic population, we shall calculate the evolu-

tion operator Û s
I (t) = exp

[
− ι̇

~ Ĥ
s
I t
]
associated with the Hamiltonian (2.6). Using the vector

representation |e⟩ =

(
1
0

)
and |g⟩ =

(
0
1

)
, it can be shown that the evolution operator

associated with the Hamiltonian (2.6) is given by the matrix

U s
I (t) =

(
1 0
0 1

)
cos

(
Ω◦
2
t

)
+

(
0 −e−ι̇ φ
eι̇ φ 0

)
sin

(
Ω◦
2
t

)
. (2.7)

The matrix (2.7) together with the initial atomic state |Φ(0)⟩ determine the time-evolution
associated with the Hamiltonian (2.6). We are interested, however, in the atom-laser evolution
obtained for two initial states: (i) atom is excited, i.e., |Φe(0)⟩ = |e⟩ and (ii) atom in the
ground state, i.e., |Φg(0)⟩ = |g⟩. For these initial conditions, the matrix (2.7) implies the
time-evolution

|Φe(t)⟩ = cos (Ω◦ t/2) |e⟩+ sin (Ω◦ t/2) e
ι̇ φ |g⟩, (2.8a)

|Φg(t)⟩ = cos (Ω◦ t/2) |g⟩ − sin (Ω◦ t/2) e
−ι̇ φ |e⟩, (2.8b)

and describes the oscillations of the electronic population between its ground and excited states
such that the frequency of this exchange is given by the Rabi frequency (2.5). For instance,
the superposition 1√

2

(
|e⟩+ eι̇ φ |g⟩

)
is produced from the initial state |e⟩ after the interaction

time Ω◦ t = π/2 [see (2.8a)]. We conclude, therefore, that by setting an appropriate interaction
time and an initial atomic state, we can generate any atomic superposition α|e⟩+ β|g⟩.

We assumed that the atom is at rest and the atomic center-of-mass position is located
at the point r′ = {0, y′, 0} in which the splitting y′ = −(ϕ + ϑ)/k is realized [see (2.4)]. In
practice, however, it is difficult to maintain the atom in a fixed position for the entire atom-laser
interaction time. In the second part of this thesis we show, moreover, that the atoms utilized in
the typical cavity-QED experiments are initialized and emitted with a well controlled velocity
by the atomic source. Without loss of generality, we can consider an (initialized) atom that
leaves the atomic source with a constant velocity υ along the x-axis such that atomic trajectory
is determined by r′(t) = {υ t, y′, 0}. By following the arguments of section 1.1.1, however, it
can be shown that the field structure of a laser beam supports two transverse components

E(r) = E◦ exp
[
−(x2 + z2)/w2

L

]
, (2.9)

where wL denotes the waist of the laser beam. This position-dependent amplitude, in turn,
implies the position-dependent Rabi frequency

Ω(x) =
2

~
d E(r) |ϵ∗a · ϵL| = Ω◦ exp

[
−x2/w2

L

]
, (2.10)

obtained for z = 0 and which in the case of uniform atomic motion along the x-axis, becomes

Ω(t) = Ω◦ exp
[
−(υ t)2/w2

L

]
. (2.11)
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2.2. Generation of multipartite entangled states

By performing the same analysis as in section 1.2.2, it can be shown that the time-evolution
of an uniformly moving atom coincides with (2.8) with t being replaced by t′ defined as

t′ =

∫ +∞

−∞
exp

[
−(υ t)2/w2

L

]
dt =

√
π wL
υ

. (2.12)

After the atom has crossed the laser beam, therefore, the atomic state has evolved as if the
maximum atom-laser coupling Ω◦ has been applied during the effective interaction time t′. In
order to produce the superposition 1√

2

(
|e⟩+ e ι̇ φ |g⟩

)
, for example, an atom should be emitted

by the atomic source with the constant velocity υ = 2Ω◦wL/
√
π, which readily follows from

the condition Ω◦ t
′ = π/2.

Finally, we like to recall that the Hamiltonian (2.4) is expressed in the interaction picture,
in which the atomic Hamiltonian Ĥa does not enter explicitly. In many situations, however,
it is convenient to consider the Schrödinger picture. In order to find the Hamiltonian (in the
Schrödinger picture) that corresponds to Ĥs

I , we act on (2.4) from left and right sides with

operators Ûa and Û †
a , respectively

Ĥs = Ĥa+Ûa Ĥ
s
I Û

†
a = ~

[
ωg |g⟩⟨g|+ ωe |e⟩⟨e| − ι̇

Ω◦
2

(
σ̂† e−ι̇ ωLt e−ι̇ φ − σ̂ e ι̇ ωLt e ι̇ φ

)]
. (2.13)

In contrast to the Hamiltonian (2.4) which depends solely on the detuning ∆L, the obtained
Hamiltonian depends on the atomic frequencies ωe, ωg and laser frequency ωL.

2.2 Generation of multipartite entangled states

It is clear that any particular scheme to encode one single qubit in the level structure of
an atom, depends crucially on the frequency that is supported by the cavity that is used to
mediate the interaction between two or more atoms. For an optical cavity, the two levels which
encode a qubit are usually selected to be the ground and first excited states of an atom since
they are (usually) separated by an optical transition frequency (∼ 1 µm). In contrast to the
stable ground state, however, the first excited state decays very fast (∼ 10−9 s) and is not
useful for encoding a qubit. For this reason, therefore, three-level Λ-type atoms are widely
utilized in the experiments in which optical cavities are used. A three-level atom in the Λ-type
configuration is displayed in Fig. 2.1(a) and it allows to encode one single qubit state in the
long-living metastable state |0⟩ and the stable ground state |1⟩, respectively. In such an atom,
moreover, the transition |0⟩ ↔ |1⟩ is (electric-dipole) forbidden due to the angular momentum
and parity selection rules.

By this encoding scheme, moreover, the cavity is coupled to the optical |0⟩ ↔ |e⟩ transition
and an intermediate excitation coupled to the |e⟩ ↔ |1⟩ transition is further needed to link the
states |0⟩ and |1⟩ via a two-photon exchange process. For this purpose, a laser beam is coupled
to the transition |e⟩ ↔ |1⟩ as displayed in Fig. 2.1(a) and is adjusted together with the cavity
parameters such that the (fast decaying) excited state |e⟩ remains almost unpopulated during
the combined atom-cavity-laser interaction (see below). In Fig. 2.1(c) we display a schematic
view of the experimental setup that realizes the interaction between two or more qubits being
encoded in three-level atoms according to our scheme. This setup consists of a cavity field
that acts along the z-axis, a laser beam that acts along the y-axis, and a chain of distanced
atoms which is localized along the x-axis. Moreover, the cavity is characterized by the resonant
frequency ω and position-dependent coupling [see (1.52)]

g(x) = g◦ f(x) = g◦ exp
[
−x2/w2

]
, (2.14)
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CHAPTER 2: Interaction of three-level Λ-type atoms with cavity and laser fields

Figure 2.1: (a) The atomic three-level Λ-type configuration in the Schrödinger picture and (b)
in the interaction picture. (c) Schematic view of the experimental setup. A chain of neutral
atoms is localized in the cavity along the x-axis (in the origin of the y − z plane). The cavity
is characterized by the resonant frequency ω and position-dependent coupling strength g(x),
while the laser is characterized by the frequency ωL and position-dependent coupling Ω(x).

while the laser is characterized by the frequency ωL and position-dependent coupling (2.10).
Without going much into details, in this section we discuss the basic idea to generate multipar-
tite entangled states within a chain of three-level atoms coupled simultaneously to the cavity
and laser fields.

Before we turn to the combined cavity and laser mediated interaction between N three-
level atoms, it is useful to explain the cavity-mediated interaction between N two-level atoms
corresponding to the states |0⟩ and |e⟩ in our scheme, which are prepared initially in the product
state |e1, 02, . . . , 0N ⟩ and where the numbering corresponds to the (increasing) coordinates
x1, x2, . . . , xN of atoms along the x-axis [see Fig. 2.1(c)]. For simplicity, however, let us first
consider a chain of two such atoms prepared in the product state |e1, 02⟩. In this case, both
atoms interact due to the cavity-induced exchange of a photon according to the evolution
sequence

|e1, 02; n⟩
↗ |01, 02; n+ 1⟩ ↘
↘ |e1, e2; n− 1⟩ ↗

|01, e2; n⟩, (2.15)

if there were n photons initially in the cavity mode. This sequence describes a process in which
one photon is emitted by the first and absorbed by the second atom, so that the final atomic
state is independent of the number of initial cavity photons. For an initially empty cavity
n = 0, therefore, the above sequence reduces to

|e1, 02; 0⟩ → |01, 02; 1⟩ → |01, e2; 0⟩, (2.16)

which can be expressed in the short form |e1, 02⟩ → |01, e2⟩ and interpreted as the (cavity-
mediated) dipole-dipole interaction between two atoms.
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2.2. Generation of multipartite entangled states

By following similar line of reasoning, the initial atomic state |e1, 02, . . . , 0N ⟩ of N atoms
evolves according to the sequence

|e1, 02, . . . , 0N ; 0⟩ → |01, . . . , 0N ; 1⟩ → |01, e2, 03, . . . , 0N ; 0⟩
↘ |01, 02, e3, . . . , 0N ; 0⟩

...
|01, 02, 03, . . . , eN ; 0⟩,

(2.17)

such that each of final states |01, e2, . . . , 0N ⟩, . . ., |01, 02, . . . , eN ⟩ can have the same probability
to occur if the atom-cavity interaction time is set properly. As in the case of sequence (2.16),
the atoms in the chain interact due to cavity-induced exchange of a single photon between the
initially excited atom and one of the N − 1 other atoms. This photon exchange, moreover,
requires a rather large detuning between the atomic |0⟩ ↔ |e⟩ transition and the resonant
frequency of the cavity mode

| (ωE − ω0)− ω | ≫ g(xi), i = 1, . . . , N (2.18)

such that the cavity remains almost unpopulated in the course of interaction and the interme-
diate state |01, . . . , 0N ; 1⟩ becomes virtual [21].

Recall that according to our qubit encoding scheme, in which the excited state |e⟩ is not
a part of qubit, the atomic chain is prepared in the product state |11, 02, . . . , 0N ⟩. In order
to realize the cavity-mediated interaction as explained above, the detuned laser beam coupled
to the |1⟩ ↔ |e⟩ transition is utilized and the entire chain of three-level atoms becomes cou-
pled simultaneously to the both cavity and laser fields. In this case, the initial atomic state
|11, 02, . . . , 0N ⟩ evolves according to the sequence of intermediate states

|11, 02, . . . , 0N ; 0⟩ → |e1, 02, . . . , 0N ; 0⟩ → |01, 02, . . . , 0N ; 1⟩ → |01, e2, 03 . . . , 0N ; 0⟩ → |01, 12, 03, . . . , 0N ; 0⟩
↘ |01, 02, e3, . . . , 0N ; 0⟩ → |01, 02, 13, . . . , 0N ; 0⟩

...
...

|01, 02, 03, . . . , eN ; 0⟩ → |01, 02, 03, . . . , 1N ; 0⟩
(2.19)

into the one of the final states |01, 12, . . . , 0N ⟩, . . ., |01, 02, . . . , 1N ⟩, which can have the same
probability to occur if the atom-cavity-laser interaction time is set properly. Recall that in the
case of the sequence (2.17), we imposed the condition (2.18) in order to treat the intermediate
state |01, . . . , 0N ; 1⟩ as being (almost) unpopulated and simplify the sequence. In the case of
sequence (2.19), similarly, it is necessary to impose the condition

|(ωE − ω1)− ωL| ≫ Ω(xi), i = 1, . . . , N (2.20)

for the detuning between the atomic |1⟩ ↔ |e⟩ transition and laser frequencies, which ensures
that the states |e1, 02, . . . , 0N ⟩, . . . , |01, 02, . . . , eN ⟩ remain (almost) unpopulated during the
atom-laser interaction. In the following, we shall omit all these unpopulated (intermediate)
states along with the factored cavity state |0⟩ and express the sequence (2.19) in the short form

|11, 02, . . . , 0N ⟩ → |01, 12, 03, . . . , 0N ⟩
↘ |01, 02, 13, . . . , 0N ⟩

...
|01, 02, 03, . . . , 1N ⟩.

(2.21)
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CHAPTER 2: Interaction of three-level Λ-type atoms with cavity and laser fields

Figure 2.2: Three snapshots of the sequence that generates the W-class state with a chain of
three atoms. See the text for explanations.

We conclude, therefore, that the evolution of atomic state |11, 02, . . . , 0N ⟩ subjected to the
detuned cavity and laser fields is described by the sequence (2.21) and which is characterized
by the composite wave-function

|ΦN (t)⟩ = C1(t) |11, 02, . . . , 0N ⟩+ C2(t) |01, 12, . . . , 0N ⟩+ . . .+ CN (t) |01, 02, . . . , 1N ⟩ (2.22)

with C1(t), . . . , CN (t) being the complex amplitudes such that
∑N

i=1 |Ci(t)|2 = 1, and where
the variable t denotes the interaction time of atomic chain with cavity-laser fields. For the
interaction period t = τ such that |Ci(τ)| = 1/

√
N , moreover, the wave-function (2.22) reduces

to the (so-called) W state [22]

|ΨW
N ⟩ = 1√

N
(eiϕ

N terms︷ ︸︸ ︷
|11, 02, . . . , 0N ⟩+ |01, 12, . . . , 0N ⟩+ . . .+ |01, 02, . . . , 1N ⟩), (2.23)

which is relevant for such practical applications like quantum dense coding and quantum key
distribution [4].

In this section, we assumed that the atoms are localized in the cavity along the x-axis
(in the origin of the y − z plane) such that the atomic center-of-mass positions correspond to
the (increasing) coordinates x1, x2, . . . , xN [see Fig. 2.1(c)]. In practice, however, it is difficult
to maintain the atom in a fixed position for the entire atom-cavity-laser interaction time.
In the second part of this thesis we show, moreover, that the atoms utilized in the typical
cavity-QED experiments are initialized outside the cavity and transported through the cavity
by means of an optical lattice (conveyor belt). Below, we shall consider an initialized chain
of equally distanced atoms that is transported through the cavity with a constant velocity υ
along the x-axis such that the qubits are loaded to the cavity in the reverse order, i.e. qubit
with subscript ‘1’ corresponds to the last atom inside the chain. This procedure is displayed
in Fig. 2.2 as a sequence of three snapshots which indicate the atoms (a) outside the cavity
(before interaction), (b) inside the cavity (during the interaction), and (c) far away from the
cavity (no interaction).

In the next section, we shall analyze in details how the cavity-laser mediated evolution
(2.21) depends on the velocity υ and the inter-atomic distance d = xoi+1 − xoi when the atomic
chain is conveyed through the cavity. In order to take into account these two parameters,
we shall consider the position-dependent couplings (2.10) and (2.14), which give rise to the
time-dependent coupling between the i-th atom and the cavity field (i = 1, . . . , N)

gi(t) = g(xoi + υ t) = g◦ exp
[
−(xoi + υ t)2/w2

]
, (2.24)
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and to the time-dependent coupling between the i-th atom and the laser field

Ωi(t) = Ω(xoi + υ t) = Ω◦ exp
[
−(xoi + υ t)2/w2

L

]
, (2.25)

if the atom moves uniformly and where xoi denotes the initial position of the i−th atom.

2.3 Combined atom-cavity-laser interaction

While sequence (2.19) displays the basic concept of how the cavity-laser mediated interaction
is achieved between the atoms, we still have to analyze this coupling quantitatively as to
understand how to control it in practice. For this purpose, we shall adiabatically eliminate
the intermediate states |01, 02, . . . , 0N ; 1⟩ and |e1, 02, . . . , 0N ; 0⟩, . . . , |01, 02, . . . , eN ; 0⟩ from the
sequence (2.19). This shall lead to an effective Hamiltonian that governs the time evolution of
N atoms which interact with each other according to the simplified sequence (2.21). In order
to proceed, let us first introduce the short-hand notation

|V1⟩ → |VN+1⟩ → |V0⟩ → |VN+2⟩ → |V2⟩
↘ |VN+3⟩ → |V3⟩

...
...

|V2N ⟩ → |VN ⟩

(2.26)

for the composite states of N identical atoms and the cavity, which corresponds one-to-one
to the states from sequence (2.19). With this notation, the state (2.22) refers to the states
|V1⟩, . . . , |VN ⟩, while the cavity-mediated photon exchange is performed between the state
|VN+1⟩ and (one of) the states |VN+2⟩, . . . , |V2N ⟩, respectively.

2.3.1 Effective single-mode Hamiltonian

Before we turn to the detailed analysis of sequence (2.19), we notice that while discussing the
cavity-laser mediated interaction we considered a single-mode cavity with the frequency ω that
is detuned from the atomic frequencies such that the condition (2.18) is satisfied for each atom.
In practice, the cavity supports two orthogonally polarized modes which interact with each
circularly polarized atom via Hamiltonian (1.40), where δ = ω− ω̃ is the birefringent splitting
and the detuning ∆ = (ωE −ω0)−ω has been adapted for the three-level atomic configuration
from Fig. 2.1(a).

It is relevant to point out that during the off-resonant interaction regime, i.e., regime in
which the condition (2.18) holds true, the atomic chain interacts with both cavity modes in
the same way as it would interact with a single-mode cavity characterized by the effective
frequency

ωeff = (ωE − ω0)−∆eff, where ∆eff =

(
1

∆
+

1

∆+ δ

)−1

. (2.27)

In order to show this, we extend the Hamiltonian (1.40) to describe N identical atoms coupled
to a cavity that supports two orthogonally polarized modes

ĤN
I = −~

N∑
k=1

[
ι̇
g(xk)

2

(
σ̂†k â e

i∆ t − σ̂k â
† e−i∆ t

)
− g(xk)

2

(
σ̂†k b̂ e

i (∆+δ) t + σ̂k b̂
† e−i (∆+δ) t

)]
,

(2.28)
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where σ̂k = |0⟩k⟨e| and σ̂†k = |e⟩k⟨0| has been adapted for the three-level atomic configuration
and g(xk) is the coupling between the cavity and i-th atom.

Now we expand in series the evolution operator associated with above Hamiltonian and
keep the terms up to the second order. Then, by performing the integration and retaining only
the linear (in time) contributions, we express this evolution operator in the form (1.42) with
the effective Hamiltonian2

ĤN
eff = −ι̇ ~

 N∑
k=1

g(xk)
2

4∆eff
|e⟩k⟨e|+

N∑
i,j=1
(i̸=j)

g(xi) g(xj)

4∆eff
σ̂†i σ̂j

 , (2.29)

where ∆eff is the effective detuning (2.27) such that ∆eff ≥ ∆/2. This effective Hamiltonian
governs the evolution (2.17) and it describes the (off-resonant) interaction of N two-level atoms
mediated by both cavity modes. As shown in Ref. [21], however, the Hamiltonian (2.29) with
replacement ∆eff → (ωa − ω) governs the off-resonant interaction of N two-level atoms (ωa)
with a single mode cavity (ω). Instead of Hamiltonian (2.28), therefore, we can describe the
cavity-mediated interaction between N atoms by using the (single-mode) Hamiltonian

Ĥc
I = −ι̇ ~

N∑
k=1

g(xk)

2

(
σ̂†k ĉ e

i∆eff t − σ̂k ĉ
† e−i∆eff t

)
, (2.30)

in which the effective cavity field is characterized by the frequency (2.27) and associated with
the rising and lowering operators ĉ† and ĉ, respectively. It can be readily checked that the
evolution operator (1.42) for this Hamiltonian produces the effective Hamiltonian (2.29).

Finally, we like to remind that the Hamiltonian (2.30) is expressed in the interaction picture
in which the atomic and cavity Hamiltonians (1.33) and (1.14) do not enter explicitly. In many
situations, however, it is convenient to consider the Schrödinger picture. In order to find the
Hamiltonian (in the Schrödinger picture) that corresponds to Ĥc

I , we express (2.30) in the form

Ĥc
I = Ĥc

• + Ĥc
◦ , with

Ĥc
• = ~ωeff ĉ

†ĉ+~
N

2
(ωE + ω0) Î+~

N∑
k=1

[
(ωE − ω0) σ̂

z
k − ι̇

g(xk)

2

(
σ̂†k ĉ e

i∆eff t − σ̂k ĉ
† e−i∆eff t

)]

Ĥc
◦ = −~ωeff ĉ

†ĉ− ~
N

2
(ωE + ω0) Î− ~

N∑
k=1

(ωE − ω0) σ̂
z
k , where σ̂zk =

1

2
(|e⟩k⟨e| − |0⟩k⟨0|) .

Then, we switch to the interaction picture with respect to Ĥc
◦, or equivalently, the Hamiltonian

Ĥc
• is transformed by means of the unitary operator Û◦ = exp

(
− ι̇

~ Ĥ
c
◦ t
)

Ĥc = Û †
◦

(
Ĥc
I − Ĥc

◦

)
Û◦

= ~ωeff ĉ
†ĉ + ~

N

2
(ωE + ω0) Î + ~

N∑
k=1

[
(ωE − ω0) σ̂

z
k − ι̇

g(xk)

2

(
σ̂†k ĉ− σ̂k ĉ

†
)]

= ~ωeff ĉ
†ĉ + ~

N∑
k=1

[
(ωE |e⟩k ⟨e|+ ω0 |0⟩k⟨0|)− ι̇

g(xk)

2

(
σ̂†k ĉ− σ̂k ĉ

†
)]
. (2.31)

2In order to derive this Hamiltonian, we have used the fact that both cavity modes are initially empty [see
sequence (2.17)].
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In contrast to the Hamiltonian (2.30) which depends on the effective detuning ∆eff, the obtained
Hamiltonian depends on the atomic frequencies ωE , ω0 and the effective cavity frequency ωeff.

2.3.2 Combined Hamiltonian and the Schrödinger equation

For N identical atoms which move uniformly (along the x-axis) through the cavity and a laser
beam and which are equally separated from each other, the evolution of coupled atoms-cavity-
laser system is governed by the Hamiltonian

Ĥtot = ~ωeff ĉ
† ĉ+ ~

N∑
k=1

[ω1|1⟩k⟨1|+ ωE |e⟩k⟨e|+ ω0|0⟩k⟨0|

− ι̇

(
Ωk(t)

2
e−iωL t|e⟩k⟨1|+

gk(t)

2
ĉ |e⟩k⟨0| −H.c.

)]
, (2.32)

which was obtained by combining the Hamiltonian (2.13) that governs the atom-laser inter-
action and the Hamiltonian (2.31) that governs the atom-cavity interaction. Notice that we
considered φ = 0 in the Hamiltonian (2.13) which implies that the source of laser field should
be placed at the relative position {0, ϑ/k, 0} from the atomic chain, where ϑ is the phase of the
scalar product ϵ∗a ·ϵJ . In the Hamiltonian (2.32), moreover, the first term describes the effective
cavity energy and (the summation of) the second term describes the chain of atoms together
with their time-dependent interactions with the cavity and laser fields [see (2.24)-(2.25)].

In order to simplify the analysis of evolution governed by the Hamiltonian (2.32), we switch
to the interaction picture by using the unitary transformation [32]

ÛI = exp

[
−ι̇ t

N∑
i=1

(ω1|1⟩k⟨1|+ (ω1 + ωL)|e⟩k⟨e|+ ω0 |0⟩k⟨0|)− ι̇ t ĉ† ĉ (ωL − ω0 + ω1)

]
.

In this picture, the Hamiltonian (2.32) takes the simplified form

Ĥtot
I = ~∆C ĉ

† ĉ+ ~
N∑
k=1

[
∆L|e⟩k⟨e| − ι̇

(
Ωk(t)

2
|e⟩k⟨1|+

gk(t)

2
ĉ |e⟩k⟨0| −H.c.

)]
, (2.33)

where ∆L = (ωE − ω1)− ωL and ∆C = ∆L −∆eff refer to the frequency shifts (detunings) as
depicted in Fig. 2.1(b). The time evolution governed by this Hamiltonian is described by the
Schrödinger equation

ι̇ ~
d|Ψ(t)⟩
dt

= Ĥtot
I |Ψ(t)⟩ with the ansatz |Ψ(t)⟩ =

2N∑
i=0

Ci(t)|Vi⟩, (2.34)

where C0(t), . . . , C2N (t) are the complex and normalized amplitudes such that Ck(0) = δk1.
For this ansatz, the Schrödinger equation (2.34) gives rise to a closed system of 2N+1 equations

ι̇ Ċ0(t) = ∆C C0(t) +
ι̇

2

N∑
k=1

gk(t)CN+k(t), (2.35a)

ι̇ Ċk(t) =
ι̇

2
Ωk(t)CN+k(t), (2.35b)

ι̇ ĊN+k(t) = ∆LCN+k(t)−
ι̇

2

(
Ωk(t)Ck(t) + gk(t)C0(t)

)
, (2.35c)
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CHAPTER 2: Interaction of three-level Λ-type atoms with cavity and laser fields

where k = 1, . . . , N and the dot denotes the time derivative. This system of equations describes
the evolution of coupled atoms-cavity-laser system that is governed by the Hamiltonian (2.32)
and that corresponds to the situation in which N identical (three-level) atoms are moving
uniformly through the cavity and a laser beam.

2.4 Far off-resonant interaction regime

As we explained in the previous section, the N +1 states |V0⟩ and |VN+1⟩, . . . , |V2N ⟩ remain
(almost) unpopulated if the atom-cavity and atom-laser detuning satisfy the conditions (2.18)
and (2.20), respectively. However, since the Hamiltonian (2.33) contains two detunings ∆L and
∆C at the same time, these two conditions must be supplemented with one more condition

∆L∆C ≫ gi(t) gj(t), i, j = 1, . . . , N. (2.36)

In order to separate the evolution of states |V0⟩ and |VN+1⟩, . . . , |V2N ⟩ from Eqs. (2.35), we
apply the adiabatic elimination procedure [91] which assumes an adiabatic behavior of the
amplitudes C0(t) and CN+1(t), . . . , C2N (t), and to a good approximation therefore, vanishing
of the time derivatives associated to these amplitudes.

First, we exploit the derivative Ċ0(t) ∼= 0 and obtain with help of Eq. (2.35a) the equation

C0(t) = − ι̇

2∆C

N∑
k=1

gk(t)CN+k(t). (2.37)

By inserting this equation in Eq. (2.35c) together with the time-derivatives ĊN+k(t) ∼= 0
(k = 1, . . . , N), we obtain the set of equalities

N∑
k=1

(
δk j −

gk(t) gj(t)

4∆C ∆L

)
CN+k(t) = ι̇

Ωj(t)

2∆L
Cj(t) (2.38)

which we readily express in the matrix form A
−→
X =

−→
C with

−→
X = (CN+1(t), . . . , C2N (t))

T ,
−→
C = ι̇

2∆L
(Ω1(t)C1(t), . . . ,ΩN (t)CN (t))

T , and where the matrix elements of A are given by3

Aij = −gi(t) gj(t)
4∆C ∆L

, (i ̸= j) and Aii = 1− gi(t)
2

4∆C ∆L

∼= 1. (2.39)

The amplitudes CN+1(t), . . . , C2N (t) which corresponding to the vector
−→
X are found by

inverting the matrix A

−→
X = A−1−→C =

adj[A]

det[A]

−→
C , (2.40)

where adj[A] and det[A] denote the adjugate matrix and the determinant, respectively. It can

3Here, for the diagonal matrix elements Aii we used the condition (2.36).
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2.4. Far off-resonant interaction regime

be readily shown, moreover, that det[A] and the matrix elements of adj[A] take the form

det[A] = 1−
N∑

i,j=1
(i̸=j)

gi(t)
2 gj(t)

2

(4∆L∆C)2
−

N∑
i,j,k=1
(i ̸=j ̸=k)

gi(t)
2 gj(t)

2 gk(t)
2

(4∆L∆C)3
− . . .

(adj[A])ij =
gi(t) gj(t)

(4∆L∆C)N−1

N∏
k=1

(k ̸=i ̸=j)

(
4∆L∆C + gk(t)

2
)
, i ̸= j

(adj[A])kk = 1−
N∑

i,j=1
(i̸=j ̸=k)

gi(t)
2 gj(t)

2

(4∆L∆C)2
−

N∑
i,j,m=1

(i ̸=j ̸=m̸=k)

gi(t)
2 gj(t)

2 gm(t)
2

(4∆L∆C)3
− . . .

which, due to the condition (2.36), reduce to the expressions

det[A] ∼= 1; (adj[A])ij ∼=
gi(t) gj(t)

4∆C ∆L
(i ̸= j); (adj[A])kk ∼= 1. (2.41)

Owning to these simplified expressions, the matrix equation (2.40) implies (k = 1, . . . , N)

CN+k(t) = ι̇
Ωk(t)

2∆L
Ck(t) + ι̇

N∑
j=1

(j ̸=k)

gk(t) gj(t)Ωj(t)

8∆C ∆2
L

Cj(t). (2.42)

By inserting this equation in Eq. (2.35b), we obtain the set of differential equations

ι̇ Ċk(t) = −Ωk(t)
2

4∆L
Ck(t)−

N∑
j=1

(j ̸=k)

gk(t)Ωk(t) gj(t)Ωj(t)

16∆C ∆2
L

Cj(t), (k = 1, . . . , N) (2.43)

which contain only the amplitudes C1(t), . . . , CN (t) corresponding to vectors |V1⟩, . . . , |VN ⟩.

2.4.1 Effective Hamiltonian and the asymptotic coupling

The Eqs. (2.43) which we derived from Eqs. (2.35) by using the adiabatic elimination procedure,
in turn, can be derived directly from the Schrödinger equation

ι̇ ~
d|Φ(t)⟩
dt

= Ĥtot
eff |Φ(t)⟩ with the ansatz |Φ(t)⟩ =

N∑
i=1

Ci(t)|Vi⟩, (2.44)

which is associated with the effective Hamiltonian

Ĥtot
eff = −~

N∑
k=1

Ωk(t)
2

4∆L
|Vk⟩⟨Vk| − ~

N∑
i,j=1
(i̸=j)

qi(t) qj(t)

2∆C ∆2
L

(
Ŝ†
i Ŝj + Ŝi Ŝ

†
j

)
. (2.45)

In this Hamiltonian, moreover, Ŝ†
i = |1⟩i⟨0| and Ŝi = |0⟩i⟨1| denote the atomic two-photon

excitation and de-excitation operators, respectively, and where we introduced the combined
coupling frequency

qi(t) = gi(t)Ωi(t)/4 = q◦ exp
[
−(xoi + υ t)2/w2

C

]
, i = 1, . . . , N (2.46)
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CHAPTER 2: Interaction of three-level Λ-type atoms with cavity and laser fields

with wC = wLw/
√
w2 + w2

L being the waist of combined atom-laser fields and q◦ = Ω◦ g◦/4

being the combined vacuum Rabi splitting. In contrast to the Hamiltonian (2.33), the Hamilto-
nian (2.45) describes the sequence (2.21) that governs the atomic evolution which is mediated
by the combined laser and cavity fields. In order to summarize the steps before, we found that
the evolution of N three-level atoms is reduced to the evolution of effectively two-level atoms
which interact with each other via a two-photon exchange such that the atomic excited states
are adiabatically eliminated and remains (almost) unpopulated.

Recall that in our setup, the atomic chain is initialized outside the cavity and transported
through the cavity with a constant velocity as displayed in Fig. 2.2. The entangled state
(2.22) is generated after the atomic chain leaves the cavity and decouples from both the cavity
and laser fields. In order to find the atomic evolution governed by the Hamiltonian (2.45),
therefore, we need to integrate the Schrödinger equation (2.44) inside the time period in which
the cavity-laser mediated interaction between the atoms is switched on and off, respectively.
In a high finesse cavity, however, the Gaussian profile (2.24) approximates quite well the cavity
field and, therefore, we integrate (2.44) from −∞ to +∞

|Φ(∞)⟩ = exp

[
− ι̇
~

∫ ∞

−∞
Ĥtot

eff dt

]
|V1⟩ =

N∑
i=1

Ci(∞)|Vi⟩ (2.47)

in the same fashion as we calculated the effective atom-cavity interaction time in section 1.2.2.
In can be readily checked that the integral −1

~
∫∞
−∞ Ĥtot

eff dt is given by the expression√
π

2

Ω2
◦wL

4∆L υ

N∑
k=1

|Vk⟩⟨Vk|+
√
π

2

q2◦ wC
∆C ∆2

L υ

N∑
i,j=1
(i̸=j)

exp

[
−(|i− j| d)2

2w2
C

]
|1i, 0j⟩⟨0i, 1j | (2.48)

which depends on the two parameters υ and d since the frequency shifts: ∆L, ∆C , coupling
constants: g◦, Ω◦, and waists: wL, wC are fixed by a particular experimental setup. The time-
independent atomic wave-function |Φ(∞)⟩ along with amplitudes Ci(∞), therefore, depend
only on the (υ, d) pair and the wave-function (2.47) can be expressed in the form

|Φ(υ, d)⟩ = exp
[
ι̇ M̂

]
|V1⟩ =

N∑
i=1

Ci(υ, d)|Vi⟩, (2.49)

where the matrix elements Mij = ⟨Vi|M̂|Vj⟩ are given by

Mii =

√
π

2

Ω2
◦wL

4∆L υ
and Mij = θ (υ, |i− j| d) for i ̸= j, (2.50)

with

θ (υ, d) =

√
π

2

q2◦ wC
∆C ∆2

L υ
exp

[
− d 2

2w2
C

]
. (2.51)

The expression (2.51) can be interpreted as the asymptotic coupling for a pair of atoms which
move with the same velocity υ and are separated by the distance d from each other. Moreover,
the amplitudes of the wave-function (2.49)

Ci(υ, d) = ⟨Vi| exp
[
ι̇ M̂

]
|V1⟩ = (exp [ι̇ M])i1 (2.52)

can be computed routinely, for instance, by diagonalization of the matrix M that is charac-
terized by the elements (2.50). In chapter 6, we shall discuss the properties of |Φ(υ, d)⟩ for
different values of N and shall display those υ and d pairs, for which this wave-function reduces
to the W state (2.23).
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2.5. Summary

2.5 Summary

In this chapter, we first described the interaction of a single atom with monochromatic light
field in the semiclassical regime. We found that the evolution of atomic state that interacts
(resonantly) with a laser field is given by the expressions

|e⟩ → cos (Ω◦ t/2) |e⟩+ sin (Ω◦ t/2) e
ι̇ φ |g⟩, (2.53a)

|g⟩ → cos (Ω◦ t/2) |g⟩ − sin (Ω◦ t/2) e
−ι̇ φ |e⟩, (2.53b)

where angle φ is set by the relative position of atom with respect to the field source.
Furthermore, we explained our scheme for generation of atomic multipartite entangled

states which is based on the off-resonant interaction regime of three-level atoms placed inside
the cavity and coupled simultaneously to a laser beam. We found that the cavity and a
laser beam mediate together the interaction between atoms which are simultaneously coupled
to them. By performing the adiabatic elimination procedure, we showed that the evolution
of initially uncorrelated atoms is described by the sequence (2.21) and is governed by the
Hamiltonian (2.45). According to this Hamiltonian, moreover, the evolution of three-level
atoms is reduced to the evolution of effectively two-level atoms which interact with each other
via a two-photon exchange such that the fast decaying atomic excited states remain almost
unpopulated. This energy exchange is quantitatively described by the W-class state (2.49)
and is characterized by the complex amplitudes (2.52) which, in turn, are determined by the
atomic velocities and inter-atomic distances. The asymptotic coupling (2.51) tells explicitly
how these amplitudes depends on these two parameters. By setting appropriate velocities of
atoms and inter-atomic distances, therefore, one can generate the entangled W state (2.23)
from the W-class state (2.22), after the atomic chain leaves the cavity and decouples from
both cavity and laser fields.

We finally mention that the off-resonant interaction regime, is robust with regard to deco-
herence effects since the cavity mode and (fast decaying) excited atomic states remain almost
unpopulated during the entire evolution. This robustness, in turn, plays one crucial role in the
generation of multipartite entangled W states between atomic qubits encoded into the level
structure of neutral atoms, and where the cavity plays the role of a data bus that mediates
the interaction between these atomic qubits.
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Part II

Cavity-QED experimental setups
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Chapter 3

Microwave cavity setup

In the first chapter, we investigated the situation in which a single two-level atom is coupled
to a cavity field via dipole-field interaction such that atomic transition frequency matches one
of the resonant modes of cavity. We found that the evolution of the coupled atom-cavity
system yields a coherent exchange of energy between the constituents which describes a time-
varying entanglement of the atomic and cavity photon states. Owning to this time-varying
entanglement, we concluded that by setting an appropriate interaction time and an initial
(uncorrelated) atom-cavity state, one can generate multipartite entangled states of atomic
qubits which pass sequentially through the cavity.

In order to apply these effects in practice, however, the vacuum Rabi splitting g◦ – the
position-independent part of the atom-field coupling (1.39), should be much larger than (i)
atomic spontaneous emission rate γ, (ii) cavity relaxation rate κ, and (iii) reciprocal of the
atom-cavity interaction time as required for realization of any particular atom-cavity rota-
tion(s). The conditions (i) and (ii), roughly speaking, define the (so-called) strong coupling
regime of the atom-cavity interaction which ensures that the energy exchange between the
constituents is reversible and it develops faster than photon loss due to the cavity relaxation or
atomic decay. The reversibility of the energy exchange, in turn, ensures that the atom-cavity
system undergoes the Rabi oscillations (time-varying entanglement of the atomic and cavity
photon states) and which is widely exploited in the third part of this thesis.

The definition (1.39) implies that the vacuum Rabi splitting is determined by the atomic
dipole momentum, cavity mode frequency, and the cavity mode volume. In order to achieve the
strong coupling regime, therefore, one should consider an atom which possesses a larger atomic
dipole moment or decrease the cavity mode volume. Since the atomic dipole is essentially
determined by the separation of the electron from its nucleus, one can choose the Rydberg
atoms which are highly excited (alkali) atoms with the principal quantum number n of the
order of 60. Since the atomic dipole of a Rydberg atom grows with n2 and the transition
between its two neighboring levels lies in the microwave domain, such an atom exhibits a
strong coupling to the microwave light field. By placing such Rydberg atom inside a microwave
resonator, therefore, the strong coupling regime can be experimentally achieved. The groups of
H. Walther in Garching [33] and S. Haroche in Paris [34] have capitalized on this combination
and developed experimental setups based on Rydberg atoms and microwave cavities. In this
chapter, we shall describe in details the basic constituents of setup developed in the group of
S. Haroche.

37



CHAPTER 3: Microwave cavity setup

3.1 Microwave cavity

A microwave cavity is the heart of the setup that we exploit in this thesis. This cavity is
an open resonator that consists of two polished spherical niobium mirrors facing each other
and where each mirror has a diameter of 50 mm and a radius of curvature RM = 40 mm.
The cavity supports resonant frequency ω ≈ 2π · 51.1 GHz which is about the frequency of
transition between the (Rydberg) states 50 and 51 of a rubidium atom (see below). The mirrors
are separated by the distance L = 27 mm (in the origin of x − y plane) and accommodate
k = 9 antinodes along the cavity axis such that L ≈ k λ/2 and where λ = 2π c/ω ≈ 5.9 mm
is the wavelength associated with the resonant cavity mode. By developing new coating and
polishing techniques of the cavity mirrors, moreover, the cavity relaxation time 1/κ ≃ 130 ms
has been achieved in the group of S. Haroche [66].

The transverse cavity field components are described by the cavity field structure (1.28)
that involves the width of the transverse Gaussian profile W (z) and the radius of curvature of
the light wavefront R(z) [see (1.27)]. The cavity mode waist w that is equal to the half-width
of the Gaussian function at the point where the amplitude is 1/e of its maximum value, can
be calculated from the condition RM = R(z+) = R(z−) which leads to the expression

w =

(
λL

2π

√
2RM
L

− 1

)1/2

. (3.1)

The cavity waist, therefore, is completely determined by the curvature RM , distance L, and
resonant wavelength λ. In the group of S. Haroche, these parameters have been chosen such
that the cavity waist is nearly equal to the cavity resonant wavelength, i.e., 5.9 mm.

The polarization vector ϵ of the cavity lies in the x−y plane [see Fig. 1.2(b)] and it supports
two modes (Cx and Cy) with orthogonal linear polarizations. With perfectly spherical mirrors,
moreover, the symmetry of the cavity shape ensures that these two modes are strictly degen-
erate. In practice, however, various imperfections of the cavity mirrors produce a birefringent
splitting that lifts this degeneracy by the value of δ = 2π · 128 KHz. In addition, the mode
volume is obtained by integrating (1.28) over the space, which yields V = π w2 L/4 ≈ 740mm3.
According to the expression (1.16), in turn, the amplitude of the vacuum field in the cavity
center [f(r′) = 1] is given by the expression

E =

√
~ω

2 ε0V
≈ 1.5 · 10−3Volt/m. (3.2)

This result is of the order of a millivolt per meter and implies that the vacuum field in the
cavity center has the magnitude of a macroscopic field.

Since the resonant cavity frequency lies in the microwave domain, the cavity mode contains
residual thermal photons. In order to realize the atom-cavity energy exchange as described
in previous part of this thesis, the mean number of thermal photons should be negligible.
However, it can be checked by substituting the cavity frequency in the expression [78]

nth =
1

eβ ~ω − 1
, where β = (kB T )

−1, (3.3)

that the cavity mirrors should be cooled down to T ≈ 1 K in order to satisfy the condition
nth ≪ 1 as necessary for the cavity QED experiments. In the group of S. Haroche, the cavity
was cooled down to 0.8 K which yields an average number of nth ≈ 0.05 thermal photons and
ensures that the contribution of residual thermal photons can be neglected.
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3.2 Circular Rydberg atoms as qubits

In contrast to the stationary photonic qubits which are associated to the microwave cavity,
each Rydberg atom encodes one flying qubit which can be strongly coupled to the cavity
field due to its large dipole momentum. A circular Rydberg state [79, 80] is a highly excited
alkali atom (atoms of rubidium in the experiments by S. Haroche), in which the single valence
electron is excited such that ℓ = |m| = n− 1, where n, ℓ, and m are the principal, orbital, and
magnetic quantum numbers, respectively. A circular Rydberg state, therefore, is determined
by its quantum number n, and shall be referred below as |nc⟩.

The energy of a circular state is well described by the hydrogen-like expression En =
−Rrb/n

2, where Rrb is the Rydberg constant for rubidium. This energy, in turn, determines
the frequency of the atomic |nc⟩ → |(n− 1)c⟩ transition between two neighboring levels

ωn =
1

~
(En−1 − En) =

Rrb

~
1

n2

[(
1− 1

n

)−2

− 1

]
≈ 2

Rrb

~
1

n3
, (3.4)

which corresponds to the frequency in the few tens of GHz range for values n = 20, . . . , 60.
The same atomic transition, moreover, is characterized by the (circular) transition polarization
ϵ+a and the dipole matrix element [35]

dn = a0 qn
2/
√
2. (3.5)

Obviously, the energy En mentioned above does not account for contributions due to the
(hyper)fine atomic structure. The fine structure, however, scales as 1/n5 and it is only a few
hundred hertz for values n = 20, . . . , 60. These contributions, therefore, are very small in
circular states and can be safely neglected.

In classical terms, furthermore, the orbit of a valence electron around the core is a circle
with radius a0 n

2, where a0 = 0.53 · 10−10 m is the Bohr radius. Among all possible bound
orbits, the circular ones have the smallest average acceleration and the electron always remains
far from the core. These features lead to one minimum loss of the radiation and, therefore, to
a longer radiative lifetime which is crucial for the cavity QED experiments. The spontaneous
emission rate γn of a Rydberg atom is given by the expression [35]

γn =
4

3

Rrb α
3

~n5
, (3.6)

where α is the fine structure constant.
The described properties of Rydberg atoms imply that high values of n are preferable for

the experimental perspective since the atomic dipole dn and lifetime 1/γn scale as n2 and
n5, respectively. According to the expression (3.4), however, high values of n imply smaller
frequencies which, in turn, lead to more thermal photons if the cavity resonant frequency
coincides with ωn [see (3.3)]. A compromise between these requirements has been found in
the group of S. Haroche, and namely, the Rydberg states with n = 49, 50, and 51 have been
chosen. With this choice, the atom exhibits a huge dipole matrix element 1767 q a0 and the
atomic |50c⟩ ↔ |51c⟩ transition at 51.099 GHz matches the resonant frequency of cavity mode
Cx. Moreover, the circular Rydberg atoms can travel a few meters within their lifetimes
1/γ ≃ 36 ms and, therefore, the spontaneous emission can be neglected in an experimental
setup with the size of about few tens of centimeters and typical atomic velocities of about 500
m/s. Finally, the transition |49c⟩ ↔ |50c⟩ at 54.3 GHz is far off-resonant with the cavity mode
and is simply unaffected by the atom-cavity coupling and corresponding time-evolution.
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Figure 3.1: Temporal sequence of two short (off-resonant) Ramsey pulses to realize the rotation
of atomic state with a non-zero angle φ = ∆J T . See text for explanation.

3.2.1 Ramsey plates

In the previous section, we mentioned that the microwave cavity is compatible with the atomic
|50c⟩ ↔ |51c⟩ transition. By this choice, therefore, the Rydberg states |50c⟩ and |51c⟩ encode
one (flying) qubit that interacts with one (stationary) qubit encoded in the cavity states
{|0⟩, |1⟩} or {|0̄⟩, |1̄⟩}. For brevity, the states |51c⟩, |50c⟩, and |49c⟩ shall be referred below as
excited state |e⟩, ground state |g⟩, and auxiliary state |a⟩, respectively. Each Rydberg atom
emitted from the atomic source, moreover, is prepared in one of states |e⟩ or |g⟩ by using the
procedure from Ref. [79] and has a constant velocity along the axis of experimental setup [see
Fig. 1.4]. It is essential, however, to prepare an atomic qubit in the state

cos (ϕ/2) |e⟩+ sin (ϕ/2) eι̇ φ |g⟩ (3.7)

that is characterized by two arbitrary angles ϕ and φ. These two angles, moreover, can be
interpreted as the polar angles in three-dimensional spherical coordinates and lead to the
representation of above state as a point on a unit sphere – the Bloch sphere (see section 5.2).

In section 2.1, furthermore, we demonstrated that the state (3.7) can be realized by acting
on the atom by a classical field (laser beam) that is tuned in resonance with the atomic
transition. According to the Eq. (2.53a), therefore, the state (3.7) is realized by setting an
appropriate interaction time t = ϕ/Ω◦ and the phase φ, while the atom (prepared in the excited
state) passes through the laser beam. In contrast to the angle ϕ that is set by the atom-field
interaction time, the angle φ is set by the relative position r′ = {0,−(φ+ϑ)/k, 0} of the atom
with respect to field source, and where ϑ is the phase of the scalar product ϵ∗a · ϵJ [see (2.4)].
From the practical perspective, therefore, the manipulation of φ is feasible but complicated to
realize in practice since it requires continuous changing of the relative position of laser during
the experiment. In this section, we describe another procedure to manipulate the angle φ that
is based on the short off-resonant pulses of the classical field.

In contrast to section 2.1 in which we considered a laser beam characterized by the frequency
ωL and the atom-laser coupling (2.5), however, in this section we consider the classical field
produced by a microwave field generator (field source) and injected between the Ramsey plates.
The Ramsey plates consist of two low quality mirrors such that the relaxation time (of the
field injected between these mirrors) lies in the nanosecond range and is much smaller than
the relaxation time of cavity introduced in section 3.1. This small relaxation time, therefore,
ensures that this microwave field does not produce any entanglement with an atom [81] and
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3.2. Circular Rydberg atoms as qubits

thus the semiclassical approximation can be applied to describe the interaction of such field
with an atom. The microwave field, furthermore, is characterized by the frequency ωJ and the
atom-field coupling Ω◦ = 2d E◦ |ϵ∗a · ϵJ |/~, where E◦ and ϵJ are the (real) field amplitude and
polarization of the microwave field, respectively. We assume, moreover, that the shape and
size of Ramsey plates are chosen such that the atom-field Hamiltonian (2.4) becomes

Ĥs
I = −ι̇ ~ Ω◦

2

(
σ̂† eι̇∆J t − σ̂ e−ι̇∆J t

)
J(t), (3.8)

where ∆J = ωa−ωJ is the atom-field detuning, σ̂ = |g⟩⟨e| and σ̂† = |e⟩⟨g| denote the excitation
lowering and rising operators, respectively, and where J(t) is equal to 1 when the field source
is switched on and is zero otherwise.

In the resonant regime ∆J = 0, the above Hamiltonian describes the (unitary) rotation
R̂(Ω◦ t, 0) of the atomic state, where R̂(ϕ, φ) is given by the matrix [see (2.53)]

R̂(ϕ, φ) =

(
cos (ϕ/2) − sin (ϕ/2) e−ι̇ φ

sin (ϕ/2) eι̇ φ cos (ϕ/2)

)
(3.9)

expressed in the basis {|g⟩, |e⟩}. In order to implement the rotation of atomic state with a non-
zero angle φ, moreover, we choose the time-dependent function J(t) as displayed in Fig. 3.1
and which implies two atom-field interaction periods (Ramsey pulses) of duration τ being
separated by the time delay T ≫ τ . During these interaction times, the atom-field detuning
is slightly off-resonant and thus the atom-field evolution during each pulse is given by

exp

[
−Ω◦

2

∫ τ

0

(
σ̂† eι̇∆J t − σ̂ e−ι̇∆J t

)
dt

]
, exp

[
−Ω◦

2

∫ τ

0

(
σ̂† eι̇∆J (t−T ) − σ̂ e−ι̇∆J (t−T )

)
dt

]
.

Now we assume that atom-field detuning ∆J is much smaller than the spectral width 1/τ such
that the variation ∆J t can be neglected for each interaction pulse. With this assumption in
mind, the above evolutions become

exp

[
−Ω◦

2

(
σ̂† − σ̂

)
τ

]
, exp

[
−Ω◦

2

(
σ̂† e−ι̇∆J T − σ̂ eι̇∆J T

)
τ

]
and correspond to the Hamiltonian (2.6) with φ = 0 and φ = ∆J T , respectively. We can
conclude, therefore, that the sequence of two short (off-resonant) pulses shown in Fig. 3.1
produces the rotation R̂(Ω◦ τ,∆J T ) · R̂(Ω◦ τ, 0) of the atomic state, and where the time delay
T can be controlled by switching on and off the source of microwave field while the atom passes
through the Ramsey plates.

We just explained that a single resonant Ramsey pulse realizes the rotation (i) R̂(α, 0)
with the angle α = Ω◦ τ determined by the atom-field interaction time τ , while two off-
resonant pulses realize the rotation (ii) R̂(β, φ) · R̂(β, 0) with angles β = Ω◦ τ and φ = ∆J T
determined by the atom-field interaction time τ , delay T , and detuning ∆J such that the
condition ∆J τ ≪ 1 must be satisfied. Moreover, it is possible to apply sequentially the pulses
(i) and (ii) upon the same atom and within the same Ramsey plates in order to realize the
rotation

R̂(β, φ) · R̂(β, 0) · R̂(α, 0) = R̂(β, φ) · R̂(ϕ, 0), where ϕ = α+ β. (3.10)

By setting appropriately the angle α, therefore, it is possible to cancel the term R̂(ϕ, 0) in
(3.10) and realize only the rotation R̂(β, φ). We can conclude, therefore, that the sequence
of three Ramsey pulses (one resonant and two off-resonant) realizes the rotation (iii) R̂(β, φ).
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CHAPTER 3: Microwave cavity setup

Finally, we mention that the classical microwave field produced between the Ramsey plates
can drive also g ↔ a atomic transition in order to generate a superposition between states |g⟩
and |a⟩. In this case, the rotation of atomic state is describes by the matrix (3.9) expressed in
the basis {|a⟩, |g⟩} and the above rotations (i), (ii), and (iii) are realized by the same pulses.

3.3 Summary

A chain of circular Rydberg atoms and a microwave cavity are the main ingredients of the
schemes for generation of various entangled states which we present in the third part of this
thesis. Recall that in order to exploit in practice the atom-cavity entanglement mechanism,
each atom from the chain should be strongly coupled to the cavity such that the energy
exchange between them is reversible and it develops faster than the photon loss due to the
cavity relaxation or atomic decay, i.e., both the conditions g◦ ≫ κ and g◦ ≫ γ must be satisfied
at the same time. In this chapter, we mentioned that the rates associated with atomic decay
and cavity relaxation are κ/2π = 4.46 Hz and γ/2π = 1.23 Hz, respectively. At the same
time, the vacuum Rabi frequency at the cavity center (where the cavity field amplitude takes
its maximum) is g◦/2π = 50 KHz and it corresponds to a Rabi period 2π/g◦ = 20 µs. We can
conclude, therefore, that the mentioned conditions for the strong coupling regime are largely
satisfied and this is possible merely due to the huge quality factor of cavity mirrors and the
circular state transition of a Rydberg atom.

We also mention that a series of striking experiments has been performed and reported
in the group of S. Haroche. For instance, a direct test of the field quantization in a cavity
[37], generation of a maximally entangled state with an atomic pair [38, 39], realization of a
two-qubit phase gate [40], non-destructive measurement of a single photon [43, 44], generation
of entangled atomic triplet [41], generation of Schrödinger cat states along with exploration
of their decoherence dynamics [45, 46], and e.t.c. Obviously, any practical realization of the-
oretical schemes based on the resonant atom-cavity interaction suffers from various practical
limitations: (i) imperfect Ramsey and Rabi pulses, (ii) cavity relaxation and residual thermal
photons, (iii) low efficiency of atomic source and ionization detector, to name just a few of
them. Various improvements, therefore, are further needed in order to overcome these diffi-
culties and achieve an excellent control of the atom-cavity and (cavity mediated) atom-atom
entanglement in the framework of microwave cavity QED.
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Chapter 4

Optical cavity setup

In the second chapter, we investigated the situation in which a chain consisting of three-level
atoms is coupled to a cavity field and a laser beam such that atomic transition frequencies are
off-resonant with respect to both (detuned) cavity modes. We found that the evolution of the
coupled atom-cavity-laser system implies a coherent two-photon exchange between the atoms
which describes a W-class state that is generated between the qubits encoded in the ground
and metastable states of each three-level atom. Owning to this W-class state, moreover, we
concluded that by setting an appropriate velocity of atomic chain, inter-atomic distance, and
an initial (uncorrelated) atom-cavity state, one can generate entangled W states right after
the atomic chain has passed through the cavity.

As we mentioned in the third chapter, however, in order to apply these effects in practice
the vacuum Rabi splitting g◦ should be much larger than atomic spontaneous emission rate
γ and cavity relaxation rate κ. These two conditions define the strong coupling regime of
the atom-cavity interaction and ensure that the cavity mediated energy exchange between the
atoms is realized faster than photon loss due to the cavity relaxation or atomic decay. The
cavity mediated energy exchange, in turn, is the main mechanism that generates the W-class
state. The definition (1.39) implies, moreover, that in order to achieve strong coupling regime
one should consider an atom which possesses a larger atomic dipole moment or decrease the
cavity mode volume. In contrast to the previous chapter in which we utilized Rydberg atoms
with large dipole momentum, in this chapter we describe the second approach in which the
small dipole momentum is compensated by a very small cavity volume.

Since a cavity with smaller volume produces higher amplitude of the vacuum field, an atom
with low-lying electronic states can still exhibit a strong coupling to the light field. Low-lying
electronic states, moreover, imply that the atomic transition between two neighboring levels
lies in the optical domain. By placing such an atom inside the resonator that supports optical
resonant frequency, therefore, the strong coupling regime can be experimentally achieved and
the scheme developed in the second chapter can be applied. The groups of J. Kimble in
Pasadena [17], M. S. Chapman in Atlanta [18], G. Rempe in Garching [19], and D. Meschede
in Bonn [20] have capitalized on this combination and developed experimental setups based on
optical cavities and atoms with low-lying electronic states. In this chapter, we shall describe
in details the basic constituents of setup developed in the group of D. Meschede.
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4.1 Optical cavity

An optical cavity is the heart of setup that we exploit in this thesis. As in the previous
chapter, this cavity represents an open resonator that consists of two polished spherical mirrors
facing each other and where each mirror has a diameter of about 1 mm and a radius of
curvature RM = 5 cm. The cavity supports resonant frequency ω ≈ 2π · 0.35 PHz that almost
matches the F = 4 → F ′ = 5 (D2-line) transition of a Cs atom (see below). Moreover, the
mirrors are separated by the distance L = 159 µm (in the origin of x − y plane) and they
accommodate about k = 373 antinodes along the cavity axis such that L ≈ k λ/2, and where
λ = 2π c/ω ≈ 852 nm is the wavelength associated with the resonant cavity mode. By using
special coating and polishing techniques of the cavity mirrors, moreover, the cavity relaxation
time 1/κ ≃ 0.3 µs has been achieved in the group of D. Meschede [74].

As for the microwave cavity, the transverse cavity field components are described by the
cavity field structure (1.28), where the cavity waist w is determined by the curvature RM ,
distance L, and resonant wavelength λ [see (3.1)]. In the group of D. Meschede, these param-
eters have been chosen such that the cavity waist is equal to about 23 µm. The optical cavity,
in addition, as well supports two linearly and orthogonally polarized modes of light (Cx and
Cy) with polarizations located in the x − y plan and which are separated by a birefringent
splitting of about δ = 2π · 200 KHz. Moreover, the cavity mode volume is calculated by using
the expression V = π w2 L/4 ≈ 6.6 · 104 µm3 and the amplitude of vacuum field in the cavity
center [f(r′) = 1] is given by the expression (3.2) and yields the value E ≈ 432 Volt/m.

We explained in the previous chapter that in order to realize the atom-cavity energy ex-
change, the mean number of residual thermal photons should be negligible. In contrast to the
microwave cavity, however, the optical cavity is insensitive to the thermal photons even at the
room temperature. It can be readily checked by substituting the cavity frequency and T ≈ 300
K in the expression (3.3), that the average number of thermal photons satisfies the condition
nth ≪ 1 which ensures that the contribution of residual thermal field can be safely neglected.
Optical cavities, therefore, can be utilized without any special cooling mechanism, which is
one notable advantage if compared with the microwave cavities.

Experiments in which one or more atoms couple to the cavity, require one precise control
of the cavity resonance frequency with respect to a given atomic transition frequency. This
control, in turn, requires an excellent mechanical stability of the resonator since thermal drifts
and mechanical vibrations inevitably lead to uncertainties in the distance between the mirrors.
The passive mechanical stabilization (as utilized for microwave cavities) is not sufficient in
the case of an optical cavity since the optical wavelengths are much shorter and an active
stabilization is then needed to compensate these uncertainties. This stabilization is usually
based on the Pound-Drever-Hall feedback scheme [88], in which the cavity resonant frequency
is compared with a stable laser source and a piezoelectric stack (placed under the cavity mirror)
is then used to compensate for uncertainties in order to match the cavity resonant frequency
with the frequency of stable laser light. By using such an active stabilization scheme, the
uncertainties in the distance between cavity mirrors have been reduced to about 0, 45 · 10−12 m
in the group of D. Meschede.
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4.2. Neutral atoms as qubits

Figure 4.1: (a) Level structure of the first excited state in the atom of Cs [92]. (b) The same
level structure interpreted as a three-level Λ-type configuration.

4.2 Neutral atoms as qubits

As we mentioned in section 3.2, the atoms represent flying qubits which need to be strongly
coupled to the cavity field while they pass through the resonator. In contrast to the case of
Rydberg atoms, however, the atoms with low-lying electronic states possess rather moderate
dipole momentum which, nevertheless, is compensated by a small volume of an optical cavity.
The level structure of the first excited state in the atom of Cs is displayed in Fig. 4.1(a).
As we mentioned in the previous section, the cavity supports resonant frequency that almost
matches the F = 4 → F ′ = 5 transition of a Cs atom. The decay rate associated to this
transition is γ/2π = 2.6 MHz and the respective radiative lifetime is 1/γ ≈ 61 ns. The same
atomic transition, moreover, is characterized by the (circular) transition polarization ϵ+a and
the dipole matrix element 3.17 q a0 (compare to 1767 q a0 for Rydberg atoms with n = 50).

As seen from Fig. 4.1(a), furthermore, an atom of Cs has two hyperfine ground levels with
F = 3 and F = 4. These two levels together with the first excited state can be interpreted
as the three-level Λ-type configuration displayed in Fig. 4.1(b) and which is required for our
(entangled state generation) scheme from the second chapter. In this configuration, moreover,
the cavity mode is coupled off-resonantly to the F = 4 → F ′ = 5 transition, while the laser
beam to the F = 3 → F ′ = 4 transition. In contrast to a three-level Λ-type atom in which
the transition between the two lower states is forbidden, the transition F = 3 → F = 4 can be
realized by means of a microwave field. However, since cavity and laser fields cannot realize
this transition alone, the atom of Cs can be safely considered as a three-level atom in the
Λ-type configuration [74].

In contrast to the Rydberg atoms, moreover, the atoms with low-lying electronic states
do not require any special preparation sequence and could be simply effused from an oven.
However, since the effused atoms need to be coupled to the cavity mode in a well controllable
fashion, additional tools are required to store a number of atoms and transport them coherently
inside the cavity. The two basic tools which provide the necessary degree of control over atoms
are (i) the mageto-otical trap (MOT) that plays the role of a deterministic source of atoms and
(ii) the optical lattice (conveyor belt) that transports atoms inside the cavity from the MOT
along with an position control over atomic motion. These two tools being combined in the
same setup, therefore, enable one to initiate and store atoms in the MOT and then to insert
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CHAPTER 4: Optical cavity setup

Figure 4.2: Schematic view of atoms in an optical lattice (conveyor belt). Two focussed and
counter-propagating laser beams with frequencies ω1 = ω + ∆ω/2 and ω2 = ω − ∆ω/2 give
rise to an interference pattern in the field intensity with a series of equidistant potential wells
in which the atoms can be trapped. The distance between two neighbored wells is given by
(half of) the lattice wavelength λ, while the velocity of the belt is determined by the detuning
∆ω of the two laser beams.

them in the sites of an optical lattice and transport inside the cavity [16, 18, 20]. The detailed
description of a MOT can be found in Ref. [89], while a brief description of a conveyor belt is
given below.

4.2.1 Transportation of atoms

In order to control the position of atoms, an optical lattice (conveyor belt) has been integrated
into the experimental setup in the group of D. Meschede. A conveyor belt is a far detuned
dipole trap in which atoms are attracted to regions of high laser intensity. The corresponding
force arises from the interaction of the induced dipole moment with the gradient of the light
field [93]. As displayed schematically in Fig. 4.2, the trap consists of two counter-propagating
Gaussian beams of Nd:YAG laser (1064 nm, 4 W) which create together a standing wave
interference pattern with periodical potential wells of 532 nm separation. On the one end, the
lattice is overlapped with the MOT such that the atoms can be efficiently inserted into the belt,
and on the other end, the lattice is sandwiched by the cavity mirrors. The number-triggered
insertion procedure enables to insert a predetermined number of atoms in the lattice [94], while
the use of an additional optical lattice permits to rearrange the atoms in order to make them
equally distanced from each other [95].

By changing the frequencies of the laser beams by means of two acousto-optic modulators,
the interference pattern is set into motion and carries the atoms along the lattice axis. This
conveyor belt, therefore, enables to transport atoms over macroscopic distances (up to 10 mm)
with a sub-micrometer precision [96]. Since the optical excitation in the optical lattice can
be kept very low, a conveyor belt provides a nearly conservative trapping potential that is
especially important for experiments on quantum information. It has been experimentally
demonstrated that an optical lattice preserves the coherence of transported atoms and can be
utilized as a holder of a quantum register for storing quantum information. By encoding the
quantum information in the hyperfine levels (F = 3 and F = 4), moreover, the storage time of
about 6 s has been reported in Refs. [97, 98] and which is limited mainly by the background
gas collisions.
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4.3 Summary

The three-level atoms inserted in the sites of a conveyor belt and a detuned optical cavity are
the main ingredients of the scheme for generation of W entangled states which we present in
the third part of this thesis. We mentioned in the previous chapter that in order to exploit in
practice the entanglement of atoms that is based on an off-resonant cavity, each atom from the
chain should be strongly coupled to the cavity, i.e., both the conditions g◦ ≫ κ and g◦ ≫ γ
must be satisfied at the same time. In this chapter, we mentioned that the rates associated with
atomic decay and cavity relaxation are κ/2π = 0.4 MHz and γ/2π = 2.6 MHz, respectively.
At the same time, the vacuum Rabi frequency at the cavity center (where the cavity field
amplitude takes its maximum) is about g◦/2π = 10 MHz and it corresponds to a Rabi period
2π/g◦ = 0.1 µs. We can conclude, therefore, that the mentioned conditions for the strong
coupling regime are nicely satisfied and this is possible merely due to a small cavity volume
and high positioning precision of atoms with respect to the cavity antinode.

We also mention that a series of remarkable experiments has been performed and reported
in the group of G. Rempe. For instance, the photon-photon entanglement with a single atom
coupled to an optical cavity [100], cavity based cooling of single atoms [101], cavity based
control of a single photon’s polarization, and phase [102, 103], and e.t.c. It is also obvious that
any practical realization of theoretical schemes based on the cavity(-laser) mediated interac-
tion of atoms suffers from various practical limitations: (i) imperfect Rabi pulses, (ii) cavity
relaxation and atomic decay, (iii) imperfect positioning precision of atoms with respect to the
cavity antinode, to name just a few of them. Various improvements, therefore, are further
needed in order to overcome these difficulties and achieve an excellent control of the cavity
mediated entanglement of atoms in the framework of optical cavity QED.
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Part III

Multipartite entangled states for
chains of atoms
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Chapter 5

Generation of entangled states with
a microwave cavity

In the first part of this thesis we introduced the resonant interaction regime between an (circu-
larly polarized) two-level atom and a cavity which supports two orthogonally polarized modes
of light field. We found that such an atom interacts only with one cavity mode and that its
interaction with another (orthogonally polarized) cavity mode can be neglected if birefringent
splitting is sufficiently large with respect to the atom-cavity coupling. We showed, moreover,
that by setting an appropriate interaction time and an initial atom-cavity state, we can control
the coherent energy exchange of the coupled atom-cavity system and generate an entangled
atom-cavity state. We concluded, therefore, that the resonant atom-cavity interaction is per-
haps an unique regime that can be used to entangle one single two-level atom (atomic qubit)
with the photon field of a cavity (cavity qubit) in an exceptional well-controlled way.

In the the second part of this thesis, furthermore, we described an experimental setup
as utilized in the Laboratoire Kastler Brossel by S. Haroche and co-workers [34, 35]. This
setup is schematically displayed in Fig. 5.1(a) and it includes (i) one microwave cavity that
supports two orthogonally polarized modes of light field, (ii) several Ramsey plates, and (iii)
a chain of rubidium atoms prepared in highly excited Rydberg states such that the atomic
transition between two neighbor levels can be tuned in resonance with one or another cavity
mode (see below). Moreover, atoms of rubidium are prepared in one of the three Rydberg
levels with principal quantum numbers 51, 50, or 49, and which are denoted as excited state
|e⟩, ground state |g⟩, and auxiliary state |a⟩, respectively. Owing to the particular design of
the microwave cavity, however, only the states |e⟩ and |g⟩ can be involved in the atom-cavity
interaction because only the e ↔ g transition frequency of a rubidium atom can be tuned
to the frequencies of the cavity modes. The classical microwave field produced between the
Ramsey plates by the sources S and Sd, in contrast, can be adapted to drive the e ↔ g or
g ↔ a transitions and is utilized to manipulate the superposition between these atomic states
as we explained in section 3.2.1.

An entangled state of a Rydberg atom (A) with the photon field of a cavity is achieved in
a deterministic way by tuning the e↔ g transition frequency ωa(t) as a function of time such
that the atom is in resonance with either cavity mode Cx or Cy while it passes through the
cavity. For a sufficiently fast switch of the detuning ∆(t) = ωa(t)−ω, the resonant interaction
is realized with either mode Cx for ∆(t < T ) = 0 or with the mode Cy for ∆(t > T ) = −δ
as displayed in Fig. 5.1(b), and where a step-wise change from the A − Cx to the A − Cy
interaction is assumed. In the experiments by S. Haroche and coworkers, for instance, the
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Figure 5.1: (a) Schematic setup of an experiment in which a chain of Rydberg atoms is emitted
from a source B and then passes through a Ramsey zone R1, a cavity C, the Ramsey zones R2

and Rd, until the atoms are ionized one-by-one in the detector D. The classical fields in the
Ramsey zones are generated by the microwave sources S, S′ and Sd. (b) Temporal matching
of the e ↔ g atomic transition frequency ωa to either the frequency ω of the cavity mode Cx
or the frequency ω̃ of the mode Cy which is produced in the course of atom-cavity interaction.
The lower part of this figure displays the (time-dependent) step-wise change of the atom-cavity
detuning ∆(t) = ωa(t)−ω such that for t < T the atom is resonant with the mode Cx and for
t > T with the mode Cy. See text for further discussions.

detuning is changed by applying a well adjusted time-varying electric field across the gap
between the cavity mirrors, so that the required (Stark) shift of the atomic e ↔ g transition
frequency is obtained [42]. However, an atom can interact resonantly only with one of the
cavity modes since the second mode is then frozen from the interaction because of the (large)
birefringent splitting δ = ω − ω̃. The overall A − Cx − Cy time evolution of the atom-cavity
state, therefore, can be safely separated into two independent parts (i) the evolution that
occurs due to the A − Cx resonant interaction as given by Eqs. (1.75) and (ii) the evolution
due to A− Cy resonant interaction as given by Eqs. (1.76). In the latter evolution, moreover,
the imaginary factor arises due to orthogonal polarization of the mode Cx with respect to the
mode Cy.

The experimental setup displayed in Fig. 5.1(a), therefore, provides all the necessary in-
gredients to generate complex entangled states of the cavity photon field with Rydberg atoms
which pass sequentially through the cavity. By exploiting one (or more) such cavities tuned
in resonance, in this chapter, we shall propose and discuss the schemes which enable one to
(i) generate multi-partite GHZ and W states, (ii) generate one- and two-dimensional cluster
states of arbitrary size, and (iii) prove the entanglement formation of three- and four-partite
Greenberger-Horne-Zeilinger (GHZ) and W states.

5.1 Entangled states with a single-mode cavity

As a prerequisite for the next sections, we shall work out three schemes to generate the multi-
partite Greenberger-Horne-Zeilinger (GHZ), W, and linear cluster states, in which one single
cavity mode is utilized. In other words, we confine ourselves to the situation, in which the
atoms are tuned in resonance with one single cavity mode, say Cx, while passing sequentially
through the cavity. Our purpose is to provide the individual interaction times between the
cavity mode and each atom which are required to generate a particular entangled state for
a chain of Rydberg atoms that is initially prepared in the product state. Moreover, we shall
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Figure 5.2: Three snapshots of the sequence that generates the entangled state (5.1) between
the atoms A1 and A2. The upper part of each sub-figure indicates how the atoms pass through
the cavity, while the lower part shows the corresponding temporal sequence with the trajectories
of atoms and cavity. The pictograms used in these figures are described in the text.

introduce a convenient graphic language in order to display these steps in terms of temporal
sequences and quantum circuits.

Before we turn to GHZ and W states, however, let us consider the most simple case of an
atomic chain that consists of two atoms being initially prepared in the product state |e1, g2⟩. In
this case, we shall display the necessary interaction periods for which these two atoms produce
the entangled state

|ΨBell
A1−A2

⟩ = 1√
2
(|e1, g2⟩ − |g1, e2⟩) (5.1)

after both passing through the cavity. For this, assume that the cavity mode Cx is initially
empty and the first atom is emitted (by the atomic source) in the excited state with the
velocity υ1 = 2 g◦w/

√
π which corresponds to the atom-cavity interaction time t1 = π/(2 g◦).

According to the atom-cavity evolution (1.75a) and definition (1.61), the entangled Bell state

|ΨBell
A1−Cx

⟩ = 1√
2
(|e1; 0⟩+ |g1; 1⟩) (5.2)

is generated after the first atom (A1) leaves the cavity.

In order to generate the state (5.1) from (5.2), moreover, we need to map the cavity state
upon the second atom. This is done by sending the second atom in the ground state with
the velocity υ2 = g◦w/

√
π which corresponds to the atom-cavity interaction time t2 = π/g◦.

By using Eqs. (1.75) it can be readily checked that the cavity states {|0⟩, |1⟩} are mapped
upon the atomic states {|g2⟩, |e2⟩}, respectively, while the cavity mode is factored out in the
vacuum state. In other words, the state of second atom has been replaced by the cavity state
and, therefore, the desired state (5.1) is produced from (5.2) (for further details, see Ref. [38]
where this two-step sequence has been demonstrated experimentally). Notice that the rotation
angles g◦ t1 = π/2 and g◦ t2 = π determine completely the evolution of the coupled atom-cavity
systems A1 − Cx and A2 − Cx. Moreover, these two angles (so-called Rabi pulses: p1 = π/2
and p2 = π) along with definition (1.61) determine the velocities υ1 and υ2 which are necessary
for atoms A1 and A2 in order to realize the required atom-cavity evolution.

In Figure 5.2, furthermore, by using the graphical language introduced by S. Haroche and
co-workers, we displayed three snapshots of the above scheme with all the manipulations which
atoms A1 and A2 undergo while crossing the cavity. Specifically, the lower part of each sub-
figure shows the temporal diagram in which the black diamond indicates the evolution of the
coupled atom-cavity system with the respective rotation angle (Rabi pulse) displayed inside.
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Figure 5.3: (a) Temporal sequence for generation of the W state associated with the chain of
atoms A1, . . . , AN . (b) The corresponding quantum circuit in which the cavity is represented
by the uppermost line, while the atoms by the lines below. The pictograms in these figures
are described in the text.

With this simple but illustrative example, therefore, we are ready to discuss more elaborated
schemes for generation of multipartite entangled states within a chain of Rydberg atoms.

5.1.1 W states

In this section, we discuss the generation of the W state [22]

|ΨW
N ⟩ = 1√

N
(eι̇ ψ

N terms︷ ︸︸ ︷
| ↓1,↑2, . . . ,↑N ⟩+ | ↑1,↓2, . . . ,↑N ⟩+ . . .+ | ↑1,↑2, . . . ,↓N ⟩) (5.3)

for a chain of N atoms prepared initially in the product state |e1, g2, . . . , gN ⟩ and where we
consider the correspondence {| ↑i⟩ = |gi⟩, | ↓i⟩ = |ei⟩} between the qubit states and a pair
of neighbor levels of i-th atom in the chain. For this state, a sequence of Rabi pulses can
be worked out and expressed as a temporal sequence for the passage of atoms through the
cavity. This sequence is displayed in Fig. 5.3(a) with the individual Rabi pulses (atom-cavity
rotations) given by

pn = g◦ tn =

2 arccos
(

1√
N

)
, n = 1;

2 arccos
(√

N−n
N−n+1

)
, n = 2, . . . , N − 1.

(5.4)

In fact, this temporal sequence looks similarly to those from Fig. 5.2, however, it includes N
atomic trajectories and also contains different Rabi pulses associated with individual atom-
cavity interaction. By using the Eqs. (1.75), moreover, it can be shown that (up to a constant
phase) the state (5.3) with ψ = π is generated from the initial product state |e1, g2, . . . , gN ⟩,
and where the cavity mode is factored out in the vacuum state.

Besides of displaying the individual interactions between the atoms and cavity, that is the
particular sequence of Rabi pulses, a quantum circuit representation of the unitary transfor-
mation is shown in Fig. 5.3(b). Of course, both representations (a) and (b) in Fig. 5.3 are
equivalent and can be utilized on purpose, and where the latter one can be translated into the
language of quantum gates [4].
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Figure 5.4: (a)-(c) Three snapshots of the sequence that generates the GHZ state (5.7) between
the atoms A1, A2, and A3. The upper part of each sub-figure indicates how the atoms pass
through the cavity and Ramsey plates, while the lower part shows the corresponding temporal
sequence with the trajectories of atoms and cavity. (d) Temporal sequence for generation of
the GHZ state (5.9) associated with the chain of atoms A1, . . . , AN . (b) The corresponding
quantum circuit in which the cavity is represented by the uppermost line, while the atoms by
the lines below. The pictograms in these figures are described in the text.

5.1.2 GHZ states

In this section, we discuss the generation of the Greenberger-Horne-Zeilinger (GHZ) state [36]

|ΨGHZ
N ⟩ = 1√

2

(
eι̇ ψ| ↑1, . . . ,↑N ⟩+ | ↓1, . . . ,↓N ⟩

)
, (5.5)

for a chain of N atoms prepared initially in the product state |e1, g2, . . . , gN ⟩, and where the
qubit states {| ↑i⟩, | ↓i⟩} refer to a pair of neighbor states {|g⟩, |e⟩} or {|a⟩, |g⟩} of i-th atom
in the chain. In addition to the interaction with the cavity photon field, however, this scheme
requires the interaction of Rydberg atoms with a classical microwave field that is injected
by the field source S between the Ramsey plates located in front and behind the cavity [see
Fig. 5.1(a)]. We showed in section 3.2.1, moreover, that a microwave field source can drive
e ↔ g or g ↔ a atomic transition and it produces the rotation (3.9) expressed in the basis
{|g⟩, |e⟩} or {|a⟩, |g⟩}, respectively, while the atom passes through Ramsey plates. Below, we
refer to this rotation as the Rasmey pulse R̂(ϕ, φ) and denote it in our figures by grey circles
indicating the rotation angle ϕ and, if needed, also the value of phase φ. In addition, we shall
supply the subscripts R1 or R2 to these circles in order to associate such pulses to the Ramsey
plates located in front or behind the cavity.

Before we turn to multipartite GHZ state, however, let us consider the most simple case of
an atomic chain that consists of three atoms prepared initially in the product state |e1, g2, g3⟩.
To generate a GHZ state for this chain we first generate the atom-cavity entangled state (5.2)
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CHAPTER 5: Generation of entangled states with a microwave cavity

by sending the first atom (A1) through the cavity with velocity 2 g◦w/
√
π that corresponds

to a π/2 Rabi pulse. Next to A1, we send the second atom (A2) with velocity g◦w/(2
√
π)

that corresponds to a 2π Rabi pulse. Just before A2 enters the cavity, however, its state is
transformed into the superposition |g2⟩ → 1√

2
(|a2⟩+ |g2⟩) by using a R̂1(π/2, 0) Ramsey pulse

tuned to the g ↔ a transition frequency [see (3.9) for φ = 0], while A2 crosses the plates R1 in
front of cavity. After the second atom has left the Ramsey plates R1, it enters the cavity and
interacts with the mode Cx for a 2π Rabi pulse. The effect of this Rabi pulse can be seen from
Eqs. (1.75) which imply the evolution |e2; 0⟩ → −|e2; 0⟩ and |g2; 1⟩ → −|g2; 1⟩. At this point,
therefore, the composite A1 −A2 − Cx state becomes [|e1, (a2 + g2); 0⟩+ |g1, (a2 − g2); 1⟩] /2.

After the atom A2 has passed through the cavity, it is subjected again to a R̂2(π/2, 0)
pulse inside the second pair of Ramsey plates (located behind the cavity), thus, leading to the
entangled GHZ state for two atoms and a cavity mode

|ΨGHZ
A1−A2−C⟩ =

1√
2
(|e1, a2; 0⟩ − |g1, g2; 1⟩) . (5.6)

In order to generate the GHZ state for a chain of three atoms, furthermore, we need to map
the cavity state upon the atom A3. This mapping is performed by sending the third atom
prepared in the ground state through the cavity such that A3−Cx system undergoes a π Rabi
pulse. It can be checked that after A3 leaves the cavity, the composite state (5.6) becomes

|ΨGHZ
3 ⟩ = 1√

2
(|e1, a2, g3⟩+ |g1, g2, e3⟩) , (5.7)

where the cavity state is factored out in the vacuum state. Obviously, the generated state (5.7)
is equivalent to the GHZ state (5.5) for N = 3 and ψ = 0 under the change of notation

{| ↑1⟩ = |e1⟩, | ↓1⟩ = |g1⟩}, {| ↑2⟩ = |a2⟩, | ↓2⟩ = |g2⟩}, {| ↑3⟩ = |g3⟩, | ↓3⟩ = |e3⟩}. (5.8)

In Figs. 5.4(a)-(c), we displayed three snapshots of the above steps with all the manipula-
tions which atoms A1, A2, and A2 undergo while crossing the cavity and Ramsey plates. A
more detailed discussion of these manipulations is given in Ref. [41], where this sequence of
Ramsey and Rabi pulses was demonstrated experimentally. At this point, moreover, we can
introduce the scheme for generation of multipartite GHZ state (5.5) for a chain of N atoms
prepared initially in the product state |e1, g2, . . . , gN ⟩. The respective temporal sequence and
the quantum circuit are displayed in Figs. 5.4(d) and (e), respectively. By using the Eqs. (1.75)
and (3.9), furthermore, it can be checked that this sequence results into the state

|ΨGHZ
N ⟩ = 1√

2

(
eι̇ π(N+1)|e1, a2, . . . , aN−1, gN ⟩+ |g1, g2, . . . , gN−1, eN ⟩

)
(5.9)

and where the cavity mode is factored out in the vacuum state. Obviously, the generated state
(5.9) is equivalent to the GHZ state (5.5) under the change of notation

{| ↑1⟩ = |e1⟩, | ↓1⟩ = |g1⟩}, {| ↑i⟩ = |ai⟩, | ↓i⟩ = |gi⟩}, {| ↑N ⟩ = |gN ⟩, | ↓N ⟩ = |eN ⟩} (5.10)

with i = 2, . . . , N − 1, and where the phase ψ = π(N + 1) depends on the total number of
atoms in the chain.
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Figure 5.5: (a) Quantum circuit for generation of a linear cluster state between N uncorrelated
qubits. Each qubit is initially prepared in the |+⟩ = (| ↑⟩+ | ↓⟩)/

√
2 state, and one controlled-z

gate is applied subsequently to any two neighboring qubits. (b) Alternative quantum circuit
for linear cluster state generation, in which the controlled-z operation is successively applied to
the ancilla qubit A and k-th qubit, and followed by the swapping of the ancilla state with the
k+1-th qubit. (c) Two equivalent circuits that follow from relation (5.14) after multiplying it
from the right side by [Ẑ(π)⊗ Î]−1.

5.1.3 Linear cluster state

As we mentioned in the introduction, H. J. Briegel and R. Raussendorf have introduced a
novel type of multi-partite entangled states in Ref. [48]. These (so-called) cluster states are
known to exhibit a rather high persistency and robustness of their entanglement with regard
to decoherence effects [49]. Apart from the fundamental interest in these states [50] and their
use in quantum communication protocols [51], the cluster states also form the key ingredient
for one-way quantum computations [52].

In this section, we discuss the generation scheme of a linear 1×N cluster state for a chain
of atoms, and for which only a single cavity mode (Cx) is required. This scheme was first
suggested by Schön and co-autors [47] and is adapted here for the cavity setup as displayed in
Fig. 5.1(a). The linear cluster state is defined as [48]

|Ψ(1,N)⟩ =
1

2N/2
N
⊗
i=1

(| ↑i⟩+ | ↓i⟩Θi+1) , (5.11)

where Θk = | ↑k⟩⟨ ↑k | − | ↓k⟩⟨ ↓k | acts on the k-th qubit such that ΘN+1 ≡ 1, and where
we consider the assignment {| ↑i⟩ = |gi⟩, | ↓i⟩ = |ei⟩} between the qubit states and a pair of
neighbor levels of i-th atom in the chain. Equivalently, one can define the linear cluster state
as one-dimensional lattice of N qubits, where the nodes refer to the qubits initialized in the
product state |+1⟩× . . .×|+N ⟩, where |+⟩ = (| ↑⟩+ | ↓⟩)/

√
2 and where the edges of the lattice

refer to the two-qubit controlled-z gate [4]

| ↑1⟩ | ↑2⟩ → | ↑1⟩ | ↑2⟩, | ↑1⟩ | ↓2⟩ → | ↑1⟩ | ↓2⟩, | ↓1⟩ | ↑2⟩ → | ↓1⟩ | ↑2⟩, | ↓1⟩ | ↓2⟩ → −|↓1⟩ | ↓2⟩

55



CHAPTER 5: Generation of entangled states with a microwave cavity

which is applied between all the neighboring nodes. According to this latter definition,
Fig. 5.5(a) displays the successive interactions which are necessary to generate the linear clus-
ter state for N initially uncorrelated qubits. Instead of applying the controlled-z gate to each
pair of neighboring qubits k and k+1, however, we can apply this two-qubit gate to the ancilla
qubit and the ordinary qubit k, and then swap the state of ancilla qubit with the qubit k + 1
as displayed in Fig. 5.5(b). Note that in this circuit, we have inserted one additional swap gate
between the ancilla and the first atom which has no effect on the output cluster state since the
ancilla qubit is prepared initially in the state |+⟩ too.

Below we shall associate the ancilla qubit with the cavity mode Cx and the ordinary qubits
with the Rydberg atoms. According to the second scheme from Fig. 5.5(b), this identification
implies that the atoms pass sequentially through the cavity and that only one atom couples to
the cavity at a time, which fits nicely to our cavity setup that we consider in this chapter. As
seen from Fig. 5.5(b), moreover, only two types of unitary gates have to be realized between
the cavity mode and each atom which passes through the cavity, namely, (i) the swap gate
followed by the controlled-z gate for atoms A1 . . . AN−1 and (ii) the swap gate for the atom
AN . Before the atom-cavity interaction takes place, moreover, each atom must be prepared in
the superposition |+⟩ = (|e⟩+ |g⟩)/

√
2. In the setup displayed in Fig. 5.1(a), this superposition

is achieved by preparing the atoms in the excited state and then performing the rotation

|e⟩ → 1√
2
(|e⟩+ |g⟩) (5.12)

just before the atom enters the cavity. As explained above, the rotation (5.12) is realized
efficiently by using a R̂1(π/2, 0) Ramsey pulse tuned to the e ↔ g transition frequency [see
(2.53a) for φ = 0] while the atom crosses the Ramsey plates in front of cavity.

It can be checked, furthermore, that the atom-cavity evolution that corresponds to a π
Rabi pulse is equivalent to the modified swap gate [see (1.75)]

Ûm−swap =


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 , (5.13)

expressed in the basis {|g; 0⟩, |g; 1⟩, |e; 0⟩, |e; 1⟩}. In contrast to the conventional swap gate
(which has no minus sign), below we shall therefore refer to this two-qubit operation as to
the m-swap gate. Following the work by Schön and co-authors [47], moreover, we express the
m-swap gate (5.13) in the form

Ûm−swap = (−ι̇ ) Û cz · Û swap ·
(
Ẑ(π)⊗ Î

)
, (5.14)

where

Û swap =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , Û cz =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (5.15)

are the swap and controlled-z gates taken in the same basis as the matrix (5.13), and where
Ẑ(ξ) ≡ e−ι̇ σ̂zξ/2 denotes the atomic rotation operator. Thus, the equality (5.14) implies that
the m-swap gate is equivalent (up to a constant phase) to a swap gate followed by a controlled-z
gate together with a local rotation of the atomic state. In order to realize only the swap gate
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Figure 5.6: (a) Temporal sequence for generation of a linear cluster state that is encoded into a
chain of N Rydberg atoms passing through the cavity. (b) Quantum circuit that corresponds
to the above sequence. The pictograms and notation in these figures are explained in the text.

followed by the controlled-z gate as required by our scheme [see Fig. 5.5(b)], therefore, the m-
swap gate (atom-cavity π rotation) should be preceded by the local rotation Ẑ−1(π) = −Ẑ(π)
of the atomic state as displayed in Fig. 5.5(c).

Up to this point, we just summarized a scheme that enables one to generate a linear 1×N
cluster state (5.11) by sending a chain of N uncorrelated atoms through the cavity in such a
way that only one atom couples to the cavity mode at a time. Specifically, we have shown
that each atom is incorporated into the cluster state by performing the superposition (5.12)
followed by one more Ẑ(π) rotation of the atomic state and finalized by a a π Rabi pulse. In
order to fully adapt this scheme for our cavity setup, it is necessary to express the Ẑ(π) atomic
rotations in terms of Ramsey pulses which can be generated by the microwave source S. By
using the unitary matrix (3.9), it can be readily checked that

Ẑ(π) = R̂ (π, π/2) · R̂(π, 0) (5.16)

can be realized by applying two π Ramsey pulses successively, where the first is resonant and
the second is detuned by π/2. In section 3.2.1, we explained how a sequence of two short
(off-resonant) pulses realize the rotation R̂(ϕ, φ) · R̂(ϕ, 0) with ϕ = Ω◦ τ and φ = (ωa − ωJ)T .
We also explained that the time delay T is controlled by switching on and off the source of
microwave field while the atom passes through the Ramsey plates. We conclude, therefore, that
the rotation (5.16) can be realized efficiently by means of Ramsey plates R1 and, therefore, we
can express the equality (5.14) in the form

Û cz · Û swap = (−ι̇ ) Ûm−swap ·
(
Ẑ(π)⊗ Î

)
= (−ι̇ ) Ûm−swap ·

([
R̂1 (π, π/2) · R̂1(π, 0)

]
⊗ Î
)
. (5.17)

With this analysis, we now have all ingredients available to generate linear cluster states
using our cavity setup shown in Fig. 5.1(a). The temporal sequence and the equivalent quantum
circuit for this scheme are displayed in Fig. 5.6(a) and (b), respectively. As before, the atom-
cavity interactions are depicted by black diamonds and the Ramsey pulses R̂(ϕ, φ) are shown as
gray circles for which we indicate the interaction time in units of Rabi pulses ϕ and the phase φ
(if it is non-zero). Note that, in order to prepare the cavity mode in the |+⟩ state, we made use
of an auxiliary atom As that is initialized in the excited state and which crosses empty cavity
before the chain of atoms arrives. This auxiliary atom interacts for a π/2 Ramsey pulse with
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CHAPTER 5: Generation of entangled states with a microwave cavity

the microwave field R1 and then for a π Rabi pulse with the cavity. According to Eq. (5.12)
and Eqs. (1.75), the initially empty cavity field is then set to the |+⟩ = (|0⟩+ |1⟩) /

√
2 state,

while the auxiliary atom is factored out in its ground state. Let us also note that the last
swap gate between the cavity and the N -th atom is replaced by the m-swap gate (5.13), which
simply maps the cavity state |0⟩ upon the atomic ground state |g⟩ and the cavity state |1⟩
upon the excited state |e⟩. This m-swap operation, which is the π Rabi pulse, finally factors
out the cavity state from the atomic cluster state.

5.2 Proving the entanglement generation

Obviously, each scheme for generation of a particular entangled state (for a given atomic chain)
should come along with a recipe that enables one to prove that the requested state has indeed
been generated. Up to now, however, we were concerned with the (Rabi and Ramsey) pulses
that are necessary to generate the desired entangled state and not much was said about the
end point of atomic trajectories, namely, the detector D [see Fig. 5.1(a)]. To project the state
of a Rydberg atom upon one of its levels e, g, or a, a field ionization technique is applied in the
experiments by S. Haroche and co-workers [80]. From the signals measured by this detector
(for many realizations of the same generation sequence), the probabilities P (ei), P (gi), and
P (ai) which correspond to the electronic occupation of levels e, g, or a, respectively, are found
for the i-th atom. This type of projective measurement is often referred in the literature as
the longitudinal measurement (experiment).

To better understand why one distinct projective measurement – the transversal mea-
surement need to be carried out, let us consider the GHZ state (5.7). With the probability
1/2, one expects to find the atomic chain either in the state |e1, a2, g4⟩ or |g1, g2, e3⟩ after
the chain has left the cavity. However, the same probabilities are obtained also for the (un-
correlated) statistical mixture of the corresponding basis states, for instance the mixed state
[{1/2, |e1, a2, g4⟩}, {1/2, |g1, g2, e3⟩}]. Therefore, the longitudinal measurement taken alone is
not sufficient for proving the non-classical nature of (quantum mechanically) correlated atoms
and need to be augmented by additional measurements. The same line of reasoning applies
to the Bell state 1√

2
(| ↓1,↑2⟩ + | ↑1,↓2⟩) that describes a rotation-invariant spin singlet state.

For such a singlet state, moreover, one finds the two spins always in opposite direction for
any choice of the quantization axis of the (projective) measurement. In the literature, this
counter-intuitive result is known also as Einstein-Rosen-Podolsky (EPR) paradoxon [5], and
this freedom in the choice of the quantization axis will be exploited in the next sections to
reveal and display the non-classical correlations of the generated entangled states.

In order to introduce a more quantitative description for the projective measurement in
the framework of cavity QED, let us introduce the geometrical language based on the Bloch
sphere. Recall that an arbitrary state of a qubit can be parametrized by means of only two
angles ϕ and φ

|Ψ⟩ = cos (ϕ/2) | ↑⟩+ sin (ϕ/2) eι̇ φ | ↓⟩ (5.18)

with the ranges 0 ≤ ϕ ≤ π and 0 ≤ φ ≤ 2π, respectively. These two angles, moreover, can
be interpreted as the polar angles in three-dimensional spherical coordinates and lead to the
representation of above state as a point on a unit sphere – the Bloch sphere. In the notation
of (5.18), the states | ↑⟩ and | ↓⟩ are located on the z axis and coincide with the North and
South poles of the sphere as displayed in Fig. 5.7(a). These states | ↑⟩ and | ↓⟩, moreover, are
the two eigenstates of spin operator σ̂z with eigenvalues Z = +1 and Z = −1, respectively. In
a similar fashion, therefore, the x axis is defined by the eigenstates |+x⟩ = 1√

2
(| ↓⟩+ | ↑⟩) and
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5.2. Proving the entanglement generation

Figure 5.7: (a) Bloch sphere. See the text for description. (b) Temporal sequence of two short
(off-resonant) Ramsey pulses J1(t) and J2(t) applied to the atoms A1 and A2 while the atoms
pass through the Ramsey plates Rd. See text for explanation.

|−x⟩ = 1√
2
(| ↓⟩ − | ↑⟩) of spin operator σ̂x with eigenvalues X = +1 and X = −1, respectively,

and the y axis is defined by the eigenstates |+y⟩ = 1√
2
(| ↓⟩+ ι̇ | ↑⟩) and |−x⟩ = 1√

2
(| ↓⟩ − ι̇ | ↑⟩)

of spin operator σ̂y with eigenvalues Y = +1 and Y = −1, respectively [see Fig. 5.7(a)].
Given any state on the sphere, therefore, the diametrically opposite point will always represent
orthogonal states. Any other axis ξ(φ) in the equatorial x− y plane, furthermore, corresponds
to superpositions of | ↑⟩ and | ↓⟩ with equal weights (ϕ = π/2) and is determined by the
azimuthal angle φ. The axis ξ(φ), therefore, is characterized (up to a global phase facrtor) by
the states |+φ⟩ = Ẑ(−φ)|+x⟩ = 1√

2
(| ↓⟩ + eiφ| ↑⟩) and |−φ⟩ = Ẑ(−φ)|−x⟩ = 1√

2
(| ↓⟩ − eiφ| ↑⟩)

where, again, the ‘+’ and ‘–’ signs are chosen to distinguish between positive and negative
directions along the axes. Recall that the basis states | ↑⟩ and | ↓⟩ of i-th qubit are related to
the two neighbor atomic states {|e⟩, |g⟩} or {|g⟩, |a⟩} via expressions {|gi⟩ = | ↑i⟩, |ei⟩ = | ↓i⟩}
for the N-partite W state (5.3) and expressions (5.10) for the N-partite GHZ state (5.5). Notice,
moreover, that we defined the Bloch sphere such that the poles of sphere are located on the z
axis and coincide with the (longitudinal) projection measurement performed by the detector.

Following Hagley and co-workers [38], we explain how the same detector (D) that is used
for projection of atomic states along the (longitudinal) z axis, can be applied to perform a
(transversal) projection along either the x or ξ(φ) axes of the Bloch sphere. Namely, we like
to show that (i) a combination of resonant π/2 Ramsey pulse followed by the longitudinal
measurement is equivalent to the transversal measurement upon the x axis of sphere and (ii)
a combination of off-resonant π/2 Ramsey pulse followed by the longitudinal measurement is
equivalent to the transversal measurement upon the ξ(φ) axis of the Bloch sphere. In other
words, we like to demonstrate the following identities

|⟨−x|Ψ⟩|2 = |⟨e|R̂(π/2, 0)|Ψ⟩|2, |⟨+x|Ψ⟩|2 = |⟨g|R̂(π/2, 0)|Ψ⟩|2, (5.19a)

|⟨−φ|Ψ⟩|2 = |⟨e|R̂(π/2, φ)|Ψ⟩|2, |⟨+φ|Ψ⟩|2 = |⟨g|R̂(π/2, φ)|Ψ⟩|2, (5.19b)

where |Ψ⟩ is an arbitrary state (5.18) and where the assignment {|g⟩ = | ↑⟩, |e⟩ = | ↓⟩} has to

59



CHAPTER 5: Generation of entangled states with a microwave cavity

(a) (b)

T T

p
o

si
ti

o
n

p
o

si
ti

o
n

time time

D DD DD

A1

A1

A2

A2 A3
Rd Rd

Rd Rd

p/2,j
p/2,j

p/2
p/2

p/2

Bell state Triplet

Cx Cxp 2p pp/2 p/2

0 0

e
e

g
g g

Figure 5.8: (a) Temporal sequence displaying the generation and transversal measurements
for the Bell state (5.1) associated with atoms A1 and A2. (b) Temporal sequence displaying
the generation and transversal measurements for the three-partite GHZ state (5.25) associated
with atoms A1, A2, and A3. See the text for explanations.

be considered. In order to proceed, notice the equalities

R̂†(π/2, 0)|e⟩ = 1√
2
(|e⟩ − |g⟩) , R̂†(π/2, 0)|g⟩ = 1√

2
(|e⟩+ |g⟩) ,

R̂†(π/2, φ)|e⟩ = 1√
2

(
|e⟩ − eι̇ φ|g⟩

)
, R̂†(π/2, φ)|g⟩ = e−ι̇ φ√

2

(
|e⟩+ eι̇ φ|g⟩

)
,

which by considering the assignment {|g⟩ = | ↑⟩, |e⟩ = | ↓⟩} imply, in turn, the validity of
identities (5.19). These identities, therefore, allow us to identify a pair or Ramsey plates
together with the ionization detector as a type of detector that projects the state of a Rydberg
atom upon the (transversal) quantization axes x or ξ(φ), and where the assignment {|a⟩ = | ↑⟩,
|g⟩ = | ↓⟩} should be considered if the microwave field injected between the Ramsey plates is
tuned to the a↔ g atomic transition.

In order to perform such transversal measurements, therefore, we have inserted one extra
pair of Ramsey plates Rd (along with microwave source Sd) before the detector in our setup
[see Fig. 5.1(a)] and this enables to perform both longitudinal and transversal measurements
by utilizing the microwave source Sd and tuning it in resonance or off-resonance to the atomic
transition in question. Having discussed the Bloch sphere and the experimental realization
of various measurements, in the next section, we shall describe the scheme to reveal the non-
classical correlations associated with the most simplest entangled state – the Bell state (5.1).

5.2.1 Entanglement measure for an atomic Bell state

As we mentioned above, the Bell state (5.1) represents, in the spin language, a rotation-
invariant spin singlet. For such a singlet state, moreover, one finds the two spins always
pointing in the opposite direction for any choice of the quantization axis of the (projective)
measurement. In order to reveal such non-classical correlation between these spins, therefore,
we project the state of first atom along the x axis and the state of second atom along the ξ(φ)
axis of the Bloch sphere. In other word, we project the atomic states along two axes in the
equatorial (x− y) plane of the Bloch sphere such that the angle φ becomes a parameter that
is set by the off-resonant microwave pulse applied in Rd before the atoms are detected.

By using the relations (5.19), these projections are implemented by means of the sequence
displayed in Fig. 5.8(a). This sequence can be divided in two parts: (i) R̂d(π/2, 0) acting upon
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5.2. Proving the entanglement generation

A1 followed by D, and (ii) R̂d(π/2, φ) acting upon A2 followed by D. According to this figure,
moreover, the first (resonant) Ramsey pulse pulse on atom A1 is followed, after a time delay T ,
by a second (off-resonant) Ramsey pulse on atom A2 and each atomic trajectory is finalized by
a projective measurement in the longitudinal basis. Since the last Ramsey pulse is off-resonant
with the e ↔ g transition, the phase difference φ = ∆J T is accumulated after the time delay
T that plays the role of an adjustable parameter. Since each atom can be detected in one of
two states, the sequence displayed in Fig. 5.8(a) yields four detection probabilities

P (e1, e2;φ) = | (⟨−x
1 | × ⟨−φ

2 |) |Ψ
Bell
A1−A2

⟩|2, P (g1, g2;φ) = | (⟨+x
1 | × ⟨+φ

2 |) |Ψ
Bell
A1−A2

⟩|2, (5.21a)
P (e1, g2;φ) = | (⟨−x

1 | × ⟨+φ
2 |) |Ψ

Bell
A1−A2

⟩|2, P (g1, e2;φ) = | (⟨+x
1 | × ⟨−φ

2 |) |Ψ
Bell
A1−A2

⟩|2, (5.21b)

which depend on the angle φ ∝ T . These probabilities are then combined for many repetitions
of one and the same experiment in order to produce the correlation signal [63]

I(φ) = P (e1, e2;φ) + P (g1, g2;φ)− P (e1, g2;φ)− P (g1, e2;φ). (5.22)

In section 3.2.1 we explained how a sequence of two short off-resonant pulses (displayed in
Fig. 3.1) realizes the rotation R̂(ϕ, 0) · R̂(ϕ, φ) with ϕ = Ω◦ τ and φ = (ωa − ωJ)T . According
to the sequence (of transversal measurements) displayed in Fig. 5.8(a), however, the rotations
R̂d(π/2, 0) and R̂d(π/2, φ) are applied to different atoms which pass sequentially through the
Ramsey plates and are separated by a time delay T . In order to show that a sequence of
two short (off-resonant) pulses displayed in Fig. 5.8(a) leads to the set of probabilities (5.21),
notice that this sequence corresponds to the pulse diagram displayed in Fig. 5.7(b), in which
the functions J1(t) and J2(t) are associated to the atoms A1 and A2, respectively. In this case,
the atom-field Hamiltonian corresponding to the interaction of each atom with the microwave
field becomes

Ĥs
i = −ι̇ ~ Ω◦

2

(
σ̂†i e

ι̇∆J t − σ̂i e
−ι̇∆J t

)
Ji(t); i = 1, 2 , (5.23)

and which for the interaction time τ satisfying the condition ∆J τ ≪ 1, yields the evolutions

exp

[
−Ω◦

2

(
σ̂†1 − σ̂1

)
τ

]
, exp

[
−Ω◦

2

(
σ̂†2 e

−ι̇∆J T − σ̂2 e
ι̇∆J T

)
τ

]
associated to the atoms A1 and A2, respectively. These evolution operators, moreover, coincide
with the rotation operators R̂(Ω◦ τ, 0) and R̂(Ω◦ τ,∆J T ), respectively, and must be applied to
the Bell state (5.1) which is produced just after both atoms leave the cavity [see Fig. 5.8(a)].
It can be readily checked, furthermore, that after both atoms leave the Ramsey plates Rd, the
composite atomic state becomes

R̂A2
d (π/2, φ) R̂A1

d (π/2, 0)|ΨBell
A1−A2

⟩ =
1

2
R̂A2
d (π/2, φ) [(|g1⟩+ |e1⟩) |g2⟩ − (|g1⟩ − |e1⟩) |e2⟩]

=
1

2
√
2

[(
1− e−ι̇ φ

)
|e1, e2⟩+

(
1− eι̇ φ

)
|g1, g2⟩

+
(
1 + eι̇ φ

)
|e1, g2⟩ −

(
1 + e−ι̇ φ

)
|g1, e2⟩

]
, (5.24)

where φ = ∆J T and which gives rise to the set of probabilities (5.21), if projected in the basis
|e1, e2⟩, |g1, g2⟩, |e1, g2⟩, and |g1, e2⟩, respectively.

For an idealized experiment, the correlation signal (5.22) takes the form I(φ) = − cos(φ).
This modulation can be explained by the following qualitative arguments. When φ = 0, both
detections are performed along the x axis and the two atoms are found in opposite states, which
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CHAPTER 5: Generation of entangled states with a microwave cavity

implies I(0) = −1. When φ = π, the two detections are performed along opposite directions
and the two atoms are found in the same state, which implies I(π) = 1. In the intermediate
situation, when φ = π/2, the detection axes are orthogonal and there is no correlation, which
implies I(π/2) = 0. The observed oscillations of the signal (5.22) as function of φ, therefore,
ensures that the generated atomic state is a spin singlet state and provides an entanglement
measure for an arbitrary two-partite atomic state. This recipe, moreover, meets the mentioned
request for carrying out an additional (transversal) measurement and reveals the non-classical
nature of (quantum mechanically) correlated atoms prepared in the state (5.1).

5.2.2 Three-partite entangled GHZ and W states

In the previous section, we introduced an entanglement measure associated to a two-partite
atomic state. This measure is based on the correlation signal (5.22) that is obtained after
multiple realizations of one and the same experimental sequence. Although this recipe can be
realized only within two atoms in the chain, in this section we show that the same technique
enables to reveal quantum correlations of the three-partite GHZ state

|ΨGHZ
3 ⟩ = 1

2
[|e1, (a2 + g2), g3⟩ − |g1, (a2 − g2), e3⟩] , (5.25)

which can be generated by using the sequence displayed in Figs. 5.4(a)-(c), with only difference
that the second atom does not interact with the microwave field in R2 after it leaves the cavity.

Our idea is to perform the transversal measurement on atoms A1 and A3 which are sep-
arated by a time delay T as displayed in Fig. 5.8(b), and where A2 simply pass through the
Ramsey plates Rd without interaction. It can be readily checked that after all the atoms leave
the Ramsey plates, the composite atomic state becomes

R̂A3
d (π/2, φ) R̂A1

d (π/2, 0)|ΨGHZ
3 ⟩ =

1

4

([(
1− e−ι̇ φ

)
|g2, e3⟩+

(
1− eι̇ φ

)
|a2, g3⟩

+
(
1 + eι̇ φ

)
|g2, g3⟩ −

(
1 + e−ι̇ φ

)
|a2, e3⟩

]
|g1⟩

+
[(
1− e−ι̇ φ

)
|a2, e3⟩+

(
1− eι̇ φ

)
|g2, g3⟩

+
(
1 + eι̇ φ

)
|a2, g3⟩ −

(
1 + e−ι̇ φ

)
|g2, e3⟩

]
|e1⟩
)
,

where φ = ∆J T . Atom A1 enters first the detector and is projected onto the states |e1⟩ or
|g1⟩ which, in turn, makes the above state to collapse into one of two wave-functions

|Ψ+⟩ =
1

2
√
2

[(
1− e−ι̇ φ

)
|g2, e3⟩+

(
1− eι̇ φ

)
|a2, g3⟩+

(
1 + eι̇ φ

)
|g2, g3⟩ −

(
1 + e−ι̇ φ

)
|a2, e3⟩

]
,

|Ψ−⟩ =
1

2
√
2

[(
1− e−ι̇ φ

)
|a2, e3⟩+

(
1− eι̇ φ

)
|g2, g3⟩+

(
1 + eι̇ φ

)
|a2, g3⟩ −

(
1 + e−ι̇ φ

)
|g2, e3⟩

]
,

where |Ψ+⟩ corresponds to the atom A1 detected in the state |g1⟩ and |Ψ−⟩ corresponds to the
atom A1 detected in the state |e1⟩. These two wave-functions, furthermore, give rise to the
correlation signals

I±(φ) = P±(g2, e3;φ) + P±(a2, g3;φ)− P±(g2, g3;φ)− P±(a2, e3;φ) = ± cos(φ), (5.26)

where the ‘+’ sign is associated with |Ψ+⟩ (atom A1 detected in |g1⟩) and ‘−’ sign is associated
with |Ψ−⟩ (atom A1 detected in |e1⟩). Apart from the modulation due to time delay φ ∝ T ,
therefore, one additional parameter – the sign ‘±’ appears in the signals (5.26) and this sign is
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Figure 5.9: (a) Temporal sequence displaying the generation and transversal measurements for
the three-partite W state (5.27) associated with atoms A1, A2, and A3. The indicated Rabi
pulses are p1 = 2arccos(1/

√
3) and p2 = 2arccos(1/

√
2). (b) Temporal sequence displaying

the generation and transversal measurements for the Bell state (5.34) associated with cavity
modes Cx − Cy. See the text for explanations.

correlated with the (detected) state of A1. We can conclude that the two-partite entanglement
measure that we introduced in the previous section enables to reveal quantum correlations of
the three-partite GHZ state (5.25).

As we shall explain below, moreover, the same technique can be successfully utilized for a
three-partite W state in order to reveal the non-classical correlations associated to this state.
To proceed, notice that the W state (5.3) for N = 3 can be expressed in the form

1√
3
[|g1, e2, g3⟩+ |g1, g2, e3⟩ − |e1, g2, g3⟩] =

1√
3
[|g1⟩ (|e2, g3⟩+ |g2, e3⟩)− |e1⟩|g2, g3⟩] . (5.27)

This right part of this equality implies that atoms A2 and A3 are found in the Bell state
(|e2, g3⟩ + |g2, e3⟩)/

√
2 or in the product state |g2, g3⟩ depending on the state of A1 after

detection. Therefore, one can perform the transversal measurement of atoms A2 − A3 and
record only the probabilities P (g1, g2, g3;φ), P (g1, e2, e3;φ), P (g1, e2, g3;φ), P (g1, g2, e3;φ) for
which A1 has been detected in the ground state. These probabilities, in turn, yield the signal

P (g1, e2, e3;φ) + P (g1, g2, g3;φ)− P (g1, e2, g3;φ)− P (g1, g2, e3;φ) = cos (φ) (5.28)

with φ = ∆J T , and where the time delay T has been introduced between the rotations of
atoms A2 and A3 while they passed through Rd. Owning to this recipe, the corresponding
temporal sequence is displayed in Fig. 5.9(a).

The three-partite W state (5.27), however, can be expressed in the two equivalent forms

1√
3
[|g2⟩ (|g1, e3⟩ − |e1, g3⟩) + |g1, e2, g3⟩] =

1√
3
[|g3⟩ (|g1, e2⟩ − |e1, g2⟩) + |g1, g2, e3⟩] , (5.29)

which imply that the pairs A1 −A3 and A1 −A2 are found in the Bell states if atoms A2 and
A3 has been detected in the ground state, respectively. In order to reveal the non-classical
correlations associated to the W state (5.29), therefore, the measurements from Fig. 5.9(a)
are not sufficient and should be supplied by the measurements of the Bell states (|g1, e3⟩ −
|e1, g3⟩)/

√
2 and (|g1, e2⟩ − |e1, g2⟩)/

√
2 for which A2 and A3 has been detected in the ground

states, respectively.
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CHAPTER 5: Generation of entangled states with a microwave cavity

In the second (transversal) experiment, therefore, the states of A1 and A3 should be rotated
by Ramsey pulses R̂d(π/2, 0) and R̂d(π/2, φ), respectively, and the probabilities P (g1, g2, g3;φ),
P (e1, g2, e3;φ), P (e1, g2, g3;φ), P (g1, g2, e3;φ) should be recorded once all the atoms are pro-
jected by the detector. There probabilities, in turn, yield the correlation signal

P (g1, g2, g3;φ) + P (e1, g2, e3;φ)− P (e1, g2, g3;φ)− P (g1, g2, e3;φ) = cos(φ) (5.30)

with φ = ∆J T , and where the time delay T should be introduced between the two rotations. In
a similar fashion, the states of A1 and A2 should be rotated and the probabilities P (g1, g2, g3;φ),
P (e1, e2, g3;φ), P (e1, g2, g3;φ), P (g1, e2, g3;φ) should be recorded in the third experiment.
There probabilities, as before, yield the correlation signal

P (g1, g2, g3;φ) + P (e1, e2, g3;φ)− P (e1, g2, g3;φ)− P (g1, e2, g3;φ) = cos(φ), (5.31)

with φ = ∆J T , and where the time delay T should be introduced between the two rotations.
We conclude, therefore, that once the three-partite W state (5.27) has been generated, the
correlation signals (5.28), (5.30), and (5.31) obtained for all three experiments, should be
reasonably close to the predicted expression cos(∆J T ). It is also obvious that one similar
procedure can be applied to any N -partite W state and it simply requires more (state selective)
transversal experiments in order to reveal the correlations associated to all Bell pairs contained
in a given W state.

5.2.3 Entanglement measure for a cavity Bell state

Beside of varying the angle φ = ∆J T and recording the modulation of the correlation signal
(5.22), there is another technique to perform an independent measurement on an arbitrary
two-qubit state. In contrast to the previous scheme, however, this technique operates with the
qubits encoded in the cavity modes Cx and Cy.

Recall that the birefringent splitting that we mentioned in section 1.2, produces the energy
difference ~ δ = ~ (ω − ω̃) between the cavity (single-photon) states |1⟩ and |1̄⟩ associated
with modes Cx and Cy, respectively. The composite cavity states |1, 0̄⟩ and |0, 1̄⟩, therefore,
correspond to the energies E|1,0̄⟩ = ~ω and E|0,1̄⟩ = ~(ω − δ), if the vacuum energy ~/2 is
taken as reference. The freely evolving cavity state that includes both composite states |1, 0̄⟩
and |0, 1̄⟩, hence, is governed by the Hamiltonian Ĥδ = ~ω |1, 0̄⟩⟨1, 0̄|+ ~(ω − δ) |0, 1̄⟩⟨0, 1̄| and
gives rise to the time-evolution

e−
ι̇
~ Ĥδ t = e−ι̇ ω t

(
|1, 0̄⟩⟨1, 0̄|+ e ι̇ δ t |0, 1̄⟩⟨0, 1̄|

)
. (5.32)

This evolution implies that after the time interval T , for instance between generation and
detection events, the freely evolving cavity state is transformed according to the expression

α |1, 0̄⟩+ β |0, 1̄⟩ −→ α |1, 0̄⟩+ e ι̇ δ T β |0, 1̄⟩, (5.33)

where |α|2 + |β|2 = 1 and where the overall phase e−ι̇ ω t has been omitted by considering
an appropriate interaction picture. We can conclude, therefore, that once the mode Cy is
populated with one photon, the relative phase factor e ι̇ δ t arises and is caused solely by the
birefringent splitting between the (orthogonally polarized) cavity modes.

The technique we like to introduce in this section, reveals the non-classical correlations of
a two-partite quantum state encoded in the cavity modes Cx and Cy. This technique is based
on the Bell state

|ΨBell
Cx−Cy

⟩ = 1√
2
(ι̇ |0, 1̄⟩+ |1, 0̄⟩) (5.34)
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that is generated by sending the source atom As prepared in the excited state through empty
cavity such that As interacts first with mode Cx (∆ = 0) for a π/2 Rabi pulse and afterwards
with mode Cy (∆ = −δ) for a π Rabi pulse as displayed in Fig. 5.9(b). Once the state (5.34)
is generated, the cavity state evolves freely during the time delay T until its state is probed
by one further atom Ap. We just explained that for a freely evolving cavity, the relative
phase factor e ι̇ δ T arises due to energy difference between the modes and implies the state(
ι̇ e ι̇ δ T |0, 1̄⟩+ |1, 0̄⟩

)
/
√
2 to be produced right before Ap couples to the cavity.

In the latter step, Ap prepared in the ground state interacts with mode Cx for a π Rabi
pulse and afterwards with mode Cy for a π/2 Rabi pulse. According to Eqs. (1.75)-(1.76),
therefore, the entire sequence displayed in Fig. 5.9(b) generates the wave-function

|ΨAp−Cy⟩ =
1

2

[
|e; 0̄⟩

(
1 + e ι̇ δ T

)
+ ι̇ |g; 1̄⟩

(
1− e ι̇ δ T

)]
, (5.35)

where the factored state |0⟩ is not shown for brevity. After Ap leaves the cavity, its state is
projected by the detector D and the probability to detect Ap in the exited or ground states

P (e; T ) =
1 + cos (δ T )

2
, P (g; T ) =

1− cos (δ T )

2
, (5.36)

respectively, is recorded for a given time delay T . After multiple realizations of one and
the same experimental sequence with a different time delays T , the observed modulation of
probabilities (5.36) ensures that the Bell state (5.34) has been indeed generated and the entire
technique provides us with one additional entanglement measure similar to the Bell signal
(5.22) introduced in the previous sections.

We point out that the idea behind this technique is to converted the phase δ T , that
arises solely due to free evolution of the entangled state (5.34), into the atomic amplitudes(
1± e ι̇ δ T

)
which imply the modulation of probabilities (5.36) and which, in turn, can be

observed by means of the (repetitive) projective measurements. Further details concerning this
technique can be found in Ref. [42], where both the generation sequence and measurements
were demonstrated experimentally.

5.2.4 Four-partite entangled GHZ

In section 5.2.1, we used the signal (5.22) to reveal the non-classical correlations associated
with the Bell state (5.1). The same technique, furthermore, has been adapted for the three-
partite GHZ state (5.25) in section 5.2.2. It has been observed that the state of A1 can be
correlated with the sign of modulations (5.26) which, in turn, ensure that the remaining two-
partite wave-functions associated with atoms A1 and A2, are the Bell states. In the case of
four-partite GHZ state, however, the signals (5.26) alone are not sufficient since there is no
additional parameters which could be correlated with the state of fourth atom (A4).

In this section, we shall combine both techniques from sections 5.2.1 and 5.2.3 in order to
reveal the non-classical correlations of the four-partite GHZ state

|ΨGHZ
4 ⟩ = 1

2
√
2

(
eι̇ ϑ|(g1 + e1), a2, a3, (g4 − e4)⟩+ |(g1 − e1), g2, g3, (g4 + e4)⟩

)
, (5.37)

which is generated for atoms A1−A4 such that the four qubits are encoded in the atomic states
{(|gi⟩+ |ei⟩)/

√
2, (|gi⟩− |ei⟩)/

√
2} (i = 1, 4) and {|ai⟩, |gi⟩} (i = 2, 3). In order to produce this

state, the Bell state (5.34) associated with the cavity modes Cx − Cy is first generated. Once
generated, moreover, this cavity state evolves freely such that the relative phase δ t = (ω− ω̃) t
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CHAPTER 5: Generation of entangled states with a microwave cavity

Figure 5.10: Temporal sequence displaying the generation and transversal measurements for
state (5.37) which is associated with atoms A1, A2, A3, and A4. See the text for explanations.

is produced. The grown of this phase is frozen at t = T1 by the atom A1 which maps the cavity
state Cy. Next to A1, two atoms A2 and A3 are entangled with the cavity mode Cx by using
2π Rabi pulses. Finally, the last atom A4 maps the mode Cx and the state (5.37) is generated,
where the (constant) phase is ϑ = δ T1. The entire sequence is displayed in Fig. 5.10(a).

Atom A1 exits first the Ramsey plates R2 and is detected in the basis {|g1⟩, |e1⟩}. The
measured state of A1, however, is not relevant for transversal measurement since the phase
ϑ = δ T1 contains sufficient information about the coherent coupling of A1 to the cavity mode
Cx. Recall that the phase δ t has been frozen at t = T1 when the mode Cy has been mapped
to the atom A1 and, therefore, the correct parametrical dependence of output probability
amplitudes (see below) on the time delay T1 would ensure that the state (5.34) has been
generated and that the state of Cy has been coherently mapped to A1. Thus, we shall consider
only the events in which A1 is detected in the ground state |g1⟩ and shall discard all the events
with |e1⟩. After detection of A1, hence, the wave-function (5.37) collapses and the resulting
state becomes

|ΨGHZ
3 ⟩ = 1

2

(
eι̇ ϑ|a2, a3, (g4 − e4)⟩+ |g2, g3, (g4 + e4)⟩

)
. (5.38)

Next to A1, atoms A2, A3, and A4 pass through the Ramsey plates Rd such that A2 and A3

are separated by the time delay T2. Similarly to section 5.2.2, we rotate the atomic states of
A2 and A3 by means of R̂d(π/2, 0) and R̂d(π/2, φ) Ramsey pulses and the last atom A4 simply
pass through Ramsey plates Rd without interaction. It can be readily checked that after all
the atoms leave the Ramsey plates, the composite atomic state becomes

R̂A3
d (π/2, φ) R̂A2

d (π/2, 0)|ΨGHZ
3 ⟩ =

1

4

([(
1− eι̇ (ϑ−φ)

)
|a2, g3⟩+

(
eι̇ ϑ + eι̇ φ

)
|a2, a3⟩

+
(
1 + eι̇ (ϑ−φ)

)
|g2, g3⟩ −

(
eι̇ ϑ − eι̇ φ

)
|g2, a3⟩

]
|g4⟩

+
[(

1− eι̇ (ϑ−φ)
)
|g2, g3⟩+

(
eι̇ ϑ + eι̇ φ

)
|g2, a3⟩

+
(
1 + eι̇ (ϑ−φ)

)
|a2, g3⟩ −

(
eι̇ ϑ − eι̇ φ

)
|a2, a3⟩

]
|e4⟩
)
,
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where ϑ = δ T1 and φ = ∆J T2 [see Fig. 5.10(a)] and which gives rise to the set of probabilities

P±(a2, a3; T1, T2) = P±(g2, g3; T1, T2) =
1± cos(δ T1 −∆J T2)

4
, (5.39)

P±(a2, g3; T1, T2) = P±(g2, a3; T1, T2) =
1± cos(δ T1 −∆J T2)

4
, (5.40)

if projected in basis {|a2, a3, g4⟩, |g2, g3, g4⟩, |a2, g3, g4⟩, |g2, a3, g4⟩} and {|a2, a3, e4⟩, |g2, g3, e4⟩,
|a2, g3, e4⟩, |g2, a3, e4⟩}, respectively, and where the sign ‘+’ corresponds to the |g4⟩ detection
event and ‘−’ to |e4⟩. As in previous section, these probabilities are combined for many
realizations of the same temporal sequence and produce together the correlation signal

I±(T1, T2) = P±(a2, a3; T1, T2) + P±(g2, g3; T1, T2)− P±(a2, g3; T1, T2)− P±(g2, a3; T1, T2)

which takes the form I±(T1, T2) = ± cos(δ T1 −∆J T2), and where the time delays T1 and T2
are two independent parameters which are manipulated separately.

The temporal sequence from Fig. 5.10(a) has to be realized for many times in order to
reconstruct the signals probability I±(T1, T2) as functions of parameters T1 and T2. We remark
once again that while T1 is utilized to reveal the entanglement of the Bell state (5.34), T2 reveals
the entanglement of the remaining three-partite GHZ state (5.38). Moreover, the state selective
measurements should be employed in this scheme in order to collect only the probabilities, for
which A1 has been detected in the ground state. If the four-partite GHZ state (5.37) has been
generated in the first part of our scheme, then the signals I±(T1, T2) should be reasonably close
to the predicted expressions ± cos(δ T1 −∆J T2).

5.3 Two-dimensional cluster states

In contrast to the linear cluster states which we discussed in section 5.1.3, the two-dimensional
cluster states enable to perform multi-qubit gate operations (e.g. quantum gates that act on
two or more qubits simultaneously) in the framework of one-way computation [52]. These
states, therefore, may provide a viable alternative to the conventional (circuit) computation in
which sequences of unitary gates need to be implemented. Up to the present, however, only
a minor progress has been achieved with regard to cavity QED based schemes which generate
two-dimensional cluster states. Below, we suggest two practical schemes for the generation of
2 × N and 3 × N cluster states which are feasible for modern cavity QED experiments. We
describe in details the individual steps in the interaction of Rydberg atoms with the cavity
modes Cx and Cy which are required to generate these states. Finally, we show how these
schemes can be extended towards the generation of M ×N two-dimensional cluster states of
arbitrary size.

5.3.1 2×N cluster state

In this section, we introduce a scheme that generates two-dimensional cluster states |Ψ(2,N)⟩,
i.e. states that form a two-dimensional lattice of 2×N qubits, where all the qubits (nodes of
lattice) are initialized in the state |+1⟩ × . . .× |+2N ⟩ and the controlled-z gate [4]

| ↑1⟩ | ↑2⟩ → | ↑1⟩ | ↑2⟩, | ↑1⟩ | ↓2⟩ → | ↑1⟩ | ↓2⟩, | ↓1⟩ | ↑2⟩ → | ↓1⟩ | ↑2⟩, | ↓1⟩ | ↓2⟩ → −|↓1⟩ | ↓2⟩

is applied for all edges that connect neighboring nodes as displayed in Fig. 5.11(a). We notice
that the concept of cluster states is neither restricted to a rectangular pattern of nodes not that
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Figure 5.11: (a) Two-dimensional 2×N cluster state. (b) Box state (5.41) that is the simplest
two-dimensional cluster state. (c) Definition of the edges for a chain of 2N atoms (nodes),
such that an effective two-dimensional 2×N cluster state is produced. The labels of the nodes
in Figure (a) correspond to the serial numbers of the atoms inside the chain. (d) Quantum
circuit for generation of the |Ψ(2,N)⟩ cluster state between 2N initially uncorrelated qubits,
and for which two ancilla qubits are utilized. In this circuit, the controlled-z gates (edges) are
applied according to sub-figure (c).

only nearest neighbors could be connected with each other by means of a controlled-z operation.
However, we shall confine ourselves to the two-dimensional clusters with a rectangular pattern.

The simplest example of such a two-dimensional cluster state is the box state [53]

|Ψ(2,2)⟩ =
1

2
(| ↑1,+2,↑3,+4⟩+ | ↑1,−2,↓3,−4⟩+ | ↓1,−2,↑3,−4⟩+ | ↓1,+2,↓3,+4⟩) , (5.41)

where |±⟩ = (| ↑⟩ ± | ↓⟩)/
√
2. According to the setup displayed in Fig. 5.1(a), however, only a

single chain of atoms is emitted by the atomic source and sent into the cavity. For this reason,
we need to apply a different procedure (if compared with the linear cluster states) for defining
the edges between the nodes associated with a chain of 2N atoms such that in the end, after all
the atoms have crossed the cavity, an effective two-dimensional cluster state is generated. As
we explained in the beginning of this chapter, our cavity supports two (orthogonally polarized)
modes which can be addressed individually by the atoms and, therefore, these two modes can
be considered as two independent photon qubits. This makes it possible to implement schemes
in which two (photonic) ancilla qubits are involved and are associated with modes Cx and Cy.
This enables, in turn, to generate the 2N -partite entangled state displayed in Fig. 5.11(c) and
which represents the two-dimensional 2 ×N cluster state upon the assignment of the atomic
positions in a chain of 2N atoms to the two-dimensional cluster state as shown in Fig. 5.11(a).
The quantum circuit that accomplishes this task is displayed in Fig. 5.11(d), where the gates
placed inside the dash-boxed area need to be repeated N − 3 times. Apart from the A − Cx
unitary gate which we introduced in section 5.1.3 [see Fig. 5.5(c)], this circuit contains three
additional gates with two of them acting upon the A− Cy system: (i) the swap gate followed
by the controlled-z gate, and (ii) a single controlled-z gate. The third gate is the controlled-z
gate that acts upon the Cx − Cy system.

Recall that Eqs. (1.76) describe the resonant evolution of an atom coupled to the cavity
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Figure 5.12: (a) Two equivalent circuits that follow from relation (5.43) after multiplying it
from the right side by [Ẑ(7π/2)⊗Ẑ(7π/2)]−1 and where the imaginary factor has been omitted
for brevity. (b) Quantum circuit for generation of the 2×N cluster state that is associated with
a chain of 2N Rydberg atoms passing through the cavity. The new white-circled pictogram
and Rc notation are explained in the text.

mode Cy (∆ = −δ), which for a π Rabi pulse yields the i-swap gate [60]

Û i−swap =


1 0 0 0
0 0 ι̇ 0
0 ι̇ 0 0
0 0 0 1

 , (5.42)

expressed in the basis {|g; 0̄⟩, |g; 1̄⟩, |e; 0̄⟩, |e; 1̄⟩}. Similar as in Eq. (5.14), we express this gate
in the form

Û i−swap = ι̇
(
Ẑ (7π/2)⊗ Î

)
· Û cz · Û swap ·

(
Ẑ (7π/2)⊗ Î

)
. (5.43)

The swap gate followed by the controlled-z gate, therefore, is realized by a π Rabi pulse and
two local Ẑ−1(7π/2) = Ẑ(−7π/2) rotations of the atomic state

Û cz · Û swap = (−ι̇ )
(
Ẑ (−7π/2)⊗ Î

)
· Û i−swap ·

(
Ẑ (−7π/2)⊗ Î

)
(5.44)

as displayed in Fig. 5.12(a). Each of atomic rotations, in turn, is efficiently realized by two
off-resonant Ramsey pulses

Ẑ(−7π/2) = −R̂ (π, 7π/4) · R̂(π, 0) (5.45)

which are applied while the atom passes through Ramsey plates R1 (first z-rotation) and R2

(second z-rotation), respectively.
In section 5.1.2, we already used the fact that a qubit can be encoded into the two neigh-

boring states |g⟩ nd |a⟩ of a Rydberg atom. According to Eqs. (1.76), moreover, the atomic

69



CHAPTER 5: Generation of entangled states with a microwave cavity

qubit encoded by means of states {|g⟩, |a⟩} interacts with the cavity mode

|a; 0̄⟩ → |a; 0̄⟩, |a; 1̄⟩ → |a; 1̄⟩, |g; 0̄⟩ → |g; 0̄⟩, |g; 1̄⟩ → −|g; 1̄⟩ (5.46)

for the case of a 2π Rabi pulse. Apparently, this transformation is the same as the controlled-z
gate (5.15) if the states {|a; 0̄⟩, |a; 1̄⟩, |g; 0̄⟩, |g; 1̄⟩} are taken as the basis. Therefore, we can use
one 2π Rabi pulse to implement single A−Cy controlled-z gate by carrying out the following
three steps: If the atom is initially prepared in a superposition of the |e⟩ and |g⟩ states, we act
with two resonant π Ramsey pulses such that the first pulse is tuned to the g ↔ a transition
frequency and the second pulse to e ↔ g. These two steps, in turn, transfer coherently the
state of a qubit

α|e⟩+ β|g⟩ → α|g⟩+ β|a⟩, such that |α|2 + |β|2 = 1 (5.47)

from {|e⟩, |g⟩} into the {|g⟩, |a⟩} basis. After this transfer is performed, the A − Cy system
undergoes a 2π Rabi pulse that yields the transformations (5.46), or equivalently, a controlled-z
gate between the cavity mode Cy and an atomic qubit. Let us note, moreover, that in the
experiments by S. Haroche and coworkers, the cavity has a small hole in the center of the
upper cavity mirror which enables one to couple a microwave source S′ to an atom that moves
through the cavity [see Fig. 5.1(a)]. This microwave source, therefore, can be used to act
successively on both, the g ↔ a and e ↔ g atomic transitions and implement the coherent
transfer (5.47).

The last operation we should discuss, is the controlled-z gate that acts upon the Cx − Cy
system and which is displayed in Fig. 5.11(d) in the terms of ancilla qubits. This gate acts on
the cavity modes prepared in the state |+, +̄⟩ and produces the entangled state

1

2
[|(0 + 1), 0̄⟩+ |(0− 1), 1̄⟩] . (5.48)

In fact, the state (5.48) can be alternatively generated from the initially empty cavity |0, 0̄⟩ by
means of one auxiliary atom As initialized in the excited state and which crosses the cavity
before the main chain of atoms. This is achieved when the auxiliary atom first interacts for a
π/2 Rabi pulse with the mode Cx, then for a π/2 Ramsey pulse with the microwave source S′,
and finally for a π Rabi pulse with the mode Cy. Using the Eqs. (5.12), (1.75) and (1.76), this
sequence generates the state

1

2
[|(0 + 1), 0̄⟩+ ι̇ |(0− 1), 1̄⟩] , (5.49)

while the auxiliary atom As is factored out in its ground state. In contrast to expression (5.48),
the expression (5.49) contains one extra ι̇ factor that appears due to the orthogonal polarization
of mode Cy with regard to Cx. This imaginary factor, however, later on is compensated in our
scheme by the A2N − Cy mapping operation (π Rabi pulse) as we shall see below.

With this analysis of the individual (gate) operations, we have determined all the ingre-
dients which are needed to generate the 2 × N cluster state, and which are entirely adapted
to our cavity setup. The overall scheme is displayed in Fig. 5.12(b) in which the gates inside
of the dashed box must be repeated N − 3 times. In addition to the notation we have used
before, the letter Rc denotes the microwave field zone inside the cavity that is associated with
the microwave source S′ and the white circle denotes a Ramsey pulse that is tuned to the
atomic g ↔ a transition frequency. Note that the last A2N −Cy gate (π Rabi pulse) maps the
cavity states |0̄⟩ and |1̄⟩ upon the atomic |g2N ⟩ and |e2N ⟩ states. According to the Eq. (1.76a),
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Figure 5.13: Temporal sequence that generates the 2×2 four-partite cluster state (5.41).

moreover, this mapping yields one extra ι̇ factor if the cavity mode Cy was empty, which
together with the ι̇ factor from Eq. (5.49), produces an irrelevant global phase factor.

To understand better the scheme for the generation of 2×N cluster state, Fig. 5.13 displays
the temporal sequence with all the steps which are needed to generate the 2× 2 box state

|Ψ(2,2)⟩ =
1

2
(|g1,+2, a3,+4⟩+ |g1,−2, g3,−4⟩+ |e1,−2, a3,−4⟩+ |e1,+2, g3,+4⟩) (5.50)

from Fig. 5.11(b). For the sake of brevity, the state |gs; 1, 1̄⟩ of the auxiliary atoms and the
cavity is not shown in this expression since they are both factored out after the sequence of
steps is completed. Obviously, the state (5.50) is equivalent to the state (5.41) by making the
assignments {|a3⟩ = | ↑3⟩, |g3⟩ = | ↓3⟩} and {|gi⟩ = | ↑i⟩, |ei⟩ = | ↓i⟩}, where i = 1, 2, 4. In
this section, therefore, we have shown that each atom in a chain of 2N (initially) uncorrelated
atoms is incorporated into the 2×N cluster state by performing a Rabi π (followed by a 2π)
pulse and, if required, also Ramsey pulses applied before and/or inside the cavity.

5.3.2 3×N and arbitrary two-dimensional cluster states

In section 5.1.3, we explained how to generate a 1×N cluster state by using one single cavity
mode and in the previous section we explained how to generate a 2×N cluster state by using
two cavity modes. Since the cavity supports only two modes corresponding to the different
light polarizations, one single cavity is not sufficient to generate a 3 × N cluster state that
would require three ancilla qubits.

In this section, instead, we shall present and explain a scheme that enables one to generate a
3×N cluster state by using an array of two cavities, i.e. simply by placing one additional cavity
C(2) together with Ramsey plates R3 behind the plates R2 and right before the detection area
(the Ramsey plates Rd followed by detector) as displayed in Fig. 5.15(a). The scheme we like to
present can be divided into the following two parts: (i) implementation of the controlled-z gates
(edges) within a chain of 3N atoms according to Fig. 5.14(a) and which lead to the generation
of a 2×N displayed in Fig. 5.14(b). Notice that the third row of N atoms remains disconnected
from all other 2N atoms and only the cavity C(1) and microwave sources S1 and S

′
1 are utilized

in this part. The circuit that generates these edges is the same as displayed in Fig. 5.12(c)
up to a reassignment of the atomic labels. All the atoms that remain disconnected during
this step simply pass through the first cavity being detuned from the resonance (∆ = δ) with
both cavity modes. (ii) The second cavity (C(2)) and microwave sources S2 and S′

2 are then
utilized in order to generate additional edges according to Fig. 5.14(d). This step completes
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Figure 5.14: (a) Procedure for defining the edges for a chain of 3N atoms (nodes) such that an
effective two-dimensional 2×N cluster state (b) is generated, where the nodes from the third
row are disconnected from all other atoms of the chain. (d) Definition of the remaining edges
which transform the (2×N cluster) state of the atomic chain into a 3×N cluster state (c) by
making use of the second cavity in the setup.

the generation of a 3 × N cluster state in which all neighboring nodes are connected to each
other as displayed in Fig. 5.14(c).

Neither of these two steps do require any additional atom-cavity gates which have not
been described and discussed previously. Therefore, the above procedure enables to generate
3×N cluster states by means of a scheme that is well adapted for our setup with two cavities
C(1) and C(2). The quantum circuit that accomplishes this task is displayed in Fig. 5.15(b),
where the gates inside of dash-boxed area must be repeated N − 4 times. Similar as before,
this circuit can be readily translated into a temporal sequence describing individual atom-
cavity interactions and single atomic rotations. By having understood the construction of the
3 ×N cluster states, furthermore, the recipe which enables us to generate a two-dimensional
(rectangular) cluster states of arbitrary size can be elaborated. Similarly as the 3×N cluster
state has been generated from a 2×N cluster and N disconnected qubits, one can insert more
cavities in the experimental setup and generateM×N cluster state (by means ofM−1 cavities
in total), and where a proper assignment of atomic labels to the nodes of cluster state have to
be made.

Of course, there may arise the question of how many atoms can be incorporated in a given
cluster state. To obtain some rough estimation, let us consider a scenario in which each atomic
qubit can be built into the entangled state for the price of a 3π Rabi pulse. If we assume,
moreover, that the (minimum) distance between any two subsequent atoms in the chain is
equal to the double waist length of the cavity, then the number of atoms is approximately
related to the coherent ‘lifetime’ T of the atom-cavity system via expression

N ≃ 1

6

T

Tπ
ε , (5.51)

where Tπ denotes the time required for realization of a single π Rabi pulse and ε is a factor which
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Figure 5.15: (a) Schematic setup of an experiment with two cavities C1 and C2. The classical
fields in the Ramsey zones before and after the cavities as well as those inside of the cavities are
generated by the microwave sources S1, S

′
1, S2 and S′

2. (b) Quantum circuit for generation of
the |Ψ(3,N)⟩ cluster state between 3N initially uncorrelated qubits. In this circuit, two cavities

C(1) and C(2) are utilized.

accounts for all corrections to our idealized scheme. Such corrections include the imperfect
realization of the Rabi and Ramsey pulses, the overlapping interaction of two atoms from the
chain with the same cavity mode, the effects of noisy channels and stray fields, and others.
In practise, these effects leads to a much smaller number N of atoms which can be treated
coherently. For the typical atomic velocities υ = 500m/s that is utilized in the experiments
by S. Haroche and coworkers, a single π Rabi rotation takes about Tπ ≈ 10µs. The lifetime
of the atom-cavity system, in turn, is limited mainly by the radiative lifetime of the Rydberg
atoms T ≃ 30ms (while the cavity relaxation time ≃ 130ms is much longer [66]). Therefore,
by making a conservative estimate for the correction factor in Eq. (5.51), for instance ε = 0.2,
we still obtain N ≃ 100 atoms which may pass through the setup.

5.4 Remarks on the implementation of proposed schemes

Obviously, the generation of multi-partite entangled states with a trustworthy fidelity is an
experimental challenge by itself. In the earlier cavity-QED experiments by A. Rauschenbeutel
and coworkers [41], the generation of a three-partite GHZ state (5.7) was reported with a
fidelity of 0.54 %, that is just above the threshold which is necessary to prove the generation
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of this state. In this section, therefore, we shall discuss the main limitations which arise in
cavity QED experiments and which prevent the generation of large entangled states

One of the main bottlenecks in cavity-QED experiments is the quality of the cavity mirrors,
i.e. the presence of local roughness and deviations from the spherical shape. These defects cause
the scattering of photons outside the cavity mode and thus reduce the coherent storage time of
photons inside the cavity. The storage time of photons, in turn, limits the number of quantum
operations (gates) that can be performed successively before the composite atom-cavity state
becomes destroyed. This rapid loss of coherence due to the cavity relaxation, has stimulated
S. Haroche and coworkers to develop a new ultrahigh-finesse cavity devices [66] for which the
quality factor of mirrors has been increased by about two orders of magnitude. Such a high
quality factor enables to perform more than hundred quantum logical operations within the
lifetime of a photon inside the cavity (see estimations in the previous section).

In practice, the atoms which are emitted from the atomic source have a spread in their
velocities. For a given chain of atoms, this spread leads to small deviations in the atom-cavity
interactions times and it introduces uncertainties in the duration of Rabi and Ramsey pulses.
In order to minimize this source of spread, a velocity selector has been placed right after the
atomic source in setup by S. Haroche and co-workers. This selector reduces the velocity spread
to ∼ 2 m/s [35] which being compared to the typical velocity of 500 m/s of atoms, implies
that the error due to the velocity spread is less than one percent and is negligible for the most
purposes. This small spread in the velocities, in turn, gives rise also to a small spatial dispersion
(. 1 mm) of the atomic positions while they pass through the cavity. This spatial dispersion
compared to the resonant cavity wavelength (∼ 5.9 mm), implies that only a small deflection
from the cavity antinode may occur and yields as well a small deviation of the atom-cavity
coupling from its nominal value.

Indeed, the control and manipulation of the cavity frequency is essential in order to achieve
the resonant atom-cavity interaction regime. Any deviation from this resonant regime would
lead to spurious matrix elements, for instance, in the atom-cavity gates (5.13) and (5.42). In
the experiments by S. Haroche and co-workers, the cavity frequency is manipulated by changing
slightly the distance between two cavity mirrors. By making use of a piezoelectric stack placed
under the lower cavity mirror, furthermore, a fine tuning of the cavity length was achieved that
corresponds to the frequency range of ∼ 1 MHz, and which has to be compared to the atomic
transition frequency 51.099 GHz. In the present thesis, however, we considered the scenario
in which the atomic transition frequency is tuned to one of Cx or Cy cavity mode by applying
a time-varying electric field across the cavity gap such that the required (Stark) shift of the
atomic e↔ g transition frequency is obtained. Instead of the instantaneous (step-like) change
of the atom-cavity detuning as displayed in the lower part of Fig. 5.1(b), a rather smooth
switch of the atom-cavity detuning is produced within the finite time of ∼ 1µs and which
could affect the evolution of the cavity states, whenever the switching pulse is comparable to
the applied Rabi pulse [72].

Finally, in order to describe a real evolution of the atom-cavity system, one have to include
also the interaction with the environment that has been omitted from the present considera-
tions. In order to avoid the events with several atoms interacting with the same cavity mode,
however, a sufficiently large spacing between the atoms passing through the cavity is neces-
sary. This large spacing, in turn, implies that the cavity is empty during some time intervals
and thus the field relaxation have to be taken into account. A detailed investigation of freely
evolving cavity modes which interact with environment has been performed in Ref. [73] and
the dynamics of cavity relaxation has been well understood.
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5.5 Summary

In this chapter, various schemes have been suggested to (i) generate multi-partite GHZ and W
states, (ii) generate one- and two-dimensional cluster states of arbitrary size, and (iii) prove the
entanglement formation of three- and four-partite GHZ and W states. These schemes are based
on the resonant interaction of a chain of Rydberg atoms with one or more cavities which support
two (orthogonally polarized) modes of the photon field. By using the graphical language of
temporal sequences and quantum circuits, a comprehensive description of all necessary Rabi
and Ramsey pulses together with all atomic manipulations has been achieved. Our goal is to
provide the schemes which can readily be adapted to the present-day microwave cavity QED
experiments although their realization is still a challenge, especially, if one is interested in
entangled states with N > 3 atomic qubits involved.

Since the experimental reports [42, 64, 65], the use of cavities which support two indepen-
dent cavity modes has been found an important step towards the generation and control of
complex quantum states. A number of proposals [67, 68, 69, 70, 71, 72] have been suggested
in the literature to exploit further capabilities of such cavities and, in particular, engineering
of various entangled states between the atomic (chain) and/or cavity qubits. In contrast to
the present work, however, most of the these suggestions are not well adapted to the recent
developments in cavity QED and no satisfactory attempt was made to reveal the non-classical
correlations belonging to the produced entangled states.

The results of sections 5.2 and 5.3, moreover, suggest that cavity QED provides a suitable
framework not only for the generation of cluster states but also for one-way quantum com-
putations which are performed by a sequence of single-qubit projective measurements (with
possible feedforwarding). For this model of computations, a two-dimensional cluster state of
appropriate size is required together with two types of measurements [52]: (i) measurement in
the longitudinal basis {| ↑⟩, | ↓⟩} and (ii) measurement in the transversal basis

{
(
| ↓⟩+ e ι̇ φ| ↑⟩

)
/
√
2;

(
| ↓⟩ − e ι̇ φ| ↑⟩

)
/
√
2} , (5.52)

and where the remaining qubits which are not projected (measured) encode the output quan-
tum state.

To show how the one-way quantum computation fits into our discussion, let us re-consider
the setup displayed in Fig. 5.1(a). In this figure, a particular cluster state is generated within
a chain of atoms right after it passes through the cavity and Ramsey plates R1 and R2. The
generated cluster state (encoded in the atomic chain) then enters into the detection region,
where each (Rydberg) atom is projected upon one of its levels e, g, or a and by which, therefore,
the measurement in the basis (i) is performed. As we explained in section 5.2, the Ramsey pulse
R̂(π/2, φ) followed by the detection of an atom in the basis (i) is equivalent to a projective
measurement in the basis (5.52). We found in section 3.2.1, moreover, that the rotation
R̂(π/2, φ) is efficiently realized by a sequence of three Ramsey pulses performed inside Rd,
and where the first resonant pulse is followed by two short off-resonant pulses separated by a
tunable time delay [see (3.10)]. The last (unmeasured) atoms inside the atomic chain encode
the final output quantum state. With this we can conclude that all necessary ingredients are
available in order to perform one-way quantum computations in the framework of microwave
cavity QED and which includes also the preparation of required two-dimensional cluster state
in the same setup.
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Chapter 6

Generation of entangled states with
an optical cavity

In the first part of this thesis we introduced the off-resonant interaction regime between N
circularly polarized three-level atoms and an optical cavity which supports two orthogonally
polarized modes of photon field. We found that the cavity and a laser beam mediate together
the interaction between atoms which are simultaneously coupled to them. We showed also
that the evolution of initially uncorrelated atoms is described by the sequence (2.21) and is
governed by the Hamiltonian (2.45). According to this Hamiltonian, moreover, the evolution of
three-level atoms is reduced to the evolution of effectively two-level atoms which interact with
each other via a two-photon exchange such that the fast decaying atomic excited states remain
almost unpopulated. This energy exchange is quantitatively described by the W-class state
(2.49) and is characterized by the complex amplitudes (2.52) which, in turn, are determined
by atomic velocities and inter-atomic distances. By setting appropriate velocities of atoms
and inter-atomic distances, therefore, one can generate the entangled W state (2.23) after the
atomic chain leaves the cavity and decouples from both cavity and laser fields.

In order to manipulate atomic velocities and inter-atomic distances, it is necessary (i) to
place the atoms in a regular but adjustable linear lattice, (ii) to maintain a constant spacing
between atoms for the entire time evolution, and (iii) to have an excellent control of motion
of the atomic chain. Nowadays, such a control is merely possible by using optical lattices
(conveyor belts) introduced in section 4.2.1 and which have been recently utilized in various
setups of cavity QED [16, 18, 20]. The interference pattern produced by an optical lattice gives
rise to a series of equidistant potential wells in which neutral atoms can be inserted and trapped.
These wells, moreover, allow to control the inter-atomic separation and atomic velocities with a
sub-micrometer precision over millimeter distances [75]. The experimental setup that combines
optical cavity, a laser beam, and an optical lattice is displayed in Fig. 6.1 and it provides all the
necessary ingredients to generate multipartite W entangled states between the atoms inserted
in a lattice and which are conveyed through the cavity.

We finally mention that the off-resonant interaction regime is robust with regard to deco-
herence effects since the cavity mode and (fast decaying) excited atomic states remain almost
unpopulated during the entire evolution. This robustness, in turn, plays one crucial role in the
generation of multipartite entangled W states between atomic qubits encoded into the level
structure of neutral atoms, and where the cavity plays the role of a data bus that just mediates
the interaction between these atomic qubits.
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Figure 6.1: Schematic setup of an experiment in which a chain of trapped atoms is conveyed
through cavity C and a laser beam L that acts perpendicularly to the cavity and lattice axis.
See text for further discussions.

6.1 W states for atoms conveyed through a detuned cavity

In section 2.2 we suggested a scheme to generate multipartite W-class states for initially un-
correlated atoms which are coupled simultaneously to the cavity and laser fields as displayed in
Fig. 2.1(c). We found that by setting appropriate atomic velocities and inter-atomic distances,
the generated W-class state reduces to the W state after the atomic chain leaves the cavity
and decouples from both cavity and laser fields. As we explained in the beginning of this chap-
ter, however, an excellent control of inter-atomic distances and the velocity of atomic chain is
merely possible by using an optical lattice. The setup from Fig. 2.1(c), therefore, should be
replaced by the setup displayed in Fig. 6.1, and this revised setup shall be considered as the
starting point for our further discussions.

By this revised setup, a chain of N (initially uncorrelated) atoms is inserted into the sites of
an optical lattice (being equally separated by a spacing d) and the entire chain is transported
by the lattice with a constant velocity υ along the x-axis such that atomic trajectories cross the
cavity at the antinode. By this assumption, the position of each atom is described by the vector
ri(t) = {xoi + υ t, 0, 0}, where xoi denotes the initial position of the i−th atom (i = 1, . . . , N).
As we briefly outlined in section 4.2.1, moreover, the velocity υ of atomic chain is controlled by
the shift in the frequencies of the two counter-propagating laser beams while the inter-atomic
distance d is manipulated by setting a proper wavelength of the optical lattice.

Each of N identical (three-level Λ-type) atoms encodes a qubit in the metastable state |0⟩
and the ground state |1⟩ as displayed in Fig. 2.1(a). The chain of such atoms is prepared ini-
tially in the product state |11, 02, . . . , 0N ⟩ and it evolves according to the sequence (2.19) once
it couples simultaneously to the cavity and laser fields. This sequence, in turn, reduces to the
simplified sequence (2.21) if the atom-cavity and atom-laser couplings satisfy the conditions
(2.18), (2.20), and (2.36). The evolution of the composite atomic state |11, 02, . . . , 0N ⟩, there-
fore, is described by the wave-function (2.49) and is completely characterized by the complex
amplitudes (2.52) which, in turn, are completely determined by atomic velocities and inter-
atomic distances, once the frequency shifts: ∆L, ∆C , coupling constants: g◦, Ω◦, and waists:
wL, wC are fixed by a particular experimental setup. The wave-function (2.49), however, has
not the desired form of a W state (2.23). In the next sections, we shall discuss the properties
of the WN states for different values of N and calculate those υ and d parameters, for which
the function (2.49) is equivalent (or close) to the desired W states.
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Figure 6.2: Atomic velocities υ and inter-atomic distances d for which the condition θ(υ, d) =
(2n+1)π/4 is satisfied, i.e., the initial product state of two atoms |11, 02⟩ becomes maximally
entangled (solid lines). The dashed lines, in contrast, indicate the (υ, d) pairs for which the
atomic qubits remain disentangled. (b) Plot of the von Neumann entropy E(υ, d) as a function
of the atomic velocity and distance. In all these figures, the velocities υ are displayed in units
of q2◦ wC/(∆C ∆2

L) and the distances d in units of w.

6.1.1 N = 2 partite state

For a chain of just two atoms (N = 2), the wave-function (2.49) takes the form [76]

|Φ2(υ, d)⟩ = e ι̇ η (cos θ(υ, d) |V1⟩ − ι̇ sin θ(υ, d) |V2⟩) , (6.1)

where η =
√

π
2

Ω2
◦ wL

4∆L υ
and θ(υ, d) is given by the expression (2.51). From the wave-function

(6.1), we readily recognize that (up to a global phase factor) the two-partite entangled states

|Ψ±
2 ⟩ =

1√
2

(
e±ι̇

π
2 |11, 02⟩+ |01, 12⟩

)
(6.2)

are obtained for (υ, d) pairs fulfilling the condition θ(υ, d) = (2n + 1)π/4, with n being
an integer. Therefore, the maximal two-partite entangled state is obtained along the solid
lines displayed in Fig. 6.2(a) for n = 0, 1, 2, 3, where velocities are displayed in the units of
q2◦ wC/(∆C ∆2

L) and distances in the units of w. Obviously, the change between maximally
entangled (solid lines) and completely disentangled states (dashed lines) happens more and
more rapidly as the velocity of the chain is decreased from a certain maximum value (namely,
for n = 0) onwards.

Apart from understanding the dynamical parameters (υ, d) for which a maximum entan-
glement is achieved, it is important to know how sensitive these states are with regard to small
uncertainties in the velocity and inter-atomic distance. To analyze this sensitivity, Fig. 6.2(b)
displays the von Neumann entropy [4]

E(υ, d) = −Tr [ρ(υ, d) log2 ρ(υ, d)]

= − cos2 θ(υ, d) log2
[
cos2 θ(υ, d)

]
− sin2 θ(υ, d) log2

[
sin2 θ(υ, d)

]
(6.3)

plotted for velocities and distances satisfying θ(υ, d) < 2π, and where ρ(υ, d) denotes the
reduced density operator of |Φ2(υ, d)⟩ with regard to the second qubit. As expected, the
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6.1. W states for atoms conveyed through a detuned cavity

maximal values of the von Neumann entropy, i.e., E(υ, d) = 1, are obtained along the lines
which are displayed in Fig. 6.2(a). Moreover, the least rapid variation in the maxima occurs
along the n = 0 line and for rather small inter-atomic distances. For small velocities or some
larger distance of the atoms, in contrast, a good control of the entanglements of the |Φ2(υ, d)⟩
states becomes more and more difficult.

Fig. 6.2(a) implies that an entanglement between the atoms occurs even for inter-atomic
distances which are larger than 2w, i.e. twice the cavity waist. Indeed, in a high finesse cavity
the Gaussian profile (2.14) approximates quite well the intra-cavity field and, thus, it is possible
to generate an entangled state even for the atomic separation d > 2w. In practice, however,
the cavity relaxation and the spontaneous atomic decay introduce certain limitations on the
distance between the atoms, beyond which it is not possible to generate entangled state (6.2).
In order to estimate this limitation, we consider the condition [77]

N g2o exp
[
−2x2/w2

]
/ (κ γ) > 1 , (6.4)

which ensures that N atoms couple strongly to the cavity field and, therefore, implies the
validity of the effective evolution (2.45). Here, κ and γ denote the cavity loss rate and the
atomic decay rate, respectively. For N = 2, furthermore, the above condition bounds the
atomic coordinate to the interval x− < x < x+ with

x± = ±w

√
ln[2 g2o/ (κ γ)]

2
. (6.5)

Owning to these boundaries, therefore, the distance d between two atoms should not exceed

d

w
<
√

2 ln[2 g2o/ (κ γ)] =
x+
w

− x−
w
. (6.6)

For the typical atom-cavity parameters [74]: {go, κ, γ} = 2π×{10, 0.4, 2.6}MHz, this condition
implies the limitation d < 3.243w. We note that this estimation agrees well with the solid
lines from Fig. 6.2(a) since, for d > 3.2w, the atomic velocity becomes negligibly small and
prevents any experimental implementation of our scheme.

6.1.2 N = 3 partite state

For a chain of three atoms (N = 3), the wave-function (2.49) takes the form

|Φ3(υ, d)⟩ = e ι̇ (η−ζ) (C1(υ, d)|V1⟩+ C2(υ, d)|V2⟩+ C3(υ, d)|V3⟩) , (6.7)

with

C1(υ, d) =
−ξ3 λ− +

√
8 + ξ6

(
λ+ + 2 e ι̇ ς

)
4
√

8 + ξ6
, C3(υ, d) =

−ξ3 λ− +
√

8 + ξ6
(
λ+ − 2 e ι̇ ς

)
4
√

8 + ξ6
,

C2(υ, d) = − λ−√
8 + ξ6

, (6.8)

and where we used the notation

ξ = exp

[
− d 2

2w2
C

]
, λ± = exp

[
ι̇ 2 ξ χ

√
8 + ξ6

]
± 1, χ =

√
π

8

q2◦ wC
∆C ∆2

L υ
,

ς = ξ χ
(
3 ξ3 +

√
8 + ξ6

)
, ζ = ξ χ

(
ξ3 +

√
8 + ξ6

)
.
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CHAPTER 6: Generation of entangled states with an optical cavity

Figure 6.3: Lines along which the moduli |C1(υ, d)| (solid), |C2(υ, d)| (dashed), and |C3(υ, d)|
(dotted) are equal to 1/

√
3. These lines correspond to velocities (6.11) with n = 0, 1 and

m = 1, 2 (in the limit d→ 0). As before, velocities υ are displayed in units of q2◦ wC/(∆C ∆2
L)

and the distances d in units of w.

In order to obtain W3 state from the wave-function |Φ3(υ, d)⟩, we have to determine those
(υ, d) pairs for which the equations

|C1(υ, d)| = |C2(υ, d)| = |C3(υ, d)| =
1√
3

(6.9)

are fulfilled. In Fig. 6.3(a), we displayed the corresponding lines for which the moduli |C1(υ, d)|
(solid), |C2(υ, d)| (dashed), and |C3(υ, d)| (dotted) are equal to 1/

√
3. The W3 state is obtained

for those (υ, d) pairs, therefore, for which all three types of lines intersect with each other.
As seen from Fig. 6.3(a), however, the lines for the (moduli of the) amplitudes Ci(υ, d)

intersect only if the inter-atomic distance vanishes. In order to determine the corresponding
velocities, we first observe that for d→ 0 (ξ → 1), the wave-function (6.7) becomes

e ι̇ (η−4χ) 1 + 2 e ι̇ 6χ

3
|V1⟩ + e ι̇ (η−4χ) 1− e ι̇ 6χ

3
(|V2⟩+ |V3⟩) ,

which (up to a global phase factor) can be readily cast into the W3 form

|Ψ±
3 ⟩ =

1√
3

(
e±ι̇

2π
3 |V1⟩+ |V2⟩+ |V3⟩

)
(6.10)

if χ = (3n+m)π/9 or, equivalently, if the velocity takes the values

υ =

√
π

8

q2◦ wC
∆C ∆2

L

9

π(3n+m)
, (6.11)

with m = 1, 2 and n being an integer. To summarize, the vanishing inter-atomic distance along
with velocities (6.11) are necessary to obtain the W3 states due to wave-function (6.7).

According to our setup from Fig. 6.1, however, the atoms are separated by a non-zero
distance which is non-negligible with regard to the cavity waist. Therefore, we shall determine
the (υ, d) pairs with non-vanishing distance, for which the probability to obtain the state (6.10)
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6.1. W states for atoms conveyed through a detuned cavity

Figure 6.4: (a) Two maxima in the fidelity F−(υ, d) obtained for velocities (6.11) with n = 0, 1
and m = 1, 2 (in the limit d→ 0). For guidance of the eyes, the semi-transparent layer displays
a constant value F−(υ, d) = 0.5. (b) The same as in figure (a) but for the fidelity F+(υ, d).
Again, velocities υ are displayed in units of q2◦ wC/(∆C ∆2

L) and the distances d in units of w.

due to the wave-function (6.7) is highest possible. To determine such (υ, d) parameter region,
we utilize the fidelities [4]

F±(υ, d) = |⟨Ψ±
3 |Φ3(υ, d)⟩|2 =

1

3

∣∣∣e∓ι̇ 2π
3 C1(υ, d) + C2(υ, d) + C3(υ, d)

∣∣∣2 , (6.12)

which are the measures of distance between states {|Ψ+
3 ⟩, |Φ3(υ, d)⟩} and {|Ψ−

3 ⟩, |Φ3(υ, d)⟩}.
These fidelities are displayed in Figs. (6.4)(a),(b) together with semitransparent planes in order
to delimit the regions for which F±(υ, d) ≥ 0.5. While the maximum values F±(υ, d) = 1 are
obtained only for vanishing inter-atomic distances, there are still υ and d pairs (with non-
zero distance) for which the fidelities become reasonably close to the maximal value. Note,
moreover, that the region for which F+(υ, d) ≥ 0.5 is notably larger than those for which
F−(υ, d) ≥ 0.5. We conclude, therefore, that from the experimental perspective it might be
preferable to generate the state |Ψ+

3 ⟩ since the respective (υ, d) region is notable larger as
compared to the state |Ψ−

3 ⟩.

6.1.3 N = 4 partite state

For a chain of four atoms (N = 4), the wave-function (2.49) can be written as

|Φ4(υ, d)⟩ = e ι̇ (η−ζ) (C1(υ, d)|V1⟩+ C2(υ, d)|V2⟩+ C3(υ, d)|V3⟩+ C4(υ, d)|V4⟩) . (6.13)

In contrast to N = 2 or N = 3 cases, however, the expressions for amplitudes Ci(υ, d) become
rather bulky now and are not displayed here. Recall from the previous section that the wave-
function |Φ3(υ, d)⟩ reduced to the |Ψ±

3 ⟩ states only for vanishing distances and velocities (6.11).
In this section, therefore, we proceed in a similar fashion and consider the wave-function (6.13)
in the limit of vanishing inter-atomic distance (d→ 0)

e ι̇ (η−4χ) 1 + 3 e ι̇ 8χ

4
|V1⟩+ e ι̇ (η−4χ) 1− e ι̇ 8χ

4

4∑
j=2

|Vj⟩.

From this expression, (up to as global phase factor) the W state

|ΨW
4 ⟩ = 1

2

(
e ι̇ π|V1⟩+ |V2⟩+ |V3⟩+ |V4⟩

)
(6.14)
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CHAPTER 6: Generation of entangled states with an optical cavity

Figure 6.5: Fidelity F4(υ, d) for the generation of the W4 state as a function of the velocity
and the inter-atomic distance. Again, the maximum value F4(υ, d) = 1 is obtained only for
vanishing distance (d = 0) and velocities (6.15) with n = 0, 1. The semi-transparent plane with
F4(υ, d) = 0.5 is plotted to guide the eyes and the units are the same as in previous figures.

is readily produced if χ = π(2n+ 1)/8 or, equivalently, if the velocity takes the values

υ =

√
π

8

q2◦ wC
∆C ∆2

L

8

π (2n+ 1)
. (6.15)

More generally, Fig. (6.5) displays the fidelity F4(υ, d) = |⟨ΨW
4 |Φ4(υ, d)⟩|2 for the generation

of the W4 states as a function of the velocity and the inter-atomic distance due to the wave-
function (6.13). Similarly to the previous section, the maximum fidelity F4(υ, d) = 1 is obtained
only for zero distance (d = 0) and velocities that fulfill the condition (6.15). For non-zero
distances, nevertheless, there is one broad parameters region for which the W4 state (6.14) can
be generated with a reasonable hight fidelity.

6.1.4 N ≥ 5 partite states

For any other number N ≥ 5 of atoms in the chain, the amplitudes C1(υ, d), . . . , CN (υ, d) can
be computed with help of expression (2.52), and the obtained wave-function

|ΦN (υ, d)⟩ = e ι̇ (η−ζ)
N∑
i

Ci(υ, d)|Vi⟩ (6.16)

can be further analyzed with regard to (υ, d) pairs for which the corresponding WN state is
produced most reliably, i.e., with a highest possible fidelity. In order to proceed, however, we
still need to specify the reference WN state which we are looking in the form

|ΨW
N (ϕ)⟩ = 1√

N

(
e ι̇ ϕ|V1⟩+

N∑
i=2

|Vi⟩

)
, (6.17)

where ϕ is an unknown phase. The form of this state was chosen in line with the previously
obtained W states (6.2), (6.10), and (6.14). In order to calculate the unknown phase ϕ, we
follow the procedure form previous sections and consider the wave-function (6.16) in the limit
d→ 0 (ξ → 1)

|ΦN (υ, 0)⟩ = e ι̇ (η−4χ)
N∑
k=1

1 + (δk1N − 1) exp (ι̇ 2Nχ)

N
|Vk⟩. (6.18)
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Figure 6.6: (a) The fidelity F (N) = |⟨ΨW
N (π)|ΦN ⟩|2 has its maximum value F (N) = 1 for

N = 4 and decreases monotonically as the number of atoms increases. For N > 15, it falls
below the threshold F (N) = 1/2 (dotted line). (b) Fidelity F5(υ, d) for the production of the
|ΨW

5 ⟩ state due to |Φ5(υ, d)⟩ as a function of the velocity and the interatomic distance. Similar
as in previous figures, it reaches its maxima for d = 0 and velocities (6.21) with n = 0, 1.

The obtained wave-function depends only on the atomic velocity υ that is encoded in the
scalar function χ. The right hand part of the wave-function (6.18) implies, moreover, that the
amplitudes Ck(υ, 0) cannot fulfill the (WN ) equalities

|C1(υ, 0)| = . . . = |CN (υ, 0)| =
1√
N

(6.19)

for any value of χ. However, we can find those values of χ for which the expressions∣∣∣∣|C1(υ, 0)| −
1√
N

∣∣∣∣ , . . . , ∣∣∣∣|CN (υ, 0)| − 1√
N

∣∣∣∣ (6.20)

become minimal. In other words, we determine those atomic velocities for which the wave-
function (6.18) approximates the WN state [given by the conditions (6.19)] as close as possible.
It can be straightforwardly shown that all the expressions (6.20) are minimized for the values
χ = π(2n+ 1)/(2N) or, equivalently, for velocities

υ =

√
π

8

q2◦ wC
∆C ∆2

L

2N

π(2n+ 1)
. (6.21)

By substituting the obtained value for χ in the wave-function (6.18), we obtain (up to a global
constant phase) the parameter independent state

|ΦN ⟩ =
2−N

N
|V1⟩+

2

N

N∑
i=2

|Vi⟩. (6.22)

As we just mentioned, there are no such velocities for which the equalities (6.19) can
be fulfilled. However, we found the state (6.22) which gives the best approximation to the
WN state and, at the same time, it is obtained from the wave-function (6.16) by means of
velocities (6.21). On the other hand, we have specified already the explicit form of reference

83



CHAPTER 6: Generation of entangled states with an optical cavity

WN state (6.17) except the unknown phase ϕ. By comparing the states |ΨW
N (ϕ)⟩ with |ΦN ⟩

for N = 4, we find that the phase ϕ is equal to π. In order to understand how well the
state (6.22) approximates the state |ΨW

N (π)⟩, in Fig. 6.6(a) we displayed the fidelity F (N) =
|⟨ΨW

N (π)|ΦN ⟩|2. As seen from this figure, the fidelity has its maximum value F (N) = 1 for
N = 4 and decreases monotonically as the number N of atoms is increases. The fidelity drops
below the threshold F (N) = 1/2 for N > 15. We therefore conclude that the state (6.22)
approximates reasonably well the reference state WN only for 4 < N < 15.

Having determined the reference WN state, we can evaluate each fidelity

FN (υ, d) = |⟨ΨW
N (π)|ΦN (υ, d)⟩|2; 5 ≤ N < 15 (6.23)

as function of the velocity and the inter-atomic distance. In Fig. 6.6(b), for instance, we
display this fidelity for N = 5. According to this figure, moreover, the fidelity reaches its
maxima F5(υ, d) = F (5) ≈ 0.97 for d = 0 and velocities that satisfy the condition (6.21)
with n = 0, 1. Let us note here that the typical spacing between two neighbored potentials
wells (sites) of an optical lattice lies in the sub-micrometer range [16, 18, 20]. As seen from
Fig. 6.6(b), this typical spacing is comparable to the inter-atomic distance for which the fidelity
F5(υ, d) ≈ 0.9 is reasonable high and where the typical cavity waist (w = 20 µm) has been
considered as the distance units. The recent developments in optical cavity QED, therefore,
make it possible to generate W5 state by means of the proposed scheme. If we compare,
furthermore, the (υ, d) regions for which fidelities F±(υ, d) [see Fig. 6.4], F4(υ, d) [see Fig. 6.5],
and F5(υ, d) [see Fig. 6.6(b)] are higher than the threshold value of 1/2, we can conclude that
these regions become smaller as the number of atoms (in the chain) increases.

6.2 Remarks on the implementation of proposed schemes

In our discussions so far, we have always assumed that the velocity and the distance of the
atoms in the chain, i.e. their position within the optical lattice, can be controlled exactly.
With this assumption in mind, the atom-cavity and atom-laser couplings were described by the
expression (2.24) and (2.25), respectively. This assumption, however, neglects the transversal
components of the cavity field as well as the oscillations of the atoms within the potential
wells due to their finite temperatures, and which include both the axial (along the x-axis) and
radial (along the y, z-axes) oscillations [see Fig. 2.1(c)]. This additional motion gives rise to a
dispersion of the atomic positions and velocities and, thus, leads to uncertainties in selecting
the dynamical parameters in our model.

Obviously, any significant uncertainty in the parameters {υ, d,∆C ,∆L, g◦,Ω◦} will influence
the generation of the desired W entangled states. According to our scheme, however, these
entangled states are generated when all the atoms have left the cavity. Instead of understanding
these parameters as exact, therefore, they should refer to the mean values and we need to
analyze how small (but realistic) variations in these parameters can affect the final state of
atoms within the chain. For instance, the radial oscillations of the atoms lead to the mean value
of the vacuum Rabi frequency g◦ and axial oscillations to the mean values of the inter-atomic
distance d and velocity v, respectively. Axial oscillations affects also the initial position xoi and
velocity υi of each atom inside the lattice and result in uncertainties △di = d− |xoi+1−xoi | and
△υi = υ−υi, where i = 1, . . . , N . Therefore, the plots E(υ, d), F±(υ, d), F4(υ, d), and F5(υ, d)
from Figs. 6.2(b), 6.4, 6.5, and 6.6(b) should be re-plotted as function of the mean values υ
and d and their corresponding uncertainties, respectively.
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Figure 6.7: Entanglement and fidelity measures averaged over 20 randomly chosen uncertainties
△d and △υ of the inter-atomic distance and the velocity, respectively. (a) Von Neuman entropy
E(υ, d), (b) fidelities F−(υ, d) and (c) F+(υ, d) for a chain of three atoms, and (d) F 4(υ, d)
for a chain of four atoms. The uncertainties for the distance and velocities are chosen from
the intervals [0, 0.2 d] and [0, 0.1 υ], respectively. See the text for further details.

In order to determine realistic uncertainties for the distance and velocity of the atoms in
the chain, we first mention that the recent developments allow to position the atoms relative to
the cavity antinode with a precision of ∼ 0.1 µm by utilizing an additional dipole trap acting
along the cavity z−axis [16]. When compared to the typical cavity wavelength (∼ 0.85 µm),
such positioning precision leads to a spatial dispersion which, in turn, yields the mean value
g◦ ≈ 0.7 g◦ and which is still good enough for our purposes [see inequalities (2.18) and (2.36)].
Moreover, the same spatial dispersion implies upper bounds for the uncertainties |△d/d| . 0.2
and |△υ/υ| . 0.1, if compared with the typical spacing (∼ 0.5 µm) between two neighbored
potential wells of an optical lattice and the typical atomic velocities (∼ 0.5 m/s) along the
lattice axis.

For a further analysis of how reliably a given (experimental) setup will generate a partic-
ular W state, in Fig. 6.7 we display the (mean) functions E(υ, d), F±(υ, d), and F 4(υ, d) by
calculating their average for a certain spread of parameters. For each sub-figure 6.7(a)-(d), we
have randomly chosen 20 uncertainties △d and △υ from the intervals [0, 0.2 d] and [0, 0.1 υ],
respectively. By comparing the Figs. 6.2(b) and 6.7(a) it can be seen that the von Neumann
entropy, for instance, is reduced considerably for its sharp maxima (n = 3) and that it remains
almost the same around the broad maxima (n = 0). Similarly, the mean fidelities which are
displayed in Figs. 6.7(b)-(d), are considerably reduced for their sharp maxima. These (υ, d)
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regions for the velocity and inter-atomic distance in the atomic chain are, therefore, less useful
for any practical implementation and only the (υ, d) regions which correspond to the broad
maxima of the von Neumann entropy and fidelities, are relevant for the generation of entangled
W states by means of the proposed scheme.

6.3 Summary

In this chapter, a scheme was proposed to generate entangled W states for a chain of N three-
level atoms which are equally separated (inside the chain) and conveyed through an optical
cavity by means of an optical lattice. This scheme is based on the cavity-laser mediated
interaction between the atoms which are separated by a macroscopic distance and it works in
a completely deterministic way. Only two parameters, namely the velocity of chain and the
inter-atomic distance determine the effective interaction of atoms and, therefore, the degree
of entanglement that is obtained for the overall chain. The purpose of this chapter is to
understand the state evolution of the atomic chain and how it can be utilized to generate
entangled W states. For chains that consists ofN = 2, 3, 4 and 5 atoms, Figs. (6.2)-(6.6) display
the von Neumann entropy and the fidelities as functions of velocity and inter-atomic distance.
For 5 ≤ N < 15, moreover, we suggested the reference state |ΨW

N (π)⟩ which is approximated
by the wave-function |ΦN ⟩ with a high fidelity. In view of the recent developments in optical
cavity QED, moreover, we have also analyzed and discussed the proposed scheme with regard
to sensitivity in the formation of desired entanglement due to uncertainties in the atomic
motion.

For two or more atoms, the generation of entanglement by means of a (detuned) optical
cavity has been investigated in several papers [21, 32, 82]. All these studies, however, relied
on the small sample approximation in which the separation of the atoms is considered to
be negligible if compared with the cavity waist. Only recently [83, 84, 85], the atom-cavity
coupling (2.14) has been exploited in more detail in order to suggest various entanglement
schemes within cavity QED. In the work by M. Amniat-Talab, for instance, a scheme was
proposed in which two atoms were coupled sequentially to a resonant cavity and where a
position-dependent coupling is used to drive a STIRAP-type process in order to reduce the
losses due to atomic and cavity decays. Moreover, the scheme by C. Marr is also based on a
STIRAP-type process and describes an adiabatic evolution of a product state of two atoms
which are coupled simultaneously to a detuned cavity. The success of this scheme, however,
relies strongly on the ability to detect the photons which leak through the cavity mirrors with
an efficiency close to one. In both schemes, therefore, the atomic velocity and inter-atomic
separation are used to control the accuracy of a STIRAP-type process, in contrast to our
approach, in which these parameters are utilized to control the degree of entanglement.

Our proposed scheme might be suitable also for ion-cavity experiments in which N trapped
ions interact simultaneously with a (detuned) optical cavity [86, 87]. In these experiments,
the same coupling to the laser and cavity fields applies for ions with a three-level Λ-type
configuration as displayed in Fig. 2.1(a). For such a level configuration, the W state can be
generated by moving the equally distanced trapped ions (along the trap) through the cavity.
Similar as for the atomic chains above, the cavity-laser mediated interaction between the ions
is described by the effective Hamiltonian (2.45) and, therefore, requires the same analysis as
performed in this chapter as to produce the entangled WN states.
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Outlook

In this thesis, we presented several practical schemes for generation of multipartite entangled
states for chains of atoms which pass through one or more high-finesse resonators. In the first
step, we proposed two schemes for generation of one- and two-dimensional cluster states of
arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg
atoms with one or more microwave cavities. In the second step, we proposed a scheme for
generation of multipartite W states. This scheme is based on the off-resonant interaction of
a chain of three-level atoms with an optical cavity and a laser beam. We described in details
all the individual steps which are required to realize the proposed schemes and, moreover, we
discussed several techniques to reveal the non-classical correlations associated with generated
small-sized entangled states.

In the first chapter, we introduced the interaction of a single atom with a single-mode
monochromatic light field in the quantum regime. We derived the Hamiltonian that governs
this interaction by assuming that the cavity supports two linearly and orthogonally polarized
modes of light, while the atom emits or absorbs the circularly polarized light during its transi-
tion. We analyzed, furthermore, the situation in which the atomic transition frequency matches
exactly the frequency of one of the cavity modes and we found that the atom-cavity evolution
is governed by the Jaynes-Cummings Hamiltonian. We solved the equations of motion for this
Hamiltonian and we found that this evolution describes the time-varying entanglement of a
two-level atom with cavity photon field. We found how the obtained atom-cavity evolution is
affected by an uniform motion of an atom that probes one transversal component of the cavity
field amplitude. Finally, we analyzed the effects of spontaneous atomic emission and cavity
relaxation in order to understand how the energy exchange of coupled atom-cavity system
evolves in realistic environments.

In the second chapter, we introduced the interaction of a single atom with single-mode
monochromatic light field in the semiclassical regime. We derived the Hamiltonian that governs
this interaction and we solved the respective equations of motion. We found that the obtained
evolution describes the oscillations of the electronic population between its ground and excited
states. Next, we explained our scheme for generation of atomic multipartite entangled states
that is based on the off-resonant interaction regime of three-level atoms placed in the cavity and
coupled simultaneously to a laser beam. By performing the adiabatic elimination procedure, we
showed that the evolution of three-level atoms is reduced to the evolution of effectively two-level
atoms which interact with each other via a two-photon exchange such that the fast decaying
atomic excited states remain almost unpopulated. This energy exchange is quantitatively
described by the W-class state and is determined by the atomic velocities and inter-atomic
distances. By setting appropriate velocities of atoms and inter-atomic distances, therefore, one
can generate the entangled W state from the W-class state, after the atomic chain leaves the
cavity and decouples from both cavity and laser fields.
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In the third chapter, we defined the strong coupling regime of atom-cavity interaction and
described in details the characteristics of highly excited Rydberg atoms and a microwave cav-
ity – the basic constituents of setup developed in the group of S. Haroche. We also explained
the role of Ramsey plates in manipulation of an arbitrary superposition of the atomic states
in question. In addition, we described the procedure that enables to set the phase of this
superposition and which is based on the sequence of short off-resonant pulses. In the fourth
chapter, furthermore, we described in details the characteristics of atoms with low-lying elec-
tronic states and an optical cavity – the basic constituents of setup developed in the group of
D. Meschede. We also explained the working principle and role of an optical lattice (conveyor
belt) utilized to transport the atoms through the cavity. We concluded, that the mentioned
setups meet the strong coupling conditions and, therefore, provide all the necessary ingredients
to generate complex entangled states of atomic qubits, and where the cavity plays the role of
a data bus.

In the fifth chapter, we first presented two schemes to generate multi-partite GHZ and
W states. In addition, we described two techniques to reveal the non-classical correlations
associated with two-partite entangled states. The first technique is based on the transversal
measurements of two atoms, while the second is based on the free evolution of cavity modes.
Using these techniques, we suggested the schemes which reveals the non-classical correlations
of small-sized GHZ and W states. Next, we presented a scheme to generate the linear cluster
state, and right afterwards, two schemes to generate the two-dimensional 2 × N and 3 × N
cluster states. We showed how the last scheme can be extended to generate two-dimensional
cluster states of arbitrary size, once a sufficiently large chain of atoms and an array of cavities
are provided. For all these schemes, we described the individual steps in the interaction of each
atom with one of the cavity modes and we made use of a graphical language in order to display
all these steps in terms of quantum circuits and temporal sequences. We briefly discussed the
implementation of our schemes by considering the setup similar to those utilized in the group
of S. Haroche, and we concluded that cavity QED provides a suitable framework not only for
the generation of cluster states but also for one-way quantum computations.

In the last chapter, we proposed a scheme to generate entangled W states for a chain of
N three-level atoms which are equally separated (inside the chain) and conveyed through an
optical cavity by means of an optical lattice. This scheme is based on the cavity-laser mediated
interaction between the atoms which are separated by a macroscopic distance and it works in
a completely deterministic way. Only two parameters, namely the velocity of chain and the
inter-atomic distance determine the effective interaction of atoms and, therefore, the degree
of entanglement that is obtained for the overall chain. For chains that consists of N = 2, 3, 4
and 5 atoms, we discussed the properties of obtained states and calculated those velocities
and distances, for which this state reduces to a given WN states most reliably. Moreover,
we displayed the von Neumann entropy and respective fidelities as functions of velocity and
inter-atomic distance and we found preferable velocities and distances which can be useful for
a practical implementation. Apart from generation of the W states, we analyzed how robust
are the generated entangled states with respect to small oscillations in the atomic motion.
Finally, we discussed the implementation of our scheme by considering the setup similar to
those utilized in the group of D. Meschede, and we concluded that our schemes can be adopted
to the near-future developments in cavity QED.
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[86] G. R. Guthöhrlein, M. Keller, K. Hayasaka, W. Lange, and H. Walther, ”A single ion
as a nanoscopic probe of an optical field”, Nature 414, 49 (2001); M. Keller, B. Lange,
K. Hayasaka, W. Lange, and H. Walther, ”Continuous generation of single photons with
controlled waveform in an ion-trap cavity system”, Nature 431, 1075 (2004).

[87] A. B. Mundt et al., ”Coupling a Single Atomic Quantum Bit to a High Finesse Optical
Cavity”, Phys. Rev. Lett. 89, 103001 (2002); A. Kreuter et al., ”Spontaneous Emission
Lifetime of a Single Trapped Ca+ Ion in a High Finesse Cavity”, Phys. Rev. Lett. 92,
203002 (2004).

[88] R. Drever and J. Hall, ”Laser phase and frequency stabilization using an optical res-
onator”, Appl. Phys. B 31, 97 (1983).

[89] H. J. Metcalf and P. van der Straten, ”Laser Cooling and Trapping”, (Springer-Verlag
New York, 1999).

[90] C. J. Foot, ”Atomic Physics”, (Oxford University Press, 2005).

[91] E. Brion, L. H. Pedersen and K. Mølmer, ”Adiabatic elimination in a lambda system”,
J. Phys. A: Math. Theor. 40, 1033 (2007).

[92] D. A. Steck, ”Cesium D Line Data”, http://steck.us/alkalidata/.

[93] J. P. Gordon and A. Ashkin, ”Motion of atoms in a radiation trap”, Phys. Rev. A 21,
1606 (1980).

[94] L. Förster et al., ”Number-triggered loading and collisional redistribution of neutral
atoms in a standing wave dipole trap”, New J. Phys. 8, 259 (2006).

[95] Y. Miroshnychenko et al., ”An atom-sorting machine”, Nature 442, 151 (2006).

[96] D. Schrader et al., ”An optical conveyor belt for single neutral atoms”, Appl. Phys. B
73, 819 (2001).

[97] S. Kuhr et al., ”Coherence properties and quantum state transportation in an optical
conveyor belt”, Phys. Rev. Lett. 91, 213002 (2003).

[98] D. Schrader et al., ”Neutral atom quantum register”, Phys. Rev. Lett. 93, 150501 (2004).

[99] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, ”Optical dipole traps for neutral
atoms”, Adv. At. Mol. Opt. Phys. 42, 95 (2000).

[100] B. Weber et al., ”Photon-Photon Entanglement with a Single Trapped Atom”, Phys.
Rev. Lett. 102, 030501 (2009).

[101] S. Nußmann et al., ”Vacuum-stimulated cooling of single atoms in three dimensions”,
Nat. Phys. 1, 122 (2005).

[102] T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, A. Kuhn, ”Polarization-controlled
single photons”, Phys. Rev. Lett. 98, 063601 (2007).

[103] H. P. Specht et al., ”Shaping the Phase of a Single Photon”, Nat. Phot. 3, 469 (2009).

95

http://steck.us/alkalidata/



