Contents

N	omer	nclature	iii	
1	Intr	roduction	1	
I			3	
2	Background			
	2.1	Strength of materials and dislocation density	4	
		2.1.1 Statistically stored dislocations	9	
		2.1.2 Geometrically necessary dislocations	10	
	2.2	Plastic anisotropy in metals	12	
		2.2.1 Schmid based single glide model	12	
		2.2.2 Taylor based multiple glide model	13	
		2.2.3 Rate sensitive models	14	
3	Lite	erature Review	15	
	3.1	Mechanical size effects in the absence of strain gradients	15	
	3.2	Focussed ion beam milling	25	
	3.3	Indentation size effect	26	
		3.3.1 Self-similar indenter tips	26	
		3.3.2 Spherical indenter tips	28	
	3.4	How to measure GNDs?	31	
	3.5	Effect of crystal orientation during indentation	32	
	3.6	Micro bending	33	
	3.7	Bauschinger effect	36	

CONTENTS

3.8	Few c	rystal works	37	
3.9	Dislocation based plasticity models			
	3.9.1	Dislocation kinetics	40	
	3.9.2	Mobile dislocation density and its evolution	40	
	3.9.3	Dislocation glide velocity	42	
	3.9.4	Dislocation density based strain hardening	42	
	3.9.5	Dislocation density based grain boundary models	43	

п

45

4	Finite element models					
	4.1	Balance equations	46			
	4.2	Finite element discretization	48			
	4.3	Isotropic hardening model	51			
		4.3.1 Deformation kinematics	51			
		4.3.2 Dislocation based constitutive law	53			
		4.3.3 Grain boundary model	55			
		4.3.4 Implicit time integration method	56			
	4.4	Crystal plasticity	59			
		4.4.1 Deformation kinematics	59			
		4.4.2 Phenomenological constitutive law	62			
		4.4.3 Dislocation based constitutive law	63			
		4.4.4 Implicit time integration method	64			
5	Ber	nding of micro cantilever beams with cube orientation	69			
	5.1	Experiments	69			
	5.2	Experimental results				
	5.3	Simulations	79			
		5.3.1 Effects of thickness variation (taper). friction coefficient				
		and radius of the rounded inside corner	80			
		5.3.2 Final model	81			
	5.4	Discussion	83			

CONTENTS

6	Effe	cts of	crystal o	rientation and grain boundary on the plastic	c		
	stra	in dist	ributions	of a few crystal aluminum	86		
	6.1	Exper	iments		86		
	6.2	Simula	tions		92		
6.3 Discussion					97		
7	Exp	erime	ntal inves	tigation of the mechanical size effect observed	l		
	in c	antilev	er beam	bending	99		
	7.1 Cantilever beams with rectangular cross sections						
		7.1.1	Experime	ents	99		
			7.1.1.1	Fabrication of the beams	99		
			7.1.1.2	Material characterization	101		
			7.1.1.3	Mechanical test results	101		
			7.1.1.4	SEM and EBSD measurements after bending	104		
		7.1.2	Discussio	n	107		
	7.2 Cantilever beams with circular cross sections						
		7.2.1	Experime	ents	112		
		7.2. 2	Discussio	n	114		
8	Exp	erime	ntal inves	tigation of Bauschinger effect during bending			
	of a	micro	cantilev	er beam	120		
	8.1	Exper	iments		120		
	8.2	Discus	sion		123		
9	Der	oth dep	endence	of hardness during <i>conical-like</i> indentation of	F		
	cop	per -		-	130		
	9.1	- Exper	imental .		130		
		9.1.1	Indentati	on	130		
		9.1.2	EBSD m	easurements	131		
	9.2	Analy		D data	134		
		9.2.1		alysis			
		9.2.2		-			
	9.3			ussion			

CONTENTS

10 Coi	nclusions	145
A Imj	portant definitions	150
A.1	Crystal to sample reference transformations	150
A.2	Work conjugacy between resolved shear stress and shear rates	150
A.3	Perturbation method to find the material tangent	152
A.4	Mobile dislocation density	153
A.5	Vector and tensor operations	153