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Chapter 1

Introduction

1.1 Labyrinth Seals in Jet Engines

Non–contacting gas seals in jet engines are mainly used to reduce the leakage flow

between components of different pressures and prevent the rotor from contacting the

stator. Since the rotor rotates at a very high speed, any contact between the rotor

and the stator can damage the seal, cause deterioration of seal performance, and lead

to engine failures eventually.

One of the most important non–contacting seals is called the labyrinth seal, which

is named after its shape. As shown in Fig. 1.1, the seal is composed of alternating

teeth and cavities. Despite the recent advanced sealing techniques, labyrinth seals

remain the most common non–contacting seals in modern jet engines. They can be

found in many locations serving significant purposes, for example, to reduce the mass

flow at blade shrouds, to control the cooling air in order to prevent hot gas ingress,

and to minimize stage losses in turbines [1].

By employing labyrinth seals, contactless sealing is provided at stationary/rotating

surfaces with certain amount of leakage [2], which is counted as a major source

of losses. However, sufficient tip clearances are mandatory in baseline designs of

labyrinth seals owing to the inevitable transient structural and thermal deforma-

tions during operations. Therefore, great challenges are imposed on the design of

labyrinth seals to ensure that: 1) sufficient gaps are maintained between the rotat-

ing/stationary components; 2) the leakage is minimized to decrease fuel consumption,

enhance thrust, and thus improve the overall engine performance [3].

In addition to investigations of leakage behaviors, the trend of increasing turbine

inlet temperature and pressure ratio in modern jet engines requires more comprehen-

sive and accurate predictions of other seal performances, such as swirl development

and heat transfer, which haven’t been thoroughly studied in the past. In particular,

heat transfer investigations mainly focus on the fluid–solid heat exchange and the to-

tal temperature increase due to internal losses. The latter is also called the windage
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Figure 1.1: Labyrinth seals in the high pressure turbine cooling air system from the
BR700 series (Denecke et al., 2005)

heating. For example, the windage heating plays a significant role when the cooling

air runs through labyrinth seals and chills the turbine blades. As the cooling air

is heated up via the windage heating, the cooling performance is strongly degraded

and thus the blade lifetime is shortened. Another example shows the importance of

studies on swirl development. The incidence angle of downstream blades, which is

a major factor of stage losses, are strongly dependent on the exit–swirl of interstage

labyrinth seals [4].

The involvement of high rotational speed and high gas temperature in jet engines

causes complex physics in labyrinth seals. In general, there are three dominant effects

that need to be considered, which are the centrifugal effect, the thermal effect, and

the rotor vibration induced by fluid forces [5]. The centrifugal force and thermal

expansions can lead to significant growth of rotor in radial direction and affect the

tip clearance as a result. Moreover, the tip clearance changes with rotational speed

and gas temperature accordingly under different flight conditions. Bending vibrations

of the rotor excited by fluid forces can also invoke radial displacements and cause

instability issues.

It can be concluded that all effects discussed above involve fluid–structure interac-

tions (FSI). However, most works found in literature aimed at solving such problems

using decoupled approaches. For example, the fluid induced vibration is usually stud-

ied using rotordynamic models, which assume equations of motion for the rotor and

use fluid forces to determine the equation coefficients. However, structural impacts

on the fluid field are totally neglected. The centrifugal and thermal FSI effects have

been observed in some experimental studies. Delgado and Proctor (2006) [6] found
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that the two effects cause the leakage to increase by up to 70%. Similarly, the experi-

ments of Waschka et al. (1992) [7] shows centrifugal growths and thermal expansions

of up to 50% of the original clearance. In some numerical studies, the two effects

are accounted for by modifying the geometry of the fluid model using measured cen-

trifugal and thermal growths. Such examples can be found in the CFD models by

Millward and Edwards (1996) [8]. Denecke also adopted and extended the approach

to rotating stepped labyrinth seals [1].

In the numerical investigations above, it is always necessary to make assumptions

in order to decouple the sophisticated FSI problems. However, since the fluid and

the structure affect each other strongly in reality, it indeed requires fully coupled FSI

modeling.

In addition to the lack of profound research in FSI induced structural deformation,

another gap is the use of empirical models to estimate the heat transfer between fluid

and solid, which is crucial for the thermal design of labyrinth seals. For example,

semi–experimental semi–numerical methods are applied to determine heat transfer

coefficients and Nusselt numbers in [9, 10]. In particular, temperatures are first

measured in the fluid field and the structure separately, and then fed to thermal finite

element analysis as boundary conditions in order to calculate the heat flow. Although

the method is straightforward, it is associated with two major drawbacks. First,

the involvement of experiments is expensive; second, the accuracy is restrained by

experimental equipments and metrology. For example, as the typical size of labyrinth

seals is small, it not only restricts the maximum number of measuring points, but

also behaves poorly in existence of sudden change of geometries [9]. In brief, the

fluid–solid heat transfer is beyond the capability of traditional single field analyses

and requires multifield coupling.

To summarize, by introducing fully coupled FSI simulations, the current study of

labyrinth seals can be enriched in terms of: 1) studying FSI effects that are beyond

the scope of separate CFD or Computational Solid Mechanics (CSM) simulations;

2) reducing potential errors introduced by single field approximations; 3) obtaining

additional information and more accurate predictions of fluid and solid fields.

1.2 Previous Work on Labyrinth Seals

Recent research on labyrinth seals mainly focuses on experimental and numerical

studies of leakage, heat transfer, rotordynamic effects, seal configurations and seal

power loss. There are also some efforts putting on theoretical studies of these issues.
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1.2.1 Review of Experimental Studies

Among experimental investigations, leakage is the most common parameter being

studied. Proctor and Delgado (2004) [11] tested leakage of labyrinth seals (Fig. 1.2)

and other competing non–contacting seals for operating conditions of room temper-

ature and stationary rotor. Test results showed that both the brush and finger seal

offered substantial improvements in leakage performance over labyrinth seals. Later

they studied the leakage and power loss of labyrinth seals at various temperatures,

seal pressure drops, and rotational speeds [6]. They found out that the seal leak-

age decreases with the increase of rotational speed due to centrifugal growth of the

test disk, which reduces the tip clearance and increases with test temperature due to

thermal growth outward from the disk which results in larger seal clearance. Further-

more, seal power loss increases with rotational speed, seal pressure drop, mass flow,

and radial clearance. In experiments conducted by Gamal and Vance (2008) [12], the

effects of tooth thickness, tooth profile, and eccentric rotor on leakage were examined

through a series of non–rotating tests. They found out that by doubling the tooth

thickness the mass flow can be reduced by up to 20%, possibly due to increase of fric-

tional losses. Besides, reduction in cavity depth has virtually no impact on leakage.

However, they did not reach to a consistent conclusion on how the tooth profile can

influence leakage. In addition, they observed increase of leakage with eccentricity.

Figure 1.2: Four–knife labyrinth seal and seal test rig (Proctor and Delgado, 2004)

Initial experimental work on heat transfer in labyrinth seals can be traced back

to 1988, when Wittig et al. [9] tested leakage and heat transfer of stepped labyrinth

seals for different geometries and pressure ratios. Flow and wall temperatures of

seal components were first measured and then applied to a finite element program

to determine heat transfer coefficients and Nusselt numbers. In addition, they sim-

ulated the flow with a finite difference code and used analogies to calculate the wall

heat flux and Nusselt numbers. However, the numerical and experimental Nusselt

numbers didn’t agree at the teeth and step locations. Waschka et al. (1992) [7]
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used similar experimental approaches to investigate discharge and heat transfer coef-

ficients in rotating stepped labyrinth seals. Measurements showed that the clearance

can be reduced by approximately 50% due to centrifugal growth and thermal expan-

sion, which demonstrates the significance of rotation on reducing the leakage and

enhancing the heat transfer. They also did a parallel numerical study using a finite

volume code [10, 13, 14], the results of which confirmed the conclusions they reached

by experimental efforts. In addition, they also found that the Nusselt numbers for

different tip clearance sizes are almost identical. Millward and Edwards (1996) [8]

presented results of windage heating in high–speed seals on various designs and de-

rived a correlation to predict windage heating in labyrinth seals without honeycomb.

Their research work indicated that the windage heating power increases with mass

flow, rotational speed, nominal radius, and surface area. In the experiments done

by Willenborg et al. (2001) [15], the influences of Reynolds number, pressure ra-

tio, and tip clearance on leakage and heat transfer in a stepped labyrinth seal were

determined. The same finite element procedure as in [9] was used to calculate the

heat transfer coefficients and Nusselt numbers. The discharge coefficient turned out

to have stronger dependence on the Reynolds number than on the pressure ratio. In

particular, Nusselt numbers continuously increase with the increase of Reynolds num-

bers. Based on the same numerical and test approach, Willenborg et al. (2002) [16]

also included a honeycomb facing in the stepped labyrinth seal. The results revealed

a significant reduction of heat transfer with the honeycomb facing. Denecke et al.

(2005) [4] measured windage heating and exit–swirl in stepped labyrinth seals with

honeycomb; see Fig. 1.3 for the test rig. Accurate prediction of these variables is of

increasing importance in current turbomachineries. The test data, in turn, will help

with model validation.

Figure 1.3: Schematic view of the test rig section (Denecke et al., 2005)
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In order to understand rotordynamic effects, Kwanka (2000) [17] presented a novel

experimental procedure for the identification of rotordynamic coefficients, and found

out that the stepped labyrinth seal has less favorable rotordynamic properties than

a straight–through seal. Later, Kwanka (2001) [18] used this procedure to test vari-

ous methods of improving seal stability. Swirl brakes at the entrance of the seal are

highly effective, while the use of honeycomb generates larger excitation. Therefore, a

honeycomb in combination with swirl brakes is recommended for both good sealing

and good rotordynamic performance. An example of utilizing rotordynamic coeffi-

cients for overall rotor analysis can be found in [19]. In this work, Shen et al. (2007)

used the stiffness and damping coefficients of labyrinth seals presented in reference

[2] to calculate the nonlinear dynamics and stability of a rotor–bearing–seal system

analytically.

Complex seal configurations are the focus of many experiments. To improve un-

derstandings of the feature “annular groove” in stepped labyrinth seals, Rhode et al.

(1997) [20] observed the through–flow jet penetration into the annular groove using

a water leakage and flow visualization facility. They found that the presence of an

annular groove on the stator can result in higher leakage resistances. Later, they

(1997) [21] used the same procedure to determine the geometry–leakage relationship

for stepped labyrinth seals with another feature, “sloping surfaces”. It was found

that the combination of a sloping surface and a curved surface on the rotor within

the cavities will lead to a significant leakage reduction. Michaud et al. (2003) [22]

conducted tests on a 2D stepped labyrinth seal in order to understand the influence

of geometry and flow parameters on leakage and velocity field. With moderately

modified geometry, a leakage reduction of up to 17% was achieved. Abradable lands

in current labyrinth seals allow the teeth to rub grooves into the stator. In an ex-

perimental investigation of 2D labyrinth seals, Denecke et al. (2003) [23] presented

the influence of various rub–groove geometries on seal leakage. They also showed the

main flow mechanisms induced by rub–grooves using water–channel visualization.

More details of the aforementioned experiments, such as seal configurations and

operating conditions, are listed in Tab. 1.1 for comparison.
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Table 1.1: Seal configurations and operating conditions in previous experimental investigations

Research group 2D planar
/3D

straight–
through

stepped honey-
comb

rotating hot air max. press
–ure ratio

inlet
swirl

eccentric
rotor

Denecke et al. (2003) 2D planar x x (water)

Denecke et al. (2005) 3D x x x 1.3 x

Gamal&Vance (2008) 3D x 6.8 x

Kwanka (2000) 3D x x x 2.0

Kwanka (2001) 3D x x x 2.0 swirl
brakes

Michaud et al. (2003) 2D planar x 10.0

Millward&Edwards (1996) 3D x x x 1.9

Proctor&Delgado (2004) 3D x 6.1

Proctor&Delgado (2006) 3D x x x 6.1

Rhode et al. (1997) 2D planar x (water)

Schramm et al. (2002) 2D planar x x 1.6

Waschka et al. (1991–1993) 2D planar x x x x 2.0

Willenborg et al. (2001, 2002) 2D planar x x x 1.6

Wittig et al. (1988) 2D planar x x x 2.5
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1.2.2 Review of Numerical Studies

Numerical studies of labyrinth seals mostly refer to CFD simulations of the flow

through seals. CFD is used to reveal flow details and to predict the leakage. Back

in 1993, Rhode and Hibbs (1993) [24] used a Navier–Stokes finite difference code to

model leakage of a straight–through labyrinth seal with given inlet and outlet pres-

sures. The numerical results were in good agreement with test measurements, with a

leakage discrepancy of less than 8%. Schramm et al. (2004) [25] applied an annealing

optimization model to minimize the leakage through a stepped labyrinth seal, using

step position and height as variables. They found that varying step positions can

lead to changes in flow patterns. It was found that the combination of a large step

distance to the upstream knife and a large step height is most effective in reducing

leakage. With the aid of CFD simulations, Wang et al. (2004) [26] studied the behav-

ior of the flow through stepped labyrinth seals in the presence of disengagement. The

distance from tooth tip to step was found to influence leakage significantly. Vakili et

al. (2005) [27] presented their numerical work on the same stepped labyrinth seal as

in [22]. This effort is to understand the mechanisms behind leakage reduction and

total pressure loss. In particular, they looked into factors such as turbulence induced

viscous losses, cavity vortex generation, flow stagnation losses, and increased flow

streamline curvature. Li et al. (2006) studied rotating straight–through and stepped

labyrinth seals (Fig. 1.4) in [28] to determine the influence of pressure ratio and fin

pitch on leakage. Based on modeling, they showed that the leakage decreases as fin

pitch or inlet/outlet pressure ratio decreases. However, the numerical results were

not validated against any experiments.

Figure 1.4: Computational grid of the stepped and the straight–through labyrinth
seals (Li et al., 2006)

Numerical methods are widely used in determining rotordynamic coefficients. In

order to calculate fluid forces, 3D CFD simulation is required. Moore (2003) [29]
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used CFD to predict leakage and rotordynamic forces. Their results demonstrate

improved leakage and rotordynamic predictions over bulk–flow approaches. Hirano

et al. (2005) [30] calculated the rotordynamic force of a 3D labyrinth seal using CFD.

Compared with bulk–flow methods, the CFD results showed a lower prediction of

the destabilizing forces. However, the numerical results were not validated with any

test results. Schettel et al. (2005) [31] did calculations of stiffness coefficients and

the numerical results were validated against test data. It is shown that the stiffness

coefficients are functions of pressure drop, rotational speed, and entrance swirl. In

this study, a missing part was further discussion on damping coefficients.

CFD simulation also assists researchers greatly in gaining insights of flow as-

sociated with complex seal configurations. Schramm et al. (2002) [32] presented

numerical predictions and experimental investigations of leakage and velocity field to

understand the flow patterns in stepped labyrinth seals with honeycomb structures.

The numerical results agreed well with test data and showed very detailed features

for the flow into the honeycomb. It was found that the honeycomb facing can result

in an increase of leakage. Choi and Rhode (2004) [33] proposed to approximate a

3D flow by employing a 2D CFD model in a honeycomb labyrinth seal, which can

highly reduce computational costs. Leakage predictions were compared among cases.

The numerical results also showed close agreements with measurements. In reference

[34], Soemarwoto et al. (2007) numerically investigated the flow characteristics in

labyrinth seals with honeycomb land and canted knives. They identified the effects

of honeycomb and canted knives with respect to decreased production of losses.

There were also some attempts in applying numerical investigations to heat trans-

fer effects, where experimental studies dominate. For example, Denecke et al. (2005)

[4] simulated a stepped labyrinth seal with honeycomb to evaluate the ability of the

numerical model to predict windage heating, exit–swirl, and velocity profiles. The

numerical results showed excellent agreement with test results. Yan et al. (2009) [35]

studied the leakage and windage effects in stepped labyrinth seals with honeycomb

lands with numerical approaches (Fig. 1.5). They determined how pressure ratio and

clearance size can affect the discharge coefficient and windage heating number.

In Tab. 1.2, there is a summary for the seal designs, CFD codes, and turbulence

models used in the numerical investigations mentioned above.

Compared to the numerical effort put into the areas above, only a few publications

on FSI simulations of labyrinth seals are available, and these rare examples are dis-

cussed in this paragraph. In his dissertation [36], Lange (2005) simulated a 2D planar

straight–through labyrinth seal with a flexible rotor and presented the rotor vibration

induced by the flow under different pressure ratios. He showed that, in principle, it

is feasible to apply the in–house approach to FSI in labyrinth seals. However, there

is a lack of supporting parameter studies. Kudriavtsev et al. (2003) [37] simulated

the steady one–way FSI in a finger seal, where the calculated fluid forces were passed

to the structural solver and applied as loads on the seal components. Fujita and
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Figure 1.5: Mesh and static pressure distribution (Pa) of the stepped labyrinth seal
with honeycomb land (Yan et al., 2009)

Kato (2004) [38] simplified labyrinth seals to thin cylindrical shells with a fixed end

and a freely supported end, where the inner shell was elastic and the outer rigid.

Then, they did an analytical study on the vibration considering FSI between shells

and fluids flowing through a narrow passage. The latter two investigations extremely

simplified the coupling characteristics and the geometry of labyrinth seals.

1.2.3 Review of Theoretical Studies

In comparison with numerous experimental works and booming numerical analyses,

there has been only a few theoretical studies published over the last years. However,

these analytical models can help us to better understand the mystery between pa-

rameters and phenomena. For example, Yucel and Kazakia (2001) [39] presented an-

alytical approaches for leakage prediction. The study extended to higher inlet/outlet

pressure differences by incorporating pressure dependent flow coefficients. The results

compared favorably with CFD calculations. In the presence of a non–axisymmetric

rotation of the rotor in a stepped labyrinth seal, Eser (2002) [40] calculated the rotor-

dynamic coefficients by analytically solving the continuity and momentum equations.

For non–rotating labyrinth seals, there is an existing set of dimensionless numbers to

characterize leakage and heat transfer. Denecke et al. (2005) [41] extended the set

of non–dimensional numbers for rotating labyrinth seals to cover swirl and windage

heating using the dimensional analysis theorem. As part of the continuous work,

Denecke et al. (2008) proposed analytical approaches in [42] to predict the discharge

behavior, swirl development, and overall total temperature increase.
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Table 1.2: Seal designs and numerical approaches in previous CFD investigations

Research group 2D/3D straight–
through

stepped honey-
comb

rotating hot
air

inlet
swirl

CFD code turbulence
model

Choi&Rhode (2004) 3D x x Star–CD k − ε

Denecke et al. (2005) 3D x x x x FLUENT realizable
k − ε

Hirano et al. (2005) 3D x x x CFX–TASCflow k − ε

Li et al. (2006) 3D x x x x FLUENT k − ε

Millward&Edwards (1996) 2D x x x PACE k − ε, near
wall k − l

Moore (2003) 3D x x x SCISEAL k − ε

Rhode&Hibbs (1993) 2D x x (FD based) k − ε

Schettel et al. (2005) 3D x x x CFX–TASCflow k − ε

Schramm et al. (2002,
2004)

3D x x TASCflow3D k − ε

Soemarwoto et al. (2007) 3D x x x x ENSOLV TNT k − ω

Vakili et al. (2005) 2D x x x FLUENT k − ε

Wang et al. (2004) 2D x FLUENT RNG k − ε

Waschka et al. (1991–1993) 2D x x x x (FV based) k − ε

Wittig et al. (1988) 2D x x x (FD based) k − ε

Yan et al. (2009) 3D x x x x CFX k − ε
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1.3 Numerical Simulation of FSI – State of the Art

1.3.1 Progress in FSI Research

Over the past years, FSI has attracted growing interests and has become one of the

major focuses in the field of computational engineering [43]. Generally, there are

two main approaches for FSI problems: the monolithic approach, which solves the

governing equations of fluid and solid in a single solver; and the partitioned approach,

which in contrast solves the governing equations separately in two distinct solvers. In

the partitioned approach, it requires communication between two solvers at interfaces

and, therefore, involves various coupling algorithms. There are two main categories

of coupling algorithms, which are one–way and two–way coupling. One–way coupling

refers to the case where the data transfer is unidirectional, and two–way coupling

means bidirectional data transfer. Two–way coupling can be further divided into

explicit and implicit method. In the former case, data is exchanged only once per

timestep, while in the latter case, it allows for several FSI iterations within each

timestep till convergence is reached.

At the institute of the author, numerical methods for FSI have been a main focus

[44, 45], and an implicit partitioned coupling approach of two–way FSI [46] has been

developed by combining the multigrid fluid solver FASTEST [47] and the FEM based

structural solver FEAP [48] via the coupling interface MpCCI [49]. This approach has

been continuously improved to meet requirements set by sophisticated FSI problems.

In [50], the approach was verified by the well–known laminar FSI benchmark [51]:

good agreements have been observed between numerical results and reference values.

An elliptic grid smoothing technique was implemented to cope with large structural

displacements in FSI [52, 53] as shown in Fig. 1.6. In addition, a case of turbulent

FSI was presented in [53]. Later this approach was extended to thermal FSI, as well

as turbulent FSI using LES [54].

Figure 1.6: FSI simulation with large structural deformations (Yigit, 2008)

The monolithic approach has an advantage in robustness, but requires an extra

code for the combined governing equations. In [55], a monolithic approach based

on finite volume method (FVM) was developed and applied to several basic test

cases. Another displacement based FVM approach was proposed in [56]. However,

its application was restricted to simple structural problems. Meanwhile, a monolithic
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finite element method (FEM) multigrid approach was presented by Hron and Turek

(2006) [57] to solve the time dependent interaction between an incompressible fluid

and an elastic solid.

In comparison with the monolithic case, the partitioned approach is preferred on

more occasions due to its better compatibility with existing highly efficient CFD and

CSM codes, thus saving the effort of code developing. The communication between

different solvers requires a coupling interface to interpolate and exchange data. For

this purpose, the Fraunhofer Institute SCAI developed MpCCI [49], a commercial

code coupling library. MpCCI supports various commercial simulation codes and

provides a programmable interface for in–house codes. An alternative to MpCCI is

the academic code called preCICE [58], which has been developed at TU München

recently and provides solutions for basic coupling issues, such as data mapping, data

communication, and coupling schemes.

One–way coupling is only capable of representing weakly coupled physics, such as

thermal–stress problems. When the fluid and the solid significantly affect each other,

two–way coupling is needed. Furthermore, explicit methods usually deliver less ac-

curate results and suffer from stability problems. Therefore, they are suitable for

simple cases only. In contrast, implicit methods are more favorable and thus adopted

in most academic FSI investigations. For example, the stability issues in implicit

partitioned approaches were explored by Vierendeels (2009) [59] and Förster et al.

(2007) [60] for coupled problems involving incompressible fluids and flexible struc-

tures. The introduction of artificial compressibility stabilizing the coupling method

was presented as well. Küttler and Wall embedded dynamic relaxation methods [61]

and vector extrapolation [62] methods into a partitioned fixed–point FSI solver to

improve the simulation efficiency. In [63], van Zuijlen and Bijl (2009) reduced the

cost of sub–iterations in implicit partitioned approaches by applying a multilevel ac-

celeration technique. Moreover, Münsch and Breuer (2009) [64] studied several issues

of using LES in their implicit partitioned FSI approach, where FASTEST is coupled

with the structural code CARAT via the interface CoMa.

1.3.2 Survey of Industrial Applications

As seen in the last section, huge progress has been made in numerical methods of

FSI, which allows FSI implementation in industrial cases at affordable computational

costs. However, it is also realized that most applications are still at the rudimentary

level, where tremendous simplifications are introduced and/or less sophisticated FSI

approaches are adopted, like rigid structure, one–way coupling, etc..

Several typical industrial applications of FSI are summarized in Tab. 1.3, and

their key numerical features are compared there. Mechanical and thermal FSI refers

to cases, the coupling quantities in which are force/displacement and heat flow/temp-

erature, respectively. Steady or transient FSI differs in whether the coupled process
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is time dependent. Mesh deformation indicates that the fluid mesh is recalculated

on receiving the structural displacements. The focus of the FSI analysis, either on

the structure or on the flow, is defined as subject of interest in the last column. The

suitability of a monolithic approach for various FSI effects is a crucial feature, since

some monolithic approaches target specific FSI effects and drastically simplify the

structural or the fluid governing equations. For example, the monolithic approach

proposed by Wang et al. (2008) is suitable only for water–plate coupling, where the

terms of linear water wave are incorporated into the equations of motion of elastic

plates [65]. Similarly, in another monolithic approach developed by Sigrist and Broc

(2006–2009), the fluid is modeled by added mass and added stiffness terms in the

finite element discretization of the structure, instead of a complete modeling [66, 67].

The increasing popularity of FSI simulations can be seen from Tab. 1.3, covering

a wide range of industrial branches. Most of the cases presented here used parti-

tioned approaches, while monolithic approaches are relatively rare. Among various

partitioned approaches, the one–way and two–way explicit approaches are dominant

compared to the limited applications of the two–way implicit method. However, the

former two are limited to simple or weakly coupled FSI effects; in some extreme cases,

the fluid mesh does not need to be deformed. With growing industrial demands for

more accurate simulations of more complex FSI effects, the implicit method for two–

way FSI will thrive in the foreseeable future.

Another trend can be recognized from Tab. 1.3, that present FSI simulations

usually serve for the purpose of structural analysis.

1.4 Goals of the Study

The thesis aims at investigating various FSI effects in labyrinth seals by means of

numerical simulations. It consists in three main goals:

• Verify the accuracy and evaluate the efficiency of the numerical tool in parallel

computations against the FSI benchmark.

• Study the fluid force induced vibrations in non–rotating labyrinth seals using 3D

transient FSI models. The purposes are to predict rotor oscillations numerically

and study the influences of pressure difference and mass flow quantitatively.

• Investigate the centrifugal growth and fluid–solid heat transfer in rotating high–

temperature labyrinth seals by means of systematic parameter studies. The

purposes are to reveal the impacts of various operating conditions on the seal

behaviors in the presence of FSI effects and to provide guidelines on the choice

among different FSI models and traditional CFD models.
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Table 1.3: Industrial cases using numerical simulations of FSI

(a) Partitioned approaches

Research group application field mechanical
/thermal

one–way
/two–way

explicit
/implicit

steady
/transient

mesh de-
formation

subject of
interest

Benra&Dohmen (2007) [68] pump impeller mech. two–way explicit trn. yes both

Diwakar&Lin (2007) [69] pipe network both one–way – trn. no structure

Gorla et al. (2002, 2005) [70, 71] turbine blade both one–way – steady no structure

Ito et al. (2008) [72] sloshing inside tanks mech. one–way – trn. no structure

Kuntz&Menter (2004) [73] aeronautics mech. two–way explicit trn. yes both

Pericevic et al. (2005) [74, 75] blood vessel mech. one–way – trn. no structure

Timperi et al. (2008) [76] nuclear reactor mech. two–way explicit trn. yes structure

Zhang (2007) [77] wing flutter mech. two–way implicit trn. yes structure

(b) Monolithic approaches

Research group application field mechanical
/thermal

general
purpose

method steady
/transient

mesh de-
formation

subject of
interest

Sigrist&Broc (2007, 2009) [66, 67] nuclear reactor mech. no FEM modal
analysis

no structure

Tezduyar et al. (2007) [78] spacecraft parachute mech. yes FEM trn. yes both

Wang et al. (2008) [65] offshore engineering mech. no hybrid
FEM–BEM

modal
analysis

no structure
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1.5 Organization of the Thesis

The thesis is organized in the following way:

Chapter 1 gives an overview of the roles and challenges of labyrinth seals in modern

jet engines and reviews literature works on labyrinth seals, numerical methods of FSI

and their industrial applications.

Chapter 2 lays out the theoretical dimensions of the study. It begins by intro-

ducing the basic concepts in the design of labyrinth seals, then moves on to the

fundamentals of computational mechanics and the numerical methods of FSI.

Chapter 3 introduces the numerical tools for the study. The main features of

the fluid solver, the structural solver, and the built–in coupling interface are briefly

described. Last, it compares several popular commercial FSI approaches.

Chapter 4 first studies and verifies the FSI approach against the numerical FSI

benchmark, then examines the parallel performance of the approach.

Chapter 5 solves the fluid force induced vibration problem. It begins with the

setup and verification of the numerical models, then goes on to the detailed flow

features and structural modal analysis. Finally, results of the mechanical FSI are

presented, including dependency studies of the initial condition, as well as influences

of pressure ratio and mass flow on the rotor amplitude.

Chapter 6 investigates the centrifugal and thermal effects. It first defines and

validates the fluid and the solid models. Then, various FSI approaches are established,

followed by systematical comparisons of FSI and CFD models. Last, the heat transfer

behavior on the fluid–rotor/stator interfaces is presented.

Finally, key learnings from this study are concluded in chapter 7.



Chapter 2

Fundamentals

This chapter briefly reviews the basic concepts in the design of labyrinth seals, fun-

damentals of Computational Fluid Dynamics (CFD) and Computational Solid Me-

chanics (CSM) with emphasis on the current work, and numerical methods of FSI.

2.1 Essentials of Labyrinth Seals

Labyrinth seals are classic non–contacting seals in turbomachinery, such as compres-

sors, turbines, and pumps. They meet the sealing requirement, while certain leakage

is allowed. This work focuses on the labyrinth seals in jet engines with gas as the

working fluid.

Figure 2.1 shows the typical seal configurations in jet engines. Many alternatives

can be found in the literature [79]. They are chosen according to the leakage require-

ment, operating conditions, manufacturing capabilities, etc.. Both straight–through

and stepped labyrinth seals are often mounted with abradable honeycomb structures,

which allow for further reduction of the radial tip clearance and thus decrease in

leakage. Once the teeth and the honeycomb come into contact, the thin wall honey-

comb structure will be easily grooved with less collision and less damage to the teeth

compared to massive walls.

(a) Straight–through (b) Stepped (c) With honeycomb

Figure 2.1: Various configurations of labyrinth seals

17
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The thermodynamic behavior of labyrinth seals can be understood by examining

the flow through the annular orifices and cavities. Driven by the pressure drop, the

compressible gas is accelerated through the narrow tooth tip, which can be described

as an approximately isentropic process. Subsequently, the flow enters the cavity and

expands, as the velocity increases and the static pressure and temperature decrease.

In the cavity, the flow expands further and dissipates in small eddies. This process is

isobaric in ideal cases, so that the kinetic energy turns into thermal energy [5]. From

a global point of view, the cavity pressure drops and the tip velocity rises from the

inlet to the outlet. In non–rotating labyrinth seals, the total enthalpy is constant

across the seal, while the entropy grows. In comparison, the total enthalpy increases

in rotating labyrinth seals by receiving work from the rotor. In other words, the

power loss of the rotor is transformed into flow frictions, which accelerate and heat

the fluid. The reduction of leakage is achieved by the vortices built in the cavities, as

the energy contained in the flow is dissipated.

In general, investigations of labyrinth seals seek to determine the relation between

seal layout/operating conditions and seal performances. Labyrinth seals are often

studied using rotordynamic models, which focus on the bending vibration of the ro-

tor excited by the fluid forces. The vibration is described by linear differential equa-

tions of motion, the coefficients of which are determined using fluid forces obtained in

experiments or numerical simulations. In addition to rotordynamic models, various

half–empirical correlations are commonly used to predict seal performances, for exam-

ple, the Knife–To–Knife (KTK) models, where leakage, swirl, etc. can be predicted

based on the input of seal geometries and operating conditions. The following pa-

rameters are commonly used in the literature to describe the primary characteristics

of labyrinth seals and are adopted in this study.

There are several parameters related to the leakage behavior. The corresponding

dimensionless number, discharge coefficient CD, is given by

CD =
ṁ

ṁideal

(2.1)

ṁid =
Q̇id ptot,in A

√

Ttot,in

Q̇id =

√

√

√

√

2κ

ℜ(κ− 1)

[

1 −
(

1

π

)
κ−1

κ

]

(

1

π

)
1

κ

where ṁ denotes mass flow, the ideal mass flow ṁid is derived from the non–choked

isentropic flow of ideal gases through an annular, A is the cross–sectional area over

the tooth tips, ptot,in and Ttot,in designate the inlet total pressure and temperature,

respectively, and the expansion function Q̇id is defined by the pressure ratio π, ratio

of specific heats κ, and specific gas constant ℜ. The flow factor, ϕ, is also commonly
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used to represent the leakage rate

ϕ =
ṁ

√

Ttot,in

2Rptot,in

(2.2)

with the radius R. Choked flow occurs when CD or ϕ remains constant regardless of

a further increase in ptot,in.

The effect of total temperature increase due to internal losses is called windage

heating and is measured by the dimensionless number, windage heating coefficient σ

σ =
cp ∆Ttot

ω2R2
(2.3)

where ∆Ttot is taken as the difference of the average total temperature between the

inlet and the outlet, ω is the rotational speed, and cp is the fluid specific heat capacity

at constant pressure.

The swirl development across the seal is defined by the outlet swirl ratio Kout

Kout =
vtan

ωR
(2.4)

with the average circumferential velocity at the outlet vtan.

In heat transfer analyses, the Nusselt number Nu and heat transfer coefficient

htc represent the ratio of convective to conductive heat transfer across the fluid–solid

boundary

htc =
Q̇

A(Tf − Ts)
, htc =

Q̇sum

Asum(Tf − Ts)
(2.5)

Nu =
htc L

λf

, Nu =
htc L

λf

(2.6)

where Q̇ represents the heat flow, A is the fluid–solid area, the length L equals twice

the tip clearance, and λf denotes the fluid thermal conductivity. Moreover, the fluid

temperature Tf is usually estimated by averaging the total temperatures over the

channel height, while the solid temperature Ts is taken at the fluid–solid surface. In

the expression of htc, Tf and Ts are calculated by averaging Tf and Ts across the seal.

Various operating conditions are written as dimensionless numbers as well. The

pressure ratio π and the circumferential Mach number Mtan are defined as

π =
ptot,in

pstat,out

(2.7)

Mtan =
ωR

c
(2.8)

with the outlet static pressure pstat,out and the speed of sound c.
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2.2 Computational Fluid Dynamics

This section gives a brief review of the governing equations of fluid mechanics, tur-

bulence modeling, and the finite volume method (FVM) for CFD [80–84].

2.2.1 Governing Equations of Fluid

The governing equations of fluid mechanics include the conservation laws for mass,

momentum, and energy, which are usually expressed using the Eulerian description.

Mechanical and thermodynamic constitutive equations are needed to close the system

of equations. The momentum conservation law for Newtonian fluids is also known as

the Navier–Stokes equations, where the stress tensor T is given by

T = −
(

p +
2

3
µ∇·v

)

I + 2µD (2.9)

where µ denotes the dynamic viscosity, v represents the velocity, I is the identity

tensor, and D is the strain rate tensor

D =
1

2

[

∇v + (∇v)T
]

(2.10)

In the Navier–Stokes equations, the symmetric stress tensor T is often decomposed

into a volumetric stress tensor (−pI) representing the isotropic hydrostatic pressure,

and a deviatoric stress tensor τ which describes the anisotropic viscous forces

τ = 2µD − 2

3
µ(∇·v)I (2.11)

The unsteady equations of mass, momentum, and energy conservation are given

in Eq. 2.12 to Eq. 2.14 with the density ρ, body force per unit mass b, thermal

conductivity λ, and energy source SE. The energy conservation law is expressed in

the form of total enthalpy htot to describe compressible flows. Static quantities are

indicated in the following unless otherwise stated.

∂ρ

∂t
+ ∇· (ρv) = 0 (2.12)

∂(ρv)

∂t
+ ∇· (ρvv) = −∇p + ∇· τ + ρb (2.13)

∂(ρhtot)

∂t
− ∂p

∂t
+ ∇· (ρvhtot) = ∇· (λ∇T ) + ∇· (v· τ ) + v· ρb + SE (2.14)

The system of equations above is to be solved for v, p, and htot. Static enthalpy

h is calculated by h = htot − (v·v)/2. Then, static temperature T can be computed

using the caloric constitutive relation of h = h(p, T ), which becomes dh = cp(T )dT
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for ideal gas. At the mean time, total temperature Ttot is calculated from htot using

the similar relation, dhtot = cp(T )dTtot. In addition, total pressure ptot of ideal gas is

evaluated with

ptot = p exp[
1

ℜ

∫ Ttot

T

cp(T )

T
dT ] (2.15)

The thermal equation of state is required to determine the density. For an ideal

gas, this relationship is described by the ideal gas law

ρ = p/ℜT (2.16)

2.2.2 Statistical Turbulence Models

By decomposing the fluid variables into averaged and fluctuating components, for

example, velocity v = v + v′, the original Navier–Stokes equations are modified,

resulting in the Reynolds Averaged Navier–Stokes (RANS) equations. The momen-

tum and enthalpy transport equations thus contain turbulent flux terms adding to

the molecular diffusive terms. These additional turbulent fluxes are called Reynolds

stress ρv′ v′ and Reynolds flux ρv′ h′, respectively. Turbulence models based on the

RANS equations are known as statistical turbulence models due to the statistical av-

eraging procedure. The equations used to model the Reynolds stresses and Reynolds

fluxes define the type of turbulence model.

Eddy viscosity turbulence models are used in the current work. The eddy viscosity

hypothesis assumes that the Reynolds stresses can be related to the mean flow and

turbulent viscosity µt in a manner analogous to τ in laminar flows. In other words,

the turbulent effect can be represented as an increased viscosity with the effective

viscosity µeff = µ+µt. The Reynolds stresses and the Reynolds averaged momentum

equations for incompressible flows become:

−ρv′ v′ = µt

[

∇v + (∇v)T
]

− 2

3
ρkI (2.17)

∂(ρv)

∂t
+ ∇· (ρv v) = −∇(p+

2

3
ρk) + ∇·

[

µeff∇v + µeff(∇v)T
]

+ ρb (2.18)

with the turbulent kinetic energy k given by k = 1

2
v′·v′, the averaged pressure p, and

the averaged velocity v. For compressible flows, the averaging is weighted by density,

and the −2

3
µ(∇·v)I term of τ is neglected by the current CFD solver which will be

introduced in the next chapter.

In order to close the averaging system, µt has to be modeled by additional equa-

tions. This can be done by the k−ε, k−ω, or SST turbulence models. Both the k−ε
and k − ω turbulence models provide two additional transport equations to compute

µt. In the former, k and the dissipation rate of the turbulent kinetic energy, ε, are
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introduced and calculated directly from the respective transport equations, while µt

is assumed to be linked to k and ε via µt = Cµρ
k2

ε
. The latter solves transport equa-

tions for k and the turbulent frequency ω, to which µt is related via µt = ρ k
ω
. The

SST turbulence model is a combination of k − ω model in the inner boundary layer

and k − ε in the outer region of the boundary layer and the main flow. Moreover, a

limitation of the shear stress in adverse pressure gradient regions is implemented in

the SST model. Formulations of the k and ω transport equations and the limiter are

given in [85].

In high–Re models, wall functions are often used, which relate the near–wall tan-

gential velocity to the wall shear stress τw by a logarithmic relation and use τw as a

force boundary condition for the momentum equation of the tangential velocity com-

ponent. Using wall functions can save the computing time substantially. It means

that the first node is located in the log–law region where 30 ≤ y+ ≤ 300 and the vis-

cous sublayer is not resolved. Wall functions are derived under the assumption that

the flow between the first node and the wall behaves as in the flat–plate boundary

layer flow. However, this is not satisfied in many cases. In low–Re models, details of

the boundary layer are obtained by solving the adapted transport equations through

the sublayer, requiring the first node to be located at y+ ≈ 1 and 5 – 10 nodes up to

y+ ≈ 20 [86].

2.2.3 Finite Volume Method

The governing equations of fluids are usually discretized in space using FVM. The

FVM formulations can be found in many literatures and are not repeated in this

section. Instead, general remarks on FVM with respect to the current study are

summarized as follows.

The spatial domain is discretized into control volumes (CV) and the differential

governing equations are integrated over each CV. Then, the variables and their deriva-

tives are evaluated by numerical approximation. Diffusive terms are often approxi-

mated using a central differencing method, while convective terms can be discretized

using various schemes with pros and cons. The first–order accurate Upwind Differenc-

ing Scheme (UDS) is robust; however, diffusive discretization errors are introduced.

The second–order accurate Central Differencing Scheme (CDS) is less robust and

tends to cause nonphysical oscillations in regions of rapid solution variations. This

represents the common dilemma of numerical approximations: high–order approxi-

mations are generally less robust in addition to increasing the computational load.

The unsteady terms can be discretized using explicit/implicit transient schemes

of different order–accuracy. For example, the second–order Backward–Differencing

Formula (BDF) employed in this work has the advantages of being robust, fully

implicit, conservative in time, unconditionally stable, and second–order accurate in

time. However, it is not bounded and may create nonphysical solution oscillations.
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In comparison, its first–order counterpart is bounded, but will introduce diffusive

discretization errors similar to the behavior of UDS in space.

When the CVs deform in time, the integral conservation equations must be modi-

fied by applying the Leibniz integral rule and the Space Conservation Law (SCL) must

be satisfied. The SCL states that for each CV, the rate of change of volume must

equal the swept volume due to the its boundary motions [87]. It is satisfied by using

consistent formulations for both the control volume and swept volume calculations.

There are mainly two solution strategies for the coupled system of discretized con-

servation equations: the segregated and the coupled treatments. The latter exceeds

the former in robustness and generality, while the former has the advantage of lower

storage requirement. A well–known example of the segregated algorithm is the SIM-

PLE pressure–correction method. In comparison, the coupled approach solves the

equations of mass and momentum conservation as a single system.

The procedures above lead to systems of algebraic equations, which are solved

using iterative methods, such as the ILU methods. They start from an approximate

solution and repeatedly improve it by a correction to yield a better solution of the

desired accuracy. Furthermore, iterative methods can be accelerated significantly

using multigrid methods, which deliver constant computing time per node as the grid

is refined [88].

Last but not least, one major issue in industrial applications of CFD concerns the

reliability of the results. In order to improve the quality of CFD simulations, a large

number of Best Practice Guidelines (BPG) have been proposed by various groups

[89, 90] to provide generic advices on how to perform high–quality CFD computations.

BPGs give valuable input to the current study on avoiding common errors, generating

appropriate meshes, choosing turbulence models, etc..

2.3 Computational Solid Mechanics

This section reviews the basic physical quantities and governing equations for ther-

moelastic material with geometric nonlinearities, as well as the key procedure of finite

element discretization [91–95].

2.3.1 Governing Equations of Solid

The Eulerian (spatial) coordinates of a body are denoted by x, and the Lagrangian

(material) coordinates by X. The Lagrangian description is most popular in solid

mechanics, then the displacement is calculated by u(X, t) = x(X, t) − X. There are

mainly two formulations based on the Lagrangian description: the total Lagrangian

formulation and the updated Lagrangian formulation. The derivatives and integrals

are taken with respect to the initial configuration X in the former, and the current
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configuration x in the latter. Moreover, the former usually uses total measures of

stress and strain, and the latter often uses rate measures. The two formulations are

identical regarding the underlying mechanics. The updated Lagrangian formulation

can be transformed to the total Lagrangian formulation by configuration mappings

and tensor transformations, and vice versa. In the following, the strain and stress

are expressed in both formulations, while the conservation laws only in the updated

Lagrangian formulation.

In the total Lagrangian formulation, the Green strain tensor Eel is used to account

for finite strains, large rotations and deflections

Eel =
1

2

[

∇u + (∇u)T + ∇u· (∇u)T
]

(2.19)

with ∇ = ∂/∂X, while the Cauchy strain tensor ε
el omits the nonlinear term in Eel

and accounts for infinitesimal strains

ε
el =

1

2

[

∇u + (∇u)T
]

(2.20)

with ∇ = ∂/∂X ≈ ∂/∂x. Note that ε
el only applies to small deflections and rotations,

as it does not vanish in large rigid body rotations.

In the updated Lagrangian formulation, strains are measured by the strain rate

tensor Del using velocity v as the independent variable

Del =
1

2

[

∇v + (∇v)T
]

(2.21)

with ∇ = ∂/∂x. v is originally defined in Lagrangian coordinates and can be ex-

pressed in terms of Eulerian coordinates by using element coordinates.

The thermal strain tensor εth takes a diagonal form and becomes a volumetric

tensor for isotropic material

ε
th =

∫ T

T0

α(T )dT I (2.22)

with the temperature–dependent coefficient of thermal expansion α(T ) and the initial

temperature T0. The thermal strain is often defined as either the logarithmic strain

or the nominal strain. When α is assumed constant, the final thermal expansion

becomes

llog = l0 exp[α(T − T0)], lnom = l0[1 + α(T − T0)] (2.23)

The second Piola–Kirchhoff stress tensor Sel is conjugate in power to the Green

strain rate Ėel, while the Cauchy stress tensor σel and Del are conjugate in power.

σ
el is also called the physical stress or true stress. In constitutive laws, the Jaumann
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objective stress rate should be used instead of the rate of the Cauchy stress σ̇el to

account for large rotations, whereas Sel is used directly, since it is invariant in pure

rotation. Thus, the Cauchy stress rate and the second PK stress become

σ̇
el = CJD : Del + W·σel + σ

el·WT (2.24)

Sel = CSE : Eel (2.25)

where the fourth–order elasticity tensor CJD links the Jaumann objective rate to Del,

CSE relates Sel to Eel, and the spin tensor W is defined as W = 1

2

[

(∇v)T −∇v
]

.

For elastic material in the small strain regime, there is no distinction between the

various measures of strain and stress. Thus, the constitutive law of isotropic elasticity

can be expressed by the Young’s modulus E and Poisson’s ratio ν

σ
el =

E

1 + ν
ε

el +
νE

(1 + ν)(1 − 2ν)
εel

kkI (2.26)

The linear elastic law can be extended to account for small strain with large

rotation by substituting σel and εel with Sel and Eel, respectively, which is called the

Saint–Venant–Kirchhoff model. The isotropic Saint–Venant–Kirchhoff material law

becomes

Sel =
E

1 + ν
Eel +

νE

(1 + ν)(1 − 2ν)
Eel

kkI (2.27)

The thermal stress σth of isotropic linear thermoelastic material with constant α

is given by

σ
th = − αE

1 − 2ν
(T − T0)I (2.28)

The governing equations arise from the fundamental conservation laws of con-

tinuum mechanics. The conservation of momentum is expressed as the equation of

motion, and the conservation of energy describes heat transfer. In the updated La-

grangian formulation, the conservation equations are expressed by σ and D; the

variables are written in terms of the Lagrangian coordinates, such as v(X, t), but the

derivatives are with respect to the Eulerian coordinates

ρv̇ = ∇·σ + ρb (2.29)

ρ ė = σ : D −∇·q + ρ ψ (2.30)

with ∇ = ∂/∂x, body force per unit mass b, internal energy per unit mass e = csT ,

heat flux q = −λ∇T for isotropic material, and heat source per unit mass ψ.
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2.3.2 Finite Element Method

The finite element method (FEM) discretizes the weak form of the momentum and

energy equations to obtain approximate solutions to the strong form. The weak form

can be obtained either by applying the weighted–residual Galerkin method to the

strong form or by differentiating the virtual work of the system. The finite element

discretization of displacement and velocity vectors is written as

{u(X, t)} = [N(X)]{a(t)}, {v(X, t)} = [N(X)]{ȧ(t)} (2.31)

with the unknown nodal displacement vector {a} and the shape function matrix [N],

thereby, the spatial dependence and the time dependence are separated.

We shall focus on the momentum equation. Its weak form is first discretized in

space, resulting in the semi–discrete equations

[M]{ä} + {f int} = {fext} (2.32)

In the updated Lagrangian formulation, the mass matrix reads [M] =
∫

Ω
ρ[N]T[N]dΩ;

the internal nodal force is written as {f int} =
∫

Ω
[∂N/∂x]T {σ}dΩ, where the Cauchy

stress tensor is converted to a vector in Voigt notation; and the external nodal force

becomes {fext} =
∫

Ω
ρ[N]T{b}dΩ +

∫

Γ
ρ[N]T{t}dΓ with the normal surface force

vector {t}. The total Lagrangian formulation would also result in Eq. 2.32, except

that the derivatives and integrals are taken over the initial coordinates.

The most popular and most robust method of solving Eq. 2.32 is the Newton–

Raphson method. It first linearizes the term {f int} by differentiating it with respect

to {a}, yielding the tangent stiffness matrix [K(a)] = ∂{f int}/∂{a}, and then solves

the equations iteratively. In linear cases, [K] is independent of {a}.
Equations 2.32 need to be further discretized with respect to time, where various

time integration methods can be applied. The Newmark–β time marching scheme is

an implicit method that uses finite difference expansions in time to calculate {an+1}
based on {an}

{än+1} = {ȧn} + [(1 − γ){än} + γ{än+1}]∆t (2.33)

{an+1} = {an} + {ȧn}∆t+

[(

1

2
− β

)

{än} + β{än+1}
]

∆t2 (2.34)

where β and γ are integration parameters. The solution of Eq. 2.33 and Eq. 2.34 is

unconditionally stable when β ≥ 1

4

(

1

2
+ γ

)2
, γ ≥ 1

2
. The parameters are sometimes

calculated using the amplitude decay factor θ as β = 1

4
(1 + θ)2, γ = 1

2
+ θ. When

β = 1/4 and γ = 1/2, i.e. θ = 0, the results will not show any numerical damping.

However, a certain level of numerical damping is usually desired and is achieved by

setting θ > 0.
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2.4 Numerical Methods of FSI

In generic fluid–structure coupling problems, the mechanical and/or thermal quanti-

ties of the two fields are exchanged at the interface. In particular, the fluid passes

forces and heat flow to the solid, while the solid sends displacements and temperatures

back to the fluid.

The following mechanical and thermal boundary conditions must be satisfied on

the fluid–solid interface

T·nf = −σ·ns, vf = vs (2.35)

qf = qs, Tf = Ts (2.36)

where σ/T denote the solid/fluid stress, q designates the heat flux, and n is the unit

normal vector of the interface. They imply the force balance, no–slip wall conditions

for the fluid, heat flux balance, and temperature balance, respectively.

Various FSI solution strategies have been compared in section 1.3.1. An implicit

partitioned approach for two–way coupling is chosen for this work, the algorithm of

which is shown in Fig. 2.2. The FSI iteration is also known as the stagger iteration,

and its definition is introduced in the next chapter. In each FSI iteration, the solid

solver runs first, where the solid boundary conditions are updated by the fluid results

obtained from the last FSI iteration; then the fluid solver runs based on the fluid

boundary conditions updated by the solid solution.

The fluid mesh deforms with time in FSI problems, thus the fluid integral con-

servation equations need to be modified by applying the Leibniz rule. Such modi-

fication can also be interpreted as describing the conservation laws in the arbitrary

Lagrangian–Euler formulation. As a result, the convective terms are corrected to

account for the net convection across the moving CV boundary S, and the unsteady

terms are with respect to the moving volume V

d

dt

∫

V

ρ dV +

∫

S

ρ(v − vg)·n dS = 0 (2.37)

d

dt

∫

V

ρv dV +

∫

S

ρv(v − vg)·n dS =

∫

S

(−pI + τ )·n dS +

∫

V

ρb dV (2.38)

d

dt

∫

V

ρφ dV +

∫

S

ρφ(v − vg)·n dS =

∫

S

λφ∇φ·n dS +

∫

V

Sφ dV (2.39)

where vg is the velocity of the CV boundary, and the energy equation is represented

by the generic transport equation of scalar φ with its diffusivity λφ and energy source

SE for conciseness. Moreover, the space conservations law

d

dt

∫

V

dV =

∫

S

vg·n dS (2.40)
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Figure 2.2: Implicit partitioned approach for two–way coupling; solid solver first

must be enforced to avoid erroneous sources of conserved quantities [87]. The equation

indicates that the rate of the volume change must equal the net volume swept by the

moving CV faces.

FSI simulations can either be transient or steady. Both the fluid and the solid

solvers can be set to transient or steady mode, giving rise to four different combi-

nations. The transient–transient combination models transient physics, such as the

structural vibration induced by fluid forces. In the steady–steady case, the physical

process moves towards an equilibrium. This approach is adequate for the steady–

state heat transfer between fluid and solid. The steady solid–transient fluid version

simulates transient FSI effects where the structural response to the flow variations is

much faster than the evolvement of the fluid field, such that the transient effects of

the solid can be neglected. Reversing the case will lead to the transient solid–steady

fluid combination. Actually, all FSI effects can be solved with the transient–transient

approach, but the results would be the same with the respective semi–steady or steady

approaches, and the computational cost would be much higher.



Chapter 3

FSI Solutions

The ANSYS® multiphysics software package is adopted in this work, and it requires

no third–party interface to couple the algebraic multigrid CFD solver ANSYS CFX®

and the FEM based structural solver ANSYS Mechanical™. The particular two–way

implicit FSI solver is referred to as MFX and its related information can be found in

the ANSYS manuals [89, 91].

This chapter starts with introducing the main features of the fluid solver, as well

as the capabilities of the structural solver. Then, it goes through detailed parameter

settings of the built–in coupling interface. Finally, a brief comparison is given among

several prevailing commercial FSI approaches.

3.1 CFD Code

ANSYS CFX is a general purpose CFD software capable of modeling transient tur-

bulent flows with heat transfer. The main features are as follows:

Finite volume method: The governing equations are discretized by applying the

finite volume method as described in section 2.2.3.

Unstructured grid: The code uses a non–staggered unstructured grid.

Coupled solver: The coupled solver solves for velocity and pressure simultaneously,

in contrast to the pressure–correction methods.

Algebraic multigrid: The linear equations are solved iteratively using an algebraic

multigrid accelerated Incomplete Lower Upper (ILU) factorization technique.

In particular, the additive correction implementation of algebraic multigrid is

used.

Parallel computation: A parallel computation consists of two steps: a partitioning

step and a running step. Several node–based partitioners are available, most of

29
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which employ recursive bisection methods. The Multilevel Graph Partitioning

Software partitioner, MeTiS, is very common due to its high efficiency. The

parallel communication is performed using the Parallel Virtual Machine (PVM)

or the Message Passing Interface (MPI).

In addition, there are other features of the CFD code which are indispensable in the

current work and will be referred to occasionally in later chapters, such as:

Reference pressure: The relative pressures at boundaries and a global reference

pressure can be specified by the user. The main purpose of using a reference

pressure in translation between the absolute and relative pressure is to avoid

round–off error problems when the pressure change is much smaller than the

absolute pressure. For compressible flows, the pressure level set by the reference

pressure affects the results. Therefore, the absolute pressure is referred to in

this thesis unless otherwise stated.

Boundary conditions: The inlet and outlet boundaries can be set in terms of ve-

locity, static/total pressure, or mass flow. In k−ε and k−ω turbulence models,

the inlet turbulence quantities are specified, such as turbulence intensity and

length scale, while a constant gradient constraint is imposed at the outlet. When

heat transfer is involved, it requires the inlet static/total temperature or total

enthalpy. Moreover, a translational or rotational speed can be specified for wall

boundaries.

Steady simulation: The solver applies a false timestep to under–relax the equa-

tions for steady problems. There are two iteration levels: the outer (false)

timestep iteration and the inner coefficient iteration. For steady state, each

outer iteration contains only one inner iteration.

Transient simulation: First/second–order implicit schemes are applied to transient

simulations. In contrast to steady cases, multiple inner iterations are performed

at each timestep. In addition, there is another iteration level between the outer

and the inner iterations in transient two–way FSI analysis, which is called the

stagger iteration. Each timestep consists of one or more stagger iterations;

within a stagger iteration, each field solver runs once for multiple inner itera-

tions.

Convection term: Available convection schemes are as follows: 1) First–order Up-

wind Differencing Scheme (UDS); 2) Central Difference Scheme (CDS); 3) Blend-

ing scheme between UDS and CDS; 4) High resolution scheme, which is actually

second–order bounded UDS.

Turbulence models: The flow solver provides various turbulence models: RANS

models (including eddy viscosity models and Reynolds stress models), Large
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Eddy Simulation (LES) models, and RANS–LES hybrid models. For two–

equation eddy viscosity models, there are the standard k− ε model, RNG k− ε

model, standard k − ω model, Shear Stress Transport (SST) model, and so on.

The boundary layer flow can be modeled with wall functions or the low–Re

near–wall approach. An alternative near–wall treatment for k−ω based models

is included in the solver, which is called the automatic wall treatment. It allows

for a smooth shift from a low–Re formulation to wall functions. Similarly, a

modified wall function approach known as the scalable wall function is imple-

mented for models based on the ε–equation, in order to overcome the prediction

inconsistencies when refining the near–wall mesh.

Convergence criteria: The solver provides two types of residual measurements,

i.e. the Root Mean Square (RMS) and the maximum (MAX) normalized resid-

uals. The residuals are monitored for the mass/momentum/energy transport

equations only, excluding the turbulent transport equations. In addition, the

conservation of mass, momentum, and energy at the boundaries are also checked

for convergence. The percentage imbalance of certain quantity is defined as (To-

tal In - Total Out)/Total In. The iteration is terminated and the solution is

considered converged when both the residual target and the imbalance target

are met.

Mesh deformation: The displacements received by the fluid solver on domain bound-

aries are diffused to other mesh points inside the domain by solving the dis-

placement diffusion equation ∇· (Γdisp∇δ) = 0, where δ denotes displacements

relative to the previous mesh locations. The mesh diffusivity, Γdisp, is also re-

ferred to as the mesh stiffness. It determines how stiffly the mesh deforms in

different regions. The solver provides several options for calculating Γdisp. For

example, Γdisp for increase near boundaries is defined as Γdisp =
(

1

d

)Cstiff , where

d indicates the distance from the nearest boundary. Γdisp for increase near small

volumes is defined as Γdisp =
(

1

V

)Cstiff , where V refers to the control volume

size. One can decide how quickly Γdisp increases by specifying the exponent

Cstiff . Alternatively, it is allowed to define other expressions for Γdisp. The

RMS residual is used to measure the convergence level of the mesh displace-

ment equation. In addition, the Space Conservation Law for moving grids [87]

is satisfied by the code.

3.2 CSM Code

ANSYS Mechanical is general purpose software for finite element analysis of mechan-

ical problems. Its capabilities range from linear static to nonlinear transient analysis.

The key features related to this work are presented below:
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Geometric nonlinearity: The solver applies the updated Lagrangian method to

simulate geometric nonlinearities. Finite displacement and rotation effects can

be included in both static and transient analyses. This feature is applied in

order to account for large deflections with small strains as in the case to be

discussed in chapter 4 and centrifugal growths as in the case to be discussed in

chapter 6.

Element types: The element library of the code consists of several element types,

such as 3D first/second–order beam/solid elements with structural and thermal

DOFs at each node.

Transient scheme: The Newmark–β time integration method is used for implicit

transient analysis. The integration parameters can be either from direct inputs,

or indirect correlations with the user–defined amplitude decay factor.

Convergence control: In nonlinear analyses, three different vector norms are used

as convergence controls, which are the L2 norm checking the square root sum

of the squares of variable imbalances, the L1 norm checking the sum of the

absolute values of imbalances, and the infinite norm checking the imbalances of

each DOF at each node.

Centrifugal effects: Centrifugal effects can be applied to structures with specified

rotational velocities. The inertial effects are incorporated either by activating

geometric nonlinearity or by subtracting a spin softening matrix from the struc-

tural stiffness matrix. This feature is only applicable to some element types.

Thermal analysis: The temperature distribution and related thermal quantities are

obtained from thermal analysis. Material properties are allowed to be either con-

stant or temperature–dependent. Thermal load types supported by the code

include constant temperatures, convections, and heat fluxes. When using con-

vective boundaries, heat transfer coefficient and surrounding fluid temperature

also need to be specified. Heat flux boundary conditions are used when the

amount of heat transfer across a surface is known.

3.3 FSI Interface

The implicit partitioned method for two–way FSI is adopted in the current study.

According to the previous discussion in section 1.3.1, this approach has higher accu-

racy and is more stable than others, with which the individual physical fields can be

solved more effectively and efficiently. This section focuses on the coupling between

the CFD and the CSM solvers. The list below discusses coupling–related settings in

FSI models.
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Solution sequence: The CFD and the CSM codes can be run simultaneously or

sequentially during each stagger iteration. The latter is more commonly used

and requires specifications of solver orders in stagger iterations.

Coupling variables: The variables allowed transferring across the fluid–solid inter-

face include mechanical variables, such as displacement, force, and force flux,

and thermodynamic variables, such as temperature, heat flow, and heat flux.

Mapping interpolation schemes: An interpolation scheme is necessary for data

mapping across mismatched meshes from the two solvers at FSI interfaces.

There are two types of interpolation, which are the profile preserving scheme

and the conservative scheme. The former takes the variable profile from one

mesh and maps it onto the other, regardless of quantity conservations across

the surface as ensured in the latter scheme. In practice, displacement and tem-

perature are always interpolated using the former scheme, while force and heat

flow always follow the latter one.

FSI convergence criteria: The convergence criteria use the L2 norm of each vari-

able φ, which is defined as ‖φ‖2 =

√

∑

(

φnew−φold

φnew

)2

. Note that the sum is

taken over all nodes on the coupling surface. The variable φ is considered to be

converged when ‖φ‖2 is reduced below the convergence target.

FSI under–relaxation factors: These are the relaxation values applied to the vari-

ables transferring across the coupling surface. It is possible to specify different

under–relaxation factors to different variables.

FSI timestep: In transient FSI analysis, the fluid timestep must equal the FSI

timestep, while a smaller value can be used for the solid timestep. This so–

called sub–cycling is sometimes required to improve stability.

3.4 Comments on Prevailing Commercial FSI So-

lutions

In recent years, there is a boom of commercial FSI solvers. However, it is important

to realize that the solutions can vary greatly in the degree of sophistication. For

example, some are capable of strongly coupled transient FSI problems, while some

only perform post–processing–like FSI analysis by purely passing data from one solver

to the other at the end of the simulation. In addition, partitioned approaches seem to

be preferred among software suppliers, as there is no commercial monolithic approach

known to the author.
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ANSYS provides several FSI solutions which do not require third–party interfaces.

For example, the MFX solver introduced above offers implicit solutions of two–way

FSI problems [96], which is the most stable and accurate version of partitioned ap-

proaches. In contrast, another FSI capability is also available in the most recent

release, where ANSYS FLUENT® and ANSYS Mechanical are coupled to perform

one–way FSI [97]. The surface temperatures or surface forces obtained using the CFD

solver is transferred to the structural solver based on post–processing.

The introduction of external interfaces makes coupling among many CFD and

CSM software possible. For example, the standard code coupling interface MpCCI

has attracted growing interests in the past years, as it provides adapters for several

commercial codes, such as ANSYS Mechanical, ABAQUS®, ANSYS FLUENT, and

Star–CD®. The two CFD codes can be coupled with the two CSM codes arbitrarily

to perform one–way and two–way FSI simulations. However, since data exchange

within timesteps is not supported by these codes, the coupling can only be explicit. In

strongly coupled cases, such explicit approaches can easily lead to diverging solutions

[98].



Chapter 4

FSI Benchmark and Parallel FSI

This chapter consists of two parts. The first one is studying and verifying the nu-

merical FSI approach introduced in chapter 3 against the well–known unsteady FSI

benchmark proposed by Turek and Hron (2006) [51]. The second one is investigating

the parallel performance of the approach.

4.1 Benchmark Definition

The 2D benchmark test case focuses on the interaction between an incompressible

laminar flow and an elastic structure. The geometries of the fluid and the solid domain

are shown in Fig. 4.1 [99]. The benchmark configuration is an adaptation of the classic

flow around a cylinder problem, where an elastic beam is attached to the downstream

side of the rigid cylinder. Both the cylinder and the beam are submerged in the flow.

With the given inlet velocity and fluid/solid material properties, the fluid pressure

will induce a periodic oscillation of the beam. Moreover, the cylinder is intentionally

positioned unsymmetrically in y–direction so that the onset of the oscillation will not

be affected by numerical errors.

Figure 4.1: Geometric design of the benchmark (Becker et al., 2009)

The flow has a Reynolds number of 200, where the characteristic length is taken
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as the cylinder diameter and the velocity as the inlet mean velocity. The fluid is

considered to be Newtonian with the properties listed in Tab. 4.1. In particular, the

large kinematic viscosity helps to maintain a low Reynolds number in the laminar

regime. Moreover, the large fluid density and the low solid stiffness allow significant

structural deformations. A parabolic velocity profile is specified at the inlet:

vf (0, y) = 1.5v̄f

y(H − y)

(H
2
)2

= 71.39y(0.41− y) (4.1)

where v̄f = 2 m/s represents the inlet mean velocity and H denotes the channel

height.

The beam is subjected to large deflections, while the material properties stay in the

elastic range. Thus, the St. Venant–Kirchhoff constitutive law for finite deformation

is applied.

Table 4.1: Material properties

Structure
Density Poisson’s ratio Young’s modulus

103 kg/m3 0.4 5.6 × 106 Pa

Fluid
Density Kinematic viscosity

103 kg/m3 10−3 m2/s

In the model verification, drag and lift forces exerted on the combination of the

cylinder and the beam in the fully developed flow are compared with reference values,

and displacements in x and y directions are compared with the reference at point A

on the beam (Fig. 4.1).

4.2 Numerical Models

4.2.1 Laminar Flow

For this 2D test case, a thickness of 0.01 m is specified in z direction as to be used in

the 3D CFD model, and the front/back faces are modeled as symmetric boundaries.

The inlet velocity profile is given by Eq. 4.1. The pressure level can be set to an

arbitrary value in incompressible flows. However, it can influence the fluid force

acting on the FSI surface and consequently the structural deformation. Therefore,

the absolute outlet pressure in this study is kept at zero to set the pressure level,

which is consistent with the numerical benchmark case [51]. No–slip wall condition

is prescribed at all other boundaries and the fluid–structure interface.

A timestep of 0.001 s is used here, which has been verified in earlier CFD works

[51]. A more in–depth study on impacts of the timestep size in FSI simulations is
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discussed in section 4.3.3.

Table 4.2: Detailed settings of the fluid model

Boundary conditions Parabolic velocity profile at inlet

pstat,out = 0 at outlet

No–slip walls at y = 0, y = 0.41 m, cylinder, and beam

Symmetry at z = 0 and z = 0.01 m

Convection scheme Central Differential

Convergence criterion RMS residuals of all governing equations < ε

Transient scheme Second–order backward differencing

Timestep size 0.001 s

Mesh for parallel Hexahedral

computations Fine mesh = 999,424 elements

Medium mesh = 249,856 elements

Coarse mesh = 62,464 elements

Figure 4.2: Coarse mesh for the fluid field, every second grid line is plotted

4.2.2 Elastic Beam

The beam model employs the element type named SOLID45, which represents 3D

8–node structural element with three DOFs at each node. A mesh density study is

presented in section 4.3.2, based on which the mesh with 21 elements in x direction,

4 in y direction, and 2 in z direction is selected for this beam problem.

In addition to the fixed left end, the z–displacements of nodes located at z = 0

and z = 0.01 m are constrained to zero.

Geometric nonlinearity is included by applying finite stress/strain formulations

considering arbitrarily large deflections and rotations. The transient process is solved
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with a time marching scheme using the Newmark–β method. In particular, the nu-

merical parameters in Eq. 2.33 and Eq. 2.34 are chosen as γ = 0.6 and β = 0.3,

which introduce a little numerical dissipation and guarantee unconditionally stable

transient solutions.

4.2.3 FSI Settings

The x– and y–components of displacements and forces are exchanged at the beam

surface. While it is necessary to keep the under–relaxation factor for displacements

less than 0.1 in order to avoid divergence, there is no such stringent rule required for

the forces. The main reason is that the pressure peak caused by the abrupt change

in geometry can result in significant structural deformation, which usually leads to

diverged solutions within a few timesteps. The FSI convergence criterion of 10−3 is

tested to be sufficient for all coupling variables. The mesh deformation scheme and

the timestep size are studied in section 4.3.3.

Table 4.3: FSI parameters

Coupling variables Ux, Uy Fx, Fy

Transfer direction Solid → fluid Fluid → solid

Interpolation scheme Profile preserving Conservative

FSI convergence criterion 10−3 10−3

Under–relaxation factor 0.1 0.75 ∼ 1.0
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Figure 4.3: Convergence behavior of Uy at point A over FSI iterations

A typical convergence history of Uy at point A is plotted against FSI iterations in

Fig. 4.3. Each peak represents the start of a new timestep, and each timestep contains

about twenty FSI iterations. In each timestep, the monitored variable changes steeply

in the first several iterations and then gradually converges to a constant value.
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4.3 Verification and Discussion

4.3.1 Fluid Model

In this section, only the transient flow is computed with no structural deformation

involved. The boundary conditions described in section 4.2.1 are applied.

First, the mesh dependency is studied as shown in Fig. 4.4 and Tab. 4.4, where

the amplitudes of drag and lift forces are computed on different meshes. The meshes

used here have one element in z direction. In Tab. 4.4 the quantities are in terms

of amplitude and mean value. In particular, the former one is defined as half of the

difference between the maximal and minimal values, and the latter one is defined as

the average of the maximum and the minimum.
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Figure 4.4: CFD mesh density study in respect of force amplitudes

Table 4.4: CFD verification on different meshes with respect to drag/lift forces ex-
pressed as mean value ± amplitude (N)

No. elements Drag Lift

Present CFD

25,720 451.09 ± 4.8720 −45.450 ± 390.03

49,980 451.58 ± 6.1785 −23.558 ± 466.74

121,644 448.85 ± 5.8185 −18.704 ± 432.19

Reference 439.45 ± 5.6183 −11.893 ± 437.81

Then, the drag and lift forces on the fine mesh are verified against the numerical

reference values [51] as shown in Fig. 4.5 and Tab. 4.4 with a time duration of

0.6 s. Good agreements can be found in predicting the oscillation period and force

amplitude between the two. However, the model tends to over–predict the average

drag/lift forces.
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Figure 4.5: Drag/lift forces obtained by CFD simulations on the fine mesh (right)
compared with reference results (left)

Due to different scaling in the thickness, the computed forces are first amplified

by 100 times and then compared with reference values. In addition, the timestep is

0.001 s in the present model and 0.005 s in the reference.

4.3.2 Solid Model

The CSM model is verified in a transient analysis with initial undeformed configura-

tion, excluding the fluid domain. A sudden body force load of 2 m/s2 is applied to

the beam. The timestep equals 0.02 s as verified in [51].

First, a mesh density study is conducted (Fig. 4.6 and Tab. 4.5), showing that

the amplitude increases with the number of elements. The mesh described in section

4.2.2 corresponds to the medium mesh and is sufficient to deliver accurate results.

The other two meshes are obtained by coarsening/refining the medium mesh in both

x– and y–directions twice.

Then, the transient response of displacements at point A is verified (Fig. 4.7) on

the chosen mesh. The numerical results show good agreement with reference values

(Tab. 4.5). Note that the Young’s modulus used for the present CSM tests is 1.4×106

Pa, which is different from that used in the FSI setup (Tab. 4.1).
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Figure 4.6: CSM mesh density study in respect of amplitudes

Table 4.5: CSM verification on different meshes with respect to Ux/Uy of point A
expressed as mean value ± amplitude (mm)

No. elements Ux Uy

Present CSM

44 −13.456 ± 13.456 −62.073 ± 62.891

168 −13.973 ± 13.972 −63.515 ± 63.495

672 −14.207 ± 14.206 −64.089 ± 64.141

Reference −14.404 ± 14.408 −64.371 ± 64.695

4.3.3 FSI Model and Mesh Deformation

As discussed in section 3.1, the current FSI approach involves a wide choice of mesh

stiffness models, which will result in different mesh deformations.

Since it is critical to preserve good mesh qualities throughout the simulation pro-

cess, the mesh stiffness model chosen for this particular problem must not lead to

large distortions. Moreover, there is no universal optimal mesh stiffness model, as the

choice depends on both the geometry and the mesh.

Various mesh stiffness models are applied to the deformed fluid domain where

point A is displaced by 0.08 m in y–direction, and the local mesh distortions are

observed. The overall mesh deformation is similar for different models as shown

in Fig. 4.8 (a). For the increase near boundaries model, the mesh obtained using

Cstiff = 1 is of the best quality, while Cstiff of 5 and 10 result in mesh distortions in

areas away from boundaries due to excess of the upper limit set by the code. As all

exceeding values will be reset to the limit, it finally leads to the case that the mesh

is deformed uniformly inside the region and abruptly outside the region. For the

increase near small volumes model, Cstiff of 2 is more favorable than Cstiff of 0.5, as

larger mesh distortions are observed at the beam end in the latter case. In addition,
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Figure 4.7: Ux/Uy of point A obtained by transient CSM simulations on the medium
mesh (right) compared with reference results (left)

the constant mesh stiffness model is worse than the other two models concerning the

mesh distortion around the beam end. Finally, the increase near boundaries model

with Cstiff = 1 is chosen for this study.

The timestep dependency study is carried out in terms of displacement amplitudes.

It clearly shows in Fig. 4.9 that the solutions converge when the timestep is less than

0.001 s.

Furthermore, the dependency of amplitudes on the fluid mesh is shown in Fig.

4.10 and Tab. 4.6, where the structural mesh is set to the chosen one (section 4.3.2).

The fluid meshes have one element in z direction. The timestep is set to 0.001 s. It is

found that the fine fluid mesh leads to large displacement amplitudes in both x and

y directions. The medium and fine fluid meshes lead to very close results.

For verification, Ux and Uy of point A obtained on the medium fluid mesh are

compared with reference values. In Fig. 4.11, displacements of the fully developed

oscillation are plotted for a time span of 0.5 s. It turns out that both the period and

the displacement are in good agreements between model predictions and reference

values. For example, the amplitudes of Uy is over–predicted by 6.8% (Tab. 4.6).
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(a) Overview of mesh deformation

Cstiff = 10 Cstiff = 5 Cstiff = 1

(b) Increase near boundaries

Cstiff = 2 Cstiff = 0.5

(c) Increase near small volumes
(d) Constant mesh stiffness

Figure 4.8: Influence of various mesh stiffness models on mesh deformation
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Figure 4.9: FSI verification of timestep size in respect of amplitudes
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Figure 4.10: FSI verification of fluid mesh dependency in respect of amplitudes
(timestep = 0.001 s)

Table 4.6: FSI verification on different fluid meshes with respect to Ux/Uy of point A
expressed as mean value ± amplitude(mm)

No. elements Ux Uy

Present FSI

13,360 −2.00 ± 1.90 1.69 ± 27.81

25,720 −3.24 ± 3.07 1.75 ± 36.72

49,980 −3.52 ± 3.37 2.48 ± 37.09

Reference −2.69 ± 2.53 1.48 ± 34.38



4.4. PARALLEL FSI STUDY 45

1.9 2 2.1 2.2 2.3

−0.006

−0.005

−0.004

−0.003

−0.002

−0.001

0

Time (s)

X
−

di
sp

la
ce

m
en

t (
m

)

 

 

Present FSI

1.9 2 2.1 2.2 2.3
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time (s)

Y
−

di
sp

la
ce

m
en

t (
m

)

 

 

Present FSI

Figure 4.11: Ux/Uy of point A obtained by the current FSI approach on the medium
fluid mesh (right) compared with reference results (left)

4.4 Parallel FSI Study

4.4.1 Overview

The aim of this section is studying the parallel performance of the FSI approach. In

particular, parallel performance refers to parallel speed–up, parallel efficiency, parallel

scalability, and parallel multigrid acceleration. In this section, the fluid field with

various meshes is computed in parallel using algebraic multigrid (AMG) and single

grid (SG) schemes, while the solid field and the rest are computed serially. A complete

summary for the parallel study can be found in Tab. 4.7. The fine/medium/coarse

meshes are defined in Tab. 4.2. All following computations are performed over an

oscillation period of 0.2 s using a timestep of 0.001 s.

Regarding the parallel environment, the computations are conducted on an IBM

p 575 SMP cluster with POWER6 nodes.
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Table 4.7: Overview of parallel computations

Parallel performance Mesh No. processors Multigrid

Parallel speed–up
Fine 1,2,4,8,16,32 AMG

Parallel efficiency

Parallel scalability

Fine 32

AMGMedium 8

Coarse 2

Multigrid acceleration Fine 1,2,4,8,16,32 AMG, SG

4.4.2 Partitioning

The fluid mesh is partitioned automatically using the MeTiS partitioner (see section

3.1). The partitioning of various meshes on 2, 8, and 32 processors is demonstrated in

Fig. 4.12. Despite the miscellaneous shapes of the partitions, each partition contains

approximately the same amount of elements as shown in Tab. 4.8. Therefore, it is

assumed that the computational workload is evenly distributed across the processors

to achieve optimal resource utilization.

Table 4.8: Partition size in terms of percentage of the total number of elements

Smallest partition Largest partition

Fine mesh on 32 proc. 3.06% 3.22%

Medium mesh on 8 proc. 12.3% 12.7%

Coarse mesh on 2 proc. 49.7% 50.3%

4.4.3 Parallel Performance

Figure 4.13 shows that the wall clock computational time is reduced significantly

as the number of processors increases. The behavior of accelerated computation is

usually assessed by the speed–up and the efficiency.

The parallel speed–up is defined as the serial computational time divided by the

parallel computational time. The ideal parallel speed–up which equals the number of

processors usually cannot be reached. In reality, the reduction in computational time

is always less than the increase in number of processors (Fig. 4.14).

The parallel efficiency is defined as the serial computational time divided by the

total CPU time of the parallel computations. Accordingly, the efficiency of serial

computations is 100%, and the efficiency of parallel computations can never reach
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(a) Fine mesh on 32 processors

(b) Medium mesh on 8 processors

(c) Coarse mesh on 2 processors

Figure 4.12: Partitioning of the fluid mesh

1 2 4 8 16 32
0

200

400

600

800

No. processors

T
im

e 
(h

)

Figure 4.13: Wall clock computational time

100%. It can be seen in Fig. 4.15 that the parallel efficiency decreases gradually

with the increase of number of processors. However, there is a clear drop in parallel

efficiency from 16 to 32 processors, suggesting that further increasing the number of
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Figure 4.14: Parallel speed–up in terms of serial computational time divided by par-
allel computational time

processors will bring even less speed–up and the parallel computation becomes less

efficient. Therefore, the optimal parallel performance for the present case is achieved

on no more than 16 processors with a minimum of 62,500 elements per partition.
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Figure 4.15: Parallel efficiency in terms of serial computational time divided by total
CPU time

The wall clock time of computations should be similar for cases with the same

ratio of mesh size to number of processors. This performance is defined as the parallel

scalability, which indicates that at certain computational costs, larger problems can

be solved by using proportionally more processors. In the present case, the constant

ratio is achieved by distributing the coarse/medium/fine mesh on 2/8/32 processors,

respectively. A good parallel scalability performance can be recognized in Fig. 4.16.

The fluid solver uses a multigrid strategy to solve the equations rapidly. All the

results above are obtained using the AMG scheme. The acceleration of AMG over
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Figure 4.16: Parallel scalability in terms of wall clock computational time at constant
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SG is shown in Fig. 4.17. AMG accelerates the computation by a factor of four.

Moreover, SG has a similar parallel speed–up performance.
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Figure 4.17: Comparison of wall clock computational time of parallel AMG and
parallel SG

4.5 Summary

In the first part of this chapter, the numerical FSI approach is verified against the

benchmark of unsteady FSI between an incompressible laminar flow and an elastic

structure. In the CFD verification, the mesh density is studied, and then the oscilla-

tion periods and amplitudes of the lift/drag forces predicted by the present simulation

are found to agree well with reference values, while the mean values of the forces are



50 CHAPTER 4. FSI BENCHMARK AND PARALLEL FSI

over–predicted. Based on the mesh sensitivity study, the transient response of the

CSM model shows good agreement with the reference. In the FSI verification, various

mesh stiffness models are studied regarding local mesh distortions, followed by depen-

dency studies of fluid mesh and timestep size. At last, the displacement results of FSI

simulations are compared with reference values. The oscillation of the displacements

highly resembles the reference with consistent period, while the amplitudes and mean

values are little over–predicted. In conclusion, the current FSI approach shows a

relatively good accuracy based on the benchmark study.

In the second part, the parallel performance of the FSI approach is investigated in

various respects. A significant parallel speed–up is observed, and an optimal parallel

efficiency is reached with a minimum of 62,500 elements per partition with excellent

parallel scalability. It turns out that the computation can be accelerated by four

times when introducing the algebraic multigrid scheme. Finally, an evenly distributed

workload across the processors is also achieved in the partitioning. In sum, the studies

above suggest that the current FSI approach provides good parallel performance.



Chapter 5

FSI Case I – Fluid Force Induced

Vibration

In this chapter the fluid force induced vibration of a non–rotating, room temperature,

straight–through labyrinth seal is presented. Here we focus on the mechanical FSI

effects, hence the coupling surface is treated as a movable adiabatic wall. Due to

the strongly coupled nature of the problem, an implicit approach is adopted for the

two–way transient FSI, in which the flow and the structure are modeled in 3D.

The outline of this chapter is as follows. First the numerical models of the fluid

and the seal structure are defined and the coupling interface is set up. Then, the

model is verified and detailed discussion on the leakage behavior and flow features

are shown. On the structural side, modal analysis reveals the natural frequencies

and mode shapes of the rotor. Finally, results of the mechanical FSI are presented,

including studies of the dependency on initial conditions and the influence of pressure

ratio and mass flow on the vibration amplitude. It is also demonstrated that the

vibrations are entirely induced by fluid forces.

5.1 Numerical Models

5.1.1 Fluid Field

The geometry and boundary conditions of the fluid model shown in Fig. 5.1 [100] are

based on a steady, room temperature, non–rotating experiment [11] of a four–tooth

straight–through labyrinth seal conducted on the test rig as in Fig. 1.2. Detailed

settings of the CFD model are listed in Tab. 5.1. The inlet total temperature Ttot,in is

set at room temperature 297 K. Since the gas and the test rig are at room temperature,

heat transfer at walls can be neglected, thus the stator and the rotor are modeled as

adiabatic walls, which is a common practice in CFD simulations of labyrinth seals

[4, 35]. Both inlet total pressure ptot,in and outlet static pressure pstat,out are varied

51
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to yield a pressure ratio π ranging from 1.7 to 3.8.

(a) Cross–sectional view (mm)

(b) 3D view

Figure 5.1: Fluid domain of the four–tooth straight–through labyrinth seal

The validity of the standard k−ε turbulence model for straight–through labyrinth

seals has been repeatedly demonstrated in references [28–30]. k − ε models with

logarithmic wall functions require proper near–wall element sizes. Hence, y+ must

be approximately in the range from 30 to 300 [83]. However, it is extremely difficult

to maintain the proper y+ everywhere in labyrinth seals due to the wide velocity

range and hexahedral meshes as in this case. Therefore, the scalable wall function

is applied, which switches off the logarithmic wall function when y+ is smaller than

11.06 and solves for the velocity profile across the viscous sublayer. The sensitivity

of near–wall element sizes is discussed separately in section 5.2.

To ensure convergence, critical global variables such as mass flows are monitored

in addition to the RMS and imbalance criteria. The solution is considered to be

converged when the changes of the global variables are within a fixed tolerance. The

convergence history of mass flow over iterations is shown in section 5.2.
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Table 5.1: Settings of the CFD model

Fluid type Air, ideal gas

Boundary conditions Inlet: Ttot,in = 297 K, ptot,in

Outlet: pstat,out

No–slip smooth adiabatic walls

Turbulence model Standard k − ε with scalable wall function

Convection scheme High resolution (second–order)

Convergence criteria RMS residuals of all conservation equations < ε

Imbalances of mass, momentum, and enthalpy < 1%

Global variables do not change over iterations

Transient scheme Second–order backward differencing

Timestep size 5 × 10−6 s

Mesh Hexahedral, 1.7 million elements

The FSI effect requires both the fluid and the solid analysis to be transient. In

addition, it is shown that the fluid requires a much smaller timestep size than the

solid. Hence, in order to balance between computational efficiency and stability, it

is critical to determine a suitable timestep size based on the fluid requirement. It is

shown by means of numerical tests that the optimal timestep is 5 × 10−6 s.

5.1.2 Rotor

Since this work focuses on the rotor vibration, modeling of the stator is neglected.

The rotor is simplified as a disk fixed in the middle of a thin wall shaft (Fig. 5.2)

to represent the fundamental characteristics of a rotor. The disk is surrounded by

the fluid domain. The small deformation justifies a linear structural analysis with a

linear elastic material law. The material is steel with density 7806 kg/m3, Young’s

modulus 2.078 × 1011 Pa, and Poisson’s ratio 0.3.

Numerical tests reveal that the deformation of the rotor disk is negligible compared

to that of the shaft, hence the rotor disk is treated as rigid body to reduce compu-

tational time. Furthermore, considering that mesh displacements normal to the area

are not allowed at the inlet, the axial displacement of the disk is constrained. The

two ends of the shaft are clamped. The shaft is modeled with the second–order thin

wall pipe element PIPE16. As convergence criteria, the L2 norm of all DOFs are

kept below 10−3. The Newmark–β time integration method is used for transient term

discretization.
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Figure 5.2: A rotor disk fixed on a clamped–clamped thin wall shaft (mm)

5.1.3 FSI Parameters

Forces and displacements are transferred across the fluid–solid surface as shown in

Fig. 5.3. There are two reasons to use two–way implicit coupling in this problem.

First, the one–way coupling cannot take the displacement of the coupling surface into

account. Second, the explicit coupling usually has stability problems for strongly

coupled physics. The FSI parameters of this test case are listed in Tab. 5.2. As we

focus on the mechanical FSI, no thermodynamic variables are considered here. The

convergence criterion of 10−3 turns out to be strict enough and is used in the model.

There is no need to involve under–relaxation. The mesh stiffness model is chosen

as increase near small volumes with Cstiff = 1 and its convergence criterion RMS

< 10−4. The FSI and the fluid timesteps are equal.

Figure 5.3: FSI coupling surface

The fluid field computation requires much more computer resources than the com-

bination of the solid field computation and FSI interpolation/controlling. Therefore,

the fluid solver is run in parallel on 16 processors, while the rest are run on a single

processor. All the simulations are carried out on an IBM p 575 SMP cluster with

POWER6 nodes.
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Table 5.2: FSI parameters

Coupling variables Displacement Force

Transfer direction Solid → fluid Fluid → solid

Interpolation scheme Profile preserving Conservative

FSI convergence criterion 10−3 10−3

Under–relaxation factor 1.0 1.0

5.2 CFD Verification

The CFD model sensitivity is first examined with respect to the mesh density and

the near–wall element size at various locations as marked in Fig. 5.4. Figure 5.5

shows the dependency of mass flow ṁ and lift force Flift on the mesh. The number

of elements at position x is labeled as nx and the near–wall element size is referred to

as normalized sx. The difference is defined against the result with the smallest near–

wall element size and the largest number of elements. The dimensionless near–wall

element size is normalized with the largest near–wall element size used.

Figure 5.4: Regions of the labyrinth seal

The study clearly shows that ṁ is more sensitive to the mesh than Flift. Therefore,

the mesh is chosen according to its influence on ṁ. To ensure a relative error of less

than 0.1% for ṁ, it requires a total of 1.7 million hexahedral elements in the model,

as shown in Fig. 5.6. In addition, the mass flow has been monitored as one of the

convergence criteria. It is observed that the mass flow is well converged when the

other two criteria are satisfied. The typical convergence history of the mass flow in a

steady CFD analysis controlled by the other two criteria is plotted in Fig. 5.7.

Compared with experimental measurements, it turns out that numerical simula-

tions tend to over–predict the leakage by 10% [101]. To compensate for this discrep-

ancy and the lack of CFD studies by other researchers, we compare the numerical

results with the calculations based on a KTK (knife-to-knife) code [102]. In the test

data source [11] the KTK code is used to calculate the leakage through the seal, and

the predicted ṁ is also 10% larger than experimental results. Since KTK method is
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Figure 5.5: Mesh dependency study of the CFD model with respect to near–wall
element size and mesh density at various locations

Figure 5.6: Mesh after dependency study

proved to be reliable within its calibration range for basic quantities in simple seal

geometries, such as ṁ in straight–through labyrinth seals, the numerical results are

acceptable.
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Figure 5.7: Convergence history of mass flow in a steady CFD analysis

5.3 Results and Discussion

5.3.1 Flow Features

Figure 5.8 shows the leakage performance under various pressure ratios (see Eq. 2.7).

The flow factor defined in Eq. 2.2 remains constant when the pressure ratio increases

beyond a critical value, suggesting that the flow is choked.
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Figure 5.8: Leakage performance of the labyrinth seal

Based on the fluid fields shown in Fig. 5.9, the following features can be recognized:

1) there is a major vortex structure in each cavity; 2) the Mach number increases

across the seal and reaches its maximum after the last tip; 3) the static pressure

is homogeneously distributed in each cavity; 4) the static pressure and the density

decrease as the flow accelerates; 5) the flow is strongly compressible as the density

varies at a factor of four.
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(a) Mach number distribution

(b) Static pressure field and velocity vector field

(c) Density distribution

Figure 5.9: Fluid field of the labyrinth seal (pressure drop = 103 kPa)

5.3.2 Modal Analysis of the Rotor

A modal analysis is conducted to determine the natural frequencies and mode shapes

of the disk–shaft system. As the disk is attached to the middle of the shaft, the mode

shapes are symmetric (Fig. 5.10). Every two adjacent modes share the same natural

frequency and the same mode shape.
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Figure 5.10: The first eight natural frequencies and mode shapes of the disk–shaft
system

5.3.3 FSI Initial Condition Study

It will take a long time to reach the fully developed vibration status from an initially

axisymmetric fluid field and an undeformed structure. In order to accelerate the

vibration development, it is necessary to introduce some imbalance in the initial

conditions in terms of the following:

1. Specify an eccentricity ec to the rotor disk;

2. Send the displacement to the fluid solver and deform the mesh;

3. Compute the non–axisymmetric fluid force F ec
f ;

4. Remove ec.

However, in some cases, a dependency has been observed between final results

and initial conditions. Since this relationship is apparently nonphysical, such initial

conditions must be avoided. The causes of the dependency are as follows. First, a

large eccentricity ec yields a large F ec
f . Then, in the first FSI iteration of the first

timestep, this leads to a large structural displacement d. Since the initial displacement

is zero, a large d means large acceleration, which is equivalent to a large inertial force

F d
s in the structure. When F d

s is too large, a problem occurs: from the next timestep

on, the structural vibration is dominated by structural inertial forces rather than by

fluid forces; in other words, it is no longer a real FSI analysis, and the calculated

displacement will be too large. In sum, an appropriate initial condition requires ec

to be adequate so that the fluid force dominates the vibration.

The arguments above are demonstrated in Fig. 5.11. The fluid forces received

by the rotor in the FSI simulations are applied as loads in a finite element analysis
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(FEA) of the rotor. It is expected that the structural displacements obtained by FSI

and FEA are consistent. If the initial condition is proper, as shown in Fig. 5.11 (a),

the FSI and FEA results are almost coincident. In contrast, if the initial condition is

improper, i.e. ec is too large, as shown in Fig. 5.11 (b), the two sets of results deviate

obviously, as the vibration obtained by FSI is not fully induced by fluid forces.
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(a) Proper initial condition
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Figure 5.11: Structural displacements obtained with FSI and FEA

Since F d
f and F d

s are unknown in advance, the recommended practice is to try

various values of ec and determine the critical value. Any ec smaller than the critical

value can serve as an appropriate initial condition. In this case, ec of 1% of the

tip clearance and smaller lead to a constant amplitude (Fig. 5.12). Therefore, it is

advised to start the trial from a small ec and then gradually reduce its value.
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Figure 5.12: Influence of the magnitude of ec on the amplitude

5.3.4 FSI Amplitude Study

The deformed fluid domain and the mesh displacements are illustrated in Fig. 5.13.

It can be seen that the displacements received from the rotor at the coupling surface

are diffused into the inner domain.

Figure 5.14 shows the transient responses of the rotor displacement and the lift

force on the coupling surface. A periodic vibration can be clearly recognized. The

rotor vibrates at a frequency of 274 Hz, which is almost the same as its first–order

natural frequency. The amplitude is about 0.03% of the tip clearance.

Figure 5.13: Mesh displacement distribution at a certain time (π = 2.0, ṁ = 0.138
kg/s)

The dependency of the amplitude on the pressure ratio π and mass flow ṁ are

shown in Fig. 5.15 and Fig. 5.16, respectively. In Fig. 5.15, pstat,out is fixed to

the atmospheric pressure and ptot,in is varied to obtain various π. In Fig. 5.16, π

is maintained at 2, whereas ptot,in and pstat,out are varied proportionally to obtain

various ṁ. The amplitude increases linearly with π and ṁ. The maximum amplitude

is about 0.05% of the tip clearance.
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Figure 5.14: Displacement history (left) and lift force history (right) (π = 3.8, ṁ =
0.088 kg/s)

5.3.5 Discussion of the FSI Results

The rotor instability induced by fluid forces has been of great interest to turbo-

machinery engineers. However, there are few experiments available for quantitative

comparison. The reason for the lack of data has been pointed out by other researchers

[17] that as the forces in labyrinth seals are rather small, only minimal experimental

data is available for the comparison and validation of calculations. As compensa-

tion, it is demonstrated in this numerical work that the vibration is, as expected,

completely caused by the fluid forces (Fig. 5.11).

To study the fluid force induced vibration, the two–way, transient, and 3D nature

of the FSI simulations means that the computation is very expensive. The current
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Figure 5.15: Influence of pressure ratio on the amplitude of rotor vibration (pstat,out
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Figure 5.16: Influence of mass flow on the amplitude of rotor vibration (π = 2)

work is an attempt to apply the numerical simulation of FSI to labyrinth seals, given

that employing FSI in industrial cases is now a trend, and the academia has been

discussing about FSI in labyrinth seals for a long time. The purpose of this work

is not necessarily to persuade all researchers to use FSI in labyrinth seals, but to

provide experiences and some reference results. The methodology is established here,

the dependency on initial conditions is explored, and the FSI simulations of the close–

to–reality seal configuration reveal periodic vibrations of the rotor. The amplitudes

turn out to be small, thus other researchers are well advised to consider the necessity

of including such FSI effects into their numerical models.

In this study the rotor is modeled as a clamped–clamped beam with a disk, where

bearings are omitted compared to a real rotor. Nevertheless, the most fundamen-

tal characteristics of a rotor are represented by the current model. Moreover, this

simplified modeling helps to keep focus on the FSI implementation.
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5.4 Summary

In this chapter, a 3D transient mechanical FSI study of a straight–through labyrinth

seal is investigated. The fluid force induced vibration of the rotor is simulated by a

two–way implicit coupling of the turbulent flow and the structure. Thus the struc-

tural displacements are obtained without rotordynamic models or other empirical

assumptions, in which aspect exceeds single fluid or solid analysis.

Linear relationships between the vibration amplitude and pressure ratio/mass

flow are well observed. The vibration frequency approximates the first–order natural

frequency of the rotor. To excite the vibration more quickly, it is advantageous to use

non–axisymmetric initial conditions. However, inappropriate initial conditions can

lead to over–predicted amplitudes. Therefore, it is recommended to always conduct a

prior dependency test. In addition, the vibrations are proved to be entirely induced

by fluid forces instead of structural inertial forces.

The amplitudes computed using FSI are small. Considering that the seal design

and operating conditions are based on experiments that are close to reality, it implies

that the rotor vibration caused by fluid forces is not critical under the considered

conditions.

The FSI procedure established in this chapter performs well for labyrinth seals

and can be applied to the FSI simulation of entire turbines.



Chapter 6

FSI Case II – Thermal and

Centrifugal Effects

In this chapter, the thermal and centrifugal effects of a 2D axisymmetric, high tem-

perature, rotating stepped labyrinth seal is studied using two–way implicit FSI ap-

proaches.

This test case focuses on: 1) comparison between CFD and FSI predictions in

respect of primary dimensionless numbers in labyrinth seals; 2) comparison of various

FSI models; 3) heat transfer behavior across fluid–structure surfaces.

This chapter is organized in the following way. After introducing the fluid and the

solid models, various FSI approaches with elastic/rigid structures for one–way/two–

way coupling are defined. Then, both CFD and CSM models are verified and val-

idated sufficiently. In the results and discussion section, flow features are shown in

detail, followed by comparisons of various FSI approaches. After that, the optimal

FSI models are chosen for further comparison with CFD simulations. Furthermore,

the results of thermal FSI simulations are presented in terms of Nusselt numbers

at the gas–rotor/stator interfaces and temperature/displacement distributions in the

structures.

6.1 Numerical Models

Both fluid and structural models are based on room temperature rotating experiments

done by Denecke et al. (2005) [4]. The test rig used in their experiments is shown in

Fig. 1.3.

6.1.1 Fluid Field

In Fig. 6.1, the geometric parameters of the fluid domain are defined. Detailed set-

tings of the CFD model are listed in Tab. 6.1. The outlet static pressure pstat,out is

65
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kept constant, while the inlet total pressure ptot,in and total temperature Ttot,in are

varied. Nonadiabatic wall boundary conditions are applied in thermal FSI simula-

tions. Turbulence models and mesh dependency will be discussed in more detail in

section 6.2.1. The automatic wall treatment for SST turbulence model enables an au-

tomatic switch from low–Re near–wall formulations to wall functions. Thus, it allows

a flexible grid resolution near the wall. Nevertheless, y+ is maintained below 1 at

most locations. The convergence criteria are similar to case I, except that the imbal-

ance criterion is more rigorous and more global variables are monitored (see section

6.2.1). The false timestep size in steady–state simulations can reach a maximum of

10−5 s without causing instability. Since the numerical model is axisymmetric, one

element is used in circumferential direction.

Figure 6.1: Stepped labyrinth seal geometry (Denecke et al., 2005)

6.1.2 Rotor and Stator

In experiments, both rotor and stator consist of titanium alloy. In accordance, the

titanium alloy Ti6Al4V, which is commonly seen in aeronautics, is applied in this

study. Thermal property dependencies on temperature are shown in Tab. 6.2. In

addition, the mean coefficient of thermal expansion (CTE) is chosen.

Both rotor and stator are modeled using the second–order 3D coupled–field ele-

ment, SOLID226. Each node has four DOFs: structural displacements Ux, Uy, Uz,

and temperature T . The centrifugal effect is also enabled for this element type.

In the model, both mechanical and thermal boundary conditions (Fig. 6.2) are

set close to experiments. Axisymmetric conditions are specified at the front and back

surfaces. The upper end of the stator and the lower end of the rotor are clamped
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Table 6.1: Description of the CFD model

Fluid type Air, ideal gas

Boundary conditions Inlet: various Ttot,in, ptot,in

Outlet: pstat,out = 2 × 105 Pa

No–slip smooth walls

Turbulence model SST with automatic wall treatment

Convection scheme High resolution (second–order)

Convergence criteria RMS residuals of all conservation equations < ε

Imbalances of mass, momentum, and enthalpy < 0.1%

Global variables do not change over iterations

False timestep size 10−5 s

Mesh 2D axisymmetric

102,000 hexahedral elements

and set at 288 K in order to generate a temperature gradient across the rotor and

the stator for the heat transfer calculations. The left and right boundaries of the

stator are insulated. All surfaces of the rotor, other than the FSI interface and the

lower end, are immerged in cooling air, and are modeled as convective walls with

a heat transfer coefficient (film coefficient) of 50 W/m2 K and a surrounding fluid

temperature (bulk temperature) of 288 K [103].

Table 6.2: Material properties of the rotor and stator

Material properties 300 K 600 K

Thermal conductivity 7.3 W/m K 10.9 W/m K

Specific heat capacity 560 J/kg K 640 J/kg K

Secant thermal expansion 8.6 × 10−6 /K 9.2 × 10−6 /K

Density 4430 kg/m3

Young’s modulus 1.138 × 1011 Pa

Poisson’s ratio 0.342
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Figure 6.2: Geometry and boundary conditions of the rotor and stator (mm)

6.1.3 FSI Models

FSI variables are exchanged at the fluid–rotor and fluid–stator interfaces shown in

Fig. 6.3. The coupling variables include mechanical quantities, i.e. displacement and

force, as well as thermal quantities, i.e. temperature and heat flow. Table 6.3 shows

detailed settings of the coupling variables.

Four different FSI models are employed here. They are distinct from each other in

terms of FSI effects and coupled variables. A brief overview is given in Tab. 6.4. Two

models are designed to study the thermal FSI effects (TFSI), while the other two focus

on the centrifugal FSI effects (CFSI). Furthermore, the two TFSI models differ in their

structural coupling behavior. In a TFSI analysis with rigid structure, only thermal

variables are coupled. Such approach is also known as Conjugate Heat Transfer

(CHT) as available in some CFD software. In contrast, the TFSI model with elastic

structure couples mechanical variables in addition to thermal ones and is hence more

realistic. In both one–way and two–way CFSI models, only mechanical quantities

are exchanged. They are distinguished from each other by including or excluding the

influence of fluid forces on the structure. Compared to the one–way model, which

is equivalent to running a structural finite element analysis and deforming the fluid

domain accordingly, the two–way model is more representative of the reality. Similar



6.2. VERIFICATION AND VALIDATION 69

approaches can be found in some CFD studies, where the fluid mesh is modified

in order to account for the rotation induced inertial effects of the structure [104].

However, averaged structural displacements are usually used in such studies other

than actual local deformations, in order to relieve the mesh modification. It is also

worth to point out that, in comparison to the method of accounting for the centrifugal

displacements by modifying the fluid domain, the CFSI model saves the effort of

altering the geometry and remeshing, which can be extremely expensive for complex

geometries and non–uniform centrifugal deformations.

In the present work, steady FSI simulations are applied for parameter studies.

The fluid mesh is deformed using the increase near small volumes mesh stiffness

model with Cstiff = 0.5 and RMS < 10−4. It is also checked that variations of the

mesh stiffness model and Cstiff value have little influence on the results. A deformed

mesh and the local mesh distortion are shown in section 6.3.2.

Figure 6.3: FSI coupling surfaces

Table 6.3: FSI coupling variables

Coupling variable Displacement Temperature Force Heat flow

(DISP) (T) (F) (HF)

Under–relaxation factor 0.1 0.1 1.0 0.1

Transfer direction Solid → fluid Fluid → solid

Interpolation scheme Profile preserving Conservative

FSI convergence criterion 10−3 10−3

6.2 Verification and Validation

In this section, the fluid model is verified and validated with respect to turbulence

models and meshes. Velocity profiles and various dimensionless numbers show good

agreements with test data. The centrifugal and thermal responses of the structural

model are also well validated. The experimental results are obtained from the disser-

tation of Denecke (2007) [1].
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Table 6.4: Various FSI models

FSI effect Abbreviation Sub–model Coupled variables

Thermal TFSI
Rigid structure T, HF

Elastic structure T, HF, DISP, F

Centrifugal CFSI
One–way DISP

Two–way DISP, F

6.2.1 Fluid Model

First, various turbulence models are validated. Compared to case I, the fluid domain

of the current stepped labyrinth seal is more complex. It is known that the standard

k − ε is less accurate when there are flow separation and recirculation [105]. In Fig.

6.4, the results using standard k− ε, RNG k− ε, and SST are compared with respect

to the discharge coefficient at growing pressure ratio. It is shown that both SST and

RNG k − ε lead to less than 3% deviation from the test results, and the former is

slightly better. Therefore, SST, which is widely acknowledged for predicting flows

with separation, is applied in the following study.
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Figure 6.4: Validation of various turbulence models regarding leakage prediction
(non–rotating, Ttot,in = 300 K)

Similar observations can be found in [26]. Wang et al. (2004) used three alterna-

tive k−ε models to predict leakage in stepped labyrinth seals: the standard k−ε and

its two variants, RNG k−ε and realizable k−ε. The predictions based on RNG k−ε
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and realizable k− ε are found to be in good agreements with the measurements with

less than 3% discrepancies, whereas the predictions obtained using standard k − ε

have larger gaps.

Second, the mesh is validated. Since SST uses low–Re formulations at walls, the

near–wall grid resolution should be sufficiently fine. In the mesh dependency study,

y+ is kept below 2 at all locations. The influences of the mesh density on the discharge

behavior, windage heating, and outlet swirl are plotted in Fig. 6.5. All numerical

results are within experimental uncertainties. The dimensionless numbers are rather

insensitive to the mesh resolution. The mesh of medium density is finally chosen for

the rest of the studies (Fig. 6.6).
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Figure 6.5: Mesh dependency study of the fluid model with respect to discharge
coefficient CD, outlet swirl ratio Kout, and windage heating coeeficient σ (π = 1.05,
n = 6,000 rpm, Ttot,in = 300 K)

As one of the convergence criteria, the changes of critical global variables must be

within a given tolerance. The convergence history of mass flow, outlet circumferential

velocity, and outlet static temperature are shown in Fig. 6.7. All curves become flat

as the solution converges.
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Figure 6.6: Validated mesh for the SST turbulence model
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Figure 6.7: Convergence history of critical variables: (a) mass flow; (b) circumferential
velocity at the outlet; (c) static temperature at the outlet

Based on the validated turbulence model and mesh, velocity profiles at x = 3

mm, upstream of the first tooth, are compared with test results. Figure 6.8 shows

the distribution of dimensionless axial and circumferential velocity along radial di-

rection. The actual velocities are divided by the rotor surface speed, while the radial

position is normalized by the channel height. Clearly, the simulation results and test

measurements are in excellent agreement.

Finally, the windage heating coefficient is validated against test results under

growing circumferential Mach number (see Eq. 2.8) at given pressure ratio and inlet

total temperature (Fig. 6.9). The inlet total temperature is used instead of the local

temperature to calculate the speed of sound in Eq. 2.8, so that the circumferential

Mach number is actually proportional to the rotational speed. Since the measure-

ment uncertainty is about 20% according to reference [4], the numerical results are

well validated despite the discrepancy. In addition, the present numerical study is

compared with the CFD study done by Denecke et al. (2005) [4]. Although different

CFD codes, turbulence models, and meshes are used in the two studies, the present
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Figure 6.8: Axial and circumferential velocity profiles at x = 3 mm (π = 1.05, n =
6,000 rpm, Ttot,in = 300 K)

results and Denecke’s results are close to each other.

In their experimental study [4], Denecke et al. explained that the measurement

uncertainty is mainly due to the radial seals installed at the entrance and the exit

of the stepped labyrinth seal, which act as an undesired heat source. Such parasitic

heat entrains the rotor and can account for up to 20% of the total temperature rise

measured across the seal at current pressure and temperature conditions. Moreover,

the total temperature increases only about 10 K, the small magnitude of which further

elevates the percentage uncertainty. Last but not least, the temperature was measured

at one single point, while the numerical results are averaged over the channel height.

6.2.2 Structural Model

In the model, the centrifugal growth is validated by comparing the radial displacement

of the second tooth with experimental results at growing rotational speed (Fig. 6.10).

The FEA predictions show good agreement with measurements. Moreover, comparing

the displacements of various teeth shows a uniform centrifugal growth of the rotor.

There is few experimental data available to validate the thermal response of the

coupled model. Instead, a simplified theoretical model is introduced as analytical

reference. Compared to the rotor shown in Fig. 6.2, the rotor in the theoretical model

is represented by a rectangular block, where the throat and the teeth are omitted.

Presuming a temperature gradient from top to bottom, the thermal expansion of

the block can be calculated analytically. The solution is then compared with the

numerical results based on the original rotor at various temperature gradients (Fig.

6.11). Good agreements have been found between the two sets of results.
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Figure 6.9: Validation of the fluid model with respect to windage heating prediction
under various rotational speeds (π = 1.05, Ttot,in = 300 K)
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Figure 6.10: Radial centrifugal displacements at the rotor teeth obtained in experi-
ments and finite element analysis

6.3 Results and Discussion

6.3.1 Flow Features

Detailed flow features are presented in Fig. 6.12. First, a large vortex between the

teeth can be recognized in the axial–radial velocity vector field shown in Fig. 6.12 (a).
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Figure 6.11: Radial thermal expansion of the rotor obtained by analytical approxi-
mation and finite element analysis

Above the vortex, there is a major and a secondary recirculation zone behind and in

front of the step, respectively. Second, Fig. 6.12 (b) shows that the circumferential

velocity increases from zero at the upper stationary wall to its maximum at the lower

rotating wall. Third, the static temperature is raised across the seal as shown in Fig.

6.12 (c), which is mainly due to flow frictions. Last, it is found in Fig. 6.12 (d) that

the static pressure decreases along the flow direction and varies very little within each

cavity.

6.3.2 Comparison of Various FSI Models

Before comparing different FSI models, the mesh displacement of the fluid domain is

shown in Fig. 6.13, where the lower boundary is moved upwards by 10% of the tip

clearance. It demonstrates clearly that the deformation propagates from the boundary

to the internal fluid domain and the mesh distorts most at tooth corners. A good

mesh quality is preserved.

The major difference observed between one–way and two–way CFSI is the struc-

tural displacement, while the predictions for discharge coefficient, windage heating

coefficient, and outlet swirl ratio are consistent. In Fig. 6.14 (a), the centrifugal

growth of the fourth tooth is compared at various rotational speeds. It is found that

the displacements obtained by two–way CFSI are a little smaller than that with one–

way CFSI. In Fig. 6.14 (b), the deformed rotor profiles of one–way/two–way CFSI

are compared. Specifically, the solid line denotes the profile by taking the average of
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(a) Axial–radial velocity (b) Circumferential velocity

(c) Static temperature

(d) Static pressure

Figure 6.12: Flow features of the stepped labyrinth seal obtained using CFD simula-
tions (π = 1.1, n = 6,000 rpm, Ttot,in = 600 K)

the displacements across the seal. This averaged value is used to deform the rotor

uniformly, which is similar to the concept of fluid mesh modification used in some

CFD studies of labyrinth seals [104]. Since both methods result in similar rotor defor-

mations and require equivalent computational costs, they will be referred to as CFSI

without further distinction in later sections.
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Figure 6.13: Mesh displacement distribution and local mesh distortion
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Figure 6.14: Comparison of the radial centrifugal displacement obtained with one–
way/two–way CFSI (π = 1.05, Ttot,in = 300 K)
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Figure 6.15: Comparison of the discharge coefficient and the windage heating coeffi-
cient obtained by TFSI with elastic/rigid structures (π = 1.05, Ttot,in = 300 K)

TFSI models with elastic/rigid structures are compared in Fig. 6.15, regarding

discharge behavior and windage heating at growing rotational speed. Under given
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pressure ratio and room temperature conditions, the two models lead to a difference

of about 2% in discharge coefficient and a slighter difference in windage heating

coefficient. In addition, their computational costs are comparable. Although TFSI

with elastic structure is closer to reality, the rigid case (i.e. the CHT model) is more

preferable in industrial applications for its simplicity. Therefore, both TFSI models

will be further studied and compared.

6.3.3 Comparison between FSI and CFD

In this section, a series of parameter studies is conducted in order to compare FSI

and CFD systematically. In particular, the structural displacement, temperature, and

various dimensionless numbers are calculated using CFD and various FSI models at

different pressure ratios, rotational speeds, and inlet total temperatures. Note that

FSI models of coupled centrifugal and thermal effects can be obtained by superpo-

sition of CFSI and TFSI results, as indicated by numerical tests. In other words,

the centrifugal thermal FSI result can be approximated by adding the corrections of

CFSI and TFSI to the baseline CFD result and is therefore omitted in this study.

The influence of pressure ratio π at the rotational speed n = 6,000 rpm and inlet

total temperature Ttot,in = 300 K/600 K is shown in Fig. 6.16. The radial displace-

ment at the fourth tooth of the rotor is chosen to represent the rotor deformation.

In comparison, the stator deformation is trivial and thus can be omitted. The tooth

temperature is presented in two ways: 1) the static temperature at the first tooth

is plotted against π; 2) the static temperature distribution across all the teeth is

compared at various π.

First, the discharge coefficient CD is plotted versus pressure ratio. To calculate

CD, the ideal mass flow (see Eq. 2.1) is always obtained from the undeformed tip

clearance for CFD and FSI simulations. Therefore, the CD here is also an indicator

for the mass flow change due to the change of the tip clearance. CD is found to

increase with π, which accords with previous research. For both Ttot,in conditions,

the CFSI and the TFSI approach with elastic structure result in smaller CD values

than those from CFD calculations. This is mainly attributed to the reduction of tip

clearance due to centrifugal growth and thermal expansions. Based on the parallel

curves, the gap between CFSI and CFD predictions is independent of π, which can be

explained by the constant change of tip clearance.Furthermore, it is found that CD

increases with Ttot,in in CFD and CFSI cases, and decreases with Ttot,in in TFSI cases

with elastic structure. The cause of the former phenomenon is to be explored. At

Ttot,in = 600 K, the thermal expansion becomes significant, and the TFSI with elastic

structure yields the minimum CD. In addition, results from the TFSI approach with

rigid rotor agree well with results from CFD at low Ttot,in and deviate at high Ttot,in.

Turning now to the windage heating coefficient σ, it indicates the total tempera-

ture increase across the seal due to the transfer of rotational speed from the disk to
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the flow, which is a consequence of the near wall surface friction. As can be seen from

the chart, σ decreases with the increase of π. Since the power input of the rotor is

constant, the large mass flow due to large pressure ratio indicates less power per unit

mass, which leads to a small total temperature increase. CFSI leads to slightly higher

σ values than CFD at both Ttot,in conditions. It is mostly due to the decrease in tip

clearance and the consequent decrease in mass flow, which raises the power per unit

mass, resulting in larger total temperature increase. Moreover, the CFD and CFSI

curves of σ are parallel, which again suggests that the difference is not affected by

π. The σ predicted by CFD and CFSI are smaller at high Ttot,in than at low Ttot,in.

Besides, when Ttot,in = 300 K, both TFSI models are coincident with each other and

lead to a low σ, since the heat generated by flow friction is in part deducted by the

solid. However, in TFSI simulations at high fluid temperature, the heat loss becomes

so significant that the temperature decreases across the seal, and thus σ becomes

negative, which makes it an improper measure of heat transfer.

The outlet circumferential velocity is measured by the outlet swirl ratio Kout.

In general, Kout decreases with the increase of π. The reason for the decrease of

σ also applies to Kout. Since less power is available per unit mass at high pressure

ratios, the fluid acceleration is less significant in the circumferential direction. The

results of TFSI simulations with elastic structure at high Ttot,in deviate significantly

from other results. This can be attributed to the tip clearance reduction. The fluid

thus accelerates more in the circumferential direction owing to the rotating wall. In

addition, the Kout values obtained by CFD, CFSI, and TFSI with rigid structure at

high Ttot,in are slightly smaller than those at low Ttot,in.

The radial displacement is caused by the centrifugal growth and thermal expan-

sion. As shown in the chart, the centrifugal growth is larger than the thermal expan-

sion at Ttot,in = 300 K. The thermal expansion dominates the radial displacement at

Ttot,in = 600 K and leads to a slight increase of radial displacement at high π, because

large pressure ratio results in large Reynolds number and thus large Nusselt number,

which suggests that more thermal energy enters the structure.

According to the numerical results, the tooth temperatures happen to equal the

static temperature of the fluid at the tooth tips. Different trends are recognized for

different models. In both Ttot,in = 300 K and 600 K cases, it is observed that the

tooth temperature decreases with π in the CFD model, but increases in TFSI models.

The former can be explained by the increase of Mach number, while the latter can

be attributed to the heat transfer inside the rotor. It is also worth to point out that

at Ttot,in = 600 K, the results from TFSI models are evidently lower than those from

CFD and CFSI, as the heat is partially absorbed by the solid. It can be seen from

the last two charts in Fig. 6.16 that the temperature decreases consequently from

tooth 1 to 4 in TFSI models. However, in CFD and CFSI cases, the temperature

stays almost constant at various teeth. The effects of π on tooth temperatures are

also demonstrated in these two charts.
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Figure 6.16: Influence of pressure ratio on discharge coefficient, windage heating
coefficient, outlet swirl ratio, rotor deformation, and tooth temperature (n = 6,000
rpm, Ttot,in = 300 K/600 K)
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Figure 6.17 shows the impacts of the circumferential Mach number Mtan consider-

ing π = 1.5 and Ttot,in = 300 K/600 K. Note that Mtan is an indicator of the rotational

speed.

As shown in the first chart, Mtan does not affect CD in either CFD or TFSI

simulations with rigid structure. However, when using the CFSI model, there is a

significant decrease in CD asMtan increases. The main reason is that at high rotational

speed, the tip clearance reduces as the centrifugal growth increases. Likewise, the

slight decrease in CD at high Mtan using the TFSI method with elastic structure is

attributed to the increases of power input, which leads to the increase of fluid total

and static temperatures, i.e. larger thermal expansions. Similar trends are observed

as those found in the pressure ratio study above. Besides, the minimum CD values

always occur in TFSI models with elastic structure due to the significant thermal

expansions.

The chart below shows that σ increases with rotational speed. It can be explained

as follows. On the one hand, the power input of the rotor increases with rotational

speed. On the other hand, the mass flow either remains constant or decreases. Thus,

the power per unit mass increases, leading to higher total temperature increase. σ

predictions of CFD and CFSI models at high fluid temperature are larger than those

at low fluid temperature. TFSI results are smaller than CFD and CFSI results, which

agrees well with the relative behavior from the pressure ratio study. However, the

curves of CFD and CFSI are not parallel, since the tip clearance in CFSI simulations

is affected by the rotational speed.

Kout increases with Mtan as expected. Furthermore, the TFSI model with elastic

structure at high Ttot,in yields the maximum Kout values. At low rotational speeds,

all models except TFSI with elastic structure result in almost identical Kout. As the

rotational speed increases, the results deviate from model to model and the second

largest Kout is found to associate with the CFSI case.

It can be seen from the chart of the radial displacement, that the centrifugal growth

increases with Mtan as one expects. In contrast, the thermal expansion increases

slightly with the rotational speed, which supports the explaination above for the

decrease of CD. This finding is consistent with the literature, where Waschka et

al. (1992) [7] showed quantitatively that the clearance decreases with increasing

rotational speed, while the thermal expansion is less sensitive to the rotational speed.

Unlike the weak influence of the pressure ratio, as the rotational speed increases,

the flow frictions also magnify and lead to significant increase of tooth temperatures

in all cases. At low Ttot,in, results are consistent among different models. However,

at high Ttot,in, the tooth temperatures predicted by both TFSI models are obviously

lower than by the other models due to the heat loss from fluid to solid. The tooth

temperature distribution across the seal does not vary much at Ttot,in = 300 K for all

models, while distinguishable lower values for both TFSI models are found at Ttot,in

= 600 K.



6.3. RESULTS AND DISCUSSION 83

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.26

0.28

0.3

0.32

0.34

Circumferential Mach number

D
is

ch
ar

ge
 c

oe
ffi

ci
en

t

 

 

CFD & TFSI rigid, 300K
CFSI, 300K
TFSI elastic, 300K
CFD, 600K
CFSI, 600K
TFSI elastic, 600K
TFSI rigid, 600K

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Circumferential Mach number

W
in

da
ge

 h
ea

tin
g 

co
ef

fic
ie

nt

 

 

CFD, 300K
CFSI, 300K
TFSI elastic, 300K
TFSI rigid, 300K
CFD, 600K
CFSI, 600K

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Circumferential Mach number

O
ut

le
t s

w
irl

 r
at

io

 

 

CFD & TFSI rigid, 300K
CFSI, 300K
TFSI elastic, 300K
CFD, 600K
CFSI, 600K
TFSI elastic, 600K
TFSI rigid, 600K

(continues on the next page)



84 CHAPTER 6. FSI CASE II – THERMAL AND CENTRIFUGAL EFFECTS

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.05

0.1

0.15

0.2

0.25

0.3

Circumferential Mach number

R
ad

ia
l d

is
pl

ac
em

en
t (

m
m

)

 

 

CFSI
TFSI elastic, 300K
TFSI elastic, 600K

0.3 0.4 0.5 0.6 0.7 0.8

300

320

340

360

Circumferential Mach number

F
irs

t t
oo

th
 te

m
pe

ra
tu

re
 (

K
)

 

 

CFD, 300K
CFSI, 300K
TFSI elastic & rigid, 300K

0.2 0.3 0.4 0.5 0.6

580

600

620

640

660

Circumferential Mach number

F
irs

t t
oo

th
 te

m
pe

ra
tu

re
 (

K
)

 

 

CFD, 600K
CFSI, 600K
TFSI elastic, 600K
TFSI rigid, 600K

Tooth 1 Tooth 2 Tooth 3 Tooth 4

300

320

340

360

380

T
oo

th
 te

m
pe

ra
tu

re
 (

K
)

 

 

CFD, Mtan=0.305, 300K
CFD, Mtan=0.839, 300K
CFSI, Mtan=0.839, 300K
TFSI ela. & rig., Mtan=0.305, 300K
TFSI ela. & rig., Mtan=0.610, 300K
TFSI ela. & rig., Mtan=0.839, 300K

Tooth 1 Tooth 2 Tooth 3 Tooth 4

550

600

650

700

T
oo

th
 te

m
pe

ra
tu

re
 (

K
)

 

 

CFD, Mtan=0.216, 600K
CFD, Mtan=0.593, 600K
TFSI ela., Mtan=0.216, 600K
TFSI ela., Mtan=0.593, 600K
TFSI rig., Mtan=0.216, 600K
TFSI rig., Mtan=0.593, 600K

Figure 6.17: Influence of rotational speed on discharge coefficient, windage heating
coefficient, outlet swirl ratio, rotor deformation, and tooth temperature (π = 1.5,
Ttot,in = 300 K/600 K)
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Figure 6.18 presents the influence of the inlet total temperature Ttot,in at modest

conditions of π and n.

The chart of CD versus Ttot,in shows that the CD predicted by CFD, CFSI, and

TFSI with rigid structure increases slightly with Ttot,in, whereas the CD predicted

by TFSI with elastic structure decreases obviously with the increase of Ttot,in due to

reduced tip clearances. The relationships among various models are in agreement with

earlier studies. Moreover, it is apparent that there is a growing deviation between

TFSI with elastic structure and CFD at increasing Ttot,in.

There is a clear trend of decreasing σ as Ttot,in rises. Both the real mass flow and

the power input decrease with Ttot,in, where the reduction of power input is due to

the decreased fluid density [42]. However, the cause of the windage heating reduction

is still to be explored. Further experimental and numerical research on windage

heating at high temperatures is expected. The curves of CFD and CFSI are parallel,

indicating that the difference between the two models is independent of Ttot,in.

The outlet swirl ratio increases significantly with Ttot,in in TFSI simulations with

elastic structure and decreases slowly in other simulations. Again, the reduction of

tip clearances explains the former case.

The radial displacements calculated by CFSI are independent of Ttot,in, as the

centrifugal growth is irrelevant to fluid temperatures. At the same time, the radial

displacement predicted by TFSI, i.e. the thermal expansion, increases with Ttot,in.

The tooth temperature increases with Ttot,in for all models. Moreover, the increase

is flattened a little when using the TFSI models due to heat losses of the fluid. The

tooth temperature distribution varies a little bit across the seal. At Ttot,in = 300 K,

results from different models can hardly be distinguished. However, at Ttot,in = 600

K, TFSI predictions depart from CFD/CFSI predictions. Finally, at Ttot,in = 800 K,

one can observe the difference between two TFSI models.

To summarize, it is shown that results from CFD, CFSI, and TFSI models can

be either similar or deviated, depending on the variable of interest and the operating

condition. Generally, FSI models with elastic structures can better represent the real

physics and thus result in more accurate predictions, especially at high temperature

and high rotational speed. However, in the cases where FSI effects are less critical,

CFD models can still be safely adopted. In brief, the systematic comparison above

helps to choose the most appropriate model for the specific case.

6.3.4 Heat Transfer across Fluid–structure Surfaces

This section focuses on the heat transfer across the fluid–solid interfaces. TFSI models

with elastic/rigid structures are both applied and compared.

Figure 6.19 illustrates the structural temperature field and radial thermal expan-

sion at Ttot,in = 300 K and 600 K. It can be recognized that the rotor temperatures

are obviously higher than the stator temperatures due to power input, which elevates
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Figure 6.18: Influence of inlet total temperature on discharge coefficient, windage
heating coefficient, outlet swirl ratio, rotor deformation, and tooth temperature (π =
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the local total and static temperature of the fluid. In particular, the maximum tem-

perature always occurs at the rotor teeth. Furthermore, the figures indicate that the

thermal expansion of the stator is negligible compared to the rotor. The temperature

and displacement distributions at low Ttot,in and high Ttot,in are qualitatively similar.

(a) Ttot,in = 300 K (b) Ttot,in = 600 K

Figure 6.19: Temperature distribution and radial thermal expansion of the rotor and
the stator (π = 1.1, n = 6,000 rpm)

In Fig. 6.20 and Fig. 6.21, the structural temperature and the mean Nusselt

number at FSI surfaces are demonstrated for the rotor and the stator, respectively.

The temperature distribution is obtained using TFSI with elastic structure, while the

mean Nusselt number Nu is computed and compared using both TFSI models. The

thermal behaviors are studied in terms of the pressure ratio, rotational speed, and
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inlet total temperature. When calculating Nu using Eq. 2.5 and Eq. 2.6, the mean

fluid temperature is taken as the averaged total temperature of the fluid domain, and

the mean solid temperature as the averaged structural temperature of the fluid–rotor

and fluid–stator surfaces.

Apparent temperature peaks are found at the tips of rotor teeth. The peak values

decrease from the second tooth to the fourth tooth. Compared to the rotor, the

temperature in the stator is lower by about 100 K, since there is no power input of

the stator. Sudden increase in temperature can be recognized at each step, i.e. at

locations of x = 12 mm, 20 mm, and 28 mm.

Generally, high pressure ratio leads to high Reynolds number and hence high

Nusselt number, suggesting more heat is transferred from the hot air to the structures.

It can be used to explain the increase of structural temperature and mean Nusselt

number under growing π shown in Fig. 6.20 (a) and Fig. 6.21 (a).

Both the rotor temperature and the mean Nusselt number at the fluid–rotor inter-

face are found to increase with rotational speed significantly, owing to the increasing

power input of the rotor. In particular, the heat exchange between the fluid and

the rotor becomes stronger, resulting in larger Nusselt number; and the total tem-

perature of the fluid is raised, which leads to higher static temperature of the fluid

and thus higher rotor temperature. In comparison, the stator temperature is less

sensitive to rotational speed. The Nu at the fluid–stator interface decreases slightly

with rotational speed. It might be due to the temperature dependency of the fluid

properties.

High inlet total temperature results in high structural temperatures as expected.

However, the inlet total temperature plays only a minor role in the heat transfer

across the fluid–structure boundaries. Growing Ttot,in leads to a slight decrease in

the fluid–rotor Nu and has almost no influence on the fluid–stator Nu. The former

could be explained by the temperature dependency of the fluid properties and the

improvement in accuracy at increasing temperature gradient in the structure.

In addition, the trend that TFSI with rigid structure always leads to small Nu

can be explained by examining each term in Eq. 2.5. Although the mean heat fluxes

at fluid–solid interfaces from both TFSI models are close to each other, the rigid

model tends to predict higher mean fluid temperatures. As a result, the temperature

difference obtained from the rigid model is larger than that from the elastic case,

which leads to a smaller Nu.

To sum up, TFSI simulations are necessary to understand the fluid–solid heat

transfer. Moreover, TFSI models with elastic and rigid structures lead to different

mean Nusselt numbers. As the elastic version is closer to the real physics, it is

recommended over its rigid counterpart.
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(a) Influence of pressure ratio (n = 6,000 rpm, Ttot,in = 600 K)

0 0.01 0.02 0.03 0.04

540

560

580

600

620

x (m)

T
em

pe
ra

tu
re

 (
K

)

 

 

TFSI elastic, Mtan=0.432
TFSI elastic, Mtan=0.324
TFSI elastic, Mtan=0.216

0.2 0.3 0.4 0.5

500

1000

1500

2000

Circumferential Mach number

M
ea

n 
N

u

 

 

TFSI elastic
TFSI rigid

(b) Influence of rotational speed (π = 1.5, Ttot,in = 600 K)
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(c) Influence of inlet total temperature (π = 1.5, n = 6,000 rpm)

Figure 6.20: Structural temperature distribution across the labyrinth seal (left) and
mean Nusselt number (right) of the rotor
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(b) Influence of rotational speed (π = 1.5, Ttot,in = 600 K)
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(c) Influence of inlet total temperature (π = 1.5, n = 6,000 rpm)

Figure 6.21: Structural temperature distribution across the labyrinth seal (left) and
mean Nusselt number (right) of the stator
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6.4 Summary

The thermal and centrifugal effects in a rotating stepped labyrinth seal are studied

using FSI simulations. The inflow temperature varies from 300 K to 800 K, and the

temperature–dependent material properties are used in the solid model. Mechanical

and thermal variables are exchanged at fluid–rotor/stator surfaces. This study focuses

on model comparisons, as well as the fluid–solid interfacial heat transfer phenomenon.

After defining the numerical models of the fluid and the structure, various FSI

models are proposed to simulate the thermal and centrifugal FSI effects, which in-

clude: 1) one–way/two–way mechanical FSI for the centrifugal effects; 2) two–way

thermal FSI with elastic/rigid structures for the thermal effects. Then, the CFD

model and the CSM model are verified and validated against experimental results.

The CFD model is examined with respect to the turbulence model and mesh de-

pendency study. Velocity profiles and various dimensionless numbers are in excellent

agreement with the test results. The centrifugal and thermal responses of the CSM

model are well validated against test data and analytical solutions, too. Next, de-

tailed flow features are illustrated. By comparing different FSI models, it is found

that: 1) one–way and two–way centrifugal FSI models lead to almost identical results,

but; 2) the thermal FSI models with elastic and rigid structures differ in results. All

cases require comparable computational resources.

Based on the studies above, a systematic comparison of CFD and various FSI

models is conducted. The study reveals the influences of pressure ratio, rotational

speed, and inlet total temperature on the dimensionless numbers, structural displace-

ment and temperature. It is also shown that CFD, centrifugal FSI, and thermal FSI

lead to distinctively different results under some conditions and consistent results

under other conditions. Moreover, thermal FSI modeled with elastic structure and

rigid structure lead to different results in some cases.

Last, the heat transfer across fluid–solid interfaces is studied. The structural tem-

perature field and thermal expansion are presented, and the temperature distribution

as well as the interfacial mean Nusselt number are compared at various operating

conditions. The results are discussed in detail to show how the structural thermal

behaviors are affected by the pressure ratio, rotational speed, and inlet total tem-

perature. The difference between thermal FSI models with elastic/rigid structures is

also scrutinized.

In conclusion, the findings of this study help us to better understand the thermal

and centrifugal FSI effects in labyrinth seals. In particular, it is clearly shown that

there are gaps between FSI simulations and CFD predictions in some cases. The

differences are studied in detail to provide guidelines on the significance of thermal

and centrifugal FSI effects in labyrinth seals, and therefore, help to choose from

various FSI models and traditional CFD models accordingly.



Chapter 7

Conclusions

The research work in this dissertation focuses on numerical investigations of various

FSI effects in labyrinth seals. A fully coupled FSI approach is employed in all the

simulations.

FSI effects have strong influences on the performance of labyrinth seals. However,

in previous numerical studies, FSI problems are usually simplified by decoupling the

fluid and solid fields. In contrast, the present study set out to model the mechanical

and thermal FSI effects in labyrinth seals in a fully coupled manner. The advantages

of FSI simulations over single field analyses are discussed in depth in the thesis and

can be concluded as follows. First, FSI simulations can cope with the FSI effects

that cannot be achieved by independent CFD/CSM simulations, such as the fluid

force induced vibration. Second, the coupling behavior of labyrinth seals is obtained

directly without empirical models or assumptions, avoiding possible errors introduced

by the decoupling procedure. Finally, FSI analyses enhance the accuracy of fluid/solid

field predictions, since the real physics is depicted more precisely.

The present study adopts an implicit partitioned approach for two–way FSI, which

provides high accuracy, stability, and flexibility. As a preliminary study, the accuracy

and efficiency of the FSI approach in parallel computations is examined against the

numerical FSI benchmark. Then, three important FSI effects are studied in two test

cases. In the first case, the fluid force induced vibration in non–rotating labyrinth

seals is analyzed using 3D transient FSI simulations. The second case focuses on

the FSI effects due to centrifugal growths and fluid–solid heat transfer in rotating

high–temperature labyrinth seals.

The following conclusions can be drawn from the present study.

In the benchmark case, the verification work against the benchmark suggests that

the current FSI approach has a relatively good accuracy in predicting fluid/solid fields

as well as coupling effects. In addition, the FSI approach shows good parallel per-

formance, such as a significant parallel speed–up, a four–times acceleration using the

algebraic multigrid scheme, and an evenly distributed workload across the processors.
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In the FSI case of fluid force induced vibration, periodic oscillations of the rotor

are obtained. Linear relationships between the amplitude and pressure ratio/mass

flow are well observed. Dependency study shows that inappropriate initial conditions

can lead to over–predicted amplitudes. Thus, dependency tests are recommended to

be carried out in advance. Under the given conditions, the amplitudes calculated

using FSI are very small, which indicates that the rotor vibration caused by fluid

forces is not critical. The methodology and results can contribute towards the FSI

simulation of entire turbines.

In the FSI case of thermal and centrifugal effects, it is found that one–way and

two–way centrifugal FSI models lead to almost identical results, while the thermal

FSI models with elastic and rigid structures differ in results. The systematic com-

parison among CFD and various FSI models shows that the FSI effects can strongly

influence seal performances, such as the discharge behavior, windage heating, swirl

development, and heat transfer across fluid–solid interfaces. In particular, the differ-

ence between FSI and CFD simulations is discussed in detail to provide guidelines on

the choice of models for future research. Moreover, the parameter study also reveals

the impacts of the pressure ratio, rotational speed, and inlet total temperature on

seal performances.

To sum up, the findings of this study help us to better understand the mechanical

and thermal FSI effects in labyrinth seals, and thereby assist in improving the seal

design.

Although the current study only involves two types of seal configurations, it is

apparent that the same numerical approach is applicable to other complex configura-

tions. For example, seals with honeycomb can be one of the further works using the

proposed methods. Moreover, it is foreseeable to extend fully coupled FSI simulations

to other critical components of jet engines in future research.



Appendix A

Performing Parallel FSI Analysis

in ANSYS MFX

A.1 Standard CFD Analysis

This and the next sections are not intended as step–for–step instructions, for which

the reader is urgently recommended to refer to the manuals, but rather a supplement

based on the author’s experiences.

• Launch the programs

– Pre–processor: cfx5pre

– Post–processor: cfx5post

– Solver manager: cfx5solve

• Run the solver via cfx5solve

– For a summary of full capacities:

cfx5solve -h

– Start from the definition file 〈filename〉.def using double precision:

cfx5solve -def 〈filename〉.def -double

– Start from 〈filename〉.def with the initial solution 〈filename〉.res in-

terpolated onto the grid in 〈filename〉.def, where the result file can be

replaced by full transient files ∗ full.trn or backup files ∗ full.bak:

cfx5solve -def 〈filename〉.def -ini 〈filename〉.res -interp-iv

– Restart from the result file 〈filename〉.res:
cfx5solve -def 〈filename〉.res

– Increase the memory allocation size when needed:

cfx5solve -def 〈filename〉.def -s 〈factor〉
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• Run in parallel

– In local PVM mode on 〈n〉 processors:

cfx5solve -def 〈filename〉.def -part 〈n〉 -par-local

cfx5solve -def 〈filename〉.def -part 〈n〉 -start-method ’PVM

Local Parallel’

– In local MPICH mode on 〈n〉 processors:

cfx5solve -def 〈filename〉.def -part 〈n〉 -start-method ’MPICH

Local Parallel’

• Read and write the CCL file, which provides a flexible way of editing the defi-

nition and result files with text editors

cfx5cmds -read -def 〈filename〉.def/res -text 〈filename〉.ccl
cfx5cmds -write -def 〈filename〉.def/res -text 〈filename〉.ccl

• Write backup files during solution

cfx5control 〈directory〉.dir -backup

• Post–processing from the command line using pre–defined 〈filename〉.cst/cse
can be very convenient sometimes

cfx5post -batch 〈filename〉.cst/cse -res 〈filename〉.res

A.2 Standard CSM Analysis

• Launch the program in GUI mode using the ANSYS Academic Teaching Ad-

vanced license

ansys110 -g -p aa t a -j 〈jobname〉 -o 〈output filename〉

• Execute the APDL file 〈filename〉.inp in ANSYS

/input,〈filename〉,inp

A.3 FSI Analysis

The complete FSI procedure is described below. The FSI input files are obtained by

modifying the standard CFD/CSM input files.

1. Modify the CFD input file

− Choose the ANSYS Multifield via Prep7 solver coupling mode

− Set the global mesh deformation options

− Set the mesh motion for each boundary
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2. Modify the CSM input file

− Define FSI surfaces using command SFA,,,FSIN,〈n〉

3. Set FSI controls in the CSM input file

− Use serial commands MF- to control the time duration, timestep, under–

relaxation factors, convergence criteria, etc. of the FSI simulation

4. Start the solution using cfx5solve

− cfx5solve -def 〈filename〉.def -ansys-input 〈filename〉.inp
-ansys-license aa r

5. Restart the solution

− Note that 〈filename〉.inp here is different from the one above

cfx5solve -def 〈filename〉.res -ansys-input 〈filename〉.inp
-ansys-restart 〈directory〉.ansys/〈filename〉.db
-ansys-license aa r

6. Monitor the solution in the solver manager

− Residuals of the governing equations

− Convergence of the interface loads

− Global and local monitor variables

7. Stop the solution

− cfx5stop -dir 〈directory〉.dir

Comments

⋆ License issues: The academic research license aa r is most powerful for its

unlimited number of elements and parallel FSI capability. In contrast, the

academic teaching licenses, such as aa t a, set an limit to the maximum number

of elements and do not support parallel FSI. However, they should be sufficient

for common structural analyses. Each FSI simulation takes one aa r license.

According to the current license policy, parallel CFD simulations running on

no more than 4 processors do not require additional HPC (High Performance

Computing) licenses.

⋆ Useful literature

− ANSYS 11.0 Documentation: Coupled–Field Analysis Guide
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− ANSYS CFX–Solver Modeling Guide: Coupling ANSYS CFX to an Ex-

ternal Solver

− ANSYS CFX–Solver Modeling Guide: Using the Solver in Parallel

− ANSYS CFX–Solver Manager User’s Guide: Starting ANSYS–CFX Solver

from the Command Line

− Best Practice Guidelines from ERCOFTAC, ANSYS CFX (in the manu-

als), and www.cfd–online.com

⋆ There is another solver coupling mode called ANSYS Multifield, where the FSI

controls are included in the CFD input file. The two modes are identical re-

garding the simulation results. However, the current mode is more convenient

in the author’s opinion.

⋆ In addition to step 4 in section A.3, it is also possible to start the solid and

the fluid simulations separately using ansys110 and cfx5solve. However, such

method requires more operation steps and does not show any advantage over

the current method; therefore it is omitted.

⋆ Note that the command lines and input files in the appendixes are based on

ANSYS version 11.0, except in section B.3.



Appendix B

Input Files of FSI Benchmark

The following shows an example of the modifications required by the mechanical FSI

analysis based on the existing CFD/CSM input files.

B.1 Excerpts from the CCL File

...

BOUNDARY: fsi

Boundary Type = WALL

BOUNDARY CONDITIONS:

MESH MOTION:

Option = ANSYS MultiField

Receive from ANSYS = Total Mesh Displacement

END

...

BOUNDARY: inlet

Boundary Type = INLET

BOUNDARY CONDITIONS:

MESH MOTION:

Option = Stationary

END

...

BOUNDARY: outlet

Boundary Type = OUTLET

BOUNDARY CONDITIONS:

MESH MOTION:

Option = Stationary

END

...
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BOUNDARY: sym

Boundary Type = SYMMETRY

BOUNDARY CONDITIONS:

MESH MOTION:

Option = Unspecified

END

...

BOUNDARY: wall

Boundary Type = WALL

BOUNDARY CONDITIONS:

MESH MOTION:

Option = Stationary

END

...

MESH DEFORMATION:

Option = Regions of Motion Specified

MESH MOTION MODEL:

Option = Displacement Diffusion

MESH STIFFNESS:

Option = Increase near Boundaries

Stiffness Model Exponent = 1

END

...

EXPERT PARAMETERS:

include pref in forces = t

...

SIMULATION TYPE:

Option = Transient

EXTERNAL SOLVER COUPLING:

ANSYS Input File = 〈directory name〉/〈filename〉.inp
Option = ANSYS MultiField via Prep7

END

INITIAL TIME:

Option = Coupling Initial Time

END

TIME DURATION:

Option = Coupling Time Duration

END

TIME STEPS:

Option = Coupling Timesteps

END
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END

...

EQUATION CLASS: meshdisp

CONVERGENCE CONTROL:

Maximum Number of Coefficient Loops = 20

Minimum Number of Coefficient Loops = 1

Timescale Control = Coefficient Loops

END

CONVERGENCE CRITERIA:

Residual Target = 1e-4

Residual Type = RMS

END

END

...

B.2 Excerpts from the APDL File

Start a new solution:

/UNITS,SI

/PREP7

...

FINISH

/SOL

ANTYPE,4

TRNOPT,FULL

NLGEOM,ON

*SET,fsidt,0.001

DELTIM,fsidt,fsidt,fsidt

AUTOTS,0

KBC,0

TINTP,,0.3,0.6

TIMINT,ON

...

ASEL,S,,,3

ASEL,A,,,5

ASEL,A,,,6

SFA,ALL,,FSIN,1

ALLSEL,ALL
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!************* Multifield Settings ******************

MFAN,ON

MFPS,GROUP1,ANSYS

MFPS,GROUP2,CFX

MFSO,GROUP1,GROUP2

!*

MFLC,SURF,ANSYS,1,DISP,CFX,fsi,Total Mesh Displacement,NONC

MFLC,SURF,CFX,fsi,Total Force,ANSYS,1,FORC,CPP

!*

MFTI,5

MFDT,fsidt,fsidt,fsidt,0

AUTOTS,OFF

MFRS,0,SING

!*

MFIT,100,1,1

MFCO,ALL,0.001

MFCO,UZ,1.0

MFCO,FZ,1.0

MFRE,DISP,0.1,RELX

MFRE,FORC,0.75,RELX

!*

/GST,ON,ON

TIME,5.0

SOLVE

SAVE

FINISH

Restart with a different timestep size and different FSI under–relaxation:

RESUME,〈restart filename〉,db
/SOLU

*SET,fsidt,0.004

DELTIM,fsidt,fsidt,fsidt

TIME,2.0+fsidt*10e3

!*

MFRS,-1,SING

MFTI,2.0+fsidt*10e3

MFDT,fsidt,fsidt,fsidt,off

MFRE,DISP,0.2,RELX

MFRE,FORC,1.0,RELX

!*
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/GST,ON,ON

SOLVE

SAVE

FINISH

B.3 LoadLeveler File

The following LoadLeveler file contains the parallel settings on HHLR and the solution

commands of ANSYS version 12.0.

#!/usr/bin/bash

#------------------------------------------

# Beginning of step0

# @ step name = step0

# @ output = out

# @ error = err

# @ notification = always

# @ notify user = 〈email adress〉
# @ checkpoint = no

# @ restart = no

# @ job type = parallel

# @ class = fnb class

# @ requirements = (Machine == "hlr1d")

# @ node = 1

# @ total tasks = 16

# @ resources = ConsumableCpus(1) ConsumableMemory(1GB)

# @ wall clock limit = 23:59:59

# @ initialdir = 〈directory〉
# @ queue

echo "Starting FSI:"

/ansys inc/v120/CFX/bin/cfx5solve -def 〈filename〉.res -double \
-ansys-input 〈filename〉.inp \
-ansys-restart 〈directory〉.ansys/〈filename〉.db \
-ansys-license aa r -ansys-installation /ansys inc/v120/ansys \
-part 16 -start-method ’MPICH Local Parallel’

echo "Finished"

/sw/bin/collect accounting

#------------------------------------------------
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Appendix C

Input Files of FSI Case II

This chapter demonstrates how to modify the CFD/CSM input files for a thermal

FSI analysis.

C.1 Excerpts from the CCL File

...

BOUNDARY: inlet

Boundary Type = INLET

BOUNDARY CONDITIONS:

MESH MOTION:

Option = Unspecified

END

...

BOUNDARY: outlet

Boundary Type = OUTLET

BOUNDARY CONDITIONS:

MESH MOTION:

Option = Unspecified

END

...

BOUNDARY: rotor

Boundary Type = WALL

BOUNDARY CONDITIONS:

HEAT TRANSFER:

Option = ANSYS MultiField

Receive from ANSYS = Temperature

END

MESH MOTION:
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Option = ANSYS MultiField

Receive from ANSYS = Total Mesh Displacement

END

...

BOUNDARY: stator

Boundary Type = WALL

BOUNDARY CONDITIONS:

HEAT TRANSFER:

Option = ANSYS MultiField

Receive from ANSYS = Temperature

END

MESH MOTION:

Option = ANSYS MultiField

Receive from ANSYS = Total Mesh Displacement

END

...

MESH DEFORMATION:

Option = Regions of Motion Specified

MESH MOTION MODEL:

Option = Displacement Diffusion

MESH STIFFNESS:

Option = Increase near Small Volumes

Stiffness Model Exponent = 0.5

END

...

EXPERT PARAMETERS:

include pref in forces = t

...

SIMULATION TYPE:

Option = Steady State

EXTERNAL SOLVER COUPLING:

ANSYS Input File = 〈directory name〉/〈filename〉.inp
Option = ANSYS MultiField via Prep7

END

END

...

EQUATION CLASS: meshdisp

CONVERGENCE CONTROL:

Maximum Number of Coefficient Loops = 10

Minimum Number of Coefficient Loops = 1

Timescale Control = Coefficient Loops
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END

CONVERGENCE CRITERIA:

Residual Target = 1e-4

Residual Type = RMS

END

END

...

C.2 Excerpts from the APDL File

Start a new solution:

/UNITS,SI

/PREP7

...

!*** FSI interfaces: rotor

ASEL,S,,,31,46,5

ASEL,A,,,32,47,5

...

SFA,ALL,,FSIN,1

ALLSEL,ALL

!*** FSI interfaces: stator

ASEL,S,,,148

ASEL,A,,,153,156,3

...

SFA,ALL,,FSIN,2

ALLSEL,ALL

FINISH

/SOL

ANTYPE,4

TRNOPT,FULL

NLGEOM,ON

*SET,fsidt,1e-5

DELTIM,fsidt,fsidt,fsidt

AUTOTS,0

KBC,1

TIMINT,OFF

...

!************* Multifield Settings ******************



108 APPENDIX C. INPUT FILES OF FSI CASE II

MFAN,ON

MFPS,GROUP1,ANSYS

MFPS,GROUP2,CFX

MFSO,GROUP1,GROUP2

!*

MFLC, SURF,ANSYS,1,DISP,CFX,rotor,Total Mesh Displacement,NONC

MFLC, SURF,CFX,rotor,Total Force,ANSYS,1,FORC,CPP

MFLC, SURF,ANSYS,1,TEMP,CFX,rotor,Temperature,NONC

MFLC, SURF,CFX,rotor,Wall Heat Flow,ANSYS,1,HFLU,CPP

!*

MFLC, SURF,ANSYS,2,DISP,CFX,stator,Total Mesh Displacement,NONC

MFLC, SURF,CFX,stator,Total Force,ANSYS,2,FORC,CPP

MFLC, SURF,ANSYS,2,TEMP,CFX,stator,Temperature,NONC

MFLC, SURF,CFX,stator,Wall Heat Flow,ANSYS,2,HFLU,CPP

!*

MFTI,1.0

MFDT,fsidt,fsidt,fsidt,0

AUTOTS,OFF

MFRS,0,SING

!*

MFIT,100,1,1

MFCO,ALL,0.001

MFRE,DISP,0.1,RELX

MFRE,FORC,1.0,RELX

MFRE,TEMP,0.1,RELX

MFRE,HFLU,0.1,RELX

!*

/GST,ON,ON

TIME,1.0

SOLVE

SAVE

FINISH
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[52] M. Schäfer, S. Yigit, and M. Heck. Implicit partitioned Fluid–Structure Inter-

action coupling. ASME Paper No. PVP2006-ICPVT-11-93184, 2006.

[53] S. Yigit. Phänomene der Fluid–Struktur–Wechselwirkung und deren numerische

Berechnung (PhD Thesis). Shaker–Verlag, 2008.

[54] P. Pironkov. Numerical simulation of thermal Fluid–Structure Interaction (PhD

Thesis). Published online, 2010.
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simulation approaches with respect to efficiency and accuracy. In B. Schrefler,
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[105] F. R. Menter. A comparison of some recent eddy–viscosity turbulence models.

ASME Journal of Fluids Engineering, 118:514–519, 1996.



Lebenslauf 
 
 
 
Persönliche Angaben 
 

Name    Yu Du 

Geburtsdatum  6. März 1984 

Geburtsort   Tianjin, V. R. China 

Nationalität   chinesisch 

Familienstand  ledig 
 
 
Werdegang 
 
1990 – 1995   Grundschule 
    Anshandao-Schule und Shiyan-Schule in Tianjin 

 
1995 – 2001   Gymnasium 
    Yizhong-Gymnasium und Xinhua-Gymnasium in Tianjin 

 
2001 – 2005   Bachelor-Studium der Engineering Mechanics 
    Tsinghua University 

 
2005 – 2007   Master-Studium der Computational Solid Mechanics 
    Institute of Solid Mechanics, 
    Department of Engineering Mechanics, 
    Tsinghua University 

 
seit 2007   Wissenschaftliche Mitarbeiterin 
    Fachgebiet Numerische Berechnungsverfahren im Maschinenbau, 
    Technische Universität Darmstadt 

 
 
 
Darmstadt, 11. Mai 2010 


	mythesis
	Tab_lebenslauf-duly

