A Formal, Declarative Approach
to Data Format Description

Vom Fachbereich Informatik
der Technischen Universitat Darmstadt
genehmigte

Dissertation

zur Erlangung des akademischen Grades Dr.-Ing.

vorgelegt von
Dipl.-Inform. (FH) Michael Hartle
geboren in Frankfurt am Main

Tag der Einreichung: 7. Juni 2010
Tag der Disputation: 16. Juli 2010

Referenten: Prof. Dr. Max Miihlhduser, Darmstadt
Prof. Dr. Andreas Rauber, Wien

Darmstadt 2010
D17

Ehrenwortliche Erklirung

Hiermit erklire ich, die vorgelegte Arbeit zur Erlangung des akademischen Grades
“Dr.-Ing.” mit dem Titel “A Formal, Declarative Approach to Data Format Descrip-
tion” selbstdndig und ausschlieflich unter Verwendung der angegebenen Hilfsmittel
erstellt zu haben. Ich habe bisher noch keinen Promotionsversuch unternommen.

Darmstadt, den 7. Juni 2010

Dipl.-Inform. (FH) Michael Har-
tle

LGemif §9 Abs. 1 der Promotionsordnung der TU Darmstadst

i

Wissenschaftlicher Werdegang des Verfasser

09/1998-03/2003 Studium der Informatik an der Fachhochschule Darmstadt
Abschluss mit Note 1,3

09/2002-03/2003 Diplomarbeit an der Fachhochschule Darmstadt
Titel “Real-Time Generation of Planetary Landscapes”

07/2004-07/2010 Wissenschaftlicher Mitarbeiter am Fachgebiet Telekooperation (Prof.
Dr. Miihlhduser) an der Technischen Universitit Darmstadt

07/2004-07/2010 Technischer Mitarbeiter am e-learning center im Hochschulrechen-
zentrum der Technischen Universitdt Darmstadt

09/2006-02/2010 Assoziiertes Mitglied im Graduiertenkolleg 1223 “Qualitétsverbesserung
im E-Learning durch riickgekoppelte Prozesse”

2Gemif §20 Abs. 3 der Promotionsordnung der TU Darmstadt

iv

Abstract

The concept of data formats is central to information storage and exchange, as
it coins the process of how information is written to and read back from format-
compliant data by senders and receivers. In contrast to the widespread use of
natural-language descriptions intended for human engineers, and of procedural defi-
nitions of format-compliant components, describing data format knowledge in a for-
mal, declarative manner is necessary for making this knowledge machine-processible,
enabling its flexible, automated application to format-compliant data. To that ef-
fect, data format knowledge is considered both on the level of format-compliant
data as a data format instance and on the level of a data format consisting of such
instances.

In a survey of current State of the Art in Data Format Description, examined
related work from the data-centric research domains of Digital Preservation, Multi-
media and Telecommunication show a lack suitable formalised models for universal
applicability. As well, examined related work provides only a subset of the four nec-
essary descriptive capabilities to describe data which may be primitive, structured,
transcoded or fragmented.

In the analysis, a formalisation is presented which is based on the research hy-
pothesis that a data format defines a normative set of lossless information repre-
sentations, where there exists a bijective mapping between interal representations
of senders / receivers, and external representations that are exchanged as format-
compliant data. The formalisation is universally applicable for arbitrary data for-
mats, is suitable for both so-called lossless and lossy data formats, and leads to the
notion of four elementary descriptive capabilities, which exactly match those used in
the State of the Art survey. A valid Portable Network Graphics (PNG) raster image
is given as “litmus test” for data format description, as its description exercises all
four elementary descriptive capabilities. Based on the formalisation, it is shown that
a universal approach to data format description is too powerful in computational
terms as to be able to guarantee termination, that the tractability of bijective map-
ping functions and their inverses is neither given nor necessarily related, and that
one-to-one correspondence of a bijective mapping function can be guaranteed using
information-preserving, Turing-complete Reversible Turing Machines.

Building on the formalisation given in the analysis, the thesis defines the Bit-
stream Segment Graph (BSG) model for describing arbitrary data format instances.
For BSG instances, representations are defined both for visualisation as well as
for storage and exchange through machine-processible, RDF-based representations.
Incremental construction and modification of BSG instances is enabled through a
closed set of operations, and the “coverage” of a BSG instance is defined as a measure
of its completeness. Actual tool support for the construction, modification and ex-
ploration of BSG instances on arbitrary data is provided through the Apeiron BSG
Editor. Applications of the BSG model are demonstrated through the description
of the PNG image “litmus test” from the previous analysis, and for the description
of an exploit in the context of I'T Security.

Building on the BSG model, the thesis defines the BSG Reasoning approach for
describing arbitrary data formats as potentially infinite sets of data format instances.
Using logic rules, a BSG instance can be inferred for a given bit sequence which is
considered to be format-compliant data. The BSG Reasoning approach defines the

vi

representation of rulesets for storage and exchange. Applications of BSG Reasoning
are demonstrated through the description of a PNG image file format subset and
through an outlined approach for format-aware fuzzing of bitstreams in I'T Security.
The PNG image file format subset described through BSG Reasoning exercises all
elementary descriptive capabilities previously identified in the analysis, and it is
shown that the resulting set of logic rules, despite a low number of format-specific
rules, already yields a high coverage of inferred BSG instances on a number of valid
PNG images.

The thesis closes with a retrospection, conclusions and an outlook on potential
future research on the BSG model and the BSG Reasoning approach, focusing on
aspects such as the computer-aided reverse-engineering of data format rules, or the
use of reversible programming languages for the definition of lossless coding and
transformation functions.

vii

Zusammenfassung

Die Speicherung und der Austausch von Informationen ist eng mit dem Be-
griff des Datenformats verkniipft. Ein Datenformat legt fest, wie Informationen
format-konform von einem Sender als Daten geschrieben und aus diesen von einem
Empfianger wieder gelesen werden kénnen. Obwohl natiirlich-sprachliche Beschrei-
bungen fiir menschliche Ingenieure heute hiufig genutzt werden, und format-konforme
Ablaufe teilweise prozedural beschrieben werden, hétte eine formale, deklarative
Beschreibung von Datenformat-Wissen den Vorteil, daf dieses ohne Bindung an
einen konkreten Ablauf und ohne den Umweg {iber Menschen maschinen-verarbeitbar
ist, und damit flexibel und automatisiert auf format-konforme Daten angewandt wer-
den kann. Im Rahmen dieser Dissertation wird Datenformat-Wissen sowohl auf der
Ebene von format-konformen Daten als Datenformat-Instanz als auch auf der Ebene
eines Datenformats betrachtet, welches aus Datenformat-Instanzen besteht.

Im Rahmen einer Begutachtung verwandter Arbeiten im Bereich der Datenformat-
Beschreibung werden Ansitze in den daten-orientierten Forschungsgebieten der Dig-
italen Erhaltung, Multimedia und Telekommunikation untersucht, und es wird fest-
gestellt, dass geeignete, formalisierte Modelle fehlen, welche universell fiir die Beschrei-
bung von Datenformaten anwendbar sind. Dariiber hinaus hat sich gezeigt, dass
die betrachteten Ansétze nur teilweise die notwendigen beschreibenden Fahigkeiten
haben, welche erforderlich sind, um den Aufbau von Daten zu beschreiben, welche
primitive Werte enthalten, eine Struktur darstellen, einer Block-Transformation un-
terzogen wurden oder aber in fragmentierter Form vorliegen.

In einer Analyse wird daher eine Formalisierung des Datenformat-Begriffs en-
twickelt, welche von der Annahme ausgeht, dass ein Datenformat ein normatives Set
von verlustfreien Informations-Reprisentationen darstellt. Fiir ein solches Set ex-
istiert eine bijektive Abbildung zwischen der internen Reprisentation eines Senders
/ Empfingers und der korrespondierenden externen Représentation, welche in Form
format-konformer Daten ausgetauscht wird. Diese Formalisierung ist universell fiir
beliebige Datenformate anwendbar, also auch fiir sogenannte verlustbehaftete und
verlustfreie Datenformate, und fiihrt zum Konzept von elementaren beschreibenden
Fahigkeiten, welche sich genau mit denen decken, welche in der Begutachtung ver-
wendet wurden. Auf Basis dieser Fahigkeiten wird ein giiltiges Bild im Dateiformat
Portable Network Graphics (PNG) als “Lackmus-Test” fiir Ansétze der Datenformat-
Beschreibung vorgestellt, da dessen Beschreibung alle vier elementaren beschreiben-
den Fahigkeiten voraussetzt. Auf Basis der Formalisierung wird dann gezeigt, dass
ein universell anwendbarer Ansatz zur Datenformat-Beschreibung zu méchtig ist, als
dass dessen Terminierung noch garantiert werden kann. Ferner wird gezeigt, dass
bijektive Abbildungsfunktionen und ihre Inversen weder effizient sein miissen, noch
dass die Effizienz einer bijetiven Abbildungsfunktion und ihrer Inversen im Zusam-
menhang stehen miissen. Zu guterletzt wird gezeigt, dass die fiir eine bijektive Ab-
bildung erforderliche Korrespondenz von internen und externen Reprisentationen
dadurch garantiert werden kann, dass man diese iiber eine informations-erhaltende,
Turing-vollstindige “Reversible Turing-Maschine” definiert.

Aufbauend auf der Formalisierung der Analyse wird in dieser Dissertation das
Bitstream Segment Graph (BSG)-Modell definiert, welches der Beschreibung be-
liebiger Datenformat-Instanzen dient. Fiir Instanzen des BSG-Modells sind sowohl
visuelle Repréisentationen als auch maschinen-verarbeitbare, RDF-basierte Reprisen-

viii

tation fiir die Speicherung und den Austausch definiert. Die schrittweise Konstruk-
tion und Modifikation von BSG-Instanzen wird durch ein geschlossenes Set von
Operationen ermoglicht, und mittels dem Maf der “Abdeckung” einer BSG-Instanz
kann deren Vollstandigkeit bestimmt werden. Mithilfe des Apeiron BSG Editor ist
die Konstruktion, Modifikation und Betrachtung von BSG-Instanzen auf eigenen
Daten in der Praxis moglich. Die Anwendung des BSG-Modells wird demonstri-
ert, indem eine Beschreibung des PNG-Bilds aus dem “Lackmus-Test” der Anal-
yse vorgenommen wird, und indem der Aufbau eines Exploit im Kontext der IT-
Sicherheit mittels einer Beschreibung néher erklirt wird.

Aufbauend auf dem BSG-Modell beschreibt diese Dissertation den BSG Reasoning-
Ansatz, um beliebige Datenformate als potentiell unendliche Sets von Datenformat-
Instanzen zu beschreiben. Mithilfe von Logik-Regeln kann eine BSG-Instanz auf
einer gegebenen Bitfolge erschlossen werden, von der initial angenommen wird, dass
sie format-konform ist. Dieser Ansatz definiert auch die Reprisentation von Regel-
Sets zur Speicherung und zum Austausch. Die Anwendung des BSG Reasoning-
Ansatzes wird durch die Beschreibung eines Subsets des PNG-Datenformats demon-
striert, sowie durch die Beschreibung eines Ansatzes zum format-spezifischen Fuzzing
von Bindrdaten im Kontext von I'T-Sicherheit ergiinzt. Die Beschreibung des PNG-
Datenformat-Subsets mittels des BSG Reasoning-Ansatzes nutzt alle vier elementaren
beschreibenden Fiahigkeiten, welche zuvor in der Analyse identifiziert wurden, und
es wurde gezigt, dass das hierfiir verwendete Set an Logik-Regeln trotz seines gerin-
gen Umfangs bereits in der Lage ist, BSG-Instanzen mit einem hohen Grad an
Abdeckung fiir eine Reihe von giiltigen PNG-Bildern zu erschliessen.

Die Dissertation schliesst mit einem Riickblick iiber die gesamte Arbeit, zieht
Schlussfolgerungen und bietet einen Ausblick auf kiinfige Forschung im Hinblick auf
das BSG-Modell und den BSG Reasoning-Ansatz, speziell im Hinblick auf Aspekte
wie der maschinell unterstiitzten Analyse von Daten und den jeweils zugrundeliegen-
den Datenformat-Regeln, oder aber der Verwendung von reversiblen Programmier-
sprachen zur Definition von Kodierungs- und Transformationsfunktionen.

ix

Contents

E 1 Introdu('tiogl 7

igital Presfrvatioﬂ 9
221 Data Format Registries o o oo 10

xi

xii

CONTENTS

3.3.3 Validating representationd 53

3.4

13.3.4 Wﬂmﬂ 54
Properti isation 57

4 itability of bijective mapping functions for data formatd .. 57
4 ficiency for lossless and lossv data formatd 59
3.4.3 Sufficiency and necessity of descriptive capabilitied 59

3.4.4 Using a PNG raster image as “li T 60

35

4.3.1 Visual representationso 74

79

4.4.2 Measuring completeness of a descriptionl 84
4.4.3 Providing tool support with the Apeiron BSG Editor 85

4.5 Applications of the BSG model 85
ipti i itmus test?. 86

452 Describi its i ity . 87
4.6 Discussionlo 91
4.7 SUMMALY « v v v v v e e e e e e e e e e e e e e e 92

5.2

5.2.3 Defining rules L o 100

5.2.4 Matching rule conditions o oo 102

CONTENTS xiil

5.4.2 Format-aware fuzzing of bitstreamd 112

B8 DISCUSSION « .« o o v et e 113
5.6 Summard 115
6 Finald 117
61 Introductiono 117
M@ﬂ 117

6.3 Conclusions
6.4 Outlookl e e 118

List of Figures

4.1 Representation of bitstream segments in the simple variantl
/ Representation of bi cam segments in the extended variantl
/ Representation of bi cam segments in the interactive variant
4. iraph gramma e for initia plit/final joinl
‘ iraph gramma e for split/joinl.
4.6 __Graph grammar rule for tie/untid
4 yraph gramma e for declare primitive/undeclare primitive

4,8 aph gramma or_decla AgImen ndecla agment

4.9 _Graph gramma e for compose/decomposd
4.10 (raph gramma e for expand/compresd L.
4.11 Apeiron BSG Editor showing a BSG instancd

%&&%&é@ o crafied DNG | ot shown in Anciron (275

4.15 Structure of a crafted PNG image exploit shown in Apeiron (3/3)

XV

List of Tables

erpt of an X description for a PNG IA h sl
erpt_of a sample data ¢ defined ng DEDI)
2.3 Definition of a data qtru("rure using the MPEG 1/2 methodoloqvl
4 _Definition of an ISO e Tvpe Box using MSD avoll
6 XFlavor representation of a MP \ u'o;.l A
Definition of a B hema, for JPEG2000 using BSDI

Deﬁmhon of a BS Deqcrmhon for TPEGQOOO using Bq_[]

11 An AQNI Mw

Iélz ég E}(‘g QQQQQ!QQ QQJQQE ggglgnment
2.13 Excerpt of a 3GPP message definition in CSN.1l

5.4 _Excerpt of format-specific rules for a PNG subset (2/2)

|B,| Results for PNG subset rules (1/5)

B.2 Results for PNG subset rules (2/5)
B.3 Results for PNG subset rules (3/5)

B.4 Results for PNG subset rules (4/5)

xvii

Chapter 1

Introduction

1.1 Motivation

The concept of data formats is central to information storage and exchange. A data
format defines how information is represented digitally as bits, bytes or characters,
forming higher-level data structures. It therefore coins the process of how to deter-
mine syntax and semantics of data in order to access the information represented
by it, and to process it in a meaningful manner.

To pass digitally represented information between a sender and a receiver, an
agreement is needed on the semantics of data to be transmitted, and on the data
format to be used. The agreement is used by a sender to determine how to encode
and serialise information to be sent into a sequence of bits, which is then passed
on as a message. The actual composition of format-compliant data forming the
message depends on the data format agreed for the exchange, and is thus only given
implicitly. Therefore, the agreement is also used by a receiver of the message, where
the bit sequence is parsed and decoded, enabling access to represented information
for further processing. In this process, data format knowledge is applied to make
the actual composition of format-compliant data explicit again.

It is therefore necessary that some representation of the data format is given and
shared between these parties as part of the agreement, leading to the problem of
describing data format knowledge.

1.1.1 Formal descriptions over natural-language descriptions

The way in which data formats are described and represented depends on the in-
tended audience. Both natural-language descriptions for human engineers and for-
mal descriptions for machine-processing exist:

e Natural-language descriptions intended for human engineers are still domi-
nant at the time of writing. Translating data format knowledge from natural-
language descriptions to machine-executable implementations, made necessary by
the sheer volume of format-compliant data as well as by the complexity of its
representation, depends on qualified human labour.

e Formal descriptions intended for machine-processing are currently present in
specific, limited domains only. Universal applicability for describing arbitrary

2 CHAPTER 1. INTRODUCTION

data formats in general depends on the availability of a formalised model that
guarantees this property.

Accessing represented information in format-compliant data strongly depends on
format-compliant implementations. Existing implementations are threatened by
rapid technological change, which necessitates constant adaptation or replacement
for them to remain usable. Yet, the problem with natural-language descriptions is
that the application of data format knowledge to a problem depends on qualified hu-
man labour, which is limited by its cost and availability. Lacking format-compliant
implementations, the illegibility of represented information effectively results in its
loss.

Employing formal descriptions of data formats in a machine-processible man-
ner is a desirable alternative for making data format knowledge machine-accessible
and applicable without inherently depending on human labour. Yet, a suitable,
formalised model still remains essential for the universal applicability of formal de-
scriptions.

1.1.2 Declarative approaches over procedural approaches

The problem of formally describing data format knowledge can be approached in
either a procedural or declarative manner:

e In a procedural manner: Using languages similar to existing programming
languages like Java or C/C++, procedural approaches define fixed, specific algo-
rithms for processing format-compliant data, such as for parsing and decoding, or
for encoding and serialising. In contrast to declarative approaches, the underly-
ing rules and constraints of format-compliant data are given only indirectly, albeit
being present in the defined algorithms.

e In a declarative manner: Approaches using a declarative manner define the
underlying rules and constraints that govern format-compliant data. In contrast
to procedural approaches, no specific algorithm for processing format-compliant
data is given.

For a specific purpose, procedural approaches make it straightforward to write al-
gorithms to process format-compliant data. Yet, the problem with procedural ap-
proaches is that different purposes lead to different algorithmic implementations,
even when the same underlying rules and constraints of the very same data format
still apply.

Using a declarative approach, these underlying rules and constraints can be ex-
posed for a wide range of applications, retaining the freedom of using the same
format-specific knowledge for different purposes. Although more complex, the declar-
ative approach has the benefit of increased flexibility.

For example, it may be desirable to access only a certain subset of information
contained in large volumes of format-compliant data, thereby using resources more
efficiently and speeding up the parsing process. Likewise, when part of format-
compliant data is known to be corrupted, and thus not to be trusted to contain
valid information, accessing the still-valid portion and trying to fix the corruption

1.1. MOTIVATION 3

strongly depends on the availability of data format knowledge that can be adapted
and applied in a flexible manner.

1.1.3 Research domains

The problem of describing data formats is of concern to data-centric domains of
Computer Science, especially Digital Preservation, Multimedia and Telecommunica-
tion:

e In Digital Preservation, the problem of preserving long-term access to digital
information for future generations threatens digitally represented cultural heritage
[RHO5]. A major use case for related work in this domain is the migration of data
between data formats to prevent technological obsolescence and the subsequent
loss of information.

e In Multimedia, two use cases related to data formats are the normative definition
of data formats as well as the high-level adaptation of digital objects for Universal
Media Access [VCE03|. Regarding the former use case, normative definition of
data formats is required for the specification of new data formats, allowing the
interoperability of systems working with multimedia data. Concerning the latter
use case, Universal Media Access depends on the timely delivery of multimedia
resources over heterogenous networks to end-user devices with varying decoding
and playback capabilities. High-level, on-the-fly adaptation of digital objects to
the capabilities and limitations of network and end-user devices strongly depends
on data format knowledge to achieve meaningful adaptations.

e In Telecommunication, a primary use case is the normative definition of protocol
data units (PDUs). Similar to Multimedia, there is the problem of describing
communication protocols for interoperability of parties, which also covers the
data format of PDUs to be transmitted.

Related work exists for formally describing data formats in a declarative and pro-
cedural manner, yet their underlying models are often based on domain-specific
assumptions that do not hold in general. Examined related work does not provide a
formalised model that is geared towards universal applicability, although universal
applicability is sometimes claimed.

1.1.4 Data format instances and data formats

When considering the problem of formally describing data format knowledge, it is
helpful to distinguish between a data format instance and a data format:

e Data format instance: A data format instance has a bit sequence, where in-
formation is represented conforming to its data format. Describing a data for-
mat instance in a machine-processible manner provides a means to authorita-
tively express how specific information is represented, correcting misunderstand-
ings present in applications and in the understanding of human engineers. For
example, a Portable Network Graphics (PNG) raster image is a data format in-
stance for the PNG file format, where a description of this instance can show the
exact bits responsible for stating the width of the given PNG image file.

4 CHAPTER 1. INTRODUCTION

e Data format: A data format has a potentially infinite number of its data format
instances, which conform to a common set of underlying rules and constraints.
Again, describing a data format in a machine-processible manner provides means
to authoritatively express how a specific type of information is represented. For
example, the PNG file format is a data format which defines rules on where the
image header is located and from which fields it is composed, thus defining the
placement of fields containing the width of arbitrary PNG images.

Data format instances and data formats are closely linked, since underlying rules
and constraints of a data format manifest themselves in its data format instances. In
order to address and consider both levels, it is desirable to have suitable, matching
models for both describing data format instances as well as data formats.

1.2 Research Problems

This thesis addresses both the formal description of arbitrary data formats in a
declarative manner, based on the formal description of arbitrary data format in-
stances. Describing a data format as a class through its data format instances raises
the following two research problems for this thesis:

e Describing data format instances: How to describe the composition of format-
compliant data, considering the syntax and semantics of its bit sequence or seg-
ments thereof?

e Describing data formats: How to describe a data format with a potentially
infinite set of data format instances through its underlying rules and constraints?

Since a data format serves the purpose of representing information for its storage and
transmission over time, this thesis assumes that the representation of information
15 lossless - represented information must actually be present in its representation.
This thesis therefore assumes as well that for every data format instance, there exists
a bijective mapping between a format-compliant bit sequence and the information
it represents.

1.3 Contributions and Outline

The four contributions of this thesis are a state-of-the-art survey on data formats
and their description, an analysis on data format description, the Bitstream Segment
Graph (BSG) model for describing data format instances, and the BSG Reasoning
approach for describing data format classes:

e Survey on current state-of-the-art in data formats and their description:
The survey in Chapter [2 covers definitions and provides a basic systematisation
of related work in terms of their descriptive capabilities, focusing on the data-
centric research domains of Digital Preservation, Multimedia and Telecommuni-
cation, and discussing shared properties, differences and shortcomings of related
approaches.

1.4. ACKNOWLEDGEMENTS Y

e Analysis of data format description: The analysis provided in Chapter
presents an abstract model for describing data formats and data format instances
in order to address the inherent properties and limitations of data format de-
scription. While the reversibility of a bijective mapping does not restrict its com-
putational complexity, the analysis states that describing arbitrary data formats
comes at the cost of losing guaranteed termination of parsing and decoding pro-
cesses in case of erroneous data format rules. The analysis presents the concept of
elementary descriptive capabilities, which align with the descriptive capabilities
previously used for comparing related approaches and identifying shortcomings.

e Bitstream Segment Graph (BSG) model: Drawing on the set of elementary
descriptive capabilities established in the analysis, the graph-based model pre-
sented in Chapter []is used to describe data format instances through a bijective
mapping for a format-compliant bit sequence. The chapter includes methods for
the construction of a BSG instance and its evaluation, e.g. for the extraction of
contained information. The chapter also presents the Apeiron BSG Editor tool
for the manual annotation of data and the definition of a RDF-based representa-
tion for BSG instances. This contribution has been published at the International
Conference on Software and Data Technologies (ICSOFT) 2008 [HMT*08], at the
International Multi-Conference on Computing in the Global Information Tech-
nology (ICCGI) 2008 |[HSB*08| and extended in an article in the International
Journal on Advances in IT Security (IJAS) [HFS*09|, with the latter two focus-
ing on applications in the context of IT Security.

e BSG Reasoning approach: The approach presented in Chapter B builds on
the BSG model and describes a data format with a possibly infinite set of data
format instances using rules for the computation of a least fixed point similar to
Datalog [CGT89|, thereby inferring a BSG instance from a format-compliant bit
sequence. The chapter also presents a syntax for data format rules and a BSG-
based reasoning engine. The contribution has been evaluated on a subset of the
Portable Network Graphics (PNG) image format which exercises all elementary
descriptive capabilities identified in the previous analysis. This contribution has
been published at the International Conference on Digital Preservation (iPRES)
2008 [HBSMOS8| and extended in the IJAS article [HES*09].

1.4 Acknowledgements

As Malcom Gladwell so aptly put it, behind every story of success, there is also a
story of a fertile ground provided, of chances offered, of opportunities seized and of
hard work being done even in the face of setbacks and constant frustrations.

Although writing a PhD thesis is a personal endeavour, it cannot be considered
and understood as an isolated task. Looking back, I had a lot of helping hands when
I needed them - in this spirit, I want to thank:

e my PhD advisor Prof. Dr. Max Miihlh&user for taking the risk, accepting me as
his PhD student, and giving me the freedom to pursue my lines of research in his

TK / RBG group, as well as my PhD co-advisor Prof. Dr. Andreas Rauber for
his rich, constructive feedback and a warm welcome to Vienna,

CHAPTER 1. INTRODUCTION

my parents Astrid and Joachim and my sister Svea for keeping me grounded, for
encouraging me all along the way, for supporting me in countless ways, and for
listening to quite similar stories over and over again - finally, it is done -,

all of my friends for being there, and for both distracting me and pushing me
forward as it was necessary (especially, but neither limited to nor in a special
order, Sandra and Hans, Tobias and Nina, Andreas and Verena, Marek and Steffi,
Ariane, Maren, Kerstin, Annette and Claudia),

my TK research team head Dr. Guido Rokling for a sound education in scientific
procedures, and for his endless patience to both read and comment on countless
drafts,

my colleagues at the Telecooperation (TK) research group (especially Gina Haufge,
Kai Hover, Henning Bér, and Gundolf von Bachhaus from the DLH group, as well
as Sebastian Ries and others),

my previous e-learning center (elc) team head Dr. Susanne Offenbartl for her
support and her refreshingly pragmatic viewpoints on the better side of morale-
building,

my colleagues at the e-learning center (especially Irina Reuter, Anika Hartmann,
Evelyn Ehrich, Klaus Steitz, Anne Bieberstein, Iris Wegmann, Thorsten Maas,
Leif Pullich, Jens Japes and Julia Sonnberger) and at the Hochschulrechenzentrum
(HRZ) (especially Dr. Jiirgen Ohrnberger),

my colleagues at the Rechnerbetriebsgruppe (RBG) group (namely Sven Schenkel,
Claudia Kleber, Qun Herz, Manfred Schnitt, Gerhard Fladerer and Uwe Langen-
dorff),

my colleagues at the research training group GKEL (especially Doreen Bohnstedt)
Prof. Dr.-Ing. Ralf Steinmetz and his KOM research group,

all of my student helpers with whom I worked in close collaboration (especially An-
dreas Doms, Tim Klein, Hristo Lulev, Amir Neziri, Martin Pinto-Bazurco Mendi-
eta, Viet Hung Tu and Thomas Wilker), as well as

all of my students whose bachelor, diploma and master theses I supervised, and
who contributed to my PhD research and my projects (namely in alphabetic order
Jan Adler, Benedikt Antoni, Paul Baumann, Arsene Botchak, Alex Bulach, Julian
Dean, Jens Hatlak, Clayton Hoss, Tim Klein (again), Benno Kroger, Friedrich-
Daniel Méller, Bernd Papachrissanthou, Daniel Schumann, Marcus Stander, Bjorn
Stickler, Daniel Thies, Slaven Travar and Marc Weyland).

I probably still forgot half, and for that [am sorry - thanks to you all.

Chapter 2

State of the Art

2.1 Introduction

The previous Chapter [Il presented the research problem of formally expressing both
the composition of format-compliant data for data format instances as well as the
underlying rules for a data format in a machine-processible, declarative manner. In
order to assess the current state of the art in this regard, this chapter now contributes
a survey on the current state of the art regarding existing models for expressing such
data format knowledge. The survey focuses on the following aspects:

e Definitions and models for data format knowledge: Related work directly
concerned with data format knowledge regarding the composition of data gives
definitions and models for its expression, either implicitly or explicitly. Existing
definitions and models are based on their specific concepts and constraints, leading
to inherent properties and limitations on their expressiveness.

e References to existing related work: Related work only indirectly concerned
with the composition of data, but still in need to express such data format knowl-
edge, provides references to existing definitions and models as well as insights to
their adoption.

When related work provides a model for describing data formats or data format
instances not on the level of meta-information, but focusing on data format rules
and the structure of data format instances, the survey provides a classification:

e Classification: It is considered whether such an approach is declarative or pro-
cedural, whether it is machine-processible and whether it has a formalised model
for universal applicability:

— Declarative or procedural approach: In order to classify existing ap-
proaches for this thesis, it is considered whether they describe data format
knowledge in a declarative or procedural manner.

— Machine-processible approach: Approaches exist in related work which in-
troduce descriptive means intended for human engineers, which do not focus on
being machine-processible. Machine-processible approaches themselves require
a minimum degree of formalisation which may be given only indirectly through
textual definitions or executable implementations.

7

8 CHAPTER 2. STATE OF THE ART

— Formalised model for universal applicability: Approaches exist which
introduce a number of concepts to provide specific descriptive capabilities, yet
which do not address the completeness or orthogonality of their concepts for
describing arbitrary data formats. The existence of such a formalised model
supports potential claims for universal applicability.

Last but not least, if a suitable model is presented for an approach, the survey
examines its descriptive capabilities:

e Descriptive capabilities: In order to compare different models, their expres-
sivity is considered regarding the handling of primitive data, structured data,
transcoded data or fragmented data:

— Primitive data is a single piece of information, such as a floating-point num-
ber, a character string or a three-bit unsigned integer stored in least-significant
bit first order. It is represented in an encoded form, which has to be decoded
in order to access it.

— Structured data is a continuous sequence of bit sequences, each with a sep-
arate, distinct “meaning” in its context. It has to be segmented to access the
separate constituents.

— Transcoded data is a bit sequence which is the result of a transformation of
an original bit sequence, such as compression, encryption or some similar block
transformation. It has to be transformed in order to access the original bit
sequence.

— Fragmented data is a bit sequence which is only a fragment of a larger,
original bit sequence. In order to access the original bit sequence in its entirety,
fragmented data has to be concatenated in the right order.

Handling these kinds of data properly requires the matching descriptive capa-
bilities of decoding primitive data, of segmenting structured data, transforming
transcoded data as well as concatenating fragmented data are considered. Based
on these descriptive capabilities, the survey compares related work, allowing state-
ments to be made regarding their suitability for describing arbitrary data formats
in general.

Since processing data is a central, recurring aspect of Computer Science, related work
on data formats can be sought and found in a number of research domains. This
chapter focuses on contributions from a data-centric subset of research domains in
separate sections, namely Digital Preservation in Section 2.2 Multimedia in Section
2.3 and Telecommunication in Section 2.4l The chapter continues with a discussion
in Section and closes with a summary.

2.2. DIGITAL PRESERVATION 9

2.2 Digital Preservation

Overview

Digital Preservation is concerned with the long-term preservation of digital infor-
mation. Data formats play a crucial role, since digital information is stored as data
in a specific data format, while format-specific hardware and software provides ac-
cess to the contained information. Over time, both hardware and software tend to
become obsolete due to technological advances. As obsolete hardware may fail in
the future when there is no replacement available, and as obsolete software may
not be available anymore or fail to interoperate with newer hardware and software,
technological obsolescence is a constant threat to Digital Preservation efforts. The
current rapid pace of technological change amplifies this threat.
In literature, three preservation strategies for protecting digital information against

information loss through technological obsolescence on the logical level are the mi-
gration of data, the emulation of hardware / software, and digital archaeology:

e Migration of data: Information stored as data in a specific data format is
migrated to a suitable target data format. Due to a typical mismatch of different
data formats, some information often cannot be retained during a migration and is
usually lost. For a migration of data, it usually must be decided which information
to retain, for which the migration process must be monitored [Arm00].

e Emulation of hardware / software: Hardware and/or software representing
the original technological environment or parts thereof are replaced by an emula-
tion. Through using the emulation, original hardware and/or software components
remain capable of providing access to contained information [Rot99, [Arm00]. A
variation thereof is the virtualisation of software, where software for a specific
technological environment is replaced with software that targets a virtual ma-
chine as an intermediate platform, which is available for the original technological
environment. In case of technological obsolescence of the original environment,
it is only necessary to port the virtual machine implementation to a new plat-
form rather than porting each and every specific software. The Universal Virtual
Computer serves as an example of such an approach [Lor01].

e Digital archaeology: Software, data and related documentation are analysed in
order to reverse-engineer both syntax and semantics of data. Its description then
serves as a basis for implementing new hardware or writing new software, which
again provides access to contained information |[RG99, |Arm00].

The former three strategies depend on preparatory actions taken prior to the event
of technological obsolescence. Without suitable preparation in advance, digital ar-
chaeology is the only remaining option, although usually costly [Wet98]. In contrast
to the emulation of hardware / software, both migration of data and digital archae-
ology are concerned with data format knowledge on the composition of data.

Outline

The following sections explore the following related work in Digital Preservation
with respect to the given preservation strategies:

10 CHAPTER 2. STATE OF THE ART

e Maintaining format-related meta-information is addressed by data format reg-
istries such as the US Library of Congress (LoC) Digital Preservation project, the
Global Digital Format Registry (GDFR), PRONOM, and the recent merger of the
latter two, the Unified Digital Formats Registry (UDFR).

e Addressing issues related to the representation of information according to defined
data formats, the Open Archival Information System (OAILS) Reference Model
serves as a de-facto standard model regarding the long-term archival and preser-
vation of data.

e For the migration of data, the selection and execution of suitable paths for con-
version is a non-trivial problem. The Typed Object Model (TOM) is an approach
for mediating data between different data formats in a distributed system, au-
tomating the process of migrating data between different formats.

e For measuring the quality of data migration in terms of retained information, the
eXtensible Characterisation Language (XCL) project contributes both the eXten-
sible Characterisation Extraction Language (XCEL) for extracting information
from data as a property, and the eXtensible Characterisation Definition Language
(XCDL) for the description of such properties for later comparison.

e Related to aspects of Digital Preservation, but not explicitly framing itself into
this domain, the Data Format Description Language (DFDL) is an approach for
describing the composition of data according to a data format which focuses on
leveraging existing XML technologies.

2.2.1 Data Format Registries

The preservation strategies previously presented in Chapter 2.2l depend on maintain-
ing detailed meta-information on data formats and format-compliant applications
in the long term. Therefore, there is a need for data format registries as custodians
of meta-information on data formats.

Overview

Prominent data format registries are the US Library of Congress Digital Preservation
Project (LoCDP) [AF05|, the Global Data Format Registry (GDFR) |AS03], and the
PRONOM |Bro05| data format registry. At the time of writing, both GDFR and
PRONOM are in the process of merging to Universal Data Format Registry (UDFR)
[UDF09].

Rich models for categorising data formats and for managing related meta-information
in high detail are common to LoCDP, GDFR [Abr(07h, Abr07a, [AG08] and PRONOM
[Bro05]. The model of GDFR extends to complex relationships between different
data formats, such as extensions or versions, on a highly formal level. In varying
forms, these registries provide means for referencing a specific data format, such as
the PRONOM Unique Identifier (PUID) Scheme for data formats in the PRONOM
registry.

2.2. DIGITAL PRESERVATION 11

Discussion

Data format registries allow their users to identify and associate data formats with
metadata such as references to their specification, format-compliant applications or
relations between formats required for the migration of data or digital archaeology in
case of technological obsolescence. Examined related work provides definitions and
models concerning format-related meta-information as well as references to other
approaches.

e Definitions and models: Besides their rich models on format-related meta-data,
all registries at least consider natural-language descriptions such as textual speci-
fications suitable for human consumption as a baseline. In the case of PRONOM,
format-related knowledge suitable for machine-processing is provided on the level
of file signatures, allowing for the identification of a files’ data format through
automated tools such as Digital Record Object Identification (DROID).

e References: In terms of approaches for describing the composition of data,
GDFR references to a number of format description languages. It explicitly refers
to the eXtensible Characterisation Extraction Language (XCEL), the Bitstream
Syntax Description Language (BSDL) and the Data Format Description Language
(DFDL) among other approaches, including formal grammar notations and XML
schema languages.

2.2.2 Open Archival Information System Reference Model

Operating an archive for long-term archival and preservation of data poses a num-
ber of problems, which includes the management of how information is represented.
Within short-term transactions, producers and consumers can negotiate the repre-
sentation of information to be exchanged. Yet, for long archival and preservation,
producers cannot foresee future representations of information, and thus need to
delegate the negotation with future consumers to suitable archival systems, which
manage a potentially required migration of data.

Overview

The Open Archival Information System (OAIS) provides a reference model for long-
term archival and preservation systems, and serves as the de-facto standard regard-
ing long-term archival and preservation of digital information |[CCS02]. Among other
aspects, OAIS addresses the issue of managing the representation of information.

The OAIS reference model defines a number of processes surrounding informa-
tion stored in an OAIS archive between a Producer and its Consumers, as well as the
archive Management. Besides the processes of Preservation Planning and Admin-
istration that coordinate and manage archival operations between involved parties,
actual processes related to archival and preservation are Ingest, Archival Storage,
Data Management and Access, shown in Figure 2.1t

e Ingest: The Ingest process receives a Submission Information Package (SIP) or
a later update thereof from a Producer, assuring its quality and generating an

12 CHAPTER 2. STATE OF THE ART

| Preservation Planning |

,—» | Data Management | —l

e prrR
|—>| Archival Storage |4T

| Administration |
|

I
| Management |

oUNsuo)) |—

—| Producer

Figure 2.1: Overview of OAIS Functional Entities, based on [CCS02).

Archival Information Package (ATP) conforming to archive policies, such as using
only publically disclosed data formats. It then generates descriptive infos and
coordinates potential updates with Data Management.

e Archival Storage: The Archival Storage process is responsible for receiving ATPs
to be put into storage, management of the storage, error checking and replacement
of storage media, their backup for disaster recovery, and finally for providing an
AIP upon request.

e Data Management: The Data Management process serves for administrating,
updating and querying of archival databases as well as for general reporting for
the archive.

e Access: Upon request by a Consumer, the Access process generates a suitable
Dissemination Information Package (DIP) for the requested AIP and delivers it
to the Consumer.

As both Archival Storage and Data Management are not central to the role of data
formats in OAIS, these processes are mentioned for completeness and are not further
explored.

As can be seen from the Ingest and Access process descriptions, the concepts
of SIP, ATP and DIP are of importance to the OAIS reference model. These are
specializations of the Information Package, being distinguished in its role in the
respective process. As shown in Figure 2.2 an Information Package contains the
Content Information as the actual content to be preserved, as well as related Preser-
vation Description Information. The Content Information consists of a Data Object
and its Representation Information, which can be used to obtain an Information
Object:

e Data Object: A Data Object specialises into either a Physical Object as a phys-
ical representation, or a Digital Object as a digital representation through a set
of bit sequences.

2.2. DIGITAL PRESERVATION 13

Information Package
Content Information
Preservation
Data Object Representa‘ution Descripti.on
Information Information
\ 4 Y \ 4
Submission Archival Dissemination
Information Information Information
Package Package Package

Figure 2.2: Overview of OAIS concept relations, based on [@]

e Representation Information: Representation Information maps the Data Ob-
ject to an Information Object as a “more meaningful concept”. Representation
Information can be specialised into Structure Information which defines the map-
ping of bit sequences into data types, and into Semantic Information which defines
the meaning of data. Representation Information itself may again be represented
as a Data Object, and thus depends on other Representation Information, forming
a Representation Network required for fully describing the meaning of an original
Data Object.

e Information Object: An Information Object is obtained by interpreting a Data
Object according to Representation Information.

Representation Information can be considered as a form of data format knowledge,
which may be present in various forms such as textual descriptions in natural lan-
guage, formal grammars, or some derivative work thereof, such as software imple-
mentations or even their source code.

Discussion

The OAIS reference model is intended for a long-term preservation archive, which
also has to support the migration of data between different formats. The reference
model thus depends on the availability and applicability of data format knowledge.
It therefore refers to such knowledge in various forms as Representation Information,
which is contained in Content Information in submission, archival and dissemination
[Ps.

e Definitions and models: The OAIS reference model does not provide an ex-
plicit, formal definition on data formats, but implicitly considers a data format as

14 CHAPTER 2. STATE OF THE ART

a definition of how information is represented. Furthermore, the OAIS reference
model itself does not mandate a specific form for data format knowledge as Rep-
resentation Information. It allows for a variety of ways to represent data format
knowledge. The model explicitly mentions the option of “formal description lan-
guages containing well-defined constructs with which to describe data structures”,
referring to formalised approaches in general. Although the OAIS effectively is a
de-facto standard in its domain, it does not provide more specific references or
make a statement regarding the expressivity of existing approaches. For actually
migrating data, an OAIS archive relies on software as a form of Representation
Information to perform the migration.

2.2.3 Typed Object Model

Processing format-compliant data requires suitable, format-compliant applications.
Although an application may be conceptually capable of processing a certain type of
data such as video/audio recordings or text documents, it strongly depends on the
specific digital representation to be parsed, decoded and processed. The diversity of
different data formats thus can force users to mediate data between multiple data
formats as necessary, therefore making it desirable to automate this process.

Overview

The Typed Object Model (TOM) serves for automating the process of migrating
data between different formats in a distributed manner and has been published in

the PhD thesis of John Ockerbloom [Ock98]. TOM defines both a distributed system
and a data model:

e Distributed system: For mediating data between different data formats in a
decentralised, scalable manner, TOM describes a distributed system consisting of
agents that handle the processing and conversion of data in heterogenous data
formats, operating on a distributed type graph. TOM defines the Typed Object
Protocol (TOP) for communicating in such a distributed mediating system. The
actual mediation is executed by type brokers as specialised agents, which offer their
services and perform the actual processing on the behalf of clients. Other agents
such as clients can query for type information, get attributes and call methods on
objects or request conversions from a type broker.

e Data model: In the TOM data model, information is represented as an object,
which is immutable and has both a value and a type. A wvalue is not restricted to
a digital representation such as finite byte sequences alone, but may also include
abstract forms of representation.

A type defines how the object and its value are to be interpreted. Here, an
important type is the ByteSeqType. Objects of this type have finite byte sequences
as values and thus can be stored and transmitted in a digital form. A type may
define one or more attributes as well as one or more methods for its objects.
An attribute extracts information from an object through a function without
dependence on context information or additional parameters. A method derives
information from an object through a function as well, yet may depend on context

2.2. DIGITAL PRESERVATION 15

information or use additional parameters. TOM offers subtyping, so a type may
have more specialised subtypes. It also enables substitutability, where given a type
T, a subtype S of T and two objects t and s of types T" and S, s can substitute
for ¢, which allows objects to be considered at different levels of abstraction. The
aggregated typing information defines a type graph on which TOM operates.

For obtaining different representations of the same information in TOM, an en-
coding describes a relationship between a pair of objects, the original encoded
object and the resulting encoding object in a different representation. In order to
cope with multiple, semantically equivalent encoding objects for a given encoded
object, encodings in TOM are considered as one-to-many relations. Its inverse is
a decoding, which is a many-to-one function. TOM considers encoding as the “re-
finement” of abstract objects. Likewise, it considers decoding as the “abstraction”
of concrete objects.

Based on these concepts, TOM defines a format as a sequence of encodings to be
applied on objects of a given type, which yields objects of the type ByteSeqType.
A format allows to define a shipped object, which is an object including its format
and thus allows a receiver to decode the object to the type indicated by the format.

For mediating data between different data formats in TOM, a conversion is a
migration of data, which takes a shipped object as input and produces a shipped
object as output. Often, a conversion between different formats cannot preserve
all present information but only a subset. Therefore, a conversion tries to ap-
proximate the input shipped object. To manage the loss of information of such a
conversion, TOM defines the concept of intersubstitutability, which is given for a
conversion ¢ and a type T if every input and output of the conversion ¢ cannot be
distinguished with regards to the attributes and methods of type T. The degree
of information preservation in a conversion increases with every level down in the
type hierarchy of T" due to the specialisation of subtypes. Both substitutability
and intersubstitutability aid in the automated composition and conversion of data
between different formats in TOM.

The TOM approach has been implemented through the Format RFEgistry Demon-
stration (FRED), which also served as a prototype for the Global Data Format
Registry (GDFR) |Ock06].

Discussion

TOM uses format-related knowledge to assist the migration of data between different
data formats. Contrary to other approaches, its main characteristic is the distributed
setup of format-related knowledge among type brokers which provide migration
services to other agents.

e Definitions and models: In TOM, information is considered in type-specific
representations. The data format of such a type-specific information is defined
as a sequence of encodings that converts information from its type-specific repre-
sentation to its format-compliant byte sequences of ByteSeqType type, possibly
using intermediate types.

16 CHAPTER 2. STATE OF THE ART

Rather than describing the actual coding and structure of format-compliant data
itself, it addresses the migration of data by describing encoding / decoding re-
lationships between types. Through its use of interfaces, TOM considers digital
objects on varying levels of abstraction, and is therefore able to indirectly man-
age the loss of information during a migration of data. External to TOM and
its model, the actual process of accessing and conversion is performed by soft-
ware tools which follow the underlying rules and constraints of a data format that
shapes format-compliant data.

Rather than describing the composition of data format instances or the underly-
ing rules and constraints of a data format itself, TOMs model exposes the type
network composed from software operated in a distributed system. The “compos-
ability” as a property of TOM refers to the overall type network, and not to the
composition of data.

2.2.4 eXtensible Characterisation Language

Technological obsolescence of file formats threatens long-term accessibility of con-
tained information. Although data can be migrated in advance in order to prevent
technological obsolescence, it typically leads to information loss due to mismatching
representational capabilities of different data formats. One approach to handle such
information loss is to identify significant information and to monitor its successful
retention after a migration for it to be deemed successful.

Overview

For estimating the success of data migration, the eXtensible Characterisation Lan-
guage (XCL) project defines the eXtensible Characterisation Extraction Language
(XCEL) as well as the eXtensible Characterisation Definition Language (XCDL)
for extracting and comparing significant information represented in different data
formats:

e eXtensible Characterisation Extraction Language (XCEL): XCEL in-
tends to describe characteristics of format-compliant data through significant in-
formation, which is represented as a property with a name and a value [SHCO0S].
Towards that goal, XCEL describes the composition of data through a XML-
based, schema-like definition, where declarative definitions of data types are mixed
with procedural processing instructions.

The basic building blocks of XCEL are XCFEL elements which are used to build
an XCFEL Tree as a representation which matches with actual data. A symbol
element defines both the encoding and semantics of a byte sequence, may define
constraints for matching and is a leaf of such a tree. A symbol has information on
the placement of its data and employs an absolute addressing scheme, using the
number of bytes consumed so far. An item element defines a logical, structural or
semantic group for one or more child elements, describing either a sequence of ele-
ments, their permutation or a choice of alternative elements. Last but not least, a
processing element allows the execution of methods in the XCEL processor, which
provide means for placing an XCEL element elsewhere in the tree (pushXCEL), for

2.2. DIGITAL PRESERVATION 17

copying another XCEL element to the current position (pullXCEL) or for reconfig-
uring the parser during its operation (configureParser). Moreover, processing
elements also allow the addition of a filter to a filter chain of an element, allow-
ing for the translation of data into another representation. Elements and their
contents can be referenced through identifiers and may originate from a separate
file (externalSource) or from another XCEL element (internalSource).

These XCEL elements are used in the schema-like XCFEL document, which con-
sists of the four parts preProcessing, formatDescription, postProcessing and
templates. It is used by an XCEL processor, which processes both the XCEL
document and an input file, and produces an XCEL Tree as Result Tree. In a
following step, an eztractor extracts significant information from the Result Tree
which characterises the format-compliant data contained in the input file, and
stores it as an XCDL document.

EXAMPLE 2.2.1: An example of XCEL is given in Table 2.1] for the PNG IDAT
chunk data structure, which carries compressed, transformed, and in some cases
even fragmented, data representing the actual image. The data structure starts
with the chunkDataLength symbol, which is an 32-bit unsigned integer, followed
by the pngIDATIdentifier, which carries the four-byte ASCII string “IDAT”
to distinguish it from other chunk data structures. The next processing state-
ment sets the length of the yet-to-come normDataSymbol identifier to the value
of chunkDataLength, so the normDataSymbol has a defined length. Last but not
least, the remaining crc symbol carries a four-byte CRC value.

e eXtensible Characterisation Definition Language (XCDL): XCDL de-
scribes data as a collection of significant information that have been extracted
previously from a Result Tree [BHSTO0S|.

During the migration of data, some original input file is migrated to a new data
format, producing a migrated file. After significant information has been extracted
from both the original and the migrated file as XCDL documents, the degree to
which the migration has been successful is measured through a comparison of
the retained significant information. This is performed by a comparator, which
processes both XCDL documents and compares its significant information through
some domain-specific metric for judging the success of a migration.

Besides XCEL and XCDL, the XCL project also tries to address aspects of semantic
mismatch between different XCDL documents through the definition of an ontology.
Moreover, it tries to extend the comparison of significant information beyond the
semantics of data to whether the actual rendering of data to human observers still
carries the same significant information through the use of an information model.

Discussion

The use case of XCEL and XCDL is the evaluation to which degree a migration of
data has been successful, based on the retainance of significant information within
migrated data.

18 CHAPTER 2. STATE OF THE ART

1 <item identifier="pngIDAT" =xsi:type="structuringltem"

2 multiple="true">

3 <symbol identifier="chunkDatalength" interpretation="uint32"
4 length="4"/>

) <symbol identifier="pngIDATIdentifier" interpretation="ASCII"
6 optional="false" value="IDAT"/>

7 <processing type="pushXCEL" xcelRef="normDataSymbol">

8 <processingMethod name="setLength">

9 <param valueRef="chunkDataLength"/>

10 </processingMethod>

11 </processing>

12 <symbol identifier="normDataSymbol" interpretation="uint8"
13 name="normData"/>

14 <symbol identifier="crc" length="4"/>

15 </item>

Table 2.1: Excerpt of a XCEL description for a PNG IDAT chunk data structure,
carrying transformed and compressed image data, taking from |[SHCOS].

e Definitions and models: The XCL project makes no explicit formal defini-
tion to what a data format actually is. Through the definition of XCEL, a quite
complex model is given for describing a data format as a tree-based hierarchical
representation of information. XCEL has a number of interesting properties, such
as the support of filters for handling the translation between different represen-
tations of information, for partial descriptions which cover only part of an input
file, or for allowing dependencies such as the placement of elements in the original
data to be evaluated dynamically at runtime, which is of interest for address-based
references in data formats such as the ISO Base File Format. Regarding XCDL,
it is interesting to note that [BHSTOS8] states it not to be intended as “a language
for multi-purpose representation of information”.

e Classification: The XCEL approach is both declarative and machine-processible,
but the examined publications provide no formalised model for universal applica-
bility.

e Descriptive capabilities: XCEL clearly provides support for segmenting struc-
tured data through items and for decoding primitive data through symbols, al-
though the length of primitive data is limited to multiples of entire octets rather
than having bit granularity. Due to its concept of filters used in a filter chain, and
through using the internalSource attribute, XCEL can transform transcoded
data and enable further processing of the result. Using the special normData
symbol name for processing fragmented PNG IDAT chunk [SHCO08|, and again
using the internalSource attribute, XCEL provides at least partial support for
the concatenation of fragmented data, yet active control of fragment ordering is
not explicit.

2.2. DIGITAL PRESERVATION 19

2.2.5 Data Format Description Language

For processing data in XML-based representations, a number of standardised tech-
nologies exist, such as transforming documents using Extensible Stylesheet Lan-
guage Transformations (XSLT), or filtering elements using XPath. By translating
the representation of data from the binary domain to XML, these technologies can
be leveraged for use on data from the binary domain as well.

Overview

The Data Format Description Language (DFDL) is an extension to the W3C XML
Schema Description Language (XSDL) and intends to describe arbitrary data for-
mats to enable the translation from format-compliant data to an XML representation
and vice versa. At the time of writing, the current version of DFDL is 1.0 as defined
in Draft 038, where several parts of the language specification are designated to be
in flux and to be changed in upcoming versions of the draft [PHB*10].

In the DEDL approach, a processor processes data given in a format as described
by a schema:

e Processor: A processor typically is either a DFDL Parser or a DFDL Unparser,
where the former parses the format-compliant representation and serialises it to
an XML representation. Vice versa, the latter parses the XML representation
and “unparses” its format-compliant binary representation, performing the reverse
direction.

e Schema: A DFDL schema describes the composition of data through XML
schema extended with DFDL annotations. While XML Schema provides the
means to describe both primitive and complex data types, DFDL annotations de-
scribe additional information, such as the length or the binary encoding of a data
type. For handling dynamic dependencies, where parsed and decoded information
is used for further parsing, DFDL employs a subset of XPath 2.0 as expression lan-
guage, including functions for boolean, string and date operations. Since DFDL
has the explicit goal of round-trip support for data parsed and unparsed, every
schema is required to be unambigious during unparsing, that is, only one binary
representation may exist.

EXAMPLE 2.2.2: A DFDL example is shown in Table 2.2] where structured data
is described as a sequence of four primitive data, namely an integer w, an integer
x, a double-precision floating-point number y and a single-precision floating-point
number z, all in big-endian byte order.

Discussion

DFDL assists the processing of data for binary data formats through standardised
XML tools by translating information from its format-compliant representation to
an XML representation, and vice versa.

e Definitions and models: DFDL does not explicitly provide a formal definition
of what a data format is, but indirectly defines its underlying model as tree-based

20 CHAPTER 2. STATE OF THE ART

1 <xs:complexType name="examplel">

2 <xs:sequence>

3 <xs:element name="w" type="int">

4 <xs:annotation>

) <xs:appinfo source="http://www.ogf.org/dfdl/">
6 <dfdl:element representation="binary"

7 byteOrder="bigEndian"
8 lengthKind="implicit"/>
9 </xs:appinfo>

10 </xs:annotation>

11 </xs:element >

12 <xs:element name="x" type="int ">

13 <xs:annotation>

14 <xs:appinfo source="http://www.ogf.org/dfdl/">
15 <dfdl:element representation="binary"

16 byteOrder="bigEndian"

17 lengthKind="implicit"/>

18 </xs:appinfo>

19 </xs:annotation>

20 </xs:element >

21 <xs:element name="y" type="double">

22 <xs:annotation>

23 <xs:appinfo source="http://www.ogf.org/dfdl/">
24 <dfdl:element representation="binary"

25 byteOrder="bigEndian"

26 lengthKind="implicit"/>

27 </xs:appinfo>

28 </xs:annotation>

29 </xs:element >

30 <xs:element name="z" type="float" >

31 <xs:annotation>

32 <xs:appinfo source="http://www.ogf.org/dfdl/">
33 <dfdl:element representation="binary"

34 byteOrder="bigEndian"

35 lengthKind="implicit"

36 binaryFloatRep="ieee" />

37 </xs:appinfo>

38 </xs:annotation>

39 </xs:element >

40 </xs:sequence>
41 </xs:complexType>

Table 2.2: Excerpt of a sample data structure defined using DFDL, taken from
[PHB*10]|.

2.2. DIGITAL PRESERVATION 21

through the extension of XML Schema. It assumes that a data format defines the
composition of “hierarchically-nested data’, at the same time explicitly claiming
its applicability on the description of any data format.

The DFDL specification includes two noteworthy concepts. It distinguishes be-
tween approaches for making data format knowledge explict as either prescriptive
or descriptive. The specification document categorises approaches such as ASN.1
into the former category, and itself into the latter. Moreover, DFDL distinguishes
between data as either content or framing, depending on its purpose in the format,
where the language allows to “hide” framing from later processing.

e Classification: DFDL is a declarative approach which is machine-processible. In
examined publications, no formalised model for universal applicability is given.

e Descriptive capabilities: DFDL clearly supports the segmentation of struc-
tured data and the decoding of primitive data, also supporting data with lengths
of bit granularity through dfdl:lengthUnits. Although XML Schema is a pow-
erful basis for DFDL to extend, concerning data format description, there are
limitations to DFDL despite its explicit claim of universal applicability. Most
notably, DFDL itself acknowledges its lack of support for cases where “one ele-
ment’s value becomes the representation of another element”, termed “layering”
by DFDL, which has been confirmed as a limitation and explicitly deferred to a
later revision.

Yet, layering is required for handling transformed or fragmented data, as in these
cases, the value of one or more bit sequences represents another bit sequence
when processed accordingly. For example, to completely describe video and audio
streams typically stored as interleaved fragments in multimedia containers such as
the MPEG-4 File Format, fragments of a specific stream have to be concatenated

in order to analyse the stream according to its own format-specific rules, e.g. for
MPEG-4 Video or MPEG-4 Advanced Audio Coding (AAC).

Part of the lack can be attributed to DFDL’s explicit assumption of data to
be “hierarchically-nested”, which fits well with the tree-based structural model
of XML, where a logical node may have multiple children, but has at most one
parent. Yet, for the concatenation of fragmented data, a logical node is required
to have multiple parents as well, pointing towards a graph-based structural model.

Therefore, it neither supports the descriptive capability to transform transcoded
data, nor supports the descriptive capability to concatenate fragmented data.

22 CHAPTER 2. STATE OF THE ART

2.3 Multimedia

Overview

The domain of Multimedia is a wide field of research that is concerned with digital
multi-channel media. In literature, two primary drivers of format-related research
in Multimedia have been the normative definition of data formats and the high-level
adaptation of digital objects:

e Normative definition of data formats: Interoperability of multimedia systems
requires involved parties to exchange information, and thus to mutually agree
on the semantics of exchanged data. To provide a normative definition of data
formats in a multimedia standard, a means of describing a data format is required.

e High-level adaptation of digital objects: Timely delivery of multimedia re-
sources to end users over a network is usually restricted by resource-constrained
networks and heterogenous capabilities of end-user devices. The vision of “Uni-
versal Media Access” [VCEQ3| addresses the issue by dynamically adapting mul-
timedia resources as digital objects on-the-fly to given constraints, which requires
machine-processible data format descriptions.

Outline

In the following subsections, the following approaches from both lines of research
are introduced:

e For the definition of various multimedia-related standards by the Moving Pictures
Expert Group (MPEG) such as MPEG-1 and MPEG-2, the so-called MPEG 1/2
methodology was used.

e In the later definition of the MPEG-4 standard, limitations of the MPEG 1/2
methodology lead to the design of the Syntactic Description Language (SDL),
which later became the Formal Language for Audio-Visual Object Representation
(Flavor).

e For enabling the high-level adaptation of digital objects, the MPEG-21 Part 7
standard on “Digital Item Adaptation (DIA)” describes the Bitstream Syntax De-
scription Language (BSDL).

e Later work recombined the standardised BSDL approach with the expressiveness
of Flavor, resulting in the twin BFlavor and gBFlavor approaches.

2.3.1 MPEG 1/2 Methodology

Among others, the MPEG-1 and MPEG-2 standards also define data structures
intended for exchanging multimedia-related information such as video and audio
between format-compliant systems. In this regard, these standard documents ad-
dress system developers who are interested in creating or adapting interoperable
systems, and who are in need of a uniform and unambigious convention for the
description of these data structures.

2.3. MULTIMEDIA 23

Overview

With the term coined in [Ele97|, the MPEG 1/2 methodology describes data struc-
tures in a tabular fashion:

e The first table column contains a mixture of pseudo-code statements resembling
the programming language C, including struct field definitions, flow-control
statements (eg. if, while) and special helper functions (eg. nextbits() for
lookahead parsing), which guide the layout of fields containing data. Field defini-
tions consist only of a name and have no type in this column.

e The second column contains the size of a field definition given as a fixed number
of bits.

e The third column contains a mnemonic code which describes the encoding of
data for a field definition, and thus provides its type. Examples of such codes
are uimsbf (unsigned integer, most significant bit first) and bslbf (bit string,
leftmost bit first).

Each field definition is necessarily located on a separate row in the table. Executing
this pseudo-code on actual data in a cognitive walk-through step-by-step produces
a consecutive layout of struct fields filled with data.

EXAMPLE 2.3.1: An example of the MPEG 1/2 methodology is shown in Ta-
ble 2.3 describing a picture_header data structure from MPEG-2 Video. This
data structure consists of a sequence of fields such as the picture_start_code
field with a length of 32 bits, encoded as bit string, left bit first (bslbf), or the
picture_coding_type field with a length of 3 bit, encoded as an unsigned integer,
most signficant bit first (uimsbf). Depending on the value of picture_coding_type,
further fields such as the full_pel_forward_vector are present as well. Depend-
ing on the value of extra_bit_picture fields, multiple extra_ information picture
fields may be present as well. The data structure ends with the next_start_code ()
function, which ignores padding zero bytes until the next MPEG-2 start code present
in the stream.

Discussion

The MPEG 1/2 methodology enables the normative definition of data formats when
it comes to static data structures documented for human engineers that are accus-
tomed to working with pseudo-code representations.

e Definitions and models: Through a tabular form of pseudo-code, the MPEG
1/2 methodology allows the description of the composition of data to human en-
gineers, who need to “execute” the description on a bit sequence in a mental walk-
through. Most notably, the definition of fields is static regarding the mnemonic
code expressing its type as well as its size in bits within a bitstream. Step-wise
“execution” of pseudo-code implicitly manages the current position within the bit-
stream, and limits the resolving and placement of fields to a start-to-end order in
a continuous sequence.

24 CHAPTER 2. STATE OF THE ART

picture header() { No. of Bits | Mnemonic
picture_start code 32 bslbf
temporal reference 10 uimsbf
picture coding type 3 uimsbf
vbv_ delay 16 uimsbf

if (picture_coding_type == 2 ||
picture_coding type == 3) {

full pel forward vector 1 bslbf
forward f code 3 bslbf
}
if (picture_coding type == 3) {
full pel backward vector | 1 bslbf
backward f code 3 bslbf
}
while (nextbits() == "1") {
extra bit picture 1 uimsbf
extra_information picture | 8 uimsbf
}
extra_bit picture 1 uimsbf

next_start_code()

}

Table 2.3: Definition of the picture header data structure from MPEG-2 Part-2
Video / ITU-T H.262 [IT95|, using the MPEG 1/2 methodology.

2.3. MULTIMEDIA 25

e Classification: The approach is procedural due to its pseudo-code, although it is
not machine-processible, and no formalised model for universal applicability has
been given.

e Descriptive capabilities: A mental walk-through of a data format description
in the MPEG 1/2 methodology traverses a sequence of typed fields, which is
equivalent to segmenting structured data into a sequence of primitive data of
variable length measured in bits, whose encoding is defined through the mnemonic
code. Therefore, the MPEG 1/2 methodology supports both the segmentation of
structured data and the decoding of primitive data. Despite the definition of
pseudo-code procedures in this approach, it does not support the transformation
of transcoded data, as the procedure serves for placing and accessing typed fields,
but does not enable its actual transformation or further processing of its result.
Likewise, the concatenation of fragmented data is not supported due to a lack of
means.

2.3.2 Formal Language for Audio-Video Object Representa-
tion

During the definition of the MPEG-4 standards, variable-length codes (VLCs) such
as the Ezponential Golomb integer encoding were included into some of its data
structures. As VLCs are variable in size, these data structures are dynamic, for
which the MPEG 1/2 methodology is not sufficient [Ele96]. Therefore, an improved
approach for data format description became necessary for use in the MPEG-4
standards.

Overview

The Syntactic Description Language (SDL) was initially proposed as a new language
for describing dynamic data structures for use in MPEG-4 [Ele95|. SDL was included
in the MPEG-/ Systems and Description Languages (MSDL) |[ACE*91| and was
later renamed as Formal Language for Audio-Visual Object Representations (Flavor)
[Ele97|. XFlavor is an extension to Flavor, which enables the translation of data
between a format-specific, binary representation and an XML-based representation
[EHO02, HE08|. Examples for both Flavor and XFlavor usage are given below.

Two primary goals of Flavor are the description of dynamic data structures as
well as the separation of parsing from decoding, explicitly limiting the focus of the
language to parsing alone [Ele96]. While the former goal addresses data structures
from MPEG-4 using VLCs, the latter shall enable data structures to be adaptable.
An example that is given explicitly is being able to change the number of bits used
for representing a value without having to change the actual decoding algorithm
[E1e97).

As stated, the Flavor approach provides a language for describing data structures.
Not unlike the MPEG 1/2 methodology in terms of using pseudo-code for descrip-
tion, the Flavor language mixes declarative definitions of field types (e.g. unsigned
integer(32)) with procedural statements for flow-control (e.g. if, while). Beyond
the capabilities of the MPEG 1/2 methodology, it adds support for variable field

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19

26 CHAPTER 2. STATE OF THE ART

aligned (8) class Box (unsigned int (32) boxtype,
optional unsigned int (8)[16] extended_type) {
unsigned int(32) size;
unsigned int (32) type = boxtype;
if (size==1) {
unsigned int (64) largesize;
} else if (size==0) {
// box extends to end of file
}
if (boxtype==’uuid’) {
unsigned int (8)[16] usertype = extended_type;
}
}

aligned (8) class FileTypeBox extends Box(’ftyp’) {
unsigned int(32) major_brand;
unsigned int (32) minor_version;
unsigned int(32) compatible_brandsl([];

}

Table 2.4: Definition of a Box and a File Type Box using MSDL / Flavor from the
ISO Base File Format [ISO05al.

sizes and introduces object-oriented concepts such as classes and their inheritance
as known from other programming languages, so that data structures are effectively
defined as classes in Flavor [DNVDDS*06|. Using the flavorc translator, Flavor
source code can be compiled to source code implementing parsers and serialisers in ei-
ther Java or C+-+, providing in-memory representations of binary, format-compliant
data [DNVDDS*06]. XFlavor extends this approach towards XML-based represen-
tations, embedding data within the document which can be processed further using
established XML standards [HEOS].

ExXAMPLE 2.3.2: Two Flavor descriptions are shown in Table and 2.5 which
describe the FileTypeBox data structure from the ISO Base File Format as well
as the System Header data structure from the MPEG-2 Program Stream (PS) for-
mat. When actual Stream Header data from a MPEG-2 Program Stream is to be
processed, the first field in its class definition in Table is the start_code field,
which is of type unsigned int(32), an unsigned integer of 32 bit length. When
this Flavor class definition is translated into Java using flavorc, it results in a Java
class, representing a System Header that has been read from binary data and can
again be written, including an in-memory representation of the actual value of the
start_code field. With XFlavor, the resulting Java class can also be used to write
an XML representation of itself, which would then contain a start_code XML tag
containing the actual field value formatted as a string. Table shows an example
of such an XML representation for the SystemHeader class definition from Table

2.3. MULTIMEDIA

27

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22

class SystemHeader {

unsigned int (32) start_code;

unsigned int (16) header_length;

bit (1) marker = 0bi;

unsigned int (22) rate_bound;

bit (1) marker = 0bi;

unsigned int (6) audio_bound;

bit (1) fixed_flag;

bit (1) csps_flag;

bit (1) sys_aud_lock_flag;

bit (1) sys_vid_lock_flag;

bit (1) marker = 0bi;

unsigned int(5) vid_bound;

bit (1) pkt_rate_restr_flag;

const bit(7) reserved = 0x7F;

while (nextbits (1) == 0bl) {
unsigned int(8) stream_id;
bit (2) bit_pattern = Obll;
bit (1) buff_bound_scale;
unsigned int(13) buff_size_bound;

Table 2.5: Definition of a MPEG-2 Systems Program Stream (PS) using Flavor,
taken from |HEOQS|.

28 CHAPTER 2. STATE OF THE ART

1 <system_header >

2 <start_code >443</start_code>

3 <header_length>12</header_length>

4 <marker >1</marker>

5 <rate_bound >7653</rate_bound>

6 <marker >1</marker>

7 <audio_bound>1</audio_bound>

8 <fixed_flag>1</fixed_flag>

9 <csps_flag>0</csps_flag>

10 <sys_aud_lock_flag>1</sys_aud_lock_flag>
11 <sys_vid_lock_flag>1</sys_vid_lock_flag>
12 <marker >1</marker>

13 <vid_bound>1</vid_bound>

14 <pkt_rate_restr_flag>1</pkt_rate_restr_flag>
15 <reserved>127</reserved>

16 <stream_id>224</stream_id>

17 <bit_pattern>3</bit_pattern>

18 <buff_bound_scale >1</buff_bound_scale>
19 <buff_size_bound >80</buff_size_bound>

20 <stream_id>192</stream_id>

21 <bit_pattern>3</bit_pattern>

22 <buff_bound_scale >0</buff_bound_scale >
23 <buff_size_bound >80</buff_size_bound>

24 </system_header>

Table 2.6: XML representation of a MPEG-2 Systems Program Stream (PS) ob-
tained through XFlavor using the Flavor description in Table[2.5] taken from [HEO0S].

2.3. MULTIMEDIA 29

Discussion

By using the Flavor language, a number of dynamic data structures can be described
through object-oriented code which can be translated into Java or C+-+ components
suitable for parsing and serialising format-compliant data to and from in-memory
representations. Using the XFlavor variant, format-compliant data can be mapped
from binary to XML-based representations for further processing.

e Definitions and models: The Flavor approach provides a language for describ-
ing the composition of data through object-oriented source code that can process
format-compliant data. Although initially claimed to be “declarative”, Flavor
describes the layout of data through procedural code including flow-control state-
ments and look-ahead parsing operators. In contrast to a declarative approach,
code in the Flavor language defines how data is accessed rather than describing
what data is present where.

Regarding its expressiveness, the Flavor language has been explicitly limited to
parsing in its early stages through the explicit separation of parsing from decoding
and its focus on parsing. The limitation is detailed and argued for by its authors
via the introduction of the problem of high-level context |Ele96|, where parsing
a conditional data structure would depend upon a decoded primitive data value.
Overcoming this limitation by extending and generalising the Flavor language
is dismissed as “not useful”, as a survey by the authors on several multimedia
specifications such as H.263 or MPEG-2 Video did not exhibit a case of this
problem.

Another noteworthy aspect is that XFlavor has drawn some criticism for its ver-
bosity, in part through its use of XML and in part through embedding binary
data into the XML document itself, leading to questions regarding a suitable
granularity of description [DNVDDS*06|.

e References: Flavor makes the connection between parsing and serialising meth-
ods as some sort of “marshalling” between representations and thus connects it
with the Fzternal Data Representation (XDR) standard, the CORBA Interface
Definition Language (IDL) and even the Abstract Syntaz Notation One (ASN.1).

e Classification: Flavor provides a procedural, machine-processible approach for
describing data formats, yet it presents no formalised model for universal appli-
cability in literature.

e Descriptive capabilities: Similar to the MPEG 1/2 methodology, Flavor sup-
ports the segmentation of structured data as well as the decoding of primitive
data with bit granularity. Since Flavors flow-control statements guide the pro-
cessing of format-compliant data rather than enabling actual transformation, it
does not support the transformation of transcoded data or the concatenation of
fragmented data.

2.3.3 Bitstream Syntax Description Language

In Multimedia, the vision of Universal Media Access (UMA) requires on-demand
adaptation of digital items to current constraints as posed by the network and

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

30 CHAPTER 2. STATE OF THE ART

<?xml version="1.0"7>
<xsd:schema targetNamespace="JP2"

xmlns:bsdl -1="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified">

<xsd:import
namespace="urn:mpeg:mpeg21:2003:01-DIA-BSDL1-NS"
schemalocation="BSDL-1.xsd"/>

<xsd:element name="SO0P">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Marker" type="xsd:hexBinary"/>
<xsd:element name="LMarker" type="xsd:unsignedShort"/>
<xsd:element name="Nsop" type="xsd:unsignedShort"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="PacketData" type="bsdl-1:byteRange"/>

</xsd:schema>

Table 2.7: Definition of a sample BS Schema for a JPEG2000 bitstream using BSDL
[PHH*03].

terminal device. On-demand adaptation of digital items is a non-trivial problem,
as digital items stored today may need to be adapted to future requirements in a
yet unforeseen way. Suitable means for enabling on-demand adaptation of digital
objects are thus desirable.

Overview

The Bitstream Syntax Description Language (BSDL) has been specified by the Mov-
ing Pictures Expert Group (MPEG) as part of the MPEG-21 Digital Item Adap-
tation (DIA) framework defined in ISO/IEC 21000-7. For reuse in other contexts,
it has also been defined separately in ISO 23001-5. The approach has been the
subject of several books and publications [Dev03, BPVdWKO06, PHH*03]. The goal
of BSDL is to enable generic, interoperable adaptation engines for adapting digital
items in different data formats. BSDL assumes data formats to support the notion
of a scalable bitstream, where adaptations can be generated through simple filtering
rather than format-specific or computationally complex transformations.

The focus of the BSDL approach is on processing a bitstream through its bit-
stream syntaz (BS) by extending standards such as XML and XML Schema. Using
BSDL, a BS schema can be defined, which can then be applied to a bitstream to
obtain a format-specific XML-based BS description which refers to the bitstream.

1
2
3
4

5
6
7
8
9
10
11
12
13
14

15
16

2.3. MULTIMEDIA 31

<?xml version="1.0"7>
<Codestream xmlns="JP2" xmlns:jp2="JP2"
xsi:schemalLocation="JP2 JP2.xsd">

<Bitstream>
<Packet>
<S0P>
<Marker>FF91</Marker>
<LMarker>4</LMarker>
<Nsop>0</Nsop>
</S0P>
<PacketData>155 242</PacketData>
</Packet>

</Bitstream>
</Codestream>

Table 2.8: Definition of a sample BS Description for a JPEG2000 bitstream using
BSDL |[PHH*03].

In contrast to format-specific BS descriptions, BSDL also allows the use of a generic
XML representation for a generic BS (gBS) description, where generating the gBS
description through parsing is application-specific and serialising it to a bitstream
depends on a uniform gBS Schema, where structured data is represented through
gBSDUnit nodes. Its simplification to a uniform schema reduces the complexity
compared to arbitrary BS schemata, thereby enabling the use of gBS descriptions
for content adaptations on resource-constrained devices.

A BS description can be used for adaptation in the DIA framework, where adap-
tation is considered as a three-stage process consisting of parsing the original bit-
stream, transforming the BS description depending on the desired adaptation, and
generating the adapted bitstream from the transformed BS description and the orig-
inal bitstream itself.

For executing the parsing and generation stages, the DIA framework defines the
BintoBSD parser (for parsing binary data) as well as the BSDtoBin parser (for serial-
ising binary data) as components, which operate on a given BS schema. Both com-
ponents map between a binary, format-specific representation and an XML-based
representation. The transformation stage for adaptation itself is not specifically
mandated by DIA itself, but has been repeatedly addressed by the use of eXtensible
StyleSheet Language Transformation (XSLT) as a standardised approach for trans-
forming XML-based representations. The possibility of using alternative approaches
such as the Streaming Transformations for XML (STaX) is suggested as well.

BSDL itself extends XML Schema on two levels, termed BSDL-1 and BSDL-
2. BSDL-1 provides required information for generating a bitstream from a BS
description. BSDL-2 builds upon BSDL-1 by providing required information for
parsing a bitstream to a BS description as well. In order to generate an adaptation
from an original bitstream, the BSDL approach provides a linear addressing scheme

32 CHAPTER 2. STATE OF THE ART

1 <?xml version="1.0"7>

2 <dia:DIA xmlns="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"

3 xmlns:dt="urn:mpeg:mpeg21:2003:01-DIA-BasicDatatypes -N3"

4 xmlns:gbsd="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS"

5 xmlns:dia="urn:mpeg:mpeg21:2003:01-DIA-NS"

6 xmlns:xsd="http://www.w3.o0rg/2001/XMLSchema"

7 xmlns:xsi="http://www.w3.o0rg/2001/XMLSchema-instance"

8 xsi:schemalocation="urn:mpeg:mpeg21:2003:01-DIA-gBSD-NS

9 gBSSchema .xsd urn:mpeg:mpeg21:2003:01-DIA-BasicDatatypes-NS

10 BasicTypes.xsd">

11

12 <dia:Description xsi:type="gBSDType">

13 .

14 <gBSDUnit syntacticallLabel=":J2K:MainHeader" start="0"
15 length="135">

16 <gBSDUnit syntacticallabel=":J2K:S0C" start="0"

17 length="2"/>

18 <gBSDUnit syntacticallabel=":J2K:SIZ" start="2"

19 length="49">

20 <Header>

21 <DefaultValues addressMode="Consecutive"/>

22 </Header>

23 <Parameter name=":J2K:Marker" length="2">

24 <Value xsi:type="xsd:hexBinary">FF51</Value>
25 </Parameter>

26 <Parameter name=":J2K:Lsiz" length="2">

27 <Value xsi:type="xsd:unsignedShort">47</Value>
28 </Parameter>

29 <Parameter name=":J2K:Rsiz" length="2">

30 <Value xsi:type="xsd:unsignedShort">0</Value>
31 </Parameter>

32 <Parameter name=":J2K:Xsiz" length="4" marker="R">
33 <Value xsi:type="xsd:unsignedInt">768</Value>
34 </Parameter>

35 <Parameter name=":J2K:Ysiz" length="4" marker="R">
36 <Value xsi:type="xsd:unsignedInt">512</Value>
37 </Parameter>

38 .

39 </gBSDUnit >

40 C

41 </gBSDUnit >

42

43 </dia:Description>
44 </dia:DIA>

Table 2.9: Definition of a sample gBS Description for a JPEG2000 bitstream using
BSDL |[PHH*03].

2.3. MULTIMEDIA 33

to allow BS descriptions to provide references to a bitstream or portions thereof.
It is even possible for a BS description to represent a bitstream or parts thereof as
well, by embedding binary data through Base64 encoding in XML. Yet, as encoding
binary data in Base64 results in an 1/3 increase in size, the resulting verbosity
usually penalises such a design choice.

The DIA framework does not mandate the structure or granularity of BS de-
scriptions for a specific data format, and leaves these choices to the designer of a
BS schema. Related to that, [BPVAWKO06| states that the descriptive granularity
of BS schemata and BS descriptions are scalable and only depend on the needs of a
specific application. The authors argue that describing binary data on a bit-by-bit
granularity is rarely necessary and typically too large for use and exchange, due to
the inherent verbosity of the XML-based description. They therefore assume that a
high-level description is usually sufficient for adaptation.

ExAMPLE 2.3.3: Excerpts of a BS schema, a BS description and a gBS descrip-
tion in the context of JPEG 2000 are given as examples in Tables 2.7, 2.8 and 2.9]
respectively. The BS schema excerpt in Table 2.7 defines a so-called start-of-packet
(SOP) marker as a sequence of fields called Marker, LMarker and Nsop, which are
a two-byte hexadecimal value and two unsigned short integer values. The corre-
sponding BS description excerpt in Table 2.8 shows a start-of-packet marker with
actual primitive data values. Finally, the gBS description excerpt in Table shows
the “main header” of a JPEG 2000 image including its contained data structures as
gBSDUnit nodes. This data structure is described as a sequence consisting of an
opaque start-of-codestream (SOC) marker data structure, followed by an image and
tile size (SI7) marker data structure. Contained in the SIZ marker data structure,
its Xsiz and Ysiz fields represent primitive data as four-byte unsigned integers,
stating that the described main header belongs to a JPEG 2000 image which has a
resolution of 768 x 512 pixels.

Discussion

The BSDL approach enables high-level content adaptation of scalable bitstreams
by mapping data from binary to XMIL-based representations, performing simple
filtering operations on the XML representation by using XML processing standards,
and mapping it back to the binary domain again.

e Definitions and models: BSDL provides an approach based on XML Schema
for describing composition of data given in data formats which follow the scalable
bitstream assumption. Regarding general applicability, [Dev03| states that BSDL
is not intended for parsing and decoding arbitrary bitstreams completely, citing
examples such as entropy coding, wavelet coding or Discrete Cosine Transforma-
tion (DCT). The author argues that as most coding formats have been specified
without the use of a formal language, they do not follow any constraints in this
regard. The author furthermore argues that major parts of a bitstream are the
result of an encoding process that is not within the scope of the BSDL approach
for data format description.

Also interesting to observe is that although BSDL provides definitions for a generic
BS description (gBSD) in XML, the generation of gBSD is application-specific

34 CHAPTER 2. STATE OF THE ART

and left to format-specific applications outside the scope of BSDL |[PHH*03].
Giving a justification, [VDDNDSVAWO08| states that parsing a bitstream to a
gBS description in a format-agnostic way is difficult due its dependency on the
specific type of adaptation and its dependency on the format as such.

e Classification: BSDL provides a declarative approach that is machine-processible.
In examined literature, no formalised model for universal applicability is pre-
sented.

e Descriptive capabilities: Not unlike the DFDL approach, BSDL supports the
segmentation of structured data as well as the decoding of primitive data, where
data may have a length measured in bits, due to the addressUnit attribute.
Due to the focus of BSDL on scalable bitstream for high-level content-adaptation
through simple filtering rather than performing computationally complex trans-
formations, no support for the transformation of transcoded data is provided.
Likewise, the concatenation of fragmented data is not addressed as well.

2.3.4 BFlavor and gBFlavor

Using the BSDL approach for describing the composition of data formats providing
for scalable bitstreams requires the declaration of BSDL schemata. Compared to
procedural approaches such as Flavor, writing BSDL schemata can be complex and
is less expressive. As the existing BintoBSD reference implementation has been
shown to be inefficient for processing large volumes of format-specific data, it is
desirable to automatically generate and use more efficient format-specific parsers.

Overview

The BFlavor approach combines and extends the previously defined Flavor and
BSDL approaches [DN|. From Flavor, it uses its procedural definition regarding
the composition of data, provides for the automatic generation of source code for a
parser implementation as well as a corresponding BS schema in the BSDL language.
The variant gBFlavor is similar to BFlavor, but focuses on gBS descriptions rather
than BS descriptions.

Since for both BFlavor and gBFlavor, the initial stage of generating a BS de-
scription from a given bitstream is delegated to automatically generated implemen-
tations, they extend BSDL only on the level BSDL-1 (for generating adapted bit-
streams from BS descriptions), but not on BSDL-2 (for generating BS descriptions
from bitstreams).

Discussion

As with the BSDL approach, BFlavor and gBFlavor enable high-level content adap-
tation of scalable bitstreams through using XML processing standards. Mapping
data from its binary representation to XML is improved over BSDLs generic BintoBSD
parser through the generation of format-specific parsing components.

e Definitions and models: Essentially, the (g)BFlavor approach describes the
same approach for describing the composition of data that Flavor provides. They

2.3. MULTIMEDIA 35

therefore inherit Flavor’s implicit management of placement and positioning dur-
ing parsing, based on the forward execution of the (g)BFlavor code. Moreover,
both approaches inherit its assumption of data formats to support scalable bit-
streams.

e Classification: As with Flavor itself, its (g)BFlavor extension is a procedural,
machine-processible approach, for which no formalised model for universal appli-
cability is presented in examined literature.

e Descriptive capabilities: The (g)BFlavor approach provides the same descrip-
tive capabilities as Flavor, supporting the segmentation of structured data and
the decoding of primitive data with bit granularity, but without support for the
transformation of transcoded data or the concatenation of fragmented data.

36 CHAPTER 2. STATE OF THE ART

2.4 Telecommunication

Overview

Similar to digital objects from Multimedia, the need for interoperability has lead to

format-related efforts in Telecommunication on the normative definition of protocol
data units (PDUs):

e Normative definition of protocol data units (PDUs): In a protocol ex-
change, PDUs are exchanged as messages between involved parties. Since these
parties need to agree to and understand the implied semantics of these messages,
their composition has to be described for documentation.

Outline

In the following sections, the two following approaches are considered as related work
for this thesis. Both address the normative description of PDUs used in telecommu-
nication protocols:

e Standardised by the International Telecommunication Union, the Abstract Syn-
tar Notation One (ASN.1) is a well-known approach for a machine-processible
description of messages, which can be combined with the Encoding Control Nota-
tion (ECN) for encodings that are not provided by the predefined ASN.1 codecs.

e Conceived by the European Telecommunications Standards Institute (ETSI) as
a simpler alternative to the highly complex specifications of ASN.1 and ECN,
the Concrete Syntaz Notation 1 (CSN.1) serves to describe the representation of
messages on the bit level.

2.4.1 Abstract Syntax Notation One

An inherent and ever-present need in Telecommunications is to define the messages
to be transmitted in a new protocol exchange. It is desirable to describe these
messages on a high level and to delegate the corresponding definition of their rep-
resentation as bits and bytes to standardised, reusable codecs which solve common
problems such as variable-length fields in a uniform manner.

Overview

The Abstract Syntax Notation One (ASN.1) is a set of specifications concerned
with specifying messages for protocol exchanges that have been standardised by
the International Telecommunication Union Telecommunication Standards Sector
(ITU-T). Analogous to the distinction between Application and Presentation layer
on the OSI network model, ASN.1 distinguishes between the abstract syntaz and
the transport syntaxr of a message:

e Abstract syntax: The abstract syntax of a message is concerned with its com-
position from typed fields that carry information with defined semantics, but does
not mandate a specific encoding. Using the ASN.1 language, so-called modules

2.4. TELECOMMUNICATION 37

contain message definitions as assignments, such as shown for X.509 certificates
in Table 2.10L In this example, the Certificate type is defined as a sequence of
three fields tbsCertificate, signatureAlgorithm and signatureValue of types
TBSCertificate, AlgorithmIdentifier and BIT STRING, respectively. Like-
wise, the Time type is defined to allow a choice between carrying a field utcTime
of type UTCTime or a field generalTime of type GeneralizedTime.

The ASN.1 language provides support for built-in primitive types (such as Bit-
String, CharacterString or Integer) and complex types (such as SEQUENCE, SET
or CHOICE) which can also be constrained and composed to form user-defined
types |[IT97|. Furthermore, the ASN.1 language provides support for concepts
such as for enabling the layering of messages in a protocol stack, and for enabling
the extensibility of messages to enable at least partial interoperability between
different versions of messages |[Lar99].

e Transport syntax: The transport syntax of a message is concerned with the
way its fields are encoded to a binary representation of the message. For a given
abstract syntax and message, its corresponding transport syntax is obtained either
by reusing encoding rules of existing ASN.1 codec, or defining and using new
encoding rules through the Encoding Control Notation (ECN) language.

Existing ASN.1 codecs include the Basic Encoding Rules (BER) codec [IT02all
which is relatively simple, the Packed Encoding Rules (PER) codec [IT02b] which
is compact but more complex in processing, or the XML Encoding Rules (XER)
codec |ITO1] which produces XMI-based representations.

The ECN language serves for defining alternative encodings that are variants of
existing codecs or new encodings altogether [IT02¢]. Analogous to the ASN.1 lan-
guage, ECN provides built-in encoding classes for primitive ASN.1 types (such as
#INTEGER for the ASN.1 type INTEGER) and complex ASN.1 types (such as
#SEQUENCE or #CHOICE). Moreover, built-in encoding classes also include en-
coding procedures (such as # TRANSFORM) that allow transformation of values
between different encoding classes like #CHAR and #INTEGER, and provide
support for arithmetic operations. In a process termed coloring, the implicitly
defined ECN types from an ASN.1 definition are recursively replaced until an
explicitly generated encoding structure is produced of the abstract syntax of the
message, with which the message can be encoded.

EXAMPLE 2.4.1: An example of ECN use is the encoding object assignment
shown in Table which defines how the ASN.1 assignment in Table 2. 11| a
PositiveIntegerBCD, is to be encoded using the positiveIntegerBCDEncoding
encoding. According to Table 2.12] the integer value is converted into a sequence
of characters, which is then encoded using the numeric-chars-to-bcdEncoding
encoding. This encoding is aligned to nibble (four-bit) boundaries, where each
character of the character sequence is mapped to a four-bit sequence, which is
finally appended with a terminating bit sequence “1111”.

ASN.1 has been used in the definition of file formats as well as messages in net-
work protocols. Examples are the file format for X.509 certificates |[CSF*08] storing
cryptographic information, as well as messages from the H.323 protocol suite used in

38 CHAPTER 2. STATE OF THE ART

1 Certificate ::= SEQUENCE <

2 tbsCertificate TBSCertificate,

3 signatureAlgorithm AlgorithmIdentifier,

4 signatureValue BIT STRING }

5

6 TBSCertificate ::= SEQUENCE <{

7 version [0] EXPLICIT Version DEFAULT vi,

8 serialNumber CertificateSerialNumber,

9 signature AlgorithmIdentifier,

10 issuer Name ,

11 validity Validity,

12 subject Name ,

13 subjectPublicKeyInfo SubjectPublicKeyInfo,

14 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
15 -- If present, version MUST be v2 or v3
16 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
17 -- If present, version MUST be v2 or v3
18 extensions [3] EXPLICIT Extensions OPTIONAL

19 -- If present, version MUST be v3
20 }

21

22 Version ::= INTEGER { «+v1(0), wv2(1), v3(2) }

23

24 CertificateSerialNumber ::= INTEGER

25

26 Validity ::= SEQUENCE {

27 notBefore Time,

28 notAfter Time 7}

29

30 Time ::= CHOICE {

31 utcTime UTCTime ,

32 generalTime GeneralizedTime }

Table 2.10: Excerpt of a X.509 certificate definition given in ASN.1 from [CSF*08].

1 PositiveIntegerBCD ::= INTEGER(O..MAX)

Table 2.11: An ASN.1 assignment from [[T02¢]| for use in conjunction with the ECN
encoding object assignment shown in Table 2.12]

2.4. TELECOMMUNICATION 39

1 positiveIntegerBCDEncoding #PositivelIntegerBCD ::= {

2 USE #CHARS

3 MAPPING TRANSFORMS{{

4 INT-TO-CHARS

5 -- We convert to characters (e.g., integer 42

6 -- becomes character string "42") and encode the characters
7 -- with the encoding object "numeric-chars-to-bcdEncoding"
8 SIZE variable

9 PLUS-SIGN FALSE}}

10 WITH numeric-chars-to-bcdEncoding }

11

12 numeric-chars-to-bcdEncoding #CHARS ::= {

13 ALIGNED TO NEXT nibble

14 TRANSFORMS {{

15 CHAR-TO-BITS

16 -- We convert each character to a bitstring

17 --(e.g., character "4" becomes ’0100’B and "2" becomes ’0010°’B)
18 AS mapped

19 CHAR-LIST { "Q",mym, ngn ngn,

20 g, npgn, e, T,

21 "g","9"}

22 BITS-LIST { ’0000°B, ’0001’B, ’0010°B, ’0011°B,
23 ’0100°B, ’0101°B, °0110°B, ’0111°B,

24 ’1000°B, ’1001’B }}}

25 REPETITION-ENCODING {

26 REPETITION -SPACE

27 -- We determine the concatenation of the bitstrings for the
28 -- characters and add a terminator (e.g.,

29 -- ’0100°B + ’0010’B becomes ’0100 0010 1111°B)
30 SIZE variable-with-determinant

31 DETERMINED BY pattern

32 PATTERN bits:?1111°B}}

Table 2.12: An ECN encoding object assignment for application on the ASN.1
assignment shown in 21T, taken from [IT02q].

40 CHAPTER 2. STATE OF THE ART

videoconferencing [IT06|, or from the Lightweight Directory Access Protocol Version
3(LDAPv3) [WHK97|]. ECN has been used in order to redesign existing protocol
standards to use ASN.1, such as for the Bluetooth Session Description Protocol
(SDP) [LDTO1| or the ISO/TEC 7816-4:2005 standard for communicating with in-
tegrated circuit cards (ICCs), also known as smart cards [[SO05b].

Discussion

ASN.1 and ECN allow a set of data formats to be defined through separately
specifying their abstract and transport syntax using both languages, and allowing
format-compliant software components to be generated. For Telecommunications,
the combination of both languages has the interesting property that protocol mes-
sages defined in ASN.1 can be reused with different transport encodings on different
transports.

e Definitions and models: The combined use of ASN.1 and ECN provides a
model to define a data format of messages to be exchanged. As the predefined
ASN.1 codecs strongly coin the resulting data formats for ASN.1 messages, general
applicability of this approach depends on the universality of ECN to provide for
arbitrary forms of transport syntaxes. While general applicability of ASN.1 and
ECN is sometimes asserted and assumed in literature, it is not readily apparent
due to the high complexity of both standards, and it has neither been proven nor
argued for substantially, according to this author’s knowledge.

e Classification: The combination of ASN & ECN is a declarative, machine-
processible approach. While the approach is the subject of a highly complex
and voluminous specification, no formalised model for universal applicability is
given.

e Descriptive capabilities: As with other approaches, the combination of ASN.1
and ECN provides support for segmenting transcoded data and decoding primitive
data with bit granularity. The approach can make use of ECNs limited support for
at least arithmetic transformations of transcoded data through ECN’s #TRANS-
FORM encoding class, although this discounts more complex processes required
for compressed or encrypted data. Explicit support for the concatenation of frag-
mented data has not been encountered in the highly complex ECN specification.

2.4.2 Concrete Syntax Notation 1

While the previously presented ASN.1 and ECN approach provides means for defin-
ing a set of messages for a new protocol, separately describing the abstract and
transport syntax of a message to these specifications is a complex task. When there
is no immediate need to switch the transport syntax as ASN.1 and ECN allows to,
then directly specifying the representation of a message in bits and bytes is a simpler
and more transparent approach.

2.4. TELECOMMUNICATION 41

Overview

The Concrete Syntax Notation 1 (CSN.1) specification allows the composition of a
message from bits and bytes to be directly specified. CSN.1 itself has been specified
by the European Telecommunication Standards Institute (ETSI) and is used in mo-
bile communication standards of the 3rd Generation Partnership Project (3GPP)
IETS10].

CSN.1 itself is quite similar to the Erxtended Backus Naur Form (EBNF). In
CSN.1, 0, 1 and null are all terminals which either refer to bits of the respective
value, or to the empty bitstring. An ezpression can be either a terminal, a concate-
nation of multiple expressions into a sequence, a choice of alternative expressions, or
a reference to a rule name defined for an expression. An expression may be followed
by parantheses denoting repetition, either by a fixed number through an integer
value, or by a variable, unbound number through the Kleene star symbol “*”. An
expression itself can be tagged with a label for later identification of parts of a rule.
Further extensions are introduced ad-hoc in specifications, such as defining a con-
straint on the value of an expression through the == operator. An example CSN.1
definition from 3GPP is shown in Table 213 where a so-called Uplink RLC/MAC
control message type is defined as a 6-bit header identifying a message subtype,
followed by the contents of the specific subtype itself. In this case, a 6-bit header
with a value of 000000 identifies the following Packet Cell Change Failure message
content type.

Discussion

CSN.1 can be used for a low-level description of bit-oriented messages in Telecom-
munication protocol for purposes of standardisation and possibly validation.

e Definitions and models: The CSN.1 specification provides a very simple ap-
proach towards data format description that is on the other end of the scale
compared to ASN.1 and ECN. Basically, CSN.1 is similar to a form of EBNF
specifially adapted for describing bit-oriented messages, so it provides means for
describing data structures, but does not provide the means such as decoding BCD
integers or similar.

e Classification: CSN.1 is a declarative, machine-processible approach, yet no
formalized model for universal applicability is presented in literature.

e Descriptive capabilities: CSN.1 provides support for segmenting structured
data and partial support for decoding primitive data, both with bit granularity.
Lacking concepts for actual decoding of primitive data, CSN.1 can only be con-
sidered to provide an identity decoding of bit sequences. For example, if a bit
sequence represented a signed integer, then decoding the bit sequence into an ac-
tual signed integer value is not within the capabilities of CSN.1 itself. Regarding
the transformation of transcoded data or the concatenation of fragmented data,
the CSN.1 approach does not provide support for either descriptive capabiliy.

42 CHAPTER 2. STATE OF THE ART

1 < Uplink RLC/MAC control message > ::=

2 < MESSAGE_TYPE : bit (6) 000000 >

3 < Packet Cell Change Failure message content > |

4 < MESSAGE_TYPE : bit (6) 000001 >

) < Packet Control Acknowledgement message content > |
6

7

8

9

< MESSAGE_TYPE : bit (6) 000010 >
< Packet Downlink Ack/Nack message content > |
< MESSAGE_TYPE : bit (6) 000011 >
< Packet Uplink Dummy Control Block message content > |

10 < MESSAGE_TYPE : bit (6) == 000100 >

11 < Packet Measurement Report message content > |

12 < MESSAGE_TYPE : bit (6) == 001010 >

13 < Packet Enhanced Measurement Report message content > |
14 < MESSAGE_TYPE : bit (6) == 000101 >

15 < Packet Resource Request message content > |

16 < MESSAGE_TYPE : bit (6) == 000110 >

17 < Packet Mobile TBF Status message content > |

18 < MESSAGE_TYPE : bit (6) == 000111 >

19 < Packet PSI Status message content > |

20 < MESSAGE_TYPE : bit (6) == 001000 >

21 < EGPRS Packet Downlink Ack/Nack message content > |

22 < MESSAGE_TYPE : bit (6) == 001001 >

23 < Packet Pause message content > |

24 < MESSAGE_TYPE : bit (6) == 001011 >

25 < Additional MS Radio Access Capabilities message content>;

Table 2.13: Excerpt of a 3GPP message definition in CSN.1 from [ETS03].

2.5. DISCUSSION 43

7.

Q

2 s A

AP I
=~ g8 2 -
2 A8 2 A @3 z 2z
O = B = o 5 »n w
“ A = T/ 2 < 0
Machine-processible approach O
Procedural approach O O O O O
Declarative approach o O O
Formalised model for universal applicability o 0O 0O O O O O O
Decoding of primitive data
Segmentation of structured data
Transformation of transcoded data O O O O O O
Concatenation of fragmented data O O O O O O O

Table 2.14: Comparison of related work in terms of supported elementary descriptive
capabilities.

2.5 Discussion

This discussion of the current State of the Art presents a consideration of ezamined
related work, a number of general observations and references to other approaches
that have not been addressed in this thesis, but which may be of interest for future
research.

2.5.1 Consideration of examined Related Work

Using the classification and descriptive capabilities of models in related work, it is
possible to compare approaches that have been surveyed by examining their support
for decoding, segmentation, transformation and concatenation:

e Classification: Examined data format registries either retain natural-language
descriptions or depend on formal descriptions given in one of the existing ap-
proaches. The OAIS Reference Model introduces the terminology of Representa-
tion Information for some representation of data format knowledge, yet primarily
considers and thus depends on existing software implementations. A similar sit-
uation is with TOM, which allows the migration of data between data formats
to be managed. It depends on external software implementations to provide ac-
tual conversion services, and therefore does not provide a model for making data
format rules and constraints explicit.

Formal models for describing data formats have been observed in XCEL, DFDL,
the MPEG-1/2 methodology, Flavor, BSDL, (g)BFlavor, ASN.1 in combination
with ECN and CSN.1. Nearly all approaches are machine-processible, with only
the MPEG-1/2 methodology being an exception, as it employs a tabular notation
intended for conveying data format knowledge to human engineers. The majority

44 CHAPTER 2. STATE OF THE ART

of approaches are declarative, as only the MPEG-1/2 methodology, Flavor and
(g)BFlavor depend on procedural descriptions in the form of (pseudo) source code.

Yet, among all these approaches, no formalised model is presented in literature
that systematically considers their universal applicability, or their inherent lim-
itations. While every examined approach addresses specific use cases in their
domains and while they have been put to use, the basic question of sufficiency
and necessity of descriptive capabilities has not been investigated systematically,
be it for data formats from a specific domain or in general.

There is a lack of a suitable formalised abstraction on data formats in general
which could be used to establish elementary descriptive capabilities for universal
applicability. These aspects are therefore addressed in the upcoming analysis of
this thesis.

e Descriptive capabilities: The lack of a formalised model geared towards univer-
sal applicability also manifests itself in a lack of systematic support of descriptive
capabilities, although authors at times claim universal applicability of their ap-
proach for describing arbitrary data formats. Yet, this occurs without giving some
sort. of proof, arguing the case substantially or at least making such expressive
powers readily apparent for the reader.

Unsurprisingly, decoding primitive data and segmenting structured data can be
considered as minimally required descriptive capabilities for any approach address-
ing the description of nontrivial formats, and is thus supported by all approaches,
with the minor exception of CSN.1 not handling the actual coding of primitive
data, and with XCEL not handling data on bit granularity, but on octet granu-
larity. Where approaches address the coding primitive data, but may not provide
for their set of encodings to be extended, performing a specific extension would be
trivial, but nevertheless lacks methodical consideration for extending encodings
in general.

Providing support for the transformation of transcoded data is more difficult,
though. It both requires the ability to transform data and to re-process the result
of the transformation, which is conceptually provided only by XCEL and only in
part by ASN.1 & ECN. Like with encodings, extending their set of transforma-
tions, for example when compression or encryption algorithms are used in a data
format, has not been considered in a thorough fashion.

Support for the concatenation of fragmented data is even more difficult to pro-
vide, as it requires fragments to be concatenated in the right order, and to be able
to re-process the resulting concatenation. From all approaches, only XCEL itself
provides partial support for concatenating fragmented data by using the reserved
normData symbol name, as shown for a PNG IDAT chunk sample [SHCO08], and
enabling re-processing of concatenated data by using the internalSource attribute.
Yet active control of fragment ordering is not explicit, casting its universal ap-
plicability into doubt for potential data formats requiring alternative fragment
orderings.

From a wide number of approaches on data format description, only the XCEL
approach comes close to supporting all four descriptive capabilities used for com-

2.5. DISCUSSION 45

parison. Since XCEL is used to monitor the retention of significant information for
real-life data migration projects, XCEL’s near-complete support can probably be
attributed to necessity-driven progress, yet comes at the price of a complex specifi-
cation with nontrivial interactions of concepts.

2.5.2 General observations

In the course of the survey, a number of noteworthy observations have been made:

e Distinction between describing and prescribing: During the survey of liter-
ature, it became noticeable that publications at times fail to properly distinguish
between describing a data format and prescribing a data format, although both
goals are conceptually different. Prescribing a data format can content itself with
providing a specific representation for a given message that suits a specific pur-
pose, but this does not necessarily require it to be capable of producing arbitrary
representations. For example, considering ASN.1 without ECN is clearly a pre-
scriptive approach. On the other hand, describing a data format, unless explicitly
restricted to a subset of data formats, has to handle the problem of arbitrary
representations that may exist and be used.

e Similarities between approaches: Existing research in literature provides ap-
proaches for domain-specific use cases that fit well, such as BSDL for high-level
content adaptation of scalable formats in Multimedia, or ASN.1 for ensuring in-
teroperability between sender and receiver in Telecommunications.

Several approaches have developed along similar concepts and lines of thought in
different domains. For example, the idea of extending XML Schema can be found
in both DFDL from Digital Preservation and BSDL from Multimedia, both using
XML Schema annotations for their specific extensions.

Yet, cross-pollination of approaches has basically been confined to within a do-
main, such as with Flavor, BSDL and their subsequent recombination in BFlavor
and gBFlavor.

e Necessity of round-trip support: Data formats define representations of in-
formation to be exchanged. For a proper exchange of information between sender
and receiver, an unambigious mapping between information and its representation
is required, supported by the necessity of round-trip support for parsing and seri-
alisation as explicitly required by DFDL. The need for an unambigious mapping
influences the central research hypothesis in the upcoming analysis of this thesis.

e Tight coupling of data format knowledge and format-compliant data:
Format-compliant data and the format-compliant knowledge embedded in appli-
cations are tightly coupled, as it is this knowledge in applications which assigns
semantics to information stored using data formats, and which is required to access
the contained information. This becomes especially visible in Digital Preservation
regarding the migration of data, trying to retain as much information as possible
for other applications to provide access to, or the emulation of applications so
they can still be used for access.

46 CHAPTER 2. STATE OF THE ART

e Varying granularity of description: Depending on the actual purpose of de-
scribing data, such as for high-level content adaptation, or for obtaining a specific
information, suitable descriptions may have different degrees of granularity. A
typical argument in favour of a limited, coarse granularity of description is that
a more fine-grained description would be too verbose, as data formats typically
provide a space-efficient representation for information. While a description can
still be sufficient at a coarse granularity, arbitrary degrees of granularity down to
the level of bits may be required in order to resolve and handle dependencies in
data (such as the high-level context problem introduced by Flavor).

e Different kinds of data in a description: As seen from DFDL’s “hiding”
of data contained in binary representations, there are two different roles of data
present. One role is data that carries original information, which is actually
of interest to a user and that is associated with a given representation. The
other role is data that “just” serves for wrapping up and transporting the original
information, such as length information or description of data types.

e Support for partial descriptions of format-compliant data: Partial de-
scriptions of format-compliant data, such as shown by XCEL, can be helpful in
case of incomplete data format knowledge, or when a description is still under
construction.

2.5.3 Other approaches

The set of works presented here is a selection of essential and influential approaches
from the data-centric domains of Digital Preservation, Multimedia and Telecommu-
nication.

Naturally, further approaches remain that have not been selected for presentation
in this thesis, and whose in-depth examination, including their relations to other
approaches, is left for future research. These approaches include, but are not limited
to:

e the Binary XML (BinX) description language [Wes02| and its relation to DFDL,
for which BinX was a precursor effort,

e the Binary Format Description (BFD) [MCO03|, another approach using XML
representations of binary data for sharing of scientific data,

e the Enhanced Ada SubseT (EAST) data description language, addressing needs
in data description for space-related information |[CCS00)],

e the Abstract Syntaz Description Language (ASDL) [WAKC97|, which is concerned
with intermediate representations of programming languages,

e the PACKETTYPES packet specification language [MCO00Q]| to allow the specification
of network protocol messages through types,

e the DataScript specification and scripting language for binary data, with similar-
ities to C and Java “tapping into programmers’ existing skill sets” [Bac02|,

2.6. SUMMARY 47

e the Hancock language for the analysis of “transactional data streams” for purposes
of data mining |[CFP*04|, and

e the PADS language intending to support programmers for parsing “ad-hoc data”
following a given data format |[FG05|, including a calculus of “dependent types"
for data description languages [EMWO06].

Two perhaps known approaches have been deliberately excluded from presentation,
as they lacked both the intention and capability to describe arbitrary data formats,
or failed to have a notable impact on the current State of the Art. These are the
FEzternal Data Representation (XDR) and Transfer Syntax Notation One (TSN.1)
languages:

e Although the External Data Representation (XDR) standard is used for describing
the composition of PDUs used in the Network File System (NFS) protocol, XDR
explicitly does not intend to describe arbitrary data formats. For example, XDR
has no support for bitstreams of non-octet length.

e The Transfer Syntax Notation One (TSN.1) is a data description language used in
a commercial product that resembles a cross of CSN.1 and Flavor stripped from
its object-oriented aspects. Yet, it has neither been found to be actively used
in publically available specifications, nor does it provide readily apparent means
for concatenating fragmented data or processing data stored in a compressed or
encrypted form.

2.6 Summary

This survey on current State of the Art in data format description has shown that
from Digital Preservation, Multimedia and Telecommunication, data format de-
scription plays a role in a multitude of use cases, where the primary focus is on
the migration of data in Digital Preservation, and the normative definition of data
formats for files in Multimedia and for protocol data units in Telecommunication.

For these use cases, a variety of related research, such as data format registries
or the OAIS reference model, and a number of approaches from related work have
been identified, which often provide a domain-specific viewpoint. Definitions and
models from related work have varying properties and differ in expressiveness, yet
sometimes share common approaches even across research domains, such as the
idea of extending XML Schema for use on binary data. General applicability for
describing arbitrary data formats is sometimes assumed, yet, neither a formalisation
on data formats in general nor a proof on general applicability of an approach to
data format description has been given.

Chapter 3

Analysis

3.1 Introduction

The previous Chapter 2 surveyed the current State of the Art in literature regard-
ing data formats in various domains of research, including several contributions to
describing the composition of data. While several approaches from related work
claim general applicability for arbitrary data formats, these do not substantiate
their claims on a theoretical level. In examined literature, describing data formats
in general has neither been subject to systematic investigation, nor have inherent
properties of data formats and potential limits of describing the composition of data
been considered in-depth.

This chapter therefore analyses inherent properties in data format instances and
data formats in general, specifically addressing the following questions:

e What is a formalised abstraction of a data format instance and a data
format, which is suitable for universal applicability? The abstraction
provides a basis for discussing inherent properties and problems of as well as
limits to data format description on a theoretical basis.

e What are elementary descriptive capabilities required for universal ap-
plicability? Exploring the formalised abstraction leads a set of elemental descrip-
tive capabilities that are required for describing arbitrary data formats through
their data format instances.

e What are limits to data format description? Given a formalised abstraction
and a set of required descriptive capabilities for general applicability, exploring
their limits shows what can be reasonably expected from data format descriptions.

This chapter introduces a research hypothesis for analysis in Section [3.21and builds a
formalisation of data format description in Section 3.3l Its properties are considered
in Section[3.4] and inherent limits on data format description in general are examined
in 3.5l Finally, the chapter closes with a discussion and a summary.

49

50 CHAPTER 3. ANALYSIS

3.2 Research Hypothesis

The OAIS Reference Model introduced in Chapter states that a data format
is “representation information”, which “maps a set of bit sequences into more mean-
ingful concepts”. Due to the necessity of round-trip support for parsing / decoding
and encoding / serialisation observed in Chapter 2.5.2] such a mapping has to be
unambigious, therefore bijective and thus lossless. For this analysis, the following
research hypothesis describes the notion of a data format more closely:

HyPOTHESIS 3.2.1: The current State of the Art regarding data format description
can be improved by assuming that a data format defines a normative set of lossless
information representations, passed as messages between a sender and a receiver for
the purpose of storage and transmission over time.

sender o channel ¢ receiver (3
I .
M, Mg internal
-1
05, fao l T v f5t
2 ,
mq > my, external

Figure 3.1: Abstraction of the information transport from a sender a to a receiver
[using a data format d

Let D denote the set of all data formats, d € D denote a data format, o denote a
sender and (3 denote a receiver. Following the hypothesis, the basic usage scenario
of a data format shown in Figure B.1] can be stated as follows:

e A sender « has an “internal representation” m,, of information. The sender ensures
the validity of m, with respect to a data format d and maps from m, to an
“external representation” my, which is then sent over a channel c.

e A receiver (eventually obtains an “external representation” m/, from ¢, which
may be different from the sent mg in case of a noisy channel, or invalid due to
an erroneous sender. The receiver therefore ensures the validity of m/, and maps
from m), to an “internal representation” mg.

Sender and receiver necessarily have to share information regarding the data for-
mat d. Moreover, depending on d, both o and [may share additional context
information required for deciding about the validity, or for mapping from and to
an external representation my. Two examples of such context information are the
use of encryption in a data format, and the identification of embedded data formats
through separate channels.

3.3. FORMALISING DATA FORMAT DESCRIPTION 51

3.3 Formalising Data Format Description

Informally, we define a data format instance as a mapping between an internal m.,
and an external representation mgy, and define a data format through a set of such
instances. Formalising both terms, the following definitions are given step-wise as
follows.

3.3.1 Representing primitive information
The formalisation begins with the most basic element, a bit sequence:

DEFINITION 3.3.1 (BIT SEQUENCE): A bit sequence b is defined as finite and
non-empty. The set of all finite, non-empty bit sequences is defined as B (Eq. B.1]).

b={0,1}"n>1,beB (3.1)
EXAMPLE 3.3.1: Let b; be the finite and non-empty bit sequence 11100000.

DEFINITION 3.3.2 (ENCODING): An encoding e is a bijective function which maps
between an element x € X from some arbitrary domain X and its corresponding bit
sequence b (Eq. B.2]).

e: B, & X, B, cB, X, cX (3.2)

ExXAMPLE 3.3.2: Let epspr,eascrr be encodings, where ergpr denotes a least-
significant bit first integer encoding, and essc;; denotes an ASCIT character string
encoding. In this case, ergp;(7) = 11100000, which equals b; from the previous
Example B3] and eqgcr(“AB") = 10000010 01000010.

A bit sequence represents encoded data, but does not describe its meaning by
itself, as it depends on the actual context. In order to represent data including its
semantics as information, some sort of “labeling” is needed.

DEFINITION 3.3.3 (LABEL): A [abel [is a symbol that denotes some given seman-
tics. The set of all labels is defined as L.

DEFINITION 3.3.4 (LABELED BIT SEQUENCE): A labeled bit sequence i is defined
as a pair i = (b,L;), where b € B is a bit sequence and L; € L is a subset of labels that
denote the meaning of b (Eq. B.3). The set of all labeled bit sequences is defined as
L

i=(bL;),beBL;cL,iel (3.3)

EXAMPLE 3.3.3: Let w, be labels, where w denotes the meaning “Intel x86 ma-
chine opcodes” and 6 denotes the meaning “24bit RGB colour triplet”, and let
b =10010000 10010000 10010000. In this case, (b, {w}) represents the Intel x86 op-
code sequence NOP NOP NOP consisting of three “do nothing” machine instructions.
At the same time, (b, {6}) represents the RGB colour triplet #909090, corresponding
to a dark gray color.

A labeled bit sequence represents information by making the meaning of encoded
data as a bit sequence explicit for a specific context. It can be categorised as either
payload or packaging, depending on whether its information is part of the message
to be transported, or whether it is used for transportation:

52 CHAPTER 3. ANALYSIS

DEFINITION 3.3.5 (PAYLOAD): A labeled bit sequence i = (b,L;) is payload if
the value of its bit sequence b is functionally independent from other labeled bit
sequences.

DEFINITION 3.3.6 (PACKAGING): A labeled bit sequence i = (b,1;) is packaging
if the value of its bit sequence b is functionally dependent on one or more labeled
bit sequences, such as depending on their (relative) location, length, labels or bit
sequences.

EXAMPLE 3.3.4: Let w, 6 be labels, where w denotes the meaning “text comment”
and @ denotes the meaning “length of the text comment”. Let by = eas5cr7(“comment’)
and by = e;5p7(7). In this case, (by, {0}) is packaging, as it has a functional depen-
dency on (by,{w}). (b1,{w}) itself is functionally independent and thus payload.

ExXAMPLE 3.3.5: For example, given the PNG image file format which may carry
a string of text in a “tEXt” chunk data structure; in this case, the keyword element
contained in the chunk data element of the data structure is a functionally inde-
pendent text string and therefore a payload element. On the other hand, both the
chunk length and the CRC element are functionally dependent and thus represent
packaging elements.

3.3.2 Representing complex information

Labeled bit sequences serve as building blocks for more complex representations,
which are used either as internal representation at a sender or receiver v, or used as
external representation for exchanging information.

DEFINITION 3.3.7 (INTERNAL REPRESENTATION): An internal representation m.,
represents information in a way that is specific to some sender / receiver 7 and is
defined as a tuple of one or more labeled bit sequences (Eq. B.4]) which have defined
semantics. The set of all possible internal representations is defined as IR.

my = {i1,..., i },n>1i, e[;m, eIR (3.4)

Different internal representations may represent the same information, yet in
varying granularity.

DEFINITION 3.3.8 (GRANULARITY): The granularity of an internal representation
m., is a relative measure on how fine-grained information is represented. Finer
granularity is achieved by a more fine-grained description. The actual granularity
of m, may vary depending on the processing needs of sender or receiver .

EXAMPLE 3.3.6: Let m.,; = {i},i = (b,L;) be an internal representation, where i
represents the colour of a pixel as a 24 bit RGB value composed of 8 bits for each
colour component of red, green and blue. Let m, 5 = {i1,12,43}, %, = {bs,L; .} be an
internal representation, where 7,75 and i35 represent the colour of a pixel as a 24 bit
RGB value as separate 8 bit red, green and blue colour components. In this case,
m., o has a finer granularity than m., ;.

Packaging is typically present in a data format in order to describe variable as-
pects of payload required during the parsing process, such as the length of a variable-
length payload. In order to compute packaging information during generation and

3.3. FORMALISING DATA FORMAT DESCRIPTION 53

to process packaging information during parsing, a certain minimum granularity of
internal representation is required which separates packaging from payload.

DEFINITION 3.3.9 (EXTERNAL REPRESENTATION): An external representation
myq represents information as normatively defined by a data format d. It is defined
as a tuple containing exactly one labeled bit sequence (Eq. BX). The set of all
possible external representations is defined as ER.

mq = {Z},Z € H,md e ER (35)

EXAMPLE 3.3.7: Let w be a label which denotes the meaning “Portable Network
Graphics (PNG) image file”. Let bpyg denote the bit sequence of a valid PNG
image file, and let ipyg be the labeled bit sequence {bpng,{w}}. In that case,
Mapye = tPNG 1S an external representation of an image in the Portable Network
Graphics image file format.

An external representation my typically carries some aggregation of information
rather than a single primitive value. Such a case is shown in Example[3.3.7] where the
external representation mg,,,,, carries an aggregation of information, which contains
the width and height of the actual image as primitive values among others.

3.3.3 Validating representations

Given some internal representation m., or external representation my, it is necessary
to test their validity through wvalidation functions:

DEFINITION 3.3.10 (INTERNAL VALIDATION FUNCTION): For a given sender «
and data format d, an internal validation function is denoted as v$ (Eq. B.G). An
internal representation m, is walid iff v$(m,) = 1. The subset of all valid internal
representations of « for d is defined as IR} c IR.

02 IR — {0,1} (3.6)

ExXAMPLE 3.3.8: Let a be a sender of PNG images with random pixel data, where
the user determines the resolution by entering its width and height on the keyboard,
and let the user enter a width of 0 and a height of 1, which is passed on as image width
and height in its internal representation. In this case, the internal representation is
invalid, as the PNG image file format specifies the constraint that the image width
may not be zero.

As can be seen in Example B.3.8] data formats may be restricted to transporting
specific types of information, where format constraints have to be met. A sender
« therefore must at least be able to test whether an internal representation m,, is
valid according to d or not.

DEFINITION 3.3.11 (EXTERNAL VALIDATION FUNCTION): For a given d €D, an
external validation function is denoted as vy (Eq. BJ). An external representation
myg is valid iff vg(mg) = 1. The subset of all valid external representations for d is
defined as ER,; ¢ ER.

vg: ER - {0,1} (3.7)

54 CHAPTER 3. ANALYSIS

EXAMPLE 3.3.9: Let 3 be a receiver of PNG images, where bit errors during
transport have set the image width to zero. In this case, the external representation
is invalid, as the PNG image width may not be zero, just as in the previous Example

B.3.8

A received external representation m/ may be invalid, for example due to a
degrading storage medium or due to interference on a network link. Therefore, a
receiver must at least be able to test whether the received m/ is valid.

In order to transport information from the internal representation m, € IRJ to
the external representation my € ER,, and vice versa from a valid external represen-
tation m/, € ER, to the internal representation mj € HRS, a suited mapping between
both sets becomes necessary.

3.3.4 Mapping between representations

Hypothesis B.2.1] states that information representation is lossless. When consider-
ing the internal representation as the information to be represented, and the external
representation as the information representation, the hypothesis leads to the require-
ment that the mapping between internal and external representations is lossless and
thus bijective. It is now necessary to consider the mapping between internal and
external representations through mapping functions:

DEFINITION 3.3.12 (MAPPING FUNCTION): For a given sender o and data format
d € D, a bijective mapping function fo_.q (Eq. B8) maps from IRY to ER, through
encoding and serialisation. For a given receiver 3 and data format d € D, its inverse
fﬁ‘i 4 (Eq. B.9) maps from ER, to HRg through parsing and decoding.

fama : IRS > ERy (3.8)
f3Ls:ER, — IR

For a given d and «, due to the required bijectivity of mapping functions, both
sets ER,; and IR necessarily have the same size - for every external representation
myg, there exists a corresponding m,, and vice versa.

EXAMPLE 3.3.10: Let d be the MPEG-2 Transport Stream (MPEG-2 TS) data
format [ISO00|, which serves to stream packetised video, audio and auxillary data
over lossy channels, and which is for example used for digital television to be carried
over satellite or cable. Without an explicit upper bound to the number of packets
in an MPEG-2 TS, and thus without an upper bound to the bit sequence length of
its external representations, there is an infinite number of external representations
myq € ERd

Depending on whether a data format d has a maximum bit sequence length for
its external representations, the sets ER,; and IR may be finite. Both sets ER and
IR are infinite.

Given an external representation mgy to be exchanged between sender and re-
ceiver, the notion of a channel is required:

3.3. FORMALISING DATA FORMAT DESCRIPTION 55

DEFINITION 3.3.13 (CHANNEL): A channel ¢ passes an external representation
mq = {i},1 = {b,L;} from a sender « to a receiver 3, including the bit sequence b

and its labels IL;. Tt is modelled as a channel function f. (Eq. B.I0).
f.:ER > ER (3.10)

EXAMPLE 3.3.11: Let w be alabel denoting a PNG image file. Let f.; be a channel
representing a file in the File Allocation Table 32 (FAT32) file system. For a given
external representation mgy = 4,7 = {b,{w}} of a PNG image file, the bit sequence b
is stored as file content in the FAT32 file system, while its label w is stored using
the file name extension “.png”.

EXAMPLE 3.3.12: Let w be a label denoting an MPEG-2 Audio stream. Let f.
be one of multiple channels provided by an MPEG-2 Transport Stream. For a given
external representation my = i,i = {b,{w}} of an MPEG-2 Audio stream, the bit
sequence b is interleaved in the MPEG-2 Transport stream, while its label w is
encoded in a Program Map Table (PMT), which refers to the MPEG-2 Audio data
format.

A channel ¢ handles the transmission of an external representation mg = {i},i =
{b,IL;} by transferring both the bit sequence b and its labels L;. A specialised
channel ¢ may only pass external representations for a specific set of data formats.
Furthermore, a channel ¢ may be noisy and introduce errors into the bit sequence
or the set of labels.

In order to map between internal and external representations, some means for
a bijective mapping step is needed.

DEFINITION 3.3.14 (MAPPING STEP): A mapping step t is a bijective function
which maps between input and output as two ordered tuples of bit sequences (Eq.

B.11).

t:B" B n>1,m>1 (3.11)

As shown in Figure 3.2 mapping steps can be categorised through the cardinality
of the input and output tuples as

e a segmentation of structured data (1:m),
e a transformation of transcoded data (1:1), or
e a concatenation of fragmented data (n : 1), forming a composite.

Arbitrary n : m mapping steps can be composed from segmentations, transforma-
tions and concatenations. A mapping step may optionally use additional parameters
that control the bijective mapping.

EXAMPLE 3.3.13: Let ¢ be a Run-Length Encoding (RLE) block transformation,
where a sequence of n equivalent bits is considered a run with a maximum length
of 4, and where the length n is encoded as n — 1 using 2 bits, followed by the bit
to be repeated. Given a bit sequence b = 00001111, then b consists of two runs of
length 4, where the first run is composed from 0s, and the second run is composed
from 1s. Therefore, t(b) = 110111.

26 CHAPTER 3. ANALYSIS

(bo) (bo) (boy -+, bm)
(b1, bns1) (b1) (bn+1)
segmentation transformation concatenation

Figure 3.2: Mapping steps ordered by input and output cardinality.

mq = {Z}

()

faralma) E bzt 3| g

)

(Ma = {i1, ... in},n>1)

Figure 3.3: Bijective mapping between m,, and my

The bijective mapping between an internal representation m. and an external
representation my as defined through transformations gives rise to a data format
instance.

DEFINITION 3.3.15 (DATA FORMAT INSTANCE): Given a pair of representations

(maq,m.) with mg = {io},m, = {i1,... i, },n > 1, a data format instance is a rooted,
directed, ordered, acyclic graph as a causality graph on labeled bit sequences. The
graph is rooted in iy and has iy,...,7, as its leaves. The graph is composed from a

finite set of mapping steps, where each mapping step ¢ defines directed arcs from an
ordered set of input bitstream segments to an ordered set of output bit sequences.
Regarding intermittent nodes in the causality network, their bit sequences are the
result of mapping steps, while their labels functionally depend on neighbouring
labeled bit sequences as well as on optional context information depending on d.

When considering fragmented data for concatenation, the order of fragments is
represented in the order of input bitstream segments mapping the fragments to a sin-
gle output bitstream segment as their (ordered) concatenation. Intermittent nodes
carry intermediate values resulting from the mapping steps between the internal and
external representation.

3.4. PROPERTIES OF THE FORMALISATION 57

Figure 3.4: Bijective mapping between internal representations IR and external
representations ER, through mapping function f,_4 and its inverse f 1,

ExXAMPLE 3.3.14: The file signature of a valid PNG image file obtains its semantics
from being the first element in its bit sequence, having a fixed length of 8 bytes and
a defined value. On the other hand, an THDR chunk data structure in the same file
obtains its semantics from the value of the second element, which is located 4 bytes
after its start, has a length of 4 bytes and contains the ASCII string value “IHDR”.

The causality graph of a data format instance can be compared to a map that
locates its specific elements and how they come into place. As a data format instance
belongs to a specific external representation, on this level, there is no consideration
of “choice” or “alternatives”, as one might have expected.

Building on previous definitions, the conceptual notion of a data format can now
be defined for analysis:

DEFINITION 3.3.16 (DATA FORMAT): A data format d is a potentially infinite
set of data format instances, which maps between a normative ER,; ¢ ER and a
canonical IR} ¢ IR, which is intended for transmission over a channel c.

3.4 Properties of the Formalisation

This section starts by considering the suitability of bijective mapping functions for
data format mappings as well as the sufficiency for lossless and lossy data formats for
the presented formalisation to counter potential misconceptions, and gives insights
into its sufficiency and necessity of descriptive capabilities.

3.4.1 Suitability of bijective mapping functions for data for-
mats

The presented formalisation requires the bijectivity of mapping functions, which is
not suggested by most existing data format descriptions. This stands out especially
when there are multiple external representations mg,...,mq, that are seemingly
equivalent representations for the same internal representation m.,. Assuming this

28 CHAPTER 3. ANALYSIS

seeming equivalence, this may lead to the misconception that the bijective mapping
requirement is overly restrictive, which requires that there is a one-to-one correspon-
dence between internal and external representations.

Following the requirement of bijective mapping functions, the existance of multi-
ple seemingly equivalent external representations can be considered as the result of
a side-channel carrying information, which has been neglected in the internal repre-
sentation m., but which actually distinguishes between the external representations
M1, ..., M4n. Such differences in external representations can be detected in their
bit sequences and reacted upon by a receiver, leading to potentially different be-
haviour. Therefore, neglected side-channels could lead to unintended side-effects, as
shown in the example below:

EXAMPLE 3.4.1: Let d be the Apple QuickTime data format, where media infor-
mation is stored within a data structure called MDAT atom, and where the actual
placement of individual media samples within the MDAT atom is stored within a
data structure called MOOV atom. In typical Apple QuickTime movies, MDAT
atoms are substantially larger than MOOV atoms, as the former is carrying the ac-
tual media samples, while the latter carries “just” related management information.
Let mg41 be an Apple QuickTime movie where the MDAT atom is located prior to
the MOOV atom in the bit sequence, and let mgo be the very same Apple Quick-
Time movie, yet with the MOOV atom being located prior to the MODAT atom
in the bit sequence. Assume both mg; and mg to be located on a local harddisk,
where both can be played back immediately using a suitable multimedia player such
as Apple QuickTime or the VideoLan Client. In this context, mg4; and mg2 can be
considered as seemingly equivalent despite different representations.

Now assume both mg; and mg2 to be located on a remote web server, from
which both movies have to be downloaded via HTTP for local playback. In the
case of mg 1, although the media samples in the MDAT atom are received first, their
specific, individual placement in terms of start and length, as well as their type,
still remains unknown. Playback of mg; thus has to be delayed until the MOOV
atom has been received as well. In the case of mgy,, playback may start after the
MOOV atom has been received, since the placement of individual media samples
in the yet-to-come MDAT atom is now known to a multimedia media player. This
property is termed “fast-start movie playback” by Apple.

In this context, the difference between mg; and mg 2 leads to a different playback
behaviour that marks them as explicitly different in everyday use. If both exter-
nal representations mg;,mg2 are considered seemingly equivalent to an internal
representation m.,, then m, is lacking the information whether the movie actually
supports “fast-start movie playback”.

With the requirement of bijective mapping functions and its enforcement, no
such neglected side-channels can exist. The problem of seemingly equivalent multi-
ple external representations mg,...,mg4, can be solved by extending the internal
representation m. to m.,...,m,, as necessary. Therefore, the requirement of bi-
jective mapping function enforces the active consideration and handling of neglected
side-channels in the design of data format mapping functions.

Moreover, the bijective mapping function requirement also enforces the clean
separation of concerns related to the representation of information in a given data

3.4. PROPERTIES OF THE FORMALISATION 59

format, and the (typically lossy) conversion of information between different data
formats. Such lossy, approximative conversion processes between different data for-
mats, for example for converting text documents between the Microsoft Office Word
2010 .docx data format and the OpenDocument Format used by OpenOffice.org
3.2.1, are neither subject of the presented formalisation nor of this thesis.

3.4.2 Sufficiency for lossless and lossy data formats

Although a data format has been defined to specify the representation of informa-
tion in a lossless manner by requiring bijective mapping functions, this does not
limit the scope of the definition to lossless data formats only, as one might assume.
A lossless data format represents original information, whereas a lossy data format
represents the approximation of original information according to a defined metric,
using some preprocessing function that filters information. In any case, the repre-
sented information is to be recoverable without loss by the receiver when assuming
an error-free channel ¢, be it some original information or an approximation.

Therefore, mappings from and to my are required to be bijective and thus to be
information-preserving. Aspects related to preprocessing of information according
to some metric as well as postprocessing are not within the scope of this thesis.

EXAMPLE 3.4.2: Let d be the MPEG 1 Audio Layer 3 (MP3) audio file format,
and mg be an MP3 file. The data format d is a lossy data format, as it employs
an approximation metric that is based on an acoustic perception model for humans.
Although counterintuitive at first, my does not carry audio data itself, but merely
a representation of an approximation of audio data that has been transported from
some sender «. This representation can be recovered by a receiver 3, completing
the abstract information transport.

3.4.3 Sufficiency and necessity of descriptive capabilities

Based on the notions of encoding and transformation from Definitions B.2land B.1T], a
set, of descriptive capabilities that consists of decoding, segmentation, transformation
and concatenation can be observed, which exactly match the descriptive capabilities
used in the survey of related work in Chapter 2l These serve for handling primitive
data, structured data, transcoded data and fragmented data, respectively:

e Decoding of primitive data: Being the most essential descriptive capability, it
decodes a bit sequence representing a typed primitive to its domain-specific value
and thus reverses the encoding operation of the sender. A simple example of
primitive data is a bit sequence representing a most significant bit first (MSBF)-
encoded integer representing the width in pixels of a PNG raster image.

e Segmentation of structured data: Since data formats rarely serve for repre-
senting single primitive values, it segments a structured bit sequence into its con-
stituting parts, thereby reversing their concatenation performed by the sender. An
example of structured data is a bit sequence containing the header of a Portable
Network Graphics (PNG) raster image, the so-called IHDR chunk data structure,
which has separate fields carrying information such as the width and height of the
stored image.

60 CHAPTER 3. ANALYSIS

e Transformation of transcoded data: Required for when a data format em-
ploys compression, encryption or another form of block transformation, it re-
versibly transforms an original bit sequence into a transcoded bit sequence, thereby
reversing the block transformation that was applied to the transcoded bit se-
quence by the sender. An example of transcoded data is the PNG raster image
data, which has undergone both a reversible scanline transformation as well as a
lossless compression employed in PNG image files.

e Concatenation of fragmented data: For when a data format allows the data
fragmentation, it concatenates multiple fragments into a composite, thereby re-
versing the fragmentation as performed by the sender. Examples of fragmented
data are the fragmentation of transformed and compressed PNG raster image
data in separate IDAT chunks allowed in PNG image files, as well as the time-
based interleaving of audio and video data in multimedia containers such as the
MPEG-4 File Format.

Regarding the question whether this is a set of elemental descriptive capabilities
required for describing bitstreams from arbitrary data formats, assume a causality
graph that describes the mapping between a bitstream as root node and a set of
primitive values as leaf nodes. Representing the finite encoding and serialisation
process performed by the sender, the graph must be finite as well. As to maintain
causality of the encoding and serialisation process, there may not be loops within
the graph, thus turning it into a causality graph. So for every node, there exists a
finite upward path towards the root as well as one or more finite downward paths to
primitive data. Paths in either upward or downward direction may be of zero length
when the node in question is either the root node or a leaf node.

Exploring the causality graph from its root node in the downward direction,
nodes in the causality graph are either leaf nodes or non-leaf nodes. In this case,
every leaf node is a decoded primitive. Concerning non-leaf nodes, these participate
either in a 1:m mapping designating the node to be a segmented structure,in a 1:1
mapping designating the node to be a transformed transcode, or in a n : 1 mapping
designating the node to be a concatenated fragment, while n : m mappings can be
decomposed into the previous alternatives.

This set, of descriptive capabilities is both sufficient and necessary for describing
the composition of arbitrary data, as there are exactly these and no other types of
elemental mappings in a causality graph besides the presented 1:m, 1:1, n:1 and
n : m non-leaf cases and the leaf case. Therefore, we consider this set as elemental
descriptive capabilities required for universal applicability of an approach for data
format description.

3.4.4 Using a PNG raster image as “litmus test”

To show that there are bitstreams from existing data formats that exercise the full
set of elemental descriptive capabilities, readers are encouraged to consider the valid
PNG raster image “0i2n0g16.png” from a PNG image test suite [vS98].

Let us assume to describe the composition of aforementioned PNG raster images
in order to access colour information of a specific pixel. According to the PNG format
description [Duc03] and the bitstream of the given file, segmentation is required for

3.5. LIMITS TO DATA FORMAT DESCRIPTION 61

isolating two bit sequences contained in two IDAT chunk data structures. These bit
sequences represent fragments of compressed, reordered image data that need to be
concatenated first in order to decompress and then again reorder the image data,
making it accessible. Finally, accessing individual pixel data requires segmentation
of pixel and colour data, and decoding the stored primitive value. This PNG raster
image can thus serve as a litmus test for data format description, and is thus revisited
in later chapters.

3.5 Limits to Data Format Description

3.5.1 Overview

Inherent properties of data formats are present in the flow of information in Figure
B.I and the bijective mapping in Figure 3.4, which can be stated as requirements
for modelling data format instances and data formats as follows:

e Validation of external representation: The first two requirements ensure
that a sender can distinguish between valid and invalid internal representations,
and that a sender is capable to map an internal representation to an external
representation by generation. Otherwise, a sender might create invalid external
representations, or even loop trying to finish the generation process. In that case,
no valid message is produced.

REQUIREMENT 3.5.1: The sender o can decide whether an internal representa-
tion me, 18 valid using a function v§.

REQUIREMENT 3.5.2: The sender o can compute a valid external representation
myq from a wvalid internal representation mg, using a bijective mapping function

fa»d-

e Validation of internal representation: The next two requirements ensure
that a receiver can distinguish between valid and invalid external representations,
and that a receiver is capable to map it to an internal representation by parsing.
Otherwise, a receiver might create invalid internal representations, or even loop
trying to finish the parsing process. In that case, no valid message is consumed.

REQUIREMENT 3.5.3: The receiver 3 can decide whether an external represen-
tation m), is valid using a function vg.

REQUIREMENT 3.5.4: The receiver 3 can compute a valid internal representa-
tion m’ﬁ from a valid external representation m!, using a bijective mapping function

fata

e Bijective mapping between internal and external representations: The
last requirement ensures the unambiguousness and consistency of external and
internal representations. For every external representation my € ER,, there exists
exactly one corresponding internal representation m.. As well, for every internal
representation m, € IR}, there exists exactly one corresponding external repre-

sentation mgy. A lack of bijectivity in the mapping between internal and external
representations directly leads to a loss of information during the mapping.

62 CHAPTER 3. ANALYSIS

context-free

recursive enumerable

Figure 3.5: Containment of grammar classes, based on Chomsky [Cho59].

REQUIREMENT 3.5.5: The mapping function f,.q defines a bijective mapping
between the sets ER, and IR) as one-to-one correspondence between both sets.

For approaches on data format description, the question is whether or not it is pos-
sible to guarantee the satisfaction of aforementioned requirements. Satisfying Re-
quirements B.5.11to B.5.4l relates to issues of computability, decidability and tractabil-
ity concerning the validation functions v, vq and concerning the mapping function
fy~a including its inverse f7!,. Likewise, Requirements 3.5.2 B.5.4 and B.5.5 lead
to the question of one-to-one correspondence between sets of external and internal
representations ER; and IR).

3.5.2 Computability and decidability of functions

Specifying a data format defines a normative set of external representations ER,
including the external validation function vy. The set can be considered a formal
language L, where in accordance to Requirement 3.5.3] there exists an automaton M
that accepts or rejects every input, and terminates, thus deciding L. If an automaton
M accepts L, without making any other statement on other inputs, it is recognising
L.

Using established results from formal languages [HU79, [Sip97, ICho59], it has to
be shown which class of formal language can be used to model external representa-
tions of a data format, and whether it is possible to construct an automaton that
decides membership in a language of that class:

e If L is a context-sensitive language, then there exists a linear-bounded automaton
(LBA) M as minimal automaton which recognises and decides L.

e If L is a recursive language, then there exists a Turing Machine (TM) M as
minimal automaton which recognises and decides L.

e If L is a recursively enumerable language, then there exists a TM M as minimal
automaton which recognises L, but does not necessarily decide it.

3.5. LIMITS TO DATA FORMAT DESCRIPTION 63

e If L is a recursively enumerable, but not recursive language, then there exists no
TM M as minimal automaton which both recognises and decides L.

Since there shall be an automaton M which decides the language L, L has to be
at most recursive to satisfy Requirement B.5.3] so an automaton M can exist which
terminates. Yet, not every automaton terminates, which is required for deciding a
language:

e If M is a TM, deciding whether M accepts a given input and terminates is the
so-called Accepting Problem Ary (Eq. BI2), also known to be the undecidable
Halting Problem. Undecidability of Ary, also precludes the existance of a class
of automata which recognise and decide exactly the set of all recursive languages.
If M is a TM, it can thus recognise and maybe decide recursively enumerable
languages.

Aryr = {(M,w)| M is a TM and accepts w} (3.12)

e If M is a LBA, then deciding whether M accepts a given input and terminates is
the Accepting Problem A;pa (Eq. BI3) known to be decidable [Sip97|. In this
case, M can recognise and decide at most context-sensitive languages.

Arpga = {{(M,w)| M is a LBA and accepts w} (3.13)

So for deciding whether a given automaton M actually accepts a given input and
terminates, L has to be at most context-sensitive. Since context-sensitive languages
are a subset of the recursive languages as shown in the Chomsky containment hier-
archy of formal language classes depicted in Figure 3.5, the use of context-sensitive
languages would guarantee the existance of a terminating automaton M.

The remaining question to be answered is which class of language has to be sup-
ported for modelling the set of external representations for arbitrary data formats:

e Assuming a data format defining a context-sensitive language L for its external
representations, there exists an LBA M that decides L, and it is possible to decide
whether M terminates for a given input.

e Assuming a data format defining a recursive, but not context-sensitive language
L for its external representations, there exists a TM M that recognises L, but not
necessarily decides it. Moreover, it is not possible to decide whether M accepts a
given input and terminates.

This question can thus be answered by successfully constructing at least one data
format that defines a recursive but not context-sensitive language L for its external
representations ER,.

THEOREM 3.5.1: There exists at least one data format d which specifies a set
of external representations ERy which corresponds to a recursive, but not context-
sensitive language.

Proof. Assume a data format which serves for transmitting a long bit sequence in a
message between sender and receiver. Whether or not a long bit sequence is valid
in a message is decided by a separate function z shared by sender and receiver. The

64 CHAPTER 3. ANALYSIS

data format defines a set of external representations, where a valid bit sequence is
compressed using an Fzxponential Golomb run-length compression scheme. In this
scheme, a so-called run of 2" consecutive bits all set to either 0 or 1 is represented
through the run length n encoded using the Exponential Golomb integer encoding
with a bit length of 2 x loga(n), consisting of two-bit pairs where the first bit states
whether another pair follows, and where the second bit is part of the bit sequence
which encodes n. Such a run length is followed by the bit value of the run, either 0
or 1.

The set of external representations forms a language L, for which to decide
membership, an automaton M has to decompress the bit sequence prior to deciding
its validity through z. Assuming this to be a context-sensitive language, there exists
a LBA as automaton M which is also capable of decompressing the Exponential
Golomb run-length encoding. As a LBA has only a limited amount of tape for
processing, M has a linear upper bound o x p for processing compressed inputs
of length p. For any o given, there exists a compressed bit sequence with length
p =2 x logz(n) consisting of a single run with a decompressed length 2" > 0 x p to
exceed its linear upper bound, so an LBA cannot decompress it and apply z for
validation. A LBA is not capable of computing a decompression transformation
where the length of the output is not strictly bounded by a linear function of the
input length. O

In this light, it might be tempting to require the definition of an upper bound n
for a given data format d as the maximum length of bit sequences for its external
representations ER, to enable the use of LBAs, seemingly sufficient for data formats
in practice. Yet, existing data formats used for multimedia streaming are good
examples which do not have such an upper bound n, such as the MPEG-2 Transport
Stream [ISO00]| data format used for Digital Video Broadcasting over satellite (DVB-
S), cable (DVB-C) or terrestrial radio (DVB-T).

Relating this theoretical result to practice, an Exponential Golomb run-length
compression scheme, similar to the one used in the previous Proof [3.5.2] has been
proposed for the compression of scan test data in system-on-a-chip (SOC) designs
in literature [LC04|, effectively to be used in a data format. As a consequence, one
can either:

e choose LBA as type of automaton, where it can be decided whether an LBA
terminates as required, but which fails to model languages that represent external
representations of valid data formats, or

e choose TM as type of automaton, which can model all languages that represent
external representations of valid data formats, but where it cannot be decided
whether the TM terminates as required.

In general, describing arbitrary data formats requires a computational device with
sufficient computational power to include the set of recursive languages. Due to the
Halting Problem, such a device necessarily includes the set of recursively enumerable
languages and thus is too powerful to guarantee decidability.

COROLLARY 3.5.1: Considering data formats in general, decidability of external
validation functions vg cannot be guaranteed.

3.5. LIMITS TO DATA FORMAT DESCRIPTION 65

In practice, computational devices have limited resources such as memory at
their disposal, so these are effectively closer to being a LBA rather than a TM. For
a data format d which defines a set of external representations ER, that corresponds
to a recursive, but not context-sensitive language, any implementation in practice
can only handle a subset of format-compliant external representations which fits
within its restricted computational resources.

3.5.3 Tractability of functions

Assuming validation and mapping functions to be computable and decidable, it
remains to be seen whether the tractability of a mapping function and its inverse
are related, or whether these functions are necessarily tractable at all. A problem is
tractable if it is efficiently solvable in polynomial time by a deterministic TM, and
intractable otherwise.

THEOREM 3.5.2: For a data format d, neither are mapping functions and their
tnverses necessarily tractable, nor is their tractability related.

Proof. Actual proof is given by a publication on inherently reversible grammars
[IDym91]. The author states that every formal grammar G has six computational
problems termed p-acceptance, p-enumeration, g-acceptance, g-enumeration, bi-acceptance
and bi-enumeration. For a given grammar G and a word w, the p- and g-acceptance
problems relate to deciding whether w can be parsed or generated, while p- and
g-enumeration relates to enumerating the ways this can be done. The remaining
bi-acceptance and bi-enumeration problems relate to deciding whether a word w
conforms to a certain parse tree, and enumerating all corresponding pairs of words
and parse trees.

Using this classification, the publication shows that finite p-enumeration does not
entail finite g-enumeration and vice versa, by giving two examples based on Hilbert’s
tenth problem and the undecidability of first-order logic, where either g-acceptation
or p-acceptation is not decidable. The results are extended towards tractability,
where a tractable g-enumeration does not entail a tractable p-acceptation and vice
versa. Examples given relate to number products in public key cryptography and
NP-complete problems. O

As a consequence, bijective mapping functions and their inverses are not neces-
sarily tractable, nor is their tractability related.

3.5.4 One-to-one correspondence of sets

For a data format d, its set of external representations ER; may be infinite. Due
to Requirement on the one-to-one correspondence of internal and external
representations, a sender or receiver v thus has its set of internal representations
IR} which may be infinite as well.

The questions to be answered are whether one-to-one correspondence between
ER, and IR} can be tested, or whether it can be guaranteed by construction.

THEOREM 3.5.3: Testing one-to-one correspondence between infinite sets ER; and
IR} as defined by a given function f,.q is undecidable.

66 CHAPTER 3. ANALYSIS

Proof. Assume a TM M., that decides whether f;_l)d is injective, and a TM M, 4
that decides whether f,_4 is injective. If both TMs accept their respective mapping
function, then there exists a one-to-one correspondence between ER,; and IR which
satisfies Requirement 3.5.5]

Further assume that for every element my € ERy, the TM M., computes m, =
f524(mq) and compares m., to all computed elements. If there exists m/ = 71 ,(m})
with m, = m/, then the TM decides the problem by rejecting it. In that case, m,
maps to both mg and m/,, which violates injectivity, and thus one-to-one correspon-
dence.

In case of a finite set ER,, Mg is decidable, as it eventually tests all elements
of the set. In case of a countably infinite set, the TM is only semi-decidable, as it
only terminates when rejecting the mapping function, yet loops otherwise.

The situation is analogous for its twin M,_4, and for infinite sets ER, and IR},
both TMs only terminate in case of a non-bijective function f,_4, otherwise looping
forever. Thus, the problem of testing one-to-one correspondence between infinite
sets is undecidable. O

COROLLARY 3.5.2: Testing one-to-one correspondence as defined by a given map-
ping function f,.q between finite subsets of IR} and ER, is decidable.

As it is not possible to test arbitrary functions whether they provide for a bi-
jective mapping between potentially infinite sets ERy, IR}, the question remains
whether bijectivity of a mapping function can be guaranteed by construction.

THEOREM 3.5.4: Guaranteeing one-to-one correspondence between infinite sets
ERy and IR} by construction of a function f,.q is decidable.

Proof. Assume a so-called Reversible Turing Machine (RTM) M for computing a
bijective mapping between ER,; and IR}. By definition, its transition function o
is required to be injective for determinism of M, and is required to be surjective
for reversibility of M. As o is composed from a finite set of transition formulas,
injectivity and surjectivity of transition formulas and thus of ¢ can be decided.
Informally speaking, bijectivity of transition formulas forces an RTM to retain all
information during computations.

So one-to-one correspondence of sets can be guaranteed by constructing a bi-
jective mapping function using an RTM, but its computational power may still be
in doubt. Although reversibility of computational devices was initially believed to
restrict their computational power [Lan61], it has been shown twice independently
that a Reversible Turing Machine is Turing-complete and therefore capable of han-
dling arbitrary computable bijective mapping functions |[Lec63, BenT73|. O

These results can be translated back to the domain of data format description.
By constructing encodings and mapping steps as RT'Ms and thus guaranteeing their
bijectivity, it is possible to construct bijective mappings between sets of external and
internal representations ER,; and IR} which are guaranteed to retain information.
Yet, due to being Turing-complete, RTMs still cannot be decided to terminate.

Implementing such a bijective mapping in practice would lead to “uniformity of
implementation” regarding parsing and generation [Dym91], and thus be a desirable

3.6. DISCUSSION 67

property in itself. Actually developing such bijective mapping functions using high-
level reversible programming languages is a non-trivial task which is not the subject
of this thesis. Due to numerous contributions to the research domain of Reversible
Computing, there exist reversible programming languages like Janus [YG07| and R
|[Erad7|, as well as the reversible computer architecture Pendulum [Vie93)|.

3.5.5 Summary

Satisfying the Requirements 3.5.1] to 3.5.3 is only partially within the hands of an
approach to data format description, due to limits rooted in formal languages:

e It is not possible to both have a sufficiently expressive model capable of expressing
external representations from arbitrary data formats and still guarantee the ter-
mination of validation functions. Any sufficiently expressive approach to describe
arbitrary data formats has to resort to heuristics in order to decide whether a
validation function will terminate, possibly using limitations of the physical com-
putational device itself, such as limited memory resources.

e Tractability of mapping functions and their inverses is not given, nor is tractability
of a mapping function and its inverse necessarily related, as can be seen from the
existence of “trapdoor” functions in cryptography. A practical example of such a
“trapdoor” function is the computation of the product of two large prime numbers,
which can be computed efficiently. Its inverse corresponds to the yet-as-unsolved
problem of factorising large integer numbers efficiently, which serves as a basis for
widespread cryptographic approaches such as RSA.

e Yet, one-to-one correspondence between internal and external representations can
be guaranteed by construction of Turing-complete RTMs which are information-
preserving, leading to future research regarding the application of reversible pro-
gramming languages in implementing encodings and transformations for data for-
mat descriptions.

3.6 Discussion

The formalization presented in this chapter provides a foundation for defining a
new approach on describing data formats that directly uses the identified elemental
descriptive capabilities of decoding, segmentation, transforming and concatenation.
Still notable is the need for a canonical internal representation in order to define a
data format.

e Need for a canonical internal representation: As can be learned from the
formalization, the same external representation my may be represented internally
as m. in substantially different ways, depending on the sender or receiver -.
Since one-to-one correspondence can be provided through RTMs, the number
of corresponding internal representations is only limited by the number of total
RTMs, leading to the need of a canonical internal representation. The constraint
of bijectivity between an external representation and its corresponding internal

68 CHAPTER 3. ANALYSIS

representation does not reduce the number of potential internal representations
for a given external representation.

Rather than covering the complexity of mapping between arbitrary internal and
external representations with an infinite amount of variations for a given data
format, it is more feasible to introduce a canonical internal representation. This
is without loss of generality, as arbitrary internal representations can still be ob-
tained through a separate stage of bijective mapping, for example for representing
the same information at a different granularity, yet it enables the definition of a
model for such a canonical internal representation.

3.7 Summary

This analysis has introduced the research hypothesis[3.2.1], which states that the cur-
rent State of the Art regarding data format description can be improved by assum-
ing a data format to define a normative set of lossless information representations.
According to the hypothesis, the mapping between internal and external represen-
tations is information-preserving, thus bijective and therefore lossless. Building on
the research hypothesis, the resulting formalisation leads to the notion of a causality
graph for describing the composition of data.

Four important properties of the formalisation were explored, of which the first
three are the suitability of bijective mapping functions for data formats, the suffi-
ciency for lossless and lossy data formats, as well as the sufficiency and necessity
of its descriptive capabilities for handling primitive, structured, transcoded and
fragmented data. This establishes the four elementary descriptive capabilities of
decoding primitive data, segmenting structured data, transforming transcoded data
and concatenating fragmented data, which exactly match the descriptive capabili-
ties that were considered during the survey of current State of the Art. Last but
not least, the remaining property that was explored is a “litmus test” for data for-
mat description approaches, which is a specific PNG raster image that requires the
support of all four elemental descriptive capabilities from a data format description
approach.

Using the formalisation to explore the limits to data format description, all ap-
proaches are limited by established theoretical restrictions from formal languages
and computational theory to provide support for arbitrary data formats, yet guar-
antee the satisfaction of basic requirements.

From the comparison of approaches from related work in Chapter 2] effectively
based on the elementary descriptive capabilities, only XCEL comes close to being
universally applicable, yet it still lacks support for bit granularity and full support for
the concatenation of fragmented data with full control over fragment ordering. The
majority of other examined approaches fails to support transcoded or fragmented
data at all.

The formalisation presented in this analysis contributes a solid foundation for
universal applicability, and thereby paves the way for a model for formally describ-
ing data format instances in the upcoming Chapter M, which addresses the need
for a canonical internal representation that was discussed previously. In turn, this
upcoming model enables a model for formally describing data formats in a declara-

3.7. SUMMARY 69

tive manner in Chapter B, which is formally robust and conceptually simpler than
XCEL.

Chapter 4

Describing Data Format Instances

4.1 Introduction

In the previous Chapter3] a formalised abstraction of data format instances and data
formats was presented and subjected to an analysis regarding its inherent properties,
which affects data format description and its applications. The presented abstraction
of data format instances consists of a causality graph rooted in the original bitstream
and where contained information corresponds to primitive values as its leaves. The
abstraction is a suitable basis for a model of describing data format instances to be
used in manual and automated settings.

This chapter presents the Bitstream Segment Graph (BSG) model and addresses

the following aspects:

Definition of the BSG model: Besides the definition of the BSG model in Sec-
tion A.2] this also addresses means of incremental construction and modification
of BSG instances.

Representation of BSG instances: Both a visual representation and a storage
representation based on the Resource Description Framework (RDF) are given in

Section (.31

Construction and modification of BSG instances: For incremental con-
struction and modification of BSG instances, a closed set of operations is pre-
sented in Section 4l Based on these operations, the Apeiron BSG Editor offers
tool support for constructing, modifying and exploring BSG instances on arbitrary
data.

Applications of the BSG model: Section demonstrates the description
of the PNG image “litmus test” from Chapter B which exercises all elemental
descriptive capabilities. Furthermore, the section gives an application of BSG
models for describing exploits from I'T Security, which is presented in detail.

71

72 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES

4.2 Definition of the Bitstream Segment Graph model

As per Definition [3.3.15] a data format instance is a causality graph composed from
transformations, with encodings defined for its leaf nodes. In combination with
Definition B.3.14l arbitrary causality graphs can be composed from the mapping
steps of segmentation, transformation and concatenation.

4.2.1 Defining codings and transformations

Referring to coding and transforming as elemental descriptive capability for which
the actual mapping has to be defined in “executable” terms, the following definitions
are introduced:

DEFINITION 4.2.1 (BITSTREAM CODING FUNCTION): A bitstream Coding func-
tion is a bijective mapping function between a domain-specific value and its cor-
responding bit sequence. It can be uniquely identified and may have additional
parameters.

DEFINITION 4.2.2 (BITSTREAM CODING): A bitstream Coding represents a bijec-
tive mapping between a domain-specific value and its bit sequence in a bitstream
segment, using a bitstream coding function. It identifies the used bitstream coding
function and its parameters, if any.

ExAMPLE 4.2.1: Let x € N be the width of an image in pixels. If x is to be
represented as bit sequence in a least-significant bit first unsigned integer encoding,
then a corresponding bitstream coding function f is required.

A bit sequence can represent an encoded typed value that is part of the infor-
mation stored in a message such as a file or a protocol data unit (PDU), a message
exchanged in a network protocol. For example, there are two bit sequences contained
within a PNG raster image file which contain encoded integer values that represent
the width and height of the image.

DEFINITION 4.2.3 (BITSTREAM TRANSFORMATION FUNCTION): A bitstream trans-
formation function is a bijective mapping function between two bit sequences as in-
put and output. It can be uniquely identified and may have additional parameters.

DEFINITION 4.2.4 (BITSTREAM TRANSFORMATION): A bitstream transformation
represents a bijective mapping between two bit sequences as input and output, as
produced by a bitstream transformation function. It identifies the used bitstream
transformation function and its parameters, if any.

EXAMPLE 4.2.2: Let a finite bit sequence a represent a data structure that is
encrypted using the RC4 stream cipher with a secret key k. Prior to segmenting
the structure, decrypting the bit sequence is required, which is a bitstream block
transformation. It requires a corresponding function which implements the RC4
stream cipher and uses the secret key k as parameter.

EXAMPLE 4.2.3: The bit-wise inversion of a finite bit sequence requires a bitstream
transformation function as block transformation and uses no parameters.

4.2. DEFINITION OF THE BITSTREAM SEGMENT GRAPH MODEL 73

Both functions for bitstream coding and bitstream transformation can be defined
through Reversible Turing Machines (RTM) and referred to by a unique identifier
per RTM. It is not within the scope of the BSG model to execute arbitrary bitstream
codings and transformation functions itself.

4.2.2 Defining bitstream segments

DEFINITION 4.2.5 (BITSTREAM SEGMENT): A bitstream segment represents a
finite bit sequence.

DEFINITION 4.2.6 (BITSTREAM SOURCE): A bitstream source is a bitstream seg-
ment whose bit sequence represents a digital item which is composed according to
a data format, and which is to be described.

ExXAMPLE 4.2.4: Examples for octet-aligned bitstream sources are files, network
packets or file systems on a storage medium.

Both codings and mapping steps define the structural meaning of bitstream
segments as nodes in the causality graph. They give rise to structural types of
bitstream segments.

DEFINITION 4.2.7 (BITSTREAM SEGMENT TYPE): A bitstream segment type de-
fines the structural purpose of a bitstream segment. Every bitstream segment be-
longs to exactly one of 6 bitstream segment types, which is either a structure, a
transcode, a fragment, a composite, a primitive or a generic:

e A structure bitstream segment is input to a segmentation, which separates the bit
sequence into two or more elements.

e A transcode bitstream segment is input to a bitstream transformation function,
which transcodes the bit sequence into another one.

e A fragment bitstream segment is input to a concatenation, which concatenates
the bit sequences with that of other fragments.

e A composite bitstream segment is output of a concatenation, and is the concate-
nation of bit sequences from two or more fragment bitstream segments.

e A primitive bitstream segment is input to a bitstream coding function, which
results in a typed primitive value.

e A generic bitstream segment is neither input to a mapping step nor to an encoding.
Extending the set of types previously shown in Chapter [3.4.3] this type is required
for incremental description of a data format instance, and in case of incomplete
data format knowledge, it acts as a temporary placeholder.

4.2.3 Defining a Bitstream Segment Graph

Maintaining exactly one bitstream segment type for every bitstream segment would
fail for a bitstream segment, which is simultaneously a composite and another “down-
ward” type, such as when concatenated fragments of data are further transformed.
This issue is resolved through maintaining normalisation of BSG instances.

74 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES

0 16

structure
a

0 8/ k 16

primitive primitive

b c

Figure 4.1: Representation of bitstream segments in the simple variant, showing a
structure bitstream segment a containing two primitive bitstream segments b and c.

DEFINITION 4.2.8 (NORMALISATION): In a normalised causality graph, every
composite bitstream segment has a single successor bitstream segment which is
assignated the “downward” type (other than composite) as required to designate its
structural type.

DEFINITION 4.2.9 (BITSTREAM SEGMENT GRAPH): A bitstream segment graph
(BSG) is a normalised causality graph composed from bitstream segments.

4.3 Representation of BSG instances

For BSG instances, some means for their representation is required, both for repre-
senting them wvisually for use in print and for representing them digitally for use in
applications such as editors.

4.3.1 Visual representations

Depending on the requirements of visual representations of whole BSG instances as
well as bitstream segments, one of three variants for visual representations (simple,
extended and interactive) can be used. While simple and extended visual repre-
sentations are for use in print, the interactive visual representation is for use in
applications.

Simple visual representation

In this variant, segments are depicted as boxes, and the relations of 'predecessorship’
and ’successorship’ are depicted by directed arrows from predecessors to successors.
Actual placement of segments in the bitstream segment is given relative to a pre-
decessor, or zero-based for a root bitstream segment. For a segment, inclusive start
and exclusive end bit positions are shown above the upper left and right corners,
respectively. The bitstream segment type is given in the upper half of the box, while
an identifier for the actual segment is located in the lower half. An example of this
variant for visual representation is shown in Figure .11

4.3. REPRESENTATION OF BSG INSTANCES 75

start| end
start | end |
role
type
- parameter
id :
id

Figure 4.2: Representation of bitstream segments in the extended variant, showing
templates for generic, structure and composite bitstream segments (left) and for
fragment, primitive and transcode bitstream segments (right)

generic primitive structure
transcode fragment composite

Figure 4.3: Representation of bitstream segments in the interactive variant, showing
symbols for all bitstream segment types.

Extended visual representation

As an alternative to the simple variant, the extended visual representation provides
a more compact notation for showing BSG instances in print.

Segments are depicted as three-row boxes for generic, structure and composite
bitstream segments, and as four-row boxes for fragment, primitive and transcode
bitstream segments, as shown in Figure The additional row in the latter case
serves to provide additional information, such as an ordering index for fragments,
or references to bitstream coding and transformation functions. As with the simple
variant, placement of bitstream segment is relative to predecessors, with the inclusive
start position and exclusive end position shown in the upper left and right corners,
respectively.

Interactive visual representation

For showing a BSG instance in an interactive application, where properties of a
bitstream segment do not have to be shown all at once, but can be accessed in some
other means, a less complex visualisation can be used. In this representation variant,
bitstream segments are visualised as coloured shapes shown in Table [4.3]

76 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES

Prefix Description / namespace

rdf RDF namespace:
http://www.w3.0rg/1999/02/22-rdf -syntax-ns#

bsg Namespace for BSG-related RDF vocabulary:
http://dataformats.net/bsg/1.0/

bsge Example prefix for bitstream coding function identifiers

bsgt Example prefix for bitstream transformation function identifiers

png Example prefix for PNG format-specific semantics identifiers

Table 4.1: Namespace declarations.

4.3.2 Digital representation

In order to exchange information on the composition of binary data, a Bitstream
Segment Graph instance can be expressed through RDF /N3 using the RDF defined
in this subsection. In the following definitions and examples, RDF namespaces and
their prefixes are defined according to Table [Bl Using the BSG RDF vocabulary,
bitstream segments are represented as resources which belong to certain RDF classes
and have certain RDF properties:

e RDF Classes: Bitstream segments are distinguished in their type through RDF
classes. Every bitstream segment has a rdf:type of both bsg:segment and
the specific RDF class corresponding to its type as listed from Table [4.3], such
as bsg:primitive. A root bitstream segment additionally has a rdf:type of
bsg:source. It is worth noting that the normalised bitstream transformations
of segmentation, block transformation and concatenation from Definition B.3.14
correspond to the classes bsg:structure, bsg:transcode and bsg:composite,
respectively.

e RDF Properties: Depending on the RDF class, bitstream segments have specific
properties according to Table [£4l For placement, every bitstream segment has a
bsg:start, bsg:length and bsg:end property with integer values. These refer
to its exact placement within the bit sequence composed from its predecessor(s),
or within its defined bit sequence in case of a bitstream source. A root bitstream
segment always starts at 0. All three properties are measured in bits, whereas the
start position is included and the end position excluded.

Regarding their composition, every bitstream segment besides the bitstream source
has an ordered list of one or more bsg:predecessor properties, and every bit-
stream segment besides bsg:generic or bsg:primitive segments has an ordered
list of one or more bsg:successor properties. Class-specific restrictions listed in
Table[4.4lapply which correspond to the underlying BSG model. Only a bitstream
source may have the bsg:source property set.

The meaning of a bitstream segment can be assigned through zero or more
bsg:semantics properties. For example, this could refer to PNG Signature se-
mantics using png:signature as value. For bsg:primitive and bsg:transcode

4.4. CONSTRUCTION AND MODIFICATION OF BSG INSTANCES 7

Used in coding? Used in transformation? Type rdf:type

no no (as input) Generic bsg:generic

yes no (as input) Primitive bsg:primitive

no segmentation (as input) Structure bsg:structure

no transformation (as input) Transcode bsg:transcode

no concatenation (as input) Fragment bsg:fragment

no concatenation (as output) Composite bsg:composite

Table 4.2: Bitstream segment types.

rdf:class Description

bsg:source Class for bitstream sources

bsg:segment Abstract base class for bitstream segments

bsg:generic Class for bitstream segments where the purpose is undefined

bsg:primitive Class for bitstream segments representing an encoded literal

bsg:structure Class for bitstream segments composed from two or more bit-
stream segments with separate, distinct meanings

bsg:transcode Class for bitstream segments representing a transcoded bit
sequence

bsg:fragment Class for bitstream segments representing a fragment of a
larger bit sequence with a uniform meaning

bsg:composite Class for bitstream segments representing a bit sequence with

a uniform meaning aggregated from two or more fragments

Table 4.3: RDF classes for bitstream segments.

bitstream segments, the identification of the actual bitstream coding or transfor-
mation function used is given through the bsg:encoding and bsg:codec prop-
erties, respectively. For example, this could include a most significant bit first
unsigned integer encoding bsge:msbf-uint or a gzip transformation bsgt:gzip.
The definition of concrete identifiers for semantics, encodings and codecs strongly
depends on the data format to be described and thus is out of scope for this thesis.

4.4 Construction and modification of BSG instances

A

trivial BSG instance can be created by defining a single generic bitstream segment,

which is a bitstream source representing the bit sequence to be described. Through
further modification of the BSG instance, the description can be improved step-by-
step.

78 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES
Class Property Cardinality Description
bsg:source bsg:href 1..1 Reference to a bitstream
source
bsg:segment bsg:start 1..1 Start position in bits (inclu-
sive)
bsg:length 1.1 Length in bits
bsg:end 1.1 End position in bits (exclu-
sive)
bsg:semantics 0..n Identifier for format-specific
semantics
bsg:predecessor 0..n Ordered list of predecessors
(input)
bsg:successor 0..n Ordered list of successors
(output)
bsg:generic bsg:predecessor (..1 Restriction: Generics have
at most one predecessor
bsg:successor 0..0 Restriction: Generics do not
have successors
bsg:primitive bsg:encoding 1..1 Identifier for the bitstream
coding function used
bsg:predecessor (..1 Restriction: Primitives have
at most one predecessor
bsg:successor 0..0 Restriction: Primitives do
not have successors
bsg:structure bsg:predecessor (..1 Restriction: Structures have
at most one predecessor
bsg:successor 2..n Restriction: Structures have
at least two successors
bsg:transcode bsg:codec 1..1 Identifier for the bitstream
transformation function used
bsg:predecessor (..1 Restriction: Transcodes have
at most one predecessor
bsg:successor 1..1 Restriction: Transcodes have
exactly one successor
bsg:fragment bsg:predecessor 1..1 Restriction: Fragments have
exactly one predecessor
bsg:successor 1..1 Restriction: Fragments have
exactly one successor
bsg:composite bsg:predecessor Z2..n Restriction: Composites
have at least two predeces-
sors
bsg:successor 1..1 Restriction: Composites

have exactly one successor

Table 4.4: RDF properties for bitstream segments.

4.4. CONSTRUCTION AND MODIFICATION OF BSG INSTANCES 79

— initial _split(b,n) —

.......... R R
a a :
J l k J ‘ k
generic structure
b b
m / \n« p
generic generic
T Yy

r final _join(b,n) |

Figure 4.4: Graph grammar rule for initial split/final join operations

4.4.1 Modifying BSG instances through operations

To modify a BSG instance, for example when constructing a BSG instance incre-
mentally, a notion of operation is required.

DEFINITION 4.4.1 (OPERATION): An operation o transforms a valid BSG instance
into another valid BSG instance. For every operation o, there exists an inverse
operation o~! which undoes the effect of o.

This thesis defines a number of operations listed with their inverses for incre-
mental construction of BSG instances, namely initial split / final_join, split /
join, tie / untie, declare primitive / undeclare_ primitive, declare_ fragment / un-
declare_fragment, compose / decompose and expand / compress.

In order to visualise these operations, they are shown as graph grammar rules
using the simple visual representation previously defined in Section[4£.3.1l In addition
to their textual descriptions below, these operations are visualised accordingly in
Figures to 10, and detailed with examples using the PNG raster image file
format test case which served as “litmus test” in Chapter Bt

e initial split, final join: Given a generic bitstream segment x, the operation
creates two separate, neighbouring generic bitstream segments y,z by splitting
the bit sequence of x in two at bit position p. It then changes x to a structure
bitstream segment and adds y, z as successors of x, as shown in Figure 1.4l

EXAMPLE 4.4.1: Let x be a generic bitstream segment which contains a valid
PNG image. Applying the initial split operation on x at bit position 64 results
in a structure bitstream segment x with two successors, a bitstream segment y
containing the PNG signature and a bitstream segment z containing three or more
PNG chunks for a valid PNG image.

80 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES
| split(a,n) 1
J k J k
structure structure
a a
m p m / X D
generic . generic generic
x Y z
t join(a,n) |
Figure 4.5: Graph grammar rule for split/join operations
e split, join: Given a generic bitstream segment = as a successor of a structure

bitstream segment y, the operation splits x at bit position p into two separate
generic bitstream segments xq,x9, and replaces x with x1, x5 as successors of y
in-place, as shown in Figure [£.5]

EXAMPLE 4.4.2: Let x be the structure bitstream segment from Example [4.4.1]
partially describing a valid PNG image, and let z be the second successor of
x. Applying the split operation on z at bit position 200 results in a structure
bitstream segment x with three successors, namely a generic bitstream segment
y containing the PNG signature, a generic bitstream segment z; containing the
IHDR chunk data structure, and a generic bitstream segment z, containing two
or more PNG chunks. The bitstream segments z; and z5 are on the same level as
y, as opposed to the result of an initial split operation.

tie, untie: Given a structure bitstream segment x and a continuous subset of its
successors as bitstream segments ay, ..., a, as neighbours, the operation replaces
the successors ag, . .., a, with a structure bitstream segment b and adds ao, ..., a,
as only successors of b, as shown in Figure

EXAMPLE 4.4.3: Let ag, a1, as and ag be separate generic bitstream segments
that have been the result of segmenting parts of a PNG image, but which have
previously not been considered to form an THDR chunk data structure. Through
the tie operation, ay to az remain generic bitstream segments, but are grouped
under a structure bitstream segment b as successors that represent the THDR
chunk.

declare primitive, undeclare primitive: Given a generic bitstream segment
x and a reference to a bitstream coding function f, the operation replaces x with
a primitive bitstream segment ¥, as shown in Figure

EXAMPLE 4.4.4: Let x be the generic bitstream segment contained in the [HDR,
data structure from the previous Example [£.4.3] which contains the width of the

4.4. CONSTRUCTION AND MODIFICATION OF BSG INSTANCES 81

q

O ¢
 structure
: x
i AN
*
Qo

%
Qg

O ¢
- structure
: x
J l q
structure
b
/u ‘ }« w
*
G,

[untie(ay,. . . ,a,) —

Figure 4.6: Graph grammar rule for tie/untie operations

— declare primitive(a, f) —

J k
generic
a

J k
primitive
a

L undeclare primitive(a, f) Q

Figure 4.7: Graph grammar rule for declare primitive/undeclare primitive opera-

tions

82

CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES

— declare fragment(a) —

J k J k
generic fragment
a a

t undeclare fragment(a) |

Figure 4.8: Graph grammar rule for declare fragment/undeclare fragment opera-
tions

PNG raster image in pixels. Through the declare primitive operation on x and
refering to a bitstream coding function for the most-significant-bit-first integer
encoding, the bit sequence of x becomes the representation of an integer.

declare fragment, undeclare fragment: Given a generic bitstream segment
x, the operation replaces z with a fragment bitstream segment y, as shown in
Figure 4.8

EXAMPLE 4.4.5: Let ag and a; be two generic bitstream segments that represent
the payloads of two separate IDAT chunks, which have been segmented previously.
Both payloads represent fragmented image data, and as the fragments are not
located next to each other, the segments need to be concatenated for further
analysis. Applying the declare fragment operation on both segments converts
them to fragment bitstream segments that are ready for later concatenation.

compose, decompose: Given an ordered set of fragment bitstream segments X,
the operation concatenates all bitstream segments in X in the given order to form
a composite bitstream segment y, adding y as successor to all bitstream segments
in X. Furthermore, a generic bitstream segment z is added as sole successor to
y, which allows further operations to be executed on z. The operation itself is
shown in Figure (4.9

EXAMPLE 4.4.6: Let ap and a; be the fragment bitstream segments resulting
from the previous example Applying the compose operation to the ordered
set (ap,a;) produces the composite bitstream segment b, followed by a single
generic bitstream segment x. This generic bitstream segment carries PNG im-
age data that is still compressed and transformed, and thus subject to further
operations.

expand, compress: Given a generic bitstream segment x and a reference to a
bitstream transformation function f, the operation replaces x with a transcode
bitstream segment y and adds a generic bitstream segment z as its sole successor
with a transformed bit sequence, as shown in Figure The generic bitstream
segment z contains the transcoded bit sequence of .

4.4. CONSTRUCTION AND MODIFICATION OF BSG INSTANCES 83

Ii compose(ag,. . . ,ay) —‘l‘

J k p q J k p q
fragment L fragment fragment L fragment
Qo Qn, ao G,

NI
composite
b
0o |
generic
x

L decompose(ag,. . . ,a,) Q

Figure 4.9: Graph grammar rule for compose/decompose operations

T expand(a, f) —

J k J k
generic transcode
a a
0 ‘ m
generic
x

t compress(a, f) |

Figure 4.10: Graph grammar rule for expand/compress operations

84 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES

EXAMPLE 4.4.7: Let a be the generic bitstream segment resulting from the
compose operation in the previous Example [£.4.6. Applying an expand oper-
ation using a reference to the bitstream transformation function for the GZIP
block transformation turns a into a transcode bitstream segment, with a generic
bitstream segment x as its sole successor that contains data that still has to be
scanline-transformed in order to access actual pixels of the raster image.

Since the expand / compress operations are the only ones where the mapping
between input and output bitstream segments may result in an increase or decrease
of their actual total length, the names for both operations have been chosen
deliberately in relation to compression, where changes in total length are actually
desired. The use of the expand / compress terminology allows to uniquely identify
both directions of mapping, yet a bitstream transformation function f used in
expand / compress operations is neither required to be a compression-related
transformation, nor to change the length of the bitstream segment at all. An
example bitstream transformation function that does not change the length of
bitstream segments would be a function performing bit-wise negation.

Using operations, a BSG instance can be constructed in a divide and conquer strat-
egy. While they provide means for all four elemental descriptive capabilities, other
combined operations could be envisioned that may further simplify manipulation
of BSG instances. An example would be a pushdown / pullup operation, which
would allow to “push” a bitstream segment a, which either leads or follows a struc-
ture bitstream segment b, “down” into the structure b as its first or last successor,
respectively, as well as the inverse operation.

EXAMPLE 4.4.8: Let ag, a1, a; and az be bitstream segments which represent the
length, the type, the payload and the CRC of a PNG chunk in that order. Let b
be a structure bitstream segment which ties ag, a; and as as its successors, and let
b be followed by asz as the result of a user error during annotation, who forgot to
tie ag as well. In order to turn the structure bitstream segment b into a valid PNG
chunk structure, some change is necessary. Rather than reversing the previous tie
operation and repeating it correctly on ag, a;, as and asz, “pushing down” ag into b
leads to the same result and corrects the erroneous annotation.

While a pushdown / pullup operation would simplify that specific case, it is
possible to handle that case with the existing operations by untying b and again
tying all previous successors of b plus / minus a again.

4.4.2 Measuring completeness of a description

Constructing a complete BSG instance from a generic segment representing the
external representation to be described brings along the issue of measuring the com-
pleteness of its description.

DEFINITION 4.4.2 (COVERAGE): The coverage of a bitstream segment is a mea-
sure between 0.0 and 1.0 which refers to the degree in which the segment and its
successors describe its bit sequence through primitive values. A generic bitstream
segment has a coverage of 0.0, while a primitive bitstream segment has a coverage

4.5. APPLICATIONS OF THE BSG MODEL 85

of 1.0. The coverage of other types of bitstream segments is computed from the cov-
erage of its successors and the percentage of their size with respect to all successors.
The coverage of a BSG instance refers to the coverage of its root node.

EXAMPLE 4.4.9: Let x be a structure bitstream segment with a length of 16 bits,
which contains two bitstream segments y, z as its successors. Both y and z have a
length of 8 bits, where y is a primitive with coverage 1.0 and z is a generic with
coverage 0.0. As a consequence, the coverage of x is 8/16 * 1.0 + 8/16 x 0.0 = 0.5.

Depending on the coverage of its root bitstream segment, a BSG instance is
either partial or complete:

e A BSG instance with a coverage of less than 1.0 is partial, as it still contains one
or more generic bitstream segments, for which no more specific structural type
has been assigned yet.

e A BSG instance with a coverage of 1.0 is complete, as it completely describes its
root bitstream segment in terms of primitive bitstream segments through a finite
number of bijective mapping steps.

4.4.3 Providing tool support with the Apeiron BSG Editor

The Apeiron BSG Editor shown in Figure uses the interactive visual represen-
tation (top left) with a hexdump representation (bottom) and a detailed property
view for selected bitstream segments (right) to enable manual construction and mod-
ification of BSG instances using operations, and to enable the measurement of its
descriptive completeness. Loading and saving BSG instances from and to files uses
the RDF /N3-based digital storage representation previously defined.

The editor has been implemented in Java and uses OSGi and Eclipse Equinox for
modularisation, so extending and modifying the editor, for example for an additional
pushdown / pullup operation, can be done through OSGi bundles. The graph-based
visualisation of BSG instances is based on the Prefuse visualisation library, and both
storage and modification of the in-memory RDF graph representation make use of
the Sesame and Elmo libraries. The implementation used for documenting these
results are based on the the master thesis of Marcus Stander, and on the diploma
thesis of Friedrich-Daniel Moller, who realised a precursor version.

4.5 Applications of the BSG model

Describing data format instances using the BSG model enables applications in sev-
eral domains, such as IT Security or Digital Preservation. In this thesis, two ap-
plications are given as examples, namely a description of the PNG raster image
“litmus test” and the documentation of two exploits in IT Security. Other potential
applications include reverse-engineering of legacy data formats for documentation
in Digital Preservation through data format registries.

86 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES

Apeiron - BSG-Editor

File Options Help

Visualization | Dietails |Selections:

D |9cf-Lefa-decd-0565-01 3e2473c250 |

Type i2009,!01f25-bsg-syntax-n5#primit\ve !

Start [15ee2en

End | 1620832

- Length |3
iso:Roof] St

Decoder if25-bsg-ext-ns#encuder:as:ii-str\ng

Cantent A

= = 7 "The comwandline is &
iso:FileDatal ~

< | >

Semantics liso:FileData
[
|

< [

| console | Data |

Base: |Hexadecimal % | Columns: |16 % Caledlatein: [Birs % | Jump to: = |

Offseb(Dy | 0 & | 16 24 32 40/ 48 56 64 T2 80 83 % 0 @ 16 24 32 40 48 S6 64 72 40 @8 %

i 22 |54 |68 |65 |20 |63 | 6f |6d |&6d 61 |6e |64 | 6C | 69 | Be | 6S e clofmi{mia|nfd|[l]i|n]|e ~
128 20 |69 | 73 |20 | 64 |65 |61 |64 | 2c |20 | 6c | 6F |68 [67 |20 | &e e dlelald], I [o|n]g I E
256 69 |76 |65 |20 | 74 |65 |65 |20 |63 | 6f |6d |6d |61 | 6e |64 | 6 i v e HERE clalm m|aln[d][]

54 63 ge |65 |21 |2z | 0d [0a |0d [0a 0d [0a (46 |72 |65 |65 |44 i n e[O T[T [[[Flrlelel®E

512 4F [53 |20 |51 [2e |30 |20 |46 | o0 [ee |61 [6c |20 | 44 |69 |73 R il le Eli[nlall olils

5400 74 |72 |69 (62 |75 [74 |68 | 6F |ve | 0d [0a |32 30 (30 |34 |2d t v i [BEJule[i=n], [[2lolal+]-

768 31 |31 |2d 33|30 |od |oa |od|oal70 (72 65 |70 61|72 |65 - le [Ielrlelela]r =

&9 64 [20 [61 6 |64 |20 |4 [69 |73 | 74 [72 |65 |62 | 75 | 74 | 69 d a|n|d d i [s e [r[i[B[ulE[e

1024 64 |20 |62 |79 | 20 |4a |65 |72 |65 | 6d |79 |20 | 44 |61 |76 |69 d by Jle|r[e|[m|¥ D& |v|i v

Filename File: fi: iDakument e 20und%: 20Einstellungen/Hartle/Deskbop/Besuch % 20R auber % 20in %200 ien/Demofiso/fdbasecd iso | # Predecessors 1 | # Successors 0

Figure 4.11: The Apeiron BSG Editor with a BSG instance for the FreeDOS Base
CD ISO image file, highlighting a bitstream segment containing the contents of a
text file.

4.5.1 Description of the PNG raster image “litmus test”

A suitable data format instance is the Portable Network Graphics (PNG) raster
image file “0i2n0g16.png”. The file consists of a structure starting with a signature,
followed by a number of so-called chunks. The signature is a primitive carrying a
fixed bit sequence for identifying the file as a PNG image. The chunks are again
structures consisting of a length identifier as primitive, a type identifier as primitive,
a type-dependent data segment and a CRC determinant as primitive. Depending on
the type, chunks carry different data, such as the image header in the “THDR” chunk,
or image data in one or more “IDAT” chunks. In the given example, the image data is
fragmented over two IDAT chunks, which needs to be composed first. The composed
data does not directly correspond to the actual image, but is a transcode that is
compressed using the GZIP algorithm. The uncompressed data is again a transcode
where pixel data is rearranged to improve the GZIP compression efficiency. The
reordered data then finally corresponds to the image data that represents the actual
pixels with their given colour.

For this example, the corresponding BSG instance is presented in Figure
The BSG instance contains structures, primitives, fragments, a composite and two
transcodes. It uses two block transformations for the GZIP compression and the

4.5. APPLICATIONS OF THE BSG MODEL 87

0143
bitructur
File
0 164 64 [264] [264]392 392].00 .00§.33 .33§.43
Ptructure Ptructuré Ptructur Btructur Ptructur Ptructur
Bignaturq ITHDR gAMA DAT #1 DAT #32 IEND

0 |32 32164 64 [576] [576]608 0]32 32164 64 [304] [304]336
Primitivg Primitive [ragment Primitive Primitive Primitive [ragment Primitiv
int byte[}] #1 byte[{] int byte[{] #2 byte[}]
Len #1| [Type #1 [Data #1| [CRC #1| |Len #2| [Type #2| [Data #2| [CRC #2|

0 [752

ompositle
omposite

0 752
'ranscod
zlib

Compressdd

016.640
'ranscod
PING Filtgr
Bcanlineq

016.38
Primaitiv
hort[32][42]
Pixels

@

Figure 4.12: Partial bitstream segment graph for file “0i2n0g16.png”, showing the
bijective mapping of two PNG IDAT chunks to a 16 bit grayscale image with a
resolution of 32 x 32 pixel, using the extended visual representation.

Scanline transformation, and two codings for integer and ASCII string primitives.
Moreover, it shows a number of functional dependencies, such as a length determi-
nant for the chunk length, a type determinant for the chunk type and a functional
dependency on segment values for the CRC. The given BSG instance thus exercises
all elementary descriptive capabilities that were previously identified in Section
and are provided by the BSG model.

4.5.2 Describing exploits in IT Security

An application of Bitstream Segment Graphs is the structural description of so-
called exploits in I'T Security. In order to inject and execute malicious code in an
application, an exploit addresses its vulnerabilities, specific implementation errors
in an application related to the processing of data. A well-known vulnerability in a
number of image-processing tools from Adobe and Corel on the Windows platform
is CVE-2007-2365, which is triggered by loading a crafted PNG image as exploit.
For this vulnerability, there exists an exploit generator, which provides the option
to chose from two different payloads, where one launches the Windows Calculator,
while the other binds a shell to TCP port 4444, enabling local access to a remote
attacker.

In this example, the former variant of a generated exploit is annotated. Moreover,
this exploit is specifically considered with regards to its effects on Adobe Photoshop
CS2. For annotating the exploit using the Apeiron tool, both the PNG W3C speci-
fication M] as well as the publicly available source code of the exploit generator
in the programming language C | are used.

88 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES

B Apeiron - BSG-Editor Q@El

File Options Help

visualization | Detais | Selections|

Source E
Hash-Gen |NM B

Hash M
Q st o |

Length 147760

Semantics |Explait

| Cnnsnlej Data |

Base: |Hexadecimal | Columns: |16 v | Caleulatein: [Bytes v | Jumpto: [17481 | skip: | |

Loffset(D) 0 8 16 24 32 40 48 56 64 72 B0 B8 96 104 112 120 0 8 16 24 32 40 48 56 64 72 B0 88 96 104 112 120

| 59 |50 |48 |47 | 0d [0a | la |05 |00 |00 |00 [0d |49 | 48 |44 |52 PO 2 T e O 1 I R P B S IR A I ~
128 00 |00 o1 |fd|oo|oo|o1|be | os 03|00 o000 42 8d]|af ENNE NN . il -
256 15 |00 |00 [00 |07 |74 |49 [4d [45 (07 |d7 |04 | OF | 10| 10 |15 L oLl m[E [1 |

384 55 |35 |65 | 6b | 00 |00 |44 [09 |70 |48 |59 |73 |00 | 00| te | 9a O[5 [e[k|.[. o[. [p|H|¥Y][s L

512 00 |00 [1e |92 | 0L | Fc | 6F |28 | F3 |00 |00 |00 |04 |67 |41 |4d [Jale | [e[. . g [A|mM

540 41 |00 |00 | b1 | 6F | Ob | Fc |61 |05 |00 |16 |00 |60 |50 | 4c | 54 &L [[=]. . [ala]. . PIL|T

ThE 45 | FF | FF | FF | FL |e9 |ed | Fa [F7 |F3 [ec|e5|de | cc |50 | cc Els | v |s|alé|le|la|+]al|i|&[p]|1|[R]|I

896 d9 | d9 [d9 el |e9 | ef [a6 [cd|d2 | ac b+ |bd| & |be|ds |13 ulojbfale| rlalol f o I | i s

1024 e | b6 |73 | a9 |d2 | c6 | d5 |dd | #e |BD |be |50[94 |5 |fa |2 n| s bl&E[E[¥ L P B |a

11152 6 | bc |d7 |ea | 33|33 |33 |4d |4b |48 |99 |99 [99 |70 |70 |70 = |% | % |8 |33 [3|M[K[H NERE

1280 Sc |8c [Bc|ib|1b (19 |00 |68 [b4 | f0 | c? [bd|e5 |95 |3a|fo A | o) | FIE o I

1403 o 3 I - 3 ha | o i3 4 E A b 1= 1 i & & o B

Filename File:fi:Dakumente20und%: 20Einstellungen/Hartle/Desktop/Folder fapeiron/test/CS30Overflow.png | # Predecessors 0| # Successors 5

Figure 4.13: The structure of the crafted PNG image exploit shown in Apeiron,
including a PNG signature, an “ITHDR” chunk, a “tIME” chunk and an invalid “pYHs”
chunk, followed by unknown data in a generic segment.

Solely considering the exploit as a PNG image according to the PNG file format
specification, a partial BSG instance can be constructed as shown in Figure [£13]
The partial instance describes the layout of a PNG image signature and three PNG
chunks, where each PNG chunk consists of a 32-bit length descriptor, a 32-bit type
descriptor, variable-length data with a structure depending on the type of chunk,
and a 32-bit CRC value on both the type and data field, where its length is non-zero.
These three chunks are:

e an "THDR" chunk, which covers basic information regarding the image itself (a
509 pixels x 438 pixels resolution with 256 indexed colours from a palette, and
standard values regarding PNG image compression, filtering and interlacing), fol-
lowed by

e a "tIME" chunk, which covers the last modification date of the image (on 2007-
04-15 on 16:16:21 o’clock), and finally followed by

e a "pHYSs" chunk, which covers the physical dimensions of the image pixels.

While both the "THDR" and "tIME" chunks follow the PNG file format spec-
ification, the "pHYs" chunk is invalid, as it is required to have a value of 0x9 for

4.5. APPLICATIONS OF THE BSG MODEL 89

B Apeiron - BSG-Editor Q@El

File Options Help

visualization | Detais | Selections|

Source @
Hash-Gen |NM B

|
4_.—Ir‘|—.‘__k_‘_‘k___ o) |ax-ns#broot |
= [Ehunk, PLTE] s
—-—j__j______z‘) Type s dstructure |

= Skart iD J|

End [t47760 |

Length 147760

Semantics |Explait

| Cnnsnlej Data |

Base: |Hexadecimal | Columns: |16 v | Caleulatein: [Bytes v | Jumpto: [17481 | skip: | |

LOFFSBE(D) 0] 16 24 32 40 48 56 6+ 72 80 83 95 104 112 120 0 3 16 24 32 40 48 56 64 72 80 88 96 104 112 120

| 59 [50 |42 [47 [0d | 0a | la | 0s |00 |00 |00 [0d |49 |48 | #4 |52 R e [[[o[Ao [R ~
128 00 |00 |01 | Fd |00 o001 [bs 08| 03|00 00|00 4z |8d | S [3 T I e ; EAIC I =
256 15 |00 |00 |00 |07 |74 49 |4d [45 |07 |d7 |04 | OF | 10|10 |15 e[m[E]. 0

384 55 35 |65 |6b |00 | 00|44 09 |70 (45 [59 |73 |00 | 00| ie | % D[s|e|[k|.|. (D[[p|[H[Y][s N

51z 00 [00 [1e [9a 0L Fc | 6f |28 |8 |00 |00 00|04 |67 |41 |4d el lae (e[: glAm

840 41 |00 |00 | bi [&F | Ob | fc |61 05|00 |16 |00 |80 | 50| 4c |54 AL = [lalal. . FIL]T

768 45 | Ff | Ff [FF [F1 |9 [e6 [fa |7 | F3 [ec|e5 |de | o |50 |cc E|y v |9 |n|é|e|0|+ |01 [&[F|[TI[P][I

8% 49 |3 | d9 [e0 29 | ef [[|d9 | ac [b4 b4 |8c | be |d5 |13 O[O0 &[&[r[i[A[U]= 2 | I

1024 6e | b6 |73 a3 [d2 | c6 | dS |dd |2e |80 [be |50 (94 | c5 | fs |2 RN S|E[S[F REA AR

1152 6 | b |d7 |ea |33 | 35 |33 [4d |4b |45 [99 |95 (99 70|70 |70 = | W[x| |5 |33 |[M|[K[H BN

1280 Bc | Bc |60 |1b|1b |19 |00 |68 b4 | f0 | o9 b4 |5 | 98 |3a | f0 o Fo W e | s I 8| E &l 1|2

1408 o F T - | Fo L bha Lo F A, 3 . b 1= 1 & 2 4 b

Filename File:fi: Dakumente:20und%: 20Einstellungen/Hartle/Desktop/Falder fapeiron/test/CS30Overflow.png | # Predecessors 0| # Successors 7

Figure 4.14: The structure of the crafted PNG image exploit shown in Apeiron
extended from Figure 4.13] additionally including a “¢AMA” chunk and an invalid
“PLTE” chunk when adjusting the previously invalid “pYHs” length descriptor.

its length descriptor, yet it has a value of 0x4409. Even when assuming this chunk
to be valid, the hypothetically following PNG chunk then would have a value of
0xb67d641e for its length descriptor, by far exceeding the length of the overall im-
age file. The invalid "pHYs" chunk is therefore followed by a generic segment with
data of so-far unknown purpose.

Either by masking the value of the length descriptor of the invalid "pHYs" chunk
to the least significant byte, or by ignoring the actual value and instead considering
its value as defined by the specification, it can be observed that the chunk is followed
by two further chunks as shown in Figure [L.14t

e a "gAMA" chunk, which covers the gamma value of the image, and

e a "PLTE" chunk, which describes the indexed colours of the image palette.

While the "gAMA" chunk follows the PNG specification, the "PLTE" chunk is again
invalid. Each of its 256 colours should be defined through the primary colours red,
green and blue, with 1 byte for each colour component. As such, its length descriptor
is required to have a value of 0x300, yet it has a value of 0x160060, which again
exceeds the length of the image file.

90 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES

B Apeiron - BSG-Editor Q@E|

File Options Help

Visualization | Detals | Selections |
D [tacsszmaras]
Type !W}
Skark :D—|
End 132 |

= = = Length [z |

semantics [|

< [

| Cnnsnle‘ E.|

Base: [Hexaderimal v| Columns: [16 v | Caleulatein: [Bytes | Junpto: 17481 | skip: | |

Offset (D) 0 8 16 24 32 40 48 56 6+ 72 80 83 96 104 112 120 (- 16 24 32 40 48 S6 64 72 80 88 96 104 112 120

o T [0 [o SR TIE]. 18 DO

Filename File:fi: Dakumente20und%: 20Einstellungen/Hartle/Desktop/Falder fapeiron/test/CS30Overflow.png | # Predecessors 1 | # Successors 0

Figure 4.15: The structure of the crafted PNG image exploit shown in Apeiron
extended from Figure [4.14] additionally including the first four bytes of fragmented
shellcode from the red colour component in indexed colours 1496 and up.

Examing the source code of the exploit generator, the embedded shellcode is
embedded into the "PLTE" chunk by fragmenting it into separate bytes every three
bytes, which corresponds to the red colour component of the indexed colours 1496
and following. Figure[L I8l shows the partial BSG instance including a concatenation
of the first four shellcode bytes.

In this form, the embedded shellcode depends on its reassembly through the
targeted application in order to be executed. It is therefore reasonable to assume
that its exploit triggers a buffer overflow of a buffer intended for the red colour
component of an indexed colour palette, which would conveniently provide for the
required reassembly of its shellcode.

The partial BSG instance annotated so far thus provides the location of its
embedded shellcode and helps to give a clue as to how its execution is triggered.
The example shows how this approach allows a security export to systematically
decompose malicious data for purposes of documentation and further analysis.

4.6. DISCUSSION 91

4.6 Discussion

The BSG model has a number of properties that distinguish it from the set of ex-
amined related work. The model presented in this chapter provides completeness of
descriptive capabilities, enables the explicit mapping between an external representa-
tion and a canonical internal representation and supports the incremental construc-
tion and modification of data format instances. At the same time, the BSG model
offers a conceptual simplicity not present in examined related work, and enables a
representation of data format instances suitable for humans and machines:

e Completeness of descriptive capabilities: In contrast to examined related
work, the BSG model is complete in its descriptive capabilities, as it is based on
the previously presented abstraction of a rooted causality graph, and thus provides
all four elementary descriptive capabilities of decoding primitive data, segment-
ing structured data, transforming transcoded data and concatenating fragmented
data. It supports descriptions at arbitrary levels of granularity down to individual
bits.

e Explicit mapping between an external representation and a canonical
internal representation: Compared to examined related work, a BSG instance
makes the way certain information is actually represented explicit. Where other
approaches only provide an XML-based or similar representation corresponding
to an external representation, the BSG model makes the overall mapping ex-
plicit, which can be helpful in verifying the way an application processes external
representations, allowing a comparison of the expected and actual mapping of
information in a data format instance.

e Incremental construction and modification: The BSG model supports the
incremental construction of its instances. It is reasonable to assume that the
complexity of describing the composition of data is reduced when a model pro-
vides support for incremental construction and modification, so the BSG model
allows for incomplete descriptions to be completed in incremental steps by several
participants.

e Conceptual simplicity: Compared to the complexity of other approaches on
describing the composition of data, the BSG model is conceptually simple. Based
on the analysis in Chapter [its realisation in the BSG model results to a con-
ceptually simple model, where there are only 6 different types of data, namely
primitive data, structured data, transcoded data, fragmented data, concatenated
data and generic data. Through only 8 pairs of well-defined operations and their
respective inverse, it is possible to construct and modify arbitrary BSG model
instances, given the existence of required bitstream coding and bitstream trans-
formation functions.

e Representation of data format instances suitable for humans and ma-
chines: The BSG model provides a representation that is suitable for sharing
between humans and machines, as it can be visualised graphically and operated
on by humans as well as processed automatically due to its RDF-based represen-
tation.

92 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES

Furthermore, two remaining aspects need to be discussed, such as the separation of
the causality graph and the mapping step implementations, and the observation of
redundancy of information in data format instances:

e Separation of the causality graph and the mapping step implementa-
tions: Although a data format instance may involve computationally complex
mapping steps, the intention is to describe the composition of data as specific as
possible, rather than using arbitrary universal computational devices.

Encodings of data types and block transformations of data are of interest, yet
their number is small compared to the growing number of data formats in use, as
observed in Digital Preservation [RH05|. Both bitstream coding and transforma-
tion functions can be factored out as reversible computational devices. These can
then be standardised and reused in canonical descriptions of data formats.

Separating the actual implementation of coding and transformation functions from
the description allows for different realisations of implementations, the standardis-
ation of block transformations and codings regarding their specification, and keeps
the model for describing data format instances focused. While the bijectivity of
these functions can be ensured through reversible computational devices such as
RTMs, actually implementing these functions using reversible computational de-
vices requires further research on reversible high-level programming languages for
the definition of bitstream coding and bitstream transformation functions.

e Redundancy of information in data format instances: It can be observed
that sometimes there are several different paths to obtain a certain piece of infor-
mation. For example, the length of a segment can be inferred from neighbouring
segments or through separate packaging segments which carry the desired length
information explicitly. When the information shall be inferred in an automated
fashion, there may be cylic paths of reasoning which do not terminate in a depth-
first search. Rather than that, it is necessary to perform a width-first search,
trying to reach all possible facts, but terminating when there are no more new
facts to be reached. This leads to the idea of computing a BSG instance descrip-
tion as a fixed-point through reasoning.

4.7 Summary

This chapter defines the Bitstream Segment Graph (BSG) model for describing ar-
bitrary data format instances, which realises the formalisation introduced in the
previous Chapter Bl A number of visual representations as well as an RDF-based
storage representation have been given, enabling the storage and exchange of BSG
model instances. In order to construct and modify BSG instances, a closed set of
8 pairs of operations and their inverses are given and have been implemented in
the Apeiron BSG Editor as tool support. Its capabilities have been demonstrated
through a description of the PNG image “litmus test” as well as through a de-
scription of a PNG raster image file which is a known exploit that targets errors in
certain image processing tools such as Adobe Photoshop CS2, thereby triggering the
execution of an embedded malicious payload. In a discussion, a number of proper-
ties are pointed out which distinguish the BSG model from related work previously

4.7. SUMMARY 93

examined in Chapter 2], such as its completeness of descriptive capabilities or its
conceptual simplicity.

Chapter 5

Describing Data Formats

5.1 Introduction

The previous Chapter [presented the Bitstream Segment Graph model for describ-
ing the composition of data through a causality graph. Building on the BSG model,
this chapter presents the BSG Reasoning approach, which enables the description
of data formats through logic-based rules, addressing the following aspects:

e Definition of the BSG Reasoning approach: This chapter presents the BSG
Reasoning approach for describing a potentially infinite set of data format in-
stances in Section

e Representation of BSG Reasoning rulesets: Using the previously introduced
approach, the representation of rulesets is defined in Section (.3l

e Applications of BSG Reasoning: The presented approach is evaluated in
Section by describing a set of Portable Network Graphics (PNG) image files
using a subset of the PNG image file format that covers all elementary descriptive
capabilities. Furthermore, another application for the BSG Reasoning approach
is in IT Security with format-aware fuzzing of bitstreams is outlined.

95

96 CHAPTER 5. DESCRIBING DATA FORMATS

5.2 Definition of the BSG Reasoning aproach

Based on established theoretical foundations in logic [Hed04], the following defini-
tions can be introduced.

5.2.1 Making propositions

In order to express data format rules, a number of definitions need to be introduced
first.

DEFINITION 5.2.1 (LITERAL): A [iteral is a fixed value such as the string >x’ or
the number constant 1.

DEFINITION 5.2.2 (VARIABLE): A wariable is an identifier such as y that may
serve as placeholder for a literal. A variable can either be bound to a literal, thus
representing it, or be free. For a bound variable, there exists a binding of the variable
to a literal. For a free variable, no binding is defined.

EXAMPLE 5.2.1: Given the variables x and y as well as a variable binding x =1,
then the variable x is bound, whereas y is not.

DEFINITION 5.2.3 (TERM): A term is either a literal or a variable.

DEFINITION 5.2.4 (PREDICATE): A predicate defines a relation and is denoted
name/arity, where the name designates the relation and where the arity is the
number of terms for a tuple in the relation. A predicate function takes a number of
terms o, ..., 2, as arguments and decides membership of the tuple t = (zo,...,2,)
in its predicate relation.

EXAMPLE 5.2.2: The predicate math:sum/3 has a predicate function f(xg,z1,x2)
which decides the membership of ¢t = (xg,2z1,72) in its relation. The predicate
function f tests whether zy + x; = x5 holds.

ExXAMPLE 5.2.3: The predicate person:related-to/2 has a predicate function
f(xg, 1) which decides the membership of ¢ = (g, 1) in its relation. The predicate
function f tests whether a person x; is related to person z;.

DEFINITION 5.2.5 (PROPOSITION): A proposition proposes a statement as fact,
which is expressed as predicate function with a number of terms as its argument. A
proposition is ground if all terms are literals or bound variables. A proposition is
said to hold if the predicate function decides its membership positively.

EXAMPLE 5.2.4: math:sum(1, 4, 5), math:sum(1, 4, 8) and math:sum(1, 4,
c) are all propositions. Given no variable binding for the variable ¢, the first and
second propositions are ground, whereas the third proposition is not. Given the
variable binding ¢ = 5, both the first and the third proposition hold, whereas the
second does not.

EXAMPLE 5.2.5: Assuming Jack to be related to Gill, and thus (Jack, Gill) to be
in the relation defined by the predicate person:related-to/2, then the proposition
person:related-to(’Jack’, ’Gill’) holds.

5.2. DEFINITION OF THE BSG REASONING APROACH 97

5.2.2 Using predicates

The relation defined by a predicate can either be open or closed, leading towards
the Open World Assumption and Closed World Assumption:

DEFINITION 5.2.6 (OPEN WORLD ASSUMPTION): Under the Open World As-
sumption (OWA), a proposition not known to be true may become true when further
knowledge becomes available at a later point in time.

DEFINITION 5.2.7 (CLOSED WORLD ASSUMPTION): Under the Closed World As-
sumption (CWA), a proposition not known to be true is known to be false, regardless
of further knowledge becoming available or not.

Computable and inferred predicates

Both OWA and CWA are required for the next two definitions, where a predicate is
either computable or inferred:

DEFINITION 5.2.8 (COMPUTABLE PREDICATES): A computable predicate describes
a closed set of propositions following the CWA.

EXAMPLE 5.2.6: The predicate math:sum/3 used in previous examples is com-
putable and follows the CWA. As the proposition math:sum(1, 4, 8) does not
hold at any step during the inference process, it will not hold at any later step as
well. Among other computable predicates, the predicate math:sum/3 will later be
used for data format description in order to compute the start position, length and
end position of bitstream segments, or to validate their consistency.

DEFINITION 5.2.9 (INFERRED PREDICATE): An inferred predicate describes an
open set, of propositions following the OWA.

ExXAMPLE 5.2.7: The predicate person:related-to/2 used in previous examples
is inferred and follows the OWA. While the proposition person:related-to(’John’,
’Betty’) does not hold now, the proposition may still be inferred and thus hold
later. A number of inferred predicates will later be used for data format descrip-
tion to infer properties and relations between bitstream segments, such as the start
position of a bitstream segment, or neighbourship relations between two adjacent
bitstream segments.

Computable and inferable predicates thus differ in the semantics of the return
value of their predicate function. For computable predicates with propositions that
do not hold, the negative return value is authoritative. For inferred predicates with
propositions that do not hold, the negative return value is authoritative only for the
current state of knowledge, and thus may change with future knowledge.

As defined so far, ground propositions of predicates can be evaluated. For eval-
uating propositions with free variables, further definitions are required.

DEFINITION 5.2.10 (MODE): Given a predicate name/arity with its predicate
function f, a mode is a tuple t = (by, ..., barity), where each element b, € {true, false}
states whether f supports a free variable at argument position n.

98 CHAPTER 5. DESCRIBING DATA FORMATS

Every predicate has at least its base mode (by,. .., barit,) With b, = false, where
it does not support free variables at any argument position. If a predicate supports
further modes, then there exists a function which can finitely enumerate tuples of
potential variable bindings for which the proposition becomes ground and holds.

Where computable predicates define additional modes at their discretion, in-
ferable predicates support arbitrary modes other than the base mode, as these can
always finitely enumerate their known potential variable bindings for its propositions
that hold.

EXAMPLE 5.2.8: For the predicate math:sum/3, functions can be defined to test
ground propositions such as math:sum(1,2,3) and to finitely enumerate variable
bindings for propositions such as math:sum(a,4,5), math:sum(1,b,5) as well as
math:sum(1,4,c). This predicate therefore supports the modes (false, false, false),
(true, false, false), (false,true, false) and (false, false,true). The finite enu-
meration of variable bindings in the latter three modes yield the variable bindings
(a=1), (b=4) and (c=5). Applied to their respective proposition, they all produce
the same ground proposition math:sum(1, 4, 5).

EXAMPLE 5.2.9: As the predicate person:related-to/2 is inferred, it supports
arbitrary modes besides the base mode. Given the previously stated relations and
the propositions person:related-to(’John’, b), person:related-to(a, ’Betty’)
and person:related-to(a, b), the finite enumeration of variable bindings yields
(b="Gill"), the empty set @, and (a =’ John',b =" Gill"). For the first and last propo-
sition, applying the enumeration to their respective proposition leads to the same
ground proposition person:related-to(’John’, °Gill’) which holds. For the
second proposition, no ground proposition is obtained with the current knowledge.

For using the BSG Reasoning approach, predicates have been defined which
represent properties of the BSG model, perform mathematical operations or provide
utility functions.

BSG-related predicates

To address properties of a BSG model instance, the following inferable predicates
have been defined:

e bsg:source(a, b): This predicate states that a bitstream segment a is a bit-
stream source as defined by the file reference b.

e bsg:start(a, b): This predicate states that a bitstream segment a starts at bit
position b (inclusive) within its predecessor(s).

e bsg:length(a, b): This predicate states that a bitstream segment a has the
length b in bits.

e bsg:end(a, b): This predicate states that a bitstream segment a ends at bit
position b (exclusive) within its predecessor(s).

e bsg:leads(a, b): This predicate states that a bitstream segment a leads a neigh-
bouring bitstream segment b, so the end position of a is the start position of b.

5.2. DEFINITION OF THE BSG REASONING APROACH 99

bsg:follows(a, b): This predicate states that a bitstream segment a follows a
neighbouring bitstream segment b, so the start position of a is the end position of
b. This predicate is the inverse of the previous bsg:1lead/2 predicate.

bsg:successor(a, b): This predicate states that a bitstream segment a has a
bitstream segment b as its successor.

bsg:firstSuccessor(a, b): This predicate states that a bitstream segment a
has the bitstream segment b as its first successor.

bsg:lastSuccessor(a, b): This predicate states that a bitstream segment a has
the bitstream segment b as its last successor.

bsg:type(a, b): This predicate states that a bitstream segment a has the type
b, which may be the string constants ’generic’, ’primitive’, ’structure’,
’transcode’, *fragment’ or ’composite’.

bsg:resolved(a): This predicate states whether a bitstream segment a has been
resolved, that is, whether its start, length, end, type and predecessor are known,
so that it is possible to resolve the bit sequence of this bitstream segment through
a path to the (resolved) root bitstream segment.

bsg:semantics(a, b): This predicate states specifically assigned semantics of a
bitstream segment a in terms of a string b. For a defined bitstream segment a,
there may be multiple strings b present.

bsg:encoding(a, b): This predicate states that a primitive bitstream segment
a uses the bitstream coding function b, which is a string reference identifying the
actual function.

bsg:transcoding(a, b): This predicate states that a transcode bitstream seg-
ment a uses the bitstream transformation function b, which is a string reference
identifying the actual transformation.

Mathematical predicates

For performing mathematical operations, the following computable predicates have
been defined:

math:1t(a, b): This predicate states that a < b.
math:1te(a, b): This predicate states that a <b.

math:product(a, b, c): This predicate states that a x b =c. If only one of a, b
or ¢ is a free variable, then its value is computed.

math:sum(a, b, c): This predicate states that a + b= c. If only one of a, b or ¢
is a free variable, then its value is computed.

100 CHAPTER 5. DESCRIBING DATA FORMATS

Utility predicates

For additional utility functions, the following computable predicates have been de-
fined:

e util:concat(a, b, c): This predicate states that the string concatenation of a
and b results in c. If only ¢ is a free variable, then this predicate concatenates the
strings a and b.

e util:sourceLength(a, b): This predicate states that a source reference a of
a bitstream source has the length b in bits. If a is a bound variable or a term
representing a string which contains a reference to a file, then its size in bits is
obtained. If b is a term representing a number, then equality its value and the
source size in bits is tested. If b is a free variable, then it is bound to the size of
the source in bits.

e util:skolem(zy, x1, ..., x,): This predicate states that for a rule identifier
2o and a number of terms from universally quantified variables in z; ... x,_1, there
exists a value x,,. If only z,, is a free variable, then a unique identifier for xq ...z, 1
is obtained and bound. This predicate is introduced by rule transformations for
skolemization, and thus not used directly for specification.

e util:value(a, b): This predicate states that a primitive bitstream segment a
has a decoded value of b. If a is a bound variable representing a bitstream segment
which is a primitive and is resolved, then its value is decoded. If b is a bound
variable or a term, then its equivalence is tested against the decoded value. If b
is a free variable, then it is bound to the decoded value.

e util:crc(a, b): This predicate states that a sequence of bytes a has a Cyclic
Redundancy Code (CRC) of b. If a is a bound variable, then its CRC is computed.
If b is a bound variable or a term, then its equivalence to the computed CRC is
tested, otherwise the computed CRC is bound.

5.2.3 Defining rules

In order to express complex statements using multiple predicates, some means for
logic compositions of propositions is required.

DEFINITION 5.2.11 (LOGIC OPERATORS): The operators A, v and - represent the
binary 'and’ and ’or’ logic operators as well as the unary 'not’ logic operators to be
used for propositions.

EXAMPLE 5.2.10: The proposition = math:sum(1, 4, 8) holds, as the proposi-
tion math:sum(1, 4, 8) does not hold.

DEFINITION 5.2.12 (FORMULA): A formula consists of one or more propositions
connected by logic operators. An atomic formula consists of a single proposition
which may be negated. A formula is closed if all of its propositions are ground
and open otherwise. A formula holds if the corresponding logic statement on its
proposition holds as well.

5.2. DEFINITION OF THE BSG REASONING APROACH 101

EXAMPLE 5.2.11: The formulamath:sum(1, 4, a) A math:sum(2, 3, a) holds
for the variable binding a = 5. Both propositions use the mode (false, false,true) of
predicate math:sum/3, so their variable bindings can be finitely enumerated, yield-
ing a = 5. Applying this variable binding a = 5 to all propositions in the formula,
these become ground, so the formula becomes closed and holds.

In the use of variables, distinguishing between different forms of quantification
is needed.

DEFINITION 5.2.13 (EXISTENTIAL AND UNIVERSAL QUANTIFIERS): The opera-
tors 3 and V represent the existential and universal quantifiers for variables. By
default, variables are considered as universally quantified unless stated otherwise.

Based on quantified formulas, the concept of a rule can finally be defined:

DEFINITION 5.2.14 (RULE): A rule is an implication a = b consisting of a and
b as formulas which denote the condition a and its conclusion b. Variables are
quantified as existential or universal over the entire rule. A rule matches if there
exists a set of variable bindings for which the condition formula is closed and holds.
If a rule matches for a given set of variable bindings, the conclusion formula is
closed by applying the variable bindings, testing for contradictions and inferring new
propositions. A contradiction in a rule is a computable predicate in a conclusion
formula which does not hold. If there is no contradiction, then all propositions on
inferable predicates are inferred, with the respective relations updated.

In the context of the BSG model, rules can be classified as either model-specific
or format-specific.

DEFINITION 5.2.15 (MODEL-SPECIFIC RULES): A model-specific rule captures
part of the BSG model itself and is independent from the specific data format to
be described. Examples of such rules concern the consistency of start, length and
end positions of a bitstream segment, or the consecutive placement of neighbouring
child segments in a structure segment.

EXAMPLE 5.2.12: Assume a structure bitstream segment a with two primitive
bitstream segments b and c as its first and last successors. Since b and ¢ are the
only successors of a, they are necessarily neighbours, so that the end position of b
is the start position of b. Therefore, a corresponding rule captures a property that
is specific to the BSG model rather than specific to a format.

DEFINITION 5.2.16 (FORMAT-SPECIFIC RULES): A format-specific rule captures
part of the data format to be described and is independent from the BSG model.
An example is a rule how a specific structure is segmented, as mandated by the data
format itself.

EXAMPLE 5.2.13: Assume a structure bitstream segment a which represents a
PNG raster image, and has a structure bitstream segment b as its first successor,
which represents the PNG signature, and thus has a length of 64 bits. A correspond-
ing rule captures a property that is specific to the PNG raster image file format.

102 CHAPTER 5. DESCRIBING DATA FORMATS

5.2.4 Matching rule conditions

Rules are converted to Conjunctive Normal Form (CNF), resulting in a prepared set
of rules, and skolemized. In order to improve on the search space to be evaluated,
the problem of testing the condition of a rule is considered as a graph matching
problem. The objective is to try to minimise the number of tests in order to decide
whether a rule condition matches or not.

Due to preparation of rules, the formula representing the rule conditions is in
CNF, consisting of one or more propositions logically connected with the operator
A. For a closed formula, no matching is necessary, as all propositions are ground
and can be tested.

To match an open formula as condition, all sets of variable bindings have to be
identified for which all propositions in the formula hold.

Considering all propositions in formula as tuple ¢ty = (p1,...,pn,) and an initial
set of variable bindings by = {}.

If there is a ground proposition which does not hold, the rule condition fails. If
all ground propositions hold, then these can be dropped from consideration and they
are removed from the tuple, resulting in ¢, = (pi,...,pn,), consisting of non-ground
propositions. For all propositions p, as elements in ¢,, an ordering o, is computed.

Each proposition is tested to determine whether its predicate function supports
the current mode of the predicate. If it does not, then more variables have to be
bound prior to being able to test the proposition, so its ordering is o, =. If the
predicate function of a proposition supports the current mode, then o, is set to the
count of ground propositions it can finitely enumerate.

The elements of the tuple ¢, are then brought in ascending order of o,.

5.2.5 Inference process

The prepared set of rules is evaluated in steps using semi-naive evaluation, making
it feasible for large sets of rules and inferred propositions by substantially improving
the efficiency of the inference process. By focusing on rules that also make use of
knowledge inferred in the previous step, semi-naive evaluation prevents the same
conclusions from being reached over and over again.

The BSG Reasoning engine therefore categorises every proposition of inferred
predicates into separate knowledge bases which may be new knowledge kb,,, current
knowledge kb, or old knowledge kb,:

e New knowledge kb, contains propositions that are inferred in the current step of
inference. By separating these propositions into kb,,, the ordering of rules has no
influcence over the inference process.

e Current knowledge kb, contains propositions that either have been inferred in the
previous step of inference, or that have been given initially. Due to semi-naive
evaluation, at least one proposition contained in kb, has to be used when matching
a rule in the inference step, potentially inferring new knowledge.

e Old knowledge kb, contains all propositions that have been inferred in steps of
inference prior to the previous step.

5.3. REPRESENTATION OF BSG REASONING RULESETS 103

During a step of inference, the reasoning engine consults both kb, and kb, to infer
new propositions for kb,. After all rules have been processed, propositions from cur-
rent knowledge are removed and added to old knowledge. Likewise, all propositions
from new knowledge are removed and added to current knowledge. The evaluation
is repeated until there is no proposition in new knowledge after processing all rules,
reaching a least fixed point.

EXAMPLE 5.2.14: Assume a bitstream source 'root’ which references the file test.png
as initially given facts. The referenced file itself has a size of 1000 bytes, therefore
8000 bits. Furthermore, assume a single rule. The rule has the condition that a
bitstream source z references a file f (bsg:source(x, f)) which has a length of y
in bits (util:sourceLength(f, y)). The conclusion of the rule, if it matches, is
that the bitstream segment x starts at bit position 0 (bsg:start(x, 0)) and that
a has the length of y in bits (bsg:length(x, y)).

Initially given facts are stored in kb., while both kb, and kb, are empty, and the
inference process begins:

e The existing facts in both kb. and kb, allow the condition of the single rule to
match, and all facts come from the current knowledge kb., so the constraint
of semi-naive evaluation to use at least one proposition from current knowl-
edge is satisfied. For matching the rule, this results in the variable binding
(z =" root"),(f =" test.png’), (y = 8000), for which the conclusion of the rule can
be inferred.

As both bsg:start/2 and bsg:length/2 are inferred predicates, the proposi-
tions bsg:start(’root’, 0) and bsg:length(’root’, 8000) are added to the
relations of both predicates in the knowledge base kb,.

After the ruleset consisting of just one rule has been applied, new knowledge has
been inferred, as kb, is non-empty. Thus, current knowledge in kb, is moved to
old knowledge in kb,, then new knowledge kb,, is moved to current knowledge kb.,
and a new inference step begins.

e In this new step, matching the rule requires the use of at least one proposition that
has been inferred in the previous step, which is not possible. Therefore, since no
new knowledge has been inferred, kb, is empty and the inference process reaches
a least fixed point.

When a least fixed point has been reached during inference, tuples contained in the
relations of BSG predicates are used for constructing a BSG instance. In contrast
to the manual operations of the BSG model introduced in the previous Chapter [4]
the instance may be invalid, and thus has to be tested and validated in structural
terms. For example, a bitstream segment without an inferred type is considered as a
generic bitstream segment, and it has to be tested whether every bitstream segment
has a path to the root bitstream segment.

5.3 Representation of BSG Reasoning rulesets

For representing data format rules, the following representation is used. It combines
the expressivity of XML Common Logic with a less verbose representation using

104 CHAPTER 5. DESCRIBING DATA FORMATS

brackets. The following forms of expression are defined:

e (prefix ns ref): Given an identifier ns and a string ref containing a URL
namespace, this defines ns as namespace prefix for ref. Prefixes are used for
namespacing predicates with the same name, yet different semantics.

e (ns:pred xy ... x,): Given a tuple of terms ¢ = (xo,...,x,) and the predicate
ns:pred/n, this states the logic expression of testing whether ¢ is in the relation
defined by the predicate pred of arity n in the namespace prefix ns that was
previously defined.

e (and ab): Given two logic expressions a and b, this states the logic expression of
a A b; if both a and b hold, then a A b holds as well.

e (or ab): Given two logic expressions a and b, this states the logic expression of
a Vv b; if a or b holds, then a v b holds as well.

e (not a): Given a logic expression a, this states the logic expression of -a; if a
does not hold, then —a holds.

e (implies a b): Given two logic statements a and b, this states the implication
a = b as logic statement; if a holds, then b is implied to hold.

o (iff ab): Given two logic statements a and b, this states the implications a = b
and b= a as logic statements; a holds exactly iff (if and only if) b holds.

e (forall z; ... z, €): Given one or more variable declarations z...x, and a logic
expression e, this states that the given variables declared in zg . .. x,, are universally
quantified over e.

e (exists xy ... x, e): Given one or more variable declarations xg...z, and a
logic expression e, this states that the given variables declared in z...x, are
existentially quantified over e.

e (var z): This declares a variable x for use in a rule which is quantified either
universally or existentially.

e //and /* ...*/: Both expressions declare comments. The first comment variant
is terminated by the end of line, whereas the second comment variant may span
multiple lines.

In Table B.1] a model-specific rule is shown which represents the rule used in the
previous Example 5.2, 141

5.4 Applications of BSG Reasoning

The BSG Reasoning approach enables the formal description of a data format in
a declarative manner by building on the BSG model defined in Chapter @ which
in turn is building on the formalisation given in Chapter 3. The description of a
PNG data format subset is presented as an application in detail, followed a brief
description of format-aware fuzzing of bitstreams in IT Security as an example for
other potential applications:

O ~J O U = W N =

e e e e e
N O UL W N~ O ©

5.4. APPLICATIONS OF BSG REASONING 105

(prefix bsg "http://bsg.org/bsgd/1.0/predicate/")
(prefix util "http://bsg.org/predicates/util/")
(prefix math "http://bsg.org/predicates/math/")
// M1l: A bitstream segment with a source is a root segment
(forall (var segment) (var source) (var length)
(implies
(and
(bsg:source segment source)
(util:sourcelength source length)
)
(and
(bsg:start segment O0)
(bsg:length segment length)
)
)
)

Table 5.1: Example BSG rule which infers start and length of a root bitstream
segment for which a source has been defined.

5.4.1 Description of a PNG data format subset

In order to describe a data format which exercises all elemental descriptive capabil-
ities, a subset of the PNG raster image file format has been selected, where PNG
images store compressed image data in multiple fragments through separate IDAT
chunks, effectively a generalisation of the PNG raster image “litmus test” previously
introduced in Chapter 3.4l

Selection of training and test corpora

A basis for sample bitstreams, the PNG Test Suite [vS98| includes 156 PNG images
for compliance testing that exercise the format rules in sometimes extreme variants
and also include three corrupted files. From this suite, both a training corpus and
a testing corpus is selected:

e As a training corpus, a subset of images was selected that are structurally similar
to the PNG raster image “litmus test”, thereby exercising all four elementary
descriptive capabilities. This subset consists of 8 files from the PNG Test Suite

e As a testing corpus, all 153 valid PNG images were selected, excluding the three
corrupted files. These also include PNG images with format-related properties
which are not present in the training corpus, such as the use of transparency or
images with indexed colour palettes.

For the training corpus, a fitting set of rules is to be constructed, where for every
PNG image in the corpus, its deduced BSG instance shall have a coverage of 1.0.

106 CHAPTER 5. DESCRIBING DATA FORMATS

Concerning the granularity of this fitting set of rules, primitive bitstream seg-
ments are allowed to represent arrays of encoded literals rather than segmenting
these arrays into their elements. This decision is made in light of arrays of pixel data,
where its segmentation into separate pixels and their individual decoding would lead
to a bloated BSG instance description without a substantial descriptive benefit. Yet
still, the fitting set of rules has to provide for the structurally required granularity
that is necessary for parsing the bitstream completely.

Construction of a fitting set of rules

The fitting set of rules was constructed in an incremental fashion. Given a BSG
instance with a coverage of less that 1.0, at least one generic bitstream segment
necessarily exists in the graph. Through the addition of a rule, such a generic
bitstream segment can then be deduced to be something more specific, thereby
increasing the coverage of one or more BSG instances.

After reaching full coverage for the training corpus, excerpts of the resulting
fitting set of rules are shown in Tables 5.2l 5.3] and 5.4l These three tables show
17 model-specific and the first 14 of 38 format-specific data format rules, with the
entire set of rules listed in Appendix [Al

e Model-specific rules: Model-specific rules, listed in Table 5.2, begin with rules
on placement regarding a bitstream segment, starting with a rule for deducing
bsg:start and bsg:length from an initially given bsg:source (M1). If any two
of bsg:start, bsg:length and bsg:end are given for a bitstream segment, the
remaining fact can be deduced (M2-M4). Moreover, if all facts are given for a
bitstream segment, it can be validated to ensure consistency (M5).

Further rules include aspects of neighbourship of bitstream segments in a struc-
ture (M6 & MT), successorship of bitstream segments (M8-M12), placement in
a structure (M13-M15) and resolvability (M16 & M17), which is necessary for
decoding the contained literal of primitive bitstream segments.

e Format-specific rules: Format-specific rules for the selected PNG subset are
listed in Tables b.3]and B.4l They start with a rule that deduces the PNG-specific
type of 'png:root’ for a bitstream source (F1). For such a bitstream segment, it
can be deduced that there exists a first successor ?s with bsg:semantics(?s,
'png:signature’) (F2). For a 'pngsignature’, there exists a following PNG
chunk as a ’png:chunk’ structure (F3), as shown in Figure 0.1, which again al-
ways begins with a ’png:chunk-length’ bitstream segment (F4), followed by a
'png:chunk-type’ bitstream segment (F5).

The actual composition of a PNG chunk may vary. If the value of a "png:chunk-
length’ is 0, then the 'png:chunk-type’ is followed directly by the ’png:chunk-crc’
bitstream segment as last successor of the chunk (F6). Otherwise, the 'png:chunk-
type’ bitstream segment is followed by a variable-length 'png:chunk-data’ bit-
stream segment and again the ’png:chunk-cre’ bitstream segment (F7). Details
on bitstream segments such as their type, encoding and length are provided
for ’png:signature’ (F8), ’png:chunk-length’ (F9), ’png:chunk-type’ (F10) and
'png:chunk-cre’ (F11) bitstream segments. The PNG-specific type of the chunk is

5.4. APPLICATIONS OF BSG REASONING 107

Rule

M1 ©bsg:source(?a, ?f) A util:sourcelLength(?f, ?71) — bsg:start(7?a,
0) A bsg:length(?7a, 71)

M2 bsg:length(?a, ?1) A bsg:end(?a, 7e) A math:sum(?s, 71, 7e) —
bsg:start(?a, ?s)

M3 bsg:start(?a, ?s) A bsg:end(?a, 7e) A math:sum(?s, 7?1, %e) —
bsg:length(?a, 71)

M4 bsg:start(?a, ?s) A bsg:length(?a, ?71) A math:sum(?s, 71, 7e) —
bsg:end(?7a, 7e)

M5 bsg:start(?a, ?s) A bsg:length(?a, ?71) A bsg:end(?a, 7e) —
math:sum(?s, ?1, ?e)

M6 bsg:leads(?a, ?b) <> bsg:follows(?b, 7a)

M7 Dbsg:leads(?a, ?b) A bsg:end(?7a, ?p) <« bsg:follows(?b, 7a) A
bsg:start(?b, 7p)

M8 bsg:firstSuccessor(?a, ?b) — bsg:successor(?a, ?b)

M9 bsg:lastSuccessor(?a, ?b) — bsg:successor(?a, ?b)

M10 bsg:successor(?a, ?b) — bsg:predecessor(?b, ?a)

M11 ©bsg:successor(?a, ?b) A bsg:leads(?b, 7c) — bsg:successor(?a,
7¢)

M12 bsg:successor(?a, ?b) A bsg:follows(?b, ?c) — bsg:successor(?a,
7c)

M13 Dbsg:firstSuccessor(?a, ?b) — bsg:start(?b, 0)

M14 Dbsg:lastSuccessor(?a, ?b) A bsg:length(?a, ?c) — bsg:end(?b,
7¢)

M15 ©bsg:lastSuccessor(?a, ?b) A bsg:end(?b, ?c) — bsg:length(?a,
7c)

M16 bsg:start(?a, ?s) A bsg:length(?a, ?1) A bsg:end(?a, ?7e) A
bsg:type(?a, 7t) A bsg:source(?a, ?f) — bsg:resolved(?a)

M17 Dbsg:successor(?a, 7b) A bsg:start(?b, 7s) A bsg:type(?b, 7t) A

bsg:

resolved(?a) — bsg:resolved(?b)

Table 5.2: List of model-specific rules (M1-17) [HBSMOS].

108 CHAPTER 5. DESCRIBING DATA FORMATS

Rule
F1 bsg:source(?a, ?f) — bsg:semantics(?a, ’png:root’)
EF2 bsg:semantics(?r, ’png:root’) — util:skolem(’F2’, ?r, ?7s) A

bsg:type(?r, ’bsg:structure’) A bsg:firstSuccessor(?r, 7s) A
bsg:semantics(?s, ’png:signature’)

F3 bsg:semantics(?s, ’png:signature’) — util:skolem(’F3’, ?s, ?f)
A bsg:leads(?s, ?f) A bsg:semantics(?f, ’png:chunk’)

F4 bsg:semantics(?c, ’png:chunk’) — util:skolem(’F4°’, ?c,
?1) A bsg:firstSuccessor(?c, ?1) A bsg:semantics (71,

’png: chunk-length?)

EF'5 bsg:semantics(?l, ’png:chunk-length’) — util:skolem(’F5’, 71,
7t) A bsg:leads(?1l, ?t) A bsg:semantics(?t, ’png:chunk-type’)

F'6 bsg:semantics(?1l, ’png:chunk-length’) A bsg:value(?l, 0) A
bsg:leads(?1, ?t) A bsg:successor(?ch, ?1) — util:skolem(’F6’,
71, ?t, ?ch, 7cr) A bsg:lastSuccessor(?ch, ?cr) A bsg:leads(?t,
7cr) A bsg:semantics(?cr, ’png:chunk-crc’)

E7 bsg:semantics(?1l, ’png:chunk-length’) A bsg:value(?l, ?v) A
math:1t(0, ?v) A bsg:leads(?1l, 7t) A Dbsg:successor(?ch,?l) A
math:product(?v, 8, ?lv) — bsg:leads(?t, ?d) A bsg:leads(?d,
?cr) A bsg:lastSuccessor(?ch, ?cr) A bsg:length(?d, ?1lv)
A Dbsg:semantics(?d, ’png:chunk-data’) A bsg:semantics(?cr,
’png: chunk-crc’)

Table 5.3: Excerpt of 36 format-specific rules for a subset of the PNG raster image
file format, listing rules F1-F7 [HBSMO0S].

5.4. APPLICATIONS OF BSG REASONING 109

Rule
F8 Dbsg:semantics(?t, ’png:signature’) -
bsg:type(?t, ’bsg:primitive’) A bsg:encoding(?t,

*http://www.dataformats.net/2008/04/bsg-encodings#ascii-string’)
A bsg:length(?7t, 64)

F9 bsg:semantics(?1l, ’png:chunk-length’) -
bsg:type(?l, ’bsg:primitive’) A bsg:encoding(?t,
’http://www.dataformats.net/2008/04/bsg-encodings#msbf-uint’)

A bsg:length(?71, 32)

F10 bsg:semantics(?t, ’png:chunk-type’) -
bsg:type(?t, ’bsg:primitive’) A bsg:encoding(?t,
*http://www.dataformats.net/2008/04/bsg-encodings#ascii-string’)
A bsg:length(?t, 32)

F11 bsg:semantics(?cr, ’png:chunk-crc’) -
bsg:type(?t, ’bsg:primitive’) A bsg:encoding(?t,
*http://www.dataformats.net/2008/04/bsg-encodings#msbf-uint’)

A bsg:length(?cr, 32)

F12 bsg:semantics(?ch, ’png:chunk’) A bsg:semantics(?t,
’png:chunk-type’) A Dbsg:successor(?ch, ?t) A bsg:value(?t,
?v) — util:concat(’png:chunk:’, ?v, ?ct) A bsg:semantics(?ch,
7ct)

F13 Dbsg:semantics(?c, ’png:chunk’) A bsg:end(?c, 7ce) A

bsg:successor(?r, 7c) A bsg:length(?r, ?rl) A math:1t(?ce, 7rl)
— util:skolem(’F13’, ?c, ?ce, ?r, ?rl, ?nc) A bsg:leads(?c,
7nc) A bsg:semantics(?nc, ’png:chunk’)

F14 bsg:semantics(?c, ’png:chunk’) A bsg:end(?c, 7ce) A
bsg:successor(?r, ?c) A bsg:length(?r, ?rl) A math:eq(?ce,
?rl) — bsg:lastSuccessor(?r, 7c)

Table 5.4: Excerpt of 36 format-specific rules for a subset of the PNG raster image
file format, listing rules F8-F14 [HBSMOS].

110 CHAPTER 5. DESCRIBING DATA FORMATS

deduced from the 'png:chunk-type’ value and assigned as bsg:semantics to the
chunk (F12). The remaining rules listed in Table state that if there is space
left after a chunk, there exists another one following (F13), otherwise the chunk
is the last successor of the bitstream source (F14). Further rules handle aspects
depending on the specific chunk type, such as for the IHDR chunk which contains
information on image width and height.

0 [256
Ptructur
PING chunk

0 [32 32164 64 [224] [224]256
Primitive Primitive Ptructure Primitiv
Integer ASCIT Data Integer
Length Type CRC

Figure 5.1: BSG instance for a PNG chunk.

Applying these rules to an actual PNG image for the deduction of a BSG instance
can be followed exemplary in the following two deduction steps. Intending to deduce
a BSG instance for the image 0I2N0G16.PNG, the following initial fact is given:

bsg:source(’root’, ’0i2n0gl6.png’) (5.1)

The inference process tries to apply all rules to obtain new facts. In the first step,
only the rules F1 and M1 are applicable, which yield the following new facts in
addition:

bsg:semantics(’root’,’png:root’) A
bsg:start(’root’,0) A
bsg:length(’root’,1432) (5.2)

Again, the inference process tries to apply all rules, this time on an increased set of
facts. In step 2, the rules F2 and M4 yield the following new facts in addition:

bsg:type(’root’, ’bsg:structure’) A
bsg:firstSuccessor(’root’,’_scl’) A
bsg:semantics(’_scl’,’png:signature’) A

bsg:end (’root’,1432) (5.3)

The process of inference is repeated until no new facts can be inferred. The resulting
facts from the reached fixed point describe a BSG instance for the PNG image
0i2n0g16.png, which is part of the training corpus and thus has complete coverage.

Exclusion of corrupted PNG images

The fitting set of rules for the training corpus were evaluated on the testing cor-
pus consisting of all 153 valid PNG images from the PNG Test Suite, specifically

5.4. APPLICATIONS OF BSG REASONING 111

excluding three corrupt images from the suite. These three corrupt images were
excluded from the evaluation, since the fitting set of rules does not include verifying
rules for PNG-specific properties. Verifying rules for PNG-specific properties cause
a contradiction in the conclusion when such a PNG-specific property is violated by
a corrupt PNG raster image. This is very similar to the model-specific rule M5 in
Table [5.2] which verifies the model-specific property of BSG that the start, length
and end properties of a bitstream segment add up. Since this description of the
PNG data format subset is focused on a practical exercise of all four elementary
descriptive capabilities in a real-life use case, verifying rules in the fitting set are
limited to model-specific properties of BSG, but may be extended through future
work.

Evaluation of the fitting set of rules

Evaluating the resulting coverage of deduced BSG instance on the testing corpus,
both the original fitting set of rules and an extended fitting set of rules were evalu-
ated:

e Original fitting set of rules: Data format knowledge contained in the fitting
set, of rules was sufficiently complete as to describe the composition of 64 of 153
PNG images completely, where every deduced BSG instance has a coverage of
1.0. For the remaining 89 PNG images, the fitting set of rules is incomplete, as
their deduced BSG instances have an average coverage of 0.79. Coverage and the
number of iterative steps required are listed in Appendix [Bl for each file in the
testing set.

This can be explained by the existence of specialised data structures that have not
been present in the training corpus for which the fitting rules were defined. Still,
even in the absence of complete coverage of such data, an average coverage of 0.79
signifies that essential aspects of the PNG data format have been captured in the
fitting set of rules as it is. Constructing a fitting set of rules for the test corpus
and increasing the average coverage by 0.21 requires additional rules for handling
colour palette information (PLTE and sPLT chunks), transparency information
(tRNS chunk), background colour (bKGD chunk), textual data (tEXt and zTXt
chunks) and other types of data with increasingly rare occurrences.

e Extended fitting set of rules: To estimate the effect of adding further rules,
two preliminary rules, F37 and F38 listed in Appendix [A] were added to form an
extended fitting set of rules. These rules served for handling palette information
stored in PLTE chunks, and evaluated the extended fitting rules on all 153 PNG
images as well. Complete coverage was then achieved for 78 PNG images, while
the remaining 75 PNG images have an average coverage of 0.91. Adding these
two rules increased the number of BSG instances with full coverage by 14, while
the average coverage on the remaining BSG instances increased by 0.12.

Further step-by-step increments can be achieved by constantly adding rules for
handling increasingly rare types of data. Just as during the construction, this
can be achieved in each step by searching incomplete BSG instances for generic
bitstream segments that “cause” the incompleteness, by matching these bitstream

112 CHAPTER 5. DESCRIBING DATA FORMATS

segments with existing data format knowledge in the natural-language PNG speci-
fication, and by introducing a rule which explains these generic bitstream segments
a bit further. Extending the fitting set of rules for increased coverage therefore
introduces no changes to the presented BSG model or the BSG Reasoning model
itself, and is thus left for future work.

In the evaluation of both the original and the extended fitting set of rules, the
deduction process computed a fixed point and halted on all instances. As previously
examined in the analysis in Chapter 3] termination cannot be guaranteed when
an approach is sufficiently expressive to describe arbitrary data formats. This is
reflected in the BSG Reasoning approach as well, since errors may be present in an
erroneous set of rules preventing a fixed point to be reached. During the construction
of fitting sets of rules and their evaluation, the issue of potentially non-terminating,
erronous sets of rules was addressed through a simple heuristic, where a limit on the
number of deduction steps is placed, aborting the deduction process beyond that
limit.

Regarding the number of iterative steps necessary, it was observed that the
typical number of iterative steps required for the fitting ruleset to reach a fixed
point on valid PNG images ranges from 72 up to 170 steps, with two structurally
exceptional PNG images from the PNG Test Suite requiring 1389 and 3279 iterative
steps, respectively. In both 0i9n0g16.png and 0i9n2c16.png files, which were also
present in the training corpus, compressed and transformed image data is fragmented
into bitstream segments with 8 bit length each, each and every byte encapsuled into
a separate IDAT chunk. The generic PNG chunk data structure is of variable length,
and since there is only one length descriptor at its start, the placement of chunks has
to be resolved from the beginning of the bitstream to the end. This extreme case
of fragmentation leads to a substantial increase in required iterative steps, which
is inherent in the PNG data format and therefore is to affect any other declarative
approach or procedural implementation as well. Both files can be considered an
extreme example, but demonstrate what is still considered legal in terms of the
PNG data format specification.

Since data format instances of other data formats such as Apple QuickTime
movies have a more complex structure which requires an even higher number of
iterations, the use of a semi-naive evaluation method for the deduction process as
known from Datalog |[UlI89] is absolutely essential.

5.4.2 Format-aware fuzzing of bitstreams

This application of BSG Reasoning is given in brief overview. Typical fuzzing of
bitstreams in [T Security tests applications for their robustness by introducing bit
errors into files and passes the manipulated files to applications. If applications
exhibit erroneous behaviour or crash, then this is an indication of robustness-related
issues in an application, which may be exploitable.

Yet, standard fuzzing is format-unaware, as introducing bit errors does not take
into account where the bit error is actually introduced, reducing the efficiency of the
fuzzing process. From an application’s point of view, bit errors introduced through
fuzzing are virtually the same as bit errors introduced through a transport, and

5.5. DISCUSSION 113

applications may take measures such as cyclic redundancy codes (CRCs) or even
error-correcting codes to counter these. Format-unaware fuzzing of data formats
employing such countermeasures is therefore inefficient, as it is extremely unlikely
that random bit errors will simultaneously introduce an critical bit error in data and
change the dependent CRC or error-correcting codes accordingly.

Data format knowledge represented through BSG Reasoning rulesets provides a
basis for a more efficient, format-aware fuzzing approach. When changing the value
of a bitstream segment, rule-induced dependencies such as a CRC code spanning a
number of bitstream segments can be detected and used for “repairing” dependent
values recursively. This way, an application cannot detect the bit errors introduced
by fuzzing directly, and previously protected portions of code can be subjected to
erroneous data.

Using the BSG model and BSG Reasoning approach for format-aware fuzzing
provides further benefits. The approach detailed above also allows for more sophis-
ticated modifications such as resizing variable-length blocks of data, or specifically
focusing on bitstream segments that are packaging, and thus potentially relevant
for processing, instead of targetting payload which may have no direct effects on
processing.

5.5 Discussion

As with the BSG model, the presented BSG Reasoning approach has several dis-
tinct features over examined related work, such as providing a formal description in
a declarative manner with universal applicability, which leads to its applicability for
different format-related use cases. The approach also allows the measurable, incre-
mental construction of rulesets and enables reuse through modular descriptions.

e Formal description in a declarative manner with universal applicability:
In contrast to the examined approaches from related work such as XCEL, the
BSG Reasoning approach provides support for all four elementary descriptive
capabilities down to bit granularity by building on the BSG model. Data format
knowledge is formally described as logic rules in a declarative manner.

e Applicability for different format-related use cases: The specification of
data format knowledge in a declarative manner rather than through procedural
descriptions enables the use of data format rules in unforeseen contexts. While
the need for reading and writing format-compliant data often triggers the specifi-
cation of data format knowledge in the first place, other concerns depend on the
same knowledge, yet have different constraints and process format-compliant data
in a different manner, as previously shown with the second outlined application
of BSG Reasoning, the format-aware fuzzing of bitstreams in I'T Security. In con-
trast to declarative descriptions, procedural descriptions of data formats through
approaches such as Flavor cannot be applied directly to such varying use cases.

e Measurable, incremental construction of rulesets: The BSG Reasoning ap-
proach supports the incremental construction of rulesets for data formats. A given
ruleset can be tested against a set of format-compliant bitstreams by evaluating

114 CHAPTER 5. DESCRIBING DATA FORMATS

the ruleset against every bitstream and computing the coverage of the resulting
BSG instance, averaging the coverage values of all instances. For a ruleset with
an overall coverage of less than 1, a BSG instance exists where there is a generic
segment present. In order to increase the coverage of such an instance, one or
more rules addressing the given generic segment can be defined and added to the
ruleset. This allows for a “divide-and-conquer” approach in the construction of fit-
ting sets of rules, such as for the documentation of legacy data formats in Digital
Preservation, or when a new, customised data format needs to be constructed.

e Modular description: It is desirable to specify data format rules separately,
allowing to incrementally describe a data format along existing instances and
examples. Rather than computing a bitstream segment graph using a reversible
Turing machine in some opaque manner, it is preferable to split the transformation
into separate Turing machines that can be reused, and describe the data format
using an incremental set of rules, building on a uniform model for data format
instances.

Besides these features of the BSG Reasoning approach, two aspects were observed
that are worth pointing out, namely the substitution of functions with relations and
variables and the redundancy of information typically present in data formats:

e Substitution of functions with relations and variables: In contrast to other
logic systems such as Prolog, the BSG reasoning system does not support func-
tions, but substitutes them with the use of relations and free variables. Assum-
ing a predicate math : eq/2 over the set of all equal arguments and a function
math : plus/2 adding both arguments and returning the result, an expression like
math : eq(math : plus(2,2),4) is not supported. Instead, it can be expressed as
math : sum(2,2,7a)vmath : eq(?a,4) introducing the variable 7a. This design de-
cision provides a unified approach to designing and implementing both functions
and relations in the reasoning system. The design decision therefore simplifies the
implementation of the reasoning system.

e Redundancy of information: It is notable that there often is a redundancy of
information related to data format knowledge. As previously observed, specific
information concerning the composition of data can often be inferred in more than
one way.

EXAMPLE 5.5.1: Let d be a data format. Every format-compliant bitstream
x € By is a structure composed from one or more blocks. Again, every block is a
structure which consists of a tag field, a length field and a data field, where both
the tag and length field have a fixed, known size and encoding, and the length
field contains the length of the entire block. Given y € B; be a format-compliant
bitstream with an overall length [, where there is a last block z with a known
start position. Knowing that z is the last block, the information contained in the
length field of z is redundant, as the length can also be inferred from the start
position of z and the overall length [.

When processing format-compliant information, the redundancy of information
inherent in a data format requires consistency to be maintained when writing as

5.6. SUMMARY 115

well as checking for consistency when reading. This has implications for I'T Secu-
rity, where missing consistency checks in applications can result in a vulnerability
for buffer overflow attacks. In a buffer overflow attack, an application is tricked
into copying data into a buffer which is too small, thus overwriting and replacing
adjacent machine code of the application with malicious code embedded into the
data by an attacker.

5.6 Summary

This chapter defines the BSG Reasoning approach as a formal, declarative aproach
for data format description with universal applicability which extends the BSG
model previously presented in Chapter [l

For the BSG Reasoning approach, a formal language is defined where data format
rules can be specified using predicates expressing propositions about the composition
of data based on the BSG model. In an inference process operating on a given
bitstream, these rules can be matched to a knowledge base of facts in a semi-naive
fashion, allowing further facts to be inferred until a least fixed-point is reached,
which describes the corresponding BSG instance for the given bitstream. In order
to exchange and store these rules, a compact representation of rulesets is introduced
which has been inspired by XML Common Logic.

Demonstrating its capabilities, the application of BSG Reasoning is shown to
full coverage of a subset of the PNG raster image file format which corresponds to
the PNG image “litmus test” from Chapter [3, exercising all elementary descriptive
capabilities. When evaluating this fitting set of 53 data format rules on a larger
corpus of valid PNG images, 64 of 153 samples were described to full coverage, with
the remaining 89 samples having an average coverage of 0.79. When extending the
fitting set of rules with two rules for palette colour information, 78 of 153 samples
were described to full coverage, with the remaining 75 samples having an average
coverage of 0.91. The termination of the reasoning process has to be guarded using
heuristics, which is a common problem to all approaches for describing arbitrary
data formats, as observed in Chapter Bl Another application of BSG Reasoning is
outlined with the format-aware fuzzing of bitstreams in I'T Security.

In the following discussion, central features of the BSG Reasoning approach are
illuminated which distinguish it from examined related work, such as its universal
applicability or its support of measurable, incremental construction of rulesets.

Chapter 6

Finale

6.1 Introduction

This finale concludes the thesis with a retrospection, some conclusions and an outlook
regarding future directions of format-related research in combination with the BSG
model and the BSG Reasoning approach contributed by this thesis.

6.2 Retrospection

In retrospect, a number of contributions have been made in the course of this thesis:

e Chapter 2] surveyed a number of approaches in literature which have the goal
of describing data formats. Some of these approaches claim their suitability for
describing arbitrary data formats, yet no proof is given. This resulted in the
question of how to formalise the concept of a data format, and what properties of
a formalisation are required for general applicability.

e Chapter Bl provided a research hypothesis for improving data format description,
which is used to formalise the concept of data formats and for further analysis.
The analysis showed inherent properties of data formats and presented resulting
limitations for modelling arbitrary data formats. Moreover, the analysis provided
the concept of elemental descriptive capabilities which are required for describing
arbitrary data formats, and presented a PNG raster image as “lithmus test” which
requires support for all elemental descriptive capabilities. Assessing and compar-
ing the surveyed approaches in literature shows that contrary to some claims, they
cannot, describe arbitrary data formats, as they lack the required descriptive ca-
pabilities. An exception to that observation was XCEL, which is almost complete
in terms of its descriptive capablities.

e Chapter [provided a model for describing a single instance of a data format
through the Bitstream Segment Graph (BSG) model, which employs the required
descriptive capabilities previously identified. The chapter formalised the BSG
model, presented a set of operations under which arbitrary BSG instances can be
produced, and gave both visual and RDF /N3-based digital representations. The
BSG model was finally used for describing the PNG raster image “litmus test”
and for describing the composition of an exploit in IT Security.

117

118 CHAPTER 6. FINALE

e Chapter B built on the BSG model and provided an approach for describing poten-
tially infinite sets of data format instances through the BSG Reasoning approach.
The presented approach uses logic rules in order to infer a BSG instance over a
given bitstream. The BSG Reasoning approach was finally applied in the descrip-
tion of a subset of the PNG raster image file format that includes the “lithmus
test”, reaching full coverage on a test corpus and near-complete coverage on an
extended test corpus.

6.3 Conclusions

Describing data formats is a task that is inherently complex. From understand-
ing legacy data formats that have not been publicly disclosed to data formats for
which documentation has been lost, it is about finding out which bitstream segments
serve which purpose, either serving as packaging that provides information on the
composition itself, or as payload which carries part of the actual information to be
exchanged.

The BSG model and the BSG Reasoning approach have a solid foundation in
theoretical terms, yet in practice they depend on the availability of fitting coding
and transformation functions, as well as suitable predicates for the inference process.
Yet, even with the relatively small number of coding and transformation function
as well as predicates defined in this thesis, it was possible to describe a non-trivial
subset of the PNG raster image format.

The complexity of describing data formats is a task that depends on the inher-
ent complexity of the format as required to fulfill its function, and is increased by
additional “protection considerations” or “legacy support” that its creators may have
had in mind.

6.4 Outlook

There are a number of potential opportunities for future research related to the
BSG model and the BSG Reasoning approach. Here, the computer-aided reverse-
engineering of data format rules, the use of reversible programming languages for
coding and transformation functions, the analysis of space-efficiency regarding ex-
wsting data formats, and format-aware fuzzing of bitstreams are given as examples.

6.4.1 Computer-aided reverse-engineering of data format rules

Reverse-engineering of legacy data formats and their governing rules is a non-trivial
task due to the potential complexity of data format rules and the sheer enormous
search space of potentially valid data format rules.

Regarding a small portion of a bitstream, experienced human engineers may be
capable of making sense of patterns they observe, for example by recognising bit
patterns with defined meanings, such as start codes in MPEG-2 Transport Streams.
Using the BSG model, the composition of such bitstreams can be documented manu-
ally, and using the BSG Reasoning approach, fitting sets of rules can be constructed
manually and evaluated regarding their coverage.

6.4. OUTLOOK 119

In order to generalise complex data format rules that were observed, such a pro-
cess has to be repeated over a representative amount of samples. For complex data
formats without sufficient documentation or easily apparent similarities to existing
data formats, generalising potential data format rules and testing them over the
entire corpus of samples is not feasible for human engineers alone, since the actual
process of defining rulesets, considering alternatives and testing these is still unaided
in terms of Human Computer Interaction (HCI) considerations.

Therefore, computer-aided reverse-engineering of data format rules may have
some potential to improve reverse-engineering efforts for legacy data formats. When
a human engineer may identify and document the composition of specific data, po-
tentially valid rules may be generated and tested automatically against the entire
corpus. Rather than representing data format rules as text, future work on a graph-
ical representation of data format rules may aid human engineers in their under-
standing, addressing HCI concerns. Fitting rule examples may then be proposed in
such a manner to the engineer, who may decide to include the rule and to apply it to
the entire corpus, focusing on potential problems and remaining generic bitstream
segments in individual BSG instances.

6.4.2 Use of reversible programming languages

Implementing coding and transformation functions that ensure the preservation of
information is difficult, as design mistakes or programming errors have to be pre-
vented.

While in theory, it is possible to ensure bijectivity of such functions and thus the
lossless mapping of information between different representations through the use
of Reversible Turing Machines, reversible programming languages are nowhere near
standard, established programming languages such as Java or C/C++ regarding
tool support or best practices for developers.

It would be highly interesting to allow the implementation of coding and transfor-
mation functions through reversible programming languages that would guarantee
information preservation during mappings, and thus to ensure the mapping between
internal and external representations to be correct. For example, the implementa-
tion of an established lossless compression algorithm in a reversible programming
language could be a complex, but interesting goal in terms of future research.

6.4.3 Analysis of space-efficiency regarding existing data for-
mats

The design of data formats depends on a multitude of factors, such as catering for
space efficiency. During the design process, a number of assumptions are made, for
example concerning the statistic distribution of primitive values which may favour
a certain type of encoding as it is considered to be more space-efficient.

By using the BSG model on a representative sample of format-compliant bit-
streams for a certain data format, it is possible to analyse the statistical distribu-
tion of a certain type of primitive values, which would allow statements to be made
on the space-efficiency of design choices in existing data formats, and to extract
knowledge that may improve future design choices.

Appendix A

BSG Reasoning ruleset for PNG
subset

1 (prefix bsg "http://bsg.org/bsgd/1.0/predicate/")
2 (prefix util "http://bsg.org/predicates/util/")
3 (prefix math "http://bsg.org/predicates/math/")

4

5// M1

6 (forall

7 (var segment) (var source) (var length)
8 (implies

9 (and

10 (bsg:source segment source)
11 (util:sourcelength source length)
12)

13 (and

14 (bsg:start segment 0)

15 (bsg:length segment length)
16)

17)

18)

19

20 // M2

21 (forall

22 (var segment) (var start) (var length) (var end)
23 (implies

24 (and

25 (bsg:length segment length)
26 (bsg:end segment end)

27 (math:sum start length end)
28)

29 (bsg:start segment start)

30)

31)

32

33 // M3

34 (forall

121

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ol
52
93
o4
95
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

122 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET

(var segment) (var start) (var length) (var end)
(implies
(and
(bsg:start segment start)
(bsg:end segment end)
(math:sum start length end)
)
(bsg:length segment length)
)
)

// M4
(forall
(var segment) (var start) (var length) (var end)
(implies
(and
(bsg:start segment start)
(bsg:length segment length)
(math:sum start length end)
)
(bsg:end segment end)
)
)

// Mb
(forall
(var segment) (var start) (var length) (var end)
(implies
(and
(bsg:start segment start)
(bsg:length segment length)
(bsg:end segment end)
)
(math:sum start length end)
)
)

// M6
(forall
(var leader) (var follower)
(iff
(bsg:leads leader follower)
(bsg:follows follower leader)
)
)

// M7

(forall
(var previous) (var next) (var position)
(iff

85 (and

86 (bsg:leads previous next)

87 (bsg:end previous position)

88)

89 (and

90 (bsg:start next position)

91 (bsg:follows next previous)

92)

93)

94)

95

96 // M8

97 (forall

98 (var predecessor) (var successor)

99 (implies

100 (bsg:firstSuccessor predecessor successor)
101 (bsg:successor predecessor successor)

102)

103)

104

105 // M9

106 (forall

107 (var predecessor) (var successor)

108 (implies

109 (bsg:lastSuccessor predecessor successor)
110 (bsg:successor predecessor successor)

111)

112)

113

114 // M10

115 (forall

116 (var predecessor) (var successor)

117 (iff

118 (bsg:successor predecessor successor)

119 (bsg:predecessor successor predecessor)
120)

121)

122

123 // M11

124 (forall

125 (var predecessor) (var previousSuccessor)
126 (var nextSuccessor)

127 (implies

128 (and

129 (bsg:successor predecessor previousSuccessor)
130 (bsg:leads previousSuccessor nextSuccessor)
131)

132 (bsg:successor predecessor nextSuccessor)
133)

134)

123

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

124 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET

// M12
(forall
(var predecessor) (var previousSuccessor)
(var nextSuccessor)
(implies
(and
(bsg:successor predecessor nextSuccessor)
(bsg:follows nextSuccessor previousSuccessor)
)
(bsg:successor predecessor previousSuccessor)
)
)
// M13
(forall
(var predecessor) (var successor)
(implies
(bsg:firstSuccessor predecessor successor)
(bsg:start successor 0)
)
)
// Mi4
(forall
(var predecessor) (var successor) (var length)
(implies
(and
(bsg:length predecessor length)
(bsg:lastSuccessor predecessor successor)
)
(and
(bsg:end successor length)
)
)
)
// M1b
(forall
(var predecessor) (var successor) (var end)
(implies
(and
(bsg:end successor end)
(bsg:lastSuccessor predecessor successor)
)
(bsg:length predecessor end)
)
)
// M16

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

(forall

(var root) (var rootStart) (var rootlLength) (var rootEnd)

(var rootType) (var rootSource)

(implies
(and
(bsg:
(bsg:
(bsg:
(bsg:
(bsg:
)

start root rootStart)
length root rootLength)
end root rootEnd)

type root rootType)
source root rootSource)

(bsg:resolved root true)

)
)

// M17
(forall

(var segment) (var segStart)
(var segType) (var segPredecessor)

(implies
(and
(bsg:
(bsg:
(bsg:
(bsg:
)

start segment segStart)

type segment segType)

successor segPredecessor segment)
resolved segPredecessor true)

(bsg:resolved segment true)

)
)

// F1
(forall

(var root)
(var path)

(implies

(bsg:source root path)
(bsg:semantics root "png:root")

)
)

// F2
(forall

(var root)

(exists

(var signature)
(implies

(bsg:
(and

semantics root "png:root")

(bsg:firstSuccessor root signature)

125

126 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET

235 (bsg:semantics signature "png:signature™)
236)

237)

238)

239)

240

241 // F3

242 (forall

243 (var signature)

244 (exists

245 (var firstChunk)

246 (implies

247 (bsg:semantics signature "png:signature")
248 (and

249 (bsg:leads signature firstChunk)

250 (bsg:semantics firstChunk "png:chunk")
251)

252)

253)

254)

255

256 // F4

257 (forall

258 (var chunk) (var chunkEnd) (var root) (var fileLength)
259 (exists

260 (var nextChunk)

261 (implies

262 (and

263 (bsg:semantics chunk "png:chunk")
264 (bsg:end chunk chunkEnd)

265 (bsg:predecessor chunk root)

266 (bsg:length root fileLength)

267 (math:1t chunkEnd fileLength)

268)

269 (and

270 (bsg:leads chunk nextChunk)

271 (bsg:semantics nextChunk "png:chunk")
272)

273)

214)

275)

276

277 // F5

278 (forall
279 (var chunk) (var chunkEnd) (var root) (var rootLength)
280 (implies

281 (and
282 (bsg:semantics chunk "png:chunk")
283 (bsg:end chunk chunkEnd)

284 (bsg:successor root chunk)

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

(bsg:length root rootLength)
(math:eq chunkEnd rootLength)
)
(and
(bsg:lastSuccessor root chunk)
)
)
)
// Fé
(forall
(var chunk)
(exists
(var length)
(implies
(and
(bsg:semantics chunk "png:chunk")
)
(and
(bsg:firstSuccessor chunk length)
(bsg:semantics length "png:chunk-length")
(bsg:length length 32)
)
)
)
)
/] FT
(forall (var length)

(exists (var type)
(implies

(and
(bsg:semantics length "png:chunk-length")

)

(and
(bsg:1leads length type)
(bsg:semantics type "png:chunk-type")
(bsg:length type 32)

)

)

// F8
(forall (var length) (var type) (var chunk)
(exists (var crc)
(implies
(and
(bsg:semantics length "png:chunk-length")
(bsg:value length 0)

127

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

128 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET

(bsg:leads length type)
(bsg:predecessor length chunk)
)
(and
(bsg:lastSuccessor chunk crc)
(bsg:follows crc type)
(bsg:semantics crc "png:chunk-crc")
)
)
)
)
// F9
(forall
(var crc) (var type) (var crcValue)
(implies
(and
(bsg:semantics type "png:chunk-type")
(bsg:1leads type crc)
(bsg:semantics crc "png:chunk-crc")
(bsg:resolved type true)
(util:crc type crcValue)
)
(png:crc crc crcValue)
)
)
// F10
(forall
(var length) (var lengthByteValue)
(var lengthBitValue) (var type)
(exists
(var data)
(var crc)
(implies
(and
(bsg:semantics length "png:chunk-length")
(bsg:value length lengthByteValue)
(math:1t O lengthByteValue)
(bsg:leads length type)
(bsg:predecessor length chunk)
(math:product lengthByteValue 8 lengthBitValue)
)
(and
(bsg:lastSuccessor chunk crc)
(bsg:leads type data)
(bsg:leads data crc)
(bsg:length data lengthBitValue)
(bsg:semantics data "png:chunk-data")

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

129

(bsg:semantics crc "png:chunk-crc")

)

)

// F11
(forall

(var length)
(var bytelength)
(var bitLength)
(var type)

(var data)

(implies
(and

(bsg:
(bsg:
(bsg:
(bsg:
(bsg:

semantics length "png:chunk-length")
leads length type)

leads type data)

semantics data "png:chunk-data")
value length byteLength)

(math:product byteLength 8 bitLength)

)

(bsg:length data bitLength)

)
)

// F12
(forall

(var crc)

(implies

(bsg:semantics crc "png:chunk-crc")
(bsg:length crc 32)

)
)

// F13
(forall

(var chunkSegment) (var typeSegment) (var typeValue)
(var chunkType)

(implies
(and

(bsg:
(bsg:
(bsg:
(bsg:

)
(and

semantics chunkSegment "png:chunk")
semantics typeSegment "png:chunk-type")
successor chunkSegment typeSegment)
value typeSegment typeValue)

(util:concat "png:chunk:" typeValue chunkType)

(bsg:

semantics chunkSegment chunkType)

130 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET

435)

436)

437)

438

439 // F14

440 (forall

441 (var signature)

442 (exists

443 (var a) (var b) (var c) (var d) (var e) (var f)
444 (var g) (var h)

445 (implies

446 (bsg:semantics signature "png:signature™)
447 (and

448 (bsg:firstSuccessor signature a)
449 (bsg:leads a b)

450 (bsg:leads b c¢)

451 (bsg:leads c d)

452 (bsg:leads d e)

453 (bsg:leads e f)

454 (bsg:leads f g)

455 (bsg:leads g h)

456 (bsg:lastSuccessor signature h)
457)

458)

459)

460)

461

462 // F15

463 (forall
464 (var signature) (var sig_char)
465 (implies

466 (and

467 (bsg:semantics signature "png:signature")
468 (bsg:successor signature sig_char)

469)

470 (and

471 (bsg:type sig_char "bsg:primitive")

472 (bsg:encoding sig_char

473 "http://www.dataformats.net/2009/01/25-bsg-ext-ns
474 #encoder :msbf -uint")

475 (bsg:1length sig_char 8)

476 (bsg:semantics sig_char "png:sig_char")
477)

478)

479)

480

481 // F16

482 (forall
483 (var segment)
484 (implies

131

485 (or

486 (bsg:semantics segment "png:root")
487 (bsg:semantics segment "png:signature")
488 (bsg:semantics segment "png:chunk")
489)

490 (bsg:type segment "bsg:structure")
491)

492)

493

494 // F17

495 (forall

496 (var segment) (var value) (var encoding)
497 (implies

498 (and

499 (bsg:type segment "bsg:primitive™")
500 (bsg:encoding segment encoding)

501 (bsg:resolved segment true)

002 (util:value segment value)

503)

004 (bsg:value segment value)

505)

506)

507

508 // F18

509 (forall
510 (var chunkLength)
011 (implies

012 (bsg:semantics chunkLength "png:chunk-length")
513 (and

514 (bsg:type chunkLength "bsg:primitive")

015 (bsg:encoding chunkLength

516 "http://www.dataformats.net/2009/01/25-bsg-ext-ns
017 #encoder :msbf -uint")

518)

519)

520)

521

522 // F19

523 (forall
524 (var chunkType)
925 (implies

526 (bsg:semantics chunkType "png:chunk-type")

527 (and

028 (bsg:type chunkType "bsg:primitive")

529 (bsg:encoding chunkType

230 "http://www.dataformats.net/2009/01/25-bsg-ext-ns
531 #encoder:ascii-string")

532)

533)

534)

132 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET

535

536 // F20

537 (forall

538 (var chunkCrc)
539 (implies

540 (bsg:semantics chunkCrc "png:chunk-crc")
541 (and

542 (bsg:type chunkCrc "bsg:primitive")
043 (bsg:encoding chunkCrc

544 "http://www.dataformats.net/2009/01/25-bsg-ext-ns
045 #encoder :msbf -uint")

546)

547)

548)

549

550 // F21

551 (forall
2952 (var chunkSegment) (var dataSegment)
553 (implies

554 (and

255 (bsg:semantics chunkSegment "png:chunk:gAMA")
2956 (bsg:semantics dataSegment "png:chunk-data")
557 (bsg:successor chunkSegment dataSegment)

2958)

559 (and

260 (bsg:type dataSegment "bsg:primitive™")

061 (bsg:semantics dataSegment "png:gamma-value")
262 (bsg:encoding dataSegment

563 "http://www.dataformats.net/2009/01/25-bsg-ext-ns
564 #encoder :msbf -uint")

265)

566)

567)

568

569 // F22

570 (forall
o71 (var chunkSegment) (var dataSegment)
D72 (exists

273 (var widthSegment) (var heightSegment)

D74 (var bitDepthSegment) (var colorTypeSegment)

D75 (var compressionMethodSegment) (var filterMethodSegment)
276 (var interlaceMethodSegment)

577 (implies

578 (and

579 (bsg:semantics chunkSegment "png:chunk:IHDR")
280 (bsg:semantics dataSegment "png:chunk-data")
581 (bsg:successor chunkSegment dataSegment)

582)

583 (and

084 (bsg:type dataSegment "bsg:structure")

285
286
587
088
289
290
291
592
293
594
295
296
297
298
299
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634

(bsg:
(bsg:
(bsg:
(bsg:
(bsg:
(bsg:

fi
(bsg

(bsg:

(bsg:
(bsg:
(bsg:
(bsg:

133

firstSuccessor dataSegment widthSegment)

leads widthSegment heightSegment)

leads heightSegment bitDepthSegment)

leads bitDepthSegment colorTypeSegment)

leads colorTypeSegment compressionMethodSegment)
leads compressionMethodSegment

lterMethodSegment)

:leads filterMethodSegment interlaceMethodSegment)
lastSuccessor dataSegment interlaceMethodSegment)

semantics widthSegment "png:width")
length widthSegment 32)

type widthSegment "bsg:primitive")
encoding widthSegment

"http://www.dataformats.net/2009/01/25-bsg-ext -ns

(bsg
(bsg
(bsg
(bsg

#encoder :msbf -uint")

:semantics heightSegment "png:height")
:length heightSegment 32)

:type heightSegment "bsg:primitive™")
:encoding heightSegment

"http://www.dataformats.net/2009/01/25-bsg-ext -ns

(bsg
(bsg
(bsg
(bsg

#encoder :msbf -uint")

:semantics bitDepthSegment "png:bitDepth")
:length bitDepthSegment 8)

:type bitDepthSegment "bsg:primitive™")
:encoding bitDepthSegment

"http://www.dataformats.net/2009/01/25-bsg-ext-ns

(bsg
(bsg
(bsg
(bsg

#encoder :msbf -uint")

:semantics colorTypeSegment "png:colorType")
:length colorTypeSegment 8)

:type colorTypeSegment "bsg:primitive™)
:encoding colorTypeSegment

"http://www.dataformats.net/2009/01/25-bsg-ext-ns

(bsg

"p
(bsg
(bsg
(bsg

#encoder :msbf -uint")

:semantics compressionMethodSegment
ng:compressionMethod")

:length compressionMethodSegment 8)

:type compressionMethodSegment "bsg:primitive")
:encoding compressionMethodSegment

"http://www.dataformats.net/2009/01/25-bsg-ext -ns

(bsg
(bsg
(bsg
(bsg

#encoder :msbf -uint")

:semantics filterMethodSegment "png:filterMethod")
:length filterMethodSegment 8)

:type filterMethodSegment "bsg:primitive")
:encoding filterMethodSegment

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684

134 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET

"http://www.dataformats.net/2009/01/25-bsg-ext-ns
#encoder :msbf -uint")

(bsg:semantics interlaceMethodSegment
"png:interlaceMethod")
(bsg:length interlaceMethodSegment 8)
(bsg:type interlaceMethodSegment "bsg:primitive")
(bsg:encoding interlaceMethodSegment
"http://www.dataformats.net/2009/01/25-bsg-ext -ns
#encoder :msbf -uint")

)

// F23
(forall
(var predecessor)
(var firstSuccessor)
(implies
(bsg:firstSuccessor predecessor firstSuccessor)
(bsg:leftAnchored firstSuccessor)
)
)

// F24
(forall
(var predecessor)
(var lastSuccessor)
(implies
(bsg:lastSuccessor predecessor lastSuccessor)
(bsg:rightAnchored lastSuccessor)
)
)

// F25
(forall
(var previous)
(var next)
(implies
(and
(bsg:leads previous next)
(bsg:leftAnchored previous)
)
(bsg:leftAnchored next)
)
)

// F26
(forall

685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
17
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

(var previous)
(var next)
(implies
(and
(bsg:leads previous next)
(bsg:rightAnchored next)
)
(bsg:rightAnchored previous)
)
)
/] F27
(forall
(var segment)
(implies
(and
(bsg:leftAnchored segment)
(bsg:rightAnchored segment)
)
(bsg:anchored segment)
)
)
// Number all chunks depending on IDAT type

// F28
(forall
(var rootSegment)
(var firstChunkSegment)

(implies
(and
(bsg:semantics rootSegment "png:root")
(bsg:firstSuccessor rootSegment firstChunkSegment)
(bsg:anchored firstChunkSegment)
)
(tmp:order firstChunkSegment O0)
)
)

// F29

(forall
(var previousChunkSegment)
(var nextChunkSegment)
(var previousIndex)
(var nextIndex)
(var nextChunkSemantics)

135

136 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET

735 (implies

736 (and

737 (tmp:order previousChunkSegment previousIndex)
738 (bsg:leads previousChunkSegment nextChunkSegment)
739 (bsg:anchored nextChunkSegment)

740 (not

741 (bsg:semantics nextChunkSegment "png:chunk:IDAT")
742)

743)

744 (tmp:order nextChunkSegment previousIndex)

45)

746)

747

748 // F30

749 (forall

750 (var previousChunkSegment)
751 (var nextChunkSegment)

752 (var previousIndex)

753 (var nextIndex)

754 (var nextChunkSemantics)

755

756 (implies

757 (and

758 (tmp:order previousChunkSegment previousIndex)
759 (bsg:leads previousChunkSegment nextChunkSegment)
760 (bsg:anchored nextChunkSegment)

761 (bsg:semantics nextChunkSegment "png:chunk:IDAT")
762)

763 (and

764 (math:sum previousIndex 1 nextIndex)

765 (tmp:order nextChunkSegment nextIndex)

766)

%7)

768)

769

770 // Assign png:compressed to an individual png:chunk:IDAT
771 // F31

772 (forall

773 (var rootSegment)

774 (var chunkSegment)

775 (var lastChunkSegment)

776 (var dataSegment)

T (var index)

778

779 (implies

780 (and

781 (bsg:lastSuccessor rootSegment lastChunkSegment)
782 (bsg:semantics rootSegment "png:root")

783 (bsg:semantics lastChunkSegment "png:chunk")

784 (tmp:order lastChunkSegment 1)

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

(bsg:successor rootSegment chunkSegment)
(bsg:successor chunkSegment dataSegment)
(bsg:semantics chunkSegment "png:chunk:IDAT")
(bsg:semantics dataSegment "png:chunk-data")
)
(and
(bsg:semantics dataSegment "png:compressed")
(bsg:type dataSegment "bsg:transcoder")
(bsg:transcoding dataSegment
"http://www.dataformats.net/2009/01/25-bsg-ext -ns
#transcoder:gzip")
)
)
)
// F32
(forall
(var rootSegment)
(var chunkSegment)
(var index)
(exists
(var compositeSegment)
(implies
(and
(bsg:lastSuccessor rootSegment chunkSegment)
(bsg:semantics rootSegment "png:root")
(bsg:semantics chunkSegment "png:chunk")
(tmp:order chunkSegment index)
(math:1t 1 index)
)
(and
(bsg:type compositeSegment "bsg:composite")
(bsg:semantics compositeSegment "png:composite™")
)
)
)
)
// F33
(forall
(var compositeSegment)
(exists
(var compressedSegment)
(implies
(bsg:semantics compositeSegment "png:composite")

137

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884

138 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET

(and
(bsg:successor compositeSegment compressedSegment)
(bsg:semantics compressedSegment "png:compressed")
(bsg:type compressedSegment "bsg:transcoder")

)

)

// F34
(forall
(var compressedSegment)

(exists
(var scanlineSegment)

(implies

(bsg:semantics compressedSegment "png:compressed")

(and
(bsg:successor compressedSegment scanlineSegment)
(bsg:semantics scanlineSegment "png:scanline")
(bsg:type scanlineSegment "bsg:transcoder")
(bsg:transcoding scanlineSegment

"http://www.dataformats.net/2009/01/25-bsg-ext -ns
#transcoder:scanline")

)

// F35
(forall
(var scanlineSegment)

(exists
(var pixelSegment)

(implies
(bsg:semantics scanlineSegment "png:scanline')
(and
(bsg:successor scanlineSegment pixelSegment)
(bsg:semantics pixelSegment "png:pixels")
(bsg:type pixelSegment "bsg:primitive")
)

)

// F36
(forall

139

chunkSegment dataSegment)
chunkSegment "png:chunk:IDAT")
dataSegment "png:chunk-data")
compositeSegment "png:composite")

order chunkSegment index)

type dataSegment "bsg:fragment")
order dataSegment index)

dataSegment compositeSegment)

chunkSegment dataSegment)
chunkSegment "png:chunk:IDAT")
dataSegment "png:chunk-data")

order chunkSegment index)

type dataSegment "bsg:fragment")
order dataSegment index)

belonging to the extended fitting set of rules

885 (var chunkSegment)
886 (var dataSegment)
887 (var compositeSegment)
888 (var index)

889

890 (implies

891 (and

892 (bsg:successor
893 (bsg:semantics
894 (bsg:semantics
895 (bsg:semantics
896 (tmp:

897)

898 (and

899 (bsg:

900 (bsg:

901 (bsg:successor
902)

903)

904)

905

906 /=

907 (forall

908 (var chunkSegment)
909 (var dataSegment)
910 (var index)

911

912 (implies

913 (and

914 (bsg:successor
915 (bsg:semantics
916 (bsg:semantics
917 (tmp:

918)

919 (and

920 (bsg:

921 (bsg:

922)

923)

924)

925 */

926

927 // Rule F37,

928 (forall

929 (var chunkSegment)
930 (var dataSegment)
931 (var datalength)
932

933 (exists

934 (var entrySegment)

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984

140 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET
(implies
(and
(bsg:successor chunkSegment dataSegment)
(bsg:semantics chunkSegment "png:chunk:PLTE")
(bsg:semantics dataSegment "png:chunk-data")
(bsg:length dataSegment datalength)
(math:1te 24 datalength)
)
(and
(bsg:type dataSegment "bsg:structure")
(bsg:firstSuccessor dataSegment entrySegment)
(bsg:type entrySegment "bsg:primitive")
(bsg:semantics entrySegment "png:palette-entry")
(bsg:length entrySegment 24)
)
)
)
)
// F38, belonging to the extended fitting set of rules
(forall
(var chunkSegment)
(var dataSegment)
(var datalength)
(var previousEntrySegment)
(var previousEntryEnd)
(var remaininglLength)
(exists

(var entrySegment)

(implies
(and

)

(bsg:successor chunkSegment dataSegment)
(bsg:successor dataSegment previousEntrySegment)

(bsg:semantics chunkSegment "png:chunk:PLTE")

(bsg:semantics dataSegment "png:chunk-data")

(bsg:semantics previousEntrySegment
"png:palette-entry")

(bsg:length dataSegment datalLength)

(bsg:end previousEntrySegment previousEntryEnd)
(math:sum previousEntryEnd remaininglength datalength)
(math:1te 24 remaininglength)

(and

(bsg:leads previousEntrySegment entrySegment)
(bsg:type entrySegment "bsg:primitive")

141

985 (bsg:semantics entrySegment "png:palette-entry")
986 (bsg:length entrySegment 24)

987)

988)

989)

990)

Appendix B

BSG Reasoning results of PNG
ruleset

File name # reasoning steps Completeness of BSG instance
BASIOGO1.PNG 86 1.0

BASIOG02.PNG 86 1.0

BASIOG04.PNG 86 1,0

BASIOGO8.PNG 86 1,0

BASIOG16.PNG 86 1,0

BASI2C08.PNG 86 1,0

BASI2C16.PNG 86 1,0

BASI3P01.PNG 100 0,9545454545454546
BASI3P02.PNG 114 0,9222797927461139
BASI3P04.PNG 114 0,8532110091743119
BASI3P08.PNG 100 0,49705304518664045
BASI4A08.PNG 86 1,0

BASI4A16.PNG 86 1,0

BASI6A08.PNG 86 1,0

BASI6A16.PNG 86 1,0
BASNOGO1.PNG 86 1,0
BASN0OGO02.PNG 86 1,0
BASN0OGO04.PNG 86 1,0
BASNOGO8.PNG 86 1,0
BASNOG16.PNG 86 1,0
BASN2C08.PNG 86 1,0
BASN2C16.PNG 86 1,0

Table B.1: Results of applying PNG data format rules to the PNG Test Suite (1/5).

143

144 APPENDIX B. BSG REASONING RESULTS OF PNG RULESET

File name # reasoning steps Completeness of BSG instance
BASN3PO1.PNG 100 0,9464285714285714
BASN3P02.PNG 114 0,8972602739726028
BASN3P04.PNG 114 0,7777TTT7TTT7TT778
BASN3P0O8.PNG 100 0,40279937791601866
BASN4A08.PNG 86 1,0
BASN4A16.PNG 86 1,0
BASNGAO8.PNG 86 1,0
BASNG6A16.PNG 86 1,0
BGAT4A08.PNG 86 1,0
BGAT4A16.PNG 86 1,0
BGANGAO8.PNG 86 1,0
BGANG6A16.PNG 86 1,0
BGBN4A08.PNG 100 0,9857142857142858
BGGN4A16.PNG 100 0,9990990990990991
BGWNGAO8.PNG 100 0,9702970297029703
BGYN6A16.PNG 100 0,998262380538662
CCWN2C08.PNG 100 0,9788639365918098
CCWN3P08.PNG 114 0,5045045045045045
CDFN2C08.PNG 114 0,9702970297029703
CDHN2C08.PNG 114 0,9651162790697675
CDSN2C08.PNG 114 0,9482758620689655
CDUN2C08.PNG 114 0,9834254143646409
CHIN3P04.PNG 128 0,6976744186046512
CH2N3P08.PNG 114 0,292817679558011
CMONOG04.PNG 100 0,976027397260274
CMT7N0G04.PNG 100 0,976027397260274
CMINOGO4.PNG 100 0,976027397260274
CS3N2C16.PNG 100 0,985981308411215
CS3N3P08.PNG 114 0,6640926640926641
CS5N2C08.PNG 100 0,9838709677419355
CS5N3P08.PNG 114 0,6346863468634686
CS8N2C08.PNG 86 1,0

CS8N3P08.PNG 100 0,625
CTONOGO04.PNG 86 1,0
CTIN0G04.PNG 170 0,4356060606060606
CTZN0G04.PNG 170 0,4581673306772908
FOONOGO8.PNG 72 1,0

FOON2CO08.PNG 72 1,0

FOINOGO8.PNG 72 1,0

FOIN2C08.PNG 72 1,0

Table B.2: Results of applying PNG data format rules to the PNG Test Suite (2/5).

145

File name # reasoning steps Completeness of BSG instance
F02NOGO08.PNG 72 1,0

F02N2C08.PNG 72 1,0

FO3NOGO8.PNG 72 1,0

F03N2C08.PNG 72 1,0

F04NOGO8.PNG 72 1,0

F04N2C08.PNG 72 1,0
GO3N0G16.PNG 86 1,0
GO3N2C08.PNG 86 1,0

GO3N3P04.PNG 100 0,8598130841121495
GO4N0G16.PNG 86 1,0
G04N2C08.PNG 86 1,0

G04N3P04.PNG 100 0,863013698630137
GO5N0G16.PNG 86 1,0
GO5N2C08.PNG 86 1,0

GO5N3P04.PNG 100 0,8543689320388349
GO7TN0G16.PNG 86 1,0
GO7N2C08.PNG 86 1,0

GO7N3P04.PNG 100 0,855072463768116
G10N0G16.PNG 86 1,0
G10N2C08.PNG 86 1,0

G10N3P04.PNG 100 0,8598130841121495
G25N0G16.PNG 86 1,0

G25N2C08.PNG 86 1,0

G25N3P04.PNG 100 0,8604651162790697
OIIN0G16.PNG 86 1,0

OIIN2C16.PNG 86 1,0

OI2N0G16.PNG 101 1,0

OI2N2C16.PNG 101 1,0

OI4N0G16.PNG 129 1,0

OI4N2C16.PNG 129 1,0

OI9NOG16.PNG 1389 1,0

OI9N2C16.PNG 3279 1,0
PPON2C16.PNG 100 0,3264033264033264
PPONG6AOS.PNG 100 0,2078239608801956
PSINOGO8.PNG 100 0,1015572105619499
PSIN2C16.PNG 100 0,19134673979280925
PS2NOGO08.PNG 100 0,06407518154634771
PS2N2C16.PNG 100 0,1253493013972056
S01I3P01.PNG 114 0,9469026548672567
SOIN3P0O1.PNG 114 0,9469026548672567

Table B.3: Results of applying PNG data format rules to the PNG Test Suite (3/5).

146 APPENDIX B. BSG REASONING RESULTS OF PNG RULESET

File name # reasoning steps Completeness of BSG instance
S0213P01.PNG 114 0,9473684210526315
S02N3P01.PNG 114 0,9478260869565217
S0313P01.PNG 114 0,923728813559322
SO03N3P01.PNG 114 0,925
S0413P01.PNG 114 0,9285714285714286
S04N3P01.PNG 114 0,9256198347107438
S0513P02.PNG 114 0,9104477611940298
S05N3P02.PNG 114 0,9069767441860465
S0613P02.PNG 114 0,916083916083916
SO6N3P02.PNG 114 0,9083969465648855
S07I3P02.PNG 114 0,8993288590604027
SO7N3P02.PNG 114 0,8913043478260869
S08I3P02.PNG 114 0,8993288590604027
SO8N3P02.PNG 114 0,8920863309352518
S0913P02.PNG 114 0,8979591836734694
SO9N3P02.PNG 114 0,8951048951048951
S3213P04.PNG 114 0,8816901408450705
S32N3P04.PNG 114 0,8403041825095057
S3313P04.PNG 114 0,8909090909090909
S33N3P04.PNG 114 0,8723404255319149
S3413P04.PNG 114 0,8796561604584527
S34N3P04.PNG 114 0,8306451612903226
S3513P04.PNG 114 0,8947368421052632
S35N3P04.PNG 114 0,8757396449704142
S3613P04.PNG 114 0,8820224719101124
S36N3P04.PNG 114 0,8372093023255814
S3713P04.PNG 114 0,8931297709923665
S37N3P04.PNG 114 0,875
S3813P04.PNG 114 0,8823529411764706
S38N3P04.PNG 114 0,8285714285714286
S39I3P04.PNG 114 0,9

S39N3P04.PNG 114 0,8806818181818182
S4013P04.PNG 114 0,8823529411764706
S40N3P04.PNG 114 0,8359375
TBBN1G04.PNG 114 0,9904534606205251
TBBN2C16.PNG 114 0,9939819458375125
TBBN3P08.PNG 128 0,5381205673758865
TBGN2C16.PNG 114 0,9939819458375125
TBGN3P08.PNG 128 0,5381205673758865
TBRN2C08.PNG 114 0,9910913140311804

Table B.4: Results of applying PNG data format rules to the PNG Test Suite (4/5).

147

File name

reasoning steps

Completeness of BSG instance

TBWN1G16.PNG
TBWN3PO08.PNG
TBYN3PO08.PNG
TPON1GO8.PNG
TPON2C08.PNG
TPON3PO8.PNG
TP1IN3P08.PNG
ZO00ON2C08.PNG
Z03N2C08.PNG
Z06N2C08.PNG
Z09N2C08.PNG

114
128
128
86
86
100
114
72
72
72
72

0,9965095986038395
0,5366931918656057
0,5366931918656057
1,0
1,0
0,5366071428571428
0,5336322869955157
1,0
1,0
1,0
1,0

Table B.5: Results of applying PNG data format rules to the PNG Test Suite (5/5).

Appendix C
BSG RDF /N3 Representation

The following RDF Schema definition is given for the BSG RDF /N3 representation
in order to encourage the development of BSG-aware third-party applications.

xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#"
xmlns:rdfs="http://www.w3.0rg/2000/01/rdf -schema#"
xmlns:owl="http://www.w3.0rg/2002/07/0owl#"
xmlns:skos="http://www.w3.0rg/2004/02/skos/core#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:undefined="undefined"
xmlns:bsg="http://dataformats.net/bsg/1.0/">

<owl:Class
rdf :about="http://dataformats.net/bsg/1.0/segment"/>

<owl:Class
rdf :about="http://dataformats.net/bsg/1.0/structure">
<rdfs:subClassOf
rdf :resource="http://dataformats.net/bsg/1.0/
segment "/>
</owl:Class>

<owl:Class
rdf : about="http://dataformats.net/bsg/1.0/generic">
<rdfs:subClassOf
rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
</owl:Class>

<owl:Class
rdf :about="http://dataformats.net/bsg/1.0/source">
<rdfs:subClassOf
rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
</owl:Class>

<owl:Class

149

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
ol
52
93
o4
95
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84

150

APPENDIX C. BSG RDF/N3 REPRESENTATION

rdf :about="http://dataformats.net/bsg/1.0/transcode">
<rdfs:subClassOf
rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
</owl:Class>

<owl:Class
rdf :about="http://dataformats.net/bsg/1.0/primitive">
<rdfs:subClassOf
rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
</owl:Class>

<owl:Class
rdf :about="http://dataformats.net/bsg/1.0/fragment">
<rdfs:subClassOf
rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
</owl:Class>

<owl:Class
rdf :about="http://dataformats.net/bsg/1.0/composite">
<rdfs:subClassOf
rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
</owl:Class>

<rdf :Property
rdf :about="http://dataformats.net/bsg/1.0/href">
<rdfs:range
rdf :resource="http://dataformats.net/bsg/1.0/
source"/>
<rdf :type
rdf :resource="http://www.w3.0rg/2002/07/owl
#0bjectProperty"/>
</rdf :Property>

<rdf :Property
rdf :about="http://dataformats.net/bsg/1.0/start">
<rdfs:range
rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
<rdf :type
rdf :resource="http://www.w3.0rg/2002/07/ 0wl
#0bjectProperty"/>
</rdf :Property>

<rdf :Property
rdf :about="http://dataformats.net/bsg/1.0/length">
<rdfs:range

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

151

rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
<rdf :type
rdf :resource="http://www.w3.0rg/2002/07/owl
#0bjectProperty"/>
</rdf :Property>

<rdf :Property
rdf : about="http://dataformats.net/bsg/1.0/end">
<rdfs:range
rdf :resource="http://dataformats.net/bsg/1.0/
segment "/>
<rdf :type
rdf :resource="http://www.w3.0rg/2002/07/owl
#0bjectProperty"/>
</rdf :Property>

<rdf :Property
rdf :about="http://dataformats.net/bsg/1.0/semantics">
<rdfs:range
rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
<rdf :type
rdf :resource="http://www.w3.0rg/2002/07/owl
#0bjectProperty"/>
</rdf :Property>

<rdf :Property
rdf : about="http://dataformats.net/bsg/1.0/encoding">
<rdfs:range
rdf :resource="http://dataformats.net/bsg/1.0/
primitive"/>
<rdf :type
rdf :resource="http://www.w3.0rg/2002/07/owl
#0bjectProperty"/>
</rdf :Property>

<rdf :Property
rdf :about="http://dataformats.net/bsg/1.0/codec">
<rdfs:range
rdf :resource="http://dataformats.net/bsg/1.0/
transcode"/>
<rdf :type
rdf :resource="http://www.w3.0rg/2002/07/owl
#0bjectProperty"/>
</rdf :Property>

<rdf :Property
rdf :about="http://dataformats.net/bsg/1.0/predecessor">
<rdfs:range

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

152

APPENDIX C. BSG RDF/N3 REPRESENTATION

rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
<rdf :type
rdf :resource="http://www.w3.0rg/2002/07/ 0wl
#0bjectProperty"/>
</rdf :Property>

<rdf :Property
rdf :about="http://dataformats.net/bsg/1.0/successor">
<rdfs:range
rdf :resource="http://dataformats.net/bsg/1.0/
segment"/>
<rdf :type
rdf :resource="http://www.w3.0rg/2002/07/ 0wl
#0bjectProperty"/>
</rdf :Property>

151 </rdf :RDF>

Bibliography

[Abr07al

[Abr0O7b]

[ACE*97]

[AF05]

[AGOS]

[ArmO0]

[AS03]

[Bac02]

[Ben73]

Stephen Abrams. Global Digital Format Registry
(GDFR) Classification v.1.05. Available online at
http://www.gdfr.info/docs.html, November 2007.

Stephen Abrams. Global Digital Format Registry (GDFR)
Format Model and Relationships v.1.0.7. Available online at
http://www.gdfr.info/docs.html, November 2007.

O. Avaro, P. A. Chou, Alexandros Eleftheriadis, C. Herpel,
C. Reader, and J. Signes. The MPEG-4 Systems and Descrip-
tion Languages: A Way Ahead in Audio Visual Information
Representation. SP:IC, 9(4):385-431, May 1997.

Caroline Arms and Carl Fleischhauer. Digital Formats: Fac-
tors for Sustainability, Functionality, and Quality. In ISé&T,
Washington, DC, 2005. The Society for Imaging Science and
Technology.

Stephen Abrams and Andrea Goethals. Global Digital For-
mat Registry (GDFR) Data Model v.5.0.14. Available online
at http://www.gdfr.info/docs.html, May 2008.

Caroline Arms. Keeping Memory Alive: Practices for Preserving
Digital Content at the National Digital Library Program of the
Library of Congress. RLG DigiNews, 4, 2000.

Stephen L. Abrams and David Seaman. Towards a Global
Digital Format Registry. In World Library and Information
Congress: 69th IFLA GeneralConference and Council, Berlin,
August 2003.

Godmar Back. DataScript - A specification and scripting lan-
guage for binary data. In Proceedings of Generative Program-
ming and Component Engineering (GPCE 2002), volume 2487
of Lecture Notes in Computer Science, pages 6677, 2002.

Charles H. Bennett. Logical reversibility of computation. IBM
Journal of Research and Development, 17(2):525-532, 1973.

153

154

[BHSTOS]

[BPVAWKO6]

[Bro05]

[CCS00]

[CCS02]

[CFP+04]

[CGTS9)

[Chob9|

[CSF+08)]

[Dev03]

[DN]

BIBLIOGRAPHY

Sebastian Beyl, Volker Heydegger, Jan Schnasse, and Manfred
Thaller. Final XCDL Specification. Project "Planets", Sub-
Project PC/2, Deliverable D7, May 2008.

Ian Shaw Burnett, Fernando Peirera, Rik Van de Walle, and
Rob Koenen, editors. The MPEG-21 Book. John Wiley and
Sons Ltd, 2006.

Adrian Brown. PRONOM 4 Information Model. Avail-
able online at http://www.nationalarchives.gov.uk-
/aboutapps/fileformat /pdf/pronom_ 4 info model.pdf,
January 2005.

CCSDS. The Data Description Language EAST Specification.
Consultative Committee for Space Data Systems (CCSDS),
2000.

Reference Model for an Open Archival Information System
(OAIS), volume Blue Book. Consultative Committee for Space
Data Systems, January 2002.

Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers,
and Frederick Smith. Hancock: A language for analyzing trans-
actional data streams. ACM Transactions on Programming Lan-
guages and System (TOPLAS), 26(2):301-338, March 2004.

Stefano Ceri, Georg Gottlob, and Letizia Tanca. What You
Always Wanted to Know About Datalog (And Never Dared to

Ask). IEEE Transactions on Knowledge and Data Engineering,
1(1):146-166, March 1989.

Noam Chomsky. On certain formal properties of grammars.
Journal of Information and Control, 2(2):137-167, June 1959.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and
W. Polk. Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile. RFC 5280, May
2008.

Sylvain Devillers. An Extension of BSDL for Multimedia Bit-
stream Syntax Description. In Furo-Par, pages 1216-1223, 2003.

Wesley De Neve. Description-driven media resource adaptation.

[DNVDDS*06] Wesley De Neve, Davy Van Deursen, Davy De Schrijver, Sam

Lerouge, Koen De Wolf, and Rik Van de Walle. BFlavor: A
harmonized approach to media resource adaptation inspired by
MPEG-21 BSDL and XFlavor. EURASIP Signal Processing:
Image Communication, 21(10):862 —889, 11 2006.

BIBLIOGRAPHY

[Duc03]

[Dym91]

[EH02|

[Ele95]

[Ele96]

[Ele97]

[ETS05]

[ETS10]

[FGO5]

[FMWO06]

[Fra97|

155

Portable Network Graphics (PNG) Specification (Second Edi-
tion): Information technology U- Computer graphics and image
processing U— Portable Network Graphics (PNG): Functional
specification. ISO/IEC 15948:2003 (E), November 2003.

Marc Dymetman. Inherently Reversible Grammars, Logic Pro-
gramming and Computability. In Proc. ACL Workshop on Re-
versible Grammar in Natural Language Processing, pages 20-30,
1991.

Alexandros Eleftheriadis and Danny Hong. XFlavor: bridging
bits and objects in media representation. In Proceedings of the
IEEE International Conference on Multimedia and Expo, 2002,
volume 1, pages 773-776, 2002.

Alexandros Eleftheriadis. A Syntactic Description Language
for MPEG-4. Contribution ISO/IEC JTC1/SC29/WG11
MPEG95/M0546, November 1995.

Alexandros Eleftheriadis. The Benefits of Using MSDL-S for
Syntax Description. Contribution ISO/IEC JTC1/SC29/WG11
MPEG96,/M1555, November 1996.

Alexandros Eleftheriadis. Flavor: A Language for Media Repre-
sentation. In Proceedings of the 5th ACM International Confer-
ence on Multimedia (MM97), pages 1-9, New York, NY, USA,
1997. ACM Press.

ETSI TS 101 349 V8.27.0 (2005-09): Digital cellular telecom-
munications system (Phase 2+); General Packet Radio Service
(GPRS); Mobile Station (MS) - Base Station System (BSS) in-
terface; Radio Link Control/ Medium Access Control (RLC/-
MAC) protocol. ETSI 3GPP, September 2005.

ETSI TS 124 007 V9.0.0 (2009-03): Digital cellular telecommu-
nications system (Phase 2-+); Universal Mobile Telecommuni-
cations System (UMTS); LTE; Mobile radio interface signalling
layer 3; General Aspects. ETSI 3GPP, January 2010.

Kathleen Fisher and Robert Gruber. PADS: A Domain-Specific
Language for Processing Ad Hoc Data. In Proceedings of the
2005 ACM SIGPLAN conference on Programming language de-
sign and implementation, pages 295-304, 2005.

Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. The
Next 700 Data Description Languages. In Proceedings of the 33rd
ACM SIGPLAN-SIGACT symposium on Principles of Program-
ming Languages (POPL 2006), 2006.

Michael P. Frank. The R Programming Language and Compiler.
Mit reversible computing project memo m8, MIT, July 1997.

156

[HBSMOS]

[HEOS]

[Hed04]

[HFS*09]

[HMT*08|

[HSB+08]

[HU79|

[1SO00]

[ISO05a]

BIBLIOGRAPHY

Michael Hartle, Arsene Botchak, Daniel Schumann, and Max
Miihlhauser. A Logic-based Approach to the Formal Description
of Data Formats. In Proceedings of The Fifth International Con-
ference on Preservation of Digital Objects (iPRES), pages 292—
299, London, United Kingdom, September 2008. The British
Library.

Danny Hong and Alexandros Eleftheriadis. XFlavor: providing
XML features in media representation. Multimedia Tools and
Applications, 39(1):101-116, August 2008.

Shawn Hedman. A First Course in Logic: An Introduction to
Model Theory, Proof Theory, Computability, and Complexity.
Oxford University Press, 2004.

Michael Hartle, Andreas Fuchs, Marcus Sténder, Daniel
Schumann, and Max Miihlhiuser. Data Format De-
scription and its Applications in IT Security. Interna-

tional Journal On Advances in Security, 2(1):90-111, 2009.
http://www.iariajournals.org/security /.

Michael Hartle, Friedrich-Daniel Méller, Slaven Travar, Benno
Kroger, and Max Miihlhduser. Using Bitstream Segment
Graphs for Complete Data Format Instance Description. In
José Cordeiro, Boris Shishkov, Alphes Kumar Ranchordas,
and Markus Helfert, editors, Proceedings of The Third Inter-
national Conference on Software and Data Technologies (IC-
SOFT), pages 198-205, Porto, Portugal, August 2008. Institute
for Systems and Technologies of Information, Control and Com-
munication.

Michael Hartle, Daniel Schumann, Arsene Botchak, Erik Tews,
and Max Miihlhduser. Describing Data Format Exploits us-
ing Bitstream Segment Graphs. In Proceedings of The Third
International Multi-Conference on Computing in the Global In-
formation Technology (ICCGI), pages 119-124, Athens, Greece,
March 2008. IARIA, IEEE Press, New York, NY.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages and Computation. Addison-Wesley,
1979.

ISO/IEC 13818-1:2000: Information technology — Generic cod-
ing of moving pictures and associated audio information: Sys-
tems, 2000.

ISO/IEC 14496-12:2005: Information technology — Coding of
audio-visual objects — Part 12: ISO base media file formta, 2005.

BIBLIOGRAPHY

[ISO05b]

[1T95]

[IT97]

[1T01]

[1T02a]

[IT02b]

[1T02¢|

[IT06]

[Lan61]

[Lar99)]
[LC04]

[LDTO1]

[Lec63]

157

ISO/IEC 7816-4:2005: Identification cards — Integrated circuit
cards — Part 4: Organization, security and commands for inter-
change. ISO/IEC, 2005.

ITU-T. Recommendation H.262 (07/95) — Information Tech-
nology - Generic Coding of Moving Pictures and Associated Au-
dio Information: Video. ITU-T, Geneva, July 1995.

ITU-T. Recommendation X.680 (12/97) — Abstract Syntax
Notation One (ASN.1): Specification of Basic Notation. ITU-T,
Geneva, December 1997.

ITU-T. Recommendation X.693 (12/01) — ASN.1 Encoding
Rules: XML Encoding Rules (XER), December 2001.

ITU-T. Recommendation X.690 (07/02) — ASN.1 Encoding
Rules: Specification of Basic Encoding Rules (BER), Canoni-
cal Encoding Rules (CER) and Distinguished Encoding Rules
(DER). ITU-T, Geneva, July 2002.

ITU-T. Recommendation X.691 (07/02) — ASN.1 Encoding
Rules: Specification of Packed Encoding Rules (PER). ITU-T,
Geneva, July 2002.

ITU-T. Recommendation X.692 (03/02) — ASN.1 Encoding
Rules: Specification of Encoding Control Notation (ECN). ITU-
T, Geneva, March 2002.

ITU-T. Recommendation H.323 (06/06) — Packed-based mul-
timedia communications systems. I'TU-T, Geneva, June 2006.

Rolf Landauer. Irreversibility and Heat Generation in the Com-
puting Process. IBM Journal of Research and Development,
5(3):183-191, 1961.

John Larmouth. ASN.1 Complete. Morgan Kaufmann, 1999.

Lei Li and Krishnendu Chakrabarty. On Using Exponential-
Golomb Codes and Subexponential Codes for System-on-a-Chip
Test Data Compression. Journal of Electronic Testing: Theory
and Applications, 20:667-670, 2004.

J. Larmouth, O. Dubuisson, and J. Thorpe. Application of the
ASN.1 specification technique to the Bluetooth Service Discov-
ery Protocol. In In Proceedings of the ACM Symposium on Mo-
bile Ad Hoc Networking & Computing (MobiHoc), Long Beach,
California, October 2001.

Yves Lecerf. Machines de Turing réversibles, Récursive insolu-
bilité en n € N de ltéquation u = ™, o # est un “isomorphisme
de codes”. Comptes Rendus, 257:2597-2600, 1963.

158 BIBLIOGRAPHY

[Lor01] Raymond A. Lorie. Long Term Preservation of Digital Infor-
mation. In In Proceedings of the Joint Conference on Digital
Libraries (JCDL 2001), pages 346-352, 2001.

[Mar07] Marsu. Photoshop CS2/CS3, Paint Shop Pro 11.20 .PNG File
Buffer Overflow. http://milwOrm.com/exploits/3812, 2007.

[MCO00| Peter J. McCann and Satish Chandra. PacketTypes: Abstract
specification of network protocol messages. In Proceedings of

ACM Conference of Special Interest Group on Data Communi-
cations (SIGCOMM), pages 321-333, August 2000.

[MCO03] James D. Myers and Alan Chappell. Binary Format Description
(BFD) Language, 2003.

[Ock98] John Marc Ockerbloom. Mediating Among Diverse Data For-
mats. PhD thesis, Carnegie Mellon Computer Science, 1998.

[Ock06] John Mark Ockerbloom. The Next Mother Lode
for Large-scale Digitization? Historic Serials, Copy-
rights, and Shared Knowledge. Available online at

http:/ /repository.upenn.edu/cgi/viewcontent.cgi?article=1071&context=
April 2006.

[PHB*10] Alan Powell, Steve Hanson, Mike Beckerle, Martin West-
head, Geoff Judd, and Robert E. McGrath. Data Format
Description Language (DFDL) v1.0 Core Specification (In-
ternal Committee Working Document). Available online at
http://forge.gridforum.org/sf/docman/do/downloadDocument/pro
January 2010.

[PHH*03] Gabriel Panis, Andreas Hutter, Jorg Heuer, Hermann Hellwag-
ner, Harald Kosch, Christian Timmerer, Sylvain Devillers, and
Myriam Amielh. Bitstream Syntax Description: A Tool for Mul-
timedia Resource Adaptation within MPEG-21. EURASIP Sig-
nal PRocessing: Image COmmunication Journal, 18(8):721-747,
September 2003.

[RG99] Seamus Ross and Ann Gow. Digital Archaeology: Rescuing Ne-
glected and Damaged Data Resources. Library Information Tech-
nology Centre, South Bank University, February 1999.

[RHO5] Seamus Ross and Margaret Hedstrom. Preservation research and
sustainable digital libraries. International Journal on Digital
Libraries, 5(4):317-324, 2005.

[Rot99] Jeff ~ Rothenberg. Ensuring the Longevity
of Digital Information. Available online at
http://www.clir.org/pubs/archives/ensuring.pdf, February

1999.

http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.dfdl-wg/docman.root.current_0/doc15720/3

BIBLIOGRAPHY 159

[SHCO08] Jan Schnasse, Volker Heydegger, and Elona Chudobkaite. Fi-
nal XCEL Specification. Project "Planets", Sub-Project PC/2,
Deliverable D8, July 2008.

[Sip97| Michael Sipser. Introduction to the Theory of Computation.
PWS Publishing, 1997.

[UDF09] UDFR. Unified Digital Formats Registry (UDFR)
Proposal and roadmap. Available online at
http://gdfr.info/udfr _docs/Unified Digital Formats Registry.pdf,
March 2009.

[UlI89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base
Systems, Volume II. Computer Science Press, 1989.

[VCE03] Anthony Vetro, Charilaos Christopoulos, and Touradj Ebrahimi.
From the guest editors: Universal Media Access. IEEE Signal
Processing Magazine, 20(2):16-16, March 2003.

[VDDNDSVAWO08| Davy Van Deursen, Wesley De Neve, Davy De Schrijver, and
Rik Van der Walle. gBFlavor: a new tool for fast and automatic

generation of generic bitstream syntax descriptions. Multimedia
Tools Appl., 40(3):453-494, 2008.

[Vie95] Carlin J. Vieri. Pendulum: A reversible computer architecture.
Master’s thesis, MIT Artificial Intelligence Laboratory, 1995.

[vS98] Willem van Schaik. PngSuite - the offi-
cial set of PNG test images, December 1998.
http://www.schaik.com /pngsuite/pngsuite.html, last accessed
2008-01-02.

[WAKC97| Daniel C. Wang, Andrew W. Appel, Jeff L. Korn, and Serra S.
Christopher. The Zephyr Abstract Syntax Description Lan-
guage. In Proceedings of the Conference on Domain-Specific
Languages, Santa Barbara, California, October 1997.

[Wes02] Martin Westhead. BinX - The Binary XML Description Lan-
guage. Technical report, epcc, April 2002.

[Wet98] Michael Wettengel. German Unification and Electronic Records,
chapter 18, pages 265-276. Oxford University Press, 1998. ISBN
0198236336.

[WHK97] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access
Protocol (v3). RFC 2251, December 1997.

[YGO7] Tetsuo Yokoyama and Robert Gliick. A Reversible Programming
Language and its Invertible Self-Interpreter. In Proceedings of
the 2007 ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 144-153. ACM,
New York, USA, 2007.

	Introduction
	Motivation
	Formal descriptions over natural-language descriptions
	Declarative approaches over procedural approaches
	Research domains
	Data format instances and data formats

	Research Problems
	Contributions and Outline
	Acknowledgements

	State of the Art
	Introduction
	Digital Preservation
	Data Format Registries
	Open Archival Information System Reference Model
	Typed Object Model
	eXtensible Characterisation Language
	Data Format Description Language

	Multimedia
	MPEG 1/2 Methodology
	Formal Language for Audio-Video Object Representation
	Bitstream Syntax Description Language
	BFlavor and gBFlavor

	Telecommunication
	Abstract Syntax Notation One
	Concrete Syntax Notation 1

	Discussion
	Consideration of examined Related Work
	General observations
	Other approaches

	Summary

	Analysis
	Introduction
	Research Hypothesis
	Formalising Data Format Description
	Representing primitive information
	Representing complex information
	Validating representations
	Mapping between representations

	Properties of the Formalisation
	Suitability of bijective mapping functions for data formats
	Sufficiency for lossless and lossy data formats
	Sufficiency and necessity of descriptive capabilities
	Using a PNG raster image as ``litmus test''

	Limits to Data Format Description
	Overview
	Computability and decidability of functions
	Tractability of functions
	One-to-one correspondence of sets
	Summary

	Discussion
	Summary

	Describing Data Format Instances
	Introduction
	Definition of the Bitstream Segment Graph model
	Defining codings and transformations
	Defining bitstream segments
	Defining a Bitstream Segment Graph

	Representation of BSG instances
	Visual representations
	Digital representation

	Construction and modification of BSG instances
	Modifying BSG instances through operations
	Measuring completeness of a description
	Providing tool support with the Apeiron BSG Editor

	Applications of the BSG model
	Description of the PNG raster image ``litmus test''
	Describing exploits in IT Security

	Discussion
	Summary

	Describing Data Formats
	Introduction
	Definition of the BSG Reasoning aproach
	Making propositions
	Using predicates
	Defining rules
	Matching rule conditions
	Inference process

	Representation of BSG Reasoning rulesets
	Applications of BSG Reasoning
	Description of a PNG data format subset
	Format-aware fuzzing of bitstreams

	Discussion
	Summary

	Finale
	Introduction
	Retrospection
	Conclusions
	Outlook
	Computer-aided reverse-engineering of data format rules
	Use of reversible programming languages
	Analysis of space-efficiency regarding existing data formats

	BSG Reasoning ruleset for PNG subset
	BSG Reasoning results of PNG ruleset
	BSG RDF/N3 Representation

