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vAbstractThe concept of data formats is central to information storage and exchange, asit coins the process of how information is written to and read back from format-compliant data by senders and receivers. In contrast to the widespread use ofnatural-language descriptions intended for human engineers, and of procedural de�-nitions of format-compliant components, describing data format knowledge in a for-mal, declarative manner is necessary for making this knowledge machine-processible,enabling its �exible, automated application to format-compliant data. To that ef-fect, data format knowledge is considered both on the level of format-compliantdata as a data format instance and on the level of a data format consisting of suchinstances.In a survey of current State of the Art in Data Format Description, examinedrelated work from the data-centric research domains of Digital Preservation, Multi-media and Telecommunication show a lack suitable formalised models for universalapplicability. As well, examined related work provides only a subset of the four nec-essary descriptive capabilities to describe data which may be primitive, structured,transcoded or fragmented.In the analysis, a formalisation is presented which is based on the research hy-pothesis that a data format de�nes a normative set of lossless information repre-sentations, where there exists a bijective mapping between interal representationsof senders / receivers, and external representations that are exchanged as format-compliant data. The formalisation is universally applicable for arbitrary data for-mats, is suitable for both so-called lossless and lossy data formats, and leads to thenotion of four elementary descriptive capabilities, which exactly match those used inthe State of the Art survey. A valid Portable Network Graphics (PNG) raster imageis given as �litmus test� for data format description, as its description exercises allfour elementary descriptive capabilities. Based on the formalisation, it is shown thata universal approach to data format description is too powerful in computationalterms as to be able to guarantee termination, that the tractability of bijective map-ping functions and their inverses is neither given nor necessarily related, and thatone-to-one correspondence of a bijective mapping function can be guaranteed usinginformation-preserving, Turing-complete Reversible Turing Machines.Building on the formalisation given in the analysis, the thesis de�nes the Bit-stream Segment Graph (BSG) model for describing arbitrary data format instances.For BSG instances, representations are de�ned both for visualisation as well asfor storage and exchange through machine-processible, RDF-based representations.Incremental construction and modi�cation of BSG instances is enabled through aclosed set of operations, and the �coverage� of a BSG instance is de�ned as a measureof its completeness. Actual tool support for the construction, modi�cation and ex-ploration of BSG instances on arbitrary data is provided through the Apeiron BSGEditor. Applications of the BSG model are demonstrated through the descriptionof the PNG image �litmus test� from the previous analysis, and for the descriptionof an exploit in the context of IT Security.Building on the BSG model, the thesis de�nes the BSG Reasoning approach fordescribing arbitrary data formats as potentially in�nite sets of data format instances.Using logic rules, a BSG instance can be inferred for a given bit sequence which isconsidered to be format-compliant data. The BSG Reasoning approach de�nes the



virepresentation of rulesets for storage and exchange. Applications of BSG Reasoningare demonstrated through the description of a PNG image �le format subset andthrough an outlined approach for format-aware fuzzing of bitstreams in IT Security.The PNG image �le format subset described through BSG Reasoning exercises allelementary descriptive capabilities previously identi�ed in the analysis, and it isshown that the resulting set of logic rules, despite a low number of format-speci�crules, already yields a high coverage of inferred BSG instances on a number of validPNG images.The thesis closes with a retrospection, conclusions and an outlook on potentialfuture research on the BSG model and the BSG Reasoning approach, focusing onaspects such as the computer-aided reverse-engineering of data format rules, or theuse of reversible programming languages for the de�nition of lossless coding andtransformation functions.



viiZusammenfassungDie Speicherung und der Austausch von Informationen ist eng mit dem Be-gri� des Datenformats verknüpft. Ein Datenformat legt fest, wie Informationenformat-konform von einem Sender als Daten geschrieben und aus diesen von einemEmpfänger wieder gelesen werden können. Obwohl natürlich-sprachliche Beschrei-bungen für menschliche Ingenieure heute häu�g genutzt werden, und format-konformeAbläufe teilweise prozedural beschrieben werden, hätte eine formale, deklarativeBeschreibung von Datenformat-Wissen den Vorteil, daÿ dieses ohne Bindung aneinen konkreten Ablauf und ohne den Umweg über Menschen maschinen-verarbeitbarist, und damit �exibel und automatisiert auf format-konforme Daten angewandt wer-den kann. Im Rahmen dieser Dissertation wird Datenformat-Wissen sowohl auf derEbene von format-konformen Daten als Datenformat-Instanz als auch auf der Ebeneeines Datenformats betrachtet, welches aus Datenformat-Instanzen besteht.Im Rahmen einer Begutachtung verwandter Arbeiten im Bereich der Datenformat-Beschreibung werden Ansätze in den daten-orientierten Forschungsgebieten der Dig-italen Erhaltung, Multimedia und Telekommunikation untersucht, und es wird fest-gestellt, dass geeignete, formalisierteModelle fehlen, welche universell für die Beschrei-bung von Datenformaten anwendbar sind. Darüber hinaus hat sich gezeigt, dassdie betrachteten Ansätze nur teilweise die notwendigen beschreibenden Fähigkeitenhaben, welche erforderlich sind, um den Aufbau von Daten zu beschreiben, welcheprimitive Werte enthalten, eine Struktur darstellen, einer Block-Transformation un-terzogen wurden oder aber in fragmentierter Form vorliegen.In einer Analyse wird daher eine Formalisierung des Datenformat-Begri�s en-twickelt, welche von der Annahme ausgeht, dass ein Datenformat ein normatives Setvon verlustfreien Informations-Repräsentationen darstellt. Für ein solches Set ex-istiert eine bijektive Abbildung zwischen der internen Repräsentation eines Senders/ Empfängers und der korrespondierenden externen Repräsentation, welche in Formformat-konformer Daten ausgetauscht wird. Diese Formalisierung ist universell fürbeliebige Datenformate anwendbar, also auch für sogenannte verlustbehaftete undverlustfreie Datenformate, und führt zum Konzept von elementaren beschreibendenFähigkeiten, welche sich genau mit denen decken, welche in der Begutachtung ver-wendet wurden. Auf Basis dieser Fähigkeiten wird ein gültiges Bild im DateiformatPortable Network Graphics (PNG) als �Lackmus-Test� für Ansätze der Datenformat-Beschreibung vorgestellt, da dessen Beschreibung alle vier elementaren beschreiben-den Fähigkeiten voraussetzt. Auf Basis der Formalisierung wird dann gezeigt, dassein universell anwendbarer Ansatz zur Datenformat-Beschreibung zu mächtig ist, alsdass dessen Terminierung noch garantiert werden kann. Ferner wird gezeigt, dassbijektive Abbildungsfunktionen und ihre Inversen weder e�zient sein müssen, nochdass die E�zienz einer bijetiven Abbildungsfunktion und ihrer Inversen im Zusam-menhang stehen müssen. Zu guterletzt wird gezeigt, dass die für eine bijektive Ab-bildung erforderliche Korrespondenz von internen und externen Repräsentationendadurch garantiert werden kann, dass man diese über eine informations-erhaltende,Turing-vollständige �Reversible Turing-Maschine� de�niert.Aufbauend auf der Formalisierung der Analyse wird in dieser Dissertation dasBitstream Segment Graph (BSG)-Modell de�niert, welches der Beschreibung be-liebiger Datenformat-Instanzen dient. Für Instanzen des BSG-Modells sind sowohlvisuelle Repräsentationen als auch maschinen-verarbeitbare, RDF-basierte Repräsen-



viiitation für die Speicherung und den Austausch de�niert. Die schrittweise Konstruk-tion und Modi�kation von BSG-Instanzen wird durch ein geschlossenes Set vonOperationen ermöglicht, und mittels dem Maÿ der �Abdeckung� einer BSG-Instanzkann deren Vollständigkeit bestimmt werden. Mithilfe des Apeiron BSG Editor istdie Konstruktion, Modi�kation und Betrachtung von BSG-Instanzen auf eigenenDaten in der Praxis möglich. Die Anwendung des BSG-Modells wird demonstri-ert, indem eine Beschreibung des PNG-Bilds aus dem �Lackmus-Test� der Anal-yse vorgenommen wird, und indem der Aufbau eines Exploit im Kontext der IT-Sicherheit mittels einer Beschreibung näher erklärt wird.Aufbauend auf dem BSG-Modell beschreibt diese Dissertation den BSG Reasoning-Ansatz, um beliebige Datenformate als potentiell unendliche Sets von Datenformat-Instanzen zu beschreiben. Mithilfe von Logik-Regeln kann eine BSG-Instanz aufeiner gegebenen Bitfolge erschlossen werden, von der initial angenommen wird, dasssie format-konform ist. Dieser Ansatz de�niert auch die Repräsentation von Regel-Sets zur Speicherung und zum Austausch. Die Anwendung des BSG Reasoning-Ansatzes wird durch die Beschreibung eines Subsets des PNG-Datenformats demon-striert, sowie durch die Beschreibung eines Ansatzes zum format-spezi�schen Fuzzingvon Binärdaten im Kontext von IT-Sicherheit ergänzt. Die Beschreibung des PNG-Datenformat-Subsets mittels des BSG Reasoning-Ansatzes nutzt alle vier elementarenbeschreibenden Fähigkeiten, welche zuvor in der Analyse identi�ziert wurden, undes wurde gezigt, dass das hierfür verwendete Set an Logik-Regeln trotz seines gerin-gen Umfangs bereits in der Lage ist, BSG-Instanzen mit einem hohen Grad anAbdeckung für eine Reihe von gültigen PNG-Bildern zu erschliessen.Die Dissertation schliesst mit einem Rückblick über die gesamte Arbeit, ziehtSchlussfolgerungen und bietet einen Ausblick auf kün�ge Forschung im Hinblick aufdas BSG-Modell und den BSG Reasoning-Ansatz, speziell im Hinblick auf Aspektewie der maschinell unterstützten Analyse von Daten und den jeweils zugrundeliegen-den Datenformat-Regeln, oder aber der Verwendung von reversiblen Programmier-sprachen zur De�nition von Kodierungs- und Transformationsfunktionen.
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Chapter 1Introduction
1.1 MotivationThe concept of data formats is central to information storage and exchange. A dataformat de�nes how information is represented digitally as bits, bytes or characters,forming higher-level data structures. It therefore coins the process of how to deter-mine syntax and semantics of data in order to access the information representedby it, and to process it in a meaningful manner.To pass digitally represented information between a sender and a receiver, anagreement is needed on the semantics of data to be transmitted, and on the dataformat to be used. The agreement is used by a sender to determine how to encodeand serialise information to be sent into a sequence of bits, which is then passedon as a message. The actual composition of format-compliant data forming themessage depends on the data format agreed for the exchange, and is thus only givenimplicitly. Therefore, the agreement is also used by a receiver of the message, wherethe bit sequence is parsed and decoded, enabling access to represented informationfor further processing. In this process, data format knowledge is applied to makethe actual composition of format-compliant data explicit again.It is therefore necessary that some representation of the data format is given andshared between these parties as part of the agreement, leading to the problem ofdescribing data format knowledge.1.1.1 Formal descriptions over natural-language descriptionsThe way in which data formats are described and represented depends on the in-tended audience. Both natural-language descriptions for human engineers and for-mal descriptions for machine-processing exist:� Natural-language descriptions intended for human engineers are still domi-nant at the time of writing. Translating data format knowledge from natural-language descriptions to machine-executable implementations, made necessary bythe sheer volume of format-compliant data as well as by the complexity of itsrepresentation, depends on quali�ed human labour.� Formal descriptions intended for machine-processing are currently present inspeci�c, limited domains only. Universal applicability for describing arbitrary1



2 CHAPTER 1. INTRODUCTIONdata formats in general depends on the availability of a formalised model thatguarantees this property.Accessing represented information in format-compliant data strongly depends onformat-compliant implementations. Existing implementations are threatened byrapid technological change, which necessitates constant adaptation or replacementfor them to remain usable. Yet, the problem with natural-language descriptions isthat the application of data format knowledge to a problem depends on quali�ed hu-man labour, which is limited by its cost and availability. Lacking format-compliantimplementations, the illegibility of represented information e�ectively results in itsloss.Employing formal descriptions of data formats in a machine-processible man-ner is a desirable alternative for making data format knowledge machine-accessibleand applicable without inherently depending on human labour. Yet, a suitable,formalised model still remains essential for the universal applicability of formal de-scriptions.1.1.2 Declarative approaches over procedural approachesThe problem of formally describing data format knowledge can be approached ineither a procedural or declarative manner:� In a procedural manner: Using languages similar to existing programminglanguages like Java or C/C++, procedural approaches de�ne �xed, speci�c algo-rithms for processing format-compliant data, such as for parsing and decoding, orfor encoding and serialising. In contrast to declarative approaches, the underly-ing rules and constraints of format-compliant data are given only indirectly, albeitbeing present in the de�ned algorithms.� In a declarative manner: Approaches using a declarative manner de�ne theunderlying rules and constraints that govern format-compliant data. In contrastto procedural approaches, no speci�c algorithm for processing format-compliantdata is given.For a speci�c purpose, procedural approaches make it straightforward to write al-gorithms to process format-compliant data. Yet, the problem with procedural ap-proaches is that di�erent purposes lead to di�erent algorithmic implementations,even when the same underlying rules and constraints of the very same data formatstill apply.Using a declarative approach, these underlying rules and constraints can be ex-posed for a wide range of applications, retaining the freedom of using the sameformat-speci�c knowledge for di�erent purposes. Although more complex, the declar-ative approach has the bene�t of increased �exibility.For example, it may be desirable to access only a certain subset of informationcontained in large volumes of format-compliant data, thereby using resources moree�ciently and speeding up the parsing process. Likewise, when part of format-compliant data is known to be corrupted, and thus not to be trusted to containvalid information, accessing the still-valid portion and trying to �x the corruption



1.1. MOTIVATION 3strongly depends on the availability of data format knowledge that can be adaptedand applied in a �exible manner.1.1.3 Research domainsThe problem of describing data formats is of concern to data-centric domains ofComputer Science, especially Digital Preservation, Multimedia and Telecommunica-tion:� In Digital Preservation, the problem of preserving long-term access to digitalinformation for future generations threatens digitally represented cultural heritage[RH05]. A major use case for related work in this domain is the migration of databetween data formats to prevent technological obsolescence and the subsequentloss of information.� InMultimedia, two use cases related to data formats are the normative de�nitionof data formats as well as the high-level adaptation of digital objects for UniversalMedia Access [VCE03]. Regarding the former use case, normative de�nition ofdata formats is required for the speci�cation of new data formats, allowing theinteroperability of systems working with multimedia data. Concerning the latteruse case, Universal Media Access depends on the timely delivery of multimediaresources over heterogenous networks to end-user devices with varying decodingand playback capabilities. High-level, on-the-�y adaptation of digital objects tothe capabilities and limitations of network and end-user devices strongly dependson data format knowledge to achieve meaningful adaptations.� InTelecommunication, a primary use case is the normative de�nition of protocoldata units (PDUs). Similar to Multimedia, there is the problem of describingcommunication protocols for interoperability of parties, which also covers thedata format of PDUs to be transmitted.Related work exists for formally describing data formats in a declarative and pro-cedural manner, yet their underlying models are often based on domain-speci�cassumptions that do not hold in general. Examined related work does not provide aformalised model that is geared towards universal applicability, although universalapplicability is sometimes claimed.1.1.4 Data format instances and data formatsWhen considering the problem of formally describing data format knowledge, it ishelpful to distinguish between a data format instance and a data format :� Data format instance: A data format instance has a bit sequence, where in-formation is represented conforming to its data format. Describing a data for-mat instance in a machine-processible manner provides a means to authorita-tively express how speci�c information is represented, correcting misunderstand-ings present in applications and in the understanding of human engineers. Forexample, a Portable Network Graphics (PNG) raster image is a data format in-stance for the PNG �le format, where a description of this instance can show theexact bits responsible for stating the width of the given PNG image �le.



4 CHAPTER 1. INTRODUCTION� Data format: A data format has a potentially in�nite number of its data formatinstances, which conform to a common set of underlying rules and constraints.Again, describing a data format in a machine-processible manner provides meansto authoritatively express how a speci�c type of information is represented. Forexample, the PNG �le format is a data format which de�nes rules on where theimage header is located and from which �elds it is composed, thus de�ning theplacement of �elds containing the width of arbitrary PNG images.Data format instances and data formats are closely linked, since underlying rulesand constraints of a data format manifest themselves in its data format instances. Inorder to address and consider both levels, it is desirable to have suitable, matchingmodels for both describing data format instances as well as data formats.1.2 Research ProblemsThis thesis addresses both the formal description of arbitrary data formats in adeclarative manner, based on the formal description of arbitrary data format in-stances. Describing a data format as a class through its data format instances raisesthe following two research problems for this thesis:� Describing data format instances: How to describe the composition of format-compliant data, considering the syntax and semantics of its bit sequence or seg-ments thereof?� Describing data formats: How to describe a data format with a potentiallyin�nite set of data format instances through its underlying rules and constraints?Since a data format serves the purpose of representing information for its storage andtransmission over time, this thesis assumes that the representation of informationis lossless - represented information must actually be present in its representation.This thesis therefore assumes as well that for every data format instance, there existsa bijective mapping between a format-compliant bit sequence and the informationit represents.1.3 Contributions and OutlineThe four contributions of this thesis are a state-of-the-art survey on data formatsand their description, an analysis on data format description, the Bitstream SegmentGraph (BSG) model for describing data format instances, and the BSG Reasoningapproach for describing data format classes:� Survey on current state-of-the-art in data formats and their description:The survey in Chapter 2 covers de�nitions and provides a basic systematisationof related work in terms of their descriptive capabilities, focusing on the data-centric research domains of Digital Preservation, Multimedia and Telecommuni-cation, and discussing shared properties, di�erences and shortcomings of relatedapproaches.
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Chapter 2State of the Art
2.1 IntroductionThe previous Chapter 1 presented the research problem of formally expressing boththe composition of format-compliant data for data format instances as well as theunderlying rules for a data format in a machine-processible, declarative manner. Inorder to assess the current state of the art in this regard, this chapter now contributesa survey on the current state of the art regarding existing models for expressing suchdata format knowledge. The survey focuses on the following aspects:� De�nitions and models for data format knowledge: Related work directlyconcerned with data format knowledge regarding the composition of data givesde�nitions and models for its expression, either implicitly or explicitly. Existingde�nitions and models are based on their speci�c concepts and constraints, leadingto inherent properties and limitations on their expressiveness.� References to existing related work: Related work only indirectly concernedwith the composition of data, but still in need to express such data format knowl-edge, provides references to existing de�nitions and models as well as insights totheir adoption.When related work provides a model for describing data formats or data formatinstances not on the level of meta-information, but focusing on data format rulesand the structure of data format instances, the survey provides a classi�cation:� Classi�cation: It is considered whether such an approach is declarative or pro-cedural, whether it is machine-processible and whether it has a formalised modelfor universal applicability :� Declarative or procedural approach: In order to classify existing ap-proaches for this thesis, it is considered whether they describe data formatknowledge in a declarative or procedural manner.� Machine-processible approach: Approaches exist in related work which in-troduce descriptive means intended for human engineers, which do not focus onbeing machine-processible. Machine-processible approaches themselves requirea minimum degree of formalisation which may be given only indirectly throughtextual de�nitions or executable implementations.7



8 CHAPTER 2. STATE OF THE ART� Formalised model for universal applicability: Approaches exist whichintroduce a number of concepts to provide speci�c descriptive capabilities, yetwhich do not address the completeness or orthogonality of their concepts fordescribing arbitrary data formats. The existence of such a formalised modelsupports potential claims for universal applicability.Last but not least, if a suitable model is presented for an approach, the surveyexamines its descriptive capabilities:� Descriptive capabilities: In order to compare di�erent models, their expres-sivity is considered regarding the handling of primitive data, structured data,transcoded data or fragmented data:� Primitive data is a single piece of information, such as a �oating-point num-ber, a character string or a three-bit unsigned integer stored in least-signi�cantbit �rst order. It is represented in an encoded form, which has to be decodedin order to access it.� Structured data is a continuous sequence of bit sequences, each with a sep-arate, distinct �meaning� in its context. It has to be segmented to access theseparate constituents.� Transcoded data is a bit sequence which is the result of a transformation ofan original bit sequence, such as compression, encryption or some similar blocktransformation. It has to be transformed in order to access the original bitsequence.� Fragmented data is a bit sequence which is only a fragment of a larger,original bit sequence. In order to access the original bit sequence in its entirety,fragmented data has to be concatenated in the right order.Handling these kinds of data properly requires the matching descriptive capa-bilities of decoding primitive data, of segmenting structured data, transformingtranscoded data as well as concatenating fragmented data are considered. Basedon these descriptive capabilities, the survey compares related work, allowing state-ments to be made regarding their suitability for describing arbitrary data formatsin general.Since processing data is a central, recurring aspect of Computer Science, related workon data formats can be sought and found in a number of research domains. Thischapter focuses on contributions from a data-centric subset of research domains inseparate sections, namely Digital Preservation in Section 2.2, Multimedia in Section2.3 and Telecommunication in Section 2.4. The chapter continues with a discussionin Section 2.5 and closes with a summary.



2.2. DIGITAL PRESERVATION 92.2 Digital PreservationOverviewDigital Preservation is concerned with the long-term preservation of digital infor-mation. Data formats play a crucial role, since digital information is stored as datain a speci�c data format, while format-speci�c hardware and software provides ac-cess to the contained information. Over time, both hardware and software tend tobecome obsolete due to technological advances. As obsolete hardware may fail inthe future when there is no replacement available, and as obsolete software maynot be available anymore or fail to interoperate with newer hardware and software,technological obsolescence is a constant threat to Digital Preservation e�orts. Thecurrent rapid pace of technological change ampli�es this threat.In literature, three preservation strategies for protecting digital information againstinformation loss through technological obsolescence on the logical level are the mi-gration of data, the emulation of hardware / software, and digital archaeology :� Migration of data: Information stored as data in a speci�c data format ismigrated to a suitable target data format. Due to a typical mismatch of di�erentdata formats, some information often cannot be retained during a migration and isusually lost. For a migration of data, it usually must be decided which informationto retain, for which the migration process must be monitored [Arm00].� Emulation of hardware / software: Hardware and/or software representingthe original technological environment or parts thereof are replaced by an emula-tion. Through using the emulation, original hardware and/or software componentsremain capable of providing access to contained information [Rot99, Arm00]. Avariation thereof is the virtualisation of software, where software for a speci�ctechnological environment is replaced with software that targets a virtual ma-chine as an intermediate platform, which is available for the original technologicalenvironment. In case of technological obsolescence of the original environment,it is only necessary to port the virtual machine implementation to a new plat-form rather than porting each and every speci�c software. The Universal VirtualComputer serves as an example of such an approach [Lor01].� Digital archaeology: Software, data and related documentation are analysed inorder to reverse-engineer both syntax and semantics of data. Its description thenserves as a basis for implementing new hardware or writing new software, whichagain provides access to contained information [RG99, Arm00].The former three strategies depend on preparatory actions taken prior to the eventof technological obsolescence. Without suitable preparation in advance, digital ar-chaeology is the only remaining option, although usually costly [Wet98]. In contrastto the emulation of hardware / software, both migration of data and digital archae-ology are concerned with data format knowledge on the composition of data.OutlineThe following sections explore the following related work in Digital Preservationwith respect to the given preservation strategies:



10 CHAPTER 2. STATE OF THE ART� Maintaining format-related meta-information is addressed by data format reg-istries such as the US Library of Congress (LoC) Digital Preservation project, theGlobal Digital Format Registry (GDFR), PRONOM, and the recent merger of thelatter two, the Uni�ed Digital Formats Registry (UDFR).� Addressing issues related to the representation of information according to de�neddata formats, the Open Archival Information System (OAIS) Reference Modelserves as a de-facto standard model regarding the long-term archival and preser-vation of data.� For the migration of data, the selection and execution of suitable paths for con-version is a non-trivial problem. The Typed Object Model (TOM) is an approachfor mediating data between di�erent data formats in a distributed system, au-tomating the process of migrating data between di�erent formats.� For measuring the quality of data migration in terms of retained information, theeXtensible Characterisation Language (XCL) project contributes both the eXten-sible Characterisation Extraction Language (XCEL) for extracting informationfrom data as a property, and the eXtensible Characterisation De�nition Language(XCDL) for the description of such properties for later comparison.� Related to aspects of Digital Preservation, but not explicitly framing itself intothis domain, the Data Format Description Language (DFDL) is an approach fordescribing the composition of data according to a data format which focuses onleveraging existing XML technologies.2.2.1 Data Format RegistriesThe preservation strategies previously presented in Chapter 2.2 depend on maintain-ing detailed meta-information on data formats and format-compliant applicationsin the long term. Therefore, there is a need for data format registries as custodiansof meta-information on data formats.OverviewProminent data format registries are the US Library of Congress Digital PreservationProject (LoCDP) [AF05], the Global Data Format Registry (GDFR) [AS03], and thePRONOM [Bro05] data format registry. At the time of writing, both GDFR andPRONOM are in the process of merging to Universal Data Format Registry (UDFR)[UDF09].Rich models for categorising data formats and for managing related meta-informationin high detail are common to LoCDP, GDFR [Abr07b, Abr07a, AG08] and PRONOM[Bro05]. The model of GDFR extends to complex relationships between di�erentdata formats, such as extensions or versions, on a highly formal level. In varyingforms, these registries provide means for referencing a speci�c data format, such asthe PRONOM Unique Identi�er (PUID) Scheme for data formats in the PRONOMregistry.



2.2. DIGITAL PRESERVATION 11DiscussionData format registries allow their users to identify and associate data formats withmetadata such as references to their speci�cation, format-compliant applications orrelations between formats required for the migration of data or digital archaeology incase of technological obsolescence. Examined related work provides de�nitions andmodels concerning format-related meta-information as well as references to otherapproaches.� De�nitions and models: Besides their rich models on format-related meta-data,all registries at least consider natural-language descriptions such as textual speci-�cations suitable for human consumption as a baseline. In the case of PRONOM,format-related knowledge suitable for machine-processing is provided on the levelof �le signatures, allowing for the identi�cation of a �les' data format throughautomated tools such as Digital Record Object Identi�cation (DROID).� References: In terms of approaches for describing the composition of data,GDFR references to a number of format description languages. It explicitly refersto the eXtensible Characterisation Extraction Language (XCEL), the BitstreamSyntax Description Language (BSDL) and the Data Format Description Language(DFDL) among other approaches, including formal grammar notations and XMLschema languages.2.2.2 Open Archival Information System Reference ModelOperating an archive for long-term archival and preservation of data poses a num-ber of problems, which includes the management of how information is represented.Within short-term transactions, producers and consumers can negotiate the repre-sentation of information to be exchanged. Yet, for long archival and preservation,producers cannot foresee future representations of information, and thus need todelegate the negotation with future consumers to suitable archival systems, whichmanage a potentially required migration of data.OverviewThe Open Archival Information System (OAIS) provides a reference model for long-term archival and preservation systems, and serves as the de-facto standard regard-ing long-term archival and preservation of digital information [CCS02]. Among otheraspects, OAIS addresses the issue of managing the representation of information.The OAIS reference model de�nes a number of processes surrounding informa-tion stored in an OAIS archive between a Producer and its Consumers, as well as thearchive Management. Besides the processes of Preservation Planning and Admin-istration that coordinate and manage archival operations between involved parties,actual processes related to archival and preservation are Ingest, Archival Storage,Data Management and Access, shown in Figure 2.1:� Ingest: The Ingest process receives a Submission Information Package (SIP) ora later update thereof from a Producer, assuring its quality and generating an



12 CHAPTER 2. STATE OF THE ART
Producer Consumer

Management
Ingest AccessPreservation PlanningData ManagementArchival StorageAdministration

SIP AIP DIP
Figure 2.1: Overview of OAIS Functional Entities, based on [CCS02].Archival Information Package (AIP) conforming to archive policies, such as usingonly publically disclosed data formats. It then generates descriptive infos andcoordinates potential updates with Data Management.� Archival Storage: The Archival Storage process is responsible for receiving AIPsto be put into storage, management of the storage, error checking and replacementof storage media, their backup for disaster recovery, and �nally for providing anAIP upon request.� Data Management: The Data Management process serves for administrating,updating and querying of archival databases as well as for general reporting forthe archive.� Access: Upon request by a Consumer, the Access process generates a suitableDissemination Information Package (DIP) for the requested AIP and delivers itto the Consumer.As both Archival Storage and Data Management are not central to the role of dataformats in OAIS, these processes are mentioned for completeness and are not furtherexplored.As can be seen from the Ingest and Access process descriptions, the conceptsof SIP, AIP and DIP are of importance to the OAIS reference model. These arespecializations of the Information Package, being distinguished in its role in therespective process. As shown in Figure 2.2, an Information Package contains theContent Information as the actual content to be preserved, as well as related Preser-vation Description Information. The Content Information consists of a Data Objectand its Representation Information, which can be used to obtain an InformationObject :� Data Object: A Data Object specialises into either a Physical Object as a phys-ical representation, or a Digital Object as a digital representation through a setof bit sequences.



2.2. DIGITAL PRESERVATION 13Information PackageContent Information PreservationDescriptionInformationData Object RepresentationInformation
SubmissionInformationPackage ArchivalInformationPackage DisseminationInformationPackageFigure 2.2: Overview of OAIS concept relations, based on [CCS02].� Representation Information: Representation Information maps the Data Ob-ject to an Information Object as a �more meaningful concept�. RepresentationInformation can be specialised into Structure Information which de�nes the map-ping of bit sequences into data types, and into Semantic Information which de�nesthe meaning of data. Representation Information itself may again be representedas a Data Object, and thus depends on other Representation Information, forminga Representation Network required for fully describing the meaning of an originalData Object.� Information Object: An Information Object is obtained by interpreting a DataObject according to Representation Information.Representation Information can be considered as a form of data format knowledge,which may be present in various forms such as textual descriptions in natural lan-guage, formal grammars, or some derivative work thereof, such as software imple-mentations or even their source code.DiscussionThe OAIS reference model is intended for a long-term preservation archive, whichalso has to support the migration of data between di�erent formats. The referencemodel thus depends on the availability and applicability of data format knowledge.It therefore refers to such knowledge in various forms as Representation Information,which is contained in Content Information in submission, archival and disseminationIPs.� De�nitions and models: The OAIS reference model does not provide an ex-plicit, formal de�nition on data formats, but implicitly considers a data format as



14 CHAPTER 2. STATE OF THE ARTa de�nition of how information is represented. Furthermore, the OAIS referencemodel itself does not mandate a speci�c form for data format knowledge as Rep-resentation Information. It allows for a variety of ways to represent data formatknowledge. The model explicitly mentions the option of �formal description lan-guages containing well-de�ned constructs with which to describe data structures�,referring to formalised approaches in general. Although the OAIS e�ectively is ade-facto standard in its domain, it does not provide more speci�c references ormake a statement regarding the expressivity of existing approaches. For actuallymigrating data, an OAIS archive relies on software as a form of RepresentationInformation to perform the migration.2.2.3 Typed Object ModelProcessing format-compliant data requires suitable, format-compliant applications.Although an application may be conceptually capable of processing a certain type ofdata such as video/audio recordings or text documents, it strongly depends on thespeci�c digital representation to be parsed, decoded and processed. The diversity ofdi�erent data formats thus can force users to mediate data between multiple dataformats as necessary, therefore making it desirable to automate this process.OverviewThe Typed Object Model (TOM) serves for automating the process of migratingdata between di�erent formats in a distributed manner and has been published inthe PhD thesis of John Ockerbloom [Ock98]. TOM de�nes both a distributed systemand a data model :� Distributed system: For mediating data between di�erent data formats in adecentralised, scalable manner, TOM describes a distributed system consisting ofagents that handle the processing and conversion of data in heterogenous dataformats, operating on a distributed type graph. TOM de�nes the Typed ObjectProtocol (TOP) for communicating in such a distributed mediating system. Theactual mediation is executed by type brokers as specialised agents, which o�er theirservices and perform the actual processing on the behalf of clients. Other agentssuch as clients can query for type information, get attributes and call methods onobjects or request conversions from a type broker.� Data model: In the TOM data model, information is represented as an object,which is immutable and has both a value and a type. A value is not restricted toa digital representation such as �nite byte sequences alone, but may also includeabstract forms of representation.A type de�nes how the object and its value are to be interpreted. Here, animportant type is the ByteSeqType. Objects of this type have �nite byte sequencesas values and thus can be stored and transmitted in a digital form. A type mayde�ne one or more attributes as well as one or more methods for its objects.An attribute extracts information from an object through a function withoutdependence on context information or additional parameters. A method derivesinformation from an object through a function as well, yet may depend on context



2.2. DIGITAL PRESERVATION 15information or use additional parameters. TOM o�ers subtyping, so a type mayhave more specialised subtypes. It also enables substitutability, where given a type
T , a subtype S of T and two objects t and s of types T and S, s can substitutefor t, which allows objects to be considered at di�erent levels of abstraction. Theaggregated typing information de�nes a type graph on which TOM operates.For obtaining di�erent representations of the same information in TOM, an en-coding describes a relationship between a pair of objects, the original encodedobject and the resulting encoding object in a di�erent representation. In order tocope with multiple, semantically equivalent encoding objects for a given encodedobject, encodings in TOM are considered as one-to-many relations. Its inverse isa decoding, which is a many-to-one function. TOM considers encoding as the �re-�nement� of abstract objects. Likewise, it considers decoding as the �abstraction�of concrete objects.Based on these concepts, TOM de�nes a format as a sequence of encodings to beapplied on objects of a given type, which yields objects of the type ByteSeqType.A format allows to de�ne a shipped object, which is an object including its formatand thus allows a receiver to decode the object to the type indicated by the format.For mediating data between di�erent data formats in TOM, a conversion is amigration of data, which takes a shipped object as input and produces a shippedobject as output. Often, a conversion between di�erent formats cannot preserveall present information but only a subset. Therefore, a conversion tries to ap-proximate the input shipped object. To manage the loss of information of such aconversion, TOM de�nes the concept of intersubstitutability, which is given for aconversion c and a type T if every input and output of the conversion c cannot bedistinguished with regards to the attributes and methods of type T . The degreeof information preservation in a conversion increases with every level down in thetype hierarchy of T due to the specialisation of subtypes. Both substitutabilityand intersubstitutability aid in the automated composition and conversion of databetween di�erent formats in TOM.The TOM approach has been implemented through the Format REgistry Demon-stration (FRED), which also served as a prototype for the Global Data FormatRegistry (GDFR) [Ock06].DiscussionTOM uses format-related knowledge to assist the migration of data between di�erentdata formats. Contrary to other approaches, its main characteristic is the distributedsetup of format-related knowledge among type brokers which provide migrationservices to other agents.� De�nitions and models: In TOM, information is considered in type-speci�crepresentations. The data format of such a type-speci�c information is de�nedas a sequence of encodings that converts information from its type-speci�c repre-sentation to its format-compliant byte sequences of ByteSeqType type, possiblyusing intermediate types.



16 CHAPTER 2. STATE OF THE ARTRather than describing the actual coding and structure of format-compliant dataitself, it addresses the migration of data by describing encoding / decoding re-lationships between types. Through its use of interfaces, TOM considers digitalobjects on varying levels of abstraction, and is therefore able to indirectly man-age the loss of information during a migration of data. External to TOM andits model, the actual process of accessing and conversion is performed by soft-ware tools which follow the underlying rules and constraints of a data format thatshapes format-compliant data.Rather than describing the composition of data format instances or the underly-ing rules and constraints of a data format itself, TOMs model exposes the typenetwork composed from software operated in a distributed system. The �compos-ability� as a property of TOM refers to the overall type network, and not to thecomposition of data.2.2.4 eXtensible Characterisation LanguageTechnological obsolescence of �le formats threatens long-term accessibility of con-tained information. Although data can be migrated in advance in order to preventtechnological obsolescence, it typically leads to information loss due to mismatchingrepresentational capabilities of di�erent data formats. One approach to handle suchinformation loss is to identify signi�cant information and to monitor its successfulretention after a migration for it to be deemed successful.OverviewFor estimating the success of data migration, the eXtensible Characterisation Lan-guage (XCL) project de�nes the eXtensible Characterisation Extraction Language(XCEL) as well as the eXtensible Characterisation De�nition Language (XCDL)for extracting and comparing signi�cant information represented in di�erent dataformats:� eXtensible Characterisation Extraction Language (XCEL): XCEL in-tends to describe characteristics of format-compliant data through signi�cant in-formation, which is represented as a property with a name and a value [SHC08].Towards that goal, XCEL describes the composition of data through a XML-based, schema-like de�nition, where declarative de�nitions of data types are mixedwith procedural processing instructions.The basic building blocks of XCEL are XCEL elements which are used to buildan XCEL Tree as a representation which matches with actual data. A symbolelement de�nes both the encoding and semantics of a byte sequence, may de�neconstraints for matching and is a leaf of such a tree. A symbol has information onthe placement of its data and employs an absolute addressing scheme, using thenumber of bytes consumed so far. An item element de�nes a logical, structural orsemantic group for one or more child elements, describing either a sequence of ele-ments, their permutation or a choice of alternative elements. Last but not least, aprocessing element allows the execution of methods in the XCEL processor, whichprovide means for placing an XCEL element elsewhere in the tree (pushXCEL), for



2.2. DIGITAL PRESERVATION 17copying another XCEL element to the current position (pullXCEL) or for recon�g-uring the parser during its operation (configureParser). Moreover, processingelements also allow the addition of a �lter to a �lter chain of an element, allow-ing for the translation of data into another representation. Elements and theircontents can be referenced through identi�ers and may originate from a separate�le (externalSource) or from another XCEL element (internalSource).These XCEL elements are used in the schema-like XCEL document, which con-sists of the four parts preProcessing, formatDescription, postProcessing andtemplates. It is used by an XCEL processor, which processes both the XCELdocument and an input �le, and produces an XCEL Tree as Result Tree. In afollowing step, an extractor extracts signi�cant information from the Result Treewhich characterises the format-compliant data contained in the input �le, andstores it as an XCDL document.Example 2.2.1: An example of XCEL is given in Table 2.1 for the PNG IDATchunk data structure, which carries compressed, transformed, and in some caseseven fragmented, data representing the actual image. The data structure startswith the chunkDataLength symbol, which is an 32-bit unsigned integer, followedby the pngIDATIdentifier, which carries the four-byte ASCII string �IDAT�to distinguish it from other chunk data structures. The next processing state-ment sets the length of the yet-to-come normDataSymbol identi�er to the valueof chunkDataLength, so the normDataSymbol has a de�ned length. Last but notleast, the remaining crc symbol carries a four-byte CRC value.� eXtensible Characterisation De�nition Language (XCDL): XCDL de-scribes data as a collection of signi�cant information that have been extractedpreviously from a Result Tree [BHST08].During the migration of data, some original input �le is migrated to a new dataformat, producing a migrated �le. After signi�cant information has been extractedfrom both the original and the migrated �le as XCDL documents, the degree towhich the migration has been successful is measured through a comparison ofthe retained signi�cant information. This is performed by a comparator, whichprocesses both XCDL documents and compares its signi�cant information throughsome domain-speci�c metric for judging the success of a migration.Besides XCEL and XCDL, the XCL project also tries to address aspects of semanticmismatch between di�erent XCDL documents through the de�nition of an ontology.Moreover, it tries to extend the comparison of signi�cant information beyond thesemantics of data to whether the actual rendering of data to human observers stillcarries the same signi�cant information through the use of an information model.DiscussionThe use case of XCEL and XCDL is the evaluation to which degree a migration ofdata has been successful, based on the retainance of signi�cant information withinmigrated data.



18 CHAPTER 2. STATE OF THE ART1 <item identifier="pngIDAT" xsi:type ="structuringItem"2 multiple ="true">3 <symbol identifier="chunkDataLength" interpretation="uint32"4 length="4"/>5 <symbol identifier="pngIDATIdentifier" interpretation="ASCII"6 optional ="false" value="IDAT"/>7 <processing type="pushXCEL " xcelRef="normDataSymbol">8 <processingMethod name="setLength ">9 <param valueRef ="chunkDataLength"/>10 </processingMethod>11 </processing>12 <symbol identifier="normDataSymbol" interpretation="uint8"13 name="normData "/>14 <symbol identifier="crc" length="4"/>15 </item>Table 2.1: Excerpt of a XCEL description for a PNG IDAT chunk data structure,carrying transformed and compressed image data, taking from [SHC08].� De�nitions and models: The XCL project makes no explicit formal de�ni-tion to what a data format actually is. Through the de�nition of XCEL, a quitecomplex model is given for describing a data format as a tree-based hierarchicalrepresentation of information. XCEL has a number of interesting properties, suchas the support of �lters for handling the translation between di�erent represen-tations of information, for partial descriptions which cover only part of an input�le, or for allowing dependencies such as the placement of elements in the originaldata to be evaluated dynamically at runtime, which is of interest for address-basedreferences in data formats such as the ISO Base File Format. Regarding XCDL,it is interesting to note that [BHST08] states it not to be intended as �a languagefor multi-purpose representation of information�.� Classi�cation: The XCEL approach is both declarative and machine-processible,but the examined publications provide no formalised model for universal applica-bility.� Descriptive capabilities: XCEL clearly provides support for segmenting struc-tured data through items and for decoding primitive data through symbols, al-though the length of primitive data is limited to multiples of entire octets ratherthan having bit granularity. Due to its concept of �lters used in a �lter chain, andthrough using the internalSource attribute, XCEL can transform transcodeddata and enable further processing of the result. Using the special normDatasymbol name for processing fragmented PNG IDAT chunk [SHC08], and againusing the internalSource attribute, XCEL provides at least partial support forthe concatenation of fragmented data, yet active control of fragment ordering isnot explicit.



2.2. DIGITAL PRESERVATION 192.2.5 Data Format Description LanguageFor processing data in XML-based representations, a number of standardised tech-nologies exist, such as transforming documents using Extensible Stylesheet Lan-guage Transformations (XSLT), or �ltering elements using XPath. By translatingthe representation of data from the binary domain to XML, these technologies canbe leveraged for use on data from the binary domain as well.OverviewThe Data Format Description Language (DFDL) is an extension to the W3C XMLSchema Description Language (XSDL) and intends to describe arbitrary data for-mats to enable the translation from format-compliant data to an XML representationand vice versa. At the time of writing, the current version of DFDL is 1.0 as de�nedin Draft 038, where several parts of the language speci�cation are designated to bein �ux and to be changed in upcoming versions of the draft [PHB+10].In the DFDL approach, a processor processes data given in a format as describedby a schema:� Processor: A processor typically is either a DFDL Parser or a DFDL Unparser,where the former parses the format-compliant representation and serialises it toan XML representation. Vice versa, the latter parses the XML representationand �unparses� its format-compliant binary representation, performing the reversedirection.� Schema: A DFDL schema describes the composition of data through XMLschema extended with DFDL annotations. While XML Schema provides themeans to describe both primitive and complex data types, DFDL annotations de-scribe additional information, such as the length or the binary encoding of a datatype. For handling dynamic dependencies, where parsed and decoded informationis used for further parsing, DFDL employs a subset of XPath 2.0 as expression lan-guage, including functions for boolean, string and date operations. Since DFDLhas the explicit goal of round-trip support for data parsed and unparsed, everyschema is required to be unambigious during unparsing, that is, only one binaryrepresentation may exist.Example 2.2.2: A DFDL example is shown in Table 2.2, where structured datais described as a sequence of four primitive data, namely an integer w, an integerx, a double-precision �oating-point number y and a single-precision �oating-pointnumber z, all in big-endian byte order.DiscussionDFDL assists the processing of data for binary data formats through standardisedXML tools by translating information from its format-compliant representation toan XML representation, and vice versa.� De�nitions and models: DFDL does not explicitly provide a formal de�nitionof what a data format is, but indirectly de�nes its underlying model as tree-based
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1 <xs:complexType name=" example1 ">2 <xs:sequence >3 <xs:element name="w" type="int">4 <xs:annotation >5 <xs:appinfo source ="http://www.ogf.org/dfdl/">6 <dfdl:element representation=" binary"7 byteOrder =" bigEndian "8 lengthKind="implicit "/>9 </xs:appinfo >10 </xs:annotation >11 </xs:element >12 <xs:element name="x" type="int ">13 <xs:annotation >14 <xs:appinfo source ="http://www.ogf.org/dfdl/">15 <dfdl:element representation=" binary"16 byteOrder =" bigEndian "17 lengthKind=" implicit "/>18 </xs:appinfo >19 </xs:annotation >20 </xs:element >21 <xs:element name="y" type=" double">22 <xs:annotation >23 <xs:appinfo source ="http://www.ogf.org/dfdl/">24 <dfdl:element representation=" binary"25 byteOrder =" bigEndian "26 lengthKind=" implicit "/>27 </xs:appinfo >28 </xs:annotation >29 </xs:element >30 <xs:element name="z" type="float" >31 <xs:annotation >32 <xs:appinfo source ="http://www.ogf.org/dfdl/">33 <dfdl:element representation=" binary"34 byteOrder =" bigEndian "35 lengthKind=" implicit "36 binaryFloatRep="ieee" />37 </xs:appinfo >38 </xs:annotation >39 </xs:element >40 </xs:sequence >41 </xs:complexType >Table 2.2: Excerpt of a sample data structure de�ned using DFDL, taken from[PHB+10].



2.2. DIGITAL PRESERVATION 21through the extension of XML Schema. It assumes that a data format de�nes thecomposition of �hierarchically-nested data�, at the same time explicitly claimingits applicability on the description of any data format.The DFDL speci�cation includes two noteworthy concepts. It distinguishes be-tween approaches for making data format knowledge explict as either prescriptiveor descriptive. The speci�cation document categorises approaches such as ASN.1into the former category, and itself into the latter. Moreover, DFDL distinguishesbetween data as either content or framing, depending on its purpose in the format,where the language allows to �hide� framing from later processing.� Classi�cation: DFDL is a declarative approach which is machine-processible. Inexamined publications, no formalised model for universal applicability is given.� Descriptive capabilities: DFDL clearly supports the segmentation of struc-tured data and the decoding of primitive data, also supporting data with lengthsof bit granularity through dfdl:lengthUnits. Although XML Schema is a pow-erful basis for DFDL to extend, concerning data format description, there arelimitations to DFDL despite its explicit claim of universal applicability. Mostnotably, DFDL itself acknowledges its lack of support for cases where �one ele-ment's value becomes the representation of another element�, termed �layering�by DFDL, which has been con�rmed as a limitation and explicitly deferred to alater revision.Yet, layering is required for handling transformed or fragmented data, as in thesecases, the value of one or more bit sequences represents another bit sequencewhen processed accordingly. For example, to completely describe video and audiostreams typically stored as interleaved fragments in multimedia containers such asthe MPEG-4 File Format, fragments of a speci�c stream have to be concatenatedin order to analyse the stream according to its own format-speci�c rules, e.g. forMPEG-4 Video or MPEG-4 Advanced Audio Coding (AAC).Part of the lack can be attributed to DFDL's explicit assumption of data tobe �hierarchically-nested�, which �ts well with the tree-based structural modelof XML, where a logical node may have multiple children, but has at most oneparent. Yet, for the concatenation of fragmented data, a logical node is requiredto have multiple parents as well, pointing towards a graph-based structural model.Therefore, it neither supports the descriptive capability to transform transcodeddata, nor supports the descriptive capability to concatenate fragmented data.



22 CHAPTER 2. STATE OF THE ART2.3 MultimediaOverviewThe domain of Multimedia is a wide �eld of research that is concerned with digitalmulti-channel media. In literature, two primary drivers of format-related researchin Multimedia have been the normative de�nition of data formats and the high-leveladaptation of digital objects:� Normative de�nition of data formats: Interoperability of multimedia systemsrequires involved parties to exchange information, and thus to mutually agreeon the semantics of exchanged data. To provide a normative de�nition of dataformats in a multimedia standard, a means of describing a data format is required.� High-level adaptation of digital objects: Timely delivery of multimedia re-sources to end users over a network is usually restricted by resource-constrainednetworks and heterogenous capabilities of end-user devices. The vision of �Uni-versal Media Access� [VCE03] addresses the issue by dynamically adapting mul-timedia resources as digital objects on-the-�y to given constraints, which requiresmachine-processible data format descriptions.OutlineIn the following subsections, the following approaches from both lines of researchare introduced:� For the de�nition of various multimedia-related standards by the Moving PicturesExpert Group (MPEG) such as MPEG-1 and MPEG-2, the so-called MPEG 1/2methodology was used.� In the later de�nition of the MPEG-4 standard, limitations of the MPEG 1/2methodology lead to the design of the Syntactic Description Language (SDL),which later became the Formal Language for Audio-Visual Object Representation(Flavor).� For enabling the high-level adaptation of digital objects, the MPEG-21 Part 7standard on �Digital Item Adaptation (DIA)� describes the Bitstream Syntax De-scription Language (BSDL).� Later work recombined the standardised BSDL approach with the expressivenessof Flavor, resulting in the twin BFlavor and gBFlavor approaches.2.3.1 MPEG 1/2 MethodologyAmong others, the MPEG-1 and MPEG-2 standards also de�ne data structuresintended for exchanging multimedia-related information such as video and audiobetween format-compliant systems. In this regard, these standard documents ad-dress system developers who are interested in creating or adapting interoperablesystems, and who are in need of a uniform and unambigious convention for thedescription of these data structures.



2.3. MULTIMEDIA 23OverviewWith the term coined in [Ele97], the MPEG 1/2 methodology describes data struc-tures in a tabular fashion:� The �rst table column contains a mixture of pseudo-code statements resemblingthe programming language C, including struct �eld de�nitions, �ow-controlstatements (eg. if, while) and special helper functions (eg. nextbits() forlookahead parsing), which guide the layout of �elds containing data. Field de�ni-tions consist only of a name and have no type in this column.� The second column contains the size of a �eld de�nition given as a �xed numberof bits.� The third column contains a mnemonic code which describes the encoding ofdata for a �eld de�nition, and thus provides its type. Examples of such codesare uimsbf (unsigned integer, most signi�cant bit �rst) and bslbf (bit string,leftmost bit �rst).Each �eld de�nition is necessarily located on a separate row in the table. Executingthis pseudo-code on actual data in a cognitive walk-through step-by-step producesa consecutive layout of struct �elds �lled with data.Example 2.3.1: An example of the MPEG 1/2 methodology is shown in Ta-ble 2.3, describing a picture_header data structure from MPEG-2 Video. Thisdata structure consists of a sequence of �elds such as the picture_start_code�eld with a length of 32 bits, encoded as bit string, left bit �rst (bslbf), or thepicture_coding_type �eld with a length of 3 bit, encoded as an unsigned integer,most sign�cant bit �rst (uimsbf). Depending on the value of picture_coding_type,further �elds such as the full_pel_forward_vector are present as well. Depend-ing on the value of extra_bit_picture �elds, multiple extra_information_picture�elds may be present as well. The data structure ends with the next_start_code()function, which ignores padding zero bytes until the next MPEG-2 start code presentin the stream.DiscussionThe MPEG 1/2 methodology enables the normative de�nition of data formats whenit comes to static data structures documented for human engineers that are accus-tomed to working with pseudo-code representations.� De�nitions and models: Through a tabular form of pseudo-code, the MPEG1/2 methodology allows the description of the composition of data to human en-gineers, who need to �execute� the description on a bit sequence in a mental walk-through. Most notably, the de�nition of �elds is static regarding the mnemoniccode expressing its type as well as its size in bits within a bitstream. Step-wise�execution� of pseudo-code implicitly manages the current position within the bit-stream, and limits the resolving and placement of �elds to a start-to-end order ina continuous sequence.



24 CHAPTER 2. STATE OF THE ART

picture_header() { No. of Bits Mnemonicpicture_start_code 32 bslbftemporal_reference 10 uimsbfpicture_coding_type 3 uimsbfvbv_delay 16 uimsbfif (picture_coding_type == 2 ||picture_coding_type == 3) {full_pel_forward_vector 1 bslbfforward_f_code 3 bslbf}if (picture_coding_type == 3) {full_pel_backward_vector 1 bslbfbackward_f_code 3 bslbf}while (nextbits() == '1') {extra_bit_picture 1 uimsbfextra_information_picture 8 uimsbf}extra_bit_picture 1 uimsbfnext_start_code()}Table 2.3: De�nition of the picture_header data structure from MPEG-2 Part-2Video / ITU-T H.262 [IT95], using the MPEG 1/2 methodology.



2.3. MULTIMEDIA 25� Classi�cation: The approach is procedural due to its pseudo-code, although it isnot machine-processible, and no formalised model for universal applicability hasbeen given.� Descriptive capabilities: A mental walk-through of a data format descriptionin the MPEG 1/2 methodology traverses a sequence of typed �elds, which isequivalent to segmenting structured data into a sequence of primitive data ofvariable length measured in bits, whose encoding is de�ned through the mnemoniccode. Therefore, the MPEG 1/2 methodology supports both the segmentation ofstructured data and the decoding of primitive data. Despite the de�nition ofpseudo-code procedures in this approach, it does not support the transformationof transcoded data, as the procedure serves for placing and accessing typed �elds,but does not enable its actual transformation or further processing of its result.Likewise, the concatenation of fragmented data is not supported due to a lack ofmeans.2.3.2 Formal Language for Audio-Video Object Representa-tionDuring the de�nition of the MPEG-4 standards, variable-length codes (VLCs) suchas the Exponential Golomb integer encoding were included into some of its datastructures. As VLCs are variable in size, these data structures are dynamic, forwhich the MPEG 1/2 methodology is not su�cient [Ele96]. Therefore, an improvedapproach for data format description became necessary for use in the MPEG-4standards.OverviewThe Syntactic Description Language (SDL) was initially proposed as a new languagefor describing dynamic data structures for use in MPEG-4 [Ele95]. SDL was includedin the MPEG-4 Systems and Description Languages (MSDL) [ACE+97] and waslater renamed as Formal Language for Audio-Visual Object Representations (Flavor)[Ele97]. XFlavor is an extension to Flavor, which enables the translation of databetween a format-speci�c, binary representation and an XML-based representation[EH02, HE08]. Examples for both Flavor and XFlavor usage are given below.Two primary goals of Flavor are the description of dynamic data structures aswell as the separation of parsing from decoding, explicitly limiting the focus of thelanguage to parsing alone [Ele96]. While the former goal addresses data structuresfrom MPEG-4 using VLCs, the latter shall enable data structures to be adaptable.An example that is given explicitly is being able to change the number of bits usedfor representing a value without having to change the actual decoding algorithm[Ele97].As stated, the Flavor approach provides a language for describing data structures.Not unlike the MPEG 1/2 methodology in terms of using pseudo-code for descrip-tion, the Flavor language mixes declarative de�nitions of �eld types (e.g. unsignedinteger(32)) with procedural statements for �ow-control (e.g. if, while). Beyondthe capabilities of the MPEG 1/2 methodology, it adds support for variable �eld



26 CHAPTER 2. STATE OF THE ART1 aligned (8) class Box (unsigned int (32) boxtype ,2 optional unsigned int (8)[16] extended_type) {3 unsigned int(32) size;4 unsigned int(32) type = boxtype;5 if (size==1) {6 unsigned int (64) largesize ;7 } else if (size==0) {8 // box extends to end of file9 }10 if (boxtype =='uuid ') {11 unsigned int (8)[16] usertype = extended_type;12 }13 }1415 aligned (8) class FileTypeBox extends Box('ftyp ') {16 unsigned int(32) major_brand;17 unsigned int(32) minor_version;18 unsigned int(32) compatible_brands[];19 }Table 2.4: De�nition of a Box and a File Type Box using MSDL / Flavor from theISO Base File Format [ISO05a].sizes and introduces object-oriented concepts such as classes and their inheritanceas known from other programming languages, so that data structures are e�ectivelyde�ned as classes in Flavor [DNVDDS+06]. Using the flavorc translator, Flavorsource code can be compiled to source code implementing parsers and serialisers in ei-ther Java or C++, providing in-memory representations of binary, format-compliantdata [DNVDDS+06]. XFlavor extends this approach towards XML-based represen-tations, embedding data within the document which can be processed further usingestablished XML standards [HE08].Example 2.3.2: Two Flavor descriptions are shown in Table 2.4 and 2.5, whichdescribe the FileTypeBox data structure from the ISO Base File Format as wellas the System Header data structure from the MPEG-2 Program Stream (PS) for-mat. When actual Stream Header data from a MPEG-2 Program Stream is to beprocessed, the �rst �eld in its class de�nition in Table 2.5 is the start_code �eld,which is of type unsigned int(32), an unsigned integer of 32 bit length. Whenthis Flavor class de�nition is translated into Java using flavorc, it results in a Javaclass, representing a System Header that has been read from binary data and canagain be written, including an in-memory representation of the actual value of thestart_code �eld. With XFlavor, the resulting Java class can also be used to writean XML representation of itself, which would then contain a start_code XML tagcontaining the actual �eld value formatted as a string. Table 2.6 shows an exampleof such an XML representation for the SystemHeader class de�nition from Table2.5.
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1 class SystemHeader {2 unsigned int (32) start_code;3 unsigned int (16) header_length;4 bit(1) marker = 0b1;5 unsigned int (22) rate_bound;6 bit(1) marker = 0b1;7 unsigned int(6) audio_bound;8 bit(1) fixed_flag;9 bit(1) csps_flag ;10 bit(1) sys_aud_lock_flag;11 bit(1) sys_vid_lock_flag;12 bit(1) marker = 0b1;13 unsigned int(5) vid_bound ;14 bit(1) pkt_rate_restr_flag;15 const bit(7) reserved = 0x7F;16 while (nextbits (1) == 0b1) {17 unsigned int(8) stream_id ;18 bit(2) bit_pattern = 0b11;19 bit(1) buff_bound_scale;20 unsigned int(13) buff_size_bound;21 }22 }Table 2.5: De�nition of a MPEG-2 Systems Program Stream (PS) using Flavor,taken from [HE08].
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1 <system_header >2 <start_code >443</ start_code >3 <header_length >12</ header_length >4 <marker >1</marker >5 <rate_bound >7653 </ rate_bound >6 <marker >1</marker >7 <audio_bound >1</audio_bound >8 <fixed_flag >1</fixed_flag >9 <csps_flag >0</csps_flag >10 <sys_aud_lock_flag >1</ sys_aud_lock_flag >11 <sys_vid_lock_flag >1</ sys_vid_lock_flag >12 <marker >1</marker >13 <vid_bound >1</vid_bound >14 <pkt_rate_restr_flag >1</ pkt_rate_restr_flag >15 <reserved >127</ reserved >16 <stream_id >224</ stream_id >17 <bit_pattern >3</bit_pattern >18 <buff_bound_scale >1</ buff_bound_scale >19 <buff_size_bound >80</ buff_size_bound >20 <stream_id >192</ stream_id >21 <bit_pattern >3</bit_pattern >22 <buff_bound_scale >0</ buff_bound_scale >23 <buff_size_bound >80</ buff_size_bound >24 </system_header >Table 2.6: XML representation of a MPEG-2 Systems Program Stream (PS) ob-tained through XFlavor using the Flavor description in Table 2.5, taken from [HE08].



2.3. MULTIMEDIA 29DiscussionBy using the Flavor language, a number of dynamic data structures can be describedthrough object-oriented code which can be translated into Java or C++ componentssuitable for parsing and serialising format-compliant data to and from in-memoryrepresentations. Using the XFlavor variant, format-compliant data can be mappedfrom binary to XML-based representations for further processing.� De�nitions and models: The Flavor approach provides a language for describ-ing the composition of data through object-oriented source code that can processformat-compliant data. Although initially claimed to be �declarative�, Flavordescribes the layout of data through procedural code including �ow-control state-ments and look-ahead parsing operators. In contrast to a declarative approach,code in the Flavor language de�nes how data is accessed rather than describingwhat data is present where.Regarding its expressiveness, the Flavor language has been explicitly limited toparsing in its early stages through the explicit separation of parsing from decodingand its focus on parsing. The limitation is detailed and argued for by its authorsvia the introduction of the problem of high-level context [Ele96], where parsinga conditional data structure would depend upon a decoded primitive data value.Overcoming this limitation by extending and generalising the Flavor languageis dismissed as �not useful�, as a survey by the authors on several multimediaspeci�cations such as H.263 or MPEG-2 Video did not exhibit a case of thisproblem.Another noteworthy aspect is that XFlavor has drawn some criticism for its ver-bosity, in part through its use of XML and in part through embedding binarydata into the XML document itself, leading to questions regarding a suitablegranularity of description [DNVDDS+06].� References: Flavor makes the connection between parsing and serialising meth-ods as some sort of �marshalling� between representations and thus connects itwith the External Data Representation (XDR) standard, the CORBA InterfaceDe�nition Language (IDL) and even the Abstract Syntax Notation One (ASN.1).� Classi�cation: Flavor provides a procedural, machine-processible approach fordescribing data formats, yet it presents no formalised model for universal appli-cability in literature.� Descriptive capabilities: Similar to the MPEG 1/2 methodology, Flavor sup-ports the segmentation of structured data as well as the decoding of primitivedata with bit granularity. Since Flavors �ow-control statements guide the pro-cessing of format-compliant data rather than enabling actual transformation, itdoes not support the transformation of transcoded data or the concatenation offragmented data.2.3.3 Bitstream Syntax Description LanguageIn Multimedia, the vision of Universal Media Access (UMA) requires on-demandadaptation of digital items to current constraints as posed by the network and



30 CHAPTER 2. STATE OF THE ART1 <?xml version="1.0"?>2 <xsd:schema targetNamespace="JP2"3 xmlns:bsdl -1="urn:mpeg:mpeg21:2003:01 -DIA -BSDL1 -NS"4 xmlns:xsd ="http://www.w3.org /2001/ XMLSchema "5 elementFormDefault="qualified ">67 <xsd:import8 namespace ="urn:mpeg:mpeg21:2003:01 -DIA -BSDL1 -NS"9 schemaLocation="BSDL -1.xsd"/>1011 <xsd:element name="SOP">12 <xsd:complexType>13 <xsd:sequence>14 <xsd:element name="Marker" type="xsd:hexBinary"/>15 <xsd:element name="LMarker" type="xsd:unsignedShort"/>16 <xsd:element name="Nsop" type="xsd:unsignedShort"/>17 </xsd:sequence>18 </xsd:complexType>19 </xsd:element>2021 <xsd:element name="PacketData" type="bsdl -1 :byteRange"/>22 ...23 </xsd:schema>Table 2.7: De�nition of a sample BS Schema for a JPEG2000 bitstream using BSDL[PHH+03].terminal device. On-demand adaptation of digital items is a non-trivial problem,as digital items stored today may need to be adapted to future requirements in ayet unforeseen way. Suitable means for enabling on-demand adaptation of digitalobjects are thus desirable.OverviewThe Bitstream Syntax Description Language (BSDL) has been speci�ed by the Mov-ing Pictures Expert Group (MPEG) as part of the MPEG-21 Digital Item Adap-tation (DIA) framework de�ned in ISO/IEC 21000-7. For reuse in other contexts,it has also been de�ned separately in ISO 23001-5. The approach has been thesubject of several books and publications [Dev03, BPVdWK06, PHH+03]. The goalof BSDL is to enable generic, interoperable adaptation engines for adapting digitalitems in di�erent data formats. BSDL assumes data formats to support the notionof a scalable bitstream, where adaptations can be generated through simple �lteringrather than format-speci�c or computationally complex transformations.The focus of the BSDL approach is on processing a bitstream through its bit-stream syntax (BS) by extending standards such as XML and XML Schema. UsingBSDL, a BS schema can be de�ned, which can then be applied to a bitstream toobtain a format-speci�c XML-based BS description which refers to the bitstream.



2.3. MULTIMEDIA 311 <?xml version ="1.0"?>2 <Codestream xmlns="JP2" xmlns:jp2 ="JP2"3 xsi:schemaLocation="JP2 JP2.xsd">4 ...5 <Bitstream >6 <Packet>7 <SOP>8 <Marker >FF91</Marker >9 <LMarker >4</LMarker >10 <Nsop>0</Nsop>11 </SOP>12 <PacketData>155 242</PacketData>13 </Packet >14 ...15 </Bitstream >16 </Codestream>Table 2.8: De�nition of a sample BS Description for a JPEG2000 bitstream usingBSDL [PHH+03].In contrast to format-speci�c BS descriptions, BSDL also allows the use of a genericXML representation for a generic BS (gBS) description, where generating the gBSdescription through parsing is application-speci�c and serialising it to a bitstreamdepends on a uniform gBS Schema, where structured data is represented throughgBSDUnit nodes. Its simpli�cation to a uniform schema reduces the complexitycompared to arbitrary BS schemata, thereby enabling the use of gBS descriptionsfor content adaptations on resource-constrained devices.A BS description can be used for adaptation in the DIA framework, where adap-tation is considered as a three-stage process consisting of parsing the original bit-stream, transforming the BS description depending on the desired adaptation, andgenerating the adapted bitstream from the transformed BS description and the orig-inal bitstream itself.For executing the parsing and generation stages, the DIA framework de�nes theBintoBSD parser (for parsing binary data) as well as the BSDtoBin parser (for serial-ising binary data) as components, which operate on a given BS schema. Both com-ponents map between a binary, format-speci�c representation and an XML-basedrepresentation. The transformation stage for adaptation itself is not speci�callymandated by DIA itself, but has been repeatedly addressed by the use of eXtensibleStyleSheet Language Transformation (XSLT) as a standardised approach for trans-forming XML-based representations. The possibility of using alternative approachessuch as the Streaming Transformations for XML (STaX) is suggested as well.BSDL itself extends XML Schema on two levels, termed BSDL-1 and BSDL-2. BSDL-1 provides required information for generating a bitstream from a BSdescription. BSDL-2 builds upon BSDL-1 by providing required information forparsing a bitstream to a BS description as well. In order to generate an adaptationfrom an original bitstream, the BSDL approach provides a linear addressing scheme



32 CHAPTER 2. STATE OF THE ART1 <?xml version="1.0"?>2 <dia:DIA xmlns="urn:mpeg:mpeg21:2003:01 -DIA -gBSD -NS"3 xmlns:dt ="urn:mpeg:mpeg21:2003:01 -DIA -BasicDatatypes -NS"4 xmlns:gbsd="urn:mpeg:mpeg21:2003:01 -DIA -gBSD -NS"5 xmlns:dia ="urn:mpeg:mpeg21:2003:01 -DIA -NS"6 xmlns:xsd ="http://www.w3.org /2001/ XMLSchema "7 xmlns:xsi ="http://www.w3.org /2001/ XMLSchema -instance "8 xsi:schemaLocation="urn:mpeg:mpeg21:2003:01 -DIA -gBSD -NS9 gBSSchema .xsd urn:mpeg:mpeg21:2003:01 -DIA -BasicDatatypes -NS10 BasicTypes.xsd">1112 <dia:Description xsi:type ="gBSDType ">13 ...14 <gBSDUnit syntacticalLabel=":J2K:MainHeader" start="0"15 length="135">16 <gBSDUnit syntacticalLabel=":J2K:SOC " start="0"17 length="2"/>18 <gBSDUnit syntacticalLabel=":J2K:SIZ " start="2"19 length="49">20 <Header >21 <DefaultValues addressMode="Consecutive"/>22 </Header >23 <Parameter name=":J2K:Marker" length="2">24 <Value xsi:type ="xsd:hexBinary">FF51</Value>25 </Parameter >26 <Parameter name=":J2K:Lsiz " length="2">27 <Value xsi:type ="xsd:unsignedShort">47</Value>28 </Parameter >29 <Parameter name=":J2K:Rsiz " length="2">30 <Value xsi:type ="xsd:unsignedShort">0</Value>31 </Parameter >32 <Parameter name=":J2K:Xsiz " length="4" marker="R">33 <Value xsi:type ="xsd:unsignedInt">768</Value>34 </Parameter >35 <Parameter name=":J2K:Ysiz " length="4" marker="R">36 <Value xsi:type ="xsd:unsignedInt">512</Value>37 </Parameter >38 ...39 </gBSDUnit >40 ...41 </gBSDUnit >42 ...43 </dia:Description>44 </dia:DIA >Table 2.9: De�nition of a sample gBS Description for a JPEG2000 bitstream usingBSDL [PHH+03].



2.3. MULTIMEDIA 33to allow BS descriptions to provide references to a bitstream or portions thereof.It is even possible for a BS description to represent a bitstream or parts thereof aswell, by embedding binary data through Base64 encoding in XML. Yet, as encodingbinary data in Base64 results in an 1/3 increase in size, the resulting verbosityusually penalises such a design choice.The DIA framework does not mandate the structure or granularity of BS de-scriptions for a speci�c data format, and leaves these choices to the designer of aBS schema. Related to that, [BPVdWK06] states that the descriptive granularityof BS schemata and BS descriptions are scalable and only depend on the needs of aspeci�c application. The authors argue that describing binary data on a bit-by-bitgranularity is rarely necessary and typically too large for use and exchange, due tothe inherent verbosity of the XML-based description. They therefore assume that ahigh-level description is usually su�cient for adaptation.Example 2.3.3: Excerpts of a BS schema, a BS description and a gBS descrip-tion in the context of JPEG 2000 are given as examples in Tables 2.7, 2.8 and 2.9,respectively. The BS schema excerpt in Table 2.7 de�nes a so-called start-of-packet(SOP) marker as a sequence of �elds called Marker, LMarker and Nsop, which area two-byte hexadecimal value and two unsigned short integer values. The corre-sponding BS description excerpt in Table 2.8 shows a start-of-packet marker withactual primitive data values. Finally, the gBS description excerpt in Table 2.9 showsthe �main header� of a JPEG 2000 image including its contained data structures asgBSDUnit nodes. This data structure is described as a sequence consisting of anopaque start-of-codestream (SOC) marker data structure, followed by an image andtile size (SIZ) marker data structure. Contained in the SIZ marker data structure,its Xsiz and Ysiz �elds represent primitive data as four-byte unsigned integers,stating that the described main header belongs to a JPEG 2000 image which has aresolution of 768 × 512 pixels.DiscussionThe BSDL approach enables high-level content adaptation of scalable bitstreamsby mapping data from binary to XML-based representations, performing simple�ltering operations on the XML representation by using XML processing standards,and mapping it back to the binary domain again.� De�nitions and models: BSDL provides an approach based on XML Schemafor describing composition of data given in data formats which follow the scalablebitstream assumption. Regarding general applicability, [Dev03] states that BSDLis not intended for parsing and decoding arbitrary bitstreams completely, citingexamples such as entropy coding, wavelet coding or Discrete Cosine Transforma-tion (DCT). The author argues that as most coding formats have been speci�edwithout the use of a formal language, they do not follow any constraints in thisregard. The author furthermore argues that major parts of a bitstream are theresult of an encoding process that is not within the scope of the BSDL approachfor data format description.Also interesting to observe is that although BSDL provides de�nitions for a genericBS description (gBSD) in XML, the generation of gBSD is application-speci�c



34 CHAPTER 2. STATE OF THE ARTand left to format-speci�c applications outside the scope of BSDL [PHH+03].Giving a justi�cation, [VDDNDSVdW08] states that parsing a bitstream to agBS description in a format-agnostic way is di�cult due its dependency on thespeci�c type of adaptation and its dependency on the format as such.� Classi�cation: BSDL provides a declarative approach that ismachine-processible.In examined literature, no formalised model for universal applicability is pre-sented.� Descriptive capabilities: Not unlike the DFDL approach, BSDL supports thesegmentation of structured data as well as the decoding of primitive data, wheredata may have a length measured in bits, due to the addressUnit attribute.Due to the focus of BSDL on scalable bitstream for high-level content-adaptationthrough simple �ltering rather than performing computationally complex trans-formations, no support for the transformation of transcoded data is provided.Likewise, the concatenation of fragmented data is not addressed as well.2.3.4 BFlavor and gBFlavorUsing the BSDL approach for describing the composition of data formats providingfor scalable bitstreams requires the declaration of BSDL schemata. Compared toprocedural approaches such as Flavor, writing BSDL schemata can be complex andis less expressive. As the existing BintoBSD reference implementation has beenshown to be ine�cient for processing large volumes of format-speci�c data, it isdesirable to automatically generate and use more e�cient format-speci�c parsers.OverviewThe BFlavor approach combines and extends the previously de�ned Flavor andBSDL approaches [DN]. From Flavor, it uses its procedural de�nition regardingthe composition of data, provides for the automatic generation of source code for aparser implementation as well as a corresponding BS schema in the BSDL language.The variant gBFlavor is similar to BFlavor, but focuses on gBS descriptions ratherthan BS descriptions.Since for both BFlavor and gBFlavor, the initial stage of generating a BS de-scription from a given bitstream is delegated to automatically generated implemen-tations, they extend BSDL only on the level BSDL-1 (for generating adapted bit-streams from BS descriptions), but not on BSDL-2 (for generating BS descriptionsfrom bitstreams).DiscussionAs with the BSDL approach, BFlavor and gBFlavor enable high-level content adap-tation of scalable bitstreams through using XML processing standards. Mappingdata from its binary representation to XML is improved over BSDLs generic BintoBSDparser through the generation of format-speci�c parsing components.� De�nitions and models: Essentially, the (g)BFlavor approach describes thesame approach for describing the composition of data that Flavor provides. They



2.3. MULTIMEDIA 35therefore inherit Flavor's implicit management of placement and positioning dur-ing parsing, based on the forward execution of the (g)BFlavor code. Moreover,both approaches inherit its assumption of data formats to support scalable bit-streams.� Classi�cation: As with Flavor itself, its (g)BFlavor extension is a procedural,machine-processible approach, for which no formalised model for universal appli-cability is presented in examined literature.� Descriptive capabilities: The (g)BFlavor approach provides the same descrip-tive capabilities as Flavor, supporting the segmentation of structured data andthe decoding of primitive data with bit granularity, but without support for thetransformation of transcoded data or the concatenation of fragmented data.



36 CHAPTER 2. STATE OF THE ART2.4 TelecommunicationOverviewSimilar to digital objects from Multimedia, the need for interoperability has lead toformat-related e�orts in Telecommunication on the normative de�nition of protocoldata units (PDUs):� Normative de�nition of protocol data units (PDUs): In a protocol ex-change, PDUs are exchanged as messages between involved parties. Since theseparties need to agree to and understand the implied semantics of these messages,their composition has to be described for documentation.OutlineIn the following sections, the two following approaches are considered as related workfor this thesis. Both address the normative description of PDUs used in telecommu-nication protocols:� Standardised by the International Telecommunication Union, the Abstract Syn-tax Notation One (ASN.1) is a well-known approach for a machine-processibledescription of messages, which can be combined with the Encoding Control Nota-tion (ECN) for encodings that are not provided by the prede�ned ASN.1 codecs.� Conceived by the European Telecommunications Standards Institute (ETSI) asa simpler alternative to the highly complex speci�cations of ASN.1 and ECN,the Concrete Syntax Notation 1 (CSN.1) serves to describe the representation ofmessages on the bit level.2.4.1 Abstract Syntax Notation OneAn inherent and ever-present need in Telecommunications is to de�ne the messagesto be transmitted in a new protocol exchange. It is desirable to describe thesemessages on a high level and to delegate the corresponding de�nition of their rep-resentation as bits and bytes to standardised, reusable codecs which solve commonproblems such as variable-length �elds in a uniform manner.OverviewThe Abstract Syntax Notation One (ASN.1) is a set of speci�cations concernedwith specifying messages for protocol exchanges that have been standardised bythe International Telecommunication Union Telecommunication Standards Sector(ITU-T). Analogous to the distinction between Application and Presentation layeron the OSI network model, ASN.1 distinguishes between the abstract syntax andthe transport syntax of a message:� Abstract syntax: The abstract syntax of a message is concerned with its com-position from typed �elds that carry information with de�ned semantics, but doesnot mandate a speci�c encoding. Using the ASN.1 language, so-called modules



2.4. TELECOMMUNICATION 37contain message de�nitions as assignments, such as shown for X.509 certi�catesin Table 2.10. In this example, the Certificate type is de�ned as a sequence ofthree �elds tbsCertificate, signatureAlgorithm and signatureValue of typesTBSCertificate, AlgorithmIdentifier and BIT STRING, respectively. Like-wise, the Time type is de�ned to allow a choice between carrying a �eld utcTimeof type UTCTime or a �eld generalTime of type GeneralizedTime.The ASN.1 language provides support for built-in primitive types (such as Bit-String, CharacterString or Integer) and complex types (such as SEQUENCE, SETor CHOICE) which can also be constrained and composed to form user-de�nedtypes [IT97]. Furthermore, the ASN.1 language provides support for conceptssuch as for enabling the layering of messages in a protocol stack, and for enablingthe extensibility of messages to enable at least partial interoperability betweendi�erent versions of messages [Lar99].� Transport syntax: The transport syntax of a message is concerned with theway its �elds are encoded to a binary representation of the message. For a givenabstract syntax and message, its corresponding transport syntax is obtained eitherby reusing encoding rules of existing ASN.1 codec, or de�ning and using newencoding rules through the Encoding Control Notation (ECN) language.Existing ASN.1 codecs include the Basic Encoding Rules (BER) codec [IT02a]which is relatively simple, the Packed Encoding Rules (PER) codec [IT02b] whichis compact but more complex in processing, or the XML Encoding Rules (XER)codec [IT01] which produces XML-based representations.The ECN language serves for de�ning alternative encodings that are variants ofexisting codecs or new encodings altogether [IT02c]. Analogous to the ASN.1 lan-guage, ECN provides built-in encoding classes for primitive ASN.1 types (such as#INTEGER for the ASN.1 type INTEGER) and complex ASN.1 types (such as#SEQUENCE or #CHOICE). Moreover, built-in encoding classes also include en-coding procedures (such as #TRANSFORM) that allow transformation of valuesbetween di�erent encoding classes like #CHAR and #INTEGER, and providesupport for arithmetic operations. In a process termed coloring, the implicitlyde�ned ECN types from an ASN.1 de�nition are recursively replaced until anexplicitly generated encoding structure is produced of the abstract syntax of themessage, with which the message can be encoded.Example 2.4.1: An example of ECN use is the encoding object assignmentshown in Table 2.12 which de�nes how the ASN.1 assignment in Table 2.11, aPositiveIntegerBCD, is to be encoded using the positiveIntegerBCDEncodingencoding. According to Table 2.12, the integer value is converted into a sequenceof characters, which is then encoded using the numeric-chars-to-bcdEncodingencoding. This encoding is aligned to nibble (four-bit) boundaries, where eachcharacter of the character sequence is mapped to a four-bit sequence, which is�nally appended with a terminating bit sequence �1111�.ASN.1 has been used in the de�nition of �le formats as well as messages in net-work protocols. Examples are the �le format for X.509 certi�cates [CSF+08] storingcryptographic information, as well as messages from the H.323 protocol suite used in



38 CHAPTER 2. STATE OF THE ART1 Certificate ::= SEQUENCE {2 tbsCertificate TBSCertificate ,3 signatureAlgorithm AlgorithmIdentifier ,4 signatureValue BIT STRING }56 TBSCertificate ::= SEQUENCE {7 version [0] EXPLICIT Version DEFAULT v1,8 serialNumber CertificateSerialNumber ,9 signature AlgorithmIdentifier ,10 issuer Name ,11 validity Validity ,12 subject Name ,13 subjectPublicKeyInfo SubjectPublicKeyInfo ,14 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL ,15 -- If present , version MUST be v2 or v316 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL ,17 -- If present , version MUST be v2 or v318 extensions [3] EXPLICIT Extensions OPTIONAL19 -- If present , version MUST be v320 }2122 Version ::= INTEGER { v1(0), v2(1), v3(2) }2324 CertificateSerialNumber ::= INTEGER2526 Validity ::= SEQUENCE {27 notBefore Time ,28 notAfter Time }2930 Time ::= CHOICE {31 utcTime UTCTime ,32 generalTime GeneralizedTime }Table 2.10: Excerpt of a X.509 certi�cate de�nition given in ASN.1 from [CSF+08].
1 PositiveIntegerBCD ::= INTEGER (0..MAX)Table 2.11: An ASN.1 assignment from [IT02c] for use in conjunction with the ECNencoding object assignment shown in Table 2.12.
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1 positiveIntegerBCDEncoding #PositiveIntegerBCD ::= {2 USE #CHARS3 MAPPING TRANSFORMS{{4 INT -TO-CHARS5 -- We convert to characters (e.g., integer 426 -- becomes character string "42") and encode the characters7 -- with the encoding object "numeric -chars -to-bcdEncoding"8 SIZE variable9 PLUS -SIGN FALSE}}10 WITH numeric -chars -to-bcdEncoding }1112 numeric -chars -to-bcdEncoding #CHARS ::= {13 ALIGNED TO NEXT nibble14 TRANSFORMS {{15 CHAR -TO-BITS16 -- We convert each character to a bitstring17 --(e.g., character "4" becomes '0100'B and "2" becomes '0010'B)18 AS mapped19 CHAR -LIST { "0","1","2","3",20 "4","5","6","7",21 "8" ,"9"}22 BITS -LIST { '0000'B, '0001'B, '0010'B, '0011'B,23 '0100'B, '0101'B, '0110'B, '0111'B,24 '1000'B, '1001'B }}}25 REPETITION -ENCODING {26 REPETITION -SPACE27 -- We determine the concatenation of the bitstrings for the28 -- characters and add a terminator (e.g.,29 -- '0100'B + '0010'B becomes '0100 0010 1111'B)30 SIZE variable -with -determinant31 DETERMINED BY pattern32 PATTERN bits:'1111'B}}Table 2.12: An ECN encoding object assignment for application on the ASN.1assignment shown in 2.11, taken from [IT02c].



40 CHAPTER 2. STATE OF THE ARTvideoconferencing [IT06], or from the Lightweight Directory Access Protocol Version3(LDAPv3) [WHK97]. ECN has been used in order to redesign existing protocolstandards to use ASN.1, such as for the Bluetooth Session Description Protocol(SDP) [LDT01] or the ISO/IEC 7816-4:2005 standard for communicating with in-tegrated circuit cards (ICCs), also known as smart cards [ISO05b].DiscussionASN.1 and ECN allow a set of data formats to be de�ned through separatelyspecifying their abstract and transport syntax using both languages, and allowingformat-compliant software components to be generated. For Telecommunications,the combination of both languages has the interesting property that protocol mes-sages de�ned in ASN.1 can be reused with di�erent transport encodings on di�erenttransports.� De�nitions and models: The combined use of ASN.1 and ECN provides amodel to de�ne a data format of messages to be exchanged. As the prede�nedASN.1 codecs strongly coin the resulting data formats for ASN.1 messages, generalapplicability of this approach depends on the universality of ECN to provide forarbitrary forms of transport syntaxes. While general applicability of ASN.1 andECN is sometimes asserted and assumed in literature, it is not readily apparentdue to the high complexity of both standards, and it has neither been proven norargued for substantially, according to this author's knowledge.� Classi�cation: The combination of ASN & ECN is a declarative, machine-processible approach. While the approach is the subject of a highly complexand voluminous speci�cation, no formalised model for universal applicability isgiven.� Descriptive capabilities: As with other approaches, the combination of ASN.1and ECN provides support for segmenting transcoded data and decoding primitivedata with bit granularity. The approach can make use of ECNs limited support forat least arithmetic transformations of transcoded data through ECN's #TRANS-FORM encoding class, although this discounts more complex processes requiredfor compressed or encrypted data. Explicit support for the concatenation of frag-mented data has not been encountered in the highly complex ECN speci�cation.2.4.2 Concrete Syntax Notation 1While the previously presented ASN.1 and ECN approach provides means for de�n-ing a set of messages for a new protocol, separately describing the abstract andtransport syntax of a message to these speci�cations is a complex task. When thereis no immediate need to switch the transport syntax as ASN.1 and ECN allows to,then directly specifying the representation of a message in bits and bytes is a simplerand more transparent approach.



2.4. TELECOMMUNICATION 41OverviewThe Concrete Syntax Notation 1 (CSN.1) speci�cation allows the composition of amessage from bits and bytes to be directly speci�ed. CSN.1 itself has been speci�edby the European Telecommunication Standards Institute (ETSI) and is used in mo-bile communication standards of the 3rd Generation Partnership Project (3GPP)[ETS10].CSN.1 itself is quite similar to the Extended Backus Naur Form (EBNF). InCSN.1, 0, 1 and null are all terminals which either refer to bits of the respectivevalue, or to the empty bitstring. An expression can be either a terminal, a concate-nation of multiple expressions into a sequence, a choice of alternative expressions, ora reference to a rule name de�ned for an expression. An expression may be followedby parantheses denoting repetition, either by a �xed number through an integervalue, or by a variable, unbound number through the Kleene star symbol �*�. Anexpression itself can be tagged with a label for later identi�cation of parts of a rule.Further extensions are introduced ad-hoc in speci�cations, such as de�ning a con-straint on the value of an expression through the == operator. An example CSN.1de�nition from 3GPP is shown in Table 2.13, where a so-called Uplink RLC/MACcontrol message type is de�ned as a 6-bit header identifying a message subtype,followed by the contents of the speci�c subtype itself. In this case, a 6-bit headerwith a value of 000000 identi�es the following Packet Cell Change Failure messagecontent type.DiscussionCSN.1 can be used for a low-level description of bit-oriented messages in Telecom-munication protocol for purposes of standardisation and possibly validation.� De�nitions and models: The CSN.1 speci�cation provides a very simple ap-proach towards data format description that is on the other end of the scalecompared to ASN.1 and ECN. Basically, CSN.1 is similar to a form of EBNFspeci�ally adapted for describing bit-oriented messages, so it provides means fordescribing data structures, but does not provide the means such as decoding BCDintegers or similar.� Classi�cation: CSN.1 is a declarative, machine-processible approach, yet noformalized model for universal applicability is presented in literature.� Descriptive capabilities: CSN.1 provides support for segmenting structureddata and partial support for decoding primitive data, both with bit granularity.Lacking concepts for actual decoding of primitive data, CSN.1 can only be con-sidered to provide an identity decoding of bit sequences. For example, if a bitsequence represented a signed integer, then decoding the bit sequence into an ac-tual signed integer value is not within the capabilities of CSN.1 itself. Regardingthe transformation of transcoded data or the concatenation of fragmented data,the CSN.1 approach does not provide support for either descriptive capabiliy.
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1 < Uplink RLC/MAC control message > ::=2 < MESSAGE_TYPE : bit (6) == 000000 >3 < Packet Cell Change Failure message content > |4 < MESSAGE_TYPE : bit (6) == 000001 >5 < Packet Control Acknowledgement message content > |6 < MESSAGE_TYPE : bit (6) == 000010 >7 < Packet Downlink Ack/Nack message content > |8 < MESSAGE_TYPE : bit (6) == 000011 >9 < Packet Uplink Dummy Control Block message content > |10 < MESSAGE_TYPE : bit (6) == 000100 >11 < Packet Measurement Report message content > |12 < MESSAGE_TYPE : bit (6) == 001010 >13 < Packet Enhanced Measurement Report message content > |14 < MESSAGE_TYPE : bit (6) == 000101 >15 < Packet Resource Request message content > |16 < MESSAGE_TYPE : bit (6) == 000110 >17 < Packet Mobile TBF Status message content > |18 < MESSAGE_TYPE : bit (6) == 000111 >19 < Packet PSI Status message content > |20 < MESSAGE_TYPE : bit (6) == 001000 >21 < EGPRS Packet Downlink Ack/Nack message content > |22 < MESSAGE_TYPE : bit (6) == 001001 >23 < Packet Pause message content > |24 < MESSAGE_TYPE : bit (6) == 001011 >25 < Additional MS Radio Access Capabilities message content >;Table 2.13: Excerpt of a 3GPP message de�nition in CSN.1 from [ETS05].
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XCEL DFDL MPEG1/2 Flavor BSDL (g)BFlavor ASN.1&EC

N
CSN.1Machine-processible approach ⊠ ⊠ ◻ ⊠ ⊠ ⊠ ⊠ ⊠Procedural approach ◻ ◻ ⊠ ⊠ ◻ ⊠ ◻ ◻Declarative approach ⊠ ⊠ ◻ ◻ ⊠ ◻ ⊠ ⊠Formalised model for universal applicability ◻ ◻ ◻ ◻ ◻ ◻ ◻ ◻Decoding of primitive data ⧄ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⧄Segmentation of structured data ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠Transformation of transcoded data ⊠ ◻ ◻ ◻ ◻ ◻ ⧄ ◻Concatenation of fragmented data ⧄ ◻ ◻ ◻ ◻ ◻ ◻ ◻Table 2.14: Comparison of related work in terms of supported elementary descriptivecapabilities.2.5 DiscussionThis discussion of the current State of the Art presents a consideration of examinedrelated work, a number of general observations and references to other approachesthat have not been addressed in this thesis, but which may be of interest for futureresearch.2.5.1 Consideration of examined Related WorkUsing the classi�cation and descriptive capabilities of models in related work, it ispossible to compare approaches that have been surveyed by examining their supportfor decoding, segmentation, transformation and concatenation:� Classi�cation: Examined data format registries either retain natural-languagedescriptions or depend on formal descriptions given in one of the existing ap-proaches. The OAIS Reference Model introduces the terminology of Representa-tion Information for some representation of data format knowledge, yet primarilyconsiders and thus depends on existing software implementations. A similar sit-uation is with TOM, which allows the migration of data between data formatsto be managed. It depends on external software implementations to provide ac-tual conversion services, and therefore does not provide a model for making dataformat rules and constraints explicit.Formal models for describing data formats have been observed in XCEL, DFDL,the MPEG-1/2 methodology, Flavor, BSDL, (g)BFlavor, ASN.1 in combinationwith ECN and CSN.1. Nearly all approaches are machine-processible, with onlythe MPEG-1/2 methodology being an exception, as it employs a tabular notationintended for conveying data format knowledge to human engineers. The majority



44 CHAPTER 2. STATE OF THE ARTof approaches are declarative, as only the MPEG-1/2 methodology, Flavor and(g)BFlavor depend on procedural descriptions in the form of (pseudo) source code.Yet, among all these approaches, no formalised model is presented in literaturethat systematically considers their universal applicability, or their inherent lim-itations. While every examined approach addresses speci�c use cases in theirdomains and while they have been put to use, the basic question of su�ciencyand necessity of descriptive capabilities has not been investigated systematically,be it for data formats from a speci�c domain or in general.There is a lack of a suitable formalised abstraction on data formats in generalwhich could be used to establish elementary descriptive capabilities for universalapplicability. These aspects are therefore addressed in the upcoming analysis ofthis thesis.� Descriptive capabilities: The lack of a formalised model geared towards univer-sal applicability also manifests itself in a lack of systematic support of descriptivecapabilities, although authors at times claim universal applicability of their ap-proach for describing arbitrary data formats. Yet, this occurs without giving somesort of proof, arguing the case substantially or at least making such expressivepowers readily apparent for the reader.Unsurprisingly, decoding primitive data and segmenting structured data can beconsidered as minimally required descriptive capabilities for any approach address-ing the description of nontrivial formats, and is thus supported by all approaches,with the minor exception of CSN.1 not handling the actual coding of primitivedata, and with XCEL not handling data on bit granularity, but on octet granu-larity. Where approaches address the coding primitive data, but may not providefor their set of encodings to be extended, performing a speci�c extension would betrivial, but nevertheless lacks methodical consideration for extending encodingsin general.Providing support for the transformation of transcoded data is more di�cult,though. It both requires the ability to transform data and to re-process the resultof the transformation, which is conceptually provided only by XCEL and only inpart by ASN.1 & ECN. Like with encodings, extending their set of transforma-tions, for example when compression or encryption algorithms are used in a dataformat, has not been considered in a thorough fashion.Support for the concatenation of fragmented data is even more di�cult to pro-vide, as it requires fragments to be concatenated in the right order, and to be ableto re-process the resulting concatenation. From all approaches, only XCEL itselfprovides partial support for concatenating fragmented data by using the reservednormData symbol name, as shown for a PNG IDAT chunk sample [SHC08], andenabling re-processing of concatenated data by using the internalSource attribute.Yet active control of fragment ordering is not explicit, casting its universal ap-plicability into doubt for potential data formats requiring alternative fragmentorderings.From a wide number of approaches on data format description, only the XCELapproach comes close to supporting all four descriptive capabilities used for com-



2.5. DISCUSSION 45parison. Since XCEL is used to monitor the retention of signi�cant information forreal-life data migration projects, XCEL's near-complete support can probably beattributed to necessity-driven progress, yet comes at the price of a complex speci�-cation with nontrivial interactions of concepts.2.5.2 General observationsIn the course of the survey, a number of noteworthy observations have been made:� Distinction between describing and prescribing: During the survey of liter-ature, it became noticeable that publications at times fail to properly distinguishbetween describing a data format and prescribing a data format, although bothgoals are conceptually di�erent. Prescribing a data format can content itself withproviding a speci�c representation for a given message that suits a speci�c pur-pose, but this does not necessarily require it to be capable of producing arbitraryrepresentations. For example, considering ASN.1 without ECN is clearly a pre-scriptive approach. On the other hand, describing a data format, unless explicitlyrestricted to a subset of data formats, has to handle the problem of arbitraryrepresentations that may exist and be used.� Similarities between approaches: Existing research in literature provides ap-proaches for domain-speci�c use cases that �t well, such as BSDL for high-levelcontent adaptation of scalable formats in Multimedia, or ASN.1 for ensuring in-teroperability between sender and receiver in Telecommunications.Several approaches have developed along similar concepts and lines of thought indi�erent domains. For example, the idea of extending XML Schema can be foundin both DFDL from Digital Preservation and BSDL from Multimedia, both usingXML Schema annotations for their speci�c extensions.Yet, cross-pollination of approaches has basically been con�ned to within a do-main, such as with Flavor, BSDL and their subsequent recombination in BFlavorand gBFlavor.� Necessity of round-trip support: Data formats de�ne representations of in-formation to be exchanged. For a proper exchange of information between senderand receiver, an unambigious mapping between information and its representationis required, supported by the necessity of round-trip support for parsing and seri-alisation as explicitly required by DFDL. The need for an unambigious mappingin�uences the central research hypothesis in the upcoming analysis of this thesis.� Tight coupling of data format knowledge and format-compliant data:Format-compliant data and the format-compliant knowledge embedded in appli-cations are tightly coupled, as it is this knowledge in applications which assignssemantics to information stored using data formats, and which is required to accessthe contained information. This becomes especially visible in Digital Preservationregarding the migration of data, trying to retain as much information as possiblefor other applications to provide access to, or the emulation of applications sothey can still be used for access.



46 CHAPTER 2. STATE OF THE ART� Varying granularity of description: Depending on the actual purpose of de-scribing data, such as for high-level content adaptation, or for obtaining a speci�cinformation, suitable descriptions may have di�erent degrees of granularity. Atypical argument in favour of a limited, coarse granularity of description is thata more �ne-grained description would be too verbose, as data formats typicallyprovide a space-e�cient representation for information. While a description canstill be su�cient at a coarse granularity, arbitrary degrees of granularity down tothe level of bits may be required in order to resolve and handle dependencies indata (such as the high-level context problem introduced by Flavor).� Di�erent kinds of data in a description: As seen from DFDL's �hiding�of data contained in binary representations, there are two di�erent roles of datapresent. One role is data that carries original information, which is actuallyof interest to a user and that is associated with a given representation. Theother role is data that �just� serves for wrapping up and transporting the originalinformation, such as length information or description of data types.� Support for partial descriptions of format-compliant data: Partial de-scriptions of format-compliant data, such as shown by XCEL, can be helpful incase of incomplete data format knowledge, or when a description is still underconstruction.2.5.3 Other approachesThe set of works presented here is a selection of essential and in�uential approachesfrom the data-centric domains of Digital Preservation, Multimedia and Telecommu-nication.Naturally, further approaches remain that have not been selected for presentationin this thesis, and whose in-depth examination, including their relations to otherapproaches, is left for future research. These approaches include, but are not limitedto:� the Binary XML (BinX) description language [Wes02] and its relation to DFDL,for which BinX was a precursor e�ort,� the Binary Format Description (BFD) [MC03], another approach using XMLrepresentations of binary data for sharing of scienti�c data,� the Enhanced Ada SubseT (EAST) data description language, addressing needsin data description for space-related information [CCS00],� the Abstract Syntax Description Language (ASDL) [WAKC97], which is concernedwith intermediate representations of programming languages,� the PacketTypes packet speci�cation language [MC00] to allow the speci�cationof network protocol messages through types,� the DataScript speci�cation and scripting language for binary data, with similar-ities to C and Java �tapping into programmers' existing skill sets� [Bac02],



2.6. SUMMARY 47� the Hancock language for the analysis of �transactional data streams� for purposesof data mining [CFP+04], and� the PADS language intending to support programmers for parsing �ad-hoc data�following a given data format [FG05], including a calculus of �dependent types"for data description languages [FMW06].Two perhaps known approaches have been deliberately excluded from presentation,as they lacked both the intention and capability to describe arbitrary data formats,or failed to have a notable impact on the current State of the Art. These are theExternal Data Representation (XDR) and Transfer Syntax Notation One (TSN.1)languages:� Although the External Data Representation (XDR) standard is used for describingthe composition of PDUs used in the Network File System (NFS) protocol, XDRexplicitly does not intend to describe arbitrary data formats. For example, XDRhas no support for bitstreams of non-octet length.� The Transfer Syntax Notation One (TSN.1) is a data description language used ina commercial product that resembles a cross of CSN.1 and Flavor stripped fromits object-oriented aspects. Yet, it has neither been found to be actively usedin publically available speci�cations, nor does it provide readily apparent meansfor concatenating fragmented data or processing data stored in a compressed orencrypted form.2.6 SummaryThis survey on current State of the Art in data format description has shown thatfrom Digital Preservation, Multimedia and Telecommunication, data format de-scription plays a role in a multitude of use cases, where the primary focus is onthe migration of data in Digital Preservation, and the normative de�nition of dataformats for �les in Multimedia and for protocol data units in Telecommunication.For these use cases, a variety of related research, such as data format registriesor the OAIS reference model, and a number of approaches from related work havebeen identi�ed, which often provide a domain-speci�c viewpoint. De�nitions andmodels from related work have varying properties and di�er in expressiveness, yetsometimes share common approaches even across research domains, such as theidea of extending XML Schema for use on binary data. General applicability fordescribing arbitrary data formats is sometimes assumed, yet, neither a formalisationon data formats in general nor a proof on general applicability of an approach todata format description has been given.





Chapter 3Analysis
3.1 IntroductionThe previous Chapter 2 surveyed the current State of the Art in literature regard-ing data formats in various domains of research, including several contributions todescribing the composition of data. While several approaches from related workclaim general applicability for arbitrary data formats, these do not substantiatetheir claims on a theoretical level. In examined literature, describing data formatsin general has neither been subject to systematic investigation, nor have inherentproperties of data formats and potential limits of describing the composition of databeen considered in-depth.This chapter therefore analyses inherent properties in data format instances anddata formats in general, speci�cally addressing the following questions:� What is a formalised abstraction of a data format instance and a dataformat, which is suitable for universal applicability? The abstractionprovides a basis for discussing inherent properties and problems of as well aslimits to data format description on a theoretical basis.� What are elementary descriptive capabilities required for universal ap-plicability? Exploring the formalised abstraction leads a set of elemental descrip-tive capabilities that are required for describing arbitrary data formats throughtheir data format instances.� What are limits to data format description? Given a formalised abstractionand a set of required descriptive capabilities for general applicability, exploringtheir limits shows what can be reasonably expected from data format descriptions.This chapter introduces a research hypothesis for analysis in Section 3.2 and builds aformalisation of data format description in Section 3.3. Its properties are consideredin Section 3.4, and inherent limits on data format description in general are examinedin 3.5. Finally, the chapter closes with a discussion and a summary.
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50 CHAPTER 3. ANALYSIS3.2 Research HypothesisThe OAIS Reference Model introduced in Chapter 2.2.2 states that a data formatis �representation information�, which �maps a set of bit sequences into more mean-ingful concepts�. Due to the necessity of round-trip support for parsing / decodingand encoding / serialisation observed in Chapter 2.5.2, such a mapping has to beunambigious, therefore bijective and thus lossless. For this analysis, the followingresearch hypothesis describes the notion of a data format more closely:Hypothesis 3.2.1: The current State of the Art regarding data format descriptioncan be improved by assuming that a data format de�nes a normative set of losslessinformation representations, passed as messages between a sender and a receiver forthe purpose of storage and transmission over time.sender α channel c receiver β

mα

md

m′β

m′d

internalexternalvα
d , fα→d

fc

vd, f−1β→d

Figure 3.1: Abstraction of the information transport from a sender α to a receiver
β using a data format dLet D denote the set of all data formats, d ∈ D denote a data format, α denote asender and β denote a receiver. Following the hypothesis, the basic usage scenarioof a data format shown in Figure 3.1 can be stated as follows:� A sender α has an �internal representation� mα of information. The sender ensuresthe validity of mα with respect to a data format d and maps from mα to an�external representation� md, which is then sent over a channel c.� A receiver β eventually obtains an �external representation� m′d from c, whichmay be di�erent from the sent md in case of a noisy channel, or invalid due toan erroneous sender. The receiver therefore ensures the validity of m′d and mapsfrom m′d to an �internal representation� mβ .Sender and receiver necessarily have to share information regarding the data for-mat d. Moreover, depending on d, both α and β may share additional contextinformation required for deciding about the validity, or for mapping from and toan external representation md. Two examples of such context information are theuse of encryption in a data format, and the identi�cation of embedded data formatsthrough separate channels.



3.3. FORMALISING DATA FORMAT DESCRIPTION 513.3 Formalising Data Format DescriptionInformally, we de�ne a data format instance as a mapping between an internal mγand an external representation md, and de�ne a data format through a set of suchinstances. Formalising both terms, the following de�nitions are given step-wise asfollows.3.3.1 Representing primitive informationThe formalisation begins with the most basic element, a bit sequence:Definition 3.3.1 (Bit Sequence): A bit sequence b is de�ned as �nite andnon-empty. The set of all �nite, non-empty bit sequences is de�ned as B (Eq. 3.1).
b = {0,1}n, n ≥ 1, b ∈ B (3.1)Example 3.3.1: Let b1 be the �nite and non-empty bit sequence 11100000.Definition 3.3.2 (Encoding): An encoding e is a bijective function which mapsbetween an element x ∈ X from some arbitrary domain X and its corresponding bitsequence b (Eq. 3.2).

e ∶ Be↔ Xe,Be ⊆ B,Xe ⊆ X (3.2)Example 3.3.2: Let eLSBI , eASCII be encodings, where eLSBI denotes a least-signi�cant bit �rst integer encoding, and eASCII denotes an ASCII character stringencoding. In this case, eLSBI(7) = 11100000, which equals b1 from the previousExample 3.3.1, and eASCII(“AB′′) = 10000010 01000010.A bit sequence represents encoded data, but does not describe its meaning byitself, as it depends on the actual context. In order to represent data including itssemantics as information, some sort of �labeling� is needed.Definition 3.3.3 (Label): A label l is a symbol that denotes some given seman-tics. The set of all labels is de�ned as L.Definition 3.3.4 (Labeled Bit Sequence): A labeled bit sequence i is de�nedas a pair i = (b,Li), where b ∈ B is a bit sequence and Li ⊆ L is a subset of labels thatdenote the meaning of b (Eq. 3.3). The set of all labeled bit sequences is de�ned as
I.

i = (b,Li), b ∈ B,Li ⊆ L, i ∈ I (3.3)Example 3.3.3: Let ω, θ be labels, where ω denotes the meaning �Intel x86 ma-chine opcodes� and θ denotes the meaning �24bit RGB colour triplet�, and let
b = 10010000 10010000 10010000. In this case, (b,{ω}) represents the Intel x86 op-code sequence NOP NOP NOP consisting of three �do nothing� machine instructions.At the same time, (b,{θ}) represents the RGB colour triplet #909090, correspondingto a dark gray color.A labeled bit sequence represents information by making the meaning of encodeddata as a bit sequence explicit for a speci�c context. It can be categorised as eitherpayload or packaging, depending on whether its information is part of the messageto be transported, or whether it is used for transportation:



52 CHAPTER 3. ANALYSISDefinition 3.3.5 (Payload): A labeled bit sequence i = (b,Li) is payload ifthe value of its bit sequence b is functionally independent from other labeled bitsequences.Definition 3.3.6 (Packaging): A labeled bit sequence i = (b,Li) is packagingif the value of its bit sequence b is functionally dependent on one or more labeledbit sequences, such as depending on their (relative) location, length, labels or bitsequences.Example 3.3.4: Let ω, θ be labels, where ω denotes the meaning �text comment�and θ denotes the meaning �length of the text comment�. Let b1 = eASCII(“comment′′)and b2 = eLSBI(7). In this case, (b2,{θ}) is packaging, as it has a functional depen-dency on (b1,{ω}). (b1,{ω}) itself is functionally independent and thus payload.Example 3.3.5: For example, given the PNG image �le format which may carrya string of text in a �tEXt� chunk data structure; in this case, the keyword elementcontained in the chunk data element of the data structure is a functionally inde-pendent text string and therefore a payload element. On the other hand, both thechunk length and the CRC element are functionally dependent and thus representpackaging elements.3.3.2 Representing complex informationLabeled bit sequences serve as building blocks for more complex representations,which are used either as internal representation at a sender or receiver γ, or used asexternal representation for exchanging information.Definition 3.3.7 (Internal Representation): An internal representation mγrepresents information in a way that is speci�c to some sender / receiver γ and isde�ned as a tuple of one or more labeled bit sequences (Eq. 3.4) which have de�nedsemantics. The set of all possible internal representations is de�ned as IR.
mγ = {i1, . . . , in}, n ≥ 1, ix ∈ I,mγ ∈ IR (3.4)Di�erent internal representations may represent the same information, yet invarying granularity.Definition 3.3.8 (Granularity): The granularity of an internal representation

mγ is a relative measure on how �ne-grained information is represented. Finergranularity is achieved by a more �ne-grained description. The actual granularityof mγ may vary depending on the processing needs of sender or receiver γ.Example 3.3.6: Let mγ,1 = {i}, i = (b,Li) be an internal representation, where irepresents the colour of a pixel as a 24 bit RGB value composed of 8 bits for eachcolour component of red, green and blue. Let mγ,2 = {i1, i2, i3}, ix = {bx,Li,x} be aninternal representation, where i1, i2 and i3 represent the colour of a pixel as a 24 bitRGB value as separate 8 bit red, green and blue colour components. In this case,
mγ,2 has a �ner granularity than mγ,1.Packaging is typically present in a data format in order to describe variable as-pects of payload required during the parsing process, such as the length of a variable-length payload. In order to compute packaging information during generation and



3.3. FORMALISING DATA FORMAT DESCRIPTION 53to process packaging information during parsing, a certain minimum granularity ofinternal representation is required which separates packaging from payload.Definition 3.3.9 (External Representation): An external representation
md represents information as normatively de�ned by a data format d. It is de�nedas a tuple containing exactly one labeled bit sequence (Eq. 3.5). The set of allpossible external representations is de�ned as ER.

md = {i}, i ∈ I,md ∈ ER (3.5)Example 3.3.7: Let ω be a label which denotes the meaning �Portable NetworkGraphics (PNG) image �le�. Let bPNG denote the bit sequence of a valid PNGimage �le, and let iPNG be the labeled bit sequence {bPNG,{ω}}. In that case,
mdPNG

= iPNG is an external representation of an image in the Portable NetworkGraphics image �le format.An external representation md typically carries some aggregation of informationrather than a single primitive value. Such a case is shown in Example 3.3.7, where theexternal representation mdPNG
carries an aggregation of information, which containsthe width and height of the actual image as primitive values among others.3.3.3 Validating representationsGiven some internal representation mγ or external representation md, it is necessaryto test their validity through validation functions:Definition 3.3.10 (Internal Validation Function): For a given sender αand data format d, an internal validation function is denoted as vα

d (Eq. 3.6). Aninternal representation mα is valid i� vα
d (mα) = 1. The subset of all valid internalrepresentations of α for d is de�ned as IR

α
d ⊆ IR.

vα
d ∶ IR→ {0,1} (3.6)Example 3.3.8: Let α be a sender of PNG images with random pixel data, wherethe user determines the resolution by entering its width and height on the keyboard,and let the user enter a width of 0 and a height of 1, which is passed on as image widthand height in its internal representation. In this case, the internal representation isinvalid, as the PNG image �le format speci�es the constraint that the image widthmay not be zero.As can be seen in Example 3.3.8, data formats may be restricted to transportingspeci�c types of information, where format constraints have to be met. A sender

α therefore must at least be able to test whether an internal representation mα isvalid according to d or not.Definition 3.3.11 (External Validation Function): For a given d ∈ D, anexternal validation function is denoted as vd (Eq. 3.7). An external representation
md is valid i� vd(md) = 1. The subset of all valid external representations for d isde�ned as ERd ⊆ ER.

vd ∶ ER → {0,1} (3.7)



54 CHAPTER 3. ANALYSISExample 3.3.9: Let β be a receiver of PNG images, where bit errors duringtransport have set the image width to zero. In this case, the external representationis invalid, as the PNG image width may not be zero, just as in the previous Example3.3.8.A received external representation m′d may be invalid, for example due to adegrading storage medium or due to interference on a network link. Therefore, areceiver β must at least be able to test whether the received m′d is valid.In order to transport information from the internal representation mα ∈ IR
α
d tothe external representation md ∈ ERd, and vice versa from a valid external represen-tation m′d ∈ ERd to the internal representation m′β ∈ IR

β
d , a suited mapping betweenboth sets becomes necessary.3.3.4 Mapping between representationsHypothesis 3.2.1 states that information representation is lossless. When consider-ing the internal representation as the information to be represented, and the externalrepresentation as the information representation, the hypothesis leads to the require-ment that the mapping between internal and external representations is lossless andthus bijective. It is now necessary to consider the mapping between internal andexternal representations through mapping functions:Definition 3.3.12 (Mapping function): For a given sender α and data format

d ∈ D, a bijective mapping function fα→d (Eq. 3.8) maps from IR
α
d to ERd throughencoding and serialisation. For a given receiver β and data format d ∈ D, its inverse

f−1β→d (Eq. 3.9) maps from ERd to IR
β
d through parsing and decoding.

fα→d ∶ IR
α
d → ERd (3.8)

f−1β→d ∶ ERd → IR
β
d (3.9)For a given d and α, due to the required bijectivity of mapping functions, bothsets ERd and IR

α
d necessarily have the same size - for every external representation

md, there exists a corresponding mα, and vice versa.Example 3.3.10: Let d be the MPEG-2 Transport Stream (MPEG-2 TS) dataformat [ISO00], which serves to stream packetised video, audio and auxillary dataover lossy channels, and which is for example used for digital television to be carriedover satellite or cable. Without an explicit upper bound to the number of packetsin an MPEG-2 TS, and thus without an upper bound to the bit sequence length ofits external representations, there is an in�nite number of external representations
md ∈ ERd.Depending on whether a data format d has a maximum bit sequence length forits external representations, the sets ERd and IR

α
d may be �nite. Both sets ER and

IR are in�nite.Given an external representation md to be exchanged between sender and re-ceiver, the notion of a channel is required:



3.3. FORMALISING DATA FORMAT DESCRIPTION 55Definition 3.3.13 (Channel): A channel c passes an external representation
md = {i}, i = {b,Li} from a sender α to a receiver β, including the bit sequence band its labels Li. It is modelled as a channel function fc (Eq. 3.10).

fc ∶ ER→ ER (3.10)Example 3.3.11: Let ω be a label denoting a PNG image �le. Let fc,1 be a channelrepresenting a �le in the File Allocation Table 32 (FAT32) �le system. For a givenexternal representation md = i, i = {b,{ω}} of a PNG image �le, the bit sequence bis stored as �le content in the FAT32 �le system, while its label ω is stored usingthe �le name extension �.png�.Example 3.3.12: Let ω be a label denoting an MPEG-2 Audio stream. Let fc,2be one of multiple channels provided by an MPEG-2 Transport Stream. For a givenexternal representation md = i, i = {b,{ω}} of an MPEG-2 Audio stream, the bitsequence b is interleaved in the MPEG-2 Transport stream, while its label ω isencoded in a Program Map Table (PMT), which refers to the MPEG-2 Audio dataformat.A channel c handles the transmission of an external representation md = {i}, i =
{b,Li} by transferring both the bit sequence b and its labels Li. A specialisedchannel c may only pass external representations for a speci�c set of data formats.Furthermore, a channel c may be noisy and introduce errors into the bit sequenceor the set of labels.In order to map between internal and external representations, some means fora bijective mapping step is needed.Definition 3.3.14 (Mapping step): A mapping step t is a bijective functionwhich maps between input and output as two ordered tuples of bit sequences (Eq.3.11).

t ∶ Bn
↔ B

m, n ≥ 1,m ≥ 1 (3.11)As shown in Figure 3.2, mapping steps can be categorised through the cardinalityof the input and output tuples as� a segmentation of structured data (1 ∶m),� a transformation of transcoded data (1 ∶ 1), or� a concatenation of fragmented data (n ∶ 1), forming a composite.Arbitrary n ∶ m mapping steps can be composed from segmentations, transforma-tions and concatenations. A mapping step may optionally use additional parametersthat control the bijective mapping.Example 3.3.13: Let t be a Run-Length Encoding (RLE) block transformation,where a sequence of n equivalent bits is considered a run with a maximum lengthof 4, and where the length n is encoded as n − 1 using 2 bits, followed by the bitto be repeated. Given a bit sequence b = 00001111, then b consists of two runs oflength 4, where the �rst run is composed from 0s, and the second run is composedfrom 1s. Therefore, t(b) = 110111.
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(b0)

(b1, . . . , bn+1)segmentation
(b0)

(b1)transformation
(b0, . . . , bm)

(bm+1)concatenationFigure 3.2: Mapping steps ordered by input and output cardinality.
md = {i}. . .

{i1, . . . , im},m ≥ 1. . .
mα = {i1, . . . , in}, n ≥ 1

fα→d(mα) f−1α→d(md)

Figure 3.3: Bijective mapping between mα and mdThe bijective mapping between an internal representation mγ and an externalrepresentation md as de�ned through transformations gives rise to a data formatinstance.Definition 3.3.15 (Data format instance): Given a pair of representations
(md,mγ) with md = {i0},mγ = {i1, . . . , in}, n ≥ 1, a data format instance is a rooted,directed, ordered, acyclic graph as a causality graph on labeled bit sequences. Thegraph is rooted in i0 and has i1, . . . , in as its leaves. The graph is composed from a�nite set of mapping steps, where each mapping step t de�nes directed arcs from anordered set of input bitstream segments to an ordered set of output bit sequences.Regarding intermittent nodes in the causality network, their bit sequences are theresult of mapping steps, while their labels functionally depend on neighbouringlabeled bit sequences as well as on optional context information depending on d.When considering fragmented data for concatenation, the order of fragments isrepresented in the order of input bitstream segments mapping the fragments to a sin-gle output bitstream segment as their (ordered) concatenation. Intermittent nodescarry intermediate values resulting from the mapping steps between the internal andexternal representation.



3.4. PROPERTIES OF THE FORMALISATION 57
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Figure 3.4: Bijective mapping between internal representations IR
α
d and externalrepresentations ERd through mapping function fα→d and its inverse f−1

α→dExample 3.3.14: The �le signature of a valid PNG image �le obtains its semanticsfrom being the �rst element in its bit sequence, having a �xed length of 8 bytes anda de�ned value. On the other hand, an IHDR chunk data structure in the same �leobtains its semantics from the value of the second element, which is located 4 bytesafter its start, has a length of 4 bytes and contains the ASCII string value �IHDR�.The causality graph of a data format instance can be compared to a map thatlocates its speci�c elements and how they come into place. As a data format instancebelongs to a speci�c external representation, on this level, there is no considerationof �choice� or �alternatives�, as one might have expected.Building on previous de�nitions, the conceptual notion of a data format can nowbe de�ned for analysis:Definition 3.3.16 (Data format): A data format d is a potentially in�niteset of data format instances, which maps between a normative ERd ⊆ ER and acanonical IR
γ
d ⊆ IR, which is intended for transmission over a channel c.3.4 Properties of the FormalisationThis section starts by considering the suitability of bijective mapping functions fordata format mappings as well as the su�ciency for lossless and lossy data formats forthe presented formalisation to counter potential misconceptions, and gives insightsinto its su�ciency and necessity of descriptive capabilities.3.4.1 Suitability of bijective mapping functions for data for-matsThe presented formalisation requires the bijectivity of mapping functions, which isnot suggested by most existing data format descriptions. This stands out especiallywhen there are multiple external representations md,1, . . . ,md,n that are seeminglyequivalent representations for the same internal representation mγ . Assuming this



58 CHAPTER 3. ANALYSISseeming equivalence, this may lead to the misconception that the bijective mappingrequirement is overly restrictive, which requires that there is a one-to-one correspon-dence between internal and external representations.Following the requirement of bijective mapping functions, the existance of multi-ple seemingly equivalent external representations can be considered as the result ofa side-channel carrying information, which has been neglected in the internal repre-sentation mγ , but which actually distinguishes between the external representations
md,1, . . . ,md,n. Such di�erences in external representations can be detected in theirbit sequences and reacted upon by a receiver, leading to potentially di�erent be-haviour. Therefore, neglected side-channels could lead to unintended side-e�ects, asshown in the example below:Example 3.4.1: Let d be the Apple QuickTime data format, where media infor-mation is stored within a data structure called MDAT atom, and where the actualplacement of individual media samples within the MDAT atom is stored within adata structure called MOOV atom. In typical Apple QuickTime movies, MDATatoms are substantially larger than MOOV atoms, as the former is carrying the ac-tual media samples, while the latter carries �just� related management information.Let md,1 be an Apple QuickTime movie where the MDAT atom is located prior tothe MOOV atom in the bit sequence, and let md,2 be the very same Apple Quick-Time movie, yet with the MOOV atom being located prior to the MODAT atomin the bit sequence. Assume both md,1 and md,2 to be located on a local harddisk,where both can be played back immediately using a suitable multimedia player suchas Apple QuickTime or the VideoLan Client. In this context, md,1 and md,2 can beconsidered as seemingly equivalent despite di�erent representations.Now assume both md,1 and md,2 to be located on a remote web server, fromwhich both movies have to be downloaded via HTTP for local playback. In thecase of md,1, although the media samples in the MDAT atom are received �rst, theirspeci�c, individual placement in terms of start and length, as well as their type,still remains unknown. Playback of md,1 thus has to be delayed until the MOOVatom has been received as well. In the case of md,2, playback may start after theMOOV atom has been received, since the placement of individual media samplesin the yet-to-come MDAT atom is now known to a multimedia media player. Thisproperty is termed �fast-start movie playback� by Apple.In this context, the di�erence between md,1 and md,2 leads to a di�erent playbackbehaviour that marks them as explicitly di�erent in everyday use. If both exter-nal representations md,1,md,2 are considered seemingly equivalent to an internalrepresentation mγ , then mγ is lacking the information whether the movie actuallysupports �fast-start movie playback�.With the requirement of bijective mapping functions and its enforcement, nosuch neglected side-channels can exist. The problem of seemingly equivalent multi-ple external representations md,1, . . . ,md,n can be solved by extending the internalrepresentation mγ to mγ,1, . . . ,mγ,n as necessary. Therefore, the requirement of bi-jective mapping function enforces the active consideration and handling of neglectedside-channels in the design of data format mapping functions.Moreover, the bijective mapping function requirement also enforces the cleanseparation of concerns related to the representation of information in a given data



3.4. PROPERTIES OF THE FORMALISATION 59format, and the (typically lossy) conversion of information between di�erent dataformats. Such lossy, approximative conversion processes between di�erent data for-mats, for example for converting text documents between the Microsoft O�ce Word2010 .docx data format and the OpenDocument Format used by OpenO�ce.org3.2.1, are neither subject of the presented formalisation nor of this thesis.3.4.2 Su�ciency for lossless and lossy data formatsAlthough a data format has been de�ned to specify the representation of informa-tion in a lossless manner by requiring bijective mapping functions, this does notlimit the scope of the de�nition to lossless data formats only, as one might assume.A lossless data format represents original information, whereas a lossy data formatrepresents the approximation of original information according to a de�ned metric,using some preprocessing function that �lters information. In any case, the repre-sented information is to be recoverable without loss by the receiver when assumingan error-free channel c, be it some original information or an approximation.Therefore, mappings from and to md are required to be bijective and thus to beinformation-preserving. Aspects related to preprocessing of information accordingto some metric as well as postprocessing are not within the scope of this thesis.Example 3.4.2: Let d be the MPEG 1 Audio Layer 3 (MP3) audio �le format,and md be an MP3 �le. The data format d is a lossy data format, as it employsan approximation metric that is based on an acoustic perception model for humans.Although counterintuitive at �rst, md does not carry audio data itself, but merelya representation of an approximation of audio data that has been transported fromsome sender α. This representation can be recovered by a receiver β, completingthe abstract information transport.3.4.3 Su�ciency and necessity of descriptive capabilitiesBased on the notions of encoding and transformation from De�nitions 3.2 and 3.11, aset of descriptive capabilities that consists of decoding, segmentation, transformationand concatenation can be observed, which exactly match the descriptive capabilitiesused in the survey of related work in Chapter 2. These serve for handling primitivedata, structured data, transcoded data and fragmented data, respectively:� Decoding of primitive data: Being the most essential descriptive capability, itdecodes a bit sequence representing a typed primitive to its domain-speci�c valueand thus reverses the encoding operation of the sender. A simple example ofprimitive data is a bit sequence representing a most signi�cant bit �rst (MSBF)-encoded integer representing the width in pixels of a PNG raster image.� Segmentation of structured data: Since data formats rarely serve for repre-senting single primitive values, it segments a structured bit sequence into its con-stituting parts, thereby reversing their concatenation performed by the sender. Anexample of structured data is a bit sequence containing the header of a PortableNetwork Graphics (PNG) raster image, the so-called IHDR chunk data structure,which has separate �elds carrying information such as the width and height of thestored image.



60 CHAPTER 3. ANALYSIS� Transformation of transcoded data: Required for when a data format em-ploys compression, encryption or another form of block transformation, it re-versibly transforms an original bit sequence into a transcoded bit sequence, therebyreversing the block transformation that was applied to the transcoded bit se-quence by the sender. An example of transcoded data is the PNG raster imagedata, which has undergone both a reversible scanline transformation as well as alossless compression employed in PNG image �les.� Concatenation of fragmented data: For when a data format allows the datafragmentation, it concatenates multiple fragments into a composite, thereby re-versing the fragmentation as performed by the sender. Examples of fragmenteddata are the fragmentation of transformed and compressed PNG raster imagedata in separate IDAT chunks allowed in PNG image �les, as well as the time-based interleaving of audio and video data in multimedia containers such as theMPEG-4 File Format.Regarding the question whether this is a set of elemental descriptive capabilitiesrequired for describing bitstreams from arbitrary data formats, assume a causalitygraph that describes the mapping between a bitstream as root node and a set ofprimitive values as leaf nodes. Representing the �nite encoding and serialisationprocess performed by the sender, the graph must be �nite as well. As to maintaincausality of the encoding and serialisation process, there may not be loops withinthe graph, thus turning it into a causality graph. So for every node, there exists a�nite upward path towards the root as well as one or more �nite downward paths toprimitive data. Paths in either upward or downward direction may be of zero lengthwhen the node in question is either the root node or a leaf node.Exploring the causality graph from its root node in the downward direction,nodes in the causality graph are either leaf nodes or non-leaf nodes. In this case,every leaf node is a decoded primitive. Concerning non-leaf nodes, these participateeither in a 1 ∶ m mapping designating the node to be a segmented structure, in a 1 ∶ 1mapping designating the node to be a transformed transcode, or in a n ∶ 1 mappingdesignating the node to be a concatenated fragment, while n ∶ m mappings can bedecomposed into the previous alternatives.This set of descriptive capabilities is both su�cient and necessary for describingthe composition of arbitrary data, as there are exactly these and no other types ofelemental mappings in a causality graph besides the presented 1 ∶ m, 1 ∶ 1, n ∶ 1 and
n ∶ m non-leaf cases and the leaf case. Therefore, we consider this set as elementaldescriptive capabilities required for universal applicability of an approach for dataformat description.3.4.4 Using a PNG raster image as �litmus test�To show that there are bitstreams from existing data formats that exercise the fullset of elemental descriptive capabilities, readers are encouraged to consider the validPNG raster image �oi2n0g16.png� from a PNG image test suite [vS98].Let us assume to describe the composition of aforementioned PNG raster imagesin order to access colour information of a speci�c pixel. According to the PNG formatdescription [Duc03] and the bitstream of the given �le, segmentation is required for



3.5. LIMITS TO DATA FORMAT DESCRIPTION 61isolating two bit sequences contained in two IDAT chunk data structures. These bitsequences represent fragments of compressed, reordered image data that need to beconcatenated �rst in order to decompress and then again reorder the image data,making it accessible. Finally, accessing individual pixel data requires segmentationof pixel and colour data, and decoding the stored primitive value. This PNG rasterimage can thus serve as a litmus test for data format description, and is thus revisitedin later chapters.3.5 Limits to Data Format Description3.5.1 OverviewInherent properties of data formats are present in the �ow of information in Figure3.1 and the bijective mapping in Figure 3.4, which can be stated as requirementsfor modelling data format instances and data formats as follows:� Validation of external representation: The �rst two requirements ensurethat a sender can distinguish between valid and invalid internal representations,and that a sender is capable to map an internal representation to an externalrepresentation by generation. Otherwise, a sender might create invalid externalrepresentations, or even loop trying to �nish the generation process. In that case,no valid message is produced.Requirement 3.5.1: The sender α can decide whether an internal representa-tion mα is valid using a function vα
d .Requirement 3.5.2: The sender α can compute a valid external representation

md from a valid internal representation mα using a bijective mapping function
fα→d.� Validation of internal representation: The next two requirements ensurethat a receiver can distinguish between valid and invalid external representations,and that a receiver is capable to map it to an internal representation by parsing.Otherwise, a receiver might create invalid internal representations, or even looptrying to �nish the parsing process. In that case, no valid message is consumed.Requirement 3.5.3: The receiver β can decide whether an external represen-tation m′d is valid using a function vd.Requirement 3.5.4: The receiver β can compute a valid internal representa-tion m′β from a valid external representation m′d using a bijective mapping function
f−1β→d.� Bijective mapping between internal and external representations: Thelast requirement ensures the unambiguousness and consistency of external andinternal representations. For every external representation md ∈ ERd, there existsexactly one corresponding internal representation mγ. As well, for every internalrepresentation mγ ∈ IR

γ
d, there exists exactly one corresponding external repre-sentation md. A lack of bijectivity in the mapping between internal and externalrepresentations directly leads to a loss of information during the mapping.
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recursive enumerablerecursivecontext-sensitivecontext-freeregular
Figure 3.5: Containment of grammar classes, based on Chomsky [Cho59].Requirement 3.5.5: The mapping function fγ→d de�nes a bijective mappingbetween the sets ERd and IR

γ
d as one-to-one correspondence between both sets.For approaches on data format description, the question is whether or not it is pos-sible to guarantee the satisfaction of aforementioned requirements. Satisfying Re-quirements 3.5.1 to 3.5.4 relates to issues of computability, decidability and tractabil-ity concerning the validation functions vγ

d , vd and concerning the mapping function
fγ→d including its inverse f−1γ→d. Likewise, Requirements 3.5.2, 3.5.4 and 3.5.5 leadto the question of one-to-one correspondence between sets of external and internalrepresentations ERd and IR

γ
d
.3.5.2 Computability and decidability of functionsSpecifying a data format de�nes a normative set of external representations ERd,including the external validation function vd. The set can be considered a formallanguage L, where in accordance to Requirement 3.5.3, there exists an automaton Mthat accepts or rejects every input, and terminates, thus deciding L. If an automaton

M accepts L, without making any other statement on other inputs, it is recognising
L. Using established results from formal languages [HU79, Sip97, Cho59], it has tobe shown which class of formal language can be used to model external representa-tions of a data format, and whether it is possible to construct an automaton thatdecides membership in a language of that class:� If L is a context-sensitive language, then there exists a linear-bounded automaton(LBA) M as minimal automaton which recognises and decides L.� If L is a recursive language, then there exists a Turing Machine (TM) M asminimal automaton which recognises and decides L.� If L is a recursively enumerable language, then there exists a TM M as minimalautomaton which recognises L, but does not necessarily decide it.



3.5. LIMITS TO DATA FORMAT DESCRIPTION 63� If L is a recursively enumerable, but not recursive language, then there exists noTM M as minimal automaton which both recognises and decides L.Since there shall be an automaton M which decides the language L, L has to beat most recursive to satisfy Requirement 3.5.3, so an automaton M can exist whichterminates. Yet, not every automaton terminates, which is required for deciding alanguage:� If M is a TM, deciding whether M accepts a given input and terminates is theso-called Accepting Problem ATM (Eq. 3.12), also known to be the undecidableHalting Problem. Undecidability of ATM also precludes the existance of a classof automata which recognise and decide exactly the set of all recursive languages.If M is a TM, it can thus recognise and maybe decide recursively enumerablelanguages.
ATM = {⟨M,w⟩ ∣M is a TM and accepts w} (3.12)� If M is a LBA, then deciding whether M accepts a given input and terminates isthe Accepting Problem ALBA (Eq. 3.13) known to be decidable [Sip97]. In thiscase, M can recognise and decide at most context-sensitive languages.

ALBA = {⟨M,w⟩ ∣M is a LBA and accepts w} (3.13)So for deciding whether a given automaton M actually accepts a given input andterminates, L has to be at most context-sensitive. Since context-sensitive languagesare a subset of the recursive languages as shown in the Chomsky containment hier-archy of formal language classes depicted in Figure 3.5, the use of context-sensitivelanguages would guarantee the existance of a terminating automaton M .The remaining question to be answered is which class of language has to be sup-ported for modelling the set of external representations for arbitrary data formats:� Assuming a data format de�ning a context-sensitive language L for its externalrepresentations, there exists an LBA M that decides L, and it is possible to decidewhether M terminates for a given input.� Assuming a data format de�ning a recursive, but not context-sensitive language
L for its external representations, there exists a TM M that recognises L, but notnecessarily decides it. Moreover, it is not possible to decide whether M accepts agiven input and terminates.This question can thus be answered by successfully constructing at least one dataformat that de�nes a recursive but not context-sensitive language L for its externalrepresentations ERd.Theorem 3.5.1: There exists at least one data format d which speci�es a setof external representations ERd which corresponds to a recursive, but not context-sensitive language.Proof. Assume a data format which serves for transmitting a long bit sequence in amessage between sender and receiver. Whether or not a long bit sequence is validin a message is decided by a separate function z shared by sender and receiver. The



64 CHAPTER 3. ANALYSISdata format de�nes a set of external representations, where a valid bit sequence iscompressed using an Exponential Golomb run-length compression scheme. In thisscheme, a so-called run of 2n consecutive bits all set to either 0 or 1 is representedthrough the run length n encoded using the Exponential Golomb integer encodingwith a bit length of 2× log2(n), consisting of two-bit pairs where the �rst bit stateswhether another pair follows, and where the second bit is part of the bit sequencewhich encodes n. Such a run length is followed by the bit value of the run, either 0or 1.The set of external representations forms a language L, for which to decidemembership, an automaton M has to decompress the bit sequence prior to decidingits validity through z. Assuming this to be a context-sensitive language, there existsa LBA as automaton M which is also capable of decompressing the ExponentialGolomb run-length encoding. As a LBA has only a limited amount of tape forprocessing, M has a linear upper bound o × p for processing compressed inputsof length p. For any o given, there exists a compressed bit sequence with length
p = 2 × log2(n) consisting of a single run with a decompressed length 2n > o × p toexceed its linear upper bound, so an LBA cannot decompress it and apply z forvalidation. A LBA is not capable of computing a decompression transformationwhere the length of the output is not strictly bounded by a linear function of theinput length.In this light, it might be tempting to require the de�nition of an upper bound nfor a given data format d as the maximum length of bit sequences for its externalrepresentations ERd to enable the use of LBAs, seemingly su�cient for data formatsin practice. Yet, existing data formats used for multimedia streaming are goodexamples which do not have such an upper bound n, such as the MPEG-2 TransportStream [ISO00] data format used for Digital Video Broadcasting over satellite (DVB-S), cable (DVB-C) or terrestrial radio (DVB-T).Relating this theoretical result to practice, an Exponential Golomb run-lengthcompression scheme, similar to the one used in the previous Proof 3.5.2, has beenproposed for the compression of scan test data in system-on-a-chip (SOC) designsin literature [LC04], e�ectively to be used in a data format. As a consequence, onecan either:� choose LBA as type of automaton, where it can be decided whether an LBAterminates as required, but which fails to model languages that represent externalrepresentations of valid data formats, or� choose TM as type of automaton, which can model all languages that representexternal representations of valid data formats, but where it cannot be decidedwhether the TM terminates as required.In general, describing arbitrary data formats requires a computational device withsu�cient computational power to include the set of recursive languages. Due to theHalting Problem, such a device necessarily includes the set of recursively enumerablelanguages and thus is too powerful to guarantee decidability.Corollary 3.5.1: Considering data formats in general, decidability of externalvalidation functions vd cannot be guaranteed.



3.5. LIMITS TO DATA FORMAT DESCRIPTION 65In practice, computational devices have limited resources such as memory attheir disposal, so these are e�ectively closer to being a LBA rather than a TM. Fora data format d which de�nes a set of external representations ERd that correspondsto a recursive, but not context-sensitive language, any implementation in practicecan only handle a subset of format-compliant external representations which �tswithin its restricted computational resources.3.5.3 Tractability of functionsAssuming validation and mapping functions to be computable and decidable, itremains to be seen whether the tractability of a mapping function and its inverseare related, or whether these functions are necessarily tractable at all. A problem istractable if it is e�ciently solvable in polynomial time by a deterministic TM, andintractable otherwise.Theorem 3.5.2: For a data format d, neither are mapping functions and theirinverses necessarily tractable, nor is their tractability related.Proof. Actual proof is given by a publication on inherently reversible grammars[Dym91]. The author states that every formal grammar G has six computationalproblems termed p-acceptance, p-enumeration, g-acceptance, g-enumeration, bi-acceptanceand bi-enumeration. For a given grammar G and a word w, the p- and g-acceptanceproblems relate to deciding whether w can be parsed or generated, while p- andg-enumeration relates to enumerating the ways this can be done. The remainingbi-acceptance and bi-enumeration problems relate to deciding whether a word wconforms to a certain parse tree, and enumerating all corresponding pairs of wordsand parse trees.Using this classi�cation, the publication shows that �nite p-enumeration does notentail �nite g-enumeration and vice versa, by giving two examples based on Hilbert'stenth problem and the undecidability of �rst-order logic, where either g-acceptationor p-acceptation is not decidable. The results are extended towards tractability,where a tractable g-enumeration does not entail a tractable p-acceptation and viceversa. Examples given relate to number products in public key cryptography andNP-complete problems.As a consequence, bijective mapping functions and their inverses are not neces-sarily tractable, nor is their tractability related.3.5.4 One-to-one correspondence of setsFor a data format d, its set of external representations ERd may be in�nite. Dueto Requirement 3.5.5 on the one-to-one correspondence of internal and externalrepresentations, a sender or receiver γ thus has its set of internal representations
IR

γ
d which may be in�nite as well.The questions to be answered are whether one-to-one correspondence between

ERd and IR
γ
d can be tested, or whether it can be guaranteed by construction.Theorem 3.5.3: Testing one-to-one correspondence between in�nite sets ERd and

IR
γ
d as de�ned by a given function fγ→d is undecidable.



66 CHAPTER 3. ANALYSISProof. Assume a TM Md→γ that decides whether f−1γ→d is injective, and a TM Mγ→dthat decides whether fγ→d is injective. If both TMs accept their respective mappingfunction, then there exists a one-to-one correspondence between ERd and IR
γ
d whichsatis�es Requirement 3.5.5.Further assume that for every element md ∈ ERd, the TM Md→γ computes mγ =

f−1γ→d(md) and compares mγ to all computed elements. If there exists m′γ = f−1γ→d(m
′

d)with mγ = m′γ , then the TM decides the problem by rejecting it. In that case, mγmaps to both md and m′d, which violates injectivity, and thus one-to-one correspon-dence.In case of a �nite set ERd, Md→γ is decidable, as it eventually tests all elementsof the set. In case of a countably in�nite set, the TM is only semi-decidable, as itonly terminates when rejecting the mapping function, yet loops otherwise.The situation is analogous for its twin Mγ→d, and for in�nite sets ERd and IR
γ
d,both TMs only terminate in case of a non-bijective function fγ→d, otherwise loopingforever. Thus, the problem of testing one-to-one correspondence between in�nitesets is undecidable.Corollary 3.5.2: Testing one-to-one correspondence as de�ned by a given map-ping function fγ→d between �nite subsets of IR

γ
d and ERd is decidable.As it is not possible to test arbitrary functions whether they provide for a bi-jective mapping between potentially in�nite sets ERd, IR

γ
d
, the question remainswhether bijectivity of a mapping function can be guaranteed by construction.Theorem 3.5.4: Guaranteeing one-to-one correspondence between in�nite sets

ERd and IR
γ
d by construction of a function fγ→d is decidable.Proof. Assume a so-called Reversible Turing Machine (RTM) M for computing abijective mapping between ERd and IR

γ
d
. By de�nition, its transition function σis required to be injective for determinism of M , and is required to be surjectivefor reversibility of M . As σ is composed from a �nite set of transition formulas,injectivity and surjectivity of transition formulas and thus of σ can be decided.Informally speaking, bijectivity of transition formulas forces an RTM to retain allinformation during computations.So one-to-one correspondence of sets can be guaranteed by constructing a bi-jective mapping function using an RTM, but its computational power may still bein doubt. Although reversibility of computational devices was initially believed torestrict their computational power [Lan61], it has been shown twice independentlythat a Reversible Turing Machine is Turing-complete and therefore capable of han-dling arbitrary computable bijective mapping functions [Lec63, Ben73].These results can be translated back to the domain of data format description.By constructing encodings and mapping steps as RTMs and thus guaranteeing theirbijectivity, it is possible to construct bijective mappings between sets of external andinternal representations ERd and IR

γ
d which are guaranteed to retain information.Yet, due to being Turing-complete, RTMs still cannot be decided to terminate.Implementing such a bijective mapping in practice would lead to �uniformity ofimplementation� regarding parsing and generation [Dym91], and thus be a desirable



3.6. DISCUSSION 67property in itself. Actually developing such bijective mapping functions using high-level reversible programming languages is a non-trivial task which is not the subjectof this thesis. Due to numerous contributions to the research domain of ReversibleComputing, there exist reversible programming languages like Janus [YG07] and R[Fra97], as well as the reversible computer architecture Pendulum [Vie95].3.5.5 SummarySatisfying the Requirements 3.5.1 to 3.5.5 is only partially within the hands of anapproach to data format description, due to limits rooted in formal languages:� It is not possible to both have a su�ciently expressive model capable of expressingexternal representations from arbitrary data formats and still guarantee the ter-mination of validation functions. Any su�ciently expressive approach to describearbitrary data formats has to resort to heuristics in order to decide whether avalidation function will terminate, possibly using limitations of the physical com-putational device itself, such as limited memory resources.� Tractability of mapping functions and their inverses is not given, nor is tractabilityof a mapping function and its inverse necessarily related, as can be seen from theexistence of �trapdoor� functions in cryptography. A practical example of such a�trapdoor� function is the computation of the product of two large prime numbers,which can be computed e�ciently. Its inverse corresponds to the yet-as-unsolvedproblem of factorising large integer numbers e�ciently, which serves as a basis forwidespread cryptographic approaches such as RSA.� Yet, one-to-one correspondence between internal and external representations canbe guaranteed by construction of Turing-complete RTMs which are information-preserving, leading to future research regarding the application of reversible pro-gramming languages in implementing encodings and transformations for data for-mat descriptions.3.6 DiscussionThe formalization presented in this chapter provides a foundation for de�ning anew approach on describing data formats that directly uses the identi�ed elementaldescriptive capabilities of decoding, segmentation, transforming and concatenation.Still notable is the need for a canonical internal representation in order to de�ne adata format.� Need for a canonical internal representation: As can be learned from theformalization, the same external representation md may be represented internallyas mγ in substantially di�erent ways, depending on the sender or receiver γ.Since one-to-one correspondence can be provided through RTMs, the numberof corresponding internal representations is only limited by the number of totalRTMs, leading to the need of a canonical internal representation. The constraintof bijectivity between an external representation and its corresponding internal



68 CHAPTER 3. ANALYSISrepresentation does not reduce the number of potential internal representationsfor a given external representation.Rather than covering the complexity of mapping between arbitrary internal andexternal representations with an in�nite amount of variations for a given dataformat, it is more feasible to introduce a canonical internal representation. Thisis without loss of generality, as arbitrary internal representations can still be ob-tained through a separate stage of bijective mapping, for example for representingthe same information at a di�erent granularity, yet it enables the de�nition of amodel for such a canonical internal representation.3.7 SummaryThis analysis has introduced the research hypothesis 3.2.1, which states that the cur-rent State of the Art regarding data format description can be improved by assum-ing a data format to de�ne a normative set of lossless information representations.According to the hypothesis, the mapping between internal and external represen-tations is information-preserving, thus bijective and therefore lossless. Building onthe research hypothesis, the resulting formalisation leads to the notion of a causalitygraph for describing the composition of data.Four important properties of the formalisation were explored, of which the �rstthree are the suitability of bijective mapping functions for data formats, the su�-ciency for lossless and lossy data formats, as well as the su�ciency and necessityof its descriptive capabilities for handling primitive, structured, transcoded andfragmented data. This establishes the four elementary descriptive capabilities ofdecoding primitive data, segmenting structured data, transforming transcoded dataand concatenating fragmented data, which exactly match the descriptive capabili-ties that were considered during the survey of current State of the Art. Last butnot least, the remaining property that was explored is a �litmus test� for data for-mat description approaches, which is a speci�c PNG raster image that requires thesupport of all four elemental descriptive capabilities from a data format descriptionapproach.Using the formalisation to explore the limits to data format description, all ap-proaches are limited by established theoretical restrictions from formal languagesand computational theory to provide support for arbitrary data formats, yet guar-antee the satisfaction of basic requirements.From the comparison of approaches from related work in Chapter 2, e�ectivelybased on the elementary descriptive capabilities, only XCEL comes close to beinguniversally applicable, yet it still lacks support for bit granularity and full support forthe concatenation of fragmented data with full control over fragment ordering. Themajority of other examined approaches fails to support transcoded or fragmenteddata at all.The formalisation presented in this analysis contributes a solid foundation foruniversal applicability, and thereby paves the way for a model for formally describ-ing data format instances in the upcoming Chapter 4, which addresses the needfor a canonical internal representation that was discussed previously. In turn, thisupcoming model enables a model for formally describing data formats in a declara-



3.7. SUMMARY 69tive manner in Chapter 5, which is formally robust and conceptually simpler thanXCEL.





Chapter 4Describing Data Format Instances
4.1 IntroductionIn the previous Chapter 3, a formalised abstraction of data format instances and dataformats was presented and subjected to an analysis regarding its inherent properties,which a�ects data format description and its applications. The presented abstractionof data format instances consists of a causality graph rooted in the original bitstreamand where contained information corresponds to primitive values as its leaves. Theabstraction is a suitable basis for a model of describing data format instances to beused in manual and automated settings.This chapter presents the Bitstream Segment Graph (BSG) model and addressesthe following aspects:� De�nition of the BSG model: Besides the de�nition of the BSG model in Sec-tion 4.2, this also addresses means of incremental construction and modi�cationof BSG instances.� Representation of BSG instances: Both a visual representation and a storagerepresentation based on the Resource Description Framework (RDF) are given inSection 4.3.� Construction and modi�cation of BSG instances: For incremental con-struction and modi�cation of BSG instances, a closed set of operations is pre-sented in Section 4.4. Based on these operations, the Apeiron BSG Editor o�erstool support for constructing, modifying and exploring BSG instances on arbitrarydata.� Applications of the BSG model: Section 4.5 demonstrates the descriptionof the PNG image �litmus test� from Chapter 3, which exercises all elementaldescriptive capabilities. Furthermore, the section gives an application of BSGmodels for describing exploits from IT Security, which is presented in detail.
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72 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCES4.2 De�nition of the Bitstream Segment Graph modelAs per De�nition 3.3.15, a data format instance is a causality graph composed fromtransformations, with encodings de�ned for its leaf nodes. In combination withDe�nition 3.3.14, arbitrary causality graphs can be composed from the mappingsteps of segmentation, transformation and concatenation.4.2.1 De�ning codings and transformationsReferring to coding and transforming as elemental descriptive capability for whichthe actual mapping has to be de�ned in �executable� terms, the following de�nitionsare introduced:Definition 4.2.1 (Bitstream Coding Function): A bitstream Coding func-tion is a bijective mapping function between a domain-speci�c value and its cor-responding bit sequence. It can be uniquely identi�ed and may have additionalparameters.Definition 4.2.2 (Bitstream Coding): A bitstream Coding represents a bijec-tive mapping between a domain-speci�c value and its bit sequence in a bitstreamsegment, using a bitstream coding function. It identi�es the used bitstream codingfunction and its parameters, if any.Example 4.2.1: Let x ∈ N be the width of an image in pixels. If x is to berepresented as bit sequence in a least-signi�cant bit �rst unsigned integer encoding,then a corresponding bitstream coding function f is required.A bit sequence can represent an encoded typed value that is part of the infor-mation stored in a message such as a �le or a protocol data unit (PDU), a messageexchanged in a network protocol. For example, there are two bit sequences containedwithin a PNG raster image �le which contain encoded integer values that representthe width and height of the image.Definition 4.2.3 (Bitstream Transformation Function): A bitstream trans-formation function is a bijective mapping function between two bit sequences as in-put and output. It can be uniquely identi�ed and may have additional parameters.Definition 4.2.4 (Bitstream Transformation): A bitstream transformationrepresents a bijective mapping between two bit sequences as input and output, asproduced by a bitstream transformation function. It identi�es the used bitstreamtransformation function and its parameters, if any.Example 4.2.2: Let a �nite bit sequence a represent a data structure that isencrypted using the RC4 stream cipher with a secret key k. Prior to segmentingthe structure, decrypting the bit sequence is required, which is a bitstream blocktransformation. It requires a corresponding function which implements the RC4stream cipher and uses the secret key k as parameter.Example 4.2.3: The bit-wise inversion of a �nite bit sequence requires a bitstreamtransformation function as block transformation and uses no parameters.



4.2. DEFINITION OF THE BITSTREAM SEGMENT GRAPH MODEL 73Both functions for bitstream coding and bitstream transformation can be de�nedthrough Reversible Turing Machines (RTM) and referred to by a unique identi�erper RTM. It is not within the scope of the BSG model to execute arbitrary bitstreamcodings and transformation functions itself.4.2.2 De�ning bitstream segmentsDefinition 4.2.5 (Bitstream Segment): A bitstream segment represents a�nite bit sequence.Definition 4.2.6 (Bitstream Source): A bitstream source is a bitstream seg-ment whose bit sequence represents a digital item which is composed according toa data format, and which is to be described.Example 4.2.4: Examples for octet-aligned bitstream sources are �les, networkpackets or �le systems on a storage medium.Both codings and mapping steps de�ne the structural meaning of bitstreamsegments as nodes in the causality graph. They give rise to structural types ofbitstream segments.Definition 4.2.7 (Bitstream Segment Type): A bitstream segment type de-�nes the structural purpose of a bitstream segment. Every bitstream segment be-longs to exactly one of 6 bitstream segment types, which is either a structure, atranscode, a fragment, a composite, a primitive or a generic:� A structure bitstream segment is input to a segmentation, which separates the bitsequence into two or more elements.� A transcode bitstream segment is input to a bitstream transformation function,which transcodes the bit sequence into another one.� A fragment bitstream segment is input to a concatenation, which concatenatesthe bit sequences with that of other fragments.� A composite bitstream segment is output of a concatenation, and is the concate-nation of bit sequences from two or more fragment bitstream segments.� A primitive bitstream segment is input to a bitstream coding function, whichresults in a typed primitive value.� A generic bitstream segment is neither input to a mapping step nor to an encoding.Extending the set of types previously shown in Chapter 3.4.3, this type is requiredfor incremental description of a data format instance, and in case of incompletedata format knowledge, it acts as a temporary placeholder.4.2.3 De�ning a Bitstream Segment GraphMaintaining exactly one bitstream segment type for every bitstream segment wouldfail for a bitstream segment, which is simultaneously a composite and another �down-ward� type, such as when concatenated fragments of data are further transformed.This issue is resolved through maintaining normalisation of BSG instances.
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Figure 4.1: Representation of bitstream segments in the simple variant, showing astructure bitstream segment a containing two primitive bitstream segments b and c.Definition 4.2.8 (Normalisation): In a normalised causality graph, everycomposite bitstream segment has a single successor bitstream segment which isassignated the �downward� type (other than composite) as required to designate itsstructural type.Definition 4.2.9 (Bitstream Segment Graph): A bitstream segment graph(BSG) is a normalised causality graph composed from bitstream segments.4.3 Representation of BSG instancesFor BSG instances, some means for their representation is required, both for repre-senting them visually for use in print and for representing them digitally for use inapplications such as editors.4.3.1 Visual representationsDepending on the requirements of visual representations of whole BSG instances aswell as bitstream segments, one of three variants for visual representations (simple,extended and interactive) can be used. While simple and extended visual repre-sentations are for use in print, the interactive visual representation is for use inapplications.Simple visual representationIn this variant, segments are depicted as boxes, and the relations of 'predecessorship'and 'successorship' are depicted by directed arrows from predecessors to successors.Actual placement of segments in the bitstream segment is given relative to a pre-decessor, or zero-based for a root bitstream segment. For a segment, inclusive startand exclusive end bit positions are shown above the upper left and right corners,respectively. The bitstream segment type is given in the upper half of the box, whilean identi�er for the actual segment is located in the lower half. An example of thisvariant for visual representation is shown in Figure 4.1.



4.3. REPRESENTATION OF BSG INSTANCES 75start endtypeid start endroleparameteridFigure 4.2: Representation of bitstream segments in the extended variant, showingtemplates for generic, structure and composite bitstream segments (left) and forfragment, primitive and transcode bitstream segments (right)
generic primitive structuretranscode fragment compositeFigure 4.3: Representation of bitstream segments in the interactive variant, showingsymbols for all bitstream segment types.Extended visual representationAs an alternative to the simple variant, the extended visual representation providesa more compact notation for showing BSG instances in print.Segments are depicted as three-row boxes for generic, structure and compositebitstream segments, and as four-row boxes for fragment, primitive and transcodebitstream segments, as shown in Figure 4.2. The additional row in the latter caseserves to provide additional information, such as an ordering index for fragments,or references to bitstream coding and transformation functions. As with the simplevariant, placement of bitstream segment is relative to predecessors, with the inclusivestart position and exclusive end position shown in the upper left and right corners,respectively.Interactive visual representationFor showing a BSG instance in an interactive application, where properties of abitstream segment do not have to be shown all at once, but can be accessed in someother means, a less complex visualisation can be used. In this representation variant,bitstream segments are visualised as coloured shapes shown in Table 4.3.



76 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCESPre�x Description / namespacerdf RDF namespace:http://www.w3.org/1999/02/22-rdf-syntax-ns#bsg Namespace for BSG-related RDF vocabulary:http://dataformats.net/bsg/1.0/bsge Example pre�x for bitstream coding function identi�ersbsgt Example pre�x for bitstream transformation function identi�erspng Example pre�x for PNG format-speci�c semantics identi�ersTable 4.1: Namespace declarations.4.3.2 Digital representationIn order to exchange information on the composition of binary data, a BitstreamSegment Graph instance can be expressed through RDF/N3 using the RDF de�nedin this subsection. In the following de�nitions and examples, RDF namespaces andtheir pre�xes are de�ned according to Table B. Using the BSG RDF vocabulary,bitstream segments are represented as resources which belong to certain RDF classesand have certain RDF properties:� RDF Classes: Bitstream segments are distinguished in their type through RDFclasses. Every bitstream segment has a rdf:type of both bsg:segment andthe speci�c RDF class corresponding to its type as listed from Table 4.3, suchas bsg:primitive. A root bitstream segment additionally has a rdf:type ofbsg:source. It is worth noting that the normalised bitstream transformationsof segmentation, block transformation and concatenation from De�nition 3.3.14correspond to the classes bsg:structure, bsg:transcode and bsg:composite,respectively.� RDF Properties: Depending on the RDF class, bitstream segments have speci�cproperties according to Table 4.4. For placement, every bitstream segment has absg:start, bsg:length and bsg:end property with integer values. These referto its exact placement within the bit sequence composed from its predecessor(s),or within its de�ned bit sequence in case of a bitstream source. A root bitstreamsegment always starts at 0. All three properties are measured in bits, whereas thestart position is included and the end position excluded.Regarding their composition, every bitstream segment besides the bitstream sourcehas an ordered list of one or more bsg:predecessor properties, and every bit-stream segment besides bsg:generic or bsg:primitive segments has an orderedlist of one or more bsg:successor properties. Class-speci�c restrictions listed inTable 4.4 apply which correspond to the underlying BSG model. Only a bitstreamsource may have the bsg:source property set.The meaning of a bitstream segment can be assigned through zero or morebsg:semantics properties. For example, this could refer to PNG Signature se-mantics using png:signature as value. For bsg:primitive and bsg:transcode



4.4. CONSTRUCTION AND MODIFICATION OF BSG INSTANCES 77Used in coding? Used in transformation? Type rdf:typeno no (as input) Generic bsg:genericyes no (as input) Primitive bsg:primitiveno segmentation (as input) Structure bsg:structureno transformation (as input) Transcode bsg:transcodeno concatenation (as input) Fragment bsg:fragmentno concatenation (as output) Composite bsg:compositeTable 4.2: Bitstream segment types.rdf:class Descriptionbsg:source Class for bitstream sourcesbsg:segment Abstract base class for bitstream segmentsbsg:generic Class for bitstream segments where the purpose is unde�nedbsg:primitive Class for bitstream segments representing an encoded literalbsg:structure Class for bitstream segments composed from two or more bit-stream segments with separate, distinct meaningsbsg:transcode Class for bitstream segments representing a transcoded bitsequencebsg:fragment Class for bitstream segments representing a fragment of alarger bit sequence with a uniform meaningbsg:composite Class for bitstream segments representing a bit sequence witha uniform meaning aggregated from two or more fragmentsTable 4.3: RDF classes for bitstream segments.bitstream segments, the identi�cation of the actual bitstream coding or transfor-mation function used is given through the bsg:encoding and bsg:codec prop-erties, respectively. For example, this could include a most signi�cant bit �rstunsigned integer encoding bsge:msbf-uint or a gzip transformation bsgt:gzip.The de�nition of concrete identi�ers for semantics, encodings and codecs stronglydepends on the data format to be described and thus is out of scope for this thesis.4.4 Construction and modi�cation of BSG instancesA trivial BSG instance can be created by de�ning a single generic bitstream segment,which is a bitstream source representing the bit sequence to be described. Throughfurther modi�cation of the BSG instance, the description can be improved step-by-step.



78 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCESClass Property Cardinality Descriptionbsg:source bsg:href 1..1 Reference to a bitstreamsourcebsg:segment bsg:start 1..1 Start position in bits (inclu-sive)bsg:length 1..1 Length in bitsbsg:end 1..1 End position in bits (exclu-sive)bsg:semantics 0..n Identi�er for format-speci�csemanticsbsg:predecessor 0..n Ordered list of predecessors(input)bsg:successor 0..n Ordered list of successors(output)bsg:generic bsg:predecessor 0..1 Restriction: Generics haveat most one predecessorbsg:successor 0..0 Restriction: Generics do nothave successorsbsg:primitive bsg:encoding 1..1 Identi�er for the bitstreamcoding function usedbsg:predecessor 0..1 Restriction: Primitives haveat most one predecessorbsg:successor 0..0 Restriction: Primitives donot have successorsbsg:structure bsg:predecessor 0..1 Restriction: Structures haveat most one predecessorbsg:successor 2..n Restriction: Structures haveat least two successorsbsg:transcode bsg:codec 1..1 Identi�er for the bitstreamtransformation function usedbsg:predecessor 0..1 Restriction: Transcodes haveat most one predecessorbsg:successor 1..1 Restriction: Transcodes haveexactly one successorbsg:fragment bsg:predecessor 1..1 Restriction: Fragments haveexactly one predecessorbsg:successor 1..1 Restriction: Fragments haveexactly one successorbsg:composite bsg:predecessor 2..n Restriction: Compositeshave at least two predeces-sorsbsg:successor 1..1 Restriction: Compositeshave exactly one successorTable 4.4: RDF properties for bitstream segments.
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�nal_join(b,n)Figure 4.4: Graph grammar rule for initial_split/�nal_join operations4.4.1 Modifying BSG instances through operationsTo modify a BSG instance, for example when constructing a BSG instance incre-mentally, a notion of operation is required.Definition 4.4.1 (Operation): An operation o transforms a valid BSG instanceinto another valid BSG instance. For every operation o, there exists an inverseoperation o−1 which undoes the e�ect of o.This thesis de�nes a number of operations listed with their inverses for incre-mental construction of BSG instances, namely initial_split / �nal_join, split /join, tie / untie, declare_primitive / undeclare_primitive, declare_fragment / un-declare_fragment, compose / decompose and expand / compress.In order to visualise these operations, they are shown as graph grammar rulesusing the simple visual representation previously de�ned in Section 4.3.1. In additionto their textual descriptions below, these operations are visualised accordingly inFigures 4.4 to 4.10, and detailed with examples using the PNG raster image �leformat test case which served as �litmus test� in Chapter 3:� initial_split, �nal_join: Given a generic bitstream segment x, the operationcreates two separate, neighbouring generic bitstream segments y, z by splittingthe bit sequence of x in two at bit position p. It then changes x to a structurebitstream segment and adds y, z as successors of x, as shown in Figure 4.4.Example 4.4.1: Let x be a generic bitstream segment which contains a validPNG image. Applying the initial_split operation on x at bit position 64 resultsin a structure bitstream segment x with two successors, a bitstream segment ycontaining the PNG signature and a bitstream segment z containing three or morePNG chunks for a valid PNG image.
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join(a,n)Figure 4.5: Graph grammar rule for split/join operations� split, join: Given a generic bitstream segment x as a successor of a structurebitstream segment y, the operation splits x at bit position p into two separategeneric bitstream segments x1, x2, and replaces x with x1, x2 as successors of yin-place, as shown in Figure 4.5.Example 4.4.2: Let x be the structure bitstream segment from Example 4.4.1,partially describing a valid PNG image, and let z be the second successor of
x. Applying the split operation on z at bit position 200 results in a structurebitstream segment x with three successors, namely a generic bitstream segment
y containing the PNG signature, a generic bitstream segment z1 containing theIHDR chunk data structure, and a generic bitstream segment z2 containing twoor more PNG chunks. The bitstream segments z1 and z2 are on the same level as
y, as opposed to the result of an initial_split operation.� tie, untie: Given a structure bitstream segment x and a continuous subset of itssuccessors as bitstream segments a0, . . . , an as neighbours, the operation replacesthe successors a0, . . . , an with a structure bitstream segment b and adds a0, . . . , anas only successors of b, as shown in Figure 4.6.Example 4.4.3: Let a0, a1, a2 and a3 be separate generic bitstream segmentsthat have been the result of segmenting parts of a PNG image, but which havepreviously not been considered to form an IHDR chunk data structure. Throughthe tie operation, a0 to a3 remain generic bitstream segments, but are groupedunder a structure bitstream segment b as successors that represent the IHDRchunk.� declare_primitive, undeclare_primitive: Given a generic bitstream segment
x and a reference to a bitstream coding function f , the operation replaces x witha primitive bitstream segment y, as shown in Figure 4.7.Example 4.4.4: Let x be the generic bitstream segment contained in the IHDRdata structure from the previous Example 4.4.3, which contains the width of the
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undeclare_fragment(a)Figure 4.8: Graph grammar rule for declare_fragment/undeclare_fragment opera-tionsPNG raster image in pixels. Through the declare_primitive operation on x andrefering to a bitstream coding function for the most-signi�cant-bit-�rst integerencoding, the bit sequence of x becomes the representation of an integer.� declare_fragment, undeclare_fragment: Given a generic bitstream segment

x, the operation replaces x with a fragment bitstream segment y, as shown inFigure 4.8.Example 4.4.5: Let a0 and a1 be two generic bitstream segments that representthe payloads of two separate IDAT chunks, which have been segmented previously.Both payloads represent fragmented image data, and as the fragments are notlocated next to each other, the segments need to be concatenated for furtheranalysis. Applying the declare_fragment operation on both segments convertsthem to fragment bitstream segments that are ready for later concatenation.� compose, decompose: Given an ordered set of fragment bitstream segments X,the operation concatenates all bitstream segments in X in the given order to forma composite bitstream segment y, adding y as successor to all bitstream segmentsin X. Furthermore, a generic bitstream segment z is added as sole successor to
y, which allows further operations to be executed on z. The operation itself isshown in Figure 4.9.Example 4.4.6: Let a0 and a1 be the fragment bitstream segments resultingfrom the previous example 4.4.5. Applying the compose operation to the orderedset (a0, a1) produces the composite bitstream segment b, followed by a singlegeneric bitstream segment x. This generic bitstream segment carries PNG im-age data that is still compressed and transformed, and thus subject to furtheroperations.� expand, compress: Given a generic bitstream segment x and a reference to abitstream transformation function f , the operation replaces x with a transcodebitstream segment y and adds a generic bitstream segment z as its sole successorwith a transformed bit sequence, as shown in Figure 4.10. The generic bitstreamsegment z contains the transcoded bit sequence of y.
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84 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCESExample 4.4.7: Let a be the generic bitstream segment resulting from thecompose operation in the previous Example 4.4.6. Applying an expand oper-ation using a reference to the bitstream transformation function for the GZIPblock transformation turns a into a transcode bitstream segment, with a genericbitstream segment x as its sole successor that contains data that still has to bescanline-transformed in order to access actual pixels of the raster image.Since the expand / compress operations are the only ones where the mappingbetween input and output bitstream segments may result in an increase or decreaseof their actual total length, the names for both operations have been chosendeliberately in relation to compression, where changes in total length are actuallydesired. The use of the expand / compress terminology allows to uniquely identifyboth directions of mapping, yet a bitstream transformation function f used inexpand / compress operations is neither required to be a compression-relatedtransformation, nor to change the length of the bitstream segment at all. Anexample bitstream transformation function that does not change the length ofbitstream segments would be a function performing bit-wise negation.Using operations, a BSG instance can be constructed in a divide and conquer strat-egy. While they provide means for all four elemental descriptive capabilities, othercombined operations could be envisioned that may further simplify manipulationof BSG instances. An example would be a pushdown / pullup operation, whichwould allow to �push� a bitstream segment a, which either leads or follows a struc-ture bitstream segment b, �down� into the structure b as its �rst or last successor,respectively, as well as the inverse operation.Example 4.4.8: Let a0, a1, a2 and a3 be bitstream segments which represent thelength, the type, the payload and the CRC of a PNG chunk in that order. Let bbe a structure bitstream segment which ties a0, a1 and a2 as its successors, and let
b be followed by a3 as the result of a user error during annotation, who forgot totie a3 as well. In order to turn the structure bitstream segment b into a valid PNGchunk structure, some change is necessary. Rather than reversing the previous tieoperation and repeating it correctly on a0, a1, a2 and a3, �pushing down� a3 into bleads to the same result and corrects the erroneous annotation.While a pushdown / pullup operation would simplify that speci�c case, it ispossible to handle that case with the existing operations by untying b and againtying all previous successors of b plus / minus a again.4.4.2 Measuring completeness of a descriptionConstructing a complete BSG instance from a generic segment representing theexternal representation to be described brings along the issue of measuring the com-pleteness of its description.Definition 4.4.2 (Coverage): The coverage of a bitstream segment is a mea-sure between 0.0 and 1.0 which refers to the degree in which the segment and itssuccessors describe its bit sequence through primitive values. A generic bitstreamsegment has a coverage of 0.0, while a primitive bitstream segment has a coverage



4.5. APPLICATIONS OF THE BSG MODEL 85of 1.0. The coverage of other types of bitstream segments is computed from the cov-erage of its successors and the percentage of their size with respect to all successors.The coverage of a BSG instance refers to the coverage of its root node.Example 4.4.9: Let x be a structure bitstream segment with a length of 16 bits,which contains two bitstream segments y, z as its successors. Both y and z have alength of 8 bits, where y is a primitive with coverage 1.0 and z is a generic withcoverage 0.0. As a consequence, the coverage of x is 8/16 ∗ 1.0 + 8/16 ∗ 0.0 = 0.5.Depending on the coverage of its root bitstream segment, a BSG instance iseither partial or complete:� A BSG instance with a coverage of less than 1.0 is partial, as it still contains oneor more generic bitstream segments, for which no more speci�c structural typehas been assigned yet.� A BSG instance with a coverage of 1.0 is complete, as it completely describes itsroot bitstream segment in terms of primitive bitstream segments through a �nitenumber of bijective mapping steps.4.4.3 Providing tool support with the Apeiron BSG EditorThe Apeiron BSG Editor shown in Figure 4.11 uses the interactive visual represen-tation (top left) with a hexdump representation (bottom) and a detailed propertyview for selected bitstream segments (right) to enable manual construction and mod-i�cation of BSG instances using operations, and to enable the measurement of itsdescriptive completeness. Loading and saving BSG instances from and to �les usesthe RDF/N3-based digital storage representation previously de�ned.The editor has been implemented in Java and uses OSGi and Eclipse Equinox formodularisation, so extending and modifying the editor, for example for an additionalpushdown / pullup operation, can be done through OSGi bundles. The graph-basedvisualisation of BSG instances is based on the Prefuse visualisation library, and bothstorage and modi�cation of the in-memory RDF graph representation make use ofthe Sesame and Elmo libraries. The implementation used for documenting theseresults are based on the the master thesis of Marcus Ständer, and on the diplomathesis of Friedrich-Daniel Möller, who realised a precursor version.4.5 Applications of the BSG modelDescribing data format instances using the BSG model enables applications in sev-eral domains, such as IT Security or Digital Preservation. In this thesis, two ap-plications are given as examples, namely a description of the PNG raster image�litmus test� and the documentation of two exploits in IT Security. Other potentialapplications include reverse-engineering of legacy data formats for documentationin Digital Preservation through data format registries.
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Figure 4.11: The Apeiron BSG Editor with a BSG instance for the FreeDOS BaseCD ISO image �le, highlighting a bitstream segment containing the contents of atext �le.4.5.1 Description of the PNG raster image �litmus test�A suitable data format instance is the Portable Network Graphics (PNG) rasterimage �le �oi2n0g16.png�. The �le consists of a structure starting with a signature,followed by a number of so-called chunks. The signature is a primitive carrying a�xed bit sequence for identifying the �le as a PNG image. The chunks are againstructures consisting of a length identi�er as primitive, a type identi�er as primitive,a type-dependent data segment and a CRC determinant as primitive. Depending onthe type, chunks carry di�erent data, such as the image header in the �IHDR� chunk,or image data in one or more �IDAT� chunks. In the given example, the image data isfragmented over two IDAT chunks, which needs to be composed �rst. The composeddata does not directly correspond to the actual image, but is a transcode that iscompressed using the GZIP algorithm. The uncompressed data is again a transcodewhere pixel data is rearranged to improve the GZIP compression e�ciency. Thereordered data then �nally corresponds to the image data that represents the actualpixels with their given colour.For this example, the corresponding BSG instance is presented in Figure 4.12.The BSG instance contains structures, primitives, fragments, a composite and twotranscodes. It uses two block transformations for the GZIP compression and the



4.5. APPLICATIONS OF THE BSG MODEL 870 1.432StructureFile0 64StructureSignature 64 264StructureIHDR 264 392StructuregAMA 3921.000StructureIDAT #1 1.0001.336StructureIDAT #2 1.3361.432StructureIEND0 32PrimitiveintLen #1 32 64Primitivebyte[4]Type #1 64 576Fragment#1Data #1 576 608Primitivebyte[4]CRC #1 0 32PrimitiveintLen #2 32 64Primitivebyte[4]Type #2 64 304Fragment#2Data #2 304 336Primitivebyte[4]CRC #20 752CompositeComposite0 752TranscodezlibCompressed016.640TranscodePNG FilterScanlines016.384Primitiveshort[32][32]PixelsFigure 4.12: Partial bitstream segment graph for �le �oi2n0g16.png�, showing thebijective mapping of two PNG IDAT chunks to a 16 bit grayscale image with aresolution of 32 × 32 pixel, using the extended visual representation.Scanline transformation, and two codings for integer and ASCII string primitives.Moreover, it shows a number of functional dependencies, such as a length determi-nant for the chunk length, a type determinant for the chunk type and a functionaldependency on segment values for the CRC. The given BSG instance thus exercisesall elementary descriptive capabilities that were previously identi�ed in Section 3.4.3and are provided by the BSG model.4.5.2 Describing exploits in IT SecurityAn application of Bitstream Segment Graphs is the structural description of so-called exploits in IT Security. In order to inject and execute malicious code in anapplication, an exploit addresses its vulnerabilities, speci�c implementation errorsin an application related to the processing of data. A well-known vulnerability in anumber of image-processing tools from Adobe and Corel on the Windows platformis CVE-2007-2365, which is triggered by loading a crafted PNG image as exploit.For this vulnerability, there exists an exploit generator, which provides the optionto chose from two di�erent payloads, where one launches the Windows Calculator,while the other binds a shell to TCP port 4444, enabling local access to a remoteattacker.In this example, the former variant of a generated exploit is annotated. Moreover,this exploit is speci�cally considered with regards to its e�ects on Adobe PhotoshopCS2. For annotating the exploit using the Apeiron tool, both the PNG W3C speci-�cation [Duc03] as well as the publicly available source code of the exploit generatorin the programming language C [Mar07] are used.
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Figure 4.13: The structure of the crafted PNG image exploit shown in Apeiron,including a PNG signature, an �IHDR� chunk, a �tIME� chunk and an invalid �pYHs�chunk, followed by unknown data in a generic segment.Solely considering the exploit as a PNG image according to the PNG �le formatspeci�cation, a partial BSG instance can be constructed as shown in Figure 4.13.The partial instance describes the layout of a PNG image signature and three PNGchunks, where each PNG chunk consists of a 32-bit length descriptor, a 32-bit typedescriptor, variable-length data with a structure depending on the type of chunk,and a 32-bit CRC value on both the type and data �eld, where its length is non-zero.These three chunks are:� an "IHDR" chunk, which covers basic information regarding the image itself (a509 pixels × 438 pixels resolution with 256 indexed colours from a palette, andstandard values regarding PNG image compression, �ltering and interlacing), fol-lowed by� a "tIME" chunk, which covers the last modi�cation date of the image (on 2007-04-15 on 16:16:21 o'clock), and �nally followed by� a "pHYs" chunk, which covers the physical dimensions of the image pixels.While both the "IHDR" and "tIME" chunks follow the PNG �le format spec-i�cation, the "pHYs" chunk is invalid, as it is required to have a value of 0x9 for
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Figure 4.14: The structure of the crafted PNG image exploit shown in Apeironextended from Figure 4.13, additionally including a �gAMA� chunk and an invalid�PLTE� chunk when adjusting the previously invalid �pYHs� length descriptor.its length descriptor, yet it has a value of 0x4409. Even when assuming this chunkto be valid, the hypothetically following PNG chunk then would have a value of0xb67d641e for its length descriptor, by far exceeding the length of the overall im-age �le. The invalid "pHYs" chunk is therefore followed by a generic segment withdata of so-far unknown purpose.Either by masking the value of the length descriptor of the invalid "pHYs" chunkto the least signi�cant byte, or by ignoring the actual value and instead consideringits value as de�ned by the speci�cation, it can be observed that the chunk is followedby two further chunks as shown in Figure 4.14:� a "gAMA" chunk, which covers the gamma value of the image, and� a "PLTE" chunk, which describes the indexed colours of the image palette.While the "gAMA" chunk follows the PNG speci�cation, the "PLTE" chunk is againinvalid. Each of its 256 colours should be de�ned through the primary colours red,green and blue, with 1 byte for each colour component. As such, its length descriptoris required to have a value of 0x300, yet it has a value of 0x160060, which againexceeds the length of the image �le.
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Figure 4.15: The structure of the crafted PNG image exploit shown in Apeironextended from Figure 4.14, additionally including the �rst four bytes of fragmentedshellcode from the red colour component in indexed colours 1496 and up.Examing the source code of the exploit generator, the embedded shellcode isembedded into the "PLTE" chunk by fragmenting it into separate bytes every threebytes, which corresponds to the red colour component of the indexed colours 1496and following. Figure 4.15 shows the partial BSG instance including a concatenationof the �rst four shellcode bytes.In this form, the embedded shellcode depends on its reassembly through thetargeted application in order to be executed. It is therefore reasonable to assumethat its exploit triggers a bu�er over�ow of a bu�er intended for the red colourcomponent of an indexed colour palette, which would conveniently provide for therequired reassembly of its shellcode.The partial BSG instance annotated so far thus provides the location of itsembedded shellcode and helps to give a clue as to how its execution is triggered.The example shows how this approach allows a security export to systematicallydecompose malicious data for purposes of documentation and further analysis.



4.6. DISCUSSION 914.6 DiscussionThe BSG model has a number of properties that distinguish it from the set of ex-amined related work. The model presented in this chapter provides completeness ofdescriptive capabilities, enables the explicit mapping between an external representa-tion and a canonical internal representation and supports the incremental construc-tion and modi�cation of data format instances. At the same time, the BSG modelo�ers a conceptual simplicity not present in examined related work, and enables arepresentation of data format instances suitable for humans and machines:� Completeness of descriptive capabilities: In contrast to examined relatedwork, the BSG model is complete in its descriptive capabilities, as it is based onthe previously presented abstraction of a rooted causality graph, and thus providesall four elementary descriptive capabilities of decoding primitive data, segment-ing structured data, transforming transcoded data and concatenating fragmenteddata. It supports descriptions at arbitrary levels of granularity down to individualbits.� Explicit mapping between an external representation and a canonicalinternal representation: Compared to examined related work, a BSG instancemakes the way certain information is actually represented explicit. Where otherapproaches only provide an XML-based or similar representation correspondingto an external representation, the BSG model makes the overall mapping ex-plicit, which can be helpful in verifying the way an application processes externalrepresentations, allowing a comparison of the expected and actual mapping ofinformation in a data format instance.� Incremental construction and modi�cation: The BSG model supports theincremental construction of its instances. It is reasonable to assume that thecomplexity of describing the composition of data is reduced when a model pro-vides support for incremental construction and modi�cation, so the BSG modelallows for incomplete descriptions to be completed in incremental steps by severalparticipants.� Conceptual simplicity: Compared to the complexity of other approaches ondescribing the composition of data, the BSG model is conceptually simple. Basedon the analysis in Chapter 3, its realisation in the BSG model results to a con-ceptually simple model, where there are only 6 di�erent types of data, namelyprimitive data, structured data, transcoded data, fragmented data, concatenateddata and generic data. Through only 8 pairs of well-de�ned operations and theirrespective inverse, it is possible to construct and modify arbitrary BSG modelinstances, given the existence of required bitstream coding and bitstream trans-formation functions.� Representation of data format instances suitable for humans and ma-chines: The BSG model provides a representation that is suitable for sharingbetween humans and machines, as it can be visualised graphically and operatedon by humans as well as processed automatically due to its RDF-based represen-tation.



92 CHAPTER 4. DESCRIBING DATA FORMAT INSTANCESFurthermore, two remaining aspects need to be discussed, such as the separation ofthe causality graph and the mapping step implementations, and the observation ofredundancy of information in data format instances:� Separation of the causality graph and the mapping step implementa-tions: Although a data format instance may involve computationally complexmapping steps, the intention is to describe the composition of data as speci�c aspossible, rather than using arbitrary universal computational devices.Encodings of data types and block transformations of data are of interest, yettheir number is small compared to the growing number of data formats in use, asobserved in Digital Preservation [RH05]. Both bitstream coding and transforma-tion functions can be factored out as reversible computational devices. These canthen be standardised and reused in canonical descriptions of data formats.Separating the actual implementation of coding and transformation functions fromthe description allows for di�erent realisations of implementations, the standardis-ation of block transformations and codings regarding their speci�cation, and keepsthe model for describing data format instances focused. While the bijectivity ofthese functions can be ensured through reversible computational devices such asRTMs, actually implementing these functions using reversible computational de-vices requires further research on reversible high-level programming languages forthe de�nition of bitstream coding and bitstream transformation functions.� Redundancy of information in data format instances: It can be observedthat sometimes there are several di�erent paths to obtain a certain piece of infor-mation. For example, the length of a segment can be inferred from neighbouringsegments or through separate packaging segments which carry the desired lengthinformation explicitly. When the information shall be inferred in an automatedfashion, there may be cylic paths of reasoning which do not terminate in a depth-�rst search. Rather than that, it is necessary to perform a width-�rst search,trying to reach all possible facts, but terminating when there are no more newfacts to be reached. This leads to the idea of computing a BSG instance descrip-tion as a �xed-point through reasoning.4.7 SummaryThis chapter de�nes the Bitstream Segment Graph (BSG) model for describing ar-bitrary data format instances, which realises the formalisation introduced in theprevious Chapter 3. A number of visual representations as well as an RDF-basedstorage representation have been given, enabling the storage and exchange of BSGmodel instances. In order to construct and modify BSG instances, a closed set of8 pairs of operations and their inverses are given and have been implemented inthe Apeiron BSG Editor as tool support. Its capabilities have been demonstratedthrough a description of the PNG image �litmus test� as well as through a de-scription of a PNG raster image �le which is a known exploit that targets errors incertain image processing tools such as Adobe Photoshop CS2, thereby triggering theexecution of an embedded malicious payload. In a discussion, a number of proper-ties are pointed out which distinguish the BSG model from related work previously



4.7. SUMMARY 93examined in Chapter 2, such as its completeness of descriptive capabilities or itsconceptual simplicity.





Chapter 5Describing Data Formats
5.1 IntroductionThe previous Chapter 4 presented the Bitstream Segment Graph model for describ-ing the composition of data through a causality graph. Building on the BSG model,this chapter presents the BSG Reasoning approach, which enables the descriptionof data formats through logic-based rules, addressing the following aspects:� De�nition of the BSG Reasoning approach: This chapter presents the BSGReasoning approach for describing a potentially in�nite set of data format in-stances in Section 5.2.� Representation of BSG Reasoning rulesets: Using the previously introducedapproach, the representation of rulesets is de�ned in Section 5.3.� Applications of BSG Reasoning: The presented approach is evaluated inSection 5.4 by describing a set of Portable Network Graphics (PNG) image �lesusing a subset of the PNG image �le format that covers all elementary descriptivecapabilities. Furthermore, another application for the BSG Reasoning approachis in IT Security with format-aware fuzzing of bitstreams is outlined.
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96 CHAPTER 5. DESCRIBING DATA FORMATS5.2 De�nition of the BSG Reasoning aproachBased on established theoretical foundations in logic [Hed04], the following de�ni-tions can be introduced.5.2.1 Making propositionsIn order to express data format rules, a number of de�nitions need to be introduced�rst.Definition 5.2.1 (Literal): A literal is a �xed value such as the string 'x' orthe number constant 1.Definition 5.2.2 (Variable): A variable is an identi�er such as y that mayserve as placeholder for a literal. A variable can either be bound to a literal, thusrepresenting it, or be free. For a bound variable, there exists a binding of the variableto a literal. For a free variable, no binding is de�ned.Example 5.2.1: Given the variables x and y as well as a variable binding x = 1,then the variable x is bound, whereas y is not.Definition 5.2.3 (Term): A term is either a literal or a variable.Definition 5.2.4 (Predicate): A predicate de�nes a relation and is denotedname/arity, where the name designates the relation and where the arity is thenumber of terms for a tuple in the relation. A predicate function takes a number ofterms x0, . . . , xn as arguments and decides membership of the tuple t = (x0, . . . , xn)in its predicate relation.Example 5.2.2: The predicate math:sum/3 has a predicate function f(x0, x1, x2)which decides the membership of t = (x0, x1, x2) in its relation. The predicatefunction f tests whether x0 + x1 = x2 holds.Example 5.2.3: The predicate person:related-to/2 has a predicate function
f(x0, x1) which decides the membership of t = (x0, x1) in its relation. The predicatefunction f tests whether a person x0 is related to person x1.Definition 5.2.5 (Proposition): A proposition proposes a statement as fact,which is expressed as predicate function with a number of terms as its argument. Aproposition is ground if all terms are literals or bound variables. A proposition issaid to hold if the predicate function decides its membership positively.Example 5.2.4: math:sum(1, 4, 5), math:sum(1, 4, 8) and math:sum(1, 4,c) are all propositions. Given no variable binding for the variable c, the �rst andsecond propositions are ground, whereas the third proposition is not. Given thevariable binding c = 5, both the �rst and the third proposition hold, whereas thesecond does not.Example 5.2.5: Assuming Jack to be related to Gill, and thus (Jack,Gill) to bein the relation de�ned by the predicate person:related-to/2, then the propositionperson:related-to('Jack', 'Gill') holds.



5.2. DEFINITION OF THE BSG REASONING APROACH 975.2.2 Using predicatesThe relation de�ned by a predicate can either be open or closed, leading towardsthe Open World Assumption and Closed World Assumption:Definition 5.2.6 (Open World Assumption): Under the Open World As-sumption (OWA), a proposition not known to be true may become true when furtherknowledge becomes available at a later point in time.Definition 5.2.7 (Closed World Assumption): Under the Closed World As-sumption (CWA), a proposition not known to be true is known to be false, regardlessof further knowledge becoming available or not.Computable and inferred predicatesBoth OWA and CWA are required for the next two de�nitions, where a predicate iseither computable or inferred :Definition 5.2.8 (Computable predicates): A computable predicate describesa closed set of propositions following the CWA.Example 5.2.6: The predicate math:sum/3 used in previous examples is com-putable and follows the CWA. As the proposition math:sum(1, 4, 8) does nothold at any step during the inference process, it will not hold at any later step aswell. Among other computable predicates, the predicate math:sum/3 will later beused for data format description in order to compute the start position, length andend position of bitstream segments, or to validate their consistency.Definition 5.2.9 (Inferred predicate): An inferred predicate describes anopen set of propositions following the OWA.Example 5.2.7: The predicate person:related-to/2 used in previous examplesis inferred and follows the OWA.While the proposition person:related-to('John','Betty') does not hold now, the proposition may still be inferred and thus holdlater. A number of inferred predicates will later be used for data format descrip-tion to infer properties and relations between bitstream segments, such as the startposition of a bitstream segment, or neighbourship relations between two adjacentbitstream segments.Computable and inferable predicates thus di�er in the semantics of the returnvalue of their predicate function. For computable predicates with propositions thatdo not hold, the negative return value is authoritative. For inferred predicates withpropositions that do not hold, the negative return value is authoritative only for thecurrent state of knowledge, and thus may change with future knowledge.As de�ned so far, ground propositions of predicates can be evaluated. For eval-uating propositions with free variables, further de�nitions are required.Definition 5.2.10 (Mode): Given a predicate name/arity with its predicatefunction f , amode is a tuple t = (b1, . . . , barity), where each element bn ∈ {true, false}states whether f supports a free variable at argument position n.



98 CHAPTER 5. DESCRIBING DATA FORMATSEvery predicate has at least its base mode (b1, . . . , barity) with bn = false, whereit does not support free variables at any argument position. If a predicate supportsfurther modes, then there exists a function which can �nitely enumerate tuples ofpotential variable bindings for which the proposition becomes ground and holds.Where computable predicates de�ne additional modes at their discretion, in-ferable predicates support arbitrary modes other than the base mode, as these canalways �nitely enumerate their known potential variable bindings for its propositionsthat hold.Example 5.2.8: For the predicate math:sum/3, functions can be de�ned to testground propositions such as math:sum(1,2,3) and to �nitely enumerate variablebindings for propositions such as math:sum(a,4,5), math:sum(1,b,5) as well asmath:sum(1,4,c). This predicate therefore supports the modes (false, false, false),
(true, false, false), (false, true, false) and (false, false, true). The �nite enu-meration of variable bindings in the latter three modes yield the variable bindings
(a = 1), (b = 4) and (c = 5). Applied to their respective proposition, they all producethe same ground proposition math:sum(1, 4, 5).Example 5.2.9: As the predicate person:related-to/2 is inferred, it supportsarbitrary modes besides the base mode. Given the previously stated relations andthe propositions person:related-to('John', b), person:related-to(a, 'Betty')and person:related-to(a, b), the �nite enumeration of variable bindings yields
(b =′ Gill′), the empty set ∅, and (a =′ John′, b =′ Gill′). For the �rst and last propo-sition, applying the enumeration to their respective proposition leads to the sameground proposition person:related-to('John', 'Gill') which holds. For thesecond proposition, no ground proposition is obtained with the current knowledge.For using the BSG Reasoning approach, predicates have been de�ned whichrepresent properties of the BSG model, perform mathematical operations or provideutility functions.BSG-related predicatesTo address properties of a BSG model instance, the following inferable predicateshave been de�ned:� bsg:source(a, b): This predicate states that a bitstream segment a is a bit-stream source as de�ned by the �le reference b.� bsg:start(a, b): This predicate states that a bitstream segment a starts at bitposition b (inclusive) within its predecessor(s).� bsg:length(a, b): This predicate states that a bitstream segment a has thelength b in bits.� bsg:end(a, b): This predicate states that a bitstream segment a ends at bitposition b (exclusive) within its predecessor(s).� bsg:leads(a, b): This predicate states that a bitstream segment a leads a neigh-bouring bitstream segment b, so the end position of a is the start position of b.



5.2. DEFINITION OF THE BSG REASONING APROACH 99� bsg:follows(a, b): This predicate states that a bitstream segment a follows aneighbouring bitstream segment b, so the start position of a is the end position of
b. This predicate is the inverse of the previous bsg:lead/2 predicate.� bsg:successor(a, b): This predicate states that a bitstream segment a has abitstream segment b as its successor.� bsg:firstSuccessor(a, b): This predicate states that a bitstream segment ahas the bitstream segment b as its �rst successor.� bsg:lastSuccessor(a, b): This predicate states that a bitstream segment a hasthe bitstream segment b as its last successor.� bsg:type(a, b): This predicate states that a bitstream segment a has the type
b, which may be the string constants 'generic', 'primitive', 'structure','transcode', 'fragment' or 'composite'.� bsg:resolved(a): This predicate states whether a bitstream segment a has beenresolved, that is, whether its start, length, end, type and predecessor are known,so that it is possible to resolve the bit sequence of this bitstream segment througha path to the (resolved) root bitstream segment.� bsg:semantics(a, b): This predicate states speci�cally assigned semantics of abitstream segment a in terms of a string b. For a de�ned bitstream segment a,there may be multiple strings b present.� bsg:encoding(a, b): This predicate states that a primitive bitstream segment
a uses the bitstream coding function b, which is a string reference identifying theactual function.� bsg:transcoding(a, b): This predicate states that a transcode bitstream seg-ment a uses the bitstream transformation function b, which is a string referenceidentifying the actual transformation.Mathematical predicatesFor performing mathematical operations, the following computable predicates havebeen de�ned:� math:lt(a, b): This predicate states that a < b.� math:lte(a, b): This predicate states that a ≤ b.� math:product(a, b, c): This predicate states that a × b = c. If only one of a, bor c is a free variable, then its value is computed.� math:sum(a, b, c): This predicate states that a + b = c. If only one of a, b or cis a free variable, then its value is computed.



100 CHAPTER 5. DESCRIBING DATA FORMATSUtility predicatesFor additional utility functions, the following computable predicates have been de-�ned:� util:concat(a, b, c): This predicate states that the string concatenation of aand b results in c. If only c is a free variable, then this predicate concatenates thestrings a and b.� util:sourceLength(a, b): This predicate states that a source reference a ofa bitstream source has the length b in bits. If a is a bound variable or a termrepresenting a string which contains a reference to a �le, then its size in bits isobtained. If b is a term representing a number, then equality its value and thesource size in bits is tested. If b is a free variable, then it is bound to the size ofthe source in bits.� util:skolem(x0, x1, ..., xn): This predicate states that for a rule identi�er
x0 and a number of terms from universally quanti�ed variables in x1 . . . xn−1, thereexists a value xn. If only xn is a free variable, then a unique identi�er for x0 . . . xn−1is obtained and bound. This predicate is introduced by rule transformations forskolemization, and thus not used directly for speci�cation.� util:value(a, b): This predicate states that a primitive bitstream segment ahas a decoded value of b. If a is a bound variable representing a bitstream segmentwhich is a primitive and is resolved, then its value is decoded. If b is a boundvariable or a term, then its equivalence is tested against the decoded value. If bis a free variable, then it is bound to the decoded value.� util:crc(a, b): This predicate states that a sequence of bytes a has a CyclicRedundancy Code (CRC) of b. If a is a bound variable, then its CRC is computed.If b is a bound variable or a term, then its equivalence to the computed CRC istested, otherwise the computed CRC is bound.5.2.3 De�ning rulesIn order to express complex statements using multiple predicates, some means forlogic compositions of propositions is required.Definition 5.2.11 (Logic operators): The operators ∧, ∨ and ¬ represent thebinary 'and' and 'or' logic operators as well as the unary 'not' logic operators to beused for propositions.Example 5.2.10: The proposition ¬ math:sum(1, 4, 8) holds, as the proposi-tion math:sum(1, 4, 8) does not hold.Definition 5.2.12 (Formula): A formula consists of one or more propositionsconnected by logic operators. An atomic formula consists of a single propositionwhich may be negated. A formula is closed if all of its propositions are groundand open otherwise. A formula holds if the corresponding logic statement on itsproposition holds as well.



5.2. DEFINITION OF THE BSG REASONING APROACH 101Example 5.2.11: The formula math:sum(1, 4, a) ∧ math:sum(2, 3, a) holdsfor the variable binding a = 5. Both propositions use the mode (false, false, true) ofpredicate math:sum/3, so their variable bindings can be �nitely enumerated, yield-ing a = 5. Applying this variable binding a = 5 to all propositions in the formula,these become ground, so the formula becomes closed and holds.In the use of variables, distinguishing between di�erent forms of quanti�cationis needed.Definition 5.2.13 (Existential and universal quantifiers): The opera-tors ∃ and ∀ represent the existential and universal quanti�ers for variables. Bydefault, variables are considered as universally quanti�ed unless stated otherwise.Based on quanti�ed formulas, the concept of a rule can �nally be de�ned:Definition 5.2.14 (Rule): A rule is an implication a ⇒ b consisting of a and
b as formulas which denote the condition a and its conclusion b. Variables arequanti�ed as existential or universal over the entire rule. A rule matches if thereexists a set of variable bindings for which the condition formula is closed and holds.If a rule matches for a given set of variable bindings, the conclusion formula isclosed by applying the variable bindings, testing for contradictions and inferring newpropositions. A contradiction in a rule is a computable predicate in a conclusionformula which does not hold. If there is no contradiction, then all propositions oninferable predicates are inferred, with the respective relations updated.In the context of the BSG model, rules can be classi�ed as either model-speci�cor format-speci�c.Definition 5.2.15 (Model-specific rules): A model-speci�c rule capturespart of the BSG model itself and is independent from the speci�c data format tobe described. Examples of such rules concern the consistency of start, length andend positions of a bitstream segment, or the consecutive placement of neighbouringchild segments in a structure segment.Example 5.2.12: Assume a structure bitstream segment a with two primitivebitstream segments b and c as its �rst and last successors. Since b and c are theonly successors of a, they are necessarily neighbours, so that the end position of bis the start position of b. Therefore, a corresponding rule captures a property thatis speci�c to the BSG model rather than speci�c to a format.Definition 5.2.16 (Format-specific rules): A format-speci�c rule capturespart of the data format to be described and is independent from the BSG model.An example is a rule how a speci�c structure is segmented, as mandated by the dataformat itself.Example 5.2.13: Assume a structure bitstream segment a which represents aPNG raster image, and has a structure bitstream segment b as its �rst successor,which represents the PNG signature, and thus has a length of 64 bits. A correspond-ing rule captures a property that is speci�c to the PNG raster image �le format.



102 CHAPTER 5. DESCRIBING DATA FORMATS5.2.4 Matching rule conditionsRules are converted to Conjunctive Normal Form (CNF), resulting in a prepared setof rules, and skolemized. In order to improve on the search space to be evaluated,the problem of testing the condition of a rule is considered as a graph matchingproblem. The objective is to try to minimise the number of tests in order to decidewhether a rule condition matches or not.Due to preparation of rules, the formula representing the rule conditions is inCNF, consisting of one or more propositions logically connected with the operator
∧. For a closed formula, no matching is necessary, as all propositions are groundand can be tested.To match an open formula as condition, all sets of variable bindings have to beidenti�ed for which all propositions in the formula hold.Considering all propositions in formula as tuple t0 = (p1, . . . , pn0

) and an initialset of variable bindings b0 = {}.If there is a ground proposition which does not hold, the rule condition fails. Ifall ground propositions hold, then these can be dropped from consideration and theyare removed from the tuple, resulting in ty = (p1, . . . , pny
), consisting of non-groundpropositions. For all propositions px as elements in ty, an ordering ox is computed.Each proposition is tested to determine whether its predicate function supportsthe current mode of the predicate. If it does not, then more variables have to bebound prior to being able to test the proposition, so its ordering is ox =. If thepredicate function of a proposition supports the current mode, then ox is set to thecount of ground propositions it can �nitely enumerate.The elements of the tuple ty are then brought in ascending order of ox.5.2.5 Inference processThe prepared set of rules is evaluated in steps using semi-naïve evaluation, makingit feasible for large sets of rules and inferred propositions by substantially improvingthe e�ciency of the inference process. By focusing on rules that also make use ofknowledge inferred in the previous step, semi-naïve evaluation prevents the sameconclusions from being reached over and over again.The BSG Reasoning engine therefore categorises every proposition of inferredpredicates into separate knowledge bases which may be new knowledge kbn, currentknowledge kbc or old knowledge kbo:� New knowledge kbn contains propositions that are inferred in the current step ofinference. By separating these propositions into kbn, the ordering of rules has noin�ucence over the inference process.� Current knowledge kbc contains propositions that either have been inferred in theprevious step of inference, or that have been given initially. Due to semi-naïveevaluation, at least one proposition contained in kbc has to be used when matchinga rule in the inference step, potentially inferring new knowledge.� Old knowledge kbo contains all propositions that have been inferred in steps ofinference prior to the previous step.



5.3. REPRESENTATION OF BSG REASONING RULESETS 103During a step of inference, the reasoning engine consults both kbo and kbc to infernew propositions for kbn. After all rules have been processed, propositions from cur-rent knowledge are removed and added to old knowledge. Likewise, all propositionsfrom new knowledge are removed and added to current knowledge. The evaluationis repeated until there is no proposition in new knowledge after processing all rules,reaching a least �xed point.Example 5.2.14: Assume a bitstream source ′root′ which references the �le test.pngas initially given facts. The referenced �le itself has a size of 1000 bytes, therefore8000 bits. Furthermore, assume a single rule. The rule has the condition that abitstream source x references a �le f (bsg:source(x, f)) which has a length of yin bits (util:sourceLength(f, y)). The conclusion of the rule, if it matches, isthat the bitstream segment x starts at bit position 0 (bsg:start(x, 0)) and that
a has the length of y in bits (bsg:length(x, y)).Initially given facts are stored in kbc, while both kbo and kbn are empty, and theinference process begins:� The existing facts in both kbc and kbo allow the condition of the single rule tomatch, and all facts come from the current knowledge kbc, so the constraintof semi-naïve evaluation to use at least one proposition from current knowl-edge is satis�ed. For matching the rule, this results in the variable binding
(x =′ root′), (f =′ test.png′), (y = 8000), for which the conclusion of the rule canbe inferred.As both bsg:start/2 and bsg:length/2 are inferred predicates, the proposi-tions bsg:start('root', 0) and bsg:length('root', 8000) are added to therelations of both predicates in the knowledge base kbn.After the ruleset consisting of just one rule has been applied, new knowledge hasbeen inferred, as kbn is non-empty. Thus, current knowledge in kbc is moved toold knowledge in kbo, then new knowledge kbn is moved to current knowledge kbc,and a new inference step begins.� In this new step, matching the rule requires the use of at least one proposition thathas been inferred in the previous step, which is not possible. Therefore, since nonew knowledge has been inferred, kbn is empty and the inference process reachesa least �xed point.When a least �xed point has been reached during inference, tuples contained in therelations of BSG predicates are used for constructing a BSG instance. In contrastto the manual operations of the BSG model introduced in the previous Chapter 4,the instance may be invalid, and thus has to be tested and validated in structuralterms. For example, a bitstream segment without an inferred type is considered as ageneric bitstream segment, and it has to be tested whether every bitstream segmenthas a path to the root bitstream segment.5.3 Representation of BSG Reasoning rulesetsFor representing data format rules, the following representation is used. It combinesthe expressivity of XML Common Logic with a less verbose representation using



104 CHAPTER 5. DESCRIBING DATA FORMATSbrackets. The following forms of expression are de�ned:� (pre�x ns ref): Given an identi�er ns and a string ref containing a URLnamespace, this de�nes ns as namespace pre�x for ref . Pre�xes are used fornamespacing predicates with the same name, yet di�erent semantics.� (ns:pred x0 . . . xn): Given a tuple of terms t = (x0, . . . , xn) and the predicatens:pred/n, this states the logic expression of testing whether t is in the relationde�ned by the predicate pred of arity n in the namespace pre�x ns that waspreviously de�ned.� (and a b): Given two logic expressions a and b, this states the logic expression of
a ∧ b; if both a and b hold, then a ∧ b holds as well.� (or a b): Given two logic expressions a and b, this states the logic expression of
a ∨ b; if a or b holds, then a ∨ b holds as well.� (not a): Given a logic expression a, this states the logic expression of ¬a; if adoes not hold, then ¬a holds.� (implies a b): Given two logic statements a and b, this states the implication
a⇒ b as logic statement; if a holds, then b is implied to hold.� (i� a b): Given two logic statements a and b, this states the implications a ⇒ band b⇒ a as logic statements; a holds exactly i� (if and only if) b holds.� (forall x0 . . . xn e): Given one or more variable declarations x0 . . . xn and a logicexpression e, this states that the given variables declared in x0 . . . xn are universallyquanti�ed over e.� (exists x0 . . . xn e): Given one or more variable declarations x0 . . . xn and alogic expression e, this states that the given variables declared in x0 . . . xn areexistentially quanti�ed over e.� (var x): This declares a variable x for use in a rule which is quanti�ed eitheruniversally or existentially.� // and /* . . . */: Both expressions declare comments. The �rst comment variantis terminated by the end of line, whereas the second comment variant may spanmultiple lines.In Table 5.1, a model-speci�c rule is shown which represents the rule used in theprevious Example 5.2.14.5.4 Applications of BSG ReasoningThe BSG Reasoning approach enables the formal description of a data format ina declarative manner by building on the BSG model de�ned in Chapter 4, whichin turn is building on the formalisation given in Chapter 3. The description of aPNG data format subset is presented as an application in detail, followed a briefdescription of format-aware fuzzing of bitstreams in IT Security as an example forother potential applications:



5.4. APPLICATIONS OF BSG REASONING 1051 (prefix bsg "http:// bsg.org/bsgd/1.0/ predicate /")2 (prefix util "http://bsg.org/predicates/util/")3 (prefix math "http://bsg.org/predicates/math/")45 // M1: A bitstream segment with a source is a root segment6 (forall (var segment) (var source) (var length)7 (implies8 (and9 (bsg:source segment source)10 (util:sourceLength source length)11 )12 (and13 (bsg:start segment 0)14 (bsg:length segment length)15 )16 )17 )Table 5.1: Example BSG rule which infers start and length of a root bitstreamsegment for which a source has been de�ned.5.4.1 Description of a PNG data format subsetIn order to describe a data format which exercises all elemental descriptive capabil-ities, a subset of the PNG raster image �le format has been selected, where PNGimages store compressed image data in multiple fragments through separate IDATchunks, e�ectively a generalisation of the PNG raster image �litmus test� previouslyintroduced in Chapter 3.4.Selection of training and test corporaA basis for sample bitstreams, the PNG Test Suite [vS98] includes 156 PNG imagesfor compliance testing that exercise the format rules in sometimes extreme variantsand also include three corrupted �les. From this suite, both a training corpus anda testing corpus is selected:� As a training corpus, a subset of images was selected that are structurally similarto the PNG raster image �litmus test�, thereby exercising all four elementarydescriptive capabilities. This subset consists of 8 �les from the PNG Test Suitematching the �lename pattern OI??????.png.� As a testing corpus, all 153 valid PNG images were selected, excluding the threecorrupted �les. These also include PNG images with format-related propertieswhich are not present in the training corpus, such as the use of transparency orimages with indexed colour palettes.For the training corpus, a �tting set of rules is to be constructed, where for everyPNG image in the corpus, its deduced BSG instance shall have a coverage of 1.0.



106 CHAPTER 5. DESCRIBING DATA FORMATSConcerning the granularity of this �tting set of rules, primitive bitstream seg-ments are allowed to represent arrays of encoded literals rather than segmentingthese arrays into their elements. This decision is made in light of arrays of pixel data,where its segmentation into separate pixels and their individual decoding would leadto a bloated BSG instance description without a substantial descriptive bene�t. Yetstill, the �tting set of rules has to provide for the structurally required granularitythat is necessary for parsing the bitstream completely.Construction of a �tting set of rulesThe �tting set of rules was constructed in an incremental fashion. Given a BSGinstance with a coverage of less that 1.0, at least one generic bitstream segmentnecessarily exists in the graph. Through the addition of a rule, such a genericbitstream segment can then be deduced to be something more speci�c, therebyincreasing the coverage of one or more BSG instances.After reaching full coverage for the training corpus, excerpts of the resulting�tting set of rules are shown in Tables 5.2, 5.3 and 5.4. These three tables show17 model-speci�c and the �rst 14 of 38 format-speci�c data format rules, with theentire set of rules listed in Appendix A:� Model-speci�c rules: Model-speci�c rules, listed in Table 5.2, begin with ruleson placement regarding a bitstream segment, starting with a rule for deducingbsg:start and bsg:length from an initially given bsg:source (M1). If any twoof bsg:start, bsg:length and bsg:end are given for a bitstream segment, theremaining fact can be deduced (M2-M4). Moreover, if all facts are given for abitstream segment, it can be validated to ensure consistency (M5).Further rules include aspects of neighbourship of bitstream segments in a struc-ture (M6 & M7), successorship of bitstream segments (M8-M12), placement ina structure (M13-M15) and resolvability (M16 & M17), which is necessary fordecoding the contained literal of primitive bitstream segments.� Format-speci�c rules: Format-speci�c rules for the selected PNG subset arelisted in Tables 5.3 and 5.4. They start with a rule that deduces the PNG-speci�ctype of 'png:root' for a bitstream source (F1). For such a bitstream segment, itcan be deduced that there exists a �rst successor ?s with bsg:semantics(?s,'png:signature') (F2). For a 'png:signature', there exists a following PNGchunk as a 'png:chunk' structure (F3), as shown in Figure 5.1, which again al-ways begins with a 'png:chunk-length' bitstream segment (F4), followed by a'png:chunk-type' bitstream segment (F5).The actual composition of a PNG chunk may vary. If the value of a 'png:chunk-length' is 0, then the 'png:chunk-type' is followed directly by the 'png:chunk-crc'bitstream segment as last successor of the chunk (F6). Otherwise, the 'png:chunk-type' bitstream segment is followed by a variable-length 'png:chunk-data' bit-stream segment and again the 'png:chunk-crc' bitstream segment (F7). Detailson bitstream segments such as their type, encoding and length are providedfor 'png:signature' (F8), 'png:chunk-length' (F9), 'png:chunk-type' (F10) and'png:chunk-crc' (F11) bitstream segments. The PNG-speci�c type of the chunk is
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# RuleM1 bsg:source(?a, ?f) ∧ util:sourceLength(?f, ?l) → bsg:start(?a,0) ∧ bsg:length(?a, ?l)M2 bsg:length(?a, ?l) ∧ bsg:end(?a, ?e) ∧ math:sum(?s, ?l, ?e) →bsg:start(?a, ?s)M3 bsg:start(?a, ?s) ∧ bsg:end(?a, ?e) ∧ math:sum(?s, ?l, ?e) →bsg:length(?a, ?l)M4 bsg:start(?a, ?s) ∧ bsg:length(?a, ?l) ∧ math:sum(?s, ?l, ?e) →bsg:end(?a, ?e)M5 bsg:start(?a, ?s) ∧ bsg:length(?a, ?l) ∧ bsg:end(?a, ?e) →math:sum(?s, ?l, ?e)M6 bsg:leads(?a, ?b) ↔ bsg:follows(?b, ?a)M7 bsg:leads(?a, ?b) ∧ bsg:end(?a, ?p) ↔ bsg:follows(?b, ?a) ∧bsg:start(?b, ?p)M8 bsg:firstSuccessor(?a, ?b) → bsg:successor(?a, ?b)M9 bsg:lastSuccessor(?a, ?b) → bsg:successor(?a, ?b)M10 bsg:successor(?a, ?b) → bsg:predecessor(?b, ?a)M11 bsg:successor(?a, ?b) ∧ bsg:leads(?b, ?c) → bsg:successor(?a,?c)M12 bsg:successor(?a, ?b) ∧ bsg:follows(?b, ?c) → bsg:successor(?a,?c)M13 bsg:firstSuccessor(?a, ?b) → bsg:start(?b, 0)M14 bsg:lastSuccessor(?a, ?b) ∧ bsg:length(?a, ?c) → bsg:end(?b,?c)M15 bsg:lastSuccessor(?a, ?b) ∧ bsg:end(?b, ?c) → bsg:length(?a,?c)M16 bsg:start(?a, ?s) ∧ bsg:length(?a, ?l) ∧ bsg:end(?a, ?e) ∧bsg:type(?a, ?t) ∧ bsg:source(?a, ?f) → bsg:resolved(?a)M17 bsg:successor(?a, ?b) ∧ bsg:start(?b, ?s) ∧ bsg:type(?b, ?t) ∧bsg:resolved(?a) → bsg:resolved(?b)Table 5.2: List of model-speci�c rules (M1-17) [HBSM08].
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# RuleF1 bsg:source(?a, ?f) → bsg:semantics(?a, 'png:root')F2 bsg:semantics(?r, 'png:root') → util:skolem('F2', ?r, ?s) ∧bsg:type(?r, 'bsg:structure') ∧ bsg:firstSuccessor(?r, ?s) ∧bsg:semantics(?s, 'png:signature')F3 bsg:semantics(?s, 'png:signature') → util:skolem('F3', ?s, ?f)
∧ bsg:leads(?s, ?f) ∧ bsg:semantics(?f, 'png:chunk')F4 bsg:semantics(?c, 'png:chunk') → util:skolem('F4', ?c,?l) ∧ bsg:firstSuccessor(?c, ?l) ∧ bsg:semantics(?l,'png:chunk-length')F5 bsg:semantics(?l, 'png:chunk-length') → util:skolem('F5', ?l,?t) ∧ bsg:leads(?l, ?t) ∧ bsg:semantics(?t, 'png:chunk-type')F6 bsg:semantics(?l, 'png:chunk-length') ∧ bsg:value(?l, 0) ∧bsg:leads(?l, ?t) ∧ bsg:successor(?ch, ?l) → util:skolem('F6',?l, ?t, ?ch, ?cr) ∧ bsg:lastSuccessor(?ch, ?cr) ∧ bsg:leads(?t,?cr) ∧ bsg:semantics(?cr, 'png:chunk-crc')F7 bsg:semantics(?l, 'png:chunk-length') ∧ bsg:value(?l, ?v) ∧math:lt(0, ?v) ∧ bsg:leads(?l, ?t) ∧ bsg:successor(?ch,?l) ∧math:product(?v, 8, ?lv) → bsg:leads(?t, ?d) ∧ bsg:leads(?d,?cr) ∧ bsg:lastSuccessor(?ch, ?cr) ∧ bsg:length(?d, ?lv)
∧ bsg:semantics(?d, 'png:chunk-data') ∧ bsg:semantics(?cr,'png:chunk-crc')Table 5.3: Excerpt of 36 format-speci�c rules for a subset of the PNG raster image�le format, listing rules F1-F7 [HBSM08].
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# RuleF8 bsg:semantics(?t, 'png:signature') →bsg:type(?t, 'bsg:primitive') ∧ bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#ascii-string')

∧ bsg:length(?t, 64)F9 bsg:semantics(?l, 'png:chunk-length') →bsg:type(?l, 'bsg:primitive') ∧ bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#msbf-uint')
∧ bsg:length(?l, 32)F10 bsg:semantics(?t, 'png:chunk-type') →bsg:type(?t, 'bsg:primitive') ∧ bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#ascii-string')
∧ bsg:length(?t, 32)F11 bsg:semantics(?cr, 'png:chunk-crc') →bsg:type(?t, 'bsg:primitive') ∧ bsg:encoding(?t,'http://www.dataformats.net/2008/04/bsg-encodings#msbf-uint')
∧ bsg:length(?cr, 32)F12 bsg:semantics(?ch, 'png:chunk') ∧ bsg:semantics(?t,'png:chunk-type') ∧ bsg:successor(?ch, ?t) ∧ bsg:value(?t,?v) → util:concat('png:chunk:', ?v, ?ct) ∧ bsg:semantics(?ch,?ct)F13 bsg:semantics(?c, 'png:chunk') ∧ bsg:end(?c, ?ce) ∧bsg:successor(?r, ?c) ∧ bsg:length(?r, ?rl) ∧ math:lt(?ce, ?rl)
→ util:skolem('F13', ?c, ?ce, ?r, ?rl, ?nc) ∧ bsg:leads(?c,?nc) ∧ bsg:semantics(?nc, 'png:chunk')F14 bsg:semantics(?c, 'png:chunk') ∧ bsg:end(?c, ?ce) ∧bsg:successor(?r, ?c) ∧ bsg:length(?r, ?rl) ∧ math:eq(?ce,?rl) → bsg:lastSuccessor(?r, ?c)Table 5.4: Excerpt of 36 format-speci�c rules for a subset of the PNG raster image�le format, listing rules F8-F14 [HBSM08].



110 CHAPTER 5. DESCRIBING DATA FORMATSdeduced from the 'png:chunk-type' value and assigned as bsg:semantics to thechunk (F12). The remaining rules listed in Table 5.4 state that if there is spaceleft after a chunk, there exists another one following (F13), otherwise the chunkis the last successor of the bitstream source (F14). Further rules handle aspectsdepending on the speci�c chunk type, such as for the IHDR chunk which containsinformation on image width and height.0 256StructurePNG chunk0 32PrimitiveIntegerLength 32 64PrimitiveASCIIType 64 224StructureData 224 256PrimitiveIntegerCRCFigure 5.1: BSG instance for a PNG chunk.Applying these rules to an actual PNG image for the deduction of a BSG instancecan be followed exemplary in the following two deduction steps. Intending to deducea BSG instance for the image OI2N0G16.PNG, the following initial fact is given:bsg:source('root','oi2n0g16.png') (5.1)The inference process tries to apply all rules to obtain new facts. In the �rst step,only the rules F1 and M1 are applicable, which yield the following new facts inaddition: bsg:semantics('root','png:root')∧bsg:start('root',0)∧bsg:length('root',1432) (5.2)Again, the inference process tries to apply all rules, this time on an increased set offacts. In step 2, the rules F2 and M4 yield the following new facts in addition:bsg:type('root','bsg:structure')∧bsg:firstSuccessor('root','_sc1')∧bsg:semantics('_sc1','png:signature')∧bsg:end('root',1432) (5.3)The process of inference is repeated until no new facts can be inferred. The resultingfacts from the reached �xed point describe a BSG instance for the PNG imageoi2n0g16.png, which is part of the training corpus and thus has complete coverage.Exclusion of corrupted PNG imagesThe �tting set of rules for the training corpus were evaluated on the testing cor-pus consisting of all 153 valid PNG images from the PNG Test Suite, speci�cally



5.4. APPLICATIONS OF BSG REASONING 111excluding three corrupt images from the suite. These three corrupt images wereexcluded from the evaluation, since the �tting set of rules does not include verifyingrules for PNG-speci�c properties. Verifying rules for PNG-speci�c properties causea contradiction in the conclusion when such a PNG-speci�c property is violated bya corrupt PNG raster image. This is very similar to the model-speci�c rule M5 inTable 5.2, which veri�es the model-speci�c property of BSG that the start, lengthand end properties of a bitstream segment add up. Since this description of thePNG data format subset is focused on a practical exercise of all four elementarydescriptive capabilities in a real-life use case, verifying rules in the �tting set arelimited to model-speci�c properties of BSG, but may be extended through futurework.Evaluation of the �tting set of rulesEvaluating the resulting coverage of deduced BSG instance on the testing corpus,both the original �tting set of rules and an extended �tting set of rules were evalu-ated:� Original �tting set of rules: Data format knowledge contained in the �ttingset of rules was su�ciently complete as to describe the composition of 64 of 153PNG images completely, where every deduced BSG instance has a coverage of
1.0. For the remaining 89 PNG images, the �tting set of rules is incomplete, astheir deduced BSG instances have an average coverage of 0.79. Coverage and thenumber of iterative steps required are listed in Appendix B for each �le in thetesting set.This can be explained by the existence of specialised data structures that have notbeen present in the training corpus for which the �tting rules were de�ned. Still,even in the absence of complete coverage of such data, an average coverage of 0.79signi�es that essential aspects of the PNG data format have been captured in the�tting set of rules as it is. Constructing a �tting set of rules for the test corpusand increasing the average coverage by 0.21 requires additional rules for handlingcolour palette information (PLTE and sPLT chunks), transparency information(tRNS chunk), background colour (bKGD chunk), textual data (tEXt and zTXtchunks) and other types of data with increasingly rare occurrences.� Extended �tting set of rules: To estimate the e�ect of adding further rules,two preliminary rules, F37 and F38 listed in Appendix A, were added to form anextended �tting set of rules. These rules served for handling palette informationstored in PLTE chunks, and evaluated the extended �tting rules on all 153 PNGimages as well. Complete coverage was then achieved for 78 PNG images, whilethe remaining 75 PNG images have an average coverage of 0.91. Adding thesetwo rules increased the number of BSG instances with full coverage by 14, whilethe average coverage on the remaining BSG instances increased by 0.12.Further step-by-step increments can be achieved by constantly adding rules forhandling increasingly rare types of data. Just as during the construction, thiscan be achieved in each step by searching incomplete BSG instances for genericbitstream segments that �cause� the incompleteness, by matching these bitstream



112 CHAPTER 5. DESCRIBING DATA FORMATSsegments with existing data format knowledge in the natural-language PNG speci-�cation, and by introducing a rule which explains these generic bitstream segmentsa bit further. Extending the �tting set of rules for increased coverage thereforeintroduces no changes to the presented BSG model or the BSG Reasoning modelitself, and is thus left for future work.In the evaluation of both the original and the extended �tting set of rules, thededuction process computed a �xed point and halted on all instances. As previouslyexamined in the analysis in Chapter 3, termination cannot be guaranteed whenan approach is su�ciently expressive to describe arbitrary data formats. This isre�ected in the BSG Reasoning approach as well, since errors may be present in anerroneous set of rules preventing a �xed point to be reached. During the constructionof �tting sets of rules and their evaluation, the issue of potentially non-terminating,erronous sets of rules was addressed through a simple heuristic, where a limit on thenumber of deduction steps is placed, aborting the deduction process beyond thatlimit.Regarding the number of iterative steps necessary, it was observed that thetypical number of iterative steps required for the �tting ruleset to reach a �xedpoint on valid PNG images ranges from 72 up to 170 steps, with two structurallyexceptional PNG images from the PNG Test Suite requiring 1389 and 3279 iterativesteps, respectively. In both oi9n0g16.png and oi9n2c16.png �les, which were alsopresent in the training corpus, compressed and transformed image data is fragmentedinto bitstream segments with 8 bit length each, each and every byte encapsuled intoa separate IDAT chunk. The generic PNG chunk data structure is of variable length,and since there is only one length descriptor at its start, the placement of chunks hasto be resolved from the beginning of the bitstream to the end. This extreme caseof fragmentation leads to a substantial increase in required iterative steps, whichis inherent in the PNG data format and therefore is to a�ect any other declarativeapproach or procedural implementation as well. Both �les can be considered anextreme example, but demonstrate what is still considered legal in terms of thePNG data format speci�cation.Since data format instances of other data formats such as Apple QuickTimemovies have a more complex structure which requires an even higher number ofiterations, the use of a semi-naïve evaluation method for the deduction process asknown from Datalog [Ull89] is absolutely essential.5.4.2 Format-aware fuzzing of bitstreamsThis application of BSG Reasoning is given in brief overview. Typical fuzzing ofbitstreams in IT Security tests applications for their robustness by introducing biterrors into �les and passes the manipulated �les to applications. If applicationsexhibit erroneous behaviour or crash, then this is an indication of robustness-relatedissues in an application, which may be exploitable.Yet, standard fuzzing is format-unaware, as introducing bit errors does not takeinto account where the bit error is actually introduced, reducing the e�ciency of thefuzzing process. From an application's point of view, bit errors introduced throughfuzzing are virtually the same as bit errors introduced through a transport, and



5.5. DISCUSSION 113applications may take measures such as cyclic redundancy codes (CRCs) or evenerror-correcting codes to counter these. Format-unaware fuzzing of data formatsemploying such countermeasures is therefore ine�cient, as it is extremely unlikelythat random bit errors will simultaneously introduce an critical bit error in data andchange the dependent CRC or error-correcting codes accordingly.Data format knowledge represented through BSG Reasoning rulesets provides abasis for a more e�cient, format-aware fuzzing approach. When changing the valueof a bitstream segment, rule-induced dependencies such as a CRC code spanning anumber of bitstream segments can be detected and used for �repairing� dependentvalues recursively. This way, an application cannot detect the bit errors introducedby fuzzing directly, and previously protected portions of code can be subjected toerroneous data.Using the BSG model and BSG Reasoning approach for format-aware fuzzingprovides further bene�ts. The approach detailed above also allows for more sophis-ticated modi�cations such as resizing variable-length blocks of data, or speci�callyfocusing on bitstream segments that are packaging, and thus potentially relevantfor processing, instead of targetting payload which may have no direct e�ects onprocessing.5.5 DiscussionAs with the BSG model, the presented BSG Reasoning approach has several dis-tinct features over examined related work, such as providing a formal description ina declarative manner with universal applicability, which leads to its applicability fordi�erent format-related use cases. The approach also allows the measurable, incre-mental construction of rulesets and enables reuse through modular descriptions.� Formal description in a declarative manner with universal applicability:In contrast to the examined approaches from related work such as XCEL, theBSG Reasoning approach provides support for all four elementary descriptivecapabilities down to bit granularity by building on the BSG model. Data formatknowledge is formally described as logic rules in a declarative manner.� Applicability for di�erent format-related use cases: The speci�cation ofdata format knowledge in a declarative manner rather than through proceduraldescriptions enables the use of data format rules in unforeseen contexts. Whilethe need for reading and writing format-compliant data often triggers the speci�-cation of data format knowledge in the �rst place, other concerns depend on thesame knowledge, yet have di�erent constraints and process format-compliant datain a di�erent manner, as previously shown with the second outlined applicationof BSG Reasoning, the format-aware fuzzing of bitstreams in IT Security. In con-trast to declarative descriptions, procedural descriptions of data formats throughapproaches such as Flavor cannot be applied directly to such varying use cases.� Measurable, incremental construction of rulesets: The BSG Reasoning ap-proach supports the incremental construction of rulesets for data formats. A givenruleset can be tested against a set of format-compliant bitstreams by evaluating



114 CHAPTER 5. DESCRIBING DATA FORMATSthe ruleset against every bitstream and computing the coverage of the resultingBSG instance, averaging the coverage values of all instances. For a ruleset withan overall coverage of less than 1, a BSG instance exists where there is a genericsegment present. In order to increase the coverage of such an instance, one ormore rules addressing the given generic segment can be de�ned and added to theruleset. This allows for a �divide-and-conquer� approach in the construction of �t-ting sets of rules, such as for the documentation of legacy data formats in DigitalPreservation, or when a new, customised data format needs to be constructed.� Modular description: It is desirable to specify data format rules separately,allowing to incrementally describe a data format along existing instances andexamples. Rather than computing a bitstream segment graph using a reversibleTuring machine in some opaque manner, it is preferable to split the transformationinto separate Turing machines that can be reused, and describe the data formatusing an incremental set of rules, building on a uniform model for data formatinstances.Besides these features of the BSG Reasoning approach, two aspects were observedthat are worth pointing out, namely the substitution of functions with relations andvariables and the redundancy of information typically present in data formats:� Substitution of functions with relations and variables: In contrast to otherlogic systems such as Prolog, the BSG reasoning system does not support func-tions, but substitutes them with the use of relations and free variables. Assum-ing a predicate math ∶ eq/2 over the set of all equal arguments and a function
math ∶ plus/2 adding both arguments and returning the result, an expression like
math ∶ eq(math ∶ plus(2,2),4) is not supported. Instead, it can be expressed as
math ∶ sum(2,2, ?a)∨math ∶ eq(?a,4) introducing the variable ?a. This design de-cision provides a uni�ed approach to designing and implementing both functionsand relations in the reasoning system. The design decision therefore simpli�es theimplementation of the reasoning system.� Redundancy of information: It is notable that there often is a redundancy ofinformation related to data format knowledge. As previously observed, speci�cinformation concerning the composition of data can often be inferred in more thanone way.Example 5.5.1: Let d be a data format. Every format-compliant bitstream
x ∈ Bd is a structure composed from one or more blocks. Again, every block is astructure which consists of a tag �eld, a length �eld and a data �eld, where boththe tag and length �eld have a �xed, known size and encoding, and the length�eld contains the length of the entire block. Given y ∈ Bd be a format-compliantbitstream with an overall length l, where there is a last block z with a knownstart position. Knowing that z is the last block, the information contained in thelength �eld of z is redundant, as the length can also be inferred from the startposition of z and the overall length l.When processing format-compliant information, the redundancy of informationinherent in a data format requires consistency to be maintained when writing as



5.6. SUMMARY 115well as checking for consistency when reading. This has implications for IT Secu-rity, where missing consistency checks in applications can result in a vulnerabilityfor bu�er over�ow attacks. In a bu�er over�ow attack, an application is trickedinto copying data into a bu�er which is too small, thus overwriting and replacingadjacent machine code of the application with malicious code embedded into thedata by an attacker.5.6 SummaryThis chapter de�nes the BSG Reasoning approach as a formal, declarative aproachfor data format description with universal applicability which extends the BSGmodel previously presented in Chapter 4.For the BSG Reasoning approach, a formal language is de�ned where data formatrules can be speci�ed using predicates expressing propositions about the compositionof data based on the BSG model. In an inference process operating on a givenbitstream, these rules can be matched to a knowledge base of facts in a semi-naïvefashion, allowing further facts to be inferred until a least �xed-point is reached,which describes the corresponding BSG instance for the given bitstream. In orderto exchange and store these rules, a compact representation of rulesets is introducedwhich has been inspired by XML Common Logic.Demonstrating its capabilities, the application of BSG Reasoning is shown tofull coverage of a subset of the PNG raster image �le format which corresponds tothe PNG image �litmus test� from Chapter 3, exercising all elementary descriptivecapabilities. When evaluating this �tting set of 53 data format rules on a largercorpus of valid PNG images, 64 of 153 samples were described to full coverage, withthe remaining 89 samples having an average coverage of 0.79. When extending the�tting set of rules with two rules for palette colour information, 78 of 153 sampleswere described to full coverage, with the remaining 75 samples having an averagecoverage of 0.91. The termination of the reasoning process has to be guarded usingheuristics, which is a common problem to all approaches for describing arbitrarydata formats, as observed in Chapter 3. Another application of BSG Reasoning isoutlined with the format-aware fuzzing of bitstreams in IT Security.In the following discussion, central features of the BSG Reasoning approach areilluminated which distinguish it from examined related work, such as its universalapplicability or its support of measurable, incremental construction of rulesets.





Chapter 6Finale
6.1 IntroductionThis �nale concludes the thesis with a retrospection, some conclusions and an outlookregarding future directions of format-related research in combination with the BSGmodel and the BSG Reasoning approach contributed by this thesis.6.2 RetrospectionIn retrospect, a number of contributions have been made in the course of this thesis:� Chapter 2 surveyed a number of approaches in literature which have the goalof describing data formats. Some of these approaches claim their suitability fordescribing arbitrary data formats, yet no proof is given. This resulted in thequestion of how to formalise the concept of a data format, and what properties ofa formalisation are required for general applicability.� Chapter 3 provided a research hypothesis for improving data format description,which is used to formalise the concept of data formats and for further analysis.The analysis showed inherent properties of data formats and presented resultinglimitations for modelling arbitrary data formats. Moreover, the analysis providedthe concept of elemental descriptive capabilities which are required for describingarbitrary data formats, and presented a PNG raster image as �lithmus test� whichrequires support for all elemental descriptive capabilities. Assessing and compar-ing the surveyed approaches in literature shows that contrary to some claims, theycannot describe arbitrary data formats, as they lack the required descriptive ca-pabilities. An exception to that observation was XCEL, which is almost completein terms of its descriptive capablities.� Chapter 4 provided a model for describing a single instance of a data formatthrough the Bitstream Segment Graph (BSG) model, which employs the requireddescriptive capabilities previously identi�ed. The chapter formalised the BSGmodel, presented a set of operations under which arbitrary BSG instances can beproduced, and gave both visual and RDF/N3-based digital representations. TheBSG model was �nally used for describing the PNG raster image �litmus test�and for describing the composition of an exploit in IT Security.117



118 CHAPTER 6. FINALE� Chapter 5 built on the BSG model and provided an approach for describing poten-tially in�nite sets of data format instances through the BSG Reasoning approach.The presented approach uses logic rules in order to infer a BSG instance over agiven bitstream. The BSG Reasoning approach was �nally applied in the descrip-tion of a subset of the PNG raster image �le format that includes the �lithmustest�, reaching full coverage on a test corpus and near-complete coverage on anextended test corpus.6.3 ConclusionsDescribing data formats is a task that is inherently complex. From understand-ing legacy data formats that have not been publicly disclosed to data formats forwhich documentation has been lost, it is about �nding out which bitstream segmentsserve which purpose, either serving as packaging that provides information on thecomposition itself, or as payload which carries part of the actual information to beexchanged.The BSG model and the BSG Reasoning approach have a solid foundation intheoretical terms, yet in practice they depend on the availability of �tting codingand transformation functions, as well as suitable predicates for the inference process.Yet, even with the relatively small number of coding and transformation functionas well as predicates de�ned in this thesis, it was possible to describe a non-trivialsubset of the PNG raster image format.The complexity of describing data formats is a task that depends on the inher-ent complexity of the format as required to ful�ll its function, and is increased byadditional �protection considerations� or �legacy support� that its creators may havehad in mind.6.4 OutlookThere are a number of potential opportunities for future research related to theBSG model and the BSG Reasoning approach. Here, the computer-aided reverse-engineering of data format rules, the use of reversible programming languages forcoding and transformation functions, the analysis of space-e�ciency regarding ex-isting data formats, and format-aware fuzzing of bitstreams are given as examples.6.4.1 Computer-aided reverse-engineering of data format rulesReverse-engineering of legacy data formats and their governing rules is a non-trivialtask due to the potential complexity of data format rules and the sheer enormoussearch space of potentially valid data format rules.Regarding a small portion of a bitstream, experienced human engineers may becapable of making sense of patterns they observe, for example by recognising bitpatterns with de�ned meanings, such as start codes in MPEG-2 Transport Streams.Using the BSG model, the composition of such bitstreams can be documented manu-ally, and using the BSG Reasoning approach, �tting sets of rules can be constructedmanually and evaluated regarding their coverage.



6.4. OUTLOOK 119In order to generalise complex data format rules that were observed, such a pro-cess has to be repeated over a representative amount of samples. For complex dataformats without su�cient documentation or easily apparent similarities to existingdata formats, generalising potential data format rules and testing them over theentire corpus of samples is not feasible for human engineers alone, since the actualprocess of de�ning rulesets, considering alternatives and testing these is still unaidedin terms of Human Computer Interaction (HCI) considerations.Therefore, computer-aided reverse-engineering of data format rules may havesome potential to improve reverse-engineering e�orts for legacy data formats. Whena human engineer may identify and document the composition of speci�c data, po-tentially valid rules may be generated and tested automatically against the entirecorpus. Rather than representing data format rules as text, future work on a graph-ical representation of data format rules may aid human engineers in their under-standing, addressing HCI concerns. Fitting rule examples may then be proposed insuch a manner to the engineer, who may decide to include the rule and to apply it tothe entire corpus, focusing on potential problems and remaining generic bitstreamsegments in individual BSG instances.6.4.2 Use of reversible programming languagesImplementing coding and transformation functions that ensure the preservation ofinformation is di�cult, as design mistakes or programming errors have to be pre-vented.While in theory, it is possible to ensure bijectivity of such functions and thus thelossless mapping of information between di�erent representations through the useof Reversible Turing Machines, reversible programming languages are nowhere nearstandard, established programming languages such as Java or C/C++ regardingtool support or best practices for developers.It would be highly interesting to allow the implementation of coding and transfor-mation functions through reversible programming languages that would guaranteeinformation preservation during mappings, and thus to ensure the mapping betweeninternal and external representations to be correct. For example, the implementa-tion of an established lossless compression algorithm in a reversible programminglanguage could be a complex, but interesting goal in terms of future research.6.4.3 Analysis of space-e�ciency regarding existing data for-matsThe design of data formats depends on a multitude of factors, such as catering forspace e�ciency. During the design process, a number of assumptions are made, forexample concerning the statistic distribution of primitive values which may favoura certain type of encoding as it is considered to be more space-e�cient.By using the BSG model on a representative sample of format-compliant bit-streams for a certain data format, it is possible to analyse the statistical distribu-tion of a certain type of primitive values, which would allow statements to be madeon the space-e�ciency of design choices in existing data formats, and to extractknowledge that may improve future design choices.





Appendix ABSG Reasoning ruleset for PNGsubset1 (prefix bsg "http:// bsg.org/bsgd/1.0/ predicate /")2 (prefix util "http://bsg.org/predicates/util/")3 (prefix math "http://bsg.org/predicates/math/")45 // M16 (forall7 (var segment) (var source) (var length)8 (implies9 (and10 (bsg:source segment source)11 (util:sourceLength source length)12 )13 (and14 (bsg:start segment 0)15 (bsg:length segment length)16 )17 )18 )1920 // M221 (forall22 (var segment) (var start) (var length) (var end)23 (implies24 (and25 (bsg:length segment length)26 (bsg:end segment end)27 (math:sum start length end)28 )29 (bsg:start segment start)30 )31 )3233 // M334 (forall 121



122 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET35 (var segment) (var start) (var length) (var end)36 (implies37 (and38 (bsg:start segment start)39 (bsg:end segment end)40 (math:sum start length end)41 )42 (bsg:length segment length)43 )44 )4546 // M447 (forall48 (var segment) (var start) (var length) (var end)49 (implies50 (and51 (bsg:start segment start)52 (bsg:length segment length)53 (math:sum start length end)54 )55 (bsg:end segment end)56 )57 )5859 // M560 (forall61 (var segment) (var start) (var length) (var end)62 (implies63 (and64 (bsg:start segment start)65 (bsg:length segment length)66 (bsg:end segment end)67 )68 (math:sum start length end)69 )70 )7172 // M673 (forall74 (var leader) (var follower )75 (iff76 (bsg:leads leader follower )77 (bsg:follows follower leader)78 )79 )8081 // M782 (forall83 (var previous ) (var next) (var position )84 (iff



12385 (and86 (bsg:leads previous next)87 (bsg:end previous position )88 )89 (and90 (bsg:start next position )91 (bsg:follows next previous )92 )93 )94 )9596 // M897 (forall98 (var predecessor) (var successor )99 (implies100 (bsg:firstSuccessor predecessor successor )101 (bsg:successor predecessor successor )102 )103 )104105 // M9106 (forall107 (var predecessor) (var successor )108 (implies109 (bsg:lastSuccessor predecessor successor )110 (bsg:successor predecessor successor )111 )112 )113114 // M10115 (forall116 (var predecessor) (var successor )117 (iff118 (bsg:successor predecessor successor )119 (bsg:predecessor successor predecessor)120 )121 )122123 // M11124 (forall125 (var predecessor) (var previousSuccessor)126 (var nextSuccessor)127 (implies128 (and129 (bsg:successor predecessor previousSuccessor)130 (bsg:leads previousSuccessor nextSuccessor)131 )132 (bsg:successor predecessor nextSuccessor)133 )134 )



124 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET135136 // M12137 (forall138 (var predecessor) (var previousSuccessor)139 (var nextSuccessor)140 (implies141 (and142 (bsg:successor predecessor nextSuccessor)143 (bsg:follows nextSuccessor previousSuccessor)144 )145 (bsg:successor predecessor previousSuccessor)146 )147 )148149 // M13150 (forall151 (var predecessor) (var successor )152 (implies153 (bsg:firstSuccessor predecessor successor )154 (bsg:start successor 0)155 )156 )157158 // M14159 (forall160 (var predecessor) (var successor ) (var length)161 (implies162 (and163 (bsg:length predecessor length)164 (bsg:lastSuccessor predecessor successor )165 )166 (and167 (bsg:end successor length)168 )169 )170 )171172 // M15173 (forall174 (var predecessor) (var successor ) (var end)175 (implies176 (and177 (bsg:end successor end)178 (bsg:lastSuccessor predecessor successor )179 )180 (bsg:length predecessor end)181 )182 )183184 // M16



125185 (forall186 (var root) (var rootStart ) (var rootLength) (var rootEnd)187 (var rootType ) (var rootSource)188 (implies189 (and190 (bsg:start root rootStart )191 (bsg:length root rootLength)192 (bsg:end root rootEnd)193 (bsg:type root rootType )194 (bsg:source root rootSource)195 )196 (bsg:resolved root true)197 )198 )199200 // M17201 (forall202 (var segment) (var segStart )203 (var segType) (var segPredecessor)204 (implies205 (and206 (bsg:start segment segStart )207 (bsg:type segment segType)208 (bsg:successor segPredecessor segment)209 (bsg:resolved segPredecessor true)210 )211 (bsg:resolved segment true)212 )213 )214215 // F1216 (forall217 (var root)218 (var path)219220 (implies221 (bsg:source root path)222 (bsg:semantics root "png:root")223 )224 )225226 // F2227 (forall228 (var root)229 (exists230 (var signature )231 (implies232 (bsg:semantics root "png:root")233 (and234 (bsg:firstSuccessor root signature )



126 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET235 (bsg:semantics signature "png:signature ")236 )237 )238 )239 )240241 // F3242 (forall243 (var signature )244 (exists245 (var firstChunk)246 (implies247 (bsg:semantics signature "png:signature ")248 (and249 (bsg:leads signature firstChunk)250 (bsg:semantics firstChunk "png:chunk")251 )252 )253 )254 )255256 // F4257 (forall258 (var chunk) (var chunkEnd ) (var root) (var fileLength)259 (exists260 (var nextChunk )261 (implies262 (and263 (bsg:semantics chunk "png:chunk")264 (bsg:end chunk chunkEnd )265 (bsg:predecessor chunk root)266 (bsg:length root fileLength)267 (math:lt chunkEnd fileLength)268 )269 (and270 (bsg:leads chunk nextChunk )271 (bsg:semantics nextChunk "png:chunk")272 )273 )274 )275 )276277 // F5278 (forall279 (var chunk) (var chunkEnd ) (var root) (var rootLength)280 (implies281 (and282 (bsg:semantics chunk "png:chunk")283 (bsg:end chunk chunkEnd )284 (bsg:successor root chunk)



127285 (bsg:length root rootLength)286 (math:eq chunkEnd rootLength)287 )288 (and289 (bsg:lastSuccessor root chunk)290 )291 )292 )293294 // F6295 (forall296 (var chunk)297 (exists298 (var length)299 (implies300 (and301 (bsg:semantics chunk "png:chunk")302 )303 (and304 (bsg:firstSuccessor chunk length)305 (bsg:semantics length "png:chunk -length ")306 (bsg:length length 32)307 )308 )309 )310 )311312 // F7313 (forall (var length)314 (exists (var type)315 (implies316 (and317 (bsg:semantics length "png:chunk -length ")318 )319 (and320 (bsg:leads length type)321 (bsg:semantics type "png:chunk -type")322 (bsg:length type 32)323 )324 )325 )326 )327328 // F8329 (forall (var length) (var type) (var chunk)330 (exists (var crc)331 (implies332 (and333 (bsg:semantics length "png:chunk -length ")334 (bsg:value length 0)



128 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET335 (bsg:leads length type)336 (bsg:predecessor length chunk)337 )338 (and339 (bsg:lastSuccessor chunk crc)340 (bsg:follows crc type)341 (bsg:semantics crc "png:chunk -crc")342 )343 )344 )345 )346347 // F9348 (forall349 (var crc) (var type) (var crcValue )350 (implies351 (and352 (bsg:semantics type "png:chunk -type")353 (bsg:leads type crc)354 (bsg:semantics crc "png:chunk -crc")355 (bsg:resolved type true)356 (util:crc type crcValue )357 )358 (png:crc crc crcValue )359 )360 )361362 // F10363 (forall364 (var length) (var lengthByteValue)365 (var lengthBitValue) (var type)366 (exists367 (var data)368 (var crc)369370 (implies371 (and372 (bsg:semantics length "png:chunk -length")373 (bsg:value length lengthByteValue)374 (math:lt 0 lengthByteValue)375 (bsg:leads length type)376 (bsg:predecessor length chunk)377 (math:product lengthByteValue 8 lengthBitValue)378 )379 (and380 (bsg:lastSuccessor chunk crc)381 (bsg:leads type data)382 (bsg:leads data crc)383 (bsg:length data lengthBitValue)384 (bsg:semantics data "png:chunk -data")



129385 (bsg:semantics crc "png:chunk -crc")386 )387 )388 )389 )390391 // F11392 (forall393 (var length)394 (var byteLength)395 (var bitLength )396 (var type)397 (var data)398399 (implies400 (and401 (bsg:semantics length "png:chunk -length")402 (bsg:leads length type)403 (bsg:leads type data)404 (bsg:semantics data "png:chunk -data")405 (bsg:value length byteLength)406 (math:product byteLength 8 bitLength )407 )408 (bsg:length data bitLength )409 )410 )411412 // F12413 (forall414 (var crc)415 (implies416 (bsg:semantics crc "png:chunk -crc")417 (bsg:length crc 32)418 )419 )420421 // F13422 (forall423 (var chunkSegment) (var typeSegment) (var typeValue )424 (var chunkType )425 (implies426 (and427 (bsg:semantics chunkSegment "png:chunk")428 (bsg:semantics typeSegment "png:chunk -type")429 (bsg:successor chunkSegment typeSegment)430 (bsg:value typeSegment typeValue )431 )432 (and433 (util:concat "png:chunk:" typeValue chunkType )434 (bsg:semantics chunkSegment chunkType )



130 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET435 )436 )437 )438439 // F14440 (forall441 (var signature )442 (exists443 (var a) (var b) (var c) (var d) (var e) (var f)444 (var g) (var h)445 (implies446 (bsg:semantics signature "png:signature ")447 (and448 (bsg:firstSuccessor signature a)449 (bsg:leads a b)450 (bsg:leads b c)451 (bsg:leads c d)452 (bsg:leads d e)453 (bsg:leads e f)454 (bsg:leads f g)455 (bsg:leads g h)456 (bsg:lastSuccessor signature h)457 )458 )459 )460 )461462 // F15463 (forall464 (var signature ) (var sig_char )465 (implies466 (and467 (bsg:semantics signature "png:signature ")468 (bsg:successor signature sig_char )469 )470 (and471 (bsg:type sig_char "bsg:primitive ")472 (bsg:encoding sig_char473 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns474 #encoder:msbf -uint")475 (bsg:length sig_char 8)476 (bsg:semantics sig_char "png:sig_char ")477 )478 )479 )480481 // F16482 (forall483 (var segment)484 (implies



131485 (or486 (bsg:semantics segment "png:root")487 (bsg:semantics segment "png:signature ")488 (bsg:semantics segment "png:chunk")489 )490 (bsg:type segment "bsg:structure ")491 )492 )493494 // F17495 (forall496 (var segment) (var value) (var encoding )497 (implies498 (and499 (bsg:type segment "bsg:primitive ")500 (bsg:encoding segment encoding )501 (bsg:resolved segment true)502 (util:value segment value)503 )504 (bsg:value segment value)505 )506 )507508 // F18509 (forall510 (var chunkLength)511 (implies512 (bsg:semantics chunkLength "png:chunk -length")513 (and514 (bsg:type chunkLength "bsg:primitive ")515 (bsg:encoding chunkLength516 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns517 #encoder:msbf -uint")518 )519 )520 )521522 // F19523 (forall524 (var chunkType )525 (implies526 (bsg:semantics chunkType "png:chunk -type")527 (and528 (bsg:type chunkType "bsg:primitive ")529 (bsg:encoding chunkType530 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns531 #encoder:ascii -string ")532 )533 )534 )



132 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET535536 // F20537 (forall538 (var chunkCrc )539 (implies540 (bsg:semantics chunkCrc "png:chunk -crc")541 (and542 (bsg:type chunkCrc "bsg:primitive ")543 (bsg:encoding chunkCrc544 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns545 #encoder:msbf -uint")546 )547 )548 )549550 // F21551 (forall552 (var chunkSegment) (var dataSegment)553 (implies554 (and555 (bsg:semantics chunkSegment "png:chunk:gAMA")556 (bsg:semantics dataSegment "png:chunk -data")557 (bsg:successor chunkSegment dataSegment)558 )559 (and560 (bsg:type dataSegment "bsg:primitive ")561 (bsg:semantics dataSegment "png:gamma -value")562 (bsg:encoding dataSegment563 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns564 #encoder:msbf -uint")565 )566 )567 )568569 // F22570 (forall571 (var chunkSegment) (var dataSegment)572 (exists573 (var widthSegment) (var heightSegment)574 (var bitDepthSegment) (var colorTypeSegment)575 (var compressionMethodSegment) (var filterMethodSegment)576 (var interlaceMethodSegment)577 (implies578 (and579 (bsg:semantics chunkSegment "png:chunk:IHDR")580 (bsg:semantics dataSegment "png:chunk -data")581 (bsg:successor chunkSegment dataSegment)582 )583 (and584 (bsg:type dataSegment "bsg:structure ")



133585 (bsg:firstSuccessor dataSegment widthSegment)586 (bsg:leads widthSegment heightSegment)587 (bsg:leads heightSegment bitDepthSegment)588 (bsg:leads bitDepthSegment colorTypeSegment)589 (bsg:leads colorTypeSegment compressionMethodSegment)590 (bsg:leads compressionMethodSegment591 filterMethodSegment)592 (bsg:leads filterMethodSegment interlaceMethodSegment)593 (bsg:lastSuccessor dataSegment interlaceMethodSegment)594595 (bsg:semantics widthSegment "png:width")596 (bsg:length widthSegment 32)597 (bsg:type widthSegment "bsg:primitive ")598 (bsg:encoding widthSegment599 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns600 #encoder:msbf -uint")601602 (bsg:semantics heightSegment "png:height")603 (bsg:length heightSegment 32)604 (bsg:type heightSegment "bsg:primitive ")605 (bsg:encoding heightSegment606 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns607 #encoder:msbf -uint")608609 (bsg:semantics bitDepthSegment "png:bitDepth ")610 (bsg:length bitDepthSegment 8)611 (bsg:type bitDepthSegment "bsg:primitive ")612 (bsg:encoding bitDepthSegment613 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns614 #encoder:msbf -uint")615616 (bsg:semantics colorTypeSegment "png:colorType ")617 (bsg:length colorTypeSegment 8)618 (bsg:type colorTypeSegment "bsg:primitive ")619 (bsg:encoding colorTypeSegment620 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns621 #encoder:msbf -uint")622623 (bsg:semantics compressionMethodSegment624 "png:compressionMethod")625 (bsg:length compressionMethodSegment 8)626 (bsg:type compressionMethodSegment "bsg:primitive ")627 (bsg:encoding compressionMethodSegment628 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns629 #encoder:msbf -uint")630631 (bsg:semantics filterMethodSegment "png:filterMethod")632 (bsg:length filterMethodSegment 8)633 (bsg:type filterMethodSegment "bsg:primitive ")634 (bsg:encoding filterMethodSegment



134 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET635 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns636 #encoder:msbf -uint")637638 (bsg:semantics interlaceMethodSegment639 "png:interlaceMethod")640 (bsg:length interlaceMethodSegment 8)641 (bsg:type interlaceMethodSegment "bsg:primitive ")642 (bsg:encoding interlaceMethodSegment643 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns644 #encoder:msbf -uint")645 )646 )647 )648 )649650 // F23651 (forall652 (var predecessor)653 (var firstSuccessor)654 (implies655 (bsg:firstSuccessor predecessor firstSuccessor)656 (bsg:leftAnchored firstSuccessor)657 )658 )659660 // F24661 (forall662 (var predecessor)663 (var lastSuccessor)664 (implies665 (bsg:lastSuccessor predecessor lastSuccessor)666 (bsg:rightAnchored lastSuccessor)667 )668 )669670 // F25671 (forall672 (var previous )673 (var next)674 (implies675 (and676 (bsg:leads previous next)677 (bsg:leftAnchored previous )678 )679 (bsg:leftAnchored next)680 )681 )682683 // F26684 (forall



135685 (var previous )686 (var next)687688 (implies689 (and690 (bsg:leads previous next)691 (bsg:rightAnchored next)692 )693 (bsg:rightAnchored previous )694 )695 )696697 // F27698 (forall699 (var segment)700701 (implies702 (and703 (bsg:leftAnchored segment)704 (bsg:rightAnchored segment)705 )706 (bsg:anchored segment)707 )708 )709710711 // Number all chunks depending on IDAT type712 // F28713 (forall714 (var rootSegment)715 (var firstChunkSegment)716717 (implies718 (and719 (bsg:semantics rootSegment "png:root")720 (bsg:firstSuccessor rootSegment firstChunkSegment)721 (bsg:anchored firstChunkSegment)722 )723 (tmp:order firstChunkSegment 0)724 )725 )726727 // F29728 (forall729 (var previousChunkSegment)730 (var nextChunkSegment)731 (var previousIndex)732 (var nextIndex )733 (var nextChunkSemantics)734



136 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET735 (implies736 (and737 (tmp:order previousChunkSegment previousIndex)738 (bsg:leads previousChunkSegment nextChunkSegment)739 (bsg:anchored nextChunkSegment)740 (not741 (bsg:semantics nextChunkSegment "png:chunk:IDAT")742 )743 )744 (tmp:order nextChunkSegment previousIndex)745 )746 )747748 // F30749 (forall750 (var previousChunkSegment)751 (var nextChunkSegment)752 (var previousIndex)753 (var nextIndex )754 (var nextChunkSemantics)755756 (implies757 (and758 (tmp:order previousChunkSegment previousIndex)759 (bsg:leads previousChunkSegment nextChunkSegment)760 (bsg:anchored nextChunkSegment)761 (bsg:semantics nextChunkSegment "png:chunk:IDAT")762 )763 (and764 (math:sum previousIndex 1 nextIndex )765 (tmp:order nextChunkSegment nextIndex )766 )767 )768 )769770 // Assign png:compressed to an individual png:chunk:IDAT771 // F31772 (forall773 (var rootSegment)774 (var chunkSegment)775 (var lastChunkSegment)776 (var dataSegment)777 (var index)778779 (implies780 (and781 (bsg:lastSuccessor rootSegment lastChunkSegment)782 (bsg:semantics rootSegment "png:root")783 (bsg:semantics lastChunkSegment "png:chunk")784 (tmp:order lastChunkSegment 1)



137785786 (bsg:successor rootSegment chunkSegment)787 (bsg:successor chunkSegment dataSegment)788 (bsg:semantics chunkSegment "png:chunk:IDAT")789 (bsg:semantics dataSegment "png:chunk -data")790 )791 (and792 (bsg:semantics dataSegment "png:compressed")793 (bsg:type dataSegment "bsg:transcoder")794 (bsg:transcoding dataSegment795 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns796 #transcoder:gzip")797 )798 )799 )800801 // F32802 (forall803 (var rootSegment)804 (var chunkSegment)805 (var index)806807 (exists808 (var compositeSegment)809810 (implies811 (and812 (bsg:lastSuccessor rootSegment chunkSegment)813 (bsg:semantics rootSegment "png:root")814 (bsg:semantics chunkSegment "png:chunk")815 (tmp:order chunkSegment index)816 (math:lt 1 index)817 )818 (and819 (bsg:type compositeSegment "bsg:composite ")820 (bsg:semantics compositeSegment "png:composite ")821 )822 )823 )824 )825826 // F33827 (forall828 (var compositeSegment)829830 (exists831 (var compressedSegment)832833 (implies834 (bsg:semantics compositeSegment "png:composite ")



138 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET835 (and836 (bsg:successor compositeSegment compressedSegment)837 (bsg:semantics compressedSegment "png:compressed")838 (bsg:type compressedSegment "bsg:transcoder")839 )840 )841 )842 )843844 // F34845 (forall846 (var compressedSegment)847848 (exists849 (var scanlineSegment)850851 (implies852 (bsg:semantics compressedSegment "png:compressed")853 (and854 (bsg:successor compressedSegment scanlineSegment)855 (bsg:semantics scanlineSegment "png:scanline ")856 (bsg:type scanlineSegment "bsg:transcoder")857 (bsg:transcoding scanlineSegment858 "http://www.dataformats.net /2009/01/25 -bsg -ext -ns859 #transcoder:scanline ")860 )861 )862 )863 )864865 // F35866 (forall867 (var scanlineSegment)868869 (exists870 (var pixelSegment)871872 (implies873 (bsg:semantics scanlineSegment "png:scanline ")874 (and875 (bsg:successor scanlineSegment pixelSegment)876 (bsg:semantics pixelSegment "png:pixels")877 (bsg:type pixelSegment "bsg:primitive ")878 )879 )880 )881 )882883 // F36884 (forall



139885 (var chunkSegment)886 (var dataSegment)887 (var compositeSegment)888 (var index)889890 (implies891 (and892 (bsg:successor chunkSegment dataSegment)893 (bsg:semantics chunkSegment "png:chunk:IDAT")894 (bsg:semantics dataSegment "png:chunk -data")895 (bsg:semantics compositeSegment "png:composite ")896 (tmp:order chunkSegment index)897 )898 (and899 (bsg:type dataSegment "bsg:fragment ")900 (bsg:order dataSegment index)901 (bsg:successor dataSegment compositeSegment)902 )903 )904 )905906 /*907 (forall908 (var chunkSegment)909 (var dataSegment)910 (var index)911912 (implies913 (and914 (bsg:successor chunkSegment dataSegment)915 (bsg:semantics chunkSegment "png:chunk:IDAT")916 (bsg:semantics dataSegment "png:chunk -data")917 (tmp:order chunkSegment index)918 )919 (and920 (bsg:type dataSegment "bsg:fragment ")921 (bsg:order dataSegment index)922 )923 )924 )925 */926927 // Rule F37 , belonging to the extended fitting set of rules928 (forall929 (var chunkSegment)930 (var dataSegment)931 (var dataLength)932933 (exists934 (var entrySegment)



140 APPENDIX A. BSG REASONING RULESET FOR PNG SUBSET935936 (implies937 (and938 (bsg:successor chunkSegment dataSegment)939 (bsg:semantics chunkSegment "png:chunk:PLTE")940 (bsg:semantics dataSegment "png:chunk -data")941 (bsg:length dataSegment dataLength)942 (math:lte 24 dataLength)943 )944 (and945 (bsg:type dataSegment "bsg:structure ")946 (bsg:firstSuccessor dataSegment entrySegment)947 (bsg:type entrySegment "bsg:primitive ")948 (bsg:semantics entrySegment "png:palette -entry")949 (bsg:length entrySegment 24)950 )951 )952 )953 )954955 // F38 , belonging to the extended fitting set of rules956 (forall957 (var chunkSegment)958 (var dataSegment)959 (var dataLength)960 (var previousEntrySegment)961 (var previousEntryEnd)962 (var remainingLength)963964 (exists965 (var entrySegment)966967 (implies968 (and969 (bsg:successor chunkSegment dataSegment)970 (bsg:successor dataSegment previousEntrySegment)971972 (bsg:semantics chunkSegment "png:chunk:PLTE")973 (bsg:semantics dataSegment "png:chunk -data")974 (bsg:semantics previousEntrySegment975 "png:palette -entry")976977 (bsg:length dataSegment dataLength)978 (bsg:end previousEntrySegment previousEntryEnd)979 (math:sum previousEntryEnd remainingLength dataLength)980 (math:lte 24 remainingLength)981 )982 (and983 (bsg:leads previousEntrySegment entrySegment)984 (bsg:type entrySegment "bsg:primitive ")



141985 (bsg:semantics entrySegment "png:palette -entry")986 (bsg:length entrySegment 24)987 )988 )989 )990 )





Appendix BBSG Reasoning results of PNGruleset
File name # reasoning steps Completeness of BSG instanceBASI0G01.PNG 86 1.0BASI0G02.PNG 86 1.0BASI0G04.PNG 86 1,0BASI0G08.PNG 86 1,0BASI0G16.PNG 86 1,0BASI2C08.PNG 86 1,0BASI2C16.PNG 86 1,0BASI3P01.PNG 100 0,9545454545454546BASI3P02.PNG 114 0,9222797927461139BASI3P04.PNG 114 0,8532110091743119BASI3P08.PNG 100 0,49705304518664045BASI4A08.PNG 86 1,0BASI4A16.PNG 86 1,0BASI6A08.PNG 86 1,0BASI6A16.PNG 86 1,0BASN0G01.PNG 86 1,0BASN0G02.PNG 86 1,0BASN0G04.PNG 86 1,0BASN0G08.PNG 86 1,0BASN0G16.PNG 86 1,0BASN2C08.PNG 86 1,0BASN2C16.PNG 86 1,0Table B.1: Results of applying PNG data format rules to the PNG Test Suite (1/5).
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144 APPENDIX B. BSG REASONING RESULTS OF PNG RULESETFile name # reasoning steps Completeness of BSG instanceable B.2: Results of applying PNG data format rules to the PNG Test Suite (2/5).



145File name # reasoning steps Completeness of BSG instanceF02N0G08.PNG 72 1,0F02N2C08.PNG 72 1,0F03N0G08.PNG 72 1,0F03N2C08.PNG 72 1,0F04N0G08.PNG 72 1,0F04N2C08.PNG 72 1,0G03N0G16.PNG 86 1,0G03N2C08.PNG 86 1,0G03N3P04.PNG 100 0,8598130841121495G04N0G16.PNG 86 1,0G04N2C08.PNG 86 1,0G04N3P04.PNG 100 0,863013698630137G05N0G16.PNG 86 1,0G05N2C08.PNG 86 1,0G05N3P04.PNG 100 0,8543689320388349G07N0G16.PNG 86 1,0G07N2C08.PNG 86 1,0G07N3P04.PNG 100 0,855072463768116G10N0G16.PNG 86 1,0G10N2C08.PNG 86 1,0G10N3P04.PNG 100 0,8598130841121495G25N0G16.PNG 86 1,0G25N2C08.PNG 86 1,0G25N3P04.PNG 100 0,8604651162790697OI1N0G16.PNG 86 1,0OI1N2C16.PNG 86 1,0OI2N0G16.PNG 101 1,0OI2N2C16.PNG 101 1,0OI4N0G16.PNG 129 1,0OI4N2C16.PNG 129 1,0OI9N0G16.PNG 1389 1,0OI9N2C16.PNG 3279 1,0PP0N2C16.PNG 100 0,3264033264033264PP0N6A08.PNG 100 0,2078239608801956PS1N0G08.PNG 100 0,1015572105619499PS1N2C16.PNG 100 0,19134673979280925PS2N0G08.PNG 100 0,06407518154634771PS2N2C16.PNG 100 0,1253493013972056S01I3P01.PNG 114 0,9469026548672567S01N3P01.PNG 114 0,9469026548672567Table B.3: Results of applying PNG data format rules to the PNG Test Suite (3/5).



146 APPENDIX B. BSG REASONING RESULTS OF PNG RULESETFile name # reasoning steps Completeness of BSG instanceS02I3P01.PNG 114 0,9473684210526315S02N3P01.PNG 114 0,9478260869565217S03I3P01.PNG 114 0,923728813559322S03N3P01.PNG 114 0,925S04I3P01.PNG 114 0,9285714285714286S04N3P01.PNG 114 0,9256198347107438S05I3P02.PNG 114 0,9104477611940298S05N3P02.PNG 114 0,9069767441860465S06I3P02.PNG 114 0,916083916083916S06N3P02.PNG 114 0,9083969465648855S07I3P02.PNG 114 0,8993288590604027S07N3P02.PNG 114 0,8913043478260869S08I3P02.PNG 114 0,8993288590604027S08N3P02.PNG 114 0,8920863309352518S09I3P02.PNG 114 0,8979591836734694S09N3P02.PNG 114 0,8951048951048951S32I3P04.PNG 114 0,8816901408450705S32N3P04.PNG 114 0,8403041825095057S33I3P04.PNG 114 0,8909090909090909S33N3P04.PNG 114 0,8723404255319149S34I3P04.PNG 114 0,8796561604584527S34N3P04.PNG 114 0,8306451612903226S35I3P04.PNG 114 0,8947368421052632S35N3P04.PNG 114 0,8757396449704142S36I3P04.PNG 114 0,8820224719101124S36N3P04.PNG 114 0,8372093023255814S37I3P04.PNG 114 0,8931297709923665S37N3P04.PNG 114 0,875S38I3P04.PNG 114 0,8823529411764706S38N3P04.PNG 114 0,8285714285714286S39I3P04.PNG 114 0,9S39N3P04.PNG 114 0,8806818181818182S40I3P04.PNG 114 0,8823529411764706S40N3P04.PNG 114 0,8359375TBBN1G04.PNG 114 0,9904534606205251TBBN2C16.PNG 114 0,9939819458375125TBBN3P08.PNG 128 0,5381205673758865TBGN2C16.PNG 114 0,9939819458375125TBGN3P08.PNG 128 0,5381205673758865TBRN2C08.PNG 114 0,9910913140311804Table B.4: Results of applying PNG data format rules to the PNG Test Suite (4/5).
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File name # reasoning steps Completeness of BSG instanceTBWN1G16.PNG 114 0,9965095986038395TBWN3P08.PNG 128 0,5366931918656057TBYN3P08.PNG 128 0,5366931918656057TP0N1G08.PNG 86 1,0TP0N2C08.PNG 86 1,0TP0N3P08.PNG 100 0,5366071428571428TP1N3P08.PNG 114 0,5336322869955157Z00N2C08.PNG 72 1,0Z03N2C08.PNG 72 1,0Z06N2C08.PNG 72 1,0Z09N2C08.PNG 72 1,0Table B.5: Results of applying PNG data format rules to the PNG Test Suite (5/5).





Appendix CBSG RDF/N3 RepresentationThe following RDF Schema de�nition is given for the BSG RDF/N3 representationin order to encourage the development of BSG-aware third-party applications.1 <rdf:RDF2 xmlns:rdf="http:// www.w3.org /1999/02/22 -rdf -syntax -ns#"3 xmlns:rdfs="http://www.w3.org /2000/01/ rdf -schema #"4 xmlns:owl="http:// www.w3.org /2002/07/ owl#"5 xmlns:skos="http://www.w3.org /2004/02/ skos/core#"6 xmlns:dc="http:// purl.org/dc/elements /1.1/"7 xmlns:undefined =" undefined "8 xmlns:bsg="http:// dataformats.net/bsg /1.0/" >910 <owl:Class11 rdf:about="http:// dataformats.net/bsg /1.0/ segment "/>1213 <owl:Class14 rdf:about="http:// dataformats.net/bsg /1.0/ structure ">15 <rdfs:subClassOf16 rdf:resource ="http:// dataformats.net/bsg/1.0/17 segment "/>18 </owl:Class >1920 <owl:Class21 rdf:about="http:// dataformats.net/bsg /1.0/ generic">22 <rdfs:subClassOf23 rdf:resource ="http:// dataformats.net/bsg/1.0/24 segment "/>25 </owl:Class >2627 <owl:Class28 rdf:about="http:// dataformats.net/bsg /1.0/ source">29 <rdfs:subClassOf30 rdf:resource ="http:// dataformats.net/bsg/1.0/31 segment "/>32 </owl:Class >3334 <owl:Class 149



150 APPENDIX C. BSG RDF/N3 REPRESENTATION35 rdf:about="http:// dataformats.net/bsg /1.0/ transcode ">36 <rdfs:subClassOf37 rdf:resource ="http:// dataformats.net/bsg /1.0/38 segment "/>39 </owl:Class >4041 <owl:Class42 rdf:about="http:// dataformats.net/bsg /1.0/ primitive ">43 <rdfs:subClassOf44 rdf:resource ="http:// dataformats.net/bsg /1.0/45 segment "/>46 </owl:Class >4748 <owl:Class49 rdf:about="http:// dataformats.net/bsg /1.0/ fragment ">50 <rdfs:subClassOf51 rdf:resource ="http:// dataformats.net/bsg /1.0/52 segment "/>53 </owl:Class >5455 <owl:Class56 rdf:about="http:// dataformats.net/bsg /1.0/ composite ">57 <rdfs:subClassOf58 rdf:resource ="http:// dataformats.net/bsg /1.0/59 segment "/>60 </owl:Class >6162 <rdf:Property63 rdf:about="http:// dataformats.net/bsg /1.0/href">64 <rdfs:range65 rdf:resource ="http:// dataformats.net/bsg /1.0/66 source"/>67 <rdf:type68 rdf:resource ="http://www.w3.org /2002/07/ owl69 #ObjectProperty"/>70 </rdf:Property >7172 <rdf:Property73 rdf:about="http:// dataformats.net/bsg /1.0/start">74 <rdfs:range75 rdf:resource ="http:// dataformats.net/bsg /1.0/76 segment "/>77 <rdf:type78 rdf:resource ="http://www.w3.org /2002/07/ owl79 #ObjectProperty"/>80 </rdf:Property >8182 <rdf:Property83 rdf:about="http:// dataformats.net/bsg /1.0/ length">84 <rdfs:range



15185 rdf:resource ="http:// dataformats.net/bsg/1.0/86 segment "/>87 <rdf:type88 rdf:resource ="http:// www.w3.org /2002/07/ owl89 #ObjectProperty"/>90 </rdf:Property >9192 <rdf:Property93 rdf:about="http:// dataformats.net/bsg /1.0/end">94 <rdfs:range95 rdf:resource ="http:// dataformats.net/bsg/1.0/96 segment "/>97 <rdf:type98 rdf:resource ="http:// www.w3.org /2002/07/ owl99 #ObjectProperty"/>100 </rdf:Property >101102 <rdf:Property103 rdf:about="http:// dataformats.net/bsg /1.0/ semantics ">104 <rdfs:range105 rdf:resource ="http:// dataformats.net/bsg/1.0/106 segment "/>107 <rdf:type108 rdf:resource ="http:// www.w3.org /2002/07/ owl109 #ObjectProperty"/>110 </rdf:Property >111112 <rdf:Property113 rdf:about="http:// dataformats.net/bsg /1.0/ encoding ">114 <rdfs:range115 rdf:resource ="http:// dataformats.net/bsg/1.0/116 primitive "/>117 <rdf:type118 rdf:resource ="http:// www.w3.org /2002/07/ owl119 #ObjectProperty"/>120 </rdf:Property >121122 <rdf:Property123 rdf:about="http:// dataformats.net/bsg /1.0/ codec">124 <rdfs:range125 rdf:resource ="http:// dataformats.net/bsg/1.0/126 transcode "/>127 <rdf:type128 rdf:resource ="http:// www.w3.org /2002/07/ owl129 #ObjectProperty"/>130 </rdf:Property >131132 <rdf:Property133 rdf:about="http:// dataformats.net/bsg /1.0/ predecessor">134 <rdfs:range



152 APPENDIX C. BSG RDF/N3 REPRESENTATION135 rdf:resource ="http:// dataformats.net/bsg /1.0/136 segment "/>137 <rdf:type138 rdf:resource ="http://www.w3.org /2002/07/ owl139 #ObjectProperty"/>140 </rdf:Property >141142 <rdf:Property143 rdf:about="http:// dataformats.net/bsg /1.0/ successor ">144 <rdfs:range145 rdf:resource ="http:// dataformats.net/bsg /1.0/146 segment "/>147 <rdf:type148 rdf:resource ="http://www.w3.org /2002/07/ owl149 #ObjectProperty"/>150 </rdf:Property >151 </rdf:RDF >
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