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Chapter 1

Introduction

Rapid progress in embedded systems such as network-connected information
appliances has given new impetus to a wide and rapidly growing range of input-
output (I/O) communication standards such as PCI Express, USB, and IEEE
802.11. This in turn has resulted in system architectures combining customized
blocks for communication interfaces with programmable processor cores. Pro-
cessors, memory hierarchies, interconnection networks, communication inter-
faces and other peripherals are the main building blocks for these application-
specific programmable system-on-a-chip architectures.

During the design process a great deal of emphasis is placed on the first three
building block types but communication interfaces and other peripherals are
often neglected. This is mainly due to the general perception that these modules
constitute standard intellectual property (IP) blocks that can be integrated
quickly at design time.

However, due to their heterogeneity and ad-hoc integration practice these
modules are increasingly becoming bottlenecks to both the design process and
the complexity of the end system as will be discussed below.

1.1 The reality of the interface zoo

We define communication interfaces as system-on-chip building blocks which are
connected to the pins of the chip. Auxiliary functions that primarily support
the interaction between the communication interface and the core system such
as a direct memory access (DMA) controllers are also included.

A large amount of effort is put in processors, memories, and on-chip intercon-
nect during the SoC design process whereas communication interfaces are often
neglected and their complexity underestimated. They are perceived as standard
intellectual property to be acquired as needed. These blocks are therefore inte-
grated into the system-on-chip separately and relatively late during the design
process.

Contrary to common perception, communication interfaces play a significant
role in contemporary SoCs as illustrated by two representative systems.

The first, Intel’s IXP1200 network processor, is shown in Figure 1.1. The
concurrent and heterogeneous multiprocessor system is aimed at processing
packets in network nodes at wire speed. Its die photograph (taken from [60])
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identifies the individual building blocks. The system comprises six RISC-like
processing cores (Microengines) that perform the majority of the network pro-
cessing tasks, a supervising processor for control and maintenance tasks (Stron-
gARM), and a set of dedicated communication interfaces for different purposes
(SRAM, SDRAM, PCI, and IX-Bus). All these building blocks are connected
by a diverse on-chip network consisting of multiple buses and point-to-point
connections.

StrongArm . PCl
| Controller

sRaMI
Interfacés

Figure 1.1: IXP1200 die photograph [60].

MBS

+
‘CAB VIP1 ICP1 + ICP2 + MMI
e +
T VIP2
1zl —
| u
Conditional

J - access
(MSP1 + MSP2)

PR3940

Figure 1.2: Nexperia die photograph [44].

The other example is the Philips Viper system (Fig. 1.2) that targets digital
set-top boxes and residential gateways. The system contains a MIPS process-
ing core (PR9340) for standard tasks and the Trimedia VLIW (TM32) core for
audio and video processing. The VLIW core is supported by several coproces-
sors for 2D rendering, MPEG2 encode/decode, and video processing. In the die
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photograph the Firewire interface (IEEE1394) is identifiable. Other peripherals
are grouped together into larger structures. According to [44], the Viper sys-
tem implements a total of 50 peripherals and accelerators in 82 different clock
domains.

From these two examples it is already evident that:

e Interfaces account for a significant share of the total system, which in
these examples amounts to roughly 1/3rd to 2/3rd of the die areas.

e There are a number of different communication interfaces integrated sep-
arately on one SoC.

e Individual interfaces such as the PCI interface in Figure 1.1 or the Firewire
interface (IEEE 1394) in Figure 1.2 can be quite large compared to other
structures on the die, especially the microengines.

Two trends in evolving communication protocols aggravate the listed obser-
vations: (1) the complexity of interfaces is increasing, and (2) the protocol
landscape is becoming more diverse.

Due to the increasing bandwidth and more sophisticated communication
protocols, the complezity of communication interfaces increases over time. In
Figure 1.3, the interface sizes are shown for different PCI protocol versions
(adapted from [28]). The most recent PCI Express interface is 3.6 times larger
than the version that was used for the Intel network processor in Figure 1.1
while its performance in terms of bandwidth/pin increases by 64X (cf. Fig 1.4).

0.5 1.0 3.6

PClv1.1 PCIv2.2 PCI-X 1.0 PCI Express

Figure 1.3: Relative increase in interface area for different PCI protocol stan-
dards (Scaled to identical technology).

At the same time, the landscape of communication protocols is becoming
more diverse. Recently announced new and existing enhancements to several
packet-oriented link-to-link communication protocols, for instance, are all aimed
at network processors. It is, however, unclear, which of these protocols should
be supported. Not only do these standards represent different market alliances,
but they also provide (or will provide as they evolve) comparable features at
a similar performance/cost ratio, as Figure 1.4 illustrates. The figure uses the
pin count for cost indication since communication centric systems tend to be
dominated by IO pins.

Furthermore, the software interface for such communication interfaces, which
comprises device drivers and often the related protocol management, is becom-
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Figure 1.4: Bandwidth vs. pin count of recent network processor interfaces.

ing complex and more heterogeneous, resulting in a challenge for designing reli-
able software [185]. Finally, due to an unfavorable task partitioning, the interac-
tion between device driver, processor and communication interface is often very
fine-grained and dominated by the protocol overhead [170]. Due to the dynamic
nature of such interactions, the overall system behavior is difficult to predict,
therefore, making a over-provisioning of the involved resources necessary.
These observations reveal the necessity of a disciplined approach to the de-
sign and integration of communication interfaces. Interfaces must become a first
class citizen during the design process of SoCs. The premise from which our
research is conducted is that a flexible solution can reduce diversity while still
delivering reasonable performance, consequently alleviate the communication
interface problem. Using a flexible interface module is the first key concept of
our work. The second concept is the recursive deployment of a programmable
platform for providing the desired flexibility. Both are discussed next.

1.2 The promise of flexible interfaces

The first key idea for the reduction of the diversity of communication interfaces
is the concept of a flexible interface module that can be targeted at multiple IO
communication standards by configuration. Please note that the specification
of a particular interface function is here called configuration without implying
a particular implementation style (i.e., reconfigurable logic).

Such a flexible architecture for a set of communication protocols would help
solve the problems described in the previous section in the following ways:
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Reduced heterogeneity and diversity — If the number of required archi-
tectures is small enough, the problem of diverse and heterogeneous inter-
face modules in hardware will be alleviated. Instead of numerous different
modules, the SoC will now contain multiple instances of only a few mod-
ules, which are configured differently to provide the desired functionality.
Thus, the SoC becomes more regular and the design process easier.

The number of architectures required for capturing the interface variety
will be determined by a trade-off between efficiency of an implementation,
for instance in terms of performance or energy consumption, and flexibil-
ity. There are two obvious extremes. The minimal set of architectures
is a set which contains just one class that can be configured to provide
any function — but most likely not very efficiently. The other extreme is
the maximal set which contains a single architecture per interface — thus
optimized and most efficient.

Improved area utilization and reuse — The reconfigurability of modules
actually allows reusing the silicon area. This, depending on the imple-
mentation costs for the flexible architectures, may lead to substantial area
reductions since the number of instantiated modules can be reduced to
the number of simultaneously active modules. Additionally, the recon-
figuration of system interfaces also makes possible reusing the complete
system in environments with different communication requirements as well
as the support for fast-evolving standards as, for instance, observable in
the network processing arena.

Easier system integration — The architectural complexity necessary to pro-
vide flexibility allows for a repartitioning of the functionality between main
processor(s) and I0 module. By allocating more low-level communication
tasks to the IO resource itself, the main system can be relieved of fine-
grain communication, and the communication protocol processing can be
kept on the local processing resource. This makes very thin device driver
layers possible, which only deal with the operating system specifics and
the general processor-device interface. In addition, low-level device drivers
will become less diverse since all IO protocols within an interface class can
be accessed via the same HW/SW interface.

An established way for providing flexibility is by means of a reconfigurable
fabric, as, e.g., seen in [67]. Different I/O interfaces can be synthesized from
HDL descriptions and loaded as configuration into the fabric using mature tool
chains. In fact, companies such as Altera and Xilinx offer communication inter-
faces as IP modules for their FPGA platform products.

However, the flexibility of FPGA platforms comes at the price of several
weaknesses. First, there are higher implementation costs. In [56] factors of 2-4X
in speed decrease and 10X or more in area increase compared to application-
specific standard parts are mentioned. Second, when compared to embedded
processors, they are often less efficient. Although their computational density
is higher (in terms of peak computations per area), their program, i.e., fabric
configuration, is much less dense than the one of a processor [41]. Consequently,
processors can solve a problem that requires many relatively infrequently used
computations or moderate computational throughput in a smaller area than
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FPGAs. For this reason companies such as Triscend [61] (acquired by Xilinx)
and ST Microelectronics [13] embed FPGA fabrics into their programmable
SoCs. FPGA vendors, on the other hand, harden their products by embedding
processor cores into the fabric. Third, there is the lack of an integral and pro-
ductive programming environment. A flexible system-on-chip which combines
hardware on an FPGA fabric with programmable cores (be it as hard or soft
macro) requires multiple tool flows and disjoint programming models for hard-
ware synthesis and program compilation. Hence, can we do better, e.g., if we
leverage the building blocks of programmable platforms?

1.3 Leveraging the programmable platform

Motivated by the need to provide efficient and economical solutions for systems
of growing heterogeneity and complexity, platforms have emerged that are built
upon software programmable building blocks, i.e. processing elements. Such
programmable platforms promise higher design productivity since they are built
more abstractly from coarse-grain processing elements rather than designed on
the fine-grained RT level. By software programmability, they also make late or
in-field adaptations of a system’s function possible, thus reducing the first-time-
right risk and increasing the longevity of systems in evolving markets.

Contemporary platforms are multiprocessor systems. In the domain of
network processors, for instance, dozens of different platforms have been cre-
ated [177, 205]. They instantiate multiple processing elements in increasing
numbers ranging from two to several hundred. This trend is illustrated in Fig-
ure 1.5 which shows the number of processing elements used by selected network
processors and their topology.

©
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Figure 1.5: Processing core topologies in MPSoC platforms.

This leads to the second key idea of this dissertation. Since contemporary
platforms deploy many processing elements for flexibility anyway, it would make
sense to use them for a flexible interface solution as well. Figure 1.6 shows the
concept. Instead of dedicated interface macros in the left part of the figure,
processing elements, shown in the right-hand part, are deployed which execute
the particular interface function in software. In a recursive manner, the IO
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building block is composed of other building blocks. Only a fraction of the
original module concerned with the physical I0 (the PHY) may remain as 10
specific unit.

MEM NxM
Processor
clements
X T (PE)
PE, PEw:
Interconnet
/ network
. coe
(any topology)
PE .
° More SoC
Interconnect
Network
Additional
PE(s)
Multiple IO for 1/O
Interfaces function
t— Physical layer
1/O PINs

Figure 1.6: SoC platform deploying programmable platform building blocks
(PEs) to replace its hardwired IO functions.

Compared to a reconfigurable fabric, such a solution has two main advan-
tages. First, the integral programming model of the platform can be extended
to the interface functions. Identical tools and the same programming environ-
ment can be used. Second, the platform becomes more homogenous and better
scalable since the interface function could be mapped onto any PE.

However, to date, no established method for the systematic exploration of
a platform’s design space exists. Platform development and deployment still
remain an art.

1.4 Objectives of research

The objective of this research is to contribute to the advent of fully programmable
platforms by exploring the feasibility of a programmable solution for commu-
nication interfaces. Being among the first pursuits specifically addressing com-
munication interfaces this dissertation’s central assumption is that there is a set
of communication interfaces that can be implemented by such a solution. To
prove this hypothesis, this dissertation proposes:

1. A methodology and a set of domain-specific tools for the application-driven
development and later deployment of programmable communication in-
terfaces. The SystemClick performance evaluation framework generates
functional and timed SystemC models from high-level descriptions that
can be used to evaluate a particular design point quickly. From the same
source, the CRACC framework generates efficient implementations for
embedded software platforms.

2. The quantitative exploration of the interface design space based on a mod-
ular platform that is optimized for packet processing. Using the NOVA
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platform, performance/area trade-offs are quantified with respect to pro-
cessor type and configuration, application-specific instruction sets, hard-
ware accelerators, number of processors, and communication topologies.

Adopting a depth-first approach, the focus is placed on the emerging class of
packet-oriented communication interfaces. They are essential for networked
devices (see Chapter 2) such as wireless access points and network processors.
The requirements of these devices will be used throughout this dissertation.

This dissertation will be successful if a flexible solution is found that is a)
programmable using an integral programming model, and b) applicable with
reasonable costs in terms of performance and area.

1.5 Structure of this dissertation

Three steps are necessary to confirm the feasibility of a programmable interface
solution. First, an essential set of communication interfaces must be selected and
analyzed. Second, a methodology for the systematic exploration of the design
space is required. Last, a programable architecture must be developed and
evaluated. According to these steps, this dissertation is structured as follows:

Survey of communication interfaces in contemporary SoCs — In order
to capture the state-of-the-art, a representative set of contemporary SoC
architectures in different application domains is analyzed and classified in
its interface specifics. Existing techniques towards a flexible implemen-
tation are discussed. The set of essential packet-oriented communication
interfaces is derived, which is then used for the subsequent steps.

Interface analysis and comparison — The interfaces are analyzed and their
similarities/dissimilarities are discussed using a common structure and a
set of elementary tasks. For this purpose, each interface is modeled us-
ing Click, a framework for packet processing applications. The executable
models are functionally correct and capture the essentials of each interface.

Application-driven methodology — For the design space exploration, a
methodology is developed taking into account the importance of the ap-
plication domain. The Y-chart-based methodology leverages the Click
framework and uses our code generators to derive performance models
(SystemClick) and the actual implementation code (CRACC). As the tar-
get for the exploration, the modular NOVA platform is introduced.

Architecture exploration — Following our application-driven methodology,
we first look at a fully programmable single-PE solution. This solution
is one corner case of an implementation and provides the necessary data
for the exploration of the design space along several axis. Analyzing the
performance, we quantitatively explore the design space with respect to
number and type of cores, instruction set extensions, application-specific
hardware accelerators, and communication topology. This results in an
optimized architecture.

Conclusion — The conclusion summarizes the main results and contributions
of this dissertation and provides some starting points for future work.



Chapter 2

Review of Communication
Interfaces in SoCs

This chapter captures the state-of-the-art in the deployment of communication
interfaces. In order for them to be representative of today’s application-specific
System-on-Chip architectures (SoC), we are examining more than 30 contem-
porary architectures in fourteen product families and discussing their interface
specifics. The SoC examples come from three application domains with a focus
on communication-intense network and networked multimedia applications.

In the following, we will first characterize the selected application domains.
Next, we will examine the architectures in each domain applying a usage-based
classification scheme to their interfaces. Last, we will compile the data on inter-
face deployment into a set of 35+ essential communication interfaces. Further-
more we will evaluate the implementations of interfaces to identify techniques
that support flexibility and reuse and place the focus of our subsequent research
on packet-oriented communication interfaces for which we will select a collection
of communication standards.

2.1 Application domains

Architectures from three domains were chosen to reveal the different aspects of
communication interfaces:

Core and access networking — This domain consists of network processors
that target packet processing and forwarding at high throughput rates
in the network backbone and access equipment. Their architectures of-
ten contain multiple specialized processing elements (application-specific
instruction processors - ASIPS) to meet the performance requirements.
They require only a limited number of different interfaces.

Integrated access devices; Residential gateways — Residential gateways
(aka access points) link the external broadband network and the internal
home network and also serve as in-house multimedia aggregation point.
They therefore have to deal with a plethora of different network protocols
and communication interfaces. Due to moderate throughput requirements
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their architectures, however, are based on a limited number of standard
processors. Integrated access devices are similar in their base architecture
and incorporate only a limited number of network interfaces. In addition,
they integrate functions for user interaction.

Handheld devices — Wireless application processors handle the application

2.2

part of cellular phones and hand-held devices. This part often includes
everything (e.g. audio/video, security or storage) except the baseband
processing (physical layer) of the device. For wireless devices, low power
consumption is of the essence.

Usage-based classification

We classify the communication interfaces based on their usage and group them
according to their purpose. Although fairly natural and intuitive, such a classi-
fication is ambiguous in some cases since interfaces can be multi-functional or
be used for different purposes, see infrared and Bluetooth. The classification
scheme uses nine classes. The majority of the interfaces fall into seven of these
classes, two additional classes cover the remaining communication interfaces:

Wired network interfaces— This class contains all peripherals that in-
terface to an external network based on wires and fibers; this includes in-
terfaces for home networking, last/first mile connections, and local (LAN)
and wide area network (WAN) interfaces.

Wireless network interfaces— These peripherals interface to a network
over the air via different communication techniques, which often require
a substantially more complex physical (PHY) layer than wired interfaces.
Typical interfaces are HomeRF, HIPERLAN, and wireless LAN. Infrared
(IrDA) and Bluetooth - if used in combination with LAN protocol stacks
- are also wireless interfaces.

Local peripheral interfaces— This class includes communication in-
terfaces that are primarily used to connect ’standard’ peripherals such as
printers, scanners, or cameras to a system. Typical interfaces are USB,
Firewire, IrDA, and Bluetooth.

User interfaces— Specialized interfaces for human user interaction such
as keypads, LCDs, or cameras are accounted here.

Memory interfaces— This class includes memory controllers and in-
terfaces to external memories, e.g. SRAM, SDRAM, compact flash, or
multimedia memory cards.

System extension interfaces— This class contains interfaces that ex-
tend a system locally such as external buses or co-processor interfaces.
Such interfaces are, for instance, PCI, RapidlO, Hypertransport, and In-
finiband.

Test and debug interfaces— This class covers interfaces that are spe-
cialized in test and debug purposes such as JTAG. General purpose inter-
faces may be used as well, but are accounted for in a separate class.
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e Common standard interfaces— Some interfaces are integrated in vir-
tually every SoC system but are not system-dependent. They also serve
multiple purposes. So far, we have identified General Purpose I0s (GPIOs)
and UARTS as class members.

e Specialized auxiliary interfaces— If an interface does not fit in any of
the other classes, it is considered in this class, e.g., the synchronous serial
interfaces.

In the following, we will examine the groups of interfaces for every one of our
application classes and discuss their specifics.

2.3 Interfaces deployed with network processors

Network processors (NPUs) target packet processing and forwarding at high
throughput rates in the network core and in access equipment. In order to
achieve the required performance-per-cost efficiency, they typically contain mul-
tiple processing elements that are specialized in packet processing and sup-
ported by co-processors. For this survey, we examined the network processors
by AMCC, IBM (now HiFn), Motorola (now Freescale), and Intel. Together
they represented more than the top 4/5th of the NPU market in ’02/03 [107]
and cover the spectrum of deployed communication interfaces quite well. Com-
prehensive overviews of the different systems can be found, e.g., in [177, 205].

In network core and access equipment network processors are often deployed
on line cards [199]. System examples are core routers and digital-subscriber-line
access multiplexors (DSLAMs). DSLAMs aggregate thousands of individual
DSL lines and forward their traffic to the core network. Routers in the core
process packets at high throughput rates, e.g., perform complex lookups to
determine the destination of packets.
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Figure 2.1: Deployment scenarios of network processors on line cards (left) and
typical interfaces of a NPU (right).

In both systems, line cards manage the connection of the equipment to the
physical network. They are connected to a backplane that allows packets to
be distributed to other line cards or to control processors, see Fig 2.1 (left).
Due to this, NPUs require a number of dedicated interfaces: Network interfaces
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connect the processor to the physical network, a switch fabric interface accesses
the backplane, a control plane interface connects to an external processor that
handles the control plane and also maintains the NPU and its peers on the line
card, memory interfaces handle packets and table lookup data, and co-processor
interfaces are used for classification, quality-of-service, and cryptography accel-
erators. While some of these interfaces (e.g. memory and network interfaces)
are well covered and documented by mature I/O standards, others, especially
the switch fabric interface, still lack sufficient standardization.

The interfaces deployed by the examined network processors are listed in
Table 2.1, grouped according to our usage classes. The table confirms the fact
that network processors deploy a large number of quite diverse interfaces. The
table also reveals the diversity in memory and network interfaces among the
processors. In the following these interfaces will be discussed more closely.

Table 2.1: Network processors and their I/O interfaces.

SoC Intel IXP Freescale IBM/HiFn Broadcom AMCC
Interface 12/24/2800 C-5 PowerNP BCM 1250 nP3700
Network interfaces

Number of IFs 1 16 CP%+ 1 SW? 4 PMM®+ 2 SW? 3 4
IX-Bus (ves) — — — —
Utopia yes yes (yes) — —
CSIX yes yes yes — —
SPI/POS-PHY yes unknown yes — yes
MII/GMII/TBI — yes yes yes yes
Flexbus — — yes — —
Memory interfaces

SRAM 1x /2xQDR 2xZBT 2x QDR/LA-1/ZBT 2x QDR
SDRAM 1x /DDR/3xRDRAM | SDRAM (PC100) 8x(DDR) DDR 4x DDR
Extension interfaces

PCI yes yes yes yes —
NPLA-1 — — (yes) — yes
Hypertransport — — — yes —
PowerPC IF — — — — yes
Test and debug

JTAG 1x 1x 1x 1x 1x
Common

Core/Type yves/ARM no/— yes/PowerPC 2x/MIPS no/—
GPIO 4-8x — 3x yes —
UART 1x (MDIO) no 2x (1x)
Auxiliary

MDIO 0/(yes) yes (SPM) — unknown
Serial boot ROM 1x 1x (SPM) 2x(SMB) | unknown

@ one per channel processor ° switch interface © physically multiplexed macros for pin-sharing

Network Interfaces. Network processors implement two sets of interfaces to
connect to the physical network: Ethernet and ATM. These interfaces usually
perform OSI Layer 2 functions: media access control (MAC) in case of Ethernet
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and segmentation and reassembly (SAR) for ATM. The physical layer (PHY
layer, layer one), which is normally provided externally, is connected via one of
the following three interfaces:

e The Media Independent Interface [82] (MII) or one of its variants (RMII,
SMII) is commonly used for Ethernet and supported virtually by every

NPU. These interfaces come in three performance classes: 10/100 Mb/s
(MII), 1 Gb/s (GMII), and 10 Gb/s (XGMII).

e The Utopia interface [6, 7, 8, 9] is used for ATM environments to connect
external PHY devices. Utopia has four throughput classes: 155Mb/s (L1),
622 Mb/s (L2), 3.2Gb/s (L3), and 10Gb/s (L4).

o System-packet interfaces [137] (SPI), which are similar to Utopia, are used
for ATM and packet-over-SONET (POS) environments to interface to ex-
ternal framers. SPI/POS-PHY classes range in their throughput from 622
Mb/s to 40 Gb/s (SPI-5).

In order to manage the PHY modules connected to the networking interfaces,
an auxiliary PHY management interface (MDIO [82]) is provided. IBMs SPM
module, for instance, requires an external FPGA for this. This way, the SPM
module can support different interface types.

In addition to Utopia and SPI network processors that dedicate ports for
interfacing an external switch fabric use one of the following two options:

e The common switch interface [135] (CSIX-L1), a relatively wide interface
that needs 64 data pins at max. 250 MHz to support 10Gb/s and in-band
flow control.

e The network processor streaming interface [135] (NPSI) based on 16 LVDS
data pins at 311-650 MHz and two to four additional flow control bits.

Proprietary interfaces are becoming more and more obsolete and are succes-
sively being replaced by standardized interfaces. Intel, for instance, has decided
to replace the IX bus by SPI/Utopia interfaces in its second generation NPUs.

System extension interfaces. The system extension interfaces of network
processors fall into two categories: control plane and co-processor interfaces. In
theory, both types can be use equal IO functionality. The control plane interface,
however, is more likely to be generic and well-established. The co-processor
interface, on the other hand, can be optimized for low latency interactions. In
practice, we find only one standard control plane interface commonly used:

e The peripheral component interface [149] (PCI) provides a local bus inter-
face with a peak bandwidth ranging from 1 Gb/s to 4.2 Gb/s depending
on its version. The newer PCI-X and PCI-Express specifications provide
higher point-to-point peak bandwidths but are not yet integrated into
products.

Some network processors such as AMCC’s, integrate proprietary interfaces to
connect to peer and control processors. These interfaces may be replaced in
the future as more standardized alternatives to PCI (e.g. RapidIO [160] and
Hypertransport [76]) become available.
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Besides proprietary or network interfaces (SPI), co-processors are often used
memory-mapped and connected via modified memory interfaces. For this rea-
son, the Network Processor Forum specified the NPLA-1 [135] interface:

e The look aside interface is modeled based on a synchronous DDR SRAM
interface and provides a bandwidth of 6.4 Gbit/s per direction at 2x 18
bit x 200 Mhz.

Memory interfaces. Although NPUs often integrate considerable on-chip
memories, they in addition need at least two different kinds of external mem-
ories: large packet memory and fast memory for auxiliary data. Our NPU ex-
amples deploy the most recent memory interfaces, often in multiple instances,
to meet their memory bandwidth requirements:

e Double data rate [90] (DDR) SDRAM supports data transfers on both
edges of each clock cycle, effectively doubling the data throughput of the
memory device. The ones used in our examples provide between 17 and
19.2 Gb/s @ 64 bit x {133, 150} MHz.

e Rambus’ pipelined DRAM (RDRAM) [159] uses a 16 bit-wide memory
bus. Command and data are transferred in multiple cycles across the bus
(packet-based protocol). Components are available ranging from 800MHz
to 1.2GHz, providing 12.8 Gb/s - 19.2 Gb/s peak memory bandwidth.

e Zero Bus Turnaround (ZBT) SRAM [183] do not need turnaround bus
cycles when switching between read and write cycles. This is beneficial
in applications with many random, interleaved read and write operations
such as accessing routing and lookup tables. Motorola’s NPU, e.g., deploys
a 8.5 Gb/s at 64 bit x 133MHz interface.

e The Quad Datarate (QDR) SRAM [158] uses two separate memory ports
for read and write accesses that operate independently with DDR tech-
nology, thus effectively doubling the memory bandwidth and avoiding bus
turnaround. The IXP 2800 implements a total of 4x 12.8 Gb/s at 18 bit
x 200 MHz on memory bandwidth based on QDR.

These memory interfaces are standard interfaces. However, memory con-
trollers embedded in NPUs are more specialized compared with their general
purpose counterparts. They need to at least support multiple processing ele-
ments, which may access a memory concurrently, e.g. by providing individual
command queues. In addition, application-specific knowledge is exploited to
tailor controllers to the specific usage. In Freescale’s example, the queue man-
agement, buffer management, and table lookup units are specialized to their
specific data structures and access functions.

Other interfaces. NPUs that implement a standard control processor on-chip
also implement most of the common GPIO and UART interfaces.

2.4 Residential gateways &
Integrated access devices

Residential gateways (RGs) connect the external broadband network to the in-
ternal home or small office network. They perform network-related services
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such as line termination, protocol and address translation, firewall security, and
in-home routing. Increasingly, they are also becoming the in-house focal point
for applications such as home automation and control, audio and video stream-
ing, and file/printer sharing. Therefore, they have to deal with a plethora of
different network protocols and communication interfaces. Due to the moder-
ate throughput requirements, however, their system architectures are typically
based on a limited number of embedded standard processor cores, which, in
some cases, can be combined with accelerators.

Local Loop Residential Gateway Home Network
Interfaces Interfaces
Data
Mem IS
2
Proc E
17
System Peripheral
Network Network

EIEE

|
Architectural | Flash/ Local Peripheral Interfaces
ROM
Interfaces
O Interface O Core W Accelerator [ Memory

Figure 2.2: Extended RG scenario with exemplary interfaces.

In Figure 2.2, an exemplary RG is shown with its three system-level inter-
faces (local loop, home network, and local peripherals) and the architectural
interfaces. The local loop interface connects to the service provider’s external
broadband connection (e.g. xDSL or cable). The home network interfaces pro-
vide a choice of wired (e.g. Ethernet, HomeRF, or power line), wireless (e.g.
802.11a/b/g) network protocols as well as plain old telephony service (POTS).
Local peripheral interfaces, e.g. USB, IEE1394, and Bluetooth, allow for con-
necting directly to I/O devices without a personal computer such as to cameras,
scanners, and printers. Architectural interfaces comprise memory interface(s)
and system extension interfaces, e.g. PCI and PCMCIA. Wireless access points,
for example, are an instance of the RG shown in Figure 2.2. They bridge wire-
less LAN and Ethernet networks and provide, e.g., a PCI/PCI Express interface
for interfacing to companion chips.

Integrated access devices (IADs) are similar to RGs in their base architecture
but incorporate only a limited number of network interfaces. Instead, they
deploy functions for user interaction. Both systems integrate the same sets
of memory interface(s) and system extension interfaces. In fact, IADs and
RGs members are often of the same product families, which have the processor
subsystem in common and vary only the set of integrated peripherals.

For the survey, we examined Systems-on-Chip by AMD, Intel, Samsung,
Broadcom, Motorola, and Philips. Their deployed interfaces are summarized in
Table 2.2, grouped according to our usage classes, and discussed in more detail
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in the following sections.

Table 2.2: Interfaces of residential gateways and integrated access devices.

SoC Samsung Motorola Broadcom AMD Philips Intel
Peripheral S3C2510 | PowerQUICC | BCM47xx Aulx00 Nexperia IXP42x
RG RG/NE RG IAD/RG | IAD/STB | RG/NE

Wired network interfaces

Utopia 1x 0-2xFCC — — — 0-2x

FE/GbE MAC 2x/- 0-3xFCC/2x 1-4x/- 1-2x/- — 1-2x/—

HSS/TDM —/— 2x/8x(SSC) —/— —/— —/— 0-2x/—

HPNA — — 0/1x — — —

DSL/Phone — — 0/1x — — —
Local peripheral interfaces

USB 1.1 host/ports 1x ? 1x 1/? 1x —

USB 1.1 function 1+4 0/1 1x 1x 1x

IrDA SIR/FIR (SSC)/- 1/- -/0-1 (GPIO) —

IEEE 1394 1x
User interfaces

LCD IF — — — 0/1 — —

125/AC97, link — — — 0-1/1 3x —

SPDIF — — — — 1x —
Memory interfaces

Smart Card — — — — 2x —

SDCARD/MMC — — — 0/2 — —

NAND/F1/CF yes m (yes) — (EBI) —

SRAM 1x m — 1x —

SDRAM 1x (DDR)™ 1x 1x 1x 1x
Expansion interfaces

PCI/PCMCIA /Cardbus 1x PCI/PCI-X 1x 1-2 PCI PCI

Other external Bus IF — 60x/LocalB 1x/? — 1x/? 1x?

RapidI/O — 0/1 — — — —
Test and debug

JTAG 1x 1x 1x 1x 2x 1x
Common

GPIOS 64x 53-120/PI10 yes 32-48x yes 16x

UART 3x (SSC) 2x 2-4 3x 2x!
Auxiliary

12C yes yes — — 2x —

SSI — — — 0/2 SSI 1x —

SPI — yes — 0/2(SS1)™ —

* multiple standards ! 2x64B FIFOs ™ 1x EPROM/FLASH/EDO/SRAM/SDRAM via ex-

ternal bus unit interfaces. ™ subset of SPI

NE - Network Edge, STB - Set Top Box

Network interfaces. Almost all examples deploy at least one Ethernet MAC
with MIT interface (cf. p. 13). Systems that implement switching functionality
provide multiple Ethernet interfaces. Often, Utopia Level 2 and 3 interfaces (cf.
p. 13), including SAR, are implemented that, e.g., connect to external Digital
Subscriber Line (DSL) PHYs. In addition, physical layer interfaces to connect
to telecommunication WAN environments are found.
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e The High-speed Serial Interface (HSS) is a PHY interface for primary
rate ISDN (E3/T3 WAN, 45Mb/s) or OC-1/SDH (52Mb/s) point-to-point
links. Additionally, it can provide connectivity between LANs such as
Token Ring and Ethernet. Multiple interfaces may be supported by using
time division multiplex (TDM).

The only home network interfaces integrated by the examples are Ethernet and
HPNA. Other protocols such as Bluetooth or wireless LAN are provided using
external PHY chips and connected by system expansion interfaces.

e The Home Phoneline Network Alliance (HPNA) [73] interface is logically
based on Ethernet. It basically provides a different PHY layer that in
Version 2.0 provides 10Mb/s via telephone lines. Version 3.0 adds Quality-
of-Service at 128Mb/s. With optional extensions, this version can deliver
up to 240Mb/s. Version 3.1 enables transfer rates of up to 320Mb/s and
adds multi-spectrum operations for network coexistence.

Some vendors integrate network PHYs on-chip. This PHY integration saves
system costs for the most likely deployment scenarios. We found the following
PHYs integrated: 1) 10/100 Ethernet (BCM6345), 2) HPNA 2.0 (BCM4710),
and 3) ADSL transceiver and analog front end (BCM6345).

Local peripheral interfaces. There are three deployed local peripheral inter-
faces: USB, Infrared and Firewire. All three protocol stacks implement higher
protocol layers that allow for their integration in a home or office IP/LAN net-
work:

o Universal Serial Bus (USB) [200] interfaces enable serial data transfers
from 12Mb/s (v1.1) to 480 Mb/s (v2.0). A USB 1.1 function, which
allows the system to respond to an external master, seems common among
our examples. RGs often implement an additional host function. This
way, the RG can work stand-alone and access external peripherals actively
without the help of a PC and can also serve as an intelligent bridge between
peripherals. Similar to the physical layer of network interfaces, we also
found some systems that implement the USB PHY layer on-chip.

o Infrared interfaces by the Infrared Data Association (IrDA) [85] are also
implemented throughout, although in different versions. RGs and network
edge systems often integrate the low end serial infrared version (SIR) only,
which uses an UART and provides speeds of up to 115kb/s. The higher
speed versions MIR (1.5 Mb/s) and FIR (4.0 Mb/s) are more likely to be
deployed by IAD architectures. The new VFIR (12Mb/s) version does not
yet seem deployed.

e The Firewire/ IEEE139/ interface [4, 81] is deployed only by Philips’ Viper
system. This protocol seems to be used particularly in combination with
image and audio data streams due to its relatively high bandwidth of up
to 400 Mb/s (1394a) or 800 MB/s (1394b).

User interfaces. AMD’s Aul100 and Philips Viper devices are the only devices
that implement a standard LCD interface, video function, and audio codec con-
troller. There are no other dedicated peripherals for user interaction. Instead,
user I/O devices are connected via multi-function interfaces such as UARTS or
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GPIO if necessary. Even a I?S [152] interface, a 3-wire interface dedicated to
transport audio data, requires such a general purpose channel to transfer control
to the external audio devices.

Memory interfaces. All devices provide interfaces and controllers for stan-
dard SDRAM. Intel, Broadcom, Philips, and Samsung implement a dedicated
interface for this purpose. Motorola even implements controllers for each of its
two external buses. Some systems provide a second controller for static mem-
ory devices. AMD'’s controller, for instance, supports SRAM, Flash, ROM, page
mode ROM, PCMCIA /Compact Flash devices, and an external LCD controller
via its memory interface. Others use system extension buses instead of individ-
ual interfaces. In addition, secure digital card interfaces have been implemented
by AMD.

System extension interfaces. IADs and RGs overlap memory and system in-
terface functions to some extent. Both interfaces seem interchangeable. In some
cases, external peripherals, e.g. an LCD controller, are connected to the memory
interface, and in other cases, memory devices, e.g. flash memory, are accessed via
external bus interfaces. All systems implement either PCI or PCMCIA /Cardbus
interfaces. Motorola implements PCI-X and RapidI/O in its PowerQUICC III
system. These interfaces are used, for instance, to connect to external wireless
LAN modules.

Common interfaces. Multiple UARTs and a large number of general purpose
I/O are implemented by the examples. They are used to provide additional
interfaces, e.g., the chip select in case of Motorola’s memory controller, or for
sideband interfaces for external PHYs.

Other interfaces. There is a fair number of different serial interfaces (12C,
SPI, and SII) for moderate communication bandwidth. These interfaces are
general purpose and are used for connecting to external system components,
mostly on a board-level.

2.5 Wireless application processors

Wireless application processors (WAPs) handle the application part of cellular
phones and hand-held devices. Apart from the radio baseband processing, this
part often comprises other functions, e.g. audio/video, security, and storage.
Wireless application processors can be seen as TADs with an (external) wireless
network interface. Since they are used in portables, much more emphasis is put
on energy efficient architectures than seen before in Section 2.4.

In the following product families by TI, ST, and NeoMagic are being exam-
ined. The systems commonly contain at least one ARM9 core and additional
programmable accelerators. In addition, TT integrates a DSPs for GSM support.
Table 2.3 summarizes the deployed interfaces grouped by our usage classes.

Network interfaces. Wireless application processors do not integrate specific
network interfaces. Only TT’'s OMAP mentions a wireless LAN interface. It is,
however, a standard port that is capable of handling the 54 Mb/s bitstream (cf.
TNETW1130 [193]). Similarly, other wireless chips, e.g. baseband processor
and Bluetooth PHY, are connected via standard interfaces such as UARTSs or
multi-channel serial interfaces.



Table 2.3: Interfaces of wireless application processors.

2.5. WIRELESS APPLICATION PROCESSORS

SoC NeoMagic TI ST
Peripheral MiMagic6 OMAP Nomadik
PDA/AP AP AP
Wireless network interfaces
wireless LAN a/b/g — (1x) —
Local bus interfaces
USB host/ports — 1x/3 1x
USB function 1x 1x ?
IrDA SIR/FIR 1x/1x 1x/1x ?7/1x
User interfaces
Camera IF 1x-+acc. 1x? 1x+acc.
LCD IF 1x+acc. 1x* 1x+acc.
12S/AC97, link 1x/1x 0-1x/1x | MSP/MSPJ
Keypad — 1x —
Memory interfaces
Smart Card/SIM card — 0-1x —
SDCARD/MMC 2x 1-2x/SPI 1x
NAND/Flash/CF 1x 1x 1x
SDRAM/DRAM 1x 1x/DDR 1x/DDR
Expansion interfaces
PCMCIA (1x) — —
Test and debug
JTAG ? 1x 1x
EMT9 77 1x 77
Common
GPIOS yes 14x 76x
UART 3x 2-3x 2x
Auxiliary
12C 1x 1x 2x
/u-wire — 1x —
SPI 2x 2x MSPJ
Pulse-Width-Light — 1x —
Pulse-Width-Tone — 1x —
HDQ/1Wire (Batt) — 1x —
LED Pulse Gen. — 2x —

“ multiple standards, but no details provided 7 SPI, I2S, AC97

19
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Local peripheral interfaces. Like IADs, application processors deploy two
local interfaces: USB and Infrared. In case of USB, both, function and host
interface, are commonly implemented based on FIR (4 Mb/s). The new VFIR
(12Mb/s) version seems not yet have been deployed in the wireless domain.

User interfaces. Specialized LCD and camera interfaces are implemented by
all processors. Often, they are associated with accelerators for better perfor-
mance/power trade-offs. AC97 and I2S interfaces are provided by virtually all
examples. In some cases, multi-channel serial peripherals are used, which also
support other kinds of serial interfaces. TI’s keypad interface seems a propri-
etary solution.

Memory interfaces. All processors implement a DRAM memory port. ST
and TT use DDR technology for lower power consumption. In TT’s case, the
interface is used for flash, compact flash, and NAND flash memories as well,
whereas other vendors implement a static memory controller for this purpose. A
second common peripheral is the secure digital card/multimedia card interface.

Furthermore, TT lists a special SIM card interface. Such SIM cards (or smart
cards) are used in GSM phones to identify user accounts and to provide data
storage. They also contain processors that execute programs and communicate
over a low speed three wire serial interface.

System extension interfaces. In general, WAPs do not integrate system
extension interfaces but use other types for similar purposes such as various
serial and auxiliary interfaces to link to baseband part, audio codecs, and wire-
less PHYs. As an alternative for higher bandwidth, the memory interface is
used. The only PCMCIA port among our examples, for instance, is provided
by Neomagic’s static memory interface.

Common interfaces. The systems implement a similar number of UARTS in
all examples, but quite a different number of general purpose I/O. The small
number of only 14 GPIOs in TIs case, is certainly compensated by the larger
number of small auxiliary interfaces.

Other interfaces. Serial interfaces such as I>C and SPI are implemented in all
processors. TT and ST implement them partly in multi-channel serial peripherals
that support multiple serial standards. TI’s SD card interface can be used as
SPI port, too. TT also implements a number of small auxiliary serial interfaces
for display lights, battery status, and sound/speaker control.

2.6 Discussion and selection of interfaces

In the previous sections we surveyed a number of domain-specific system-on-chip
and summarized their use of 10 interfaces. In this section, we are compiling the
data on the deployment, discussing trends towards flexibility and selecting an
essential set for the subsequent analysis of this dissertation.

Deployed interfaces per die

Depending on the application domain, our systems implement between 8 and 25
different interfaces on a single die. Among the three domains, network proces-
sors integrate the least number of interfaces with an average of 10, followed by
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residential gateways with 12 in average; application processors with an average
of 18 use the most communication interfaces, as shown in Table 2.4.

Table 2.4: Number of different interfaces per SoC and domain.

Domain Network Residential Gateways Wireless Across
Processors Internet Attached Dev. | Processors domains

per SoC | 9, 8, 10, 8, 11 13, 10, 10, 13, 10, 15 14, 25, 14 8-25
Average 10 12 18 12

Table 2.5 shows the set of essential interfaces derived from the domain-
specific lists of deployed interfaces. The criteria used for deciding whether an
interface is representative and should be included in the essential set is its com-
mon implementation into one domain or the availability of standards. Such
interfaces are normally well documented and their specification is publicly avail-
able. Basically, the final set is the superset of the domain-specific lists and has
approximately three dozen members. Due to their disjoint function and the lack
of standardization are display and camera interfaces excluded. Although not in-
tegrated in the examples, PCI Express has been included due to its foreseeable
deployment in next generation devices. We have also included the wireless LAN
(IEEE 802.11) family of standards due to their increasing relevance for home
and hand held devices.

Table 2.5: Essential set of deployed communication interfaces.

Interface Deployed standard interfaces
class
Network Utopia, SPI, Ethernet (MII), HSS, TDM

wireless LAN
Local peripheral USB, IrDA, IEEE1394
User AC97, link, I°S
Memory SDRAM, DDR, RDRAM, SRAM, QDR, ZBT,
NAND, Flash, CF, SDCARD, MMC, SmartCard
System extension PCI, PCMCIA, Cardbus
PCI Express, Hypertransport, RapidIO
Test and debug JTAG
Common GPIO, UART
Other MDIO, I2C, SPI, SSI

From the set of 35+ essential communication interfaces, our systems-on-
chip integrate between 10 and 20 diverse 1O functions of varying performance
requirements. Their heterogeneity has lead to several different implementation
techniques for 10 interfaces.
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Implementation techniques for communication interfaces

The examination of interfaces in the preceding subsections revealed a tendency
toward the support of different communication standards. This is especially
true for the network interfaces of network processors; they are configurable
for multiple standards. Other interfaces such as serial interfaces or memory
controllers can be configured and parameterized as well. We have observed
three approaches towards flexibility that differ in their degree of configurability
from the hardwired solutions mentioned first.

e Individual IP — Every interface is implemented individually and connected
to dedicated pins. Although this is the common case, it leads to a larger
number of heterogeneous blocks in the system and to high area consump-
tion. Memory interfaces, for instance, are usually customized for a partic-
ular RAM technology.

e Multiple Macros/pin sharing — The simplest technique to provide flexi-
bility is the implementation of multiple macros, which can be used alter-
natively in a multiplexed fashion. This way, the macros can share the
expensive pins. Obvious drawbacks of such a solution, however, are the
heterogeneity and the area consumption.

— The physically multiplexed modules of IBM’s PowerNP integrate four
different network interfaces.

— Concurrent implementations of USB host and function macros can
be found (e.g. in Samsung’s residential gateway S3C2510 system).
However, they do not necessarily share pins.

— Freescale’s PowerQUICC contains a memory controller with three
different modules: a high performance SDRAM interface module, a
more power-efficient lower performance module (e.g. without burst
mode), and three parameterizable modules.

o Parameterizable Interfaces — Virtually all peripherals can be adjusted to
some extent by specifying a well-defined set of parameters. The degree to
which a peripheral is parameterizable (the set and range of parameters)
varies with the interface. Here are several examples:

— UARTS — Serial interfaces can be configured, for instance, for different
transmission speeds and the use of hardware support for protocols

(e.g. Xon/Xoff).
— Memory Controller — Timing parameters and organization of the ex-
ternal memory modules can be set up at boot time.

— PCI Interface — Some PCI interfaces support multiple versions that
differ in bus frequency and width.

— IBM’s Physical MAC Multiplexer (PMM) — The selection signal for
multiple (fixed) macros is also a parameter.

Since such parameters are configured (i.e. programmed) by the processor
core and the number of parameters may be substantial, these interfaces
are sometimes wrongly considered to be programmable.
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e Programmable Interfaces — In some interfaces, parts of the functions are
carried out by specialized co-processing elements that are micro-programmable.
The capabilities of these elements as well as their association to particular
interfaces vary:

— Freescale’s Serial Data Processors (SDPs) — For a limited set of pro-
tocols (Ethernet and ATM) the SDP engines handle individual low
level tasks such as bit field extraction and CRC calculation. Each of
the 16 network interfaces included by the C-5 uses two SDPs.

— Intel’s Network Processing Engines (NPE) — The IXP 4xx systems
implement these programmable accelerators to support individual
network interfaces. The engines are specialized to the needs of a
particular interface but are derived from the same core architecture.
This helps to offload computation-intensive tasks from the CPU.

— Freescale’s Communication Processor Module (CPM) — The CPM
contains a processor core that is shared by multiple interfaces and
only executes higher-layer communication protocol layer tasks effec-
tively separating these tasks from the main processing system.

In addition to these approaches, orthogonal reuse techniques are found,
which can be combined with any of the approaches above but actually do not
require any configurability.

e Multiple Channels — Multi-channel interfaces handle multiple (communi-
cation) contexts simultaneously. They exploit the fact that some com-
munications (e.g. time slots in a time division multiplexed link) do not
require the full performance of a module. Some of our examples also
support multiple protocols:

— TT’s multi-channel serial interfaces (MCSIs) — In TI’s OMAP pro-
cessors, configurable MCSIs are used (e.g. in clock frequency, mas-
ter/slave mode, frame structures or word lengths). Their buffered
version (McBSP) allows for continuous data streams for a number of
different communication protocols (T1/E1, AC97, 12S, SPI).

— Freescale’s multi-channel controllers (MCCs) — Each MCC supports
up to 128 independent TDM channels (HDLC, transparent or SS7).

e Use of generic interfaces — An additional approach to increase reuse and
flexibility is the use of generic interfaces instead of specialized ones. We
observe three different applications:

— Wireless application processors use interfaces such as UART's rather
than proprietary solutions (e.g. to connect to companion chips (e.g.
Bluetooth PHY)).

— Almost every system provides a number of general purpose I/Os that
can be used under software control for any I/O function at the ex-
pense of CPU performance.

— Some systems implement generic interfaces such as the serial man-
agement interface in IBM’s network processor that may require ad-
ditional external logic to support less common usage scenarios.
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Focus and set of interfaces for this thesis

This thesis adopts a depth-first approach to the problem of interface diversity.
We are not attempting to address a solution for every communication interface
of the essential set. Instead, the focus is placed on the emerging class of packet-
oriented communication interfaces.

Recent communication standards put much effort in better exploitation of
the physical channel and service quality addressing the need for high communi-
cation bandwidths at low costs, see Figure 1.4 on page 4. This in turn has lead
to increasingly complex modules which must rely on packet-oriented commu-
nication protocols to ensure reliable transfers. Packet-oriented interfaces cover
the better part of the essential interface set. Virtually all network (Utopia,
SPI, Ethernet, wireless LAN), system extension (PCI Express, Hypertransport,
RapidIO), and local peripheral interfaces (USB, IrDA, Firewire) belong to this
type. The remaining IO modules either are memory interfaces or require only
limited performance.

From the class of packet-oriented communication interfaces, we have chosen

PCI Express, Hypertransport, RapidlO, Ethernet, and wireless LAN

as examples to be used in this dissertation. The choice of these particular packet
interfaces was motivated by the communication needs of two multiprocessor SoC
products: first, a network processor device as part of a DSL line card which uses
Ethernet ports as network interfaces and requires either RapidIO, PCI Express,
or Hypertransport as control plane and switch fabric interfaces, and second, a
wireless access point, which deploys wireless LAN, additional Ethernet ports,
and PCI Express as system extension interface.

We are primarily interested in the higher level interface and protocol aspects
of the IO modules and intend our work to be complementary to the efforts of
the software-defined radio community or initiatives such as the Unified 10Gbps
Physical-Layer Initiative [134] which all focus on the physical characteristics of
10 protocols.



Chapter 3

Analysis of Packet-oriented
Communication Interfaces

The previous chapter identified packet-oriented communication interfaces as the
largest subset of essential IO standards. But how similar are these interfaces?
What are their elementary tasks? In order to answer these questions, this
interface class will now be analyzed on the functional level.

Following a common structure, the five standards PCI Express, RapidIO,
Hypertransport, Wireless LAN, and Ethernet are analyzed. Each interface is
modeled in Click. Click is an established framework for describing packet pro-
cessing applications. The models are functionally correct and capture the essen-
tials of each interface, hence enabling a detailed and quantitative comparison.

Before concluding this chapter with the similarities and dissimilarities of
packet-oriented interfaces, related work on the modeling, analyzing, and com-
paring of communication protocols is discussed.

3.1 Fundamentals

As the basis for the comparison and analysis in the subsequent sections of this
chapter, this section describes the fundamentals of communication interfaces.
The first subsection discusses aspects related to the SoC integration. The next
two sections then focus on protocol-related concepts and identify elementary
tasks that are common in packet-oriented interfaces.

3.1.1 Interface surroundings

Communication interfaces (or IO modules) are building blocks for Systems-on-
a-chip. They interact with their SoC environment in two distinct directions:
to the outside world via the physical interface and to the SoC core via the
transaction interface. Figure 3.1 shows a communication interface embedded in
its environment.

The physical link interface is formed by one or more lanes. For duplex
communication, a lane consists of two opposite unidirectional point-to-point
connections. The bandwidth of such links can be scaled by changing the num-
ber of lanes (cf. Fig. 1.4). In the case of serial protocols such as RapidIO,

25
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Figure 3.1: A communication interface and its environment.

PCI Express, and Gigabit Ethernet (1000 BaseT) a lane contains only the four
differential data signals. Hypertransport may have an explicit clock signal per
lane (synchronous mode) and an additional control signal per link.

The transaction interface allows the SoC cores to control the sending and
receiving of data units, the transactions. The SoC may issue requests or re-
spond to incoming requests by returning completion transactions (split trans-
action model). For interaction efficiency, the module interface may incorporate
building blocks such as masters for the on-chip communication network, DMA
engines for accessing the core system’s memories, and local transfer buffers. Dis-
tinct address spaces (memory, 10, configuration, and message) may be defined
to support different communication semantics in the system.

Each interface provides a configuration space which contains the parameters
and status information of the IO module. Access to this space is possible via
configuration transactions from both directions. A separate internal interface
to the SoC core can be provided for lean and direct access.

3.1.2 Functional layers

The function of 10 interfaces can be structured in three layers following the
OSI/ISO reference model as shown in Figure 3.2. Each layer provides a service
to the above layer by using the service of the layer below. Peer layers on different
nodes communicate with each other by using their particular protocol aspects,
which implies using the services from the layer below. The three layers are:

e Physical layer (PHY) — which transmits data via the physical link by
converting bits into electrical signals.

e Data link layer (DLL) — which manages the direct link between peer
nodes and reliably transmits pieces of information across this link.

e Transaction layer (TA) — which establishes a communication stream
between a pair of systems and controls the flow of information. Since
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Figure 3.2: Layered structure of packet-oriented communication interfaces.

switched networks require routing, different variants of the transaction
layer might be used in endpoints and switches.

Data flows through these layers in two independent directions: the transmit
path (Tx), which sends data from the device core to the link, and the receive
path (Rx), which propagates data from the link to the device core. At each
layer, additional control and status information for the peer layer of the opposite
device is inserted (Tx side) into the data stream, or data sent by the peer
layer is filtered (Rx side) out of the stream by the layer management block. A
transaction at the transaction layer is represented as a packet. The link layer
forwards these transaction packets and generates its own data link layer packets
for the exchange of state information. The PHY layer first converts all packets
into a stream of symbols which are then serialized to the final bitstream.

The terminology of the layers follows the PCI-Express specification. Ra-
pidIO uses a similar layered structure (logical, transport, and physical). Hy-
pertransport, however, does not use layers explicitly but relies on the same
functions and structural elements. Gigabit Ethernet and wireless LAN func-
tionality is usually described using PHY and MAC layers. We have divided the
MAC layer in DLL and TA aspects. Section 3.1.3 will describe the function of
each layer for each protocol in more detail.

3.1.3 Elementary tasks

The function of the different packet-oriented communication interfaces is pro-
vided by a set of elementary tasks. This section describes the common set,
starting from the physical layer upwards. In order to be considered common a
task must be used by at least two of our protocols.

Clock recovery Serial interfaces encode the transmit clock into the bitstream.
At the receiver, the clock needs to be recovered from data transitions
in the bitstream using a Phase-Locked Loop. To establish bit lock, the
transmitter sends specialized training sequences at initialization time.

Clock compensation The PHY layer must compensate frequency differences
between the received clock and its own transmit clock to avoid clock shifts.
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Lane de-skewing Data on different lanes of a multi-lane link may experience
different delays. This skew needs to be compensated at the receiver.

Serialization/Deserialization The width of the internal data path must be
adjusted to the width of the lane. Serial interfaces also need to lock the
bitstream to symbol boundaries.

8b/10b coding/decoding Data bytes are encoded into 10 bit symbols to cre-
ate the bit transitions necessary for clock recovery.

Scrambling/Descrambling Scrambling removes repetitive patterns in the
bitstream. This reduces the EMI noise generation of the link.

Striping/un-striping In multi-lane links, the data is distributed to/gathered
from individual lanes byte-wise according to a set of alignment rules.

Framing/Deframing Packets received at the physical layer are framed with
start and end symbols. In addition, PHY layer command sequences (e.g.,
link training) may be added.

Carrier Sensing This is used to determine if a shared medium is available
prior to transmission.

Cyclic redundancy check (CRC) The link layer protects data by calcula-
tion of a CRC checksum. Different CRC versions may be required depend-
ing on data type and protocol version.

Ack/Nack protocol In order to establish a reliable communication link, the
receiver acknowledges the error-free packets by using a sequence number.
In the case of transmission errors, the packet is not acknowledged (or a
not-acknowledge is returned) and the packet is retransmitted.

Classification The classification according to packet types may be based on
multiple bit fields (e.g., address, format, type) of the header.

Packet assembly/disassembly The transaction layer assembles payload and
header and forms outgoing packets according to the transaction type. The
link layer may add an additional envelope (e.g., CRC, sequence number).
The link layer may generate information packets (e.g., Ack/Nack, flow
control) to update the link status of its peer.

Flow control A transaction is only transmitted to the receiver if sufficient
buffer space is available at the receiver. The receiver updates the trans-
mitter periodically with the amount of available buffer space.

Address validation Incoming transactions should only be addressed to the
device or its memory spaces, respectively.

Buffers and scheduling A set of individually flow-controlled buffers is re-
quired for all transaction types to prevent head of line blocking. Addi-
tional sets for quality-of-service may be used.

Configuration and management space The configuration space stores the
identity of the device which is determined during the initialization phase
and the negotiated link parameter. It also allows access to internal state
and error logs.
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Table 3.1, shown later in Section 3.5, groups the elementary tasks according
to their appearance on the different layers in RapidlO, Hypertransport, PCI-
Express, Gigabit Ethernet, and wireless LAN. The table will reveal quite some
similarities in occurrence and deployment of these tasks. The functional mod-
eling of end-point devices for the individual standards in the following sections
will capture the specifics of each interface.

3.2 Modeling packet-based interfaces in Click

For detailed analysis the full system function of the interfaces and their sur-
roundings are modeled. The comparison of the models provides insights into
the similarities of the different protocols and allows for the characterization of
the packet-oriented interface application domain.

We implement our models in Click [102], a domain-specific framework for
describing network applications. Click was chosen for several reasons. Click
models are executable, implementation-independent, and capture inherent par-
allelism in packet flows and dependencies between elements naturally. Fur-
thermore, Click’s abstraction level and the rich and extensible element library
allowed us to focus on interface specifics. By using Click a functionally correct
model can be derived quickly. And even more important, typical use cases,
traffic conditions, and the ideal protocol behavior can be validated precisely.

Click is open source software, implemented in C++, and runs on Linux plat-
forms. This section briefly introduces Click’s main characteristics and describes
concepts for modeling packet interfaces. Further information on Click can be
found in [100] and on Click’s web site [194]. The Click interface models will be
described in subsequent sections.

3.2.1 Click characteristics

In Click, applications are composed in a domain-specific language from elements
that can be linked by directed connections. The elements describe common com-
putational network operations whereas connections specify the flow of packets
between elements. Packets are the only data type that can be communicated;
their generic format supports arbitrary communication protocols. All applica-
tion state is kept local within elements. Two packet communication patterns
are distinguished in Click: push and pull. Push communication is initiated by
a source element and models the arrival of packets in the system. Pull commu-
nication is initiated by a packet sink and models space that becomes available
in an outbound resource.

Figure 3.3 shows a simple Click example using both a graphical syntax and
the Click language. Packets are inserted into the system by the FromDevice ele-
ment (push output [black]). The packets flow to the input port of the Classifier
element. This element forwards a packet to one of its output ports depending
on the result of the internal processing, e.g., filtering header fields. Two out-
puts are connected to queues. In Click, queues are explicit elements that have
push inputs and pull outputs (white). Hence, the ToDevice can pull packets
out of the queues at its own rate and remove them from the system. Pulling
the packets happens via the packet Scheduler, which selects a packet from its
inputs depending on its policy.
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Scheduler[

Discard

FromDevice -> cl::Classifier [0] -> q0::Queue -> [0] s::Scheduler -> ToDevice;
cl[1] -> q1:Queue ->[1]s;

cl [2] -> Discard;

Figure 3.3: Click example: graphical and textual representations.

3.2.2 Interface specifics

Click implements software based routers on Linux computers, turning them
into network nodes with considerable packet processing capabilities [20]. The
software uses OS functions and interacts closely with the OS, e.g., to access the
physical network ports and their packet streams. Click runs as a CPU thread
inside the Linux kernel. Work is scheduled by maintaining a list of elements
that start Click processing chains.

To model the full system function of our communication interfaces in Click,
a number of issues have to be addressed:

Simulation mode — For the functional verification of our interfaces we
used Click in user mode only. Our models also describe the environment,
namely traffic sources, sinks, and physical communication channels and
do not depend on external events.

Precise timing — Our interfaces handle timeouts and must guarantee re-
sponse times. Click cannot guarantee precise timing since it relies on
cooperative scheduling. Our models do not depend on the absolute sys-
tem time. Thus, timing accuracy can be achieved by using timing intervals
that are large compared to the packet processing time, i.e. the simulation
does not achieve real-time.

Flow of control information — Click supports the annotation of packets
with processing state. In some packet flows, however, state information
generated downstream needs to be fed back into an upstream element. To
achieve the proper granularity, we explicitly modeled such dependencies
using tokens. In push connections a token represents the state change
event. A pull token indicates reading state access.

Non-packet data types — Besides transaction and link layer packets, state
tokens and symbols are used. Both of them are also represented internally
by Click packets. Elements may convert packets into tokens or symbols
and vice versa.

New elements — We used existing click elements whenever possible, given
Click’s focus which is for standard packet flow and processing functions on
layer 3, and above. In some cases, our interfaces required special elements,
which, for instance, provide the Layer 2 processing that would be covered
by the port hardware of the Linux box.
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3.2.3 Model setup

Figure 3.4 shows the most basic simulation setup of the interface models using a
directed point-to-point link. An on-chip source communicates via the transmit
part of an interface to a peer system with its receive part. The peer responds
using a 2nd directed link (not shown). Packet arrivals and departures trigger
the execution of processing paths. In the model, transmit and receive paths are
timed by the Channel element, which pulls symbols out of the transmitter and
pushes them into the receiver at a constant rate.

Source —Pm~ Tx [~ Channel *} Rx i—m— Sink

I

Figure 3.4: Basic simulation setup for interfaces that use point-to-point simplex
communication.

A statically configured rate is sufficient if the data is transferred in chunks
of the same size, i.e. with constant bandwidth. The PCI Express, RapidlO,
Hypertransport, full duplex Gigabit Ethernet models in the next section use
this simulation setup for their point-2-point connections.

For such connections the transfer delay is negligible. This is different for
communication via a shared medium. The fact that the medium is busy for
the time of the transfer is crucial for correctly accessing the medium. Colli-
sion detection and avoidance depend on the precise transfer delay, as shown in
Figure 3.5. The shared channel receives a packet (P) at an input port and de-
lays its transfer to the output port(s). If another packet (P2) arrives while the
first one is still in transmission, the packets collide. Since both will be received
scrambled at their scheduled arrival times, the receiver can detect the collision.
Collision avoidance is modeled by the extra pull port of the channel. If busy,
transmitters pull busy tokens which they can use to delay their transmission.

Shared
Channel
Source —m— F Rx, i—m— Sink
1

o

Collision

busy

Figure 3.5: Simulation setup for shared communication channels (top). For
correct handling of Packet collisions (P, P3) transfer delays must be considered
(bottom).

This setup in combination with a statically configured rate can be used by
half-duplex Ethernet. Wireless LAN transfer rates change dynamically. There-
fore, the shared channel must support variable rates on a per packet base.
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3.3 Application models

In this section, the individual models are presented and important communica-
tion scenarios are discussed. The models capture the complete data and control
flow for the steady state of an interface device. Initialization, configuration, sta-
tus reporting, and other management related aspects are simplified. Since we
are not interested in physical properties, we do not model clock recovery, or any
synchronization on the physical layer. We verify our models by simulation using
communication patterns that were derived manually from the specifications.

3.3.1 PCI Express model

PCI-Express is a serial, packet-oriented, point-to-point data transfer proto-
col [25]. There are two different versions of PCI-Express: Base and Advanced
Switching. The Base specification [150] preserves the software interface of earlier
PCI versions. The Advanced Switching version [1] defines a different transaction
layer than the base version to add features important to the networking domain,
such as protocol encapsulation, multicast, and peer-to-peer communication.
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Figure 3.6: PCI-Express end-point device interface model.

For the purpose of this analysis, we use the Base specification [150] for
modeling the critical path of an end-point device. The Click diagram for our
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implementation is shown in Figure 3.6. The functionality of the elements was
described in Section 3.1.3 on page 27. Based on the model, six cases (A-F) of
information flow through the interface can be identified:

A) Outbound transactions. The SoC core initiates a transaction (e.g., a
read request) by transferring data and parameters into the transaction buffer,
which is a part of the transmit transaction layer (TaF1Tx element in the figure).
This buffer implements at least three queues to distinguish between posted,
non-posted, and completion transactions, which together represent one virtual
channel. Posted transactions such as memory writes do not require a response;
non-posted transactions, e.g. memory reads, require a response; completion
transactions are the response for non-posted transactions. From the buffer,
transactions are forwarded to the data link layer, depending on the priority
and the availability of buffer space at the receiver side of the link. When a
transaction leaves, flow control counters are updated. The data link layer (Ack-
NackTx), adds a sequence number, encapsulates the transaction packet with
a CRC, stores a copy in the replay buffer, and forwards it to the PHY layer.
At the PHY layer, the packet is framed and converted into a stream of sym-
bols. The symbols are, if necessary, distributed onto multiple lanes, encoded
and serialized into a bitstream before they are transferred to the channel. The
serialization shown in the figure is not modeled. Therefore, the channel runs at
symbol time resolution (cf. Sec. 3.2.2).

B) Inbound transactions. A stream of encoded symbols enters the receive
side of the PHY layer and is decoded, assuming that clock recovery, compen-
sation, lane de-skewing, and de-serialization have already been performed. The
Deframer detects and assembles symbol sequences to PHY layer commands and
packets. Packets are forwarded to the link layer. The link layer classifies in-
coming packets into transaction packets, link layer packets, and erroneous pack-
ets. Transaction packets that pass the CRC and have a valid sequence number
are forwarded to the transaction layer (AckNackRx). Erroneous packets are
discarded. For each received transaction an acknowledge or not-acknowledge
response is scheduled. At the transaction layer, the received transaction (e.g.,
a read completion) is stored into the appropriate receive buffer queue and the
SoC core is notified. As soon as the transaction is pulled from the queue, the
receive flow control counters can be updated, and the transfer is completed.

C) Outbound acknowledge packets. The link layer generates confirmation
packets to acknowledge/not acknowledge the reception of transaction packets
(AckNackRx). To preserve bandwidth, they are issued in scheduled intervals
rather than after every packet. Besides the ack/nack type, a packet contains
the lastest valid sequence number and is CRC protected.

D) Inbound acknowledge packets. If the received link layer packet has
a valid CRC and is an ack/nack, its sequence number SN is verified (Ack-
NackTx). When a valid acknowledge has been received, all transactions with
sequence numbers not larger than SN can be purged from the replay buffer.
Otherwise, transactions with larger numbers are retransmitted. If there are too
many retransmissions (more than four) or no ack/nack packet has been received,
a link retraining command will be issued to the PHY layer.

E) Outbound flow control packets. After having read a transaction from
the receive buffer and changed the receive flow control counters, the transmitter
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has to be updated. For this purpose, the link layer issues a flow update packet,
which is generated from the counter values provided by the TA layer. In the
initialization state, init packets instead of updates are issued to the transmitter.
F) Inbound flow control packets. Inbound flow control packets are for-
warded by the receiving link layer to the transaction layer. The TA layer
updates its transmit flow control counters and schedules the next packet for
transmission from the pending transaction buffer.

3.3.2 RapidlO model

RapidIO is a packet-oriented, point-to-point data transfer protocol. Like PCI-
Express, RapidIO is a layered architecture [161, 48, 180]: The logical layer (our
transaction layer) specifies the transaction models of RapidlO, i.e. I/O, message
passing, and globally shared memory; The transport layer specifies the routing
of packets through the network (our transaction layer covers the part which
concerns end devices: the device identification); The physical layer defines the
interface between two devices (our physical layer) as well as the packet transport
and flow control mechanisms (our data link layer).

Since there are only minor differences between PCI-Express and RapidlIO in
terms of tasks and packet flow, we are refraining from presenting the complete
implementation here. Instead, the differences on each layer are listed.

e The transport layer implements a different buffer scheme with four prior-
itized transaction queues that are flow-controlled together.

e At the link layer, an explicit acknowledge for each packet is required,
whereas PCI Express allows the acknowledge of a packet sequence. The
not-acknowledge provides the cause for an error, which is used for indi-
vidual reactions at the transmitter.

RapidlO appends a 16 bit CRC at the end of packets. In the case of
long packets, an interim CRC value is added after the first 80 bytes of the
packet. The much shorter control packets are protected by a 5bit CRC.
PCI Express uses 32 bit CRCs for transaction packets and 16bit CRC for
link layer packets.

e The PHY layer uses slightly different control symbols than PCI Express.

3.3.3 Hypertransport model

Hypertransport is a parallel, packet-oriented, point-to-point data transfer pro-
tocol for chip-to-chip links [198, 79]. Version 1.1 of the standard [77] extends
the protocol with communication system-specific features such as link-level er-
ror recovery, message passing semantics, and direct peer-to-peer transfer. In
our work, we primarily used the version 1.04 described in [198].

Unlike RapidIO and PCI-Express, the packet transfer portion of a link com-
prises groups of parallel, uni-directional data signals with explicit clocks and
an additional sideband signal to separate control from data packets. Control
packets are used to exchange information, including the request and response
transactions, between the two communicating nodes. Data packets that just
carry the raw payload are always associated with a leading control packet. To
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improve the information exchange, the transmitter can insert certain indepen-
dent control packets into a long data transfer.
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Figure 3.7: Hypertransport end-point device interface model.

The base functionality of the Hypertransport protocol is comparable to PCI-
Express and RapidlO. However, Table 3.1 on page 48 reveals two main differ-
ences: 1) At the PHY layer, Hypertransport does not require framing, channel
coding, clock recovery due to the synchronous interface!, and 2) in non-retry
mode?, there is no acknowledge/not-acknowledge protocol at the link layer, and

a periodic CRC inserted every 512 transferred bytes is used.

The Click implementation of an interface for a single-link end device is shown
in Figure 3.7. For the model, we partition the Hypertransport protocol logically
among our protocol layers as defined in Section 3.1.2, although layers are not
used by the specification. Due to the absence of an ack/nack protocol, only four

paths through the interface are important:

A) Outbound transactions. Similar to PCI-Express, a transaction is writ-
ten into one of the transaction buffer queues (posted, non-posted, response).
Transactions are forwarded depending on the priority and the availability of
receiver space (flow control). When a transaction leaves, flow control counters

1Rev. 3.0a [79] adds an asynchronous mode (Gen3) using scrambling and 8b/10b coding.
2In retry mode [77] the link layer uses per-packet CRCs and an Ack/Nack protocol.

Channel

Channel
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are updated. The link layer performs the periodic CRC. The CRC value is in-
serted into the packet stream every 512 bytes. If necessary, the data link layer
would interleave the current outgoing transaction with control packets, e.g. for
flow control. If there are neither waiting transactions nor control packets, idle
control packets are issued to the PHY layer. At the PHY layer, the packet is
serialized and distributed according to the link width.

B) Inbound transactions. The PHY layer de-serializes the stream of incom-
ing data into 4 byte fragments, colors them as control or data, and sends them
to the link layer. At the link layer, the CRC check is performed and the frag-
ments are assembled to packets. After a classification step, transaction packets
are passed on to the next layer. At the TA layer the address check is performed
that discards invalid transactions. Valid transactions are stored in the appro-
priate receive buffer queue, and the network processor core is notified. When
the transaction is pulled from the queue, the receive flow control counters are
updated and the transfer is completed.

E) Outbound flow control packets. The link layer issues NOP packets
that include flow control information provided by the transaction layer. In
Hypertransport, only the counter differences (max. 2bit per flow counter) are
transferred. During initialization, multiple packets are therefore necessary to
transfer the absolute value of the receive buffer.

F) Inbound flow control packets. Inbound flow control information is for-
warded by the receiving link layer to the transaction layer. The transaction
layer updates its transmit flow control counters and schedules the next packet
for transmission from the pending transaction buffer.

3.3.4 Gigabit Ethernet model

Gigabit Ethernet (IEEE 802.3) [83] is a serial packet-oriented data transfer
protocol for local area networks. Increasingly, it can be found as backplane in
communication systems [174]. The IEEE 802.3ap task force currently discusses
the standardization. Traditionally, Ethernet has been used in half-duplex mode
with a shared medium and collision detection. Like the preceding protocols it
can be used in switched point-to-point settings in full-duplex mode as well.

The Click implementation of a Gigabit Ethernet controller is shown in Fig-
ure 3.8. The function is partitioned logically among our protocol layers as
defined in Section 3.1.2. Our TA and DLL layers split the function of the Eth-
ernet standard’s MAC layer. The PHY layer classification is identical to the
standard. The 1000Base-X PHY shown in the figure requires 8b/10b coding
similar to PCI Express and RapidlO.

In Figure 3.8, the black portion of the graph is used in full-duplex mode. The
additional red processing paths (its elements are marked by a *) are required for
half duplex. Both modes must be supported since the mode can be negotiated
dynamically. There is no flow control in half-duplex mode; in duplex mode the
framer supports burst transfers, collision handling, and retransmissions.

Due to the absence of an ack/nack protocol, only four paths through the
interface are important:

A) Outbound transactions. The SoC core stores outgoing frames in the
input queue. As soon as the link is idle, the frame is read and stored in the
framer while an FCS is added. The framer adds pre- and postfixes (SOP, EOP,
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Figure 3.8: Gigabit Ethernet MAC and PHY (1000Base-X) model.

extension symbols) and breaks the packet into a stream of symbols that are
sent over the link. After the packet, the framer generates a sequence of idle
symbols to ensure the required inter-frame gap of 12 bytes. In case of a collision
(half-duplex, collision detect), the framer interrupts the current packet transfer,
sends JAM symbols, backs off, and retransmits the stored packet (or discard it
if retransmitted too often).

B) Inbound transactions. Inbound streams of symbols are received, decoded,
and assembled to frames at the PHY layer. At the DLL layer, the frames are
classified. Configuration frames are sent to the Autoneg element. Frames with-
out PHY errors and valid CRC are forwarded to the transaction layer and stored
in the output queue (NotifyQueue), given their destination address matches.

E) Outbound flow control packets. When particular full or empty thresh-
olds are reached, the output queue notifies the flow control unit (PauseCon-
trolTx), which generates PAUSE or CONTINUE frames depending on the type
of message (almost full/empty). These specially typed ethernet frames have a
higher priority than other frames and are transmitted as soon as the link is idle.
F) Inbound flow control packets. At the receiver’s transaction layer, the
flow control frames are fed into the flow control unit (PAUSE CONTROL RX).
This unit extracts the delay value from the payload and sets the timer of the
ControlledDelay element to delay the transfer of the next transaction frame
accordingly. CONTINUE frames actually cancel the timed delay to improve
performance.
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3.3.5 Wireless LAN model

Wireless LAN (IEEE 802.11) [49, 36] is a packet-oriented protocol that connects
stations to Ethernet networks using radio waves. Stations are usually mobile.
A central device, the access point, manages the wireless network and performs
the wired-to-wireless bridging. Communication over the air is quite different
compared to shared medias in wired networks. Air channels are open to in-
terception, highly unreliable, and dynamically change their properties due to
effects such as mobility and multi path interference. The wLAN protocol has to
cope with this channel properties at the price of higher protocol complexity. For
this reason a wireless MAC extends and adds features compared to the protocols
discussed before:

e Virtual carrier sensing and collision avoidance — In order to de-
termine if the medium is available, virtual carrier sensing is used. 802.11
frames carry a duration field, the Network Allocation Vector (NAV), that
is used to reserve the medium for a time period. Stations set the NAV
to the time they will be using the medium. Other stations receive this
value and set their NAV timers accordingly. A station knows the medium
is busy if its NAV counter is not zero and can delay its own transmission.
To avoid collisions caused by hidden nodes stations may use Request-to-
send/Clear-to-send (RTS/CTS) control frame handshakes with extended
NAV values prior to the actual data transmission (cf. Fig. 3.10).

e Interframe spacing for priorities and contention resolution —
Access to the air is controlled by a set of coordination functions such as
the one for contention-based service (DCF). They use varying interframe
spaces to provide prioritized access. The higher the priority of the traffic
the shorter the interframe gap. Four spaces are defined: SIFS (shortest)
for highest priority transmissions (e.g. ACK, RTS/CTS), PIFS for con-
tention free transmissions, DIFS for contention-based transmissions, and
EIFS for recovery from erroneous transmissions®. Contention resolution

is achieved by means of a backoff window that follows the DIFS interval.

e Periodic exchange of network state — Wireless networks require the
exchange of network state and management information at regular inter-
vals, e.g. to identify the network and to announce its capabilities. This is
achieved by beacons sent by the access point. Similar to the negotiation of
the Ethernet link speed, stations can explicitly exchange capability infor-
mation such as a list of available transfer rates by sending a ProbeRequest.
The access point responds if the parameter sets are compatible. From the
negotiated set of transfer rates, for instance, the transmission rate of a
packet may be selected dynamically, depending on feedback on the quali-
ties of previous transfers.

e Extra processing functions — Two essential functions, which would
be left to higher layers in other protocols, are integrated into wLAN:
fragmentation and encryption. Fragmentation of transaction packets and
management frames into a burst of small chunks increases reliability. En-
cryption methods defined at the MAC layer enable secure authentication,

311n uses another access time, RIFS, which is shorter than SIFS and is used in burst mode
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key management, and private communication usually at the expense of
considerable computational effort.

For this analysis, the Click model focuses on the MAC layer (our transaction and
link layers) as specified by the 802.11a/b/g standard. The air model receives
complete frames and their transfer rate and generates the desired transmission
delay and half-duplex/busy behavior of the MAC/PHY interface.

Figure 3.9 shows the main processing paths of the model. Wireless LAN
does not implement flow control but adds additional control and management
frame processing path for channel reservation and the permanent exchange of
state:
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Figure 3.9: Click model of a wLAN 11n a/b/g station. The model includes
service differentiation as specified by the 1le standard. Not all management
processing paths are shown.

A) Outbound transactions. Ethernet framed transactions from the SoC core
experience several processing steps before they are stored in a QoS queue: the
Ethernet header is replaced by a wireless header, a sequence number is added,
and, if necessary, the frame is fragmented and encrypted. Also, the transfer rate
is selected based on the channel feedback for this connection. The DCF module,
which handles the timed access to the medium, reads the transaction from the
queue as soon as the link state permits. This means, that the frame is read if
the medium has been idle for at least DIFS time, no retransmission or frames
of higher priority are waiting, and no other station has won the contention. In
this case, the duration field is set, the FCS is appended, and the frame plus its
sideband information are sent to the PHY layer.
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B) Inbound transactions. Inbound wireless frames are received and for-
warded to the link layer. The link layer checks the CRC, updates its NAV timer
with the frame’s duration value, discards frames addressed to other stations,
and classifies the frames left into data, control, and management frames. Data
frames are forwarded to the transaction layer which separates them by QoS
class, removes duplicates from the stream, decrypts and reassembles if neces-
sary, and replaces the wLAN header with an Ethernet header. Then, they are
stored in the output queue.

C) Outbound acknowledge. Valid unicast data frames that were accepted by
the DCF element schedule the generation of an acknowledge control frame. As
soon as the SIFS timer expires, the frame is pushed into the regular processing
path for outbound transactions (see path A), i.e. its duration field is set and
the FCS is added before it is sent to the PHY layer. In the model, acknowledges
are always transmitted at the rate the data frame was received.

D) Inbound acknowledge. Inbound acknowledges experience the same pro-
cessing path as inbound transaction frames (see case B) until they are classified
and forwarded to the DCF. Here, retry and back-off counters are reset if the
link expected the acknowledge. There is a timeout for not received acks.

G) Outbound RTS/CTS. If an outbound transaction frame is larger than a
threshold (SetRTS), the generation of an outbound RTS frame is triggered as
soon as the frame is read by the DCF element (cf. case A). The generation of
CTS frames is triggered by reception of RTS. Similar to outbound acknowledges,
RTS and CTS frames just follow the regular processing path of case A, after
DIFS or SIFS time, respectively.

H) Inbound RTS/CTS. Inbound RTS and CTS frames travel the process-
ing path F to the DCF. A RTS triggers the generation of the associated CTS
(cf. path G). A received CTS frame triggers the transmission of an outbound
transaction after SIF'S time.

I) Outbound management frames. Outbound management frames follow
the processing path of outbound transaction (path A) except that they do not
need the wireless header encapsulation step. In the model, the generation of
selected frames, e.g., a ProbeRequest, is triggered by the SoC core.

J) Inbound management frames. Received management frames travel up
to the transaction layer similar to inbound transactions (path B). Here they are
classified and either handled directly or forwarded to the SoC core. Received
beacons, for instance, are fed into BeaconScanner/Tracker elements in order to
monitor and update the interface’s network state.

Protocol timing constraints

Different frames and the coordination of shared medium access have to follow
strict timing rules. In Figure 3.10, an atomic data frame transfer including an
optional medium reservation sequence is shown. In this example, station STA
has gained access to the air and sends a reservation request (RTS frame) to
the access point (AP). The AP has to reply after a defined time interval (SIFS
period) with a CTS control frame. After reception of CTS, the STA starts the
data transfer after another SIFS period. At the end, the AP acknowledges the
successful reception of the data with an ACK control frame, again after one
SIFS period. This sequence forms an atomic transfer. The short SIFS period
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prevents other stations from interrupting the transfer. After recognizing the free
medium they must wait considerably longer (DIFS period and random backoff)
before they may transmit.
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Figure 3.10: Atomic data frame transfer (IEEE 802.11).

All these strict timing requirements dealing with inter-frame spaces, response
times, and transmission opportunities are in the low us range. As a result, the
cycle budget for the required frame processing is tight, as will also be pointed
out later in Section 5.1.3.

3.4 Related work

Related work for this chapter can be found in two domains: 1) the comparison of
communication protocols and their I/O interfaces, and 2) modeling and analysis
of packet processing applications. References to the individual standards were
already provided in Section 3.3.

3.4.1 Comparing protocols

The rising interest in new interconnect standards has been covered by several
articles that provide overviews on changing sets of standards [16, 38, 46, 78,
125, 148, 163, 134, 162, 181].

e [38, 46, 148, 181] are introductional and do not conclude on similarities.

e A thorough survey of I/O adapters and network technologies in general
is presented in [162]. The paper particularly focuses on requirements for
server 1/0.

e Selected issues of the physical layers of PEX/ASI, RIO, and 10Gb/s Eth-
ernet are discussed by Noel et al. in [134].

e In [163], Reinemo et al. discuss the quality-of-service features of three
protocols Infiniband, Ethernet, and PEX/ASI. They conclude that each
of the protocols may have its advantages, depending on the use case.

e Although in [16] and partly in [78] some details of HT, PEX, and RIO are
compared, a comprehensive picture has not been drawn of the essential
elements and processing paths of the interfaces.

We are interested in the similarities and dissimilarities of the higher level in-
terface and protocol aspects, i.e. the transaction and link layers of our protocols.
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The different physical characteristics of the protocols are already addressed by
initiatives such as the Unified 10Gbps Physical-Layer Initiative (UXPi) [134] and
individual companies such as Rambus, [125]. An early version of our work [169]
compared the interfaces for PCI Express, RapidlO, and Hypertransport. The
current version adds Ethernet and wireless LAN to the comparison and extends
the modeling concepts to shared medias and precise timing.

The article by Bees and Holden [16] comparing Hypertransport, PCI Ex-
press, and RapidIO complements our analysis.

3.4.2 Modeling packet processing applications

There is a large body of work that uses network and packet processing models
for many purposes such as the analysis of protocols or the evaluation of an
application’s performance for a given traffic and network setup.

Given the diverse purposes, modeling approaches for packet processing appli-
cations fall into two broad categories: analytical methods and simulation based
techniques. Analytical methods such as network calculus [110] usually abstract
the system function. They are used, e.g. in [195], to reason about selected
properties of the network system or to conduct static/worst-case performance
analyses for generalized traffic scenarios. Simulation-based techniques on the
other hand rely on characteristic workloads but may capture dynamic system
effects as well. Depending on the abstraction level, they also capture the actual
system function.

For the functional comparison of our interfaces, we are focusing on simulation-
based approaches since they enable the verification of the models system func-
tions. This is one of our six requirements that are listed and discussed next.

Requirements

For the functional comparison, the models must fulfil six requirements:
e Interface device focus — We are focusing on the communication proto-
col interface and its surroundings, meaning the protocol endpoint that
sends/receives data, not the communication network itself.

e Full system function — For the functional analysis, our models must cap-
ture the flow of data with its processing functions and the flow of control
including the state machines of the communication interface, correctly.

o Executable model — An executable model enables verification and vali-
dation of the system function, e.g. by simulation or emulation.

e Architecture independent — For the comparison, we are interested in the
function only. No assumptions whatsoever must be made in the model
about the platform the system will be running on.

e Component-based model — To expose concurrency and dependencies within
a protocol function, the models should be composed from components. A
library of elements facilitates reuse among protocols.

e Timed models — Communication interface are reactive systems that need
to meet real-time requirements. An explicit and metric notion of time is
required to model time-outs, deadlines, and rates in the system.
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These requirements are driven by the goals of the interface analysis. How-
ever, we want to reuse the device models as input for the architecture explo-
ration. The models should serve as golden units and hopefully provide a path
to the evaluation of an embedded platform as well.

Models of Computation

Models of Computation (MoC) are an established approach to capture the be-
havior of concurrent and heterogeneous systems for the specification and design
of embedded systems [24, 89]. MoC basically are design patterns that 1) sepa-
rate computation, communication, and control, 2) describe the system behavior
as interaction of components, 3) guarantee desired system properties, and 4)
can be executed.

A number of MoCs are relevant for describing packet processing applications
and are therefore discussed here:

e Process Models — Components in process models are sequential processes
that run concurrently and communicate via messages either synchronously
(CSP — Communicating Sequential Processes [71]) or via FIFO channels
with blocking read (Kahn process networks [93], extended in [141] to
bound fifo sizes by using blocking writes). CSPs fit particulary well to
resource sharing and client /server applications. In [182] for instance, they
are used to study intrusion detection in a TCP network. Kahn process
networks are used, e.g. in [191], to model streaming signal processing ap-
plications. Stream processing exhibits strong similarities to the flow of
packets through our communication interfaces. However, process models
are untimed.

e Petri Nets— Petri nets are directed graphs of nodes connected by edges.
Two different types of graph nodes exist: places and transitions. Places
represent state. They store tokens. Transitions represent actions of the
system. The modify state by consuming and producing tokens depending
on enabling and firing rules. Places are always connected to transitions
and vice versa.

Petri nets are a graphical formalism to express the concurrency of sys-
tems. They are analyzable and can be used to prove certain properties
of the modeled system. A review of the fundamental concepts is given
in [131]. High-level Petri nets extend the fundamental place/transition
systems. Coloured Petri nets [91] make tokens distinguishable to enable
data-dependent modeling. Time and timed Petri nets add notions of time
to the system (see references in [131, 91]). The work in [88] adds hierarchy
and parameters to enable component-based modeling techniques.

Petri nets are powerful enough to model most of the other MoCs such as
the Kahn process networks above [114]. High-level Petri nets have been
applied successfully to many domains [131], including performance mod-
eling and the analysis of communication protocols. They are suited to
model and simulate our communication devices. However, there expres-
siveness is not required for the interface comparison. Also, functionally
correct models that capture control and dataflow grow complex, quickly.
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e Finite State Machines — Finite state machines (FSMs) model the behav-

ior of control-dominated reactive systems by composing events, a finite
number of states, and actions. A FSM sequentially responds to external
events with actions. An action may depend on the current state and may
generate outputs and transitions of the state.

Hierarchical finite state machines, as first introduced by the Statecharts
model by Harel [66], enable the concurrent and hierarchical composition
of FSMs by defining and states (system is in state a and b) and or states
(system is in state a or b). This handles the problem of exploding state
spaces for larger systems and significantly increases usability. In general,
hierarchical finite state machines are an useful abstraction for describing
the control facet of communication protocols. They can be executed, and
there is a clear path to hardware and software implementation. How-
ever, they cannot express data flow and processing well. For this reason,
FSMs are often combined with other computation models in hybrid mod-
els. The *charts study by Girault et al. [52], for instance, discusses the
combination of hierarchical FSMs with, e.g., process networks, to capture
the dataflow and computational facets of applications as well. The Click
model of computation encapsulates state and state machines within in-
dividual elements. In addition, our packet-flow oriented interface models
use state tokens that flow between elements to explicitly achieve FSM-like
behavior.

Queueing Networks — Queueing networks are composed of systems of
queues and servers [99]. Queues store transactions until a server becomes
available. The server creates, processes, or deletes a transaction. This
consumes a specific amount of time after which the transaction may be
forwarded to the next queue. Service time and route can depend on the
class of a transaction [15]. Queues store transactions according to their
queuing discipline. With first-in-first-out (FIFO) queues and servers with
processing function, queuing networks become similar to (timed) Kahn
process networks.

Using queuing networks one can determine, e. g., the residence time of
transactions in the system, the average queue length, and the server uti-
lization. In [197, 139], for example, queuing networks are used to model the
distributed coordination function of the IEEE standard. The authors rea-
son about delays and queue lengths in the system, using analytical results
that were verified by discrete event simulation. Simulation frameworks
for queueing networks include the SimEvents [123] extension of Simulink
and SystemQ [189]. For capturing the system function of our communi-
cation protocol interfaces, queueing networks are less suited. The strict
queue/server composition scheme limits the expressiveness of the model
and restricts its granularity.

Discrete Event — In discrete event models, components communicate via
events that are associated with a time stamp. All events in the system
can be ordered following a global time. A component may generate events
with a future time stamp but can receive only those available at the cur-
rent time. Discrete-event is a quite general model of computation and
frequently used in general purpose simulators for applications such as net-
work simulation.
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Today, there exist a number of established network simulators. Promi-
nent representatives* with large user communities include ns-2 [23], Op-
Net [138], and OMNeT [201]. Network simulators are usually targeted
at a range of protocols. Models are composed hierarchically from library
elements, often in a special specification language. Typically, the library
is implemented using a regular programming language such as C++ or
Java. The focus of network simulation is on simulating communicating
nodes and observing the dynamic protocol behavior within the network,
e.g., the TCP feedback mechanism or the effects of hidden nodes in wire-
less networks. Little attention is paid to the details of individual network
devices. To speed up simulation performance, nodes are significantly ab-
stracted. This is illustrated by a study on the effects of detail in wireless
network simulation [69]. The most detailed cases in this study use a black
box cost model of the MAC layer for analyzing the energy consumption
of the network.

Each MoC has its own strengths and weaknesses. In fact, general purpose
modeling and simulation frameworks often combine multiple MoCs for hybrid
system models [156, 143] or provide extensions to support other MoCs on top of
their built-in one (cf. Simulink’s StateFlow and SimEvent modules). However,
they all provide only little support for our communication interfaces, in terms
of domain-specific primitives and data types.

System-level modeling languages

System-level modeling languages are aimed at models that address two essen-
tial needs [89]: firstly, the need for a specification that captures the system’s
function and requirements in a precise, unambiguous and analyzable way, espe-
cially during the early design phases of a system, and secondly, the need for a
system description that provides a path to an efficient implementation without
overconstraining the solution.

According to Edwards et al., the distinction between a language and the
underlying model of computation is important [45]. The authors point out that
a model of computation can be supported by different languages. Its MoC
effects the expressiveness of a language. A language can be too expressive so
that many analysis and synthesis problems become practically unsolvable. A
language also can be incomplete or abstract. A coordination language as used in
some of the network simulators, for instance, only describes the interaction-of-
components facet of a model of computation but not the computation contained
within the components. Instead, it provides an interface to another language
for the components.

In the context of packet processing applications, two modeling languages
seem most relevant [112, 157]:

e SDL [176] — The Specification and Description Language characterizes
communication protocols by control sequences and 1/O actions [17]. The
most recent standard [86] provides a graphical representation and an ac-
tion language. SDL’s underlying models of communication are extended

4Tor other examples see the references in [23, 32].
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FSMs (a flavor of FSM that folds state into variables), Kahn process net-
works of concurrent processes (with FSMs) that communicate via fifo sig-
nals of unbound size, and an imperative sequential model to be used in
functions that manipulate variables and 10.

SDL’s primary area of application is the formal protocol description, the
verification of the protocol, e.g. in form of message sequence charts, and
the (automated) generation of test patterns. The 802.11a wireless stan-
dard included an SDL description of the protocol function. In [108] this
description is used for a performance analysis similar to the DE network
simulation discussed earlier. Newer versions of 802.11, however, do not
provide a formal description anymore, probably for reasons of complexity.
The language focuses on the control flow of an application, as the full im-
plementation of TCP in [218] demonstrates. Dataflow and computation
as required by our lower layer communication interfaces are not first class
citizens, see the wLAN example in [65].

Attempts that use SDL for performance analysis note the lack of time-
related features for expressing aspects such as timeouts, time-dependent
enablers, or timing constraints imposed by the environment [54, 190].
There is quite some work on generating implementations (in hard- and
software) from SDL descriptions, e.g., in [65, 119, 140, 186, 202]. How-
ever, the results so far indicate a lack of efficiency and report significant
overhead and restrictions.

UML [136] — The Unified Modeling Language is a general-purpose model-
ing language that provides structure and describes dependencies between
elements but lacks formal semantics. So called profiles help to make
UML applicable in a particular application domain by defining seman-
tics for a subset of UML relevant to the domain. The use of UML for
the multi-faceted design of embedded real-time systems is a vivid area of
reasearch [109].

There is ongoing work on making UML usable in the context of protocol
specification and implementation [142, 129]. Pérssinen et al. describe a
UML profile for communication protocols in [142]. Similar to SDL, the
authors provide a textual language extension to describe actions in UML
statechart transitions. This enables the model translation from UML to
SDL by proprietary tools for a narrow protocol-specific subset of UML.
There is also an ITU recommendation [129, 87] that specifies a profile to
provide the same abstractions and semantics that can be found in SDL
embedded into UML. Based on the UML/SDL recommendation, De Wet
and Kritzinger [40] provide an approach for design and performance anal-
ysis. They also consider the UML real-time profile for expressing time
related aspects.

There are many other network protocol languages (including Promela, LOTOS,
Estelle, and others, see the references in [101]), which are of less interest to our
functional comparison. According to [101], most of them focus on verification.
Pragmatic goals such as real-world implementation or, as in our case, the simple
comparison of the system function, are difficult to achieve.
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Click: Model of computation and domain-specific language

As explained in Section 3.2, we use Click as a modeling framework for the
comparison of our communication protocols. It is widely used for describing and
implementing real-world packet-flow oriented applications that run as software
on Linux systems. Click is both, a model of computation and a packet processing
language.

A Click model describes the flow of packets through a system, see the
Overview in Section 3.2.1. The Click MoC interprets the connection between
elements as method bindings. In case of push connections, the thread of exe-
cution flows with the data, i.e. the upstream element calls a push method at
the associated downstream element with the packet as parameter. In the case
of pull connections, the downstream element triggers the generation of a packet
by calling the associated pull method at the upstream element. In this case,
the packet is the return value. This pattern results in a direct and efficient
implementation. Lee and Neuendorffer [113] classify this as imperative MoC,
since a command (the function call) is given. In contrast, in declarative MoCs,
components just offer the data. When and how it is processed by the receiver is
not relevant. Most of the other MoCs discussed before are declarative. Click’s
notion of time is explicit and metric. Packets in Click can carry a time stamp.
Elements may use the time stamp and access the real time of the Linux host
system to implement time-dependent behavior. This dependency on the host
time can be compensated for our interface models (see Sec. 3.2.2). Many MoCs
such as process models and FSMs are untimed.

The Click language is a graphical and textual coordination language. It
is used to instantiate and configure elements and to describe the packet flow
between them. Compound elements provide hierarchy within a model. The
elements themselves come from a library and are implemented in C++. Click is
sufficiently expressive for a natural and intuitive description. The focus, how-
ever, is on efficient implementation, not on formal aspects. In contrast, SDL or
other FSM oriented languages have a somewhat 'unusual’ programming model,
and their models can be less intuitive and more difficult to understand. Also,
since Click elements describe a particular packet processing task, encapsulate
all relevant state, and have the simple packet passing interface, reuse and mod-
ularity of the elements are easy and natural.

3.5 Comparison and conclusion

Table 3.1 groups the elementary tasks as described in Section 3.1.3 according
to their appearance at the different layers in RapidIO, Hypertransport, PCI-
Express, Gigabit Ethernet, and wireless LAN. Table 3.2 shows the different
packet processing paths as implemented in our interface models (cf. Sec. 3.3).
The tables reveal quite a few similarities in the occurrence and deployment of
tasks.

e The physical layer of RapidlO and PCI Express is almost identical. PCI
just uses the additional scrambling for EMI reduction. Gigabit Ethernet
and Hypertransport in its most recent version may deploy similar functions
as well. There are, however, protocol-specific deviations in the implemen-
tation. The control characters of the 8b/10b coding scheme, for instance,
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Table 3.1: Tasks on protocol layers for the different interfaces.

Function RapidlO PCl-Express | Hypertransport | GB Ethernet wLAN
PHY DLL TA |PHY DLL TA [PHY DLL TA |PHY DLL TA |PHY DLL TA

Clock recovery + + +4 + +

Clock compensation| + + + + +

Lane de—skewing1 (+) (+) (+)

8b/10b coding + + +4 +5

Scrambling + 44 46

Striping! (+) (+) (+)

Framing + + + 4

Carrier Sensing + + 4+

CRC protection + + 42 43,7 + o+

Ack/Nack protocol + + +7 4

Classification +  + + 4+ + o+ + o+

Packet assembly + 4+ + + + + + 4+ 4+ o+

Flow control + + + +

Address validation + —+ + + + 4+

Buffers&Scheduling + + + + + 4+

Configuration Space + + + | + 4+ 4

TRequired only for multiple-lane links. ?Optional end-to-end CRC for transactions.

3Periodic instead of per-packet CRC in non-retry mode. 4QOptional asynchronous operation mode.

51000 Base-X (fiber),51000 Base-T PHYs. 7Per-packet CRC and Ack/Nack in optional retry mode.

Table 3.2: Packet processing paths for different 1O interface models.

Path Function PEX RIO HT GbE wLAN
A Outbound transactions + + + + +
B Inbound transactions + + + + +
C Acknowledge generation + + ()t — +
D Acknowledge reception + + (4t - +
E Outbound flow control + + + + -
F Inbound flow control + + + + —
G Outbound RTS or CTS - - - — +
H Inbound RTS or CTS - - - - +
I Outbound management - - - - +
J Inbound management - - - - +

T Not supported by the modeled version of Hypertransport (1.04)

are interpreted differently. Wireless LAN uses different encoding schemes.

e RapidIO, Hypertransport, and PCI Express support multiple-lane links.
Gigabit Ethernet and wireless LAN rely on higher layer link aggregation
schemes.
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e All protocols except Hypertransport require framing at the physical layer.
The frame formats differ. Wireless LAN has the most complex one. It
includes data fields and a 8bit hec value (+ mark in CRC row). Hyper-
transport uses extra control signal instead.

e Carrier sensing is used by all shared medium communication protocols,

namely wireless LAN and GbE.

e All protocols use CRC functions for error protection. Length and poly-
nomial may differ between protocols. CRCs of 32bit (PEX, GbE, HT,
wLAN), 16bit (RIO, PEX), 8bit (wLAN), and 5bit (RIO) can be ob-
served. Most protocols append the CRC value at the end of the header
and/or payload. RapidIO allows for the insertion of an interim CRC value
for the first 80 bytes of large packets in addition to the final one at the
end of the packet. Ignoring packet boundaries in the non-retry mode,
Hypertransport inserts its CRC periodically in the data stream.

e An acknowledge/not-acknowledge protocol is used by all standards except
Ethernet. The protocol requires sequence numbers and a replay buffer for
proper operation. Details differ among protocols, e.g., the implementation
per QoS class or for all of them together.

e Flow control is used by all protocols except wireless LAN. GbE uses only
a simple on/off scheme for the link. PEX and RIO deploy sophisticated
credit-based schemes that distinguish QoS classes.

e All communication protocols use different packet formats depending on the
purpose of the communication. This means that generic packet assembly
and packet classification are common tasks across layers and protocols.

A further analysis of the application models, i.e., an architecture-independent
profiling, reveals some implementation insights:

e Data types. In the models, most processing is done on header fields, 32-
bit or less. Only Ethernet and wireless LAN addresses are 48-bit. Packet
descriptors [32B] that contain addresses, packet length, packet/payload
ID, flow ID, and so on are exchanged between tasks. The payload is
rarely touched.

e Primitive operations. The models use frequent field matching operations
that require bit masks and shifts in addition to primitive arithmetic and
logic operations, e.g., for classification.

e (Concurrency. The different processing paths are independent tasks that
may execute in parallel. Full duplex interfaces require two truly concurrent
processes for receive and transmit functions.

o Activation patterns. Packet arrivals (push), an idle channel (pull), and
expired timers may trigger the execution of a processing chain. Most
protocols are delay-insensitive, only wireless LAN has hard real time re-
quirements.
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The packet-oriented communication protocols exhibit similarities in the occur-
rence and deployment of the elementary tasks. Activation schemes and packet
processing flows follow similar patterns. However, the implementation details
of the same task may vary from interface to interface due to protocol specifics.
This means that a programmable architecture actually is beneficial for the im-
plementation of the different standards.



Chapter 4

A Methodology for
Exploring the
Programmable Interface
Design Space

After analyzing and comparing the packet-oriented communication interfaces
in the previous chapter, we will now look into a methodology for exploring a
flexible interface solution based on a common and programmable platform.

Programmable platforms are concurrent multiprocessor architectures that
enable software-based implementations of particular system functions. They
were introduced for coping with the increased time-to-market pressures as well
as with design and manufacturing costs [97]. To date, there exists no established
method for the systematic exploration of a platform’s design space. Platform
development and deployment still remain an art.

In the following, we are developing a methodology that takes into account the
importance of the application domain. A programmable interface platform has
to trade off flexibility against cost and performance. Our design flow therefore
should characterize the application domain as early as possible. With this input,
the design space can be narrowed to one major design trajectory that starts with
the most flexible solution and systematically refines the platform architecture
to meet performance and cost constraints.

Ideally, the Click models described in the previous chapter will become an
input into the flow. These models are the result of an elaborate domain anal-
ysis and represent the application domain as a set of functionally correct and
architecture-independent specifications. A path from the specification to an
implementation in hard- and software would enable the fast and systematic ex-
ploration of platform alternatives based on a quantitative performance feedback.

4.1 Requirements

The exploration of the programmable interface design space requires the fast
and systematic exploration of platform alternatives based on quantitative per-

o1
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formance feedback. Taking into account the interfaces specifics, a methodology
must fulfil seven requirements, which are grouped together in three challenges.

1. Rapid generation of platform instances for exploration — Individual de-
sign points must be creatable and modifiable rapidly, without the need for
time-consuming reimplementations to enable the exploration of larger design
spaces. The derived requirements are:

e Separation of application and platform architecture — During the ex-
ploration the set of applications, i.e. the function, remains constant
while the platform architecture and the function-to-architecture map-
ping varies. Separation ensures an identical function and avoids reimple-
mentation and verification efforts. For accuracy, dependencies of both
facets must be captured by sufficiently expressive abstractions.

e Support Click as application description — The Click models described
in the previous chapter are functionally correct and architecture-independent.
They represent a considerable investment and should be used as descrip-
tion of the system function.

e Full platform evaluation — The interface design space may use any of
the building blocks of a hard- and software platform. Vice versa, the
interface functions may be mapped to any resource within a system.

2. Early system-level performance evaluation — The performance of individual
design points must be evaluated quantitatively, considering the overall sys-
tem function under various load conditions, e.g., to rank design alternatives
accurately and to identify potential bottlenecks early in the design process.
This requires:

e Feedback from architecture timing to system function — Interfaces are
reactive systems in which the architecture timing influences the system’s
function. This dependency must be captured correctly.

e Higher level of abstraction — Models are required that abstract from
unnecessary detail but expose performance-relevant system facets cor-
rectly, e.g., the arbitration of shared resources. Such abstractions reduce
the modeling effort and increase evaluation performance.

3. Productive exploration and programming environment — The methodology,
abstractions, and tools used for the exploration should be usable for the
development and deployment of the final system. This requires:

e A path to efficient implementations in hard- and software — In order
to preserve the investment into the evaluation models, a path to an effi-
cient implementation is required. By providing predictable and correct
implementation results such a path enables a first-time-right strategy
and increases confidence in abstraction and models.

e An integral programming model — Modeling and programming abstrac-
tions are required that are intuitive for the designer and naturally inte-
grate communication interfaces into the platform’s overall programming
model.

The next section discusses existing exploration methodologies and frameworks
addressing these challenges.
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4.2 Methodology fundamentals

This section will discuss the state-of-the-art in design space exploration. It starts
with SystemC performance modeling as this language has gained momentum for
the description of platforms at higher abstraction levels. Next, there are Click
extensions aimed at targeting Click to specific architectures. Finally, the com-
mon Y-chart methodology is introduced and existing approaches are examined
with respect to the requirements listed in the previous section.

4.2.1 SystemC modeling and performance evaluation

SystemC is widely used for platform modeling early in the design cycle since it
unifies the modeling of hardware and software aspects and enables models on
different abstraction levels [58, 130]. Several commercial frameworks are avail-
able which support SystemC models [37, 192, 124]. However, these frameworks
follow top-down methodologies based on refinement and (behavioral) synthesis
starting at the transaction-level (see, for instance, the flow described in [196]).
There are no separate abstractions for application, architecture, and mapping.

The work in [206] describes the state-of-the-art of platform modeling in Sys-
temC for performance feedback. Components can be represented at transaction
and RT levels, and programmable parts can be abstracted up to instruction set
simulators. The StepNP network processor platform [145] (cf. Sec. 4.2.2) is an
illustrative example. However, the simulation of several architecture building
blocks at these levels is too complex to be used for early exploration.

Trace-based simulation

A technique to speed up the simulation is the use of traces that abstract the com-
putational part of the system function by timed sets of communication events,
as, for instance, [105]. However, traces have two fundamental issues. First,
they do not capture workload and data dependencies well. A trace captures
the details of a system execution path for a particular workload. Hence, for
event-driven systems with varying workloads, a large amount of traces needs
to be generated for a useful analysis. This is why the work in [207] captures
different traces at task-level granularity depending on the type and size of input
data. Second, it is unclear how to model systems in which the architecture
timing actually influences the system function such as in case of periodic tasks
and time-outs.

Hostcode execution

For this reason, some frameworks avoid the relatively slow instruction set sim-
ulation by executing software tasks natively on the simulation host rather than
by using traces [96, 21, 34]. Our framework SystemClick (see Sec. 4.7) applies
the same principle. Kempf et al. [96] deploy an instrumentation technique to
annotate existing code with fine-granular data on used operations and memory
accesses gathered during compilation. Using a data base with primitives, execu-
tion and access latencies are derived for the simulation. Avoiding the data base,
the timing information can be directly annotated at basic blocks during code
generation and compilation [34]. Contrary to that, SystemClick’s, performance
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information is derived by profiling and is dynamically annotated on a coarse
granularity, leveraging the well-defined element boundaries of Click tasks.

The execution of native tasks, i.e., C/C++ functions, within SystemC sim-
ulation requires wrappers that provide a simulation context in terms of event
handling, timing, and execution concurrency. The study by Blaurock [21] fo-
cuses on the incorporation of legacy code into SystemC models. Special SystemC
channels are used which encapsulate tasks. To model timing, wait statements
must be inserted into the legacy code. The scheduling of tasks depends on their
connection by SystemC channels and is left to the SystemC scheduler. In [95]
virtual processors are introduced, which execute tasks. These processors handle
the timing of events, support preemptive scheduling based on statically assigned
priorities, and model the context switching overhead. Cheung et al. [34] use a
SystemC module to represent the processor and its operating system. The
module interfaces with processes, provides services (such as event, mutex, and
mailbox) and handles process scheduling and overhead for the system.

SystemClick achieves the native execution by the strict separation of func-
tion, timing, scheduling, and arbitration. Wrappers are used to encapsulate
tasks and handle timed events. Resources arbitrate the execution of tasks,
following an explicitly selected scheduling strategy. The overhead of context
switches is handled by the task wrappers so that individual processing times
can be considered.

4.2.2 Click extensions for specific architectures

One of our requirements in the platform exploration and deployment process is
the support of Click. Therefore, this section examines how Click is targeted to
specific platforms.

Click as software on concurrent processors

Click was originally implemented on Linux using C++ [102] and achieves con-
siderable performance compared to the Linux protocol stack [20]. Recent ex-
tensions to Click include SMP-Click [33] and NP-Click [178]. In [33] a multi-
threaded Linux implementation for general-purpose symmetrical multi-processing
(SMP) hardware is described. In [178], Shah et al. show how Click, augmented
with some abstracted architectural features, can be used as a programming
model for the Intel IXP-1200 network processor. The approach uses a library of
Click elements which are implemented in target specific code and thus lack suf-
ficient portability. In Section 4.4, we will provide a way called CRACC to map
Click software onto a range of embedded processor cores by generating c-code
from the Click source and compiling it using a core’s tool chains. In Section 4.6,
CRACC will be used to program our NOVA platform.

Click for hardware elements

Click is also used to encapsulate hardware description language content. In the
CLIFF work by Kulkarni et al. [103], Click elements are mapped to FPGAs
while reusing standard RT level back-end tools. CRACC’s code generator can
be adapted to generate netlists for CRACC and CLIFF, given a Click input. By
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incorporating CLIFF, a comprehensive framework for hardware-software parti-
tioning and implementation of packet processing applications based on standard
deployment tools could have been provided. Instead, we chose to adapt our code
generator to SystemC due to its wide deployment. Our framework enables early
simulation-based performance evaluation for hardware-software partitioning and
provides a path to implementation based on SystemC and CRACC.

Click as platform programming model

The StepNP network processor platform [145] is closely related to NOVA and
CRACC. The platform is implemented in SystemC and relies on cycle-precise
hardware models for performance feedback. For the program execution, in-
struction set simulators are wrapped. Communication is implemented based
on OCP communication semantics on the transaction level [145] following NoC
schemes [146]. StepNP can use Click for specifying the application [145]. The
corresponding application development environment, MultiFlex [147], is based
on C++ and provides common SMP and message passing programming ab-
stractions. The implementation relies on hardware support for message pass-
ing, object management, and thread scheduling. Contrary to that, we rely on
common ANSI-C compilers in our CRACC approach for efficiency reasons. Pro-
gramming close to hardware using C is the most accepted form of application
development due to tight design constraints on latency and code size. It is also
often the only programming abstraction above assembler provided by the core
manufacturer [122]. The NOVA platform provides support for message-passing
in hardware. Object handling and task scheduling are implemented as CRACC
firmware functions leveraging the Click MoC communication semantics for run-
time efficiency. The StepNP/MultiFlex approach does not provide abstractions
for platform and mapping specification as they are required for performance
evaluations based on the Y-chart, which is introduced next.

4.2.3 Common Y-chart methodology

In order to assess the feasibility of packet-oriented communication interfaces
on one common and flexible module implementation, alternatives must be ex-
plored. The Y-chart methodology shown in Figure 4.1 is a common scheme
for this task [10, 98, 126, 144]. Application and architecture descriptions are
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Figure 4.1: The Y-chart methodology for design space exploration.

independent and kept separate. Only an explicit mapping step leads to an an-
alyzable (virtual) system prototype. A consecutive profiling and performance
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analysis step then provides feedback for optimizing the architecture, application,
or mapping.

The distinct descriptions for application, architecture, and mapping separate
the concerns of application developers and platform architects. Thus, each facet
of the system can be specified using clean abstractions, models, and languages
that are natural and productive for the facet. The platform may be modified
without forcing the application to be rewritten and vice versa. Potential incon-
sistencies between architecture and application are exposed in the mapping step
and can be addressed explicitly.

The Y-chart constitutes the core methodology of our application-driven flow
for exploring a programmable interface architecture as will be presented in Sec-
tion 4.3. Next, we will examine the state-of-the-art in design space exploration
and platform modeling approaches.

4.2.4 Evaluation frameworks based on the Y-chart

There have been many attempts for the early exploration of embedded hard-
ware/software platforms on the system-level.

With respect to their design flow they can be classified into three broad cat-
egories according to Mihal [126]: bottom-up, top-down, and meet-in-the-middle
approaches. Mihal postulates the concurrency implementation gap between the
application (top) and the architecture (bottom), to describe the mismatch be-
tween the capabilities of an architecture and the requirements of an application.
Design methodologies, which map applications to architectures, aim at solv-
ing the gap by following one of the three strategies. Bottom-up methodologies
provide architectural abstractions and models on top of the target architec-
ture to ease and simplify the application-to-architecture mapping. Top-down
methodologies start with application abstractions that help to model complex
applications in a more disciplined and formal way, which enables a refinement
path towards implementation. Meet-in-the-middle approaches use abstractions
for application and architecture at the same time while solving the implemen-
tation gap. Mihal concludes that only the latter are sufficient for application-
architecture-mappings since they provide multiple abstractions that can be used
parallel to close the implementation gap.

Frameworks based on the Y-chart (cf. Sec. 4.2.3) are meet-in-the-middle
approaches. In the following, a representative selection of these frameworks will
be discussed. Overviews of additional (non Y-chart) frameworks can be found,
e.g., in [55, 42]. Densmore [42] provides a comprehensive listing of frameworks
while Gries [55] focuses on the discussion of design space exploration strategies.

Metropolis

Metropolis [11] is a general design framework, where all aspects of a design flow
can be expressed at different levels of abstraction by using the meta model-
ing language. Function, architecture, and mapping facets are represented by
separated entities. Applications are modeled as a set of processes that com-
municate via ports connected by networks of media. Constraints may be used
to describe the coordination of processes and the behavior of networks. Archi-
tectures are represented by networks of media and processes, as well. In this
case, quantity managers are used to arbitrate events and annotate costs. The
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mapping between application and architecture models is specified by a third
network that synchronizes events between the application and the architecture.
Its generality, however, makes the modeling and implementation effort less in-
tuitive than by restricting the designer to one consistent representation for a
particular application domain. The description of architecture resources and
their scheduling policies, for instance, require some rather complex models that
use multiple quantity managers and combine performance annotation with ar-
bitration effects in a single description. Some of Metropolis’ shortcomings may
be addressed by the next generation of the framework [39].

Artemis

The Sesame framework [153] of the Artemis [155] project is targeted at the
media processing domain. The application description is based on Kahn pro-
cess networks (see Sec. 3.4.2). Architecture models are described in the same
language as the application. Their implementation in SystemC is facilitated
by an add-on-library which provides high-level communication abstractions and
support for the XML-based modeling language. A mapping layer is used to
associate processes and architectural resources manually. In addition, the layer
bounds FIFO sizes and - as the framework is trace-based - virtual processors
which feed application traces into the performance simulation [154]. The func-
tion of the virtual processors is similar to wrappers (cf. Sec 4.7.3) that interface
application and architecture events while ensuring correct timing and access
semantics. However, the Sesame framework does not provide a feedback path
from architecture timing to the functional model. Thus, Sesame is not suited
to model time-dependent behavior as required for our purposes.

PeaCE

The Peace framework [59] extends Ptolemy [156] (see Sec. 3.4.2) as co-design
environment for SoCs targeted at multimedia applications. Applications and
architectures are modeled using the communicating FSMs and extended SDF
(shared variables, fractional rate) models of computation. For design space
exploration, application tasks must by characterized for the respective architec-
ture modules similar to a performance database (cf. Sec. 4.3). An automated
mapping step uses a task graph, a set of hardware building blocks, and a per-
formance/cost database. Assuming ideal communications, a task-node mapping
is identified first fulfilling the design requirements. In a second step, bus-based
communication architectures are explored based on the simulation and the anal-
ysis of memory traces that were derived for the particular task-node mapping.
For the resulting application-architecture mapping, the performance is verified
using timing accurate hard- and software co-simulation on the RT level. The
authors argue with an exploration speed that is faster than the simulation-
based evaluation. However, this trace-based approach cannot capture inter-
dependencies between communication and computation and the timing feed-
back from architecture to the system’s function, correctly. If speed permitted,
e.g., by native task execution, we would prefer multiple iterations using a per-
formance simulation with resource characteristics and contention. For the path
to implementation, PeaCE uses a library-based approach for code generation
and simulation, where efficient implementations come from a module library.



58 CHAPTER 4. AN APPLICATION-DRIVEN METHODOLOGY

CoFluent

The CoFluent Framework [35] is similar to Artemis. Applications are modeled
as sets of concurrent processes that communicate via fifo channels or shared
variables. The platform architecture is modeled in SystemC and comprises
processing elements with a VxWorks operating system which provides system
function calls for communication and also handles the scheduling of tasks. An
explicit and graphical mapping abstraction is used to derive implementations.
For performance evaluation, the application code is instrumented and traces are
derived [27]. The operating system aspect is abstracted to latency and explicit
scheduling strategy [111].

Mescal

The Mescal project [127] focuses on the development and deployment of tiny
heterogeneous application-specific processors (" SubRISCs”). SubRISC architec-
tures are modeled bottom up from microcoded data paths following the TIPI
approach [203]. The Cairn methodology [126] enables correct implementations
for clusters of Tipi-elements by providing separate abstractions for architecture,
mapping, and application. Applications are described in a specialized language
using models of computation and actor-oriented design. Case studies demon-
strate the approach for packet processing and signal processing applications. In
the context of a programmable platform (cf. Sec. 4.3), the Cairn/Tipi approach
can be used to explore flexible application-specific building blocks. Apart from
the RTL code generation, the Tipi framework can generate fast simulators,
which can be slaved in other simulation environments [204]. There is, however,
no suitable compilation technology for TIPT PEs. Cairn/Tipi currently relies
on manual mappings and assembly-level programming for the crafted process-
ing elements. The Cairn/Tipi approach cannot be used for embedded standard
cores.

Summary

Table 4.1 summarizes the properties of the different frameworks with respect to
our requirements. Following the Y-chart methodology, all frameworks separate
application and architecture specifications and have an explicit mapping step.
Click as the application description is only supported by the Mescal approach,
the others rely on non-domain-specific MoCs (Process networks, SDF, FSMs).
Mescal, however, is limited to the exploration of Sub-Risc PEs. It does not sup-
port the full range of SoC platforms. The other frameworks have deficiencies in
capturing performance-relevant system behavior. Support for time-dependent
system behavior is limited (Metropolis), or does not exist (Artemis, CoFluent,
Peace). Scheduling and arbitration effects, which have a large performance im-
pact, can often not be modeled explicitly and the support for dynamic scheduling
is limited. Some modeling abstractions are either too general (Metropolis) or
too limited (Peace) for enabling intuitive and productive descriptions of design
points. All frameworks provide a path to an implementation. Only Kahn-
process networks (Artemis/CoFluent) may be used as a programming model
for platforms, but storage and scheduling remains implicit.

In summary, none of these frameworks adequately addresses the require-
ments for the exploration of communication interfaces as listed in Section 4.1.
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Table 4.1: Overview of Y-chart-based design space exploration frameworks

Requirement/ Framework
Feature
Metropolis  Artemis Peace CoFluent Mescal
Processing Domain GP Media Media Media Packet
Signal
Separation of applica- ++ ++ ++ ++ ++
tion and architecture
Click as application o — — — ++
input
Full platform eval, in- o ++ o ++ —
cluding OS
Modeling abstraction process KPN/ FSM/SDF KPN/ Click
networks TLM TLM Tipi-PE
Feedback of platform o — — — ++
timing into function
Path to implementa- o ++ +4+ +4+ ++
tion
Integral prog. model — o — o —

++4 supported, — not supported, o partially supported, GP - General Purpose

Furthermore, only the CoFluent/Artemis frameworks support SystemC, which
has gained momentum as system-level modeling and simulation language.

4.3 Application-driven flow using the Y-chart

For the Y-chart, the application description and the platform specification are
equal inputs. They are assumed to be independent of each other. However,
a programmable interface platform must trade off flexibility against cost and
performance. Our design flow is therefore to focus on characterizing the appli-
cation domain as early as possible. With this detailed application knowledge,
the platform design space can be narrowed quickly to a major design trajectory
that starts with the most flexible solution and refines the platform architecture
systematically to meet performance and cost constraints.

4.3.1 Five phase methodology

Our design methodology can be described by the following five phases. They
can be seen as a realization of the Mescal methodology [56], where constraints
on costs, flexibility, and ease of programmability form the tools used in each
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phase. Particularly “ease of programmability” plays an important role in our
case as we are anticipating a programmable architecture based on embedded
cores.

1. Application Domain Analysis. Identify and define representative and
comparable system-level benchmarks and realistic workloads for packet-
processing algorithms and protocols by analyzing the application domain.

The goal is to understand the application domain and to derive design require-
ments and system environments. We need to identify and specify system-level
benchmarks, including functional model, traffic model, and environment specifi-
cations that enable a quantitative comparison of the architectures being consid-
ered. While kernel level benchmarks are simple and used most frequently, they
can potentially hide the performance bottlenecks of a heterogeneous platform.

2. Reference Application Development. Implement a performance indicative
system-level reference application that captures essential system functions.

For performance indicativeness and the evaluation of different partitioning and
mapping decisions, executable and modular system-level reference applications
are required to determine weight and interaction of function kernels.

An application reference is necessary to explore different partitioning and
mapping decisions on the system level. Given the variety in parameters and
protocols this reference application needs to be modular so that customizations
can be achieved quickly. We model our applications in Click as described in
Chapter 3. The reference models comprise the system function and a test bench
that contains traffic sources and sinks. This test bench together with the con-
figuration, i.e., the setup of routing tables, classifiers, etc., defines a particular
environment the model is working in.

3. Architecture-independent Profiling. Derive architecture-independent ap-
plication properties by analyzing and profiling the reference application.

Our approach emphasizes this step to narrow architectural choices. The goal of
this step is to determine architecture-independent characteristics of the reference
application by static analysis and/or simulation. Due to the complexity of
modern designs it is infeasible to maintain several prototypes of the architecture.
Before the actual development of the architecture starts, we are using this phase
to find a good starting point for exploring the architecture design space.

For the communication interfaces, the analysis and simulation have been
focusing on the features described in Section 3.5. These characteristics are
derived by annotating the Click specification of our reference application and
executing the model. Several conclusions can be drawn from the results to
prune the design space. The affinity to certain hardware building blocks (general
purpose cores, DSPs, ASICs, or FPGAs) was formalized in [175, 26]. Design
decisions on the communication architecture can be drawn from the analysis of
the traffic between components. For example, if a cluster of components shows
a high volume of transfers between its members in comparison to the data
transfer volume entering and leaving the cluster [151], this setup cannot exploit
a high-performance shared global bus to connect to the rest of the system well.
The storage requirements can guide decisions on memory hierarchy and data
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layout, e.g. whether packet payload is to be stored separately from headers and
whether fast scratchpad memory is required. Finally, the application analysis
reveals concurrency among the branches of the graph that can be exploited
by corresponding hardware architectures such as multi-threading and parallel
cores.

4. Architecture Exploration. Perform a systematic search of the architectural
design space based on the reference application and its properties; define
and iteratively refine the resulting platform architecture.

As a starting point for a programmable interface architecture, we use a set
of embedded general-purpose processors and other commodity parts. Such a
generic solution is most flexible and programmable but is likely to fail other
optimization objectives. Single core profiles are used to identify optimization
potential by refining the platform to meet further objectives, i.e., in terms of
area. As a result, a virtual platform prototype with an efficient programming
environment is implemented.

We start by determining an upper bound on the required computational re-
sources. We use the reference applications to profile the combination of core and
compiler for a range of embedded processors. We start with this most flexible
and easiest to program solution due to our primary design criteria (flexibility
and ease of programming). We first profile and compare individual proces-
sors. We then derive multiprocessor solutions and compare them with respect
to their area requirements. We finally optimize and refine the platform to main-
tain as much flexibility as possible while optimizing the area, including the use
of instruction set extensions and dedicated coprocessors. A prerequisite to this
quantitative approach is an application that can be mapped to different archi-
tectures following the Y-chart of the previous section (4.2.3).

5. Platform Implementation and Deployment. Implement the platform and
ease the deployment with efficient programming abstractions.

The virtual prototype proves the concept and serves as an executable spec-
ification for the actual platform hardware and software implementation. The
programming abstractions used during the exploration are reused to ease the de-
ployment of the platform. A successful deployment of a programmable platform
can only be achieved if the programmer is relieved of understanding the archi-
tecture in full detail. The programmer is faced with the problem of manually
coordinating the execution of software portions on different processing elements
which must be optimized individually on the assembly level [104]. This burden
frequently leads to suboptimal usage of hardware resources and is tedious.

4.3.2 Prerequisites and tools

The Click models described in Chapter 3 can be seen as the result of phase
one and two of our methodology. They are the outcome of a domain analy-
sis and represent the application domain as a set of functionally correct and
architecture-independent specifications. This means that we chose the Click
language and the Click framework for modeling our reference applications in
the context of the Y-chart. The Click simulation engine is used to verify the
applications.
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The third phase of the flow, architecture-independent profiling supported
the comparison of the different protocols and led to a fully programmable multi-
processor platform as starting point for the design space exploration.

The exploration of the platform’s design space in the fourth phase particu-
lary depends on methods for transforming and mapping the Click applications
quickly onto architecture variants. We use code generation techniques for this
purpose. Our CRACC framework generates code for platforms based on em-
bedded processors. In addition, a hard- and software platform is required onto
which the application can be mapped. The platform should be modular to ease
the modification and the refinement. This is important since the exploration is
an iterative process, where the development of a design point is guided by the
results of a previous step. We developed the heterogeneous NOVA platform for
this purpose. Using NOVA on the RT level and the CRACC code generator,
we can quickly optimize Click applications and explore mapping and partition-
ing alternatives in a cycle-precise and bit-true setting. Figure 4.2 shows the
CRACC/NOVA Y-chart. Architecture exploration, however, is restricted due
to the design effort required on the RT level.
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Figure 4.2: The Y-chart based on CRACC and NOVA.
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Figure 4.3: The Y-chart based on SystemClick performance models.

For iterative exploration early in the design process, a fast yet performance
indicative way to evaluate platform variants is required. We therefore abstract a
NOVA architecture as a set of shared computation and communication resources
which arbitrate tasks and consume time. Our SystemClick framework generates
a SystemC model from an annotated Click model that can be simulated using
a performance database. Figure 4.3 shows the Y-chart based on SystemClick.
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The database associates each task with the costs for a particular resource, e.g.,
its processing time or communication delay. For indicative results, this database
can be populated with realistic data, e.g., derived from partial CRACC/NOVA
execution profiles as described above.

The SystemC environment provides a path to implementation based on step-
wise refinement and mixed-level simulations. Once the platform is implemented,
Click and CRACC (cf. Fig. 4.2) become programming tools for its deployment.

The subsequent sections of this chapter describe and discuss the CRACC
code generation, mapping, NOVA platform, and SystemClick performance mod-
els.

4.4 Code generation for embedded cores

We are looking for a way to map our Click models of packet-oriented commu-
nication interfaces onto a range of programmable architectures.

Application-specific architectures are notoriously difficult to program due to
heterogeneity and concurrency. Current best practice in developing software
under tight memory and runtime constraints is based on programming in as-
sembler. Clearly, this approach is in conflict with other design criteria such
as ease of maintainability and portability among platforms and architecture
alternatives.

Due to the complexity of these systems, a more deterministic and reliable
design flow is required, both in terms of development time and software quality
(e.g., predictable performance). On the other hand, the design of reliable soft-
ware in general is a vivid area of research [188]. The question arises whether we
can bridge the efficiency gap to some extent between embedded software devel-
opment on the one hand, and general software engineering concepts as embodied
by Click on the other hand.

In this context we have to realize that programming in C is the only ab-
straction above assembly level that is established as a programming model for
embedded processors [122]. Therefore, we have to provide a framework that
supports a systematic path to efficient implementations based on C (or even as-
sembler) while offering enough abstraction for software reuse, ease of mapping,
and performance evaluation.

For this reason, we have developed a framework and code generator called
CRACC (Click Rapidly Adapted to C Code) which enables the fast migration
of packet processing functionality to different embedded processing cores based
on a modular Click application description. This section describes CRACC.

4.4.1 Why not Click for embedded processors?

Click [102] is implemented in C++ and uses Linux OS concepts such as timers
and schedulers. Most application-specific embedded processors, however, pro-
vide only limited programming environments, poor runtime support, and often
do not support C++ [122]. Especially in the case of MPSoCs such as net-
work processors we observe a lack of proper compilers and operating systems
for processing elements within the data plane. Instead, they rely on assembler
and as many static optimizations as possible in order to achieve fast and lean
implementations.
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Thus, we need to transform our Click application description into a represen-
tation an embedded processor can support, e.g., a 'C’ program. Such a solution
needs to address the following features, which Click offers:

o A domain-specific language for the hierarchical composition, configura-
tion, and interaction of elements.

Runtime re-configurability of element connections.

Modular programming style using object-oriented features.

Concurrency and scheduling of elements at runtime.

Timers and timed rescheduling of elements.

e Communication interfaces between elements.

4.4.2 CRACC — Click Rapidly adapted to C Code

The CRACC design flow (see Figure 4.4) starts with an implementation in Click.
The application programmer can model the functionality on any host on which
Click can be simulated. After a functionally correct model of the application
has been derived, which can usually be done quickly, CRACC’s Click front-end
is used to generate a netlist and the corresponding configurations for CRACC
elements. The CRACC ANSI-C source code can then be cross-compiled and
profiled on the respective embedded platform. The subsequent performance
optimization can focus on individual elements and possibly on the partitioning
of elements onto several processing cores. This systematic approach leads to
improved design productivity and simplifies reuse.

Click
Elements

Click Engine [«*-++----- .Enuxlf .................
Auxiliaries

—

crace Netist Element
Configuration

X-Compile

Source

Click

CRACC
Elements

Target
Auxiliaries

Profiling

Executable on emb. processor(s) |

Figure 4.4: The CRACC code generation flow and framework.

Preserving Modularity

CRACC preserves Click’s modularity by emulating object-oriented program-
ming. Particularly objects and their dynamic management, inheritance, and
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virtual function calls are supported using function pointers in structs, e.g., de-
scribed by Holub in [72]. This means that a Click element is represented in C by
a struct that contains pointers to element functions in addition to its element
data. That way, Click’s push/pull function call semantics can be preserved. In
the following, we will discuss these issues using our CRACC implementation.

o An object in C - In contrast to C++ object methods require an explicit
pointer to the associated element. A struct is declared that can be used
similarly to a class in C++. Before it can be used, however, the element’s
local data needs to be initialized, and the method function pointers need
to be set to local methods.

e Object construction - Similar to C++’s constructor, we implement a func-
tion that creates an object struct, calls its init function, and returns a
pointer to the struct. This encapsulates the element initialization and
provides a convenient way of instantiation.

e Inheritance - Click uses a rather flat class hierarchy. Most elements are
directly derived from the element class. In CRACC inheritance is achieved
by using macros that declare an element’s data and methods. The struct
then simply contains an ordered list of all parent class macros followed
by the local declaration. For proper initialization, the init functions of all
parents followed by the local init must be called.

e Virtual functions - Using function pointers in structs actually makes every
function virtual since it allows the replacement of an element function with
another one even at runtime.

Packets and other data types

CRACC implements a Packet data type that allows the modification of its data.
In Click, Packets and WriteablePackets are distinguished to preserve mem-
ory using a reference-or-copy-before-modification approach. Although more
memory-consuming in some rare cases, the CRACC behavior seems more natu-
ral for embedded packet processing since we expect most packets (at least their
headers) to be modified, anyway. The packet methods are called directly with-
out using function pointers to avoid runtime overhead. Other Click data types
that are often used to ease the element configuration such as classification rules
and IPv6 addresses, are translated by the Click/CRACC front-end into ANSI-C
data types.

Timers

In Click, timed and rated elements require a common time base for their op-
erations. Click uses the operating system’s (Linux) time base and exploits OS
facilities for timed operations. Click implements two concepts for timed oper-
ations: tasks and timers. Tasks are used for operations that need to be called
very frequently (tens of thousands of times per second) and therefore should
execute fast. Infrequent operations are more efficiently supported by timers.
Timed elements in CRACC can only access time by using timers. They are
also used instead of tasks for 'fast’ scheduling. Timers encapsulate the specifics
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of a target’s implementation, e.g. a hardware timer that is register-mapped,
memory mapped, or implemented as a co-processor.

Simulation engine

A DE simulation engine is provided by CRACC to enable the execution of the
generated and compiled code for verification purposes. The engine provides a
global time, maintains lists of scheduled events, and triggers the execution of
push/pull chains. The scheduling order of the CRACC simulation differs from
Click due to the different task and timer implementations. This means that
the order of packets generated by different sources or pulled by different sinks
will not necessarily be the same. However, packet flows generated by the same
source/sink pair have an identical sequential order.

Preserving the Click language

The Click language describes the composition of a packet processing application
from elements and its configuration. CRACC preserves this language front-end
by extending Click. The modified Click first evaluates a Click source description
and executes all initialization phases (configure and init functions). Then, it
generates a C schematic of an application that instantiates, configures, and
connects CRACC elements according to the Click description (see Figure 4.4 on
page 64). Since the CRACC configuration is done after parsing and processing
of the Click configuration strings, only preprocessed valid data structures are
used for configuring the CRACC elements.

4.4.3 Targeting CRACC to embedded cores

CRACC has been targeted to a representative set of ten embedded processors,
which among others includes the common 32bit cores MIPS, ARM, and Pow-
erPC. The initial tool chains we used for the cores are based on GNU tools
and public domain instruction set simulators, e.g., GDB. In a second phase,
we switched to cycle precise simulators provided by the individual core ven-
dors when necessary. For CRACC, the different endian-ness of the embedded
cores was the issue with the largest impact on implementation effort and code
base. The individual tool chains and programming environments furthermore
required the adaptation of makefiles and runtime environments (e.g., startup
and initialization code).

As an indication for the required resources, we analyzed the modeling effort
for Click model, CRACC implementation, and the efficiency of the resulting
code on selected processors using a typical network processor application with
packet processing and quality-of-service functions modeled in Click [174]. The
case study which has been published in [173], concludes:

o Modeling effort. Assuming that no elements must be added to the
CRACC library, the software implementation of a full system model can
be carried out within a few days. Pure Click descriptions are rather small
and require only a few hundred lines of code. This is not surprising since
the Click code only describes the composition and configuration of ele-
ments, the actual functionality is contained in the element library. For
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the DSLAM application domain only a few elements had to be added to
the library.

e Code efficiency. The CRACC element implementations are much smaller
than their Click counterparts due to the removed object-oriented overhead
and simplified packet abstractions. On average, CRACC’s object code size
was only 17% of the Click objects’s size (g++, gee, -O3, x86 platform).
This resulted in a compact software that required less then 20kB code
memory in total.

Applying modularity as provided by Click and CRACC comes at the price of
some overhead in runtime and code size. This overhead can be reduced signif-
icantly by a number of optimizations such as the static resolution of elements’
processing types and the concatenation of elements belonging to the same task
chain. The optimization potential is discussed in more detail in [173].

At this point, we have a method for mapping Click applications onto indi-
vidual embedded cores. CRACC generates modular and portable ANSI-C code
suited for a range of processors. Together with Click-based traffic generation,
we can execute the code and profile the combination of compiler and individual
core for the given reference application. The results are performance-indicative
and can be used for benchmarking the different cores. In the next section, we
will extend the CRACC concept to heterogeneous and concurrent platforms that
deploy multiple processing nodes and tailored hardware.

4.5 Hardware encapsulation, platform mapping

Partitioning and mapping an application onto a heterogeneous and concurrent
platform comprising multiple processing nodes and special purpose hardware
still remains an art. To support and ease this manual task, we apply the idea
of wrappers [217] to fit hardware and software resources together. The CRACC
framework provides APIs, specialized library elements, and extended code gen-
erators that encapsulate hardware specifics and are responsible for interfacing
hardware resources and synchronizing functional components that are mapped
on different resources.

A Click application graph is partitioned at element boundaries and mapped
onto a heterogeneous multi-processor platform manually, as indicated in Fig-
ure 4.5. In the following we will discuss techniques related to targeting and
mapping Click/CRACC to a multiprocessor platform in more detail.

4.5.1 Packet I/O

Packet I/O in CRACC uses the same concepts as Click, i.e. From- and ToDe-
vices that encapsulate interface specifics and handle the interaction with the
device. A typical FromDevice, for instance, contains an ingress queue followed
by an Unqueue mechanism that pushes received packets into the system. De-
pending on the underlying hardware, polling as well as interrupting schemes
may be implemented and encapsulated. In the context of a multi-processor
SoC, From- and ToDevices are mapped onto the physical I/O interfaces, e.g. a
Gigabit Ethernet module. The communication with neighboring elements then
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Figure 4.5: Mapping a Click application onto a concurrent platform.

follows the on-chip communication scheme as described in Section 4.5.3. The
models of our packet-oriented communication interfaces can be seen as refine-
ments of regular From- and ToDevices since they describe the device function in
detail. From- and ToDevices can be replaced by artificial packet sources/sinks
if our simulation engine is used.

4.5.2 Special purpose hardware

In order to ease the mapping of CRACC applications onto different platforms,
special purpose hardware such as Timers and coprocessors is encapsulated in
auxiliary modules that export a hardware-independent API. Depending on the
way of coupling, special purpose hardware can be deployed either directly by us-
ing the API within CRACC element implementations or indirectly with particu-
lar Click/CRACC elements that are mapped onto the special purpose hardware.
A register-mapped timer, for instance, requires only the Timer abstraction for
its deployment. A loosely coupled CRC accelerator linked into the packet flow,
on the other hand, is more naturally addressed by special SetCRC and Check-
CRC element implementations. Element encapsulation requires loosely coupled
hardware accelerators to support the communication interfaces described in the
next section.

4.5.3 Inter-element communication

CRACC elements pass packet descriptors between elements. These descriptors
contain extracted packet header and payload data, annotated flow informa-
tion, processing state, and header and payload pointers. Three communication
schemes can be distinguished depending on the mapping of the elements:

e On the same processor — Inter-element communication on the same pro-
cessor is handled using function calls that pass a pointer to the packet
descriptor. Elements on a processor require an task scheduler that fires
all sources (sinks) of push (pull) chains. The scheduling of a push (pull)
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chain is non-preemptive. Its rate is implementation-specific and may de-
pend on priorities. Elements on different processors use special sources
(sinks) to communicate.

e Between different processors — The communication of elements on differ-
ent processors requires message-passing semantics including a destination
address. The address must allow the identification of both the target pro-
cessor (in case of shared connections) and the associated task graph on
that processor. For that purpose, special transmit and receive elements
in combination with a FIFO queue are inferred that annotate the packet
with the required information. The queue compensates potential rate dif-
ferences that may be caused by scheduling and arbitration effects.

Furthermore these elements convert push and pull chains as needed by the
platform’s communication pattern. The Figures 4.6 and 4.7 demonstrate
the concept for a target system with push semantics. In this case, the pull
chain conversion shown in Figure 4.7 requires user-annotated rate infor-
mation for the transmitter. This is intended as the pull-to-push conversion
changes the behavior of the model, a fact the programmer must be made
aware of. Alternatively, a notification scheme can be implemented using a
second push channel as shown in Figure 4.8. This solution matches Click’s
communication semantics exactly but is more expensive.

Finally, these wrapper elements encapsulate the processor’s hardware com-
munication interface similar to other From- and ToDevices. We anticipate
using specialized on-chip communication interfaces that provide ingress
packet queues. These queues require only a small number of entries de-
pending on the number of task graphs executed simultaneously on a pro-
cessing node. However, the message passing semantics enables other im-
plementations as well.

e Between elements in software and hardware — The interface of a cluster
of hardware elements to the on-chip communication network must support
the same packet passing semantics as for inter-processor communication,
e.g. ingress queues. Depending on the interface between hardware ele-
ments, the hardware side of transmitters and receivers must convert the
communication semantics accordingly. In the case of CLIFF hardware
elements [103] and queue interfaces, for instance, a three-way handshake
needs to be generated using full and empty signals of the queues.

A special case is the pull access for reading the state of (tightly coupled)
hardware as used by our Ethernet and wLAN models. In this case, the
packet passing hardware interface can be avoided by a software wrapper
which directly accesses the hardware and forms the tiny state packets
expected by the model.

More on wrappers can be found in the later sections of this chapter. Section 4.6.2
discusses them in the context of the NOVA platform, Section 4.7.3 describes how
they are used for SystemClick’s performance simulation.

4.5.4 Data layout and distinct memories

As in Click, communication with memories is encapsulated within CRACC el-
ements. CRACC assumes a unified access to the memory hierarchy. Besides
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the local data memory, all accessible distributed/shared on- and off-chip mem-
ories are mapped into the processors memory address space. Data objects are
either local or shared and are mapped to a particular memory explicitly by
the programmer. In order to provide a hardware-independent solution shared
data should be encapsulated into objects that define their access semantics
(e.g. blocking/non-blocking) while deploying platform-specific hardware such
as semaphore banks. Using such objects different data scopes as described
in [178] can be implemented. In case of read-only data the encapsulation can
be omitted.

4.5.5 Mapping annotation and multi core code generation

A particular application-to-architecture mapping is specified by the designer
by annotating the Click application graph. For this purpose, specialized Click
elements are provided which can be instantiated to guide the code generation
process and help to describe platform and mapping specifics:

e StaticMapper — StaticMapper associate Click elements with platform re-
sources by accepting a list of <instance name, resource id> pairs. In
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case of named communication (as implemented by SystemClick), commu-
nication links may be associated with communication resources as well.
StaticMappers generate no extra code.

e Fromlo/Tolo Wrapper — These communication wrappers partition a Click
graph into subgraphs that can be mapped onto different resources. De-
pending on the code generator, they can be inferred automatically in cases
where two communicating Click elements are mapped onto different re-
sources. Alternatively, they may be used explicitly by the designer to par-
tition, refine, and map the communication more efficiently, see Sec. 4.5.3.
Communication wrappers generate platform-specific code.

e Resource — For mapping, platform resources are represented by resource
ids. The Resource element is used to declare a resource and configure its
properties. For most platforms, resource elements generate no code. Only
in the case of SystemClick, specialized code for the performance simulation
is generated.

e Resource manager — Resource managers represent platform-specific code
that either initializes or manages a particular platform resource!. Memory
managers, for instance, generate the software function (if mapped onto a
SW resource) and the OS communication code required to address this
function from the local as well as distant resources. Resource Manager
must be instantiated explicitly.

Using these elements, the designer annotates the Click application source
with mapping information and instantiates platform resources. To keep concerns
separated, different source files may be used for application description, platform
specification, and mapping annotation. From the annotated source, executable
code for multiprocessor platforms is generated in several phases:

e Mapping propagation — CRACC allows partial mappings. In such cases,
heuristics are used to derive a mapping for other elements automatically.
Currently supported are 1) full downstream propagation, i.e., the initial
element drags all connected elements onto the same resource, and 2) weak
downstream propagation which stops at already mapped elements.

e Multi-pass code generation — The mapped task graph is iterated multiple
times to ensure the generation of objects in the order of their (potential)
dependencies. All generated C code is encapsulated in macros that enable
conditional compilation depending on the resource id.

e Per-resource compilation and linkage — To compile the generated code
for a particular resource, the associated resource id is defined and the
resource’s tool chain is invoked by scripts.

Depending on the platform, the generated per-resource code objects may be
processed further, e.g., to compile and link code and data memory images that
can be loaded into boot memories. The NOVA platform, described in the next
section, for instance, requires a single image that combines the initialization and
runtime code segments as well as the different data segments.

n case of SystemClick performance simulation (cf. Sec. 4.7.4) they even model a resource.
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4.6 NOVA -
A Network-Optimized Versatile Architecture

In the previous sections of this chapter we dealt with concepts and tools to map
Click applications onto programmable platforms. This present section focuses
on the architecture platform facet of the Y-chart by introducing NOVA. NOVA|
the Network-Optimized Versatile Architecture, is a programmable platform tai-
lored for packet processing. We developed NOVA for the exploration of design
alternatives in hardware and software, where the refinement process is driven
by network and communication interface applications. A heterogeneous NOVA
platform encapsulates embedded cores, tightly and loosely coupled coprocessors,
on-chip memories, and I/O interfaces by special sockets that provide a common
communication infrastructure.

4.6.1 NOVA hardware platform

The NOVA platform provides concepts, templates, and various building blocks
for the systematic application-driven design space exploration of network pro-
cessors. NOVA eases the use of commodity IP modules. They are encapsulated
by the NOVA socket which provides a unified interface to the on-chip network.
In this way, all platform elements can be connected to each other and form
arbitrary on-chip communication topologies.

On-chip communication

NOVA supports two types of on-chip communication in hardware: direct mes-
sage passing and memory-mapped accesses. Messages are primarily used to
transfer packet descriptors between processing nodes and are akin to the packet
streaming semantics of the application domain. In addition, processing nodes
can exchange system messages, e.g. for OS-like functions. Messages use on-
chip routing headers and are between 12 and 64 bytes long. Message passing
usually is non-blocking. A backpressure scheme implemented by the intercon-
nect network, however, provides the means for blocking a producer if desired.
Memory accesses may be split transactions, as long as the sequential order is
maintained. Depending on the type of processing element, memory accesses can
be implemented as blocking or non-blocking.

NOVA socket

The socket decouples the on-chip communication network from the processing
nodes and provides unified interfaces between them. This, for instance, is helpful
for the exploration of different communication schemes. Figure 4.9 shows the
concept. The socket encapsulates an IP module and provides external interfaces.
The figure shows three interfaces: to the packet descriptor (PD), the system
message (SM), and the memory access networks. The internal interfaces are
specialized for the particular IP module. Usually, NxM on-chip interfaces are
required to explore M communication schemes for N different TP modules. By
defining a handshake protocol between IP and NoC interfaces, the socket reduces
this to an N+M complexity. A welcome side effect of this approach is the
option to insert FIFOs for globally asynchronous communication schemes. In
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Figure 4.9: NOVA’s socket concept.

Figure 4.9, the message-passing networks are asynchronous whereas the memory
access network is connected synchronously. Optionally, DMA engines can be
included in the sockets. These units can be customized to convert streaming
interfaces into memory accesses and vice versa. The 10O interface, for instance,
uses them to transfer packets to/from the memory.

Platform building blocks

Deploying the socket and communication concepts, NOVA defines different types
of building blocks.

e Processing elements (PE) — A PE is an embedded ’standard’ processor
that can be programmed in a high-level language. This processor and its
subsystem, e.g. code and data memories, are encapsulated to form the
PE. Figure 4.10 shows a 32bit MIPS 4k PE with Havard architecture and
a memory mapped-subsystem.

e Coprocessors — These are specialized engines and accelerators which can-
not be programmed in a high-level language. They are deployed either
tightly coupled in a processing elements’ subsystem or loosely coupled as
specialized processing node. NOVA uses coprocessors, e.g., for security
functions (encryption) and memory management (DMAs, memory man-
ager).

e On-chip memories — NOVA supports arbitrary on-chip memories. Cur-
rently, the memory interface defines addresses and data words of 32bit
width and assumes pipelined synchronous memories. If encapsulated in
sockets, memories can form co-processors accessed via system messages.

e Off-chip interfaces — Off-chip interfaces are mostly off-the-shelf units en-
capsulated by NOVA sockets. The current emphasis is on network and
memory 10. The fast Ethernet MAC wrapper, for instance, contains DM As
that autonomously store and forward packets, and parser/unparser units
for the handling of packet descriptors.
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Figure 4.10: A 32b MIPS core and its subsystem encapsulated by NOVA’s
socket.

These building blocks can be connected using any on-chip communication pro-
tocol and arbitrary topologies. For the context of this work, we are using a com-
munication infrastructure based on the OCP protocol (cf. Sec. 4.6.3). NOVA
in the context of future interconnects and networks on chip has been discussed
elsewhere [167].

Memory layout and hierarchy

NOVA does not impose any memory layout or hierarchy. PEs may use trans-
parent cache hierarchies or deploy memories that are visible to and managed
by the programmer. Memories shared between PEs require a unique resource
manager in either hardware or software. Memories and all resources accessed
by a PE are mapped into the individual PE’s data memory map.

4.6.2 Programming model

We start programming from modular Click descriptions that we use for modeling
functionality hardware-independently. We use this input for code generation on
embedded processors. Wrapper elements in Click and a thin OS layer used by
the generated code take care of the specifics of the underlying multiprocessor
system.

Wrappers for heterogeneous platforms

A heterogeneous platform such as NOVA may contain many different building
blocks. To incorporate their behavior into Click representations and the code
generator as discussed in Section 4.5, we distinguish between functionality that is
made explicit in Click and functions that should be hidden from the application
developer. In this subsection, we look at Click-conforming representations by
using wrapper elements that encapsulate interfacing with hardware-specifics.
Other functions will be addressed in the following subsection.

e Packet descriptor passing — If two Click or CRACC elements communi-
cate with each other, pointers to context information are normally handed
from element to element on the same processor. If these elements are
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mapped onto different processors, the message passing interface must be
used, i.e. the context data must be copied into the interface buffers, and
routing information must be added such as the on-chip destination ad-
dress. FromlO and TolO elements are implemented for encapsulation of
the receive and send functionality of message-passing hardware, respec-
tively. Several FromIO and TolO elements can be associated with the
same message-passing interface in hardware. The different software in-
stances are distinguished by a unique graph ID which is also contained in
the routing information of the message.

Hardwired coprocessors and network I/O — For modeling the function of
coprocessors and off-chip communication interfaces, Click elements are
needed that emulate the behavior of the module, e.g., for verification pur-
poses with artificial traffic sources. For these elements, code generation
might not be necessary at all, but the full model is executable in Click.
Click wrapper elements can also be used for configuring hardware blocks,
i.e. code generation takes care of initializing the hardware block accord-

ingly.

Multi-core and OS extensions

Apart from Click wrappers we need additional services for messages, timers,
task scheduling, and resource sharing among several processing elements. Since
such mechanisms are not part of the Click syntax, these features are hidden
from the Click representation and only partly visible for a library programmer.

System messages — Apart from the message-passing mechanism visible
in Click, we use message-passing for exchanging information used by the
OS such as status messages, hardware module configuration data and
requests for a certain shared resource. These system messages are shorter
than packet descriptor messages yet use the same routing specification
(message header).

Visibility of memory hierarchy — In CRACC, a library programmer can
explicitly address different memory areas, e.g. private local and shared
slow memories. Every shared memory is associated with a unique mem-
ory manager that can be mapped to any PE, e.g. a coprocessor or a
programmable core. Requests for memory access, allocation, and dele-
tion are sent by system messages to the associated manager that replies
accordingly.

Timers — CRACC provides an API for timers that can be used, for in-
stance, by timed Click elements. Timed elements register themselves for
wakeup at a certain expiration date. Timers encapsulate the specifics of
a target’s implementation, e.g. a hardware timer that is register-mapped,
memory-mapped, or a co-processor.

Split transactions — A direct consequence of using system messages in a
GALS platform is the support of split transactions for latency hiding. If
the sender of a system message is waiting for a response, it registers itself
for wakeup by the scheduler on the respective processing core when the
corresponding reply message arrives. Context switches caused by split
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transactions are explicit and require only minimal state embedded in the
registration at the scheduler. The register file does not need to be saved.

4.6.3 Platform evaluation

We implemented a 4PE prototype of the NOVA platform. Figure 4.11 shows
the block diagram. The device is dimensioned for use, e.g., as DSLAM line card
processor and employs four of the MIPS processing elements (see Figure 4.10).
Leveraging the FPGA-based Raptor2000 prototyping environment [94] the sys-
tem implements four Fast Ethernet 10s that are connected to external PHYs
and shared off-chip SRAM memory. The on-chip communication is based on
three OCP buses for system messages, packet descriptors, and memories. This
way, the high priority delivery of system messages is assured.

Memory
Controller

MIPS MIPS Profiling
PE PE Co-Processor

t

statistics data

Figure 4.11: NOVA prototype with four processing elements.

The prototype also integrates a statistics and profiling module to derive
run-time performance information. The module is connected to all resources
and collects data from nodes and the on-chip network. It derives information
about the packet throughput and loss, the processor load and software profile
(by tracing the instruction address stream), and the utilization of the on-chip
communication system at runtime.

To evaluate programmability and modularity we synthesize the 4PE pro-
totype for the FPGA based Raptor2000 prototyping environment and a 90nm
ASIC design flow. On a Xilinx XC2V6000-4 device the system runs at a conve-
nient clock frequency of 25MHz. The ASIC results are provided and discussed
later in Sections 5.3.3 and 5.4.

4.6.4 Remarks

NOVA is a modular and programmable hardware platform for packet-processing
systems. It is based on unifying sockets and common packet passing and commu-
nication infrastructure for integrating various building blocks. Heterogeneous
NOVA multiprocessors can be programmed intuitively and productively in a
component-based framework. Due to matching communication semantics of
application and architecture, a thin OS layer and code generation framework
ease the application to architecture mapping significantly. Our results (which
will be presented in Section 5.4 and were published in [166]) show that the
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overhead of hardware and software modularity is reasonable for NOVA com-
pared to state-of-the-art techniques and that NOVA is usable for the systematic
application-driven design space exploration of network processors.

4.7 SystemClick —
Annotated SystemC performance models

Using NOVA and the CRACC code generator, we can quickly optimize Click
applications and explore mapping and partitioning alternatives. However, since
this approach depends on the cycle-precise and bit-true execution of the gen-
erated code for its performance feedback, we are effectively limited to existing
architectures. The systematic exploration of architecture variants is barely pos-
sible due to the design effort required for each platform instance.

In this chapter, we are therefore developing a way for enabling the early
design space exploration by raising the level of abstraction for the architecture
model and its performance simulation. For this purpose, we extend our code
generation and mapping capabilities towards SystemC so that we are able to
produce SystemC performance models of Click applications mapped onto ar-
chitectural platforms. Figure 4.12 shows the concept of SystemClick [171], the
modified CRACC flow for SystemC (cf. Fig 4.4 on page 64).

-
Click
Elements

T Cem

Source

Click Engine
Click
System G ted Function
Ciiok enerate CRACC
SysC source Elements
Performance
Evaluation sc_compile
Timing

Performance
Database {T Rj}

Figure 4.12: SystemClick — SystemC performance models generated from Click.

For fast evaluation, we abstract the architecture to a set of shared resources
that arbitrate computation and communication tasks and consume service time.
This is reasonable since these aspects alone already have a significant perfor-
mance impact, see, e.g., [104]. The choice of SystemC, however, enables a path
to step-wise refinement and mixed-level simulations as it would be required, for
instance, for a virtual prototype.

4.7.1 Platform representation

A platform in SystemClick is represented as a set of resources and communica-
tion wrappers adhering to the mapping and encapsulation concepts of CRACC
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as described earlier in Section 4.5.

The hardware portion of the platform is modeled by resources that arbitrate
computation and communication tasks. Computation resources process packets
by executing Click task chains. Communication resources pass packets following
Click’s push and pull communication semantics. A task waits until the resource
becomes available. Then it is executed and consumes service time. Wrappers
extend Click task chains and represent the operating system aspects of a plat-
form. Used on computation resources, they model the overhead required for
event handling, task scheduling, and communication. Figure 4.13 shows the
SystemClick platform representation that corresponds to the example used in
Section 4.5 (cf. Fig. 4.5 on page 68). Each task chain of the partitioned graph
is associated with a computation resource (shown in the upper part of the fig-
ure). Communication between tasks on different elements is associated with
communication resources (in the lower part).
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=
gl |2
§
< o
g ]
s w
S =

=

Figure 4.13: SystemClick representation of an application-architecture mapping.

The platform representation is generated as a part of the SystemC perfor-
mance model from the Click source, see Figure 4.3 on page 62. This source
contains the application, architecture, and mapping descriptions. The model
describes the architecture by instantiating resource managers, encapsulates par-
titioned Click/Cracc tasks with wrappers, and associates them with their re-
sources. Furthermore, the model interfaces with a database for the performance
annotation of tasks. The next subsections will address these aspects in more
detail.

4.7.2 Performance annotation

For the simulation-based performance estimation of a design point, i.e. on an
application-architecture mapping, each task of the application must be associ-
ated with its costs, e.g., in terms of execution and/or transfer time.

These costs depend on the particular resource a task is mapped onto. This
means that every one of our Click/Cracc tasks must be characterized for the
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range of resources it can be mapped onto in order to enable design space ex-
ploration. The results of the characterization are gathered in a performance
database, which becomes another input of the simulation as figure 4.12 shows.
At runtime, the simulator accesses the database to lookup the costs of a {task,
resource} pair.

Dynamic access is required since the particular costs can depend on the data
and its flow through the task, i.e. Click/CRACC element. This is demonstrated
in figure 4.14 (left). The figure shows the entry and exit points of a timed push
element. A packet pushed into the element (>) may be forwarded (O) or ter-
minated locally (L). In addition, the element can be triggered by a timer (o).
Usually, each arc from entry to exit point has different costs. In case of data-
and state-dependencies these costs may vary dynamically, as the CRACC source
code in the right part of the figure shows. Depending on the state (_forward)
the push function either takes the if or the else branch. There is an exit point
for the element (out), which is taken only in the if-branch. Interestingly, the
push function does not actually terminate at this point due to Click’s function
call communication semantics. Instead, the OUT function returns from down-
stream processing, the element continues its processing and eventually exits at
return (see also Figure 4.17 on page 85). Due to this behavior, the perfor-
mance annotation must happen on the granularity of basic blocks. For the

run PUSH_BEGIN( Element, this, port, p) {
if (this->_forward) {

OUT ( this, port, p, "push-out")
} else {
this->_store = p;
TIMER_SCHEDULE ( this, this->_interval);
UPDATE_META ( this, “push-later");

push »  Click Element out }

RETURN (this, "push-ret");
} PUSH_END( Element, _this, port, p);

1

RUN_BEGIN( Element, this) {
if (this->_store) {

OUT( this, 0, this->_store, "run-out");
}

return RETURN (this, "run-ret");
} RUN_END( Element, _this)

Figure 4.14: Entry and exit points of a Click element: left) on the Click level,
right) in CRACC'’s source code.

lookup, relevant blocks are tagged (see the labels of the OUT, RETURN, and
UPDATE META macros in Figure 4.14, right). Tags and lookup enable the
performance annotation at runtime.

Individual Click tasks can be characterized based on simulation, profiling,
and estimations. For performance indicative results, we use Cracc and the
processors instruction set simulators as described in Section 4.4 to character-
ize tasks running on embedded processors. The characterization of Click tasks
mapped onto hardware depends on the RTL of the hardware building block. In
any case, cycle or instruction precise data are derived. Section 4.7.4 following
lateron in this chapter describes how the data is used and interpreted for perfor-
mance simulation. In the next section, we will first focus on the Click/SystemC
interface.
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4.7.3 Embedding Click in SystemC

For performance simulation, we intend to execute click graphs within a SystemC
environment. This way, the concurrent architecture platform can be modeled in
SystemC as precisely as desired from building blocks (platform resources) with
correct communication behavior (in terms of timing preciseness and bit trueness)
while the function within a building block is specified by a Click application task
graph. This means that an interface between SystemC and Click is required,
which enables us to:

slave a Click task graph into the SystemC simulation,

e execute Click graphs on different resources truly concurrently,

e dynamically annotate performance feedback, and

e map Click communication onto SystemC semantics and data types.

Existing approaches [132] that slave Click into discrete event simulation en-
vironments neither expose the concurrency of application nor the processing
time to the simulator. Instead, they slave the Click engine into their simula-
tion. Scheduling and arbitration of elements is left to the Click engine. The
simulation time does not advance during the execution of elements. This means
that the application is treated as if it were mapped onto a single processing
node and as if the processing time were negligible. A tee element, for instance,
which duplicates an input packet to all of its outputs, would output all copies
in a burst just a delta time after it received its input.

In SystemClick, the concurrency of the Click application graph is fully ex-
posed to the SystemC simulator and Click elements consume processing time.
This is achieved naturally by executing concurrent task chains within different
SystemC processes that synchronize their processing time with the simulation
time at points of I0. We achieved this by encapsulating a (otherwise unchanged)
Click task graph with FromSysC and ToSysC communication wrappers reusing
the concept of IO wrappers as described for partitioning and mapping CRACC
in Section 4.5. In addition, we changed the implementation of time and timers
to reflect the SystemC environment.

Wrappers for communication and timers

SystemClick wrappers interface Click with SystemC and vice versa. This means
that they first of all map Click’s and SystemC’s communication semantics and
data types. In addition, they synchronize processing and simulation time, model
operating system processing overhead, and associate task chains with resource
managers.

Figure 4.15 shows how wrappers encapsulate the flow of data and control
from and to Click task chains. A click chain can be triggered because there
is data (push), data is required (pull), or a timer has expired (run). In all
cases control is given to the Click task by one of the chain-starting wrappers
(FromSysC-push, ToSysC-pull, Timer) as soon as the associated platform re-
source permits (more on this in Section 4.7.4). During execution, the task chain
may request or produce data tokens (FromSysC-pull, ToSysC-push) or may
schedule a timer for activation. When the task terminates, control returns to
the activating wrapper and SystemC.
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Figure 4.15: SystemClick wrappers (push/pull/timer) which integrate concur-
rent Click task chains into the SystemC environment.

On the SystemC-side, data communicating wrappers (From-/ToSysC) are
sc_modules with ports for signals. In the case of communication between el-
ements mapped onto different platform resources, a ToSysC and a FromSysC
wrapper are inferred that are directly connected by a sc_buffer signal of the
Cracc packet type, following the principles described in Section 4.5.3. In case
the communication is terminated on the SystemC-side, specialized wrappers
may convert data types. This is, for instance, required for pulls (pushes), which
are intended for sampling (setting) the state of an environment signal. In this
case, the signal state will be converted into content/color of a data packet and
vice versa. Due to their special semantics, these wrappers must be instanti-
ated explicitly by the application developer. The developer may also choose
to refine pull communication in between task chains mapped onto concurrent
resources. Strict and semantically correct mapping would require the puller to
block until the data is generated by the pullee. More efficient implementations
involve FIFOs, which effectively convert pull to push communication semantics
(cf. Sec. 4.5.3). SystemClick supports the developer by providing a set of
wrappers with sc_fifo interfaces that may be used for platforms with hardware
support for FIFOs such as NOVA (see Sec. 4.6).

Processing and simulation time

Wrappers provide the infrastructure for accumulating the annotated processing
time of Click elements and its synchronization with the simulation time.

Every time a wrapper triggers a Click task chain it creates a so-called Meta
object which provides an interface to the processing time accumulator and the
performance database lookup. This object travels through the Click graph with
the flow of control. This is implemented by an element’s entry, update, and exit
point macros (see 4.14 on page 79) which pass a reference to Meta and update
it with their processing time. If the flow of control reaches a wrapper again,
i.e., there is a point of communication with the environment, the processing
time is synchronized with the simulation time by a wait statement. Then, the
communication takes place and the processing time accumulator is reset.

Figure 4.16 illustrates the relation between processing and simulation time
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using a simple Click graph which receives a packet (A) from the SystemC envi-
ronment (FromSysC a), duplicates it by the Tee (b), and forwards both packets,
the original (A) and the copy (B), to the SystemC environment again (ToSysC
¢). The arrival of Packet A at the wrapper starts the processing of the graph.
Along with the flow of A, processing time is accumulated. By the time the
packet reaches wrapper c, a processing time of a+b+c has accumulated but the
simulation time has not advanced. The wrapper now calculates the simulation
time from the Meta time value and waits until this time elapses. Then, it for-
wards packet A to the SystemC environment (OUT A), resets the processing
time, and returns control to the Tee (b). The tee stores a copy of A, which
is forwarded as B to wrapper c, too. This time, a simulation time of ¢’+b+c
has to elapse before packet B can be pushed out. Wrapper ¢ returns control
to Tee b, which returns it to Wrapper a. The return chain, too, accumulates
processing time (of ¢’+b’+a’). Thus wrapper a issues a wait as well.

processing time
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g wait %
c g
S| e e
© wait
g
ouT & ’ ’
S b a
B wait push(p) ~_ retumn _
-t

Figure 4.16: Synchronization of accumulated processing time and simulation
time by wrappers (left) for the simple Tee graph (right).

In the example, both wrappers annotate processing time in the forwarding
and the return path. This time represents the computational overhead of a plat-
form for operating system aspects such as, e.g., communication, event handling,
and context switching.

If the whole Click graph is mapped on a single CPU resource and perfor-
mance annotation is enabled, as in our example, the original Click behavior can
be observed: Packets are consumed and generated in intervals that depend on
a task chain’s execution time. Without performance annotation, i.e. with zero
processing time, the tee element will output its packets at once as a burst at
scheduling time. This resembles the behavior of ns-Click [132], which slaves
Click into the ns-simulator.

4.7.4 Resource managers

Architecture resources are modeled by resource managers. Resource managers
describe a resource in terms of their performance-relevant aspects, namely re-
source type, operating frequency, and arbitration policy.

Click communication and computation tasks are mapped onto resources by
associating the task with a resource manager. Concurrent tasks may compete for
a resource. The resource manager arbitrates these tasks (its clients) according
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to a particular arbitration policy. The winning task then locks the resource for
a specific amount of time; the other tasks are blocked.

The arbitration policy can be selected explicitly per resource instance. A
number of policies are relevant in our context:

e First-come-first-serve (FCFS) — Clients are served in the order they re-
quest the resource. The order of two request occurring at the same time
is undefined. FCFS is the arbitration scheme used by Click running tasks
in software on a CPU. In this case, requests are triggered by IO and timer
events that start Click task chains.

e Round-robin (RR) — This arbitration scheme selects clients based on
revolving priorities. The most recently served client becomes the lowest
priority. RR is used, for instance, to arbitrate the access of a CPU cluster
to a communication bus.

e Statically or dynamically prioritized (SP/DP) — The arbitration of clients
is based on priorities that may be set once at association time (statically)
or may change dynamically depending on a client’s state and data.

The duration d of the resource lock for a task t depends on the task itself, the
resource type r, and the operating frequency f, as shown in equation 4.1. The
return value of the lookup cost(¢,r) in the performance database is interpreted
as cycle count and scaled by the operating frequency.

[cycle]

cost(t,r)
[cycle/s]

f

Resource managers represent computation as well as communication re-
sources. The exact meaning of a resource’s parameters and lock time depends
on the resource type.

d(t,r) = with  [us] = (4.1)

Computation Resources

Computation resources are associated with Click tasks via the From/ToSysC or
timer wrappers that start a Click task chain.

Computation resources may be characterized in the performance database
using instruction counts rather than cycles. In this case, the frequency param-
eter f. is specified in instructions/second, i.e. the frequency f must be scaled
with the CPI of the resource (eq. 4.2).

d(t,r) = cost(t, ) = cost(t,r) * CPIr)
fe !

In both cases reflects d(t,r) the processing time of the Click task ¢ on the
resource r. In addition to the tasks of a chain T waiting times w;, for non-
available IO resources contribute to the overall execution time D in case of
blocking IO semantics:

(4.2)

D) =3 P S ) (43)

teT Je
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Whether an IO port has blocking semantics or not depends only on the
connected SystemC link. A simple sc_buffer, for instance, does not block. Sys-
temClick’s sc_buffer_rm blocks in case the associated communication resource is
not available.

Communication Resources

For a communication resource r specifies the performance database the transfer
costs in cycles per unit. The frequency parameter f' = N x f, which is modified
with the number of transferred bytes per cycle scales this value to a transfer
time using the message length [ as an extra parameter:

l
d(t,r,1) = cost(t,r) N7

7 (4.4)

with [us] = [ :
byt
unit ﬁ} [cycles/s]

cycles] [byte]

Communication resources are associated with modified SystemC communi-
cation channels. Such channels lock/unlock the resource depending on transfer
time and access semantics.

A write to the channel blocks the source until the resource can be locked.
The resource is unlocked again as soon as the channel is read. The read is not
affected by a sink’s ability to lock its resource reflecting a single input register
at the sink. Another write (to the same channel) may overwrite the previous
data if it is not consumed in time.

4.7.5 Statistics

To support the evaluation of a design point’s performance a range of statistics
is provided by SystemClick. Depending on the required data, the designer
may choose statistics functions that are associated with different SystemClick
objects, namely resources, IO ports, or individual data packets. Over their
lifetime these objects gather data that is reported by their dumpstats() function.

Resource statistics

Resource managers gather data on utilization and associated clients. In case of
computation resources they are associated with Click elements, i.e. tasks. In
case of communication they are directly associated with named point-to-point
Click communication channels (links) and are thus indirectly associated with
the TO sources and sinks of a named communication, too. For resources, the
dumpstats() function reports:

e ID and type — Resources are identified by their ResourcelD. The type
corresponds with a column in the performance database.

e Number of clients — The number of clients that currently are and have
been associated over the object’s lifetime.

e Utilization — The processing/transfer time distribution per named client
and the resource idle time are reported.
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e Per client — Total processing/transfer time, number of invocations/transfers,
minimum, average, and maximum processing/transfer time, and mini-
mum, average, and maximum waiting time (per invocation).

IO element statistics

To refine the resource statistics, From- and ToSysC IO elements may gather
statistics on their flow of tokens broken down by token size (i.e. the packet length
in case of packets) or token color (i.e. the data’s value in case of non-packets).
Dumpstats() reports: name and type; number of passed packets/tokens; his-
togram of packet lengths / token color; and minimum, average, and maximum
processing time per length/color.

Start points of tasks (FromSysC_push, ToSysC_pull) report on a per-task
basis. They account for the full processing time of a task for the triggering
token/packet. Other IO elements such as a push output actually report the
individual processing time of a token/packet. Figure 4.17 shows the difference
for a Tee element which duplicates packets received at its input.
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Figure 4.17: Difference in 10 packet statistics of task starters (left) and other
IO elements (right).

Per packet statistics

Per packet statistics are helpful to follow packets on their path through the
system across different resources. For this purpose packets store the sequence of
passed elements over their lifetime. For latency and delay analysis, timestamps
for creation and expected deletion/processing time can be annotated. They may
be used, for instance, to detect missed deadlines.

4.8 Quality of Results

The SystemClick framework in combination with the CRACC/NOVA platform
promises a fast yet performance indicative way for the evaluation of application-
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architecture mappings. This section quantifies this claim in terms of the achieved
simulation performance and quality-of-results.

4.8.1 Simulation performance

To assess the simulation performance of SystemClick, we are looking at two ap-
plication benchmarks exhibiting different characteristics, a) the transmit pro-
cessing chain of the wLAN model, and b) the full PCI Express model. The
wLAN benchmark is a kernel which exposes the most compute-intense function
of the protocol (tx frame processing) while the PCI Express model has much
less computation per packet but is a complete application. Both applications
will be exhaustively discussed with respect to their performance in Chapter 5.
Table 4.2 compares the simulation speed for the benchmarks. As a baseline,
we use the CRACC code generator and execute the applications on a commercial
instruction set simulator (MIPSSim?) representing a single-core architecture.
The simulator is configured for fast execution, i.e., instruction instead of cycle
resolution and IO intense tracing features disabled. As an upper bound for the
speedup, we also execute the applications natively on a x86 host system.

Table 4.2: Relative simulation speed for two benchmarks

Type Description wLAN | PEX
MIPS ISS performance 1 1
Standard SystemC! | behavior only 1280 572
SystemClick performance annotations 200 80
SystemClick performance + 2PE architecture 125

SystemClick add. sync + trace + prints 80

Native X86 behavior only 3400 4118

1) SystemC 2.2 (Open Source Kernel)

Compared to the baseline, a speedup of two orders of magnitude (80-200)
can be achieved by the simulation of a single-resource application-architecture
mapping with performance annotations. The simulation speed varies with the
benchmark due to different element granularities and the frequency of SystemC
function calls.

Also, the simulation speedup decreases with model complexity. Adding an-
other PE and a shared communication resource, for instance, reduces the speed
by 38% (from 200 to 125) for the wLAN benchmark. For such a setup, how-
ever, two communicating instruction set simulators would be required for a fair
comparison. Adding tracing and verbose outputs costs 30% of the speedup.

Our speedup results are in line with the ones reported, e.g., in [34]. Looking
at multimedia function kernels, the authors in [34] measure speedups between
93 and 332, averaging at 200. However, the multimedia function kernels may
be more favorable for speedup measurements since they most likely require
more computations per token (i.e., image) than our applications leading to less
frequent SystemC interaction and better performance. In addition, [34] uses
performance annotations that are statically compiled-in while SystemClick ac-
cesses a performance data base at runtime. The use of static annotations or
efficient caching therefore may further improve SystemClick’s performance.

2www.mips.com, part of the MIPS software toolkit
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4.8.2 Simulation accuracy

We are comparing the accuracy of performance-annotated SystemClick with the
instruction set simulation using the wLAN benchmark.

For the simulation, the database of our framework must be populated for
Click elements/subfunctions. The benchmark has both state and data depen-
dencies (e.g., fragmentation) leading to several tagged exit points per element
in the database. Applying the IMIX packet distribution, it is profiled on the
ISS. The best match with the ISS performance is 1.54% when the profiled case
is re-simulated with SystemClick. For longer runs, accuracy slightly drifts, see
Table 4.3.

Table 4.3: SystemClick accuracy: Total number of instructions

IS Simulator [insn] | Performance Sim. [insn] | Accuracy [%]
1.948M 1.978M 1.54
3.580M 3.653M 2.04
8.162M 8.364M 2.47

The accuracy significantly depends on the quality of profiling data and the
similarities of the traffic load at profile and simulation time. Changing the
packet size distribution for the simulation, for instance, would lead to further
inaccuracies ranging from 4% to 7% caused by the averaging effect and length-
depending discrepancies of the cycle count. This is why multiple profiles for
different packet length distributions (min, typ, max, and imix) are being main-
tained.

4.9 Chapter summary and conclusion

We have developed a comprehensive methodology for the application-driven
development and deployment of programmable platforms, which we will use for
the exploration of a flexible interface solution. In fulfilment of the requirements
listed in Section 4.1, we are concluding on the key facets of our methodology:

e Our approach (published in [172]) is based on the Y-chart which enables
the design space exploration by the separation of application, architecture,
and mapping concerns.

e Applications (the packet-oriented IO protocols) are specified in a modular
way using the Click model of computation. In order to ensure representa-
tive and performance-indicative models, the Click simulation framework
is used to verify the protocol function independent of the implementation.
The resulting application description is correct in terms of function and
required protocol timing.

e From Click specifications, we derive efficient implementations for embed-
ded platforms using our CRACC code generator (published in [173]).
CRACC understands Click and generates C code for embedded multi-
processors, which is compiled individually per processing element using
the element’s native tool chains. A Click element is a natural encapsula-
tion of data and processing required for a certain task. The number of
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mapping and partitioning choices can thus be reduced considerably to a
set of rational alternatives.

As a modular and programmable platform for packet processing applica-
tions, we have introduced NOVA (published in [166]). NOVA is based on
unifying sockets and common packet passing and communication infras-
tructure for integrating various building blocks. Heterogeneous NOVA
multiprocessors can be programmed intuitively and productively in the
CRACC framework. Our results show that the overhead of hardware and
software modularity is reasonable for NOVA compared to state-of-the-art
techniques and that NOVA is usable for systematic application-driven de-
sign space exploration.

For early design space exploration, we have presented the SystemClick
framework (published in [171]). SystemClick abstracts platform archi-
tectures as sets of shared resources, which arbitrate communication and
computation tasks and consume time. From application, architecture,
and mapping specifications, the framework generates SystemC simulation
models that can be executed natively using a performance database. In-
dicative performance data is derived, e.g., from profiling partial CRACC/
NOVA implementations. The combination of performance modeling and
functional correctness enables the quantitative assessment of implementa-
tion alternatives for timing critical protocols. Sensitive design parameters
such as the arbitration of shared resources and granularity of processing
kernels are exposed to the designer. The integration with SystemC finally
allows the reuse of simulation and analysis as well as refinement infras-
tructure.

In the next chapter, we will deploy our exploration tools and methodology to
investigate the feasibility of a programmable interface platform.



Chapter 5

A Programmable
Architecture for
Packet-oriented
Communication Interfaces

This chapter investigates the feasibility of a programmable platform for packet-
oriented communication interfaces.

Programmable solutions are particularly interesting for the implementation
of the discussed standards since they provide us with a platform for all pro-
tocols and allow us to adapt to late changes in the specifications. Remember
that the processing of the investigated communication protocols is a peripheral
service to the SoC’s main processing core, i.e. this peripheral is separate from
the micro-architecture of the multi-processor system-on-chip, as it is currently
deployed. This section will elaborate on the question whether existing building
blocks of a processing platform such as processing engines and communication
infrastructure can be used again in order to implement the peripheral function-
ality.

Following our application-driven methodology of the last chapter, we will
first look at a fully programmable solution based on an embedded standard
core. Such a solution is most flexible as all functions are software, implemented
in plain (and portable) ANSI-C, and there is no special purpose hardware. This
solution is a corner case of an implementation and provides the necessary data
for the exploration of the design space along several axis. Analyzing the perfor-
mance, we quantitatively explore the design space with respect to number and
type of cores, instruction set extensions, application-specific hardware acceler-
ators, and communication topology. This results in an optimized architecture,
which will be presented toward the end of this chapter. Furthermore, for the
analysis, we quantify the overhead which is introduced by the modularity of the
hardware/software platform and compare our solution with related work.

89
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5.1 Fully programmable solution

For the profiling and analysis of the fully programmable solution, we will look
at two protocols, PCI Express and wireless LAN. PCI express has the high-
est throughput requirements while wLAN requires the most complex protocol
processing. Their joint requirements are the worst-case to be supported.

5.1.1 Architecture setup

Figure 5.1 shows the architecture of a fully programmable system based on a
single embedded core. The module only comprises the processing core, its in-
struction and data memories, and memory-mapped transfer queues. All protocol
functions are implemented in software on the embedded core.

Memories and transfer queues can be accessed with one cycle latency, i.e.
they run at the same frequency as the processing core. The data memory has an
extra interface to the SoC core which is used to transfer transactions between
SoC core and IO module concurrently to the IO module operation.

In transmit direction data flows through the architecture as follows: an out-
bound transaction is stored in the data memory (1) and the associated message
comprising the packet descriptor is sent to the module (2). The core reads the
descriptor from its inbox (3) and processes the packet as specified by the Click
task graph (4). If required, the packet is queued and scheduled (5) before its
data and extra processing information can be sent to the PHY queue (6).

=

il

PHY
Function

ZIE

@ Data
Mem

Figure 5.1: Fully programmable single-core architecture. All building blocks
run at the same clock frequency. Fifos and the dual-port memory synchronize
with the environment.

Not shown in Figure 5.1 is the additional PHY status register (read-only)
which maps important state of the PHY function directly into the CPU memory
space. It may be used to access (pull) the immediate link state, e.g., carrier sense
in the case of Ethernet and wireless Lan. Its use is optional and depends on the
protocol implementation. Alternatively, PHY processing state notifications can
be generated (pushed) using the PHY queue as mentioned before.

Note that the protocol-specific PHY function consistently includes frame-
ing/deframing for all protocols. While this is consistent with the standard for
most protocols, GbE requires some adaptation logic to connect to standard
compliant PHYs (GMII interface).
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5.1.2 Profiling results

For the profiling and the analysis of the fully programmable architecture, we
will examine two protocols, PCI Express and wireless LAN. PCI express has the
highest throughput requirements. Wireless LAN requires the most complex pro-
tocol processing. To report the results, we follow the different packet-processing
paths for receiving and transmitting packets as derived in Section 3.3. For each
path the overall instruction counts are listed, which are based on the measure-
ments of the individual functions. Those functions that contribute most are
identified and listed separately. The overhead of this architecture for task han-
dling and packet communication will be quantified at the end of this section.

Profiling procedure

For the characterization at the granularity of Click elements, we cut our ap-
plications into subgraphs. These subgraphs either contains multiple elements
that are executed sequentially or they contain single elements that require care-
ful simulation due to processing complexity and deep state such as the DCF
function of the wLAN model. Each subgraph is mapped individually onto the
processor target using the CRACC code generator as described in Section 4.4.
CRACC generates modular and portable ANSI-C code suited for a range of pro-
cessors. We chose the MIPS family of embedded processors since it provides a
good performance/area foot print as will be shown later (cf. Fig. 5.6). The core
interacts with its surroundings as described in the previous section (Sec. 5.1.1).

Profiling uses the core vendors tool chain which is based on GNU’s compiler,
gprof profiler, and comes with the cycle-precise MIPS-sim simulator. The tools
are incorporated into our work flow. Compilation throughout the profiling pro-
cess was carried out with -O2 and -08 optimization. Simulation statistics are
post-processed to extract results per Click element. As GProf relies on a func-
tion call graph produced by instrumented code, two separate simulation runs
are used to achieve more accurate results without profiling overhead.

The measurement results reflect the computation per packet and function
for a constant packet stream without bursts. The CPU is assumed idle with
only one task graph running. This separates the effects of traffic characteris-
tics and resource availability from the actual computation and communication.
The measurements were executed with four different packet size distributions
following the simple Internet protocol mix [2]: Minimum (64 B), Typical (550
B), Maximum (1498 B), Simple iMix (7:4:1).

PCI Express execution profile

The profile of executed instructions for the processing paths of PCI-Express
is listed in Table 5.1. The table lists the common Cyclic Redundancy Check
(CRC) function separately since its profile depends on the packet length. The
remainder of the processing only accesses the packet header and is independent
of the packet length. Thus, the number of executed instructions, e.g., for an
outbound transaction of minimal size is 331 4+ 652 = 983 instructions. That
makes path A the most instruction-consuming case. Link layer packets for
acknowledges and flow control are only 6 bytes long.
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Table 5.1: Single packet instruction counts for the PCI express model.

Path | Description Instructions / packet size
min typ max imix
A Outbound transaction 331
B Inbound transaction 205
C Outbound Acknowledge* T
D Inbound Acknowledge* 255
E Flow control (Tx)* 65
F Flow control (Rx)* 163
Common functions
+ CRC 652 6285 16712 3868

*) The frame length of control frames is 6 Bytes.

Wireless LAN execution profile

Table 5.2 summarizes the profiling results for the different processing paths of
the wLAN model. Figure 5.2 shows the corresponding diagram. The instruction
counts for encryption and CRC calculation are listed separately as before.

Table 5.2: Single packet instruction counts for the wireless LAN model.

Path | Description Instructions / packet size
min typ max imix
A Outbound dataframe 2326 2618 2591 2445
B Inbound dataframe 1151 1251 1171 1186
C Ackn Tx [16B]** 510
D Ackn Rx [16B]** 739
G RTS tx, CTS rx** 1443
H RTS rx, CTS tx** 1363
I Management Tx* 3132
J Management Rx* 3250
Common functions
+ CRC 652 6285 16712 3868
+ Encryption (WEP) 8515 31464 74129 32299
+ Decryption (WEP) 8478 31427 74091 32262

*) Beacons. **) The frame length of control frames is 14-20 Bytes.

The results show the handling of management frames, i.e. beacon generation
and reception, to be the most compute-intense processing paths. However,
management frames are processed relatively infrequently compared to data and
control frames. Beacons, for instance, are generated in tens to hundreds of
milliseconds intervals, and are therefore not performance-critical. Of the more
frequent data and control frames, the transmission of data frames in outbound
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Figure 5.2: Single packet instruction counts per processing path for wLAN
excluding CRC and WEP functions.

direction is the most instruction consuming case.

Since most of the payload-dependent processing can be attributed to the
CRC and crypto (WEP) functions, the numbers do not depend on the packet
length much. The little influence left is due to fragmentation and reassembly
related rate changing effects.

Overhead for communication and task handling

In addition to the protocol function, the overhead for packet IO must be taken
into account. This means that not only the memory-to-memory packet pro-
cessing on a CPU system must be considered but also the processing overhead
required to transfer the packet, i.e. the descriptor and/or the packet data from
the inbound interface into the memory and from there back to the outbound
interface. In case of the fully programmable solution, which relies on the CPU
for the data movement, the overhead includes:

e SoC interface inbound — Packet descriptor messages from the SoC core
are received in the inbox. They are read by the CPU and stored in data
memory. Then, the associated task chain is identified and started.

e SoC interface outbound — A local packet descriptor is moved from the
local data memory into the outbox.

e PHY interface outbound — Packet context and packet data are moved
from the data memory into the outbound PHY fifo.

e PHY interface inbound — Packet context and packet data are read from
the inbound PHY fifo and stored in the local memory. In the process, a
packet descriptor is generated and the protocol task chain is started.

The number of required instructions depends on the amount of data that
are transferred and the number of tasks that reside on the processor. Table 5.3
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quantifies the overhead for packet descriptors of 64 Byte and the usual distribu-
tion of packet sizes. These overhead functions are embedded into the application
without further penalties (such as interrupt handling and context switches) in
the critical path.

Table 5.3: Instruction counts for task handling and packet 10.

Read descriptor from inbox (64B) 501
Identify and start task chain 702
Write packet context to PHY fifo (64B) 50
Write packet data to PHY fifo (min, typ, max, imix) 50, 416, 1125, 262
Read packet context from PHY fifo (64B) 50
Read packet data from PHY fifo (min, typ, max, imix) 50, 416, 1125, 262
Start task chain (Npgsks = 1) 20
Write descriptor to outbox (64B) 50

1) 2 + Spp/4*3 with Spp = 64 2) approx. 12 + 7*Npgsks With Npgers = 8

Many eco-systems of embedded cores integrate hardware support for timers
and counters. Throughout our analysis, we therefore assumed that the han-
dling of the global time structure (which usually is stored in multiple words in
local memory and is periodically updated using a hardware counter), is avoided
as another source of overhead by mapping the system time into a permanent
hardware register (64b) that is always up-to-date.

5.1.3 Performance analysis

To analyze the performance of the single processor system, we will estimate
the clock frequency that is required to meet the throughput requirements of
the protocols. For this purpose, we will select the most cycle-consuming case
from our processing paths. That is the transmission of data transactions (path
A). For the analysis, we will further assume that such transactions are sent
out back-to-back. This means, our results will be pessimistic since we do not
consider less cycle-consuming cases and protocol-related gaps between frames.

Throughput requirements

PCI Express. For PEX, the required throughput at the MAC/PHY interface
is 2.0 Gb/s per unidirectional link. There are no interframe gaps at the PHY
layer, the bandwidth is fully utilizable. For the throughput estimation, we
assume a cycle count per instruction (CPI) of 1.2 which represents the MIPS
MA4K processor for our application domain, as we will explain in Section 5.2.1.
Considering the different packet sizes, clock frequencies between 3.6 and 5.8 GHz
are required for packets ranging from 64 to 1512 Bytes, as Figure 5.3 shows.

Wireless LAN. The IEEE 802.11g standard has with 54Mb/s on the air
the highest throughput requirements of the considered wLAN protocols. At
the MAC/PHY interface the throughput depends on the packet size since the
protocol defines interframe gaps for sequences of data frames of at least 28us
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Figure 5.3: Required clock frequencies to meet PCI Express throughput require-

ments depending on the packet size.

(DIFS time) and a PHY layer overhead that is equivalent to another 26us per
packet [49]. Due to this considerable overhead, clock frequencies between 223
and 415 MHz are required. Largest contributors are CRC and WEP encryption

functions which require up to 96% of the cycles.
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Figure 5.4: Required clock frequencies for the 11g wLAN throughput depending

on the packet size.
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Realtime requirements

PCI Express is latency-insensitive. Wireless Lan protocols, however, define
firm deadlines for transactions of stations and access points on the air, see
Section 3.3.5. For the MAC time budget most relevant is the timing for sending
a response for a just received frame.

SIFS = 16us
Inbound frame Outbound response

12ps 2us | 2us
RX PHY MAC | RF
{ 16ps Context

‘ 20ps Frame Data

Figure 5.5: MAC time budget for response frames.

A typical response time is 16 us as defined in IEEE 802.11 [36]. In case of
11g the time is defined as a 10 ps SIF'S time plus an extra frame extension time
of 6us. Since the interframe gap is defined on the air, the PHY receive and
transmit processing delays are included in the interval and must be subtracted.
Figure 5.5 shows this in detail. In the Figure, the last byte of the inbound frame
is given to the MAC by a Rx PHY only after 12 pus. The CRC can be calculated
and the MAC processing starts. For the response frame transmission, the Tx
PHY requires the frame data and context after different setup times. After
only 2 us, the MAC must signal whether a transmission will follow. The frame
context is required after 16 us. The first word of the frame itself finally must
be available after 20 ps. For the purpose of the analysis in this chapter, we will
focus on the frame context deadline. In order to be met, this deadline requires
the completion of the entire protocol processing.

Table 5.4: Estimate of the required clock frequencies for the realtime response
of 802.11 frames.

min max
Read data frame from PHY (PD+data) 100 1175
CRC processing 652 16712
Receive path processing 1151 1171
WEP decryption (resource not available) 8478 74091
Scheduling Overhead 70 70
Ack generation 510 510
CRC processing 326 326
Write context 50 50

Sum [Inst] 11337 94105
Sum [Cycles, CPI=1.2] 13605 112926
Required frequency [MHz] 850 7058

Table 5.4 shows the required clock frequencies for meeting this deadline.
Frequencies up to 7 GHz are necessary to support the required cycles. The table
assumes an idle resource which is available without delay for the processing of
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the received frame. In this case, the decryption function shown in the table
would not be part of the critical path since a packet can be decrypted after
its acknowledgement. On the other hand, the CPU may just have started the
processing of a large tx frame (dominated by the encryption function) so that
the WEP cycles represent the non-availability of the resource for a ballpark
frequency estimate. This will be discussed further in Section 5.2.4. Figure 5.15
(p. 113) shows histograms of the processing jitter for a busy core.

5.1.4 Observations

The fully flexible single-core architecture cannot fulfill throughput and realtime
requirements in all cases considered. Especially the high throughput rates of
PCI Express are difficult to achieve. In the case of the 11g wireless LAN proto-
col, the throughput requirement is moderate and would be achievable. However,
the required deadline for the response generation cannot be met for larger frames
(not even on an idle resource). To enable a processor based solution, the cy-
cle counts must be reduced and the realtime critical path must be shortened
significantly.

The performance analysis in particular revealed:

e Per-packet protocol processing — Most of the protocol processing happens
per-packet and is based on the packet context only, which is correlated
with the packet header. The context is either extracted from the header
or forms the header. The packet payload is rarely touched.

e Cycle-consuming per-byte payload processing — Those functions that ac-
tually touch the whole packet such as CRC calculation encryption, frame-
ing/deframing, are the most cycle-consuming functions.

e Non-deterministic processing times — The dependency of the payload
processing functions on packet length leads to irregular and monolithic
processing which makes performance prediction and task scheduling diffi-
cult if not impossible in some cases.

e Unexploited parallelism — The protocols exhibit data- and task-level par-
allelism which would enable partitioning and mapping onto concurrent
resources without data coherency problems.

Further design space exploration is required to find a feasible platform proposal.
In the next section, we will therefore explore several axes of the platform design
space and discuss their impact on the system’s performance compared to the
fully programmable single-core solution.

5.2 Design trade-offs and consequences

The required cycle counts for the fully flexible single-core architecture are too
high for an implementation. This problem can be addressed by different design
approaches which will be individually explored and quantitatively analyzed in
the following subsections. The fully flexible single-core solution serves as base-
line for this exploration of the platform’s design space.
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5.2.1 Core type and configuration

To compare the performance of different RISC cores and their compilers, we
profiled packet processing functions implemented in CRACC on a representative
set of synthesizable embedded 32bit processors using cycle-accurate simulators.

For the analysis we assumed a 90nm Infineon technology under worst-case
operating conditions. The cores were configured to there smallest area footprint.
Wherever possible, we disabled unused options such as caches, and cache con-
trollers. Most of the cores (PowerPC 405D, ARM926EJS [63], MIPS M4K [14],
ARC600 [63]) have five pipeline stages and run at clock frequencies of 290 to
440 MHz (Worst case). N-core [106] and ARMTY [5] have 3 pipeline stages, the
processing engine [133] has 4. These cores run at frequencies of 160 to 270 MHz.

The results published in [173] reveal that among the modern general pur-
pose 32bit RISC cores (ARM, MIPS, and PowerPC) the MIPS 4K has the
best performance/area trade-off for the packet processing application domain
(cf. Figure 5.6). For this reason, the MIPS 4k is used as the primary core for
our analysis.

250k
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200k =
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Figure 5.6: Performance of selected processor cores over core area for a packet
processing benchmark [173].

Among the smaller cores which trade off speed against area (ARM7, N-core)
or deploy a much reduced instruction set (packet processing engine), the N-
core would be a reasonable second choice. The N-core was developed to enable
efficient modifications on micro-architecture and compiler simultaneously — as
they are necessary, e. g., for the exploration of ISA extensions. The Processing
engine with its highly optimized but limited instruction set could not perform
well. Performance improvements that are achieved with the specialized instruc-
tions are annulled by insufficient general purpose instructions as matched by a
compiler. Improvements could be achieved by coding critical parts manually in
assembly. We will come back to these points later, in Section 5.2.3, where we
analyze the performance of an application-specific instruction set.

Core configurations

The impact of corner case configurations on the MIPS 4k’s performance is an-
alyzed using the cycle-per-instruction (CPI) measure. To derive the CPI we
profiled the most complex application, wireless LAN, and measured elements
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individually as well as the application as a whole. For the M4k, two configura-
tion options proved to be relevant:

e Memory interface — Configured with a unified memory interface (as it was
used in the previous section) the M4k has a CPI of around 1.45. This is
a significant performance penalty since the configuration with dedicated
interfaces for instruction and data (Harvard architecture) requires only
1.08 cycles per instruction.

e Fast multiply unit — The impact of removing the fast multiply unit is
rather small (CPI 1.13 vs. 1.08) and is limited to the few elements relying
on multiplications (e.g. those, that calculate transfer times in wLAN such
as SetDuration).

From the cycle-accurate profiling results for the M4K, the CPI ratio per
processing path inside every Click element can be computed. These CPIs range
from 1.0 to 1.2 with an average of 1.06 over the CRACC application library. This
is slightly better than the ratio for the complete application setup from above,
which included more branches in code for scheduling and calls to push/pull
functions. We therefore use 1.2 as the upper bound for our instruction-to-cycle
calculations in this chapter.

5.2.2 Application-specific hardware accelerators

Customized hardware accelerators can help to reduce the cycle-count require-
ments for the communication protocols by offloading compute-intense tasks.
Their impact on the system’s performance, however, depends on the way of
their integration into a system. Before we discuss the performance impact, let
us therefore first look at different integration patterns.

Accelerator integration

With respect to the flow of control and data hardware accelerators, can be
deployed following different strategies:

e Flow-trough (FT) processing — Flow-through coprocessors usually pro-
cess data while they pass through the unit. The work in a pipelined fashion
as pre- or post processors for the main processing unit.

e Lookaside (LA) processing — Lookaside accelerators are slaved to the
main processing unit. They are operated similarly to function calls. The
main processing unit passes commands (function’s name) and data (pa-
rameters of the function) to the accelerator and receives the results of the
processing.

Flow-through engines can be designed to run fully autonomous and parallel
to the processor. This means that they can offload all processing cycles from
the processor without introducing extra overhead for communication and syn-
chronization. LA engines, on the other hand, require processing cycles for the
transfer of information. Depending on the complexity of the operation they
may still run concurrently to the processor. But in this case extra overhead for
synchronization will be required in addition to the communication.
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Performance impact

The execution profiles for the fully programmable solution are dominated by
the payload processing functions (cf. Tables 5.1 and 5.2). Offloading them to
special purpose accelerators can relieve the cycle budget significantly.

This insight is not new. CRC units, for instance, are usually implemented
in hardware and efficient flow-through solutions exist [70] and are being used in
network processors. We therefore assumed full acceleration for this task.

Another cycle-consuming aspect is the processor’s involvement in the move-
ment of data between transfer fifos and local memory. A DMA hardware ac-
celerator, which moves the data from the transfer fifos into the local memory
and vice versa, could run concurrently to the processor and relieve it from this
burden. Such a DMA engine must be managed by the processor in a lookaside
fashion. To enable decoupled operation, the coprocessor has inboxes (command
queues) and outboxes (result queues). In a steady state, the processor initiates
a transfer (write) every time the result of the previous one (read) is consumed.
Including status check, ten instructions are required for such a transfer.

Assuming hardware acceleration for CRC and a DMA engine for moving the
packet data, the overall system performance for PCI Express could be improved
as shown in Figure 5.7. With the accelerators, only the protocol processing is
left which is constant per packet so that the required clock frequency decreases
with packet size. If the DMA engine is used for the packet descriptor as well,
the IO overhead can be reduced further and the required cycles would decrease
by another 9%.
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Figure 5.7: Impact of hardware accelerators for DMA and CRC on the required
clock frequencies for PCI Express.

The same hardware accelerators for CRC and packet data DMA applied to
wireless LAN save up to 19% of the cycles as Figure 5.8 shows. In this case clock
frequencies up to 338 MHz are required. If the WEP encryption/decryption
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elements are accelerated as well, the required frequency shrinks to less than 50
MHz. However, encryption is only used by wireless LAN, and the required cy-
cles are moderate. Multi-standard security coprocessors usually require consid-
erable resources, see, for instance, the implementation in [187] which describes
a (micro-) programmable coprocessor solution. Leaving encryption executed in
software would, therefore, be an option in our case.
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Figure 5.8: Impact of hardware accelerators for DMA, CRC, and WEP on the
required clock frequencies for wLAN.

5.2.3 Application-specific vs. general purpose ISA

This subsection explores the trade-offs in programmability and speed between
a general purpose and an application-specific instruction set (ISA). In order to
derive computational requirements on an application-specific instruction set we
define a processing engine with an micro architecture which is optimized for
packet processing. We then derive static profiling results for PCI-Express as
the specification with the highest throughput requirements, and compare the
results to our fully programmable solution.

Micro-architecture Model

As an application-specific instruction set processor (ASIP) targeted at packet
processing tasks, it is clear that we need specialized instructions for bit-level
masking and logical operations [133]. We therefore base our simplified micro-
architecture model on the processing engine used for the comparison of cores in
Section 5.2.1 which is comparable to the one published in [133]. We also assume
support for a large number of general-purpose registers (GPRs) per thread.
Intel’s processing engine [31], for instance, provides 64 GPRs per thread. We do
not believe that the size of the register file is a limiting factor of our application.
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Indeed, our analysis showed less than 30 registers used concurrently in the worst
case. We, therefore, do not discuss the influence of register spills in this context.
The data path is assumed to be 32 bit as in all major network processors. Since
we consider reliable protocols, the support for timers is mandatory. Hardware
timers are implemented using special registers and can thus be accessed quickly
(see also Section 5.1.2).

Simplified Instruction Set with Timing

The following instruction classes are used in order to statically derive the exe-
cution profile of our Click elements. An application-specific, register-to-register
instruction set is assumed to support bit-level masks together with logical, arith-
metic, load, and store operations to quickly access and manipulate header fields.

Arithmetic operations (A): additions and subtractions take one cycle.

Logical operations (L): such as and, or, xor, shift, and compare (cmp),
take one cycle.

Data transfer operations:

— Load word (ldr) from memory: two cycles latency from embedded
RAM.

— Load immediate (Idi), move between registers (mur): take one cycle.

— Store word (str) to memory: one cycle latency on embedded RAM.

Branch instructions (B): two cycles latency (no consideration of delay
slots).

Our Click elements are annotated with a corresponding sequence of assem-
bler instructions that are needed to perform the task of the element. These
assembler programs of course depend on particular implementation decisions,
which will be described next.

Optimized Implementation

For the implementation, we assume an optimized implementation of Click task
chains (cf. Sec. 4.4.3). Click elements that belong to one chain are mapped to
the same thread of the processing engine and share temporary registers, e.g. a
pointer to the current packet descriptor does not need to be explicitly transferred
to the next Click element. Furthermore, the code from Click elements within
push and pull chains without branches on the same thread can be concatenated
so that jumps are avoided.

We assume the IO overhead for the ASIP to be the same as before. The
movement of the packet descriptor from and to the registers of the processing
engine takes 18 cycles. Another 64 cycles are required for management and
scheduling of a small set of software tasks.

Profiling Procedure

The static profiling of our Click elements is executed as follows: Given our
models in Click, we annotate each of the Click elements with the number of
assembler instructions that the described packet-processing engine would need
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to execute the element. An example is given in Figure 5.9. The code excerpt
is part of the transaction layer flow control element. The method push_ta()
handles the transmission of transactions to the data link layer. The method
hasroom() is a helper method that checks the available space at the receiver
by using the provided credits. The helper method is rather small, and we
thus assume that push_ta() can use hasroom() in-line. Each basic block is
commented with the number of required assembler instructions, following the
implementation assumptions described in the preceding subsection. For each
element, we choose a worst-case execution path and use the resulting number
of instructions as the annotation of this element!. Annotations may depend on
the packet length and are parameterized accordingly.

bool CLASS::hasroom(unsigned int ta, unsigned int header_size,
unsigned int data_size) {

if ((header_size + _credit(ta][0][0] > _credit(ta][0][1]) // _credit contains only 12 values,
&& _credit[tal[0][1]) /i.e. offset calc. is considered with one add
return false; // 3 add (2 offsets), 1cmp, 1and, 2ldr (from _credit), 1 branch

if ((data_size + _credit[ta] [1][0] > _credit[ta][1][1])
&& _credit([tal[1][1])

return false; // 3 add, 1cmp, 1and, 21dr, 1 branch
_credit[ta] [0][0] += header_size; // 2 add (one for offset), 1 str (for _credit)
_credit[ta] [1][0] += data_size; /2 add, 1str
return true; // Overall hasroom(): worst case: check both ifs and update credits

//10 add, 2cmp, 2 and, 4Idr, 2 str, 2 branch
/ Less than 10 registers
} / (ta, header_size, data_size, _credit, 4 _credit values)

bool CLASS::push_ta( Packet *packet) {
// extract packet type and size information

/4 add, 1 shift, 11di, 31dr, 1 branch

// posted transactions

if (type == 0x40 || type == 0x60 || (type & 0x38) == 0x30)
h = hasroom(0, header_size, data_size); // 3cmp, 2 or, 1 branch, hasroom()
else // non posted transactions
if ((type & Ox5e) == 0x00 || (type & 0x3e) == 0x04
h = hasroom(l, header_size, data_size); // 2cmp, 1 or, 1 branch, hasroom()
else // completion
if ((type & 0x3e) == 0x0a)
h = hasroom(2, header_size, data_size); #/1¢cmp, 1 branch, hasroom()
else {
h = false; packet-> kill(); return (true);
} // Overall push_ta():
if (h) // Worst-case: comy i
output (OUT_TA) .push (packet) ; // 4 add, 1 shift, 6 cmp, 3 or, 11di, 3Idr, 4 branch, hasroom ()
return (h); // Less than 10 registers (packet, type, header_size, data_size, h)
} // Shareable with hasroom(): header_size, data_size

Figure 5.9: Derivation of the instruction histogram for the flow control Click
element.

We then follow the different packet-processing paths in our Click models for
receiving and transmitting packets, as derived in Section 3.3.1. The result is a
histogram of executed instructions together with the number of registers used
for each of these cases. The profile also represents the execution time on one
processing engine if weighted with the instruction latencies introduced earlier.
The execution time under a certain load could also be derived by assuming
defined backlog levels in each of the participating queues.

As a result, our method is an estimation of the workload based on a static
analysis of the control and data flow graph, extracted from the source code of
the Click models.

IThe example in Fig. 5.9 is listed as flow ctrl in Table 5.5.
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Execution profile

The profile of executed instructions using the instruction classes introduced
earlier for the major Click elements for PCI-Express are listed in Table 5.5.

Table 5.5: Profile for PCI-Express Click elements. The marked elements (*) are
realized in hardware.

Instruction class A L 1dr 1di  str B

Click element/subfunction, 64 Byte data packet

flow ctrl 14 14 7 1 2 6
Ack/Nack Tx 5 5 1 0 6 0
prio sched 0 1 1 0 0 0
check paint 1 1 1 0 0 0
Ack/Nack Rx 3 2 4 0 1 1
classify 2 1 2 0 0 1
flow ctrl rx 8 8 6 3 5 0
Ack/Nack packet-specific

AckNackGen 0 0 0 4 1 0
Ack/Nack Tx ack 7 9 2 0 1 1
Ack/Nack Tx nack 4 9 22 1 3 1

Flow control packet-specific (in TaFl)
flow ctrl update (Rx) 1 4 1 4 0 0

ctrl hasRoom (Tx) 10 4 4 0 2 2
ctrl newCredit (Tx) 8 2 3 0 2 3
common

Calc CRC* 64 320 144 64 0 0
descr enqueue 2 2 0 0 4 0
descr dequeue 2 2 4 0 0 0
payload enqueue* 3 3 1 1 16 0
payload dequeue* 3 2 16 1 1 0

The profiles listed in the table reflect the computation requirement for one
packet. We assume that one packet must be retransmitted if a Nack packet is
received and that the priority scheduler only has to check one queue for its size.
The requirement for the scheduler listed in the table is low since enqueue and
dequeue operations are counted separately. Classifications are simple since they
only rely on small bitfields for packet and transaction types so that they can be
implemented using table lookup.

Performance Impact

Given the profiling results in the form of instruction histograms for the different
processing paths, we now derive execution times by weighting the histograms
with the corresponding execution latencies per instruction class. Compared
to the cycle counts for the general purpose core, reductions between 39% and
68% are observable, as Figure 5.10 reveals. The figure shows the absolute and
relative cycle counts per processing path. For the comparison, identical sets of
hw accelerators (CRC, DMA) and the same IO overhead were assumed.
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Figure 5.10: Comparison of the required cycles for general purpose and
application-specific ISA for PCI Express.

For the ASIP, Case A - the transmission of transactions - remains the most
cycle-consuming case. The relative cycle reduction of about 60% directly trans-
lates into a reduction of the required clock frequency as Figure 5.11 shows.

100000
431950
15975
12600

— 10000 I ——r
N ga00 "
= S 3004
> a0
=4

[

>

g 1000
e
he

Qo
=

o

[$)
4

100
4 GPISA —— ASIPISA
10 T 7 _— 7'y &

1 10 in 100 ™ 4000 M 10000
Packet Size [Byte]

Figure 5.11: Impact of an application-specific ISA on the required clock fre-
quencies for PCI Express.

5.2.4 Multiple processors

Multiple processing elements can help to meet performance requirements by
exploiting task- and data-level concurrency of an application. This is especially
observable in the field of network processor architectures which is known for
the deployment of parallel cores in varying topologies for highest throughput
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requirements [57]. This subsection applies the general principles observed in
network processors to the particular domain of communication interfaces by
investigating the impact of multiple processors on the performance.

Multiprocessor setup

For the exploration, we assume an allocation of homogeneous processing ele-
ments. Similar to the baseline architecture (c¢f. Figure 5.1), each processing
element has its own instruction and data memory, and a set of transfer queues
for the inter PE communication which supports direct communication between
two processing elements. Thus, we do not depend on SRAM or scratchpad mem-
ory, since the message passing communication between tasks is either mapped
to direct connections between two engines or processed internally if the corre-
sponding tasks are mapped to the same engine.

The surrounding SoC and PHY system remains the same as in our baseline
architecture but incorporates a DMA coprocessor for the transfer from packets
between PHY and packet memory. The coprocessor has a similar set of transfer
queues to participate in the message passing communication. Access to the
packet memory will be possible for the PEs but is not required since the packet
descriptor contains all of the relevant data (i.e., processing state and packet
header).

The topology of multiprocessor setups can be characterized using two axes,
namely the number of processing elements per stage in a pipeline and the num-
ber of pipeline stages. In network processing, which is tailored to packet for-
warding, we find all varieties of topologies ranging from fully pipelined to fully
pooled solutions. We, therefore, assume an interconnection network which can
support arbitrary topologies and enables the communication between any of the
processing elements including the DMA coprocessor.

To separate the effects of computation and communication, the interconnect
network is assumed to be ideal. Transfers do not consume time and the network
is always available. In a separate exploration step (Section 5.2.5), the effects of
transport delay and resource sharing are considered.

Expected performance speedup

Multiple processors can help to reduce the required clock frequency for the
deployed cores by distributing the load (in settings with given throughput and
processing requirements). For the following analysis, we, therefore, define the
performance gain as the ratio of the required clock frequencies for single (fs)
and multi-core systems (f;):

Js
max;=1. N [i
The single-core frequency fs is the product of the required bandwidth (BWje)
and the number of cycles to be executed (Crp). If an application can be par-
titioned evenly and mapped without overhead for communication and synchro-
nization among N cores, the speedup is ideal and equals the number of process-
ing cores:

Speedup = (5.1)

B
Speedup = N  with fi:%% and f;, = BWio * Cio (5.2)
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Such an ideal speedup would be achievable in pooled settings, in which every
core executes the complete and statically assigned task graph for a stream of
data tokens independently of other cores without sharing of processing state.
However, such settings are limited to cases where the computation requirement
of the task graph is below the inter-arrival time of packets in the data stream.
In the more general case, some degree of pipelining is necessary, e.g., to classify
and distribute data (streams) among the processors or to match the inter-arrival
time of packets within the stream.

Taking into account the overhead for communication of packet descriptors
Cpp in a pipeline of processing elements with N stages and the overhead
for scheduling and arbitration on each processing element Cg, the achievable
speedup becomes limited and saturates:

Cro
Speedup = N * 5.3
peedup Cro + (N —1)(Cpp + Cs) (5:3)
. Cro
lim Speedup = ————— 5.4
i Speedup = om0 (5.4)

This behavior is shown in Figure 5.12 which plots the calculated speedup
for PCI Express, transmission of data packets, considering communication and
scheduling overhead. The non-linear scheduling overhead depends on the num-
ber of tasks mapped onto a core and therefore ranges from 68 instructions (8
tasks, 1 core) down to 19 instructions (1 tasks, > 7 cores). The communication
overhead is 20 instructions.

Speedup

—#— jdeal —#— Including overhead
0 T T
1 10 100 1000

Number of cores

Figure 5.12: Theoretical speedup for PCI Express (Path A, data tx on MIPS
cores) considering a) an ideal pooled setup (Eq. 5.2), and b) communication
and scheduling overhead for a pipelined setup (Eq. 5.3).

The performance gain in the figure is calculated under the ideal assumption
that the single task graph can be well-balanced even for high core numbers.
Now, the challenge is to extract sufficient concurrency from the application and
to take the effects of multiple task graphs into account.
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Application concurrency

The packet-oriented communication interfaces, as modeled and discussed in
Chapter 3.3, exhibit only a limited degree of data- and task-level concurrency
compared to typical multi-ported packet-forwarding applications (such as the
ones described, e.g., in [57, 174]). In particular, we observed:

e A limited number of concurrent packet flows — Multiple physical 10 ports
would be a natural source for data-level parallelism since each of them
handles independent packet flows. Communication interfaces, however,
have exactly one physical IO port with, at best (full duplex), two truly
concurrent packet streams, receive and transmit. Even though a small
number of logically independent streams exists at the transaction layer
(such as the three quality-of-service classes in PCI Express), multiplexing
and joint stateful processing of these streams is required at the link layer.

e Fair task-level concurrency — The different processing paths of the com-
munication interfaces as identified in Chapter 3.3 represent independent
task chains which may execute concurrently. Each of the processing chains
comprises several Click elements thus enabling pipelining. In case of PCI
Express, for instance, between 3 to 6 elements are instantiated.

These observations indicate that only settings with small numbers of process-
ing cores are meaningful for the interfaces. In the following, we will, therefore,
focus on setups between one and seven cores. We focus on the PCI Express
protocol, which has the highest throughput requirements and is latency insen-
sitive. Only at the end of this section shall we come back to wireless Lan and
report the results of its exploration.

Application setup and partitioning

For the performance analysis of the PCI Express model, we configure the simula-
tion for the transmission of a continuous stream of packets between to interfaces.
For proper operation, two PCI Express lanes are required. The first, from ifl
to if2 transmits the data packets while the second, from if2 to ifl, is used for
returning acknowledge and flow control credits.

Following our CRACC mapping approach as described in Section 4.5, we
partition the application at element boundaries as shown in Figure 5.13 and
map the subgraphs to different MP configurations. The longest processing path
is partitioned into two subgraphs at the border between TA and DL layer.
The inter-PE communication links are configured to be ideal, representing, for
instance, dedicated point-to-point connections.

Performance impact

To study the impact of the concurrent receive and transmit processing tasks for a
duplex PCI Express interface, we start with a single processor mapping (named
1CPU). In this case, a CPU frequency for ifl is required that is 18% higher
than for the data transmission, only. Running at the same clock frequency as
if1, the core of if2, which receives the data and generates the feedback is utilized
by 92%, i.e., the required frequency is 6.7% higher than the pure data tx case.
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Figure 5.13: Partitioning of the PCI Express model for the MP simulation.

This data is derived from Figure 5.14 which shows the utilization of the cores
labeled ”1CPU.tx” for ifl and ”1CPU.rx” for if2 to be reasonably well balanced.

In the next step, we map the transaction and the link layer on two different
processors (2CPU). In this case, an overall speedup of 1.44 is achieved for the
combined processing on ifl, which is less than expected. Figure 5.14 reveals the
DLL layer CPU (CPU.tx.2) to be the bottleneck in the system. The CPU is
fully utilized but only 80% of the load are caused by the transmit task. Almost
20% of the load are due to the reception of link layer feedback packets, i.e.,
acknowledgements and flow control credits.

To relieve the DLL layer CPU, we now consider a four core mapping (4CPU)
for the interface by separating both receive and transmit parts of both layers.
We do not expect much utilization for the two receive cores of ifl, since our
traffic pattern only transfers data from ifl to if2. Vice versa, if2 should not
utilize the transmit cores much. This expectations are confirmed by Figure 5.14,
cases 4CPU.tx.1-4 for ifl, and 4CPU.rx.1-4 for if2. Interestingly, we achieve
only a small reduction of the rx load on core #2 which leads to a slightly
improved speedup of 1.51. The remaining rx load is caused by the processing
of received acknowledges within the AckNackTx element, which is also part of
the Tx processing task chain.

To consider a fully loaded 4-core system, we finally use a symmetric traf-
fic setup in which ifl simultaneously sends and receives packets. The overall
speedup in this case is 1.6. CPU #2, again, is fully utilized and remains the
computational bottleneck (cf. Fig. 5.14). The other cores are between 70% and
90% utilized.

In all mapping variants, the overall speedup is dominated by the partitioning
of the most compute intense task chain, the transmission of data packets. Ta-
ble 5.6 shows this in detail. The monolithic AckNackTx element consumes 205
instructions and basically is the only element on CPU 2. Further performance
improvement therefore requires optimization of this bottleneck by one of the
following options:



110 CHAPTER 5. A PROGRAMMABLE INTERFACE ARCHITECTURE

p
p

i
n Q »
Z%\mom_\%
1S 2 2535 2
o 9D = =
e B S522473
= = = [5]
Eo‘uvcgémﬁg
6:'0—!‘:'?’::‘:'“—:‘:'2‘::‘:'0’
25 0 ddd o do d
| O O 0O 0o O o0 o o
O = 0 o O O O O » O O
DBO0FESEEBE@
I

44

41 4x2 4x3 4.x4 4orx.1 4rx2 4rx.3 4ax4

2.1 2.2 2.rx.1 2.x.2

1.rx

1.

r T T T T T T T T
EN EN N N EN EN EN EN EN
=) 1= =) 1<) 1= =) =) 1= 1=
S > o ~ © ] < 5] 139

Figure 5.14: Utilization for different PCI Express mappings.

e Optimize the execution performance — The current element implemen-
tation is functionally correct but is not optimized for processing speed.
Although not in the focus of this section: Code optimizations, e.g., by
coding critical parts in assembly, should be considered after careful per-
formance analysis. The detailed performance analysis of the AckNackTx
element, for instance, revealed potential for a less expensive timer function
in settings with only a small number of timers on a core. This actually
small change would improve the speedup for the four core mapping to
1.85, as calculated in column 4.2’ of Table 5.6.
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Table 5.6: Partitioning of the most critical PCI Express task chain.

Mapping/core 1 2.1 2.2 4.1 4.2 4.2° | 4.17 4.2
No. of chains 7 5 5 3 3 3 3 3
Read PD 10 10 10 10 10 10 10 10
schedule chain 61 47 47 33 33 33 33 33
TaF1Tx.push 51 51 51 51

Paint 29 29 29 29
AckNackTx.push 135 135 135 135 35 100
Write PD 10 10 10 10 10 10 10 10
AckNackTx.timer 70 70 70 35 70
TaF1Tx.pop 30 30 30 30
Dequeue 17 17 17 17

Total [inst] 413 | 194 272 180 258 223 215 223
Speedup 1 2.13 152 | 229 160 | 1.85 | 1.92 1.85

e Partition critical element, optimize mapping — Partitioning of large ele-
ments eases the balancing of pipeline stages. In case of the AckNackTx
element and its transmit path three only loosely associated parts can be
identified?: set sequence number (35), enqueue & push (100), and resched-
ule timer (70/35). A separate SetSeqN element, for instance, which is
mapped onto tx.1 would lead a speedup of 1.85 as well. If combined
with the timer optimization above, the other CPU becomes the bottle-
neck resulting in a speedup of 1.92 for the transmit path. Instantiating
an additional CPU in this path would increase the speedup to 2.19 (see
the 5-core case in Table 5.7).

Replicate element, distribute load — Additional instances of compute-
intense elements can be mapped onto different processors to distribute
the load. This solution, however, may depend on issues such as sharing of
processing state or the sequence of token processing. The AckNackTx ele-
ment could be duplicated and mapped onto two processors. An upstream
element would distribute packets to both instances in alternating order so
that each instance handles every other packet, a downstream multiplexer
gathers them and enforces the correct sequence. Received acknowledges
would need to be sent to both instances so that each one can update its
state individually. Table 5.7 shows this mapping in more detail for a 5-core
(7cpu) and a 4-core (6¢cpu) setting.

The speedup calculations in Table 5.7 assume that the initially critical path

remains most critical in all cases. Even with this assumption: the refined multi-
core mappings with up to seven cores do not provide much additional speedup
compared to the four-core mapping.

We therefore continue with the four-core setting, which provides — for the

given application model and optimization level — a speedup of 1.85. In symmet-
ric traffic scenarios, the system utilizes its cores almost fully (86%, 100%, 94%,
99,9%). Considering the packet size, clock frequencies between 1270 MHz (64B)
and 55 MHz (1512B) are required in order to meet the throughput requirements
of a full-duplex PCI Express link (2x2 Gb/s). The iMix packet size distribution
requires a clock frequency of 232 MHz.

2Setting the CRC would be a fourth part but this function is handled by hardware anyway.
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Table 5.7: Refined partitioning of the most critical PCI Express task chain using
3, 5, and 4 cores in the transmit path.

Core 5.1 5.2 5.3 7.1 7.2 7.3,4 7.5 6.1 6.2 6.3,4
Read PD 10 10 10 10 10 10 10 10 20 10
schedule chain 33 33 33 33 33 33 33 33 66 33
TaF1Tx.push 51 51 51

Paint 29 29 29
Distribute* 35 35
AckNackTx.seq 35 35 35
AckNackTx.push 100 100 100
Multiplex* 35 35

Write PD 10 10 10 10 10 10 10 10 20 10
AckNackTx.timer 35 35 35
TaF1Tx.pop 30 30 30

Dequeue 17 17 17

Total [inst] 151 117 188 151 88 126 88 151 176 126
Speedup 2.73 353 219 | 2.73 469 328 4.69 | 273 2.34 3.28

*) estimated

Wireless Lan on concurrent processors

A single-core solution with hardware accelerators would be sufficient to support
our 802.11 model in terms of its throughput requirements. This section thus
focuses on meeting the realtime requirements.

In general, the problem of missed transmission deadlines can be addressed by
different approaches. First, the granularity of Click tasks and their scheduling
could be modified as discussed in the section above. Large Click elements can be
partitioned to reduce worst-case resource blocking time. In addition, the run-
to-completion semantics of Click could be changed to preemptive/prioritized
scheduling at the expense of extra overhead®. This is a serious change in the
underlying model of computation and will thus not be followed here.

Second, resource allocation and mapping can be modified so that interference
is reduced. The results of the preceding subsection indicate that it will be
beneficial to either allocate different processing resources to receive and transmit
paths or mapping time-critical elements to a separate resource.

Figure 5.15 shows the results for the latter option in terms of a response-
time histogram. Mapping time critical rx/tx functions (basically the link layer
of the model including the tx queues) onto an extra processor leads to reduced
response times. We even applied slack to reduce the processing speed of the two
cores. For the same throughput, the non-realtime CPU runs at 150 MHz, while
the real-time CPU requires slightly more than 200 MHz.

5.2.5 Communication Topology

In the previous section we studied the impact of multiple processors on the
system’s performance taking into account the computational overhead of the

3Comparing different OS Samadi et al. report at least 100 cycles [165].
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Figure 5.15: Response time distribution for the single CPU (400MHz) and re-
fined dual CPU (150/200MHz) mappings.

inter-PE communication but assuming an ideal communication network other-
wise. In this section, the effects of transport delay and shared communication
resources will be considered. In addition, we will study the queueing require-
ments for the exchange of messages between PEs.

Communication Setup

For the analysis, we use the PCI Express 4PE mapping as discussed in the previ-
ous section. The packet descriptor communication between Click elements that
are mapped onto different processors is implemented using an interconnection
network, which enables the lossless exchange of messages between any of the
processing nodes. For each communication link, the PEs implement sets of out-
and inboxes, which effectively decouple the processors from the communication.
Lossless operation is guaranteed by back pressure which stalls the sending pro-
cessor until space becomes available in its outbox (blocking write). An outbox
only requests transfers from the communication network if the next inbox has
sufficient space available.

Given the small number of participating nodes, all of them can be connected
by a single write-only bus. A complex communication network is not required.
This means that each processing node is both, a master that sends messages
and a slave that receives them. Only one message can be in transfer at any
given time. A transfer is assumed to consume 16 bus cycles which is sufficient
for packet descriptors up to 64 Byte. The bus speed as well as the sizes of the
in- and outboxes varied in the analysis.

Performance Impact

To study the sensitivity on these parameters, we vary the bus speed in reference
to the frequency of the cores from 10 to 100% (10 steps), and the size of the in-
and outboxes entries from 1 to 8 (6 steps each:1-4,6,8) per communication link.
As performance metric, we examine the relative change of the packet throughput
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for each design point.

The relative throughput for the initial 4PE mapping (4CPU) is shown in
Figure 5.16 which lists each of the 360 design points along the x-axis. The
throughput is normalized to the one of the best mapping (4CPU’). This means
that a maximum of about 89% is achievable. Most of the design points with a
bus frequency of 30% or higher reach this performance (cases 72 to 320). The
bus utilization decreases with speed starting at 64%. The 10% bus frequency
group limited by the fully utilized bus only reaches 46,5%. Only the 20% bus
frequency group shows significant differences depending on the fifo sizes. The
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Figure 5.16: Relative throughput and bus utilization for all design points of the
4PE standard mapping. The design points are ordered by {bus freq, inbox size,
outbox size}.
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optimized 4PE mapping. The design points are ordered by {bus freq, inbox size,
outbox size}.
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optimized mapping 4CPU’ is shown in Figure 5.17. It achieves an 11% better
performance for those cases that are not limited by the bus speed, i.e. run
at 30% or more of the core frequency. The price is a higher utilization as the
comparison of the two figures reveals. At 10% bus speed, the setting is limited
the same way as before, reaching only 46,5% throughput. The 20% group’s
performance increases with the amount of storage in the system.

The dependency of the performance on the size of the in- and outboxes
is studied in more detail in Figure 5.18. Even for the highly utilized 20% case
(Fig. 5.18, left), the standard mapping does not depend on the queue size much.
Overall a outbox size of 3 and inbox sizes of 2 would be sufficient. The optimized
mapping would benefit from sizes that are slightly increased (4,3 — cf. Fig. 5.18,
right). For bus speeds of 30% or better, combined sizes of 3 for in- and outbox
are sufficient to avoid the performance degradation of the (1,1)-size case as can
be observed in Fig. 5.17.

Rel. throughput over qeue sizes, 4PE standard mapping, 20% bus speed Rel. throughput over qeue sizes, 4PE optimized mapping, 20% bus speed
895 93
T T T T

L

Figure 5.18: Relative performance over the size of in- and out boxes for a bus
speed of 20%, shown for standard (left) and optimized (right) mappings.

To further detail the communication requirements of the application-architecture
mapping, we conducted an in-depth analysis of the backlog in the communica-
tion queues. For this purpose, the in- and outboxes are bound to 128 entries,
the application’s transmit and receive queues are set to 256 entries. Due to the
throughput-oriented simulation setup, the transmit queue (app-tx) is kept full,
while the receive queue is emptied as fast as possible (app-rx).

The results are shown in Figure 5.19. Interestingly, the backlog in the 4CPU
system reveals, that only one communication queue actually accumulates back-
log: the inbox on core#2 (queue ta-dll-i, top-left diagram of Fig. 5.19). In the
mapping considered, this core is fully utilized and becomes the bottleneck of
the communication pipeline. A design point, which is limited by the bus speed,
is shown in the middle row of the figure for the optimized mapping (4CPU’,
20% bus speed). In this case, the outbox to channel one (chl-0) acquires some
backlog but queue levels are otherwise steady. The last design point, shown
in the bottom of the figure, removes the highly utilized bus as bottleneck (bus
speed 30%, 4CPU’). In this case, backlog accumulates in the inbox of core#4,
which is the bottleneck of the optimized mapping, while the initial backlog in
front of core#2 decreases.
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Figure 5.19: Backlog in in-and out-boxes along the communication path for
different design points: Top) Standard 4core mapping, 20% bus speed, Middle)
optimized mapping, 20% speed, Bottom) optimized mapping, 30% speed.

5.3 Proposal for an optimized architecture

The previous section explored several dimensions of the architectural design
space and studied the impact on a systems performance. These pieces will be
put together in this section which proposes an optimized architecture for the
implementation of the packet-oriented communication interfaces.

The emphasis of the architecture is still on flexibility and programmability.
This means that wherever possible, we choose software over hardware, and
general purpose over protocol specific functions.

5.3.1 Block diagram

Figure 5.20 shows the architecture of the optimized system which is based on our
NOVA hardware platform (introduced in Section 4.6). Accounting for the results
of the exploration, the system deploys four general-purpose processing elements
and a specialized co-processing element comprising the identified hardware ac-
celerators for data transfer and CRC calculation. All processing elements are
encapsulated by NOVA sockets, which provide interfaces to the message pass-
ing network and to the memory hierarchy ('memory bus’). The system exploits
the concurrency in protocol and payload processing by separating both facets.
The protocol processing functions are mapped onto the general-purpose pro-
cessing elements, while data streaming and CRC calculation are provided by
the specialized co-processor module.
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Figure 5.20: Block diagram of the optimized 4-core architecture

In transmit direction, control and data flow through the architecture as fol-
lows. An outbound transaction is stored in the shared memory. The SoC core
sends the packet descriptor to one of the interface PEs. The core reads the
descriptor and processes the packet according to its program. For pipelined op-
eration, the packet descriptor is passed to the next processing node. Eventually,
the protocol processing is completed, and a descriptor is sent to the coprocessor
node, which — configured by the PD’s sideband information — reads the packet
data from the memory and streams it towards the PHY interface, calculating
and inserting the CRC on the fly. In receive direction, the coprocessor node
receives a stream of packets from the PHY and stores them in the shared mem-
ory using its DMA function. In addition, the module calculates the CRC and
generates a descriptor for each packet, which is forwarded to one of the PEs,
e.g., #3. On the PE cluster, the receive protocol processing takes place and
received transactions are forwarded accordingly.

For smooth operation, all the communication between the processing nodes
is based on message passing. The in- and outboxes on each node effectively
decouple them and may compensate temporary rate differences. Within the
coprocessor, the same principle is applied to decouple the packet streams from
and to the PHY from memory accesses. The function of the hardware building
blocks is explained in more detail next.

5.3.2 Hardware building blocks

On the SoC level, the optimized 4-core architecture actually breaks into two
building blocks, a general purpose processing element and a specialized process-
ing element. As other SoC modules, these building blocks are integrated and
connected using the NOVA socket, which provides interfaces to access (shared)
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memories and the message passing network.

General-purpose Processing Element

The general purpose PE comprises a 32bit MIPS M4k processing core with local
instruction and data memories. In addition, a memory interface, a tiny DMA
function, and the message passing interface are integrated into the module.

e M4k core — the core is configured with a dual SRAM interface in order to
execute instruction fetches and load/store accesses in parallel. Its register
set comprises hardware counter and timer registers.

e Local memories — Two single-cycle, single-port SRAMs are used for in-
struction and data memory. A small boot rom is mapped into the imem
range. Subsystem functions are mapped into the dmem map and can be
accessed via load/store instructions. Using the redirection feature of the
core, the imem can be accessed via load/stores as well.

e Memory Interface — The memory interface translates the core’s blocking
load/store accesses into pipelined split-transaction memory transfers. This
means that writes to distant memories can be completed within one cycle
while reads stall the core until the data becomes available.

e Message Passing Interface — The interface provides multiple (2-4) sets
of hardware in- and outboxes for the transfer of messages with different
priorities. Queue status and data ports can be accessed by the core in
addition to the DMA.

e Tiny DMA — The DMA engine relieves the core from cycle-consuming
data transfers. It may be used a) to transfer bulk data from distant to
local memory (memcopy), and b) to move messages between local mem
and message passing interface. To avoid stalls, the DMA has lower priority
than the core.

Specialized Processing Element

The specialized processing element encapsulates data movers and stream pro-
cessing units. In particular, it comprises:

e Fetch DMA — The Fetch DMA receives a packet descriptor, extract packet
descriptor and processing flags, fetches the packet from its storage loca-
tion, and streams it towards the transfer fifo. In the process, it inserts
a stream header, which contains processing flags and packet length, for
downstream processing units. In addition, it may insert extra data (the
packet header) from the packet descriptor in front of the packet. The
Fetch DMA may be configured send a free message after completion of
the transfer.

e Store DMA — The Store DMA takes a packet from the receive fifo, re-
moves the stream header, and stores it the packet memory. For this pur-
pose, it uses pointers to free packet memory that are received at its inbox.
It may be configured to send a message after completion.
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e Receive and transmit buffers — In transmit direction, the buffer should
store sufficient amounts of data to avoid underruns during the transfer
of individual packets. In receive direction, it is used to compensate the
processing latency for the on-the-fly allocation of packet storage.

e Tx-CRC unit — The CRC unit calculates the CRC for the data stream on
the fly. Its operation can be configured per-packet using the stream header.
Options include: type of CRC (polynom, width), bypass/append/overwrite,
ignore N initial bytes of the packet. In addition, the module handles the
frame alignment (off, pad if lower than N byte, pad to multiple of N byte).
If required, precise PHY timing is enforced (send at timestamp).

e Rx-CRC and descriptor generator unit — In receive direction the unit
calculates the CRC while the data is written into the receive buffer. Its
operation can be selected per-packet using a simple classification of the
first bytes of the packet. In addition, the unit creates a packet descriptor,
stores processing flags (including a timestamp), and copies a configurable
number of initial bytes (the packet header) into it. To avoid storage over-
head, e.g., in case of the PEX link layer packets, the unit can be config-
ured not to forward small packets of certain classes which fully fit into the
packet descriptor.

5.3.3 Synthesis results and cost estimation

We implemented a 4PE prototype of the NOVA platform. Its block diagram is
shown in Figure 4.11. The system implements MIPS based processing elements,
dedicated hardware Ethernet IO modules that are connected to external PHY's,
a statistics coprocessor, and a memory interface for shared off-chip SRAM mem-
ory. The on-chip communication is based on three OCP buses for system mes-
sages, packet descriptors, and memories. In this way, high priority delivery of
system messages is assured. Based on the prototype, we evaluate the resource
requirements of the optimized solution. For this purpose, we will report the
synthesis results for a 90nm ASIC design technology in the following?.

ASIC implementation

The processing element of the prototype shown in Figure 4.10 comprises most
of the intended PE functions. It provides interfaces for memory bus and mes-
sage passing network, implements dedicated in- and outboxes for two message
priorities using single-cycle dual port SRAMs, provides single-port instruction
and data memories of 8KB each, boot rom, interrupt controller, and so on.

In the 90nm technology chosen, the processing element achieves a clock
frequency of about 360 MHz. The frequency is limited by the MIPS core itself.
The most critical path runs within this IP core. There is almost no variance
with operating conditions (357 MHz, WorstWorst - 361 MHz BestBest). The
area requirements for the general-purpose PE are listed in Table 5.8. For the
configured memory sizes, the prototype PE requires .8114 mm?. Most of the
area (.556 mm?, 68%) is occupied by memories. Adding the tiny-DMA function

4To proof the concept, the prototype was also mapped onto a FPGA device (Xilinx
XC2V6000-4) and successfully demonstrated in a real-world Ethernet LAN setting.
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requires an extra address decoder and data multiplexer, a 2nd port on each
client (data memory, MP and mem interfaces), and the DMA logic itself. These
modules increase the PE area by about 8%. On the other hand are the transfer
queues currently implemented using dedicated dual port memories for each of
them. Mutually exclusive access in combination with the DMA would enable
the optimization of these queues into one instead of four dual-port memories,
which reduces the PE size to .7161 mm?2.

Table 5.8: Area requirements of the General Purpose PE.

General Purpose PE area memory | remarks
sub-module [mm?] [%]

MIPS core 0.2079 w/o fast mply

data mem 0.1677 99.90 8kB, 1x32x2048 SP
inst mem/boot rom | 0.1710 97.90 8kB, 1x32x2048 SP
memory interface 0.0047

MP Interface 0 0.1356 88.80 512B, 2x32x128 DP
MP Interface 1 0.1138 88.60 128B, 2x32x32 DP
other logic 0.0107 e.g., intc, data mux
tiny-DMA function® | 0.0657 4 channels
optimized MP if** -.1610 100 only 1x DP mem of 512B
GP PE total 0.7161 55.18

*) estimated based on IO DMA function, **) area of removed memories

The estimation of the special-purpose PE is based on the encapsulated hard-
ware Ethernet IO module of the prototype. This is why we report its footprint
first. The 10 module achieves operating frequencies of 357 (WorstWorst) to 401
MHz (BestBest) for the system clock. Table 5.9 lists its area requirements. It,
too, is heavily memory-dominated and has roughly the same area footprint as
one of the prototype PEs.

Table 5.9: Area footprint of the NOVA Ethernet 10 module.

Ethernet I0 module area memory | remarks
sub-module [mm?2] (%)

FE/GbE Mac core 0.5813 93.9

Memory Interface 0.0050

DMA function 0.0055

DMA control/cfg 0.0047

Parser 0.0724 83.10 512B, 1x32x128 DP
Unparser 0.0662 90.90 512B, 1x32x128 DP
Message Controller 0.1175 85.80 128B, 2x32x32 DP
Ethernet 10 total 0.8480 90.90

The specialized PE reuses most of the IO modules socket functions. For
truly concurrent operation, its memory interface is duplicated in receive and
transmit direction. Thus, the DMA function is required twice, and the memory
interface is partially duplicated (x1.5). Parser (packet descriptor generator, rx
path), unparser (packet descriptor interpreter, tx path), message controller, and
DMA configuration modules remain the same. The pure CRC calculation logic
in hardware is almost negligible, the modules, however, require some pipeline
stages similar to a unidirectional memory interface and configuration and state
registers. The streaming buffers are fifos with dedicated control logic. Due to
the moderate clock frequencies at the PHY layer they are implemented using
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single port memories. These estimations all together lead to an area requirement
of 0.442 mm? for the specialized processing element, as Table 5.10 summarizes.

Table 5.10: Area requirements of the specialized PE module.

Specialized PE area memory | remarks
sub-module [mm?2] (%)

Memory Interface* 0.0075

Fetch DMA 0.0055 IO DMA function
Store DMA 0.0055 10 DMA function
DMA control/cfg 0.0047

Parser 0.0724 83.10 512B, 1x32x128 DP
Unparser 0.0662 90.90 512B, 1x32x128 DP
Message Controller 0.1175 85.80 128B, 2x32x32 DP
Tx Stream Buffer 0.0580 93.16 2KB, 33x512 SP
Rx Stream Buffer 0.0900 95.59 4KB, 33x1024 SP
Tx CRC* 0.0024 0.5x MemlIf

Rx CRC* 0.0097 0.5x Memlf + cfg
Specialized PE total | 0.4418 82.69

*) estimated based on prototype modules

In total, the optimized 4-PE architecture requires an area footprint 0.4418 +
2.8644 = 3.3062 mm?. The extra area required for the on-chip communication
network was less than 1% (or .0496 mm?) in our prototype implementation
with 8 participating nodes. Considering the smaller number of nodes and the
O(N?) complexity, the interconnect area would be approx. 0.0279 mm? for the
architecture setup considered.

The overall footprint is dominated by the different instruction, data, and
transfer memories, which require 58% of the area in the given configuration. An
optimization of the SPE interface queues similar to the GPE could save about
5% of the overall area. Sizes of 8kB for code and 8kB for data memory per
PE are sufficient to support all protocols except wireless Lan. Increasing the
dedicated code and data memories by a factor of 2 (4) would increase the overall
area by 26% (76%), see Table 5.11. Section 5.3.4 will discuss other options in
more detail.

Table 5.11: Area requirements for different sizes of code and data memory,
absolute in mm? (and normalized).

data instruction memory
memory 8 kB 16 kB 32kB
8 kB 3.3341 (1.00)  3.7621 (1.13)  4,5941 (1.38)

16 kB 3.7621 (1.13)  4.1901 (1.26)  5.0221 (1.51)
32 kB 4.5941 (1.38)  5.0221 (1.51)  5.8541 (1.76)

5.3.4 Performance & further optimization potential

The current optimized 4-PE architecture follows the principles of our design
methodology in terms of strict hard and software modularity and high-level
programmability. The architecture is flexible in large parts due to the general-
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purpose PEs and does not comprise any protocol specifics. Even the specialized
PE (which is not flexible) is protocol agnostic.

Given the 90nm ASIC system clock frequency of 360 MHz and a message
bus frequency of more than 120 MHz, the 4-PE solution is able handle PCI
Express at full duplex line speed, i.e. 4Gb/s throughput, for packets of 206B
or larger which includes the iMix packet size distribution. Smaller packets can
be handled at lower throughput rates. Minimum size packets of 64 Bytes, for
instance, can be handled up to line rates of 1134 Mb/s. This performance is
sufficient to support application setups such as a wireless LAN access point
which requires aggregated throughput rates in the range of 300 - 600 Mb/s.

However, to support small packets at full speed, further improvement of the
performance is required without increasing the area footprint. Leaving obvious
options aside such as faster technologies and a full custom PE design (see, e.g.,
Intel’s micro-engines, which run at frequencies up to 1.4 GHz) and focusing on
improvements of the platform architecture, several options can be identified:

e Code and data memory footprint — Code and data memory requirements
depend on application, mapping, and optimization effort. Sizes of 8kB
for code and 8kB for data memory per PE are a reasonable lower bound
for individually assigned memories since they are sufficient to support all
protocols except wireless Lan.

The PCI Express system function, for instance, as implemented by our
model requires 11.5kB runtime code for protocol (7.4 kB) and os functions
(4.1kB). This means that the 4PE mapping utilizes the code memories by
78% since most of the OS function is required per PE. The PEs data
memory of 8kB each is approx. 33% utilized by stack, element configura-
tion, and program data. The remaining space serves as heap. The size is
sufficient for the protocol operation and allows, e.g., to queue more than
80 packet descriptors of 64B locally per PE.

The wireless LAN system function exceeds the 8 kB code memory space.
In its current implementation, the 802.11a/b/g+e station requires code
sizes of up to 22.5 kB (single PE mapping, incl. 6kB os functions, excl.
management functions). The dual core mapping which separates TA and
DL layer can be squeezed in 2x 16kB of code memory (89% and 96%
utilization). The data memory is utilized up to 48%, which leaves space
for more than 64 packet descriptors of 64B per PE.

The PEs have access to the shared packet memory, which can be used as
overflow storage for code and data. Access to this memory is slow but the
tiny-DMA function enables explicit data object and code-page fetching.
But even in cases where the fetching time can be hidden by the processing
of the core, some software overhead is required due to the DMA handling.

Another option would be a sharing of code memory between PEs to more
flexibly assign and better utilize the memory. Pairwise organized memory
banks, for instance, enable a continuous 16kB code memory for the dual
PE wLAN mapping without increasing the overall area footprint. In this
case (no shared code), there is no performance penalty. However, concur-
rent access to truly shared code will have performance penalties due to
arbitration effects.
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e Reduction of scheduling overhead — The analysis in previous sections
revealed the OS overhead to be significant, see Sec. 5.1.2, 5.2.4. The
handling of a timed event, for instance, required 70 cycles (cf. Tab. 5.6)
to set the timer, and another 33 cycles to start the associated task chain
once the timer expired. The overall processing budget of a distributed
application usually is only a few hundred cycles per core. An optimization
of such particular overhead, e.g., by implementation in assembly, could
therefore improve the performance significantly.

e ASIP based solution — Another option would be to switch to a processing
element with an application-specific instruction set, as discussed in Sec-
tion 5.2.3. Due to the speedup of 2.5X, a clock frequency in the range
of (only) 500 MHz would be required to support 64B PCI Express pack-
ets at line speed.® Using an ASIP, however, means giving up high-level
programmability and a loss of platform flexibility for two reasons. First,
ASIPs still lack sufficient compiler support. Manual and low-level imple-
mentation of the whole application is required to leverage the specialized
instruction set, which is cumbersome and time-consuming, as our own
experience shows [104]. And second, ASIP PEs increase heterogeneity,
so that task-mapping and resource allocation would be restricted to the
particular PEs. A (potentially SoC-wide) mapping to other PEs would re-
quire extra implementations of the system function due to the gap between
the high-level model and the assembler implementation.

However, switching to an ASIP based solution is a drastic step which would
specialize the whole platform towards our application. Before considering this
option, other optimization potential in application and mapping implementation
should be considered. In the next section, we will therefore investigate the
overhead of modularity in hard- and software, and conduct an experiment which
tailors the SPE logic further.

5.4 Costs of modularity and programmability

Using the NOVA prototype, we quantify the overhead of modularity in hardware
and in software. To derive a lower bound on the requirements of a general-
purpose core based solution, we will then look at an implementation which is
embedded in a more protocol-specific hardware environment (a ’tailored’” SPE)
and does not use the strict modularity of the NOVA platform.

5.4.1 Hardware modularity

The NOVA socket of the prototype interfaces to three on-chip communication
networks. Its area is dominated by the transfer queues for packet descriptors
and system messages.

Looking at NOVA’s Ethernet 10 module in Figure 5.21, we determine the
area of its socket compared to the embedded Ethernet MAC for the ASIC ver-
sion. Depending on the number of queue entries and assuming equally sized

5In combination with the orthogonal optimization of the scheduling overhead, which be-
comes more significant for the smaller instruction count on an ASIP, even smaller packets
could be processed at line speed (550MHz for 32B packets).
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Figure 5.21: Relative area overhead of the NOVA Ethernet 10 socket.

receive and transmit queues, the socket overhead is between 25% and 46%.
Simple SoC bus interfaces without buffering and NoC capabilities require less
area. A single PLB bus interface without memories, e.g., is only 1% of the
MAC area. Buffers included, notably more area is required. Using a single
Wishbone interface, the overhead is more than 60% for Opencore’s MAC. This
indicates that the area for traditional SoC bus interfaces is similarly dominated
by buffering. The required area for the socket is within the range of common
bus interfaces.

The current socket implementation realizes all transfer queues using dedi-
cated dual-port SRAM modules. This ensures maximum concurrency and im-
plementation flexibility in terms of the different clock domains. But dual-port
SRAMs are extremely area expensive, and multiple DPRAMs are more expen-
sive than a single one of the aggregated size. Thus, if restrictions in concurrency
or clock frequency ratios can be exploited, much smaller area footprints will be
achievable. We applied this consideration to the PE’s area estimation, see the
calculation in Table 5.8.

5.4.2 Software modularity

To determine the runtime overhead of the modular programming environment,
we use the CRACC code generator described in Section 4.4 and run the packet
processing benchmark [174]. This ”out-of-box” version strictly preserves Click’s
modularity and object-oriented runtime features such as virtual functions. In a
second step, we de-virtualize functions and resolve push and pull chains stati-
cally (CRACC optimized). In Figure 5.22, this is compared to a simple ANSI-C
program (straight calls) that calls all functions directly from a central loop,
without Click’s function call semantics. The figure reveals that CRACC with
static optimizations does not impose more overhead than the straight-function-
call approach (for a given granularity). There is still a penalty of 30% for the
structured and modular approach compared to a program that inlines all func-
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tions into a single packet processing loop (all-in-one).
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Figure 5.22: Overhead of modular software.

On the other hand, a fine-granular partitioning of the application into small
elements is helpful for multi-processor mapping, as we observed in Section 5.2.4.
Thus, a post-mapping optimization step, which groups task chains into ’super’-
elements, would potentially be beneficial for the execution performance.

5.4.3 A less modular architecture experiment

To derive a lower bound on the requirements of an implementation approach
based on general-purpose cores, we now consider an architecture which does not
follow the strict modularity and generality paradigms of the NOVA platform.
The system implements the GbE protocol in full duplex mode, which is the least
complex protocol version in our collection.

Hardware Architecture

The architecture comprises a processor which is directly connected to the func-
tions of the specialized PE via buffered communication links. The boundaries
between GPE and SPE blur, see Figure 5.23.

The former SPE functions, sender and receiver, are here tailored to the pro-
cessing specifics of the GbE protocol. Like the functions described in Sec. 5.3.2,
these modules handle the CRC processing. The protocol timing function of the
sender is limited to a counter for the interframe and pause intervals. Unlike
the modules of the SPE, the (protocol-specific) framer and deframer functions
are included here to enable a standard compliant GMII interface to the PHY.
Sender, receiver, and transfer buffer interface with the interrupt controller (ITC)
of the core, which is used to notify the core about state changes. For this pur-
pose, a queue is provided that holds cause and context data of events. For the
experiment, we are not interested in the SoC interface to the remaining sys-
tem. This is why we keep it separated. An interface comparable to the one
of the NOVA system encapsulates the packet fetch and store functions which
autonomously transfer the packet data.
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Figure 5.23: Specialized GbE SoftMac architecture.

As soon as a packet is ready for transmission, the core is notified by an
interrupt via the ITC module. The software reads cause and packet length from
communication link #1 and starts the transmit processing, which gathers the
information required for the operation of the sender module. As soon as its
processing is complete, this data is written into communication link #5. The
sender reads the information into its register context and starts the transmission
of the frame as configured.

Incoming packets are handled by the receiver, which stores them in words
into the receive buffer. In the process, the packet header together with the
processing status is copied into communication link #2. As soon as the packet
reception is completed, an interrupt is generated, and the processor core is
notified. The software uses the provided information to process the packet. It
also calculates the true packet len, which is used by the sender to update the
(alternating) write pointers of the receive buffer (link #4).

If the buffer runs full, pause frames are generated by the software and written
into link #3, from where they are transmitted as other tx frames. Received
pause frames are forwarded to the core (#2), which deletes them from the
receive buffer and configures the sender to pause for the specified interval.

Protocol Software

The software for the GbE protocol is implemented as an interrupt routine of
the processor core. Following the insights of the previous section, the program
implements the full protocol function as single loop body without function calls
and sub programs. Communication accesses are included directly as inline as-
sembler instructions. The rest of the program is C code.

The performance critical execution path of the software is the reception of
a data frame, its validation, and receive buffer update, which is followed by the
generation of a pause frame.
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Implementation results

As before, the architecture is synthesized for an Xilinx Virtex-II FPGA and
a 90nm Infineon semi-custom technology. For efficiency reasons, the FPGA
implementation deploys the Xilinx Microblaze CPU as processing core and uses
the fast-simplex links for the communication. The Microblaze is optimized for
the FPGA implementation which results, compared to the MIPS core, in much
higher operating frequencies (100 vs. 25MHz) and fewer slices.

Without consideration of the required context switch, the execution of the
critical path requires 97 instructions which translate into 129 cycles on the
Microblaze. Taking into account the overhead for routine call (6+6 cycles)
and context saves/restores (14x4 cycles) a total of 197 cycles is required. This
means that full line speed for minimum size packets could be achieved with clock
frequencies between 210 (no context save required) and 294 MHz (full context
save required). The full program requires less than 2kB code and data memory
(1132 Byte code memory and about 200B data memory).

Table 5.12 reports the ASIC area requirements for the GbE SoftMac. The
area depends on the memory configuration. The smallest area has the memory
configuration with a single 2kB memory for both, code and data. Compared
to a NOVA implementation with a single general-purpose PE and similar mem-
ory configuration, shown in the right column, the GbE SoftMac has an area
advantage of 16%.

Table 5.12: Area requirements in mm? for the processor-based GbE variant with
different memory configurations in comparison to the NOVA implementation.

sub-module GDbE SoftMac NOVA SoftMac
Neumann Havard Havard Havard

MIPS core 0.2079 0.2079 0.2079 | GPPE 0.7161

data mem 0.0982 0.0630 0.1710 -.1190

inst mem/boot rom 0.0487 0.1677 -.1080

Rx buffer fifo 0.0900 0.0900 0.0900 sPE  0.4418

Tx buffer fifo 0.0900 0.0900 0.0900

Rx len fifo 0.0193 0.0193 0.0193

Tx len fifo 0.0237 0.0237 0.0237

Communication links 0.0215 0.0215 0.0215

Hardware logic* 0.0595 0.0595 0.0595

SoC interface** 0.1561 0.1561 0.1561

total (minimal mem) 0.7626 0.7762 0.9309

total (regular mem) 1.0032 1.1579

*) includes FIFO control logic. **) 3xMemlIf, 2xDMA, SysMsglf (Tab. 5.10).

The software implementation of the tailored GbE MAC is substantially bet-
ter in both, code size and runtime performance, than the CRACC-generated
version. Including operating system functions, the model generated by CRACC
has a runtime code size of approx. 7 kB and would require 572 cycles for the
execution of the critical path (on the MIPS PE). These differences have several
causes:

e Overhead of modularity — The GbE implementation essentially is a single
function which comprises all necessary operations. No subroutines what-
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soever are required. The Click model on the other hand has at least ten
elements in the critical path. Considering the insights on the overhead of
modularity from Section 5.4.2; this alone would account for approx. 152 -
170 cycles.

e Comprehensive Click elements vs. essential functions — Most Click/Cracc
elements comprise code that makes them more robust, better interchange-
able, or independent. Elements usually can be configured for several use
cases or are implemented for the general case. The Classify element, for
instance, is only used to filter pause frames (particular ethertype value,
i.e., a comparison of two bytes) but can easily cope with large sets of clas-
sification rules. The GbE SoftMac implements the essential function in a
few lines.

e Shared state and packet descriptor handling — The Click/Cracc imple-
mentation holds processing state in structures (either in the element or in
the packet descriptor) that are stored in main memory. To share state,
elements have to exchange it explicitly, i.e., it must be copied in memory.
This requires extra code and processing cycles compared to the GbE im-
plementation, which holds all processing state in local variables that are
mapped to registers.

e Dynamic scheduling, different IO functions, other platform overhead —
The NOVA scheduler enables dynamic task scheduling and handling while
the GbE Mac relies on a statically scheduled implementation. NOVA
packet descriptors furthermore are 64 Bytes and must be moved between
memory and transfer queues (10410 cycles). The GbE Mac reads only
those 20 Bytes that are actually required by the protocol (5 cycles). The
transfer of the pause frame costs only seven cycles. Furthermore, the
NOVA platform provides APIs for timers, memory access and manage-
ment, message passing, and packet handling, which are all avoided by the
tuned GbE implementation.

Overall, the optimization potential of a software protocol implementation
that is generated by CRACC is large. For the Gigabit Ethernet protocol, we
observe a potential runtime improvement by a factor of 2.9X for the manually
tuned (but still in C implemented) version of the protocol, which avoids the
Click/CRACC programming model and platform abstractions. However, since
the GbE protocol is the least complex function of our protocols and, therefore,
exposes the platform overhead the most, we expect the potential for optimiza-
tions to be smaller for the other protocols.

The tailored hardware implementation of the protocol can not improve the
required area much. For the GbE implementation we expect an area advantage
of only 16% compared to a single-core NOVA platform. This is not surprising
since, in any case, the implementation is dominated by memories, communi-
cation interfaces, and the processor. The actual protocol-specific logic is only
a fraction of the area. The NOVA general-purpose implementation, however,
scales better with the number and the type of the supported protocol functions.
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5.5 Related work

Work related to our implementation of packet-oriented communication inter-
faces based on a programmable platform can be found in in three domains: )
modular and programmable platform architectures, II) existing Flexibility in
communication interfaces, IIT) other flexible IO interface implementations.

5.5.1 Modular platform architectures

Programmable platforms, according to [56] p.15, are the next design discontinu-
ity. They promise higher design productivity, easier verification, and predictable
implementation results. Rather than the design through assembly of individ-
ual IP blocks, programmable platforms provide hard- and software templates
based on a family of processors that can be tailored quickly to optimize costs,
efficiency, energy consumption, and flexibility. Key features of a programmable
platform thusly are modularity, simplicity, and scalability.

e Modularity in hard- and software aspects enables the system-level designer
to quickly customize the platform to the specifics of an application without
breaking the programming model. It also leads to clearer design choices
when building complex systems [92]. In addition, it eases the extension of
the platform’s modules by providing a set of well defined interfaces.

e Simplicity improves usability and eases the use of a platform. Instead
of, e.g., centering a platform around a particular (feature-rich) processor
architecture and bus protocol, a platform should keep concerns separated.
The platform should be core- and communication-protocol agnostic. Con-
sequently, an existing bus interface should be replaced with another one
rather than with a wrapper for the existing interface. In addition, this
means that the complexity of modules such as a standard processor core
should be carefully reduced as needed, e.g., by removing MMU, caches,
and certain functional units.

e A scalable platform is able to accommodate a wide range of I/O interfaces
and processing elements for handling different processing and communi-
cation requirements without breaking the programming model or forcing
the applications to be re-written for each platform instance.

A survey of the broad variety of packet processor architectures and platforms
can, e.g., be found in [177, 205]. Most of these architectures have been optimized
for high-performance. But other platform aspects such as the programmability
and modularity have often been neglected. Further examples of commercial
platform solutions for wireless and multimedia domains are Nomadik from ST
Microelectronics [12], and Philips Nexperia [44]. As mentioned before, these
architectures are centered around particular cores and bus protocols.

There are a few platforms [145, 116] which follow similar approaches as the
NOVA platform in terms of programmability and message-passing communica-
tion:

e StepNP [145] is probably the processor platform which is most closely
related to NOVA and CRACC (see the discussion in Section 4.2.2 on its
programming model and exploration method). Both platforms support
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the range from general-purpose over application-specific to hardwired (co-
) processing nodes which can be connected following the network-on-chip
paradigm.

Similar to NOVA, the StepNP platform provides support for message-
passing in hardware. In addition (and unlike NOVA), it implements cen-
tralized hardware accelerators for dynamic task allocation, scheduling, and
synchronization, as it is beneficial for SMP and SMT programming mod-
els [146], which are not in the focus of the NOVA hardware implementa-
tion. However, StepNP seems to always map processor-memory commu-
nication onto the same latency-intense on-chip communication network
and therefore requires hardware multi-threading to hide memory access
latencies in any case [146].

NOVA supports both, simple pipelined memory buses (split-transaction,
1d/st access) as well as memories which can be accessed via message-
passing primitives (rd/wr, rd response). Contrary to StepNP, NOVA does
not depend on hardware multi-threading and therefore does not limit the
application concurrency. The run-to-completion and encapsulated-state
semantics of the Click model-of-computation naturally support software
tasks-switches with low overhead.

Judging from the case studies in [146], StepNP’s platform overhead is
somewhat comparable to NOVA. StepNP implements only small MPI
transfer buffers of 512b (16 words) while NOVA implements at least 512B
(128 words). Yet, for a fair comparison, StepNP’s extra hardware contexts
must be taken into account as well (between 112 and 224 words), since
they are used to store the processing context for the individual transac-
tion. The reported software overhead for the handling of messages as well
as the round trip latency is similar to NOVA’s system messages. The
extra overhead of 10-12 instructions on the receiver (’server-side’) to in-
voke the requested method seems quite efficient but may be too optimistic
in peer-to-peer communication settings. NOVA’s current implementation
depends on the number of (dynamically registered) ’listeners’ and requires
between 19 and 47 instructions for our application mappings. Code and
data memory footprints for OS-like functions are not reported.

e Tensilica’s Xtensa [116, 121] is a configurable processor which (apart from
the usual bus interface) provides direct support for communication with
data-flow semantics. The processor template [64] allows the addition of
arbitrary-width IO ports, which can be used, e.g., for queued and direct
register-to-register communication between two processors. This feature
allows embedding the processor directly in the data flow as data can be
consumed and generated using in- and outports.

However, use cases such as the packet descriptor passing of Click can
not leverage this feature well. Packet descriptors must be stored in local
memory but not necessarily require processing of all data words. A flow-
through approach would therefore impose unnecessary load on the core,
see Section 5.2.2. Extra hardware, similar to NOVA’s tiny-DMA function
would be the consequence.

We kept the NOVA platform core-agnostic by using a memory-mapped
subsystem which provides access to local peripherals via load/store in-
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structions. This way, arbitrary cores (including the Xtensa) can be sup-
ported. The exploitation of core specific-features such as specialized low-
latency IO ports would be an interesting optimization of a particular
NOVA-PE.

We explored the benefits of a flow-through setting using the Xilinx Mi-
croblaze with its Fast-Simplex-Links in Section 5.4.3. The Click/Cracc
programming model would be portable to a Xtensa PE. Tensilica itself
does not provide a multiprocessor programming model.

NOVA postulates strict modularity in hard- and software as a key concept.
This is in tune with the goals and efforts of initiatives such as the VSI alliance
which has a broad scope and aims at virtual IP sockets to enable reuse and
integration [117]. The NOVA socket follows the widely used OCP specifica-
tion®, which is more focused and better suited to our needs. The definition of
meaningful software interfaces and programming abstractions is still an area of
lively research, see, e.g., [115, 208, 179] and the references therein. The Multi-
core Association is aimed at the definition of a MP communication API [118].
Our implementation of the NOVA OS functions was driven by the requirements
of the Click model-of-computation. Wherever possible, well known and effec-
tive techniques were used, e.g., for memory management or message-passing
communication.

5.5.2 Flexible interface implementations

Already the analysis of contemporary SoCs in Chapter 2 revealed different
implementation techniques to provide flexibility in communication interfaces.
Apart from the physical multiplexing of individual IP modules [3] and the em-
bedding of reconfigurable logic into the SoC [61, 120], we found few (rare) pro-
grammable approaches for IO interfaces:

e Use of specialized co-processors — At the high-end, some systems deploy
specialized co-processing elements that are micro-programmable for a well
defined set of network interfaces (ATM, Ethernet). The Motorola C-5 [51],
for instance, uses two Serial Data Processors (one for send, one for receive)
in each of its 16 channel processors. They provide a number of individual
low level tasks for the network interface such as bit field extraction and
CRC calculation.

e Fully in software — For low performance interfaces, we find implementa-
tions solely provided in software running on processors. Such a solution
provides full flexibility with only minimal area consumption for the inter-
face. In case of Ubicom [47], the multi-threaded processor with specific
instruction set requires a specialized operating system to fulfill the real-
time requirements of the interfaces. Per software IO interface, a dedicated
hardware real-time thread is required (up to six are concurrently possible),
which is scheduled deterministically (TDMA). The remaining threads are
used by the application software and are scheduled round-robin. Although
a promising approach in terms of full programmability, the solution can

Swww.ocpip.org
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only support limited bandwidth [47, 62]. The implementation of a stan-
dard PCI interface, which is supposed to run at 33 or 66 MHz, achieves a
bus frequency of 10 MHz.

Certainly, one reason for this serious limitation is the flow-through ap-
proach of the architecture. The processor must move every data word
from and to the interfaces, which leads to extremely tight budgets of a
few cycles per word. The Ubicom approach is therefore not feasible for
our high-throughput communication interfaces.

To the best of our knowledge, there have been no successful attempts to
implement PCI Express, Hypertransport, RapidlO, or Gigabit Ethernet similar
to us on a programmable architecture. Only the work in [80] describes the idea
of a PEX device in which the hardware is assisted by a microcontroller. The
controller runs a realtime OS and apparently handles link layer packets including
the replay buffer. However, neither protocol performance nor implementation
results are reported.

Mature work related to software implementations of our protocols can be
found only for wireless Lan, probably fostered by the relatively low bandwidth
requirements, the proximity to software-defined-radio platforms (which require
MAC functionality for their already flexible PHY radios), and the availability of
a 802.11a Mac reference implemented in SDL. In the following, we will therefore
examine a selection of these wLAN Mac implementations and discuss them with
respect to their flexibility in three broad categories in comparison with our
approach:

e The usual hardware/software function split — Most of the published pro-
tocol implementations follow a function split, which implements time crit-
ical and compute intense aspects such as channel access timing (DCF),
control frame processing, CRC calculation, and address validation in hard-
ware close to the PHY interface - the ’low Mac’. Other protocol functions
such as management and queueing, which are neither compute-intense nor
performance critical, are kept in software — the "high Mac’ [65, 165, 216,
140]. Across the implementations, this function split is relatively fixed.

— In [65], Hannikainen et al., describe the implementation of a wLAN
MAC protocol starting from SDL. The resulting system maps the
most critical functions into hardware (channel timing, encryption,
CRC), the rest is software on a DSP processor. The reported memory
sizes of 490kB code, 61kB data, and 100kB dynamic memory include
functions that are usually considered for running on a host processor
as part of the OS’ device drivers such as user interfaces, network
management, rate selection, and statistics.

— In [165], some data is provided on the performance of different oper-
ating systems in terms of context switching time and code and data
memory footprints. Due to the considerable overhead, the authors
avoid the use of any OS. Instead, they implement the high Mac func-
tion in two routines (rx, tx) as part of the interrupt handler on the
DSP processor of their prototyping system. After some code opti-
mizations, a throughput rate of 54Mb/s is reported for larger frames
that are fragmented into 256Byte segments.
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The best OS in the comparison is ThreadX, which is reported to
require 15kB code and 2kB RAM. The NOVA runtime configuration
for wLAN requires approx. 6kB code and a few hundred bytes RAM
for the OS functions. Context switching, i.e., swapping the register
context is reported to require 100 cycles for ThreadX. The NOVA
system does not require this overhead due to its run-to-completion
model-of-computation.

— Panic et al. [140] present synthesis results for a MIPS4k based system
which follows the usual function split. The implementation suffers
from deficiencies such as the lack of memories for the target standard-
cell technology. Without the memories’, the hardware accelerator is
5/6th of the area of the MIPS processor. This seems quite large.
Without its memories, the NOVA SPE would be less than 50% of a
MIPS core.

e Modifications of the MAC function — Although for diverse reasons, a
considerable fraction of the related work tries to change the MAC function,
see [43, 75, 209, 210] and the references therein. All this work would benefit
from a platform which enables easy changes on the MAC function.

— Doerr et al. [43] describe the SoftMac approach, which tries to disable
most of the wireless MAC function found in commodity hardware.
This enables a framework (MultiMac) that supports coexisting soft-
ware Macs with different functions. Interestingly, an interface to
Click is provided to ease the protocol development. So far, the solu-
tion would not achieve wLAN timing in software.

— The work by Wu et al. [209, 210] circumvents changes of the MAC
itself by describing a layer on top of regular 802.11 a/b/g MACs. The
solution provides quality-of-service features to support Voice-over-IP
in wireless multi-hop networks. For this purpose, the low-level device
driver on the host processor is changed and extended. According to
the authors and their discussion of related work do others depend on
changes of the DCF function or require 11e capable MAC functions
for the same purpose.

— Addressing the need for changeable MAC functions from a different
angle, Hunter et al. [75] present a FPGA based prototyping platform,
which (to some extend) allows modifications of the low Mac function.

e Fully flexible implementations — Few papers actually map the full MAC
function onto a processor core and analyze the achievable performance.
Similar to our fully flexible approach, the authors use their findings as
starting points for further optimizations either of the processor or its hard-
ware environment.

— To motivate their later implementation of the usual much less flexible
function split, Panic et al. ([140], see above), start with a SDL sim-
ulation model of the MAC. They use the model to generate C-code
which is profiled on a MIPS M4k instruction set simulator. Since

"The memory for the low Mac is synthesized from standard cells and reported separately.



134 CHAPTER 5. A PROGRAMMABLE INTERFACE ARCHITECTURE

the execution requires some sort of SDL runtime environment caus-
ing heavy overhead, the generated code is manually optimized. After
optimizations, the authors report a clock frequency requirement of
1000 MHz for a single-core 11a MAC (12Mb/s) fully implemented in
software. This seems somewhat in the range of our own initial pro-
filing results (4 GHz for 54Mb/s, cf. Sec. 5.1.3). However, a detailed
analysis (which may have revealed the critical and only dependency
on the monolithic encryption function) is not performed. Further
quantitative insights that would support the usual function split of
their resulting system are not provided.

— Shone et al. [184] implement a wLAN MAC fully in software on a
PowerPC running at 400MHz. The processor runs VxWorks as oper-
ating system and is part of a software-defined-radio prototype, which
comprises several physical modules that are connected by a VME bus.
The implemented Mac function is 802.11a. Features such as security
(WEP) and RTS/CTS control frame handling are not implemented.

For this system setup, three severe difficulties are reported in meet-
ing the realtime requirements of the wLAN protocol (i.e., the SIFS
deadline of 16us). First, the inter-module bus connection is too slow.
It requires already 40us to transmit a maximum Ethernet frame be-
tween PHY and MAC module. Second, interrupt response (3us) and
context switching (200us) times of the OS are too large. And third,
the clock of the CPU board had a jitter of 399 us. As a consequence,
the protocol deadline had to be extended by at least a factor of ten
to make the system operational.

Due to a single-chip implementation, our NOVA solution avoids the
issues of clock jitter and extra transfer times. In addition, NOVA exe-
cutes the Mac protocol processing concurrently to the packet transfer
which shortens the critical path. NOVA’s event handling and task
activation latencies are in the order of less than .5us.

— Other work [74, 84] maps a Mac onto an ARM processor to study the
impact of micro-architectural changes. In [74] the benefits of multi-
threading, extra functional units, and a reduced instruction set, are
reported in comparison to the original configuration. Overall a per-
formance improvement by a factor of two is reported using a 3-thread
two-issue configuration. Indications of the absolute performance are
not provided. The work in [84], which provides a profile of the ex-
ecuted instructions, argues in favor of a dynamically configurable
instruction set to increase the utilization of the micro-architecture.

We explored the performance potential of an application-specific pro-
cessor with reduced instruction set in Section 5.2.3 and observed rel-
ative improvements in the same order of magnitude (factor of 2.5)
for the given implementation.

5.5.3 Complexity of individual protocol implementations

This section seeks to gather publically available data on the implementation costs
of individual communication interfaces in hardware, and (if possible) compares
their function to our implementations.
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In general, it is difficult to find published data on the costs of particular
implementations and its breakdown to individual functions. The most compre-
hensive set of data could be collected for Xilinx IP cores, which we synthesized
on a Virtex-II FPGA. Each of the Xlinix cores basically implements the least
functionality to comply with the standard, i.e. optional features were disabled.
SoC interface functions such as DMA engines and bus interfaces are not in-
cluded. Table 5.13 summarizes the results. Unfortunately, a detailed functional
breakdown of the required resources was not possible for PEX, HT, and Ra-
pidIO due to the lack of analyzable source code. A wireless Lan Mac hardware
module is not available. The related work on wLAN MACs implementations
discussed in the previous section implementations did not provide conclusive
data on hardware resource requirements either.

Table 5.13: Minimal resource requirements of individual communication inter-
faces based on Xilinx IP cores on a Virtex-1I FPGA.

Module Included Function Slices BlockRAM
Gigabit Ethernet (GbE) PHY, DLL, TA 1400 4x2= 8kB
Hypertransport (HT) PHY, DLL, TA 3990 20x2=40kB
RapidIO (RIO) PHY, DLL, TA 5277 9x2=18kB
PCI Express (PEX) PHY, DLL, TA 6719 16x2=32kB
Microblaze (Mbz) CPU, OPB-If, 2xLMB 1020 >2x2= 4kB

References: HT [211], RIO [215, 212], PEX [214], GbE [213]

As a point of reference, the resource requirements of an Microblaze processor
core with a minimal subsystem comprising an OPB bus interface, and code and
data memory interfaces (local memory bus - LMB), are provided.

e PCI Express and RapidlO — In addition to the functionality modeled
in Click, the Xilinx cores [214, 215, 212] include initialization and power
management (PEX) functions as well as maintenance and status tracking.
Also, configuration and management modules are included, which handle
communication with the other modules and provide an interface to the
user-level.

Other implementations of PCI Express endpoints:

— Based on designs by Infineon Technologies, an area of 1.48mm? for a

rudimentary device without PHY functions can be estimated. This
includes an AHB slave as SoC bus interface and support for one
virtual channel. The transaction size is limited to the burst size of
the bus (max. 64B) to avoid segmentation and reassembly. DMA
and reordering features are not included.
If three channels are included (as in our model), the area increases
to 2.09mm? due to larger memory. Without the SoC interface and
using the ratio published in [30] (see below) to estimate the required
slices, this would roughly translate into 9000 slices.

e Hypertransport — Similar to our HT Click model, the Xlinix IP core [211]
used in Table 5.13 implements an revision of the standard which does not
include the packet-based mode with retransmissions (see the discussion



136 CHAPTER 5. A PROGRAMMABLE INTERFACE ARCHITECTURE

of [30] below). For the same revision, another commercial HT endpoint is
available, which requires 2.7x as many slices (10750) [50] but has a wider
data path (128b) and allows higher throughput. In both cases, a SoC
socket interface is not included.

Other work on HT implementations includes [68, 30]:

— Hasan et al. [68] implement a network-on-chip based on the HT pro-
tocol which may homogenize the overall communication structure of
systems. Their "HT light’ tunnel implementation is discussed in ref-
erence to HT. However, in terms of implementation complexity for
an HT node, no comprehensive picture is provided. Only two aspects
are mentioned: 1) a buffer memory requirement of approx. 9.4kB for
such a node, and 2) a complexity estimate of 9.25k gates only for the
CRC calculation logic.

— Castonguay and Savaria [30] implement a protocol compliant HT tun-
nel (device with forwarding function). The system requires approx.
132k gates or 18.1k LUTs. In addition, a total of 5.4kB memories
for data (3kB), command (400B), retry buffer (1kB), and user data
buffer (1kB) is used. According to earlier work by the authors [29],
this memory size is sufficient to store one packet per flow. The per-
module breakdown identifies flow control and retry functions to con-
tribute most to the system complexity (52% of the area). Since a
tunnel requires two interfaces, and all modules except user interface
and configuration and status are instantiated twice, a ballpark fig-
ure for the complexity of a single interface can be estimated as 73k
gates without memories. Given the reported size on a Virtex-II Pro
FPGA, this would translate into approximately 73/132 x 18.1 x 1/2
= 5000 slices and is in the range of the other implementations.

o Gigabit Ethernet — The area breakdown for a complete Gigabit Ether-
net Mac controller including an exemplarily interface to a 64bit PLB is
specified in Table 5.14. In addition to the data buffers (4kB each), extra
queues are implemented, which store the length of each packet. The data
is based on our own implementation which was verified against the Xilinx
IP core.

Table 5.14: Resource breakdown of a GbE hardware controller.

Module/Function Slices  BlockRAM
PHY layer ~480

MAC (DLL/TA) 575

Tx Buffer (data+len) 201 3x2=6kB
Rx Buffer (data+len) 207 3x2=6kB

PLB bus interface (64b)  ~500
1960  6x2=12kB

5.6 Chapter summary and discussion

This chapter investigated the feasibility of a programmable solution for packet-
oriented communication interfaces, which is:
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e composable from a modular platform that can be scaled to the interface
specifics of a System-on-chip without breaking the overall construction
paradigms and is

e casily programmable, following a high-level programming model that is
natural and productive for the application domain.

NOVA platform

For this purpose, we have developed NOVA, the Network-Optimized-Versatile
Architecture platform. NOVA supports the exploration of a programmable and
modular solution by applying four design principals:

e Modularity — Generalized hardware sockets are used so that interfacing
to processing resources can be decoupled from interfacing to the inter-
connect infrastructure. Similarly, our software framework is organized in
exchangeable components that represent computational kernels.

e Simplicity — To tackle the complexity of today’s SoC’s, NOVA is build
from basic hard- and software modules, which: keep concerns separated,
do not make assumptions on each other’s function, and are designed for
a particular purpose. Instead of extending a module to serve multiple
purposes, we prefer to provide another module wherever possible. In
combination with the modularity principal this helps to avoid the usual
performance-killing fallacy of complex hard- and software IPs wrapped in
multiple layers of abstraction circuitry for configuration and interfacing.

e Scalability — NOVA supports a wide range of I/O interfaces and process-
ing elements to handle different application requirements without break-
ing the programming model. The NOVA socket and message format allow
the integration of traditional shared buses [164], as well as better scalable
Network-on-Chip (NoC) techniques [18] and enable arbitrary numbers of
processing nodes.

e Customizability — NOVA provides design points for customization if the
most flexible solution does not meet design criteria. Coprocessors, for
instance, either tightly or loosely coupled, can be used without breaking
the representation of the application.

Guided by these design principles, the NOVA platform implements the state-
of-art in concurrent SoC platforms while avoiding some of the fallacies of other
approaches as discussed in Section 5.5. Our analysis of the overhead introduced
by modularity in hard- and software in Section 5.4 further revealed costs in
terms of on-chip area and execution performance that are also comparable to
existing techniques. We have published our findings in [166].

Design space exploration

Using NOVA and our code generators, we explored the performance / area
tradeoffs involved into the implementation of a programmable interface solu-
tion. Following our application-driven methodology, we started with the profil-
ing of the communication interfaces mapped on a single-core architecture and
observed:
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e Per-packet protocol processing — Most protocol processing happens per-
packet and is only based on the packet’s context/header.

e Cycle-consuming payload processing — Those rare functions that actually
touch the whole packet, such as CRC calculation and encryption, are the
most cycle consuming functions.

e Non-deterministic processing times — Large monolithic elements in com-
bination with Click’s run-to-completion model-of-computation make it im-
possible to meet hard real-time deadlines as required,e.g., for wireless Lan.

The performance of the single-core architecture is not sufficient as the anal-
ysis revealed. Especially for small packets, multi-gigahertz clock frequencies
would be required to meet either the throughput requirements (PCI Express)
or the tight deadlines for packet reception and response generation (wireless
Lan).

Next, we explored several axes of the platform design space and studied their
impact on the system’s performance using our SystemClick framework and the
collected profiling data:

e Core type — To compare different embedded RSIC cores and their compil-
ers, we profiled a packet processing benchmark implemented in CRACC on
a representative set of synthesizable embedded 32bit processors. Although
the general purpose cores achieved a somewhat comparable performance
in terms of packet throughput for our benchmark, we found the MIPS
M4k to have the best performance-area trade-off. The application-specific
core included in the comparison were not able to perform well, due to
insufficiencies in its high-level programmability.

e Hardware accelerators — By deploying hardware accelerators for the pay-
load processing functions CRC and data transfer (DMA), the processing
performance can be improved by factors between 2.8 (min) and 114 (max)
for PCI Express, the most complex high-throughput protocol. In case of
wLAN, the slowest of our protocols, up to a factor of 1.2 was observed.

Another candidate for hardware acceleration would be the WEP function
which is used by wireless Lan and consumes the vast majority of its cycles.
However, the overall performance requirement of wLAN is moderate so
that WEP could remain in software, saving protocol-specific area.

e Application-specific instruction set processor — By deploying an ASIP
instead of a general purpose processing core, performance improvements
by a factor of 2.53 can be expected looking at the critical path of PCI
Express.

Using an ASIP, however, means giving up high-level programmability and
a loss of platform flexibility. Our experience from network processing [104]
and our ASIP design experiments with the Tipi framework published
in [128, 168] show that ASIPs still lack mature compiler technology. See
also the performance of the ASIP and its compiler in our core type explo-
ration. Programming them in assembler is the consequence as we did for
the static analysis in Section 5.2.3.
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ASIP PEs increase the platform’s heterogeneity and limit mapping and
resource allocation since the whole application must be re-implemented in
assembly to leverage the specialized instruction set. Although supported
by the library based approach of Click/Cracc this would lead to multiple
sources for an element due to the gap between high-level and assembly
implementation.

e Multiple processing elements — Exploiting concurrency in the application,
we investigated mappings of up to seven cores.

The analysis revealed a four-core mapping to be a reasonable choice be-
tween speedup and number of cores for the high-throughput interfaces. A
four-core mapping of a duplex PCI Express link achieves a speedup of 1.85.
The considered higher core mappings would only marginally improve the
speedup (5:2.19, 6:2.34, 7:2.73) due to the given application granularity
and implementation.

The realtime requirements of the wireless Lan protocols can be met using a
dual-core mapping, which separates real-time critical and compute-intense
long running functions from each other.

e Communication topology — To study the communication requirements,
we assumed all processing nodes to be connected by a single write-only
bus which is used to exchange packet descriptor messages. Based on Sys-
temClick several hundred design points were evaluated that vary in bus
speed and size of the in- and outboxes.

We found a single bus to be sufficient in any case if it runs at 30% or more
of the PE’s clock frequency. Only those cases in which in- and outboxes
have only a single entry per link show slight performance degradation

(-1%).

With increasing bus utilization, i.e. for lower bus speeds, the size of
the transfer queues becomes more important for compensating the non-
availability of the bus. In the case of a 20% speed, sizes of 3 (out) to 4 (in)
entries per link are necessary to achieve the full performance. If the bus
speed becomes too low (10%), the available communication bandwidth is
no longer sufficient. In this case, queues do not matter. They are always
full and stall the processing pipeline.

4PE4SPE instance of the NOVA platform

Based on these insights, we propose a NOVA platform instance with four general-
purpose PEs for the protocol processing software and a specialized hardware
processing element which comprises flow-through accelerators for the payload
processing and handles the PHY interface. The architecture is protocol agnos-
tic. Only the CRC function, which is part of the SPE, must implement the
superset of all used polynomials. Leveraging the implementation of the NOVA
prototype, we conclude on the platform instance:

e For the chosen 90nm ASIC technology, the architecture runs at a system
clock frequency of 360 MHz and requires an area of 3.3 mm?. 58% of the
area are memories. The modules are decoupled and run asynchronously.
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e The system can handle PCI Express at full duplex line speeds (4 Gb/s
goodput) for packets of 206 Bytes or larger. Smaller packets can be han-
dled at lower speeds, e.g., 64 Byte packets at 1134 Mb/s. A similar per-
formance can be expected for RapidlO and Hypertransport.

e Wireless Lan can be handled at line speed using only two of the four
processing elements. Due to the complex protocol processing, the wLAN
has higher code memory requirements so that the code memory of the two
other PEs is used as well (2x 2x 8kB).

e The Gigabit Ethernet protocol can be handled at line speed with a single
processing element after software optimizations.

The detailed analysis of the performance revealed potential for improvements:

e Application implementation — First, the concurrency of the application
model can be improved to ease partitioning and pipeline balancing. See the
discussion on the PCI Express model in Section 5.2.4. Second, elements
and their parameters should be tuned to the platform’s capabilities based
on profiling feedback.

e Mapping and platform overhead — Elements belonging to the same task
chain should be concatenated to avoid function call overheads. Also,
the OS function for event handling and task scheduling (currently im-
plemented for flexibility) can be optimized to reflect the more confined
setting of the protocols.

e Architecture modifications — For the high-throughput interfaces more
processing elements can be deployed if the granularity of the application
permits.

Main results

Looking at the performance we found an implementation based on a modular
and protocol-agnostic platform to be feasible:

e without performance restrictions for Gigabit Ethernet and wireless Lan
802.11 a/b/g. These protocols can be fully handled in software.

e with performance restrictions for PCI Express, Hypertransport, and Ra-
pidIO. Full line speed cannot be achieved for small packets.

Even with the performance restriction PEX, HT, and RIO are fully functional
since the protocols’ flow control schemes will effectively throttle the throughput
in compliance with the standard. This is different to a known software-based
implementation of PCI, which violates the physical wire speed ([62], cf. p. 131).

The area footprint of such a solution depends on the use case. If we compare
our flexible solution with individual IP modules, we find:

e Compared to a single GbE interface (cf. Tab. 5.9), the programmable so-
lution would be larger by factors between 1.3 (ASIC, dual port memories)
and 1.64 (ASIC, single port memories).
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e The flexible implementation of a PCI Express endpoint (4PEs) is larger
than a dedicated ASIC implementation by a factor of 1.59 (cf. p. 135).

Integrating a flexible implementation as a replacement for a mature and single
protocol interface is not beneficial in terms of the required area. A flexible solu-
tion is an alternative to physical multiplexing in cases where mutually exclusive
protocols must be supported:

e The combination of PCI Express with either HT or RIO would already
save some area (7% for HT+PEX, 12% for RIO+PEX)®.

e Support of all three interfaces has an area advantage of 37%.

This indicates an advantage of a flexible solution in terms of performance and
area. In settings with moderate throughput requirements already the current
implementation is feasible as we will conclude in the next chapter. Assuming the
discussed software optimizations are applied, further significant improvements
of the performance/area ratio can be expected by different means: First) by
deployment of faster cores (either by semiconductor technology, full custom
design, or micro architecture). The 2nd generation of the Intel Microengine, for
instance, run at clock speeds of up to 1.4 GHz [53]. And, second) by deviation
from the general-purpose instruction set.

8Calculated on the basis of the PCI Express IP module size reported on page 135. The
size of HT, RIO is estimated based on the ratio of logic slices in table 5.13 assuming similar
memory requirements.
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Chapter 6

Conclusion

Today’s heterogeneous systems-on-chip combine customized blocks for commu-
nication interfaces with processing cores (see Chapters 1 and 2). Such pro-
grammable platforms promise higher design productivity since they are built
more abstractly from coarse-grain building blocks rather than being designed on
the RT level. By their software programmability, they also make late or in-field
adaptations of a system’s function possible, thus reducing the first-time-right
risk and increasing the longevity of systems in evolving markets. For application
domains such as network and protocol processing, dozens of different multipro-
cessor platforms were created which deploy concurrent processing elements in
increasing numbers. Their IO interfaces remain dedicated non-programmable
hardware modules integrated separately and relatively late during the design
process.

But communication interfaces must become a first class citizen for the design
of embedded systems-on-chip. They contribute significantly to the complexity
and the heterogeneity of an embedded system as contemporary evidence shows.
This is caused firstly by their own growing complexity, which is driven by in-
creasing bandwidth requirements and more sophisticated protocol processing
(cf. Sec. 1.1), and, secondly, by the diversity of the protocol landscape requir-
ing the integration of many different IO functions on a single die (cf. Sec. 2.6).

This work tackles the diversity of communication interfaces and their contri-
bution to a system’s heterogeneity by exploring the feasibility of programmable
10 architectures following two key ideas. A flexible module, which can be tar-
geted at multiple IO protocols (1st key idea), reduces the number of heteroge-
neous building blocks on the die. It also enables reusing the system in changing
and evolving communication environments since 10 functions can be updated
or replaced. And, it eases a system’s integration by supporting variable function
splits between the core and the IO module. A programmable solution ampli-
fies these advantages. By leveraging a platform’s processing cores for the 10
function (2nd key idea), a platform becomes even more homogeneous. System
integration and deployment are eased further since both, IO and core functions,
are specified using the same integral programming model and can be distributed
more flexibly among the processing cores. This means that the interface function
becomes a part of a now fully programmable platform.

The central hypothesis of our work is that there is a set of communica-
tion interfaces that can be implemented by a flexible solution so that a) it is
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programmable using a platform’s programming model, and b) is applicable at
reasonable costs in terms of performance and area. Focusing on the fast-growing
class of packet-oriented IO protocols (as motivated in Sec. 2.6) this hypothesis
was proven in two steps:

1. We developed a domain-specific methodology for the application-driven
development and deployment of programmable communication interfaces
and provide a set of code generation tools for its application.

2. We applied our methodology to a set of communication protocols and
quantitatively explored their performance on a modular architecture plat-
form.

The results indicate the feasibility of a programmable interface architecture for
embedded settings with moderate performance requirements and demonstrate
the absorption of interface functions into a fully programmable platform as will
be discussed in the next sections.

6.1 Application-driven methodology

Due to the lack of established methods for the systematic exploration of a plat-
form’s design space, we had to develop a comprehensive methodology for the
application-driven development and deployment of programmable platforms to
be used for the exploration of flexible interfaces. The Y-chart-based approach
focuses on the characterization of the application domain as early as possible.
With this input, the design space can be narrowed to one major design trajectory
starting with the most flexible (i.e., fully programmable) solution and iteratively
refining the platform to meet performance/cost constraints. The methodology
specifically targets the whole system to ensure the integral consideration of the
communication interfaces. Further contributions to the disciplined development
and deployment of programmable SoC communication interfaces are:

e Modeling technique for packet-oriented interfaces — By modifying and
extending the well-established Click framework, we applied best-practise
in implementing network applications to the domain of communication
interfaces. Contrary to known approaches our framework focuses on ex-
ploration and implementation efficiency.

e CRACC implementation framework — Based on architecture-independent
protocol specifications in Click, we derived implementations for concur-
rent platforms using our CRACC code generator. CRACC closes the gap
between Click and an efficient software running on a wide range of embed-
ded processor cores while related work focuses on hardware generation or
a specific ASTP target. It enables Click as integral programming model.

e SystemClick exploration framework — For a fast exploration of the design
space, SystemClick is provided. From Click specifications of application-
architecture mappings, SystemClick generates functional SystemC models
which can be executed natively using a performance database. To enable
quick alterations and, in contrast to other work, SystemClick’s perfor-
mance information is derived by profiling and is dynamically annotated
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on a coarse granularity, leveraging the well-defined element boundaries of
Click.

A speedup of two orders of magnitude can easily be achieved using Sys-
temClick generated models with performance annotations compared to
instruction set simulation. Contrary to related work, which often focuses
on benchmark kernels, the figures include the full system function. The
quality of the simulation results is within a 2.5% margin and depends on
the match of traffic characteristics between profiling and simulation.

Our methodology and tools are not bound to packet-oriented communication
interfaces. They can be utilized for the design of network processing systems as
shown and discussed elsewhere [172, 22].

6.2 Architecture exploration

Following our application-driven methodology, we first analyzed and character-
ized the communication interface domain:

e Usage-based classification of communication interfaces — A set of more
than 30 contemporary SoC architectures from three communication-intense
application domains was analyzed and classified in its interface specifics.
Being the first of its kind, the deployment survey discusses interface di-
versity and existing approaches towards flexibility.

e Characterization and comparison of packet-oriented interfaces — Using
a representative selection of protocols, a common structure and a set of
elementary tasks were derived, and similarities in occurrence and deploy-
ment were discussed. While putting its emphasis on the transaction and
the data link layers of the protocols, the comparison is the first that takes
real-time critical interface protocols into account.

Applying our findings together with method and tools summarized in the
previous section, we implemented a set of interfaces in Click and conducted
an architecture exploration for a programmable communication interface using
building blocks of the NOVA hard- and software platform. Our NOVA platform
implements the state-of-the-art in concurrent platforms while putting more em-
phasis on modularity and programmability (cf. Sec. 5.5.1).

We quantified the performance of our interfaces along five primary design
axes: type of the embedded standard cores, hardware accelerators, application-
specific processing cores, number of processing elements, and communication
topology (cf. Sec. 5.6). Based on these insights, we proposed a NOVA in-
stance with up to four PEs for the protocol processing software and a special-
ized element (SPE), that comprises protocol-agnostic hardware accelerators (cf.
Fig. 5.20). Our main findings were:

e Performance of a programmable interface — An implementation on a mod-
ular and protocol-agnostic platform meets the performance requirements:

a) without restrictions for Gigabit Ethernet and wireless Lan 802.11 a/b/g.
These protocols can be handled fully in software using 1-2 NOVA process-
ing elements running at clock speeds between 150 and 360 MHz. Consid-
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erably improving related work protocol deadlines of wireless LAN can be
met by a software implementation of the control frame processing.

b) with restrictions for PCI Express, Hypertransport, andRapidlO. Full
throughput of up to 5Gb/s can be achieved for packets of 206 Bytes or
larger on a 4PE NOVA system running at only 360 MHz.

But even with the performance restriction for small packets, PEX, HT, and
RIO are fully functional since their flow control mechanism will effectively
throttle the throughput in compliance with the standard. This is different
from a known software-based implementation of PCI that violates the
physical speed on the wire.

o Area footprint of a programmable interface — Compared to the area of
individual IP modules and depending on the use case we observed:

a) Compared to a single IP interface, the programmable solution is larger
by factors between 1.59 (PCI Express, 4PEs) and 1.64 (GbE, 1PE).

b) Physically multiplexed IP modules. The combination of PCI Express
with HT or RIO has an area advantage of 7% to 12%. A combined solution
for all three interfaces has an area advantage of 37%.

6.3 Is a programmable solution feasible?

The implementation of communication interfaces on a protocol-agnostic pro-
grammable platform is feasible as our results show.

Mapping link and transaction layers of packet-oriented communication inter-
faces onto a multiprocessor platform, we found that all of our protocols can be
handled in software. The performance and real-time requirements for medium-
throughput protocols can be met running on processing elements with moder-
ate clock frequencies (150-360 MHz). Performance restrictions apply for high-
throughput protocols since these protocols throttle the throughput for small
packets. In such cases, the full line speed of up to 5Gb/s is not achieved.

This means that a programmable solution as proposed can be deployed in
settings that do not require highest packet throughput. In contrast to such
embedded settings, high-performance computing and graphics application would
call for even higher throughput rates, i.e., support for multiple parallel lanes
would be required. Most of the SoCs, which were discussed in Chapter 2, have
aggregated throughput requirements, which are far lower than those 5Gb/s of a
single 10 interface. The whole IXP1200 network processor system, for instance,
targets line rates of 2.5 Gb/s. Potential deployment scenarios are:

e Residential gateways — A wireless access point, which, apart from wireless
Lan and Ethernet interfaces, also integrates a PCI express interface, would
not require more than a few hundred Mb/s throughput (150-600 Mb/s).

e Network processors — PEX, RIO, or HT may be deployed as control-
plane and switch-fabric interfaces in network processors. At the control
plane, short messages would not appear very frequently compared with the
forwarding throughput. For the switch fabric interface, on the other hand,
fixed packet sizes of 64B or larger would be a reasonable assumption.
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The area footprint of such a solution depends on the use case. If we compare our
flexible solution to individual IP modules, we find the programmable solution to
be larger by about 60%. Integrating a flexible implementation as a replacement
for a mature and single protocol interface, therefore, is not beneficial in terms
of the required area. The flexible implementation if considered ’standalone’ is
more expensive.

However, if multiple mutually exclusive protocols must be supported or a
protocol is immature and still evolving, the flexible solution would be an alterna-
tive to the physical multiplexing of several dedicated IP modules. Furthermore,
if an application under-utilizes a processing element of the SoC, its spare cycles
may be used to execute flexible interface functions. This lowers the area foot-
print. Another Ethernet interface, for instance, would require only the extra
SPE while the GPE functions are mapped onto the core’s PEs, which is there,
anyway.

In summary, we are convinced that this strongly indicates the feasibility
of a flexible solution in terms of performance and area. In embedded settings
with moderate throughput requirements even the current implementation is
advantageous.

6.4 Directions for further research

While identifying the interface problem and laying a foundation for the system-
atic development of flexible packet-oriented communication interfaces, several
starting points for further research remain, including the following:

e A better performance/area trade-off may be achieved by the optimization
of the application description and the platform mapping. We found, e.g.,
the applications’s granularity to be performance-limiting. Also, platform
optimizations depend on profiling feedback. A tight integration and the
(potentially) automated generation of profiling data could shorten the
feedback cycle for hard- and software optimizations.

e Results can also be improved by deviation from the general-purpose in-
struction set. Maturing the programmability of ASIPs (e.g, their compiler
support) therefore would enable their integration as building blocks of a
fully programmable platform.

e Focusing on performance and area, our exploration did not consider power
consumption. Including power consumption as an additional exploration
objective would complement our analysis and might provide insights for
application domains such as handheld devices.

e Adopting a depth-first approach, we could demonstrate value for packet-
oriented interfaces. Currently, our methodology is applied to further com-
munication protocols in this domain such as the emerging 802.11n proto-
col family. Further potential may exist in other interface classes, e.g., the
memory interfaces.
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