
Time-Efficient Asynchronous Service Replication

Vom Fachbereich Informatik der Technischen Universität Darmstadt
genehmigte

Dissertation

zur Erlangung des akademischen Grades eines Doktor-Ingenieur (Dr.-Ing.)
vorgelegt von

Dipl.-Inform. Dan Dobre

aus Lugoj, Rumänien

Referenten:
Prof. Neeraj Suri

Prof. Michel Raynal

Datum der Einreichung: 23.06.2010
Datum der mündlichen Prüfung: 30.09.2010

Darmstadt 2010
D17

ii

Abstract

Modern critical computer applications often require continuous and correct oper-
ation despite the failure of critical system components. In a distributed system,
fault-tolerance can be achieved by creating multiple copies of the functionality and
placing them at different processes. The core constitutes a distributed protocol
run among the processes whose goal is to provide the end user with the illusion of
sequentially accessing a single correct copy. Not surprisingly, the efficiency of the
distributed protocol used has a severe impact on the application performance.

This thesis investigates the cost associated with implementing fundamental
abstractions constituting the core of service replication in asynchronous distributed
systems, namely (a) consensus and (b) the read/write register. The main question
addressed by this thesis is how efficient implementations of these abstractions
can be. The focus of the thesis lies on time complexity (or latency) as the main
efficiency metric, expressed as the number of communication steps carried out by
the algorithm before it terminates. Besides latency, important cost factors are the
resilience of an algorithm (i.e. the fraction of failures tolerated) and its message
complexity (the number of messages exchanged).

Consensus is perhaps the most fundamental problem in distributed computing.
In the consensus problem, processes propose values and unanimously agree on one
of the proposed values. In a purely asynchronous system, in which there is no
upper bound on message transmission delays, consensus is impossible if a single
process may crash. In practice however, systems are not asynchronous. They are
timely in the common case and exhibit asynchronous behavior only occasionally.
This observation has led to the concept of unreliable failure detectors to capture
the synchrony conditions sufficient to solve consensus.

This thesis studies the consensus problem in asynchronous systems in which
processes may fail by crashing, enriched with unreliable failure detectors. It de-
termines how quickly consensus can be solved in the common case, characterized
by stable executions in which all failures have reliably been detected, settling im-
portant questions about consensus time complexity.

Besides consensus, the read/write register abstraction is essential to sharing

information in distributed systems, also referred to as distributed storage for its

importance as a building-block in practical distributed storage and file systems. We

study fault-tolerant read/write register implementations in which the data shared

by a set of clients is replicated on a set of storage base objects. We consider

robust storage implementations characterized by (a) wait-freedom (i.e. the fact

the read/write operations invoked by correct clients always return) and (b) strong

consistency guarantees despite a threshold of object failures. We allow for the most

general type of object failure, Byzantine, without assuming authenticated data to

limit the adversary. In this model, we determine the worst-case time complexity

of accessing such a robust storage, closing several fundamental complexity gaps.

iii

Kurzfassung

Für moderne sicherheitskritische Computeranwendungen ist eine ununterbrochene
und fehlerfreie Funktion erforderlich, oft auch dem Ausfall kritischer Systemkom-
ponenten zum Trotz. In einem verteilten System kann Fehlertoleranz dadurch
erreicht werden, dass mehrere identische Kopien einer Applikation erstellt, und
auf verschiedene, möglicherweise fehleranfällige Prozesse plaziert werden. Kern
dieses Verfahrens ist ein verteiltes Protokoll, das von den Prozessen im verteil-
ten System ausgeführt wird, mit dem Ziel eine einzelne und ausfallsichere Kopie
zu simulieren. Endbenutzern wird der Eindruck vermittelt, auf eine korrekte,
hochverfügbare Kopie sequentiell zuzugreifen. Wie nicht anders zu erwarten hat
die Effizienz des verwendeten, verteilten Protokolls eine signifikante Auswirkung
auf die Performanz der Applikation.

Diese Dissertation untersucht die Kosten grundlegender Abstraktionen verteil-
ten Rechnens, die den Kern der Replikation von Diensten in verteilten Systemen
bilden, nämlich (a) Consensus und (b) das Lese-/Schreibregister. Die Haupt-
fragestellung dieser Arbeit ist wie effizient Implementierungen dieser Abstraktio-
nen überhaupt sein können. Dabei liegt das Augenmerk der Dissertation auf der
Zeitkomplexität (oder Latenzzeit) als maßgebliche Effizienzmetrik, gegeben durch
die Anzahl der Kommunikationsphasen (oder -schritte) die ein verteiltes Protokoll
benötigt bevor es terminieren kann. Zwei wichtige Kostenfaktoren neben der
Latenzzeit sind die Ausfallsicherheit (die Anzahl der tolerierten Ausfälle) und die
Nachrichtenkomplexität (die Anzahl der gesendeten Nachrichen) eines Protokolls.

Consensus ist höchstwahrscheinlich das grundlegendste Problem auf dem Ge-
biet des verteilten Rechnens. Es kann wie folgt beschrieben werden: Prozesse
schlagen jeweils einen Wert vor und müssen sich auf einen der vorgeschlagenen
Werte einigen. In einem rein asynchronen System, in dem keine oberen Schranken
für die Kommunikationszeit zwischen Prozessen existieren, ist Consensus unlösbar,
selbst wenn nur ein einziger Prozess ausfallen darf. In der praktischen Anwen-
dung sind allerdings solche Systeme meistens synchron (d.h. es gibt solche oberen
Schranken), und sie verhalten sich nur gelegentlich asynchron. Diese Beobach-
tung führte zu dem Konzept des unverlässlichen Fehlerdetektors, der die hinre-
ichenden Synchronitätsbedingungen für die Lösbarkeit von Consensus erfasst und
abstrahiert.

Diese Arbeit untersucht das Consensus-Problem in asynchronen Syste-
men mit Anhalte-Ausfällen von Prozessen, und Verfügbarkeit von Fehlerdetek-
toren, die auch unverlässliche Angaben über den Fehlerzustand von Prozessen
machen dürfen. Es wird ermittelt wie schnell Consensus in Fällen die in der
Praxis häufig auftreten gelöst werden kann in, z.B. in sogenannten stabilen
Ausführungsinstanzen, in denen geschehene Ausfälle bereits verlässlich erkannt
worden sind, und keine weiteren Ausfälle mehr stattfinden. Offene Fragen nach
der Latenzzeit von Consensus werden durch die Ergebnisse dieser Arbeit geklärt.

Neben Consensus, ist auch das Lese- und Schreibregister eine grundlegende

iv

Abstraktion auf dem Gebiet des verteilten Rechnens, und ermöglicht den Prozessen
in einem verteilten System auf gemeinsame Daten zuzugreifen. Das Lese- und
Schreibregister wird oft auch, wegen seiner Relevanz als Baustein in praktischen
verteilten Speicher- und Dateisystemen, als Storage bezeichnet.

Diese Dissertation erforscht fehlertolerante Storage-Implementierungen, in
denen Daten, die von Clients gemeinsam genutzt werden, aus Gründen der
Verlässlichkeit und Hochverfügbarkeit auf mehrere Storage-Server repliziert und
damit redundant gespeichert werden.

Es werden robuste Storage-Implementierungen betrachtet, die sich (a) durch
Wartefreiheit (d.h. von korrekten Clients aufgerufene Lese- und Schreiboperatio-
nen müssen stets terminieren) und (b) durch starke Konsistenzeigenschaften ausze-
ichnen, trotz der Fehlfunktion von Storage-Servern und Clients. Das untersuchte
Systemmodell erlaubt die allgemeinste Klasse von Funktionsfehlern, sogenannte
Byzantinische Fehler, ohne eine Authentifizierung der Daten anzunehmen um den
Angreifer zu begrenzen. In diesem Rahmen wird die Worst-Case Latenzzeit von
Lese- und Schreibzugriffen auf ein robustes Storage untersucht und ermittelt, und
dadurch werden etliche grundlegende Komplexitätslücken geschlossen.

v

vi

Acknowledgements

To begin with, I am deeply grateful to my advisor Prof. Neeraj Suri for
the huge amount of confidence he has placed in me, and for the unlimited
freedom I received for developing my own ideas and research direction. To
the thesis committee for the time spent reading and evaluating my thesis.
Special thanks goes to my co-advisor Prof. Michel Raynal who’s scientific
writings have opened an entire new chapter in my professional life.

A big thanks goes to my close colleagues and dear friends, Marco and
Matthias, from the distributed computing “subgroup” at DEEDS. They al-
ways have offered their availability and devoted their time and attention to
endless discussions about various research topics, and also about personal
subjects. Special thanks goes to Marco for helping me to improve most of
my writings, for the good time we had in Darmstadt, and the weeks spent
together on our fun travels to foreign countries. Also, special thanks to
Matthias who always took the time to listen to my ideas, pointing out the
bad and the boring ones, since the first day he joined. I thank all my coau-
thor colleagues for their commitment to our joint publications, and the more
senior ones for their guidance.

I am grateful to my colleagues and friends Dinu, Marco, Matthias, Pe-
ter and Piotr with whom I’ve spent reams of pleasant lunch breaks and
“Stammtisch” evenings. To all DEEDS members, for making my stay in the
group an extremely enjoyable experience. To our secretary Sabine for taking
care of the paper work I never had to handle, and to our technical assistant
Ute, who always provided me with a flawless machine setup.

I am deeply grateful to my parents, for always caring, for all their love
and unconditional support. I’m dedicating this thesis to my wife Alina, for
her love and understanding, and for the most beautiful present — the baby
we are eagerly awaiting.

Dan
Darmstadt, October 4, 2010

vii

viii

Preface

This thesis concerns the Ph.D. work I did under the supervision of Prof.
Neeraj Suri at the Computer Science Department, Technische Universität
Darmstadt, from 2004 to 2010. The thesis focuses on time-efficient asyn-
chronous distributed algorithms and lower bounds in the context of (a) con-
sensus and state machine replication resilient to crash failures, and (b) dis-
tributed storage resilient to Byzantine failures. This work is a composi-
tion of four published papers [DS06, DMS08, DMSS09, DMSS10], as well
one paper that has been submitted for publication to peer reviewed confer-
ences/journals [DGM�10].

[DGM�10] Dan Dobre, Rachid Guerraoui, Matthias Majuntke, Neeraj Suri,
and Marko Vukolic. The Complexity of Robust Atomic Storage.
2010. Technical Report TR-TUD-DEEDS-06-01-2010.

[DMS08] Dan Dobre, Matthias Majuntke, and Neeraj Suri. On the Time-
complexity of Robust and Amnesic Storage. In OPODIS ’08:
Proceedings of the 12th International Conference on Principles
of Distributed Systems, pages 197–216, 2008.

[DMSS09] Dan Dobre, Matthias Majuntke, Marco Serafini, and Neeraj Suri.
Efficient Robust Storage Using Secret Tokens. In Proceedings of
the 11th International Symposium on Stabilization, Safety, and
Security of Distributed Systems, pages 269–283, 2009.

[DMSS10] Dan Dobre, Matthias Majuntke, Marco Serafini, and Neeraj Suri.
HP: Hybrid Paxos for WANs. In EDCC’10: Proceedings of the
8th European Dependable Computing Conference, pages 117–126,
2010.

[DS06] Dan Dobre and Neeraj Suri. One-step Consensus with Zero-
Degradation. In DSN ’06: Proceedings of the International Con-
ference on Dependable Systems and Networks, pages 137–146,
2006.

ix

During this period, besides the work presented in the thesis, I also
worked on (1) Byzantine resilient atomic broadcast and state machine replica-
tion algorithms [DRS07, SBD�10], (2) on abortable fork-linearizable storage
[MDSS09] and (3) on eventually linearizable concurrent objects [SBD�10].

[DRS07] Dan Dobre, HariGovind V. Ramasamy, and Neeraj Suri. On
the Latency Efficiency of Message-Parsimonious Asynchronous
Atomic Broadcast. In SRDS ’07: Proceedings of the 26th IEEE
International Symposium on Reliable Distributed Systems (SRDS
2007), pages 311–322, 2007.

[MDSS09] Matthias Majuntke, Dan Dobre, Marco Serafini, and Neeraj Suri.
Abortable Fork-Linearizable Storage. In OPODIS ’09: Proceed-
ings of the 13th International Conference on Principles of Dis-
tributed Systems, pages 255–269, 2009.

[SBD�10] Marco Serafini, Peter Bokor, Dan Dobre, Matthias Majuntke,
and Neeraj Suri. Scrooge: Reducing the Costs of Fast Byzantine
Replication in Presence of Unresponsive Replicas. In DSN ’10:
Proceedings of the 40th International Conference on Dependable
Systems and Networks, 2010. To Appear.

[SDM�10] Marco Serafini, Dan Dobre, Matthias Majuntke, Peter Bokor,
and Neeraj Suri. Eventually Linearizable Shared Objects. In
PODC ’10: Proceedings of the 29th ACM Symposium on Princi-
ples of Distributed Computing, 2010. To Appear.

x

Contents

1 Introduction 1

1.1 Context . 2

1.1.1 Consensus . 2

1.1.2 Distributed Storage . 4

1.1.3 On Time Complexity and Related Metrics 5

1.2 Motivation . 6

1.2.1 Consensus Time Complexity and Open Questions . . . 6

1.2.2 Storage Time Complexity and Open Questions 9

1.3 Contributions . 13

1.3.1 (C1) One-step Consensus with Zero-Degradation 13

1.3.2 (C2) Generalized Consensus and Hybrid Paxos 15

1.3.3 (C3) Optimal Robust Amnesic Storage 16

1.3.4 (C4) Robust Storage using Secret Tokens 18

1.3.5 (C5) Robust Atomic Storage Complexity 19

1.4 Roadmap . 20

2 Preliminaries 21

2.1 Model . 21

2.2 Consensus . 22

2.2.1 Traditional Consensus 23

2.2.2 Failure Detectors . 23

2.2.3 The Atomic Broadcast Problem 24

2.2.4 Spontaneous Total Order 24

2.2.5 Revisiting Consensus in Lamport’s Framework 25

2.2.6 Generalized Consensus 26

2.2.7 Complexity Measures 27

2.3 Distributed Storage . 28

2.3.1 Register Types . 29

2.3.2 Time Complexity . 30

xi

3 One-Step Consensus with Zero-Degradation 33
3.1 Introduction . 33

3.1.1 Previous and Related Work 34
3.1.2 Contributions . 35

3.2 Model . 36
3.3 The Lower Bound . 37
3.4 Circumventing the Impossibility with Ω 40

3.4.1 Detailed Description 42
3.4.2 Correctness . 42

3.5 Circumventing the Impossibility with 3P 44
3.5.1 Detailed Description 45
3.5.2 Correctness . 47

3.6 The Atomic Broadcast Protocol 48
3.6.1 Correctness . 48

3.7 Performance Evaluation . 51
3.7.1 Experimental Evaluation 51

3.8 Summary of the Results . 52

4 Generalized Consensus and Hybrid Paxos 55
4.1 Introduction . 55

4.1.1 Contributions . 57
4.1.2 No Clear Winner with CP and GP 58

4.2 Model . 59
4.3 Generalized Consensus and Paxos 60

4.3.1 The rule of picking a history 62
4.4 The Hybrid Paxos Protocol 63

4.4.1 Overview . 63
4.4.2 The Protocol . 64
4.4.3 Discussion . 66

4.5 Evaluation . 67
4.5.1 Experimental Settings 67
4.5.2 Latency . 68
4.5.3 Throughput . 72

4.6 Proof of Correctness . 73
4.7 Summary of the Results . 81

5 Robust Amnesic Storage 83
5.1 Introduction . 83

5.1.1 Previous and Related Work 85
5.1.2 Contributions . 85

5.2 Model and Preliminaries . 86

xii

5.2.1 Shared Memory Model 86
5.2.2 Preliminaries . 87

5.3 Fast Robust and Amnesic Storage 89
5.3.1 Protocol Description 89
5.3.2 Protocol Correctness 93

5.4 An Optimally Resilient Algorithm 94
5.4.1 A Safe Counter with Optimal Resilience 95
5.4.2 The DMS3 Protocol . 99

5.5 The Optimized DMS Protocol 103
5.6 The Optimized DMS3 Protocol (3t� 1) 106
5.7 Summary of the Results . 109

6 Robust Storage with Secret Tokens 111
6.1 Introduction . 111

6.1.1 Contributions . 113
6.2 Model . 113
6.3 An Implementation Supporting Unbounded Readers 114

6.3.1 Overview . 114
6.3.2 READ Implementation 115
6.3.3 Correctness . 117
6.3.4 Optimality: Fast Reads Must Write 119

6.4 An Implementation of Fast READs 121
6.4.1 Overview . 121
6.4.2 READ Implementation 123
6.4.3 Correctness . 125

6.5 Summary of the Results . 126

7 Complexity of Robust Atomic Storage 129
7.1 Introduction . 129

7.1.1 Previous and Related work 130
7.1.2 Contributions . 132

7.2 Model . 133
7.3 The Read Lower Bound . 133
7.4 The Write Lower Bound . 137
7.5 Summary of the Results . 144

8 Conclusion 147

A Computing Digests of Large Histories 153

B Read Lower Bound (The Hybrid Model) 155

xiii

List of Figures 161

List of Tables 163

Bibliography 165

Curriculum Vitae 175

xiv

Chapter 1

Introduction

A core engineering principle when building safety-critical systems is to avoid
a single point of failure. By relying on the correct operation of individual
components, the failure of a single component may result in the unavailability,
or even worse, the corruption of the entire system. A widely used approach
for solving this problem is to design the system in a redundant way, by using
replication. This is also true for modern critical computer applications that
cannot afford data loss or data corruption resulting from failures. This thesis
is about efficiently implementing reliable computer systems from unreliable
components, by means of replication in distributed systems.

A distributed system consists of a set of computing entities, also called
processes, which are able to perform local computation and to communicate
with each other. Distributed computing encompasses the study of funda-
mental problems and algorithms in distributed systems.

The main two challenges distributed computing is facing are failures and
asynchrony. With the advent of cheaper storage, computing and communi-
cation resources, distributed systems have been increasingly built to support
massive scalability in clusters often consisting of thousands of commodity
servers [GGL03, DHJ�07]. In order to meet the needs of high throughput
and low latency, business critical data is partitioned and processed in paral-
lel on multiple machines. In such large-scale systems, it has been recognized
that failures are commonplace rather than being exceptions [GGL03]. Some
failures are accidental, and can be detected (e.g. by using cross check sums)
and semantically turned into simple crash failures. However, when corporate
networks are exposed to the internet, the provided service can be compro-
mised by malicious intruders resulting in undetectable arbitrary behavior of
the faulty components, called Byzantine failures [PSL80].

Besides failures, asynchrony poses a considerable challenge to distributed
computing. In asynchronous systems there are no bounds on transmission

1

2 CHAPTER 1. INTRODUCTION

delays nor on processor speed, making it impossible to distinguish between a
crashed process and a very slow one. Since processes can be arbitrarily fast
or arbitrarily slow, the correctness of a solution cannot rely on the timely
delivery of messages from processes. It would seem easier to design algorithms
in a model which assumes bounds on processing and communication delays
(i.e. the synchronous model). In such a model, unresponsive processes can
be easily detected using end-to-end timeouts. However, modern applications
are composed of many layers, each with complex timing assumptions and
thus they cannot always guarantee end-to-end timing properties. At best,
these systems have predictable response time in the common case, but even
a slight deviation of the load or the operating conditions can lead to long
delays which may violate the timing assumptions made. Additionally, when
dealing with open networks, such as the Internet, malicious break-ins by
attackers may target the timely delivery of messages in order to compromise
the service.

1.1 Context

Above we have given an overview of the main challenges that need to be ad-
dressed by fault-tolerant asynchronous distributed computing research. This
thesis concentrates on two fundamental abstractions in distributed comput-
ing, namely consensus [LSP82, FLP85, DLS88, CT96, Lam98] and read/write
storage (equivalently read/write register) [Lam86, ABD95, MR98, JCT98].

1.1.1 Consensus

Consensus is perhaps the most fundamental and mostly studied problem
in distributed computing. It has been introduced by Pease, Shostak and
Lamport [PSL80]. In the consensus problem, processes propose values and
are required to irrevocably agree on a value such that: (a) no two processes
decide differently (Agreement), (b) eventually every correct process decides
(Termination) and (c) if a process decides a value v, then some process has
proposed v (Validity) [CT96].

Consensus is an essential building block for many critical applications.
For instance, the most popular way to maintain application consistency and
availability in the presence of failures (and asynchrony) is state machine
replication [Lam78, Sch90]. A reliable server is emulated by a collection
of unreliable replica servers, some of which may fail, and replicas agree on a
sequence of requests to be executed. With this approach, all replicas perform
operations that update the data in the same order, and thus remain mutually

1.1. CONTEXT 3

consistent. Agreement on a sequence of requests boils down to running a
sequence of consensus instances, one per client request (or group of client
requests).

Another example for the relevance of consensus are distributed transac-
tions [Gra78, GL06], where processes need to agree whether to commit or
to abort a transaction. Generally speaking, consensus is universal, meaning
that the problem of implementing any type of shared object can be reduced
to solving consensus [Her91].

Despite its importance as a distributed computing abstraction, determin-
istic consensus has no solution in the asynchronous model if a single process
may crash [FLP85]. However, real systems are not completely asynchronous.
As a consequence, a great number of works have explored ways to circumvent
this impossibility [BO83, DDS87, DLS88, CT96, CF98, MRR03].

One way of solving consensus is by extending the asynchronous model
with timing assumptions about message transmission times. The eventually
synchronous model [DLS88] assumes the existence of an unknown upper
bound on transmission time. The bound is not even required to hold a
priory. However, there is a time called global stabilization time (GST), such
that after GST this bound on message transmission time holds.

A particularly interesting and widely adopted approach constitutes the
seminal concept of unreliable failure detectors and their classification [CT96].
Since the impossibility of consensus in the asynchronous model stems from
the inherent difficulty to tell a crashed process from a very slow one, the idea
was to extend the asynchronous model with failure detection capabilities.
Local failure detector modules monitor a subset of processes and output
information about suspected processes. After a finite time (e.g. GST), a
failure detector is required to cease making mistakes. For instance, faulty
processes eventually must not be mistakenly taken for correct and vice versa.
Obviously, failure detectors cannot be implemented in a purely asynchronous
model. Their role is merely to encapsulate sophisticated timing assumption
and to abstract the synchrony requirements sufficient for solving consensus.

One failure detector type which is of particular interest is the eventual
leader oracle, Ω, that eventually outputs the same correct leader process at
all processes. Ω has been shown to be the weakest failure detector for solving
consensus [CHT96], and many consensus algorithms have been devised for
this model, e.g. [DG02, GR04, Lam98].

In this thesis we study the consensus problem in the asynchronous system
model with crash failures, enhanced with failure detectors. Under the notion
of asynchronous consensus we consider indulgent [Gue00] algorithms. An
algorithm is indulgent if it always preserves its safety properties (e.g. agree-
ment) even in asynchronous executions, and ensures termination in execu-

4 CHAPTER 1. INTRODUCTION

tions in which failure detection eventually is reliable. The price payed for the
indulgence is that no more than a minority of processes can be faulty [CT96],
no matter what (unreliable) failure detector is used.

Besides consensus, the thesis investigates the equivalent problem of
atomic broadcast [CT96]. Atomic broadcast constitutes the core of state
machine replication. It ensures that requests broadcast by clients to a group
of replica servers are delivered to all servers in the group in the same order.
Given that atomic broadcast is typically built from consensus (e.g. [CT96]),
its performance is determined by the consensus algorithm used.

1.1.2 Distributed Storage

Although the problem of implementing a reliable service from unreliable com-
ponents involves some form of agreement, not all reliable service implementa-
tions translate to consensus. An example of such a service is the read/write
register abstraction, for its relevance in practical distributed storage and file
system architectures also called read/write storage. It provides two primi-
tives, a write operation which writes a value into the register, and a read
operation which returns a value previously written. The read/write reg-
ister abstraction is essential to sharing information in distributed systems
because it abstracts away the complexity incurred by concurrent access to
shared data. Besides its API being very simple, it is today the heart of
modern “cloud” key-value storage APIs (e.g. Amazon S3 [AWS]).

Distributed storage algorithms constitute an active area of research and
are appealing alternatives to centralized storage systems based on specialized
hardware [AEMCC�05, CDH�06, ASV06, SFV�04]. Typically, a reliable
read/write storage is implemented by replicating the data on a set of fault-
prone base objects, of which a threshold may fail. The clients access the base
objects over which the storage is implemented, and the end user is provided
with the illusion of accessing a centralized storage.

Read/write storage can be classified according to the consistency se-
mantics it provides and the cardinality of readers and writers it sup-
ports [Lam86, AW98]. This thesis concentrates on a fundamental class of
read/write storage, in which there are multiple readers and a single writer
(MRSW) [ABD95, ACKM06, ACKM07, GV06, GV07]. Standard transfor-
mations known in the literature can be applied to implement a multi-writer
storage from a single-writer one [AW98].

Also, read/write storage comes in three consistency flavors safe, regular
and atomic in increasing strength [Lam86]. A safe storage guarantees that
a read which does not overlap with any write returns the last value written.
However, if a read is concurrent with a write, the read may return an ar-

1.1. CONTEXT 5

bitrary value, which clearly limits the applicability of safe storage. Regular
storage strengthens safety, requiring that a read returns an actually written
value that is not older than the last value written. This makes regular stor-
age appealing as a direct building block for other applications (e.g. shared
memory consensus [ACKM06]). However, the most desirable consistency cri-
terion is atomicity (also called linearizability [HW90]). Atomicity provides
to the clients accessing the storage (possibly in a concurrent manner) the
illusion that data is accessed sequentially.

In this thesis we focus on distributed storage in the arbitrary failure model
(also called Byzantine), which becomes increasingly relevant in absence of the
full trust in the cloud [CKS09]. In this model, we study distributed storage
that provides strong consistency guarantees (i.e., regularity or atomicity)
and wait-freedom [Her91], (i.e., the fact that read/write operations invoked
by correct clients always eventually return) despite (a) asynchrony and the
failure (possibly Byzantine) of any number of clients and (b) the largest
possible number of Byzantine base object failures.

1.1.3 On Time Complexity and Related Metrics

Two of the most important challenges when devising a distributed algorithm
is (a) to tolerate the largest possible number of faults, called optimal resilience
and (b) to provide optimal efficiency with respect to some relevant complex-
ity metric. An essential efficiency measure of distributed algorithms is their
time complexity, (also called latency). Roughly speaking, latency captures
how quickly a given algorithm can terminate. Time complexity is typically
measured as the number of message delays (or steps of communication) an
algorithm takes before it terminates [Awe85, Sch97, AW98] (Figure 1.1 (a)).
In data centric storage, often communication takes place only between clients
and servers (e.g. when servers are active disks). Then, the latency of an al-
gorithm is measured as the number of communication round-trips (or simply
rounds) [ACKM06, GV06], where one round is equivalent to two message
delays (illustrated in Figure 1.1 (b)).

The focus of the this thesis lies on designing latency efficient algorithms.
Besides being of great theoretical importance, the exploration of the latency
metric extends beyond the associated intellectual challenge. With the growth
in data processing and storage outsourcing driven by the advent of cloud
computing, the number of remote interactions among processes maps to our
latency metric and is often directly associated with the monetary cost. This
obviously increases the practical relevance of devising algorithms which are
latency efficient.

Two other relevant efficiency metrics considered in the thesis are through-

6 CHAPTER 1. INTRODUCTION

put and message complexity. Throughput is measured as the number of re-
quests that can be handled per time unit [GGL03, vRS04, MJM08] and mes-
sage complexity [RC05, GGK07] is the total number of messages exchanged.

p4

p3

p2

p1

(a) 3 communication steps

p1

p2

p3

p4

(b) 2 rounds (4 steps)

Figure 1.1: Time complexity (Latency)

1.2 Motivation

1.2.1 Consensus Time Complexity and Open Ques-
tions

Given that the synchrony models that we have discussed allow completely
asynchronous executions which are finite but unbounded, it is generally im-
possible to bound the running time of consensus in the worst case. In real
systems however, there are often long periods during which communication
is timely, i.e., many executions are actually synchronous. In such executions,
failure detection based on time-outs can be reliable. Therefore, the perfor-
mance of asynchronous consensus is studied in synchronous executions, or
equivalently in executions in which failure detectors are accurate.

Two major research trends have emerged in investigating the latency of
consensus. A large amount of effort has been devoted to executions which
are synchronous from the outset, with and without failures [MR01, KR01,
DG02, GR04, DG05]. More recently, it has been studied how long it takes
for consensus to recover from arbitrary periods of asynchrony once the sys-
tem becomes synchronous and no more failures occur [DGK07, KS06]. The
latter is relevant for understanding consensus performance in systems that
frequently oscillate between periods of stability and instability.

Keidar and Rajsbaum [KR01] established a tight bound on the latency of
consensus of two communication steps before global decision is reached, (i.e.,
before all correct processes decide) in nice executions which are failure-free
and synchronous. This result contrasts with the synchronous model, in which

1.2. MOTIVATION 7

global decision is reached after one step in failure-free executions, pointing
out the inherent cost associated with tolerating asynchrony.

In practice, nice executions are the exception rather than the norm, as
observed in [GGL03]. Hence, the question arises if the optimal latency of
two communication steps can also be attained in executions with failures,
e.g. in which all failures have occurred before the execution starts? Recall
that, state machine replication involves executing many instances of consen-
sus, and therefore, it is important that failures which have occurred earlier
do not affect the performance of later instances. Executions in which fail-
ure detection is reliable and all failures are initial are termed stable, and
algorithms that attain the optimal latency in stable executions are called
zero-degrading [DG02, GR04].

A large amount of work has went into circumventing the above two-
step lower bound, and several papers have been published devising asyn-
chronous consensus algorithms which, for certain vectors of input values
(also called configuration), expedite global decision to one communication
step, e.g. [BGMR01, PSUC02, PS03, Lam06a].

Special attention is paid to the case when all processes propose the same
value, which is particularly relevant in the context of state machine replica-
tion, e.g. in datacenters [PS03]. To see why, it is important to understand
that atomic broadcast, which lies at the heart of state machine replication,
typically consists of two phases, a broadcast phase followed by a consensus
phase [CT96]. In the broadcast phase, clients send their requests to the
server processes. When a server process receives a request, it triggers a new
consensus instance proposing that particular request.

In many networks, such as LANs, it often happens that requests broadcast
by different clients are received by all servers in the same order, a phenomenon
called spontaneous total order [PS03]. Thus, when a new consensus instance
is triggered, all server processes propose the same value in that particular
instance. Optimizing consensus in this regard expedites atomic broadcast
from three message delays in the common case to just two.

The original one-step consensus algorithm is due to Brasileiro et
al. [BGMR01]. The algorithm attains global decision after a single all-to-all
message exchange if all proposals are equal; otherwise it falls back to a generic
consensus algorithm. While being very efficient from a configuration where
all proposals are the same, the algorithm requires at least three communica-
tion steps from other configurations. A closer look at other algorithms that
reach consensus in one communication step [PS03, MR00, PSUC02, CMP06,
Lam06a] reveals that they also fail to match the two-step lower bound of
Keidar and Rajsbaum [KR01].

A natural question to ask is whether a single algorithm exists that matches

8 CHAPTER 1. INTRODUCTION

both lower bounds. More specifically, a number of intriguing questions arise:

(Q1.1) Does a single consensus algorithm exist that attains global decision (a)
in one communication step when all proposals are equal and (b) in two
communication steps in stable runs?

(Q1.2) What failure detector is sufficient to attain these two properties? Is Ω,
which is sufficient for (b) also sufficient for both (a) and (b)?

(Q1.3) If Ω is insufficient, then what are possible ways to circumvent the im-
possibility? Does it help to employ a stronger failure detector, or even
to weaken the problem in a meaningful way?

In arbitrary networks, e.g. a WAN, the assumption that messages broad-
cast from clients to servers experience a spontaneous total order is too op-
timistic [SPMO02]. When different clients broadcast their requests roughly
at the same time, it often happens that they are received in different orders
by the replicas, which is termed a collision. Thus, ways have been inves-
tigated to minimize the impact of collisions on consensus performance, for
instance by relaxing the assumptions under which consensus ca be expe-
dited [PS02, Lam05, Zie05].

Pedone and Schiper [PS02] point out that more efficient algorithms can
be devised by taking into account the “semantics” of messages. Instead of
blindly totally ordering all the messages, the authors propose to totally order
only conflicting messages, according to a binary conflict relation defined on
the messages. The practical relevance is obvious. For instance, real-world ap-
plications often encounter read-dominated workloads and “read” operations
never conflict with each other, so they can be applied in any order. In con-
trast, “writes” conflict with other operations applied to the same object, and
consequently have to be totally ordered. The authors of [PS02] introduce the
generic broadcast problem in which only the conflicting messages are totally
ordered, and describe an algorithm that attains the optimal latency of two
message delays with non-conflicting messages.

Inspired by this work, Lamport [Lam05] introduces a very clean and pre-
cise generalization of consensus, from agreement on a single value, to agree-
ment on a growing partially ordered set of values (called generalized consen-
sus). The algorithm that solves the problem is a variation of the well-known
Fast Paxos protocol [Lam06a], called Generalized Paxos, featuring optimal
message complexity and optimal resilience (i.e., 2f�1 servers, where f is the
bound on faults). It requires the optimal two message delays when requests
are non-conflicting (including the additional broadcast step from clients to

1.2. MOTIVATION 9

servers). However, it incurs four additional message delays to recover from
collisions caused by conflicting requests.

Zielinski’s generic broadcast [Zie05] effectively eliminates collision recov-
ery, by running multiple protocols in parallel and choosing the quickest out-
come. Although the implementation is latency optimal, the authors acknowl-
edge that it is prohibitively expensive in terms of message and computation
complexity. Taking a practical perspective, we raise the following question:

(Q2) Is it possible to devise a high throughput and low latency algorithm that
shares all the nice features of Generalized Paxos (i.e., optimal messages
and optimal resilience) without the expense of collision recovery?

1.2.2 Storage Time Complexity and Open Questions

We now turn our attention to the second subject of the thesis, namely the
read/write register abstraction. Several papers have explored the solvability
and the time complexity metric in the context of a read/write register.

The Crash-failure Model

A seminal crash-tolerant and wait-free atomic MRSW register implemen-
tation with optimal resilience (i.e., 2t � 1 processes, where t is the bound
on faults) was presented in [ABD95]. As it constitutes a key paradigm for
distributed storage design, we briefly discuss its main ideas.

In [ABD95], each process assumes both the roles of client and base object
and up to a minority of processes may crash. Every write operation completes
in a single round. The writer holds a monotonically increasing timestamp,
which induces a total order on the values written, corresponding to the real-
time order of write operations. A write operation assigns a fresh timestamp
to the value it writes, and broadcasts a message containing the timestamp-
value pair to all processes. Each process locally stores the value with the
highest timestamp received so far. After receiving a higher timestamped
value, each process stores the timestamp-value pair and acknowledges the
receipt. The write operation completes when it collects acknowledgments
from a majority of processes.

Beside writes, regular reads in [ABD95] also complete in a single round.
The reader broadcasts a message to all processes requesting the timestamp-
value pair stored on each of them. A process that receives the message simply
replies with the timestamp-value pair it has locally stored. After receiving
timestamp-value pairs from a majority of processes, the read completes by
returning the value with the highest timestamp.

10 CHAPTER 1. INTRODUCTION

It is not difficult to see that the implementation is wait-free, i.e., that
read/write operations always return. Regularity is ensured by the intersec-
tion property of majority sets (also called quorums). If a write operation
with timestamp ts has completed, then a quorum is updated with ts and the
corresponding value. A subsequent read operation accessing a quorum, reads
from at least one of the processes updated by the write. Thus, a read never
returns a value with a timestamp lower than ts.

Atomic reads in [ABD95] require one additional write back phase, whose
purpose is for the reader to update a quorum with the timestamp-value it is
going to read. This ensures that if a read returns a value with timestamp ts,
then no subsequent read returns a value with a lower timestamp. Atomicity
comes at the expense of two communication rounds for read operations.

The problem of modifying [ABD95] to enable single round reads was ex-
plored in [DGLC04], which showed that such fast atomic implementations,
(i.e. every operation completes in one round) are possible, albeit they come
with the price of limited number of readers and suboptimal resilience. More-
over, the reader in [DGLC04] needs to write (i.e., modify the objects’ state) as
dictated by the lower bound of [FL03] which showed that every atomic read
must write into at least t objects. The limitation on the number of readers
of [DGLC04], was relaxed in [GNS09], where a crash-tolerant MRSW atomic
register implementation was presented, in which most of the reads complete
in a single round, yet a fraction of reads is permitted to be slow and complete
in two rounds.

The Byzantine-failure Model

The study of reliable distributed storage initiated in [ABD95] for the crash
model was extended to the Byzantine model in [MR98, JCT98], in which (a)
any number of clients may crash and (b) a threshold of base objects may
manifest arbitrary failures. An essential difference to the crash model is that
any safe storage implementation tolerating t Byzantine faults requires at least
3t� 1 base objects (optimal resilience) [MAD02]. To see why, note that any
two quorums must overlap in t�1 objects to ensure that some non-malicious
object is contained in the intersection.

In the Byzantine setting, several different data and communication mod-
els have been explored. Some works assume a model where data is authen-
ticated (called self-verifying data) [MR98, CT06, DGLV05], typically using
digital signatures. The time complexity of these algorithms is in line with
that of crash-tolerant distributed storage protocols, e.g. [ABD95, DGLC04].
On the downside, they involve a certification and a key pre-distribution phase
and entail a noticeable computation overhead. Also, they are typically based

1.2. MOTIVATION 11

on unproven cryptographic assumptions and they are not secure against com-
putationally unbounded adversaries.

Thus, a great number of works have tackled the problem of Byzantine-
fault tolerant storage in a model in which data is unauthenticated [MAD02,
BD04, GWGR04, AAB07, ACKM06, ACKM07, GV06, GLV06, GV07,
CGK07, HGR07]. Research in the unauthenticated model comes in two dif-
ferent flavors, according to the power of the base objects assumed.

In the server centric model base objects are active, characterized by the
ability to push messages to subscribed clients and to communicate with other
base objects, e.g. [MAD02, BD04, AAB07]. Protocols in this model however,
do not scale well with the number of clients and base object faults, due
to their high message complexities. A different flavor is the data centric
model, in which objects are passive. Passive objects only reply in response to
client requests and do not communicate with other base objects. Algorithms
designed for this model are more general, because little is assumed about
passive base objects.

Robust Storage

In the thesis, we focus on robust storage [CGK07] implemented from passive
storage components. A robust storage algorithm wait-free implements (at
least) a regular storage from Byzantine base objects in the unauthenticated
data model.

Robust algorithms for unauthenticated data are particularly difficult to
design when values previously stored are not permanently kept in stor-
age, but similar to a circular buffer, they can be overwritten by a se-
quence of values written after them. Obviously, this is desirable because
it enforces a limited amount of data to be stored, preventing the base ob-
jects from exhausting their memory. Algorithms that satisfy this prop-
erty are called amnesic [CGK07]. Amnesic algorithms store in the base
objects only a limited, typically small history of written values (if any).
Thus, the amnesic property captures an important aspect of the space
requirements of a distributed storage implementation. In contrast, non-
amnesic algorithms store an unlimited number of values in the base objects,
e.g. [MAD02, BD04, GWGR04, GV06, GV07, AAB07].

The difficulty of implementing robust amnesic storage stems from the fact
that in the unauthenticated data model, the value read must be sampled from
more than one base object, to guarantee that it is not forged. When during a
read operation, written values are progressively erased by a sufficient number
of overlapping writes, it has been shown to be impossible for the read to
complete, if readers are precluded from writing [CGK07].

12 CHAPTER 1. INTRODUCTION

Many Byzantine resilient algorithms avoid the problem of storing an un-
limited number of values in the base objects by relaxing robustness. For in-
stance, some implementations do not ensure wait-freedom [Her91] but weaker
termination guarantees, such as obstruction-freedom [HGR07] introduced
in [HLM03], or finite-writes [ACKM06]. Other works implement only weaker
safe storage semantics [JCT98, MR98, ACKM06, GV06]. Only two works
have explored the feasibility of robust and amnesic storage [GV06, ACKM07].
The algorithm presented in [GV06] is not bounded wait-free and reads re-
quire an unbounded number of rounds in the worst case. The one described
in [ACKM07], albeit very elegant and simple, has non-optimal resilience and
non-optimal time complexity. Thus, a natural question to ask is whether
robust algorithms which are also amnesic are inherently more costly than
non-amnesic ones. Specifically, the state of the art leaves the following ques-
tions open:

(Q3.1) What is the worst-case time complexity of robust amnesic storage? Is
it possible to devise a robust and amnesic algorithm that is fast, i.e.,
where each operation completes in one round?

(Q3.2) What is the worst-case time complexity of robust amnesic storage with
optimal resilience? Does a bounded wait-free algorithm exist, and if
yes can it match the latency of non-amnesic storage?

Robust storage implementations for unauthenticated data are particularly
attractive because they do not incur the overhead of cryptography and they
are invulnerable to cryptographic attacks. However, existing unauthenticated
algorithms with optimal resilience and optimal time complexity [ACKM06,
GV06] have a much higher (worst-case) read latency compared to algorithms
storing self-verifying data, using digital signatures [MR98]. This is critical
because many practical workloads are dominated by read operations.

For instance, [ACKM06] studied the read/write latency of unauthenti-
cated storage with optimal resilience, under the constraint that readers are
precluded from writing. The authors of [ACKM06] showed a tight lower
bound on writing of two rounds into MRSW safe storage, and a tight lower
bound on reading of t�1 rounds from such a storage. Precluding readers from
writing is appealing because it results in implementations able to support an
unbounded number of possibly malicious readers with constant memory at
the servers. However, allowing readers to modify the base objects’ state helps
improve latency as shown in [GV06], through a two-round tight lower bound
on reading from optimally resilient robust MRSW regular storage.

Altogether compared to optimally resilient algorithms in the authenti-
cated model, which feature fast read/write operations [MR98, CT06], these

1.3. CONTRIBUTIONS 13

results are rather sobering. Thus, the question arises if it is possible to
achieve better latency in the unauthenticated model without fundamentally
strengthening the assumptions. Specifically, we raise the following questions:

(Q4.1) Is the unauthenticated model inherently more costly in terms of read
complexity compared to the authenticated model?

(Q4.2) Is there a way to circumvent the above read lower bounds without the
overhead of cryptography? Specifically, can we achieve constant read
complexity if readers do not write? Can we expedite reads to be fast?

Robust Atomic Storage

In the context of Byzantine-fault tolerant storage, few papers have explored
the best-case latency of optimally resilient robust atomic storage. Here, best-
case encompasses synchrony, no or few object failures and the absence of
read/write concurrency. [GLV06] presented the first atomic storage imple-
mentation in which both reads and writes are fast in the best-case (i.e., com-
plete in a single round-trip). Furthermore, [GV07] considered robust atomic
storage implementations with the possibility of having fast reads and writes
gracefully degrade to two or three rounds, depending on the size of the avail-
able quorum of correct objects. Surprisingly, despite the wealth of research
on robust atomic storage, there is no general picture about the worst-case,
leaving the following question open:

(Q5) What is the worst-case time complexity of robust atomic storage?

1.3 Contributions

In the previous section, we have motivated the need for further exploration of
the time complexity of consensus and read/write storage. The contributions
of the thesis consist of a series of results, including algorithms and lower
bounds, that collectively aim at providing adequate answers to the questions
raised in the sections 1.2.1 and 1.2.2. Onwards we give an overview of the
results by briefly describing each of this thesis’ contributions.

1.3.1 (C1) One-step Consensus with Zero-Degradation

Our first goal is to explore if there is a single consensus algorithm that is (a)
one-step if all proposal values are equal and (b) matches the lower bound of
two communication steps in every stable execution (i.e., is zero-degrading).

14 CHAPTER 1. INTRODUCTION

Thus, we aim at determining if one-step consensus needs at least three com-
munication steps in general, answering questions Q1.1, Q1.2 and Q1.3.

As a first contribution we show that no consensus algorithm relying on Ω
can be at the same time one-step and zero-degrading. In a sense, these two
properties are incompatible. To get a rough idea why, note that in a leader
based consensus algorithm, a correct process decides the value proposed by
the current leader (in the first communication step) after being echoed by
a quorum of processes (in the second communication step). In a one-step
algorithm, a correct process decides the value proposed by a quorum of pro-
cesses, not necessarily including the leader process. Obviously, agreement is
violated if the two decision values are different. Thus, a third step is needed
to resolve the conflict.

Our second goal is to find sufficient conditions for circumventing the es-
tablished impossibility and to eliminate the third step. We consider two
different treatments of the problem and present corresponding consensus pro-
tocols. In the first approach, we condition one-step decision on the behavior
of the failure detector. With this relaxation, one-step decision is guaran-
teed only in stable executions. The corresponding consensus algorithm we
describe in the thesis extends beyond theoretical interest. The stability of
executions mostly depends on how hard it is to implement the properties of
the failure detector used (e.g. how many timely links are needed). Among
the failure detectors that allow solving consensus, Ω is the easiest to imple-
ment in a real system. Since, algorithms using Ω are more likely to exhibit
stable behavior, optimizing latency in this respect is appealing.

The second approach circumvents the impossibility by using the strictly
stronger failure detector 3P , which eventually outputs exactly the set of
faulty processes. The algorithm is inspired by Lamport’s work on Fast
Paxos [Lam06a], and guarantees both one-step decision (irrespective of the
failure detector output) and zero-degradation. However, it is important to
note that 3P being strictly stronger than Ω, its properties are harder to
satisfy in practice.

Furthermore, we present a consensus-based atomic broadcast algorithm
that has a latency of two message delays in every (stable and) collision-free
execution and three message delays in every stable execution (which is opti-
mal). We evaluate the algorithm using our two consensus implementations
in a LAN of workstations and compare them to the state of the art. The
results indicate that the theoretical latency bounds are reflected only for low
to moderate load. With increasing load, the frequency of collisions also in-
creases, and the protocol mostly operates in the slower mode. Moreover, the
additional messages exchanged to enforce fast message delivery, negatively
affects peak throughput.

1.3. CONTRIBUTIONS 15

1.3.2 (C2) Generalized Consensus and Hybrid Paxos

We address the problem of degraded performance caused by frequent colli-
sions, by turning our attention to the generalized consensus problem, recently
introduced by Lamport [Lam05]. Our contribution is to devise a general-
ized consensus algorithm that meets all latency, message complexity and
resilience lower bounds, and that provides a competitive peak throughput.
Thus we answer question Q2, on the practicality of generalized consensus, in
the affirmative. To fully appreciate our contribution, prior to describing our
result, we first give a short introduction to Lamport’s novel consensus frame-
work [Lam06b] and the Paxos protocol family [Lam98, Lam06a, Lam05].

Background

In traditional state machine replication, a sequence of instances of a consen-
sus protocol are used to agree on the sequence of client commands, where
the ith consensus instance chooses the ith command. Alternatively, a single
instance of consensus can be used to choose a sequence of commands. More-
over, if many commands commute, only non-commutable commands need
to be ordered. Exploiting this observation, generalized consensus [Lam05]
chooses a growing partially ordered set of commands, called a history, in
which every pair of non-commutable commands is ordered.

Lamport’s definition of (generalized) consensus is stated in a slightly dif-
ferent framework than the traditional consensus considered so far, making
it directly applicable to state machine replication in a client/server environ-
ment. Specifically, Lamport [Lam03] considers three different types of roles,
played by the processes: proposers that propose commands, acceptors that
choose an increasing command history and learners that learn what history
has been chosen. In a client/server architecture, clients might play the roles
of proposer and learner, and servers might play the role of acceptor. In addi-
tion, a leader is elected among the acceptors to coordinate their actions. In
the traditional consensus framework considered thus far, each process takes
the role of proposer, acceptor and learner.

Optimal consensus protocols expressed in this framework are the well
known Classic Paxos (CP) [Lam98] and the more recent Generalized Paxos
(GP) [Lam05]. In stable executions, CP requires three message delays. The
communication pattern during normal operation is Client Ñ Leader Ñ Ac-
ceptors Ñ Learners. GP saves one message delay by having the clients send
their proposals directly to the acceptors and bypassing the leader, thus re-
quiring two message delays. Note that these latencies are identical to those
of atomic broadcast. Also, they map to the optimal two message delays

16 CHAPTER 1. INTRODUCTION

(respectively one) of traditional consensus, where the first step is ignored.
GP works fine if the acceptors receive the same sequence of conflicting

commands. However, when conflicting commands are received in different
orders, this results in no command being chosen. To ensure progress, GP
runs a collision recovery procedure, adding four extra message delays, and
a significant computational and message overhead. Thus, if collisions are
frequent, GP has a higher latency and a lower throughput than CP.

Also, we found that even in the absence of collisions, depending on the
layout of clients and servers, CP can outperform GP (for many clients). This
stems from the fact that in order to be fast, GP needs larger quorums than
CP. The quorums accessed by GP are termed fast quorums.

Our Contribution

Our contribution is a novel generalized consensus protocol called Hybrid
Paxos (HP), which provides the best features of GP and CP together. HP
essentially is an extension of CP by an additional “fast mode”, enabling fast
learning in the absence of collisions. By fast learning we mean learning in
two message delays like in GP. However, unlike GP, in stable executions HP
takes at most three message delays, which is the best-case latency of CP. In
addition to these latencies being optimal [Lam06b], they are attained with
linear messages and 2f � 1 acceptors, which is also optimal.

We show for the first time that generalized consensus can be used to
build efficient replicated services in practice. The key to efficiency is that
fast learning must not impact the bottleneck, which in CP is the leader.
Additional messages in HP are exchanged only between clients (which are
both proposers and learners) and acceptors. Thereby, HP is able to exploit
the underutilization of acceptors in CP, offering a lower latency than CP up
to 70% of its peak throughput. In addition, fast learning is enabled only if
spare capacity is available. This is done by adaptively switching fast learning
on and off based on the load. Our evaluation using Emulab [WLS�03] shows
that the latency of HP indeed reaches the theoretical minimum. Also, that
in the presence of collisions and with increasing load, HP behaves like CP.

1.3.3 (C3) Optimal Robust Amnesic Storage

In the context of distributed storage, we first study the read complexity of
robust amnesic algorithms. The goal is to determine if robust algorithms
which are also amnesic, are inherently more expensive in terms of latency
than non-amnesic ones, answering questions Q3.1 and Q3.2. Given that
with robust amnesic storage, on each read, the reader must write into the

1.3. CONTRIBUTIONS 17

base objects, as dictated by the impossibility of [CGK07], one may intuitively
think that there is no fast read implementation. Maybe surprisingly, we show
that such fast read implementations exist, and also that reading from amnesic
storage in general can be as fast as reading from non-amnesic storage.

Specifically, our contribution consists of two robust and amnesic algo-
rithms. The first algorithm is optimal in terms of latency while the second
one exhibits minimal latency combined with optimal resilience. The devel-
oped algorithms are based on a novel concurrency detection mechanism and
a helping procedure, by which a writer detects overlapping reads and helps
them to complete.

Our first developed algorithm is fast, meaning that every operation (read
and write) completes in only one round of communication with the base
objects. It requires 4t� 1 base objects to tolerate t Byzantine failures. It is
worthwhile noting that the combination of latency and resilience is optimal,
as with fewer base objects at least two rounds are needed for both reads and
writes to complete [ACKM06, GV06].

The second developed algorithm uses the optimal number of 3t� 1 base
objects and is the first bounded wait-free algorithm with optimal resilience.
Moreover, every read operation completes in two communication rounds,
which has been shown to be optimal [GV06]. The only other existing robust
and amnesic algorithm with optimal resilience has an unbounded read latency
in the worst case [GLV06].

We now briefly explain the intuition behind the approach. Our algorithms
employ a novel reverse communication scheme between writer and reader, in
which the reader stores information used by the writer to detect concurrent
operations. This communication between reader and writer is abstracted in
a separate shared object called a safe counter (one per reader), whose value
is advanced by the reader and read by the writer. The values returned by the
counter are termed views and each read operation is associated with a unique
view. When a read operation has advanced its current view, a subsequent
write operation can read the new updated view. When the writer detects a
concurrent read operation rd, indicated by a view change, it freezes the last
value v previously written. Freezing v means that v is not overwritten unless
the read operation rd has completed. Basically, this scheme guarantees that
rd samples t � 1 copies of v, which would ensure that v is not forged. We
note that rd does not violate regularity by returning v. Essentially this is
true because all the values written after v are written by concurrent write
operations. However, to preclude that read operations return old values
previously frozen, the writer assigns to each frozen value the latest view, as
a freshness indicator for the reader.

18 CHAPTER 1. INTRODUCTION

1.3.4 (C4) Robust Storage using Secret Tokens

Our second contribution in the context of robust storage aims at bridging
the complexity gap between robust algorithms and algorithms storing self-
verifying data, answering questions Q4.1 and Q4.2.

We describe two robust storage implementations for unauthenticated data
with optimal resilience and optimal time complexity. The first algorithm
supports unbounded readers and features constant read complexity, while
the second algorithm features fast reads. Our algorithms circumvent the
lower bounds established in [GV06, ACKM06] by using secret tokens. A
secret token (briefly token) is a value randomly selected by the client and
attached to the messages sent to the base objects. The secrecy property of a
token selected by a correct client is that the adversary can not generate its
value before the client actually uses the token.

Secret tokens are useful because they prevent faulty base objects from
simulating client operations (read or write) that have not yet been invoked
but will actually occur at some later point in time. Tokens are strictly weaker
than signatures, because they cannot prevent a faulty base object from suc-
cessfully forging a value that is never written. Consider for instance the lower
bound of reading from a safe storage with optimal resilience [ACKM06]. It
states that with t faulty objects, a read that does not modify the base objects
takes at least t � 1 rounds before it can read a value. In each read round,
a different malicious object simulates a concurrency with the same write,
thereby triggering a new read round. With secret tokens, the second read
round definitely reveals which value can be returned and the read terminates.

The assumption that tokens are secret can be violated with some prob-
ability. However, this probability can be arbitrarily reduced, for example,
by uniformly and independently generating random tokens of k bits and by
increasing the value of k. Note that in practice, assumptions generally hold
only with a certain probability, e.g., the assumption that no more than t base
objects fail.

Our first algorithm does not require readers to modify the base objects.
As a consequence, it supports an unbounded number of possibly malicious
readers. Every read completes after two communication rounds, which we
show to be a tight bound. Thus, the algorithm improves on the read com-
plexity of t� 1 rounds established for unauthenticated storage with optimal
resilience when readers do not write [ACKM06]. Our second algorithm guar-
antees that every read is fast, by allowing readers to modify the base objects.
The general lower bound of two rounds for reading from a robust storage with
optimal resilience [GV06] is circumvented by having readers writing secret
tokens into storage.

1.3. CONTRIBUTIONS 19

1.3.5 (C5) Robust Atomic Storage Complexity

As the final contribution of this thesis we determine the worst-case time
complexity of robust atomic storage, which despite the wealth of research
in distributed storage, is still an unsolved problem. We focus on optimally
resilient robust (briefly robust) atomic storage and present two lower bounds
on time complexity of reading from such a storage, answering question Q5.
Together, our lower bounds imply that there is no scalable robust atomic
storage implementation in which all reads complete in less than four rounds,
where by scalable we mean constant time complexity.

The first lower bound, referred to as the read lower bound, demonstrates
the impossibility of reading from robust MRSW atomic storage in two rounds.
More precisely, we show that if the number of storage objects is at most 4t
and if the number of readers R is greater than 3, then no MRSW atomic
implementation may have all reads complete in two rounds.

Our proof scheme resembles that of [DGLC04] and relies on sequentially
appending reads on a write operation, while progressively deleting the steps
of a write and preceding read operations, exploiting asynchrony and possible
failures. This deletion ultimately allows reusing readers and reaching an
impossibility with as few as R � 4 readers. As none of these appended
operations are concurrent under step contention, the impossibility also holds
under the assumption of secret tokens, in which the adversary is unable to
simulate step contention among operations.

Our second lower bound, referred to as the write lower bound, shows that
if read operations are required to complete in three communication rounds,
then the number of write rounds k is Ωplogptqq. More precisely, we show
that if the number of storage objects is at most 3t� tt{tku, where tk ¤ t and
R ¥ k, then no implementation of a MRSW atomic storage may have all
reads complete in three rounds and all writes in k ¤ tlogpr3tk�1

2
squ rounds.

In a sense, our lower bound generalizes the write lower bound of [ACKM06],
which proves our result for the special case of k � 1.

While using a similar approach as in showing the read lower bound, the
write lower bound proof is much more involved and differs from our read
lower bound proof in several key aspects. Due to the additional third read
round, read steps cannot be entirely deleted, which prohibits the reuse of
readers. Consequently, the number of supported readers R and the number
of write rounds k are related (R ¥ k). Furthermore, the proof relies on a
set of malicious objects that forges critical steps of the write and of prior
reads with respect to subsequent reads. This set grows with the number of

20 CHAPTER 1. INTRODUCTION

appended reads, relating the number of faulty objects t and the number of
readers (which is at least k). At the heart of the proof we use a recurrent
formula that relates t and k, similar to a Fibonacci sequence, which describes
the exact relation between the two parameters. In its closed form, the formula
transforms to the log function (k � Ωplogptqq).

1.4 Roadmap

Chapter 2 of the thesis gives our system model and important definitions used
in the remainder of the thesis. Chapter 3 presents the impossibility of one-
step consensus with zero-degradation using Ω, two ways to circumvent the
impossibility, and our latency-optimal atomic broadcast algorithm. Chapter
4 extends these results and presents our optimal and practical generalized
consensus implementation. The algorithm combines optimal latency with
optimal resilience and linear messages. In Chapter 5 we turn our attention
to read/write storage and show that amnesic robust storage can be as fast as
non-amnesic storage by ways of two algorithms. In Chapter 6 we introduce
the notion of secret tokens to bridge the complexity of authenticated and
unauthenticated storage. The resulting algorithms combine optimal latency
with optimal resilience. Chapter 7 provides two lower bounds on the read
complexity of robust atomic storage with optimal resilience. The thesis con-
cludes in Chapter 8, which summarizes the contributions and opens some
avenues for future research.

Chapter 2

Preliminaries

2.1 Model

In this section, we describe the asynchronous message-passing model assumed
throughout the thesis except in Chapter 5, in which processes communicate
through shared objects. Additional details necessary to describe the shared-
memory-model used, are provided in Chapter 5.

We model processes as deterministic I/O Automata [LR89]. A distributed
system consists of a set of processes and each pair of processes is intercon-
nected with point-to-point communication channels and communicate via
message-passing. The state of the communication channel between two pro-
cesses p and q is viewed as a set of messages mset containing messages that
are sent but not yet received (p and q are called ends of the communication
channel). We assume that every message has two tags which identify the
sender and the receiver of the message.

A distributed algorithm A is modeled as a collection of deterministic
automata, where Ap is the automaton assigned to process p. We say that a
process p is benign, if p follows the automaton assigned to it. Note that in a
crash-stop failure model all processes are benign. Computation proceeds in
steps of A. A step of A is denoted by a pair of process id and message set
xp,My (M might be H). In step sp � xp,My, a benign process p atomically
performs the following steps (we say that p takes step sp):

(receive) removes the messages in M from mset,

(compute) applies M and its current state stp to Ap, which outputs a new
state st1p and a set of messages to be sent, and then p adopts st1p as its
new state,

21

22 CHAPTER 2. PRELIMINARIES

(send) puts the output messages in mset.

We assume that the system is asynchronous : there is no bound on message
propagation delays, nor on relative processing speeds. However, for ease
of presentation we sometimes refer to a global clock not accessible by the
processes.

We say that communication channels are reliable iff for every two benign
processes p and q, if p sends a message m to q, and both p and q take an
infinite number of steps, then q eventually receives m. More formally, if p
puts m in mset and q is the receiver of m, and both p and q take an infinite
number of steps of their assigned automata Ap and Aq respectively, then
there is a step xq,My such that m PM .

Given any algorithm A, a run (also called execution) of A is an infinite
sequence of steps of A taken by benign processes, such that the following
properties hold for each benign process p: (1) initially, for each benign process
p, mset � H, (2) the current state in the first step of p is a special state Init,
(3) for each step xp,My, and for every message m P M , p is the receiver of
m and mset contains m immediately before the step xp,My is taken.

A partial run is a finite prefix of some run. A (partial) run r extends
some partial run pr if pr is a prefix of r. At the end of a partial run, all
messages that are sent but not yet received are said to be in transit.

We say that a benign process p is correct (also called non-faulty) in a
run r if p takes an infinite number of steps of Ap in r. Otherwise, a benign
process p is crash-faulty. We say that a crash-faulty process p crashes at step
sp in a run, if sp is the last step of p in that run.

In this thesis we distinguish two failure models, (1) the crash-stop failure
model and (2) the Byzantine failure model [LSP82]. In the crash-stop model,
every process is benign. A benign process is either correct or crash-faulty.

In the Byzantine failure model, a process is either benign or malicious
(also called NR-Arbitrary [JCT98]). A malicious (or Byzantine) process p
can perform arbitrary actions: p can remove or put messages in mset at
arbitrary times and can change its state in an arbitrary manner. However,
p cannot put messages into (resp. remove messages from) a channel p is not
an end of. In practice, this assumption is implemented using message au-
thentication codes [Tsu92]. Malicious processes and benign processes which
are crash-faulty are collectively called faulty.

2.2 Consensus

The distributed system we consider consists of a set of n processes of which
up to f may fail by crashing. Precise assumptions on the number f of failed

2.2. CONSENSUS 23

processes are problem specific and are detailed in the respective Chapters.
However, we say that an algorithm has optimal resilience if n � 2f�1. Solv-
ing for f results in tn�1

2
u being the maximum number of faults any consensus

algorithm can tolerate [CT96].

2.2.1 Traditional Consensus

In the traditional consensus problem, processes have to irrevocably agree on
a value that is one of the values proposed by some process. Formally, tradi-
tional consensus is defined by two safety properties (Validity and Agreement)
and one liveness property (Termination) [CT96]:

Validity: If a process decides v, then some process has proposed v.

Agreement: No two processes decide differently.

Termination: Every correct process decides.

This is the definition of consensus we use in Chapter 3. Given its simplic-
ity, this very popular definition of consensus has been considered in many
(mostly theoretical) works on consensus.

Asynchrony and crashes create a context in which consensus has no deter-
ministic solution [FLP85]. As discussed in the introduction, a popular way
to circumvent this impossibility is to add timing assumptions to the system
model that are required to hold only eventually [DLS88].

2.2.2 Failure Detectors

Instead of dealing with low level details about synchrony and associated
timing assumptions, failure detectors [CT96] are defined in terms of prop-
erties, allowing a clean separation from the implementation. We assume
that the system is equipped with an appropriate distributed failure detector,
consisting of one failure detector module installed at each process. The rel-
evant failure detectors for this thesis are the leader failure detector Ω (also
called leader oracle) and the eventually perfect failure detector 3P . Both
eventually provide consistent and correct information about the state of pro-
cesses, i.e., crashed or non-crashed. While 3P eventually outputs exactly
the crashed processes, Ω eventually outputs a single correct leader process.
Ω is strictly weaker than 3P and it is the weakest failure detector to solve
consensus [CHT96, Chu98]. More formally, 3P is defined in terms of the
following two properties:

24 CHAPTER 2. PRELIMINARIES

Eventual Strong Completeness: Eventually, every crashed process is
suspected by every correct process.

Eventual Strong Accuracy: Eventually, no correct process is suspected
by any correct process.

Ω is defined in terms of the eventual leadership property:

Eventual Leader: Eventually, Ω outputs the same correct process forever.

2.2.3 The Atomic Broadcast Problem

In the atomic broadcast problem processes have to agree on a unique se-
quence of messages. Formally, the atomic broadcast problem is defined in
terms of two primitives a-broadcast(m) and a-deliver(m), where m is a mes-
sage. When a process p executes a-broadcast(m) (respectively a-deliver(m)),
we say that p a-broadcasts m (respectively p a-delivers m). We assume
that every message m is uniquely identified and carries the identity of its
sender. The atomic broadcast problem is defined by two liveness proper-
ties (Validity and Agreement) and two safety properties (Integrity and Total
Order) [CT96]:

Validity: If a correct process a-broadcasts a message m, then it eventually
a-delivers m.

Agreement: If a process a-delivers message m, then all correct processes
eventually a-deliver m.

Integrity: For any message m, every process a-delivers m at most once, and
only if m was previously a-broadcast.

Total Order: If some process a-delivers message m1 after message m, then
a process a-delivers m1 only after it a-delivers m.

2.2.4 Spontaneous Total Order

As pointed out by Pedone and Schiper [PSUC02], messages broadcast in
LANs are likely to be delivered totally ordered. This phenomenon can be
attributed to the small variation of network delays in a LAN. Thus, if two
distinct processes broadcast m and m1 respectively, then it is very likely
that m is delivered by all processes before m1 or viceversa. The authors
of [PSUC02] propose a new oracle called Weak Atomic Broadcast (WAB)
that captures the property of spontaneous total order. A WAB oracle is

2.2. CONSENSUS 25

defined by the primitives w-broadcast(k,m) and w-deliver(k,m), where k P N
is the kth w-broadcast instance and m is a message. When a process p
executes w-broadcast(k, m), we say that p w-broadcasts m in instance k.
When a process p executes w-deliver(k, m) we say that p w-delivers m that
was w-broadcast in instance k. Intuitively, if WAB is invoked infinitely often,
it gives the same output to every process infinitely often. Formally, a WAB
oracle satisfies the following properties:

Validity: If a correct process invokes w-broadcast(k, m), then all correct
processes eventually output w-deliver(k, m).

Uniform Integrity: For every pair (k,m), w-deliver(k,m) is output at most
once and only if some process invoked w-broadcast(k,m)

Spontaneous Order: If w-broadcast(j,�) is called for infinitely many dif-
ferent instances j then infinitely many instances k exist in which the
first message w-delivered in instance k is the same for every process
that w-delivers messages in k.

2.2.5 Revisiting Consensus in Lamport’s Framework

In the state machine approach, a collection of servers executes a sequence of
consensus instances to choose a sequence of client commands. A client sends
a command to the servers, and the servers propose that command in the
next instance of consensus. By considering only the cost of the consensus
algorithm, the messages sent by the client are ignored. Lamport [Lam03]
introduces a generalization of the traditional consensus framework, which
accounts for all the costs (messages and delays) of state machine replication.
Here, consensus is defined in terms of three types of agents:

Proposers: A proposer can propose values.

Acceptors: The acceptors cooperate to choose a single proposed value.

Learners: A learner can learn what value has been chosen.

The traditional consensus framework is somewhat rigid, in that these sets
are equal and each process is proposer, acceptor and learner. Lamport’s
consensus framework provides more flexibility and allows to better model a
client/server architecture in which each client can be considered to be both
proposer and learner, and the servers to be acceptors.

We are now ready to restate the consensus problem as defined by Lam-
port [Lam06b]:

26 CHAPTER 2. PRELIMINARIES

Nontriviality: Only a proposed value may be chosen.

Consistency: Any two values that are chosen must be equal.

Conservatism: If a learner learns value v, then v is chosen.

Progress: If p and l are correct and p proposes a value v, then l eventually
learns v.

This definition can be applied to client/server systems in which clients
(who can play the roles of proposer and learner) are not necessarily reliable.
For instance, a client could invoke an operation and then vanish. There-
fore, reliability assumptions are made only on acceptors. We reconsider a
distributed system to consist of any number of proposers and learners and n
acceptors of which at most f may crash.

2.2.6 Generalized Consensus

In an effort to define consensus in the way it is actually used in the state
machine approach, Lamport [Lam05] extends the concept of consensus from
agreement on a single value, to agreement on a dynamic set of values. This
is done in two stages. In the first stage, consensus is expressed in terms of
agreement on a growing sequence of commands. The observation that leads
to the second stage is that ordering commutable commands is unnecessary.
Instead of choosing a sequence of commands, it suffices to choose a partially
ordered set of commands in which any two interfering (i.e. non-commuting)
commands are ordered. Such a partially ordered set is called a command
history. Executing the commands in a command history in any order con-
sistent with its partial order has the same effect. Thus, a history defines an
equivalence class of command sequences.

Histories are constructed by appending a command sequence σ to the
initially empty history K using the special append operator
. The resulting
history is K
σ. Histories K
σ and K
 τ are equal iff σ and τ are equivalent
command sequences.

The prefix relation � on the set of histories is defined as a partial order.
For two histories h and h1, h � h1 iff there is a command sequence σ such
that h
 σ � h1. We say that h is a prefix of h1 (or equivalently that h1

is an extension of h). A history h is isomorphic to a directed graph Gphq
whose nodes are the commands. There is an edge between any two interfering
commands ci and cj from ci to cj in Gphq iff i j in h. For two histories h
and h1, it holds that h � h1 iff the graph Gphq is a prefix of the graph Gph1q.
Gphq � Gph1q iff h � h1.

2.2. CONSENSUS 27

A lower bound of a set H of histories is a history that is a prefix of every
element in H. The greatest lower bound (glb) of H is a lower bound of H
that is an extension of every lower bound of H. We write the glb of H as�
H and we let h [h1 equal [th, h1u for any two histories h and h1. The

least upper bound (lub) is defined in the analogous manner. We write lub of
H as

�
H and we let h \ h1 equal \th, h1u. Intuitively, the glb (resp. lub)

of a set of histories is the largest common prefix (resp. the smallest common
extension).

We define two histories h and h1 to be compatible iff they have a common
upper bound, i.e., there is some history g with h � g and h1 � g. A set of
histories H is compatible iff every pair of histories in H are compatible.

We are now ready to state the properties of generalized consensus.

Nontriviality: If history h is chosen, then there exists a proposed command
sequence σ, such that h � K
 σ

Consistency: If any two histories h and h1 are chosen, then h and h1 are
compatible.

Conservatism: If a history h is learned, then h is chosen.

Progress: If p and l are correct and p proposes command c, then eventually
l learns a history containing c.

2.2.7 Complexity Measures

As the main complexity measures characterizing the efficiency of consensus
and atomic broadcast, we consider time and message complexity.

Time Complexity

Since we assume an asynchronous model, in the worst case, the latency of
consensus (respectively atomic broadcast) is unbounded. Therefore, we mea-
sure latency in the best case. The best case is characterized by stable runs
in which the failure detector used by the respective algorithm provides (a)
accurate information about the correct/crashed processes and (b) its output
does not change during the run.

In this thesis, we rely on the definition of time complexity for asyn-
chronous algorithms from [Awe85, AW98] constrained to stable executions.
We define the propagation delay of a message to be the time that elapses
between the event that sends the message and the event that receives the
message. The time complexity (or latency) of an algorithm is defined as the

28 CHAPTER 2. PRELIMINARIES

maximum number of time units from the start until termination of the algo-
rithm, taken over all stable executions, assuming that the propagation delay
is one time unit. We refer to the latency of k time units as k communication
steps (or equivalently k message delays).

The definition of termination is problem specific. In the traditional con-
sensus (resp. atomic broadcast) problem we say that the algorithm termi-
nates when all correct processes have decided (resp. have a-delivered the
a-broadcast message). In generalized consensus, termination means that a
correct learner l has learned a history containing a command c proposed by
correct proposer p, where in our model, l and p are mapped to the same
client process (see Chapter 4 for details).

Message Complexity We measure the message complexity of an algo-
rithm as the maximum number of messages sent from the start until the
termination of the algorithm, taken over all stable executions.

2.3 Distributed Storage

A distributed storage can be viewed as a read/write data structure imple-
mented by two disjoint sets: (1) a set objects of n processes, called base objects
(we sometimes refer to them as servers) and (2) a possibly unbounded set of
processes called clients. Any number of clients may be faulty, whereas only
a threshold t of base objects may fail. Precise statements on the relation be-
tween t and n are problem specific and are given in the respective Chapters.
However, we say that an algorithm has optimal resilience when n � 3t � 1.
Solving for t results in tn�1

3
u, being the maximum number of base object

failures a storage algorithm can tolerate [MAD02].
In the thesis we consider the fundamental class of multiple-reader single-

writer (MRSW) storage, in which the set of clients consists of two disjoint
subsets, a singleton writer and a possibly unbounded set readers with cardi-
nality R (if bounded). In our model we assume that base objects are passive:
(a) they send messages to clients only in reply to a request and (b) base ob-
jects do not communicate with each other. This model is in line with a large
amount of recent work in distributed storage, motivated by the advent of stor-
age area networks (SANs) and network attached storage (NAS), where base
objects model active disks supporting read-modify-write operations [AW98].

In this thesis we assume the worst-case behavior of base objects, allow-
ing base objects to fail Byzantine. However, we assume that clients fail by
crashing. The reason for modeling clients as benign is that a Byzantine writer
which is writing bogus values into the storage, and otherwise follows the pro-

2.3. DISTRIBUTED STORAGE 29

tocol, may be undetectable. The same holds for a Byzantine reader that is
allowed to write (back) values. Sometimes we can relax the assumption that
readers are benign, for instance when dealing with regular storage, detailed
in Chapters 5 and 6.

A read/write storage abstraction provides two operations: write(v), which
stores v in the register, and read(), which returns the value from the register.
We assume that each client invokes at most one operation at a time (i.e.,
it does not invoke the next operation until it receives the response for the
current operation). Only readers invoke read operations and only the writer
invokes write operations. We further assume that the initial value of a reg-
ister is a special value v0 � K, which is not a valid input value for a write
operation. We say that an operation op is complete in a (partial) run if the
run contains a response step for op. In any run, we say that a complete op-
eration op1 precedes operation op2 (or op2 succeeds op1) if the response step
of op1 precedes the invocation step of op2 in that run. If neither op1 nor op2
precedes the other, then the operations are said to be concurrent. We say of
an operation which does not overlap with any write that it is uncontended.

2.3.1 Register Types

Lamport [Lam86] defines three types of a register, safe, regular and atomic,
in increasing strength. A storage algorithm is safe, regular or atomic iff it
satisfies the properties of safety, regularity and atomicity respectively. In
the following we give definitions of safety, regularity and atomicity for single-
writer registers. In the single-writer setting, the writes in a run have a natural
ordering which corresponds to their physical order. Let wrk denote the kth

write in a run (k ¥ 1), and let vk be the value written by the kth write.
Further, let v0 � K.

We say that a partial run satisfies safety if every uncontended read oper-
ation returns the value written by the last preceding write. More formally,
if rd is an uncontended read operation and rd returns vk, then (a) there is
a write operation wk preceding rd or vk � v0 and (b) there is no l ¡ k such
that wl precedes rd (wk is the last preceding write).

A (partial) run satisfies regularity if it satisfies safety and every read
operation (contented or uncontended) returns the value of the last preceding
write or a value written by one of the concurrent writes.

Finally, a (partial) run satisfies atomicity if it satisfies regularity and no
read inversion. Roughly speaking, a read operation never returns an older
value than the one returned by a preceding read operation. More formally,
a partial run satisfies atomicity if the following properties hold: (1) if a read
returns x then there is k such that vk � x, (2) if a read rd is complete and it

30 CHAPTER 2. PRELIMINARIES

succeeds some write wrk (k ¥ 1), then rd returns vl such that l ¥ k, (3) if a
read rd returns vk (k ¥ 1), then wrk either precedes rd or is concurrent with
rd, and (4) if some read rd1 returns vk (k ¥ 0) and a read rd2 that succeeds
rd1 returns vl, then l ¥ k.

An algorithm implements a register if every run of the algorithm satisfies
wait-freedom and the respective consistency property (i.e. safety, regular-
ity, atomicity) of the register. Wait-freedom [Her91] states that if a process
invokes an operation, then eventually, unless that process crashes, the oper-
ation completes (even if all other client processes have crashed).

Following the definition from [CGK07], we call a storage algorithm A ro-
bust if A wait-free implements a regular register from Byzantine base objects
in the unauthenticated data model.

2.3.2 Time Complexity

In the context of distributed storage we focus on the worst-case time com-
plexity of a register implementation, measured in terms of communication
round-trips (or simply rounds). A round is defined as in [GNS09, LS02,
EGM�09, DGLC04]:

Definition 1. Client c performs a communication round rnd during opera-
tion op if the following conditions hold:

1. The client c sends messages to all objects. (Not sending messages to
certain objects can be modeled by having these objects not change their
state or reply).

2. Objects, on receiving such a message, reply to the reader (resp. the
writer) before receiving any other messages.

3. When the invoking client receives replies from at most n � t correct
objects, the round (rnd) terminates (either completing the operation
op or starting a new round).

The time complexity (latency) of a distributed storage algorithm is defined
as the maximum number of rounds taken over all possible executions. Note
that a latency of k rounds is equivalent to 2k message delays.

Since up to t objects might be faulty, ideally, in every round rnd the
invoking client c can only wait for reply messages from at most n� t correct
objects. If in a run r, a round rnd terminates based on replies from a set C
of n� t objects, then (a) either all objects in C are correct or (b) there is run
r1 indistinguishable to client c from r, in which all objects in C are correct.

2.3. DISTRIBUTED STORAGE 31

Also, each round attempts to invoke operations on all objects. If on some
correct object there is a pending invocation (of an earlier round), then the
new invocation awaits the completion of the pending one. This notion of a
round is equivalent to that in the model of [ACKM06].

32 CHAPTER 2. PRELIMINARIES

Chapter 3

One-Step Consensus with
Zero-Degradation

In this chapter we consider efficient implementations of consensus in the
asynchronous model with crash-failures, enhanced with unreliable failure de-
tectors. In such a setting, if all processes propose the same value, consensus is
reached in one communication step. Assuming f n{3, this is regardless of
the failure detector output. A zero-degrading protocol reaches consensus in
two communication steps in every stable run, i.e., when the failure detector
makes no mistakes and its output does not change.

Our contribution is to show that leader based consensus implementations
cannot be simultaneously one-step and zero-degrading. Also, we propose two
approaches to circumvent the impossibility and present corresponding con-
sensus protocols. Further, we describe a consensus-based atomic broadcast
implementation which, using our consensus protocols, attains the optimal
latency of three messages delays in every stable run and a latency of two in
the absence of collisions. Collectively, our contributions provide answers to
open research questions Q1.1, Q1.2 and Q1.3 raised in Section 1.2.1.

3.1 Introduction

As already motivated in Chapter 1, consensus is central to distributed system
design, and many fault-tolerant coordination problems can be reduced to
consensus. Specifically, atomic broadcast, which lies at the heart of state
machine replication [Sch90] boils down to executing a sequence of consensus
instances [CT96], one per message (or batch of messages).

If consensus was used only once (e.g. during initialization), then its per-
formance wouldn’t matter. However, consensus is used repeatedly, and thus

33

34CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

its lantecy, measured as the time elapsed until consensus is reached, is a crit-
ical performance indicator. Since the latency of consensus is unlimited in the
worst case [FLP85], we focus on executions common in practice, with few
failures and accurate failure detection.

Given that consensus is utilized in a repeated manner, the overhead
caused by runs with failures is negligible. However, failures occurring during
one instance of consensus can propagate as initial failures to all subsequent
instances. Thus, we are interested in algorithms whose performance is not
degraded in presence of initial failures. To characterize such algorithms, the
notion of stability has been introduced. We say that a run is stable iff the
failure detector makes no mistakes and its output does not change during
that run. Algorithms that reach consensus with optimal latency (i.e. in two
message delays) in every stable run are called zero-degrading [DG02].

Besides being latency optimal in the common case, we seek to expedite the
decision when all processes propose the same value. Assuming f n{3, no
failure detector is therefore needed and one communication step is sufficient
to achieve global decision.

3.1.1 Previous and Related Work

The idea of one-step consensus stems from Brasileiro et al. [BGMR01]. Al-
though their solution is optimal when all proposals are equal, the protocol
needs at least three communication steps when starting from other initial
configurations. The algorithm goes through a preliminary voting phase in
which processes exchange their proposals. If a process receives enough equal
values it decides, otherwise it uses an underlying consensus module. If some
process decides v after the first step, all processes that proceed without de-
ciding propose v to the consensus module. Agreement is thus ensured by the
properties of the underlying consensus. The drawback of this algorithm is
that it needs three rounds from other initial configurations.

Based on Brasileiro’s idea, Mostefaoui and Raynal [MR00] developed an
atomic broadcast protocol that has two message delays in the best case but
needs four in the normal case. Moreover, even if messages are ordered, it
is very unlikely that all buffers have the same length when their content is
proposed. Thus, distinct processes propose different values and the protocol
works in the slower mode.

This problem was recognized by Pedone and Schiper [PS03] and they
suggested agreement on the largest common prefix instead of agreement on
the whole buffer. As long as all buffers share a nonempty common prefix of
messages, their algorithm achieves a latency of two message delays. As soon
as messages are out of order, consensus is needed, which adds a latency of

3.1. INTRODUCTION 35

two additional message delays. This protocol tolerates a minority of faulty
processes, but achieving a latency of 2δ requires collecting the proposals from
all processes. Thus, even if a single process crashes, the protocol switches to
the slower mode.

Based on the observation that in LANs, messages are frequently deliv-
ered in total order, Pedone and Schiper [PSUC02] introduced the notion of
ordering oracle to model the spontaneous total order encountered in LANs.
The authors present an atomic broadcast protocol that has a latency of two
message delays in the absence of collisions, performing well in lightly loaded
systems. However, their approach exhibits a dramatic performance degrada-
tion when the load is increased.

Recently, the authors of [CMP06] have extended the idea of weak or-
dering oracles to Paxos-like [Lam98] protocols. Paxos-like protocols allow
for the recovery of crashed processes [ACT00] and are well suited for the
client/server computation model. The R*-Consensus protocol of [CMP06]
degrades if multiple clients issue requests concurrently and thus it suffers
from the same drawback as the original [PSUC02].

The key assumption in Brasileiro’s [BGMR01] one-step consensus is
f n{3. This is generalized by Lamport [Lam06b] who distinguishes be-
tween the number of correct processes required to reach consensus in one
communication step (n� e with e ¤ f) and the number of correct processes
needed for progress (n�f with f n{2). Intuitively, if a process p decides v
in one communication step, then it has received n� e equal values v. Conse-
quently, every process q that receives a message from n�f processes receives
v n � e � f times. Since among the n � f values received by q at most e
values are distinct from v, agreement is ensured if n � e� f ¡ e. Thus, the
degree of resilience is given by n ¡ maxt2f, 2e � fu. Maximizing e leads to
f tn{3u, while maximizing f leads to e ¤ tn{4u.

Recently, Lamport has presented Fast Paxos [Lam06a], an improvement
of the classic Paxos [Lam98] consensus protocol, that achieves a latency of
two message delays in the absence of collisions. However, Fast Paxos has
non-optimal latency if collisions are frequent. Also, if more than e processes
have failed, Fast Paxos is slower than classic Paxos.

3.1.2 Contributions

The state of the art leaves the question open if there is a single consen-
sus algorithm that is both one-step and zero-degrading. Thus, we ask the
following: do one-step consensus protocols need three communication steps
in general? In section 3.3 we show that no leader-based consensus proto-
col can be simultaneously one-step and zero-degrading. This implies that

36CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

leader-based algorithms reaching consensus in one communication step when
all proposals are equal, require three communication steps in the common
case [GR04].

Our subsequent goal is to find sufficient conditions for circumventing the
established impossibility and to eliminate the incurred latency overhead. In
this chapter we consider two different approaches and present corresponding
consensus protocols. In the first approach, we condition one-step decision on
the behavior of the failure detector. With this approach, one-step decision
is guaranteed only in stable runs. The consensus algorithm we present in
section 3.4 is both of practical and of theoretical interest. It is theoretically
interesting because it uses the Ω failure detector, which is the weakest to solve
consensus [CHT96]. Moreover, since stability frequently holds in practice, it
is appealing to optimize the running time of consensus in stable executions.
Our second approach is to assume a strictly stronger failure detector than
Ω. The consensus protocol presented in Section 3.5 satisfies both one-step
decision and zero-degradation and uses a 3P class failure detector.

Furthermore, in Section 3.6 we present a consensus based atomic broad-
cast algorithm that has a latency of 3δ in every stable run and a latency 2δ
in case of no collisions, where δ is the maximum network delay. Finally, in
Section 3.7 we present both analytical and experimental evaluations of our
protocols.

3.2 Model

We now give an brief summary of the distributed system model formally
defined in Chapter 2. We assume a crash-stop asynchronous distributed
message-passing model consisting of a set of processes Π � tp1, ..., pnu of
which a subset of up to f tn{3u may fail by crashing. A process that
never crashes is correct, otherwise it is faulty. Processes communicate by
sending and receiving messages over reliable channels. A reliable channel does
not lose, duplicate or (undetectably) corrupt messages. Given two correct
processes p and q, if p sends a message m to q then q eventually receives
m. The system model is enhanced with failure detectors Ω and 3P . While
Ω eventually outputs the same correct process to every correct process, 3P
eventually outputs exactly the faulty processes to every correct process.

3.3. THE LOWER BOUND 37

3.3 The Lower Bound

In this section we prove a lower bound on consensus time complexity. We
show that every one-step leader-based protocol has a run in which some
process needs at least three communication steps to decide. In other words
it is impossible to devise a leader-based consensus protocol that is one-step
and zero-degrading. In order to develop an intuition for the impossibility
result, we first describe Brasileiro’s one-step consensus [BGMR01] and how
we would have to combine it with a leader-based protocol to achieve zero-
degradation.

In the first round of Brasileiro’s one-step consensus, every process broad-
casts its proposal and subsequently waits for a message from n�f processes.
A process p decides v iff it receives n� f equal values v. Hence if a process
p decides v, then every process q necessarily receives v at least n� 2f times.
To ensure agreement, it is sufficient to require that v is a majority among
the values received by q (which translates to n� 2f ¡ f).

If there are less than n�f equal proposals, then the first round is wasted.
To eliminate this overhead, one straightforward approach is to combine this
scheme with the first round of a leader-based protocol. Here, consensus is
reached in two communication steps if every correct process picks the leader
value in the first round. Hence, in the combined protocol we have to ensure
that if no process decides in the first round, then every correct process picks
the leader value. However, this is only guaranteed if there are less than n�2f
equal proposals. Otherwise, it might happen that some process receives a
majority value v and consequently picks v in order to ensure agreement, while
some other process picks the leader value vl and v � vl. Hence, two distinct
values are proposed in the second round and consequently some process might
not decide before the third round.

Definition 2 (one-step). Assuming f n{3, a consensus protocol is one-
step iff it reaches consensus in one communication step in every run in which
all proposals are equal.

Definition 3 (stable run). A run of a consensus algorithm is stable iff the
failure detector makes no mistakes and its output does not change during that
run.

The stability of the failure detector can be attributed to the fact that
nearly all runs are synchronous and crashes are initial. Even if the failure
detector needs to pass through a temporary stabilization period (e.g. after
a failure), in most runs it will exhibit a stable and accurate behavior. In
a stable run, Ω outputs the same correct process from the beginning of the
run, while 3P suspects exactly the processes that have crashed initially.

38CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

Definition 4 (zero-degradation). A consensus algorithm A is zero-degrading
iff A reaches consensus in two communication steps in every stable run.

Theorem 1 (Lower Bound). Assuming n ¤ 4f , every one-step consensus
algorithm A based on Ω has a stable run in which some process decides after
three communication steps or more.

Proof. Preliminary notes (see Figure 3.1): We prove the theorem for the case
n � 4 but this solution can be generalized to any value of n by employing the
same technique as used in [GR04]. The state of a process after k communi-
cation steps is determined by its initial value, the failure detector output and
the value and source of the messages received in every communication round
up to k. To strengthen the result, the processes exchange their complete
state. For the sake of simplicity, Ω outputs the same leader process p1 at all
processes in every run considered in the proof until p1 possibly crashes. The
state of process p after k communication steps denoted by is expressed as
a k-dimensional vector with n entries such that the i-th entry contains the
state of the i-th process after k�1 steps. Since in each round a process waits
for a message from at most n�f processes, one entry is empty. The decision
value is bracketed (0)/(1).

Two runs R1 and R2 are similar for process p up to step k, iff the state of
p after k steps in R1 is identical to the state of p after k steps in R2. If two
runs are similar for some process p, then p decides the same value in both
runs.
Idea: The proof is by contradiction. We assume a leader-based one-step
and zero-degrading protocol and show that it does not solve consensus. We
construct a chain of possible runs such that every two neighboring runs are
similar to some process. We start with a run in which all processes propose 1,
and then we construct subsequent runs either by changing the communication
pattern or the initial configuration. The failure detector assumption as well
the expected properties of the protocol finally lead to the violation of one of
the safety properties (validity or agreement).

 Since A is one-step, then it must have a run like R1 in which all correct
processes propose 1 and p1 might have proposed the same. Thus, p4
decides 1 after the first communication step1.

 Since A is zero-degrading, then it must allow a run such as R2. Run R2

is stable because Ω outputs p1 at all correct processes and its output
does not change. Thus, p1 decides after the second communication step.

1Actually, processes p2 and p3 also decide 1 after one communication step but this is
not relevant for the proof.

3.3. THE LOWER BOUND 39

1

1

0
(1)σ1

R3 :

0
σ2 (1)

(1)

1

1

1

R1 :

1

1

0

0

(1)
R5 :

σ3

...

...

...

σ4

σ4

σ4

(1)

(1)

(1)

1

0

0

σ5 (1)
R7 :

0

(x)

0

0

0

R8 :

1

R2 :

1

0
(1)σ1

1

1

0

0
σ2 (1)

R4 :
(1)σ3

1

1

0

0

...

...

...

σ4

σ4

σ4

(1)

(1)

(1)

R6 :
σ5 (1)

(x)

-111

011-

011-

011-

01-0

011-

011-

011-

011-

01-0

011-

01-0

011-

01-0

0-10

01-0

01-0

01-0

0-10

01-0

01-0

0-00 0-00

σ1 �

�
���

011-
011-
011-
�

�
��� σ2 �

�
���

011-
�

011-
01-0

�
��� σ3 �

�
���

011-
01-0
�

01-0

�
��� σ4 �

�
���
�

01-0
0-10
01-0

�
��� σ5 �

�
���

01-0
01-0
�

01-0

�
���

Figure 3.1: Illustration of the lower bound proof.

If p1 decides 0, then we could construct a run R1 that for p1 is similar
to R2 (p1 decides 0 in R1) and that for p4 is similar to R1 (p4 decides 1
in R1), violating agreement. Thus, in R2, p1 necessarily decides 1.

 Runs R2 and R3 are similar for p1. Thus, p1 decides 1 in R3 after the
second communication step. Since R3 is stable, p4 also decides 1 after
the second step.

40CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

 Runs R3 and R4 are similar for p4 and thus p4 decides 1 in R4 after the
second communication step. Since R4 is stable, p1 also decides 1 after
the second step.

 Runs R4 and R5 are similar for p1. Consequently p1 decides 1 in R5

after the second communication step. In R5 we crash p1 so that all
messages sent to p2, p3 and p4 after the first communication step are
lost. Since R5 is not stable because Ω eventually outputs a new leader,
p2, p3 and p4 are only required to decide eventually. By agreement,
they decide 1.

 In R6 we crash p1 such that R5 and R6 are similar for p2, p3 and p4.
Thus, they eventually decide 1. As p1 cannot distinguish R6 from a
stable run, it decides after the second communication step. In order to
ensure agreement, p1 necessarily decides 1.

 Runs R6 and R7 are similar for p1. Thus, p1 decides 1 in R7 after the
second communication step.

 Since A is one-step, in run R8, process p4 decides x after the first
communication step. Moreover, runs R7 and R8 are similar for p4, and
therefore p4 also decides x in R7.

There are two possible values for x. If x � 0 then agreement is violated in
run R7. Otherwise, if x � 1, then validity is violated in run R8.

3.4 Circumventing the Impossibility with Ω

In this section we present a leader-based consensus protocol that is zero-
degrading but is not one-step, as this would contradict the established im-
possibility result. However, the protocol has the property that it reaches
consensus in one communication step if all proposals are equal and the run is
stable. The main idea behind the proposed L-Consensus algorithm depicted
in Figure 3.2 is to constrain the processes to decide the value proposed by
the leader. A process decides v in the first round if n � f values including
the leader value are equal to v. Consequently, every process that does not
decide can safely pick the leader value. Hence, consensus is achieved in two
rounds in every stable run. If there is no leader, then safety is ensured by
picking the majority value.

The protocol executes in a round by round fashion. In every round,
processes exchange messages, update their state depending on the messages
received and possibly decide or move to the next round. The algorithm

3.4. CIRCUMVENTING THE IMPOSSIBILITY WITH Ω 41

Function Consensus(vi)
start T1, T2;
task T1: ri Ð 1; esti Ð vi; ldÐ K;

while true do
ldÐ Ω.leader;
@j do send PROP(ri, esti, ld) to pj enddo;1

wait until received PROP(ri, �, �) from n� f processes;2

wait until received PROP(ri, �, �) from ld _ ld � Ω.leader;3

if received PROP(ri, v, ld) from n� f processes ^ received4

PROP(ri, v, �) from ld then
@j do send DECIDE(v) to pj enddo;5

return v;6

else if received PROP(ri, �, ld) from ¡ n{2 processes ^7

received PROP(ri, v, �) from ld then
esti Ð v;8

else if received PROP(ri, v, �) from n� 2f processes then9

esti Ð v;10

ri Ð ri � 1;

task T2: upon reception of DECIDE(v): @j � i do send11

DECIDE(v) to pj enddo; return v;

Figure 3.2: The L-Consensus Algorithm

has three blocks that a process can execute in a round depending on which
condition is satisfied (at line 4, 7 or 9). Safety is ensured as follows: if a
process p decides a value v during round k, every process q that finishes round
k, does so with value v, no matter what block it executes. In a stable run, the
condition at line 7 evaluates to true, every correct process accepts the leader
value and hence decides in the next round. In asynchronous runs, when there
might be multiple leaders in the system, agreement is kept through majority
voting. Since n � f equal values are necessary for a decision, if a process
decides v then every process receives v at least n � 2f times, making the
condition at line 9 become true. Since n� 2f ¡ f , a process can safely pick
the majority value.

42CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

3.4.1 Detailed Description

The L-Consensus algorithm consists of two parallel tasks T1 and T2. When
a process pi calls the Consensus function with a proposal vi (i.e. it proposes
value vi), it initiates both tasks. Compliant with the definition of consensus,
the Consensus function eventually returns the same decision value v to each
non-crashed process.

Task 1: The algorithm executes a sequence of asynchronous rounds of
one communication step each. In each round k, a process sends a round k
message containing its current proposal to all processes and waits for round k
messages from n� f processes including its current leader, computes its new
state based on the messages received (possibly decides), and moves to the
next round. A process pi maintains three local variables: the round number
ri, an estimate of the decision value esti initialized to the proposal value vi,
and the current leader ld, initially K.

At the beginning of each round, pi queries Ω for the current leader and
stores the identity in ld. We say that pi has leader pl in round k if pi sends a
message with ld � l. The messages sent contain the following fields: ki, esti,
ld. We say that a process pl is majority leader for round k if a majority of
processes send round k messages with ld � l. As any two majorities have a
non empty intersection, there can be at most one majority leader at round k.
Note that in asynchronous runs there are periods with no majority leader.

A process pi can send two different types of messages in round k. If pi
has decided, then it broadcasts a decision value, otherwise it broadcasts a
PROP(ki, esti, ld) message and we say that pi proposes esti in round ki.

At the end of round k (i.e. after receiving round k messages from n � f
processes possibly including one from ld), process pi updates its esti variable
as follows: if pi receives a value v from the majority leader of round k, then
esti � v. If there is no majority leader or the Ω module at pi suspects
ld for having crashed and pi receives n � 2f equal values v, then pi picks
v. Otherwise the estimate value is kept unchanged. A process pi decides in
round k if it receives n�f equal values including one value from the majority
leader.

Task 2: Upon receiving a decision message with value v, pi forwards
the decision value to the other processes and then decides v. Thus, if a
correct process decides, the remaining correct processes cannot block since
they eventually receive the decision message.

3.4.2 Correctness

Lemma 1 (Termination). Every correct process decides.

3.4. CIRCUMVENTING THE IMPOSSIBILITY WITH Ω 43

Proof. We show that if some correct process never decides then every correct
process eventually decides; a contradiction. If some correct process never
decides then either some correct process decides or no correct process decides.
1) Case a: Some correct process decides. Then, it broadcast a decision
message (line 5). Since it is correct, every correct process eventually receives
the decision message (line 11) and also decides. Thus, every correct process
decides, which contradicts the assumption.
2) Case b: No correct process decides. If some correct process pi never
decides, then either it is blocked in a round or it executes an infinite number
of rounds.

Case 1: pi blocks forever in a round. Let k be the first round in which
some correct process is blocked. pi can only be blocked at one of the wait
statements (line 2 or 3).
- Case I: pi is blocked at line 2 of round k. Since k is the first round in which
some correct process blocks at line 2, all correct processes have broadcast a
round k message at line 1. As communication links are reliable and there are
at least n�f correct processes, pi eventually receives n�f round k messages
and completes line 2.
- Case II: pi is blocked at line 3 of round k. As in the case above, every
correct process broadcasts a round k message. Consider ld, which is the
leader process output by Ω at pi. If ld is correct, then pi eventually receives
a round k message from ld and completes line 3. Otherwise, if ld is faulty,
then either pi eventually receives a round k message from ld, or Ω eventually
outputs a correct process different from ld and pi completes line 3. Thus, pi
cannot block at line 3.

Case 2: All correct processes execute an infinite number of rounds without
deciding. From the definition of a faulty process, there is a time t1 such that
every faulty process has crashed before t1. From the definition of Ω there is
a time t2 such that Ω outputs the same correct process pl at every correct
process forever. Let t :� maxtt1, t2u and k be the first round after t. In
round k, every correct process sets ld to l and sends a message (k, �, l) to
all processes. Since no correct process decides, no correct process executes
line 5. As there is a majority of correct processes and pl is not suspected
by any correct process, every correct process receives a majority of round k
messages including one message from pl, and every correct process sets its est
variable to the same value (line 8). Therefore, at round k � 1 every process
including pl sends a (k� 1, v, l) message. Thus, at round k� 1 every correct
process receives n� f equal messages including a (k � 1, v, l) message from
pl. Therefore, the condition at line 4 evaluates to true and every correct
process decides at line 5; a contradiction.

44CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

Lemma 2 (Agreement). No two processes decide differently.

Proof. A process can decide either at line 5 of some round or at line 11 of task
T2. If a process decides v at line 11, then some other process has decided
v at line 5. Let k be the lowest round in which some process p decides v at
line 5. We claim that each process that decides v at line 5 of round k decides
v, and that every process that completes round k does so with est � v. This
implies that the est value of every process after round k is always v. Thus, in
round k and after round k, v is the only value that can be decided at line 5.
As k is the lowest round in which some process decides, this implies that v
is the only value that can be decided in a round at line 5. This also implies
that no process decides a value different from v at line 11 of task T2. Now
we prove the above claim. Suppose that a process q � p decides d in round
k. Since n� f ¡ n{2, both p and q receive equal values v and d respectively
from a majority of processes. As any two majorities intersect in at least one
process, it follows that d � v. Now, consider any process q1 that completes
round k without deciding. We show that q1 completes round k with est � v.
There are two cases to consider:

Case 1: q1 evaluates the condition at line 7 to false. We show that q
necessarily evaluates the condition at line 9 to true. At round k there are at
least n�f values v and q1 has received n�f values at line 2 of round k. Any
two sets of n� f elements have n� 2f elements in common, thus among the
n� f values q1 receives at round k, at least n� 2f values are equal to v and
at most f values are distinct from v. Since n� 2f ¡ f , v is a majority value
among the values received by q1. Value v is unique as there cannot be two
distinct majority values. Thus q1 completes round k with est � v.

Case 2: q1 evaluates the condition at line 7 to true. Thus, there must be a
process pl such that a majority of processes send messages with ld � l. Since
p decides in round k, there must be a process pl1 , such that n � f processes
send messages with ld � l1. As any two majorities have a process in common,
it follows that l � l1. Thus q completes round k with est � v.

3.5 Circumventing the Impossibility with 3P
In this section we present a one-step and zero-degrading algorithm that uses
the 3P failure detector. The proposed P-Consensus algorithm illustrated
in Figure 3.3 is based on a simple observation that was originally made by
Lamport [Lam06a]. One of the necessary conditions for the impossibility of
section 3.3 is that processes receive messages from different quorums in the
first communication round. If all processes received the same set of messages,

3.5. CIRCUMVENTING THE IMPOSSIBILITY WITH 3P 45

then they could deterministically pick the same value to propose in the second
round. Consequently, consensus would be obtained in two steps.

The idea behind P-Consensus is to use the 3P failure detector to build a
consistent quorum from which every process delivers first round messages in
case it cannot decide. In every stable run, 3P suspects exactly the faulty pro-
cesses and its output does not change during that run. Hence, every process
that does not decide during the first round computes the same quorum (line
5) and subsequently receives a message from every quorum member. The sets
of messages received by different processes from the quorum are equal and
the functions applied to pick a value are deterministic (lines 9-12). Hence, all
processes start the next round with the same value and consequently every
correct process decides in the second round.

3.5.1 Detailed Description

The P-Consensus algorithm consists of two parallel tasks T1 and T2 that
are initiated when a process proposes a value. The Consensus function
eventually returns the same decision value to every correct process. Since the
second task is identical to task T2 of the L-Consensus protocol, we confine
ourselves to describing task T1.

The algorithm executes a sequence of asynchronous rounds of one com-
munication step each. In each round k, a process sends a round k message
containing its current proposal to all processes and waits for round k messages
from n� f distinct processes, computes its new state based on the messages
received and tries to decide. If it cannot decide then it possibly waits for
more messages, computes its new state and moves to the next round.

A process pi maintains two local variables: the round number ki initialized
to 1 and an estimate of the decision value esti initialized to the proposal value
vi. At the beginning of each round, pi broadcasts a message that contains
the following fields: ki, esti. A process pi can send two different types of
messages in round ki. If pi has decided, then it broadcasts a decision value,
otherwise it sends a PROP(ki, esti) message to all processes and we say that
pi proposes esti in round ki.

Subsequently, pi waits for a message from n � f distinct processes. If pi
receives n�f identical values it decides. Otherwise, pi additionally waits for
messages from a quorum Q that is computed deterministically as the set that
contains the first n � f nonsuspected processes. We say that Q is complete
iff it has n� f members.

At the end of round k, pi updates its esti variable as follows: if there
is a complete quorum Q such that pi receives a message from each process
in Q and there is a majority value v among the n � f values received, then

46CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

Function Consensus(vi)
start T1, T2;
task T1: ri Ð 0; esti Ð vi;

while true do
@j do send PROP(ri, esti) to pj enddo;1

wait until received PROP(ri, �) from n� f processes;2

if received PROP(ri, v) from n� f processes then3

@j do send DECIDE(v) to pj enddo; return v;4

let Qi � t the first n� f processes pj : j R 3P .suspected u;5

wait until received PROP(ri, �) from every6

pj : j P Qiz3P .suspected;

let Qlisti � pv | PROP(ri, v) has been received from7

pj : j P Qiq;
if |Qlisti| � n� f then8

if Dv P Qlisti : #pvq ¥ n� 2f then9

esti Ð v;10

else11

esti Ð estmintj|jPQiu;12

else %ensure agreement%
let vlisti � pv | PROP(ri, v) has been receivedq;13

if Dv P vlisti : #pvq ¡ |vlisti|{2 then14

esti Ð v;15

ri Ð ri � 1;

task T2: upon reception of DECIDE(v): @j � i do send16

DECIDE(v) to pj enddo; return v;

Figure 3.3: The P-Consensus Algorithm

esti � v. If there is no such value v, then no process decided in round k.
Thus, p can propose any value in the next round. Subsequently, p picks
the estimate of the leader, the process with the smallest index among all
nonsuspected processes. In case that there is no such process, p simply keeps
its estimate. If Q is not complete and there is a majority value v among the
values received in round k then esti � v. If no such value exists, then pi
moves to the next round.

3.5. CIRCUMVENTING THE IMPOSSIBILITY WITH 3P 47

3.5.2 Correctness

Lemma 3 (Termination). Every correct process decides.

Proof. We follow the same strategy as in Section 3.4.2 and show that if some
correct process never decides then every correct process eventually decides.
Assuming that some correct process never decides yields two cases. Either
some correct process decides or no correct process decides. The latter case
implies that some correct process never decides. Thus, either 1q it is blocked
in a round or 2q it executes an infinite number of rounds.

- Case 1q: The proof is similar to the one of Section 3.4.2. A process
cannot block at one of the wait statements (at lines 2, 6) because at most
f processes are faulty and �P .suspected eventually contains all crashed pro-
cesses.

- Case 2q: All correct processes execute an infinite number of rounds
without deciding. From the definition of a faulty process, there is a time
t1 such that every faulty process has crashed before t1. From the definition
of �P there is a time t2 such that after t2, �P outputs exactly the crashed
processes forever. Let t :� maxtt1, t2u and k be the first round after t.
Since no correct process decides, no correct process executes line 4 and every
correct process executes lines 5, 6 and 7. As �P behaves perfectly in round
k, every quorum Q contains exactly the correct processes. The fact that Q
is complete and identical and every correct process receives a message from
every member of Q implies that Qlist is the same at every correct process
and that |Qlist| � n � f . Hence, the condition at line 8 evaluates to true
and all correct processes pick the same value either at line 10 or at line 12.
Therefore, in round k�1, all correct processes send a message with the same
value and hence every correct process receives n � f identical values and
consequently decides at line 4; a contradiction.

Lemma 4 (Agreement). No two processes decide differently.

Proof. We claim that each process that decides at line 4 of round k decides
v, and that every process that completes round k without deciding does so
with est � v. As already shown in 3.4.2, if this claim is true then agreement
holds. Now, we prove the above claim. It is easy to see that if two distinct
processes p and q decide in round k, then they decide the same value v.
Let q1 be a correct process that does not decide in round k. As q1 receives
at least x ¥ n � f messages, it receives at most f values w � v. Since
x� f ¥ n� 2f ¡ f , v is a majority among the values received by q1 in round
k which implies that one of the conditions at line 9 or 14 evaluates to true.
Thus, q1 completes round k with est � v, which concludes the proof.

48CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

3.6 The Atomic Broadcast Protocol

The proposed C-Abcast protocol in Figure 3.4 represents a modification of
the WABcast atomic broadcast algorithm of [PSUC02]. Like the Chandra &
Toueg’s (CT) Atomic Broadcast protocol [CT96], C-Abcast reduces atomic
broadcast to consensus. It executes a series of consensus instances to de-
termine a single message delivery sequence at all processes. Unlike the CT
Atomic Broadcast, C-Abcast assumes an underlying consensus module that
is very efficient in case that all proposals are equal. In order to exploit the
efficiency of the underlying consensus, C-Abcast uses a WAB oracle to pro-
vide the consensus module with equal input values. When the oracle outputs
the same proposal to every process, C-Abcast has a latency of two message
delays, i.e., 2δ; one for asking the oracle plus one communication step for
consensus. In case of collisions, consensus is reached in two communication
steps. Hence, C-Abcast has a latency of three message delays, i.e, 3δ in the
common case.

The protocol consists of three concurrent tasks. A process can either
a-broadcast a message (line 2), a-deliver a message (line 4), or w-deliver
a message (line 16). A process p a-broadcasts a message m by including
m in a set estimatep. This set contains the messages that have not been
yet a-delivered by p. The a-deliver(�) task executes in a round by round
fashion. In round k, process p w-broadcasts the set estimatep and waits to
w-deliver the first value v output by its oracle. Then, p proposes v to the k-th
consensus instance and waits for the decision. After it decides, p atomically
delivers all messages contained in the k-th decision in some deterministic
order, removes from estimatep every message a-delivered so far and moves
to the next round. In order to ensure validity, every message a-broadcast by
some correct process must eventually be contained in the proposal of every
correct process. Thus, in the third task (line 16), every process p includes in
estimatep all messages w-broadcast so far.

3.6.1 Correctness

Informally, Lemma 5 below states that @k P N, (a) if a process delivers the
k-th message batch, then every correct process also delivers it and (b) that
the k-th message batch is the same at every process. From (a) and (b) we can
easily deduce Agreement and Total Order. Validity requires a more detailed
proof.

Lemma 5. For all k ¡ 0, every process p and every correct process q, if
p executes round k until the end then q executes round k until the end and
adeliverkp � adeliverkq .

3.6. THE ATOMIC BROADCAST PROTOCOL 49

Initialization:
ki Ð 1; estimatei Ð K; adeliveredi Ð K;1

a-broadcast(m):2

estimatei Ð estimatei Y tmu;3

a-deliver(�):4

while true do5

w-broadcast(ki, estimatei);6

wait until w-deliver of the first message (ki, v);7

msgSeti Ð Consensus(ki, v);8

adeliveri Ð msgSeti � adeliveredi;9

deliver all messages in adeliveri atomically in some deterministic10

order;
adeliveredi Ð adeliveredi Y adeliveri;11

estimatei Ð estimatei � adeliveredi;12

ki Ð ki � 1;13

if estimatei � H then14

wait until w-deliver of the first message (ki, v)15

_ estimatei � H

upon w-deliver(�, v) of the second, third etc. message of any round16

estimatei Ð estimatei Y v;17

Figure 3.4: The C-Abcast Algorithm

Proof. We will prove the lemma by induction over k. First, it is easy to see
that every correct process executes round 1 until the end. Due to consensus
agreement, if p a-delivers messages in round 1 then adeliver1p = adeliver1q .
Now assume that the lemma holds for all k, 1 ¤ k r. We first show that
if p a-delivers messages in round r then q executes round r until the end.
If p a-delivers messages in round r, then p returns from the invocation of
Consensus(r, �) at line 8. Since there is at most a minority of faulty pro-
cesses, at least one correct process u executes Consensus(r, �). This implies
that u w-broadcasts its estimate at line 6. By the induction hypothesis, if
p a-delivers messages in round r � 1, q executes round r � 1 until the end.
Thus, q eventually w-delivers the first message of stage r either a) at line 7
or b) at line 15. Without loss of generality, let estimateu be the first message
w-delivered by q in round r. In both cases q breaks from the correspond-
ing wait statement and executes Consensus(r, estimateu)2. By consensus

2In case q breaks from the second wait statement (line 15) it does not block at the first

50CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

termination, q eventually executes round r until the end.

We now show that if p a-delivers messages in round r then adeliverrp �
adeliverrq . As shown in the first part of the lemma, q executes round r
until the end. Thus, q a-delivers messages in adeliverrq . Due to consensus
agreement msgSetrp � msgSetrq. By the induction hypothesis, @k, 1 ¤ k r :

adeliverkp � adeliverkq ñ Yr�1
k�1adeliver

k
p � Yr�1

k�1adeliver
k
q . As adeliverr �

msgSetr � Yr�1
k�1adeliver

k, we get adeliverrp � msgSetrp � Y
r�1
k�1adeliver

k
p �

msgSetrq �Y
r�1
k�1adeliver

k
q � adeliverrq .

Lemma 6 (Agreement). If a process a-delivers message m, then all correct
processes eventually a-deliver m.

Proof. Follows directly from Lemma 5.

Lemma 7 (Total Order). If some process a-delivers message m1 after mes-
sage m, then a process a-delivers m1 only after it a-delivers m.

Proof. Follows from lemma 5, the total ordering of natural numbers, and the
fact that messages within a batch are delivered atomically in a deterministic
order.

Lemma 8 (Validity). If a correct process a-broadcasts message m, then even-
tually it a-delivers m.

Proof. The proof is by contradiction. Suppose that a correct process a-
broadcasts m but never a-delivers m. By Lemma 6 no correct process a-
delivers m. Consider a process p that a-broadcasts a message m. Conse-
quently, p includes m in estimatep and thus w-broadcasts m. By the validity
property of the ordering oracle, every correct process eventually w-delivers
m at line 16 and thus includes m in its estimate. Since no correct process
adelivers m, no correct process removes m from its estimate at line 12. There
is a time t so that all faulty processes have crashed before t and at which
m is included in the estimate of every correct process. Let k be the lowest
round number after t. Every correct process w-broadcasts m in k, which
implies that every value proposed to the k-th consensus instance necessarily
contains m. Due to validity of consensus, m is included in the msgSet of
every correct process. Thus, m is a-delivered by every correct process at
round k; a contradiction.

wait statement (line 7) because it has already w-delivered the first round r message.

3.7. PERFORMANCE EVALUATION 51

3.7 Performance Evaluation

In this section we provide a brief comparison of our protocols with Paxos and
WABcast, both analytical and experimental. Table 3.1 matches our protocols
with Paxos [Lam98] and WABCast [PSUC02] in terms of latency (where
δ is the maximum network delay), message complexity, resilience, and the
oracle or failure detector used. In the absence of collisions, WABCast and C-

Table 3.1: Comparison of various atomic broadcast protocols

No Collisions ; Collisions
Protocol latency #messages Resil. Oracle

Paxos 3δ n2 � n� 1 f n{2 Ω
WABCast 2δ ; 8 n2 � n ; 8 WAB
C-Abcast (L-/P-Cons.) 2δ ; 3δ n2 � n ; 2n2 � n f n{3 Ω/�P

Abcast have the same time and message complexity. However, compared to
Paxos, C-Abcast trades optimal resilience for improved latency. In presence
of collisions, WABCast might not terminate whereas C-Abcast has the same
time complexity as Paxos, albeit with increased messages.

3.7.1 Experimental Evaluation

We now present the experimental comparison of our protocols with Paxos
and WABCast. We measure the latency of atomic broadcast as a func-
tion of the throughput, whereby latency is defined as the shortest delay
between a-broadcasting a message m and a-delivering m. We implemented
L-/P-Consensus and C-Abcast using the Neko [UDS01] framework. The ex-
periments were conducted on a cluster of 4 identical workstations (2.8GHz,
512MB) interconnected by a 100Mb ethernet LAN. The different consensus
algorithms were evaluated by exchanging the consensus module of C-Abcast.
The WAB oracle implementation uses UDP packets whereas the rest of the
communication is TCP-based. We considered only stable runs in our exper-
iments. In order to capture the performance with and without collisions,
we varied the load between 20msg{s and 500msg{s. Figure 3.5 shows the
comparison of our protocols with WABCast. Both proposed protocols ex-
hibit a comparable latency to WABCast up to a load of 80msg{s and they
dramatically outperform WABCast for loads higher than 100msg{s.

Figure 3.6 summarizes the comparison with Paxos. In the lower half of
the load spectrum, where collisions are rare, our protocols slightly outperform
Paxos. However, starting from a load of 300msg{s upwards, where collisions

52CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500

m
ea

n
la

te
nc

y
[m

s]

throughput [1/s]

P-Consensus

L-Consensus

WABCast

Figure 3.5: C-Abcast using L-/P-Cons. vs. WABcast (n � 4)

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 100 200 300 400 500

m
ea

n
la

te
nc

y
[m

s]

throughput [1/s]

P-Consensus

L-Consensus

Paxos

Figure 3.6: C-Abcast using L-/P-Cons. (n � 4) vs. Paxos (n � 3)

start predominating, Paxos performs better. This can be attributed to the
high message overhead incurred L-/P-Consensus.

3.8 Summary of the Results

One-step decision and zero-degradation are desirable efficiency properties
of consensus, and protocols satisfying them are latency optimal. We have
investigated the compatibility of these two properties and have shown that

3.8. SUMMARY OF THE RESULTS 53

they cannot be both satisfied using the Ω failure detector. Subsequently,
we have proposed two different approaches to circumvent the established
impossibility. The first approach relaxes one-step decision to hold only in
stable runs, while the second one assumes a strictly stronger failure detector.
For each of the two approaches we have given a corresponding algorithm.
While the proposed L-Consensus guarantees one-step decision only in stable
runs, P-Consensus decides after one communication step regardless of the
failure detector output. When compared with Paxos, our protocols exhibit
improved latency for the lower half of the load spectrum. However, when the
load increases and collisions prevail, the high message complexity incurred
by our protocols leads to a noticeable performance degradation.

54CHAPTER 3. ONE-STEP CONSENSUSWITH ZERO-DEGRADATION

Chapter 4

Generalized Consensus and
Hybrid Paxos

This chapter extends our previous results on latency-optimal consensus im-
plementations presented in Chapter 3, to generalized consensus, where col-
lisions are generated only by conflicting commands. Also it investigates the
applicability of generalized consensus to wide area networks (WANs).

Our contribution is a generalized consensus protocol called Hybrid Paxos
(HP) that matches all known lower bounds on latency, resilience and mes-
sages. In the absence of collisions caused by interfering commands, HP re-
quires two message delays, and only one extra delay in the common case,
which is optimal. Our experimental comparison with Classic Paxos (CP)
confirms that HP (a) features a dramatic improvement in latency, (b) offers
better latency up to 70% of CP’s peak throughput, and (c) never performs
worse. Altogether, our results answer question Q2 in the affirmative.

4.1 Introduction

As identified in Chapter 3, frequent collisions can cause a significant per-
formance degradation in practice, even if the algorithm employed is latency
optimal in theory. Unlike LANs, in a generic environment such as a WAN,
asymmetric and oscillating link delays combined with concurrent client invo-
cations, result in collisions predominating even in lightly loaded systems.

WAN replication is appealing because it offers protection against catas-
trophic failures of a single site and can be used to enhance the resilience of
critical services. To provide sustained performance in a WAN environment,
it is imperative to minimize the occurrence of collisions. In this chapter,
we turn to generalized consensus [Lam05], that distinguishes between com-

55

56 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

mutable and non-commutable (also called interfering) commands. The ad-
vantage of generalized consensus is that only interfering commands generate
collisions. Thus, if many commands commute, by ordering only the fraction
of interfering commands, the actual number of collisions can be reduced.

In the standard state-machine approach, a sequence of instances of a
traditional consensus protocol are used to choose the sequence of client com-
mands, where the ith instance chooses the ith command. In generalized con-
sensus [Lam05], a single instance of consensus is used to choose an increasing
history of commands. A history is a partially ordered set of commands, in
which every pair of interfering commands is ordered.

As discussed earlier in Section 2.2.5, the generalized consensus problem is
stated in terms of proposers that propose commands, acceptors that choose
an increasing command history and learners that learn what history has been
chosen. In a client/server system, clients might play the roles of proposer
and learner and servers might play the role(s) of acceptor (and learner). A
leader is elected among the acceptors to coordinate their actions.

Consensus protocols attaining the optimal latency [Lam06b] are the well
known Classic Paxos (CP) [Lam98] and the more recent Generalized Paxos
(GP) [Lam05]. Their message patterns are illustrated in Figure 4.1. In
normal operation, CP requires three message delays. The communication
pattern during normal operation is Client Ñ Leader Ñ Acceptors Ñ Learn-
ers. GP saves one message delay by having the clients send their proposals
directly to the acceptors, bypassing the leader. This works fine if the ac-
ceptors receive the same sequence of interfering commands. However, when
commands are proposed concurrently, interfering commands may be accepted
in different orders, resulting in no command being chosen. In order to guar-
antee progress, GP then runs a collision recovery procedure, which adds four
message delays. Thus, if collisions are frequent, GP has a significantly higher
latency and a lower throughput than CP.

We found that even in the absence of collisions, depending on the layout
of clients and servers, CP can outperform GP (for many clients). This stems
from the fact that in order to be fast, GP needs larger quorums than CP,
called fast quorums [Lam06b].

When clients have direct access to a local replica, the recently developed
consensus protocol Mencius [MJM08] has been shown to outperform CP.
However often, clients and servers are not co-located. When clients are using
a remote service replicated for disaster tolerance, none of the mentioned
protocols has the final say.

4.1. INTRODUCTION 57

1a 1b

2a

Leader

Acceptors

Client

Acceptors

Client

Leader

2b

2a

2b

1a
1b

2a

2b

Fast mode Recovery from collisions

chosen

Normal operation (CP)Recovery (all protocols)

Phase2Phase1

propose

2b

2bFast

2bFast

propose

Normal operation (GP)

Figure 4.1: Paxos message patterns

4.1.1 Contributions

We present Hybrid Paxos (HP), a generalized consensus implementation that
essentially extends CP with an additional “fast mode”, enabling learning in
two message delays in the absence of collisions. In presence of collisions,
when GP takes six message delays, HP requires only three message delays.
These latencies are optimal [Lam06b] and they are attained using a linear
number of messages and the optimal number of 2f�1 servers, where f is the
bound on crash-failures. Compared to Mencius, HP uses weaker synchrony
assumptions, resulting in higher availability in WANs.

We show for the first time that generalized consensus can be used in
practice to build efficient replicated services. The key to efficiency is that
fast learning must not impact the bottleneck, which in CP is the leader.
Additional messages in HP are exchanged only between clients (which are
both proposers and learners) and acceptors. Thus, HP exploits the relative
underutilization of the acceptors and offers a better latency up to 70% of the
peak throughput of CP.

In addition, fast learning is enabled only if spare capacity is available.
This is done by adaptively switching it on and off based on the load. Our
evaluation using Emulab [WLS�03] shows that the latency of HP reaches the
theoretical minimum. In the presence of collisions and with increasing load,
HP behaves like CP.

58 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

4.1.2 No Clear Winner with CP and GP

We argue that the quorum size has a significant performance impact by
showing that even in the absence of collisions, CP can outperform GP.

We have sampled delays among Planetlab [BBC�04] nodes and used them
to simulate the normal operation (best case) of CP and GP in four different
WAN settings (Table 4.1). The client distribution is as follows: 56% are
located in the US, 38% in Europe, and 6% in Asia. All topologies use 11
servers. GP requires a fast quorum (9 servers), while CP only requires a
(majority) quorum. The simulation results in Figure 4.2 suggest that: (a)
in many settings, some clients are better off using GP and others prefer CP
and (b) the crash of a single server can turn a setting beneficial for GP into
one beneficial only for CP. Thus, there exist practical settings where neither
of the two protocols always outperforms the other.

Table 4.1: WAN server layout (11 servers)
Topology Europe World CLUS-5(4)

Leader Site Hungary Japan Switzerland
Backups Europe Global Europe

1 with 5 (4) nodes,
Clusters No No

3 with 2 nodes
Quorums 6 servers for CP, 9 servers for GP

In the Europe setting, servers are located at 11 different sites in Europe.
For most clients, the distance between them and the servers is close to uni-
form. Thus, the GP pattern leads to good results: 28% of the clients observe
that GP is at least 10% faster than CP, and 10% of the clients even observe
a 20% improvement. However, 12% of the clients find that CP is 10% better,
as they do not have good connectivity with three additional servers required
by GP. This supports observation (a).

The World setting models a world-wide setting in which acceptors are
spread over the US, Europe and Asia, and the leader is located in Asia.
In this scenario the advantage of the GP pattern is even clearer: 75% of
the clients observe a 10% improvement over CP, and for 20% of the clients
the improvement is ¡ 35%. The reason is the additional message delay to
reach the leader, which is large for most of the clients. However, there are
some clients which prefer CP: 6% find it to be 20% more efficient than GP,
supporting observation (a). This is essentially the fraction of Asian clients
which can quickly reach the leader.

The CLUS topology considers the case when servers are clustered at
four different sites in Europe, providing cheap disaster tolerance. The only

4.2. MODEL 59

0.6

0.5

0.4

0.3

0.2

0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Im
pr

ov
em

en
t f

ac
to

r

 C
P

 o
ve

r
G

P

 G
P

 o
ve

r
C

P

Fraction of clients observing improvement

Europe
CLUS-5
CLUS-4

World

Figure 4.2: Improvement factor of GP over CP and vice versa

distinction between the CLUS-5 and CLUS-4 is that in the latter, one node
in the largest cluster is crashed (Table 4.1). Before the crash, a fast quorum
(9 servers) can be reached by contacting three sites. Note that for 13% of
the clients, GP outperforms CP by at least 10%. Two sites are sufficient for
CP to sample a quorum (6 servers). However, after the crash GP accesses all
sites. This results in a shift of the performance profile, with CP dominating
GP for 50% of the clients, supporting observation (b).

4.2 Model

We now give a brief summary of the model used herein, which is in line with
the definitions given earlier in Chapter 2. We consider a message-passing
system consisting of n servers and any number of clients. For simplicity,
we assume reliable FIFO channels which can be easily implemented on top
of reliable channels using standard techniques [AW98]. Further we consider
a crash-stop model in which clients and servers fail only by crashing and
nonfaulty servers never crash 1. We allow any number of clients to crash,
however we assume that at most f tn{2u servers fail, which is necessary
to solve consensus [CT96]. The system is asynchronous, with no bounds on
message delay or processor speed. Each server has access to a failure detector
Ω, that eventually outputs at all servers the same nonfaulty server.

1However, the algorithm can be extended to a model in which crashed nodes may
recover [ACT98] and links are fair-lossy [BCBT96].

60 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

4.3 Generalized Consensus and Paxos

In this section we review Paxos and describe it as consensus on a growing
command history [Lam05]. When needed, we differentiate between GP and
CP. This description serves as a basis for HP which is introduced in Sec-
tion 4.4.

In the client/server system that we consider, clients are both proposers
and learners. The servers are acceptors and cooperate to choose a single
command history. Acceptors query the Ω failure detector that elects a leader
among them. Safety is guaranteed even if no leader or multiple leaders are
elected, but a unique leader is required to ensure progress. Paxos operates
on a set of round numbers. The round numbers are partitioned among the
potential leaders such that each leader has its disjoint set of round numbers.

As mentioned in the introduction of this chapter, Paxos assumes prede-
fined sets of acceptors called quorums. The requirement for CP is that any
two quorums intersect. GP requires larger quorums, called fast quorums,
and the requirement is that the intersection of any fast quorum FQ and any
quorum is larger than n� |FQ|.

Following the Paxos protocol description [Lam98], we divide the acceptor
and leader actions in Phase 1 and Phase 2 actions. Phase 1 actions are
executed when a new round is started (e.g. after a leader crash). Phase 2
actions (1) complete choosing all the histories that failed to be chosen in an
earlier round and (2) they are repeatedly executed during normal operation.

We now describe the algorithms’ actions below (see also Fig. 4.1 as an
illustration). Note that the focus lies on consensus, and therefore the execu-
tion of commands is omitted from the description.

Phase1: Start a new round

(1a) Leader l picks a new round number r from its set of round numbers
and sends a x“1a”, ry message to all acceptors.

(1b) When acceptor a receives a x“1a”, ry message from leader l, if it has
not yet received a message with a higher round number, then it replies
with a x“1b”, r, . . . y2 message. We say that a has moved to round r
and considers r as its current round from now on. Moreover, a stops
accepting proposals from clients.

If a has already received a message with round number r1 ¡ r then it
sends a message to the leader, indicating that it is ignoring the x“1a”, ry

2Note that “. . . ” will be replaced by protocol specific information later.

4.3. GENERALIZED CONSENSUS AND PAXOS 61

message. (Upon receiving such a message the leader performs step (1a)
with a round number ¡ r1 if it still believes to be the leader.)

Phase2: Complete earlier rounds

(2a) If leader l has received x“1b”, r, . . . y messages from a quorum of accep-
tors, then it sends a x“2a”, r, hy message to the acceptors where h is
the history that has been determined from the received “1b” messages.
Further, the leader adopts h as the history currently chosen. The rule
of picking h depends on the type of protocol and is described later (see
Sections 4.3.1 and 4.4.2).

(2b) If acceptor a receives a x“2a”, r, hymessage in its current round r (i.e. it
has not yet received any message with a higher round number), it stores
h as the accepted history and sends a x“2b”, r, hy message to every
learner. Next, a starts accepting proposals from clients.

(Learn) If a learner receives identical x“2b”, r, h
cymessages from a quorum,
then it learns that history h
 c is chosen.

Normal operation CP

(Propose c) Client cl sends a x“propose”, cy message to the leader.

(2aCP) When the leader receives a x“propose”, cy message from client cl,
it appends command c to h and sends a x“2a”, r, h
 cy message to the
acceptors.

(2bCP) If acceptor a receives a x“2a”, r, h
cy message from the leader in its
current round r (i.e. it has not yet received any message with a higher
round number), then it accepts h
c and sends a x“2b”, r, h
cy message
to all learners. Learning is done as described in the (Learn) step.

Normal operation GP

(ProposeGP c) Client cl sends x“propose”, cy messages to the acceptors.

(2bFast) If acceptor a receives a x“propose”, cy message from client cl, then
a appends c to its command history h and sends x“2bFast”, r, h
 cy
messages to the learners and to the leader.

62 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

(Collision Handling) If the leader receives identical x“2bFast”, r, h
 cy
messages from a fast quorum, it indicates to the learners that h
 c is
chosen by sending x“chosen”, r, h
cymessages to the learners. Else, the
leader initiates collision recovery, which entails starting a new round
(Phase 1) and recovering from earlier rounds (Phase 2).

(Fast Learn) If a learner receives identical x“2bFast”, r, h
 cy messages
from a fast quorum, or equivalently a x“chosen”, r, h
 cy message then
it learns that h
 c is chosen. “Slow” learning is done as in (Learn).

4.3.1 The rule of picking a history

We now explain the core of the Paxos protocol and why it satisfies Consis-
tency. For this purpose, we now informally describe the rule of picking a
history based on the x“1b”, r, . . . y messages received by the leader in step
(2a). A formal and complete treatment appears in an earlier work by Lam-
port [Lam05].

Invariant Paxos maintains the following invariant for safety: if a history h
is chosen in round r and a history h1 is chosen in a higher numbered round,
then h � h1. Intuitively, Consistency follows from this invariant and the fact
that once a quorum of acceptors has joined a higher numbered round, no
history can be chosen in previous rounds anymore.

Pick classic In CP, if a history h has been chosen then learning implies
that a quorum of acceptors has accepted h. In step (1b), each acceptor
reports the history it has accepted. By the quorum intersection property, at
least one acceptor reports h. The picking rule is to select the lub among the
reported histories. Is is not difficult to see that h � lub.

Pick fast In GP, if a history h has been chosen, then fast learning implies
that a fast quorum FQ has accepted h. In step (1b), each acceptor reports
the history it has accepted. Let Q be the set of all reported histories collected
by the leader in step (2a). By the intersection property of FQ with a quorum,
Q contains at least n� |FQ| � 1 (possibly incompatible) extensions of h and
at most n � |FQ| histories which are not extensions of h. Hence, there is a
majority subset M � Q containing the extensions of h. The goal is now to
find a history which is an extension of h using this knowledge. First, the glb
is computed for every majority subset M � Q. As all majorities intersect,
the glbs are pairwise compatible. Next, the leader picks the lub of these glbs.
Note that one of the glbs is an extension of h, and therefore h � lub.

4.4. THE HYBRID PAXOS PROTOCOL 63

4.4 The Hybrid Paxos Protocol

As mentioned in the introduction of this chapter, HP is essentially CP with
an integrated “fast mode”, enabling fast learning in the absence of colli-
sions. Therefore, the progress property of HP is inherited from CP. Hence,
throughout the section, we will focus on safety.

The roles played by clients and servers and their interaction are the same
as in Paxos (see Section 4.3). Phase 1 and 2 do not change and so they are
as depicted in Figure 4.1. Figure 4.3 illustrates the message pattern of HP
during normal operation.

2b
2a

Client

Leader

Acceptors

Normal operation (HP)

propose

2b
2bFast

Figure 4.3: HP message pattern

4.4.1 Overview

We now briefly summarize the main differences between HP and Paxos.

First, fast learning is refined to accommodate that learning and fast learn-
ing are done in parallel, such that a learner can learn the quickest outcome. A
näıve composition would fail, as two incompatible histories could be learned
in the (Fast Learn) and (Learn) steps. We prevent this problem by replac-
ing fast learning with hybrid learning. The idea of hybrid learning is that a
learner waits for a fast quorum of identical “2bFast” and “2b” messages, of
which at least one is of type “2b”. Note that hybrid learning is fast because
the leader is an acceptor (see Figure 4.3).

Secondly, the rule of picking a history in step (2a) is extended accordingly.
In HP, each acceptor keeps two separate histories, a classic history updated
by “2a” messages and a fast history updated by client proposals. Both
histories are reported to the leader in step (1b). The leader applies the
picking rules as described in Section 4.3.1 to each type separately. Resulting
are two histories h and fh, where fh is determined by the fast histories. The
final history is determined as the lub of h and the largest prefix of fh which
is compatible with h.

64 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

4.4.2 The Protocol

We now describe the actions of the HP protocol during normal operation.
The focus lies on highlighting the difference to CP. A complete description
in pseudocode and proofs are given in Section 4.6.

Phase 1 and 2 actions as well as actions (2aCP), (2bCP) and (Learn) are
actions of the HP protocol. Since they do not change, they are not listed
below.

Normal Operation

(ProposeHP c) Client cl executes the actions (Propose c) and (ProposeGP
c).

(2bFastHP) If acceptor a receives a x“propose”, cy message from client
cl, then a appends c to the local fast history fh and sends
x“2bFast”, r, fh
 cy messages to the learners. (Note that the differ-
ence to action (2bFast) is that c is appended to the fast history, and
that no “2bFast” messages are sent to the leader).

(Hybrid Learn) If a learner receives identical x“2bFast”, r, fh
cymessages
from a fast quorum and one x“2b”, r, h
 cy message and h � fh then
it learns that h
 c is chosen. “Slow” learning is done as in (Learn).

The rule of picking a history

We now explain the rule of picking a history in HP just as we did for Paxos.
We will widely reuse the steps in Section 4.3.1 and refer to them when needed.

In HP, the x“1b”, r, . . . y messages report two separate, accepted histories,
the (classic) history and the fast history. The leader uses the reported (clas-
sic) histories to pick a history h as described in Pick classic. Next, the
leader uses the reported fast histories to pick a history fh as described in
Pick fast. Note that each of the histories satisfies the invariant. History
h is an extension of any history learned in the (Learn) step and fh is an
extension of any fast history learned in the (Hybrid Learn) step.

Pick hybrid We now explain the key difference between HP and Paxos. To
be safe, ideally we would pick the lub of h and fh and initialize the acceptors
with lub in phase (2a). However, if h and fh are incompatible, then their lub
is undefined. Therefore, the idea is (1) to determine the largest prefix pfh
of fh which is compatible with h and (2) to pick the lub of pfh and h. This

4.4. THE HYBRID PAXOS PROTOCOL 65

would be safe only if we can guarantee that any history lh learned in step
(Hybrid Learn) is a prefix of pfh.

We will now argue that this is the case. We know that lh is a prefix of
fh. By the choice of pfh, all prefixes of fh which are compatible with h
are also prefixes of pfh. Thus, it suffices to show that lh is compatible with
h. Hybrid learning implies that some acceptor has accepted lh as (classic)
history. Thus, lh is a prefix of some history sent by the leader in a “2a”
message. Clearly, this holds for h too. Any two histories sent by the leader
(of the same round) are prefixes of each other. So, if max is the largest of
the two histories, then max is a common extension of lh and h. Thus, lh and
h are compatible.

Implementation Considerations

Now that we have argued about the correctness (safety) of HP, in this section
we describe how HP can be tweaked to be practical. We have identified a set
of optimizations and listed them below.

O1: The leader does not have to send the entire history h
c in step (2aCP),
it suffices to send c. When an acceptor receives c in a “2a” message,
the FIFO property implies that it has already received h.

If the state machine is implemented at the servers, then there is no
reason to send the entire history to the clients. All a client needs to
learn is (a) the execution result of its last issued command and (b)
that the history producing the result is chosen.

O2: The solution to (a) is to have the servers speculatively execute com-
mands. Specifically, when the leader receives a proposal from a client,
it immediately executes the command and includes the result in the
“2b” message it sends back to the client. Speculation at the leader
avoids rollbacks and history replays during normal operation.

O3: In order to attain (b) without sending the history, we replace the his-
tories in the “2b” and “2bFast” messages with history digests. Two
history digests are equal iff the corresponding histories are equal. Thus,
in the (Learn) and (Hybrid Learn) step, clients check history digests
for equality. Intuitively, a history digest function takes as arguments a
history h and a command c contained in that history. It then computes
the smallest prefix of h containing c and returns the digest thereof. We
refer the reader to Appendix A for an incremental digest implementa-
tion based on hashing.

66 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

O4: If the classic and fast histories diverge during normal operation, the
protocol as described above prevents hybrid learning. A simple solution
would be to periodically start a new round. However, this imposes a
considerable overhead. Therefore, the idea is to have each acceptor
locally align the fast history fh to the classic history h as follows.
Periodically, fh is replaced with the lub of h and the largest prefix of
fh that is compatible with h. We know from Section 4.4.2 that this
is safe.

O5: We have optimized HP to adapt to a changing workload. Specifi-
cally, HP uses a double threshold (Thigh, Tlow) such that when the
load increases above Thigh (resp. decreases below Tlow) the fast mode is
switched off (resp. switched on). Changes in the load are monitored by
the leader, who is counting proposals per time unit. The leader simply
tells the clients (in “2b” messages) to stop (respectively start) sending
commands to the acceptors.

4.4.3 Discussion

In this section, we provide a comparison of HP and GP in terms of their
performance during normal operation. We argue that the cost of collision
recovery in GP outweighs the gain obtained from fast learning. In the original
Fast Paxos paper [Lam06a] says: “If collisions are very rare, then starting a
new round might be best. If collisions are too frequent, then classic Paxos
might be better than Fast Paxos.”

The latency of HP and GP equals two message delays in the absence of
collisions. In the presence of collisions, HP requires three message delays and
GP requires six. Hence, if GP is recovering from collisions only 25% of the
time, then there is no (average) gain from fast learning.

The message complexity of HP is 4n messages per request. GP requires
3n� 1 messages in the absence of collisions and p6� lqn messages otherwise,
where l is the number of learners. If we consider that l � n ¥ 3, and GP
is recovering from collisions only 12% of the time, then GP has a higher
(average) message complexity. Even without collisions, in GP the leader
collects “2bFast” messages and checks if collisions occurred, thus becoming
the bottleneck.

Our experiments with HP have revealed that with increasing load, the
collision rate is growing faster than the server capacity utilization rate. For
instance, we have observed that the servers are still underutilized when the
rate of hybrid learning drops under 50% (with 99% commutable commands).

4.5. EVALUATION 67

In this situation, GP would spend ¡ 50% of the time recovering from colli-
sions, thus performing poorly compared to HP.

4.5 Evaluation

This section explores the performance characteristics of HP and compares it
to existing approaches. As argued in Section 4.4.3 above, we expect HP to
outperform GP in most situations, and therefore we omit a direct comparison.
We substantiate our claim by showing that HP’s latency often attains the
theoretical minimum. We compare HP to CP and show that it performs
significantly better under low to medium load and equally well under high
load. Where appropriate, we also compare HP to Mencius [MJM08].

4.5.1 Experimental Settings

We have implemented a simple banking system in which multiple clients
share a bank account. Clients can deposit or withdraw money. The state
consists of the balance of the shared account, and clients can issue withdraw
or deposit commands. Executing withdraw $100 subtracts $100 in a state
with at least $100 and produces $100 as output. Executing deposit $20 adds
$20 and produces OK as output. Note that any two deposit commands
are commutable because executing them in either order has the same effect.
However, when one of the two operations is a withdraw, the order matters.

A scenario is modeled in which clients frequently deposit small amounts
of money and less frequently withdraw larger amounts. Where the rate of
withdraw commands matters, we use “HP-x” to denote runs of the HP proto-
col, where on average, one out of x commands is a withdraw. We use “CP3”
(respectively “CP4”) to denote the specific CP protocol where a command
can be learned by a client after three (respectively four) message delays; CP4
relates to CP without speculation.

We ran experiments in the Emulab testbed [WLS�03] and we imple-
mented all protocols in Java using the Neko [UDS01] framework. The pro-
tocols are evaluated in a system with five servers (f � 2) except for fault-
scalability, where the number of servers is scaled up to 21 (f � 10).

Client and server nodes are connected by links with a one-way delay of
20ms and a bandwidth of 100 Mbps. The chosen delays are comparable to
the “Europe” WAN setting analyzed in Section 4.1.2. The chosen network
bandwidth models modern high-end WAN links such Geant2 [Gea]. Server
nodes are 600 Mhz PCs with 256 MB memory running Fedora 6.

68 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

4.5.2 Latency

Figure 4.4 shows the average latency of HP under low and medium load as
the rate of withdraw operations is varied between 0% and 100%. Note that
the withdraw rate corresponds to the probability of collisions. For a withdraw
rate of 0.5% and load offered by 100 clients, HP has a 32% lower latency than
CP3. This is close to the theoretical minimum. For a withdraw rate of 100%
and load offered by 10 clients (between 0.1 and 0.2 Kops), HP still features
a latency of 20% below the optimum of CP3.

 40

 45

 50

 55

 60

 65

 70

 75

 80

0.1 0.2 0.5 1 2 5 10 20 50 100

La
te

nc
y

(m
s)

Rate of withdraw operations in %

CP3 (100 cl, 1.8 Kops)
HP(200 cl, 3 Kops)

HP (100 cl, 2.3 Kops)
HP (50 cl, 1.1 Kops)
HP(20 cl, 0.5 Kops)
HP(10 cl, 0.2 Kops)

Figure 4.4: Latency versus withdraw rate

Figure 4.5 compares the latency and throughput of HP-500, CP3, CP4
with and without request batching (of 20 commands) as we vary the offered
load. As illustrated, under low load, batching at the leader increases the
latency of CP4 and CP3 but not that of HP because most commands (¡ 90%)
are chosen in the fast mode. On the other hand, batching increases peak
throughput. In fact, with batching all protocols converge to the same peak
throughput. Starting from a throughput of 6 Kops, the curves of HP and
CP3 coincide because the fast mode is switched off.

Figures 4.6 and 4.7 illustrate the effectiveness of adaptive switching by
means of a dynamic workload. The workload is organized as follows: 50%
of the commands are sent under moderate load generated by 100 clients and
50% under high load generated by 1000 clients between t � 68 and t � 98.
Figure 4.6 compares the average latency of HP with that of CP3 and CP4.
We have measured the latency of HP with and without adaptive switch-
ing. The latter is referred to as nonadaptive. Figure 4.6 clearly shows that

4.5. EVALUATION 69

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

La
te

nc
y

(m
s)

Throughput (Kops/sec)

HP-500 (B=20)
HP-500 (B=1)

CP3 (B=20)
CP4 (B=20)
CP4 (B=1)

Unreplicated

Figure 4.5: Latency versus throughput

during the high load burst, the nonadaptive version of HP performs worst
among all protocols. The explanation is the following. Batching offloads the
leader and the acceptors become the bottleneck nodes because they process
more messages. In contrast, the adaptive version shows a short spike after
the load burst starts and a short tail after the burst ends. These can be
attributed to conservative thresholds. Overall, the adaptive version of HP
features the minimum latency of all protocols. Figure 4.7 compares the cu-
mulative latency distribution of the four protocols under the same workload
and confirms that adaptive HP performs best both under moderate and high
load.

Latency under Network Variance

So far, the experiments have been conducted in a setting in which the network
is always timely. We now add a Pareto distribution to each link using the
NetEm [Hem05] utility. The one-way network delay now varies between 20ms
and 60ms. Pareto is a heavy tailed distribution, which models the fact that
wide-area links are usually timely (e.g. 80% of the time) but can present
high latency occasionally.

Figure 4.8 compares the latency and throughput of HP-500, CP3, CP4
with batching as we vary the offered load. The trends are the same as
in a situation with no network variance. An important point is that all
protocols have lower peak throughput, including the unreplicated system.
High variance results in packet reordering and packet retransmission at the

70 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

 60

 80

 100

 120

 140

 160

 180

 200

 50 60 70 80 90 100 110 120 130 140

La
te

nc
y

(m
s)

Time (seconds)

HP-500 (adaptive)
HP-500 (nonadaptive)

CP3
CP4

Figure 4.6: Average latency under a changing load (B = 20)

 0

 20

 40

 60

 80

 100

 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

C
D

F

Latency (ms)

HP-500 (adaptive)
HP-500 (nonadaptive)

CP3
CP4

Figure 4.7: Latency CDF under a changing load (B = 20)

transport protocol level (TCP), causing additional load on the bottleneck
node. HP outperforms CP3 up to 60% of the peak throughput. Up to a
throughput of 1 Kops, HP and the unreplicated system have comparable
latencies. The performance profile of HP is somewhat surprising because
with high network variance, the likelihood of collisions increases. E.g., under
a link variance of 40ms, if two interfering commands are sent within 40ms
from each other, they might be accepted in different orders.

Figure 4.9 supports the above observation showing that under network

4.5. EVALUATION 71

Figure 4.8: Latency versus throughput (B = 20)

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
s)

Throughput (Kops/sec)

HP-500
CP3
CP4

Unreplicated

Figure 4.9: Latency vs. withdraw rate

 70

 75

 80

 85

 90

 95

 100

 105

 110

 115

 120

 125

 130

 135

 140

0 0.1 0.2 0.5 1 2 5 10 20 50 100

La
te

nc
y

(m
s)

Rate of withdraw operations in %

CP3 (10 cl, 0.1 Kops)
HP (100 cl,1.2 Kops)
HP (50 cl, 0.6 Kops)
HP (20 cl, 0.3 Kops)
HP (10 cl,0.2 Kops)

variance, the latency of HP converges much faster to that of CP3. Neverthe-
less, under low load and a small fraction of withdraws, HP shows a latency
improvement of up to 40% over CP3, which is more than the theoretical
maximum latency reduction of 1{3. An explanation could be that the longer
it takes to run an instance of a protocol, the more likely it is to depend on a
slow link in the critical path. In this particular case, this effect adds to the
latency of CP3 and explains the measured latency difference.

Figure 4.10 compares the latency of HP-500, CP3 and Mencius [MJM08]
as more servers are added to the system. We are simulating a lightly loaded

72 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

Figure 4.10: Latency as f increases (20 clients)

 70

 80

 90

 100

 110

 120

 130

 1 2 3 4 5 6 7 8 9 10

La
te

nc
y

(m
s)

Number of tolerated faults

HP-500
CP3

Mencius (all commutable)

scenario with 20 clients. With Mencius, a server has to wait for all other
servers to skip or to propose a command. For a fair comparison, all com-
mands are commutable and thus Mencius can commit in only one message
roundtrip after receiving a reply from all servers, which is optimal. Mencius’
dependency on slow links grows as more servers are added and therefore its
latency increases. In contrast, the latency of HP and CP3 remains roughly
constant (CP3’s latency even drops) because they wait for the fastest quo-
rum. These results suggest that the latency of CP and HP strongly depends
on how large is the fraction of nodes that form a quorum. We observe that
the latency oscillates (and even drops) with this fraction.

4.5.3 Throughput

We now show that the lower latency of HP does not come at the cost of lower
throughput compared to CP.

Figure 4.11 shows the throughput of HP-500, CP3 and CP4 with and
without batching as the number of clients increases. All protocols scale
equally well when batching is used; CP4 without batching scales poorly.
Figure 4.12 compares the peak throughput of HP (that equals CP3), CP4 and
Mencius as the number of faulty servers tolerated increases. The throughput
of Mencius is scaled down from 3GHz machines to ours (600MHz) using a
factor of 1{4. The results show that HP outperforms all other protocols
except in the case of f � 2 with batching, when its peak throughput is
comparable to CP4. The fault scalability of HP is superior to that of CP4

4.6. PROOF OF CORRECTNESS 73

with and without batching. For f � 10 with batching, HP features 73% of
the peak throughput for f � 2. In contrast, CP4’s peak throughput drops
down to 50%.

Figure 4.11: Throughput as the number of clients increases

 0

 2

 4

 6

 8

 10

 12

 14

 300 600 900 1200 1500 1800 2100 2400

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Number of clients

HP-500 (B=20)
HP-500 (B=1)

CP3 (B=20)
CP4 (B=20)
CP4 (B=1)

Unreplicated

Figure 4.12: Throughput as f increases

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

f=2 f=3 f=5 f=10

P
ea

k
T

hr
ou

gh
pu

t (
K

op
s/

se
c)

H
P

 (
B

=
1)

C
P

4
(B

=
1)

H
P

 (
B

=
20

)

C
P

4
(B

=
20

)

M
en

ci
us

 (
B

=
5,

 s
ca

le
d

fr
om

 [2
1]

)

H
P

 (
B

=
1)

C
P

4
(B

=
1)

H
P

 (
B

=
20

)

C
P

4
(B

=
20

)

M
en

ci
us

 (
B

=
5,

sc
al

ed
 fr

om
 [2

1]
)

H
P

 (
B

=
1)

C
P

4
(B

=
1)

H
P

 (
B

=
20

)

C
P

4
(B

=
20

)

H
P

 (
B

=
1)

C
P

4
(B

=
1)

H
P

 (
B

=
20

)

C
P

4
(B

=
20

)

4.6 Proof of Correctness

In this section we show that the HP algorithm depicted in Figures 4.13,
4.14, and 4.15 solves the generalized consensus problem previously defined in

74 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

k � 0, 1, 2, . . . /* round index */1

rnd, rMax integer, initially 0 /* round number */2

chist command history, initially K /* chosen history */3

ch, fh command histories /* results of pick history */4

pfh command history, initially K /* largest prefix of fh5

compatible with ch */

recover boolean, initially true /* current phase */6

1bSet set of messages, initially empty /* ‘‘1b’’ messages */7

leader boolean, initially false /* leader process */8

upon leader do9

leader Ð true10

1bSetÐH11

recover Ð true12

rndÐ k � n� l13

send x“1a”, rndy to all acceptors14

upon notLeader do15

leader Ð false16

upon receive x“1b”, rnd, vr, fh, chy from j do17

1bSetÐ 1bSet Y t(vr, fh, ch, j)u18

upon |1bSet| ¥ n� f ^ recover do19

rMax Ð Maxptr | pr, fh, ch, jq P 1bSetuq20

1bSetÐ tpvr, fh, ch, jq P 1bSet|vr � rMaxu21

chÐ pickClassicHistoryp1bSetq22

fhÐ pickFastHistoryp1bSetq23

pfhÐ
�
tpref � fh : pref compatible with chu24

chistÐ pfh\ ch25

send x“2aStart”, rnd, chisty to all acceptors26

recover Ð false27

upon receive x“nack”, ry : leader ^ r ¡ rnd do28

k Ð t rn u� 129

trigger leader30

upon receive x“propose”, cy from client cl : leader ^ recover do31

if c R chist then32

chistÐ chist
 c33

send x“2a”, rnd, c, cly to all acceptors34

send x“2b”, rnd, c, historyDigestpc, chistqy to client cl35

Figure 4.13: Algorithm of Leader l

Section 2.2.6. We do this by showing that HP satisfies Conservatism, Con-
sistency, Progress and Nontriviality. We first give some helpful definitions

4.6. PROOF OF CORRECTNESS 75

rnd integer, initially 0 /* round number, determines leader */1

fhist command history, initially K /* fast history */2

chist command history, initially K /* classic history */3

pfh command history, initially K /* largest prefix of fhist4

compatible with chist */

recover boolean, initially true /* accept proposals iff recover */5

upon receive x“1a”, ry : r ¡ rnd do6

send x“1b”, r, rnd, chist, fhisty to leader7

recover Ð true8

rndÐ r9

upon receive x�, r, �y : r rnd do10

send x“nack”, rndy to r(mod n)11

upon receive x“2aStart”, r, rhy : r ¥ rnd do12

rndÐ r13

fhistÐ chistÐ rh14

recover Ð false15

upon receive x“2a”, r, c, cly : r ¥ rnd do16

rndÐ r17

chistÐ chist
 c18

pfhÐ
�
tpref � fhist : pref compatible with chistu19

fhistÐ chist\ pfh20

send x“2b”, rnd, c, historyDigestpc, chistqy to client cl21

upon receive x“propose”, cy from client cl ^ recover do22

if c P chist then23

send x“2b”, rnd, c, historyDigestpc, chistqy to client cl24

if c R fhist then25

fhistÐ fhist
 c26

send x“2bFast”, rnd, c, historyDigestpc, fhistqy to client cl27

Figure 4.14: Algorithm of the Acceptors

and prove a set of auxiliary lemmas.

Definition 5 (Accepted in round r). A command history h is accepted
as classic history (respectively as fast history) in round r by acceptor j iff
chistj � h ^ rj � r ^ recoverj (respectively iff fhistj � h ^ rj �
r ^ recoverj). A command history h is accepted in round r iff h is accepted
as classic or fast history in round r by some acceptor.

76 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

lc command, initially K /* last command issued */1

2bSet set of pairs (int, digest), initially H /* ‘‘2b’’ msgs. */2

2bFastSet set of pairs (int, digest), init. H /* ‘‘2bFast’’ msgs. */3

ref byte array, initially null /* classic history digest used as4

reference */

pending boolean, initially false /* pending operations */5

rnd integer, initially 0 /* round determining curr. leader */6

upon receive xtype, r, c, hdy from j : type P t“2b”,“2bFast” u^7

r ¥ rnd^ c � lc^ pending do
if r ¡ rnd then8

rndÐ r9

2bFastSetÐ 2bSetÐH10

ref Ð null11

if type = “2b” then12

2bSetÐ 2bSetY tpj, hdqu13

if ref � null then14

ref Ð hd15

2bFastSetÐ 2bFastSetY tpj, hdqu16

2bFastSetÐ 2bFastSetztpi, hdq P 2bFastSet|hd � refu17

if (|2bFastSet| ¥ rn�f�1
2 s^ |2bSet| ¥ 1) _ (|2bSet| ¥ rn�1

2 s)18

then
learn(lc)19

2bFastSetÐ 2bSetÐH20

ref Ð null21

lcÐ K22

pending Ð false23

upon propose(c) ^ pending do24

pending Ð true25

lcÐ c26

while pending do27

send x“propose”, cy to all servers28

Figure 4.15: Algorithm of the Clients

chÐ
�
th|pvr, fh, h, jq P 1bSetu1

return ch2

Figure 4.16: Function pickClassicHistory(1bSet)

4.6. PROOF OF CORRECTNESS 77

CompÐ tph, jq|pvr, h, ch, jq P 1bSetu1

if Comp is incompatible then2

repeat3

CompÐ Compztph, iq, ph1, jq|i � j ^ h incompatible with h1u4

pÐ h[h15

CompÐ CompY tpp, iq, pp, jqu6

until Comp is compatible7

fhÐ
�
th|ph, jq P Compu8

return fh9

Figure 4.17: Function pickFastHistory(1bSet)

Definition 6 (Chosen in round r). A command history h is chosen in round
r iff h is accepted in round r

(Classic) as classic history by a quorum Q of rn�1
2
s acceptors

OR

(Fast) (1) as fast history by a quorum FQ of rn�f�1
2

s acceptors and (2) as
classic history by some acceptor.

Lemma 9. If any two classic histories h and h1 are accepted in round r,
then h and h1 are compatible.

Proof. By the FIFO property of the channels, if any two histories h and h1

are accepted in round r, then both are prefixes of the history proposed by
the leader of round r. Thus, h and h1 are compatible.

Lemma 10. If any two histories h and h1 are chosen in round r, then h and
h1 are compatible.

Proof. If h and h1 are chosen in round r, then by Definition 6, both are
accepted as classic histories in round r. By Lemma 9, h and h1 are compatible.

Lemma 11. If history h is chosen in round r and h is accepted by a quorum
Q, then for every acceptor j P Q holds: if j accepts h1 at any later time in
round r, then h1 is an extension of h.

78 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

Proof. We treat the two cases when h is accepted as classic history (case A)
and h is accepted as fast history (case B) separately.

Case A: Note that the classic history accepted by any acceptor j in round
r is a prefix of the history accepted by j at any later time in r (Fig. 4.14,
line 18). This also applies to classic histories that are chosen.

Case B: According to Definition 6, if h is chosen, then h is the prefix of
some classic history accepted in round r. By Lemma 9, it follows that h is
compatible with every classic history accepted in round r. Hence, for every
j P Q, it holds that h � fhistj and h is compatible with chistj. Therefore,�
tpref � fhistj : pref is compatible with chistju is an extension of h.

Thus, once h is chosen, fhistj is updated only with extensions of h (Fig.
4.14, lines 14, 20, 26).

Lemma 12. If h is chosen in round r and h1 is accepted in round r1 ¡ r
then h1 is an extension of h.

Proof. We show the lemma by induction on round number k, where r
k ¤ r1. For any k, let g be the history accepted by any acceptor in round
k. Note that g is necessarily an extension of the history rh contained in
the “2aStart” messages of round k. This is true because in round k (a)
any acceptor j accepts client requests only after fhistj and chistj have been
initialized with rh (Fig. 4.14, line 14) and (b) rh � chistj ^ rh � fhistj is
invariant (Fig. 4.14, lines 18-20). Therefore, it is sufficient to show that rh,
i.e., the history picked by the leader of round k is an extension of h.

Base step: let k be the lowest round number k ¡ r in which some acceptor
accepts a history. We show that if h is chosen in round r, then the history
picked by the leader of round k is an extension of h. We distinguish the cases
when h is chosen (Case A) as classic history or (Case B) as fast history.

Case A implies that a quorum Q of rn�1
2
s acceptors have accepted h. Let

Q1 be the set of n � f acceptors from which the leader of round k receives
“1b” messages and let R � Q1 be the subset of all acceptors that have voted
in round r. By the definition of R and the quorum intersection property,
QXQ1 � R � H. By Lemma 11, some acceptor in R reports an extension of
h and by Lemma 9, all classic histories reported by acceptors in R are com-
patible. Therefore, pickClassicHistory (Fig. 4.16) returns an extension of
h. Finally, the recovered history is also an extension of h (Fig. 4.13, line 25).

Case B implies that a quorum FQ of rn�f�1
2

s acceptors has accepted h
as fast history and h is the prefix of some accepted classic history. Let Q1

be the set of n� f acceptors from which the leader of round k receives “1b”
messages. Further let R � Q1 be the set of acceptors that have voted in r

4.6. PROOF OF CORRECTNESS 79

and let M � R denote the set of acceptors that have accepted h in r. By
Lemma 11, all acceptors in M report extensions of h. By the intersection
property of FQ and Q1, |M | ¡ |RzM |. Let Comp denote the set of fast
histories reported by the acceptors in R. It is not difficult to see hat after
lines 3—7 in Fig. 4.17 are executed, Comp contains (a) only compatible
histories and (b) some history in Comp is an extension of h. The latter is
true because a majority of histories contained in Comp are extensions of h.
Therefore, fh, the history returned by pickFastHistory (Fig. 4.17) is an
extension of h. It remains to show that the recovered history is an extension
of h. Recall that the assumption that h is chosen implies that h is the
prefix of some accepted classic history. By Lemma 9, h is compatible with
every classic history and hence with ch, returned by pickClassicHistory.
Thus, the recovered history

�
tpref � fhp : pref compatible with chu is an

extension of h.
Induction step: we show that the Lemma is true for k � r1 under the

assumption that it holds for all r k r1. Recall that it is sufficient
to show that the history picked by the leader of round r1 is an extension
of h. Let Q1 be the quorum of n � f acceptors from which the leader of
round r1 collects “1b” messages. Further, let R � Q1 denote the subset of
acceptors that have voted in round rMax (Fig. 4.13, line 20). Note that by
the quorum intersection property, rMax ¥ r. The case rMax � r is covered by
the proof of the base step. Therefore, we only show the case rMax ¡ r. The
induction hypothesis implies that every acceptor in R has accepted in round
rMax an extension of h as classic history. Since classic histories never shrink
throughout a round, all histories reported by acceptors in R are extension of
h. Further, by Lemma 9, they are compatible histories. Hence, the history
picked by the leader of round r1 is an extension h.

Lemma 13 (Consistency). If any two histories h and h1 are chosen, then h
and h1 are compatible.

Proof. We assume without loss of generality that h is chosen in round r and
h1 is chosen in round r1 ¥ r. If r � r1, then by Lemma 10, h and h1 are
compatible. Else if r1 ¡ r, by Lemma 12 h1 is an extension of h, and thus h
and h1 obviously are compatible.

Lemma 14 (Progress). If a command c is proposed by a non-faulty client
cl, then cl eventually learns a command history containing c.

80 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

Proof. By the property of Ω, exactly one non-faulty leader ld is eventually
elected forever. By the construction of Phase 1 (Fig. 4.13, line 28-30), ld
eventually starts a round with a number that is greater than any other round
number. Therefore, ld and a quorum Q of rn�1

2
s correct acceptors eventually

join the highest round ever. We assume by contradiction that cl never learns
a history containing c. This implies that cl keeps on resending c to all
replicas forever. Thus, ld eventually sends a “2a” message containing c to
all acceptors unless it has already did so. In any case, every acceptor in Q
eventually accepts a classic history containing c. From this point on, every
acceptor in Q that receives a “propose” message from cl sends a “2b” message
to cl (Fig. 4.14, line 24). Thus, cl eventually collects identical “2b” messages
from rn�1

2
s acceptors (Fig. 4.15, line 18) voting for histories that contain c.

Hence, cl stops resending command c, a contradiction.

Lemma 15. If h and h1 are classic histories accepted in some round r and
both h and h1 contain c, then h[h1 contains c.

Proof. By Lemma 9, h and h1 are compatible histories. By axiom CS4 for
command structures [Lam05] (here called histories), the greatest lower bound
h[h1 also contains c.

Lemma 16. If two command histories h and h1 both contain command c
and historyDigest(c, h) = historyDigest(c, h1), then h[h1 contains c.

Proof. Let H be any function with the following property: for any two val-
ues x and y it holds that Hpxq � Hpyq if and only if x � y. Function
historyDigest(c, h) returns a value Hpspq, where sp is defined as the small-
est prefix of h containing c. Let sp1 be the smallest prefix of h1 containing c
and Hpsp1q � historyDigest(c, h1). Given that Hpspq and Hpsp1q are equal,
by the property of H we have that sp � sp1. Since sp contains c and sp is a
prefix of h[h1, we conclude that c is also contained in h[h1.

Lemma 17 (Conservatism). If a client learns a command history h, then h
is chosen.

Proof. Command history h is learned in line 19, Fig. 4.15.
Case 1 (learning): a quorum Q of rn�1

2
s acceptors j have accepted classic

history hj containing command c, where c is the last command issued by the

4.7. SUMMARY OF THE RESULTS 81

client. By Definition 11,
�
thj|j P Qu, the greatest common classic history

accepted by every acceptor in Q, is chosen. We only have to show that the
learned history h is a prefix of

�
thj|j P Qu. By Lemma 15,

�
thj|j P Qu

also contains command c. Since h is a prefix of any classic history containing
c, and

�
thj|j P Qu is an extension of some classic history containing c,�

thj|j P Qu is also an extension of h.
Case 2 (fast learning): a quorum FQ of rn�f�1

2
s acceptors j have replied

with history digest hdj � historyDigest(c, hj), where c is the last command
issued by the client and hj is the history accepted by j. Additionally, some
hj is a classic history. By Definition 11,

�
thj|j P FQu, the greatest common

history accepted by every acceptor in FQ, is chosen. Therefore, it is sufficient
to show that the learned history h is a prefix of

�
thj|j P FQu. Note that c

is contained in hj, otherwise j does not respond. Furthermore, for any two
acceptors i and j it holds that hdi � hdj. Hence, by Lemma 16,

�
thj|j P

FQu contains command c. Since h is a prefix of any classic history containing
c, and

�
thj|j P FQu is an extension of some classic history,

�
thj|j P FQu

is also an extension of h.

Lemma 18 (Nontriviality). Every chosen command is proposed by some
client.

Proof. Every chosen command is proposed by some client because no faulty
acceptor can undetectably corrupt commands.

Theorem 2. Algorithm Hybrid Paxos in Figure 4.13, 4.14, and 4.15 solves
generalized consensus on command histories.

Proof. The theorem follows directly from Lemma 13, 14, 17 and 18.

4.7 Summary of the Results

We have described Hybrid Paxos, a generalized consensus implementation
featuring minimal latency and competitive peak throughput in most situ-
ations. The core idea of HP is to add fast learning to CP. HP is to our
knowledge the first generalized consensus protocol that attains the optimal
latency of two message delays in the absence of collisions, and three message
delays in the common case. Moreover, HP exhibits optimal resilience and
optimal messages. We have shown that generalized consensus is a practi-
cal approach to replication in WANs. Our experimental results demonstrate
that HP outperforms state of the art protocols.

82 CHAPTER 4. GENERALIZED CONSENSUS AND HYBRID PAXOS

Chapter 5

Robust Amnesic Storage

In this chapter we consider robust implementations of regular read/write
storage using a collection of 3t� k base objects, t of which can be subject to
Byzantine failures. We focus on amnesic algorithms that store only a limited
number of values in the base objects. In contrast, non-amnesic algorithms
store an unbounded number of values, ultimately leading to space exhaus-
tion. Lower bounds on the time complexity of read and write operations are
currently met only by non-amnesic algorithms.

We show for the first time that amnesic algorithms can also meet these
lower bounds. We do this by giving two amnesic constructions: for k = 1,
we show that the lower bound of two communication rounds is also sufficient
for every read operation to complete, and for k � t � 1 we show that one
round is sufficient for every operation to complete. Thus, our contributions
answer in the affirmative questions Q3.1 and Q3.2 raised in Section 1.2.2.

5.1 Introduction

Motivated by recent advances in the Storage Area Network (SAN) technol-
ogy, and driven by the availability of cheap commodity disks, distributed
storage has become a popular method to provide increased storage space,
high availability and disaster tolerance.

We address the problem of efficiently implementing a reliable read/write
distributed storage service from unreliable storage units (e.g. disks), a thresh-
old of which might fail in a malicious manner. Fault-tolerant access to repli-
cated remote data can easily become a performance bottleneck, especially for
data-centric applications usually requiring frequent data access. Therefore,
minimizing the time complexity of read and write operations is essential. In
this chapter, we show how optimal time complexity can be achieved using

83

84 CHAPTER 5. ROBUST AMNESIC STORAGE

algorithms that are also space-efficient.
Much recent publications, and this work as well, focuses on regular regis-

ters where read operations never return outdated values. A regular register
is deemed to return the last value written before the read was invoked, or one
written concurrently with the read (see Section 2.3 for a formal definition).
Regular registers are attractive because even under concurrency, they never
return spurious values as sometimes done by the weaker class of safe registers
(Section 2.3). Furthermore, they can be used, for instance, together with a
failure detector to implement consensus [ACKM06].

The abstraction of a reliable storage is typically built by replicating the
data over multiple unreliable distributed storage units called base objects.
These can range from simple (low-level) read/write registers to more powerful
base objects like active disks [CM05] that can perform some more sophisti-
cated operations (e.g. an atomic read-modify-write). Taken to the extreme,
base objects can also be implemented by full-fledged servers that execute
more complex protocols and actively push data [MAD02].

We consider Byzantine-fault tolerant register constructions where a
threshold t n{3 of the base objects can fail by being non-responsive or
by returning arbitrary values (i.e., NR-arbitrary [JCT98]), without assuming
data authentication to limit the adversary.

Furthermore, we consider wait-free implementations where concurrent ac-
cess to the base objects and client failures must not hamper the liveness of the
algorithm. Wait-freedom is the strongest possible liveness property, stating
that each client completes its operations independent of the progress and ac-
tivity of other clients [Her91]. As already discussed in Section 2.3, algorithms
that wait-free implement a regular register from Byzantine components are
termed robust [CGK07].

An implementation of a reliable register requires the (client) processes
accessing the register via a high-level operation to invoke multiple low-level
operations on the base objects. In a distributed setting, each invocation of
a low-level operation results in one round of communication from the client
to the base object and back. The number of rounds needed to complete
the high-level operation is used as a measure for the time complexity of the
algorithm.

Robust algorithms that store only a limited number of written values in
the base objects are desirable, yet difficult to design. Algorithms that satisfy
this property are called amnesic [CGK07]. With amnesic algorithms, values
previously stored are not permanently kept in storage but are eventually
erased by a sequence of values written after them. Amnesic algorithms thus
effectively eliminate the problem of space exhaustion raised by non-amnesic
algorithms, which take the approach of storing the entire version history.

5.1. INTRODUCTION 85

Therefore, the amnesic property captures an important aspect of the space
requirements of a distributed storage implementation.

5.1.1 Previous and Related Work

Despite the importance of amnesic and robust distributed storage, most
implementations to date are either not robust or not amnesic. While
some relax wait-freedom and provide weaker termination guarantees in-
stead [ACKM06, HGR07], others relax consistency and implement only
the weaker safe semantics [JCT98, MR98, ACKM06, GV06]. Generally,
when it comes to robustly accessing (unauthenticated) data, most algorithms
store an unlimited number of values in the base objects [GWGR04, GV06,
GV07]. Also in systems where base objects push messages to subscribed
clients [MAD02, BD04, AAB07], the servers store every update until the
corresponding message has been received by every non-faulty subscriber.
Therefore, when the system is asynchronous, the servers might store an un-
bounded number of updates. A different approach is to assume a stronger
model where data is self-verifying [MR98, CT06, LR06], typically based on
digital signatures.

The existing robust and amnesic storage algorithms [GLV06, ACKM07]
do not achieve the same time complexity as non-amnesic ones. Time com-
plexity lower bounds have shown that protocols using the optimal number of
3t� 1 base objects [MAD02] require at least two rounds to implement both
read/write operations [GV06, ACKM06]. So far these bounds are met only
by non-amnesic algorithms [GV07]. In fact, the only robust and amnesic
algorithm with optimal resilience [GLV06] requires an unbounded number of
read rounds in the worst case. For the 4t� 1 case, the trivial lower bound of
one round for both operations is not reached by the only other existing am-
nesic implementation [ACKM07] that albeit elegant, requires at least three
rounds for reading and two for writing.

5.1.2 Contributions

Current state of the art leaves the following question open: Do robust am-
nesic algorithms inherently have a non-optimal time complexity? The thesis
addresses this question and shows, for the first time, that amnesic algorithms
can achieve optimal time complexity in both the 3t�1 and 4t�1 cases. Jus-
tified by the impossibility of robust and amnesic register constructions when
readers do not write [CGK07], one of the key principles shared by our algo-
rithms is having the readers change the base objects’ state. The developed

86 CHAPTER 5. ROBUST AMNESIC STORAGE

algorithms are based on a novel concurrency detection mechanism and a help-
ing procedure, by which a writer detects overlapping reads and helps them
to complete. Specifically, we make the following two main contributions:

• A first algorithm, termed DMS, which uses 4t�1 base objects, described
in Section 5.3. With DMS, every (high-level) read and write operation
is fast, i.e., it completes after only one round of communication with the
base objects. This is the first robust and amnesic register construction
(for unauthenticated data) with optimal time complexity.

• A second algorithm, termed DMS3, which uses the optimal number
of 3t � 1 base objects, presented in Section 5.4. With DMS3, every
(high-level) read operation completes after only two rounds, while write
operations complete after three rounds. This is the first amnesic and ro-
bust register construction (for unauthenticated data) with optimal read
complexity. Note also that, compared to the optimal write complexity,
it needs only one additional communication round.

Table 5.1 below summarizes our contributions and compares DMS and DMS3
with recent distributed storage solutions for unauthenticated data.

Table 5.1: Distributed storage for unauthenticated data
Worst-Case Time complexity

Protocol Resilience Read Write Amnesic Robust

[ACKM07] 4t� 1 3 2
` `

DMS 4t� 1 1 1
` `

[GV06] 3t� 1 2 2 �
`

[ACKM06] 3t� 1 t� 1 2
`

�
[GLV06] 3t� 1 unbounded 3

` `

DMS3 3t� 1 2 3
` `

5.2 Model and Preliminaries

5.2.1 Shared Memory Model

In this chapter we assume an asynchronous shared memory model consisting
of a collection of processes interacting with a finite collection of n base ob-
jects. Up to t out of n base objects can suffer NR-arbitrary failures [JCT98]
and any number of processes may fail by crashing. Each object implements

5.2. MODEL AND PRELIMINARIES 87

one or more registers. A register is an object type with value domains Val,
an initial value v0 and two invocations: read, whose response is v P Vals and
write(v), v P Vals, whose response is ack.

A read/write register is single-reader single-writer (SRSW) if only one
process can read it and only one can write to it; a register is multi-reader
single-writer (MRSW) if multiple processes can read it.

Sometimes processes need to perform two consecutive operations on the
same base object, a write (of a register) followed by a read (of a different
register). To minimize the number of rounds needed, we collapse consecutive
write/read operations accessing the same base object to a single low-level
operation called write&read. The write&read operation can be implemented
in a single round, for instance relying on base objects with read-modify-write
capabilities [CM05]1.

5.2.2 Preliminaries

In order to distinguish between the target register’s interface and that of the
base registers, throughout this chapter we denote the high-level read (resp.
write) operation as read (resp. write). Each of the developed protocols
uses an underlying layer that invokes operations on different base objects
in separate threads in parallel. We use the notation from [ACKM06] and
write invoke write(Xi,v) (resp. invoke xris Ð readpXiq) to denote that a
write(v) operation on register Xi (resp. a read of register Xi whose response
will be stored in a local variable xris) is invoked in a separate thread by
the underlying layer. The notation invoke xris Ð write&readpxYi, vy, Xiq
denotes the invocation of an operation write&read on base object i, consisting
of a write(v) on register Yi followed by a read of register Xi (whose response
will be stored in xris).

As base objects may be non-responsive, high-level operations can return
while there are still pending invocations to the base objects. The underlying
layer keeps track of which invocations are pending to ensure well-formedness,
i.e., that a process does not invoke an operation on a base object while
invocations of the same process and on the same base object are pending.
Instead, the operation is denoted enabled. If an operation is enabled when a
pending one responds, the response is discarded and the enabled operation
is invoked. See e.g. [ACKM06] for a detailed implementation of such layers.

In order to better convey the insight behind the protocols, we simplify the
presentation in two ways. We introduce a shared object termed safe counter

1Note that since write&read is not an atomic operation, it can be implemented from
simple read/write registers.

88 CHAPTER 5. ROBUST AMNESIC STORAGE

and describe both algorithms in terms of this abstraction. Although easy to
follow, the resulting implementations require more rounds than the optimal
number. Thus, for each of the protocols we explain how with small changes
these rather didactic versions can be “condensed” to achieve the announced
time complexity. Secondly, for presentation simplicity we implement a SRSW
register. Conceptually, a MRSW register for m readers can be constructed
using m copies of this register, one for each reader. In a distributed stor-
age setting, the writer accesses all m copies in parallel, whereas the reader
accesses a single copy. It is worth noting that this approach is heavy and
that in practice, cheaper solutions are needed to reduce the communication
complexity and the amount of memory needed in the base objects.

We now introduce the safe counter abstraction used in our algorithms.
A safe counter has two wait-free operations inc and get. inc modifies the
counter by incrementing its value (initially 0) and returns the new value.
Specifically, the kth inc operation denoted inck returns k. get returns the
current value of the counter without modifying it.

The counter provides the following guarantees:

Validity: If get returns k then get does not precede inck.

Safety: If inck precedes get and for all l ¡ k get precedes incl, then get
returns k.

Note that under concurrency, a safe counter might return an outdated
value, but never a forged value. In the absence of concurrency, the newest
value is returned.

We now explain the intuition behind our algorithms. Both algorithms use
the safe counter introduced above to arbitrate between writer and reader.
During each read (resp. write) operation, the reader (resp. writer) exe-
cutes inc to advance the counter (resp. get to read the counter). The values
returned by the counter’s operations are termed views. By incrementing its
current view, a read announces its intent to read from the base objects. A
subsequent invocation of get by the writer returns the updated view. When
the writer detects a concurrent read, indicated by a view change, it freezes
the most recent value previously written. Freezing a value v means that v
may be overwritten only if the read operation that attempts to read v has
completed.

We note that the read operation that caused a value v to be frozen does
not violate regularity by returning v because all newer values were written
concurrently with the read. However, reads must not return old values
previously frozen. This is necessary to ensure regularity and it is done by

5.3. FAST ROBUST AND AMNESIC STORAGE 89

freezing a value v together with the view of the read due to which v is
frozen. A read whose view is higher than the one associated with v knows
that it must pick a newer value. A read operation completes when it finds
a value v to return such that (a) v is reported by a correct base object and
(b) v is not older than the latest value written before the read is invoked.

5.3 Fast Robust and Amnesic Storage

We start by describing an initial version of protocol DMS that uses the safe
counter abstraction. It is worth noting that the algorithm requires more
rounds than the optimum, but it conveys the main idea. Next, we explain the
changes applied to DMS to obtain an algorithm with optimal time complexity.

5.3.1 Protocol Description

We present a robust and amnesic SRSW register construction using a safe
counter and 4t�1 regular base registers, out of which t can incur NR-arbitrary
failures. Figure 5.1 illustrates a simple construction of the safe counter used.
The description of the counter is omitted for the sake of brevity. The shared
objects used by DMS are detailed in Figure 5.2 and the algorithm appears
in Figure 5.3.

Predicates:
safe(c) �
|ti : c1 P yris ^ c1 ¥ cu| ¥ t� 1

Local variables:
yr1 . . . ns P Integers
k P Integers, initially 0

get()
for 1 ¤ i ¤ n do yris Ð K
for 1 ¤ i ¤ n do

invoke yris Ð read(Yi)
wait for n� t responses
return maxtc P Integers : safepcqu

inc()
k Ð k � 1
for 1 ¤ i ¤ n do

invoke write(Yi, k)
wait for n� t responses
return k

Figure 5.1: Safe counter from 4t� 1 safe registers Yi P Integers.

The write performs in two phases, (1) a write phase where it first writes
a timestamp-value pair to n � t registers and (2) a subsequent read phase,
where it executes get to read the current view. In case a view change occurs
between two successive writes, the value of the first write is frozen. Recall
that once frozen, a value is not erased before the next view change. Similarly,
the read consists of (1) a write phase, where it first executes inc to increment

90 CHAPTER 5. ROBUST AMNESIC STORAGE

the current view and (2) a subsequent read phase, where it reads at least n�t
registers. To ensure that read never returns a corrupted value, the returned
value must be read from t�1 registers, a condition captured by the predicate
safe. Moreover, to ensure regularity, read must not return old values written
before the last write preceding the read. This condition is captured by
the predicate highestCand.

We now give a more detailed description of the algorithm. As depicted
in Figure 5.2, each base register consists of three value fields current, prev
and frozen holding timestamp-value pairs, and an integer field view. The
writer holds a variable x of the same type and uses x to overwrite the base
registers. Each write operation saves the timestamp-value pair previously
written in x.prev. Then, it chooses an increasing timestamp, stores the value
together with the timestamp in x.curr and overwrites n � t registers with
x. Subsequently, the writer executes get. If the view returned by get is
higher than the current view (indicating a concurrent read), then x.view
is updated and the most recent value previously written is frozen, i.e., the
content of x.prev is stored in x.frozen (line 14, Figure 5.3). Finally, write
returns ack and completes. It is important to note that the algorithm is
amnesic because each correct base object stores at most three values (curr,
prev and frozen).

The read first executes inc to increment the current view, and then it
reads at least n � t registers into the array xr1...ns, where element i stores
the content of register Xi. If necessary, it waits for additional responses until
there is a candidate for returning, i.e., a read timestamp-value pair that sat-
isfies both predicates safe and highestCand. A timestamp-value pair c is safe
when it appears in some field curr, prev or frozen of t�1 elements of x, ensur-
ing that c was reported by at least one correct register. Enforcing regularity
is more subtle. Simply waiting until the highest timestamped value read
becomes safe might violate liveness because it may be reported by a faulty
register. To solve this problem, we introduce the predicate highestCand. A
value c is highestCand when 2t�1 base registers report values that were writ-
ten not after c, which implies that newer values are missing from t�1 correct
registers. As any complete write skips at most t correct registers, all values
newer than c were written not before read is invoked and consequently, they
can be discarded from the set of possible return candidates.

We now explain with help of Figure 5.4 why reads are wait-free. We
consider the critical situation when multiple writes are concurrent with a
read. Specifically, we consider the kth read (henceforth readk), whose
inc results in k (henceforth inck), and the last write that still reads a
view lower than k, i.e., the corresponding get returns a view lower than
k. Note that by the safety property of the counter, inck does not precede

5.3. FAST ROBUST AND AMNESIC STORAGE 91

Types:
TSVals � Integers � Vals, with selectors ts and val

Shared objects:
- regular registers Xi P TSVals3 � Integers with selectors curr,
prev, frozen and view, initially xx0, v0y, x0, v0y, x0, v0y, 0y
- safe counter object Y P Integers, initially Y � 0

Figure 5.2: Shared objects used by DMS.

get and thus c is stored in 2t � 1 correct registers before any of them is
read. A key aspect of the algorithm is to ensure that no matter how many
writes are subsequently invoked, c never disappears from all fields of those
2t � 1 correct registers, as long as readk is still in progress. Essentially
this holds because the subsequent write re-writes c to all registers and it
also freezes c to ensure that future writes do the same. In this process,
c migrates from curr to prev and from prev to frozen where it stays until
the next view change. Therefore, c eventually becomes safe. But what if c
is not highestCand? In this situation, at least t � 1 correct registers report
timestamp-value pairs higher than c. We note that if any of them had stored
c in its frozen field, then it would report c. This implies that none of these
registers has stored c in its frozen field and thus, also none of these registers
has stored a timestamp-value pair higher than ch in its curr field. Therefore,
ch is reported by t � 1 correct registers, and hence it is safe. Note that ch
is also highestCand because only faulty registers report values with higher
timestamps.

We now explain how the fast algorithm is derived from DMS. The principle
underlying the optimization is to condense one round of write to the base
objects and a subsequent round of read of the base objects into a single round
of write&read. For this purpose we disregard the safe counter abstraction
and directly weave inc and get (Fig. 5.1) into read and write (Fig. 5.3)
respectively. As a result, the reader advances the view and reads the base
registers in one round. Likewise, the writer stores a value in the base registers
and reads the view in a single round. The reader code (Fig. 5.3) is modified
as follows: variable view is incremented locally, and line 3 is replaced with
the statement for 1 ¤ i ¤ n do invoke xris Ð write&readpxYi, viewy, Xiq.
Similarly, in the writer code (Fig. 5.3), line 9 is replaced with the statement
for 1 ¤ i ¤ n do invoke yris Ð write&readpxXi, xy, Yiq. Additionally in
line 11, instead of executing get, the writer picks the pt � 1qth highest
element of y.

92 CHAPTER 5. ROBUST AMNESIC STORAGE

Predicates (reader):
readFrom(c, i) � pc � xris.curr ^ xris.view viewq _
pc � xris.frozen^ xris.view � viewq
safe(c) � |ti : c P txris.curr, xris.prev, xris.frozenuu| ¥ t� 1
highestCand(c) � |ti : readFrompc1, iq ^ c1.ts ¤ c.tsu| ¥ 2t� 1

Local variables (reader):
view P Integers, initially 0
xr1 . . . ns P TSVals3 � Integers

read()
for 1 ¤ i ¤ n do xris Ð K1

view Ð incpY q2

for 1 ¤ i ¤ n do invoke xris Ð read(Xi)3

wait until n� t responded ^ Dc P TSVals: safe(c) ^4

highestCand(c)
return c.val5

Local variables (writer):
newView, ts P Integers, initially 0
x P TSVals3 � Integers, initially xx0, v0y, x0, v0y, x0, v0y, 0y

write(v)
ts Ð ts�16

x.prevÐ x.curr7

x.currÐ xts, vy8

for 1 ¤ i ¤ n do invoke write(Xi, x)9

wait for n� t responses10

newView Ð get(Y)11

if newView ¡ x.view then12

x.view Ð newView13

x.frozenÐ x.prev14

return ack15

Figure 5.3: Robust and amnesic storage algorithm DMS (4t� 1)

We now informally argue that the optimization is correctness preserving.
As in the above example, we consider readk and the last write that reads
a view lower than k. Recall that the write operation stores c in 2t � 1
correct base objects and each of them responds with the current view it has
stored. The writer then picks the pt� 1qth highest view reported. We argue
that t � 1 correct base objects have stored c before any of them respond to
readk. This would imply that c is safe. As the write operation reads a

5.3. FAST ROBUST AND AMNESIC STORAGE 93

wr

write(∗)write(ch.val)write(c.val)

get
k

wr

∗, ∗, c
k

get
k

wr: write(x) to n− t registers Xi

rd: read at least n− t registers Xi

rdinck

wr wr getget
< k k

. . .

readk

. . .

. . .Wr

Rd

c, ∗, ∗
< k

ch, c, ∗
< k

. . .

x =

{
curr, prev, frozen

view

x =
{ ∗, ch, c

k

Figure 5.4: Correctness argument of the read implementation in DMS

view lower than k, out of the 2t � 1 correct base objects accessed by it, at
most t report k. Thus, the remaining t � 1 objects are accessed by readk

only after c was written to them. Applying the above arguments, it is not
difficult to see that c is never erased from t�1 correct registers before readk

completes, and thus it eventually becomes safe. Regarding regularity, again,
arguments similar to above can be used. A formal proof of the optimized
algorithm can be found in Appendix 5.5.

The remainder of this section is concerned with the correctness of DMS.

5.3.2 Protocol Correctness

Lemma 19 (Regularity). Algorithm DMS in Figure 5.3 implements a regular
register.

Proof. We show that the read operation always returns the value of the
latest write preceding the read, or a newer written value. Suppose that
c.val is the value returned by readk. We assume by contradiction that
there exists a value ch.val such that ch.ts ¡ c.ts and write(ch.val) precedes
readk. As write(ch.val) is complete, n�2t correct registers have stored ch
or a higher timestamp-value pair before any of them is read. The fact that
c.val is returned implies that c is highestCand. Thus, there are at least 2t� 1
registers Xi and values c1 with timestamp c1.ts ¤ c.ts such that readFrom(c1,i)
is true. Note that one of them is a correct register Xi updated with ch. As
values are written with monotonically increasing timestamps, by definition of
readFrom, necessarily c1 is read from xris.frozen and xris.view � k. However,
because the counter is valid, the first time a write operation reads view k is

94 CHAPTER 5. ROBUST AMNESIC STORAGE

only after the write of ch.val. Thus, in view k only timestamp-value pairs
ch or higher are frozen, a contradiction.

Lemma 20 (Wait-freedom). Algorithm DMS in Figure 5.3 implements wait-
free read and write operations.

Proof. The write operation is nonblocking because it never waits for more
than n � t responses. Showing that reads are also live is more subtle. To
derive a contradiction, we assume that readk blocks at line 4 and show that
there exists a candidate for returning. We consider the time after which
all correct base objects (at least 3t � 1) have responded. We choose c as
the 2t � 1st lowest timestamp-value pair readFrom a correct register. Note
that c is highestCand by construction because values with timestamps ¤ c.ts
are readFrom 2t � 1 correct registers (set L). Also, we note that values
with timestamps ¥ c.ts are readFrom t � 1 correct registers (set R). In the
following, we distinguish the cases where the write of c.val reads a view
equal to k (case 1), or lower than k (case 2). Note that by the validity of the
counter, only views ¤ k are returned.

Case 1 implies that (a) only timestamp-value pairs lower than c are frozen,
and (b) c is the highest timestamp-value pair readFrom the curr field of a
correct register. Together (a) and (b) imply that c is the highest timestamp-
value pair readFrom a correct register. Thus, for all registers Xi P R (¥ t�1),
readFrom(c1,i) implies that c1 � c and hence, c is safe. We now consider case 2
where write(c.val) reads a view lower than k. This implies that c or a higher
timestamp-value pair is frozen in view k. If t� 1 registers in L were updated
with c before they are read, then they would report c either from their curr
or their frozen field, and clearly c would be safe. Therefore, c is missing
from t � 1 correct registers. Thus, write(c.val)’s write phase (lines 9–10)
does not precede readk’s read phase (lines 3–4). By the transitivity of the
precedence relation, inck (line 2) precedes get (line 11). By the safety of
the counter, write(c.val) reads view k, a contradiction.

Theorem 3 (Robustness). The algorithm in Figure 5.3 wait-free implements
a regular register.

Proof. Immediately follows from Lemma 19 and 20.

5.4 An Optimally Resilient Algorithm

Similar to the previous section, we describe an initial version of DMS3 that
uses a safe counter. The algorithm requires more rounds than the optimum
but it is easier to understand because most of its complexity is hidden in

5.4. AN OPTIMALLY RESILIENT ALGORITHM 95

the counter implementation. Then, we overview the changes necessary to
obtain the optimal algorithm. The full details of the optimized DMS3 such
as the pseudocode and proofs can be found in Section 5.6. We proceed in a
bottom-up fashion and describe the counter implementation first.

5.4.1 A Safe Counter with Optimal Resilience

We present a safe counter with operations inc and get using 3t � 1 base
objects i P t1 . . . nu, where t base objects can be subject to NR-arbitrary
failures. The types and shared objects used by the counter are depicted
in Figure 5.5 and the algorithm appears in Figure 5.6. Each base object i
implements two regular registers: a register Ti holding a timestamp written
by get and read by inc, and a second register Yi consisting of two fields
pw and w, modified by inc and read by get. While the pw field stores
only the counter value, the w field stores the counter value together with
a high-resolution timestamp [CGKV09]. A high-resolution timestamp is a
timestamp-array with n entries, one for each base object.

Additional Types:
TSs � Integers array of size n, Integers[n]
TSsInt � TSs � Integers with selectors hrts (high-resolution
timestamp) and cnt

Shared objects:
- regular registers Yi P Integers � TSsInt with selectors pw and
w, initially Yi � x0, xr0, . . . , 0s, 0yy
- regular registers Ti P Integers, initially 0

Figure 5.5: Shared objects used by the safe counter (3t� 1)

The get operation performs in two phases. The first phase reads from
the base objects until n � t registers Yi have responded and all responses
are non-conflicting. This condition is captured by the predicate conflict.
When two base objects i and j are in conflict, then at least one of them is
malicious. In this situation, the get operation can wait for more than n� t
responses without blocking, effectively filtering out responses from malicious
base objects. Next, the get operation uses the responses to build a candidate
set from values appearing in the w field of Yi. In the second phase, the get
operation chooses an increasing timestamp ts and overwrites n�t registers Ti
with ts; at the same time it re-reads the registers Yi until n� t of them have
responded and there exists a candidate to return. This condition is captured

96 CHAPTER 5. ROBUST AMNESIC STORAGE

by the predicates safe and highCand. If no candidate can be returned (because
of overlapping inc operations), get returns the initial counter value 0.

Similarly, the inc operation performs in two phases, a pre-write and a
write phase. The pre-write phase accesses n � t base objects i, overwriting
the pw field of Yi with an increasing counter value and reading the individual
timestamps stored in Ti into a single high-resolution timestamp. Subse-
quently, in the write phase, inc stores the counter value together with the
high-resolution timestamp in the w field of n� t registers Yi and returns.

We now show that the algorithm in Figure 5.6 wait-free implements a
safe counter. We do this by showing that the two following properties are
satisfied:

Validity: If get returns k then get does not precede inck.

Safety: If inck precedes get and for all l ¡ k get precedes incl, then get
returns k.

Lemma 21 (Validity). The counter object implemented in Figure 5.6 is valid.

Proof. If the initial value is returned then we are done. Else only a value
c.cnt � k is returned such that c is safe. This implies that t� 1 base objects
report values k or higher either from their pw or w fields. As not all of them
are faulty, there exists a correct object Yi and a value l ¥ k such that l was
indeed written to Yi. As inck precedes incl (or it is the same operation) and
get does not precede incl, it follows that get does not precede inck.

Lemma 22 (Safety). The counter object implemented in Figure 5.6 is safe.

Proof. Let inck be the last operation preceding the invocation of get. Fur-
thermore, for all l ¡ k, get precedes incl. By assumption, c.cnt � k was
written to the w field of t�1 correct objects before get is invoked. Therefore,
c is added to the candidate set C (line 16) and because at most 2t objects
respond without c, it is never removed. Furthermore, t � 1 correct objects
eventually report c in the second get round and c becomes safe. As there
are no concurrent inc operations, eventually 2t � 1 correct objects report
values k or lower from their w field and hence all ch where ch.cnt ¡ k are
removed from C. Thus, c eventually becomes both safe and highCand and
c.cnt � k is returned.

Lemma 23 (Wait-freedom). The counter object implemented in Figure 5.6
is wait-free.

5.4. AN OPTIMALLY RESILIENT ALGORITHM 97

Local variables (inc):
y P Integers � TSsInt, initially x0, xr0, . . . , 0s, 0yy
cnt P Integers, initially 0 //counter value
hrtsr1 . . . ns P Integers, initially r0, . . . , 0s //high-res timestamp

inc()
cntÐ cnt� 11

y.pwÐ cnt2

for 1 ¤ i ¤ n do invoke hrtsris Ð write&readpxYi, yy, Ti)3

wait for n� t responses4

y.w.hrtsÐ hrts5

y.w.cntÐ cnt6

for 1 ¤ i ¤ n do invoke writepYi, yq7

wait for n� t responses8

return ack9

Predicates (get):
conflictpi, jq � yris.w.hrtsrjs ¥ ts
safepcq � |ti : maxtPW risu ¥ c.cnt_ pDc1 PW ris ^ c1.cnt ¥ c.cntqu| ¡ t
highCandpcq � c P C ^ pc.cnt � maxtc1.cnt : c1 P Cuq

Local variables (get):
PW r1 . . . ns P 2Integers, W r1 . . . ns P 2TSsInt, C P 2TSsInt

yr1 . . . ns P Integers� TSsIntY tKu
ts P Integers, initially 0

get()
for 1 ¤ i ¤ n do yris Ð K; PW ris ÐW ris Ð H10

C ÐH11

tsÐ ts� 112

for 1 ¤ i ¤ n do invoke yris Ð read(Yi)13

repeat
check14

until a set S of n� t objects responded ^ @i, j P S : conflictpi, jq15

C Ð tyris.w : |tj : yrjs.w � yris.wu| ¤ 2tu16

for 1 ¤ i ¤ n do invoke yris Ð write&read(xTi, tsy, Yi)17

repeat18

check19

C Ð Cztc P C : |ti : Dc1 PW ris ^ c1 � cu| ¥ 2t� 1u20

until n� t responded ^ Dc P C: (safe(c) ^ highCand(c)) _ C � H21

if C � H then return c.cnt else return 022

check
if Yi responded then

PW ris Ð PW ris Y tyris.pwu
W ris ÐW ris Y tyris.wu

Figure 5.6: Safe counter algorithm (3t� 1)

98 CHAPTER 5. ROBUST AMNESIC STORAGE

Proof. As the inc operation never waits for more than n�t responses, clearly
it never blocks. In the following we prove that the get operation does not
block (1) at line 15 and (2) at line 18. We assume by contradiction that
the get operation blocks. Case (1): as the get operation never updates a
correct base object with ts before the second round, correct base objects are
never in conflict with each other and thus the get operation does not block
at line 15. Case (2): The get operation blocks at line 18. Therefore, there
exists c P C and c is not safe. Let c.cnt � k. If some correct base object has
reported c in its w field in the first round of get, then t � 1 correct base
objects report k or higher in their pw field in the second round and thus c is
safe. Therefore, we assume that no correct base object reports c in w in the
first round. If no correct object reports c in w in the second round, then 2t�1
correct base objects respond with c1 � c in their w field and c is removed from
C. In the following we assume that some correct object reports c in w in the
second round. Let F (|F | ¡ 0) denote the set of faulty objects that report c
in their w field in the first round. Let X (|X| ¥ 0) be the set of correct base
objects i such that Yi reports to the second get round a value lower than
k in both fields pw and w. This implies that the pre-write phase of inc at
Yi does not precede the second get round reading Yi (see Fig. 5.7 (a)). By
the semantics of write&read, the second get round has updated Ti with ts
before reading Yi (line 17). Similarly, the first round of inc has pre-written
k to Yi before reading Ti (line 3). By transitivity, the second get round has
completed the update of Ti before the first inc round has read Ti, and thus
Ti reports ts (Fig. 5.7 (a)). Let X 1 � tj P X : c.hrtsrjs � tsu, that is, the
objects in X that have actually responded to the first inc round. Note that
for all i P F and for all j P X 1, conflict(i, j) is true. Hence, the 2t � 1 � |F |
objects that have responded without c in their w field in the first round of
get do not include any object in X 1. Overall, after the second get round,
2t � 1 � |F | � |X 1| base objects have responded without c in their w field.
If |F | ¤ |X 1| then c is removed from the set of candidates C (line 20), a
contradiction. Therefore, we consider the case |F | ¡ |X 1|. Out of the t � 1
correct base objects updated by the pre-write phase of inc, t � 1 � |X 1|
respond with a timestamp lower than ts. Consequently, for every such base
object i, get has completed updating Ti with ts not before inc reads Ti (see
Figure 5.7 (b)). By the semantics of write&read and by the transitivity of
the precedence relation, register Yi has stored k in its pw field before the
second get round reads Yi. Hence, at least t � 1 � |X 1| � |F | base objects
report values k or higher. As |F | ¡ |X 1|, t � 1 base objects report k or a
higher value, and thus c is safe, a contradiction.

5.4. AN OPTIMALLY RESILIENT ALGORITHM 99

pre-write k to Yi

write ts to Ti

pre-write k to Yi

b)

a)

write ts to Ti read Yi

read Ti

read Ti

read Yi
get (2nd round)

inc (1st round)

get (2nd round)

inc (1st round)

Figure 5.7: Safe counter correctness argument

Theorem 4. The Algorithm in Figure 5.6 wait-free implements a safe
counter.

Proof. Follows directly from Lemma 21, 22 and 23.

5.4.2 The DMS3 Protocol

Protocol Description

In this section we present a robust and amnesic SRSW register construction
from a safe counter and 3t � 1 regular base registers, out of which t can
be subject to NR-arbitrary failures. We now describe the write and read
operations of the DMS3 algorithm illustrated in Figure 5.8.

The write operation performs in three phases, (1) a pre-write phase
(lines 7–9) where it stores a timestamp-value pair c in the pw field of n � t
registers, (2) a read phase (line 10), where it calls get to read the current
view and (3) a write phase (lines 14–16), where it overwrites the w field of
n � t registers with c. If the read phase results in a view change, the most
recent value previously written is frozen together with the new view. This
is done by updating the view field and copying the value stored in w to the
frozen field (lines 11–13). The reader performs exactly the same steps as in
DMS (see Section 5.3).

We now explain with help of Figure 5.9 why reads are wait free. Similar
to the description of DMS in Section 5.3, we consider readk and the last
write that reads a view lower than k. Note that inck does not precede get
and thus, c is stored in the pw field of t� 1 correct registers before they are
read. Also, the w field of t � 1 correct registers is updated with c. As the
subsequent write encounters a view change, c is written to the frozen field

100 CHAPTER 5. ROBUST AMNESIC STORAGE

Shared objects:
regular registers Xi P TSVals3 � Integers, with selectors pw, w,
frozen and view, initially Xi � xx0, v0y, x0, v0y, x0, v0y, 0y

Predicates (reader):
readFrompc, iq � pc � xris.w ^ xris.view viewq _ pc �
xris.frozen^ xris.view � viewq
safe(c) � |ti : c P txris.pw, xris.w, xris.frozenuu| ¥ t� 1
highestCand(c) � |ti : readFrompc1, iq ^ c1.ts ¤ c.tsu| ¥ 2t� 1

Local variables (reader):
view P Integers, initially 0
xr1 . . . ns P TSVals3 � Integers Y tKu

read()
for 1 ¤ i ¤ n do xris Ð K1

view Ð inc(Y)2

for 1 ¤ i ¤ n do invoke xris Ð readpXiq3

wait until n� t responded ^ Dc P TSVals: safe(c) ^4

highestCand(c)
return c.val5

Local variables (writer):
ts, newView P Integers, initially 0
x P TSVals3 � Integers, initially xx0, v0y, x0, v0y, x0, v0y, 0y

write(v)
ts Ð ts�16

x.pw Ð xts, vy7

for 1 ¤ i ¤ n do invoke write(Xi, x)8

wait for n� t responses9

newViewÐ getpY q10

if newView ¡ x.view then11

x.view Ð newView12

x.frozenÐ x.w13

x.w Ð xts, vy14

for 1 ¤ i ¤ n do invoke write(Xi, x)15

wait for n� t responses16

return ack17

Figure 5.8: Robust and amnesic storage algorithm DMS3 (3t�1)

of t � 1 correct registers, where it stays until readk completes. Hence, c is
sampled from t� 1 correct registers’ pw, w or frozen field and thus it is safe.
Note that c is also highestCand because only faulty registers report newer

5.4. AN OPTIMALLY RESILIENT ALGORITHM 101

values.

get
k

wr wr

∗, ∗, c
k

∗, ∗, c
k

wr

c, c, ∗
< k

wr

c, ∗, ∗
< k

get
k

wr wr

∗, ∗, c
k

∗, c, ∗
< k

wr: write(x) to n− t registers Xi

rd: read at least n− t registers Xi

. . .get
< k

write(c.val) write(∗)write(∗)

rdinck
. . .

. . .

Rd

Wr

x =
{

readk

x =

{
pw,w, frozen

view

Figure 5.9: Correctness argument of the read implementation in DMS3

With DMS3, the high-level operations have a non-optimal time complex-
ity. We now explain how the optimized version is obtained by collapsing
individual low-level operations. More precisely, a write operation and a con-
secutive read operation are merged together to a write&read operation. The
safe counter abstraction is disregarded and the counter operations inc and
get are weaved into read and write respectively. Recall that the counter
operations consist of two rounds each. In the write implementation, the
pre-write phase and the first round of get are collapsed. Note that the
three-phase structure of the write is preserved in that the writer reads the
current view before it moves to the write phase. Similarly, in the read im-
plementation, the second inc round and the read phase are merged together.
Overall, this results in a time complexity of three rounds for the write and
two rounds for the read.

We now informally argue that the optimization is correctness preserving.
As above, we consider readk and the last write that reads a view lower
than k. We argue that t � 1 correct base registers have stored c in their
pw field before any of them is read. This would imply that c is safe. The
fact that the write of c.val reads a view lower than k implies that k is
missing from at least 2t � 1 base objects. We know from the safe counter
algorithm in the previous section that if only 2t base objects respond without
k, then k is never removed from the set of candidates. As the safe counter
implementation is wait-free, k is eventually read, contradicting the initial
assumption. Therefore, 2t � 1 base objects respond without k, and thus
there are t � 1 correct base objects among them that are accessed by (the

102 CHAPTER 5. ROBUST AMNESIC STORAGE

read phase of) readk only after c was pre-written to them. By applying
similar arguments as above, it is not difficult to see that c does not disappear
from any of the t�1 correct base objects before readk completes. This would
imply that c eventually becomes safe. For a formal treatment we refer the
interested reader to Appendix 5.6. The remainder of this section is concerned
with the correctness of DMS3.

Protocol Correctness

Lemma 24 (Regularity). Algorithm DMS3 in Figure 5.8 implements a reg-
ular register.

Proof. Identical to the proof of Lemma 19.

Lemma 25 (Wait-freedom). Algorithm DMS3 in Figure 5.8 implements
wait-free read and write operations.

Proof. The write operation is nonblocking because it never waits for more
than n� t responses. To derive a contradiction we assume that readk blocks
at line 4 and show that there exists a candidate for returning. We consider
the time after which all correct base objects (at least 2t�1) have responded.
We choose c as the highest timestamp-value pair readFrom a correct register.
Note that c is highestCand by construction because values with timestamps
¤ c.ts are readFrom 2t� 1 correct registers. In the following, we distinguish
the cases where the view read by the write of c.val is equal to k (case 1) or it
is lower than k (case 2). Note that by the validity of the counter, only views
¤ k are returned. Case 1: Let Xi be a correct register such that readFrom(c,
i). Since by assumption xris.view � k, c is readFrom the frozen field of Xi.
However, in view k only timestamp-value pairs lower than c are frozen, a
contradiction. Now we consider case 2, where the write(c.val) reads a view
lower than k. This implies that inck does not precede get. As the pre-write
phase (lines 8–9) precedes get (line 10), and inck (line 2) precedes the read
phase (lines 3–4), by transitivity, the pre-write phase also precedes the read
phase (see Figure 5.9). Thus, t� 1 correct registers have stored c in their pw
field before they are read. What is left to show is that no subsequent write
erases c from all fields of those t � 1 correct registers. Note that in view
k, only timestamp-value pairs c or higher a frozen. Thus, if c was stored in
the w field of t � 1 correct registers before they are read, then c would be
safe. Hence, c is missing from t � 1 correct registers’ w field. Consequently,
write(c.val)’s write phase (lines 15–16) does not precede readk’s read phase
(lines 3–4). By transitivity, the subsequent write reads view k and freezes
c. Note that c is erased from pw only after c was previously stored in w

5.5. THE OPTIMIZED DMS PROTOCOL 103

(line 14). Furthermore, c is erased from w only after it was stored in frozen
(line 13). As k is the last view, by the validity of the safe counter, c is never
erased from frozen.

Theorem 5 (Robustness). Algorithm DMS3 in Figure 5.8 implements a
robust register.

Proof. Immediately follows from Lemma 24 and 25.

5.5 The Optimized DMS Protocol

In this section we prove the optimized algorithm DMS that achieves a worst-
case latency of one round for read/write access to Byzantine storage.

Lemma 26 (Regularity). The algorithm in Figure 5.10 implements a regular
register.

Proof. We show that the read operation never returns a value older than
the latest value written before the read is invoked. Suppose that c.val is
the value returned by readk. We assume by contradiction that there exists
a value ch.val such that ch.ts ¡ c.ts and write(ch.val) precedes readk.
Hence, n � 2t correct registers have stored ch or a higher timestamp-value
pair before any of them is read. The fact that c.val is returned implies that
c is highestCand. Thus, there are at least 2t � 1 registers Xi and values c1

with timestamp c1.ts ¤ c.ts such that readFrom(c1,i) is true. Note that one
of them is a correct register Xi updated with ch. As values are written with
monotonically increasing timestamps, by definition of readFrom, necessarily
c1 is read from xris.frozen and xris.view � k. As by assumption write of
ch.val precedes readk, safeView is false for any view ¥ k. Thus, the first
time a write operation reads view k is only after the write(ch.val). Hence,
in view k only timestamp-value pairs ch or higher are frozen, a contradiction.

Lemma 27 (Wait-freedom). The algorithm in Figure 5.10 implements wait-
free read and write operations.

Proof. The write operation is nonblocking because it never waits for more
than n � t responses. Showing that reads are also live is more involved.
To derive a contradiction, we assume that readk blocks at line 5 and show
that there exists a candidate for returning. We consider the time after which
all correct base objects (at least 3t � 1) have responded. We choose c as

104 CHAPTER 5. ROBUST AMNESIC STORAGE

Predicates (reader):
readFrom(c, i) � pc � xris.curr ^ xris.view viewq _ pc �
xris.frozen^ xris.view � viewq
safe(c) � |ti : c P txris.curr, xris.prev, xris.frozenuu| ¥ t� 1
highestCand(c) � |ti : readFrompc1, iq ^ c1.ts ¤ c.tsu| ¥ 2t� 1

Local variables (reader):
view P Integers, initially 0
xr1 . . . ns P TSVals3 � Integers

read()
for 1 ¤ i ¤ n do xris Ð K1

viewÐ view� 12

for 1 ¤ i ¤ n do3

invoke xris Ð write&readpxYi, viewy, Xi)4

wait until n� t responded ^ Dc P TSVals: safe(c) ^5

highestCand(c)
return c.val6

Predicates (writer):
safeView(c) � |ti : c1 P yris ^ c1 ¥ cu| ¡ t

Local variables (writer):
newView, ts P Integers, initially 0
yr1 . . . ns P IntegersY tKu
x P TSVals3 � Integers, initially xx0, v0y, x0, v0y, x0, v0y, 0y

write(v):
for 1 ¤ i ¤ n do yris Ð K7

ts Ð ts�18

x.prevÐ x.curr9

x.currÐ xts, vy10

for 1 ¤ i ¤ n do11

invoke yris Ð write&read(xXi, xy, Yi)12

wait for n� t responses13

newView Ð maxtc P Integers: safeView(c)u14

if newView ¡ x.view.curr then15

x.viewÐ newView16

x.frozenÐ x.prev17

return ack18

Figure 5.10: The optimized DMS protocol (4t� 1)

the p2t� 1qth lowest timestamp-value pair readFrom a correct register. Note
that c is highestCand by construction because values with timestamps ¤ c.ts

5.5. THE OPTIMIZED DMS PROTOCOL 105

are readFrom 2t � 1 correct registers (set L). Also, we note that values
with timestamps ¥ c.ts are readFrom t � 1 correct registers (set R). In the
following, we distinguish the cases when the write of c.val reads a view equal
to k (case 1), or lower than k (case 2). As readk is blocking, only views
¤ k are returned. Case 1 implies that (a) only timestamp-value pairs lower
than c are frozen, and (b) c is the highest timestamp-value pair readFrom
the curr field of a correct register. Together (a) and (b) imply that c is
the highest timestamp-value pair readFrom a correct register. Thus, for all
registers Xi P R (¥ t � 1), readFrom(c1,i) implies that c1 � c and hence, c is
safe.

We now consider case 2, where write(c.val) reads a view k. If no
value is written after c.val, then all registers in R report c and thus c is safe.
Let ch ¡ c be the immediate successor of c. By the choice of c, ch is missing
from the fields of all registers in L (at least 2t � 1). Therefore, there exist
t � 1 base objects i P L such that the write of ch to register Xi (line 12)
does not precede the read of Xi (line 4). By the semantics of write&read,
the write of view k to Yi precedes the read of Xi (line 4) and the write of
ch to Xi precedes the read of Yi (line 12) at any of those t � 1 objects. By
transitivity of the precedence relation, Yi has stored view k before it is read
(see Fig. 5.11). Thus, the write of ch.val reads view k from a subset of t�1
correct objects. Therefore, safeViewpkq holds and hence, ch reads view k. We
note that no value higher that ch is readFrom any correct register. Thus, for
all values c1 readFrom a register in R (at least t � 1), c1 P tc, chu. Moreover,
if c1 � ch, then c � xris.prev and thus c is safe.

Rd
read Xi

Wr

write k to Yi

read Yiwrite ch to Xi

Figure 5.11: Real-time ordering of read/write operations on base object i

Theorem 6 (Robustness). The algorithm in Figure 5.10 wait-free imple-
ments a regular register.

Proof. Immediately follows from Lemma 26 and 27.

106 CHAPTER 5. ROBUST AMNESIC STORAGE

5.6 The Optimized DMS3 Protocol (3t� 1)

In this section we prove the optimized protocol DMS3 that achieves the
optimal worst-case complexity of two rounds for every read operation.

Predicates:
readFrompc, iq � pc � xris.w ^ xris.view viewq
_ pc � xris.frozen^ xris.view � viewq

safe(c) � |ti : c P txris.pw, xris.w, xris.frozenuu| ¥ t� 1
highestCand(c) � |ti : readFrompc1, iq ^ c1.ts ¤ c.tsu| ¥ 2t� 1

Local variables:
y P Integers � TSsInt, initially x0, xr0, . . . , 0s, 0yy
view P Integers, initially 0
xr1 . . . ns P TSVals3 � Integers Y tKu
hrtsr1 . . . ns P Integers //high-resolution-timestamp

read()
for 1 ¤ i ¤ n do xris Ð K1

viewÐ view� 12

y.pwÐ view3

for 1 ¤ i ¤ n do invoke hrtsris Ð write&readpxYi, yy, Ti)4

wait for n� t responses5

y.w.hrtsÐ hrts6

y.w.cvalÐ view7

for 1 ¤ i ¤ n do invoke xris Ð write&readpxYi, yy, Xi)8

wait until n� t responded ^ Dc P TSVals: safe(c) ^9

highestCand(c)

Figure 5.12: Optimized read operation

Lemma 28 (Regularity). The algorithm in Figures 5.12 and 5.13 imple-
ments a regular register.

Proof. Identical to the proof of Lemma 26.

Lemma 29 (Wait-freedom 1). The algorithm in Figures 5.12 and 5.13 im-
plements wait-free write operations.

Proof. A simple extension of Lemma 23 proves that the algorithm wait-free
implements the write operation.

Lemma 30 (Wait-freedom 2). The algorithm in Figures 5.12 and 5.13 im-
plements wait-free read operations.

5.6. THE OPTIMIZED DMS3 PROTOCOL (3T � 1) 107

Predicates (get):
conflictpi, jq � yris.w.hrtsrjs ¥ ts
safeViewpcq � |ti : maxtPW risu ¥ c.cval _ pDc1 PW ris ^ c1.cval ¥
c.valqu| ¡ t
highCandViewpcq � c P C ^ pc.cval � maxtc1.cval : c1 P Cuq

Local variables:
PW r1 . . . ns P 2Integers, W r1 . . . ns P 2TSsInt, C P 2TSsInt

yr1 . . . ns P Integers� TSsIntY tKu
ts, newView P Integers, initially 0
x P TSVals3 �Integers, initially xx0, v0y, x0, v0y, x0, v0y, 0y

write(v):
for 1 ¤ i ¤ n do yris Ð K; PW ris ÐW ris Ð H1

C ÐH2

ts Ð ts�13

x.pw Ð xts, vy4

for 1 ¤ i ¤ n do invoke yris Ð write&read(xXi, xy, Yi)5

repeat check6

until a set S of n� t objects responded ^ @i, j P S : conflictpi, jq7

C Ð tyris.w : |tj : yrjs.w � yris.wu| ¤ 2tu8

for 1 ¤ i ¤ n do invoke yris Ð write&read(xTi, tsy, Yi)9

repeat10

check11

C Ð Cztc P C : |ti : Dc1 PW ris ^ c1 � cu| ¥ 2t� 1u12

until n� t responded ^ Dc P C: (safeView(c) ^ highCandView(c))13

_ C � H
if C � H then newView Ð c.cval14

if newView ¡ x.view then15

x.view Ð newView16

x.frozenÐ x.w17

x.w Ð xts, vy18

for 1 ¤ i ¤ n do invoke write(Xi, x)19

wait for n� t responses20

return ack21

check
if Yi responded then
PW ris Ð PW ris Y tyris.pwu
W ris ÐW ris Y tyris.wu

Figure 5.13: Optimized write operation

108 CHAPTER 5. ROBUST AMNESIC STORAGE

Proof. As the first round of read never waits for more than n� t responses
it never blocks at line 5 in Figure 5.12. We assume by contradiction that
some read with view k blocks at line 9 in Figure 5.12. We show that there
exists a timestamp-value pair c such that c is both highestCand and safe. Let
c.val be the last value written in a view lower than k. If no value was written
in a view lower than k, then let c.val be the initial value. Note that c exists
because the fields of every correct object are initialized to x0, v0y in view 0
and k ¡ 0. Moreover, as k is the last view, there are only finitely many
write operations such that safeView does not hold for k. We first show that
c is safe. If c.val is not the initial value then c.val was written in a view
lower than k. We partition the set of correct objects read by the reader (at
least 2t� 1) into two sets O and O where O consists of all correct objects i
such that the pre-write of c to Xi (line 5, Fig. 5.13) precedes the read of Xi

(line 8, Fig. 5.12) and O contains all other correct objects. In the following
we consider the two possible cases (i) |O| t�1 and (ii) |O| ¥ t�1. If c.val
is the initial value then only case (ii) needs to be considered.

Case (i): |O| t � 1 implies that |O| ¥ t � 1 and for all i P O holds
that the pre-write of c to Xi (line 5, Fig. 5.13) does not precede the read
of Xi (line 8, Fig. 5.12). By the semantics of write&read, the write of view
k to Yi precedes the read of Xi (line 8, Fig. 5.12) and the pre-write of c to
Xi precedes the first round read of Yi (line 5, Fig. 5.13) at all objects i P O.
By transitivity of the precedence relation, Yi has stored view k in its w field
before it is read (see Fig. 5.14). Thus, the write of c.val reads view k from
field yrjs.w of some correct object j P O. Therefore k is added to candidate
set C (line 8, Fig. 5.13). As k is the last view, t� 1 correct objects report k
and all higher candidate views are removed from C. Thus, k is both safeView
and highCandView. Hence, c.val is written in view k, a contradiction.

Case (ii): For every i P O, c has been stored in register Xi before Xi was
read. If c.val is the last value written, then c can be read from the pw field
of Xi and thus c is safe. Note that the same holds for the initial value. What
is left to show is that no subsequent write operation erases c from all fields
of variable x. Note that c is erased from x.pw only after c was previously
stored in x.w. (line 18, Fig. 5.13). Furthermore, as the subsequent write
reads view k, c is erased from w only after it is stored in x.frozen (line 17,
Fig. 5.13). As k is the last view, safeView never holds for a view ¡ k and
thus c is never erased from x.frozen. We now show that c is also highestCand.
By the choice of c and by definition of readFrom, only timestamp-value pairs
c1.ts ¤ c.ts are readFrom a correct register’s w or frozen fields. As there exist
2t� 1 correct registers, c is highestCand.

Theorem 7 (Robustness). The algorithm in Figures 5.12 and 5.13 wait-free

5.7. SUMMARY OF THE RESULTS 109

Rd
write k to Yi read Xi

read Yi (1st round)Wr
pre-write c to Xi

Figure 5.14: Real-time ordering of read/write operations on base object i

implements a regular register.

Proof. Immediately follows from Lemma 28, 29 and 30.

5.7 Summary of the Results

We have presented amnesic algorithms that robustly implement a shared
register from a collection of n base objects, of which up to t n{3 can
be subject to NR-arbitrary failures. For n ¥ 3t � 1 we have shown that
two rounds of communication with the base objects are sufficient for every
read operation to complete. This is the first robust and amnesic register
construction that matches the two-round lower bound proved in [GV06].
For the n ¥ 4t � 1 case, we have presented the first robust and amnesic
register construction that matches the (trivial) one-round lower bound for
every operation. We note that our construction is tight because with less
than 4t � 1 base objects, both the read and the write operations require
at least two communication rounds [ACKM06, GV06].

The main result, namely that robust access to amnesic storage is pos-
sible in optimal time is somewhat surprising given the large body of lit-
erature on non-amnesic or non-robust algorithms. Moreover, our result is
counter-intuitive: having each read also modify the based objects does not
prevent fast read implementations (supporting any number of readers). As a
corollary, our result suggests that the intuition of amnesic algorithms being
inherently less efficient than non-amnesic ones is largely unjustified.

110 CHAPTER 5. ROBUST AMNESIC STORAGE

Chapter 6

Robust Storage with Secret
Tokens

In this chapter we present robust algorithms that reduce the time complexity
and improve the scalability of unauthenticated storage.

Our algorithms make use of secret tokens, which are values randomly
selected by the clients and attached to the data written. Tokens are secret
because they cannot be predicted by the adversary before they are used,
and thus revealed, by the clients. The developed algorithms do not rely on
unproven cryptographic assumptions as algorithms based on self-verifying
data. They are optimally-resilient, and ensure that reads complete in two
communication rounds if readers do not modify the storage, and in one com-
munication round otherwise.

Our results demonstrate that the complexity gap between unauthenti-
cated and authenticated storage can be effectively bridged without strongly
limiting the adversary, providing answers to questions Q4.1 and Q4.2.

6.1 Introduction

As already motivated in Chapter 1, robust storage implementations are at-
tractive because they do not incur the overhead of cryptography and they
are invulnerable to cryptographic attacks. However, existing robust algo-
rithms with optimal resilience and optimal time complexity [GV06, GLV06,
ACKM06, GV07] have a much higher read latency in the worst case, when
compared to algorithms storing self-verifying data [MR98, CT06, LR06].

Read latency is critical because in many real world applications workloads
are read-dominated. Therefore, it is natural to ask if it is possible to bridge
the complexity gap between unauthenticated and authenticated distributed

111

112 CHAPTER 6. ROBUST STORAGE WITH SECRET TOKENS

storage without trading the valuable properties of robust storage.

In this chapter we show that this is indeed possible by describing ro-
bust storage implementations with optimal resilience and reduced optimal
time complexity. Our algorithms circumvent the lower bounds established
in [GV06, ACKM06] by using secret tokens. A secret token (briefly token) is
a value randomly selected by the client and attached to the messages sent to
the base objects.

The secrecy property of a token selected by a correct client is that the
adversary can not generate its value before the client actually uses the token.
Obviously, the assumption that tokens are secret can be violated with some
probability. However, this probability can be arbitrarily reduced, for exam-
ple, by uniformly and independently generating random tokens of k bits and
by increasing the value of k. Note that in practice, assumptions in general
hold only with a certain probability, e.g., the assumption that no more than
t base objects fail.

Secret tokens are useful because they prevent faulty base objects from
simulating client operations (read or write) that have not yet been invoked
but will actually occur at some later point. However, tokens are weaker than
signatures, because they cannot prevent a faulty base object from success-
fully forging a value that is never written. Roughly speaking, tokens help
disambiguating (a) executions in which a read is contending with a write,
and thus is allowed return an older value, from (b) executions in which the
read is succeeding the write, and thus must not return an older value.

An alternative approach to the use of secret tokens to reduce the time
complexity is the use of cryptography, namely digital signatures [MR98,
CT06, LR06]. Digital signatures generally require the generation of a se-
cret (e.g. private) key, which entails the generation of a random bit string.

Secret tokens have the following advantages over signatures: (1) no cer-
tification and key pre-distribution/sharing is needed, eliminating the need
for a PKI and/or a trusted dealer; (2) no unproven assumptions such as the
hardness of factorization or of discrete logarithm computation are needed;
(3) the assumption of a computationally bounded adversary is not needed;
(4) sampling of secret tokens can be done offline or asynchronously, without
imposing an overhead in the critical execution path of the algorithm as done
if signatures are used. Our algorithms are also designed to gracefully degrade
their properties if the secrecy of the tokens is violated, whereas existing au-
thenticated protocols do not discuss the system behaviors if signatures can
be forged by the adversary.

6.2. MODEL 113

6.1.1 Contributions

(1) We show that secret tokens can be used to reduce the read complexity
of unauthenticated storage with optimal resilience from t � 1 commu-
nication rounds [ACKM06], to just two. The developed algorithm sup-
ports a possibly unbounded number of malicious readers. Moreover,
our implementation is gracefully degrading. Even if the secrecy of to-
kens is violated, the algorithm preserves the safety properties of regular
storage.

(2) We show that if readers do not write, then the cost of two communi-
cation rounds of the read operation is a lower bound for every unau-
thenticated storage algorithm with optimal resilience. Thus, the time
complexity of our first algorithm is optimal. Notably, the lower bound
of [ACKM06] does not hold in a model that allows the use of secret
tokens.

(3) Under the assumption that readers can modify the base objects, we
exhibit an implementation in which every read completes after one
communication round. The read lower bound of two communication
rounds [GV06] is circumvented by having readers store timestaped se-
cret tokens in the base objects. This algorithm is also gracefully de-
grading. It preserves wait-freedom and never returns a forged value.
It may however return an outdated value if the secrecy of tokens is
violated.

6.2 Model

Following the definitions in Chapter 2, our model consists of a collection
of clients, interacting with a finite collection of n base objects. Clients are
divided into a singleton writer and a (possibly unbounded) set of reader
processes. When needed, the number of readers is denoted by R. Up
to t ¤ tn�1

3
u base objects can fail by being nonresponsive-arbitrary (NR-

Arbitrary) [JCT98]. Any number of reader processes can suffer Byzantine
failures and the writer may fail by crashing. Clients interact with the base ob-
jects by message-passing using point-to-point reliable channels. Base objects
do not communicate with each other and do not push messages to clients.

We assume the existence of a function GetToken used by clients that takes
no arguments and outputs a value in t0, 1u� and has the following property:

Secrecy: The adversary cannot generate the ith output of function GetToken
before the ith invocation of GetToken.

114 CHAPTER 6. ROBUST STORAGE WITH SECRET TOKENS

This assumption can be implemented by sampling a value (called token)
randomly, uniformly and independently from t0, 1uk. With 2k different tokens
and large k (in practice a few bytes suffice), the probability of creating a token
before learning it is negligibly small.

6.3 An Implementation Supporting Un-

bounded Readers

Our first algorithm uses n ¥ 3t� 1 base objects to implement a multi-reader
single-writer (MRSW) regular storage and features optimal time complexity
for both operations (see Section 6.3.4). In the following we give a detailed
description of the algorithm.

6.3.1 Overview

Both read and write operations take at most two rounds. In each round,
the client sends a message to all objects. Each round terminates at the
latest after receiving matching replies from n � t correct objects. A value
is written in two consecutive phases, called pre-write and write phase. In
the first read round, the reader samples a set of candidates such that the
value returned after the second round is among them. In the second round,
the reader collects from the objects copies of the values in the candidate set,
until it finds a value to return.

The base objects maintain the array historyr0 . . . s used by the base ob-
jects to keep track of the values written. The entry historyrtss.pw stores
a timestamp-value pair tsval of the form xts, vy and historyrtss.w the pair
xtsval, tokeny. The initial token value is the empty token denoted ε. Variable
ts stores the timestamp of the last written value. The variables of an object
are collectively called fields.

In the pre-write phase, of write(v), the writer: (1) increases its times-
tamp ts, (2) assigns the timestamp-value pair xts, vy to its variable pw and
(3) writes pw to n � t objects’ historyrtss.pw field (short pw field). In the
write phase, the writer (1) saves the previously written value w in the vari-
able wp, (2) invokes GetToken and assigns its output to variable w.token,
(3) assigns pw to w.tsval and (4) writes both w and wp to n � t objects’
historyrtss.w and historyrts � 1s.w fields respectively (short w fields). The
algorithms of the writer and the base objects appear in Figures 6.1 and 6.2
respectively.

In the following we detail the read implementation since it is more in-
volved and constitutes the main focus of this chapter.

6.3. AN IMPLEMENTATION SUPPORTING UNBOUNDED READERS115

Initialization:
tsÐ 0; w Ð xx0, v0y, εy1

write(v)
/* Pre-write Phase */
inc(ts)2

pw Ð xts, vy3

send pwxts, pwy to all objects4

wait for reception of pw ackxtsy from n� t objects5

/* Write Phase */
wp Ð w6

w.tokenÐ GetToken()7

w.tsvalÐ pw8

send wrxts, w,wpy to all objects9

wait for reception of wr ackxtsy from n� t objects10

return ack11

Figure 6.1: Algorithm of the writer.

Initialization:
tsÐ 0; historyr0s.pw Ð x0, v0y; historyr0s.w Ð xpw, εy1

upon reception of pwxts1, pwy from writer2

historyrts1s.pw Ð pw3

send pw ackxts1y to writer4

upon reception of wrxts1, w, wpy from writer5

if ts1 ¡ ts then tsÐ ts16

historyrts1s.w Ð w; historyrts1 � 1s.w Ð wp7

send wr ackxts1y to writer8

upon reception of rd1 xtsry from reader j9

send rd1 ackxtsr, historyrtss.w, historyrts� 1s.wy to reader j10

upon reception of rd2 xtsr, TSy from reader j11

PW Ð thistoryrts1s.pw : ts1 P TSu12

W Ð thistoryrts1s.w : ts1 P TSu13

send rd2 ackxtsr, PW,W y to reader j14

Figure 6.2: Algorithm of the base objects.

6.3.2 READ Implementation

The full algorithm of the readers can be found in Figure 6.3. As mentioned
earlier, read performs in two rounds. In the first round, the reader collects

116 CHAPTER 6. ROBUST STORAGE WITH SECRET TOKENS

from n� t base objects the latest and the second latest values written w and
wp and adds them to the set of return candidates C. For this purpose the
reader sends a message rd1 to all objects (line 4) and awaits n� t matching
responses of type rd1 ack (line 6).

Predicates:

safe(c) � |ti P Q : c.tsval P PW ris _ c PW risu| ¥ t� 1
incomplete(c) � |ti P Q : c RW risu| ¥ n� t
highCand(c) � c P C : p@c1 P C : c.tsval.ts ¥ c1.tsval.tsq

read()
C Ð TS Ð QÐH1

PW ris ÐW ris Ð H, 1 ¤ i ¤ n2

/* Round 1 */
incptsrq3

send rd1xtsry to all objects4

repeat
if received rd1 ackxtsr, w,wpy then C Ð C Y tw,wpu5

until received rd1 ackxtsr, �y from n� t objects6

TS Ð tc.tsval.ts : c P Cu7

/* Round 2 */
send rd2xtsr, TSy to all objects8

repeat
if received rd2 ackxtsr, PW,W y from object i then9

QÐ QY tiu; PW ris Ð PW ; W ris ÐW10

C Ð Cztc P C : incompletepcqu11

until (received rd2 ackxtsr, �y from n� t objects) ^12

pDc P C : safepcq ^ highCandpcqq
return c.tsval.val13

Figure 6.3: Algorithm of the readers.

In the second round, the reader gathers copies of the candidate values in
C from the history of pw and the w fields of the base objects until it finds
a candidate it can safely return. For this purpose, in the second round (1)
the reader adds the timestamps of the candidates in C to a set TS (line 7)
and (2) sends a message rd2 to all objects (line 8). Upon reception of a rd2
message, each correct object constructs two sets PW and W , and for each
timestamp ts P TS it adds to PW and W the corresponding value from the
historyrtss.pw and historyrtss.w fields, if present. Finally, it sends a rd2 ack
message containing PW and W back to the reader. When the reader receives
a matching rd2 ack message from base object i for the first time, it records

6.3. AN IMPLEMENTATION SUPPORTING UNBOUNDED READERS117

PW and W in its variables PW ris and W ris, and removes all candidates
from C which are incomplete (lines 9–11). If a value c is incomplete then it
is missing from n � t objects’ history of w fields. In this case, the write
of c does not precede read and thus c can be disregarded without violating
regularity. The reader keeps waiting for additional rd2 ack messages until
there is a candidate c P C such that no candidate in C has a higher timestamp
(i.e., predicate highCand(c) holds) and c is stored at t� 1 base objects in the
pw or w field (i.e., predicate safe(c) holds).

Our implementation guarantees that the condition in line 12 is eventually
satisfied in every read. In the following we give a rough intuition of why
this is true (the detailed proof can be found in Section 6.3.3).

Observe that C � H because the second-last written value reported by a
correct object is never incomplete. Assume by contradiction that read never
completes, i.e. there is a candidate c P C such that c is never eliminated
from C and c is never safe. Consider the following two cases. Case (1): c
is reported in the first read round after the pre-write phase of c.tsval has
completed. In this case, c.tsval is pre-written to t� 1 correct objects before
any of them is accessed by the second read round. Hence t � 1 correct
objects eventually report c.tsval from their pw history and c becomes safe.
Case (2): c is reported during the first read round before the pre-write phase
of c.tsval has completed. Clearly, c is reported by a malicious object. By
the Secrecy assumption, the token used by the adversary is different from the
token which is indeed written together with c.tsval. Hence, no correct object
reports c and c is eliminated from C. Therefore, each value either becomes
safe or is removed from the set of candidates.

It is important to note that the algorithm implements a regular storage
even if the Secrecy assumption does not hold. Specifically, the proof of
regularity below does not rely on the inability of the adversary to guess the
token.

6.3.3 Correctness

Lemma 31 (Regularity). The read operation either returns the latest value
written before read is invoked or one that is written concurrently with read.

Proof. Note that if read returns a value c.tsval.val, then safepcq holds. This
implies that t� 1 objects respond with c.tsval and some of these is correct.
Hence, either c.tsval has been written or is x0, v0y. We now show that read
does not return values older that the latest write preceding read.

If no write completes before read then we are done. Else, let r be
a read invocation and w � writepvq be the last write that completes

118 CHAPTER 6. ROBUST STORAGE WITH SECRET TOKENS

before r is invoked. Let ts be the timestamp associated with v. We need to
show that if c.tsval.val is returned, then c.tsval.ts ¥ ts.

We assume by contradiction that c.tsval.ts ts. Since w precedes r, the
write phase of xts, vy completes at t � 1 correct objects before any of them
is accessed by r. Therefore, these t� 1 objects report to the first round of r
values with timestamp ts or higher. Since read waits for n� t responses, it
receives a response from one of these t� 1 correct objects. Let i denote this
object and let c1 be the value with the lowest timestamp of the two values
reported by i such that c1.tsval.ts ¥ ts. We show that c1 is not incomplete.
Assume the contrary.

By definition of incomplete, c1 is missing from the history of n� t objects.
There are two cases to consider. If c1 is reported in w, then by the choice
of c1, it holds that c1.tsval � xts, vy. Otherwise, c1 is reported in wp, which
implies that write(c1.tsval.val) precedes the second round of r. In both
cases c1 has been stored in the history of w fields of t � 1 correct objects
before the second read round starts. Hence, c1 is missing from the history
of w fields of at most n � t � 1 objects, a contradiction. Consequently, c1

is not incomplete and is never removed from the set C of candidates. As
c1.tsval.ts ¥ ts ¡ c.tsval.ts, c is not highCand, contradicting the assumption
that r returns c.tsval.val.

Lemma 32 (Wait-freedom). read and write operations are wait-free.

Proof. As the write operation waits for at most n � t objects to respond
and by assumption there are n � t correct objects, it never blocks. We now
show that the read operation does not block.

We assume by contradiction that read blocks in line 23. We consider the
time after which all correct objects (at least n� t) have responded. We first
show that C � H. Let c be the second-last value written to a correct object
and reported in wp (line 5). Observe that write(c.tsval.val) is complete
before the second round of r starts. Therefore c is missing from the history
of at most n� t� 1 objects and thus, c is never eliminated from C.

We now show that for all c P C, safe(c) holds. Assume by contradiction
that there exists c P C and c is not safe. We distinguish the following two
cases:
Case (1): c is reported in the first round by some correct object. This implies
that c.tsval is pre-written to t�1 correct objects before any of them is read in
the second round. Therefore, these t�1 correct objects respond with c.tsval
in PW and c is safe. Case (2): only malicious objects respond with c in the
first read round. If no correct object reports c in the second read round,
then c is incomplete and hence c R C. Else, if some correct object reports
c1 � c, then c1.token � c.token. By the Secrecy property, the malicious base

6.3. AN IMPLEMENTATION SUPPORTING UNBOUNDED READERS119

objects report c only after the write of c1 has invoked GetToken. As the
pre-write phase precedes the invocation of GetToken, c.tsval is pre-written
to t� 1 correct objects before the second read round starts and therefore c
is safe.

Theorem 8. The Algorithm appearing in figures 6.1, 6.2 and 6.3 wait-free
implements a MRSW regular storage.

Proof. Follows directly from Lemma 31 and Lemma 32.

Efficiency After having proved the correctness, we now discuss the effi-
ciency of the algorithm. As the algorithm stores the history of written val-
ues in the base objects, the storage requirements depend on the number of
write operations. Note that, if readers do not write, storing less values is an
open problem [CGK07]. The messages used are of constant size except the
second read round messages which are Opnq. Observe that neither the stor-
age requirements of the base objects nor the communication complexity (i.e.
message size) depends on the number of readers in the system. Thus, the
algorithm is scalable, supporting a possibly unbounded number of malicious
clients. As announced, the time complexity of both reads and writes is of
two rounds in the worst case.

In the following we show that the round-complexity of the algorithm is
tight.

6.3.4 Optimality: Fast Reads Must Write

In this section we show that the presented algorithm has optimal time com-
plexity. This result, together with the lower bound of two rounds for the
write [ACKM06], imply that our algorithm exhibits optimal time complex-
ity.

Intuitively, our proof derives from three indistinguishable runs. In the first
run, read is concurrent with write, all correct base objects have responded
and the faulty objects have crashed. In the second run, write precedes
read but the faulty objects are malicious and hide the written value from
the reader, simulating the concurrency of the first run. In the third run, no
value is written and the malicious base objects forge the value of the writer.
The reader finds itself in a situation in which it cannot distinguish between
the second and the third run. If the reader returns a value, then it returns
the same value in both runs, which violates safety either in the second or the
third run. Else if the reader waits for more base objects, then it would block
in the first run, which violates liveness.

120 CHAPTER 6. ROBUST STORAGE WITH SECRET TOKENS

The proof uses similar arguments as the lower bound proof in [GV06]
and is illustrated in Figure 6.4. We partition the set of base objects into four
distinct subsets T1, T2, T3, T4 each of size t. The initial state of every correct
base object is denoted as σ0. A round rnd of an operation is depicted by
a line of rectangles. A rectangle in a line corresponding to some round rnd
of operation op means that all base objects in the corresponding block have
received the message from the client in round rnd of operation op and have
sent a reply message.

T1 T3T2 T4
σ0σ0

σ0 σ1

rndm

rnd1

rnd1rd() = vr

rndm

rnd1

σ1

rnd1

wr(v)

σ0

T1 T3T2 T4

wr(v)

T1 T3T2 T4
σ0 σ0σ0

σ1

rd() = vr rnd1rd() = vr rnd1
= v = v

R1 R2 R3

Figure 6.4: Illustration of the proof of Theorem 9

Theorem 9. There is no fast read implementation I of a SRSW safe
storage from 4t base objects if the reader does not modify the base objects’
state.

Proof. To exhibit a contradiction, we construct a run of the safe implemen-
tation I that violates safety. We exhibit a run in which some read returns
a value that was never written.

• Let R1 be the run in which all objects are correct except T4 that crashes
at a later point. Furthermore, let rd be the read operation by reader
r. After T1 sends rd ack to r, object T1 is still in the initial state σ0.
Before rd reads from another object, a write operation wr is invoked
by the correct writer to write a value v � v0 to the storage. By the
assumption that I is wait-free, wr completes in R1, say at time t1 after
invoking a finite number m of rounds. Due to asynchrony all messages
sent by the writer to T3 during w remain in transit. We refer to the
state of base object T2 at time t1 as σ1. At some time after t1, object T4
crashes. Due to asynchrony, all messages exchanged between r and T2
and T3 are delayed until after t1. By our assumption on wait-freedom of

6.4. AN IMPLEMENTATION OF FAST READS 121

I, r completes after receiving read ack messages from correct objects
T1, T2, and T3 and returns some value vr skipping T4.

• Let R2 be the run similar to run R1, except that in R2: (1) read rd is
invoked only after wr completes (after t1) and (2) object T1 is malicious
and at t1 before replying to r, forges its state to σ0, the initial state
of correct objects. Other messages are delivered as in R1. Note that
wr cannot distinguish run R2 from R1 and therefore wr completes in
R2 at t1. Note also that, rd is invoked after wr completes, so safety
implies that rd must return v. However, note that in R1 and R2 the
reader receives in rd the identical messages and, since the processes
do not have access to a global clock, r cannot distinguish R2 from R1.
Therefore, in R1 and R2, rd returns the same value, i.e. by safety vr
must equal v.

• Finally, we consider the run R3 in which wr is never invoked, but T2 is
malicious and forges its state to σ1 at the beginning of the run. read
rd is invoked in R3 as in R2. Since, upon receiving read ack messages
from T1, T2, and T3, the reader receives identical information as in run
R2, the reader cannot distinguish R2 from R3, and rd completes in R3

and returns vr � v. However, by safety, in R3, rd must return v0. Since
v � v0, safety is violated in R3.

6.4 An Implementation of Fast READs

The second presented algorithm also uses n ¥ 3t � 1 base objects and im-
plements a MRSW regular storage. The main difference to the previous
algorithm is that every read operation completes after one communication
round.

6.4.1 Overview

In each round the client (reader or writer) sends a message to all objects
and waits until it has received matching replies from at most n � t correct
objects. Like in the previous algorithm, a value is written in two phases, a
pre-write and a subsequent write phase. Unlike in the previous algorithm, in
the pre-write phase, in addition to writing data, the writer also reads control
data from the base objects. Readers write control data and read data written
by the writer.

122 CHAPTER 6. ROBUST STORAGE WITH SECRET TOKENS

The base objects maintain in addition to the history of written values an
array tsrtokenr1...rs which is updated by the readers. The entry tsrtokenrjs
stores a timestamp-token pair of the form xtsr, tokeny, where tsr is the most
recent timestamp of reader j and token the corresponding token value.

In the pre-write phase, of write(v), the writer: (1) increases its
timestamp ts, (2) stores the last pre-written value in pwp (3) assigns the
timestamp-value pair xts, vy to its variable pw, (4) writes pw and w to n� t
objects’ historyrtss.pw and historyrts � 1s.w fields respectively, (5) reads
the objects’ tsrtokenr�s fields written by the readers and (6) for each reader
j adds tsrtokenrjs to the set Tsrtokensrjs. In the write phase, the writer
(1) assigns xpw, Tsrtokensy to variable w and (2) writes both w and pwp to
n � t objects’ historyrtss.w and historyrts � 1s.pw fields respectively. The
algorithm of the writer appears in Figure 6.5.

In the following we detail the read implementation and the interaction
with the base objects, which is slightly more involved.

Initialization:
Inittsrtokensrjs Ð H, 1 ¤ j ¤ r1

tsÐ 0; pw Ð x0, v0y; w Ð xpw, Inittsrtokensy2

write(v)
/* Pre-Write Phase */
TsrtokensÐ Inittsrtokens3

inc(ts)4

pwp Ð pw5

pw Ð xts, vy6

send pwxts, pw,wy to all objects7

repeat
if received pw ackxts, tsrtokeny from object i then8

Tsrtokensrjs Ð Tsrtokensrjs Y ttsrtokenrjsu, 1 ¤9

j ¤ r
until received pw ackxts, �y from n� t objects10

/* Write Phase */
w Ð xpw, Tsrtokensy11

send wrxts, pwp, wy to all objects12

wait for reception of wr ackxtsy from n� t objects13

return ack14

Figure 6.5: Algorithm of the writer.

6.4. AN IMPLEMENTATION OF FAST READS 123

6.4.2 READ Implementation

The full algorithm of the base objects is given in Figure 6.6 and that of the
readers in Figure 6.7. As mentioned earlier, read completes in one commu-
nication round. The reader (1) increments its timestamp tsr, (2) selects a
secret token token and (3) sends a message rd containing tsr and token to
all objects. Upon reception of rd from reader j, each correct object (1) stores
xtsr, tokeny in tsrtokenrjs, (2) computes a timestamp tsmax such that any
higher timestamped value stored has been written concurrently with read
and (3) sends a message rd ack containing three values with timestamps
tsmax � 1, tsmax and tsmax � 1 (if available) back to the reader. When the
reader receives a rd ack message from object i for the first time, it stores the
value with timestamp tsmax in wris and adds wris to the set of candidates
C. The other two values are added to PW ris. In addition it removes all
incomplete candidates from C. A candidate is incomplete when n� t objects
have reported candidates with lower timestamps. Observe that the choice
of tsmax as candidate is crucial: (a) values with higher timestamps can be
safely disregarded without violating regularity and (b) the value correspond-
ing to tsmax is stored in t � 1 correct objects’ pw field before any of them
is read. The latter property is critical because otherwise, a candidate might
never become safe. The termination condition is the existence of a candidate
which is both highCand and safe. Our implementation guarantees that this
condition is eventually satisfied in every read. We now give an intuition of
why this is true.

Recall that, for every candidate c it holds that c is pre-written to t � 1
correct objects before any of them is read. We now explain why. The negation
thereof implies that at least t� 1 correct objects store the timestamp-token
pair of read before c is pre-written to them. At least one of them reports
the token in the pre-write phase, such that c and all higher timestamped
values are stored together with the token in the write phase. Consequently,
all correct objects (at least n � t) report to read only values with lower
timestamps and c is eliminated from C. It is not difficult to see that if
the correct base objects report the entire pw history, then every candidate
would eventually become safe. Our approach simulates this behavior, but
the correct objects send at most three values, with consecutive timestamps
centered around tsmax. The reasoning behind it is the following: if some
candidate is lower than the first, then it is not highCand. Else, if it is higher
than the third, then it is removed from C.

124 CHAPTER 6. ROBUST STORAGE WITH SECRET TOKENS

Initialization:
Inittsrtokensrjs Ð H; tsrtokenrjs Ð x0, εy, 1 ¤ j ¤ r1

historyr0s.pw Ð x0, v0y;2

historyr0s.w Ð xx0, v0y, Inittsrtokensy

upon reception of pwxts, pw,wy from writer3

historyrtss.pw Ð pw; historyrts� 1s.w Ð w4

send pw ackxts, tsrtokeny to writer5

upon reception of wrxts, pwp, wy from writer6

historyrts� 1s.pw Ð pwp; historyrtss.w Ð w7

send wr ackxts1y to writer8

upon reception of rdxtsr, tokeny from reader j9

if tsr ¡ tsrtokenrjs.tsr then tsrtokenrjs Ð xtsr, tokeny10

tsmax Ð maxtts : tsrtokenrjs R historyrtss.w.Tsrtokensrjsu11

w Ð historyrtsmaxs.w.tsval12

PW Ð thistoryrtsmax � 1s.pw, historyrtsmax � 1s.pwu13

send rd ackxtsr, PW,wy to reader j14

Figure 6.6: Algorithm of the base objects.
Predicates:

safe(c) � |ti P Q : c P PW ris Y twrisuu| ¥ t� 1
incomplete(c) � |ti P Q : wris.ts c.tsu| ¥ n� t
highCand(c) � @c1 P C : c.ts ¥ c1.ts

read()
C Ð QÐH15

PW ris Ð H; wris Ð K, 1 ¤ i ¤ n16

incptsrq17

tokenÐ GetToken()18

send rdxtsr, tokeny to all objects19

repeat
if received rd ackxtsr, PW,wy from object i then20

QÐ QYtiu; PW ris Ð PW ; wris Ð w; C Ð CYtwu21

C Ð Cztc P C : incompletepcqu22

until (received rd ackxtsr, �y from n� t objects) ^23

pDc P C : safepcq ^ highCandpcqq
return c.val24

Figure 6.7: Algorithm of the readers.

6.4. AN IMPLEMENTATION OF FAST READS 125

6.4.3 Correctness

Lemma 33 (Regularity). The read operation either returns the latest value
written before read is invoked or one that is written concurrently with read.

Proof. Observe that if read returns a value c.val, then safepcq holds. This
implies that t�1 objects respond with c and some of these is correct. Hence,
either c has been written or is x0, v0y. We now show that read does not
return values older than the latest write preceding read.

If no write completes before read then we are done. Else, let r be
a read invocation of reader j and w � writepvq be the last write that
completes before r is invoked. Let ts be the timestamp associated with v.
We need to show that if c.val is returned, then c.ts ¥ ts.

We assume by contradiction that c.ts ts. Let xtsr, tokeny be the
timestamp-token pair of r. Since w precedes r, GetToken is invoked by
r after w is complete. If some malicious object reports xtsr, token1y to w,
then the Secrecy assumption implies that token � token1. Therefore, w does
not include xtsr, tokeny in the set Tsrtokensrjs corresponding to xts, vy. Fur-
thermore, the write phase of xts, vy completes at t � 1 correct base objects
before any of them is accessed by r. As xtsr, tokeny R Tsrtokensrjs, these
t� 1 correct objects report values with timestamp ts or higher from their w
field.

Let c1 be the value with the lowest timestamp received from the w field
of any of the t� 1 objects. As r waits for at least n� t objects to respond,
such a value exists. We show that c1 is not incomplete. Assume the contrary.
By definition of incomplete, n�t objects must report values with timestamps
lower than c1.ts from their w field. At least one of these is a correct object i
among the t�1 updated by w. By the choice of c1, wris.ts ¥ c1.ts. Therefore,
c1 is not incomplete and is never removed from the set C of candidates. As
c1.ts ¥ ts ¡ c.ts, c is not highCand, contradicting the assumption that c is
returned by r.

Lemma 34 (Wait-freedom). read and write operations are wait-free.

Proof. As the write operation waits for at most n � t objects to respond
and by assumption there are n � t correct objects, it never blocks. We now
show that the read operation does not block.

We assume by contradiction that read blocks in line 23. We consider
the time after which all correct objects (at least n� t) have responded. We
first show that C � H. Let c be the pt � 1qth highest value reported in the
w field of a correct object. Clearly, c is not incomplete and thus it is not
removed from C.

126 CHAPTER 6. ROBUST STORAGE WITH SECRET TOKENS

Let c P C be the highest value reported in the w field of a correct object.
We show that (1) highCand(c) holds and (2) safe(c) holds.

Step (1): If c is not highCand, then there exists c1 P C and c1.ts ¡ c.ts.
By the choice of c, there are n � t correct objects i that report values wris
such that wris.ts c1.ts. This implies that c1 R C, a contradiction.

Step (2): Observe that t�1 correct objects have stored c in their pw field
before any of them replies to read. Else, no correct object would reply with
c in the w field (line 11). Let i be any of these correct objects. We assume by
contradiction that c R PW risYtwrisu. Let tsmax be the timestamp computed
by object i in line 11. If c.ts� 1 ¤ tsmax ¤ c.ts� 1, then c is reported either
from PW ris or wris and we are done. Observe that, since c is pre-written
to i together with the last written value (with timestamp c.ts � 1), it holds
that tsmax ¥ c.ts� 1. Therefore, the only remaining case is tsmax ¡ c.ts� 1.
This implies that c1 exists such that tsmax ¡ c1.ts ¡ c.ts. Since the value
with timestamp tsmax is pre-written to t� 1 correct objects before they are
read, c1 is written to t� 1 correct objects before they are read. Hence, c1 or
a higher timestamped value is not incomplete, contradicting the assumption
that c is highCand.

Theorem 10. The Algorithm appearing in figures 6.5, 6.6 and 6.7 wait-free
implements a MRSW regular storage.

Proof. Follows directly from Lemma 33 and Lemma 34.

Efficiency We now discuss the efficiency of the algorithm. Like in the
previous algorithm, the storage requirements depend on the number of write
operations. In addition, the base objects store up to n � r timestamp-token
pairs together with each value written to them. Messages exchanged between
the reader and the base objects are of constant size. The write messages
pw ack (respectively wr) contain r (respectively n �r) timestamp-token pairs.
The time complexity of the read is one communication round in the worst
case, which is clearly optimal. Every write completes after two rounds
which is also optimal [ACKM06].

6.5 Summary of the Results

The presented robust algorithms effectively circumvent lower bounds estab-
lished for unauthenticated storage by using secret tokens. The first algorithm

6.5. SUMMARY OF THE RESULTS 127

supports unbounded readers and features constant read complexity. The sec-
ond algorithm features fast reads, i.e., every read terminates after one round
of communication with the base objects. Even if the secrecy assumption of
the token is violated both algorithms are gracefully degrading. The first al-
gorithm fully preserves regularity and the second algorithm never blocks and
never returns a forged value. However, the probability of property violation
is negligibly small if the token space is large enough. The algorithms are
secure against a computationally unbounded adversary because tokens are
purely random and therefore they cannot be computed.

128 CHAPTER 6. ROBUST STORAGE WITH SECRET TOKENS

Chapter 7

Complexity of Robust Atomic
Storage

In this chapter, we determine the time complexity of robust atomic storage
from passive storage components prone to Byzantine faults. Robustness here
means wait-free tolerating the largest possible number t of Byzantine base
object failures (optimal resilience) without relying on data authentication.
We show that no multi-reader robust atomic storage implementation exists
if (a) read operations complete in less than four communication rounds, and
(b) the time complexity of write operations is constant.

More precisely, we present two lower bounds. The first is a read lower
bound stating that three rounds of communication are necessary to read from
a multi-reader robust atomic storage. The second is a write lower bound,
showing that Ωplogptqq write rounds are necessary to read in three rounds
from such a storage, answering question Q5.

Applied to known results, our lower bounds close a fundamental gap:
time-optimal robust atomic storage can be obtained using well-known trans-
formations from regular to atomic storage and existing time-optimal regular
storage implementations.

7.1 Introduction

Variable sharing is critical to modern distributed and concurrent computing.
The atomic read/write register abstraction [Lam86] is essential to sharing
information in distributed systems. It abstracts away the complexity incurred
by concurrent access to shared data by providing processes an illusion of
sequential access to data. This abstraction is also referred to as atomic
storage, for its importance as a building-block in practical distributed storage

129

130 CHAPTER 7. COMPLEXITY OF ROBUST ATOMIC STORAGE

and file systems (see e.g., [SH02, SFV�04]). Besides, its read/write API,
despite being very simple, is today the heart of modern “cloud” key-value
storage APIs (e.g., [AWS]).

In this chapter, we study atomic storage implementations in asynchronous
message-passing systems in which a set of clients share data leveraging a set
of storage objects processes subject to Byzantine faults. We consider fault-
tolerant, robust storage implementations characterized by: a) wait-freedom
[Her91] (i.e., the fact that read/write operations invoked by correct clients
always eventually return) and b) optimal resilience, without assuming self-
verifying data [MR98] to limit the adversary (by relying on e.g., digital sig-
natures). Recall that, in the Byzantine failure model, optimal resilience
corresponds to using 3t� 1 base objects to tolerate t failures [MAD02].

In this model, we ask a fundamental question: what is the optimal worst-
case time-complexity of robust atomic storage implementations?

Perhaps surprisingly and despite the wealth of literature exploring
latency-optimal storage implementations, this question has not been an-
swered. It is known that the worst-case latency of writing into robust storage
is at least 2 rounds [ACKM06]. In this chapter, we show that the optimal
worst-case latency of reading from scalable robust atomic storage is 4 (four)
rounds. Here, the notion of scalability captures two basic criteria: a) sup-
port for any number of readers, and b) constant write-latency. Our results
close a fundamental gap, showing that latency-optimal scalable and robust
atomic storage, combining 2-round writes and 4-round reads, can be achieved
(in the case of multi-reader single-writer (MRSW) storage) using standard
transformations from weaker, regular [Lam86] registers to the atomic ones
[Lyn96, AW98].

Our contribution goes through proving two lower bounds. To help fully
appreciate our contributions, we first discuss how the scope of this thesis
chapter fits into related work.

7.1.1 Previous and Related work

Several papers have explored the time-complexity metric in the context of
a read/write register abstraction. A seminal crash-tolerant robust atomic
MRSW register implementation assuming a majority of correct processes
was presented in [ABD95]. In [ABD95], all write operations complete in a
single round; on the other hand, read operations always take two rounds
between a client and objects.

The problem of modifying [ABD95] to enable single round reads was ex-
plored in [DGLC04], which showed that such fast atomic implementations

7.1. INTRODUCTION 131

are possible albeit they come with the price of limited number of readers and
suboptimal resilience. Moreover, the reader in [DGLC04] needs to write (i.e.,
modify the objects’ state) as dictated by the lower bound of [FL03] which
showed that every atomic read must write into at least t objects. [DGLV05]
extends the result of [DGLC04] to the Byzantine failure model assuming au-
thenticated (i.e., digitally signed) data and established the impossibility of
fast crash-tolerant multi-reader multi-writer (MRMW) atomic register im-
plementations. This result is in line with classical MRMW implementations
such as [LS02] that have read/write latency of at least 2 rounds. The limita-
tion on the number of readers of [DGLC04], was relaxed in [GNS09], where a
crash-tolerant robust MRSW atomic register implementation was presented,
in which most of the reads complete in a single round, yet a fraction of reads
is permitted to be slow and complete in 2 rounds.

In the Byzantine context, optimizing latency is particularly interesting
when data is assumed to be unauthenticated, which we also assume here.
[ACKM06] showed that any Byzantine-tolerant storage employing at most
4t storage objects has at least some write operation complete in 2 rounds.
Moreover, [ACKM06] showed a tight lower bound of t�1 rounds from reading
from robust MRSW safe [Lam86] storage, with the constraint that readers
are precluded from writing. However, allowing readers to write helps improve
latency as shown in [GV06], through a 2-round tight lower bound on reading
from robust MRSW regular [Lam86] storage. This bound was circumvented
in Chapter 6, assuming secret values used to detect concurrent operations,
where reads are expedited to complete in a single round. However, none of
these papers dealt with optimal worst-case latency of reading from robust
atomic storage, which is precisely the scope of this chapter.

On the other hand, few papers have explored the best-case complexity of
Byzantine-tolerant optimally resilient atomic storage. Here, “best-case” en-
compasses synchrony, no or few object failures and the absence of read/write
concurrency. In this context, [GLV06] presented the first robust atomic stor-
age implementation in which both reads and writes are fast in the best-case
(i.e., complete in a single round-trip). Furthermore, [GV07] considered ro-
bust atomic storage implementations with the possibility of having fast reads
and writes gracefully degrade to 2 or 3 rounds, depending on the size of the
available quorum of correct objects. Unlike these papers, we are interested
here with the unconditional, worst-case latency of atomic storage.

Finally, the worst-case read latency in existing Byzantine-tolerant
robust atomic storage implementations for unauthenticated data (e.g.,
[MAD02, GLV06, GV07, AAB07]) is either unbounded or Ωptq rounds at
best [AAB07].

132 CHAPTER 7. COMPLEXITY OF ROBUST ATOMIC STORAGE

7.1.2 Contributions

We present two lower bounds (impossibility results) on time-complexity of
reading from robust atomic storage for unauthenticated data, implemented
from storage objects prone to Byzantine faults. Together, our lower bounds
imply that there is no scalable robust atomic storage implementation in the
Byzantine unauthenticated model in which all reads complete in less than 4
rounds.

• The first lower bound, referred to as the read lower bound, demonstrates
the impossibility of reading from robust MRSW atomic storage in two
rounds. More precisely, we show that if the number of storage objects
S is at most 4t and if the number of readers R is greater than 3, then
no MRSW atomic implementation may have all reads complete in two
rounds.

Our proof scheme resembles that of [DGLC04] and relies on se-
quentially appending reads on a write operation, while progressively
deleting the steps of a write and preceding read operations, exploiting
asynchrony and possible failures. This deletion ultimately allows
reusing readers and reaching an impossibility with as few as R � 4
readers. As none of these appended operations are concurrent under
step contention, the impossibility also holds in the stronger unauthen-
ticated data model augmented with secrets (Chapter 6), in which the
adversary is unable to simulate step contention among operations,
making use of secret values.

• Our second lower bound, referred to as the write lower bound, shows
that if read operations are required to complete in three communication
rounds, then the number of write rounds k is Ωplogptqq. More precisely,
we show that if the number of storage objects is at most 3t� tt{tku and
R ¥ k, then no implementation of a MRSW atomic storage may have
all reads complete in three rounds and all writes in k ¤ tlogpr3tk�1

2
squ

rounds. In a sense, our lower bound generalizes the write lower bound
of [ACKM06], which proves our result for the special case of k � 1.

While using a similar approach, the write lower bound proof is much
more involved and differs from our read lower bound proof in several
key aspects. Due to the additional third read round, read steps cannot
be entirely deleted, which prohibits the reuse of readers. Consequently,
the number of supported readers R and the number of write rounds k
are related (R ¥ k). Furthermore, the proof relies on a set of malicious
objects that forges critical steps of the write and of prior reads with

7.2. MODEL 133

respect to subsequent reads. This set grows with the number of ap-
pended reads, relating the number of faulty objects t and the number
of readers (which is at least k). At the heart of the proof we use a
recurrent formula that relates t and k, similar to a Fibonacci sequence,
which describes the exact relation between the two parameters. In its
closed form, the formula transforms to the log function (k � Ωplogptqq).

The rest of the chapter is organized as follows. In Section 7.2 we give
our model, and Section 7.3 gives the proof of our read lower bound. An
extension to the model of [TP88] using distinct thresholds for malicious and
crash objects’ failures is included in Appendix B. Section 7.4 gives the proof
of our write lower bound. Section 7.5 concludes the chapter by discussing
modular implementations that match our lower bounds.

7.2 Model

The model considered herein is in line with the message-passing model for-
mally defined in Chapter 2, which we now briefly reiterate. There are
three disjoint sets of processes: a set objects of size n containing processes
ts1, ..., snu and representing the base register elements; a singleton writer
containing a single process twu; and a set readers of size R containing pro-
cesses r1, ..., rR. The set clients is the union of the sets writer and readers.
We assume that every client may communicate with any process by message
passing using point-to-point reliable communication channels. However, ob-
jects cannot communicate among each other, nor send messages to clients
other than in reply to clients’ messages.

7.3 The Read Lower Bound

In this section we prove the following proposition.

Proposition 1. : If n ¤ 4t and R ¡ 3, then no read implementation I of a
multi-reader (MRSW) atomic register exists that completes in two rounds.

Overview

The idea behind the proof is to start with a complete write that writes 1 into
the storage, after which a complete read is appended. By atomicity, the read
returns 1. Then, further reads by distinct readers are appended one after
the other such that the last appended read returns 1. At the same time,

134 CHAPTER 7. COMPLEXITY OF ROBUST ATOMIC STORAGE

steps of the write and the previous reads are progressively deleted. After
appending the fourth read, the final round of the write is deleted from the
storage. Moreover, similar to a circular buffer, all steps of the first read
are erased, and the read ca be “recycled”. By atomicity, the last appended
read returns 1. The next iteration starts by reusing the first read, which in
turn frees the second read. The proof proceeds through a sequence of such
iterations. In each iteration, the last appended read frees the first appended
read, and deletes another round of the write. After the last iteration, all
steps of the write are deleted, meaning that no write is invoked. However,
the last appended read returns 1, violating atomicity.

Preliminaries

In the proof w denotes the writer, ri for 1 ¤ i ¤ 4 denote the readers, and si
for 1 ¤ i ¤ n denote objects. Suppose by contradiction that R � 4 and there
is an atomic register implementation I that uses at most 4t objects, such
that in every partial run of I every read operation completes in two rounds.

We partition the set objects into four disjoint subsets (which we call
blocks), denoted Bi for 1 ¤ i ¤ 4 each of size exactly t ¥ 1. We refer
to the initial state of every correct block Bj as σj

0. For simplicity we simply
write σ0, where the block name is implicit.

We say that a round rnd of an operation op skips a set of blocks BS
in a partial run, (where BS � tB1, . . . , B4u), if (1) no object in any block
BL P BS receives any message in round rnd from op in that partial run;
(2) all other objects receive all messages in round rnd from op and reply to
the messages, and (3) in case round rnd is terminated, the invoking client
has received all these reply messages or, in case rnd is not terminated, all
these reply messages are in transit. We say that an operation op skips a set
of blocks BS in a partial run if every round of op skips BS.

To show a contradiction, we construct a partial run of the implementation
I that violates atomicity: a partial run of I in which no value is ever written
and some read returns 1.

Partial writes

Throughout the proof there is only one write operation write(1) by w that
writes value 1. Consider a partial run wr in which w completes write(1) on
the register and let k be the number of rounds invoked by w in wr. We
denote the state of every correct block Bj after it has replied to the messages
of the write during round 1 to i where 1 ¤ i ¤ k as σi, where j is again
implicit. The write operation skips blocks B4. We define a series of partial

7.3. THE READ LOWER BOUND 135

runs containing an incomplete write(1) invocation, each being a prefix of wr.
For 1 ¤ i ¤ k and 1 ¤ j ¤ 4, we define wrij as the partial run in which (1)
rounds 1 to i� 1 are terminated and skip B4; (2) round i is not terminated
and skips all blocks tBl | 1 ¤ l ¤ j � 1u Y tB4u, and (3) all objects are
correct. We make two observations: (1) partial run wrk1 differs from wr only
at w and (2) partial run wr14 differs from a run in which write(1) is never
invoked only at w.

Block diagrams

We illustrate the proof in Figure 7.1 (a)-(g). We depict a round rnd of an
operation op through a set of rectangles arranged in a single column. In the
column corresponding to some round rnd of op we draw a rectangle in a given
row, if all objects in the corresponding block BL have received the message
from the client in round rnd of op and have sent reply messages, i.e., if round
rnd of op does not skip BL. We write “@” in the row corresponding to BL
iff BL is malicious.

write(1) rd1

...

...

...B3

B2

B4

B1@
k − 1 k

σk−1

(a) pr1 � ∆pr1

write(1) rd2rd1

kk − 1

B3

B1
...

B2
...

...

B4

σk−1@
σk−1

(b) pr2 � ∆pr2

write(1) rd3rd2rd1

kk − 1

B3

B1
...

B2
...

...

B4

σk−1

@

σr
1

σk−1

σk−1

(c) pr3 � ∆pr3

rd1 rd2 rd3

B1
...

B2
...

...

B4

B3

@ σr
4i−3

σk−i

write(1)

σk−i

σr
4i−2σk−i

σ0

k − i

rd4

(d) pr4i � ∆pr4i

B1
...

B2
...

...B3

B4

@

write(1)

σr
4i−2

σk−i

rd4 rd1

σk−i−1

σk−i σr
4i−1

k − i

rd2 rd3

(e) pr4i�1 � ∆pr4i�1

σk−i

σr
4i−1

σr
4i

...

B2
...

...B3

B4

write(1) rd1 rd2

B1

@

k − i

rd3 rd4

σk−i−1

σk−i−1

(f) pr4i�2 � ∆pr4i�2

...

B2
...

...B3

B4

write(1) rd2 rd3

B1

k − i

rd4 rd1

@ σr
4i

σr
4i+1

σk−i−1

σk−i−1

σk−i−1

(g) pr4i�3 � ∆pr4i�3

Figure 7.1: Illustration of the runs used in the proof of Proposition 1

136 CHAPTER 7. COMPLEXITY OF ROBUST ATOMIC STORAGE

Appending reads

Partial run pr1 extends wr by appending a complete read rd1 by r1 that
skips B2 in round one and B1 in round two (see Figure 7.1 (a)). Note that
when the second round is started, there is a pending first round invocation
on B2. Therefore in the second round, rd1 waits for both first and second
round replies from B2. For ease of presentation, the late first round replies
are not illustrated.

In pr1, all objects in block B1 are malicious, and forge their state to σk�1

before replying to rd1. By atomicity rd1 returns 1. Observe that r1 cannot
distinguish pr1 from some partial run ∆pr1 that extends wrk2 by appending
rd1, and where all objects are correct (see Figure 7.1 (a) after deleting the
crossed steps).

Partial run pr2 extends ∆pr1 by appending a complete read rd2 by r2
that skips B3 and B2 in round one and two respectively (see Figure 7.1 (b)).
In pr2, all objects in block B2 are malicious, and forge their state to σk�1

before replying to rd2. By atomicity rd2 returns 1. Observe that r2 cannot
distinguish pr2 from some partial run ∆pr2, that extends wrk3 by appending
an incomplete rd1 and a complete rd2 and where all objects are correct
(Figure 7.1 (b) after deleting the crossed steps).

Partial run pr3 extends ∆pr2 by appending a complete read rd3 by r3
that skips B4 in round one and B3 in round two (Figure 7.1 (c)). In pr3,
all objects in block B3 are malicious, and forge their state to σk�1 before
replying to rd3. By atomicity rd3 returns 1. Let σr

1 denote the state of the
objects in block B4 in run pr3 before replying to rd2. Observe that r3 cannot
distinguish pr3 from some partial run ∆pr3, that extends wrk4 by appending
incomplete reads rd1 and rd2 and a complete read rd3 and in which (1) all
objects in B4 are malicious and (2) they forge their state to σr

1 before replying
to rd2 (Figure 7.1 (c) after deleting the crossed steps). Note that in pr3, rd3
completes the second round based on replies only from correct objects, and
similarly the first round in ∆pr3. Since r3 cannot distinguish pr3 and ∆pr3,
it cannot wait for more replies in any of the two runs.

Partial run pr4 (illustrated in Figure 7.1 (d)) extends ∆pr3 by appending
a complete read rd4 by r4 that skips B1 in round one and B4 in round two.
In pr4, all objects in block B4 are malicious and forge their state (1) to σr

1

before replying to rd2 and (2) to σ0 before replying to rd4. By atomicity rd4
returns 1. Let σr

2 denote the state of the objects in block B1 before replying
to rd3. Observe that r4 cannot distinguish pr4 from some partial run ∆pr4,
that extends wrk�1

1 by appending incomplete reads rd2, rd3 and a complete
read rd4, and in which (1) all objects in B1 are malicious and (2) they forge
their state to σr

2 before replying to rd3 (Figure 7.1 (d) after deleting the

7.4. THE WRITE LOWER BOUND 137

crossed steps). Note that in run pr4, rd4 receives second round replies from
n� t correct objects. Similarly in ∆pr4, rd4 receives first round replies from
n � t correct objects. Since r4 cannot distinguish pr4 and ∆pr4, rd4 cannot
wait for additional replies without violating termination.

After appending rd4 and constructing ∆pr4 by deleting all steps from pr4
which are not “visible” to rd4, we notice that we have erased all steps in
column k of write(1) as well as, deleted all steps of rd1. Thus, we can recycle
r1 by appending rd1 again and start deleting the steps in column k � 1.

Starting from ∆pr4 we iteratively define the following partial runs for
1 ¤ i ¤ k � 1 and 1 ¤ j ¤ 4 (see Figure 7.1 (d)-(g)). Partial run pr4i�j

extends ∆pr4i�j�1 by appending rdj. In pr4i�j, all objects in block Bj are
malicious and they forge their state (1) to σr

4i�pj�3q before replying to rdj�2
1

and (2) to σppj mod 4q{jqpk�i�1q before replying to rdj. Let σr
4i�pj�2q denote the

state of the objects in block Bpj mod 4q�1 before replying to rdj�1. Observe
that rj cannot distinguish pr4i�j from some partial run ∆pr4i�j, that extends
wrk�i

pj mod 4q�1 by appending incomplete reads rdj�2 and rdj�1 and a complete

read rdj, and in which (1) all objects in Bpj mod 4q�1 are malicious, and (2)
they forge their state to σr

4i�pj�2q before replying to rdj�1 (Figure 7.1 (d)-(g)

after deleting the crossed steps). In run ∆pr4i�j and pr4i�j, rdj receives first
and second round replies respectively from n � t correct objects. Since rj
cannot distinguish ∆pr4i�j and pr4i�j, rdj cannot wait for additional replies.

Read rd4 in ∆pr4 returns 1. Since pr5 extends ∆pr4 by appending rd1, by
atomicity, rd1 in pr5 returns 1. However, as r1 cannot distinguish pr5 from
∆pr5, rd1 in ∆pr5 returns 1. In general, since pr4i�j extends ∆pr4i�j�1 by
appending rdj (for 1 ¤ i ¤ k � 1 and 1 ¤ j ¤ 4), and rj cannot distinguish
pr4i�j from ∆pr4i�j, it follows by induction that rdj in ∆pr4i�j returns 1. In
particular, rd3 reads 1 in ∆pr4k�1. By our construction, ∆pr4k�1 extends wr14
and wr14 is indistinguishable from a run in which write(1) is never invoked.
Hence, rd3 returns 1 even if no write is invoked, violating atomicity.

7.4 The Write Lower Bound

In this section we prove the following proposition.

Proposition 2. : If n ¤ 3t� tt{tku and every read completes in three rounds
then no write implementation I of a multi-reader atomic register exists that
completes in mintR, tlogprp3tk � 1q{2squu rounds.

We first prove the following key lemma. In the effort of making its in-
volved proof easier to follow we first proceed through a careful proof setup

1Please note that when we write rdj�c, we always mean rd4�ppc�jq mod 4q.

138 CHAPTER 7. COMPLEXITY OF ROBUST ATOMIC STORAGE

that we found worthwhile. To further help follow the proof, we also visualize
runs we use in the proof in Figure 7.2.

Lemma 35. Let k ¥ 1, t�1 � t0 � 0 and tk � tk�1 � 2tk�2 � 1. There is
no implementation I of a k-reader atomic storage with 3tk� 1 objects and tk
faults such that the write completes in k rounds and the read completes in
three rounds.

Preliminaries

Recall that w denotes the writer, ri for 1 ¤ i ¤ k denote the readers, and si
for 1 ¤ i ¤ n denote the objects. The initial value of the register is K. In
the proof, there is only one write operation write(1) by w that writes value
1. We know from [ACKM06] that the lemma is true for k � 1; hence, we
assume k ¥ 2. Suppose by contradiction that there is an implementation I
that uses at most 3tk � 1 objects, such that in every partial run of I every
write (resp., read) completes in k (resp. 3) rounds.

We partition the set objects into 2k� 2 distinct blocks, B0, . . . , Bk�1 and
C1, . . . , Ck such that |

�k�1
j�0 Bj| � 2tk � 1 and |

�k
j�1Cj| � tk. Block B0

contains a single object. For 1 ¤ l ¤ k, the size of Bl is tl � tl�2 and the size
of Bk�1 is 2tk � 1 � |

�k
j�0Bj| � tk � tk�1. For 1 ¤ l ¤ k � 1, the size of

Cl is tl�1 � tl�2 and the size of Ck is tk � |
�k�1

j�1 Cj| � tk � tk�2. Note here
that C1 is empty. Moreover, we use the abbreviation BLi,j to denote the set
tBLi, BLju, for some BL P tB,Cu.

We also define three sets of blocks called superblocks : the “malicious”
superblock Ml, the “parity” superblock Pl and the “correct” superblock
Cl. Superblock Ml contains all blocks with index at most l, i.e., Ml �
tB0, B1, . . . Bl, C1, . . . , Clu for 0 ¤ l ¤ k � 1, and M�1 � H. Superblock Pl

contains all blocks Bj with index j ¥ l ¥ 1 such that j and l have the same
parity. More formally, for 1 ¤ l ¤ k, we define Pl � tBj|l ¤ j ¤ k�1 ^ j � pl
mod 2qu. For instance, if k is even then P1 � tB1, B3, . . . , Bk�1, Bk�1u and
P2 � tB2, B4, . . . , Bk�2, Bku. Finally, superblock Cl � tCl, . . . , Cku.

Given the size of the individual blocks, we can determine the cardinality
of the union of all elements of a superblock. Namely, if S P tMl,Pl, Clu, then
we define the union of its elements as

�
S � ts P BL|BL P Su. Having in

mind that tk � tk�1 � 2tk�2 � 1 (Def.) and t�1 � t0 � 0, we have:

|
¤
Ml| � tl � 2tl�1 � 1

pDef.q
� tl�1 for 0 ¤ l ¤ k � 1 (7.1)

|
¤
Pl| � tk � tl�2 for 1 ¤ l ¤ k � 1 (7.2)

7.4. THE WRITE LOWER BOUND 139

|
¤
Cl| � tk � tl�2 for 1 ¤ l ¤ k (7.3)

Block diagrams

Figure 7.2 illustrates the proof for R � k � 4. Reader ri invokes read rdl,
1 ¤ l ¤ k. In the column corresponding to some round rnd of op we draw a
rectangle in a given row, iff round rnd of op does not skip2 the corresponding
block BL. We write “@” in the row of BL iff BL is malicious.

C
2
,3
,4

σ
r 1

rd
1

rd
2

rd
3

rd
4

w
ri

te
(1

)

L
eg

en
d

σ
1 0

σ
4

σ
1 3

B
1

B
0

w
ri

te
(1

)

w
r3

p
r i

n
it

rd
1
→

1
rd

1
2
3
4σ
2 0

B
2

σ
1 0

σ
3 0

σ
3 3

B
3
,5

σ
2 0

σ
4 0

B
4

(a
)
p
r 1

ex
te

n
d

s
w
r3

(∆
p
r 1

fr
om

p
r 1

b
y

d
el

.
st

ep
s)

σ
2 0

B
2

σ
2 0

σ
4 0

B
4

C
2
,3
,4

σ
r 1

σ
4

σ
1 3

σ
1 0

σ
0

B
1

B
0

w
ri

te
(1

)
rd

1
→

1

@

σ
1 0

σ
3 0

σ
3 3

σ
0

B
3
,5
@ rd

2
3
4

@
p
r 0
∼
w
r4

(b
)
p
rC 1

(e
x
te

n
d

s
@
p
r 0
�
w
r4

)

σ
2 0

B
2

σ
2 0

σ
4 0

σ
4 2

B
4

σ
1 0

σ
3 0

σ
3 3

B
3
,5

C
3
,4

σ
r 1

σ
r 2

σ
1 0

B
1

B
0

σ
2 2

w
ri

te
(1

)
rd

2
→

1
rd

1

C
2

σ
4

@
w
r2

rd
1
2
3
4

σ
1 3

(c
)
p
r 2

ex
te

n
d

s
∆
p
r 1

(∆
p
r 2

fr
om

p
r 2

)

C
2

σ
1 0

σ
3 0

σ
3 3

B
3
,5

C
3
,4

σ
r 2

σ
1 0

σ
4

σ
r 1

B
1

B
0

w
ri

te
(1

)
rd

1
→

1

σ
2 0

σ
2 2

σ
0

B
2

@

σ
2 0

σ
4 0

σ
4 2

σ
0

B
4

@

rd
2
→

1

@
p
r 1

rd
1
3
4

σ
1 3

(d
)
p
rC 2

(e
x
te

n
d

s
@
p
r 1
�
p
r 1

)

σ
2 0

σ
2 2

B
2

C
2

σ
4 0

B
4

σ
4 2

σ
2 0

C
4

C
3

σ
r 2

σ
3 1

σ
3 0

σ
1 0

B
3

σ
3 1

σ
3 0

σ
1 0

B
5

σ
r 3

σ
4

σ
r 1

B
0

B
1

σ
1 0

@
@

w
r1

w
ri

te
(1

)
rd

1
rd

3
→

1
rd

2
rd

1
2
3
4

(e
)
p
r 3

ex
te

n
d

s
∆
p
r 2

(∆
p
r 3

fr
om

p
r 3

)

σ
2 0

σ
2 2

B
2

C
2

C
3

σ
4 0

B
4

σ
4 2

σ
2 0

C
4

σ
3 3

σ
3 1

σ
1 0

σ
1 0

B
5

σ
3 0

@

σ
3 3

σ
3 1

σ
1 0

σ
1 0

B
3

σ
3 0

@

σ
r 2

σ
r 3

σ
4

σ
r 1

B
1

σ
1 0

σ
1 3

@
@
p
r 2

B
0

w
ri

te
(1

)
rd

1
rd

2
→

1
rd

3
→

1
rd

1
2
4

(f
)
p
rC 3

(e
x
te

n
d

s
@
p
r 2
�
p
r 2

)

Figure 7.2: (Part 1) Instance of the proof with k � 4.

2The definition of skipping extends here from Sec. 7.3.

140 CHAPTER 7. COMPLEXITY OF ROBUST ATOMIC STORAGE

σ
2 0

σ
2 2

B
2

C
2

σ
4 0

B
4

σ
4 2

σ
2 0

C
4

C
3

σ
r 2

σ
3 1

σ
3 0

σ
1 0

B
3

σ
3 1

σ
3 0

σ
1 0

B
5

σ
r 3

σ
4

σ
r 1

B
0

B
1

σ
1 0

@
@

w
r1

w
ri

te
(1

)
rd

1
rd

3
→

1
rd

2
rd

1
2
3
4

(e
)
p
r 3

ex
te

n
d

s
∆
p
r 2

(∆
p
r 3

fr
o
m
p
r 3

)

σ
2 0

σ
2 2

B
2

C
2

C
3

σ
4 0

B
4

σ
4 2

σ
2 0

C
4

σ
3 3

σ
3 1

σ
1 0

σ
1 0

B
5

σ
3 0

@

σ
3 3

σ
3 1

σ
1 0

σ
1 0

B
3

σ
3 0

@

σ
r 2

σ
r 3

σ
4

σ
r 1

B
1

σ
1 0

σ
1 3

@
@
p
r 2

B
0

w
ri

te
(1

)
rd

1
rd

2
→

1
rd

3
→

1
rd

1
2
4

(f
)
p
rC 3

(e
x
te

n
d

s
@
p
r 2
�
p
r 2

)

σ
4

σ
r 1

σ
r 2

B
0

B
1

σ
1 0

@

σ
2 0

B
2

C
2

σ
3 1

σ
1 0

σ
3 0

B
3

w
ri

te
(1

)
rd

1
rd

2

C
3

C
4

σ
3 1

σ
1 0

σ
3 0

B
5

@

@

rd
3

rd
4
→

1

w
r0

B
4

σ
2 0

σ
4 0

rd
1
2
3
4

σ
r 3

σ
4 0

(g
)
p
r 4

ex
te

n
d

s
∆
p
r 3

(∆
p
r 4

fr
o
m
p
r 4

)

σ
2 0

σ
2 2

B
2

C
2

C
3

C
4

σ
4

σ
r 1

σ
r 2

B
0

B
1

σ
1 0

@
@

σ
3 1

σ
3 0

σ
1 0

σ
3 1

σ
3 0

σ
1 0

B
3

B
5

w
ri

te
(1

)
rd

1
rd

3
→

1
rd

2

B
4

σ
4 2

σ
4 0

σ
2 0
@

@
p
r 3

rd
4
→

1
rd

1
2
3

σ
r 3

σ
4 0

σ
2 0

(h
)
p
rC 4

(e
x
te

n
d

s
@
p
r 3
�
p
r 3

)

Figure 7.2: (Part 2). Instance of the proof with k � 4.

Read patterns

We first characterize a complete read rdl for 1 ¤ l ¤ k � 1. A complete rdl
skips (a) Ml�2 Y Pl�1 in round one and two, and (b) Ml�2 Y Cl�1 in round
three. Read rdk skipsMk�2 YPk�1. Observe that by equations 7.1, 7.2 and
7.3, a read skips exactly tk objects in each round.

7.4. THE WRITE LOWER BOUND 141

Consider the example in Figure 7.2. Complete reads rd1, rd2 and rd3 skip
(respectively): (a) tB2,4u, tB0uYtB3,5u and tB0,1uYtB4u in rounds one and
two, and (b) tC2,3,4u, tB0u Y tC3,4u and tB0,1u Y tC4u in round three. Read
rd4 skips tB0,1,2, C2u Y tB5u.

We further define three types of incomplete reads inc1, inc2 and inc3,
depending on the read’s progress. For 1 ¤ l ¤ k, read rdl is of type inc1 if the
first round is not terminated and skips all blocks except Pl. For 1 ¤ l ¤ k�1,
read rdl is of type (a) inc2 if the first round is terminated, and the second
round is not terminated and skips all blocks except Cl, and (b) inc3 if the
second round is terminated and the third round is not terminated and skips
Ml�2 Y Cl�1 Y Pl�1.

Consider our example in Figure 7.2 (c) that illustrates partial run ∆pr2
(after deleting the crossed out steps). Observe that (a) rd2 is incomplete of
type inc3 (its third round skips tB0uYtC3,4uYtB3,5u), (b) rd1 is incomplete
of type inc2 (its second round skips all blocks except tC2,3,4u) and (b) rd3
(resp., rd4) is incomplete of type inc1 ; its first round skips all blocks except
tB3,5u (resp., tB4u).

Towards a contradiction, we construct a partial run of the atomic register
implementation I that violates atomicity. More specifically, we exhibit a
partial run in which some read returns a value that was never written.

Initialization

Consider a partial run prinit in which (a) all blocks are correct and (b) prinit
extends the empty run by appending incomplete reads rdl by rl of type inc1,
for 1 ¤ l ¤ k, one after the other. In prinit, there is no write operation. We
refer to the state of each correct block BL P Pl after replying to rdl as σl

0.
Thus, the state of Bl at the end of prinit corresponds to σl

0 for 1 ¤ l ¤ k.
Further, Bk�1 is in state σk�1

0 . To see why, note that Bk�1 and Bk�1 have
the same parity and there are only k reads.

Consider our example Figure 7.2 (a). At the end of prinit, block B1 (resp.,
B2; B3,5; B4) replied to rd1 (resp., rd2; rd1 and rd3; rd2 and rd4); thus, at
the end of the run its state is σ1

0 (resp., σ2
0; σ3

0; σ4
0).

Partial writes

We extend prinit to a partial run wrk by appending a complete write(1) that
completes in k rounds and skips superblock C1. Moreover, we define a series
of partial runs each being a prefix of wrk. For 1 ¤ i ¤ k, let wrk�i be the
partial run which extends prinit by appending an incomplete write(1) such
that (i) round 1 to k � i are terminated and (ii) round k � i � 1 is not

142 CHAPTER 7. COMPLEXITY OF ROBUST ATOMIC STORAGE

terminated and skips C1 and all Bj’s such that j ¡ 0 and i and j have the
same parity, i.e., C1YP2�pi mod 2q (Fig. 7.2 (a) and (c)). We refer to the state
of the blocks Bl P P2�pi mod 2q at the end of wrk�i as σl

k�i for 1 ¤ l ¤ k. If
Bk�1 P P2�pi mod 2q, then we refer to its state at the end of wrk�i as σk�1

k�i .
Note here that σl

k�i results from σl
0 by appending k � i rounds of the write.

When the context is clear, for simplicity we refer to these states using the
implicit notation σ�k�1. Finally, we refer to the state of B0 at the end of runs
wrk and wrk�1 as σk.

We refer to our example in Figure 7.2 (a),(c),(e) and (g) for illustrations
of the runs wr3 to wr0 and the corresponding states. For instance Figure 7.2
(a), illustrates wr3 as an extension of prinit. The states of the blocks B0, B1

and B3,5 at the end of wr3 are σ4 (4 rounds of write), σ1
3 and σ3

3 (3 rounds
of write).

Appending Reads

Partial run pr1 extends wrk�1 by appending the missing steps of a complete
read rd1. In pr1 all objects are correct and thus rd1 receives replies from
n� tk correct objects. After receiving the third round replies, rd1 completes
and returns value x. We now show that x � 1. We define a partial run @pr0,
(Fig. 7.2(b)) which is identical to wrk except that in @pr0 (a) no read by r1
occurs and (b) superblock P1 is malicious and mimics the occurrence of rd1
by forging its initial state to σ1

0. By equation 7.1, the malicious objects in
@pr0 amount to tk. Partial run prC1 (Fig. 7.2(b)) is defined as an extension
of @pr0 by appending a complete read rd1. Read rd1 cannot distinguish prC1
from pr1 because P1, which is malicious in prC1 , mimics pr1. Specifically, P1

forges its state to σ0 before replying to rd1’s first round, and then to σ�k�1

before replying to rd1’s second round. In prC1 , by atomicity rd1 returns 1.
Since prC1 and pr1 are indistinguishable to reader r1, x � 1.

Next, we define partial run ∆pr1 obtained from pr1 by deleting the steps
of the read and the write as illustrated in Figure 7.2 (a). More specifically,
∆pr1 extends wrk�2 by appending the missing steps of an incomplete read
rd1 of type inc3, after which rd1 crashes. In ∆pr1, M0 � tB0u is malicious
and forges its state to σk before replying to rd1. Observe that at the end of
pr1 and ∆pr1, every correct block is in the same state, except P2 . We refer
to the state of B1 at the end of ∆pr1 as σr

1.
Starting from ∆pr1 we iteratively define the following partial runs for

2 ¤ l ¤ k (see Fig. 7.2). Partial run prl extends ∆prl�1 by appending the
missing steps of a complete read rdl. In prl, superblock Ml�2 is malicious
and all other blocks are correct. Since rdl does not receive any messages from
Ml�2, it completes only on the basis of replies from correct objects (at least

7.4. THE WRITE LOWER BOUND 143

n � tk by equation 7.1). At the end of prl, rdl completes and returns value
x. To show that x � 1, we define a partial run @prl�1 which is identical to
prl�1 except that in @prl�1 (a) there is no read by rl and (b) in addition to
Ml�3, superblock Pl is malicious and forges its state to σl

0, simulating the
occurrence of rdl as in prl�1. The count of malicious objects in @prl�1 is
exactly tk. To see why, notice that by equation 7.1 and 7.2 the malicious
objects in @prl�1 amount to |

�
Pl| � |

�
Ml�3| � tk � tl�2 � tl�2 � tk.

Then, partial run prCl extends @prl�1 by appending rdl. Note that rdl
cannot distinguish prCl from prl because superblock Pl, which is malicious
in prCl , mimics prl. In particular, Pl forges its state to σ0 before replying to
rdl’s first round and then to σ�k�l before replying to rdl’s second round. By
atomicity, rdl returns 1 in prCl . Since prCl and prl are indistinguishable to
reader rl, x � 1.

Next, we define partial run ∆prl. For 2 ¤ l k, ∆prl is obtained from
prl by deleting steps of rdl, rdl�1 and the write (see Fig. 7.2 (c) and (e)). In
∆prl, superblock Ml�1 is malicious, all other block are correct, and blocks
tBl�1, Cl�1u PMl�1 forge their state to σr

j before replying to rdl.
3 In more

detail, ∆prl extends wrk�l�1 by appending the missing steps (a) of incomplete
reads rd1, . . . , rdl�1 of type inc2, and (b) of an incomplete rdl of type inc3.
B0 forges its state to σk before replying to rd1 and for 1 ¤ j ¤ l�1, tBj, Cju
forge their state to σr

j before replying to rdj�1. Observe that at the end of
prl and ∆prl, every correct block is in the same state, except Pl�1. We refer
to the state of tBl, Clu at the end of ∆pr1 as σr

l .
Finally, partial run ∆prk is obtained analogously from prk, except that in

∆prk, (a) no write is invoked and (b) read rdk is complete and skipsMk�2Y
Pk�1 (see Fig. 7.2 (g) for k � 4). In particular, in ∆prk, Mk�1 is malicious
and blocks tBk�1, Ck�1u P Mk�1 forge their state to σr

k�1 before replying
to rdk. By equation 7.1 the malicious objects amount to |

�
Mk�1| � tk.

Partial runs prk and ∆prk differ only at Pk�1, and rdk completes without
receiving any message from Pk�1. Thus, rdk cannot distinguish ∆prk from
prk and returns 1 in ∆prk, a contradiction, as no write was invoked.

Lemma 36. : If n ¤ 3t � 1 and every read completes in three rounds then
no write implementation I of a multi-reader (MRSW) atomic register exists
that completes in mintR, tlogprp3t� 1q{2squu rounds.

Proof. Let k � mintR, tlogprp3t � 1q{2squu, i.e., R ¥ k and k ¤ tlogprp3t �
1q{2squ. By Lemma 35, there exists no optimally resilient k-reader atomic
register implementation with tk � tk�1 � 2tk�2 � 1 faulty objects, where

3The states are different and are indexed by the object’s id, which for simplicity of
presentation is made implicit.

144 CHAPTER 7. COMPLEXITY OF ROBUST ATOMIC STORAGE

the read completes in three rounds and the write completes in k rounds.
Observe that this is valid even with R ¥ k readers and t ¥ tk faults. Writing
tk in closed form results in tk �

1
6
p2k�2 � p�1qk � 3q. Thus, we have that

t ¥ 1
6
p2k�2 � p�1qk � 3q. Solving for k results in k ¤ tlogprp3t� 1q{2squ.

Finally, we generalize our result to a resilience of 3t � tt{tku for t ¥ tk,
proving Proposition 2.

Proof. Without loss of generality we can assume that t ¥ tk because every
implementation is subject to the resilience lower bound of n ¥ 3t � 1. The
observation is that if we multiply each of the blocks in the proof of Lemma 35
with a constant c, then the result holds for n1 � cn � 3ctk � c objects and
ctk faults. By carefully choosing c � t{tk, we obtain a lower bound proof for
n1 � 3t� tt{tku and t faults.

7.5 Summary of the Results

In this chapter, we have shown that no multiple-reader single-writer (MRSW)
robust atomic storage implementation exists if (a) read operations complete
in less than four communication round-trips (rounds), and (b) the time com-
plexity of write operations is constant.

However, we observe that a matching implementation can simply be ob-
tained by (a) reusing the MRSW regular storage implementation of [GV06]
which features the worst-case time complexity of 2 rounds for both reads
and writes, and (b) transforming it to the MRSW atomic implementations
using a standard MRSW regular to MRSW atomic transformation technique
[Lyn96, AW98]. In short, this transformation employs R�1 regular registers,
one dedicated to the writer and R additional ones, one per reader, in which a
given reader writes back the read value. This yields a sought MRSW atomic
implementation in which write operations complete in 2 rounds whereas reads
complete in 4 rounds.

Furthermore, in the stronger unauthenticated model enhanced with se-
cret values (see Chapter 6), the regular storage of [GV06] can be replaced in
the above transformation with the corresponding time-optimal regular im-
plementation, yielding a 2-round write 3-round read atomic storage, which is
optimal in this model. In both models, multi-writer atomic storage can be im-
plemented by applying the standard transformations further [Lyn96, AW98].

In summary, we present two lower bounds. The first is a read lower
bound stating that three rounds of communication are necessary to read
from a MRSW robust atomic storage. The second is a write lower bound,
showing that Ωplogptqq write rounds are necessary to read in three rounds

7.5. SUMMARY OF THE RESULTS 145

from such a storage. Our results close a fundamental gap: we show that
time-optimal, 2-round write 4-round read (resp. 3-round read in the secret
value model) robust atomic storage can be obtained using well-known trans-
formations from regular to atomic storage and existing time-optimal regular
storage implementations.

146 CHAPTER 7. COMPLEXITY OF ROBUST ATOMIC STORAGE

Chapter 8

Conclusion

This thesis investigated the cost in terms of time complexity of implement-
ing consensus and read/write storage, two fundamental abstractions in dis-
tributed computing. These primitives are essential for implementing reliable
services and data storage in distributed systems. The thesis’ results consist
of improved consensus algorithms tolerating crash failures, and enhanced
distributed storage implementations resilient to Byzantine failures. The pre-
sented algorithms provide optimal resilience and/or optimal complexity. We
now briefly summarize our contributions and outline a few open directions
for future exploration.

One-step Consensus with Zero-Degradation One-step decision and
zero-degradation are key efficiency properties of indulgent consensus imple-
mentations. They express the ability to reach consensus in a single step when
all proposals are equal, yet to gracefully degrade to two steps in stable execu-
tions, which is optimal. We investigated if these properties are incompatible
and showed that they cannot be both satisfied using the Ω failure detector.
Then, we proposed two approaches and corresponding protocols, to circum-
vent the impossibility. The first approach relaxes one-step decision to hold
only in stable runs. The second approach assumes the strictly stronger 3P
failure detector. Further we have devised a consensus-based atomic broad-
cast implementation, that using our consensus protocols is optimal, requiring
two communication steps in the absence of collisions, and three in the com-
mon case. We have compared our algorithms with Paxos both analytically
and experimentally. The results of the experiments confirm the efficiency of
our protocols for low to medium load, i.e., when only few collisions occur.
However, with increasing load, Paxos performs better. This is justified by
the high message overhead generated by our protocols relative to Paxos.

We have identified two possible open problems mainly of theoretical inter-

147

148 CHAPTER 8. CONCLUSION

est. One would be to generalize our lower bound also for values of f tn{4u.
Another open question is if �P is also the weakest failure detector that en-
ables one-step decision and zero-degradation.

Generalized Consensus and Hybrid Paxos We have devised Hybrid
Paxos, a generalized consensus protocol resilient to crash failures, matching
all known lower bounds on latency, resilience and messages. The core idea of
Hybrid Paxos is to enhance Classic Paxos with fast learning capabilities, yet
without overloading the leader process, which easily becomes the bottleneck.
Hybrid Paxos is to our knowledge the first generalized consensus protocol
that attains the optimal latency (a) of two message delays in the absence
of collisions caused by interfering commands and (b) of three message de-
lays in the common case. Moreover, our implementation exhibits optimal
resilience and optimal messages. We have shown that generalized consensus
is a practical approach to replication in a WAN by means of a simple banking
application. Our experimental results demonstrate that HP can outperform
state of the art protocols.

With Generalized Paxos and Hybrid Paxos as well, fast learning is pos-
sible only if a fast quorum exists consisting of rn�f�1

2
s acceptors, which is

strictly larger than a majority quorum. An extension of Hybrid Paxos, in
which fast quorums are predefined, in the flavor of [GR04], would allow fast
learning with quorums consisting of as few as rn�1

2
s acceptors. In practice,

this would be a viable alternative to our approach, albeit under the additional
assumption that the set of responsive acceptors does not ”jump around” too
fast, for instance as required by [LM04].

Robust Amnesic Storage We have presented amnesic algorithms that
robustly implement a shared register from storage objects prone to Byzantine
failures. We have shown that two rounds of communication with the base
objects are sufficient for reading from amnesic robust storage with optimal
resilience. Our result is optimal, matching the two-round lower bound proved
in [GV06]. Also we have devised the first fast implementation of robust and
amnesic storage, i.e., one in which both reads and writes complete in one
communication round. Our algorithm from 4t � 1 base objects is optimal:
with 4t base objects, both the read and the write operations require at least
two communication rounds as previously shown in [ACKM06, GV06].

Our results provide a first (theoretical) step towards space efficient ro-
bust storage algorithms. For the deployment in a real distributed storage
environment, many problems still need to be addressed. For instance, in the
optimally-resilient case, the write operation needs three rounds of communi-

149

cation with the servers, whereas the optimal number is two rounds.

Secondly, our algorithms implement only a single-reader register. A
straightforward construction of a multiple-reader register can be realized us-
ing m copies of the single-reader register, one for each reader. In a distributed
setting, the writer accesses all copies in parallel, whereas the reader accesses
a single copy. Although correct, this construction is highly inefficient, be-
cause the writer has to store each value m times. Here, the challenge is to
devise protocols which are more efficient in terms of bandwidth and space
usage.

To further improve the throughput and the memory consumption at the
servers, our algorithms could be combined with the powerful approach of
erasure coding. Instead of storing a complete copy of the data, each server
holds a share, such that the original data can be reconstructed from enough
servers’ portions. Existing practical distributed storage systems utilizing
erasure coding are either not amnesic or they are not robust. Specifically,
in [HGR07], read operations are guaranteed to terminate only in the absence
of contention.

Some of the prior amnesic (but not robust) register implementations as-
sume that the readers cannot modify the server state, e.g. [ACKM06]. This
assumption results in implementations that possess several properties that
could be valuable in practice, for instance the ability to tolerate any number
of malicious readers while using only Op1q memory at the servers. We are
not aware of any robust implementation supporting that as well, and in fact,
our algorithms are not an exception. We leave as an open problem the ques-
tion whether robust and amnesic register implementations exist, that would
support any number of readers while using only Op1q memory at the servers.

Robust Storage with Secret Tokens We have devised robust algorithms
that close the existing complexity gap between unauthenticated storage and
storage relying on self-verifying data.

The algorithms presented effectively circumvent lower bounds established
for unauthenticated data storage by means of secret tokens. The first al-
gorithm supports unbounded readers and two-rounded reads. The second
algorithm features fast reads. Even if the secrecy assumption of the token
is violated, both algorithms are gracefully degrading. The first algorithm
fully preserves regularity and the second algorithm never blocks and never
returns a forged value. Moreover, the probability that the properties of our
algorithms are violated is negligibly small if the token space is large enough.
The algorithms are secure against a computationally unbounded adversary
because tokens are random and thus cannot be computed.

150 CHAPTER 8. CONCLUSION

Our algorithms are non-amnesic, requiring base objects to store all the
values they receive from the writer. If readers do not write, storing less
values is an open problem [CGK07]. Although some very practical storage
systems [GWGR04] rely on the same assumption, this might raise issues of
storage exhaustion and needs careful garbage collection.

The second algorithm supporting fast reads relies on readers writing into
the base objects. Thus, an arbitration mechanism between reader and writer
as shown in Chapter 5 could be employed to obtain an amnesic algorithm.
However, we observe that the arbitration relies on having the readers incre-
ment a safe counter, which implies writing to at least a safe register. However,
we know that writing to a safe register with optimal resilience takes at least
two rounds [ACKM06]. Hence, it remains an interesting open problem if a
robust amnesic algorithm supporting fast read operations exists at all.

Robust Atomic Storage Complexity We have shown two lower bounds
on the time complexity of robust atomic storage, where by robust we mean
algorithms that wait-free implement a storage tolerating the largest number
of Byzantine base object failures (i.e. optimal resilience).

The first result is a read lower bound stating that no multiple-reader
robust atomic storage implementation exists if read operations complete in
two communication rounds. The second is a write lower bound, showing
that Ωplogptqq write rounds are necessary to read in three rounds from such
a storage. Our results close a fundamental gap: we show that time-optimal,
2-round write 4-round read (resp. 3-round read in the secret value model
(Chapter 6)) robust atomic storage can be obtained using well-known trans-
formations from regular to atomic storage and existing time-optimal regular
storage implementations.

We observe that a matching implementation can simply be obtained by
(a) reusing the MRSW regular storage implementation of [GV06] which fea-
tures the worst-case time complexity of 2 rounds for both reads and writes,
and (b) transforming it to the MRSW atomic implementation using a stan-
dard regular to atomic transformation technique [Lyn96, AW98]. This yields
the sought MRSW atomic implementation in which write operations com-
plete in 2 rounds whereas reads complete in 4 rounds.

Furthermore, in the stronger authentication model that allows for secret
values (Chapter 6), the regular storage described in [GV06] can be replaced
in the above transformation with the corresponding regular implementation
from Chapter 6. The result is a 2-round write 3-round read atomic storage,
which is optimal in this model. In both models, multi-writer atomic stor-
age can be implemented by applying the standard transformations further

151

[Lyn96, AW98].
One possible avenue for future research would be to devise an algorithm

that matches our write lower bound, i.e., an algorithm that supports three-
rounded read operations with Oplogptqq write rounds. Note that the practical
relevance of such an algorithm would be limited, unless the number of write
rounds can be described as a function of the bound on malicious faults.
Then, such an algorithm could be applicable to systems designed to support
a small fraction of malicious faults, yet a large number of benign faults.

From a practical viewpoint, it would be interesting to explore ways to
circumvent the read lower bound (stating that three read rounds are neces-
sary), by ways of additional assumptions. We believe that hiding a secret
token from the adversary, e.g., by employing a hash function, and then re-
vealing the secret later, would help atomic reads to complete in two rounds in
the worst case. This would be in line with the complexity of atomic storage
relying on self-verifying data and that of crash-tolerant atomic storage.

152 CHAPTER 8. CONCLUSION

Appendix A

Computing Digests of Large
Histories

In this section we show how to efficiently compute the digest of a large his-
tory. We describe an algorithm based on incremental hashing that leverages
knowledge about the application, illustrated in Figure A.1. The application
considered is the banking example described in Section 4.5.1.

Recall that, our banking system provides two command types: deposit
and withdraw. Commands of type withdraw are not commutable with any
other command and deposit commands commute with each other. The de-
scription of HP in section 4.4 abstracts away the details of the command
history data structure to simplify the presentation. The command history
type maintains the following attributes: a type field to distinguish between
a classic and fast history, a cache field which stores for each command the
digest of the history up to that command and the field digest, used to store
the history digest. The digest field consists of an incremental hash value of
the history (described below). The history type has the additional appli-
cation specific field Deposit, which is an ordered queue containing deposit
commands.

Since commands of type withdraw are not commutable with any other
command, for every withdraw command w in a command history h we can
distinguish between commands which are ordered before or after w in h.
To compute incremental history digests for history h using historyDigest

the idea is the following: the digest of the history up to the last withdraw
command w appended to history h is maintained in h.digest. For any deposit
command d appended after w and before the next withdraw command, the
history up to d is completely determined by the history up to w. This
is true because it subsumes all operations that must be ordered before d.
Thus, the digest of d can be computed incrementally as Hph.digest � d.idq

153

154 APPENDIX A. COMPUTING DIGESTS OF LARGE HISTORIES

(line 7), where � is the concatenation operator and d.id is the command
identifier. When the next withdraw command w1 is appended, h.digest is
updated. The new digest of h up to w1 depends on h.digest (which is the
digest of h up to w) and all deposit commands which are appended to h
between w and w1. Such commands d1, d2, . . . are collected in the ordered
queue Deposit (Whenever a digest for a deposit command is computed, the
command is added to Deposit in line 6). Therefore, h.digest is updated with
Hph.digest � d1.id � d2.id � . . . � w

1.idq (line 10) and Deposit (lines 8–9) is
cleared.

Additionally, when a digest for command c is computed, c and the cor-
responding digest are added to h.cache (line 12). When the historyDigest

function is called for a classic history h and an entry for c is contained in
h.cache (line 3), the corresponding digest is directly returned without any
computation (line 4).

tmp type string, initially empty1

digest type byte array, initially empty2

if3

history.cache.containspcmd.idq ^ history.type � classic
then

return history.cache.getpcmd.idq; /* return digest4

from cache */

/* construct digest incrementally */

if cmd.type � deposit then5

history.Deposit.pushpcmd.idq6

digestÐ Hphistory.digest � cmd.idq7

else
/* withdraw command */

while history.Deposit � H do8

tmpÐ tmp � history.Deposit.poppq9

digestÐ Hphistory.digest � tmp � cmd.idq10

history.digestÐ digest11

history.cache.putpcmd.id, digestq /* cache history digest12

*/

return digest13

Figure A.1: Function historyDigest(cmd, history)

Appendix B

Read Lower Bound (The
Hybrid Model)

In this section we prove the result of Section 7.3 correct in the hybrid model
of [TP88], where at most b out of t objects may be malicious and the rest of
t� b are simple crash failures. Here we assume b ¡ 0.

Proposition 3. : If n ¤ 2t � 2b and R ¡ 3, then no read implementation
I of a multi-reader (MRSW) atomic register exists that completes in two
rounds.

Preliminaries. In the proof w denotes the writer, ri for 1 ¤ i ¤ 4 denote
the readers, and si for 1 ¤ i ¤ S denote the objects. Suppose by contra-
diction that R � 4 and there is an atomic register implementation I that
uses at most 2t � 2b objects, such that in every partial run of I every read
operation completes in two communication rounds.

We partition the set objects into six disjoint subsets (which we call blocks),
denoted Bi for 1 ¤ i ¤ 4 each of size at most b ¥ 1, and Cj for 1 ¤ j ¤ 2
each of size t� b. Since, |BiYCj| ¤ t all objects in BiYCj may fail together.
Throughout the proof, the blocks Bi fail Byzantine and Cj fail by crashing.

Without loss of generality we can assume that S ¥ 2t� 2 because every
implementation I must conform to the resilience lower bound of S ¥ 2t �
b � 1 [MAD02] (recall that we assume b ¥ 1). Hence, we can assume that
the blocks Bi contain at least one object. If b � t, then the blocks C1 and
C2 are empty. We refer to the initial state of every correct block Bj as σj

0.
For simplicity we simply write σ0, where the block name is implicit.

We say that a round rnd of an operation op skips a set of blocks BS
in a partial run, (where BS � tB1, . . . , B4, C1, C2u), if (1) no object in any
block BL P BS receives any message in round rnd from op in that partial

155

156 APPENDIX B. READ LOWER BOUND (THE HYBRID MODEL)

run, (2) all other objects receive all messages in round rnd from op and reply
to the messages (3) in case round rnd is terminated, the invoking client has
received all these reply messages or, in case rnd is not terminated, all these
reply messages are in transit. We say that an operation op skips a set of
blocks BS in a partial run if every round of op skips BS.

To show a contradiction, we construct a partial run of the implementation
I that violates atomicity: a partial run of I in which no value is ever written
and some read returns 1.

Partial writes.

The initial value of the register is K. Throughout the proof there is only one
write operation write(1) by w that writes value 1. Consider a partial run wr
in which w completes write(1) on the register. Let k be the number of rounds
invoked by w in wr. We denote the state of every correct block Bj after Bj

has replied to the messages of the write during round 1 to i where 1 ¤ i ¤ k,
as σj

i . For simplicity we refer to σj
i as σi. The write operation skips blocks

tB4, C2u. We define a series of partial runs containing an incomplete write(1)
invocation, each being a prefix of wr. For 1 ¤ i ¤ k, we define wri1 as the
partial run in which (1) rounds 1 to i skip tB4, C2u, (2) rounds 1 to i � 1
are terminated and round i is not terminated, and (3) all objects are correct.
For 1 ¤ i ¤ k and 2 ¤ j ¤ 4, we define wrij as the partial run in which
(1) rounds 1 to i � 1 are terminated and skip tB4, C2u, (2) round i is not
terminated and skips blocks tB1, . . . , B4, C1, C2uztBl | j ¤ l ¤ 3u. and (3)
all objects are correct. We make two simple observations: (1) partial run
wrk1 differs from wr only at w and (2) partial run wr14 differs from a run in
which write(1) is never invoked only at w.

write(1) rd1

B4

...B2

...C1

...

...B3

B1@ σk−1

k − 1 k

C2

(a) pr1 � ∆pr1

write(1) rd2rd1

B4

B1
...

C1
...

B3

B2
...

...
σk−1@

σk−1

k − 1 k

C2

(b) pr2 � ∆pr2

write(1) rd2rd1 rd3

B4

B1
...

C1
...

B3

B2
...

...
σk−1

@

σr
1

σk−1

σk−1

k − 1 k

C2

(c) pr3 � ∆pr3

Figure B.1: Runs used in the proof of Proposition 3 (Setup)

157

write(1) rd4rd3rd2rd1

B1
...

C1
...

B2
...

...B3

σr
4i−3

σk−i

σk−i

σr
4i−2σk−i

σ0

C2

B4@

k − i

(a) pr4i

write(1) rd3rd2 rd4

B2
... σk−i

B4

B1
...

...B3

@ σr
4i−2

σk−i

k − i

C1
...

C2

(b) ∆pr4i

write(1) rd4 rd1rd2 rd3

B4

B2
... σk−i

B1
...

...B3

@ σr
4i−2

σk−i

σk−i−1

σr
4i−1

k − i

C2

C1
...

(c) pr4i�1

write(1) rd4 rd1rd2 rd3

B4

C2

...B1

...B1

B2
...

...B3 σk−i

σk−i−1

σr
4i−1@

k − i

(d) ∆pr4i�1

σr
4i

write(1) rd1 rd2rd3 rd4

B4

...B1

...C1

B2
...

...B3

@ σk−i−1

σk−i−1

k − i

σk−i

σr
4i−1

C2

(e) pr4i�2

σr
4i

B4

...B1

...C1

B2
...

...B3@
σk−i−1

σk−i−1

k − i

C2

write(1) rd1 rd2rd4

(f) ∆pr4i�2

write(1) rd2 rd3rd4 rd1

...B1

...C1

B4

B2
...

...B3@ σr
4i

σr
4i+1

σk−i−1

σk−i−1

σk−i−1

k − i

C2

(g) pr4i�3

B2
...

C1
...

...C2

...

B4

B1

σr
4i+1@

σk−i−1

σk−i−1

σk−i−1

k − i

...B3

write(1) rd2 rd3rd1

(h) ∆pr4i�3

Figure B.2: Runs used in the proof of Proposition 3

158 APPENDIX B. READ LOWER BOUND (THE HYBRID MODEL)

Block diagrams.

We illustrate the proof in Figures B.1 and B.2. We depict a round rnd of
an operation op through a set of rectangles arranged in a single column. In
the column corresponding to some round rnd of op we draw a rectangle in
a given row, if all objects in the corresponding block BL have received the
message from the client in round rnd of op and have sent reply messages, i.e.,
if round rnd of op does not skip BL. We write “@” in the row corresponding
to BL iff BL is malicious.

Appending reads.

Partial run pr1 extends wr by appending a complete read rd1 by r1 that
skips tB2, C1u in round one and tB1, C1u in round two (see Figure B.1 (a)).
In pr1, all objects in block B1 are malicious, and forge their state to σk�1

before replying to rd1. By atomicity rd1 returns 1. Observe that r1 cannot
distinguish pr1 from some partial ∆pr1 that extends wrk2 by appending rd1,
and where all objects are correct.

Partial run pr2 extends ∆pr1 by appending a complete read rd2 by r2 that
skips tB3, C2u in round one and tB2, C1u in round two (see Figure B.1 (b)).
In pr2, all objects in block B2 are malicious, and forge their state to σk�1

before replying to rd2. By atomicity rd2 returns 1. Observe that r2 cannot
distinguish pr2 from some partial run ∆pr2, that extends wrk3 by appending
an incomplete rd1 and a complete rd2 and where all objects are correct (as
illustrated in Figure B.1 (b) after deleting the crossed steps).

Partial run pr3 extends ∆pr2 by appending a complete read rd3 by r3 that
skips tB4, C2u in round one and tB3, C2u in round two. In pr3, all objects in
block B3 are malicious, and forge their state to σk�1 before replying to rd3.
By atomicity rd3 returns 1. Let σr

1 denote the state of the objects in block
B4 in run pr3 before replying to rd2. Observe that r3 cannot distinguish
pr3 from some partial run ∆pr3, that extends wrk4 by appending incomplete
reads rd1 and rd2 and a complete read rd3 and in which (1) all objects in B4

are malicious and (2) they forge their state to σr
1 before replying to rd2 (as

shown in Figure B.1 (c) after deleting the crossed steps). Note that since r3
cannot distinguish pr3 and ∆pr3, it cannot wait for more replies in order to
complete. More precisely, rd3 completes in ∆pr3 (resp. pr3) the first (resp.
second) round based on replies only from correct objects (at least S � t).

Partial run pr4 (illustrated in Figure B.2 (a)) extends ∆pr3 by appending
a complete read rd4 by r4 that skips tB1, C1u in round one and tB4, C2u
in round two. In pr4, all objects in block B4 are malicious and forge their
state (1) to σr

1 before replying to rd2 and (2) to σ0 before replying to rd4.

159

By atomicity rd4 returns 1. Let σr
2 denote the state of the objects in block

B1 before replying to rd3. Observe that r4 cannot distinguish pr4 from some
partial run ∆pr4, that extends wrk�1

1 by appending incomplete reads rd2, rd3
and a complete read rd4, and in which (1) all objects in B1 are malicious and
(2) they forge their state to σr

2 before replying to rd3 (see Figure B.2 (b)).
Since r4 cannot distinguish pr4 and ∆pr4, rd4 cannot wait for additional
replies in order to complete, without violating termination. To see why,
notice that in run ∆pr4 (resp pr4), rd4 receives first (resp. second) round
replies from S � t correct objects.

After appending rd4 and constructing ∆pr4 by deleting all steps from pr4
which are not “visible” to rd4, we notice that we have erased all steps in
column k of write(1) as well as, deleted all steps of rd1. Thus, we can recycle
r1 by appending rd1 again and start deleting the steps in column k � 1.

Starting from ∆pr4 we iteratively define the following partial runs for
1 ¤ i ¤ k � 1 and 1 ¤ j ¤ 4 (depicted in Figure B.2 (a)-(h)). Partial run
pr4i�j extends ∆pr4i�j�1 by appending rdj. In pr4i�j, all objects in block
Bj are malicious and they forge their state (1) to σr

4i�pj�3q before replying

to rdj�2
1 and (2) to σppj mod 4q{jqpk�i�1q before replying to rdj. Let σr

4i�pj�2q

denote the state of the objects in block Bpj mod 4q�1 before replying to rdj�1.
Observe that rj cannot distinguish pr4i�j from some partial run ∆pr4i�j,
that extends wrk�i

pj mod 4q�1 by appending incomplete reads rdj�2 and rdj�1

and a complete read rdj, and in which (1) all objects in Bpj mod 4q�1 are
malicious, and (2) they forge their state to σr

4i�pj�2q before replying to rdj�1

(see Figure B.2 (b),(d),(f),(h)). Since rj cannot distinguish ∆pr4i�j and
pr4i�j, rdj cannot wait for additional replies, because in run ∆pr4i�j and
pr4i�j, rdj receives first and second round replies respectively from S � t
correct objects.

Read rd4 in ∆pr4 returns 1. Since pr5 extends ∆pr4 by appending rd1, by
atomicity, rd1 in pr5 returns 1. However, as r1 cannot distinguish pr5 from
∆pr5, rd1 in ∆pr5 returns 1. In general, since pr4i�j extends ∆pr4i�j�1 by
appending rdj (for 1 ¤ i ¤ k � 1 and 1 ¤ j ¤ 4), and rj cannot distinguish
pr4i�j from ∆pr4i�j, it follows by induction that rdj in ∆pr4i�j returns 1. In
particular, rd3 reads 1 in ∆pr4k�1. By our construction, ∆pr4k�1 extends wr14
and wr14 is indistinguishable from a run in which write(1) is never invoked.
Hence, rd3 returns 1 even if no write is invoked, violating atomicity.

1Please note that when we write rdj�c, we always mean rd4�ppc�jq mod 4q.

160 APPENDIX B. READ LOWER BOUND (THE HYBRID MODEL)

List of Figures

1.1 Time complexity (Latency) . 6

3.1 Illustration of the lower bound proof. 39
3.2 The L-Consensus Algorithm 41
3.3 The P-Consensus Algorithm 46
3.4 The C-Abcast Algorithm . 49
3.5 C-Abcast using L-/P-Cons. vs. WABcast (n � 4) 52
3.6 C-Abcast using L-/P-Cons. (n � 4) vs. Paxos (n � 3) 52

4.1 Paxos message patterns . 57
4.2 Improvement factor of GP over CP and vice versa 59
4.3 HP message pattern . 63
4.4 Latency versus withdraw rate 68
4.5 Latency versus throughput . 69
4.6 Average latency under a changing load (B = 20) 70
4.7 Latency CDF under a changing load (B = 20) 70
4.8 Latency versus throughput (B = 20) 71
4.9 Latency vs. withdraw rate . 71
4.10 Latency as f increases (20 clients) 72
4.11 Throughput as the number of clients increases 73
4.12 Throughput as f increases . 73
4.13 Algorithm of Leader l . 74
4.14 Algorithm of the Acceptors 75
4.15 Algorithm of the Clients . 76
4.16 Function pickClassicHistory(1bSet) 76
4.17 Function pickFastHistory(1bSet) 77

5.1 Safe counter from 4t� 1 safe registers Yi P Integers. 89
5.2 Shared objects used by DMS. 91
5.3 Robust and amnesic storage algorithm DMS (4t� 1) 92
5.4 Correctness argument of the read implementation in DMS . . 93

161

162 LIST OF FIGURES

5.5 Shared objects used by the safe counter (3t� 1) 95
5.6 Safe counter algorithm (3t� 1) 97
5.7 Safe counter correctness argument 99
5.8 Robust and amnesic storage algorithm DMS3 (3t� 1) 100
5.9 Correctness argument of the read implementation in DMS3 . 101
5.10 The optimized DMS protocol (4t� 1) 104
5.11 Real-time ordering of read/write operations on base object i . 105
5.12 Optimized read operation . 106
5.13 Optimized write operation 107
5.14 Real-time ordering of read/write operations on base object i . 109

6.1 Algorithm of the writer. 115
6.2 Algorithm of the base objects. 115
6.3 Algorithm of the readers. 116
6.4 Illustration of the proof of Theorem 9 120
6.5 Algorithm of the writer. 122
6.6 Algorithm of the base objects. 124
6.7 Algorithm of the readers. 124

7.1 Illustration of the runs used in the proof of Proposition 1 . . . 135
7.2 (Part 1) Instance of the proof with k � 4. 139
7.2 (Part 2). Instance of the proof with k � 4. 140

A.1 Function historyDigest(cmd, history) 154

B.1 Runs used in the proof of Proposition 3 (Setup) 156
B.2 Runs used in the proof of Proposition 3 157

List of Tables

3.1 Comparison of various atomic broadcast protocols 51

4.1 WAN server layout (11 servers) 58

5.1 Distributed storage for unauthenticated data 86

163

164 LIST OF TABLES

Bibliography

[AAB07] Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A. Bazzi.
Bounded wait-free implementation of optimally resilient
byzantine storage without (unproven) cryptographic assump-
tions. In Proceedings of the 21st International Symposium on
Distributed Computing, pages 7–19, September 2007.

[ABD95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing
memory robustly in message-passing systems. Journal of the
ACM, 42(1):124–142, 1995.

[ACKM06] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia
Malkhi. Byzantine disk paxos: optimal resilience with byzan-
tine shared memory. Distributed Computing, 18(5):387–408,
2006.

[ACKM07] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia
Malkhi. Wait-free regular storage from byzantine components.
Inf. Process. Lett., 101(2), 2007.

[ACT98] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection
and consensus in the crash-recovery model. In Proc. of DISC,
pages 231–245, 1998.

[ACT00] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Fail-
ure Detection and Consensus in the Crash-Recovery Model.
Distributed Computing, 13, 2000.

[AEMCC�05] Michael Abd-El-Malek, William V. Courtright, II, Chuck Cra-
nor, Gregory R. Ganger, James Hendricks, Andrew J. Kloster-
man, Michael Mesnier, Manish Prasad, Brandon Salmon,
Raja R. Sambasivan, Shafeeq Sinnamohideen, John D.
Strunk, Eno Thereska, Matthew Wachs, and Jay J. Wylie.
Ursa minor: versatile cluster-based storage. In FAST’05:

165

166 BIBLIOGRAPHY

Proceedings of the 4th conference on USENIX Conference on
File and Storage Technologies, pages 5–5, Berkeley, CA, USA,
2005. USENIX Association.

[ASV06] Marcos K. Aguilera, Susan Spence, and Alistair Veitch. Olive:
distributed point-in-time branching storage for real systems.
In NSDI’06: Proceedings of the 3rd conference on Networked
Systems Design & Implementation, pages 27–27, Berkeley,
CA, USA, 2006. USENIX Association.

[AW98] Hagit Attiya and Jennifer Welch. Distributed Computing. Fun-
damentals, Simulations, and Advanced Topics. McGraw-Hill,
1998.

[Awe85] Baruch Awerbuch. Complexity of network synchronization.
Journal of the ACM, 32(4):804–823, October 1985.

[AWS] AWS Simple Storage Service. http://aws.amazon.com/s3/.

[BBC�04] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, and M. Wawrzoniak. Op-
erating system support for planetary-scale network services.
In Proc. of NSDI, pages 253–266, 2004. et al.

[BCBT96] A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable
links with unreliable links in the presence of process crashes.
In Proc. of WDAG, pages 105–122, 1996.

[BD04] Rida A. Bazzi and Yin Ding. Non-skipping timestamps for
byzantine data storage systems. In DISC, pages 405–419,
2004.

[BGMR01] Francisco V. Brasileiro, Fab́ıola Greve, Achour Mostéfaoui,
and Michel Raynal. Consensus in One Communication Step.
In PACT, 2001.

[BO83] Michael Ben-Or. Another advantage of free choice: Com-
pletely asynchronous agreement protocols (extended ab-
stract). In PODC, pages 27–30, 1983.

[CDH�06] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil
Sit, Hakim Weatherspoon, M. Frans Kaashoek, John Kubia-
towicz, and Robert Morris. Efficient replica maintenance for
distributed storage systems. In NSDI’06: Proceedings of the

BIBLIOGRAPHY 167

3rd conference on Networked Systems Design & Implementa-
tion, pages 4–4, Berkeley, CA, USA, 2006. USENIX Associa-
tion.

[CF98] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model. In Proc. of FTCS, 1998.

[CGK07] Gregory Chockler, Rachid Guerraoui, and Idit Keidar. Am-
nesic Distributed Storage. In Proceedings of the 21st Interna-
tional Symposium on Distributed Computing (DISC’07), 2007.

[CGKV09] Gregory Chockler, Rachid Guerraoui, Idit Keidar, and Marko
Vukolic. Reliable distributed storage. IEEE Computer,
42(4):60–67, 2009.

[CHT96] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg.
The Weakest Failure Detector for Solving Consensus. JACM,
43, 1996.

[Chu98] Francis Chu. Reducing Ω to 3W . Information Processing
Letters, 67, 1998.

[CKS09] Christian Cachin, Idit Keidar, and Alexander Shraer. Trusting
the cloud. SIGACT News, 40(2):81–86, 2009.

[CM05] Gregory Chockler and Dahlia Malkhi. Active disk paxos with
infinitely many processes. Distributed Computing, 18(1):73–
84, 2005.

[CMP06] Lásaro J. Camargos, Edmundo R. M. Madeira, and Fernando
Pedone. Optimal and practical wab-based consensus algo-
rithms. In Euro-Par, pages 549–558, 2006.

[CT96] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. JACM, (2):225–267, 1996.

[CT06] Christian Cachin and Stefano Tessaro. Optimal resilience for
erasure-coded byzantine distributed storage. In DSN ’06: Pro-
ceedings of the International Conference on Dependable Sys-
tems and Networks (DSN’06), pages 115–124, Washington,
DC, USA, 2006. IEEE Computer Society.

[DDS87] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On
the minimal synchronism needed for distributed consensus. J.
ACM, 34(1):77–97, 1987.

168 BIBLIOGRAPHY

[DG02] P. Dutta and R. Guerraoui. Fast indulgent consensus with
zero degradation. In Proc. of EDCC, pages 191–208, 2002.

[DG05] Partha Dutta and Rachid Guerraoui. The inherent price of
indulgence. Distrib. Comput., 18(1):85–98, 2005.

[DGK07] Partha Dutta, Rachid Guerraoui, and Idit Keidar. The Over-
head of Consensus Failure Recovery. Distributed Computing,
19(5-6), 2007.

[DGLC04] Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam
Chakraborty. How fast can a distributed atomic read be? In
Proceedings of the 23rd annual ACM symposium on Principles
of distributed computing, pages 236–245, July 2004.

[DGLV05] Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Marko
Vukolić. How Fast can a Distributed Atomic Read be? Tech-
nical Report LPD-REPORT-2005-001, 2005.

[DHJ�07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: amazon’s highly available key-value store.
In SOSP ’07: Proceedings of twenty-first ACM SIGOPS sym-
posium on Operating systems principles, pages 205–220, New
York, NY, USA, 2007. ACM.

[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the Presence of Partial Synchrony. Journal of the ACM,
35(2):288–323, April 1988.

[EGM�09] Burkhard Englert, Chryssis Georgiou, Peter M. Musial, Nico-
las C. Nicolaou, and Alexander A. Shvartsman. On the effi-
ciency of atomic multi-reader, multi-writer distributed mem-
ory. In Proceedings of the 13th International Conference on
Principles of Distributed Systems, pages 240–254, 2009.

[FL03] Rui Fan and Nancy Lynch. Efficient replication of large data
objects. In Proceedings of the 17th International Symposium
on Distributed Computing, pages 75–91, October 2003.

[FLP85] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of Distributed Consensus with One Faulty Process. Journal
of the ACM, 32(2):372–382, Apr 1985.

BIBLIOGRAPHY 169

[Gea] Geant2. Pan-european backbone network. Website.
http://www.geant2.net.

[GGK07] Seth Gilbert, Rachid Guerraoui, and Dariusz R. Kowalski.
On the message complexity of indulgent consensus. In DISC,
pages 283–297, 2007.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The google file system. SIGOPS Oper. Syst. Rev., 37(5):29–
43, 2003.

[GL06] Jim Gray and Leslie Lamport. Consensus on transaction com-
mit. ACM Trans. Database Syst., 31(1):133–160, 2006.

[GLV06] Rachid Guerraoui, Ron R. Levy, and Marko Vukolić. Lucky
read/write access to robust atomic storage. In Proceedings
of the International Conference on Dependable Systems and
Networks, pages 125–136, 2006.

[GNS09] Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A.
Shvartsman. Fault-tolerant semifast implementations of
atomic read/write registers. J. Parallel Distrib. Comput.,
69(1):62–79, 2009.

[GR04] Rachid Guerraoui and Michel Raynal. The Information Struc-
ture of Indulgent Consensus. IEEE Trans. Comput., 53(4),
2004.

[Gra78] Jim Gray. Notes on data base operating systems. In Operating
Systems, An Advanced Course, pages 393–481, London, UK,
1978. Springer-Verlag.

[Gue00] Rachid Guerraoui. Indulgent algorithms (preliminary ver-
sion). In PODC ’00: Proceedings of the nineteenth an-
nual ACM symposium on Principles of distributed computing,
pages 289–297, New York, NY, USA, 2000. ACM.

[GV06] Rachid Guerraoui and Marko Vukolić. How fast can a very ro-
bust read be? In Proceedings of the twenty-fifth annual ACM
symposium on Principles of distributed computing, pages 248–
257, New York, NY, USA, 2006. ACM.

170 BIBLIOGRAPHY

[GV07] Rachid Guerraoui and Marko Vukolić. Refined quorum sys-
tems. In Proceedings of the twenty-sixth annual ACM sympo-
sium on Principles of distributed computing, pages 119–128,
2007.

[GWGR04] Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and
Michael K. Reiter. Efficient byzantine-tolerant erasure-coded
storage. In DSN ’04: Proceedings of the 2004 International
Conference on Dependable Systems and Networks (DSN’04),
page 135, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[Hem05] Stephen Hemminger. Network emulation with netem. In Proc.
of LCA, 2005.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transac-
tions on Programming Languages and Systems, 13(1):124–149,
January 1991.

[HGR07] James Hendricks, Gregory R. Ganger, and Michael K. Reiter.
Low-overhead byzantine fault-tolerant storage. In SOSP ’07:
Proceedings of twenty-first ACM SIGOPS symposium on Op-
erating systems principles, pages 73–86, New York, NY, USA,
2007. ACM.

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir.
Obstruction-free synchronization: Double-ended queues as an
example. In ICDCS ’03: Proceedings of the 23rd Interna-
tional Conference on Distributed Computing Systems, page
522, Washington, DC, USA, 2003. IEEE Computer Society.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability:
a correctness condition for concurrent objects. ACM Trans.
Program. Lang. Syst., 12(3):463–492, 1990.

[JCT98] Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg.
Fault-tolerant wait-free shared objects. J. ACM, 45(3):451–
500, 1998.

[KR01] I. Keidar and S. Rajsbaum. On the Cost of Fault-Tolerant
Consensus When There Are No Faults – A Tutorial. SIGACT
News, 32(2):45–63, June 2001.

BIBLIOGRAPHY 171

[KS06] I. Keidar and A. Shraer. Timeliness, failure-detectors, and
consensus performance. In Proc. of PODC, pages 169–178,
2006.

[Lam78] L. Lamport. Time, Clocks and Ordering of Events in Dis-
tributed Systems. Communications of the ACM, 21(7):558–
565, July 1978.

[Lam86] Leslie Lamport. On interprocess communication. part II: Al-
gorithms. Distributed Computing, 1(2):86–101, 1986.

[Lam98] Leslie Lamport. The Part-Time Parliament. ACM Transac-
tions on Computer Systems, 16(2):133–169, May 1998.

[Lam03] Leslie Lamport. Lower bounds for asynchronous consensus.
In In Proc. FUDICO, pages 22–23. Springer, 2003.

[Lam05] Leslie Lamport. Generalized consensus and paxos. In MSR-
TR-2005-33, 2005.

[Lam06a] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–
103, 2006.

[Lam06b] Leslie Lamport. Lower bounds for asynchronous consensus.
Distributed Computing, 19(2), 2006.

[LM04] Leslie Lamport and Mike Massa. Cheap paxos. In DSN ’04:
Proceedings of the 2004 International Conference on Depend-
able Systems and Networks, page 307, Washington, DC, USA,
2004. IEEE Computer Society.

[LR89] Nancy A. Lynch and Mark R.Tuttle. An introduction to in-
put/output automata. CWI Quarterly, 2(3):219–246, 1989.

[LR06] Barbara Liskov and Rodrigo Rodrigues. Tolerating byzantine
faulty clients in a quorum system. In ICDCS ’06: Proceed-
ings of the 26th IEEE International Conference on Distributed
Computing Systems, page 34, Washington, DC, USA, 2006.
IEEE Computer Society.

[LS02] Nancy A. Lynch and Alexander A. Shvartsman. Rambo:
A reconfigurable atomic memory service for dynamic net-
works. In Proceedings of the 16th International Conference
on Distributed Computing, pages 173–190, London, UK, 2002.
Springer-Verlag.

172 BIBLIOGRAPHY

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease.
The Byzantine generals problem. ACM Transactions on Pro-
gramming Languages and Systems, 4(3):382–401, 1982.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann,
1996.

[MAD02] J-P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine
Storage. In Proceedings of the 16th International Symposium
on Distributed Computing (DISC 2002), LNCS 2508, pages
311–325, 2002.

[MJM08] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Men-
cius: Building efficient replicated state machine for wans. In
OSDI, 2008.

[MR98] D. Malkhi and M. Reiter. Byzantine Quorum Systems. Jour-
nal of Distributed Computing, 11(4):203–213, 1998.

[MR00] Achour Mostéfaoui and Michel Raynal. Low Cost Consensus-
based Atomic Broadcast. In PRDC, 2000.

[MR01] Achour Mostefaoui and Michel Raynal. Leader-based consen-
sus. Prallel Processing Letters, 11(1):95–107, 2001.

[MRR03] Achour Mostefaoui, Sergio Rajsbaum, and Michel Raynal.
Conditions on input vectors for consensus solvability in asyn-
chronous distributed systems. J. ACM, 50(6):922–954, 2003.

[PS02] F. Pedone and A. Schiper. Handling message semantics with
generic broadcast protocols. Distributed Computing, 15(2),
2002.

[PS03] Fernando Pedone and André Schiper. Optimistic Atomic
Broadcast: A Pragmatic Viewpoint. TCS, 291, 2003.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching Agreements
in the Presence of Faults. Journal of the ACM, 27(2):228–234,
April 1980.

[PSUC02] Fernando Pedone, André Schiper, Péter Urbán, and David
Cavin. Solving Agreement Problems with Weak Ordering Or-
acles. In EDCC, 2002.

BIBLIOGRAPHY 173

[RC05] H. V. Ramasamy and C. Cachin. Parsimonious Asynchronous
Byzantine-Fault-Tolerant Atomic Broadcast. In Proceedings of
the 9th International Conference On Principles Of Distributed
Systems (OPODIS-2005), LNCS 3974, pages 88–102, Decem-
ber 2005.

[Sch90] F. B. Schneider. Implementing Fault-Tolerant Services Using
the State Machine Approach: A Tutorial. ACM Computing
Surveys, 22(4):299–319, Dec 1990.

[Sch97] André Schiper. Early consensus in an asynchronous system
with a weak failure detector. Distrib. Comput., 10(3):149–
157, 1997.

[SFV�04] Yasushi Saito, Svend Frolund, Alistair Veitch, Arif Merchant,
and Susan Spence. Fab: building distributed enterprise disk
arrays from commodity components. SIGOPS Oper. Syst.
Rev., 38(5):48–58, 2004.

[SH02] Frank Schmuck and Roger Haskin. GPFS: A shared-disk file
system for large computing clusters. In Proceedings of the 1st
USENIX Conference on File and Storage Technologies, pages
231–244, Berkeley, CA, USA, 2002. USENIX Association.

[SPMO02] A. Sousa, J. Pereira, F. Moura, and R. Oliviera. Optimistic
total order in wide area networks. In Proc. of SRDS, pages
190–199, 2002.

[TP88] Philip M. Thambidurai and You-Keun Park. Interactive con-
sistency with multiple failure modes. In Symposium on Reli-
able Distributed Systems, pages 93–100, 1988.

[Tsu92] G. Tsudik. Message Authentication with One-Way Hash
Functions. ACM Computer Communications Review,
22(5):29–38, 1992.

[UDS01] Péter Urbán, Xavier Défago, and André Schiper. Neko: A
single environment to simulate and prototype distributed al-
gorithms. In ICOIN, 2001.

[vRS04] Robbert van Renesse and Fred B. Schneider. Chain replication
for supporting high throughput and availability. In OSDI’04:
Proceedings of the 6th conference on Symposium on Opearting

174 BIBLIOGRAPHY

Systems Design & Implementation, pages 7–7, Berkeley, CA,
USA, 2004. USENIX Association.

[WLS�03] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi
Guruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Ab-
hijeet Joglekar. An integrated experimental environment for
distributed systems and networks. In Proc. of OSDI, pages
255–270, 2003.

[Zie05] P. Zielinski. Optimistic generic broadcast. In Proc. of DISC,
pages 369–383, 2005.

Curriculum Vitae

Dan Dobre was born on the 24th November 1977 in Lugoj, Romania. He
completed the Natural Scientific Friedrich-Koenig Highschool in Würzburg,
Germany in summer 1997.

After the civilian service, in late fall 1998, Dan started his computer
science studies at TU Darmstadt, Germany. He graduated with distinction
and obtained his Masters (Dipl.-Inf) in summer 2004.

Late fall 2004, Dan joined the DEEDS group at TU Darmstadt and
started his doctoral studies under the supervision of Prof. Neeraj Suri. Dan
has won the highly competitive Microsoft Research PhD fellowship award,
including a complete funding of his research for three years (2005-2008). Dur-
ing this period, besides his work as researcher, Dan has served as teaching
assistant and as reviewer for several conferences and journals.

175

176 BIBLIOGRAPHY

	Introduction
	Context
	Consensus
	Distributed Storage
	On Time Complexity and Related Metrics

	Motivation
	Consensus Time Complexity and Open Questions
	Storage Time Complexity and Open Questions

	Contributions
	(C1) One-step Consensus with Zero-Degradation
	(C2) Generalized Consensus and Hybrid Paxos
	(C3) Optimal Robust Amnesic Storage
	(C4) Robust Storage using Secret Tokens
	(C5) Robust Atomic Storage Complexity

	Roadmap

	Preliminaries
	Model
	Consensus
	Traditional Consensus
	Failure Detectors
	The Atomic Broadcast Problem
	Spontaneous Total Order
	Revisiting Consensus in Lamport's Framework
	Generalized Consensus
	Complexity Measures

	Distributed Storage
	Register Types
	Time Complexity

	One-Step Consensus with Zero-Degradation
	Introduction
	Previous and Related Work
	Contributions

	Model
	The Lower Bound
	Circumventing the Impossibility with
	Detailed Description
	Correctness

	Circumventing the Impossibility with P
	Detailed Description
	Correctness

	The Atomic Broadcast Protocol
	Correctness

	Performance Evaluation
	Experimental Evaluation

	Summary of the Results

	Generalized Consensus and Hybrid Paxos
	Introduction
	Contributions
	No Clear Winner with CP and GP

	Model
	Generalized Consensus and Paxos
	The rule of picking a history

	The Hybrid Paxos Protocol
	Overview
	The Protocol
	Discussion

	Evaluation
	Experimental Settings
	Latency
	Throughput

	Proof of Correctness
	Summary of the Results

	Robust Amnesic Storage
	Introduction
	Previous and Related Work
	Contributions

	Model and Preliminaries
	Shared Memory Model
	Preliminaries

	Fast Robust and Amnesic Storage
	Protocol Description
	Protocol Correctness

	An Optimally Resilient Algorithm
	A Safe Counter with Optimal Resilience
	The DMS3 Protocol

	The Optimized DMS Protocol
	The Optimized DMS3 Protocol (3t+1)
	Summary of the Results

	Robust Storage with Secret Tokens
	Introduction
	Contributions

	Model
	An Implementation Supporting Unbounded Readers
	Overview
	READ Implementation
	Correctness
	Optimality: Fast Reads Must Write

	An Implementation of Fast READs
	Overview
	READ Implementation
	Correctness

	Summary of the Results

	Complexity of Robust Atomic Storage
	Introduction
	Previous and Related work
	Contributions

	Model
	The Read Lower Bound
	The Write Lower Bound
	Summary of the Results

	Conclusion
	Computing Digests of Large Histories
	Read Lower Bound (The Hybrid Model)
	List of Figures
	List of Tables
	Bibliography
	Curriculum Vitae

