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1.0. GENERAL INTRODUCTION 

Glyphosate (N-(phosphonomethyl) glycine) is a broad-spectrum, non-selective, post-

emergence systemic herbicide, applied through the leaves to desiccate all annual and 

perennial weed species. It can effectively control 76 of the world´s 78 worst weeds 

(Franz, 1985). It is the world´s biggest-selling chemical used for weed control in 

agricultural, silvicultural and urban environments (Baylis, 2000). It is sold in different 

formulation but regardless of the product, the active ingredient that actually kills plants, 

glyphosate, is the same. Every glyphosate product is composed of three parts: the 

parent acid (N-(Phosphonomethyl) glycine): the active ingredient that kills plants), salt 

(such as isopropylamine, trimethylsulfonium etc.: to stabilize the product, make it easier 

to handle, and allow it to mix well with other products), and proprietary (e.g. 

Polyoxyethaline-alkylamine (POEA): to enhance foliar penetration of glyphosate and 

make the product more convenient to handle). Glyphosate exhibits many unique 

biological properties. The rapid translocation of glyphosate from the foliage of treated 

plants to the roots, rhizomes and apical meristems is one of its most important 

characteristics. This systemic property results in the total destruction of hard-to kill 

perennial weeds and accelerated the large-scale adoption of glyphosate as total 

herbicide all over the world. Glyphosate-resistant crops (GR) were created by stable 

integration of a transgene that codes a glyphosate insensitive EPSPS (Padgette et al., 

1996). Expression of the GR EPSPS helps to maintain normal aromatic amino acid 

levels in GR crops treated with glyphosate. GR crops are grown in several countries, 

and their rapid adoption has led to a large increase in the use of glyphosate. The rapid 

increase in glyphosate use also initiated alarming interest in scientific research 

regarding its behavior and potential side effects.   

1.2. Glyphosate discovery and development 
Glyphosate was first discovered to have herbicidal activity in 1970 by John Franz, while 

working for Monsanto (Baird et al., 1971).  The compound was found during a study of 

the herbicidal effects of more than 100 tertiary aminomethylphosphonic acids derived 

from various primary and secondary amines (Moedritzer and Irani, 1966). Only two of 

these compounds, known as compound 4 and 5, prepared from iminodiacetic acid and 
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glycine, respectively, showed any herbicidal activity, but both had very low unit 

activities. However, the plant growth regulatory properties of the compounds led to the 

introduction of one of them, glyphosine, as a sugar cane ripening agent (Polaris ®, 

Monsanto Co.). Attempts to find other tertiary aminomethylphosphonic acids with 

improved herbicidal activity failed. As a last resort, it was suggested that degradation of 

the two compounds might give rise to a common, active metabolite (contrary to the 

general trend that metabolism reduces toxicity). Glyphosate was among the possible 

metabolites of the two compounds, and was found to have extremely high herbicidal 

activity (Franz, 1985). 

The original Roundup® herbicide, containing the active ingredient glyphosate, was first 

introduced to the market by Monsanto in 1974 (Monsanto backgrounder, 2005).  Today, 

Roundup®WeatherMax, Roundup®UltraMax, and other glyphosate agricultural 

herbicides produced by Monsanto are among the world´s most widely used herbicides. 

Monsanto´s glyphosate products are registered in more than 130 countries and are 

approved for weed control for more than 100 crop species (Monsanto backgrounder, 

2005).  

Chronologically, the market growth of glyphosate can be characterized into four stages. 

Initially, it was sold for control of perennials. In the second stage, price elasticity was 

determined and it was introduced into residential and other non-farm applications.  The 

thirds stage was the growth of conservation tillage and use in pre-harvest application to 

aid in dry down for easier harvest. The final stage was the introduction of ROUNDUP 

READY® crops (Magin, 2002). 

1.3. Biochemistry of glyphosate 
Glyphosate is an aminophosphonic analogue of the natural amino acid glycine, the 

name is a construct of glycine, phosphor- and -ate. It´s chemical formula is “N-

(phosphonomethyl) glycine“. Glyphosate or N-(phosphonomethyl)glycine has an 

empirical formula of C3H8NO5P and is a white crystalline solid which exists as a 

zwitterionic species 1a in the solid state (Knuuttila and Knuuttila, 1979). Pure 

glyphosate has relatively low solubility in water (1.2 – 8% at 25-100°C) and is insoluble 
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in other organic solvents apparently due to strong intermolecular hydrogen bonds 

stabilizing the crystal lattice but various salts of glyphosate have much higher solubilities 

and do not lose any of the herbicidal properties of the parent compound (Franz, 1985).    

 

glyphosate 
N-(phosphonomethyl)glycine 

 

Fig. 1. 1.  Molecular structure of glyphosate.  

 

1.4. Herbicidal mode of action 
As a broad-spectrum and systemic post-emergence herbicide which is applied through 

the leaf, glyphosate is phloem mobile and is readily translocated throughout the plant 

(Franz et al., 1997). From the leaf surface, glyphosate molecules are absorbed into the 

plant cells where they are translocated to meristematic tissues (Laerke, 1995). 

Glyphosate´s primary site of action is the inhibition of the enzyme 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS), a chloroplast localized enzyme in 

the shikimic acid pathway of plants (Della-Cioppa et al., 1986). EPSPS catalyzes the 

reaction of shikimate-3-phosphate (S3P) and phosphoenolpyruvate to form 5-

enolpyruvyl-shikimate-3-phosphate (ESP). ESP is subsequently dephosphorylated to 

chrosmate, an essential precursor in plants for the synthesis of aromatic amino acids, 

such as phenylalanine, tyrosine and tryptophan (Fig. 1.2). Inhibition of EPSPS by 

glyphosate has been shown to proceed through the formation of an EPSPS-S3P-
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glyphosate ternary complex and the binding is ordered with glyphosate binding to the 

enzyme only after the formation of a binary EPSPS-S3P complex. Binding of glyphosate 

to EPSPS has been shown to be competitive with PEP and uncompetitive with respect 

to S3P (Kishore, 1988).  

Therefore, glyphosate prevents the production of chorismate, thereby biosynthesis of 

essential aromatic amino acids which are used by plants in protein synthesis and to 

produce many secondary plant products such as growth promoters, growth inhibitors 

and lignin (Franz et al., 1997). Besides inhibiting aromatic amino acid biosynthesis in 

sensitive plants, the interaction between glyphosate and EPSPS interferes with the 

production of secondary compounds derived from aromatic amino acids. The 

biosynthesis of proteins, auxins, pathogen defence compounds, phytoalexins, folic acid, 

precursors of lignins, flavonoids, plastoquinone and hundreds of other phenolic and 

alkaloid compounds may all be affected by EPSPS inhibition (Bentley 1990). Injury 

symptoms are often slow in developing from treatment with glyphosate. The symptoms 

are thought to occur primarily as a result of starvation of the plant for amino acids, 

proteins and secondary plant products derived from chorismate and a deregulation of 

the shikimate pathway (Pline-Srnic, 2005).  

Although EPSPS is the only known enzyme target of glyphosate, it affects many 

physicochemical and physiological processes (Cole, 1985). Among these are reductions 

in photosynthesis and degradation of chlorophyll; inhibition of auxin transport and 

enhancement of auxin oxidation. These aspects of the mode of action of glyphosate are 

either a direct consequence of the blockage of the shikimate pathway (through which 

some 30% of assimilated carbon is estimated to pass) or a result of feedback 

mechanisms (Singh, 1991). 

Unlike many contact herbicides, phytotoxic symptoms of glyphosate injury often develop 

slowly. Chlorosis is followed by necrosis, and eventual plant death can take two weeks 

and even longer, particularly at low temperature conditions. Visible effects on most 

annual weeds occur within two to four days and may not occur for 7 days or more on 

most perennial weeds. Extremely cool or cloudy weather following treatment may slow 
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activity of glyphosate and delay development of visual symptoms. The chloroplasts of 

the young apical leaves begin to swell between 16 and 20 hrs after treatment of the 

plants with a sublethal glyphosate dose and burst after 4 days (Mollenhauer et al., 

1987). 

Visually visible symptoms of glyphosate damage vary between different plant species 

and include: chlorosis and distortion to basal leaves, stunting,  leaf death, complete 

shoot death, production of deformed leaves and blossoms with reduced in size and 

delayed in opening, deformed shoot with typically elongated leaves and up-rolled 

margins and in woody plants causes wound in bark (Atkinson, 1985). The death cycle of 

glyphosate treated plant normally starts with a gradual wilting and yellowing of the plant 

which advances to complete browning of above-ground growth and deterioration of 

underground plant parts.   

1.4.1. The shikimic acid pathway 
The shikimic acid pathway participates in the biosynthesis of most plant phenolics. The 

shikimic acid pathway converts simple carbohydrate precursors derived from glycolysis 

and the pentose phosphate pathway to the aromatic amino acids (Herrmann and 

Weaver, 1999). One of the pathway intermediates is shikimic acid, which has given its 

name to this whole sequence of reactions. Hence, as systemic herbicide, glyphosate 

kills plants by blocking a step in this pathway (Fig.1.2). Due to EPSPS inhibition by 

glyphosate, shikimic acid and shikimate 3-phosphate levels increase rapidly in sensitive 

plants (Holländer-Czytko and Amrhein,1983; Lydon and Duke, 1988; Mollenhauer et al., 

1987). On the other hand, synthesis of the shikimic acid pathway end products, such as 

phenylalanine, tyrosine and tryptophan is restricted, thereby the content of their 

processor compounds (phenolic compounds eg. lignin; glycocide and phytohormones 

eg. IAA) is reduced in plants which leads to plant death (Fig. 1.2).    
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Fig. 1. 2. Schematic presentation of shikimic acid pathway and the inhibition by glyphosate 
(adapted from Dill, 2005 with minor modification). 

 
1.5. Glyphosate metabolism in plants 
Glyphosate is degraded relatively fast in soils by microbial process (Franz et al., 1997; 

Laitinen et al., 2006). The most frequently detected degradation product is 

aminomethylphosphonic acid (AMPA). In most plant species, glyphosate is not readily 
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metabolized and is preferentially translocated to young growing tissues of roots and 

shoots, where it can accumulate in millimolar concentrations (Reddy et al., 2004). Little 

is know about the enzyme(s) involved in the degradation of glyphosate to AMPA in 

plants, though it has been detected on some plant species such as RR and non-RR 

soybeans (Glycine max), cowpea (Vigna  unguiculata), sicklepod (Senna obtusifolia), 

coffee senna (Cassia occidentalis), Illinois bundleflower (Desmanthus illinoensis  ), 

kudzu (Pueraria lobata), and horseweed (Conyza Canadensis) (Reddy et al., 2008). 

AMPA have been also detected as major metabolite in seeds of canola, wheat, field 

pea, barley, flax and RR soybean treated with glyphosate (Cessna et al., 1994; 2000; 

2002; Duke, 2003).   Similar to microorganisms, in plants, two metabolic pathways have 

been considered through which glyphosate can be metabolized to AMPA i.e., one that 

involves the oxidative cleavage of the C-N bond to yield AMPA and the other one as 

breaking of C-P bond by a C-P lyase to generate sarcosine (Franz et al., 1997). 

1.6. Dissipation mechanisms in soil 
Glyphosate is moderately persistent in soil, with reported half-lives ranging from 1 to 

174 days (Wauchope et al., 1992). Glyphosate is metabolized in soils and to a minor 

extent in plants to AMPA, which is also a moderately persistent metabolite (Roy et al., 

1989). The degradation of glyphosate in soil is primarily by microbial metabolism 

(Rueppel et al., 1977; Torstensson, 1985). Characterization of the sorption properties of 

a substance may provide valuable information about its mobility. Generally, a high 

adsorption tendency of a substance on the soil matrix is related to a reduced mobility. 

Two steady rates of glyphosate degradation have been identified i.e. more rapid rate of 

degradation that represents the metabolism of the unbound glyphosate molecules, while 

the slower rate represents the metabolism of glyphosate molecules bound to soil 

particles (Nomura and Hilton, 1977; Rueppel et al., 1977). 

Glyphosate is believed to be fixed on clay minerals, soil oxides and hydroxides and soil 

organic matter. Sprankle et al. (1975b) found a stronger adsorption of glyphosate on a 

clay loam soil than a sandy soil, suggesting that clay minerals were responsible for 

adsorption. The addition of cations such as Ca2+, Mn2+, Zn2+, Mg2+, Fe3+ or Al3+ to 
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bentonite clay increased the adsorption of glyphosate. Miles and Moye (1988) indicated 

that the main mechanism of glyphosate sorption is caused by H-bonding and ion-

exchange mechanisms in the case of cation saturated clays.  

Nomura and Hilton (1977) found that adsorption of glyphosate varied inversely with pH 

and directly with organic matter. It also has been shown that glyphosate interacted 

strongly with iron–humic acid complexes (Piccolo et al., 1995). These interactions were 

stronger than the adsorption observed solely on the humic acid. This suggests that the 

presence of organic–mineral complexes may explain the adsorption of glyphosate on 

soil organic matter.  

Glyphosate sorption study of five Hawaiian volcanic soils cropped with sugarcane 

indicated a parallel between inorganic phosphate fixation and glyphosate sorption in 

these soils, whereby glyphosate fixation was determined by the presence of oxides and 

hydroxides and clays, probably associated with the phosphonic acid moiety of 

glyphosate (Nomura and Hilton, 1977). Experiment done with four typical European 

soils by Piccolo et al. (1994) demonstrated that glyphosate mainly interacted with the 

iron and aluminium hydroxides. They concluded that glyphosate sorption is far from 

being permanent and leaching to lower soil horizons may occur under certain 

conditions. Other studies also indicate that the interaction of glyphosate with soils is 

mainly governed by amorphous iron and aluminium oxides and organic matter (Morillo 

et al., 1999).  De Jonge et al. (2001) quantified the variation in glyphosate adsorption 

and desorption in a sandy and sandy loam soil with varying phosphorus content and pH. 

They found that increased phosphate concentrations led to a decrease in the extended 

Freundlich adsorption coefficient for glyphosate. Liming of the coarse sandy soil 

resulted in a stronger adsorption due to an increase in reactive amorphous aluminium 

and iron hydrous oxides. They concluded that competition of glyphosate with phosphate 

for adsorption sites may lead to a higher mobility of glyphosate. 

Generally this higher sorption behavior of glyphosate leads to a slower degradation rate 

of the molecule in soils with higher adsorption capacity. Microbial degradation rate is 

also affected by the particular microbial community of each soil (Carlisle and Trevors, 
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1999; Malik et al., 1989).  While chemical decomposition and photolysis play a minor 

role in glyphosate degradation (Torstensson, 1985; Mallat and Baeceló, 1998). 

Adsorption of glyphosate being a reversible process, glyphosate adsorbed on soil was 

also reported to have a residual activity towards some plant species (Salazar and 

Appleby, 1982).  

1.7. Interaction of glyphosate with other soil minerals 
Glyphosate has a strong tendency to be sorbed on minerals by bonding with surface 

metals through its metal-coordinating functional groups. However, this same chemical 

process can potentially mobilize sorbed trace metals by chelation and sorbed anions 

such as phosphate by displacement. The application of a commercial RoundUp spray 

solution to long-contaminated soils containing elevated concentrations of heavy metals 

and phosphate resulted in a significant increase in leaching of Cu, Zn, Al, Ni, P, Si, and 

As (Barrett and McBride, 2006). An additional factor that potentially increases the 

stability of glyphosate in soils is the formation of stable complexes with Al3+, Fe3+, Ca2+, 

Mg2+ and Cu2+ (Subramaniam and Hoggard, 1988; McBride and Kung, 1989; McBride, 

1991). Saturating clay minerals with various cations increases glyphosate adsorption, in 

particular with divalent and trivalent cations. Thus, Glass (1987) reported that the 

adsorption of glyphosate by a cation-saturated montmorillonite increased in the order: 

Na+<Ca2+<Mg2+<Cu2+<Fe3+. Such formation of stable metal-glyphosate complexes in 

soils will reduce the potential of a microbial degradation of glyphosate with implications 

for glyphosate dissipation.  

On the basis of the chemical structure, with an active phosphonate group at the end of 

the molecule, glyphosate can form an inner-sphere complex with Al and Fe oxides in a 

soil similar to phosphate. This similarity implies that glyphosate and phosphate compete 

for the same sorption sites in soils. Hence many research findings confirm this 

phenomenon of a decreased glyphosate adsorption at a higher phosphate status of a 

soil (Sprankle et al., 1975a; de Jongle et al., 2001; Laitinen et al., 2008). Furthermore, 

adsorption of glyphosate and phosphate by goethite clearly demonstrated such 

competition with phosphate sorption preference. In such case, presorption of phosphate 
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eliminated glyphosate sorption and presorbed glyphosate was mobilized by phosphate 

addition (Gimsing and Borggaard, 2001).                  

1.8. Implications of glyphosate discovery  
The direct consequence of glyphosate discovery as herbicide and its unique behavior 

was the conception of genetically modified plants to be tolerant to glyphosate and its 

easy use in agriculture. Perhaps the most important aspect of the success of glyphosate 

was the introduction of transgenic, glyphosate-resistant crops in 1996. Almost 90% of all 

transgenic crops grown worldwide are glyphosate resistant and the adoption of these 

crops is increasing at a steady pace (Duke and Powles, 2008).  

The largest land area of glyphosate-resistant crops are occupied by soybean (54.2 

million ha), maize (13.2 million ha), cotton (5.1 million ha), canola (2.3 million ha) and 

alfalfa (0.1 million ha). Currently, the USA, Argentina, Brazil and Canada have the 

largest plantings of these crops (Dill et al., 2008).  

Adoption of glyphosate-resistant soybeans has been rapid in the USA, Argentina and 

Brazil. Almost 90% of the acreage in the USA (ca. 30 million ha) planted with such 

varieties in 2004 (Antonio et al., 2006). In Argentina, the adoption of glyphosate-

resistant soybean was even more rapid than in the USA, reaching almost 90% (ca. 14 

million ha) within 4 years after introduction (Panna and Lema, 2003).  

Furthermore, increased adoption of glyphosate-resistant crops resulted in an increased 

use of glyphosate. In turn this resulted in a reduction of other herbicides including the 

ACCase inhibitors, ALS inhibitors, and Protox inhibitors (Shaner, 2000). This 

concentration of herbicide use to glyphosate will lead towards a shift in weed 

communities. The glyphosate-based weed management tactics used in glyphosate-

resistant crops imposes the selection pressure that supports such a weed population 

shifts. Examples of weed population shifts in glyphosate-resisitant crops include 

common waterhemp (Amaranthus tuberculatus (Moq ex DC) JD Sauer), horseweed 

(Conyza canadensis), giant ragweed (Ambrosia trifida) and other relatively new weed 

problems (Owen, 2008). 
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1.8.1. Strategy for obtaining glyphosate resistant crops 
Parallel to the fast adoption of glyphosate as systemic herbicide, extraordinary effort 

has been done to produce resistant crops to facilitate the use of glyphosate. Many ways 

of basic strategies have been evaluated in order to introduce glyphosate resistance into 

crops: (i) impaired uptake of the herbicide, (ii) over-expression of the sensitive target 

enzyme, (iii) detoxification of the glyphosate molecule within the plant and (iv) 

expression of an insensitive form of the target enzyme (Dill, 2005; Cogginns, 1989).  

However, only the last approach has been successfully utilized to develop commercially 

glyphosate-resistant crops (Fig. 1.3). The first mechanism, glyphosate-resistant forms of 

the EPSPS enzyme, is currently used in all commercial GR crops. Two forms of 

glyphosate-resistant EPSPS enzymes have been commercialized to date. The GA21 

event in transgenic glyphosate-resistant maize contains a resistant form of the maize 

EPSPS enzyme with two mutations conferring resistance, T102I and P106S (Dams et 

al., 1995; Lebrun et al., 1997 and 2003). The CP4-EPSPS gene isolated from 

Agrobacterium spp shares low homology with native plant EPSPS, but plants containing 

this enzyme exhibit high level of glyphosate resistance (Barry et al., 1992). The CP4-

EPSPS enzyme is in all currently commercialized GR soybean, cotton, sugar beet and 

some maize cultivars. 
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Fig.1. 3: Strategy for the development of glyphosate resistant crops (adapted from Dill, 2005). 

 

 
1.9. Glyphosate intoxication of non-target organisms 
Accidental damage by glyphosate can occur either by drift contamination during weed 

control operation within a crop or by drift from one field to another. Glyphosate 

molecules conserved in weed residues treated by glyphosate are also potential 

reservoir pools for intoxication of subsequent crops. Glyphosate contamination to non-

target organism carried by run-off water from treated fields is also very often discussed 

side effect concern. Stachowski-Haberkorn et al. (2008) reported marine microbial 

community disturbance under field condition exposed to 1 μg L−1 RoundUp 

concentration, a value typical of those reported in coastal waters during a run-off event. 
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1.9.1. Routes of drift contamination to non-target organism 
In general, movement of a pesticide through unwanted drift is unavoidable and drift 

contamination to non-target organisms by glyphosate can not be exceptional. Due to its 

easy mobility in plants, glyphosate drift, however, is particularly more significant 

because drift damage is likely to be much more extensive and more persistent than with 

many other herbicides (Atkinson, 1985).  Lange et al. (1975) found that glyphosate drift 

caused fewer immediate symptoms but more eventual plant damage than other 

translocated herbicides in peach, plum and seedless grapevine. Damage to perennial 

plants when not exposed to enough glyphosate to kill them is persistent, with some 

symptoms lasting several years (Atkinson, 1985).  

Extent of glyphosate drift contamination to neighboring non-target plants is a notorious 

variable that strongly depends on the method, rate and timing of glyphosate application 

(Atkinson, 1985) and external weather condition. Most commonly used spraying 

methods in glyphosate application include: hand spraying, ground application using 

tractor-mounted sprayer, helicopter application and fixed-wing aircraft application. 

Hence, the spraying method may play an important role in determining the buffer zone 

to protect neighboring field from drift contamination.  A model to predict spray drift from 

evaporating herbicide droplet was developed by Thompson & Ley (1982) and based on 

this model it was reported that some native species would be damaged at a distance of 

80 meters (Breeze et al., 1992). Glyphosate's manufacturer reported that drift from a 

ground application in Minnesota damaged 25 acres of corn (Monsanto Co., 1992), and 

the Washington Department of Agriculture reported damage to 30 acres of onions from 

a ground application of a glyphosate herbicide (Washington State Dept. of Health, 

1993). Studies on forest sites conducted by Agriculture Canada (The Canadian 

Agricultural Ministry) calculated that buffer zones of between 75 and 1200 meters would 

be required to protect non-target vegetation (Payne, 1992). 

1.9.2. Rhizosphere transfer of glyphosate from target to non-target organisms 

Glyphosate is a systemic herbicide that is first absorbed by foliage and translocated 

throughout the plant via the phloem and further transported to metabolic sinks such as 
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meristems and roots. Laitinen et al. (2007) reported a significant contribution of 

glyphosate translocation from plant roots to the rhizosphere soil as glyphosate soil 

residue, which can be a potential reserve for subsequent crop intoxication. Results from 

a pot experiment undergone to study glyphosate release by roots of Brachiaria 

decumbens and its effects on eucalypt plants co-cultivated in the same pot have shown 

radicular release of glyphosate by B. decumbens and its absorption by eucalypt plants 

through roots (Tuffi Santos et al., 2008). Similarly, importance of rhizosphere glyphosate 

transfer from target to non-target plants in hydroponic and soil culture systems with 

detrimental effect on nutrient acquisition of co-cultivated crop plants have been 

demonstrated by Neumann et al. (2006). These reports demonstrate the release of 

glyphosate from treated plant roots and uptake by co-cultivated untreated intermingled 

neighbor roots.   

Considering the general understanding that glyphosate as readily bound to soil matrix 

and therefore immobilized in most soils, there is a phenomenon of remobilization by 

chemical changes in the rhizosphere that needs more consideration. As expected, 

recent experimental research with four European soils found that glyphosate bound 

readily to the four soils studied could be also readily remobilized. In one of the soils 

studied, 80 percent of the added glyphosate was desorbed in a two hour period. The 

study concluded that glyphosate adsorption in soils is far from being permanent (Piccolo 

et al., 1994). 
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Fig.1. 4. Schematic presentation of the dynamics of glyphosate (or its metabolite AMPA) in the 
rhizosphere.  

 

1.9.3. Glyphosate toxicity on soil microbial community  
When herbicides are applied in agricultural systems, the possibility exists that the 

chemical may exert certain side effect on the soil microflora. These may involve 

influence on soil processes such as energy flow and nutrient cycling, influencing the 

fertility of the soil system (Goring and Laskowski, 1981; Rosas and de Storani, 1987). 

Other effects may include shifts in microbial (including fungal species) community 

Where: 
1 foliar uptake of glyphosate 
2 transfer of glyphosate into apical root 

zones 
3 release of glyphosate and possible 

metabolites (AMPA) into the 
rhizosphere of target plants 

4 glyphosate dynamics in the rhizosphere 
5 uptake of glyphosate by non-target 

plants 
6 translocation of glyphosate/AMPA into 

the shoot of non-target plants and 
disorders  

 

4 glyphosate/ AMPA dynamics in the 
rhizosphere  

a) extent of interactions between root 
system of target and non-target plants 
(intermingled roots) 

b) glyphosate immobilization in the 
rhizosphere 

c) glyphosate remobilization by root-
induced changes in the rhizosphere of 
non-target plants  

d) interaction of glyphosate with Mn-
reducing/oxidizing rhizosphere 
microorganisms 

e) effect of glyphosate on mycorrhizae and 
microbial diversity 
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structure. Wardle and Parkinson (1990) reported an increase in the frequency of three 

fungal species on organic particles in soils incubated with glyphosate (200µg g-1 soil) 

while one species was suppressed. Widenfalk et al. (2008) also reported that exposure 

to glyphosate caused significant shift in bacterial community composition at an 

environmentally relevant concentration. Similarly, a report by Araujo et al. (2003) 

showed an increased most probable number (MPN) count after 32 days incubation in 

the number of fungi and actinomycetes but reduction in the number of the rest 

community of bacteria. Other reports also demonstrated alteration of functional structure 

and reduced functional diversity of soil bacteria but increased microbial biomass by 

glyphosate pre-seed application. This two way alteration indicates luck of evenness in 

microbial diversity but also dominance by few functional groups (Lupwayi et al., 2008). 

Glyphosate is also known to inhibit biological nitrogen fixation as a result of glyphosate 

toxicity to the beneficial microorganisms. Dvoranen et al. (2008) reported a decreased 

number and dry weight of nodules in glyphosate-resistant Glycine max (BRS 245 RR 

and BRS 247 RR) after a single glyphosate application.  

Furthermore, glyphosate can have inhibitory or stimulatory effect to plant pathogens.  

Greenhouse and field trials with genetically modified glyphosate-resistant wheat 

(Triticum aestivum) showed low infection rate of the plant by leaf rust caused by 

Puccinia triticina when treated with a labeled rate of glyphosate prior to inoculation with 

the leaf rust (Anderson and Kolmer, 2005). The authors also reported infection type 

reduction on wheat caused by the stem rust fungus, Puccinia graminis f. sp. tritici. On 

the other hand, greenhouse studies of glyphosate-resistant sugar beet, showed 

increased disease severity following glyphosate application and inoculation with certain 

isolates of Rhizoctonia solani Kuhn and Fusarium oxysporum Schlecht. f. sp. betae 

Snyd. & Hans (Larson et al., 2006).  

1.9.4. Interaction between glyphosate and fungal disease   
Glyphosate´s primary site of action is the inhibition of the enzyme 5-

enolpyruvylshikimate-3-phosphate synthase (EPSPS), and prevents the production of 

essential aromatic amino acids which are used by plants in protein synthesis and to 
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produce many secondary plant products such as growth promoters, growth inhibitors 

and lignin (Franz et al., 1997). This may weaken the plant´s resistance to disease and 

expose it to be susceptible to pathogens. Therefore, soil borne fungi can act as 

synergistic in the herbicidal action of glyphosate, after glyphosate blocks the production 

of phenolics involved in disease resistance of plants to these pathogens (Levesque and 

Rahe, 1992). Many reports indicate strong correlation between glyphosate use and 

fungal disease prevalence. Glyphosate has been found to stimulate Fusarium spp. in 

greenhouse studies. Sanogo et al. (2000) observed greater disease severity and 

increased isolation frequency of Fusarium solani f.sp. glycines on glyphosate-treated 

GR soybean relative to untreated GR soybean. Kawate et al. (1997) also observed an 

increased level of Fusarium f.sp. pisi in the rhizosphere of glyphosate-treated Lamium 

amplexicaule L. (henbit dead-nettle) relative to untreated henbit. In Chehalis sandy loam 

soil, injury and death of Italian ryegrass (Lolium multiflorum) after glyphosate treatment 

were attributed to Pytium spp., whereas in Crooked sandy loam the damage appeared 

to be caused solely by the chemical (Kawate and Appleby, 1987). Glyphosate 

pretreatment to Sekiguchi lesion (sl) mutant rice suppressed Sekiguchi lesion formation 

and tryptamine accumulation after Magnaporthe grisea infection even under light, a 

favorable growth condition the mutant is known to have enhanced resistance to M. 

grisea infection responsible for Sekiguchi lesion formation and tryptamine accumulation 

(Imaoka et al., 2008). Sublethal doses of glyphosate inhibited the expression of 

resistance in soybean to Phytophthora megasperma f.sp. glycinae, in beans to 

Colletotrichum lindemuthianum and in tomato to Fusarium spp. (Brammal and Higgins, 

1988; Johal and Rahe, 1988; Keen et al., 1982).    

Field survey data from Saskatchewan suggested that glyphosate can promote Fusarium 

head blight (FHB) of wheat and barley. In each of the four years field trials, increased 

FHB in spring wheat was positively correlated to glyphosate application of the previous 

18 months (Fernandez et al., 2005). Similarly, under zero tillage condition, previous 

glyphosate applications were reported to correlate positively with F. avenaceum and 

negatively with F. equiseti and C. sativus (Fernandez et al., 2008). Levesque et al., 

(1987) reposted that glyphosate application increased root colonization of various 
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treated weeds by Fusarium avenaceum and Fusarium oxysporum, and it also increased 

the propagule density of these Fusarium spp. in the soil. It is generally accepted that 

herbicide-induced weakening of the plant can predispose the plant to infection by 

facultative-type pathogens (Levesque and Rahe, 1992). Rhizomes of glyphosate treated 

quackgrass (Elymus repens, L. Gould) were exposed to heavy colonization by Fusarium 

culmorum and that an increase of this pathogen caused synergistic effect that led to the 

death of barley plants subsequently planted in the same pots (Lynch and Penn, 1980). 

Glyphosate application to kill volunteer cereals and weeds prior to planting spring burley 

under short interval between application and direct seeding, resulted to increased 

severity of Rhizoctonia root rot and reduced barley yield by as much as 50% (Smiley et 

al., 1992).         

1.10. Objectives: 
Following the indicated problematics in the literature above, the main objectives of the 

present study were: 

(i). to identify key factors essential for a better risk assessment of glyphosate 

intoxication of non-target organisms under controlled greenhouse conditions and field 

farmer´s practice. Considering the chemical structure and behavior of glyphosate in soil, 

the following key factors were hypothesized for investigation under two contrasting soil 

conditions: 

- Relevance of waiting time between weed desiccation by glyphosate and 

subsequent crop planting under two contrasting soil conditions, i.e., less buffered 

acidic Ap of an Arenosol and highly buffered C horizon of a Luvisol.   

- Remobilization risk of soil matrix fixed glyphosate by root-induced changes in the 

rhizosphere with detrimental effect in intoxicating the subsequent crop. Two main 

driving forces for root-induced rhizosphere changes were investigated i.e., supply 

of different N forms (NO3
- or NH4

+) as key players of root-induced change via 

differential anion/cation uptake; secondly by application of artificial carboxylates 

(Citric acid and Na-Citrate) to mitigate the potential release of citrate as main 

component of root exudates during different environmental stress conditions.   
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(ii) To gain a further insight into additional factors involved in determining the above 

mentioned risk factors and validation of the controlled greenhouse experiment results in 

typical farmer´s practice field condition. For this, more greenhouse and field 

experiments were conducted: 

- Investigation of the role of waiting time and contribution of different binding forms 

of glyphosate in soils, employing different modes of glyphosate application i.e., 

direct incorporation of glyphosate into soil and indirectly via phloem transport of 

target plants (model weed plants) on the two contrasting soils that considered the 

role of localized hot spot formation by localized release of glyphosate from 

decaying roots. 

- To further evaluate the involvement of decaying organic matter, soil incorporation 

of glyphosate treated shoot or root matter was considered under the two 

contrasting soils. This was set to check whether the release of glyphosate from a 

decaying root or shoot residue is an important factor for intoxication of the 

subsequent crop and whether soil type also plays a role in alleviating such risk.  

- In validating the results obtained under controlled greenhouse conditions, a field 

experiment with a typical minimal tillage farmer´s practice was set to investigate 

the relevance of waiting time between weed desiccation by glyphosate and 

subsequent crop planting.  
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2.0. General Materials and Methods  

In this chapter, a general description of the plant material used and cultivation 

approaches of the plants used in the model experiments, as well as growth conditions of 

the experiments routinely used throughout the study period are presented. In addition 

generally used analytical methods are described in detail. Special methodologies or 

growth conditions employed only in specific chapters are described in their respective 

chapters.   

2.1. Plant material 

Throughout the course of this study, two plant species were used as model plants for 

the study: (i) sunflower (Helianthus annuus L. cv. Frankasol) and (ii) rye grass (Lolium 

perenne L. cv. Kelvin). Sunflower was used as non-target crop plant prone to risk of 

intoxication by glyphosate residues applied to rye grass as weed grown prior to the 

sunflower plants. Sunflower was selected for its sensitivity to glyphosate which is 

reflected by a sensitive accumulation of shikimate in shoot and root tissues and is 

known as a biological indicator of glyphosate toxicity. While rye grass was selected as it 

is a fast growing plant and often also is a problematic weed in cropping systems. In 

addition, there are also some indications that some cultivars of rye grass are developing 

resistance to glyphosate pressuring farmer to apply more than the recommended 

dosage of glyphosate without considering the residual effect for intoxication of the non-

target crops.  

In evaluating the greenhouse model experiment results in the field farmer´s practice, 

wheat plant has also been used as non-target plant (Triticum aestivum, L. cv. Türkis) 

(chapter 3).      

2.2. Used soils 

Two contrasting soils, i.e. a sandy acidic Ap horizon of an Arenosol and calcareous 

loess sub soil (Luvisol) were used for all the experiments. The two soils were chosen for 

their contrasting properties. The Arenosol soil had a low pH and buffering capacity while 

the Luvisol had a high pH and buffering capacity. Main soil characteristics as well as 

mineral nutrients are given in table 2.1. 
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Table 2. 1. Chemical characteristics of the Arenosol and Luvisol soils used in the research work. 

Soil Property Arenosol soil Luvisol soil Reference/Remark 

pH (CaCl2) 4.5 7.6  

Corg      0.16%  <0.3%  

CaCO3  30%  

Ca2+ [mg kg-1] 0.4 59.9 a) 

Mg2+ [mg kg-1] 0.4 11.3 a) 

Mn [mg kg-1] 7.4              15.0 b) 

Fe [mg kg-1]           369.0 7.8 b) 

Zn [mg kg-1] 0.8 0.6 b) 

B [mg kg-1] 0.9 0.2 b) 

Cu [mg kg-1] 0.5 0.7 b) 

Texture horizon Sandy to loamy 
sand of an Arenosol 

Loam C of a Luvisol  

a) Water extractable fraction (Beck et al., 2000) 
b) Calcium chloride - diethylenetriamine penta-acetic acid (CAT)-extractable 

micronutrient concentrations (VDLUFA, 2004) 
 

2.3. Conditions for plant growth 

Experiments were conducted under greenhouse conditions with 16/8 hour day/night 

regime, temperature range of 17ºC to 35ºC, light intensity of up to 200µmol m2  s1 and 

humidity range of 30% to 70%, using the two contrasting model soils described in 

section 2.2.  

Soils were always sieved to pass though a 2 mm mesh size and fertilized with N as 

Ca(NO3)2 (100 mg N kg-1 soil), K as K2SO4 (150 mg K kg-1 soil), Mg as MgSO4 (50 mg 

Mg kg-1 soil) and P as Ca(H2PO4)2 (80 mg P kg-1 soil) before sowing. In addition, the 

calcareous subsoil was supplied with Fe as FeEDTA (20 μmoles kg-1 soil). Plant culture 

was performed in pots containing 500 g of fertilized soil with soil density of about 1.2 – 
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1.3 kg m-3 and soil moisture was adjusted to 70% of the soil water-holding capacity (15 

% w/w for the Arenosol and 18 % w/w for the calcareous loess sub-soil). Water losses 

were determined gravimetrically and replaced by daily applications of de-ionized water.     

2.4. Glyphosate application 

Glyphosate as Roundup Ultramax® formulation (Monsanto Agrar, Düsseldorf, Germany) 

was used for all the experiments. The spray solution was prepared following the 

producer guideline, i.e., 2L Roundup solution in 200L distilled water, finally resulting to 

an active ingredient glyphosate concentration of 28.4mM solution. Depending on the 

aim of the experiment or treatments, this solution (or at a lower or higher rate) was 

applied either directly to the soil or sprayed to rye grass as model weed with a hand 

sprayer (for details see individual chapters).      

2.4.1. Rye grass pre-culture and glyphosate application  

To investigate the effects of glyphosate residues in the plant tissue of target weeds on 

subsequently cultivated non-target plants, rye grass (Lolium perenne L.) was pre-

cultivated as model weed in pots filled with the fertilized soils. To stimulate high weed 

coverage of the soil, a sowing density of 1 g rye grass seeds (germination rate 70%) per 

42 cm2 was used. After good coverage of soil by the weed seedlings, the young rye 

grass seedlings were sprayed with the glyphosate spray solution described above 

considering the leaf area and appropriate volume applied by translating from the 

amount recommended per hectare (Monsanto, pers. commun., 2007).  

 

 

 

 

 

 

 

 
Photo 2.1.   
 

A                       B                            C 

Photo 2. 1. Different growth stages (A= 1 day after germination; B=5 days after germination and 
C= 8 days after germination and growth stage for desiccation by glyphosate) of rye grass (Lolium 
perenne L. cv. kelvin) used as model weed.   
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2.4.2. Glyphosate soil application 

To assess the effects of glyphosate fixed in the soil on following non-target plants, 

glyphosate spray solution was applied directly to the soil and homogenously mixed to 

the whole soil volume. Depending on the aim and approach of the experiment, a waiting 

time have been given for the glyphosate to be stabilized before sowing of the sunflower 

plants.  

2.5. Sunflower sowing 

Subsequently, after glyphosate applied directly to the soil or rye grass desiccation, 

sunflower seeds (Helianthus annuus L. cv. Frankasol) (germination rate of about 95%) 

were sown into the pots at different “waiting times”. Seven seeds of sunflower were 

directly sown and after 7 days seedlings were tilled leaving two plants for further 

cultivation. The seedlings collected at tilling have been used for shikimate analysis as 

physiological indicator of glyphosate toxicity (see below).  

2.6. “Waiting times” 

Throughout this thesis, the term “waiting time” is used in reference to indicate the time 

gap between desiccating a weed (rye grass) by glyphosate and next crop planting 

(sunflower).  

2.7. Plant harvest 

At the end of each experiment, plants were removed from the pots by washing out the 

root systems with water. Then, roots and shoots separated, stored at appropriate 

environment depending planed analysis. Samples intended for shikimate analysis, were 

frozen in liquid nitrogen and stored at -20oC.  Samples intended for mineral analysis 

were dried at 60oC and stored at room temperature till grinding. 

2.8. Shikimate analysis 

The frozen plant tissue was homogenized with 5% ortho-phosphoric acid (1 ml 100 mg-1 

fresh weight) using mortar and pestle. Insoluble material was removed by centrifugation 

(5 min at 20.000 x g) and the supernatant was used for HPLC analysis after appropriate 

dilution with the HPLC mobile phase (Singh and Shaner, 1998; Neumann, 2006).  
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Separation of shikimate as carboxylates was conducted on an Aminex 87H ion 

exclusion column (Bio-Rad, Richmond, CA, USA). A sample volume of 20 µL was 

injected into the isocratic flow (0.5 mL min-1) of the eluent (2.5 mM H2SO4, 40°C) and 

carboxylates were detected spectrophotometrically at 210 nm. Identification and 

quantification of shikimate was conducted by comparing the retention times, absorption 

spectra and peak areas with a known standard. 

2.9. Analysis of mineral nutrients 

Dried leaves (60° C) were grinded and ashed in a muffle furnace at 500° C for 4 hours.   

After cooling, the samples were extracted twice with 2 mL of 3.4 M HNO3 (v/v) and 

subsequently evaporated to dryness. The ash was dissolved in 2 mL of 4 M HCl, 

subsequently diluted 10 fold with hot de-ionized water, and boiled for 2 min. After 

addition of 0.1 mL Cs/La buffer to 4.9 mL ash solution (for Fe and Mn), while for P, 

colour reagent (molybdate-vandate-solution), was added according to methods of 

Gericke and Kurmies (1952). Mineral elements were determined by atomic absorption 

spectrometry (UNICAM 939, Offenbach / Main, Germany) for Mn, Fe, Zn, Cu and Mg; 

flam photometry for Ca and K and spectrophotometry for P. 

 2.10. Statistics 

All treatments comprised 4 replicates and pots were arranged in the greenhouse in a 

completely randomized block design. Analysis of variance was performed with SPSS 

statistics software package by comparing means through one-way-ANOVA (SPSS Inc. 

Illinois, U.S.A).  
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Relevance of Waiting Time Between Weed Desiccation by Glyphosate and 
Subsequent Crop Planting. 

 
3.1. Introduction 

Glyphosate [(N-phosphonomethy)glycine] is a highly effective broad-spectrum herbicide, 

routinely employed to control weeds in no-till agriculture, orchards, forestry and 

genetically modified glyphosate resistant crops such as cotton, soybean, maize and 

canola. After foliar application, glyphosate is fast translocated to actively growing 

meristematic tissues of shoots and roots (Sprankle et al., 1975c; Gougler and Geiger, 

1981). Its inhibitory effect is based on binding to the enzyme 5-enolpyruvylshikimik acid-

3-phosphate synthase in the biosynthetic pathway of aromatic amino acids (Steinrucken 

and Amrhen, 1980) and leads to accumulation of shikimate on plant tissues that can be 

used as physiological indicator for residual injury by glyphosate. 

Glyphosate is transported in both the xylem and phloem of treated plants in a similar 

pattern of distribution like photoassimilates (Sprankle et al, 1975c; Gougler and Geiger, 

1981) and finally released to the rhizosphere from intact or decaying roots. 

There is a general understanding that once glyphosate comes in contact with the soil, it 

is either biologically degraded by microorganisms as long as it is still in soil solution or 

strongly bound to soil colloids without any further soil activity (Sprankle et al., 1975b).  

For this reason, glyphosate is advocated to be used on farms without consideration of 

any waiting time between weed desiccation with glyphosate and subsequent crop 

planting (Monsanto Agrar Deutschland, Düsseldorf, Germany). However hydroponic 

experiments clearly demonstrated that glyphosate applied to a target plant being 

released to commonly shared hydroponic sphere and taken up by a co-cultivated non-

target plant with detrimental effect on plant growth and nutrient uptake (Neumann et al., 

2006). In the same research work Neumann et al. (2006) clearly demonstrated 

glyphosate rhizosphere transfer from target to non-target plants in soil undergone in 

greenhouse model experiments. Similarly, results from a pot experiment designed to 

study glyphosate release by roots of Brachiaria decumbens and its effects on co-

cultivated eucalypt plants under greenhouse condition using pots filled with two types of 
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soils (clayey and sandy) have shown radicular release of glyphosate by B. decumbens 

and subsequent uptake by eucalypt plants through roots (Tuffi Santos et al., 2008). 

Furthermore, pot experiment results by Rodrigues et al. (1982) showed that increasing 

glyphosate dose and wheat plant density resulted to strong inhibition of plant height and 

biomass production of co-cultivated soybean. The authors were able to detect 14C-

glyphosate released into the soil from treated wheat plants with thin-layer 

chromatography. In another experiment, the authors were also able to detect trace 

amounts of the radio-labeled glyphosate on thin-layer plates of leaf and stem extracts of 

corn plants which were grown in the same pots with the treated wheat plants.  

Similar situation can hold true to field grown plants as well, i.e., glyphosate released by 

senescing or intact roots of treated weeds. Thus, such released glyphosate can be taken 

up by seedlings of subsequently sown non-target crop before it is fixed to soil colloids or 

degraded by microorganisms if not enough waiting time is given. 

The objective of the present study was to evaluate the relevance of waiting time 

between weed desiccation by glyphosate and subsequent crop planting under controlled 

greenhouse and field conditions. For this purpose, one greenhouse experiment using 

two contrasting soils and sunflower as model non-target plant was cultivated at different 

waiting times after desiccation by glyphosate of rye grass as model weed plant. To 

further confirm the model greenhouse results, a field experiment under farmer´s practice 

was set out considering different waiting times and application rates. It was expected 

that short waiting time of less than 3 weeks may result in a residual phytotoxicity effects 

by glyphosate. These toxicity effects should be reflected in hindered plant growth, 

reduced nutrient acquisition and increased intracellular shikimate accumulation in roots 

as primary victims of glyphosate toxicity.    
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3.2. Materials and Methods 

3.2.1. Greenhouse model experiment 

3.2.1.1. Conditions for plant growth 

Controlled green house experiment was conducted under hot summer condition 

(temperature during noon up to 35°C) using two contrasting soils: a sandy acidic Ap 

horizon of an Arenosol with low buffering capacity (pH (CaCl2) =4.5) and with a well-

buffered calcareous Luvisol subsoil (pH (CaCl2) 7.6).  

Soils were sieved to pass through a 2 mm mesh size and fertilized with mineral nutrients 

(for details see chapter two). Plant culture was performed in pots containing 500 g of 

fertilized soil and soil moisture was adjusted to 70% of the soil water-holding capacity 

(15 % w/w for the Arenosol and 18 % w/w for the calcareous loess sub-soil). Water 

losses were determined gravimetrically and replaced by daily applications of de-ionized 

water.     

3.2.1.2. Weed (rye grass) desiccation by glyphosate and cultivation of sunflower    

To investigate the relevance of waiting time between weed desiccation by glyphosate 

and subsequent crop planting, rye grass (Lolium perenne L. cv. Kelvin) was pre-

cultivated as model weed in plastic pots filled with 500 g fertilized soils. A sowing density 

of 2.2 g rye grass seeds (germination rate 70%) per pot with a surface area of 100 cm2 

was used to simulate high weed coverage of the soil with intense root development. 8 

days after sowing (DAS), the young rye grass seedlings were sprayed with the 

recommended dilution of Roundup Ultramax® glyphosate formulation (Monsanto Agrar, 

Düsseldorf, Germany), containing a glyphosate concentration of 28.4 mM in the spray 

solution. Each pot received 3.56 ml of glyphosate spray solution on the leaves, based on 

determination of the rye grass leaf area coverage (approx. 1782 cm2 per pot). The plants 

died within 7 days. Subsequently, sunflower seedlings (Helianthus annuus L. cv. 

Frankasol) were sown into the same pots (10 seeds per pot) at -1(one day before 

glyphosate application) and 0, 1, 3, 6, 14 and 21 days after rye grass desiccation by 

glyphosate. Control treatments without glyphosate application were considered at -1 and 

21 days waiting time, where rye grass shoots were removed by cutting at the soil 
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surface level with a sharp knife. An additional control was considered at -1 day waiting 

time by preparing pots filled with fertilized soil but without rye grass (bare soil, BS). A 

time schedule with sequential sowing dates for the rye grass pre-culture was employed 

to ensure the same sowing day and thus the same external growth conditions for all 

sunflower seedlings, irrespective of the waiting time. All treatments were performed in 

four replicates.   

3.2.1.3. Plant harvest 

Eight days after sowing (DAS), a first set of eight sunflower seedlings were carefully 

removed from the pots, leaving 2 for a longer cultivation. Roots were gently washed from 

soil and shoots were separated, frozen in liquid nitrogen and stored at -20°C for 

shikimate analysis.  The two left behind sunflower seedlings were further cultivated until 

27 DAS. At final harvest, the roots were washed out from soil and shoot and root parts 

were separated for biomass determination. Youngest fully expanded leaves were 

selected for analysis of micronutrients.  

3.2.1.4. Shikimate analysis 

The frozen plant root tissue was homogenized with 5% ortho-phosphoric acid (1 ml 100 

mg-1 fresh weight) using mortar and pestle. Insoluble material was removed by 

centrifugation (5 min at 20.000 x g) and the supernatant was used for HPLC analysis 

after appropriate dilution with the HPLC mobile phase (see chapter 2 for details).  

3.2.2. Field Experiment 

3.2.2.1. Conditions for plant growth   

Field experiment was conducted on farmer’s field in Hirrlingen, Tübingen, Germany 

under supervision of K. Weiss (2008) to confirm the model experiment results. Two 

levels of glyphosate dosage were used: 2 L ha-1 which is the minimal recommended rate 

by the producer (Monsanto Agrar Deutschland GmbH, Düsseldorf, Germany) and 6 L 

ha-1 which is employed under extreme cases by farmers.  Two waiting times, i.e. 2 and 

14 days after spring cover crop, winter wheat, desiccation by glyphosate and 

subsequent winter wheat (Triticum aestivum L. cv Türkis) sowing were given. An 

additional control was considered for the 14 day waiting time by using Agil-S 
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(Feinchemie Schwebda GmbH) and Basta (Bayer Crop Science Inc.) as herbicides 

mixture for removing the cover crop. Each treatment was replicated 6 times under 

randomized block design. The whole field experiment was divided into three blocks (A, B 

and C), based on the amount of straw existed and each treatment was made to occur 

twice in each block.   

3.2.2..2. Cover crop desiccation by glyphosate 

For the 2 L ha-1 treatment, winter wheat cover crop was sprayed with the recommended 

dilution of Roundup Ultramax® glyphosate formulation (Monsanto Agrar, Düsseldorf, 

Germany), containing a glyphosate concentration of 28.4 mM in the spray solution while 

for the 6 L ha-1 treatment a concentration of 85.2 mM concentration of the same 

glyphosate formulation was used.  

For the 14 day waiting time treatments, either the 28.4 mM or 85.2 mM glyphosate 

concentration solution was sprayed at 12.09.08 on each respective block. 12 days later 

(24.09.08), the final 2 days waiting time treatments were sprayed with either of the 

respective glyphosate spray solutions. Two days after the last spray as the short waiting 

time application, winter wheat seeds were directly sown all over the blocks allowing 

similar external growth conditions for all the treatments.   

3.2.2.3. Data collection 

Seven weeks after sowing of winter wheat as the non-target plant, shoot samples were 

collected from each plot for SPAD value measurement and mineral nutrient analysis. 

Root samples were also collected for shikimate analysis. In addition, digital photo 

images of each plot were recorded. Moreover, visual percentage damage of the non-

target winter wheat culture was documented at 2.5 and 6 months after sowing.  

3.2.3. SPAD value measurement 

SPAD value of wheat leaves collected from field was measured using a SPAD meter.  
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3.2.4. Analysis of mineral nutrients 

Gericke and Kurmies (1952) method was followed for analysis of shoot mineral nutrient 

concentrations. Dried leaves were ground and ashed in a muffle furnace at 500° C for 5 

hours placing them on crucibles. After cooling, around 100 mg of the samples were 

extracted twice with 1 mL of 3.4 M HNO3 (v/v) and subsequently evaporated to dryness. 

The ash was dissolved in 1 mL of 4 M HCl, subsequently diluted 10 fold with hot de-

ionized water, and boiled for 2 min. After addition of 0.1 mL Cs/La buffer to 4.9 mL ash 

solution, Fe, Mn, Zn, Cu and Mg concentrations were measured by atomic absorption 

spectrometry (UNICAM 939, Offenbach / Main, Germany) while Ca and K by flam 

photometry. For P measurement, instead of Cs/La buffer, a colour reagent (molybdate-

vanadate solution) was added and analysed by spectrophotometer. 

3.2.5 Statistics 

All treatments of the greenhouse pot experiment comprised 4 replicates and pots were 

arranged in the greenhouse in a completely randomized block design. In the field 

experiment, each treatment had 6 replicates assigned to three blocks in a way that two 

replicates of each treatment fall on each block. Analysis of variance was performed with 

SPSS statistics software package by comparing means through one-way-ANOVA 

(SPSS Inc. Illinois, U.S.A). 

3.3. Results 

3.3.1. Greenhouse model experiment 

3.3.1.1. Visual plant growth 

In the model greenhouse experiment, waiting time between rye grass desiccation by 

glyphosate and sunflower sowing of less than 21 days, resulted to a hindered 

development of sunflower seedlings, particularly the root part was heavily damaged 

(Photo 3.1).     
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Photo 3.1. Seedling development of sunflower plants grown on the acidic Arenosol after rye 
grass desiccation by glyphosate at 14 days waiting time. Comparable phytotoxicity of glyphosate 
was also observed on the Luvisol. The photo was taken 8 days after sowing of sunflower.      

 

3.3.1.2. Shoot and root biomass  

Corresponding to the visual observation, at treatments with less than 21 days waiting 

time after rye grass treatment with glyphosate, shoot fresh weights were severely 

inhibited on both the acidic Arenosol and calcareous Luvisol compared with both 

controls, without a glyphosate treatment of rye grass (C-MW) and the bare soil (C-BS) 

(Fig. 3.1 A and B). Sunflower plants grown on Arenosol at 14 day waiting time were not 

healthy due to other factors than glyphosate toxicity and produced the lowest biomass. 

3.3.1.3. Intracellular shikimate accumulation 

On both the acidic Arenosol and calcareous Luvisol, plant growth inhibition at all waiting 

times less than 21 days were in like manner accompanied by intracellular shikimate 

accumulation in roots which is known as a physiological bio-indicator of glyphosate 

phytotoxicity (Fig. 3.2 A and B). During first phase seedling harvest for shikimate 

analysis, plants at 14 day waiting time treatment of the Arenosol soil were not healthy 

and it was not possible to get enough root material for shikimate analysis, therefore 

shikimate results for this date are not shown.   

 

 

Control +Gly
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Fig.3.1. Shoot fresh weight of sunflower plants grown on: A. the acidic Arenosol and B. the 
calcareous Luvisol, at different waiting times (-1, 0, 1, 3, 6, 14, and 21 days) between rye grass 
desiccation by glyphosate and sunflower sowing. Two different controls were included i.e. bare 
soil (C-BS) at -1 d and mechanical weeding (C-MW) at -1 and 21 d waiting time. Plants were 
harvested at 27 day after sowing. Given data represent an average of 4 replicates with SD as bars, 
p<0.05.  
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Fig.3.2. Intracellular shikimate concentration in roots of sunflower plants grown on the acidic 
Arenosol (A) or on the calcareous Luvisol (B) at different waiting times (-1, 0, 1, 3, 6, 14 and 21 
d) between rye grass desiccation by glyphosate and sunflower sowing.  Mechanical weeding 
(MW) at -1 and 21 d, plus bare soil without glyphosate application at -1 d waiting time represents 
controls. Root samples were taken of from the 6 sampled sunflower seedlings eight days after 
sowing (8DAS). Given data represent an average of 4 replicates with SD as bars, p<0.05.   
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3.3.1.4. Micronutrient acquisition  

Micronutrient (Mn, Fe and Zn) analysis of the youngest fully expanded leaves however 

showed no significant difference between all the different treatments (Table 1 and 2). 

However, plants grown on the calcareous Luvisol subsoil showed lower Zn levels 

compared to the acidic Arenosol with worsened reduction tendencies closer to critical 

level at shorter waiting times. This absence of mineral nutrient concentration difference 

between the different treatments is probably attributed to a dilution factor as the plants 

on the short waiting time treatments were very stunted and the analyzed shoot parts 

were emerging cotyledons carrying the nutrient contents of the seeds.      

 

Table 3.1. Micronutrient (Mn, Fe and Zn) concentration in the youngest fully expanded leaf 
(YFEL) of sunflower plants grown on the Arenosol at different waiting times (-1, 0, 1, 3, 6, 14, 
and 21 d) after pre-culture rye grass desiccation by glyphosate. Mechanical weeding (MW) at -1 
and 21 d plus bare soil without glyphosate application at -1 d waiting time represents control 
treatments. Plants were harvested 28 days after sowing. Given data represents the average of 4 
replicates ±SD. 

Waiting time Micronutrient concentration (µg/g DM) 
Mn Fe Zn 

Control(bare soil) 78.4±5.1 91.6±8.6 40.5±5.0 
Control(mechanical 
weeding-MW) 

114.2±12.9 98.1±13.6 53.3±6.0 

-1D 107.4±20.9 97.3±18.1 48.9±7.8 
0D 118.6±18.7 86.2±18.2 40.7±3.5 
1D 103.5±53.2 106.1±37.4 43.7±15.4 
3D 123.0±27.4 92.2±12.7 38.1±5.2 
6D 119.8±15.9 100.1±11.8 44.2±2.2 
14D NA* NA* 36.7±8.6 
21D 139.0±12.3 97.7±17.9 41.6±7.3 
Control at 21D (MW) 113.5±5.1 87.1±14.1 40.0±3.1 
*NA= data not available due to loss of the samples. 
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Table 3.2. Micronutrient (Mn, Fe and Zn) concentration in the youngest fully expanded leaf 
(YFEL) of sunflower plants grown on the Luvisol at different waiting times (-1, 0, 1, 3, 6, 14, and 
21 d) after pre-culture rye grass desiccation by glyphosate. Mechanical weeding (MW) at -1 and 
21 d plus bare soil without glyphosate application at -1 d waiting time represents control 
treatments. Plants were harvested 28 days after sowing. Given data represents the average of 4 
replicates ±SD. 

Waiting time Micronutrient concentration (µg/g DM) 
Mn Fe Zn 

Control(bare soil) 59.4±10.3 74.6±2.9 17.7±1.6 
Control(mechanical 
weeding-MW) 

67.9±25.4 98.1±18.7 34.0±13.7 

-1D 61.6±31.8 85.9±26.3 13.1±4.9 
0D 74.7±22.9 72.9±14.1 24.3±1.9 
1D 101.5±12.1 88.2±7.4 32.8±7.6 
3D 81.8±10.4 79.4±9.6 34.0±12.9 
6D 93.0±19.7 83.5±7.5 19.8±5.0 
14D 68.0±14.2 94.9±11.6 33.0±10.3 
21D 91.6±11.8 118.2±20.6 26.5±8.3 
Control at 21D (MW) 67.6±9.2 67.6±8.1 29.2±2.1 
 

 

 

3.3.2 Field experiment 

3.3.2.1. Visual plant growth 

The field experiment conducted to confirm the controlled greenhouse experiment 

resulted similar negative effect on growth. Winter wheat plants cultivated at 2 days 

waiting time after cover crop desiccation by glyphosate, showed heterogeneous 

emergence and stunted growth compared to the plots with 14 day waiting time and 

control, irrespective of the applied glyphosate quantity (Photo 3.2). Similarly, visual 

scoring of the relative damage of wheat seedlings showed close to 50% damage when 

only 2 days waiting time was allowed while the control and 14 days waiting time showed 

only around 10% culture damage (Fig.3.3).  
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Photo 3.2. Effect of waiting time (2 days versus 2 weeks) and doses of Roundup UltraMax (2L 
versus 6L ha-1) on damage of winter wheat establishment on farmers´ fields (A in Hirrlingen and 
B in Wendelsheim) with reduced tillage management practice. Photos were taken on 06.04.08, 
six months after winter wheat sowing.   
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Fig.3.3. Visual scoring damage of wheat plants grown under minimum tillage farming practice 
sown at different waiting times (2 days versus 2 weeks) between glyphosate desiccation to weed 
and sowing of wheat and different dosage of glyphosate (2L versus 6L ha-1).  Agil-S and Basta 
mixture with 14 days waiting time represents the control. Scoring was done either on autumn 
2007 (06.12.07) or on spring 2008 (31.03.08). The given data represents the average of 6 
replicates ±SD. 
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3.3.2.2. SPAD value and mineral nutrient acquisition 

Parallel to visually observed damage of winter wheat in plots with 2 days waiting time, 

SPAD values for chlorophyll content were also significantly lower compared to 14 day 

waiting time, irrespective of the amount of glyphosate applied (Fig. 3.4). Short waiting 

time (2 d) combined with a higher rate of glyphosate application reduced the 

concentration of divalent metal macronutrients (Ca2+ and Mg2+) of winter wheat plants 

(Table 3.3). Surprisingly, despite the declined SPAD values of the short waiting time (2 

d), Fe analysis did not show significant difference between the treatments (Table 3.4). 

Other micronutrients (Mn, Zn and Cu) however showed decreased concentrations at the 

combination of a short waiting time (2 d) and high application rate of glyphosate(6 L ha-1) 

compared to a long waiting time (14 d) and low application rate of glyphosate (Table 

3.4).  Independent of waiting time (2 d versus 14 d) and amount of glyphosate applied (2 

L versus 6 L ha-1), concentrations of  Mn, Zn and Cu in leaves were generally low, close 

to critical deficiency levels according to Bergmann (1992) (Table 4). Shikimate analysis 

of the winter wheat roots however did not show any difference between treatments and 

for all the treatments the values were below the detection limit (data not shown).  

  

 

 

 

 

 

 

Fig.3.4. SPAD value measurement of winter wheat plants grown under field conditions under 
reduced tillage using high (6L ha-1 ) and low (2L ha-1) glyphosate rates to control weeds and 
considering short (2 days) and long (14 days) waiting time between weed desiccation by 
glyphosate and wheat sowing. Agil-S and Basta mixture with 14 days waiting time functions as 
control. Measurements were conducted on autumn 2007. Data given presents an average of 6 
replicates with ±SD, p≤0.05.  
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Table 3.3. Shoot macronutrient concentrations of winter wheat plants cultivated under field 
conditions on farmer´s field with reduced tillage after desiccating pre-culture cover crop with 
high (6L ha-1 ) and low (2L ha-1) glyphosate levels and different waiting times (2d versus 2 
weeks). Agil-S and Basta mixture with 14 days waiting time was used as control. Leave for 
mineral nutrient analysis was collected at autumn 2007. Similar letters along the column are not 
significantly different from each other at P<0.05 Tukey test.  

Treatment 

(rate of gly/waiting time) 

Macronutrient concentration (mg/g DM) 
P Mg K Ca 

Control 1.9±0.3a 1.5±0.1ab 25.0±4.0a 3.8±0.2ab

2L/14D 2.1±0.4a 1.5±0.2a 24.9±5.0a 3.9±0.2ab

2L/2D 1.7±0.4a 1.3±0.2ab 19.2±4.8a 3.7±0.6a

6L/14D 2.0±0.2a 1.5±0.1ab 23.3±4.3a 4.1±0.2ab

6L/2D 1.6±0.4a 1.2±0.2b 18.2±4.9a 3.4±0.3b

 

 

Table 3.4. Shoot micronutrient concentrations of winter wheat plants cultivated under field 
conditions on farmer´s field with reduced tillage after desiccating pre-culture cover crop with 
high (6L ha-1 ) and low (2L ha-1) glyphosate levels and different waiting times (2d versus 2 
weeks). Agil-S and Basta mixture with 14 days waiting time was used as control. Leaves for 
mineral nutrient analysis was collected at autumn 2007. Similar letters along the column are not 
significantly different from each other at P<0.05 Duncan test.   

Treatment 

(rate of gly/waiting time) 

Micronutrient concentration (µg/g DM) 
Fe Mn Zn Cu 

Control 376.1±26.7a 52.7±19.4a 19.5±2.4ab 7.1±2.5ab

2L/14D 401.2±160.1a 42.5±9.9ab 19.9±2.2a 13.7±12.3a

2L/2D 340.2±118.5a 30.0±10.1b 17.1±0.8ab 6.7±3.3ab

6L/14D 314.0±87.6a 44.0±10.9ab 19.1±2.1ab 5.9±1.6b

6L/2D 295.8±64.6a 37.7±17.1ab 16.5±3.6b 5.6±2.8b
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3.4 Discussion 

3.4.1. Controlled greenhouse experiment 

The question posed in this study was whether waiting time between weed desiccation by 

glyphosate and subsequent crop planting is required to alleviate the unintended residual 

phytotoxicity of glyphosate to the subsequent crop plants. The findings of this 

experiment indicated a clear requirement of waiting times contrary to the common belief 

of the farmers and continuously advertized by the producers in farmer journals that 

glyphosate for weed desiccation can even be applied after sowing before emergence of 

the following crop (Monsanto, Roundup Ultramax® product information). When sunflower 

plants as model crop plants were sown at less than 21 days after rye grass desiccation 

by glyphosate, on both the acidic Arenosol and the calcareous Luvisol under controlled 

greenhouse condition, biomass production of the sunflower seedlings was significantly 

reduced (Fig. 3.1 A and B). Under similar greenhouse conditions with loamy sandy soil, 

Cornish (1992) reported a 57% reduction of dry weight of tomato seedlings transplanted 

even 15 days after glyphosate soil spray at 4 L product per hectare rate. Even a greater 

reduction in dry weight occurred when superphosphate was mixed into the soil before 

glyphosate application. The same report records a dry weight reduction of tomato plants 

transplanted 16 days after glyphosate spraying under field conditions and concluded 

that three weeks of waiting time between glyphosate use and subsequent crop planting 

could save unwanted phytotoxicy effects of glyphosate residues.           

The inhibition of sunflower biomass at less than 21 day waiting time were in close 

correspondence with an intracellular shikimate accumulation as physiological indicator 

for glyphosate toxicity on both experimental soils (Figs. 3.2 A and B). As 5-

enolpyruvylshikimate-3-phosphate synthase (EPSP synthase) enzyme is the target for 

glyphosate, this herbicide kills plants by blocking the shikimatic acid pathway, resulting 

in intracellular accumulation of shikimate (Becerril et al., 1989; Della-Cioppa et al., 

1986). Hence, the close correspondence of plant growth inhibition and intracellular 

shikimate accumulation in sunflower seedlings at waiting times less than 21 days proved 

the glyphosate residual phytotoxicity as the main cause than others. 
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Glyphosate residues in a soil or contaminations by drift can cause adverse effect on 

plant nutritional status. Many reports documented such inhibitory effect of simulated 

glyphosate drift contamination on nutrient uptake and translocation. Report by Eker et al. 

(2006) shows a strong inhibition of micronutrient (Mn and Fe) uptake and root-to-shoot 

translocation in sunflower plants grown under hydroponic culture after simulated 

sublethal drift glyphosate application. Similarly, rhizosphere root-to-root transfer from 

target to non-target plant under soil culture caused inhibited micronutrient acquisition by 

non-target plants (Neumann et al., 2006). Interestingly, a report by Bott et al. (2008) 

revealed a glyphosate-induced impairment of plant growth and micronutrient status in 

glyphosate-resistant soybean (Glycine max L.). In the present controlled greenhouse 

study, however, there was no clear difference in micronutrient concentrations of the 

youngest fully expanded leaves of the sunflower seedlings between the different waiting 

times and controls (Tables 3.1 and 3.2). This is most probably attributed to dilution effect 

as the biomass of the sunflower seedlings in the controls (bare soil without rye grass 

and mechanical weeding) and 21 days waiting time was much higher than the other 

treatments at less than 21 days waiting time. Plants harvested from the short waiting 

times were strongly stunted and the shoot collected was only the emerging cotyledon 

filled with the nutrient contents of the seed.    

3.4.2 Field Experiment 

Similar to the results of the controlled greenhouse experiment, field trials confirmed the 

phytotoxicity of glyphosate residues to the subsequent non-target crop if not enough 

waiting time is given for detoxification of glyphosate in the soil. Stunted development and 

heterogeneous emergence of winter wheat plants occurred at field plots where the 

wheat sowing was done 2 days after cover crop desiccation by glyphosate, irrespective 

of the glyphosate amount applied (2 L ha-1 versus 6 L ha-1) compared to the plants sown 

14 days after glyphosate application. Similar residual glyphosate phytotoxicity on corn 

development sown 2 days after glyphosate application to Brachiaria decumbens was 

also previously reported (Constantin et al., 2008).  

Visual scoring of culture damage showed up to 50% of the culture being injured by 

glyphosate residual toxicity that was visually persistent even after 6 months in case 
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winter wheat sowing was done already 2 days after cover crop desiccation by 

glyphosate (Fig. 3.3). When the waiting time increased to 14 days, the visual injury 

reduced to less than 10% of the culture (Fig. 3.3). Culture damage at vegetative stage 

can have detrimental effects for final grain yield. A report by Buehring et al. (2007) 

demonstrated a strong correlation between visual injury rating and potential yield losses 

of field corn exposed to sublethal doses of glyphosate. 

In line with the greenhouse results and many previous reports, short waiting time (2 d) 

combined with higher glyphosate application rate (6 L ha-1) resulted in reduction of both 

the macro and micronutrient concentration of wheat plants (Table 3.3 and 3.4). 

Glyphosate is known as a chelator of divalent cations (Glass, 1984; Schoenherr and 

Schreiber, 2004; Subramaniam and Hoggard, 1988). A research conducted to 

demonstrate the possible effects of glyphosate on uptake, translocation and intracellular 

localization of metal cations in soybean seedlings by Duke et al., (1985) clearly shows 

that root-fed or foliar applied glyphosate reduced uptake and translocation of Ca2+ and 

Mg2+ but not K+. Glyphosate chelates Mg2+ and Ca2+ almost equally well, with the same 

stability constant and similar effects of pH on chelating properties (Madsen, 1978). Thus, 

the chelation of these ions by glyphosate may be related to glyphosate effects on Ca2+ 

and Mg2+ uptake and translocation. In agreement to these findings and possibly for the 

same reason, the Ca2+ and Mg2+ concentration of winter wheat shoots were reduced due 

to the combined effect of short waiting time (2 d) and elevated glyphosate application 

rate (6 L ha-1) compared to the longer waiting time (14 d) and lower application rate (2 L 

ha-1) in this study (Table 3.3).  Similar to the divalent macronutrients, glyphosate also 

forms stable complexes with the divalent micronutrients, such as Fe, Mn, Zn and Cu, 

depending on their ionic state during the time of contact (Glass, 1984; Hall et al., 2000; 

Bernards et al., 2005). For the same reason, Eker et al. (2006) found a substantial 

decrease in leaf concentration of Fe and Mn by glyphosate drift application. Similarly, in 

the present study, a short waiting time (2 d) caused a decreased shoot Mn concentration 

irrespective of the application rate while Zn and Cu shoot concentrations declined by 

both short waiting times and higher glyphosate application rates (Table 3.4).     
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3.5. Conclusion 

The commonly used glyphosate application direction in farmers´ fields seems 

inappropriate and needs consideration of an appropriate waiting time. Results of this 

work clearly demonstrated a consideration of not less than 21 days waiting time between 

weed desiccation with glyphosate and subsequent crop planting in order to avoid the 

frequently reported glyphosate residual toxicity on farmer´s fields. However further 

research is needed to determine site specific waiting times by studying factors that might 

influence the concentrations of glyphosate residue in a soil considering different soil 

types, plant species and environmental conditions.    

3.6. Prospects 
Further research is needed to clarify and determine the necessity of waiting times after 

glyphosate weed desiccation considering different soil, plant and environmental factors 

such as: 

- Different soil types with regard to, e.g. pH, texture, P fertilization levels and P 

fixation capacities as glyphosate fixation and degradation may depend on such 

soil properties. 

- Different temperature conditions and soil water content as soil microbial activity is 

affected by soil temperature and water and thus rate of glyphosate degradation. 

- Different cover crops might degrade differently and thereby release of glyphosate 

residues can be different between various plant species.  
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Glyphosate transfer via the rhizosphere from target to non-target plants: Possible 
remobilization of detoxified glyphosate by root -induced changes in the 
rhizosphere. 

 

4.1. Introduction 

Glyphosate (N-(phosphonomethyl) glycine) is a non-selective broad-spectrum herbicide 

used in agriculture. With the application of the new bio-engineering technology, the use 

of glyphosate is dramatically increasing parallel with the development of glyphosate 

resistant crops such as cotton, soybean, maize and rape varieties. Glyphosate is a polar 

compound with three distinct groups (amine, carboxylate and phosphonate) which 

cause specific sorption reaction like hydrogen bonding (Piccolo and Celano, 1994; 

Piccolo et al., 1996) and stable co-ordination bonding to free and surface Fe3+ and Al3+ 

(McBride and Kung, 1989; Gimsing and Borggaard, 2007). These sorption behaviors 

make glyphosate unique as compared to most other herbicides and have elicited a 

general belief that it is rapidly adsorbed to the soil without any residual toxic effect to 

crop plants.  

Sorption of glyphosate to soil matrix is dependent on many soil factors including soil pH, 

ionic strength, ortho-phosphate concentration and dominant cations (Ca2+, K+, NH4
+) in 

soil solution (de Jonge and de Jonge, 1999). However, adsorption of glyphosate is 

shown to be a reversible process. Thus, glyphosate adsorbed to soils was reported to 

have a residual activity to some plant species (Salazar and Appleby, 1982). 

In addition, phosphate levels in the soil can have a confounding effect on glyphosate 

adsorption or desorption as both compete for the same sorption sites. For instance on 

goethite and gibbsite, a preferential strong adsorption of phosphate over glyphosate has 

led to remobilization of presorbed glyphosate after phosphate addition (Veiga et al., 

2001; Gimsing and Borggaard, 2002). Hence, it is apparent that phosphorus fertilization 

management might play a crucial role in determining the fate of glyphosate in the 

rhizosphere as already indicated by the work of Cornish (1992).   

On the other hand there are various root-induced chemical changes in the rhizosphere 

as adaptation strategy for nutrient mobilization by distinct plant species, especially for P 
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and some micronutrients. Such chemical changes include changes in rhizosphere pH 

and redox potential, enhanced localized release of H+ and release of organic 

carboxylates (Bertrand et al., 1999; Neumann and Römheld, 1999; Neumann and 

Roemheld, 2002). The main change of these processes is the rhizosphere pH, which is 

strongly dependent on many soil and plant factors like soil buffering capacity, plant 

genotype, plant nutritional status and root exudation (Jones, 1998; Neumann and 

Roemheld, 1999). Despite of the soil buffering capacity, the form of N supplied (NO3
- or 

NH4
+), i.e. anionic or cationic form of N supply is a main driving force for pH changes in 

the rhizosphere (Marschner et al., 1986). Although root exudates such as organic 

carboxylates may alter the rhizosphere pH in some instances, the most prominent pH 

change is caused by differences in the cation/anion uptake ratio, especially dependent 

on nitrate and ammonium supply. Usually, ammonium supply is correlated with a 

preferential cation uptake and thus with a higher net excretion rates of H+ over HCO3
- or 

OH-, and nitrate supply causes the reverse (Marschner, 1995). 

One of the most documented plant adaptation strategy to nutrient deficiency condition is 

the release of carboxylates, particularly citrate into the rhizosphere under low P status 

by various plant species, thereby mobilizing sparingly available nutrients such as 

phosphate by a mechanism of ligand exchange, dissolution or occupation of sorption 

sites (Gardner et al., 1983; Fox et al., 1990; Dinkelaker et al., 1995; Gerke, 1995; 

Neumann and Roemheld, 1999).   

The objective of the present study was to manipulate the rhizosphere environment 

with the aim to induce chemical changes for glyphosate re-mobilization in different 

culture media. For this purpose, two experiments were conducted using two contrasting 

soil types, a highly buffered calcareous subsoil (loess, Luvisol) with hardly shown root-

induced rhizosphere acidification and a weakly buffered acidic surface soil (Arenosol) 

with easily shown root-induced rhizosphere acidification. In the first experiment, different 

forms of N supply (NO3
-
 or NH4

+) should result either in a rhizosphere acidification under 

NH4
+ -N supply or in an alkalinization under NO3

- supply. It was expected that the NH4
+-

induced rhizosphere acidification might result in a re-mobilization of adsorbed 

glyphosate with a subsequent uptake by planted non-target sunflower seedlings and an 
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accumulation of shikimate in sunflower roots as a bio-indicator. An additional 

experiment was conducted with the same soils but with supplementation of artificial 

carboxylates after planting sunflower seedlings on glyphosate pre-loaded soils to 

elucidate a ligand exchange as another possible mechanism involved in phosphate or 

glyphosate remobilization as an alternative approach. 

4.2. Materials and Methods 

4.2.1. Experiment one: Rhizobox experiment 

4.2.1.1. Conditions for plant growth 

Experiments were conducted under greenhouse conditions, using two contrasting soils: 

a sandy acidic top soil of an Arenosol with low buffering capacity and a well-buffered 

calcareous Luvisol (for detailed soil characteristics see chapter 2). Soils were sieved to 

pass through a 2 mm mesh size and fertilized with: K as K2SO4 (150 mg K kg-1 soil), Mg 

as MgSO4 (50 mg Mg kg-1 soil) and P as Ca(H2PO4)2 (80 mg P kg-1 soil). In addition, the 

calcareous subsoil was supplied with Fe as FeEDTA (20 μmoles kg-1 soil).  N fertilizer 

was supplied either as Ca(NO3)2 for the nitrate treatments or as (NH4)2SO4 for the 

ammonium treatments at a rate of 100mg N kg-1 soil. The ammonium was stabilized 

with DMPP (a nitrification inhibitor from the company BASF) at a recommended rate of 

1% of applied NH4-N (1 mg DMPP kg-1 soil or 4µl of a 25% DMPP solution kg-1 soil). 

Glyphosate was added at four different rates: 0, 50, 100 and 500% of the recommended 

rate (2L RoundUp in 200L water) together with above-mentioned nutrients in solution 

and homogenously mixed and incubated for 21 days under room temperature to allow a 

sufficient adsorption of glyphosate on the soil matrix. For conversion of regular field 

application rates to small scale greenhouse experiments, a surface area of 290 cm2 and 

5 cm rhizosphere depth for 1 kg rhizobox soil was considered following a 

recommendation by Monsanto (pers. commun., 2007). This conversion resulted in a 

final application rate of 0, 0.29, 0.58 and 2.89 ml of the RoundUp spray solution (2L 

RoundUp in 200L water, i.e., 28.4mM active ingredient) per kg soil.  

After 21 days incubation, soils were re-adjusted to optimum moisture level (15% v/w for 

the Arenosol and 18% v/w for the Luvisol) and filled into rhizoboxes (500g soil on dry 
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weight basis per rhizobox). Two pre-germinated sunflower (Helianthus annuus L. cv. 

TR6149SA) seedlings (6 days old) were transplanted in each rhizobox.  Sunflower 

plants were grown for 10 days under hot summer conditions (maximum 35°C midday 

and about 25°C in the night) in a greenhouse and water losses were determined 

gravimetrically and recharged daily by applications of de-ionized water.     

4.2.1.2. Rhizosphere pH measurement 

Rhizosphere and bulk soil pH was determined by a pre-calibrated antimony 

microelectrode by carefully opening the root window of the rhizoboxes as millivolts and 

converted to pH values using corresponding measurements of pH standards from 3.0 to 

9.0 pH. 

4.2.2. Experiment two: Pot experiment with supplementation of synthetic carboxylates  

4.2.2.1. Conditions for plant growth 

Experiments were conducted under controlled conditions of a plant growth chamber, 

using the two contrasting soils as in the rhizobox experiment above under similar 

fertilization regimes and glyphosate preloading. In this experiment, N fertilization was 

supplied only as Ca(NO3)2 at a rate of 100mg N kg-1 soil for all treatments. Unlike 

experiment one, in this experiment, glyphosate treatment levels were reduced to three 

i.e., 0, 100 and 500% of the recommended rate and rhizosphere depth was modified to 

consider 25 cm depth. Hence, the volume of standard glyphosate solution applied per 

kg soil corresponding to each level was reduced by factor 5. Therefore, for 0, 100 and 

500% levels, 0, 0.12 and 0.58ml of the standard glyphosate solution were added per kg 

soil and incubated for 21 days for a sufficient adsorption of glyphosate on the soil 

matrix.  

After 21 days incubation, soils were re-adjusted to optimum moisture level (15% v/w for 

the Arenosol and 18% v/w for the Luvisol). Finally 500 g soil on dry weight basis was 

filled in each plastic pot. Seven sunflower (Helianthus annuus L. cv. TR6149SA) seeds 

were directly sown to each pot.  After germination, two uniform sunflower seedlings 

were left for further growth after thinning (6 days after sowing). After thinning, synthetic 

carboxylates either sodium citrate or citric acid at a rate of 10µmole g-1 soil were added 



Chapter 4: Glyphosate transfer via the rhizosphere‐risk of remobilization 

48 
 

per pot (supplemented as solution by titrating on top of the soil surface). Plants were left 

to grow for another 6 days after supplementation of synthetic carboxylates under growth 

chamber conditions. Water losses were determined gravimetrically and daily recharged 

with de-ionized water.   

4.2.3. Plant harvest 

Plants were harvested by separating shoots and roots for biomass determination. 

Youngest fully expanded leaves were selected for mineral analysis. Roots were washed 

free from soil with water and frozen in liquid nitrogen and stored at -20°C for shikimate 

analysis. 

4.2.4. Shikimate analysis 

The frozen root tissues were homogenized with 5% ortho-phosphoric acid (1 ml 100  

mg-1 fresh weight) using mortar and pestle. Any insoluble material was removed by 

centrifugation (5 min at 20.000 x g) and the supernatant was used for HPLC analysis 

after appropriate dilution with the HPLC mobile phase (see chapter 2 for details).  

4.2.5 Statistical analysis  

All treatments comprising 4 replicates as rhizoboxes/pots were arranged in the 

greenhouse/growth chamber in a complete randomized block design. Analysis of 

variance was performed with SPSS statistics software package (SPSS Inc. Illinois, 

U.S.A).  
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4.3. Results 

4.3.1. Experiment one: Rhizobox experiment 

4.3.1.1. Visual plant growth 

In the rhizobox experiment no visible difference in sunflower growth either between the 

N forms (NO3
- versus NH4

+) or due to the different glyphosate application rates could be 

visually observed within each soil type (Photo 4.1). In general, sunflower seedlings in 

rhizoboxes filled with the Luvisol showed a lower shoot growth.  

 

 

 

 

 

 

 

 

 

 

Photo 4.1. Sunflower seedlings grown on the Arenosol supplied with different forms of N and 
pre-incubated with glyphosate for 21 days at different levels (0, 50, 100 and 500% of the 
recommended rate). This is a representative photo to show the growth conditions taken from the 
rhizoboxes with the Arenosol. Plants on the Luvisol were grown under similar conditions. On 
both soils, there was no visually visible difference between the various treatments.  

 

4.3.1.2. Shoot and root biomass   

Corresponding with the visual observations (Photo 4.1), there were no significant 

differences between the various treatments with the two N forms and increasing 

glyphosate application rates in shoot and root fresh weight of sunflower seedlings in the 
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Arenosol (Fig. 4.1A). Only in tendency, shoot fresh weight of sunflower seedlings was 

slightly lower with supply of stabilized NH4
+.  

On the Luvisol, the fresh weight of the sunflower shoots was significantly lower with 

stabilized NH4
+ compared with NO3

- supply (Fig. 4.1B). Root fresh weight of sunflower 

seedlings on the Luvisol was found significantly lower  only with stabilized NH4
+ 

combined with the highest glyphosate pre-application (Fig. 4.1B).   

4.3.1.3. Changes in rhizosphere pH 

In Fig. 4.2 A and B, the measured rhizosphere pH values at harvest are presented for 

sunflower seedlings grown in the Arenosol and Luvisol, respectively. As expected, only 

on the weakly buffered Aresonol a pH decline of 1.5 pH unit could be observed with 

supply of stabilized NH4
+, whereas in case of NO3

- supply no difference or only a small 

insignificant pH increase between bulk and rhizosphere pH was visible. On the Luvisol 

with free CaCO3 (high pH buffering) pH changes in the rhizosphere were insignificant, 

only a pH increase with NO3
- - N could be measured (Fig. 4.2B). 
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Fig.4.1. Shoot and root biomass of sunflower seedlings grown on Arenosol (A) or Luvisol (B) 
pre-incubated with glyphosate for 21 days at different levels (0, 50, 100 and 500% of the 
recommended rate) and supplied with different forms of N (NO3

- or NH4
+).  Plants grown for 10 

days in the pre-incubated soil before harvest. Given date present average of 4 replicates with SD 
as bars, p≤0.05.   
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Fig. 4.2. pH change on the rhizosphere of sunflower plants grown on Arenosol (A) or Luvisol 
(B) pre-incubated with glyphosate for 21 days at different levels (0, 50, 100 and 500% of the 
recommended rate) and supplied with different forms of N (NO3

- or NH4
+) and pH measurement 

was done on 10 days after transplanting. Given date present averages of 4 replicates with SD as 
bars. 
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4.3.1.4. Shikimate concentration in roots 

As shown in Fig.4.3A, despite of the detected decrease of the rhizosphere pH by 

stabilized NH4
+ on the Arenosol, no increase of shikimate in the roots of sunflower 

seedlings could be found compared with the controls without a glyphosate pre-

incubation. Thus, no re-mobilization of detoxified glyphosate by a decrease in the 

rhizosphere pH was observed. This was also the case on the well pH-buffered Luvisol; 

no difference in the shikimate concentration in root of the control (NO3
- -N, no 

glyphosate) and the highest glyphosate pre-application combined with NH4
+-N (Fig. 

4.3B).  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.3. Root intracellular shikimate accumulation of sunflower plants grown on Arenosol (A) 
and Luvisol (B) pre-incubated with glyphosate for 21 days at 0 or 500% of the recommended 
rate and supplied with different forms of N (NO3

- or NH4
+). Only representative treatments 

expected for low (controls with out glyphosate) and high (500% glyphosate application) 
glyphosate remobilization potential were measure. Given data present average of 4 replicates 
with SD as bars. 
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4.3.2. Experiment two: Pot experiment with supplementation of synthetic carboxylates 

4.3.2.1. Visual plant growth 

During the 6 days-growth after supply of sodium citrate (NaC) or citric acid (CA), no 

visible difference in shoot growth could be observed on the Arenosol, even at the supply 

of citric acid where a double fold effect was expected, i.e., rhizosphere acidification and 

ligand exchange processes. Also on the Luvisol, no visible growth difference could be 

seen (Photo 4.2). 

 

 

 

 

 

Photo 4.2. Sunflower seedlings grown on the Arenosol pre-loaded with different rates of 
glyphosate (0, 100 and 500% of the recommended rate) and supplemented with synthetic 
carboxylates as free citric acid (CA) or Na-Citrate (NaC) at 10µmol g-1 soil.   

 

 

4.3.2.2. Shoot and root biomass 

In agreement with the visual observations, there were no significant differences in the 

shoot and root fresh weights of the sunflower seedlings on the Arenosol induced by 

application of either sodium citrate (NC) or citric acid (CA) independent of glyphosate 

pre-incubation (Fig. 4.4 A and B). 

In contrast, on the Luvisol the application of sodium citrate resulted in an inhibition of 

root growth at both glyphosate rates (Fig. 4.5 A and B). This root growth inhibition, 

however, could not be observed with addition of citric acid, possibly due to a fast 

reaction between citric acid and CaCO3.     
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 Fig.4.4 Shoot and root biomass of sunflower plants grown on the Arenosol pre-incunated with 
glyphosate at different levels (0, 100 and 500% of the recommended rate) for 21 days before 
sowing and suplementation of pots after 6 days growth of sunflower seedlings either  sodium 
citrate (NC) or citric acid (CA) at 10µmole g-1 soil. Controls were soils incubated only with a 
complet fertilization but not glyphosate. Plants were harvested at 12 days after sowing. Given 
data present average of 4 replicates with SD as bars, p≤0.05.       
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Fig.4.5 Shoot and root biomass of sunflower plants grown on the Luvisol pre-incunated with 
glyphosate at different levels (0, 100 and 500% of the recommended rate) for 21 days before 
sowing and suplementation of pots after 6 days growth of sunflower seedlings either  sodium 
citrate (NC) or citric acid (CA) at 10µmole g-1 soil. Controls were soils incubated only with a 
complet fertilization but not glyphosate. Plants were harvested at 12 days after sowing. Given 
data present average of 4 replicates with SD as bars, p≤0.05. 
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4.3.2.3. Shikimate concentration in roots 

The representative measured root samples for shikimate as bio-indicator for glyphosate 

phytotoxicity did not show significant difference between the controls (-glyphosate) and 

the glyphosate treatmens with the recommended rate (100%) on both soils (Fig. 4.6). 

From these findings again, no re-mobilization of glyphosate by ligand-exchange with 

citrate could be confirmed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.6. Root intracellular shikimate accumulation of sunflower plants grown on the Arenosol 
and Luvisol pre-incunated at 100% of the recommended rate of glyphosate for 21 days before 
sowing and suplementation of pots after 6 days growth of sunflower seedlings with sodium 
citrate (NC) at 10µmole g-1 soil. Controls were soils incubated only with complet fertilization but 
not glyphosate. Plants were harvested at 12 days after sowing. Given data present average of 4 
replicates with SD as bars, p≤0.05.   
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4.4. Discussion 
Nitrate and ammonium are the main forms of inorganic nitrogen supplied to plants. Plant 

growth response to different form of nitrogen has been well studied and many reports 

show that sole NO3
- nutrition is associated to stimulated shoot growth accompanied by 

increased accumulation of zeatin and zeatin riboside in leaves and xylem exudates 

while sole NH4
+ nutrition is associated with inhibited plant growth accompanied by 

reduced cytokinin(Walch-Liu et al., 2001; Rahayu et al., 2005; Lu et al., 2008). This is in 

agreement with the current results on the Luvisol (Fig. 4.1B) where control plants 

supplied with stabilized ammonium (NH4
+) form of N had reduced shoot growth 

compared to control plants supplied with nitrate (NO3
-) form of nitrogen. Though 

statistically insignificant, under high glyphosate level (100 and 500% of the 

recommended rate) and NH4
+ nutrition tended to reduce shoot and root biomass 

production. In the Arenosol, however, plant growth (shoot or root) was not affected by 

different nitrogen form or increasing application rate of glyphosate (Fig. 4.1A).      

As nitrogen comprise about 80% of the total cations or anions taken up by plants, the 

form of nitrogen supply has a strong impact on the uptake of other cations and anions 

through changes on the rhizosphere pH (Marschner, 1995). Rhizosphere acidification 

can be caused by an excess uptake of cations over anions and alkalization occurs when 

anion uptake exceeds cation uptake. Ammonium uptake is generally associated with 

acidification of the rhizosphere while nitrate nutrition induces an increase in rhizosphere 

pH (Roemheld et al., 1984). Similarly, plants fed with stabilized ammonium strongly 

acidified their rhizosphere soil in the weakly buffered Arenosol by up to 1.7 pH units 

while plants fed with nitrate tended to alkalinize their rhizosphere to a lesser extent by 

up to 0.4 pH units (Fig. 4.2A). In the well buffered Luvisol, root-induced pH change in 

the rhizosphere was not strong. Plants fed with stabilized ammonium (NH4
+) acidified 

their rhizosphere soil by around 0.5 pH units while the nitrate fed plants alkalinized their 

rhizosphere soil by only 0.2 pH units (Fig. 4.2B).     

With the active phosphonate group at the end of the molecule, glyphosate shows a 

similar pattern of reaction like that of phosphate and both molecules compete for the 

same sorption sites in soil (Gimsing and Borggaard, 2001; 2002). Furthermore, many 

sorption-desorption experiments clearly demonstrate desorption of soil matrix fixed 
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glyphosate by addition of phosphate (de Jonge et al., 2001; Gimsing and Borggaard, 

2001; 2002; Laitinen et al., 2008). Cornish (1992) reported a greater reduction in dry 

weight of tomato plants when superphosphate was mixed into the soil before glyphosate 

application. Interestingly, greenhouse experiment by Bott et al. (pers. commun.) shows 

soybean plant growth inhibition on glyphosate pre-incubated soil by an increasing rate 

of phosphate fertilization. This demonstrates a similar pattern of phosphate and 

glyphosate reaction in soil matrix. All chemical changes in the rhizosphere known to 

remobilize phosphate should also remobilize glyphosate.  
        
In neutral or alkaline soils, rhizosphere acidification in plants fed with ammonium can 

enhance mobilization of sparingly soluble calcium phosphate and thereby favor the 

uptake of phosphate (Gahoonia et al., 1992). On acid soils, the pH increase induced by 

nitrate supply enhances phosphorus uptake, presumably by an exchange of phosphate 

adsorbed to iron and aluminum oxides by HCO3
- (Gahoonia et al., 1992). Similar to 

phosphate, glyphosate forms sparingly soluble salts and/or complexes in the presence 

of divalent cations such as Ca2+ (Madsen, et al., 1978; Smith and Raymond, 1988; 

Sundaram and Sundaram, 1997). Previous reports demonstrated that in neutral to 

alkaline soils phosphate ions precipitate as Ca-phosphate (Lindsay et al., 1989) which 

probably holds true to glyphosate as well. Ca-phosphates have a decreasing solubility 

with increasing pH, except for pH values above 8 (Hinsinger, 2001). Hence, it is highly 

likely that root induced rhizosphere acidification of alkaline soils as a result of different 

form of N supply can solubilise sparingly soluble Ca-glyphosates precipitate. This raises 

the risk of a remobilization of soil matrix fixed glyphosate as a result of root-induced 

rhizosphere acidification, with the consequence of non-target plant intoxication. From 

the results of this experiment, however, it was not possible to confirm this assumption. 

There was no any glyphosate phytotoxicity due to remobilization of fixed glyphosate as 

the there was no accompanying intracellular shikimate accumulation (Fig. 4.3B) in 

accordance with the observed rhizosphere acidification and biomass reduction of the 

plants grown on the Luvisol fed with ammonium form of nitrogen. This may be attributed 

to the fact that the amount of glyphosate applied was very low in concentration since it 

was uniformly mixed with the whole volume of soil. But in reality when glyphosate is 
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applied to target plants, it is released by young root zones as hot spots in the soil with 

much higher concentrations. In addition, in the Arenosol where low precipitation was 

expected, the glyphosate molecules might have been already degraded by soil 

microorganisms during the 21 days pre-incubation. In the Luvisol, where higher Ca-

glyphosate precipitation was expected, the root-induced rhizosphere pH reduction as a 

result of ammonium form of nitrogen nutrition might have been too small for glyphosate 

release as the change was only 0.5 pH unit (Fig. 4.2B). 

Root exudation of organic carboxylates has also been considered as a source of root-

induced rhizosphere acidification (Hoffland et al., 1989). Some plant species, such as 

white lupin, respond to P deficiency conditions by development of cluster roots 

characterized by localized fast rate of citrate and malate exudation (Johnson et al., 

1994; Neumann et al., 1999; Neumann and Römheld, 1999). Therefore, scavenging of 

phosphate from extracellular sparingly soluble P source may be aided by exudation of 

carboxylates and root mediated pH change under a P-stressed environment (Gardner et 

al., 1983; Hoffland, 1992; Stroem, et al., 2005). Coupled to rhizosphere acidification, 

exuded organic carboxylates are also able to mobilize inorganic P into the soil solution 

via exchange chelation through competing with phosphate groups for the same 

binding/adsorption sites in soil and forming stronger complexes with Al3+, Fe3+ and Ca2+ 

than phosphate does. Then phosphorus can be liberated from cation–P complex as an 

organic carboxylates complex with the cations or block the sorption of P to other 

charged sites or through the ligand exchange process (Geelhoed, et al., 1999; 

Hinsinger, 2001). Glyphosate as phosphated molecule faces the same fate like 

inorganic phosphate, i.e., root mediated change in the rhizosphere including excretion 

of organic acids (e.g. citrate) can remobilize glyphosate fixed on Al3+, Fe3+ and Ca2+ 

cations by ligand exchange and rhizosphere acidification. In the present study with the 

Arenosol, however, no indication of glyphosate remobilization by synthetic carboxylate 

that caused plant damage could be shown (Fig. 4.4 A and B). Supplementation of the 

pots filled with soils pre-incubated with different levels of glyphosate for 21 days prior to 

planting with sodium citrate or citric acid even showed a tendency of better biomass 

production than the controls (especially shoot fresh weight) at both the 100 and 500% 
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glyphosate rate compared to no glyphosate application. Root growth, however, showed 

no significant differences in all treatments. This absence of glyphosate remobilization is 

likely to be attributed to the fact that this soil is less buffered (low Ca2+ availability) and 

might have had less inactivation of the applied glyphosate which might led to a faster 

degradation by microorganisms during the 21 days incubation period.  

In the highly buffered calcareous Luvisol, supplementation with sodium citrate at 

10µmole g-1 soil concentration but not with citric acid caused inhibition of root growth on 

glyphosate pre-incubated treatments (Fig. 4.5B). Shoot biomass production as well 

tended to be reduced by the addition of sodium citrate at a rate of 10µmole g-1 soil 

although the difference was not statistically significant. Analysis of intracellular 

shikimate accumulation as a bio-indicator for a possible glyphosate toxicity, did not 

show any shikimate accumulation after sodium citrate supplementation. Thus, the 

observed inhibited root (shoot) growth was due to another cause but not due to a 

glyphosate remobilization. The absence of a citric acid effect in the glyphosate pre-

incubated treatments is hard to explain as in this highly buffered (high Ca2+ cation 

concentration) calcareous soil, a two fold effect of citric acid could be expected, firstly a 

soil acidification and secondly a citrate effect as ligand exchanger and thus a stronger 

dissolution of precipitated glyphosate. It is also possible that the plant growth inhibition 

observed by 10µmole g-1 soil Na-citrate addition was caused by Na toxicity rather than 

glyphosate. If that was the case, it can be hypothesized that there might have been an 

insufficient percolation of the supplemented artificial exudates to the rhizosphere soil to 

induce glyphosate remobilization as the exudates could remain absorbed on the top soil 

during addition. Again such a Na toxicity might be the fact that Na-citrate did not result 

in an inhibition of root growth on the non-glyphosate incubated soil but rather in an 

increase (4.5B).               

4.5. Conclusion 
Remobilization of phosphate fixed to the soil matrix by root-induced chemical changes 

remains well founded. As glyphosate has a phosphate group and show similar 

adsorption and desorption behavior in soils, the risk of glyphosate remobilization by 
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root-induced changes in the rhizosphere soil, including rhizosphere 

acidification/alkalinization remains a risk factor for non-target plant intoxication. 

In the present study, possibly due to sublethal supply of glyphosate or insufficient 

induction of root-induced rhizosphere soil pH changes, the assumed glyphosate 

remobilization could not be confirmed in the conducted studies. The slight biomass 

reduction occurred under ammonium (in rhizobox experiment) and nitrate (in the pot 

experiment) were observed in glyphosate treatments without the expected relationship 

with an intracellular shikimate accumulation as physiological bio-indicator of glyphosate 

toxicity. Therefore, in further glyphosate risk assessments, a research in this direction is 

inevitably recommended.          

4.6. Prospects 

Considering the behavior of phosphonated glyphosate in soils, the risk of glyphosate 

remobilization by root-induced rhizosphere changes remains a treat to non-target 

plants. Therefore, this aspect requires further examination considering: 

- Various plant genotypes with different responses towards phosphorus deficiency, 

such as white lupin with strong capacity of remobilizing sparingly soluble P by 

root-induced modification of its rhizosphere and other species like soybean 

known to have less influence on their rhizosphere in response to P deciciency. 

- Different P levels for P fertilization that might induce desorption of fixed 

glyphosate as both phosphate and glyphosate compete for sorption sites. 

- Considering more soil properties like different organic matter and clay content in 

soils. 
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Glyphosate in the rhizosphere – Role of waiting times and different glyphosate 
binding forms in soils for phytotoxicity to non-target plants. 

5.1. Introduction 
Glyphosate [(N-phosphonomethyl)glycine] is the most widely used broad-spectrum 

herbicide on global scale. After foliar application, it is absorbed by the foliage and 

translocated throughout stems, leaves and roots of the entire plant, finally accumulating 

preferentially in young growing tissues (Franz et al., 1997). The herbicidal effect is 

based on inhibition of the shikimate pathway enzyme 5-enolpyruvylshikimic acid-3-

phosphate synthase (EPSPS), involved in the biosynthesis of aromatic amino acids and 

phenolic compounds (Della-Cioppa et al., 1986; Franz et al., 1997). Therefore, 

glyphosate application frequently induces intracellular accumulation of shikimate, which 

can be used as a sensitive physiological indicator for glyphosate toxicity (Henry et al., 

2007).  

Glyphosate can reach the soil via foliar wash-off and undirected spray drift 

contamination (Al-Kathib and Peterson, 1999; Ellis and Griffin, 2002) and by exudation 

from roots or death and decomposition of treated plant residues (v. Wirén-Lehr et al., 

1997; Neumann et al., 2006; Laitinen et al., 2007). However, risks of glyphosate toxicity 

to non-target organisms in soils are generally considered as marginal, since glyphosate 

is almost instantaneously inactivated by adsorption to clay minerals and cationic binding 

sites of the soil matrix (Piccolo  et al., 1992; Dong-Mai et al., 2004), while glyphosate in 

the soil solution is prone to rapid microbial degradation (Giesy et al., 2000).  

An additional potential pool of glyphosate accumulation and stabilization in soils is 

represented by the plant residues of glyphosate-treated weeds. Since in many plant 

species, glyphosate is not readily metabolized, considerable amounts can accumulate 

particularly in young tissues (Reddy et al., 2004). However, the fate of bound 

glyphosate in plant residues has not been widely considered in the past. Studies with 

soybean and wheat suggested unspecific and non-covalent binding of glyphosate to 

starch and cell wall components (Komoßa et al., 1992). The release and degradation of 
14C-labelled glyphosate in various agricultural soils correlated with the soil-microbial 
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activity but only after direct soil application. No such correlation was observed after soil 

incorporation of lyophilized soybean tissue cultures, contaminated with glyphosate. 

These findings suggest different mechanisms for degradation of glyphosate adsorbed to 

the soil matrix and bound in plant residues in the soils, respectively. No information 

exists on factors determining the stabilization and release of glyphosate bound in plant 

residues and the potential risks for non-target organisms getting in contact with these 

residues.  

An increasing number of yet unexplained observations of negative side effects after 

glyphosate application has been reported in the literature (Smiley et al., 1992; King et 

al., 2001; Kremer et al., 2001; Charlson et al., 2004; Fernandez et al., 2005; Huber et 

al., 2005; Yamada, 2006; Neumann et al., 2006), which have been related to direct 

toxicity of glyphosate, impairment of the micro-nutritional status and increased 

susceptibility to plant diseases.  

This study was initiated to investigate the influence of glyphosate residues in the root 

tissue of glyphosate-treated weeds on plant biomass production, intracellular shikimate 

accumulation as indicator for glyphosate toxicity and the micronutrient status of 

subsequently cultivated non-target plants in comparison with direct glyphosate soil 

application. The study was conducted using rye grass (Lolium perenne L. cv. Kelvin) as 

target weed and sunflower (Helianthus annuus L. cv. Frankasol) seedlings as non-target 

plants, considering also the impact of different waiting times after glyphosate application 

for the subsequent culture, as well as two contrasting soils with different binding 

properties for glyphosate. In addition the findings of these model pot experiments were 

compared with observations of field experiments of local farmers.   

5.2. Materials and methods 

5.2.1. Conditions for plant growth 

Experiments were conducted under greenhouse conditions, using two contrasting soils 

with different cationic binding sites for glyphosate:  a sandy acidic Ap horizon of an 

Arenosol with low buffering capacity and with a well-buffered calcareous loess subsoil. 
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Soils were sieved by passing through a 2 mm mesh size and fertilized with mineral 

nutrients (for details see chapter two). 

Plant culture was performed in pots containing 500 g of fertilized soil and soil moisture 

was adjusted to 70% of the soil water-holding capacity (15 % w/w for the Arenosol and 

18 % w/w for the calcareous loess sub-soil). Water losses were determined 

gravimetrically and replaced by daily applications of de-ionized water.     

5.2.2. Glyphosate plant application  

To investigate the effects of glyphosate residues in the root tissue of target weeds on 

subsequently cultivated non-target plants, rye grass (Lolium perenne L. cv. Kelvin) was 

pre-cultivated as model-weed in 500 g pots filled with the fertilized soils. A sowing 

density of 2.2 g rye grass seeds (germination rate 70%) per pot with a surface area of 

100 cm2 was used to simulate high weed coverage of the soil with intense root 

development (Fig.1). At 10 days after sowing (DAS), the young rye grass seedlings 

were sprayed with the recommended dilution of Roundup Ultramax® glyphosate 

formulation (Monsanto Agrar, Düsseldorf, Germany), containing a glyphosate 

concentration of 28.4 mM in the spray solution using a hand-held sprayer. Each pot 

received 6.7 mL of glyphosate spray solution on the leaves, based on determination of 

the rye grass leaf area coverage (approx. 3300 cm2 per pot) and the plants died within 7 

d, a typical time period usually observed also under field conditions (pilot experiments 

with lower doses of glyphosate failed to desiccate the rye grass plants completely even 

within 3 - 4 weeks). Subsequently, sunflower seedlings (Helianthus annuus L. cv. 

Frankasol) were sown into the same pots (7 seeds per pot) at 0, 7, 14 and 21 days after 

rye grass glyphosate application. After desiccation, rye grass residues were removed 

and no disturbance of the soil in the pots was undertaken. This time period was defined 

as “waiting time”. In control treatments without glyphosate application, rye grass shoots 

were removed by cutting at the soil level with a sharp knife. A time schedule with 

sequential sowing dates for the rye grass pre-culture was employed to ensure the same 

sowing day and thus the same external growth conditions for all sunflower seedlings, 

irrespective of the waiting time. All treatments were performed in four replicates.   
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5.2.3. Glyphosate soil application 

To assess the effects of glyphosate in the soil on non-target plants, the same amount of 

glyphosate as applied to the target weeds (6.7 mL of a Roundup Ultramax® solution 

containing a glyphosate concentration of 28.4 mM) was mixed directly with 500 g of the 

fertilized soils. Controls received only mineral nutrients and water. After a waiting time of 

0, 7, 14 and 21 days, sunflower seeds were sown (7 seeds per pot) at the same day as 

in the treatments with rye grass weed pre-culture.  

5.2.4. Plant harvest 

At 12 days after sowing (DAS), a first set of sunflower seedlings was removed from the 

pots. Roots and shoots were separated, frozen in liquid nitrogen and stored at -20°C for 

shikimate analysis.  In each pot, two seedlings were kept and further cultivated until 25 

DAS. At final harvest, the root systems were washed out from the soil, and shoot and 

root parts were separated for biomass determination. The youngest fully expanded 

leaves were selected for analysis of micronutrients.  

5.2.5. Shikimate analysis 

Shikimate in acidic tissue extracts was analyzed with modifications of the methods 

described by Singh and Shaner (1998) and Neumann (2006).  

The frozen plant tissue was homogenized with 5% ortho-phosphoric acid (1 ml 100 mg-1 

fresh weight) using mortar and pestle. Insoluble material was removed by centrifugation 

(5 min at 20.000 x g) and the supernatant was used for HPLC analysis after appropriate 

dilution with the HPLC mobile phase.  

HPLC separation was performed by ion exclusion chromatography using an Aminex 

87H column (Bio-Rad, Richmond, CA, USA) designed for organic acid analysis. A 

sample volume of 20 µL was injected into the isocratic flow (0.5 mL min-1) of the eluent 

(2.5 mM H2SO4, 40°C) and organic acids were detected spectrophotometrically at 210 

nm. Identification and quantification of shikimate was conducted by comparing the 

retention times, absorption spectra and peak areas with a known standard. 
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5.2.6. Analysis of micronutrients 

Shoot mineral nutrients were determined according to Gericke and Kurmies (1952). 

Dried leaves (70° C) were ground and ashed in a muffle furnace at 500° C for 5 hours.   

After cooling, the samples were extracted twice with 2 mL of 3.4 M HNO3 (v/v) and 

subsequently evaporated to dryness. The ash was dissolved in 2 mL of 4 M HCl, 

subsequently diluted 10 fold with hot de-ionized water, and boiled for 2 min. After 

addition of 0.1 mL Cs/La buffer to 4.9 mL ash solution, Fe, Mn and Zn concentrations 

were measured by atomic absorption spectrometry (UNICAM 939, Offenbach / Main, 

Germany).  

5.2.7. Statistics 

All treatments comprised 4 replicates and pots were arranged in the greenhouse in a 

completely randomized block design. Analysis of variance was performed with SPSS 

statistics software package (SPSS Inc. Illinois, U.S.A). 

5.3. Results 

5.3.1. Visual plant growth 

Glyphosate applications to pre-culture rye grass caused sever inhibition of shoot and 

root growth of following sunflower seedling compared to direct soil application of 

equivalent amount of glyphosate (Photo 5.1). Detrimental effect of glyphosate residues 

after rye grass treatment was comparable on both soils.  

 

 

 

 

 

 

 

 

 



Chapter 5: Glyphosate in the rhizosphere‐ Role of waiting time and binding form 

68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Photo 5.1. Shoot and root development of sunflower seedlings grown on an acidic Arenosol with 
(+Gly) or without (-Gly) pre-sowing glyphosate treatments on a pre-culture with Lolium perenne 
or direct glyphosate soil application. Photos were taken 25 days after sunflower sowing at 
harvest. Toxicity effect was also comparable in the Luvisol.  

Pre-culture

-Gly +Gly
soil application

-Gly +Gly
plant application

Main Culture

-Gly +Gly
soil application

-Gly +Gly
plant application
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In contrast to direct soil application of glyphosate, the treatments with glyphosate 

application to the Lolium pre-culture were characterized by non-homogenous 

germination and large differences in seedling development of sunflower (Photo 5. 2). 

This was reflected in a high variability of biomass data (Tables 5.1 and 5.2) and 

intracellular shikimate accumulation in the respective treatments (Figs. 5.3 and 5.4). 

 

 

 

 

 

 

 

 

Photo 5.2.  Germination and seedling development of sunflower plants grown on an acidic 
Arenosol soil at 21 d after desiccation of a ryegrass pre-culture by foliar glyphosate application 
(plant application) and after direct soil application of the same glyphosate dose (soil application).                        

 

5.3.2. Shoot and root biomass 

Biomass production of sunflower seedlings was not influenced by the two contrasting 

soils (acidic Arenosol, calcareous loess subsoil) used for plant culture. However, 

glyphosate pre-sowing treatments substantially reduced seedling dry matter, particularly 

in the variant with a waiting time of zero days after glyphosate application for sowing of 

sunflower (Tables 5.1 and 5.2). The inhibitory effect was more strongly expressed when 

glyphosate was applied on a pre-culture of rye grass, associated with a reduction of root 

and shoot biomass by approximately 90 %, compared with direct soil application, 

-Gly +Gly -Gly +Gly

Plant Application                                             Soil Application  
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leading to a reduction of shoot biomass by 55 % - 57 % and of root biomass by 67 -73% 

(Fig. 5.1; Tables 5.1 and 5.2). The inhibitory effects declined with increasing waiting 

times but still remained detectable even at 21 d after glyphosate application, although 

the differences were not significant in all cases.   

 

Table 5.1. Shoot and root dry matter of sunflower plants (25 DAS) grown on an acidic Arenosol 
with glyphosate application at 0, 7, 14 and 21 days before sowing to a pre-culture of rye grass or 
directly incorporated into the soil, respectively.  Data represent means and standard deviations of 
4 independent replicates. Significant differences between treatments are indicated by different 
characters. 

Treatment Shoot biomass (g) Root biomass (g) 

Plant application Soil application Plant 
application 

Soil application 

0d –Gly 
 
0d +Gly 

0.59±0.05ab 

 

0.07±0.03c 

0.58±0.03ab

 
0.26±0.06bc 

0.27±0.03ab 

 
0.04±0.02c 

0.27±0.03ab

 
0.09±0.02bc 

7d –Gly 
 
7d +Gly 

0.32±0.04bc 

 
0.40±0.3abc 

0.56±0.02ab

 
0.52±0.03ab 

0.32±0.07a 

 
0.27±0.19ab 

0.27±0.02ab

 
0.26±0.01ab 

14d –Gly 
 
14d +Gly 

0.37±0.06bc 

 
0.57±0.06ab 

0.56±0.07ab

 
0.55±0.02ab 

0.35±0.02a 

 
0.33±0.06a 

0.35±0.05a

 
0.28±0.01ab 

21d –Gly 
 
21d +Gly 

0.75±0.11a 

 
0.46±0.46ab 

0.54±0.05ab

 
0.56±0.05ab 

0.41±0.03a 

 
0.24±0.24abc 

0.32±0.04a

 

0.31±0.03a 
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Table 5.2. Shoot and root dry matter of sunflower plants (25 DAS) grown on a calcareous loess 
subsoil with glyphosate application at 0, 7, 14 and 21 days before sowing to a pre-culture of rye 
grass or directly incorporated into the soil, respectively.  Data represent means and standard 
deviations of 4 independent replicates. Significant differences between treatments are indicated 
by different characters. 

Treatment Shoot biomass (g) Root biomass (g) 

Plant application Soil application Plant 
application 

Soil application 

0d –Gly 
 
0d +Gly 

0.53±0.04abc 

 
0.05±0.02e 

0.59±0.06ab

 
0.23±0.09de 

0.29±0.02abc 

 
0.03±0.02e 

0.26±0.01abc

 
0.07±0.03de 

7d –Gly 
 
7d +Gly 

0.35±0.04bcd 

 
0.38±0.19bcd 

0.54±0.03abc

 
0.48±0.11abc 

0.28±0.03abc 

 
0.17±0.12cd 

0.26±0.02abc

 
0.22±0.05bc 

14d –Gly 
 
14d +Gly 

0.32±0.04cd 

 
0.31±0.19cd 

0.45±0.03abcd

 
0.42±0.07abcd 

0.33±0.05ab 

 
0.22±0.07bc 

0.26±0.03abc

 
0.22±0.06bc 

21d –Gly 
 
21d +Gly 

0.65±0.11a 

 
0.57±0.02ab 

0.47±0.16abcd

 
0.53±0.02abc 

0.38±0.07a 

 
0.30±0.03abc 

0.30±0.06abc

 
0.30±0.05abc 

 

5.3.3. Micronutrient acquisition 

The pre-culture of rye grass without glyphosate application obviously increased Mn 

acquisition of sunflower on the Arenosol but not on the calcareous loess sub-soil (Figs.  

5.1 and 5.2).  On both soils, glyphosate pre-sowing treatments affected Mn 

concentrations in the youngest fully-expanded leaves in treatments with 0 d waiting time 

(Figs. 5.1 and 5.2). Manganese concentrations recovered with increasing waiting times 

in all variants with exception of the rye grass glyphosate pre-sowing treatment on the 

Arenosol. In this case, glyphosate application induced a decline of Mn leaf 

concentrations even after a waiting time of three weeks and in some cases Mn 

concentrations dropped close to the critical level of Mn deficiency (Bergmann, 1992) 

(Fig. 5.1). 

In contrast to the Mn-nutritional status, Fe and Zn nutrition of the sunflower seedlings 

were not affected by glyphosate pre-sowing treatments and Fe and Zn concentrations 
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even increased in the glyphosate-treated variants with rye grass pre-culture and 0 d 

waiting time (Tables 5.3 and 5.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Manganese concentration in the youngest fully expanded leaves of sunflower plants (25 
DAS) grown on an acidic Arenosol with glyphosate application at 0, 7, 14 and 21 days before 
sowing to a pre-culture of rye grass or directly incorporated into the soil, respectively. Data 
represent means and standard deviations of 4 independent replicates. Significant differences 
between treatments are indicated by different characters. 

0

20

40

60

80

100

120

Le
af

 M
n

(µ
g/

g 
D

M
)

Waiting time

Glyphosate Plant Application

-Gly +Gly -Gly +Gly -Gly +Gly -Gly +Gly
0d 7d 14d 21d

a a
ab

a

d

cd
a

d

0

20

40

60

80

100

120

Le
af

 M
n

(µ
g/

g 
D

M
)

Waiting time

Glyphosate Soil Application

-Gly +Gly -Gly +Gly -Gly +Gly -Gly +Gly
0d 7d 14d 21d

bcd

ab ab ab
abc

ab
abc

abc



Chapter 5: Glyphosate in the rhizosphere‐ Role of waiting time and binding form 

73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2. Manganese concentration in the youngest fully expanded leaves of sunflower plants (25 
DAS) grown on a calcareous loess sub-soil with glyphosate application at 0, 7, 14 and 21 days 
before sowing to a pre-culture of rye grass or directly incorporated into the soil, respectively. 
Data represent means and standard deviations of 4 independent replicates. Significant differences 
between treatments are indicated by different characters. 
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Table 5.3. Iron and Zinc concentration in the youngest fully expanded leaves of sunflower plants 
(25 DAS) grown on the Arenosol with glyphosate application at 0, 7, 14 and 21 days before 
sowing to a pre-culture of rye grass or directly incorporated into the soil, respectively. Data 
represent means and standard deviations of 4 independent replicates.  

Treatment Fe concentration (µg/g DM) Zn concentration (µg/g DM) 

Plant application Soil application Plant 
application 

Soil application 

0d –Gly 
 
0d +Gly 

79.7±9.9 
 
224.3±94.6 

120.1±25.8 
 
131.0±50.1 

37.3±1.7 
 
69.4±20.7 

41.3±3.5 
 
44.6±6.8 

7d –Gly 
 
7d +Gly 

59.1±7.7 
 
71.3±3.2 

88.8±16.4 
 
112.6±11.0 

40.7±3.3 
 
56.6±21.7 

47.1±10.7 
 
53.9±11.5 

14d –Gly 
 
14d +Gly 

74.3±14.8 
 
70.8±6.1 

98.4±8.9 
 
106.0±11.6 

40.4±2.5 
 
37.2±1.1 

45.6±2.8 
 
42.8±4.0 

21d –Gly 
 
21d +Gly 

100.0±7.5 
 
110.4±40.1 

107.3±8.6 
 
101.6±22.8 

37.7±3.8 
 
52.4±29.9 

36.6±1.6 
 
39.4±3.1 

 

Table 5.4. Iron and Zinc concentration in the youngest fully expanded leaves of sunflower plants 
(25 DAS) grown on the Luvisol with glyphosate application at 0, 7, 14 and 21 days before 
sowing to a pre-culture of rye grass or directly incorporated into the soil, respectively. Data 
represent means and standard deviations of 4 independent replicates.  

Treatment Fe concentration (µg/g DM) Zn concentration (µg/g DM) 

Plant application Soil application Plant 
application 

Soil application 

0d –Gly 
 
0d +Gly 

61.3±4.0 
 
138.5±11.1 

95.1±34.9 
 
64.2±11.9 

26.7±1.9 
 
60.8±10.1 

26.5±1.9 
 
29.1±8.2 

7d –Gly 
 
7d +Gly 

101.1±71.8 
 
60.5±16.5 

72.4±6.4 
 
71.7±11.0 

29.9±6.7 
 
24.0±7.3 

23.4±2.6 
 
25.2±2.6 

14d –Gly 
 
14d +Gly 

61.8±11.7 
 
119.3±59.0 

78.2±11.8 
 
87.2±7.6 

33.4±1.9 
 
34.7±21.7 

27.5±8.5 
 
29.3±2.1 

21d –Gly 
 
21d +Gly 

60.6±9.1 
 
60.6±8.9 

72.5±7.0 
 
63.5±6.7 

20.23±1.1 
 
22.8±2.3 

23.1±4.1 
 
23.7±2.1 
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5.3.4. Shikimate concentration in roots 

The detrimental effects of glyphosate pre-sowing treatments on plant growth were 

reflected in a corresponding increase of shikimate concentrations in the root tissue as a 

physiological indicator for glyphosate toxicity (Fig. 5.3). In this case, the differences 

between the two glyphosate application modes already observed for inhibition of 

seedling growth (Tables 5.1 and 5.2) were even more expressed, and intracellular 

shikimate accumulation was increased by 10 -100 fold in the treatment with glyphosate 

applied to pre-cultured rye grass seedlings, compared with direct soil application (Fig. 

5.3). 

5.3.5. General feature of measured parameters 

As a general feature of all measured parameters, data obtained from the treatments 

with glyphosate application to the rye grass pre-culture exhibited a much higher 

variation compared with those from the treatments with direct soil application of 

glyphosate (Tables 5.1 and 5.2; Figs. 5.1 –5.3). 
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Fig. 5.3: Intracellular shikimate accumulation in the root tissue of sunflower seedlings (12 DAS) 
grown on an acidic Arenosol  with glyphosate application at 0, 7, 14 and 21 days before sowing 
to a pre-culture of rye grass or directly incorporated into the soil, respectively.  Data represent 
means and standard deviations of 4 independent replicates. The background levels of shikimate 
concentrations are shown as numeric values. 
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5.4. Discussion 
In contrast to the common and recommended practice of glyphosate pre-sowing 

treatments, which frequently allows herbicide application even until the first days after 

sowing (Monsanto, Roundup Ultramax® product information), the results of this study 

underline the importance of waiting times, to avoid or at least minimize detrimental 

effects on the following culture. The analysis of physiological parameters, such as 

intracellular shikimate accumulation as metabolic indicator for glyphosate toxicity or the 

micronutrient status revealed, that the risk of toxic effects, induced by glyphosate pre-

sowing treatments, increases with declining waiting time and can persist up to three 

weeks (Fig. 5.3), even when clearly visible effects on seedling growth and development 

are no more detectable by the first view (Fig. 5.2, Table 5.1 and 5.2). Similarly, Cornish 

(1992) reported detrimental effects of glyphosate pre-transplanting treatments on 

tomato in field and pot experiments on sandy loam soils, which were still detectable 

after waiting times of 3 - 4 weeks. However, this study used young tomato plants and no 

seeds which increase the risk of plant damage by glyphosate application.  

Glyphosate-induced impairment of Mn nutrition was more strongly expressed on the 

sandy Arenosol with low buffering capacity compared with the well-buffered calcareous 

sub-soil (Figs. 5.1 and 5.2), indicating a role of different soil types in determining the 

expression of glyphosate toxicity. This was not associated with corresponding 

differences of intracellular shikimate accumulation or plant biomass production (Tables 

5.1 and 5.2; Fig. 5.3), suggesting rather soil-specific differences in Mn availability than 

differential expression of glyphosate toxicity on the two investigated soils as possible 

causes. Accordingly, soil analysis by CAT extraction (VDLUFA, 2004) revealed lower 

levels of available Mn in the Arenosol [7.4 mg kg-1 soil] as compared with the 

calcareous loess subsoil [15.0 mg kg-1 soil]. Glyphosate can form poorly soluble 

complexes with Mn (Sprankle et al., 1975b) and may thereby reduce the already low 

level of available Mn in the Arenosol. Also glyphosate-induced inhibition of root growth 

(Photo. 5.1; Tables 5.1 and 5.2) may counteract Mn acquisition with the strongest 

consequences for Mn uptake on the Arenosol with low levels of plant-available Mn.  

Detrimental effects of glyphosate applications on the micronutrient status and 
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particularly on Mn nutrition have been previously reported  when glyphosate reached 

non-target plants as drift contamination in sub-lethal dosage (Eker et al., 2006), via 

rhizosphere transfer from target weeds (Neumann et al., 2006), or even in glyphosate 

resistant soybean (Jolley and Hansen, 2004). Since micronutrients, such as Mn and Zn 

are important physiological co-factors for mechanisms of plant disease resistance 

(Cakmak, 2000; Datnoff et al., 2007; Thompson and Huber, 2007), glyphosate-induced 

impairment of the micronutrient status may be linked with the observations of a higher 

susceptibility to plant diseases (e.g.  Fusarium, Corynespora, Rhizoctonia, 

Gaeumannomyces and pathogenic nematodes) in response to glyphosate treatments 

(Smiley et al., 1992; King et al., 2001; Kremer et al., 2001; Charlson et al., 2004; Jolley 

et al., 2004; Fernandez et al., 2005; Huber et al., 2005).  

In contrast to the Mn-nutritional status in this study, Fe and Zn concentrations in the 

youngest fully developed leaves were not affected by glyphosate application, except of 

the treatments with rye grass pre-culture and 0 d waiting time. In these cases, Fe and 

Zn concentrations even increased in the leaves of glyphosate-treated variants (Tables 

5.3 and 5.4). Most probably, this represents a concentration effect of Fe and Zn seed 

reserves due to the extreme growth depression of the seedlings in these treatments. 

Also calcium and magnesium are discussed as potential ligands, mediating glyphosate 

immobilization and inactivation in soils (Sprankle et al., 1975b). However, despite of 

much higher levels of CaCO3 and of free water-extractable Ca2+ [59.9 mg kg-1 soil] and 

Mg2+ [11.3 mg kg-1 soil] in the calcareous sub-soil compared with the Arenosol [Ca2+: 

0.4 mg kg-1 soil; Mg2+: 0.4 mg kg-1 soil], glyphosate-induced inhibition of plant growth 

(Tables 5.1 and 5.2) and intracellular shikimate accumulation (Figs. 5.3) were similarly 

expressed on both soils. This finding suggests that on both soils, the plants were 

exposed to similar levels of free glyphosate, which induced similar effects of toxicity. 

The lack of Ca2+ and Mg2+ in the Arenosol may be compensated by much higher 

concentrations of available Fe3+ [369 mg kg-1 soil] and exchangeable Al3+ [0.04 cmolc 

kg-1]  compared with the calcareous loess subsoil Fe3+ [ 7.8 mg kg-1 soil] and negligible 

exchangeable Al3+ as ligands for binding and complexation of glyphosate.    
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Toxicity of glyphosate pre-sowing treatments on sunflower seedlings was also strongly 

dependent on the mode of glyphosate application. When glyphosate was sprayed on 

pre-cultured rye grass seedlings, detrimental effects on plant growth and the Mn 

nutritional status, as well as increased intracellular shikimate accumulation in the root 

tissue were more strongly expressed than after direct soil application of the same 

amount of glyphosate. The lower expression of glyphosate toxicity after soil application 

is in line with the concept of rapid inactivation and detoxification of glyphosate in soils by 

adsorption to phosphate binding sites, such as Fe/Al-oxides and hydroxides, 

precipitation as calcium salts, and rapid microbial degradation of free glyphosate in the 

soil solution (Sprankle et al., 1975a; Giesy, 2001; Monsanto, 2005a; Yamada, 2006). 

Accordingly, Cornish (1992) reported increased toxicity of glyphosate soil pre-

treatments on tomato after simultaneous application of P fertilizers, which obviously 

increased the solubility and thus the bio-availability of glyphosate by competition for soil- 

binding sites. It remains to be established, whether also the intense expression of root-

induced mechanisms for phosphorus or iron mobilization in the rhizosphere, reported for 

various plant species and cultivars (Neumann and Römheld, 2002), can similarly induce 

toxic effects by co-mobilisation of glyphosate adsorbed to P sorption sites. However, in 

the present short-term study, no relevance of these adaptive responses to nutrient 

limitation is expected, since only young seedlings were investigated, relying mainly on P 

and Fe seed reserves in this early developmental stage. 

The increased expression of toxicity effects after glyphosate pre-sowing application to 

the rye grass pre-culture compared with direct soil application suggests, that also the 

root tissue of glyphosate-treated weeds represents a storage pool for glyphosate in the 

investigated soils. In this experiment, the bio-availability of glyphosate in plant residues 

to subsequently cultivated sunflower seedlings was obviously much higher than the bio-

availability of glyphosate bound at the soil matrix. In most plant species, glyphosate is 

not readily metabolized and is preferentially translocated to young growing tissues of 

roots and shoots, where it can accumulate in millimolar concentrations (Reddy et al., 

2004, Monsanto, pers. communication). In soil-grown target plants, this non-

homogeneous distribution of glyphosate within the root tissues may lead to the 
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formation of hot spots of root residues in soils, containing high levels of glyphosate, 

which is subsequently released during microbial degradation of the plant material. 

Without a fast immobilization of glyphosate by adsorption on the soil matrix, glyphosate 

toxicity to non-target plants may be induced by root contact with these hot spots. The 

non-homogeneous distribution of glyphosate-contaminated plant material in the soil 

could also explain the much higher variation of the data on sunflower biomass 

production, shikimate accumulation and Mn-nutritional status after glyphosate 

application to the rye grass pre-culture as compared to direct soil application (Photo 5.2 

but also Tables 5.1 and 5.2, Figs. 5.1 – 5.3) since toxic effects can be expected only 

after direct root contact of the non-target plants with one of the hot spots of glyphosate-

contaminated plant residues, while sunflower seedlings without contact to the hot spots 

remained unaffected. In contrast, direct soil application of glyphosate resulted in a 

homogenous distribution and lower bio-availability due to adsorption of the herbicide 

over the investigated soil profile. 

The potential role of plant residues as a pool for glyphosate stabilization in soils has not 

been widely considered in the past. Most of the available information originates from 

studies of glyphosate residues in foliage (Newton et al., 1984; Feng and Thompson, 

1990; Thompson et al., 1994; Reddy et al., 2004) and not in roots. In a model study with 

different agricultural soils, von Wirén-Lehr et al., (1997) investigated the degradation of 

bound 14C-glyphosate residues in lyophilized cell cultures of soybean but only the water-

insoluble fraction was taken into account.  Komoßa et al., (1992) characterized the 

binding forms of glyphosate in wheat and soybean. However, in contrast to the fate of 

the herbicide applied to soils in a free state, systematic investigations on the bio-

availability of glyphosate in real plant residues incorporated into soils are rare. The 

present study suggests a considerable contribution of this glyphosate pool in 

determining the risk of phytotoxicity to non-target organisms. The findings of this study 

are in line with recent field observations of plant damage in winter wheat after 

glyphosate pre-crop applications and waiting times shorter than two weeks in no-tillage 

systems (Roemheld et. al., 2008). To improve bio-safety in face of the global increase in 

agricultural use of glyphosate, open questions to be considered for the future comprise 
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the expression of these effects under a rage of different field conditions, the impact of 

external factors, such as soil properties, soil moisture levels, temperature, period of 

season, soil-organic matter and biological activity and thus speed of microbial 

degradation of glyphosate containing crop residues, as well as the role of plant species, 

rooting densities and fertilization management. The variability of these factors in 

agricultural practice may contribute to the explanation of contradictory results frequently 

reported in the literature and in field observations concerning the risks of negative side 

effects of glyphosate application on non-target organisms (for reviews see Monsanto 

(2005a, b) and Yamada (2006) and references cited therein).  

5.5. Conclusion 

Results of the present study underlines the importance of glyphosate-treated target 

plant roots as storage pools of glyphosate for intoxication of following crops. These 

findings also indicate the urgency of considering target plant roots for future risk 

assessments which have been yet uninvestigated in most assessments done in 

determining the risk of non-target plant intoxication.  

The results also underline the relevance of “waiting time” after weed desiccation by 

glyphosate and subsequent crop planting to minimize the detrimental effect of 

glyphosate for non-target plant. 

5.6. Prospects 

Glyphosate bound to organic matter has never been considered in risk assessments so 

far, therefore this aspect requires further consideration in future risk assessments of 

residual toxicity of glyphosate considering: 

- Different soil types with different binding forms for glyphosate. 

- Different weed species, since decomposition rate of different root materials 

can be different and might take different time for determining the “waiting 

time”. 
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- Different growth conditions like, soil temperature, moisture and light, since 

these factor influence microbial activity in soil and thus decomposition rate of 

the root residues.    
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Dynamics of glyphosate in plant residues: Is the release of glyphosate by 
decaying root/crop residues an important process for intoxication of non-target 
plants? 
 
6.1. Introduction 
Glyphosate, a broad spectrum, non-selective herbicide, is the world´s most important 

and widely used herbicide. Initially the predominant use of glyphosate in agricultural 

production systems was for broad spectrum, non-selective weed control prior to crop 

sowing. This is, however, no longer the case because transgenic transformation has 

enabled a gene transfer for glyphosate resistance to a number of crop species, such 

as cotton, corn, soybean, and canola. Glyphosate is a systemic herbicide that is 

taken up by weed foliage and then translocated throughout the plant via the phloem 

and further transported to metabolic sinks such as meristems of shoots and roots 

(Feng et al., 1999). From roots, it can be released to the rhizosphere with detrimental 

effect on growth of following crops (Rodrique et al., 1982; Guldner et al., 2005; 

Neumann et al., 2006). 

The primary reason why glyphosate regarded as herbicide with negligible residual 

activities is its strong sorption characteristics on soil minerals such as clay minerals, 

iron and aluminum hydroxides (Piccolo et al., 1994), and it is advocated that crops 

can be planted or seeded directly into treated areas following glyphosate application. 

In addition, it is believed to be easily degraded by soil microbes to natural products 

such as H2O and CO2.  However, this rapid rate of glyphosate degradation by 

microbial metabolism represents the metabolism of the unbound glyphosate 

molecules in a free soil solution (Nomura and Hilton, 1977; Rueppel et al., 1977). The 

moderate persistence in soils, with reported half-lives ranging from 1 to 174 days 

(Wauchope et al., 1992), indicates that glyphosate degradation is a very 

heterogeneous process and depends on many soil and environmental factors. For 

instance, under low soil temperature or drought conditions following glyphosate 

application, glyphosate degradation in soil can be delayed as freezing and drought 

inhibit microbial activity, thereby the degradation of glyphosate (Stenrød et al., 2005).  

Therefore, glyphosate stored in decaying roots and shoot of desiccated weeds can 

be one pool that primarily depends on the decomposition of the organic matter. The 

bioavailability of such plant-associated glyphosate residue is dominated by the type 

and strength of their bonding in the plant matrix (Wiren-Lehr et al., 1997). A study on 
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initial deposits and persistence of forest herbicide residues in sugar maple foliage 

shows leaf accumulation of glyphosate up to 1630 mg of acid equivalent per kg dry 

mass that took around 16 days to dissipate 90% of it (Thompson et al., 1994). From 

field experiments conducted to examine the fate of glyphosate in forest watershed, 

Feng and Thompson (1999) reported on glyphosate residues in leaf litter collected 15 

days after application up to 12.5 µg g-1 dry mass for red alder (Alnus oregona, Nutt.) 

and 19.2 µg g-1 dry mass for salmonberry (Rubus spectablis, Pursh) that declined to 

less than 1µg g-1 within 45 days post application (DT <14 days). Further, the authors 

reported that in soil, glyphosate and AMPA residues were retained primarily in the 

upper organic layer of the profile, with >90% of the total glyphosate residue in the 

upper 0-15 cm layer. If such transient high accumulation of glyphosate on decaying 

weed holds true also to leaf litter residue under reduced tillage cropping systems, it 

deserves crucial attention to culminate residual phytotoxicity for a following crop.        

The globally increasing adoption of no-till or reduced tillage systems like in Brazil, 

where most farmers practice direct drilling in which pre-sowing weed control is 

achieved with herbicides is also one factor pressuring farmers toward using more 

glyphosate in farming systems (Torresen et al., 1999). In such systems, glyphosate is 

applied pre-sowing for weed control in cereals or soybeans and glyphosate residue 

may remain in the straw and soil disturbance practice occurs usually only at crop 

sowing, which might lead to incorporation of the glyphosate contaminated straw to 

the upper soil layer where seed germination occurs. Hence roots of germinating 

seedlings may directly come in contact to the glyphosate contaminated weed 

residues. The following uptake of released glyphosate can cause sufficient 

phytotoxicity. For example, soil incorporation of glyphosate treated finely chopped 

water hyacinth (Eichhornia crassipes (Mart.) salms) shoot material led to reduced 

plant growth of tomato (Lycopersicon esculentum Mill.) seedlings (Stocker and Haller, 

1999).         

The objective of the present study was to investigate the potential phytotoxicity risk 

of glyphosate in reduced tillage systems where glyphosate is employed as means of 

weed control and minimal tillage is done during sowing without removing the 

glyphosate desiccated weed residues. Furthermore, the experiments intended to 

explore whether the decaying shoot straw or the root is an important reservoir of 

glyphosate for intoxication of the following non-target crop. In addition, the 
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decomposition rate of the plant residues and soil type factors were considered in 

these studies as important factors playing vital role in glyphosate dynamics in organic 

residues. For this purpose, an experiment was set up using two contrasting soils 

(weakly buffered Arenosol and highly buffered Luvisol) where a model weed (rye 

grass) pre-cultivated and desiccated by glyphosate was incorporated as shoot or root 

straw (chopped into 1 cm pieces) and homogenate (ground under liquid nitrogen) . It 

was expected that soil buffering capacity (available Ca2+ and Mg2+) and organic 

matter decomposition rate play an important role in detoxifying the residual toxicity of 

glyphosate.  

6.2. Materials and methods 

6.2.1. Conditions for rye grass pre-culture 

Rye grass weed was cultivated in continuously aerated nutrient solution. 2.26 g of 

seeds were grown directly in 2.5 L pots containing full strength nutrient solution and 

12 pots were prepared for producing enough shoot and root material for the whole 

experiment. At the beginning, seeds were rolled in 10 pieces of wet glass wool and 

each glass wool inserted to each hole of the pot cover. The pots were made full so 

that the lower parts of the glass wool touches the nutrient solution to allow continues 

diffusion of nutrient solution to the seeds. Then pots covered with black plastic sheet 

to facilitate germination. Nutrient solution was replaced every three days until enough 

biomass of rye grass was produced.  

After producing enough shoot and root material, pots were grouped into two, i.e., 6 

pots for glyphosate treatment and 6 for without glyphosate treatment. By measuring 

leaf length and width, leaf area per pot was calculated. Two of the pots decided to be 

used for plus glyphosate treatment had smaller leaf area (6093 cm2), while the rest 

four had 7802 cm2. Hence, translating the recommended field application rate of 

glyphosate, i.e., 200L of 28.4mM glyphosate solution per hectare, the first two pots 

sprayed with 12.19 ml of 28.4mM glyphosate spray solution using a hand sprayer 

and the rest four received 15.60 ml of the same solution. Pots assigned for without 

glyphosate treatment were sprayed with distilled water.  

Twelve hours after glyphosate treatment rye grass as model weed were harvested 

and separated into shoots and roots (as schematically depicted in Photo 6.1). Plant 

material from all plus glyphosate were bulked together and the same for the minus 
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glyphosate pots. Further, the glyphosate treated or untreated shoot and root 

separated into two groups to be used as straw or homogenate. Then, the shoot and 

root material intended to be applied as straw was chopped into 1 cm length using a 

scissor. The once intended to be applied as homogenate were rolled in an aluminium 

foil as plus or minus glyphosate for later homogenization. At this point all shoot and 

root materials were deep frozen under liquid nitrogen and stored at -20oC. Later, the 

shoot and root material decided to be applied as homogenate was ground under 

liquid nitrogen using mortar and pestle.  

 

 

 

   

 

 

 

 

 
 
 
Photo 6.1. Schematic description of rye grass production, treatment with glyphosate and 
further preparation to be applied as shoot/root straw or homogenate.  
 

 

6.2.2. Conditions for sunflower plant growth 

Experiments were conducted under greenhouse conditions, using two contrasting 

soils: a sandy acidic Ap horizon of an Arenosol (pH (CaCl2) =4.5; Corg 0.16%) with 

low buffering capacity and a well-buffered calcareous loess subsoil (pH (CaCl2) 7.6; 

Corg <0.3%; CaCO3 30%). Soils were sieved to pass through a 2 mm mesh size and 

fertilized with essential nutrients (for details see chapter 2). 

 During fertilization, the glyphosate-treated or untreated rye grass shoot/root was 

mixed with the soil. They were applied as chopped residues (straw) or homogenates. 

In the case of straw, the shoot or root material from glyphosate-treated or untreated 

rye grass was cut into 1 cm pieces using a scissor, while the rest glyphosate treated 

or untreated shoot and root were homogenized under liquid nitrogen to be applied as 

homogenate. For treatments with shoot straw and homogenate application, 6 g fresh 

12 hrs HomogenateStraw (1cm)

Root residues 
(1cm )

Homogenate

Foliar application of glyphosate 
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weight (equivalent to 1200 mg dry matter kg-1 soil) shoot material was applied per pot 

of 500 g air dried soil. For the root application treatments, 3.5 g fresh weight 

(equivalent to 700 mg dry matter kg-1 soil) root material was applied as straw or 

homogenate for each pot with 500 g soil. These amounts for the shoot and root were 

decided based on preliminary experiments done to measure the shoot and root 

biomass production of rye grass grown on the same pots cultivated till good covering 

of the soil. Additional controls were considered by direct application of 2.36 ml of 28.4 

mM glyphosate spray solution per 500 g soil and positive controls of bare soil without 

any glyphosate application. 

Then soils were filled to 500 g pots and 7 seeds of sunflower (Helianthus annuus L. 

cv Frankasol) were directly sown. Ten days after sowing, five seedlings were thinned 

leaving only two plants for further growth and the shoot and root materials of the five 

thinned seedlings were deep frozen under liquid nitrogen for shikimate analysis. The 

remaining two sunflower plants were grown for a total of 26 days under hot summer 

conditions in a greenhouse and water losses were determined gravimetrically and 

replaced by daily applications of de-ionized water.     

4.2.3. Plant harvest 

Plants were harvested separating shoot and root for biomass determination. Shoot 

material fresh weight was recorded by direct weighing using gravimetric balance. 

Youngest fully expanded leaves were selected for mineral analysis. Root systems 

were washed out with water and carefully pressed between tissue paper for drying, 

then weighed for recording fresh weight.  

4.2.4. Shikimate analysis 

The frozen root tissue was homogenized with 5% ortho-phosphoric acid (1 ml 100 

mg-1 fresh weight) using mortar and pestle. Insoluble material was removed by 

centrifugation (5 min at 20.000 x g) and the supernatant was used for HPLC analysis 

after appropriate dilution with the HPLC mobile phase (for details see chapter 2).  

4.2.5. Statistical analysis 

All treatments comprised 4 replicates and pots were arranged in the greenhouse in a 

complete randomized block design. Analysis of variance was performed with SPSS 

statistics software package (SPSS Inc. Illinois, U.S.A).  
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6.3. Results 
 
6.3.1. Visual plant growth 

There was a striking difference between the two soils with respect to the inhibition of 

shoot and root growth by glyphosate residues from decaying glyphosate-treated rye 

grass organic matter. In the Arenosol, incorporation of glyphosate-treated rye grass 

shoot material induced a strong inhibition of sunflower shoot and root growth, while in 

the Luvisol there was no visible reduction in shoot or root growth induced by 

glyphosate application (Photo 6.1). Visually, sunflower plants grown on the Luvisol 

looked higher and stronger than plants grown on the Arenosol.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Photo 6.2. Depression of shoot and root growth of sunflower seedlings by glyphosate-treated 
rye grass residues incorporated either into a highly buffered Luvisol or a less buffered 
Arenosol. Residues were applied at a rate of 1200 mg dry matter kg-1 soil. Photos were taken 
26 days after sowing of sunflower.   
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6.3.2. Plant height 

Corresponding to visual observation, sunflower plants grown on the Arenosol 

supplied with glyphosate treated rye grass shoot straw or homogenate were stunted 

(Fig. 6.1A). Plant height was reduced by about 75% in the treatments with the 

glyphosate-treated residues or the corresponding homogenates. Glyphosate-treated 

root residues or homogenates incorporated into both soils, however, caused no 

significant effect on plant height (Fig. 6.1A). Direct soil application on the other hand 

resulted to similar plant height reduction as the glyphosate treated shoot straw or 

homogenate (Fig. 6.1A). In contrast, there was no plant height difference between all 

treatments in the Luvisol soil (Fig. 6.1B).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6.1. Plant height of sunflower seedlings grown on Arenosol and Luvisol supplied with 
glyphosate-treated rye grass shoots or roots as straw (cut to 1 cm piece) or homogenate 
(ground under liquid nitrogen). Shoot material was supplied on 1200 mg dry matter kg-1 soil 
and the root material on 700 mg dry matter kg-1 soil. Plant heights were measured at harvest, 
26 days after sowing. The given data are the averages of four replicates ±SD. 
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6.3.3. Shoot and root biomass  

Proceeding to the visual observation, there was a strong reduction in shoot and root 

biomass of sunflower seedlings grown in the Arenosol supplied with glyphosate-

treated rye grass shoot straw or homogenate compared to controls (-glyphosate) and 

treated root (as straw or homogenate) supply (Fig. 6.2 A and B). Direct soil 

application also resulted to similar level of growth inhibition of shoots and roots as the 

glyphosate treated shoot straw or homogenate incorporation (Fig. 6.2 A and B). 

Shoot growth inhibition was stronger than root growth inhibition as can be seen in 

Fig.6.2. The observed relative inhibition by glyphosate-treated shoot residues of 

shoot growth was 88% compared to the non-glyphosate treated control and 81% 

inhibition of root growth (Fig. 6.2 A and B) 

    

    

 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6.2. Shoot and root fresh weight of sunflower seedlings grown on the Arenosol supplied 
with glyphosate-treated rye grass shoots or roots incorporated either as straw (cut into 1 cm 
pieces) or homogenates (ground under liquid nitrogen). Shoot material was supplied on 1200 
mg dry matter kg-1 soil and the root material on 700 mg dry matter kg-1 soil. The given data 
are the average of 4 replicates ±SD.    
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In contrast to the Arenosol, in the Luvisol incorporation of glyphosate-treated rye 

grass as shoot or root residues or homogenates had no effect on sunflower growth 

(Fig. 6.3 A and B). No significant difference in fresh weight of shoots or roots could 

be recorded. In some plus glyphosate treatments tended to show a higher fresh 

weight than the minus glyphosate treatments, but without a significant statistical 

difference (Fig. 6.3 A and B). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6.3. Shoot and root fresh weight of sunflower seedlings grown the Luvisol supplied with 
glyphosate-treated rye grass shoots or roots, incorporated either as straw (cut into 1 cm 
pieces) or homogenates (ground under liquid nitrogen). Shoot material was supplied on 
1200mg dry matter kg-1 soil and the root material on 700 mg dry matter kg-1 soil. Plant fresh 
weight was determined at harvest, 26 days after sowing. The given data are the averages of 4 
replicates ±SD. 
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6.3.4. Mineral nutrient acquisition 

6.3.4.1. A. Micronutrient concentration in leaves  

Parallel to inhibition of plant growth, micronutrient concentrations in leaves of 

sunflower seedlings grown on the Arenosol supplied with glyphosate-treated rye 

grass shoot straw or homogenates were significantly lower compared to controls (-

glyphosate) and treatments with root residues or homogenates containing glyphosate 

(tables 6.1 and 6.2). Leaf concentration of Mn significantly decreased by application 

of glyphosate treated shoot straw (also in tendency by shoot homogenate) compared 

to controls (-glyphosate) (table 6.1). Similarly, Mn concentration decline due to a 

direct soil application of glyphosate in to the Arenosol (Table 6.1).  In contrast to Mn 

concentration, Fe and Zn concentrations increased by application of glyphosate-

treated rye grass shoot straw in to the Arenosol (Table 6.1). This increased Fe and 

Zn leaf concentrations could also be observed by a direct glyphosate application in to 

the soil (Table 6.1). But this increase in Fe and Zn concentration in leaves is possibly 

attributed to dilution effect as plant biomass production in the glyphosate treated 

shoot straw and homogenate were extremely stunted and this is also confirmed by 

the lower Fe and Zn content per plant on those treatments (Table 6.2).  

In contrast, in the Luvisol there was no effect on leaf concentration of micronutrients 

associated to glyphosate phytotoxicity related to incorporation of glyphosate treated 

rye grass shoot/root residues and also direct soil application (tables 6.3). Shoot 

micronutrients (Fe, Mn, and Zn) analysis of the youngest fully expanded leaves 

showed no nutrient concentration difference between all the treatments, including the 

direct soil application (tables 6.3).  

6.3.4.1. B. Micronutrient content 

In line to declined leaf concentration, Mn contents also declined even at a stronger 

expression due to combined effect of inhibited Mn acquisition (Table 6.1) and growth 

inhibition (Fig. 6.2) by application of glyphosate-treated rye grass shoot material 

applied as either shoot straw or homogenate or by direct soil application of 

glyphosate in to the Arenosol (Table 6.2). Despite an increased Fe and Zn 

concentrations in leaves due to glyphosate-treated rye grass shoot residues or direct 

soil application in to the Arenosol, Fe and Zn contents were significantly lower 
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compared to the controls (-glyphosate) (Table 6.2), probably due to growth inhibition 

(Fig. 6.2).  

In contrast, in the Luvisol there was no reduction in micronutrient contents of the 

sunflower seedlings associated to glyphosate phytotoxicity (Table 6.4).  

These results indicate a soil type dependent differential phytotoxicity of glyphosate 

possibly related to a soil detoxification capacity, i.e., the organic matter associated 

glyphosate residual phytotoxicity is expressed on the weakly buffered acidic Arenosol 

but not in the highly buffered calcareous Luvisol.   

Furthermore, treatment of the organic matter (homogenization under liquid nitrogen) 

to accelerate decoposition rate did not cause any differential phytotoxic effect since 

there was no difference in plant growth, nutrient acquisition and intracelular shikimate 

accumulation between straw and homogenate treatments on the two soils ( Figs 6.1-

6.6 and tables 6.1-6.5).  

Generally, youngest fully expanded leaf Fe, Mn and Zn concentration of sunflower 

plants grown on the Arenosol was higher than the Luvisol (tables 6.1 -6.4).   
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Table 6.1. Micronutrient concentration (µg g-1 DM) of youngest fully expanded leaves of 
sunflower seedlings grown in the Arenosol supplied either with shoot or root residues or 
homogenates of glyphosate-treated rye grass. Shoot material was supplied at 1200 mg dry 
matter kg-1 soil and the root material at 700 mg dry matter kg-1 soil. Leaves for micronutrient 
analysis were collected after 26 days growth at harvest. Each given value presents the average 
of 4 replicates ±SD. Different letters along the same column denote significant difference 
from each other at P<0.05 Tukey test. 

 
 
Table 6.2. Micronutrient content (µg per plant) of youngest fully expanded leaves of 
sunflower seedlings grown in the Arenosol supplied either with shoot or root residues or 
homogenates of glyphosate-treated rye grass. Shoot material was supplied at 1200 mg dry 
matter kg-1 soil and the root material at 700 mg dry matter kg-1 soil. Leaves for micronutrient 
analysis were collected after 26 days growth at harvest. Each given value presents the average 
of 4 replicates ±SD. Different letters along the same column denote significant difference 
from each other at P<0.05 Tukey test. 

   Treatment  Mincronutrient concentration (µg g-1 DM) 
Fe Mn Zn 

Shoot-H-gly       109.0±19.7d 226.9±43.2bc 66.5±2.7c

Shoot-H+gly 238.6±52.7bcd 71.0±23.7c 72.7±2.2bc

    
Shoot-S-gly  146.0±36.6bcd 271.4±77.0b 74.5±4.5bc

Shoot-S+gly 254.2±29.7ab  59.1±13.2c 81.4±8.1ab

    
Root-H-gly 132.8±13.1cd 255.5±48.2b 64.7±1.9c

Root-H+gly  141.2±17.4bcd  184.9±30.7bc 65.0±3.5c

    
Root-S-gly 262.5±51.1a 274.6±61.9b 64.6±1.7c

Root-S+gly     182.3±17.5abcd 280.8±53.5b 62.9±5.7c

    
Soil-gly     181.4±19.1abcd 548.2±176.7a 65.8±3.3c

Soil+gly    253.2±113.7ab 74.1±28.6c  88.0±10.8a

Treatment  Micronutrient content (µg per plant) 
Fe Mn Zn 

Shoot-H-gly   37.5±8.2bcd 77.2±12.3b 23.0±4.6a

Shoot-H+gly 17.1±2.9cd 5.2±1.8c   5.3±0.4b

    
Shoot-S-gly    42.5±10.1bc 79.2±22.6b 21.9±1.4a

Shoot-S+gly 14.0±4.6d 3.3±1.4c  4.4±0.8b

    
Root-H-gly 48.6±9.4b 92.4±16.2b 23.5±2.3a

Root-H+gly 47.8±5.1b 63.3±14.4b 22.0±1.6a

    
Root-S-gly  86.9±24.2a 89.7±18.8b 21.4±3.8a

Root-S+gly 58.7±7.0b 89.7±12.9b 20.3±2.3a

    
Soil-gly   60.0±13.6b 174.2±35.0a 21.6±3.0a

Soil+gly 12.9±5.8d  3.9±1.2c  4.8±1.6b



Chapter 6: Dynamics of glyphosate in plant residues 

95 
 

Table 6.3. Micronutrient concentration (µg g-1 DM) of youngest fully expanded leaves of 
sunflower seedlings grown in the Luvisol supplied either with shoot or root residues or 
homogenates of glyphosate-treated rye grass. Shoot material was supplied at 1200 mg dry 
matter kg-1 soil and the root material at 700 mg dry matter kg-1 soil. Leaves for micronutrient 
analysis were collected after 26 days growth at harvest. Each given value presents the average 
of 4 replicates ±SD. Different letters along the same column denote significant difference 
from each other at P<0.05 Tukey test. 

 
 
Table 6.4. Micronutrient content (µg per plant) of youngest fully expanded leaves of 
sunflower seedlings grown in the Luvisol supplied either with shoot or root residues or 
homogenates of glyphosate-treated rye grass. Shoot material was supplied at 1200 mg dry 
matter kg-1 soil and the root material at 700 mg dry matter kg-1 soil. Leaves for micronutrient 
analysis were collected after 26 days growth at harvest. Each given value presents the average 
of 4 replicates ±SD. Different letters along the same column denote significant difference 
from each other at P<0.05 Tukey test.  
Treatment  Micronutrient content (µg per plant) 

Fe Mn Zn 
Shoot-H-gly  38.3±1.4ab 52.0±5.7a 11.8±2.2a 

Shoot-H+gly 34.5±5.9b 46.6±5.8a    9.8±1.7ab 

    
Shoot-S-gly 36.6±2.5ab 52.0±3.1a 10.6±1.5ab 

Shoot-S+gly 52.9±10.1a 52.3±4.2a 10.6±0.5ab 

    
Root-H-gly 36.0±5.4b 50.0±9.9a  9.4±0.7ab 

Root-H+gly  40.2±9.9ab 48.8±5.2a  9.5±2.0ab 

    
Root-S-gly    43.3±10.3ab 45.0±3.8a  9.0±0.6ab 

Root-S+gly 36.2±4.3b 44.2±5.5a  9.3±0.8ab 

    
Soil-gly 35.9±5.6b 39.7±1.7a           8.0±0.9b 

Soil+gly 35.9±6.0b 40.5±6.1a  8.7±1.2ab 

 

Treatment Mincronutrient concentration (µg g-1 DM) 
Fe Mn Zn 

Shoot-H-gly       102.1±8.6a      137.8±7.2abcd 31.0±3.8a 

Shoot-H+gly 108.6±20.0a  145.8±3.4a 30.7±5.9a 

    
Shoot-S-gly 98.2±8.8a    139.2±3.1abc 28.4±2.5a 

Shoot-S+gly 141.9±34.0a      139.3±11.1abc 28.2±0.7a 

    
Root-H-gly 103.0±14.0a  141.2±8.2ab 27.1±3.0a 

Root-H+gly 110.3±23.1a     134.4±7.1abcd 26.0±3.5a 

    
Root-S-gly 123.6±33.8a    127.3±5.0bcd 25.4±1.7a 

Root-S+gly 100.8±13.6a 122.2±3.8d 26.0±3.4a 

    
Soil-gly 112.3±17.2a  124.1±3.6cd 25.0±3.5a 

Soil+gly 110.9±14.3a  124.6±7.8cd 26.9±1.9a 



Chapter 6: Dynamics of glyphosate in plant residues 

96 
 

6.3.4.2. Macronutrients  

Similar to Mn, concentrations and contents of Ca in youngest fully expanded leaves 

of sunflower seedlings was also strongly inhibited by incorporation of glyphosate-

treated rye grass shoot straw and homogenate or a direct soil application of 

glyphosate on the Arenosol (Fig. 6.4 A and B). Interestingly, Ca concentration in 

leaves of sunflower plants grown on treatments supplied with glyphosate-treated rye 

grass shoot straw or homogenate were significantly lower than in plants grown on 

treatments supplied by direct soil application of equivalent amount of glyphosate (Fig. 

6.4A). Compared to controls (-glyphosate) however, direct soil application of 

glyphosate induced reduction of leaf Ca concentration (Fig. 6.4A). Similarly, Mg 

content was also significantly reduced by glyphosate-treated rye grass shoot straw or 

homogenate supply, which is not seen in shoot concentration due to dilution effect 

(table 6.5). Direct soil application of comparable amount of glyphosate also caused 

similar reduction in Mg content of sunflower seedlings grown on the Arenosol (table 

6.5).  

In contrast to the Arenosol, in the Luvisol however, sunflower leaf concentration and 

content of micro and macronutrients were not affected by incorporation of 

glyphosate-treated rye grass shoot/root or even direct soil application of comparable 

amount of glyphosate. Shoot micronutrients (Fe, Mn, and Zn) and Macronutrients (Ca 

and Mg) analysis of the youngest fully expanded leaf showed no nutrient 

concentration difference between all the treatments, including the direct soil 

application (Figs. 6.4; 6.5 and table 6.5). Exceptionally to all results in this 

experiment, sunflower shoot Mg concentration in glyphosate treated root straw 

application treatments was significantly lower than untreated root straw applications 

but possibly this is an artifact than treatment effect (table 6.5).  

Generally youngest fully expanded leaf Ca and Mg concentration of sunflower 

seedlings grown on the Luvisol was higher than Arenosol (Fig. 6.4A and 6.5A; table 

6.5).          
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Fig.6.4. Ca concentration (mg g-1 DM) and content (µg per plant) of youngest fully expanded 
leaves of sunflower seedlings grown in the Arenosol supplied either with shoot or root 
residues or homogenates of glyphosate-treated rye grass. Shoot material was supplied at 1200 
mg dry matter kg-1 soil and the root material at 700 mg dry matter kg-1 soil. Leaves for 
macronutrient analysis were collected after 26 days growth at harvest. Given data present 
average of 4 replicates with SD as bars, P<0.05.  
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Fig.6.5. Ca concentration (mg g-1 DM) and content (µg per plant) of youngest fully expanded 
leaves of sunflower seedlings grown in the Luvisol supplied either with shoot or root residues 
or homogenates of glyphosate-treated rye grass. Shoot material was supplied at 1200 mg dry 
matter kg-1 soil and the root material at 700 mg dry matter kg-1 soil. Leaves for macronutrient 
analysis were collected after 26 days growth at harvest. Given data present average of 4 
replicates with SD as bars, P<0.05.  
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Table 6.5. Mg concentration (mg g-1 DM) and content (mg per plant) of youngest fully 
expanded leaves of sunflower seedlings grown in the Arenosol and Luvisol supplied either 
with shoot or root residues or homogenates of glyphosate-treated rye grass. Shoot material 
was supplied at 1200 mg dry matter kg-1 soil and the root material at 700 mg dry matter kg-1 

soil. Leaves for mineral analysis were collected after 26 days growth at harvest. Each given 
value presents the average of 4 replicates ±SD. Different letters along the same column denote 
significant difference from each other at P<0.05 Tukey test. 
 

 
 
 
 
6.3.5. Intracellular shikimate accumulation  
 
Fig. 6.6 presents data on shikimate accumulation in roots of sunflower seedlings 

grown in the Arenosol and Luvisol for 10 days. In the Arenosol, all the treatments with 

inhibited plant development i.e., application of glyphosate-treated shoot straw and 

homogenate or a direct soil application showed also a strong intracellular shikimate 

accumulation while all other treatments supplied with non-contaminated rye grass 

shoot material (applied as straw or homogenate) and glyphosate-treated and 

untreated root material showed no shikimate accumulation (Fig. 6.6 A and B).  

In contrast, there was no intracellular shikimate accumulation as physiological bio-

indicator for a glyphosate injury in roots of sunflower seedlings grown in the Luvisol 

with a soil incorporation of glyphosate-treated rye grass residues (shoot and root). 

But there was a little accumulation of shikimate in the direct soil application (Fig. 

6.6B). But compared to the plants grown in the comparable treatments of the 

Treatment  Arenosol Luvisol 
Mg Concentration 
(mg g-1 DM) 
 

Mg Content 
(mg per plant) 

Mg oncentration 
(mg g-1 DM) 
 

Mg Content  
(mg per plant) 

Shoot-H-gly 5.8±0.5abc 2.0±0.6ab 13.0±0.6d 4.9±0.4ab

Shoot-H+gly 5.4±0.2bc 0.4±0.0c 12.3±0.6d 3.9±0.7b

     
Shoot-S-gly 5.8±0.6abc 1.7±0.2b 12.9±0.7d 4.8±0.4ab

Shoot-S+gly 5.2±0.7c 0.3±0.1c 13.3±0.3cd 5.0±0.4ab

     
Root-H-gly 7.0±0.5a 2.6±0.3a 15.8±1.4ab 5.6±1.4a

Root-H+gly 7.1±0.5a 2.4±0.4ab 15.1±0.5abc 5.5±0.6ab

     
Root-S-gly 6.9±0.4a 2.3±0.5ab 15.2±0.9ab 5.4±0.7ab

Root-S+gly 6.7±0.6ab 2.2±0.4ab 15.0±0.9bc 5.4±0.8ab

     
Soil-gly 6.4±0.1abc 2.1±0.3ab 16.8±0.8a 5.4±0.5ab

Soil+gly 6.5±1.0abc 0.4±0.1c 16.0±0.3ab 5.2±0.5ab
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Arenosol (556 µg g-1 FW), in the Luvisol the intracellular shikimate accumulation was 

negligible (45 µg g-1 FW) and the small shikimate accumulation was not associated 

with inhibition of any physiological process of plant development. 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6.6. Intracellular shikimate accumulation in root of sunflower seedlings grown on the 
Arenosol and Luvisol supplied either with shoot or root residues or homogenates of 
glyphosate-treated rye grass. Shoot material was supplied at 1200 mg dry matter kg-1 soil and 
the root material at 700 mg dry matter kg-1 soil. Root materials for shikimate analysis were 
collected after 10 days growth at thinning. Each given value presents the average of 4 
replicates ±SD. 
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6.4. Discussion 
Glyphosate residues associated with plant matter caused detrimental effect on plant 

growth on the weakly buffered acidic Arenosol but not in the highly buffered 

calcareous Luvisol (Photo 6.2; Fig. 6.2 and 6.3). This soil type dependent residual 

phytotoxicity of glyphosate is associated to a chain of factors, starting from the 

decomposition rate of organic residues till to detoxification of glyphosate by 

adsorption to the soil matrix.  Shoot and root growth of sunflower plants was inhibited 

by incorporation of glyphosate-treated rye grass shoot straw or homogenates into the 

Arenosol but not to the Luvisol (Photo 6.2; Fig. 6.2 and 6.3). This is most probably 

related to the difference in soil property between the two soils. At this level of 

glyphosate supply, the detoxification capacity of the highly buffered calcareous 

subsoil with high Ca and Mg concentrations as potential ligands mediating 

glyphosate immobilization and inactivation in soils (Sprankle et al., 1975b) might 

have played a primary role in preventing glyphosate toxicity, while this glyphosate 

supply level seems beyond the detoxification capacity of the less buffered acidic 

Arenosol soil with low level of Ca and Mg concentrations.       

The observed difference may also be due to differences in the decomposition rate of 

the supplemented rye grass residues enriched with glyphosate. Many previous 

experiments on decomposition rate of glyphosate-treated straw at realistic application 

rates gave variable results. Discrepancies between these data might be therefore 

due to big differences between the experimental approaches and environmental 

conditions including differences in soil properties (Grossbard, 1985). Since different 

soils are characterized by a different microbial species composition responsible for 

the biological degradation of straw, and thus for the release of glyphosate stored in 

the plant residues. Grossbard (1985) showed that some known efficient cellulose-

degrading fungi (eg. Chaetomium globosum) are tolerant to higher amounts of 

glyphosate while others, similarly known as efficient cellulose-degrading fungi 

(including some Fusarium spp.) are susceptible to glyphosate.  

Furthermore, mineralization of soil organic matter is more rapid in coarse-textured 

than fine-textured soils (Ladd et al., 1985; Hassink, 1997). This is due to physical 

protection of the organic matter from decomposers by physico-chemical stabilization, 

which refers to the associations formed between the soil minerals and organic-
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materials (eg. adsorption to clay minerals, formation of complexes) and pure physical 

stabilization, which refers to aggregate formation and consequently physical 

encapsulation and/or shielding of organic matter from microbial and enzymatic 

attacks (Krull et al., 2003). Hence the textural difference between the two soils (acidic 

sandy Arenosol and calcareous loam Luvisol) might have played a role in influencing 

the decomposition rate of plant residues and thus the release of glyphosate stored in 

the plant residues. In addition, supplementation of cations increases sorption of 

organics on clay surfaces (Sollins et al., 1996). Therefore, if such process played a 

primary role in the present study, then the differential phytotoxicity of glyphosate 

contaminated rye grass shoot incorporation to the two contrasting soils, i.e., weakly 

buffered acidic sandy Arenosol (water extractable Ca2+: 0.4 mg kg-1 soil and Mg2+ 

=0.4 mg kg-1 soil) and highly buffered calcareous loam Luvisol (water extractable 

Ca2+: 59.9 mg kg-1 soil;  Mg2+: 11.3 mg kg-1 soil ) can be explained by a slow 

decomposition rate and release of glyphosate in the Luvisol might have helped the 

detoxification of glyphosate toxicity to sunflower plants. The Arenosol with higher 

concentration of other organic matter sorbents such as Al and Fe oxides (Sollins et 

al., 1996) should have compensated the low Ca and Mg cations, however the 

compensation potential might have been insufficient.  

On both soils, application of glyphosate-treated rye grass root caused no plant 

toxicity reflected by missing plant growth inhibition or intracellular shikimate 

accumulation (Figs. 6.2; 6.3 and 6.6). This is possibly caused by three reasons: (1) 

the amount of glyphosate supplied via the root could have been well below the range 

of the detoxification capacity of both soils as the amount of root supplied (700 mg dry 

matter kg-1 soil) was close to half the amount of shoot material supplied (1200 mg dry 

matter kg-1 soil), (2) another reason could also be related to differences in 

decomposition rate between the shoot and root material, thereby to the release of 

glyphosate stored in the plant residues, as root material with higher phenol and lignin 

content may decompose at slower rate than the shoot material. (3) During the short 

treatment of pre-cultured rye grass with glyphosate still a lower percentage of the 

glyphosate taken up by leaves was translocated into roots (no corresponding 

measurements of glyphosate partitioning were done).           

Previous reports indicated an inhibition of micronutrient acquisition by frequent use of 

glyphosate as herbicide (Franzen et al., 2003; Eker et al., 2006; Neumann et al., 
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2006; Bott et al., 2008). In agreement to these reports, in the present study, 

incorporation of glyphosate-treated rye grass straw or homogenate inhibited the 

acquisition of Mn by sunflower plants grown on the weakly buffered Arenosol (Tables 

6.1 and 6.2). In the highly buffered Luvisol however, incorporation of equivalent 

amount of glyphosate-treated rye grass straw or homogenate caused no effect in Mn 

acquisition (Tables 6.3 and 6.4).  Fe and Zn concentration seemed to increase at 

those treatments where growth inhibition by glyphosate observed i.e., on the 

Arenosol treatments received glyphosate-treated rye grass shoot straw or 

homogenate (table 6.1), but this is most probably attributed to dilution effect due to 

the extreme growth depression of the sunflower seedlings on these treatments. 

Moreover, higher plant Fe and Zn content (table 6.2) reveals that the increase in 

concentration on these treatments is due to dilution effect. Mn concentration and 

content however decreased by application of glyphosate enriched shoot straw or 

homogenate and direct soil application compared to root straw or homogenate 

application in addition to controls (-glyphosate) in the Arenosol and all treatments in 

the Luvisol. Previous report by Neumann et al. (2006) also found a soil type 

dependent differential phytotoxicity, preferentially expressed on the acidic Arenosol 

compared to the calcareous Luvisol used in the present study and it was proposed 

that amelioration effect comes from immediate precipitation of glyphosate in the 

rhizosphere by higher levels of Ca in the Luvisol.  

Furthermore, macronutrient (particularly Ca) acquisition was also inhibited in 

treatments where glyphosate phytotoxicity were observed (Fig. 6.4 A and B). Ca 

concentration (mg g-1 DM) and content (mg per plant) strongly decreased in variants 

supplied with glyphosate-treated rye grass shoot straw or homogenate on the 

Arenosol compared to root straw or homogenate supplied and controls without 

glyphosate treatments (Fig. 6.4 A and B). On these treatments, Mg content was also 

significantly reduced though it was not clear from the concentration due to dilution 

effect (table 6.5). In the strongly buffered Luvisol however, there was no notable 

effect on macronutrient acquisition reflected on leaf concentration or content (Fig. 6.5 

A and B; table 6.5).  

This soil type dependent residual phytotoxicity of glyphosate is most likely associated 

to the difference in polyvalent cation content of the two soils as it is well established 
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that polyvalent cations can antagonize the herbicidal activity of glyphosate (Hall et al., 

2000; Bernards et al., 2005).  

Figure 6.6 presents intracellular shikimate accumulation in roots of sunflower plants 

grown on the Arenosol and the Luvisol. In correspondence to inhibition of plant 

growth at treatments with glyphosate-treated rye grass shoot straw or homogenate 

incorporation to Arenosol resulted to high intracellular shikimate accumulation in the 

roots of sunflower plants. In the treatments with glyphosate treated root straw or 

homogenate in the Arenosol and shoot/root straw or homogenate in the Luvisol, 

however, did not induce any shikimate accumulation. The primary target of 

glyphosate is inhibition of the shikimic acid pathway and results in the accumulation 

of high levels of shikimate in plant tissues (Duke, 1988; Steinrucken and Amrhein, 

1980). Hence, measurement of shikimate accumulation in plant tissue can be used 

as an important physiological bio-indicator for glyphosate residual phytotoxicity on 

non-target plants (Mueller et al., 2003; Neumann et al., 2006).  

Therefore, the coincidence of plant (shoot and root) growth inhibition and intracellular 

shikimate accumulation due to glyphosate treated rye grass shoot straw or 

homogenate supply treatments (Fig. 6.5) implies pure glyphosate phytotoxicity rather 

than any other cause. In the Arenosol soil, similar intracellular shikimate 

accumulation in sunflower roots caused by application of equivalent amount of 

glyphosate directly supplied to the soil and incorporated via glyphosate contaminated 

organic matter indicates that this level of glyphosate is beyond the detoxification 

capacity of the soil, and a residual toxicity from incorporation of glyphosate treated 

weed residues during plowing remains a treat for crop intoxication on such weakly 

buffered soils. Direct soil application of glyphosate in the Luvisol tended to cause low 

level of root intracellular shikimate accumulation without significant plant growth 

inhibition but this shikimate accumulation (45 µg g-1 FW) was not comparable to the 

root shikimate accumulation in plants grown in the comparable treatments of the 

Arenosol (557 µg g-1 FW). This implies that the soil type dependent differential 

phytotoxicity of glyphosate is due to difference in detoxification capacity of the two 

soils.  

Generally there was no any difference between plants grown in shoot/root straw and 

homogenate treatments within each soil. This may indicate that treatment of the 

organic matter (homogenization under liquid nitrogen) did not influence the 
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decomposition rate of the plant material, thereby had no effect on the glyphosate 

release rate from decaying residues.            

6.5. Conclusion 
 

• There is striking residual phytotoxicity risk by glyphosate originating from 

decaying organic residues of glyphosate-desiccated weed. The glyphosate 

residual phytotoxicity is reflected in inhibited biomass production and hindered 

mineral nutrient acquisition (Mn, Ca) and confirmed by intracellular shikimate 

accumulation as physiological bio-indicator for glyphosate injury.   

• The glyphosate residual phytotoxicity was expressed only on the weakly 

buffered acidic Arenosol but not on the highly buffered calcareous Luvisol. 

This implies, the phytotoxicity effect is soil type dependent and is associated to 

glyphosate detoxification capacity of the two soils.  

• Facilitation of organic matter decomposition rate by grinding under liquid 

nitrogen seems not to have any effect in this particular case since there was 

no difference between the shoot straw and homogenate applications. But this 

could be noted as site specific outcome till further exploration is undergone.    

• Pending results of future studies, these presented data support special care 

being given during plowing of glyphosate-treated fields to minimize an 

incorporation of weed residues because of a possible damage of following 

crops.      

 
 
6.6. Prospects 
 

• The soil type dependent differential detoxification potential needs further 

consideration. Fresh soil directly collected from field where strong microbial 

activity exists might have a faster decomposition and thus a faster release of 

glyphosate from treated residues. 

• Under consideration of different waiting times between incorporation of weed 

residues and crop planting, a practical recommendation for farmers are 

urgently needed. 

• Screening a wide range of soils with different properties for drawing conclusive 

guidelines is required. 

• Using a wide range of weed species for their decaying rate should be 

considered for a better risk assessment. 
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• Different growth conditions (soil temperature, moisture etc.) will influence 

decomposition rate and thus to get evaluated for an appropriate 

recommendation for farmers. 
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7.0. General Discussion 
Glyphosate (N-[phosphonomethyl]glycine) is a broad-spectrum, water soluble, non-

selective post-emergence systemic herbicide sold under the trade names of 

RoundUp Ultramax®, RoundUp-Pro®, Rodeo®, GlyPro®, Accord®, Glyphomax®, 

Touchdown® and Vision®. It effectively controls most annual and perennial plants and 

it is the world´s biggest-selling chemical used for weed control in agricultural, 

silvicultural and urban environments (Baylis, 2000). One reason for the popularity of 

glyphosate is its effect on roots and rhizome systems of weed following foliar 

application. As a broad-spectrum and systemic post-emergence herbicide applied 

through the leaf, glyphosate is phloem mobile and readily translocated throughout the 

plant within a few days after treatment (Sprankle et al., 1975c; Sandberg et al., 1980; 

Franz et al., 1997). On reaching the soil, glyphosate will be fixed on clay minerals, 

soil oxides and hydroxides and soil organic matter, through mechanisms of H-

bonding and ion-exchange (Sprankle et al., 1975b; Miles and Moye, 1988). And the 

sorption of glyphosate in soils depends on many soil properties such as soil pH, 

concentration of cations (Ca2+, Mn2+, Zn2+, Mg2+, Fe3+ or Al3+), levels of iron–humic 

acid complexes, soil inorganic phosphate levels etc. (Sprankle et al., 1975b; Nomura 

and Hilton, 1977; Piccolo et al., 1995). These sorption behaviors make glyphosate 

unique as compared to most other herbicides and have elicited a general belief that it 

is rapidly sorbed to the soil without any residual effect. However, glyphosate 

adsorption to the soil matrix is a reversible process and glyphosate adsorbed to soil 

was reported to have a residual activity towards some plant species (Salazar and 

Appleby, 1982). Hence, contradictory results are reported in the literature concerning 

the bio-availability of glyphosate residues in soils and the potential risks for 

intoxication of non-target organisms, such as following crops in various rotations and 

soil microorganisms including N2 fixing bacteria and AM mycorrhiza. In addition, 

concern on possible residual phytotoxic effect of glyphosate on non-target plants 

(with regard to inhibited nutrient acquisition, effect on rhizosphere microbial 

community structure and increased disease prevalence) has increased with 

increasing glyphosate use driven by the introduction of RR-crops and reduced tillage 

systems and as a reflection of such concern, considerable amount of scientific 

reports are emerging in the literature (Smiley et al., 1992; Huber and McCay-Buys, 

1993; King et al., 2001; Kremer et al., 2001; Charlson et al., 2004; Fernandez et al., 
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2005; Huber et al., 2005; Eker et al., 2006; Neumann et al., 2006; Ozturk et al., 2007; 

Bott et al., 2008).  

The aim of this thesis was to identify possible risk factors associated with frequent 

use of glyphosate in agro-ecosystems to alleviate the continuously observed effects 

on non-target plants. For this purpose: (1) relevance of waiting time between weed 

desiccation by glyphosate and subsequent crop planting, (2) remobilization risk of soil 

matrix fixed glyphosate mediated by pH changes in the rhizosphere, (3) combined 

effect of waiting time and glyphosate binding forms in soil and (4) contribution of 

glyphosate released from decaying organic matter for intoxication of non-target plants 

were investigated under controlled greenhouse conditions using two contrasting 

soils: weakly buffered acidic Arenosol (top soil) and highly buffered calcareous 

Luvisol (subsoil). Furthermore, a field experiment was conducted to partially confirm 

the found results of controlled greenhouse experiments.          

7.1. Relevance of waiting time in alleviating glyphosate toxicity to non-target plants. 

Glyphosate is systemic within the plant, applied via the foliage, phloem mobile and is 

readily translocated into metabolic sinks including plant roots from where it can finally 

be released into the rhizosphere (Rodrique et al., 1982; Feng et al., 1999; Neumann 

et al., 2006). In the rhizosphere, it is either biologically degraded or strongly bound to 

soil colloids (Sprankle et al., 1975b). For this reason, producer instructions allow 

even pre-sowing glyphosate treatment until the first days after sowing (Monsanto, 

Roundup Ultramax® product information). However, the process of degradation and 

adsorption seems to require some period of time to proceed and to avoid intoxication 

of subsequent crop plants as already indicated by some scientific reports (Cornish, 

1992; Smiley et al., 1992; Constantin et al., 2008). The results of pot experiments 

conducted under controlled greenhouse conditions and using the two contrasting 

soils considering 0-21 days waiting times as well as field experiment on farmer´s field 

considering 2 and 14 days waiting times (chapter 3 and 5) underline the importance 

of waiting time interval between weed desiccation by glyphosate and subsequent 

crop planting, to avoid or at least minimize detrimental effects on the following 

culture. Analysis of physiological parameters, such as intracellular shikimate 

accumulation as metabolic indicator for glyphosate toxicity, biomass production and 

micronutrient status revealed, that the risk of toxic effects, induced by glyphosate pre-
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sowing treatments, increased with declining waiting time and can persist up to three 

weeks (chapter 3: Figs. 3.1 and 3.2; chapter 5: Fig. 5.4). This is in agreement with 3 

weeks waiting time recommended by Cornish (1992) for loamy sandy soil. 

Accordingly, local RoundUp guidelines in Israel recommend avoiding glyphosate use 

in sandy soils and during stress conditions such as drought and in Brazil allow 

extended “waiting times” depending on the type of soil and crop intended to cultivate 

(Monsanto co. guideline). At treatments where biomass production was inhibited, 

higher root tissue intracellular shikimate accumulation was measured (chapter 3: 

Figs. 3.3 and 3.4; chapter 5: Figs. 5.2 and 5.3) which confirms glyphosate toxicity 

since it is a known inhibitor of  5-Enolpyruvylshikimate-3-phosphate synthase (EPSP 

synthase) enzyme that leads to intracellular shikimate accumulation (Becerril et al., 

1989; Della-Cioppa et al., 1986). Hence, the coincidence of plant growth inhibition 

and intracellular shikimate accumulation of the sunflower seedlings at waiting times 

less than 21 days proves to be pure glyphosate residual phytotoxicity rather than any 

other causes.  

Detrimental effects of glyphosate applications on the micronutrient status and 

particularly on Mn nutrition have been previously reported  when glyphosate reached 

non-target plants as drift contamination in sub-lethal dosage (Eker et al., 2006), via 

rhizosphere transfer from target weeds (Neumann et al., 2006), or even in glyphosate 

resistant soybean (Jolley and Hansen, 2004). In agreement to this, Mn concentration 

in youngest fully developed leaves was reduced on short waiting time treatments of 

sunflower plants grown in both the Arenosol and Luvisol (Figs. 5.4 and 5.5). 

However, glyphosate-induced impairment of Mn nutrition was more strongly 

expressed on the sandy Arenosol with low buffering capacity compared with the well-

buffered calcareous sub-soil (Figs. 5.4 and 5.5), indicating a possible role of different 

soil types in determining the expression of glyphosate toxicity. This was not however, 

associated with corresponding differences of intracellular shikimate accumulation or 

plant biomass production (Tables 5.1 and 5.2; Figs. 5.2 and 5.3), suggesting rather 

soil-specific differences in Mn availability than differential expression of glyphosate 

toxicity on the two investigated soils as possible causes, at least in this level of 

glyphosate application. Accordingly, soil analysis by CAT extraction (VDLUFA, 2004) 

revealed lower levels of available Mn in the Arenosol [7.4 mg kg-1 soil] as compared 
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with the calcareous loess subsoil [15.0 mg kg-1 soil]. Glyphosate is known to form 

poorly soluble complexes with Mn (Sprankle et al., 1975b) and may thereby reduce 

the already low level of available Mn in the Arenosol. Also glyphosate-induced 

inhibition of root growth (Fig. 5.1; Tables 5.1 and 5.2) may counteract Mn acquisition 

with a strong consequence for Mn uptake on the Arenosol with low levels of plant-

available Mn. Theses results are in line with recent field observations of Mn 

deficiency problems due to glyphosate use in low Mn (calcareous) soils (Y. Bayer, 

Pers, communication, 2009). 

Similar to the controlled greenhouse experiments, results of the field trial at 

Hirrlingen/ Tübingen confirmed the glyphosate residual phytotoxicity on subsequently 

cultivated non-target crop if enough time is not given for dissipation (chapter 3). 

Stunted development and heterogeneous emergence of winter wheat plants occurred 

at field plots where the wheat sowing was done 2 days after cover crop desiccation 

by glyphosate, irrespective of the glyphosate application rate (2 L ha-1 vs 6 L ha-1) 

compared to plants sown 14 days after glyphosate application. This heterogeneous 

emergence indicated a formation of “hot spots” with glyphosate containing and 

decaying roots of desiccated weed or cover crops. Depending on contact of roots 

with such “hot spots”, wheat plants as non-target plants got intoxicated or grow 

unaffected (Roemheld et al., 2008). At a short waiting time (2 d), visual scoring of 

wheat damage showed up to 50% of the plants injured by glyphosate residual 

toxicity. This observed damage was visually persistent still at harvest after 6 months 

(Fig. 3.5) and indeed previous culture damage at vegetative stage is reported to 

positively correlate to potential yield loss at harvest (Buehring et al., 2007). Wheat 

plants grown on the short waiting time (2 d) plots also showed reduced macro and 

micronutrient (Ca, Mg, Zn and Cu) concentrations particularly expressed at an 

elevated glyphosate application rate (6 L ha-1). This can be due to root injury by 

glyphosate toxicity as roots are the primary victim or chelating effect as glyphosate is 

known chelator of divalent cations (Glass, 1984; Schoenherr and Schreiber, 2004; 

Subramaniam and Hoggard, 1988). Previous reports also demonstrated restricted 

translocation and intracellular localization of metal divalent cations (eg. Ca2+ and 

Mg2+) by root-fed or foliar applied glyphosate reflected by reduced uptake and 

translocation of Ca2+ and Mg2+ but not K+ (Candan, 2008; Duke et al., 1985).  
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Glyphosate chelates Mg2+ and Ca2+ almost equally well, with the same stability 

constant and similar effects of pH on chelating properties (Madsen et al., 1978). In 

agreement to these findings and possibly for the same reason, the Ca, Mg, Zn and 

Cu concentration of winter wheat shoot was reduced by combined effect of short 

waiting time (2 d) and elevated glyphosate application rate (6 L ha-1) compared to the 

longer waiting time (14 d) and lower application rate (2 L ha-1) but P, K, Fe and Mn 

were not affected (Table 3.3 and 3.4). Similar to the divalent macronutrients, 

glyphosate also forms stable complex with the divalent micronutrients (e.g. Fe, Mn, 

Zn and Cu) depending on their ionic state during the time of contact (Glass, 1984; 

Hall et al., 2000; Bernards et al., 2005).  

7.2. Glyphosate remobilization by root-induced changes on the rhizosphere.  

Nitrate and ammonium are the main forms of inorganic nitrogen supplied to plants. 

Chapter 4 presents remobilization risk of glyphosate by root-induced pH change in 

the rhizosphere associated to N form supplied and carboxylate supplementation on 

two contrasting soils pre-incubated with glyphosate. As nitrogen comprise about 80% 

of the total cations or anions taken up by plants, the form of nitrogen supply has a 

strong impact on the uptake of other cations and anions through changes of the 

rhizosphere pH (Marschner, 1995). Rhizosphere acidification can be caused by an 

excess uptake of cations over anions and alkalization occurs when anion uptake 

exceeds cation uptake. Ammonium uptake is generally associated with acidification 

of the rhizosphere while nitrate nutrition induces an increase in rhizosphere pH 

(Roemheld et al., 1984). In agreement to this, plants fed with stabilized ammonium 

strongly acidified their rhizosphere soil in the weakly buffered Arenosol by up to 1.7 

pH units while plants fed with nitrate tended to alkalinize their rhizosphere though to 

a lesser extent by up to 0.4 pH units (Fig. 4.3). In the well buffered Luvisol, root-

induced pH change in the rhizosphere was not strong. Plants fed with stabilized 

ammonium (NH4
+) acidified their rhizosphere soil by around 0.5 pH units while the 

nitrate fed plants alkalinized their rhizosphere soil by only 0.2 pH units (Fig. 4.4).     

As previous reports indicate, glyphosate shows a similar pattern of reaction like that 

of phosphate in soil and both molecules compete for same sorption sites, as very 

often observed desorption of soil matrix fixed glyphosate by addition of phosphate 

(de Jonge et al., 2001; Gimsing and Borggaard, 2001; 2002; Laitinen et al., 2008). In 
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controlled greenhouse experiment, increasing rate of P fertilization to glyphosate pre-

loaded soil resulted in a depression of soybean plant growth (Bott, per. Comm. 

2008). This demonstrates a similar pattern of phosphate and glyphosate reaction in 

soil matrix and all chemical changes in the rhizosphere known to remobilize 

phosphate can co-mobilize glyphosate.  

In neutral or alkaline soils, rhizosphere acidification in plants fed with ammonium can 

enhance mobilization of sparingly soluble calcium phosphate and thereby favor the 

uptake of phosphate (Gahoonia et al., 1992). On acid soils, the pH increase induced 

by nitrate supply enhances phosphorus uptake, presumably by exchanging with 

HCO3
- for phosphate adsorbed to iron and aluminum oxides (Gahoonia et al., 1992). 

Similar to phosphate, glyphosate forms sparingly soluble salts and/or complexes in 

the presence of divalent cations such as Ca2+ (Madsen et al., 1978; Smith and 

Raymond, 1988; Sundaram and Sundaram, 1997). Hence, it is highly likely that root-

induced rhizosphere acidification of alkaline soils as a result of different form of N 

supply to solubilise sparingly soluble Ca-glyphosate precipitates. This might increase 

the risk of remobilization of soil matrix fixed glyphosate as a result of root-induced 

rhizosphere acidification leading to non-target plant intoxication. To test this 

hypothesis, an experiment was conducted using two soils with contrasting properties 

pre-incubated with different rates of glyphosate and supplied with stabilized NH4
+ or 

NO3
- as N form to extrapolate the N supply form as driving force for rhizosphere pH 

change. From the results of this experiment, however, it was not possible to confirm 

this hypothesis. No glyphosate phytotoxicity due to glyphosate remobilization could 

be observed as there was no accompanying intracellular shikimate accumulation 

(Fig. 4.6) parallel to rhizosphere acidification and biomass reduction of sunflower 

plants grown on the Luvisol soil fed with ammonium form of nitrogen. This might be 

attributed to the fact that the amount of glyphosate applied was too low in 

concentration since it was uniformly mixed with the whole soil volume. However, in 

reality when glyphosate is applied to target plants, it is taken up by leaves and 

translocated to roots where it is released to a localized area, forming “hot spots” with 

a high glyphosate concentration. In addition, in the Arenosol where low precipitation 

of Ca-glyphosate is expected, the glyphosate molecules might have been already 

degraded by soil microorganisms during the 21 days incubation time or strongly 
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adsorbed to P binding sites of an acidic tropical soil. In the Luvisol, where higher Ca-

glyphosate precipitation is expected, the root-induced rhizosphere pH decrease as a 

result of ammonium form of nitrogen nutrition which might have been minimal as the 

change was only 0.5 pH unit (Fig. 4.6). 

Plant growth response to different forms of nitrogen has been well studied and many 

reports show that sole NO3
- nutrition is associated with stimulated shoot growth while 

sole NH4
+ nutrition is associated with inhibited plant growth (Walch-Liu et al., 2000; 

Rahayu et al., 2005; Lu et al., 2008). This is in agreement with the current results of 

the Luvisol (Fig. 4.2) where control plants supplied with stabilized ammonium (NH4
+) 

form of N had reduced shoot growth compared to control plants supplied with sole 

nitrate (NO3
-) form of nitrogen. Though statistically insignificant, under high 

glyphosate level (100 and 500% of the recommended rate) and NH4
+ nutrition tended 

to reduce shoot and root biomass production. In the Arenosol, however, plant growth 

(shoot or root) was not affected by different nitrogen forms or increasing glyphosate 

application rate (Fig. 4.1).     

Root exudation of carboxylates has also been considered as a source of root-

induced rhizosphere acidification and to assist the release of phosphate from 

extracellular sparingly soluble P sources (Gardner et al., 1983; Hoffland et al., 1989; 

Hoffland, 1992; Stroem, et al., 2005). In addition to rhizosphere acidification, exuded 

organic acids are also able to mobilize inorganic P into the soil solution via exchange 

chelation through competing with phosphate groups for the same binding/adsorption 

sites in soil and forming stronger complexes with Al3+, Fe3+ and Ca2+ than phosphate 

does. Thus phosphate can be liberated from cation–P complexes as an organic 

carboxylates complex with the cations or block the sorption of P to other charged 

sites or through the ligand exchange process (Geelhoed et al., 1999; Hinsinger, 

2001). Glyphosate as phosphated molecule faces the same fate like mineral 

inorganic phosphate, i.e. root mediated change in the rhizosphere including excretion 

of organic acids (e.g. Citrate) can remobilize   glyphosate fixed on Al3+, Fe3+ and Ca2+ 

cations by ligand exchange and rhizosphere acidification. In the present study with 

Arenosol soil, however, showed no indication of glyphosate remobilization by 

synthetic carboxylates that could cause plant damage (Fig. 4.7). Na-citrate or citric 

acid supplementation of the pots filled with soils pre-incubated with different levels of 
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glyphosate for 21 days prior to planting, even showed a tendency of better biomass 

production than the controls (especially shoot fresh weight) on both the 100 and 

500% glyphosate rate compared to no glyphosate application. Root growth, however, 

showed no difference on all treatments. This absence of glyphosate remobilization is 

likely to be attributed to the fact that this soil is less buffered (low Ca2+ ions) and 

might have had less precipitation of the applied glyphosate which might have led to 

faster degradation by microorganisms during the 21 days incubation period.  

On the highly buffered Luvisol, supplementation with 10µmol g-1 soil Na-citrate but 

not citric acid caused inhibition of root biomass production on glyphosate pre-

incubated treatments (Fig. 4.9). Shoot biomass production as well tended to be 

reduced by the addition of sodium citrate (10µmol g-1), though the difference was not 

statistically significant. Intracellular shikimate analysis, which was performed to 

confirm the involvement of remobilized glyphosate by Na-citrate supplementation, did 

not show such a shikimate accumulation. Absence of citric acid effect on glyphosate 

pre-incubated treatments is hard to explain as in this highly buffered (high Ca2+ cation 

concentration) calcareous soil, the two fold effects of citric acid in soil acidification 

and citrate effect as ligand exchanger should have caused more dissolution of 

precipitated glyphosate. Or it is likely that the plant growth inhibition observed by Na-

citrate addition (10µmole g-1 soil) was caused by Na toxicity rather than glyphosate. If 

that was the case, it can be hypothesized that there might have been insufficient 

percolation of the exudates into the rhizosphere soil to induce glyphosate 

remobilization as the carboxylates may have remained absorbed on the top soil layer 

during titration.              

7.3. Glyphosate stabilization in target plant roots 

To evaluate the potential role of target plant roots in stabilization and being a 

potential reservoir of glyphosate with intoxication of subsequent crop plants, model 

experiments were conducted with an application of glyphosate to a pre-cultured rye 

grass and with a direct soil application of equivalent amount of glyphosate prior to 

sunflower sowing at different waiting times (0-21 days). Toxicity of glyphosate pre-

sowing treatments on sunflower seedlings was strongly dependent on the mode of 

glyphosate application. When glyphosate was sprayed on pre-cultured rye grass 

seedlings as model weed, detrimental effects on plant growth and the Mn nutritional 
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status, as well as increased intracellular shikimate accumulation in root tissue were 

more strongly expressed than at a direct soil application of the same amount of 

glyphosate (chapter 5). The lower expression of glyphosate toxicity after soil 

application is in line with the concept of rapid inactivation and detoxification of 

glyphosate in soils by adsorption to phosphate binding sites, such as Fe/Al-oxides 

and hydroxides, precipitation as calcium salts, and rapid microbial degradation of free 

glyphosate in the soil solution (Sprankle et al., 1975b; Giesy, 2001; Monsanto, 

2005a, Yamada, 2006). 

The increased expression of toxicity effects after a glyphosate pre-sowing application 

to a rye grass pre-culture compared with a direct soil application might indicate that 

the root tissue of glyphosate-treated weeds represents a storage pool for glyphosate 

in the investigated soils. In this experiment, the bio-availability of glyphosate in plant 

residues to subsequently cultivated sunflower seedlings was obviously much higher 

than the bio-availability of glyphosate bound at the soil matrix. In many plant species, 

glyphosate is not readily metabolized and is preferentially translocated to young 

growing tissues of roots and shoots, where it can be accumulated in millimolar 

concentrations (Reddy et al., 2004, Monsanto, pers. communication). In soil-grown 

target plants, this inhomogeneous distribution of glyphosate within the root tissues 

may lead to the formation of “hot spots” of glyphosate as root residues in soils, 

containing high levels of glyphosate, which is subsequently released during microbial 

degradation of the plant material. Glyphosate intoxication of non-target plants might 

be induced by root contact with these “hot spots”. The inhomogeneous distribution of 

glyphosate-contaminated plant material in the soil could also explain the much higher 

variation of the data on the biomass of individual sunflower plants, shikimate 

accumulation and Mn-nutritional status after glyphosate application to the rye grass 

pre-culture as compared to a direct soil application (Tables 5.1 and 5.2, Figs. 5.2 – 

5.4) since toxic effects can be expected only after direct root contact of the non-target 

plants with one of the hot spots of glyphosate-contaminated plant residues, while 

sunflower seedlings without contact to the “hot spots” remained unaffected. In 

contrast, direct soil application of glyphosate resulted in a homogenous distribution 

and bio-availability of the herbicide over the investigated soil profile and much less 

expressed variation in inhibition of sunflower growth (Photo 5.2).  
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The potential role of plant residues as a pool for glyphosate stabilization in soils has 

not been widely considered in the past. Most of the available information originates 

from studies of glyphosate residues in foliage (Newton et al., 1984; Feng and 

Thompson, 1990; Komoßa et al., 1992; Thompson et al., 1994; von Wirén-Lehr et al., 

1997; Reddy et al., 2004). However, in contrast to the fate of the herbicide applied to 

soils in a free state, systematic investigations on the bio-availability of glyphosate in 

real plant residues incorporated into soils are rare. The present study suggests a 

considerable contribution of this glyphosate pool in determining the risk for 

intoxication of non-target organisms. To improve bio-safety in face of the global 

increase in agricultural use of glyphosate, the following open questions have been 

considered for the future avoidance of such negative effects under real field 

conditions. Those open questions include impact of external factors, such as soil 

properties, soil moisture levels, temperature, soil-organic matter and biological 

activity and thus speed of microbial degradation of glyphosate containing crop 

residues, as well as the role of plant species, rooting densities and fertilization 

management.  

7.4. Effect of glyphosate from decaying weed straw.  

The predominant use of glyphosate in agricultural production systems is for broad 

spectrum, non-selective weed control prior to crop sowing. The globally increasing 

adoption of no-till or reduced tillage systems are becoming a driving force for 

increasing glyphosate use (Torresen et al., 1999). In such systems, glyphosate is 

applied pre-sowing for weed control and glyphosate may remain in root and shoot 

residues. Usually in these reduced tillage systems soil disturbance occurs only at 

crop sowing, which might lead to incorporation of the glyphosate-contaminated straw 

to the upper soil layer where germination of following non-target crop takes place. 

Hence roots of germinating seedlings may directly come in contact with the 

glyphosate contaminated weed residues with a subsequent phytotoxicity. Some 

previous reports indicate possible detrimental implication from contaminated straw to 

crops (Stocker and Haller, 1999). To evaluate such risk, a pot experiment was 

conducted under controlled green house conditions with two contrasting soils. 

Glyphosate was supplied as glyphosate pre-treated rye grass plant material either as 

shoot or root residue in the form of straw or homogenate (chapter 6). Plant matter 
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associated glyphosate residue caused detrimental effect on plant growth depression 

on the weakly buffered acidic Arenosol, whereas in the highly buffered calcareous 

Luvisol, there was no visible effect (Photo 6.2; Fig. 6.2 and 6.3). Analysis of 

physiological parameters such as intracellular shikimate accumulation as metabolic 

indicator for glyphosate toxicity, biomass production and micronutrient status 

revealed, that detrimental effect linked to glyphosate toxicity originated from treated 

shoot residues of rye grass or homogenate incorporated into the Arenosol culture but 

not into the Luvisol (Photo 6.2; Fig. 6.2 and 6.3). This is most probably related to the 

difference in properties between the two soils. At this level of glyphosate supply, the 

detoxification capacity of the highly buffered calcareous subsoil with high Ca and Mg 

availability as potential ligands was high enough for an adequate immobilization or 

inactivation of glyphosate (Sprankle et al., 1975b). This might have played a primary 

role in preventing glyphosate toxicity. On the weakly buffered acidic Arenosol with a 

low level of Ca and Mg concentration, the level of glyphosate supply was higher than 

the detoxification capacity. Furthermore, the soil type dependent difference in toxicity 

by glyphosate enriched organic matter can also be related to differences in microbial 

community composition and soil texture between the two soils as these properties 

play also an important role in the decomposition rate of the shoot residues 

(Grossbard, 1985; Ladd et al., 1985; Hassink, 1997). The glyphosate-induced toxicity 

observed on the treatments with a direct soil application of the weakly buffered 

Arenosol but not of the well buffered Luvisol, confirms that differential toxicity is 

mainly related to the detoxification potential difference of the two contrasting soils.   

In contrast to glyphosate treated shoots, application of glyphosate treated rye grass 

roots caused no plant toxicity as reflected by no plant growth depression or 

intracellular shikimate accumulation (Figs. 6.2; 6.3 and 6.6). This possibly was due to 

three reasons: (1) the amount of glyphosate supplied via the root could have been 

well below the range of the detoxification capacity of both soils as the amount of root 

residues supplied (700mg dry matter kg-1 soil) was close to half the amount of shoot 

residues supplied (1200mg dry matter kg-1 soil), (2) less glyphosate was accumulated 

in roots than shoot parts and (3) another reason could also be related to 

decomposition rate difference between the shoot and root material, thereby to the 
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release rate of glyphosate stored in the organic matter, as root material with higher 

phenol and lignin content may decompose at slower rate than the shoot material.       

Previous reports indicated a micronutrient acquisition inhibition by frequent use of 

glyphosate herbicide (Franzen et al., 2003; Eker et al., 2006; Neumann et al., 2006; 

Bott et al., 2008). In agreement with these reports, in the present study, at treatments 

where detrimental effect on plant development observed, mineral nutritional status 

(Ca, Mg, Fe, Mn and Zn) of sunflower plants was also reduced (Tables 6.1, 6.2 and 

6.5; Fig. 6.4). The difference between the two soils was obvious, nutrient acquisition 

effect was conspicuous only in the Arenosol but not in the Luvisol. In addition to the 

difference in detoxification capacity between both soils, differences in nutrient bio-

availability of both soils might have also aggravated the observed inhibition of 

nutrient acquisition. Therefore only on the strongly weathered nutrient poor Arenosol 

such detrimental effects by glyphosate could be observed. Since micronutrients, such 

as Mn and Zn are important physiological co-factors for mechanisms of plant disease 

resistance (Cakmak, 2000; Thompson and Huber 2007), glyphosate-induced 

impairment of the micronutrient status may be linked with the observations of a 

higher susceptibility to plant diseases (e.g.  Fusarium, Corynespora, Rhizoctonia, 

Gaeumannomyces and pathogenic nematodes) in response to glyphosate treatments 

(Smiley et al., 1992; King et al., 2001; Kremer et al., 2001; Charlson et al., 2004; 

Jolley et al., 2004; Fernandez et al., 2005; Huber et al. 2005).  

All together, the achieved results of the model pot experiments are in 

correspondence with that of the reported field experiments. Further, the results 

revealed the important role of glyphosate desiccated weed plants in a soil as a 

glyphosate pool for intoxication of following crops. More information on 

transformation of these glyphosate enriched crop residues and its glyphosate release 

during microbial decomposition are urgently needed for a better precaution and risk 

assessment of glyphosate for farmer´s practice.     
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Summary 
Glyphosate ([N-phosphonomethyl] glycine) is a non-selective, post-emergence, organo-

phosphorous, broad-spectrum herbicide used worldwide for controlling weeds in 

horticulture, agriculture, silviculture, and urban landscapes. It effectively controls most 

annual and perennial plants and it is the world´s biggest-selling herbicide. On top of its 

low price, the main reason for the popularity of glyphosate is its effect on roots and 

rhizome systems of weeds following foliar application. Glyphosate is a systemic 

herbicide easily translocated from the shoot to roots and released into the rhizosphere. 

Coming in contact with soil, glyphosate will be fixed on clay minerals, Al3+ and Fe3+ 

oxides and hydroxides and soil organic matter, through mechanisms of H-bonding and 

ion-exchange. This sorption of glyphosate in soils depends on many soil properties such 

as soil pH, concentration of divalent-cations, levels of iron–humic acid complexes, soil 

inorganic phosphate levels etc. These sorption behaviors make glyphosate unique as 

compared to most other herbicides and have elicited a general belief that it is rapidly 

sorbed to the soil without any residual effect. However, glyphosate adsorption to the soil 

matrix is a reversible process and glyphosate adsorbed to soil was reported to have a 

residual activity towards some plant species. Hence, contradictory results are reported in 

the literature concerning the bio-availability of glyphosate residues in soils and the 

potential risks for intoxication of non-target organisms, such as following crops in various 

rotations and soil microorganisms. In addition, concern on possible residual phytotoxic 

effects of glyphosate on non-target plants has increased with increasing glyphosate use 

driven by the introduction of RR-crops and reduced tillage systems. As a reflection of 

such concern, considerable amount of scientific reports are emerging in literature 

(Fernandez et al., 2005, Huber et al., 2005, Neumann et al., 2006, Bott et al., 2008).  

In face of such increasing number of yet unexplained observations of negative side 

effects after glyphosate application (Smiley et al., 1992; King et al., 2001; Kremer et al., 

2001; Charlson et al., 2004; Fernandez et al., 2005; Huber et al. 2005; Yamada, 2006, 

Neumann et al., 2006), this thesis was initiated to identify possible risk factors 

associated with the frequent use of glyphosate in agro-ecosystems. For this purpose: (1) 

relevance of waiting times between weed desiccation by glyphosate and subsequent 

crop planting, (2) remobilization risk of soil matrix fixed glyphosate mediated by pH 
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changes in the rhizosphere, (3) glyphosate preservation in target plant roots (4) 

contribution of glyphosate released from decaying weed residue for intoxication of non-

target plants were investigated in controlled greenhouse conditions using two 

contrasting soils: weakly buffered acidic Arenosol (top soil) and highly buffered 

calcareous Luvisol (subsoil). Furthermore, field experiments were conducted to partially 

confirm the found results of controlled green house experiments. 

In chapter 3 and 5, results of model experiments conducted under controlled 

greenhouse conditions and using the two contrasting soils as well as field experiments 

on farmer´s fields are shown and discussed. All these conducted experiments revealed 

that the residual toxicity of glyphosate has increased with declining waiting time between 

glyphosate weed desiccation and subsequent crop planting. In the greenhouse 

experiments with the two soils, growth of sunflower seedlings as model crop plant and 

its biomass production were strongly impaired by glyphosate pre-sowing treatments in 

the variants with 0 d waiting time. With increasing waiting time from 7 to 21 days, the 

observed impairment got less expressed. The inhibitory effect on seedling growth was 

always associated with a corresponding increase of shikimate accumulation in the root 

tissue as physiological indicator for glyphosate toxicity. Glyphosate intoxication of 

sunflower seedlings was also associated with an impairment of the manganes-nutritional 

status which was still detectable after a waiting time of up to 21 d, particularly on the 

Arenosol. The glyphosate-induced impairment of Mn nutrition was more strongly 

expressed on the sandy Arenosol with a low pH buffering and Ca availability compared 

with the well pH-buffered calcareous sub-soil, indicating a role of different soil types in 

determining the expression of glyphosate toxicity. This inhibition of Mn acquisition was 

not associated with the corresponding differences of intracellular shikimate accumulation 

or plant biomass production, suggesting rather soil-specific differences in Mn availability 

than differential expression of glyphosate toxicity on the two investigated soils as 

possible causes, at least at this level of glyphosate application. Also glyphosate-induced 

inhibition of root growth might interfere with Mn acquisition with a strong consequence 

for Mn uptake on the Arenosol with a low level of plant-available Mn. 

Results of the field experiment at Hirrlingen/Tübingen confirm the relevance of waiting 

time. Stunted development and heterogeneous emergence of winter wheat plants 
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occurred at field plots where the wheat sowing was done 2 days after cover crop 

desiccation by glyphosate, compared to plants sown 14 days after glyphosate 

application. This heterogeneous emergence indicated a formation of “hot spots” with 

glyphosate containing and decaying roots of desiccated weed or cover crops. 

Depending on contact of root with such hot spots wheat plants as non-target plants got 

intoxicated or grew unaffected (Roemheld et al., 2008). At short waiting time (2 d), visual 

scoring of wheat damage showed up to 50% of plants injured by glyphosate residual 

toxicity. This observed damage was visually persistent still after 6 months and the 

damage at the vegetative stage was reported to be positively correlate with loss of grain 

yield at harvest at Hirrlingen/Tübingen in correspondence with literature (Buehring et al., 

2007). Plant growth depression of wheat plants cultivated at short waiting time plots had 

also reduced nutritional status (Ca, Mg, Zn and Cu) compared to plants cultivated at 

long waiting time plots, particularly expressed when glyphosate application rate was 

elevated from 2L to 6 L ha-1. Theses findings of the present field experiments are in 

agreement to previously recommended reports which recommend 3 weeks waiting time 

to be considered to alleviate or minimize glyphosate residual toxicity (Cornish, 1992). 

Since glyphosate shows a similar pattern of reaction like that of phosphate in soil, it has 

been hypothesized that processes responsible for phosphate mobilization in the 

rhizosphere are likely to co-mobilize also glyphosate. Root-induced acidification of the 

rhizosphere, mainly driven by physiologically acidic NH4
+-based fertilization might 

increase the bio-availability of soil matrix fixed glyphosate, in particular glyphosate 

precipitated as Ca-glyphosate. To test this hypothesis, an experiment was conducted 

using two soils with contrasting properties pre-incubated with different rates of 

glyphosate and supplied with stabilized NH4
+ or NO3

- as N mineral fertilizers (chapter 4). 

From the results of this experiment, however, it was not possible to confirm this 

hypothesis. No glyphosate phytotoxicity due to glyphosate remobilization could be 

observed since there was no accompanying intracellular shikimate accumulation parallel 

to the rhizosphere acidification or biomass reduction of sunflower plants grown on the 

Luvisol fed with ammonium form of nitrogen. This might be attributed to the fact that the 

amount of glyphosate applied was too low in concentration since it was uniformly mixed 

with the whole soil volume. However, in reality when glyphosate is applied to target 
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plants, it is taken up by leaves and translocated to roots where it is released to a 

localized area, forming hot spots with high glyphosate concentration. In the Luvisol, 

where higher Ca-glyphosate precipitation is expected, the root induced rhizosphere pH 

decrease as a result of ammonium form of nitrogen nutrition might have been minimal as 

the change was only 0.5 pH unit in the rhizosphere. In addition, in the Arenosol where 

low precipitation of Ca-glyphosate is expected, the glyphosate molecules might have 

been already degraded by soil microorganisms during the 21 days incubation time or 

strongly adsorbed to P binding sites of the acidic tropical soil.  

Root exudation of organic carboxylates has also been considered to assist the release 

of phosphate from extracellular sparingly soluble P source via exchange chelation. A 

similar phenomenon was expected for glyphosate. In the present study, however, 

supplementation of Na-citrate or citric acid to the two contrasting soils pre-incubated with 

different levels of glyphosate have not shown a strong evidence of an adequate 

glyphosate remobilization to cause plant damage. On the acidic Arenosol, there was no 

difference in sunflower growth between all the treatments. On the Luvisol soil, 

supplementation with 10µmol g-1 soil Na-citrate but not citric acid caused inhibition of 

root biomass production on glyphosate pre-incubated treatments. But this was not 

accompanied by intracellular shikimate accumulation as physiological bio-indicator for 

glyphosate toxicity. This absence of glyphosate remobilization was likely attributed to 

either glyphosate degradation by microorganisms during the 21 days incubation period 

or to an insufficient percolation of the added artificial exudates into the rhizosphere of 

sunflower seedlings (chapter 4). 

In many plant species, glyphosate is not readily metabolized but preferentially 

translocated to young growing tissues of roots and shoots, where it can get accumulated 

in millimolar concentrations. In soil-grown target plants, this inhomogeneous distribution 

of glyphosate within the root tissues may lead to the formation of “hot spots” of 

glyphosate containing root residues in soils. Subsequently this stored glyphosate as “hot 

spots” can be released during microbial degradation of the plant material. To evaluate 

the potential of a target plant roots in stabilization and subsequent release of glyphosate 

with intoxicating of subsequent crop plants, model experiments were conducted with an 

application of glyphosate to rye grass and with a direct soil application of equivalent 

amount of glyphosate prior to sunflower sowing at different waiting times (0-21 days). 
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Toxicity of glyphosate pre-sowing treatments on sunflower seedlings was strongly 

dependent on the mode of glyphosate application. When glyphosate was sprayed on 

pre-cultured rye grass seedlings as model weed, detrimental effects on plant growth and 

the Mn nutritional status, as well as increased intracellular shikimate accumulation in 

root tissue were more strongly expressed than at a direct soil application of the same 

amount of glyphosate (chapter 5). The increased expression of toxicity effects after a 

glyphosate pre-sowing application to a rye grass pre-culture compared with a direct soil 

application might indicate that the root tissue of glyphosate-treated weeds represents a 

storage pool for glyphosate in the investigated soils. In this experiment, the bio-

availability of glyphosate in plant residues to subsequently cultivated sunflower 

seedlings was obviously much higher than the bio-availability of glyphosate bound at the 

soil matrix. Glyphosate intoxication of non-target plants might be induced by root contact 

with these hot spots.  The findings suggest an important and yet non-investigated role of 

glyphosate in plant residues in determining the risk for intoxication of non-target plant. 

The globally increasing adoption of no-till or reduced tillage systems are becoming a 

driving force for increasing glyphosate use (Torresen et al., 1999). In such systems, 

glyphosate is applied pre-sowing for weed control and glyphosate may remain in root 

and shoot residues. Usually in these reduced tillage systems soil disturbance only 

occurs at sowing which might lead to incorporation of the glyphosate contaminated straw 

only to the upper soil layer where germination of following non-target crops will take 

place. Hence, roots of germinating seedlings may directly come in contact to the 

glyphosate contaminated weed residues with a subsequent phytotoxicity. To evaluate 

such risk, a pot experiment was conducted under controlled greenhouse conditions with 

the two contrasting soils. Glyphosate was supplied as glyphosate pre-treated rye grass 

plant material either as shoot or root residues (chopped to 1 cm) or homogenates 

(ground under liquid nitrogen) (chapter 6). Analysis of physiological parameters such as 

intracellular shikimate accumulation as metabolic indicator for glyphosate toxicity, 

biomass production and micronutrient status revealed, that detrimental effect linked to 

glyphosate toxicity originated from treated rye grass shoot straw or homogenate 

incorporated into the Arenosol but not into the Luvisol. This is most probably related to 

the difference in soil property between the two soils. At this level of glyphosate supply, 
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the detoxification capacity of the highly buffered calcareous subsoil with high Ca and Mg 

availability as potential ligands was high enough for an adequate immobilization and 

inactivation of glyphosate (Sprankle et al., 1975b). This might have played a primary role 

in preventing glyphosate toxicity in the Luvisol. On the weakly buffered acidic Arenosol 

with a low level of available Ca and Mg, the level of glyphosate supply was higher than 

the detoxification capacity. In addition to the difference in detoxification capacity 

between both soils, differences in nutrient bio-availability might have also aggravated the 

observed inhibition of nutrient acquisition. Therefore, only on the strongly weathered 

nutrient poor Arenosol such detrimental effects by glyphosate could be observed. The 

soil type dependent differences in toxicity by glyphosate enriched crop residues can also 

be related to differences in microbial community composition and soil texture between 

the two soils as these properties might play an important role in the decomposition rate 

of the shoot residues too.  

In contrast to glyphosate treated shoot, application of glyphosate treated rye grass roots 

caused no plant toxicity as reflected by no plant growth depression or intracellular 

shikimate accumulation. This possibly was due to sublethal glyphosate supply via the 

root residue. The amount of root residues supplied (700mg dry matter kg-1 soil) was 

close to half the amount of shoot material supplied (1200mg dry matter kg-1 soil). But 

also higher phenol and lignin contents in roots might result in a slower decomposition 

rate of roots than shoot residues. As a consequence, a slower release rate of glyphosate 

stored in the root residues might explain the missing effect of root residues in this 

experiment. Thus, the findings suggest the importance of weed residues in transferring 

glyphosate from target to non-target plants, particularly in no-till or reduced tillage 

systems, with consequence of detrimental effects on intoxication of following crop plants. 

All together, the achieved results of the model pot experiments are in correspondence 

with that of the reported field experiments. Further, the results revealed the important 

role of glyphosate desiccated weed plants in a soil as a glyphosate pool for intoxication 

of following crops. More information on transformation of these glyphosate enriched crop 

residues as “hot spots” and its glyphosate release during microbial decomposition are 

urgently needed for a better precaution and risk assessment of glyphosate for farmers 

practice.     
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Zusammenfassung 

Die Organo-Phosphatverbindung Glyphosat ([N-Phosphonomethyl] Glycine) wird 

weltweit als nicht-selektives Herbizid mit breitem Wirkungsspektrum in einer Vor- 

und/oder Nachsaatbehandlung zur Kontrolle von Unkräutern im Gartenbau, 

Landwirtschaft, Forstwirtschaft und urbanen Flächen verwendet. Es bietet eine effektive 

Kontrolle der meisten annuellen und perennierenden Unkräuter und ist das weltweit 

meist verkaufte Herbizid. Einer der Gründe für die Beliebtheit von Glyphosat besteht in 

seinem Effekt auf die Wurzel- und Rhizomsysteme von Wurzelunkräutern nach einer 

Blattapplikation. Glyphosat wird als systemisches Herbizid innerhalb der Pflanze leicht 

vom Spross in die Wurzel verlagert und anschließend in die Rhizosphäre abgegeben. Im 

Boden wird Glyphosat rasch durch die Bildung von Wasserstoffbrückenbindungen und 

Ionen-Austausch an Tonminerale, Oxide und Hydroxide und organischer Substanzen 

festgelegt und damit inaktiviert. Dieses Sorption von Glyphosat im Boden hängt von 

Bodeneigenschaften wie u.a. dem pH-Wert, der Konzentration an di- und trivalenten 

Kationen in der Bodenlösung, Gehalten an Eisen-Humuskomplexen, den Gehalten an 

anorganischem Phosphat ab. Dieses Sorptionsverhalten stellt einen wesentlichen 

Unterschied zwischen Glyphosat und anderen Herbiziden dar und hat daher maßgeblich 

zu der Annahme beigetragen, Glyphosat habe durch eine schnelle Festlegung im Boden 

keine residuale phytotoxische Wirkung auf Nicht-Zielpflanzen bzw. Kulturpflanzen. Die 

Festlegung von Glyphosat an die Bodenmatrix kann jedoch unter bestimmten 

Bedingungen ein reversibler Prozess sein. Es gibt in der wissenschaftlichen Literatur für 

eine Reihe von Pflanzenarten Hinweise auf eine solche residuale phytotoxische Aktivität 

von Glyphosat im Boden und widersprüchliche Ergebnisse bezüglich der biologischen 

Verfügbarkeit von Glyphosat in Böden bzw. möglicher Risiken für Nicht-Zielorganismen, 

wie beispielsweise Folgekulturpflanzen und Bodenmikroorganismen. Bedenken 

bezüglich einer möglichen phytotoxischen Wirkung von Glyphosatrückständen auf Nicht-

Zielpflanzen haben  mit  der  durch die Einführung von Glyphosat-resistenten 

Kulturpflanzen und der pfluglosen Bodenbearbeitung verursachten ansteigenden 

Verwendung von Glyphosat zugenommen. Als Konsequenz aus diesen Bedenken gibt 

es inzwischen einen beachtlichen Umfang an wissenschaftlichen Untersuchungen in der 
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wissenschaftlichen Literatur (Fernandez et al., 2005; Huber et al. 2005; Neumann et al.; 

2006; Bott et al., 2008). 

Angesichts der zunehmenden Anzahl an bisher ungeklärten Beobachtungen von 

negativen Seiteneffekten nach einer Glyphosatapplikation (Smiley et al., 1992; King et 

al., 2001; Kremer et al., 2001; Charlson et al., 2004; Fernandez et al., 2005; Huber et al. 

2005; Yamada, 2006; Neumann et al., 2006) bestand das Ziel der hier vorliegend Arbeit 

in der Identifikation  potenzieller Risikofaktoren für Nicht-Zielpflanzen bei der Applikation 

von Glyphosat in Agrarökosystemen. 

Zu diesem Zweck wurden: (1) die Relevanz von Wartezeiten für die Aussaat von 

Kulturpflanzen nach einer Vorsaatbehandlung mit Glyphosat, (2) die potenzielle, durch 

veränderte pH-Werte in der Rhizosphäre induzierte Remobilisierung von an der 

Bodenmatrix festgelegtem Glyphosat, (3) die Rolle der Wurzeln von mit Glyphosat 

behandelten Unkrautpflanzen  als Zwischenspeicher für Glyphosat und (4) die Relevanz 

einer Abgabe von Glyphosat aus sich zersetzenden Rückständen behandelter 

Unkrautpflanzen für  phytotoxische Effekte auf die Folgekultur unter kontrollierten 

Gewächshausbedingungen auf zwei kontrastierenden Böden, einem schwach 

gepufferten, sauren Arenosol (Oberboden) und einem stark gepufferten, kalkhaltigen 

Luvisol (Unterboden), durchgeführt. Darüber hinaus wurden zwei Feldversuche 

durchgeführt, um Teile der in Modellversuchen gewonnenen Erkenntnisse auf ihre 

Relevanz unter Feldbedingungen zu prüfen.  

In Kapitel 3 und 5 sind die Resultate der Modellversuche unter kontrollierten 

Gewächshausbedingungen auf zwei kontrastierenden Böden und zwei Feldversuchen 

dargestellt und diskutiert. Alle durchgeführten Experimente zeigten, dass die Toxizität 

von Glyphosatrückständen für Kulturpflanzen mit abnehmenden Wartezeiten zwischen 

der Glyphosatapplikation auf Unkrautpflanzen und der Aussaat der Kulturpflanzen 

zunahmen.  

In Modellversuchen unter Gewächshausbedingungen auf zwei  kontrastierenden Böden 

und Sonnenblumen als Modell-Kulturpflanze, war das Wachstum und die 

Biomasseproduktion von Sonnenblumenkeimlingen bei einer Wartezeit von 0 Tagen 

nach einer Vorsaatapplikation vom Glyphosat stark eingeschränkt. Mit zunehmenden 
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Wartezeiten von 7-21 Tagen nahm die Einschränkung des Wachstums und der 

Biomasseproduktion ab. Diese negativen Effekte auf die Entwicklung und das Wachtum 

der Sommenblumen war in allen Experimenten mit erhöhten Konzentrationen an 

Shikimat im Wurzelgewebe als Indikator der Glyphosattoxizität verbunden. 

Die Applikation von Glyphosat verursachte bei Sonnenblumensämlingen auch eine 

Einschränkung der Mangan (Mn)-Versorgung, die auch nach einer Wartezeit von 21 

Tagen zwischen einer Vorsaatbehandlung mit Glyphosat und der  Aussaat der 

Sonnenblumen vor allem auf dem Arenosol noch festzustellen war. Die Glyphosat-

induzierte Beeinträchtigung der Mn-Versorgung der Sonnenblumen war im Vergleich 

zwischen den beiden gegensätzlichen Böden stärker auf dem sandigen, sauren, 

schwach gepufferten Arenosol mit niedriger Ca-Verfügbarkeit ausgeprägt als auf dem 

stark gepufferten, kalkhaltigen Unterboden. Dies deutet darauf hin, dass die Bodenart 

einer der bestimmenden Faktoren für die Stärke der Toxizität von Glyphosat für   Nicht-

Zielpflanzen sein kann. Diese Verminderung der Mn-Aneignung war nicht mit den 

korrespondierenden Unterschieden in den intrazellulären Shikimatkonzentrationen oder 

der Pflanzenbiomasseproduktion verbunden. Dies weist, zumindest bei den in diesen 

Versuchen verwendeten Glyphosataufwandsmengen, eher auf bodenartspezifische 

Unterschiede in der Mn-Verfügbarkeit als auf eine unterschiedliche Expression der 

Glyphosattoxizität auf den beiden untersuchten Böden hin. Auch die Glyphosat-

induzierte Verminderung des Wurzelwachstums könnte die Mn-Aneignung und/oder Mn-

Aufnahme vor allem auf dem sauren Sandboden mit niedrigen Gehalten an 

pflanzenverfügbarem Mn (Arenosol) beeinträchtigt haben.  

Die Ergebnisse des Feldversuchs in Hirrlingen (Raum Tübingen) bestätigten die 

Relevanz von Wartezeiten nach einer Vorsaatbehandlung mit Glyphosat. Verzögerte 

Pflanzenentwicklung und Heterogenität im Auflaufen der Winter-Weizenpflanzen konnte 

verstärkt beobachtet werden, wenn Glyphosat bei einer kurzen Wartezeit von 2 Tagen 

vor der Aussaat im Vergleich zu einer Wartezeit von 14 Tagen vor der Aussaat des 

Winter-Weizens auf Unkrautpflanzen appliziert wurde.  

Dieses heterogene Schadbild, das abgeschwächt, aber in durchaus vergleichbarer Art 

und Weise auch in Modellversuchen zu beobachten war,  ist möglicherweise durch die 
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Konzentrierung von Glyphosat in jungen Wurzelzonen behandelter Unkrautpflanzen als 

sogenannte „hot spots“ und damit einer räumlich begrenzten Erhöhung der 

Glyphosatkonzentration in der Rhizosphäre der Unkrautwurzeln und/oder einer zeitlich 

verzögerten Abgabe von Glyphosat aus den sich zersetzenden Wurzelrückständen der 

behandelten Unkrautpflanzen erklärbar. Beide Mechanismen könnten zu einer  

Verzögerung der Festlegung und/ oder des Abbaus von Glyphosat in Böden und einer 

räumlich begrenzten Zone erhöhter Glyphosataktivität („hot spot“) beitragen. 

Entsprechend dieser Hypothese hängt die Expression von Glyphosat-induzierten 

Schädigungen von Nicht-Zielpflanzen nach einer Vorsaatbehandlung mit Glyphosat 

davon ab, ob die Wurzeln der Kulturpflanzen in einen Glyphosat „hot spot“ wachsen 

oder nicht (Römheld et al., 2008). 

Bei einer kurzen Wartezeit von 2 Tagen zwischen der Glyphosatapplikation und der 

Aussaat zeigte eine visuellen Bonitur der Pflanzenschäden, dass bis 50% der Pflanzen 

Schäden aufwiesen, die wahrscheinlich durch Glyphosatrückstände im Wurzelraum 

ausgelöst wurden. Diese in der vegetativen Wachstumsphase entstandenen Schäden 

waren über die gesamte Wachstumsperiode visuell erkennbar und übereinstimmend mit 

Ergebnissen in der Literatur (Buehring et al., 2007) positiv mit Verlusten im Kornertrag 

korreliert.  

Die Wachstumsdepressionen von Weizenpflanzen, die in Parzellen mit kurzen 

Wartezeiten (2 Tage) kultiviert wurden, war im Vergleich zu den Pflanzen, die in 

Parzellen mit langen Wartezeiten (14 Tage) kultiviert wurden, auch mit einem 

verminderten Nährstoffstatus (Ca, Mg, Zn und Cu) verbunden. Diese negativen 

Auswirkungen auf den Nährstoffstatus der Weizenpflanzen war auch von der Höhe der 

Glyphosataufwandmenge korrelliert und im Falle einer Applikationsrate von 6 L ha-1  im 

Vergleich zu einer einer Applikationsrate von 2 L ha-1 stärker ausgeprägt. Die 

Ergebnisse dieses Feldversuchs decken sich mit früheren Empfehlungen, die eine 

Wartezeit von 3 Wochen Wartezeit nach einer Vorsaatbehandlung mit Glyphosat zur 

Vermeidung bzw. Verminderung von  Glyphosat-induzierten Schäden an Kulturpflanzen 

vorschlagen (Cornish, 1992). 
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Da Glyphosat in Böden ein vergleichbares Bindungsverhalten wie Phosphat zeigt, wurde 

die Hypothese aufgestellt, dass Prozesse, die zu einer Mobilisierung von Phosphat in 

der Rhizosphäre führen, wahrscheinlich auch geeignet sind, an die Bodenmatrix 

sorbiertes Glyphosat zu remobilisieren. Beispielsweise kann möglicherweise eine 

Ansäuerung der Rhizosphäre durch eine physiologisch sauer wirkende Ammonium-

Stickstoffdüngung (NH4
+) die biologische Verfügbarkeit von an die Bodenmatrix 

sorbierten Glyphosat erhöhen, vor allem wenn Glyphosat als Ca-Glyphosat vorliegt. 

 

Um diese Hypothese zu überprüfen, wurde ein Experiment unter kontrollierten 

Bedingungen auf zwei Böden mit unterschiedlichen Eigenschaften, die mit 

verschiedenen Applikationsraten von Glyphosat vorinkubiert und mit stabilisierten 

Ammonium oder Nitrat als Stickstoffdüngungen gedüngt wurden, durchgeführt (Kapitel 
4).  
Die Resultate dieses Experiments konnten jedoch die Hypothese einer Remobilisierung 

von im Boden festgelegten Glyphosat nicht bestätigen. Auf einem kalkhaltigen Luvisol 

konnte keine durch Düngung mit stabilisiertem Ammonium verursachte Remobilisierung 

von Glyphosat induziert werden.  Eine phytotoxische Wirkung von Glyphosat bzw. eine 

intrazelluläre Akkumulation von Shikimat  in Abhängigkeit einer Absenkung des 

Rhizosphären-pH-Werts oder eine Verminderung der Biomasseproduktion von 

Sonnenblumen wurde nicht beobachtet. Diese Ergebnisse können möglicherweise damit 

erklärt werden, dass die in diesem Modellversuch verwendeten Aufwandmengen an 

Glyphosat, da sie homogen mit dem gesamten Bodenvolumen gemischt wurde, zu 

niedrig gewählt waren. In der Realität wird Glyphosat nach einer Applikation auf die 

Blätter von Unkrautpflanzen von den Pflanzen rasch aufgenommen und innerhalb kurzer 

Zeit in die Wurzeln verlagert und verursacht so möglicherweise die Ausbildung von „hot 

spots“ mit lokal hohen Konzentrationen an Glyphosat. 

Auf dem kalkhaltigen Luvisol, auf dem eine Bildung von Ca-Glyphosat-Verbindungen 

erwartet worden war, zeigte sich im Falle einer Stickstoffdüngung mit Ammonium 

lediglich eine minimale Wurzel-induzierte Veränderung des Rhizosphären pH-Werts (0,5 

pH Einheiten). Darüber hinaus könnte auf dem Arenosol, auf dem eine geringe Bildung 

von Ca-Glyphosat-Verbindungen erwartet worden war, nach einer Vorinkubationszeit 
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von 21 Tagen Glyphosat weitgehend mikrobiell abgebaut und/oder an P-

Bindungsstellen des sauren tropischen Boden stark festgelegt worden sein.   

 

 

Die Abgabe von Wurzelexsudate (v.a. Carboxylaten) wird als pflanzliche Strategie zur 

Mobilisierung von Phosphat durch Chelatisierung und/ oder Desorption angesehen. Die 

Möglichkeit eines vergleichbaren Mechanismus wurde für eine Remobilisierung von 

Glyphosat angenommen. In der hier vorliegenden Studie zeigten sich in einem 

Modellversuch auf zwei unterschiedlichen Böden, die mit unterschiedlichen 

Aufwandmengen an Glyphosat vorinkubierten wurden,  nach einer Applikation von Na-

Citrat oder Zitronensäure keine eindeutigen Hinweise auf eine relevante 

Remobilisierung von Glyphosat mit phytotoxischen Auswirkungen.   

Auf dem sauren Arenosol zeigten sich unabhängig von der Behandlung keine 

Unterschiede im Wachstum von Sonnenblumen. Auf einem Luvisol verursachte die 

Applikation von 10µmol g-1 Na-Citrat, aber nicht von Zitronensäure, in den 

Glyphosatbehandlungen eine Verminderung der Wurzelbiomasse. Diese Verminderung 

war jedoch nicht mit einer intrazellulären Akkumulation von Shikimat als Bio-Indikator 

der Phytotoxizität von Glyphosat verbunden. Möglicherweise konnte eine 

Remobilisierung von Glyphosat durch die Applikation von synthetischen 

Wurzelexsudaten nicht induziert werden, weil Glyphosat nach einer Vorinkubation von 

21 Tagen bereits weitgehend mikrobiell abgebaut und/oder stark festgelegt war, oder 

keine ausreichende Perkolation der Wurzelexsudate in die Rhizosphäre der 

Sonnenblumen erreicht wurde (Kapitel 4).   
 

Nach dem bisherigen Stand des Wissens wird Glyphosat in Pflanzen, mit der 

beachtenswerten Ausnahme von Glyphosat-resistenten Sojabohnen, in keinem 

nennenswerten Umfang abgebaut, sondern bevorzugt in die meristematischen 

Wachstumszonen in Wurzeln und Sprosse verlagert. In diesen Wachstumszonen findet 

eine Akkumulation von Glyphosat statt und es können bis zu millimolare 

Konzentrationen im Gewebe erreicht werden. Diese inhomogene Verteilung von 

Glyphosat innerhalb der Pflanze (insbesondere der Wurzeln) kann in der Rhizosphäre 
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zu der Bildung von räumlich begrenzten Zonen mit sehr hohen Konzentrationen an 

Glyphosatrückständen („hot spots“) beitragen. In der Folgezeit kann dieses, in den 

Wurzeln von Zielpflanzen in hohen Konzentrationen gespeichertes Glyphosat, während 

des mikrobiellen Abbaus der Wurzelrückstände freigesetzt werden.   

Um die Relevanz von Unkrautwurzeln für die Stabilisierung und anschließende 

verzögerte Abgabe von Glyphosat in die Rhizosphäre und einer Schädigung der 

Folgekultur zu evaluieren, wurden in Modellversuchen die Auswirkungen 

unterschiedlicher Wartezeiten (0-21 Tage) nach einer Glyphosatapplikation auf 

Weidelgras im Vergleich zu einer Applikation einer identischen Aufwandmenge an 

Glyphosat direkt in den Boden auf die Folgekultur (Sonnenblumen) auf zwei 

unterschiedlichen Böden (Arenosol/Luvisol) untersucht. Die Phytotoxizität von Glyphosat 

nach einer Vorsaatbehandlung für die Folgekultur (Sonnenblumen) war stark von der Art 

der Glyphosatapplikation abhängig. Wenn Glyphosat auf Weidelgras als Modellunkraut 

appliziert wurde, waren negative Effekte auf die Entwicklung und das Wachstum von 

Sonnenblumenkeimlingen, ein verminderter Nährstoffstatus von Mn und eine erhöhte 

intrazelluläre Akkumulation von Shikimat als Indikator  von Glyphosattoxizität im 

Vergleich zu der Applikation einer identischen Aufwandmenge an Glyphosat direkt in 

den Boden signifikant stärker ausgeprägt (Kapitel 5). 

Die im Vergleich zu einer direkten Bodenapplikation von Glyphosat deutlich erhöhte 

Ausprägung von phytotoxischen Effekten einer Glyphosatapplikation auf Weidelgras 

deutet darauf hin, dass die Wurzeln von Glyphosat-behandelten Unkrautpflanzen auf 

den untersuchten Böden einen Speicherpool von Glyphosat in der Rhizosphäre 

darstellen können. In diesem Experiment war die biologische Verfügbarkeit von 

Glyphosat aus Wurzeln und Wurzelrückständen behandelter Unkrautpflanzen für Nicht-

Zielpflanzen offensichtlich deutlich höher als die biologische Verfügbarkeit von 

Glyphosat aus dem Boden selbst.  

Die weltweit zunehmende Verwendung von Anbausystemen mit reduzierter 

Bodenbearbeitung und Direktssaat ist einer der Faktoren für die zunehmende 

Verwendung von Totalherbiziden (v.a. Glyphosat), die in diesen Anbausystemen als 

unumgänglich angesehen werden (Torresen et al., 1999). In diesen Anbausystemen 
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wird Glyphosat möglichst kurzfristig vor der Aussaat auf Unkräuter appliziert und 

Glyphosat verbleibt möglicherweise bis zur mikrobiellen Zersetzung in Wurzel- und 

Sprossgewebe dieser Zielpflanzen.  

Normalerweise erfolgt in Anbausystemen mit reduzierter Bodenbearbeitung nur während 

der Aussaat eine begrenzte Durchmischung des Bodens. Denkbare Konsequenzen 

einer reduzierten Bodenbearbeitung sind zum einen die Einarbeitung Glyphosat-

belasteter Sprossrückstände in die obere Bodenschichten in denen die Keimung der 

Folgekultur stattfindet und/oder die Persistenz von räumlich begrenzten Zonen mit 

hohen Konzentrationen an Glyphosat aus Wurzeln und/oder Wurzelrückständen 

behandelter Unkrautpflanzen, die durch die sehr begrenzte Durchmischung des Boden 

intakt bleiben.  

Aus diesen Gründen kann angenommen werden, dass Wurzeln keimender 

Kulturpflanzen in direkten Kontakt mit Glyphosat-belasteten Rückständen von 

Unkrautpflanzen kommen können und durch Glyphosat geschädigt werden. Um dieses 

Risiko abzuschätzen, wurde ein Gefäßversuch unter Gewächshausbedingungen auf 

zwei gegensätzlichen Böden (Arenosol, Luvisiol) durchgeführt. Die Applikation von 

Glyphosat erfolgte in Form von Glyphosat behandelten Blättern oder Wurzeln von 

Weidelgraspflanzen, die in separaten Töpfen mit Nährlösung vorkultiviert und 

anschließend in den Boden eingemischt wurden (Kapitel 6). Die Analyse physiologischer 

Parameter, wie der intrazellulären Akkumulation von Shikimate als Indikator der 

Glyphosattoxizität, der Biomasseproduktion und des Mikronährstoffstatus der Pflanzen, 

zeigte, dass die untergemischten Glyphosat-belasteten Blätter von Weidelgraspflanzen 

auf dem Arenosol, aber nicht auf dem kalkhaltigen Luvisol, negative phytotoxische 

Effekte auslösen können.  

Diese Ergebnisse sind wahrscheinlich mit unterschiedlichen Eigenschaften zwischen 

den beiden Böden erklärbar. Möglicherweise war bei den in diesem Modellversuch 

verwendeten Aufwandmengen an Glyphosat auf dem stark gepufferten kalkhaltigen 

Unterboden (Luvisol) mit hoher Verfügbarkeit an Ca und Mg als potenzielle Liganden 

von Glyphosat, das Potenzial für eine Immobilisierung und Inaktivierung von Glyphosat 

ausreichend, um phytotoxische Effekte für die Folgekultur zu vermeiden (Sprankle et al., 
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1975). Möglicherweise war im Gegensatz dazu auf dem schwach gepufferten, sauren 

Arenosol mit niedrigen Gehalten an Ca und Mg die applizierte Aufwandmenge an 

Glyphosat größer als  das Detoxifizierungspotenzial des Bodens und verursachte 

deshalb Schäden an der Folgekultur. Neben Bodenart-spezifischen Unterschieden im 

Potenzial zur Detoxifizierung von Glyphosat spielten möglicherweise auch Unterschiede 

zwischen den beiden Böden bezüglich der biologischen Verfügbarkeit von Nährstoffen 

eine Rolle und verstärkten die durch die Applikation von Glyphosat induzierten 

negativen Effekte auf den Nährstoffstatus der Sonnenblumen, die auf dem stark 

verwitterten, nährstoffarmen Arenosol beobachtet werden konnten. 

Die im Vergleich der beiden Modellböden beobachtete Unterschiede in der 

phytotoxischen Wirkung Glyphosat-belasteter Rückstände von Unkrautpflanzen auf die 

Folgekultur könnte auch von Unterschieden in der Zusammensetzung der 

Bodenmikroorganismen und/oder der Bodentextur und anderen Faktoren abhängen, die 

sich auf die Zersetzungsrate von pflanzlichen Rückständen im Boden auswirken.  

Im Gegensatz zu Glyphosat-belasteten Weidelgrasblättern verursachte die Applikation 

von Glyphosat-belasteten Wurzeln auf beiden Böden für Sonnenblumen als Folgekultur 

keine Symptome von Phytotoxizität, Wachstumsdepressionen oder intrazelluläre 

Akkumulation von Shikimat (Toxizitätsindikator). Da die applizierte Menge an Glyphosat-

belasteten Wurzelrückständen (700mg Trockenmasse kg-1 Boden) deutlich niedriger als 

die Menge an Glyphosat-belasteten Blättern (1200mg Trockenmasse kg-1 Boden) war, 

ist es möglich, dass mit den Wurzeln lediglich eine nicht toxische wirkende 

Aufwandmenge an Glyphosat appliziert wurde und deshalb keine negativen 

Auswirkungen beobachtet werden konnten. Darüber hinaus war das in der Vorkultur auf 

Weidelgras applizierte Glyphosat noch wesentlich stärker im Spross als in den Wurzeln 

akkumuliert.  

Möglicherweise spielten auch die in Wurzelgewebe generell höheren Gehalte an 

phenolischen Verbindungen und Lignin und damit verbunden eine im Vergleich zu 

oberirdischen Pflanzenteilen langsamere mikrobielle Zersetzungsrate von Wurzeln für 

diese Ergebnisse eine Rolle. Möglicherweise verursachte die langsamere mikrobielle 

Zersetzungsrate von Wurzeln auch eine langsamere Abgabe von Glyphosat aus den 
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Wurzelrückständen und erklärt auf diese Weise den fehlenden negativen Effekt 

Glyphosat-belasteter Wurzelrückstände auf die Sonnenblumen als Folgekultur in diesem 

Experiment. 

Insgesamt decken sich die Ergebnisse der Modellversuche mit den Beobachtungen und 

Ergebnissen der im Rahmen dieser Art durchgeführten Untersuchungen im Feld. Die 

Ergebnisse deuten die hohe Bedeutung von mit Glyphosat behandelten 

Unkrautpflanzen als Speicherpool von Glyphosat und damit als Risikofaktor für die 

Folgekultur an. Weitere Untersuchungen über den Umsatz und die Abgabe von 

Glyphosat aus  belasteten Unkrautrückstände sind für eine verbesserte 

Risikoabschätzung und Vermeidung von unerwünschten Glyphosatschäden an 

Kulturpflanzen in der landwirtschaftlichen Praxis dringend notwendig.   
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