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Zusammenfassung

In der vorliegenden Dissertation werden im Rahmen der Modenkopplungstheorie (MCT) die

Auswirkungen von Änderungen in der Zusammensetzung binärer Flüssigkeiten in zwei und drei

Raumdimensionen (2D/3D) auf deren Glasübergangsverhalten untersucht.

Die wohlbekannten Modenkopplungsgleichungen werden für die Beschreibung isotroper

und homogener Mehrkomponenten�üssigkeiten in beliebigen Raumdimensionen verallgemein-

ert. Auÿerdem wird eine neue Methode eingeführt, die eine schnelle und präzise Berechnung

spezieller Eigenschaften so genannter Glasübergangslinien erlaubt. Die neuen Gleichungen

werden auf verschiedene Modellsysteme angewandt. Diese sind binäre Mischungen harter

Scheiben/Kugeln in 2D/3D, binäre Mischungen dipolarer Punktteilchen in 2D, sowie binäre

Mischungen dipolar wechselwirkender harter Scheiben in 2D. Einige generelle Eigenschaften

der Glasübergangslininen werden ebenfalls dargestellt.

Es wird gezeigt, dass sich binäre harte Scheiben in 2D qualitativ ähnlich zu den binären

harten Kugeln in 3D verhalten. Insbesondere werden für binäre harte Scheiben in 2D die selben

vier so genannten Mischungse�ekte identi�ziert, die bereits zuvor von Götze und Voigtmann

für binäre harte Kuglen verö�entlicht wurden [Phys. Rev. E 67, 021502 (2003)]. Beispielsweise

kann, je nach Radienverhältnis, das Hinzufügen einer zweiten Komponente zu einer Einkom-

ponenten�üssigkeit entweder den Flüssigkeitszustand oder den Glaszustand stabilisieren. Die

Resultate aus der MCT für binäre harte Scheiben in 2D stimmen qualitativ mit vorliegenden

Resultaten aus Computersimulationen überein. Ferner ähneln die mittels MCT berechneten

Glasübergangslinien für binäre harte Scheiben in 2D sehr stark den entsprechenden Computer-

simulationsresultaten für dichte Zufallspackungen.

Ein Vergleich von experimentell bestimmten Strukturfaktoren zu denen aus Computer-

simulationen zeigt, dass das experimentelle System von König at al. [Eur. Phys. J. E 18, 287

(2005)] sich sehr gut durch binäre Mischungen dipolarer Punktteilchen in 2D beschreiben lässt.

Für solche Punktteilchen wird gezeigt, dass im Gegensatz zu den Resultaten für binäre harte

Scheiben in 2D oder harte Kugeln in 3D die MCT stets eine Stabilisierung des Flüssigkeits-

zustandes bei Mischung zweier Komponenten vorhersagt. Es wird ferner demonstriert, dass

diese Vorhersage qualitativ mit experimentellen Resultaten im Einklang steht.

Schlieÿlich wird ein Glasübergangsdiagramm für binäre Mischungen dipolar wechselwirk-

ender harter Scheiben in 2D berechnet. Die Resultate zeigen, dass bei höheren Packungs-

brüchen eine Konkurrenz der Mischungse�ekte für binäre harte Scheiben in 2D und derer von

binären Mischungen von Punktdipolen in 2D auftritt.
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Abstract

In this thesis, the in�uence of composition changes on the glass transition behavior of binary

liquids in two and three spatial dimensions (2D/3D) is studied in the framework of mode-

coupling theory (MCT).

The well-established MCT equations are generalized to isotropic and homogeneous multi-

component liquids in arbitrary spatial dimensions. Furthermore, a new method is introduced

which allows a fast and precise determination of special properties of glass transition lines.

The new equations are then applied to the following model systems: binary mixtures of hard

disks/spheres in 2D/3D, binary mixtures of dipolar point particles in 2D, and binary mixtures

of dipolar hard disks in 2D. Some general features of the glass transition lines are also discussed.

The direct comparison of the binary hard disk/sphere models in 2D/3D shows similar

qualitative behavior. Particularly, for binary mixtures of hard disks in 2D the same four so-

called mixing e�ects are identi�ed as have been found before by Götze and Voigtmann for

binary hard spheres in 3D [Phys. Rev. E 67, 021502 (2003)]. For instance, depending on the

size disparity, adding a second component to a one-component liquid may lead to a stabilization

of either the liquid or the glassy state. The MCT results for the 2D system are on a qualitative

level in agreement with available computer simulation data. Furthermore, the glass transition

diagram found for binary hard disks in 2D strongly resembles the corresponding random close

packing diagram.

Concerning dipolar systems, it is demonstrated that the experimental system of König et

al. [Eur. Phys. J. E 18, 287 (2005)] is well described by binary point dipoles in 2D through

a comparison between the experimental partial structure factors and those from computer

simulations. For such mixtures of point particles it is demonstrated that MCT predicts always

a plasticization e�ect, i.e. a stabilization of the liquid state due to mixing, in contrast to

binary hard disks in 2D or binary hard spheres in 3D. It is demonstrated that the predicted

plasticization e�ect is in qualitative agreement with experimental results.

Finally, a glass transition diagram for binary mixtures of dipolar hard disks in 2D is cal-

culated. These results demonstrate that at higher packing fractions there is a competition

between the mixing e�ects occurring for binary hard disks in 2D and those for binary point

dipoles in 2D.
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Chapter 1

Introduction

The study of the dynamics of glass-forming liquids close to vitri�cation is a rapidly

developing �eld in modern physics. The most important quantities for a description

of such liquids in means of statistical mechanics are time-dependent auto-correlation

functions of density �uctuations. Close to vitri�cation, these exhibit complex relaxation

patterns, rather than following a simple exponential decay in time, as they would do

in case of a normal liquid. In order to obtain an understanding of the basic mecha-

nisms leading to the complex relaxation behavior mentioned above, one is interested

in studying simple model systems which capture the essential qualitative features of

glass formation. Hence, colloidal dispersions are often chosen for both experimental and

theoretical investigations. Compared to atomic liquids, the advantages are obvious: the

particle interactions can often be described theoretically by quite simple and well-de�ned

expressions while experimental investigations can be performed by applying standard

optical methods instead of neutron scattering techniques.

The �rst microscopic theory which was able to correctly predict many features of the

complex dynamics of glass-forming liquids, the so-called mode-coupling theory (MCT),

has been published 1984 by Bengtzelius, Götze, and Sjölander [1] and studied in the sub-

sequent two decades in great detail by Götze and coworkers [2]. Although the equations

are based on uncontrolled approximations, MCT serves up to now as the most successful

theory for the description of the dynamics of colloidal glass-formers. The basic version

of MCT considers isotropic and homogeneous one-component liquids in three spatial di-

mensions (3D). The only model-dependent input is given by the static structure factors

of the considered liquid. The central prediction of MCT is a transition from a liquid

into an ideal nonergodic glassy state upon decreasing temperature or increasing particle

density below or above some critical value, respectively. Thermodynamic equilibrium

quantities do not become singular at the glass transition singularity of MCT. Hence,

1
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the liquid-to-glass transition predicted by MCT is a so-called dynamic transition.

The basic version of MCT has been successfully extended and applied to molecular

liquids by Schilling and Scheidsteger [3], to multicomponent liquids in 3D by Barrat

and Latz [4], and to colloidal dispersions under steady shear by Fuchs and Cates [5, 6].

The latter extension predicts a transition from a shear-thinning liquid with a �nite

zero-shear viscosity to a yielding glass with a �nite zero-shear yield stress [7, 8]. This

was con�rmed by experiments of Crassous et al. [9] and, even more impressively, by

experiments of Siebenbürger et al. [10]. Brader et al. [11, 12] have generalized the

theory to colloidal dispersions under arbitrary time-dependent homogeneous �ow. This

theory, for instance, is capable to reproduce the existence of a so-called overshoot in the

shear stress after a sudden switching on of a shear �eld, as was observed by Zausch et

al. [13] in computer simulations. MCT was also extended and successfully applied to

glass-forming liquids inside porous media by Krakoviack [14, 15, 16]. The qualitative

properties of the glass transition diagram predicted by MCT have been con�rmed by

computer simulations of Kurzidim, Coslovich, and Kahl [17]. Furthermore, MCT was

also extended to one-component liquids in arbitrary spatial dimensions by Bayer et al.

[18], to driven granular �uids by Kranz, Sperl, and Zippelius [19], and recently also to

glass-forming liquids in con�ned geometry by Lang et al. [20]. For hard sphere �uids

con�ned between two parallel smooth plates, the latter extended version of the theory

is capable to reproduce the dependence of the di�usivity on the plate distance obtained

by Mittal et al. [21] via computer simulations. In this thesis we will present a further

extended version of the MCT equations for multicomponent liquids in arbitrary spatial

dimensions.

Now, after having illustrated the capabilities of MCT, let us come to the motivation

of this thesis. Since it is well-known that physical phenomena like equilibrium phase

transitions strongly depend on the spatial dimensionality d, there naturally appears

the question about the d-dependence of the glass transition. Although there are from

a fundamental point of view interesting studies concerning glass transitions in high

dimensions, see for instance the recent publication of Schmid and Schilling [22] and the

references therein, in this thesis we will restrict ourselves to the cases d = 2 and d = 3

which are experimentally accessible. Computer simulation results of Santen and Krauth

[23] for polydisperse hard disks in 2D give evidence for the existence of a dynamic glass

transition in 2D. Bayer et al. [18] have explored the question on the d-dependence of

the glass transition by solving the mode-coupling equations for a one-component system

of hard disks in two dimensions (2D). They have found an ideal glass transition at the

critical 2D packing fraction ϕc
0
∼= 0.697. On a qualitative level, the results of Bayer et
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al. for the glass transition scenario for monodisperse hard disks in 2D are very similar

to corresponding MCT results of Franosch et al. [24] for one-component systems of hard

spheres in 3D.

In reality, one-component (monodisperse) systems do not serve as good glass-formers

since they tend to form crystals rather than amorphous solids. Crystallization can be

suppressed by using polydisperse systems. The simplest polydisperse system is a binary

mixture. Since it is well-known that adding a second component to a one-component

liquid may strongly in�uence both its static and dynamic properties, Götze and Voigt-

mann [25] have investigated systematically the glass transition behavior of binary hard

spheres in 3D in the framework of MCT. They have found four qualitatively di�erent

e�ects on the relaxation behavior upon changing the composition of the mixtures. These

e�ects we will generally call mixing e�ects in the following. For instance, depending on

the size disparity, adding a second component to a one-component liquid may lead to a

stabilization of either the liquid or the glassy state. The �rst central topic in this thesis

will be to investigate within the framework of MCT whether the four mixing e�ects

found by Götze and Voigtmann [25] for binary hard spheres in 3D also occur for binary

hard disks in 2D. The results from this investigation will provide information about the

question in how far the mechanisms for vitri�cation di�er for d = 2 and d = 3. Further-

more, the comparison of MCT results for binary hard disks in 2D to available computer

simulation data for the same model system will provide information about the quality

of MCT in 2D.

As far as we know, the �rst experimental realization of a model glass-former in 2D

was presented by König et al. [26]. They consider binary mixtures of super-paramagnetic

colloidal particles on a water-air interface which interact via repulsive dipole-potentials.

The magnetic moments are induced by an external magnetic �eld perpendicular to the

water interface. Their results for the self-intermediate scattering functions measured

by video microscopy clearly exhibit the stretched relaxation patterns of glass-forming

liquids. Thus, the second central topic in this thesis will be a systematic investigation of

the glass transition behavior of this well-de�ned 2D model system within the framework

of MCT. The comparison of the obtained results for the dipolar system in 2D to those

for binary hard disks in 2D will provide information about the question in how far the

glass transition behavior is in�uenced by the type of particle interactions, which also

justi�es the title of this thesis. The comparison of experimental data of König et al.

[26] to corresponding MCT results will provide further information about the quality of

MCT in 2D.

This thesis is organized as follows. In Chapter 2 we summarize essential mathemat-
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ical tools and notations. In addition, we derive a formula for the slope of a so-called

critical line and describe how to apply it to a fold-bifurcation line. The glass transition

lines being of central interest in this thesis will belong to this class. In Chapter 3 we

introduce the correlation functions of main interest for a theoretical description of multi-

component liquids. In Chapter 4 we formulate the MCT equations for multicomponent

liquids in arbitrary spatial dimensions and discuss their generic properties. In Chapters

5 and 6 we discuss in more detail some aspects of the experimental system of König et al.

[26] and introduce the theoretical model systems which we will study in the framework

of MCT in Chapters 7-9. We summarize and conclude in Chapter 10.



Chapter 2

Mathematical preliminaries

In this chapter, mathematical tools and notations are introduced which will be essen-

tial to understand the main parts of this thesis. Experienced readers may ask why

the author dedicates a complete section to this purpose rather than banishing at least

some parts of this chapter into the appendix. The answer is simple: in this thesis,

the appendix is strictly reserved for more �boring� things like lengthy calculations or

numerical algorithms which are not of importance for an understanding of the major

results in this thesis. The author is of the opinion that following this rule makes the

presentation more clearly arranged. Furthermore, beside summarizing basic tools like

spherical coordinates in arbitrary dimensions, we also derive our �rst scienti�c result

which will be of great importance in this thesis. It will be the so-called slope formula

given by Eq. (2.26). In Sect. 2.6 we describe how to apply this formula to a so-called

fold-bifurcation line. The glass transition lines being of central interest in this thesis

will belong to this class. Thus, our slope formula will serve us as a new powerful tool

for a fast and precise prediction of some properties of glass transition lines.

To avoid unnecessary paperwork, we declare some implicit assumptions: all functions

occurring in the following formulas are assumed to be su�ciently well-behaved (like

�su�ciently smooth�, bounded, integrable etc...), such that all occurring expressions

indeed exist.

2.1 Spatial Fourier transforms

Let ~r be a vector in a real position space with d dimensions and f(~r) a complex-valued

function. Its spatial Fourier transform shall be de�ned by

f~k =

∫
ddr f(~r) exp(i~k · ~r) (2.1)

5
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where the integral extends over the whole space. ~k is a wave vector in reciprocal space

with d dimensions. � · � denotes the standard scalar product of ~k and ~r. The usefulness

of our somewhat unconventional notation on the left-hand side (l.h.s.) of Eq. (2.1) will

become clear in Sect. 2.5. There holds the inversion formula

f(~r) = (2π)−d

∫
ddk f~k exp(−i~k · ~r). (2.2)

The Fourier transform of an isotropic function f(~r) = f(r) with r = |~r| depends on the

wave number only: f~k = fk with k = |~k|. Here and in the following the reader should not
be confused by the fact that we use the same symbol for di�erent representations of a

function. Furthermore, the extension of Eqs. (2.1) and (2.2) to matrix-valued functions

is trivial.

2.2 Temporal Laplace transforms

Let φ(t) be a complex-valued function of time de�ned for t ≥ 0. Following the conven-

tions of Götze [2], we de�ne its Laplace transform

φ̂(z) = i

∫ ∞

0

dt φ(t) exp(izt), ={z} > 0. (2.3)

Let φ̇(t) denote the time derivative of φ(t). Its Laplace transform is given by

̂̇φ(z) = −iφ(0)− izφ̂(z). (2.4)

We de�ne the time convolution of two functions by

(ψ ∗ φ)(t) =
∫ t

0

dt′ ψ(t− t′)φ(t′). (2.5)

There holds the convolution theorem:

(̂ψ ∗ φ)(z) = −iψ̂(z)φ̂(z). (2.6)

The long-time limit of a function is connected to a corresponding 1/z-pole of its Laplace

transform:

lim
t→∞

φ(t) = − lim
z→0

{zφ̂(z)}. (2.7)

The extension of Eqs. (2.3)-(2.7) to matrix-valued functions is trivial.
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2.3 Generalized spherical coordinates

Let ~x 6= ~0 be a vector in a space with d ≥ 3 dimensions and x = |~x|. Its representation
in Cartesian coordinates shall be given by ~x =

∑d
i=1 xi~ei with the orthonormal standard

basis vectors ~ei. Now we choose ~ed as polar axis and decompose ~x as follows: ~x =

x cos(ϑd−1)~ed + x sin(ϑd−1)~x
′ with |~x′| = 1 and ~x′ ⊥ ~ed. ϑd−1 ∈ [0, π] is the angle

between ~x and ~ed. Now, ~x′ is a vector in a subspace with (d − 1) ≥ 2 dimensions

perpendicular to ~ed. We have to consider two cases.

1. If (d−1) = 2, then we can represent ~x′ in planar polar coordinates: ~x′ = cos(ϑ1)~e2+

sin(ϑ1)~e1 with ϑ1 ∈ [0, 2π).

2. For (d − 1) ≥ 3 we choose ~ed−1 as new polar axis and decompose ~x′ as follows:

~x′ = cos(ϑd−2)~ed−1 + sin(ϑd−2)~x
′′ with |~x′′| = 1, ~x′′ ⊥ ~ed−1, ~x

′′ ⊥ ~ed and ϑd−2 ∈
[0, π]. Now, we consider ~x′′ and continue the decomposition procedure recursively

until we end up with a vector in the subspace spanned by ~e1 and ~e2 where we can

�nally introduce polar coordinates like in case 1.

The procedure described above leads us to the following representation of the vector ~x:

x1 = x
d−1∏
i=1

sin(ϑi), (2.8)

xj = x cos(ϑj−1)
d−1∏
i=j

sin(ϑi), 2 ≤ j ≤ d− 1, (2.9)

xd = x cos(ϑd−1). (2.10)

2.3.1 Jacobian determinant

Starting from Eqs. (2.8)-(2.10), we can proof by complete induction

ddx = dΩdx
d−1dx, (2.11)

dΩd = dΩd−1[sin(ϑd−1)]
d−2dϑd−1, d ≥ 3, (2.12)

dΩ2 = dϑ1. (2.13)
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We can conclude: Eqs. (2.8)-(2.10) de�ne an invertible coordinate transformation if we

require the following restrictions:

x > 0, (2.14)

ϑ1 ∈ [0, 2π), (2.15)

ϑj ∈ (0, π), 2 ≤ j ≤ d− 1. (2.16)

For the derivation of Eqs. (2.8)-(2.16) we have assumed d ≥ 3, but it is obvious that the

results also hold for d = 2, where we end up with planar polar coordinates.

2.3.2 An integral transformation formula

Later we will face integrals of the type
∫
ddy F (|~x|, |~y|, |~x−~y|) with d ≥ 2. The integral

extends over the whole space. To write it in a more explicit way, we choose the �xed

vector ~x as polar axis and ϑd−1 as the angle between ~x and ~y. For ~z = ~x − ~y, x = |~x|,
y = |~y| and z = |~z| we easily verify

|x− y| ≤ z ≤ x+ y, (2.17)

z2 = x2 + y2 − 2xy cos(ϑd−1). (2.18)

Now, let us replace the variable ϑd−1 by the new variable z. Eq. (2.18) yields

sin(ϑd−1) =
1

2xy

√
4x2y2 − (x2 + y2 − z2)2, (2.19)

dϑd−1 =
2zdz√

4x2y2 − (x2 + y2 − z2)2
. (2.20)

Eqs. (2.19)-(2.20) hold for ϑd−1 ∈ (0, π). To continue, we have to distinguish two cases.

1. If d = 2, then we have due to the symmetry of the considered integral above∫
dΩd · · · =

∫ 2π

0
dϑ1 · · · = 2

∫ π

0
dϑ1 · · · = 2

∫ x+y

|x−y| dz 2z[4x
2y2−(x2+y2−z2)2]−1/2 . . .

2. We have
∫
dΩd · · · =

∫
dΩd−1

∫ x+y

|x−y| dz 2z[4x
2y2− (x2+y2−z2)2](d−3)/2(2xy)2−d . . .

for d ≥ 3.

With these two results we can rewrite the entire integral for all d ≥ 2 as∫
ddy F (|~x|, |~y|, |~x− ~y|) = Ωd−1

2d−3xd−2

∫ ∞

0

dy

∫ x+y

|x−y|
dz

yzF (x, y, z)

[4x2y2 − (x2 + y2 − z2)2]
3−d
2

(2.21)
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where Ωd = 2πd/2/Γ(d/2) is the well-known result for the surface of a unit sphere in d

dimensions. Γ(·) is the Gamma function. The special case Ω1 = 2 can be interpreted as

follows: the �surface� of the interval [−1, 1] consists of its two endpoints.

2.4 Critical hypersurfaces

Let us assume an arbitrary physical model system with L independent external control

parameters ~ξ = (ξ1, . . . , ξL). Let us further assume that the control parameter space

subdivides into two regions. These two regions shall be de�ned by the existence of two

clearly distinguishable physical states. Here, the two states shall be denoted by �state

1� and �state 2�. Generically, the transition from state 1 to state 2 takes place at some

(locally) smooth critical hypersurface

H = {~ξ | Σ(~ξ) = 0} (2.22)

with L − 1 dimensions which separates the two regions. The function Σ(~ξ) is assumed

to be real-valued. We call the elements of H critical points in the following.

2.4.1 Tangent hyperplanes and separation parameters

Let ~ξc = (ξc1, . . . , ξ
c
L) ∈ H be a �xed critical point and ∆~ξ = ~ξ − ~ξc. With Taylor's

theorem we can write

Σ(~ξc +∆~ξ) = σ(∆~ξ) +O(|∆~ξ|2) (2.23)

where σ(∆~ξ) is a linear real-valued function of ∆~ξ. For such a function there always

exists a scalar product representation. There holds

σ(∆~ξ) = ~N ·∆~ξ (2.24)

with �xed ~N = (∂σ/∂(∆ξ1), . . . , ∂σ/∂(∆ξL))|∆~ξ=~0 = (∂Σ/∂ξ1, . . . , ∂Σ/∂ξL)|~ξ=~ξc . Note

that Eq. (2.24) is nothing but a trivial special case of the Riesz representation theorem.

From Eqs. (2.22)-(2.24) we can read o�:

T = {~ξ | ~ξ = ~ξc +∆~ξ ∧ σ(∆~ξ) = 0} (2.25)

is the tangent hyperplane of the hypersurface H at the critical point ~ξc and ~N is per-

pendicular to H at ~ξc. The symbol � ∧ � represents the logical and-operator. We can

conclude: generically, there exists some ε > 0 such that for all ∆~ξ ‖ ~N with |∆~ξ| < ε
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the condition σ(∆~ξ) < 0 implies that the physical model system is in, say, state 1 while

σ(∆~ξ) > 0 implies state 2. In this sense the function σ(∆~ξ) separates the two states,

and thus we call it the separation parameter to ~ξc.

2.4.2 Slope of a critical line

H can be locally represented as ξcritl (ξ1, . . . , ξl−1, ξl+1, . . . , ξL) for any l. For �xed ξi = ξci ,

i 6= j, i 6= l, ξcritl (ξc1, . . . , ξ
c
j−1, ξj, ξ

c
j+1, . . . , ξ

c
l−1, ξ

c
l+1, . . . , ξ

c
L) describes a critical line which

is a function of ξj. The separation parameter introduced above allows us to derive an

expression for its slope (∂ξcritl /∂ξj)(ξ
c
1, . . . , ξ

c
j−1, ξj, ξ

c
j+1, . . . , ξ

c
l−1, ξ

c
l+1, . . . , ξ

c
L). Di�er-

entiating Σ(ξc1, . . . , ξ
c
j−1, ξj, ξ

c
j+1, . . . , ξ

c
l−1, ξ

crit
l (ξc1, . . . , ξ

c
j−1, ξj, ξ

c
j+1, . . . , ξ

c
l−1, ξ

c
l+1, . . . , ξ

c
L),

ξcl+1, . . . , ξ
c
L) = 0 with respect to ξj and evaluating the result at ξj = ξcj yields with

ξcritl (ξc1, . . . , ξ
c
j , . . . , ξ

c
l−1, ξ

c
l+1, . . . , ξ

c
L) = ξcl and ∂Σ/∂ξi|~ξ=~ξc = ∂σ/∂(∆ξi)|∆~ξ=~0 the slope

formula:
∂ξcritl

∂ξj
(ξc1, . . . , ξ

c
j , . . . , ξ

c
l−1, ξ

c
l+1, . . . , ξ

c
L) = − ∂σ/∂(∆ξj)

∂σ/∂(∆ξl)

∣∣∣∣
∆~ξ=~0

. (2.26)

Let us add some comments on Eq. (2.26). We have derived it in a quite general

mathematical framework regardless to any speci�c application. In principle, Eq. (2.26)

could be applied to any physical model system which has at least two control parameters

and exhibits the transition scenario supposed above. In this thesis, we will demonstrate

for two physical model systems that Eq. (2.26) can be applied as a new powerful tool

for a fast and precise prediction of some properties of so-called glass transition lines.

2.5 A generalized matrix algebra

In this thesis, the objects of central interest will be matrix-valued isotropic correlation

functions represented in Fourier space. For analytical calculations with such objects it

turns out to be convenient to have an algebra with compact and elegant notation. Thus,

let us declare: correlation functions are arrays of matrices denoted by bold symbols A,

B etc. Their �components� Ak, Bk being M ×M matrices (Aαβ
k ), (Bαβ

k ) (with some

�xed natural number M) are labeled by subscript Latin indices (the wave numbers)

which can be taken from a discrete or a continuous set. The elements Aαβ
k , Bαβ

k of these

matrices are indicated by superscript Greek indices, in some cases these elements shall

also be denoted by (A)αβk , (B)αβk . Matrix products are de�ned component-wise, i.e.

C = AB reads Ck = AkBk for all k. We call A positive-(semi-)de�nite, (A � 0),

A � 0, if this is true for all Ak. 0 denotes the (generalized) zero matrix.
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Later we will introduce model systems where k is restricted to a �nite number of

values. For such systems, the standard scalar product of A and B shall be de�ned as

(A|B) =
∑
k

∑
α,β

(Aαβ
k )∗Bαβ

k (2.27)

where the superscript * stands for complex conjugation. Having this scalar product, we

can also introduce some further concepts from linear algebra. The standard norm of A

shall be given by

|A| =
√
(A|A). (2.28)

Let C[X] be a linear map from the vector space spanned by the arrays of matrices

speci�ed above onto itself. Then H is called a (right-)eigenvector of C to eigenvalue

r ∈ C if C[H ] = rH . The adjoint map C† of C satis�es

(C†[X]|Y ) = (X|C[Y ]) (2.29)

for all X, Y . Its eigenvector Ĥ to eigenvalue r∗ is a so-called left-eigenvector of C
corresponding to the eigenvalue r.

2.6 Fold-bifurcations

From a mathematical point of view, the generic glass transitions singularities studied in

this thesis are nothing but fold-bifurcations of the real solutions of nonlinear �xed-point

equations. They are singularities of the class A2 introduced by Arnol'd [27]. Thus, it

seems reasonable to discuss the general mathematical signature of such bifurcations.

As framework we choose the vector space spanned by arrays of matrices as speci�ed

above where we assume that k is restricted to a �nite number of values. We consider

the �xed-point equation

F = I [F ] (2.30)

where the nonlinear map I shall be real-valued if F has this property. Furthermore, I
shall smoothly depend on both F and the L independent external control parameters
~ξ = (ξ1, . . . , ξL). Eq. (2.30) may have several real solutions for F . A bifurcation point,

which we call critical point in the following, is a point ~ξc within the control parameter

space at which at least two real solutions of Eq. (2.30) coincide. Such a bifurcation point

is called an Al-singularity, l ≥ 2, if it is equivalent to the one described by a real root

of degeneracy l of a real polynomial. An A2-singularity is also called fold-bifurcation.
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Let us investigate in more detail the case l = 2 and assume a critical point ~ξc where

the real solution F c of Eq. (2.30) is twofold degenerated. Quantities taken at the critical

point ~ξc shall be indicated by a superscript c in the following. Now we are interested

in the change in F upon small changes in ~ξ. We assume ~ξ = ~ξc + ∆~ξ and thus also

F = F c +∆F . Expanding I with respect to ∆F around F c yields

I [F ] = I[F c] + C[∆F ] +D[∆F ,∆F ] +O(|∆F |3) (2.31)

where C is linear and D bilinear in ∆F . Let us also expand the coe�cient functions

with respect to ∆~ξ around ~ξc,

I[X] = Ic[X] + ∆I[X] +O(|∆~ξ|2), (2.32)

C[X] = Cc[X] + ∆C[X] +O(|∆~ξ|2), (2.33)

D[X,Y ] = Dc[X,Y ] + ∆D[X,Y ] +O(|∆~ξ|2). (2.34)

By substituting Eqs. (2.31)-(2.34) into Eq. (2.30) and using F c = Ic[F c] we obtain

∆F − Cc[∆F ] = ∆I[F c] +Dc[∆F ,∆F ]

+O(|∆~ξ|)O(|∆F |) +O(|∆F |3) +O(|∆~ξ|2). (2.35)

A necessary condition for the twofold degeneracy of F c is that the linear map given

by the l.h.s. of Eq. (2.35) has a nontrivial kernel. Hence, Cc must have r = 1 as

eigenvalue. For the following, we assume that this eigenvalue is not degenerated. Under

this condition right-eigenvector Hc and left-eigenvector Ĥc to eigenvalue r = 1 can

be chosen uniquely by requiring some appropriate normalizations and we can derive an

asymptotic formula for ∆F . For this we use the decomposition

∆F = gHc +∆F̃ (2.36)

with (∆F̃ |Hc) = 0 and thus also (Ĥc|∆F̃ ) = 0. We substitute Eq. (2.36) into

Eq. (2.35). Since ∆F̃ is perpendicular to the kernel of the linear map given by the

l.h.s. of Eq. (2.35), the resulting equation can be formally resolved for ∆F̃ yielding

∆F̃ = O(|∆~ξ|). (2.37)

Now, we again substitute Eq. (2.36) into Eq. (2.35), take the scalar product of the
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resulting equation with Ĥc from the left, and use Eq. (2.37). We obtain

0 = (Ĥc|∆I[F c]) + g2(Ĥc|Dc[Hc,Hc])

+O(|g|)O(|∆~ξ|) +O(|g|3) +O(|∆~ξ|2). (2.38)

With this, our problem is reduced to the one of �nding the real roots of a real polynomial

in g. The assumption of the non-degeneracy of the eigenvalue r = 1 of Cc was crucial

for this. For the following, we assume (Ĥc|Dc[Hc,Hc]) 6= 0, otherwise we would have

a higher-order bifurcation point of class Al, l ≥ 3. As last step we substitute the series

ansatz g =
∑∞

n=1 gn with gn = O(|∆~ξ|n2 ) into Eq. (2.38) yielding a sequence of equations
for gn which in principle, starting with n = 1, can be solved recursively for arbitrary n.

For the solution F of Eq. (2.30) we obtain the leading |∆~ξ| 12 -order asymptotes

F = F c ±Hc

√
− (Ĥc|∆I [F c])

(Ĥc|Dc[Hc,Hc])
+O(|∆~ξ|). (2.39)

Eq. (2.39) makes the signature of a fold-bifurcation clear: if ~ξ is �rst chosen such that

(Ĥc|∆I[F c])/(Ĥc|Dc[Hc,Hc]) > 0 and then varied such that (Ĥc|∆I[F c]) changes

its sign at ~ξ = ~ξc, then a pair of complex solutions of Eq. (2.30) merges into a pair of

real ones at the critical point. Furthermore, the two solutions belonging to this pair

coincide at ~ξ = ~ξc.

So far, we have discussed the local behavior of F in the neighborhood of a special

fold-bifurcation point ~ξc. Since we have assumed that the nonlinear map I in Eq. (2.30)

smoothly depends on L independent control parameters ~ξ = (ξ1, . . . , ξL), the set of

bifurcation points will generically form some locally smooth critical hypersurface H
with L − 1 dimensions within the L-dimensional control parameter space. Now, let

us assume that there is a locally smooth subset U ⊂ H such that for all ~ξc ∈ U the

restrictions made above are ful�lled and thus also Eq. (2.39) holds. Let us �x some
~ξc ∈ U and, without loss of generality, let us further assume (Ĥc|Dc[Hc,Hc]) < 0. If

this is not the case, we simply rede�ne D 7→ −D. The expression (Ĥc|∆I [F c]) being

linear in ∆~ξ can be rewritten in its scalar product representation

(Ĥc|∆I[F c]) = ~N ·∆~ξ (2.40)

similarly to Eq. (2.24). From Eqs. (2.39) and (2.40) we can now read o�: generi-

cally, there exists some ε > 0 such that for all ∆~ξ ‖ ~N with |∆~ξ| < ε the condition

(Ĥc|∆I[F c]) < 0 implies that the solutions of Eq. (2.30) whose asymptotes are given
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by Eq. (2.39) have non-vanishing imaginary parts while for (Ĥc|∆I [F c]) > 0 these

solutions are real-valued. Hence, ~N has to be perpendicular to U at ~ξc and the set

T = {~ξ | ~ξ = ~ξc +∆~ξ ∧ (Ĥc|∆I [F c]) = 0} (2.41)

is the tangent hyperplane of the hypersurface U at the critical point ~ξc. Thus, up to a

constant prefactor, we have derived an explicit expression

σ(∆~ξ) ∝ (Ĥc|∆I [F c]) (2.42)

for the separation parameter to ~ξc which was introduced in Sect. 2.4.1 in a more general

framework.

Similarly to the discussion in Sect. 2.4.2, the locally smooth hypersurface U consist-

ing of fold-bifurcation points can be locally represented as ξcritl (ξ1, . . . , ξl−1, ξl+1, . . . , ξL)

for any l. For �xed ξi = ξci , i 6= j, i 6= l, ξcritl (ξc1, . . . , ξ
c
j−1, ξj, ξ

c
j+1, . . . , ξ

c
l−1, ξ

c
l+1, . . . , ξ

c
L)

describes a fold-bifurcation line which is a function of ξj. Eq. (2.42) opens up the pos-

sibility for calculating the slope of such a line by using the general slope formula given

by Eq. (2.26).

2.7 Summary

In this chapter, we have �rst summarized some basic mathematical tools like spatial

Fourier transforms, temporal Laplace transforms and generalized spherical coordinates.

We have derived an integral transformation formula, Eq. (2.21), which will be of impor-

tance for our purposes. We have discussed the general mathematical concepts for the

description of critical hypersurfaces. We have derived the slope formula, Eq. (2.26), for

a critical line. Later we will demonstrate that this slope formula can be applied as a

new powerful tool for a fast and precise prediction of some properties of glass transition

lines. We have introduced a generalized matrix algebra which will allow us to formulate

equations in the following chapters in a compact way. Finally, we have discussed the

mathematical signature of fold-bifurcations. The glass transition singularities studied

in this thesis will be bifurcations of this type.



Chapter 3

Physical preliminaries

In this chapter, we �rst specify the physical systems which will form the basis for this

thesis. Second, we introduce the functions of main interest for a theoretical description

of these systems. We also formulate some useful exact identities for the considered

functions.

3.1 Multicomponent liquids

As starting point, we suppose a classical liquid consisting of M components. We choose

to describe it in the canonical ensemble: the liquid shall be enclosed into some cubic

box with volume V in d spatial dimensions and temperature T . The total number of

particles shall be given by N =
∑M

α=1Nα where Nα denotes the number of particles

of species α. To calculate thermodynamic limits of canonically averaged phase space

functions, one has to consider V → ∞ and N → ∞ with �xed total particle density

n = N/V and �xed particle number concentrations xα = Nα/N for 1 ≤ α ≤ M .

The existence of such limits is assumed throughout in this thesis. For the following,

we also allow that the considered system of N particles is embedded as a subsystem

into a larger particle system. Such an assumption is reasonable, for example, for the

description of multicomponent mixtures of colloidal particles which are dispersed into

some liquid solvent. The dynamics of the dispersed particles is then governed by the

Liouville operator L which generates the dynamics of the complete particle system.

Following Götze [2], we make the following restrictions: all particles shall interact only

via centrosymmetric pair-potentials and, when considering thermodynamic limits, the

complete system is assumed to be homogeneous, isotropic and free of chirality.

15
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3.2 Collective density correlators

Let nα(~r, t) =
∑Nα

i=1 δ(~r − ~rα,i(t)) denote the time-dependent microscopic particle den-

sity of the component α of the liquid. ~rα,i(t) denotes the position of particle i of the

component α at time t and δ(·) is the Dirac delta distribution. The time-dependent

density �uctuation of the component α of the liquid to wave vector ~k is given by the

spatial Fourier transform (see Sect. 2.1) of nα(~r, t):

nα
~k
(t) =

Nα∑
i=1

exp(i~k · ~rα,i(t)). (3.1)

Form here, we will make use of the notations introduced in Sect. 2.5. We de�ne for t ≥ 0

the matrix of time-dependent partial auto-correlation functions of density �uctuations

Φ(t) with components Φαβ
k (t) by

Φαβ
k (t) =

〈
N−1[nα

~k
(t)]∗nβ

~k
(0)

〉
TL
, k > 0, (3.2)

Φαβ
0 (t) = lim

k→0+
Φαβ

k (t), (3.3)

where 〈. . . 〉TL means canonical averaging followed by performing the thermodynamic

limit. We have the normalization Φ(0) = S, where S � 0 denotes the positive-de�nite

static structure factor matrix whose elements obey limk→∞ Sαβ
k = xαδαβ. Here δαβ

denotes the Kronecker delta. Further, it can be shown that Φ(t) is symmetric, there

holds Φαβ
k (t) = Φβα

k (t) for all t ≥ 0 [2].

3.3 Self-correlators

The collective density correlator Φαβ
k (t) can be decomposed as

Φαβ
k (t) = xαδαβΦ

self
α,k (t) + xαxβΨ

αβ
k (t) (3.4)

with the self-correlator of an arbitrary tagged particle i of species α

Φself
α,k (t) =

〈
exp(−i~k · [~rα,i(t)− ~rα,i(0)])

〉
TL
, k > 0, (3.5)

Φself
α,0 (t) = lim

k→0+
Φself

α,k (t), (3.6)
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and the remaining distinct part

Ψαβ
k (t) =

〈
N exp(−i~k · [~rα,i(t)− ~rβ,j(0)])

〉
TL
, k > 0, (i 6= j) ∨ (α 6= β), (3.7)

Ψαβ
0 (t) = lim

k→0+
Ψαβ

k (t). (3.8)

The symbol � ∨ � represents the logical or-operator. From Eq. (3.4) we can read o� the

useful limiting formula

Φself
α,k (t) = lim

xα→0
{Φαα

k (t)/xα}. (3.9)

3.4 Mean-square displacements

The mean-square displacement (MSD) of an arbitrary tagged particle i of species α is

given by

δr2α(t) =
〈
|~rα,i(t)− ~rα,i(0)|2

〉
TL
. (3.10)

A simple Taylor expansion of the exponential function in Eq. (3.5) yields a connection

between the MSDs and the low wave number behavior of the self-correlators:

δr2α(t) = 2d lim
k→0

{[1− Φself
α,k (t)]/k

2}. (3.11)

3.5 Summary

In this brief chapter we have speci�ed d-dimensional multicomponent liquids as a phys-

ical starting point for our study. Further, we have introduced the functions of main

interest for a statistical description of these liquids: the collective density correlators,

and the self-correlators and MSDs of tagged particles. However, we have not yet intro-

duced any method for an explicit determination of these functions. The next chapter

will be dedicated to this issue.
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Chapter 4

Mode-coupling theory

In the last chapter, we have formally de�ned several correlation functions for a statistical

description of multicomponent liquids in d spatial dimensions. To proceed, we need

some (approximative) technique for an explicit calculation of these objects. Since we

are interested in the glass transition behavior of the physical systems speci�ed above,

we choose MCT [2] as theoretical framework.

So far, MCT equations were derived for multicomponent liquids in 3D [2] and also

for one-component liquids in arbitrary dimensions [18]. In this chapter, we extend these

equations to multicomponent liquids in arbitrary dimensions d. Rather than rewriting

the complete derivation of the MCT equations for multicomponent liquids given in [2],

we restrict ourselves to highlight the few necessary modi�cations when dropping the

restriction d = 3. We also restrict ourselves to present the overdamped versions of

the MCT equations since the model systems studied in this thesis theoretically are all

motivated by experiments on colloidal dispersions (see the next chapter). Furthermore,

we neglect throughout the static triple-correlation functions, for technical simplicity.

The latter simpli�cation is known as the so-called convolution approximation.

4.1 Equations for the collective density correlators

Up to some few modi�cations, the derivation of the MCT equations can be copied from

Ref. [2]. First we notice that the formal structure of the exact Zwanzig-Mori equation

for Φ(t) does not explicitly depend on the spatial dimension d. For overdamped colloidal

dynamics it reads

τ Φ̇(t) + S−1Φ(t) +

∫ t

0

dt′ m(t− t′)Φ̇(t′) = 0. (4.1)

19
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τ is a positive-de�nite matrix of microscopic relaxation times. Its components shall be

approximated by

ταβk = δαβ/(k
2D0

αxα) (4.2)

where D0
α denotes the short-time di�usion coe�cient of a single particle of the species

α inserted into the �uid. Hydrodynamic interactions are neglected. In Sect. 4.3 we

will provide a phenomenological justi�cation for Eq. (4.2). The short-time asymptote

of Φ(t) is given by

Φ(t→ 0+) = S − τ−1t+O(t2). (4.3)

The memory kernel m(t) describing �uctuating stresses can not be calculated explic-

itly. In the framework of MCT, it is approximated by a symmetric bilinear functional

F of Φ(t),

m(t) = F [Φ(t),Φ(t)]. (4.4)

The derivation of an explicit expression for the components of F follows exactly the

steps in Ref. [2] with two modi�cations. First, we perform the thermodynamic limit

by applying the rule V −1
∑

~k . . . 7→ (2π)−d
∫
ddk . . . and obtain for the components

Fαβ
k [X,Y ] integrals of the type

∫
ddp F (|~k|, |~p|, |~k − ~p|). Second, assuming d ≥ 2, we

apply then Eq. (2.21). After dropping the static triple-correlation functions, the �nal

result reads

Fαβ
k [X,Y ] =

Ωd−1

(4π)d

∑
α′,β′,α′′,β′′

∫ ∞

0

dp

∫ k+p

|k−p|
dq V αβ;α′β′,α′′β′′

k;p,q Xα′β′

p Y α′′β′′

q (4.5)

with the vertices

V αβ;α′β′,α′′β′′

k;p,q =
n

xαxβ

pq

kd+2
vαα

′α′′

kpq vββ
′β′′

kpq (4.6)

where

vαβγkpq =
(k2 + p2 − q2)cαβp δαγ + (k2 − p2 + q2)cαγq δαβ

[4k2p2 − (k2 + p2 − q2)2](3−d)/4
. (4.7)

cαβk denote the direct correlation functions. c is related to S via the Ornstein-Zernike

equation

(S−1)αβk = δαβ/xα − ncαβk . (4.8)

Eqs. (4.1)-(4.8) serve now as a closed set of self-consistent nonlinear equations for

the calculation of Φ(t). They provide the theoretical framework for this thesis. The

interaction potentials for a speci�c model system enter the MCT equations only via the

static structure factors. For their determination some independent approach is needed

since MCT does not provide any method to calculate the static correlation matrix S.
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4.2 Equations for the self-correlators

The MCT equations for the self-correlators Φself
α,k (t) can be derived from the MCT equa-

tions for the collective density correlators Φαβ
k (t) by applying the following �trick�: we

add an additional component M + 1 consisting of particles of species α, 1 ≤ α ≤ M ,

to the M -component system and apply then Eq. (3.9) for the component M + 1. The

calculation is in principle straightforward but somewhat tedious. The �nal result is

τ selfα,k Φ̇self
α,k (t) + Φself

α,k (t) +

∫ t

0

dt′ mself
α,k (t− t′)Φ̇self

α,k (t
′) = 0, (4.9)

τ selfα,k = 1/(k2D0
α), (4.10)

Φself
α,k (t→ 0+) = 1− t/τ selfα,k +O(t2), (4.11)

mself
α,k (t) = F self

α,k [Φ(t),Φself
α (t)] =

Ωd−1

(4π)d

∑
α′,α′′

∫ ∞

0

dp

∫ k+p

|k−p|
dq

×2n
pq

kd+2

(k2 + p2 − q2)2cαα
′

p cαα
′′

p

[4k2p2 − (k2 + p2 − q2)2](3−d)/2
Φα′α′′

p (t)Φself
α,q (t), (4.12)

where Φself
α (t) has to be read as an array whose components Φself

α,k (t) are labeled by the

subscript k. Eqs. (4.9)-(4.12) are a set of self-consistent equations for Φself
α (t) which

need the full solution for the collective correlation matrix Φ(t) as input.

4.3 Equations for the mean-square displacements

The MCT equations for the MSD of an arbitrary tagged particle i of species α follow

from Eqs. (4.9)-(4.12) by performing the k → 0 limit according to Eq. (3.11). For this

purpose it turns out to be convenient to use Eq. (2.21) to transform Eq. (4.12) back to

Cartesian coordinates. Then it is easy to verify

δr2α(t) +D0
α

∫ t

0

dt′ mmsd
α (t− t′)δr2α(t

′) = 2dD0
αt, (4.13)

δr2α(t→ 0+) = 2dD0
αt, (4.14)
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mmsd
α (t) = Fmsd

α [Φ(t),Φself
α (t)] =

n(Ωd/d)

(2π)d

∑
α′,α′′

∫ ∞

0

dp pd+1cαα
′

p cαα
′′

p Φα′α′′

p (t)Φself
α,p (t).

(4.15)

Eqs. (4.13)-(4.15) require the full solutions for Φ(t) and Φself
α (t) as input. Eq. (4.14) can

be regarded as an a-posteriori justi�cation for our choice for the matrix τ of microscopic

relaxation times: Eq. (4.2) is the simplest ansatz which yields the phenomenologically

expected short-time di�usion behavior according to Eq. (4.14).

4.4 Discretized models

The motivation for introducing discretized versions of the MCT equations is twofold.

First, the MCT equations above can only be solved numerically which naturally requires

discretized equations. Second, several theorems on the MCT equations can be proved

provided that the wave number k is restricted to some �nite set excluding k = 0 [28].

For the following, we discretize k to a �nite, equally spaced grid of K points

k = (ôd + k̂)∆k (4.16)

with k̂ = 0, 1, . . . , K − 1 and 0 < ôd < 1. The integrals in Eqs. (4.5), (4.12), and (4.15)

are then replaced by Riemann sums

∫ ∞

0

dp . . .

∫ k+p

|k−p|
dq . . . 7→

K−1∑
p̂=0

∆k . . .

min{K−1,k̂+p̂}∑
q̂=|k̂−p̂|

∆k . . . , (4.17)

and Eqs. (4.1), (4.9), and (4.13) represent a �nite number of coupled nonlinear equations.

The parameters od, ∆k, andK have to be chosen appropriately for a given model system.

4.5 Ideal glass transition singularities

The nonergodicity parameters (NEPs) F = (Fαβ
k ) for the collective motion are given by

F = limt→∞Φ(t). F = 0 corresponds to a liquid state, while F � 0 de�nes a glassy

state. With Eqs. (4.1)-(4.4) and Eqs. (2.3)-(2.7) we can easily show that F is a �xed

point of the nonlinear map

I[X] = S − (S−1 +F [X,X])−1. (4.18)
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Obviously, X = 0 is always a �xed point. In general, I may have more than one �xed

point. Thus the question: how can F be characterized?

For the discretized models described above, several statements can be proved rigor-

ously [28]: Eq. (4.1) has a unique solution. It is de�ned for all t ≥ 0 and is completely

monotone, i.e. (−∂/∂t)lΦ(t) � 0 for all l. F � 0 is with respect to the semi-order

� � � the maximum real, symmetric �xed point of I . Iterating Eq. (4.18) starting with

X = S leads to a monotonically decaying sequence converging towards F , this fact can

be utilized for a numerical determination of the NEPs. Linearization of I around F

similarly to Eq. (2.31) yields a so-called positive linear map

C[Y ] = 2(S − F )F [F ,Y ](S − F ) (4.19)

in the sense that C[Y ] � 0 for all Y � 0. The physical picture of the MCT equations

that correlations for all wave numbers are coupled leads to the further assumption that

C is an irreducible map if F � 0 [28]. According to a generalized version of the Perron-

Frobenius theorem, the maximum eigenvalue 0 < r ≤ 1 of C is then non-degenerated and

thus the corresponding right-eigenvector H � 0 and the corresponding left-eigenvector

Ĥ � 0 (see Sect. 2.5 for its de�nition) are then determined uniquely by requiring the

normalizations [29]

(Ĥ|H) = (Ĥ|H{S − F }−1H) = 1. (4.20)

For any eigenvalue r̃ 6= r of C, |r̃| ≤ |r| holds, and if |r̃| = |r|, then the corresponding

eigenvector can not be positive-de�nite. Hence, remembering the bifurcation analysis

in Sect. 2.6, we can state that possible MCT singularities are identi�ed by r = 1 and

belong to the class Al, l = 2, 3, . . . , according to the terminology of Arnol'd [27].

The generic liquid-glass transition singularities studied in detail in this thesis belong

to the class A2. For a model system with L physical control parameters ~ξ = (ξ1, . . . , ξL)

they form a locally smooth critical hypersurface H with L − 1 dimensions within the

L-dimensional physical control parameter space. Quantities taken at such critical points

shall be indicated by a superscript c in the following. While in the liquid regimeX = 0 is

the maximum real, symmetric �xed point of I and thus it is F = 0, at ~ξc ∈ H a further

real, symmetric �xed point X = F c appears which, due to the bilinear dependence of

F on F in the �xed-point equation F = I[F ], has the generic feature F c � 0. The

maximum property of F implies then that F jumps at ~ξ = ~ξc from 0 to F = F c � 0.

Hence, the liquid-glass transition predicted by MCT is a so-called type-B transition.

For ~ξc ∈ H, the proven properties of the MCT equations cited above guarantee that

Eqs. (2.39)-(2.42) can be directly applied with I given by Eq. (4.18). With this, it is
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easy to verify that for ~ξ = ~ξc + ∆~ξ with some �xed ~ξc ∈ H the separation parameter

σ(∆~ξ) to ~ξc, which is speci�ed up to a constant prefactor by Eq. (2.42), can be chosen

by expanding

σ̃(~ξ) = (Ĥc|{Sc − F c}Sc−1{SF [F c,F c](S − F c)− ScF c[F c,F c](Sc − F c)}) (4.21)

around ~ξc up to linear order in ∆~ξ. Let us further introduce the so-called exponent

parameter [2, 29]

λc = (Ĥc|{Sc − F c}F c[F c,F c]{Sc − F c}), (4.22)

the terminology will become clear in Sect. 4.6. Taking the above cited maximum prop-

erty for the NEPs into account, we can specialize Eq. (2.39) to determine the asymptotic

behavior of the NEPs for σ(∆~ξ) > 0, i.e. inside the glassy regime. The leading-order

asymptotic result reads

F = F c +Hc

√
σ(∆~ξ)/(1− λc) +O(|∆~ξ|). (4.23)

This square-root law is also called factorization theorem since to leading order the

quantity F − F c factorizes into a wave number and particle index dependent part Hc

evaluated at ~ξc and a function depending only on the separation parameter σ(∆~ξ) to ~ξc.

At generic liquid-glass transition points ~ξc belonging to the class A2 it is 1/2 < λc < 1.

Higher-order singularities of class Al with l ≥ 3 are characterized by λc = 1 [2].

We can locally represent the critical hypersurface H as ξcritl (ξ1, . . . , ξl−1, ξl+1, . . . , ξL)

for any l. For �xed ξi = ξci , i 6= j, i 6= l, ξcritl (ξc1, . . . , ξ
c
j−1, ξj, ξ

c
j+1, . . . , ξ

c
l−1, ξ

c
l+1, . . . , ξ

c
L)

de�nes a so-called glass transition line which is a function of ξj. For an explicit calcu-

lation of the slope of such a line we can specialize Eq. (2.26) to

∂ξcritl

∂ξj
(ξc1, . . . , ξ

c
j , . . . , ξ

c
l−1, ξ

c
l+1, . . . , ξ

c
L) = − ∂σ̃/∂ξj

∂σ̃/∂ξl

∣∣∣∣
~ξ=~ξc

(4.24)

where only those quantities on the r.h.s. of Eq. (4.21) without the superscript c are

di�erentiated.

4.6 Asymptotic relaxation laws

Close to the liquid-glass transition, MCT makes universal predictions for the relaxation

behavior of Φ(t) which can be studied in the framework of asymptotic expansions. Here

we restrict ourselves to cite the major results from this asymptotic approach.
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For the following, let ~ξc ∈ H be a �xed generic A2 liquid-glass transition point and

∆~ξ = ~ξ − ~ξc. Furthermore, we assume that the mode-coupling functional F [X,Y ]

depends smoothly on ∆~ξ for all X, Y . Two quantities will be of great importance in

this section. The �rst one is the separation parameter σ(∆~ξ) which is obtained from

Eq. (4.21) by expanding σ̃(~ξ) around ~ξc up to linear order in ∆~ξ. For the following

discussion, ∆~ξ 6= ~0 shall be chosen such that σ(∆~ξ) 6= 0, i.e. ~ξ is assumed not to be an

element of the tangent hyperplane T of the critical hypersurface H at ~ξc. The second

important quantity will be the exponent parameter λc given by Eq. (4.22) whose value

determines the exponents occurring in the asymptotic scaling laws discussed below.

These positive exponents will be the critical exponent a obeying the relation

Γ2(1− a)/Γ(1− 2a) = λc, (4.25)

the von Schweidler exponent b satisfying

Γ2(1 + b)/Γ(1 + 2b) = λc, (4.26)

and the exponent

γ = (a+ b)/(2ab) (4.27)

describing the divergence of the time scale for the �nal relaxation of Φ(t) to 0 upon

increasing σ(∆~ξ) < 0 towards 0 [2].

4.6.1 The �rst scaling-law regime

Beside the theorems cited in Sect. 4.5 it can be proved [2] that Φ(t) depends smoothly

on ∆~ξ for every �xed �nite time interval. Together with the fact limt→∞Φc(t) = F c for

∆~ξ = ~0 this implies the following: for every given arbitrary small error ε > 0 and every

arbitrary large time increment ∆t > 0 there exists some open neighborhood B of ~ξc and

some time interval [t1, t2] of length ∆t such that for all ~ξ ∈ B and t1 < t < t2 there

holds |Φ(t) − F c| < ε. This means that for ~ξ close to ~ξc the correlation matrix Φ(t)

develops a dynamics located around F c for a large time interval which is also called the

β-relaxation process.

For times within the so-called �rst scaling-law regime de�ned by |Φ(t) − F c| � 1

there holds the factorization theorem [2, 24]

Φ(t)− F c = HcG(t) +O(|∆~ξ|) (4.28)
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with the β-correlator G(t) = O(|σ|1/2) = O(|∆~ξ|1/2) obeying the equation of motion

σ + λcG2(t) =
d

dt

∫ t

0

dt′G(t− t′)G(t′) (4.29)

with the so-called critical law

G(t→ 0) = (t/t0)
−a (4.30)

as short-time asymptote. The ∆~ξ-independent time scale t0 has to be matched to the

full solution of Eq. (4.1) at ~ξ = ~ξc since in this case the power law occurring in Eq. (4.30)

is a special solution of Eq. (4.29) which describes the relaxation of Φc(t) towards F c. It

is easy to verify that G(t) obeys the scaling law

G(t, σ ≷ 0) = |σ|1/2G̃(t̃ = t/tσ, σ̃ = ±1), (4.31)

tσ = t0|σ|−
1
2a . (4.32)

The master function G̃(t̃) obeys Eq. (4.29) with the replacements σ 7→ σ/|σ| = ±1,

t 7→ t̃, and the short-time asymptote G̃(t̃→ 0) = (t̃)−a. For σ > 0, tσ is a characteristic

time scale for the relaxation of Φ(t) towards F . In the liquid regime, i.e. σ < 0,

tσ de�nes the characteristic time scale on which Φ(t) crosses the critical plateau F c.

Obviously, the so-called β-time scale tσ shows a power-law divergence upon σ → 0.

Eq. (4.29) can be solved by asymptotic series expansions [8]. One �nds the leading

long-time asymptotes

G(t→ ∞, σ > 0) =
√
σ/(1− λc), (4.33)

G(t→ ∞, σ < 0) = −(t/τ)b. (4.34)

Eq. (4.33) describes the asymptotic behavior of F in the glassy regime close to ~ξc. This

result reproduces the square-root law for the NEPs given by Eq. (4.23). Eq. (4.34) is

referred to as the von Schweidler law and describes the initial part of the relaxation of

Φ(t) from F c to 0. Eqs. (4.31) and (4.32) imply

τ = τ̃ t0|σ|−γ (4.35)

with the ∆~ξ-independent constant τ̃ which demonstrates that the arrest of Φ(t) to

F c at ~ξ = ~ξc is caused by a power-law divergence of the times scale τ for the onset

of the relaxation of Φ(t) from F c to 0 upon σ → 0−. Furthermore, because of γ =

(a+ b)/(2ab) > 1/(2a), this time scale diverges faster than the β-time scale tσ, and this
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fact manifests itself in the characteristic two-step relaxation process of Φ(t) in the liquid

regime close to vitri�cation.

4.6.2 The second scaling-law regime

Now we turn to the relaxation process of Φ(t) from F c to 0 within the liquid regime

which is also called the α-relaxation process. As already stated above, the time scale τ

for this process diverges faster upon approaching the glass transition point than the time

scale for the β-relaxation. Thus, the α-relaxation can be separated from the β-dynamics

by considering the limits σ → 0− and t → ∞ with �xed t̃ = t/τ . One arrives at the

so-called α-scaling law [2, 24]

Φ(t) = Φ̃c(t̃ = t/τ) +O(|∆~ξ|) (4.36)

where the ∆~ξ-independent master function Φ̃c(t̃) obeys the equation of motion

(Sc)−1Φ̃c(t̃) = m̃c(t̃)Sc − d

dt̃

∫ t̃

0

dt̃′m̃c(t̃− t̃′)Φ̃c(t̃′) (4.37)

with the memory kernel

m̃c(t̃) = F c[Φ̃c(t̃), Φ̃c(t̃)] (4.38)

and the von Schweidler law

Φ̃c(t̃→ 0) = F c −Hc(t̃)b (4.39)

as short-time asymptote. Eq. (4.36) is also called superposition principle due to the

following implication: for times within the so-called second scaling-law regime given by

t � τ , density correlators Φαβ
k (t) corresponding to di�erent small values of σ(∆~ξ) < 0

collapse onto master curves (Φ̃c)αβk (t̃) when they are plotted as functions of t̃ = t/τ .

4.7 Coupled quantities

We can introduce further important quantities coupled to F . The tagged-particle NEPs

F self
α,k ≥ 0 are given by the array F self

α = limt→∞Φself
α (t). It is the maximum real �xed

point of the nonlinear map [2]

Iself
α,k [X] = 1− (1 + F self

α,k [F , X])−1 (4.40)
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which can be derived analogously to the one in Eq. (4.18). The so-called localization

length is de�ned by

∆rα = lim
t→∞

√
δr2α(t)/(2d). (4.41)

By using Eqs. (4.13)-(4.15) and Eqs. (2.3)-(2.7) we can easily show that the localization

length can be directly calculated from F and F self
α via

∆rα =

√
1/Fmsd

α [F , F self
α ]. (4.42)

Obviously, F = 0 implies F self
α = 0 where 0 is an array whose elements are all zero, and

thus also ∆rα = ∞.

Now, let us consider an arbitrary physical model system which is driven through its

glass transition by varying one physical control parameter ξ ≥ 0 while all remaining con-

trol parameters shall be kept �xed. Let us further assume that the vertices monotonically

increase upon increasing ξ in the sense that ξ2 > ξ1 implies F [X,X; ξ2] � F [X,X; ξ1]

and F self
α,k [X, X; ξ2] > F self

α,k [X, X; ξ1] for all X � 0 and X > 0 (the last inequality has

to be read component-wise). The model system shall exhibit an ideal glass transition

singularity at some 0 < ξc < ∞ such that F = 0 if 0 ≤ ξ < ξc, and F � 0 for all

ξ > ξc. At ξ = ξc, F shall jump from 0 to F c � 0. As already mentioned above, this

jump is generic due to the bilinear dependence of F on F in the �xed-point equation

F = I[F ]. Under these conditions, we have F self
α = 0 for all 0 ≤ ξ < ξc. Now, there

are two possible scenarios for the behavior of F self
α at ξc.

The standard scenario predicted by MCT for many well-established model systems

is characterized by F self,c
α > 0 and by some �nite localization length 0 < ∆rcα < ∞

for all components 1 ≤ α ≤ M of the liquid at ξc which means that collective and

tagged-particle motion freeze in simultaneously. There is, however, also the possibility

that at least for one 0 ≤ α ≤ M it is F self,c
α = 0 and thus ∆rcα = ∞, i.e. in the present

case MCT predicts that the modes of the self-motion of the particles of species α at

long times become decoupled from the collective ones and that the particles of species

α can di�use through the frozen-in glass matrix formed by the remaining components

at ξc [30, 31, 32]. Under this condition, there is a further possibility that there is some

ξ∗ > ξc such that F self
α > 0 for all ξ > ξ∗, and F self

α = 0 if 0 ≤ ξ < ξ∗. Assuming

ξ = ξ∗ + ∆ξ with ∆ξ > 0, the linear dependence of F self
α on F self

α in the �xed-point

equation F self
α = Iself

α [F self
α ] implies F self

α → 0 and thus also ∆rα → ∞ for ∆ξ → 0,

i.e. in the present case MCT predicts a continuous localization-delocalization transition

for the particles of species α associated with the diverging length scale ∆rα. Such a

continuous transition is also called a type-A transition.
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MCT predictions like the type-A transition discussed above have to be critically

challenged since they involve problems. One of these problems is more or less a techni-

cal one. Explicit (both analytical and numerical) calculations are typically performed

by using some discretized models where �nite low wave number cuto�s have to be intro-

duced. Thus, it can not be expected that such a model captures correctly the physics

on length scales beyond the one de�ned by its low wave number cuto�. The second

problem is even more delicate. Its origin relies on the low wave number behavior of

the vertices in the tagged-particle memory kernel given by Eq. (4.12) which may lead

to a failure of MCT in the description of delocalization transitions. To point out this

problem more explicitly, let us consider as an example the so-called Lorentz gas model

where a point-like tagged particle moves through the voids of a �xed array of spheres

with radius R in d spatial dimensions. The spheres may overlap and are randomly

distributed with number density n. They serve as hard obstacles at which the tagged

particle is elastically scattered. For this model, one expects a delocalization-localization

transition for the tagged particle upon increasing n above some critical value. The MCT

expression for the tagged-particle memory kernel for the Lorentz gas model is similar

to Eq. (4.12). Now, for the 3D Lorentz gas model, it can be shown that introducing

a low wave number cuto� in the MCT equations leads to a qualitative change in the

asymptotic behavior of the self-NEPs of the tagged particle close to the critical density,

compared to the full MCT equations with continuous wave numbers without cuto� at

low values [33]. For the 2D Lorentz gas model, the situation seems to be even worse. In

this case, the full MCT equations with continuous wave numbers without cuto� at low

values predict a localized state for the tagged particle at arbitrary small n > 0 [33, 34],

and this prediction is in a clear contradiction to corresponding computer simulation

results of Hö�ing and Franosch [35]. It still remains an open question how to resolve

these problems on the theoretical side.

4.8 Static structure functions

As already mentioned above, the interaction potentials for a speci�c model system enter

the MCT equations only via the static structure factors. Thus, we need some technique

for a precise determination of these objects. Precision, however, is not the only criterion

for the choice of some speci�c technique, but also e�ciency in order to be able to preform

systematic calculations. For a theoretical calculation of static structure factors there are

two well-established complementary approaches.

The �rst one is to make use of the integral equation theory based on the Ornstein-
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Zernike equation for mixtures to calculate the direct correlation functions cαβk . The static

structure factor matrix S follows then from Eq. (4.8). The Ornstein-Zernike equation

for mixtures reads [36]

h = c+ ncxh (4.43)

where xαβk = xαδαβ and hαβk are the total correlation functions for given wave number

k. To obtain a unique solution for c, we need a so-called closure relation. The general

ansatz [36] for this is

ln[gαβ(r)] = −uαβeff (r) + hαβ(r)− cαβ(r), (4.44)

uαβeff (r) =
uαβ(r)

kBT
− dαβ0 (r). (4.45)

gαβ(r) = hαβ(r) + 1 are the pair distribution functions and dαβ0 (r) are called the bridge

functions for which no general expression is known. Thus, every speci�c closure relation

relies on some uncontrolled approximation scheme for dαβ0 (r) which also marks the main

disadvantage of using an integral equation theory. The advantage is, however, that data

with high numerical quality can be produced. There is no statistic noise and there are

no �nite size e�ects like in atomistic computer simulations. Furthermore, crystallization

e�ects can explicitly be excluded.

Second, we can perform atomistic computer simulations. Since we are interested in

calculating static quantities, the most e�cient choice is the Monte Carlo (MC) technique

[37]. The main advantage of atomistic computer simulations is that they yield exact

results in the sense that these do not rely on uncontrolled approximations, in contrast to

the results from integral equation theories. However, there are also some limitations. In

order to study glassy behavior, we have to restrict the range of the control parameters

such that no crystallization e�ects occur for the considered model systems. Furthermore,

the numerical quality of the structure factors obtained from MC simulations are not as

high as the ones obtained from integral equation theory. For instance, statistic noise and

�nite-size e�ects, which typically become dominant at small k, may lead to a violation

of the strict positive-de�niteness of the static structure factor matrix Sk which causes

instabilities in the numerical solution of the MCT equations. Thus, when we intend to

use structure factors obtained from MC simulations as input for MCT calculations, we

need a clearly de�ned way to smooth the numerical raw data such that the condition

S � 0 is enforced.

In this thesis, depending on the considered problem, we will make use of both integral

equation theories with various closure relations and MC simulations to calculate the
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static input for MCT. For the general model system which we will introduce in Sect. 5.4,

an e�cient MC algorithm together with an automatized data smoothing procedure

for the production of high-quality structure factor input for MCT obeying S � 0 is

described in Appendix A.1. The numerical methods for solving the Ornstein-Zernike

equation for the simpli�ed model systems which will be introduced in Sects. 6.1 and 6.2

are brie�y summarized in Appendix A.2.

4.9 Summary

In this chapter we have �rst extended the MCT equations, which were previously pub-

lished for multicomponent systems in 3D and one-component systems in arbitrary di-

mensions, to multicomponent systems in arbitrary dimensions. We have done this for

the equations for the collective density correlators, the self-correlators, and the mean-

square displacements. We have also introduced discretized versions of these equations

for practical purposes. Furthermore, we have discussed the generic liquid-glass transi-

tion singularities and the corresponding asymptotic relaxation laws predicted by MCT.

Thereby we have also mentioned some problems of MCT in describing localization-

delocalization transitions. Finally, we have discussed two well-established techniques

for the calculation of statistic structure factors which are needed as input for MCT.

With this, we have now all necessary theoretical concepts and methods in hand for

the purposes in this thesis, and thus we can start the next chapter by introducing the

speci�c model systems of interest.
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Chapter 5

The model system

In this chapter, we �rst discuss the experimental system of König et al. [26] which

serves as the main motivation for the theoretical studies in the thesis. Second, we

analyze theoretically the interactions between the so-called super-paramagnetic colloidal

particles used in this experimental setup. Finally, we formulate an idealized model

system which should capture the essential features of the system of König et al. and

will be used for the theoretical investigations in this thesis.

5.1 The pending-droplet experiment

The main motivation for the theoretical investigations in this thesis originates from the

experimental system of König et al. [26]. They consider a binary mixture of spherical

super-paramagnetic colloidal particles inside a pending droplet. The geometry of the

experimental setup is chosen such that the droplet develops a �at liquid-air interface

perpendicular to the gravitational �eld inside the laboratory. Since the mass density of

the colloidal particles is higher than the density of the solvent, gravity keeps the colloidal

particles sedimented on the liquid-air interface of the pending droplet. Thus, particle

motion is only possible in 2D to good accuracy. The colloidal particles are doped

with ferromagnetic clusters whose sizes are small enough that at room temperature

thermal energy overcomes the magnetic coupling forces between the permanent dipole

moments of the di�erent clusters inside a colloidal particle. Hence, in the absence of any

external magnetic �eld, the magnetic moments of the clusters are randomly orientated

and thus the magnetizations of the colloidal particles are zero, while in the presence

of an external magnetic �eld the components of the magnetizations of the particles

parallel to the external magnetic �eld become non-zero. Thus, an external magnetic

�eld oriented perpendicular to the liquid-air interface plane leads to isotropic repulsive

33



34 CHAPTER 5. THE MODEL SYSTEM

dipolar interaction forces between the particles on the interface plane. König et al. can

tune the strength of these forces by varying the strength of the external magnetic �led,

and by video microscopy they can record particle trajectories from which various static

and dynamic correlation functions can be calculated. At high enough magnetic �elds,

their results for the self-intermediate scattering functions clearly exhibit the stretched

relaxation patterns of glass-forming liquids, see for instance Fig. 8.1 in Chapter 8. With

this, the experimental system of König et al. serves as a well-suited model system for

studying glass transition phenomena in 2D. Interested readers can �nd technical details

on the experimental setup in Ref. [38].

The binary mixture used by König et al. consists of two species of particles which

we call �big� (labeled by α = b) and �small� (α = s) in the following. For the radii

Rα and magnetic susceptibilities χα of the super-paramagnetic colloidal particles there

holds both Rs < Rb and χs < χb.

5.2 Analysis of the particle interactions

Let us start with analyzing the interactions between the particles occurring in the ex-

perimental system described above.

As a �rst step, we remember that exposing a single super-paramagnetic colloidal

particle of species α to an external magnetic �eld ~B leads to an induced magnetic

moment ~mα of this particle for which we assume the linear response relation

~mα = χα
~B (5.1)

with the susceptibility χα.

Second, we have to investigate the interactions between two super-paramagnetic

colloidal particles, one of species α, and the other one of species β, on the liquid-air

interface plane in the presence of an external magnetic �led ~B. In this case, Eq. (5.1)

has to be modi�ed since the magnetic �eld ~Bβ corresponding to the magnetic moment

~mβ of the particle of species β also in�uences the induced magnetic moment ~mα. The

same statement holds for ~mβ. For the following, we assume throughout that the external

magnetic �eld ~B and thus also ~mα and ~mβ are perpendicular to the liquid-air interface

plane and that the colloidal particles can only move along this plane. Thus, it is su�cient

to consider scalar quantities B = | ~B|, mα = |~mα|, etc. Furthermore, we neglect e�ects

like Casimir interactions induced by thermal �uctuations of the liquid-air interface [39].
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Now, the magnetization mα of the particle of species α is given by

mα = χα[B +Bβ] (5.2)

where

Bβ = −µ0

4π

mβ

r3
(5.3)

is the magnetic �eld of the polarized particle of species β acting from distance r on the

particle of species α [40]. µ0 = 4π · 10−7NA−2 is the vacuum permeability in SI-units.

Substituting Eq. (5.3) into Eq. (5.2) yields

mα = χα

[
B − µ0

4π

mβ

r3

]
, (5.4)

for the particle of species β we obtain similarly

mβ = χβ

[
B − µ0

4π

mα

r3

]
. (5.5)

Eqs. (5.4) and (5.5) are two independent linear equations for mα and mβ whose solution

yields the distance-dependent magnetizations

mα(r) = χαB
[
1− µ0

4π

χβ

r3

] [
1−

(µ0

4π

χα

r3

)(µ0

4π

χβ

r3

)]−1

, (5.6)

mβ(r) = χβB
[
1− µ0

4π

χα

r3

] [
1−

(µ0

4π

χα

r3

)(µ0

4π

χβ

r3

)]−1

. (5.7)

Of course, we want to keep our theoretical model system as simple as possible and

thus we ask ourselves whether for the experimental system of König et al. the in�uence

of the magnetic �led Bβ on the magnetization mα is negligible or not. To �nd an answer

for this question, let us determine an upper limit for the r-dependent terms in Eqs. (5.6)

and (5.7). Assuming that the colloidal particles can be treated as hard spherical objects

with radii Rα, we obtain with the experimental values χb
∼= 6.2 · 10−11Am2/T, χs

∼=
6.6 · 10−12Am2/T, 2Rb

∼= 4.7µm, and 2Rs
∼= 2.8µm reported by König et al. [26]

µ0

4π

χα

r3
≤ µ0

4π

χb

[Rb +Rs]3
∼= 0.12 (5.8)

for all possible combinations of α, β. This means that, compared to the ideal one-particle

case mα = χαB, the change in mα due to the presence of a second super-paramagnetic

particle is for sure less than the maximum possible value of 12% which occurs when a

small particle is in contact with a big one. Since the experiments of König et al. [26]
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are carried out at 2D packing fractions on the liquid-air interface plane which are below

their maximum possible values and thus the average distance between the particles is

larger than Rb + Rs, we neglect throughout the in�uence of the magnetic �led Bβ on

the magnetization mα in the following, and postulate the linear response relation

mα = χαB (5.9)

for all super-paramagnetic colloidal particles on the liquid-air interface plane.

5.3 Dipole-potentials

Now, we are able to derive an approximative expression for the pair-potential of two

super-paramagnetic colloidal particles on the liquid-air interface plane. For this we

remember that the particles used by König et al. are doped with ferromagnetic clus-

ters. Each of these clusters has a permanent magnetic dipole moment. By using the

well-known formula for the potential energy between two permanent magnetic dipole

moments [40] we obtain for the thermal average of the potential energy between two

colloidal particles on the liquid-air interface plane for not too small distances r the

expression 〈
Eαβ

pot(r)
〉
=
µ0

4π

1

r3

∑
i,j

〈mα,imβ,j〉 (5.10)

where mα,i is the component of the permanent magnetic moment perpendicular to the

liquid-air interface plane of cluster i inside the colloidal particle of species α, and the

angular brackets stand for canonical averaging. Note that we have already dropped

the contributions of the components of all magnetic moments parallel to the liquid-

air interface plane. Now, the assumption that the magnetic �eld Bβ has no in�uence

on the magnetic moment mα leads us to the reasonable approximation 〈mα,imβ,j〉 ≈
〈mα,i〉 〈mβ,j〉. Finally, we postulate the validity of Eq. (5.9) which yields the identity∑

i 〈mα,i〉 = χαB. We end up with an approximative expression for the dipolar pair-

potential uαβ(r) between two super-paramagnetic colloidal particles on the liquid-air

interface plane depending only on the external �eldB and the phenomenological material

parameters χα, the result is

uαβ(r) =
µ0

4π

χαχβB
2

r3
, r > Rα +Rβ. (5.11)
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Note that Eq. (5.11) is identical to the formula for the potential energy of two permanent

magnetic dipole moments mα = χαB. We stress this fact because it seems that in

previous works there has been some confusion concerning the right proportionality factor

on the r.h.s. of Eq. (5.11) [41].

5.4 An idealized model system

The results in the previous section motivate us to introduce an idealized theoretical

model system which should capture all essential features of the experimental system of

König et al. [26], at least for all our practical purposes in this thesis.

We postulate an ideal binary mixture of hard disks with radii Rα in 2D which are

distributed isotropically and homogeneously with total particle number density n. The

mixture shall consist of �big� (α = b) and �small� (α = s) particles where Rs ≤ Rb.

Besides the hard-core repulsions, the particles shall also interact via the induced dipole-

potentials given by Eq. (5.11), i.e. the complete pair-potentials shall be given by

uαβ(r) =

 ∞ , r ≤ Rα +Rβ,
µ0

4π

χαχβB
2

r3
, r > Rα +Rβ.

(5.12)

The susceptibilities shall obey χs ≤ χb. The system of dipolar hard disks shall be coupled

to a heath bath with temperature T and also be governed by Brownian dynamics.

The single-particle short-time di�usion coe�cients D0
α are assumed to obey the Stokes-

Einstein law, i.e. we further postulate the relation

D0
α/D

0
β = Rβ/Rα (5.13)

which for the system of König et al. [26] is at least approximately ful�lled. Further-

more, if the two species of particles in the experimental setup are made of the same

homogeneous material, then we can translate Eq. (5.13) to

D0
α/D

0
β = [χβ/χα]

1/3 (5.14)

since in this case it is reasonable to assume that the susceptibility χα is proportional to

the volume (4/3)πR3
α of the spherical colloidal particle of species α.
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5.5 Physical control parameters

At �rst view, the thermodynamic equilibrium state of the model system de�ned above

depends on seven tunable physical control parameters: the total particle number density

n, the two radii Rb and Rs, the two susceptibilities χb and χs, the system temperature T ,

and the strength of the magnetic �eldB. Note that the thermodynamic equilibrium state

does not depend on the two di�usion constants D0
b and D0

s . Since the thermodynamic

equilibrium state is not dependent on the used unit system, one of the parameters can be

eliminated by choosing the unit length appropriately. Furthermore, since the Boltzmann

factor in the canonical ensemble only depends on the ratio of potential and thermal

energy, only �ve independent control parameters remain. The question now is: how to

choose these �ve control parameters appropriately? Of course, there is no unique answer

to this question. A minimum requirement, however, is that all �ve independent control

parameters shall be dimensionless. The comparison of our binary model system to much

simpler one-component models will guide us to a natural choice of these dimensionless

variables.

Let us �rst focus on the hard-core repulsions by assuming B = 0. Let us further

assume for the moment Rb = Rs. In this special case our model system de�nes a one-

component system consisting of hard disks. It is well-known that the thermodynamic

equilibrium state of this simple system depends on the packing fraction ϕ only which

is the area occupied by the disks divided by the complete system area. Dropping the

restriction Rb = Rs leads us to an ideal system of binary hard disks. For some practical

purposes, such a studying so-called mixing e�ects, one intends to compare properties of

such a binary system to those of a corresponding one-component system. For such a

comparison it is reasonable to require that both systems have the same packing fraction.

Thus, it turns out to be convenient to choose the total packing fraction

ϕ = nπ(xbR
2
b + xsR

2
s) (5.15)

as one of the independent control parameters. The thermodynamic state of the binary

mixture of hard disks is then fully characterized by specifying one of the particle number

concentrations, say that of the smaller ones

xs = Ns/(Nb +Ns), (5.16)

and the size ratio

δR = Rs/Rb. (5.17)
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Now, let us focus on the dipolar interactions by assuming Rα = 0. If we further

assume χb = χs = χ0, then we end up with a one-component model of point dipoles in

2D. For this simple model system it is easy to verify that its thermodynamic equilibrium

state only depends on the dimensionless parameter Γ0 = n3/2 µ0

4π

m2
0

kBT
where kBT is the

thermal energy and m0 = χ0B the magnetization per particle. Dropping the restriction

χb = χs leads us to a model of binary point dipoles in 2D. In this case, the (averaged)

magnetization per site is given by m = [xbχb+xsχs]B. As already stated above, for the

study of mixing e�ects one intends to compare properties of a binary system to those of

a corresponding one-component system. In the present case, it is reasonable to require

for such a comparison that density n, thermal energy kBT , and magnetization per site

m are identical for the two considered systems. Thus, it turns out to be convenient to

generalize the expression for Γ0 and to choose to so-called interaction parameter

Γ = (πn)3/2
µ0

4π

[xbχb + xsχs]
2B2

kBT
(5.18)

as one of the independent control parameters. The thermodynamic equilibrium state of

the binary mixture of point dipoles is then fully characterized by specifying one of the

particle number concentrations, say that of the smaller ones given by Eq. (5.16), and

the susceptibility ratio

δχ = χs/χb. (5.19)

The prefactor π3/2 in Eq. (5.18) was introduced to match the convention used in Ref. [26].

With Eqs. (5.15)-(5.19) we have found a reasonable choice for the �ve independent

physical control parameters which we will use in the following to characterize the ther-

modynamic equilibrium state of our idealized model system speci�ed above.

5.6 Summary

In the present chapter, we have brie�y described the basic principles of the experimental

system of König et al. [26]. We have analyzed theoretically the interactions between

super-paramagnetic colloidal particles within this experimental setup. An important

result of this analysis was that the e�ect of mutual polarization of the particles is

negligible. Based on this insight, we have introduced an idealized 2D model system

which should capture all essential features of the system of König et al. In the next

chapter, we will see that under certain conditions this model system can be further

simpli�ed but also generalized. It is the main intention of this thesis to study glass

transition phenomena in 2D by applying MCT to these simpli�ed model systems.
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Chapter 6

Simpli�ed model systems

In this chapter, we discuss two simpli�ed versions of the model system introduced in

Sect. 5.4. The �rst one is obtained by dropping the dipolar interactions and the re-

striction d = 2, and the second one by neglecting the hard-core repulsions. For both

systems, the thermodynamic equilibrium state will depend on three independent control

parameters. Thus, for both systems the set of liquid-to-glass transition points predicted

by MCT will form a locally smooth critical surface. Both of these surfaces can be inter-

preted as a set union of glass transition lines as introduced in Sect. 4.5. For both model

systems, we will study symmetry properties of special glass transition lines within a

common mathematical framework.

6.1 Binary mixtures of d-dimensional hard spheres

By assuming that the external magnetic �eld is switched o�, i.e. B = 0, the model

system introduced in Sect. 5.4 reduces to a binary mixture of hard disks in 2D. Since

one of our intentions in this thesis is to study also the in�uence of the spatial dimen-

sion d on the glass transition, let us drop here the restriction d = 2 and postulate a

model system consisting of a binary mixture of hard spherical particles in d dimensions.

The thermodynamic equilibrium state is then fully characterized by three independent

control parameters: the total d-dimensional packing fraction

ϕ = n(Ωd/d)(xbR
d
b + xsR

d
s), (6.1)

the particle number concentration xs of the smaller spheres given by Eq. (5.16), and the

ratio of the radii of the smaller and bigger spheres δR given by Eq. (5.17). The single-

particle short-time di�usion coe�cients D0
α are assumed to obey the Stokes-Einstein law

41



42 CHAPTER 6. SIMPLIFIED MODEL SYSTEMS

according to Eq. (5.13).

Later, we will dedicate a complete chapter in this thesis for a detailed MCT study

for the present model system for the cases d = 2 and d = 3. While for su�ciently low

ϕ it will behave liquid-like, MCT will predict vitri�cation at high enough ϕ. The set of

generic MCT liquid-to-glass transition singularities will form a locally smooth critical

surface which we can represent as ϕc(xs, δR). The following limiting cases are obvious:

ϕc(xs, 1) ≡ ϕc(0, δR) ≡ ϕc(1, δR) ≡ ϕc
0 (6.2)

where ϕc
0 is the critical packing fraction for the corresponding monodisperse system.

Furthermore, an interchange of the roles of the big and small spheres leads to the same

physical scenario. Therefore it is

ϕc(xs, δR) = ϕc(1− xs, 1/δR). (6.3)

We will discuss some consequences of these symmetry properties in Sect. 6.3.

6.2 Binary mixtures of point dipoles in 2D

So far, we have kept secret that the colloidal dispersion used by König et al. [26] is

strongly diluted where the average distance between the particles exceeds the diameter

of the bigger particles roughly by a factor of four. With this information we can estimate

ϕ < (4 · 2Rb)
−2πR2

b = π/64 ∼= 0.05 for the total 2D packing fraction on the interface

plane. Therefore, collisions of the hard cores of two particles practically never occur if

the interaction parameter Γ is high enough, and thus the thermodynamic equilibrium

state of the experimental system close to vitri�cation should be completely determined

by the induced dipole-potentials.

Idealizing this picture, we assume a binary mixture of point particles in 2D interact-

ing via the induced dipole-potentials

uαβ(r) =
µ0

4π

χαχβB
2

r3
. (6.4)

The thermodynamic equilibrium state is then fully determined by three independent

control parameters: the particle number concentration xs of the smaller dipoles given

by Eq. (5.16), the interaction parameter Γ given by Eq. (5.18), and the ratio of the

susceptibilities of the smaller and bigger dipoles δχ given by Eq. (5.19). Note that

although we have assumed point particles, the two species of particles shall be called
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�big� (α = b) and �small� (α = s) in the sense that χb ≥ χs. Furthermore, we have

to remember that although we have neglected the hard-core repulsions, the particles in

the experimental setup still remain spherical particles with �nite radii. Thus, for the

calculation of time-dependent quantities for our idealized model of point dipoles we keep

on postulating that the single-particle short-time di�usion coe�cients D0
α remain �nite

and optionally even obey the version of the Stokes-Einstein law given by Eq. (5.14).

Later, we will dedicate a complete chapter in this thesis for a detailed MCT study

for the binary point dipole model in 2D. While for su�ciently low Γ it will behave

liquid-like, MCT will predict vitri�cation at high enough Γ. The set of generic MCT

liquid-to-glass transition singularities will form a locally smooth critical surface which

we can represent as Γc(xs, δχ). Similarly to the binary d-dimensional hard sphere model

in the previous section, there hold the symmetry relations

Γc(xs, 1) ≡ Γc(0, δχ) ≡ Γc(1, δχ) ≡ Γc
0, (6.5)

Γc(xs, δχ) = Γc(1− xs, 1/δχ). (6.6)

Γc
0 is the critical interaction parameter for the corresponding monodisperse system. In

the next section, we will analyze some consequences of these symmetry properties.

6.3 Glass transition lines

The symmetry relations in the two previous sections motivate us to discuss some features

of the critical surface ϕc(xs, δR) for the d-dimensional binary hard sphere model and

those of Γc(xs, δχ) for the binary point dipole model in 2D within a common framework.

For the following, let us introduce the space-holder variables ξ ∈ {ϕ,Γ} and δ ∈ {δR, δχ}.
The �critical surface� ξc(xs, δ) shall then stand for both ϕc(xs, δR) for the d-dimensional

binary hard sphere model and Γc(xs, δχ) for the binary point dipole model in 2D.

Let us �rst note that �xing δ to some speci�c value in ξc(xs, δ) de�nes a glass

transition line which is a function of xs. The critical surface ξc(xs, δ) is then nothing

but the set union of all these glass transition lines corresponding to di�erent values of δ.

Numerical methods for the determination of such lines can be found in Appendix A.3.

The slope of a glass transition line can be calculated by specializing Eq. (2.26) to

∂ξcrit

∂xs

∣∣∣∣
(xs,δ)=(xc

s,δ
c)

= − ∂σ/∂(∆xs)

∂σ/∂(∆ξ)

∣∣∣∣
(∆ξ,∆xs,∆δ)=~0

. (6.7)

One of the important aspects of this thesis will be the demonstration of the predictive
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power of Eq. (6.7) for the so-called weak-mixing limits xs = 0 and xb = 0, since the

knowledge of the initial slopes of a glass transition line for both limits is already su�cient

to predict some of its qualitative features. For instance, if (∂ξc/∂xs)(xs = 0, δ) is positive

(negative), the liquid (glass) is stabilized upon adding a small concentration of small

particles into the one-component liquid consisting of the bigger ones. If (∂ξc/∂xs)(xs =

0, δ) and (∂ξc/∂xb)(xb = 0, δ) are both positive (negative), then the corresponding glass

transition line has at least one maximum (minimum). Furthermore, if for two values, δ1

and δ2, it is (∂ξ
c/∂xs)(xs = 0, δ1) < (∂ξc/∂xs)(xs = 0, δ2) and (∂ξc/∂xb)(xb = 0, δ1) >

(∂ξc/∂xb)(xb = 0, δ2), i.e. (∂ξc/∂xs)(xs = 1, δ1) < (∂ξc/∂xs)(xs = 1, δ2), then the glass

transition lines for δ1 and δ2 have an odd number of intersection points and therefore at

least one crossing. Otherwise the number of intersection points is even. The essential

steps for the calculation of the slope ∂ξc/∂xs are explained in Appendix B.

Now, let us turn to the symmetry properties of the glass transition lines. We can

translate Eqs. (6.2), (6.3), (6.5), and (6.6) to

ξc(xs, 1) ≡ ξc(0, δ) ≡ ξc(1, δ) ≡ ξc0, (6.8)

ξc(xs, δ) = ξc(1− xs, 1/δ). (6.9)

ξc0 is the critical coupling parameter for the corresponding monodisperse system. Now,

let us assume a binary system whose two species of particles are almost identical, i.e.

0 < (1− δ) � 1. Then, with Eq. (6.8) we can write

ξc(xs, δ) = ξc0 + (1− δ)ξc1(xs) + (1− δ)2ξc2(xs) +O[(1− δ)3], (6.10)

ξci (0) = ξci (1) = 0, i = 1, 2. (6.11)

Eq. (6.9) implies for the coe�cient functions

ξc1(xs) = −ξc1(1− xs), (6.12)

ξc2(xs) = ξc2(1− xs)− ξc1(1− xs). (6.13)

We can conclude: if ξc1(xs) is a non-vanishing function for almost all xs, then we obtain

to leading order in (1 − δ) glass transition lines which, after subtracting ξc0, are anti-

symmetric with respect to the equimolar composition xs = 1/2, i.e. in this case we can

write

[ξc(xs, δ)− ξc0]
∼= −[ξc(1− xs, δ)− ξc0], (6.14)
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ξc(1/2, δ) ∼= ξc0. (6.15)

If, however, there holds

ξc1(xs) = 0 (6.16)

for all xs while ξ
c
2(xs) is a non-vanishing function for almost all xs, then Eqs. (6.10) and

(6.13) imply

ξc(xs, δ) ∼= ξc(1− xs, δ) (6.17)

which means that the glass transition lines become symmetric with respect to xs = 1/2

if the two species of particles become almost identical. There holds also the (somewhat

weaker) inverse statement. If Eq. (6.17) is assumed to be true for 0 < (1− δ) � 1, then

Eq. (6.12) implies Eq. (6.16). For the slopes scα(δ) = (∂ξc/∂xα)(xα = 0, δ) of a glass

transition line we can formulate further special (numerically testable) conclusions from

Eq. (6.16):

(∂scα/∂δ)(δ = 1) = 0. (6.18)

In order to come to the point, let us note already here that in the following chapters we

will be able to produce numerical results with su�ciently high accuracy to demonstrate

that Eqs. (6.17) and (6.18), and thus also Eq. (6.16), are indeed valid for both the d-

dimensional binary hard sphere model and the binary point dipole model in 2D. These

results exclude the possibility of the occurrence of antisymmetric glass transition lines

according to Eqs. (6.14) and (6.15) for the model systems considered here.

6.4 Summary

By simplifying but also generalizing the model system introduced in Sect. 5.4 we have

introduced two special model systems, the d-dimensional binary hard sphere model and

the binary point dipole model in 2D. For both of them we will present detailed MCT

studies in the next chapters. For both systems the set of liquid-to-glass transition points

predicted by MCT will form a locally smooth critical surface. These surfaces can be

interpreted as set unions of special glass transition lines. Without using MCT, we have

discussed already in this chapter some general properties of these special glass transition

lines for both models within a common mathematical analysis. We have derived two

possible scenarios for the behavior of these glass transition lines for the case that the two

species of particles within the considered binary mixtures become almost identical: the

glass transition lines may then become antisymmetric or symmetric with respect to the

equimolar composition. As already anticipated, the numerical results in the following
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chapters will demonstrate that for the two considered model systems here the symmetric

case applies.



Chapter 7

Binary mixtures of hard disks/spheres

In this chapter, we present a detailed MCT study on the simpli�ed model system intro-

duced in Sect. 6.1, i.e. the d-dimensional binary hard sphere model where we will restrict

our numerical studies to the cases d = 2 and d = 3. The comparison of the results for

2D and 3D will provide information about the in�uence of the spatial dimensionality d

on the glass transition behavior and in particular on the occurring mixing e�ects.

We further specify: the wave number k shall be discretized according to Eq. (4.16).

For the o�set, following previous works, we choose ô2 = 0.303 for d = 2 [18] and ô3 = 0.5

for d = 3 [25]. The choice K = 250 and ∆k = 0.3 turns out to be su�ciently accurate

to avoid larger discretization e�ects. For calculations with �nite concentrations of both

particle species, the unit length shall be given by the diameter 2Rb of the bigger particles,

and, if not stated explicitly otherwise, the short-time di�usion coe�cients D0
α shall be

assumed to obey the Stokes-Einstein law according to Eq. (5.13). Furthermore, the

unit of time is then chosen such that D0
α = 0.01/(2Rα). To perform calculations in

the weak-mixing limits xα → 1 it is more convenient to choose the diameters 2Rα of

the majority particle species as unit length. Static structure factor input for MCT is

taken from the Percus-Yevick (PY) theory, see Appendix A.2.1 for technical details.

The algorithm for the numerical calculation of time-dependent correlation functions is

speci�ed in Appendix A.4.

7.1 Previous results

Let us brie�y summarize some important MCT results which have been already pub-

lished before for the current model system. We �rst focus on the monodisperse case,

i.e. δR = 1. For hard spheres in 3D, Franosch et al. [24] have precisely calculated the

critical MCT packing fraction for the ideal liquid-glass transition. Their result has been

47
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ϕc
0
∼= 0.516 (d = 3). A comparison to corresponding dynamic light scattering results of

Henderson et al. [42] for almost monodisperse colloidal suspensions demonstrates that

MCT tends to overestimate the glass formation, their widely accepted experimental

value is ϕc
exp

∼= 0.578. The �rst MCT calculations in 2D were performed by Bayer et

al. [18] for monodisperse hard disks. They have found an ideal liquid-glass transition at

the critical packing fraction ϕc
0
∼= 0.697 (d = 2) and they have demonstrated that the

qualitative liquid-to-glass transition scenario in 2D is very similar to the 3D case. Fur-

thermore, Bayer et al. have demonstrated that the ratios of the critical MCT packing

fractions ϕc
0 and the corresponding values ϕrcp

0 for the random close packing fractions

are very similar for 2D and 3D, it is ϕc
0/ϕ

rcp
0

∼= 0.83 (d = 2) and ϕc
0/ϕ

rcp
0

∼= 0.81 (d = 3).

One of our most important results in this chapter will be to demonstrate that the sim-

ilarity of the two numbers above is probably not just by chance: we will provide the

�rst systematic comparison of the glass transition lines predicted by MCT for binary

mixtures of hard disks in 2D to corresponding random close packing lines obtained from

computer simulations. There will be a striking similarity between the results from both

approaches. Let us �nally remark that Schmid and Schilling [22] have recently calcu-

lated the critical MCT packing fraction for monodisperse d-dimensional hard spheres

for high dimensions. They have found the asymptote ϕc
0(d) ∼ d22−d analytically. The

same result was found independently by Ikeda and Miyazaki [43] numerically.

Now, let us turn to binary liquids. The �rst MCT calculations on multicomponent

liquids were performed by Barrat and Latz [4] for binary soft spheres. However, Götze

and Voigtmann [25] were the �rst ones studying systematically the e�ect of composition

changes on the glass transition behavior for binary hard spheres in 3D. They have found

four mixing e�ects.

(i) For small size disparities the glassy regime is enhanced. For 0.8 . δR < 1 it is

ϕc(xs, δR) < ϕc
0 if 0 < xs < 1.

(ii) For larger size disparities the liquid state is stabilized, i.e. for 0.3 ≤ δR . 0.6 it is

ϕc(xs, δR) > ϕc
0 if 0 < xs < 1. This e�ect is also called plasticization.

(iii) Upon increasing the concentration xs of the smaller particles the NEPs, and thus

also the plateau values of the normalized correlation functions Φαα
k (t)/Sαα

k in the

liquid regime for intermediate times, increase for not too small k and all xs.

(iv) Starting with xs = 0 and increasing the concentration xs of the smaller particles

leads for not too large k to a slowing down of the relaxation of the normalized
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Figure 7.1: Left panel: Normalized slopes of the glass transition lines at xs = 0 for the binary
hard sphere models in 2D and 3D. It is ϕc

0
∼= 0.6914 for d = 2 and 0.5159 for d = 3. The dotted

lines show the asymptotes given by Eq. (7.1) for 2D and 3D (from right to left). For 1/δR > 3.5
in the 3D model, the tagged-particle NEPs indicate a delocalization transition of the smaller
spheres. This regime is indicated by open symbols (see text). The inset presents the slopes on
a much �ner scale very close to δR = 1. Right panel: Slopes of the glass transition lines at
xb = 0.

correlators Φbb
k (t)/S

bb
k of the big particles towards their plateaus in the sense that

the Φbb
k (t)/S

bb
k versus log10(t) curve becomes �atter upon increasing xs.

These results qualitatively agree with those from dynamic light scattering experiments

[42, 44] and molecular dynamics simulations [45, 46]. In contrast to this, a recent

theory of Juárez-Maldonado and Medina-Noyola based on the self-consistent generalized

Langevin equation (SCGLE) [47] predicts a plasticization e�ect also for size ratios close

to unity and the authors argue that the data available from simulations and experiments

are not su�ciently accurate to rule out the opposite scenario.

In the following, we will demonstrate in the framework of MCT that the four mixing

e�ects cited above are also observable for binary hard disks in 2D where the e�ect (i)

will be more strongly pronounced as in the 3D case. Furthermore, we will show that at

least on a qualitative level all four mixing e�ects are also observable in corresponding

computer simulation results for binary hard disk in 2D.

7.2 Mode-coupling results

Now, we can start to present our numerical MCT results for binary hard disks/spheres.
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7.2.1 Glass transition lines

Let us �rst demonstrate the predictive power of our slope formula, Eq. (6.7), by applying

it to the so-called weak-mixing limits xα → 0. The technical procedure for this is

described in Appendix B.

The left panel in Fig. 7.1 shows normalized slopes of the glass transition lines at

xs = 0 as functions of the inverse size ratio 1/δR for the binary hard sphere models in

2D and 3D. The qualitative behavior of the slope curves is the same for the two models.

By de�nition, the case δR = 1 represents a one-component system in both 2D and 3D

with critical packing fraction ϕ(xs, δR = 1) ≡ ϕc
0, and thus the slopes have to be zero

at this point. The numerical results for the 3D model clearly support this statement.

For the 2D model, the data slightly deviate from zero at xs = 0. This, however, is

an artifact due to the numerically calculated static structure factors in 2D, see also

Appendix A.2.1. For the 3D model, we have used the analytical solution for the PY

structure factors to calculate the static input for MCT which has led to a better self-

consistency at δR = 1 than for the 2D model. For δR close to unity, the slopes become

negative. This implies that adding a small concentration of small particles into a one-

component liquid consisting of big particles leads to a decrease in the critical packing

fraction ϕc. In this sense, mixing stabilizes the glass. After exhibiting a minimum

at δ−R , the slopes become zero again at δ0R and remain positive for 0 < δR < δ0R. In

this region, adding a small concentration of small particles into a one-component liquid

consisting of big particles leads to an increase in the critical packing fraction ϕc. In this

sense, mixing stabilizes the liquid which is nothing but the well-known plasticization

e�ect. Upon further decreasing δR, the slopes exhibit a maximum at δ+R and indicate

a monotonic decay for asymptotically small δR. For the 2D model, this decay is more

stretched than for the 3D case.

The right panel in Fig. 7.1 displays normalized slopes of the glass transition lines at

xb = 0 for the binary 2D and 3D hard sphere models. Again, the qualitative behavior

of the slope curves is the same for 2D and 3D. For δR close to unity, the slopes are

negative, which means that adding a small concentration of big particles into a one-

component liquid consisting of small particles leads to a stabilization of the glass. The

slope exhibits a minimum at δ̃−R > δ−R . It vanishes at δ̃0R > δ0R followed by a strongly

increasing plasticization e�ect for smaller δR.

Let us also try to understand at least some facets of the behavior of the slope curves

presented in Fig. 7.1. At this point we have to be honest and state that we have no

intuitive physical picture for the origin of the stabilization of the glass upon mixing.

Thus, let us restrict to the case 0 < δR � 1. For 0 < xs � 1, we can assume that the
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few small particles �t into the voids between the bigger ones and thus the glass transition

is mainly driven by the cage e�ect of the big particles. Neglecting possible depletion

interactions between the big particles due to the presence of the smaller ones [48], we can

write down ϕb = ϕc
0 with the critical packing fraction ϕc

0 for the monodisperse system

as a criterion for vitri�cation. With ϕc = ϕc
0 + ϕs we arrive at

(∂ϕc/∂xs)(xs = 0, 0 < δR � 1) = ϕc
0(δR)

d. (7.1)

The dotted lines on the left panel of Fig. 7.1 demonstrate that Eq. (7.1) indeed describes

the numerical data for the 3D model well for 1/δR ≥ 4.0. For the 2D case, we would need

precise numerical data for much smaller δR than the ones shown in Fig. 7.1 to test the

validity of Eq. (7.1). Such precise data are actually not available, due to di�culties in

the numerical calculation. We can also try to describe the case 0 < δR � 1, 0 < xb � 1

analogously. Our hypothesis here is that the rarely distributed large particles have no

in�uence on the local caging between the smaller ones which drive the glass transition.

We arrive at

(∂ϕc/∂xb)(xb = 0, 0 < δR � 1) = ϕc
0(δR)

−d. (7.2)

To test the validity of Eq. (7.2), we would need precise numerical data for much smaller

δR than the ones shown in Fig. 7.1 which are actually not available, again for technical

reasons. At least, the data on the right panel of Fig. 7.1 and Eq. (7.2) have the common

qualitative feature that the increase of the slope curve for small δR is faster for 3D than

for 2D.

For the 3D model, we observe a continuous transition of the tagged-particle NEPs

F self,c
s,k to zero by approaching δR ∼= 1/4 from above, see the right panel of Fig. 7.2.

This indicates a delocalization transition of the smaller spheres in the glass formed by

the bigger ones [30, 31, 32]. As already discussed in Sect. 4.7, the current version of

MCT can not describe several details of such a type-A transition correctly. Since the

evaluation of Eq. (6.7) at xs = 0 requires F self,c
s,k as input (see Appendix B.3.3), we show

the corresponding data for 1/δR > 3.5 in Fig. 7.1 with open symbols. For our choice of

the low wave number cuto�, the MCT model does not yield a delocalization transition

in 2D, even if we use the PY result for a point-like tracer particle as static input, see

the left panel of Fig. 7.2. This result might be physically correct but also might be

just an artifact of MCT, see the comments on the 2D Lorentz gas model in Sect. 4.7.

However, the 2D data for the slopes at small δR show the same qualitative behavior as

the corresponding ones for the 3D model which indicates that at least the qualitative

xs-dependence of ϕ
c should not be too strongly in�uenced by the problems of MCT in
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Figure 7.2: Left panel: Critical tagged-particle NEPs of a single small hard disk inside the 2D
glass matrix formed by the bigger disks at their critical packing fraction. The data indicate
an arrested state even for δR = 0, i.e. for a point-like tracer particle. Right panel: Critical
tagged-particle NEPs of a single small hard sphere inside the 3D glass matrix formed by the
bigger spheres at their critical packing fraction. The data indicate a delocalization transition
for the small particle at δR ∼= 1/4.

describing type-A transitions.

So far, the results for the slopes in Fig. 7.1 allow us to predict qualitative properties

of the glass transition lines which we will verify below. Both xs = 0 and xb = 0

de�ne one-component models with the same critical packing fraction ϕc
0. Hence for

δ̃0R < δR < 1 the glass transition lines have at least one minimum. If δ0R < δR < δ̃0R,

then the glass transition lines exhibit at least one minimum and one maximum. For

0 < δR < δ0R, the glass transition lines have at least one maximum. As an additional

result, we �nd for both 2D and 3D that the slope curves scα(δR) = (∂ϕc/∂xα)(xα = 0, δR)

for α = b and α = s become almost identical for 0 < (1 − δR) � 1 (not shown in the

�gures). Furthermore, the numerical data in Fig. 7.1 indicate (∂scα/∂δR)(δR = 1) = 0.

Hence, from the discussion in Sect. 6.3 we expect that the glass transition lines become

symmetric with respect to the equimolar composition xs = 1/2 in the limit of small size

disparity which implies that the linear contribution in the Taylor series of ϕc(xs, δR)

with respect to 0 < (1− δR) � 1 vanishes.

Now, let us present numerically calculated glass transition lines. The technical pro-

cedure for the determinations of ϕc(xs, δR) is described in Appendix A.3.1. The left

panel in Fig. 7.3 shows our results for the relative variation (ϕc − ϕc
0)/ϕ

c
0 of the glass

transition lines for the binary hard disk model in 2D. Results of Götze and Voigtmann

for the corresponding hard sphere model in 3D [25] are shown in the inset in Fig. 7.3.

The shapes of all shown lines are fully consistent with our predictions from the slopes

above: the transition lines for the largest δR show a single minimum and are indeed
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Figure 7.3: Left panel: Relative variation of the glass transition lines for the binary hard disk
model in 2D. The open squares calculated with K = 400 grid points (instead of K = 250) give
an estimate for the error due to the high wave number cuto�. Inset: Relative variation of the
glass transition lines for the binary hard sphere model in 3D using the numerical data of Götze
and Voigtmann [25] calculated with ∆k = 0.4 and K = 200. Right panel: Relative variation of
the random close packing fraction using the numerical data of Okubo and Odagaki [49]. ϕ̃rcp

0

is chosen such that the relative variation vanishes below but close to xs = 1 (see text).

almost symmetric with respect to xs = 1/2. Furthermore, a numerical test for xs = 1/4

has con�rmed a quadratic dependence on 0 < (1 − δR) � 1 for both 2D and 3D (not

shown in the �gures). For intermediate values for δR, the glass transition lines become

S-shaped with one minimum followed by one maximum. For the smallest values for δR,

the transition lines exhibit a single maximum.

From our numerical MCT results we can read o� the following trend: compared to

the 3D model, the stabilization of the glass is much more pronounced in the 2D model

where the less pronounced plasticization e�ect only sets in at smaller size ratios. For

instance, the maximum relative decrease in ϕc occurring at δ ∼= 0.7 in 2D (see the left

panel in Fig. 7.3) is about �ve times larger than the maximum downshift in ϕc in 3D

which occurs at δ ∼= 0.8 (see the inset in Fig. 7.3 and also Fig. 2 in Ref. [25]). On

the qualitative level, however, the binary hard disk model in 2D exhibits the same two

mixing e�ects on ϕc as have been reported before by Götze and Voigtmann [25] for the

binary hard sphere model in 3D.

So far, we have presented results for mixing e�ects on the glass transition based

on MCT which is based on uncontrolled approximations. Thus, we may ask ourselves

whether these results have anything to do with reality or not. Remember for instance

that the SCGLE theory [47], which is also based on uncontrolled approximations, does

not predict a stabilization of the glass upon mixing for binary hard spheres in 3D as

MCT does. As far as we know, this theory has never been applied to a 2D model.
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Figure 7.4: Left panel: Exponent parameters for the binary hard disk model in 2D. The
horizontal dashed line marks the value for monodisperse hard disks. The open squares were
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high wave number cuto� becomes dominant for xs → 1. The systematic deviations occurring
also for smaller xs result from the fact that for the K = 400 model the values for ϕc were
calculated only with an absolute error of 10−5 instead of 10−7 as done for the K = 250 case.
Right panel: Critical localization length for the binary hard disk model in 2D at δR = 0.3. The
open symbols were calculated with K = 400 grid points instead of K = 250 demonstrating
that ∆rcα is not as sensitive to K and the error in ϕc as λc is.

To proceed, let us remember that Bayer et al. [18] have pointed out for monodisperse

systems that there seems to be a connection between the critical MCT packing frac-

tion ϕc and the random close packing fraction ϕrcp. The only fundamental problem in

such considerations is the fact that random close packing is not uniquely de�ned and

therefore depends on the procedure how it is realized. For the following, let us ignore

this problem and consider random close packing values ϕrcp for binary hard disks in

2D calculated numerically by Okubo and Odagaki [49] by using a so-called in�nitesimal

gravity protocol. Our goal is now to compare the relative variation (ϕc − ϕc
0)/ϕ

c
0 of

the critical MCT packing fraction for binary hard disks in 2D to corresponding ran-

dom close packing values (ϕrcp − ϕ̃rcp
0 )/ϕ̃rcp

0 with some appropriately chosen ϕ̃rcp
0 . The

data of Okubo and Odagaki [49] exhibit large uncertainties in the monodisperse limits

xs = 0, xs = 1, and δR = 1. This might result from the fact that for monodisperse

hard disks the applied procedure tends to build up locally ordered structures. Thus, we

have decided to choose ϕ̃rcp
0

∼= 0.8139 such that the relative variation (ϕrcp − ϕ̃rcp
0 )/ϕ̃rcp

0

vanishes below but close to xs = 1. The right panel in Fig. 7.3 presents the obtained

results for (ϕrcp − ϕ̃rcp
0 )/ϕ̃rcp

0 which show a striking similarity to (ϕc − ϕc
0)/ϕ

c
0 shown on

the left panel in Fig. 7.3. The change from the minimum-shape to an S-shape and a

maximum-shape upon decreasing δR is clearly reproduced by the random close packing

results which strongly supports the quality of MCT in 2D.
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Let us also brie�y discuss further quantities characterizing the liquid-glass transitions

of the binary hard disk model in 2D shown in Fig. 7.3. The left panel in Fig. 7.4 shows

the corresponding exponent parameters λc. We observe the same generic trend as has

been reported before by Götze and Voigtmann [25] for binary hard spheres in 3D: mixing

leads to an increase in λc for all δR. For δR = 0.3, λc develops a narrow but smooth

maximum at xs ∼= 0.845 with λc ∼= 0.869. This is a hint that there could be a higher-

order singularity of type Al, l ≥ 3, in the surrounding of the control parameter triplet

δR = 0.3, xs = 0.845, ϕ = ϕc ∼= 0.709.

The right panel in Fig. 7.4 displays critical localization length ∆rcα for the binary

hard disk model in 2D at δR = 0.3. The results for δR > 0.3 are qualitatively similar

(not shown in the �gures). For both big and small particles, ∆rcα shows a smooth and

monotonic decrease upon increasing xs. It is obvious that ∆rcb < ∆rcs must hold for

all xs. Since we have chosen 2Rb as unit length, it is also obvious that ∆rcs(xs = 1) =

δR∆r
c
b(xs = 0). The lines in Fig. 7.4 interpolate smoothly and monotonically between

these limits.

For binary hard spheres in 3D, multiple glassy states occur below δR ∼= 0.4 [50]

where the liquid-glass transition line subdivides into two distinguishable parts. The

unique point in the physical control parameter space where this �rst appears is an A4-

singularity with λc = 1. Below this value for δR, the critical localization length ∆rcα

as a function of xs displays a jump indicating the transition from one glassy state into

the other one. At the same point the liquid-glass transition line exhibits a kink. Now,

from the smooth behavior of the glass transition line and the critical localization length

at δR = 0.3 in Figs. 7.3 and 7.4 close to the maximum value of λc we conclude that if

multiple glassy states also exist for the binary hard disk model in 2D, then these will

only occur for 0 < δR < 0.3. To investigate such small δR we would need larger k-grids

to avoid disturbing discretization e�ects. Due to the much higher numerical e�ort for

MCT calculations in 2D compared to 3D we leave it as an open challenge to investigate

the occurrence of multiple glassy states for binary hard disks in 2D.

7.2.2 Mixing scenarios

In this section we demonstrate that the mixing scenarios presented by Götze and Voigt-

mann [25] for binary hard spheres in 3D can also be observed for binary hard disks in

2D. In order to follow their convention, we have decided to choose in this section ϕ, δR,

and the packing contribution of the smaller particles x̂s = ϕs/ϕ as independent control
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Figure 7.5: Left panel: Glass transition lines for the binary hard disk model in 2D, plotted
as functions of the packing contribution of the smaller particles x̂s = ϕs/ϕ. Right panels:
α-relaxation times de�ned by Φbb

k ((τ
rel)bbk ) = 0.1(F c)bbk for the correlators of the big particles

at k = 5.1909 for �xed δR and ϕ close below the corresponding glass transition lines for the
binary hard disk model in 2D. In both panels, the open triangles calculated with K = 400 grid
points (instead of K = 250) give an estimate for the error due to the high wave number cuto�.

parameters. It is related to xs via

xs =
x̂s/δ

d
R

1 + x̂s(1/δdR − 1)
. (7.3)

The left panel in Fig. 7.5 shows glass transition lines for the binary hard disk model in

2D, plotted as functions of x̂s for three representative values for δR. The line for δR = 5/7

shows a single, clearly pronounced minimum, the line for δR = 1/2 is S-shaped, and the

transition line for δR = 1/3 exhibits a single maximum.

The total variation of the glass transition lines in Fig. 7.5 is quite small, it is of

the order of 1%. Nevertheless, these small changes in ϕc may have a strong in�u-

ence on time-dependent quantities which are easily accessible to both experiments and

computer simulations. Let us �x some δR and ϕ such that for all 0 < x̂s < 1 it is

0 < ϕc(x̂s, δR) − ϕ � 1. Eqs. (4.35) and (4.36) predict then a strong variation in the

time scales (τ rel)αβk ∼ (ϕc(x̂s, δR) − ϕ)−γ(x̂s,δR) for the α-relaxation of the correlators

Φαβ
k (t). This is exempli�ed on the right panel in Fig. 7.5 for the α-relaxation times

de�ned by Φbb
k ((τ

rel)bbk ) = 0.1(F c)bbk for the unnormalized correlators of the big particles

at k = 5.1909. We have chosen this wave number to be located below the principal peak

in (F c)bbk /(S
c)bbk at xs = 0 (see Fig. 7.8), similar to the choice of Götze and Voigtmann

[25] for binary hard spheres in 3D. The qualitative x̂s-dependencies of the correspond-

ing glass transition lines in Fig. 7.5 are clearly re�ected by the x̂s-dependencies of the

α-relaxation times. (τ rel)bbk shows a single maximum for δR = 5/7, is S-shaped for
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Figure 7.6: The left panel shows normalized correlators of the big particles for the binary hard
disk model in 2D at ϕ = 0.686, δR = 5/7, and k = 5.1909 for di�erent packing contributions
x̂s = ϕs/ϕ. Filled diamonds mark the crossings of the normalized critical plateau values
(F c)bbk /(S

c)bbk . Open diamonds mark the crossings of the values 0.1(F c)bbk /(S
c)bbk . The right

panel shows the corresponding correlators for the small particles.

δR = 1/2, and exhibits a single minimum for δR = 1/3. For δR = 5/7, (τ rel)bbk varies by

more than three decades.

Following Götze and Voigtmann [25], we analyze also some normalized density cor-

relation functions Φαα
k (t)/Sαα

k . Let us de�ne (τ̃ rel)ααk as the characteristic time scale

speci�ed by 90% of the decay of such a correlator from its normalized plateau value

(F c)ααk /(Sc)ααk to zero. Fig. 7.6 shows normalized correlators Φαα
k (t)/Sαα

k for the binary

hard disk model in 2D at �xed ϕ = 0.686, δR = 5/7, and k = 5.1909 for di�erent packing

contributions x̂s of the smaller particles. For the chosen value of δR, the corresponding

glass transition line shows a single minimum at x̂s ∼= 0.4, see Fig. 7.5. Hence, starting

from the almost monodisperse system at x̂s = 0.01 and increasing the packing contribu-

tion of the smaller disks to x̂s = 0.3 leads to a decrease of the distance ϕc(x̂s, δR)−ϕ to

the critical line which is re�ected by an increase in (τ̃ rel)ααk by more than three decades,

see the open diamonds in Fig. 7.6.

The opposite scenario is shown in Fig. 7.7. It displays Φαα
k (t)/Sαα

k for the binary

hard disk model in 2D at �xed ϕ = 0.691, δR = 1/3, and k = 5.1909 for di�erent

packing contributions of the smaller disks. For the δR chosen here, the corresponding

glass transition line exhibits a single maximum at x̂s ∼= 0.4, see Fig. 7.5. Hence, starting

at x̂s = 0.01 and increasing the packing contribution of the smaller disks to x̂s = 0.3

leads to an increase of the distance ϕc(x̂s, δR)− ϕ to the critical line, and thus (τ̃ rel)ααk
decreases by about two decades as indicated by the open diamonds in Fig. 7.7.

Beside the variation in ϕc discussed above, Götze and Voigtmann [25] have reported

two additional mixing e�ects for binary hard spheres in 3D. The �rst one is an increase in
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the normalized critical NEPs (F c)ααk /(Sc)ααk upon increasing x̂s for not too small k which

is related to an increase in the plateau values of the correlation functions for intermediate

times. As exempli�ed in Fig. 7.8 for δR = 1/2, this e�ect is also observable for the

binary hard disk model in 2D for both the big and small particles, see also the �lled

diamonds in Figs. 7.6 and 7.7. The observed e�ect can be understood intuitively: for

not too small k, the collective NEPs (F c)ααk /(Sc)ααk oscillate around the corresponding

self-NEPs F self,c
α,k , as illustrated for x̂s = 0.5 by the thin lines in Fig. 7.8. These self-

NEPs can roughly be approximated by the Gaussian function F self,c
α,k ≈ exp(−(k∆rcα)

2)

obeying Eq. (3.11) which for x̂s = 0.5 is also indicated in Fig. 7.8 by the thin dotted

lines. As already discussed above, the critical localization length ∆rcα monotonically

decreases upon increasing x̂s, see again Fig. 7.4, and thus we obtain an increase of both

the collective and the self-NEPs as an overall trend.

The second remaining mixing e�ect is the slowing down of the relaxation towards

the plateau values for the correlators of the big particles for not too large k in the sense

that Φbb
k (t)/S

bb
k versus log10(t) becomes �atter upon increasing x̂s starting with x̂s = 0.

This e�ect is clearly visible on the left panels in Figs. 7.6 and 7.7. In the framework

of a more advanced analysis using the so-called equations of structural relaxation [25],

Götze and Voigtmann have pointed out that the change in the short-time dynamics

upon increasing x̂s is not su�cient to explain the observed e�ect. Without going more

into the details here, let us state that our results on the left panel in Fig. 7.7 support this

statement. The shown short-time asymptotes resulting from Eq. (4.3) for x̂s = 0.01 and

x̂s = 0.3 fall already at log10(t)
∼= −1 signi�cantly below the corresponding correlators.

Thus, the enormous �attening of the curves in the region 0 < log10(t) < 2 can not be

simply explained by the slowing down of the di�usion at short times, but we can explain

the observed e�ect along the lines of Götze and Voigtmann: for �xed x̂s and �xed δR

the relaxation of Φbb
k (t)/S

bb
k towards its plateau value can be described to leading order

in σ ∝ ε = (ϕ − ϕc)/ϕc by that of the expression [(F c)bbk + (Hc)bbk G(t)]/(Sc)bbk with

the β-correlator G(t) obeying Eqs. (4.29) and (4.30). Now, upon increasing x̂s = 0.01

to x̂s = 0.3 following the values in Figs. 7.6 and 7.7 we observe for both δR = 5/7

and δR = 1/3 a monotonic decrease in the critical exponent a, a monotonic decrease in

the time constant t0, and a monotonic decrease in the critical amplitudes (Hc)bbk /(S
c)bbk

for 0 < k < 6.1 (not shown in the �gures). These three e�ects all contribute to the

�attening of the Φbb
k (t)/S

bb
k versus log10(t) curves for times within the �rst scaling-law

regime.

Let us conclude at this point that we have found the same four mixing e�ects for

binary hard disks in 2D as have been reported for binary hard spheres in 3D by Götze
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Figure 7.9: The left panel shows Brownian dynamics simulation results of Weysser [51] for
the normalized collective density correlators of binary hard disk mixtures in 2D at δR = 5/7,
ϕ = 0.79, and k = 8.5. The single-particle short-time di�usion constants and the unit of time
in the simulation were chosen such that D0

b = D0
s = 0.005, for simplicity. The right panel

shows corresponding results for the same model at δR = 1/3, ϕ = 0.81, and k = 9.0.

and Voigtmann [25]. The complex mixing scenario on the left panel in Fig. 7.7 is the

result of an interplay of three of these mixing e�ects. Increasing x̂s leads �rst to both

an increase in the plateau values of the correlators at intermediate times and a slowing

down of the decay toward these plateaus. However, increasing x̂s also leads to a strong

decrease in the α-relaxation times, and thus to a pair-wise crossing of the correlators.

Above, we have found for the binary hard disk model in 2D a striking similarity

of the MCT glass transition lines to the corresponding random close packing lines,

see Fig. 7.3. At this point, we ask ourselves whether our MCT predictions for the

mixing e�ects on the time-dependent density correlators can also be tested by some

independent approach, at least on a qualitative level. The answer is yes. The left

panel in Fig. 7.9 shows normalized collective density correlators Φbb
k (t)/S

bb
k for the big

particles of binary hard disk mixtures in 2D at δR = 5/7, ϕ = 0.79, and k = 8.5

for di�erent packing contributions x̂s of the smaller disks calculated by Weysser [51]

via Brownian dynamics simulations. Qualitatively, these data exhibit the same three

mixing e�ects as the ones shown on the left panel in Fig. 7.6, namely an increase in the

plateau values accompanied by a slowing down of the relaxation towards these plateaus

and an additional slowing down of the α-relaxation process upon increasing x̂s. On

the quantitative level, however, there are some deviations: from Fig. 7.5 we would

expect that the slowest α-relaxation process occurs at x̂s ∼= 0.4. The simulation data,

however, exhibit the slowest α-relaxation at the highest investigated value x̂s = 0.543.

Furthermore, for δR = 5/7, MCT predicts 0.686 < ϕc < 0.692 for all x̂s. The simulation

data, however, imply ϕc
sim & 0.79 which means that MCT underestimates the critical
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packing fraction by about 15%.

The right panel in Fig. 7.9 shows Brownian dynamics simulation results of Weysser

[51] for Φbb
k (t)/S

bb
k for binary hard disk mixtures in 2D at δR = 1/3, ϕ = 0.81, and

k = 9.0 for di�erent packing contributions x̂s of the smaller disks. On a qualitative

level, the data for the three lowest values for x̂s are fully consistent with all our MCT

results in both Fig. 7.5 and the left panel in Fig. 7.7. Upon increasing x̂s, the simulation

data exhibit an increase in the plateau values accompanied by a slowing down of the

relaxation towards these plateaus. Furthermore, increasing x̂s from 0.100 to 0.206 leads

to a speeding up of the α-relaxation. Thus, the three correlators corresponding to

the lowest values for x̂s exhibit a pair-wise crossing. A further increase in x̂s to 0.308

leads again to a slowing down of the α-relaxation process, although from the MCT

results in Fig. 7.5 we would expect the fastest α-relaxation at x̂s ∼= 0.5. The fact

that the simulation data at δR = 5/7 and ϕ = 0.79 and the ones at δR = 1/3 and

ϕ = 0.81 show very similar α-relaxation times is also consistent with the MCT result

ϕc(x̂s, δR = 5/7) < ϕc(x̂s, δR = 1/3) for 0 < x̂s < 1.

Let us conclude here with the statement that, at least on a qualitative level, the

four mixing e�ects predicted by MCT for the binary hard disk model in 2D are also

observable in computer simulations which again supports the quality of MCT. At the

time of writing of this thesis, a more detailed study concerning this topic was still work

in progress [52].

7.2.3 Asymptotic scaling laws

For monodisperse hard spheres in 3D, Franosch et al. [24] have analyzed in detail the

range of validity of the asymptotic scaling laws summarized in Sect. 4.6. Furthermore,

they have also analyzed the leading-order corrections to these scaling laws. A similar

analysis was carried out by Bayer et al. [18] for monodisperse hard disks in 2D with very

similar results both qualitatively and quantitatively. Götze and Voigtmann [25] have

also investigated the asymptotic laws for binary mixtures of hard spheres in 3D. Besides

the trend that, compared to the monodisperse case, the exponent parameter λc for a

mixture is always larger (see also Fig. 7.4) and the fact that the range of validity for

the asymptotic laws depends on the chosen glass transition point, qualitatively nothing

new occurred. Generically, one may state that nothing new appears on the qualitative

level as long as one is su�ciently far away from higher-order singularities [2]. For the

binary hard disk model in 2D, we have found similar results. Thus, in order to make

this presentation not too lengthy, we restrict ourselves to a few representative examples.



62 CHAPTER 7. BINARY MIXTURES OF HARD DISKS/SPHERES

0 10 20 30 40 50
k

0

0.05

0.1

0.15

0.2

F
kbb

 / 
S kbb

 -
  (

F
c ) kbb

 / 
(S

c ) kbb

0 10 20 30 40 50
k

0

0.05

0.1

0.15

0.2

F
kss

 / 
S kss

 -
  (

F
c ) kss

 / 
(S

c ) kss

Figure 7.10: The left panel shows the increase of the normalized plateau values of the corre-
lators of the big particles in the glassy state for the binary hard disk model in 2D at δR = 5/7,
x̂s = 0.3, and ε = (ϕ − ϕc)/ϕc = 10−l/3, l = 6, . . . , 10 (from up to down). The dashed lines
show the leading-order ε1/2-asymptotes [(Hc)bbk /(S

c)bbk ]
√

σ/(1− λc). σ ∼= 1.966ε can be ob-
tained via numerical di�erentiation of Eq. (4.21) and λc ∼= 0.717 follows from Eq. (4.22). The
right panel shows the corresponding results for the small particles.

For the following, we consider the binary hard disk model in 2D. We �x δR = 5/7

and x̂s = 0.3. For the corresponding critical point ϕc we further introduce the so-called

distance parameter

ε = (ϕ− ϕc)/ϕc. (7.4)

Fig. 7.10 shows the increase Fαα
k /Sαα

k − (F c)ααk /(Sc)ααk of the normalized NEPs in the

glassy regime for ε = 10−l/3, l = 6, . . . , 10. The leading-order ε1/2-asymptotes following

from Eq. (4.23) are also included as dashed lines. For k ≤ 13.3, the leading-order

asymptotes describe the data for both the big and the small particles on a relative error

level below 10% if l ≥ 8, i.e. ε ≤ 0.002. For larger k or ε, the deviations become larger.

Now, let us demonstrate the validity of the factorization theorem given by Eq. (4.28).

The left panel in Fig. 7.11 shows the functions {Φbb
k (t) − (F c)bbk }/(Hc)bbk for the big

particles at ε±10−4 for three values of k. Also included are the corresponding numerical

solutions for the β-correlator G(t). The data for {Φbb
k (t)− (F c)bbk }/(Hc)bbk for the liquid

case (ε < 0) deviate less than 10% from G(t) within the time interval 2.2 < log10(t) < 7.3.

For the glass (ε > 0), the data for {Φbb
k (t)− (F c)bbk }/(Hc)bbk deviate less than 10% from

G(t) for log10(t) > 2.3.

Let us �nally consider density correlators Φ(t) in the liquid regime for ε = −10−l/3,

l = 9, ..., 15, and α = b with k = 9.9909, and also for α = s with k = 5.1909. The validity

of the α-scaling law given by Eqs. (4.35) and (4.36) can be demonstrated as follows [53]:

rather than calculating the ε-independent constant prefactor on the r.h.s. of Eq. (4.35),

we take the long-time part of the correlator for l = 15 as the best available numerical
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Figure 7.11: Left panels: The plots demonstrate the validity of the factorization theorem for
the binary hard disk model in 2D at δR = 5/7 and x̂s = 0.3 for both a liquid, ε = (ϕ−ϕc)/ϕc < 0
and a glassy state (ε > 0). The time constant t0 ∼= 0.304 needed for the unique determination
of the β-correlator G(t) was read o� from the plateau value of ta{(Φc)bbk (t) − (F c)bbk }/(Hc)bbk
at k = 9.9909. Right panels: The plots demonstrate the validity of the α-scaling law for the
binary hard disk model in 2D at δR = 5/7, x̂s = 0.3, and ε = −10−l/3, l = 9, ..., 15 (from
right to left). The scaling factors are chosen to be c[ε] = (105|ε|)γ . The numerical value of the
exponent γ = (a+b)/(2ab) ∼= 2.380 follows directly from λc ∼= 0.717. With this, the correlators
collapse onto the corresponding curves with l = 15 for long times without the use of any �t
parameters.

approximation for the α-master function and consider rescaled correlators Φ(c[ε]t) with

scaling factors c[ε] = (105|ε|)γ. With this choice it is easy to verify that at long times

all rescaled correlators for l > 15 collapse onto the one for l = 15. This is demonstrated

for Φαα
k (t) on the right panel in Fig. 7.11. Within the time interval 7.5 < log10(t) < 11.1

all data for l > 15 deviate less than 10% from the ones for l = 15 such that there holds

additionally Φαα
k (c[ε]t) > 0.1(F c)ααk .

7.3 Summary

We have analyzed the in�uence of composition changes on the glass transition behavior

of binary hard disks in 2D and binary hard spheres in 3D in the framework of MCT. For

both 2D and 3D, we have demonstrated the strong predictive power of our slope formula,

Eq. (6.7), by evaluating it in the weak-mixing limits xα → 0. For 3D, the numerical

results for xs → 0 and 0 < δR � 1 are in quantitative agreement with Eq. (7.1) whose

derivation was based on simple geometric arguments. The direct comparison of the

models in 2D and 3D shows similar qualitative behavior. We have identi�ed the same

four mixing e�ects for binary hard disks in 2D as have been reported before by Götze

and Voigtmann [25] for binary hard spheres in 3D. The extension of the glass regime
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due to mixing for size ratios close to unity is more strongly pronounced in 2D than in

3D. For small size disparities the glass transition lines become almost symmetric with

respect to the equimolar concentration xs = 1/2 and are, to leading order, quadratic in

the size disparity (1− δR) for both 2D and 3D. The range of validity of the asymptotic

scaling laws is also similar for both models. The glass transition lines we have found for

binary hard disks in 2D strongly resemble the corresponding random close packing lines

calculated by Okubo and Odagaki [49]. Furthermore, on a qualitative level, the four

mixing e�ects predicted by MCT for the binary hard disk model in 2D are also observable

in corresponding Brownian dynamics simulation results of Weysser [51]. These facts

strongly support the quality of MCT in 2D. The simulation data of Weysser [51] also

show that MCT underestimates the critical packing fraction for vitri�cation by about

15%, similar to the case of hard spheres in 3D [2].



Chapter 8

Binary mixtures of point dipoles in 2D

In this chapter, we present a detailed MCT study on the simpli�ed model system in-

troduced in Sect. 6.2, i.e. the binary point dipole model in 2D. The comparison of the

obtained results to those for binary hard disk mixtures in 2D presented in the previous

chapter will provide information about the in�uence of the type of the particle inter-

actions on the glass transition behavior. It will also provide an answer to the question

in how far the mixing e�ects we have found for binary hard disk mixtures in 2D have

generic features. As a byproduct, we propose a simple empirical ansatz for the bridge

functions in Eq. (4.45).

Let us further specify: the wave number k shall be discretized according to Eq. (4.16).

For the o�set we choose ô2 = 0.303 since we have d = 2 [18]. The natural unit length is

given by the inverse square-root 1/
√
n of the total particle number density. The choice

K = 250 and ∆k = 0.2 turns out to be su�ciently accurate to avoid larger discretiza-

tion e�ects. If not stated explicitly otherwise, the single-particle short-time di�usion

coe�cients D0
α are assumed to obey the Stokes-Einstein law according to Eq. (5.14),

and the unit of time is chosen such that D0
b = 0.01. Static structure factor input for

MCT is taken from both MC simulations (see Appendix A.1) and a modi�ed version of

the hypernetted-chain (HNC) theory (see Sect. 8.2 and also Appendix A.2.2). The algo-

rithm for the numerical calculation of time-dependent correlation functions is speci�ed

in Appendix A.4.

8.1 Previous results

Let us brie�y discuss some results already known for the binary point dipole model in

2D. Assoud et al. [54] have computed the phase diagram at zero temperature. They

have found 18 di�erent stable crystal structures. We are not going to further discuss

65
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Figure 8.1: Left panels: Partial structure factors Sαα
k for the big (upper left panel) and

the small particles (lower left panel) for the binary point dipole model in 2D at Γ = 95 and
xs = 0.5 calculated by using the T/2-HNC closure (see Sect. 8.2). Right panels: Self-correlators
of König et al. [26] for binary mixtures of dipolar particles in 2D measured experimentally at
δχ ∼= 0.1 and xs ∼= 0.3 (upper right panel) and xs ∼= 0.5 (lower right panel). The functions were
averaged over big and small particles according to Φself

k = xbΦ
self
b,k + xsΦ

self
s,k . kmax denotes

the wave number corresponding to the �rst maximum of gbb(r). See Ref. [26] for details. The
dotted horizontal lines mark the value 0.6 (see text).

crystallization e�ects in this thesis.

A further interesting phenomenon found by Ho�mann et al. [55] in the liquid regime

is that the smaller particles in the binary point dipole model in 2D tend to form clusters

with a sponge-like topology whereas the bigger particles remain more homogeneously

distributed in space. This partial clustering seems to be a generic feature occurring for

all 0 < δχ < 1 and 0 < xs < 1 for not too small Γ and manifests itself by the occurrence

of a prepeak in the partial structure factors Sss
k of the smaller particles at low k. We are

also able to reproduce this result both in the framework of MC simulations and integral

equation theory with the so-called T/2-HNC closure (see the next section). This is

exempli�ed on the left panel in Fig. 8.1 where we show T/2-HNC structure factors Sαα
k

for Γ = 95, xs = 0.5, and δχ = 1.0, 0.8, 0.6, 0.4. The case δχ = 1.0 is a monodisperse

system and by de�nition satis�es Sbb
k = Sss

k . By decreasing δχ we can clearly observe a

growing prepeak in Sss
k at 2 < k < 5.

Now, let us consider results for systems close to dynamical arrest. The right panel

in Fig. 8.1 displays averaged self-correlators Φself
kmax

= xbΦ
self
b,kmax

+ xsΦ
self
s,kmax

for binary

mixtures of dipolar particles in 2D measured experimentally by König et al. [26] at δχ ∼=
0.1 and two di�erent compositions xs ∼= 0.3 and xs ∼= 0.5. kmax denotes the wave number

corresponding to the �rst maximum of gbb(r). These data clearly exhibit the stretched

relaxation patterns of glass-forming liquids. We also observe that the correlators for xs ∼=
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0.5 behave more liquid-like than the ones for xs ∼= 0.3. For the mixture with xs ∼= 0.3 the

correlators for Γ ≥ 200 already show clearly pronounced plateaus, while for the mixture

with xs ∼= 0.5 the occurrence of plateaus becomes only visible for Γ ≥ 302. Let us state

these facts more quantitatively. The structural relaxation time τexp(Γ, xs, δχ) shall be

de�ned by Φself
kmax

(τexp,Γ, xs, δχ) = 0.6. It is τexp(Γ = 226, xs ∼= 0.5, δχ ∼= 0.1) = 569s �
τexp(Γ = 200, xs ∼= 0.3, δχ ∼= 0.1) = 14513s. By assuming the validity of the α-scaling

law given by Eqs. (4.35) and (4.36) we obtain τexp(Γ, xs, δχ) ∼ [Γc
exp(xs, δχ)− Γ]−γ(xs,δχ)

which can be read as the de�nition of the experimental value Γc
exp(xs, δχ) for the critical

interaction parameter for vitri�cation. Assuming that for �xed δχ ∼= 0.1 the exponent

and the proportionality factor of this power law do not change sensitively under a change

of xs ∼= 0.3 to xs ∼= 0.5, we obtain

Γc
exp(xs

∼= 0.3, δχ ∼= 0.1) < Γc
exp(xs

∼= 0.5, δχ ∼= 0.1). (8.1)

We will demonstrate that MCT is able to reproduce this result.

8.2 Static structure

For the binary mixtures of hard spherical particles in 2D and 3D studied in the last

chapter, we have used the well-established PY theory to calculate the static structure

factor input for MCT without further commenting it. For dipolar particles in 2D, it

turns out to be more challenging to calculate static structure factors with reasonable

quality.

We �rst focus on the quality of the model system itself. The derivation of the

pair-potentials given by Eq. (6.4) is based on two approximations: the negligence of

both hard-core repulsions and mutual polarization e�ects. Thus, let us �rst test the

validity of these approximations. The left panel in Fig. 8.2 shows partial structure

factors Sαβ
k for a binary mixture of dipolar particles in 2D at Γ = 110, δχ ∼= 0.1, and

xs = 0.48 measured experimentally by Ebert [41]. The value for δχ is approximative

due to the �nite polydispersity of both species of colloidal particles. Also included

are corresponding MC results for the binary point dipole model in 2D which we have

obtained as described in Appendix A.1 but by using only N = 600 particles instead

of N = 1600 and without data smoothing. Thus, for low k the MC structure factors

are superimposed by oscillations stemming from an interplay of uncertainties of hαβ(r)

at large r and the real space cuto� for its Fourier transform. Besides these technical

artifacts, our MC results are in very good agreement with the experimental data without
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Figure 8.2: Left panel: Partial structure factors for a binary mixture of dipolar particles in 2D
at Γ = 110, δχ ∼= 0.1, and xs = 0.48 measured experimentally by Ebert [41] (solid lines) and the
corresponding MC results for the binary point dipole model in 2D (dashed lines) obtained with
600 particles without data smoothing. Right panels: Partial structure factors for the binary
point dipole model in 2D at Γ = 120, δχ = 0.1, and xs = 0.5 from MC simulation with 1600
particles with data smoothing (solid lines) and for HNC (dashed lines in upper right panel)
and T/2-HNC (dashed lines in lower right panel).

the use of any adjustable parameters. With N = 600 particles, we were similarly able to

reproduce experimentally measured partial structure factors within the parameter range

δχ ∼= 0.1, 0.29 ≤ xs ≤ 0.48, and 51 ≤ Γ ≤ 281 (not shown in the �gures). At smaller Γ,

the structure factor peaks in the experimental data become more pronounced than in

our MC simulation results for binary point dipoles in 2D which may indicate that the

hard-core interactions of the particles become signi�cant in the experiment. For larger

Γ, we would need larger system sizes and longer simulation runs in order to reproduce

the experimental data.

We can draw two important conclusions. First, for Γ > 51 the experimental system of

König et al. [26] is very well described by the binary point dipole model in 2D. Second, we

can be con�dent that our MC simulations using this model and 1600 particles will yield

su�ciently realistic results for our purposes, since the MCT glass transitions discussed

in this chapter will occur within the parameter range 80 < Γ < 160.

Now, let us discuss the possibility of using integral equation theory for calculat-

ing static structure factors for the binary point dipole model in 2D. We have analyzed

several established choices for the bridge functions dαβ0 (r) in Eq. (4.45). The PY ap-

proximation seems not to be reliable for the current model system. For instance, for a

binary mixture with δχ = 0.1, xs = 0.5, and Γ = 10, i.e. deep in the liquid regime, it

underestimates the position of the principal peak of Sbb
k by about 10% and overestimates

the maximum value of this peak by almost 100%. For higher values of Γ we have not
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found stable numerical solutions for the PY structure factors. Another choice is the

HNC approximation dαβ0 (r) = 0. It describes the positions of the principal peaks of the

partial structure factors correctly, but strongly underestimates their amplitudes (see the

upper right panel in Fig. 8.2), as already noticed before by Zahn [56] and Ho�mann [57].

There are also more sophisticated closure relations which typically include adjustable

parameters. This fact makes these methods unwieldy if more than one adjustable pa-

rameter is used. For instance, the Rogers-Young (RY) closure interpolating between

PY and HNC has in principle three �t parameters for a binary mixture. Furthermore,

the quality of the corresponding results is also not satisfactory. Fig. 3(a) in the work

of Ho�mann at al. [55] clearly shows for the binary point dipole model in 2D that

the RY closure relation underestimates the position of the principal peak of the partial

structure factors of the big dipoles and in addition underestimates the amplitude of the

oscillations beyond this peak.

For the binary point dipole model in 2D, we have found empirically that using HNC

with temperature T/2 instead of T leads to a systematic improvement in the description

of experimental and simulated data for S (see the lower right panel in Fig. 8.2). A similar

observation was made before independently by Zahn [56]. Even more surprisingly, Klapp

[58] has observed that also computer simulation results for speci�c dipolar systems in

3D can be well �tted by using HNC with T/2. Let us summarize alls these �ndings by

proposing a simple empirical ansatz for the bridge functions:

dαβ0 (r) = −u
αβ(r)

kBT
. (8.2)

Since Eq. (8.2) has no adjustable parameters, it is well-suited for fast and systematic

calculations. Eq. (8.2) will be called the T/2-HNC closure. For technical details, see

Appendix A.2.2.

The right panel in Fig. 8.2 shows MC simulated partial structure factors for the

binary point dipole model in 2D at Γ = 120, δχ = 0.1, and xs = 0.5 compared to

corresponding HNC and T/2-HNC results. While the HNC closure underestimates the

amplitude of the oscillations of the partial structure factors, the T/2-HNC results are

in a surprisingly good agreement with the MC data. Furthermore, we have found for all

investigated examples within the control parameter range 0.1 ≤ δχ ≤ 0.6, 0.1 ≤ xs ≤ 0.9,

and 20 ≤ Γ ≤ 160 that, compared to the standard HNC closure, the T/2-HNC closure

leads to a similar improvement in the description of MC data as shown in Fig. 8.2. In the

next section, this trend will also be strongly supported by the fact that using MC and

T/2-HNC structure factors as input for MCT will lead to compatible glass transition
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Figure 8.3: Left panel: Normalized slopes of the glass transition lines for the binary point
dipole model in 2D at xs = 0 and xb = 0 calculated by using Eq. (6.7) and the T/2-HNC
closure. It is Γc

0
∼= 97.704 for the monodisperse limit. The inset presents the slopes on a much

�ner scale very close to δχ = 1. Right panel: Glass transition lines for the binary point dipole
model in 2D with moderate susceptibility ratios δχ calculated by using the T/2-HNC closure.
Γc
0 is indicated by the dashed line.

scenarios on very similar temperature scales.

In the next section, we will use both MC and T/2-HNC for calculating the static

structure factor input for MCT. This should assure that the MCT predictions we make

for the binary point dipole model in 2D are not just artifacts of one of the speci�c

techniques for the calculation of the static structure factor input.

8.3 Mode-coupling results

In the following, we present our numerical MCT results for binary point dipoles in 2D.

8.3.1 Glass transition lines

Let us start by demonstrating the predictive power of our slope formula, Eq. (6.7), for

the binary point dipole model in 2D by applying it to the weak-mixing limits xα → 0.

The technical procedure for this is described in Appendix B.

The left panel in Fig. 8.3 shows normalized slopes (∂Γc/∂xα)(Γ
c)−1 of the glass tran-

sition lines for the binary point dipole model in 2D at xα = 0, α = s, b, as functions

of 1/δχ calculated by using Eq. (6.7) and the T/2-HNC closure given by Eq. (8.2). By

de�nition, the case δχ = 1 represents a one-component system with critical packing

fraction Γc(xs, δχ = 1) ≡ Γc
0, and thus the slopes have to be zero at this point. Our

numerical results are consistent with this statement, see also the inset in Fig. 8.3. In
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contrast to our results for hard spherical particles in the last chapter, the slopes for

the binary point dipole model in 2D are always positive. This implies the following:

compared to a corresponding one-component liquid, the presence of a small concentra-

tion of a second kind of point dipoles always increases the critical interaction parameter

Γc(xs, δχ). This means that for �xed temperature T and �xed total particle density n

the presence of a small concentration of a second kind of point dipoles enhances the

critical value mc(xs, δχ) of the average magnetization per particle at which the system

vitri�es. In this sense, mixing always stabilizes the liquid state, i.e. MCT predicts

always a plasticization e�ect in the weak-mixing limits.

Let us discuss the slopes in more detail. The slope curve for xs = 0 starts from zero

at δχ = 1 and �rst increases upon decreasing δχ. It exhibits a maximum at δ+χ
∼= 0.444

and monotonically decays upon further decreasing δχ. The slope curve for xb = 0

starts from zero at δχ = 1 and strongly increases upon decreasing δχ. The inset in

Fig. 8.3 demonstrates that the slope curves for xs = 0 and xb = 0 become identical for

0 < (1 − δχ) � 1. This is a hint on the validity of Eq. (6.17), i.e. on the symmetry of

the glass transition lines with respect to xs = 1/2 for 0 < (1 − δχ) � 1. As shown in

Sect. 6.3, this symmetry would imply that the linear contribution in the Taylor series

of Γc(xs, δχ) with respect to 0 < (1 − δχ) � 1 vanishes. Indeed, the inset in Fig. 8.3

clearly demonstrates for the slope curves scα(δχ) = (∂Γc/∂xα)(xα = 0, δχ) that there

holds (∂scα/∂δχ)(δχ = 1) = 0.

The results for the slopes discussed above allow us to predict qualitative properties

of the glass transition lines. Both xs = 0 and xs = 1 de�ne one-component models with

the same critical interaction parameter Γc
0. Hence, all glass transition lines must exhibit

at least one maximum. Furthermore, for 0 < δχ < δ+χ the slope curve scs(δχ) (s
c
b(δχ))

decreases (increases) upon decreasing δχ. Hence, for two susceptibility ratios δ1χ and δ2χ
with 0 < δ1χ < δ2χ < δ+χ , the two corresponding glass transition lines must have an odd

number of intersection points and thus at least one crossing. If, however, there holds

δ+χ < δ1χ < δ2χ < 1, then the number of intersection points is even, since for δ+χ < δχ < 1

both scs(δχ) and scb(δχ) increase upon decreasing δχ. Furthermore, we expect that the

glass transition lines become symmetric with respect to the equimolar composition xs =

1/2 in the limit of small disparity in the susceptibilities which implies that the linear

contribution in the Taylor series of Γc(xs, δχ) with respect to 0 < (1− δχ) � 1 vanishes.

In the following, we present glass transition lines calculated both by using T/2-HNC

and MC structure factors as input for MCT. Due to crystallization e�ects, the control

parameters for the MC data had to be restricted to 0.1 ≤ xs ≤ 0.9 and 0 < δχ ≤ 0.6.

The right panel in Fig. 8.3 shows glass transition lines for the binary point dipole



72 CHAPTER 8. BINARY MIXTURES OF POINT DIPOLES IN 2D

98

100

102

104

106

Γc

0 0.2 0.4 0.6 0.8 1
x

s

85

90

95

100

δχ = 0.6

δχ = 0.5

δχ = 0.4

δχ = 0.3

T/2-HNC

MC

100

120

140

Γc

0 0.2 0.4 0.6 0.8 1
x

s

100

120

140

δχ = 0.3

δχ = 0.2

δχ = 0.1

T/2-HNC

MC

Figure 8.4: Left panels: Glass transition lines for the binary point dipole model in 2D calcu-
lated by using T/2-HNC structure factors (upper left panel) and MC structure factors (lower
left panel). The dashed line in the upper left panel indicates the T/2-HNC value for Γc

0. Right
panels: Glass transition lines for the binary point dipole model in 2D with larger disparities
in the susceptibilities calculated by using T/2-HNC structure factors (upper right panel) and
MC structure factors (lower right panel). The dashed line in the upper right panel indicates
the T/2-HNC value for Γc

0. In the neighborhood of xs = 0.8 and δχ = 0.1 we had problems
in �nding stable numerical solutions for the T/2-HNC structure factors, and thus there are no
data points for Γc in this region in the upper right panel.

model in 2D for moderate susceptibility ratios δ+χ < 0.6 ≤ δχ ≤ 0.9 calculated by using

T/2-HNC structure factors as input for MCT. For 0 < xs < 1, all lines are strictly

above the monodisperse value Γc
0 and exhibit a single maximum. In addition, the glass

transition lines do not intersect. The three lines for 0.7 ≤ δχ ≤ 0.9 are almost symmetric

with respect to the equimolar composition xs = 1/2. Furthermore, a numerical test for

xs = 1/4 has con�rmed a quadratic dependence on 0 < (1− δχ) � 1 (not shown in the

�gures). All these properties are compatible with the results for the slopes shown on

the left panel in Fig. 8.3.

The left panel in Fig. 8.4 presents glass transition lines for the binary point dipole

model in 2D for 0.3 ≤ δχ ≤ 0.6 calculated both by using T/2-HNC and MC structure

factors as input for MCT. The T/2-HNC curves again are strictly above the monodis-

perse value Γc
0 for 0 < xs < 1. We can not verify this statement for the MC curves, since

in this case we have no reasonable estimate for Γc
0 due to crystallization e�ects. Let us

�rst focus on the T/2-HNC results. The glass transition line for δχ = 0.6 exhibits only a

single rather �at maximum. The other ones with 0.3 ≤ δχ ≤ 0.5 develop two local max-

ima with a local minimum at xs ∼= 0.6 in between. For the pair δ1χ = 0.5 and δ2χ = 0.6

it is δ+χ < δ1χ < δ2χ < 1 and thus the results for the slopes in Fig. 8.3 predict an even

number of intersection points for the corresponding two glass transition lines. Indeed,

these lines intersect twice. For the pair δ1χ = 0.3 and δ2χ = 0.4 it is 0 < δ1χ < δ2χ < δ+χ
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and the corresponding two glass transition lines have a single intersection point which

is also consistent with the results for the slopes in Fig. 8.3. Now, let us consider the MC

results on the left panel in Fig. 8.4. The data are numerically less precise and the oc-

curring extrema in the curves are not as clearly pronounced as for the T/2-HNC results.

Furthermore, the MC curves do not for all pairs δ1χ and δ2χ exhibit the same number

of intersection points as the corresponding T/2-HNC ones. Nevertheless, the MC data

clearly support at least the qualitative xs-dependencies of the glass transition lines pre-

dicted by the T/2-HNC closure. Note that the scales for Γc and its total variation are

also similar for both approaches.

The right panel in Fig. 8.4 shows glass transition lines for the binary point dipole

model in 2D for larger disparities in the susceptibilities, 0.1 ≤ δχ ≤ 0.3 < δ+χ , calculated

both by using T/2-HNC and MC structure factors as input for MCT. We �rst focus on

the T/2-HNC data. Again, all glass transition lines are strictly above the monodisperse

value Γc
0 for 0 < xs < 1. The glass transition line for δχ = 0.3 (also shown on the

left panel in Fig. 8.4 on a �ner scale for Γc) exhibits two local maxima at xs ∼= 0.2

and xs ∼= 0.9 and in between a local minimum at xs ∼= 0.6. Upon decreasing δχ,

the amplitude of the maximum at xs ∼= 0.9 strongly increases while the maximum at

xs ∼= 0.2 and thus also the minimum at xs ∼= 0.6 become less pronounced. Consequently,

the glass transition line for δχ = 0.2 exhibits only a single maximum at xs ∼= 0.9. The

line for δχ = 0.1 seems to show a similar qualitative xs-dependence. However, in the

neighborhood of xs = 0.8 and δχ = 0.1 we had problems in �nding stable numerical

solutions for the T/2-HNC structure factors at higher Γ, and thus we have no data

points for Γc in this region. In agreement with the predictions from slopes presented in

Fig. 8.3, each pair of the shown glass transition lines exhibits a single intersection point.

The MC results on the right panel in Fig. 8.4 clearly support the trends predicted by

the T/2-HNC closure. Note especially the similarity of the intersection points of the

curves. Furthermore, both approaches yield almost identical scales for Γc and its total

variation.

A central result we can read o� from all T/2-HNC data in Figs. 8.3 and 8.4 is that

there holds strictly

Γc(xs, δχ) > Γc
0 (8.3)

for all tested 0 < δχ < 1 and 0 < xs < 1. The corresponding MC results in Fig. 8.4 are

also consistent with these �ndings. Thus we can conclude: for the binary point dipole

model in 2D, MCT predicts always a stabilization of the liquid state due to mixing.

Further, the amplitude of this plasticization e�ect is quite large. For instance, the glass

transition lines for δχ = 0.1 on the right panel in Fig. 8.4 vary by more than 50%.
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In particular, MCT predicts with both T/2-HNC and MC structure factors as input

the inequality

Γc(xs = 0.3, δχ = 0.1) < Γc(xs = 0.5, δχ = 0.1) (8.4)

which qualitatively reproduces the experimental result given by Eq. (8.1). This �rst

comparison of our MCT predictions for the binary point dipole model in 2D to available

experimental data indicates that at least on a qualitative level MCT may be able to

describe the change in the relaxation behavior upon composition changes. The Γ values

on the right panel in Fig. 8.1 also indicate that MCT tends to overestimate the tempera-

ture scale at which vitri�cation sets in. For δχ = 0.1 and xs = 0.3 MCT yields Γc ∼= 105

by both using T/2-HNC and MC structure factors as input. On the upper right panel

in Fig. 8.1, however, the development of a plateau as a precursor of a possible glass

transition only becomes clearly visible in the experimental data for Γ ≥ 200. Hence,

MCT overestimates the scale for the glass transition temperature by more than a factor

of two, as well-known for other systems [2]. To test our MCT predictions more system-

atically, it would be necessary to have data from experiments or computer simulations

for a much larger range of both xs and δχ.

At this point, let us also speculate about the physical origin of the predicted plasti-

cization e�ect for the binary point dipole model in 2D. As already discussed in Sect. 8.1,

a generic mixing e�ect on the static structure occurring for all 0 < xs < 1 and 0 < δχ < 1

is a partial clustering of the smaller dipoles which manifests itself by the occurrence of

a prepeak in the partial structure factors Sss
k of the smaller particles at low k. In our

case, all partial structure factors Sss
k with 0 < δχ < 1 and 0 < xs < 1 used for cal-

culating the glass transition lines in Figs. 8.3 and 8.4 exhibit such a prepeak. On the

other hand, MCT predicts plasticization for all 0 < δχ < 1 and 0 < xs < 1. Thus, it

could be that the partial clustering of the smaller particles is the physical origin for the

plasticization e�ect predicted by MCT. In order to test this conjecture, let us again con-

sider the T/2-HNC structure factors Sαα
k shown on the left panel in Fig. 8.1 for Γ = 95,

xs = 0.5, and δχ = 1.0, 0.8, 0.6, 0.4. The case δχ = 1.0 is a monodisperse system close

to its MCT glass transition point which shows no clustering. Now, by decreasing δχ we

observe �ve qualitative e�ects on Sαα
k : (i) a growing prepeak in Sss

k at 2 < k < 5, (ii) a

decrease in Sbb
k for 0 < k < 3, (iii) a decrease in the amplitude in the principal and the

subsequent peaks in both Sbb
k and Sss

k , (iv) a shrinking of the k-scale for the oscillations

of Sbb
k , and (v) a stretching of the k-scale for the oscillations of Sss

k . The plasticization

e�ect predicted by MCT must be a result from a complicated interplay of these �ve

competing e�ects. Thus, at least from our analysis here it is not obvious whether there

is a connection between clustering and plasticization or not. It remains a challenge to
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Figure 8.5: The left panels show critical localization length of the big (upper left panel) and
the small particles (lower left panel) for the binary point dipole model in 2D calculated by using
T/2-HNC structure factors. The dashed lines mark the value for monodisperse point dipoles in
2D. The right panels show the corresponding results calculated by using MC structure factors.

understand the complex xs and δχ dependencies of Γc(xs, δχ).

Let us also investigate some further important quantities characterizing the glass

transition lines shown in Figs. 8.3 and 8.4. Fig. 8.5 shows critical localization length

∆rcα for 0.3 ≤ δχ ≤ 0.6 for the binary point dipole model in 2D calculated both by

using T/2-HNC and MC structure factors as input for MCT. Since we have chosen the

inverse square-root 1/
√
n of the total particle number density as unit length, it is clear

that it must be ∆rcb(xs = 0, δχ) = ∆rcs(xs = 1, δχ) ≡ ∆rc0 where ∆rc0 is the critical

localization length for monodisperse point dipoles in 2D. Furthermore, it is also clear

that ∆rcb(xs, δχ) < ∆rcs(xs, δχ) for all xs if 0 < δχ < 1. Thus, by naively interpolating

these results we would obtain a monotonic decrease in ∆rcα upon increasing xs. The

numerical results, however, demonstrate that ∆rcα does not monotonically interpolate

between the two boundaries ∆rcα(xs = 0, δχ) > ∆rcα(xs = 1, δχ). Let us focus on the

T/2-HNC data on the left panel in Fig. 8.5. For instance, the curve for∆rcs with δχ = 0.3

clearly exhibits a local minimum at xs ∼= 0.2 followed by a local maximum at xs ∼= 0.6.

The corresponding curve for ∆rcb is even more complex. It shows three local extrema,

two local minima at xs ∼= 0.05 and xs ∼= 0.95 and a local maximum in between at

xs ∼= 0.4. It seems that ∆rcb becomes maximal (minimal) close to the regions in xs

where Γc becomes minimal (maximal), see also Fig. 8.4. It is further remarkable that

all curves for ∆rcb for di�erent values of δχ intersect at xs ∼= 0.7. Now, let us consider

the MC results on the right panel in Fig. 8.5. Beside the fact that these data are

numerically less accurate (especially for xs ≤ 0.2), they support at least the qualitative

trends predicted by the T/2-HNC approach. Note that the MC results for the curves
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Figure 8.6: The left panels show critical localization length of the big (upper left panel)
and the small particles (lower left panel) for the binary point dipole model in 2D with larger
disparities in the susceptibilities calculated by using T/2-HNC structure factors. The dashed
lines mark the value for monodisperse point dipoles in 2D. In the neighborhood of xs = 0.8
and δχ = 0.1 we had problems in �nding stable numerical solutions for the T/2-HNC structure
factors, and thus there are no data points for ∆rcα in this region. The right panels show the
corresponding results calculated by using MC structure factors.

for ∆rcb for di�erent values of δχ also show a common intersection point at xs ∼= 0.75.

Fig. 8.6 shows critical localization length ∆rcα for the binary point dipole model in

2D for larger disparities in the susceptibilities, 0.1 ≤ δχ ≤ 0.3, calculated both by using

T/2-HNC and MC structure factors as input for MCT. Let us again �rst focus on the

T/2-HNC data shown on the left panel in Fig. 8.6. The curve for ∆rcs for δχ = 0.2

behaves similar to the case δχ = 0.3 which we have already discussed above. It shows

two very weakly pronounced extrema, a minimum at xs ∼= 0.2 followed by a maximum at

xs ∼= 0.3. In contrast to the case for δχ = 0.3, the curve for ∆rcb for δχ = 0.2 exhibits only

two local extrema, a maximum at xs ∼= 0.4 followed by a minimum at xs ∼= 0.9. Apart

from the data points for xs = 0.7, the curves for ∆rcα for δχ = 0.1 are qualitatively

similar to the results for δχ = 0.2. As already stated above, in the neighborhood of

xs = 0.8 and δχ = 0.1 we had problems in �nding stable numerical solutions for the

T/2-HNC structure factors at higher Γ, and thus we have no data points for ∆rcα in

this region. Let us now turn to the MC results shown on the right panel in Fig. 8.6.

On a qualitative level, the data show a similar behavior as the ones for T/2-HNC. For

δχ = 0.1, the data indicate the development of a new maximum for both ∆rcb and ∆rcs

at xs ∼= 0.82. This may be physically correct, but it also may be a numerical artifact as

we will explain in the next paragraphs.

The left panel in Fig. 8.7 shows exponent parameters λc for the binary point dipole

model in 2D for 0.3 ≤ δχ ≤ 0.6 calculated both by using T/2-HNC and MC structure
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Figure 8.7: Left panels: Exponent parameters for the binary point dipole model in 2D calcu-
lated by using T/2-HNC structure factors (upper left panel) and MC structure factors (lower
left panel). The dashed line in the upper left panel indicates the monodisperse T/2-HNC
value. Right panels: Exponent parameters for the binary point dipole model in 2D with larger
disparities in the susceptibilities calculated by using T/2-HNC structure factors (upper right
panel) and MC structure factors (lower right panel). The dashed line in the upper right panel
indicates the monodisperse T/2-HNC value. In the neighborhood of xs = 0.8 and δχ = 0.1
we had problems in �nding stable numerical solutions for the T/2-HNC structure factors, and
thus there are no data points for λc in this region in the upper right panel.

factors as input for MCT. Up to smaller numerical uncertainties, the T/2-HNC data

in the upper left panel indicate that, compared to the monodisperse case, λc is always

increased for a binary mixture. The corresponding MC results in the lower left panel

are qualitatively consistent with the T/2-HNC data. Within both approaches, λc varies

by less than 10%.

The right panel in Fig. 8.7 shows exponent parameters λc for the binary point dipole

model in 2D for larger disparities in the susceptibilities, 0.1 ≤ δχ ≤ 0.3. For the T/2-

HNC data in the upper right panel we �nd 0.67 ≤ λc ≤ 0.76, however, as already stated

above, in the neighborhood of xs = 0.8 and δχ = 0.1 we had problems in �nding stable

numerical solutions for the T/2-HNC structure factors at higher Γ, and thus we have no

data points for λc in this region. Let us now consider the corresponding MC results in

the lower right panel. For δχ = 0.1 we observe that λc exhibits a narrow maximum at

xs ∼= 0.83 with maximum value λcmax
∼= 0.89. This is an indication for the existence of a

higher-order singularity of type Al, l ≥ 3, in the neighborhood of the control parameter

triplet δχ = 0.1, xs = 0.83, Γ = Γc ∼= 140.

Now, let us come back to the critical localization length ∆rcα for δχ = 0.1 shown

on the right panel in Fig. 8.6. Now we give a reasoning for the conjecture that the

development of the maxima at xs ∼= 0.82 might be a numerical artifact. As explained

in Appendix A.3.2, we use a bisection algorithm monitoring the NEPs for determining
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Γc for given xs and δχ. At every bisection step, the NEPs are calculated by iterating

Eq. (4.18) where for practical purposes we have to limit the maximum number of al-

lowed iterations. It is well-known that in the neighborhood of a higher-order singularity

the convergence of this iteration scheme drastically slows down. Thus, for given xs and

δχ, our fully automatized computer program for the determination of Γc starts to mis-

interpret values for Γ lying in truth inside the liquid regime as glassy states. In other

words, the applied numerical procedure tends to underestimate Γc in the neighborhood

of higher-order singularities. Such a numerical underestimation of Γc would lead to an

underestimation of the critical vertices in the MCT functionals which might be the rea-

son for the overestimation of ∆rcα. Indeed, the glass transition line for δχ = 0.1 shown on

the lower right panel in Fig. 8.4 exhibits a weakly pronounced dip at xs ∼= 0.82. In order

to suppress such problems and investigate in more detail the occurrence of higher-order

singularities we would have to increase the maximum number of allowed iterations by

about two decades for a more precise determination of the NEPs. At the time of writing

of this thesis, this was not possible due to lack of computing time. Let us only remark

here that by using MC structure factors for δχ = 0.09 as input for MCT our standard

procedure leads to a more strongly pronounced dip in Γc at xs ∼= 0.83 with λcmax
∼= 0.96

where, in addition, ∆rcs displays a sharp peak with maximum value ∆rcs,max
∼= 0.36 (not

shown in the �gures). At this critical point we also observe that the prepeak in (Sc)ssk
at k ∼= 2.66 with a maximum value of about 1.78 becomes lager than the �principal�

peak in (Sc)ssk at k ∼= 8.10 with a maximum value of about 1.76. All these data give

strong evidence for the existence a higher-order singularity which is possibly induced by

the strong cluster formation of the smaller dipoles [55]. We may even speculate about

a glassy state where clusters of small particles behave like bigger dipolar objects which

are arrested inside their local potential minima whereas inside such a cluster the small

dipoles remain more mobile. Such a mechanism could also explain the strong increase

in ∆rcs. At this point, however, we have to clearly state that our numerical standard

procedure may break down in the close neighborhood of higher-order singularities. We

leave this topic as an open challenge for the future.

Finally, let us provide an a-posteriori justi�cation for the derivation of Eq. (8.1).

It was based on the assumption that the exponent γ following from λc does not vary

too strongly upon a change from xs = 0.3 to xs = 0.5. By using the MC structure

factors for binary point dipoles in 2D we obtain λc(xs = 0.3, δχ = 0.1) ∼= 0.673 and

λc(xs = 0.5, δχ = 0.1) ∼= 0.688 leading to γ(xs = 0.3, δχ = 0.1) ∼= 2.21 and γ(xs =

0.5, δχ = 0.1) ∼= 2.26, i.e. the relative change in γ is indeed only about 2%.

Before closing this section, let us conclude that the glass transition scenario for the
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Figure 8.8: Left panels: Normalized critical NEPs for the big (upper left panel) and the small
particles (lower left panel) for the binary point dipole model in 2D at δχ = 0.3 calculated by
using T/2-HNC structure factors. Right panels: Normalized critical NEPs for the big (upper
right panel) and the small particles (lower right panel) for the binary point dipole model in 2D
at δχ = 0.1 and xs = 0.5 calculated by using T/2-HNC structure factors compared to those
obtained with MC structure factors.

binary point dipole model in 2D di�ers qualitatively from those of binary hard disk in

2D or hard spheres in 3D. While for the latter two models a small size disparity leads

to a stabilization of the glass, for binary point dipoles in 2D we have found always a

stabilization of the liquid due to mixing. However, we have also presented some features

shared by all investigated models. For all cases we have found for instance that the glass

transition lines become almost symmetric with respect to the equimolar composition

xs = 1/2 in the limit of small disparity in the sizes or susceptibilities, respectively.

It remains a challenge to understand the basic physical mechanisms leading to all the

complex mixing scenarios presented in this and in the previous chapter.

8.3.2 Mixing scenarios

In this section we analyze in how far the mixing e�ects on the density correlation func-

tions we have found for the binary hard disk model in 2D in the previous chapter can

also be rediscovered for binary mixtures of point dipoles in 2D.

Let us �rst focus on the NEPs. Due to the non-monotonic xs-dependencies of the

critical localization length ∆rcα, see Figs. 8.5 and 8.6, we can not expect that the nor-

malized critical NEPs (F c)ααk /(Sc)ααk show a monotonic variation with xs as we have

found for the binary hard disk model in 2D for not too small k. This is exempli�ed

on the left panel in Fig. 8.8 which shows normalized critical NEPs for the binary point

dipole model in 2D at δχ = 0.3 calculated by using T/2-HNC structure factors as input

for MCT. We can not read o� such a systematic trend from these data as from the
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Figure 8.9: The left panel shows normalized correlators of the big particles for the binary point
dipole model in 2D at Γ = 95, δχ = 0.3, and k = 4.8606 calculated by using T/2-HNC structure
factors as input for MCT. Filled diamonds mark the crossings of the normalized critical plateau
values (F c)bbk /(S

c)bbk . Open diamonds mark the crossings of the values 0.1(F c)bbk /(S
c)bbk . The

thin lines on the left panel show the short-time asymptotes given by Eq. (4.3) for xs = 0.01
and xs = 0.4 (from left to right). The right panel shows the corresponding correlators for the
small particles.

NEPs for binary hard disks in 2D shown in Fig. 7.8 which increase monotonically upon

increasing the concentration of the smaller particles if k is not too small.

The right panel in Fig. 8.8 shows a comparison of critical NEPs (F c)ααk /(Sc)ααk for

a binary mixture of point dipoles in 2D at δχ = 0.1 and xs = 0.5 calculated by using

T/2-HNC structure factors as input for MCT to the corresponding ones obtained by

using MC simulated structure factors. The results from both approaches agree very

well, hence we can be con�dent that the results on the left panel in Fig. 8.8 should not

contain T/2-HNC speci�c artifacts on the qualitative level.

Now we consider time-dependent quantities. Fig. 8.9 shows normalized correlators

Φαα
k (t)/Sαα

k for the binary point dipole model in 2D at Γ = 95, δχ = 0.3, and k = 4.8606

calculated by using T/2-HNC structure factors as input for MCT. We have chosen this

wave number to be located below the principal peak in (F c)bbk /(S
c)bbk at xs = 0 (see

Fig. 8.8), similar to our choice for the binary hard disk model in 2D in the previous

chapter. Again, we de�ne (τ̃ rel)ααk as the characteristic time scale speci�ed by 90% of

the decay of such a correlator from its normalized plateau value (F c)ααk /(Sc)ααk to zero

(see the open diamonds in Fig. 8.9). For the considered value of δχ, the corresponding

glass transition line exhibits two maxima at xs ∼= 0.2 and xs ∼= 0.9 and a local minimum

in between at xs ∼= 0.6, see Fig. 8.4. Hence, starting with the almost monodisperse

system at xs = 0.01 and increasing the concentration of the smaller dipoles to xs = 0.2

leads to an increase in the distance Γc(xs, δχ)−Γ to the glass transition line and thus to
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a decrease in (τ̃ rel)ααk . Upon further increasing the concentration of the smaller dipoles

up to xs = 0.6 leads to a decrease in Γc(xs, δχ) − Γ which then leads to an increase in

(τ̃ rel)ααk . If we continue increasing the concentration of the smaller dipoles to xs = 0.8,

then the distance Γc(xs, δχ) − Γ to the glass transition line increases again, leading to

a decrease in (τ̃ rel)ααk . For the chosen value of k, the plateau values (F c)ααk /(Sc)ααk
indicated by the �lled diamonds in Fig. 8.9 for α = b increase monotonically with xs

while the corresponding ones for α = s exhibit a non-monotonic xs-dependence for the

three lowest considered values for xs, see also Fig. 8.8.

So far, the binary point dipole model in 2D shows a mixing scenario which di�ers

in some aspects from the one of the binary hard disk model in 2D studied in the last

chapter. However, we can also observe a mixing e�ect which we have already found

for binary mixtures of hard disks in 2D, namely the slowing down of the relaxation

of the correlators of the big particles at not too large k towards their plateaus in the

sense that Φbb
k (t)/S

bb
k versus log10(t) becomes �atter upon increasing the concentration

xs of the smaller particles. On the left panel in Fig. 8.9 we can clearly observe the

above described �attening of Φbb
k (t)/S

bb
k upon increasing xs = 0.01 to 0.4. The shown

short-time asymptotes for xs = 0.01 and xs = 0.4 resulting from Eq. (4.3) which fall

already at log10(t)
∼= −1 signi�cantly below the corresponding correlators give evidence

that the �attening of the curves in the region 0 < log10(t) < 2 is not only a trivial result

following from the slowing down of the di�usion at short times. In fact, for our choice

δχ = 0.3 we observe upon increasing xs = 0.01 to xs = 0.4 a monotonic increase in the

time constant t0 [see Eq. (4.30)] which competes with a slight monotonic decrease in the

critical exponent a and a monotonic decrease in the critical amplitudes (Hc)bbk /(S
c)bbk

for 2.9 < k < 5.7 (not shown in the �gures). The latter two e�ects contribute to the

�attening of the Φbb
k (t)/S

bb
k versus log10(t) curves for times within the �rst scaling-law

regime. Let us also note that for 0.01 ≤ xs ≤ 0.2 the critical amplitudes (Hc)bbk /(S
c)bbk

decrease monotonically upon increasing xs for all 0 < k < 6.2 which is qualitatively

similar to our results for binary hard disks in 2D.

8.3.3 Asymptotic scaling laws

Let us also test the validity of the asymptotic scaling laws for the binary point dipole

model in 2D along the lines of Sect. 7.2.3. For this purpose, we use MC simulated static

structure factors as input for MCT. Furthermore, we have decided to choose the control

parameters to be close to the ones of König et al. [26]. For the following, we consider

binary mixtures of point dipoles in 2D with δχ = 0.1 and xs = 0.3, 0.5. Following
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Figure 8.10: Left panels: The increase of the normalized plateau values of the correlators
of the big (upper left panel) and the small particles (lower left panel) in the glassy state for
the binary point dipole model in 2D at δχ = 0.1, xs = 0.3, and ε = (Γ − Γc)/Γc = 10−l/3,
l = 5, . . . , 10 (from up to down). The dashed lines show the leading-order ε1/2-asymptotes
[(Hc)ααk /(Sc)ααk ]

√
σ/(1− λc). σ ∼= 0.25ε is obtained via numerical di�erentiation of Eq. (4.21)

and λc ∼= 0.673 follows from Eq. (4.22). The data were all calculated by using MC structure
factors. Right panels: The same as the left panels but for xs = 0.5, λc ∼= 0.688, and σ ∼= 0.25ε.

Sect. 7.2.3, for �xed δχ and xs we introduce the distance parameter

ε = (Γ− Γc)/Γc. (8.5)

In contrast to the previous section, the unit of time and the the single-particle short-time

di�usion coe�cients are now chosen such that D0
b = 0.01 and D0

s = 0.0167 which obeys

the Stokes-Einstein law according to Eq. (5.13) with the experimental value δR ∼= 0.6

for the size ratio [26].

Fig. 8.10 shows the increase Fαα
k /Sαα

k − (F c)ααk /(Sc)ααk of the normalized NEPs in

the glassy regime for xs = 0.3, 0.5 and ε = 10−l/3, l = 5, . . . , 10. The leading-order

ε1/2-asymptotes following from Eq. (4.23) are shown as dashed lines. We observe that

the leading-order asymptotic formula describes the increase of the NEPs for the binary

point dipole model in 2D more accurately than for the binary hard disk model in 2D,

see Fig. 7.10. Apart from the numerical artifacts at the lowest k values, all data for

Fαα
k /Sαα

k − (F c)ααk /(Sc)ααk in Fig. 8.10 with l ≥ 8 , i.e. ε ≤ 0.002, are described by the

leading-order asymptotic formula on a relative error level below 10% if k ≤ 20.3.

We also demonstrate the validity of the factorization theorem given by Eq. (4.28)

for the binary point dipole model in 2D. The left panel in Fig. 8.11 shows the functions

{Φbb
k (t) − (F c)bbk }/(Hc)bbk for the big dipoles at ε ± 10−4 for three values of k. Also

included are the corresponding numerical solutions for the β-correlator G(t). The data
for {Φbb

k (t)− (F c)bbk }/(Hc)bbk for the liquid case (ε < 0) deviate less than 10% from G(t)



8.4. SUMMARY 83

-1

0

1

-2 0 2 4 6 8 10 12
log

10
(t)

0

1

{Φ
kbb

(t
) 

- 
(F

c ) kbb
} 

/ (
H

c ) kbb

β-correlators
k = 4.8606
k = 9.6606
k = 12.4606

ε = -10
-4

ε = 10
-4

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14
log

10
(t)

0.1

0.2

0.3

Φ
kαα

(c
[ε

]t
)

k = 9.6606,  α = b

k = 4.8606,  α = s

Figure 8.11: Left panels: The plots demonstrate the validity of the factorization theorem for
the binary point dipole model in 2D at δχ = 0.1 and xs = 0.3 for both a liquid, ε = (Γ−Γc)/Γc <
0 and a glassy state (ε > 0). The time constant t0 ∼= 0.194 needed for the unique determination
of the β-correlator G(t) was read o� from the plateau value of ta{(Φc)bbk (t) − (F c)bbk }/(Hc)bbk
at k = 9.6606. Right panels: The plots demonstrate the validity of the α-scaling law for the
binary point dipole model in 2D at δχ = 0.1, xs = 0.3, and ε = −10−l/3, l = 9, ..., 15 (from
right to left). The scaling factors are chosen to be c[ε] = (105|ε|)γ . The numerical value of the
exponent γ = (a+ b)/(2ab) ∼= 2.21 follows directly from λc ∼= 0.673. With this, the correlators
collapse onto the corresponding curves with l = 15 for long times without the use of any �t
parameters. All data were calculated by using MC structure factors.

within the time interval 1.8 < log10(t) < 8.2. This interval is more than one decade

larger than the corresponding one for the binary hard disk model in 2D. For the glass

(ε > 0), the data for {Φbb
k (t) − (F c)bbk }/(Hc)bbk deviate less than 10% from G(t) for

log10(t) > 1.8.

Finally, let us also investigate the α-scaling law given by Eqs. (4.35) and (4.36)

for binary point dipoles in 2D. The right panel in Fig. 8.11 shows rescaled density

correlators Φαα
k (c[ε]t) with scaling factors c[ε] = (105|ε|)γ for ε = −10−l/3, l = 9, ..., 15,

and α = b with k = 9.6606, and also for α = s with k = 4.8606. Within the time

interval 7.0 < log10(t) < 12.3 all data for l > 15 deviate less than 10% from the ones for

l = 15 such that there holds additionally Φαα
k (c[ε]t) > 0.1(F c)ααk . This interval is also

more than one decade larger than the corresponding one for binary hard disks in 2D.

8.4 Summary

By comparing experimentally measured partial structure factors to those from our MC

simulations for the binary point dipole model in 2D we have demonstrated that the

thermodynamic equilibrium state of the experimental system of König et al. [26] is

indeed well described by assuming point particles in 2D which interact only via magnetic
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dipole-potentials induced by an external magnetic �eld. With the T/2-HNC closure

given by Eq. (8.2) we have proposed a simple empirical ansatz for a bridge function

in Eq. (4.45) which yields reasonable results for the static structure factors for the

considered model system without the use of adjustable parameters. Again, we have

demonstrated the strong predictive power of our slope formula, Eq. (6.7), by evaluating

it in the weak-mixing limits xα → 0. For a large range of susceptibility ratios 0.1 ≤
δχ ≤ 0.9 we have calculated the glass transition lines for the binary point dipole model

in 2D in the framework of MCT. We have found that mixing always stabilizes the liquid

state, in contrast to the results for binary hard disks in 2D or binary hard spheres in

3D presented in the previous chapter. However, we have also found some similarities.

For small disparities in the susceptibilities, i.e. 0 < (1 − δχ) � 1, the glass transition

lines become almost symmetric with respect to the equimolar composition xs = 1/2 and

are, to leading order, quadratic in the disparity (1 − δχ). Furthermore, for δχ = 0.3

we have demonstrated that starting with xs = 0 and increasing the concentration xs

of the smaller particles leads for not too large k to a slowing down of the relaxation

of the normalized correlators Φbb
k (t)/S

bb
k of the big dipoles towards their plateaus in

the sense that the Φbb
k (t)/S

bb
k versus log10(t) curve becomes �atter upon increasing xs.

The asymptotic scaling laws seem to have a somewhat larger range of validity for the

binary point dipole model in 2D than for the binary hard disk model in 2D, at least

for the liquid-glass transition points we have investigated. The relaxation behavior of

the experimentally obtained self-correlators of König et al. [26] at δχ ∼= 0.1 for xs ∼= 0.3

and xs ∼= 0.5 clearly supports the plasticization e�ect predicted by MCT. This indicates

that at least on a qualitative level MCT may be able to describe the change in the

relaxation behavior upon composition changes. The experimental data also show that

MCT systematically overestimates the scale for the glass transition temperature by more

than a factor of two, as is well-known also for other systems [2].



Chapter 9

Binary mixtures of dipolar hard disks

Motivated by the experiments of König et al. [26] we have formulated the model of

dipolar hard disks in 2D whose pair-potentials are given by Eq. (5.12) in Sect. 5.4.

This model system includes two types of particle interactions, the short-ranged hard-

core repulsions and the long-ranged repulsive dipole-potentials. By neglecting one of

these contributions we have obtained two model systems showing qualitatively di�erent

glass transition scenarios, the binary hard disk model in 2D and the binary point dipole

model in 2D, which we have studied both in detail in the two previous chapters. Now

we ask for the glass transition behavior of the full binary dipolar hard disk model in 2D.

Since the thermodynamic equilibrium state of this model depends on �ve independent

physical control parameters, namely ϕ, Γ, δR, δχ, xs, the set of liquid-to-glass transition

points predicted by MCT will form some 4-dimensional critical hypersurface which we

can locally represent for instance as Γc(xs, ϕ, δR, δχ).

Rather than producing a zoo of data for Γc(xs, ϕ, δR, δχ), we dedicate this brief chap-

ter to �nding answers to following questions: how would the glass transition behavior of

the experimental system of König et al. [26] be in�uenced if one would use more dense

colloidal dispersion such that the 2D packing fraction on the interface plane becomes so

large that the system can not be described anymore by a binary mixture of point dipoles

in 2D? In addition, how large is the threshold for the 2D packing fraction at which the

in�uence of the hard-core repulsions becomes signi�cant? To explore these questions,

we will �x δR and δχ to the experimental values and calculate Γc as a function of xs for

several values of ϕ.

In the following, we consider binary mixtures of dipolar hard disks in 2D with size

ratio δR = 0.6 and susceptibility ratio δχ = 0.1 which are roughly the experimental values

of König et al. [26]. We further specify that the wave number k shall be discretized

according to Eq. (4.16) with K = 250 and ∆k = 0.2. For the o�set we choose ô2 =
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Figure 9.1: Left panel: Glass transition lines for binary mixtures of dipolar hard disks in 2D
with size ratio δR = 0.6 and susceptibility ratio δχ = 0.1 calculated by using MC structure
factors. Right panel: Pair distribution functions for the binary point dipole model in 2D (solid
lines) at Γ = 100, δχ = 0.1, and xs = 0.5 compared to a corresponding binary mixture of
dipolar hard disks in 2D (dashed lines) with size ratio δR = 0.6 and packing fraction ϕ = 0.5.
The data were obtained from MC simulations.

0.303 [18]. The natural unit length is given by the inverse square-root 1/
√
n of the

total particle number density. Since we will only calculate glass transition lines for

the speci�ed model system, i.e. we will calculate Γc as a function of xs for several

values of the packing fraction ϕ, it is not necessary to specify the single-particle short-

time di�usion coe�cients D0
α. Static structure factor input for MCT is taken from MC

simulations (see Appendix A.1).

9.1 Mode-coupling results

The left panel in Fig. 9.1 shows glass transition lines for binary mixtures of dipolar hard

disk in 2D at δR = 0.6, δχ = 0.1, and di�erent values for the total packing fraction ϕ,

calculated by using MC simulated static structure factors as input for MCT. We observe

that the glass transition line for ϕ = 0.4 is almost identical to the one for ϕ = 0 with the

data taken from Fig. 8.4. The in�uence of the hard-core repulsions becomes signi�cant

for ϕ ≥ 0.5. As expected, Γc shifts to smaller values upon further increasing ϕ. The

glass transition lines for ϕ ≥ 0.6 are S-shaped with a minimum followed by a maximum.

These glass transition lines qualitatively resemble the ones for binary mixtures of hard

disks in 2D at similar values for δR (see Fig. 7.3). With this, we can conclude that the

glass transition scenario in Fig. 9.1 results from a competition of the mixing e�ects for

binary hard disks in 2D and those for binary point dipoles in 2D.

Let us also brie�y discuss the underlying physical mechanisms. The right panel in
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Fig. 9.1 shows a comparison of MC simulated pair distribution functions gαβ(r) for a

binary mixture of point dipoles in 2D (ϕ = 0) at δχ = 0.1, xs = 0.5, and Γ = 100

(which is close to the MCT liquid-glass transition point) to those of a corresponding

binary mixture of dipolar hard disk in 2D with δR = 0.6, and ϕ = 0.5. While gbb(r) and

gbs(r) are only slightly in�uenced by the change from ϕ = 0 to ϕ = 0.5, the shape of the

principal peak in gss(r) changes from a smooth maximum to a sharp spike whose left

wing exhibits a large discontinuous jump from zero to some �nite contact value which

indicates that collisions of the hard cores of the smaller disks become highly probable.

This behavior is intuitively clear since for the chosen control parameters the dipolar

pair-potentials obey uss(r) = 0.01ubb(r) and ubs(r) = 0.1ubb(r) whereas for the radii of

the disks we have Rs = 0.6Rb. Compared to the case ϕ = 0, the discontinuity in gss(r)

occurring for ϕ = 0.5 leads to more strongly pronounced oscillations in Sss
k (not shown

in the �gures) which encodes stronger static correlations and thus leads to a decrease in

the critical interaction parameter Γc.

9.2 Summary

In this brief chapter we have investigated the glass transition behavior of binary mixtures

of dipolar hard disks in 2D with size ratio δR = 0.6 and susceptibility ratio δχ = 0.1 which

are roughly the experimental values of König et al. [26]. While for 0 < ϕ ≤ 0.4 the glass

transition lines are almost identical to the corresponding one of the binary point dipole

model in 2D at δχ = 0.1, at higher values for ϕ the glass transition lines qualitatively

resemble the S-shaped curves for binary mixtures of hard disks in 2D at similar values for

δR shown in Fig. 7.3. These results demonstrate that there is a competition between the

mixing e�ects for binary hard disks in 2D and those for binary point dipoles in 2D. We

have given evidence that the in�uence of the hard-core repulsions on the glass transition

lines becomes signi�cant at packing fractions where collisions of the hard cores of the

smaller dipolar disks become highly probable, and thus these become less mobile.
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Chapter 10

Summary and conclusions

Let us summarize the most important results presented in this thesis and also draw

some conclusions from them.

Concerning analytical results, we have extended the well-established MCT equations

[2] to multicomponent systems in d ≥ 2 spatial dimensions, see Eqs. (4.1)-(4.15). Fur-

thermore, we have derived a general expression, Eq. (2.26), for the slope of a so-called

critical line. On the basis of MCT for two model systems, namely the d-dimensional

hard sphere model (with d = 2 and d = 3), and the binary point dipole model in 2D,

we have demonstrated that our slope formula can serve as a powerful tool for a fast

and precise prediction of some properties of glass transition lines. This was achieved

by evaluating the slopes of the glass transition lines in the low concentration limits of

one particle species. Note that the applicability of our slope formula is not restricted

to MCT for binary mixtures. For instance, applying it to MCT for monodisperse hard

sphere models with additional attractive potentials [59] in the limit of vanishing inter-

action strength should allow a precise determination of the parameter regime at which

reentrant glass transitions occur. More generally, Eq. (2.26) can, in principle, be applied

to any physical model system which exhibits a locally smooth critical hypersurface.

Motivated by the experiments of König et al. [26], we have applied our new MCT

equations to three model systems in 2D: binary mixtures of hard disks, binary mixtures

of point dipoles, and binary mixtures of dipolar hard disks.

The glass transition scenarios predicted by MCT for binary hard disks in 2D and

binary hard spheres in 3D are qualitatively identical. In particular, for the 2D model

we have found the same four mixing e�ects as have been reported before by Götze and

Voigtmann [25] for the 3D case. The stabilization of the glass due to mixing occurring

for small size disparities is more strongly pronounced in 2D. For both systems we have

found that for small size disparities the glass transition lines become symmetric with

89
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respect to the equimolar composition xs = 1/2 and are, to leading order, quadratic in

the disparity (1−δR). The stabilization of the glass becomes then maximal at xs = 1/2.

All these results give evidence that the physical mechanisms for glass formation are not

sensitive to changing d = 2 to d = 3.

The glass transition lines we have found for binary hard disks in 2D show a striking

similarity to the corresponding random close packing lines calculated by Okubo and

Odagaki [49]. To our knowledge, such a systematic comparison has never been published

before. Furthermore, the four mixing e�ects predicted by MCT for the binary hard

disk model in 2D are, on a qualitative level, also observable in corresponding Brownian

dynamics simulation results of Weysser [51]. These two facts strongly support the quality

of MCT in 2D. The simulation data of Weysser [51] also show that MCT underestimates

the critical packing fraction for vitri�cation by about 15%, similar to the case of hard

spheres in 3D [2]. A more detailed study, including a quantitative comparison of MCT

results for binary hard disk in 2D to corresponding simulation data, was still work in

progress [52] at the time of writing of this thesis.

For larger size disparities MCT predicts plasticization, i.e. an enhancement of the

liquid regime due to mixing, for both binary hard disks in 2D and binary hard spheres in

3D. In previous works this e�ect was related to entropic forces [25, 59, 60, 61]. However,

the maximum-shape variation of the critical packing fraction ϕc for binary hard disks

in 2D in this parameter regime is very similar to the one of the random close packing

fraction ϕrcp (see Fig. 7.3) obtained by Okubo and Odagaki [49] with a non-equilibrium

procedure which locally maximizes the density. Furthermore, for binary hard spheres in

3D, the numerical results for the slopes of the glass transition lines in the limit xs → 0

and 0 < δR � 1 shown on the left panel in Fig. 7.1 are in quantitative agreement with

Eq. (7.1) whose derivation was based on simple geometric arguments. These facts give

evidence that the plasticization e�ect predicted by MCT for binary hard disks in 2D

and binary hard spheres in 3D is of geometric rather than entropic origin.

Let us also add that we have still not found an intuitive physical explanation for

the stabilization of the glass predicted by MCT for both binary hard disks in 2D and

binary hard spheres in 3D with small size disparities. The minimum-shape variation

of the critical packing fraction ϕc for binary hard disks in 2D in this parameter regime

is again very similar to the one of the random close packing fraction ϕrcp obtained by

Okubo and Odagaki [49], see Fig. 7.3. Thus, we may speculate that the stabilization of

the glass due to mixing could also be of geometric origin.

Götze and Voigtmann [25] have tried to explain the stabilization of the glass predicted

by MCT for binary hard spheres in 3D by a qualitative discussion of the total structure
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factors Stot
k =

∑
αβ S

αβ
k . They have argued that the slight broadening of the principal

peak in Stot
k upon changing δR = 1 to 0 < (1−δR) � 1, which also occurs for binary hard

disks in 2D, may explain the observed e�ect. At this point we have to state that one

has to be more careful in using such arguments: if we take the above argument by word

then we should at least for 0 < (1 − δR) � 1 be able to reproduce the glass transition

lines shown in Fig. 7.3 on a qualitative level by using the one-component versions of the

MCT equations with Stot
k as input. For the binary hard disk model in 2D we have found,

however, that this approach yields even for the largest investigated δR = 0.9 an increase

in ϕc due to mixing. To proceed in understanding the stabilization of the glass (liquid)

predicted by MCT, we would need to �nd clear criteria under which changes in the

static structure factor matrix S lead to positive-semi-de�nite (negative-semi-de�nite)

leading-order increments in the Taylor series of the mode-coupling functional F [X,X]

with respect to 0 < (1− δR) � 1 for �xed X. We leave this issue an an open challenge

for the future.

Now, let us review our results for the dipolar model systems. By comparing exper-

imentally measured partial structure factors to those from our MC simulations for the

binary point dipole model in 2D we have demonstrated that, at least in the parame-

ter range where the MCT glass transition occurs, the thermodynamic equilibrium state

of the experimental system of König et al. [26] is well described by assuming point

particles in 2D which interact only via magnetic dipole-potentials induced by an exter-

nal magnetic �eld where mutual polarization e�ects are neglected. As a side result we

have suggested a new empirical bridge function approximation for calculating the static

structure factors of dipolar systems.

For a large range of susceptibility ratios 0.1 ≤ δχ ≤ 0.9 we have calculated the glass

transition lines for the binary point dipole model in 2D in the framework of MCT. We

have found that mixing always stabilizes the liquid state, in contrast to the results for

binary hard disks in 2D or binary hard spheres in 3D. This demonstrates that the mixing

e�ects strongly depend on the type of particle interactions. We conjecture that the plas-

ticization e�ect predicted by MCT for the binary point dipole model in 2D is connected

to the partial clustering of the smaller dipoles [55], although we have no convincing

proof for this. There are also similarities to the results for binary hard disk in 2D. For

small disparities in the susceptibilities the glass transition lines become symmetric with

respect to the equimolar composition xs = 1/2 and are, to leading order, quadratic in

the disparity (1 − δχ). The plasticization e�ect becomes then maximal at xs = 1/2.

Furthermore, we have demonstrated that the �attening of the Φbb
k (t)/S

bb
k versus log10(t)

curves upon increasing the concentration xs of the smaller particles starting with xs = 0
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is also observable for the binary point dipole model in 2D at not too large k. This e�ect

can be interpreted as a sti�ening of the cages (in case of hard spherical particles) or the

local potential minima (in case of point particles), in which the particles are trapped,

with respect to spontaneous �uctuations [25].

The relaxation behavior of the experimentally obtained self-correlators of König et

al. [26] at δχ ∼= 0.1 for xs ∼= 0.3 and xs ∼= 0.5 clearly supports the plasticization e�ect

predicted by MCT. This indicates that at least on a qualitative level MCT may be

able to describe the change in the relaxation behavior upon composition changes. The

experimental data also show that MCT systematically overestimates the scale for the

glass transition temperature by more than a factor of two, as is well-known also for other

systems [2]. To test our MCT predictions more systematically it would be necessary to

have data from experiments or computer simulations for a much larger range of both xs

and δχ.

The asymptotic scaling laws seem to have a somewhat larger range of validity for the

binary point dipole model in 2D than for the binary hard disk model in 2D, at least for

the liquid-glass transition points we have investigated. This originates from the fact that

for binary hard disks in 2D the separation parameter σ shows a stronger dependence

on (ϕ − ϕc)/ϕc than on (Γ − Γc)/Γc for binary point dipoles in 2D. It is remarkable

that this qualitative feature is also consistent with available data from experiments and

computer simulations. From the Brownian dynamics simulation data of Weysser [51],

at �xed xs = 0.5, δR = 5/7, and k = 8.5, we can extrapolate a critical packing fraction

of ϕc
sim

∼= 0.799. The corresponding correlators at ϕ = 0.77, i.e. less than 5% below

ϕc
sim, show already an almost exponential relaxation without the occurrence of a plateau

(not shown in the �gures). Now, let us again consider the self-correlators of König et

al. [26] at xs ∼= 0.3 shown on the upper right panel in Fig. 8.1. The curve for Γ = 200

develops a plateau, but is still within the liquid regime since the data clearly indicate

the onset of the α-relaxation process. The curve for Γ = 134, i.e. more than 30% below

Γ = 200, still exhibits stretched dynamics. These results indicate that the long-ranged

dipolar interactions lead also deeper in the liquid regime to a more e�cient suppression

of particle rearrangements as the hard-core repulsions do.

For binary hard spheres in 3D, higher-order singularities (connected to the existence

of multiple glassy states) occur below δ ≈ 0.4 [50]. Although we have already presented

some evidence for the existence of such transitions for the 2D model systems studied in

this thesis, we leave their systematic investigation as an open challenge for the future,

for technical reasons. For the binary point dipole model in 2D we conjecture that the

existence of multiple glassy states is also connected to the strong cluster formation of
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the smaller dipoles [55].

Finally, we have investigated the glass transition behavior of binary mixtures of

dipolar hard disks in 2D with size ratio δR = 0.6 and susceptibility ratio δχ = 0.1 which

are roughly the experimental values of König et al. [26]. These results demonstrate

that at 2D packing fractions which are much higher than the ones in the experiments

of König et al. [26] there is a competition of the mixing e�ects for binary hard disks in

2D and those for binary point dipoles in 2D. This result again supports our conjecture

above that the stabilization of the glass due to mixing which occurs for binary hard disk

in 2D and hard spheres in 3D is of geometric origin.
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Appendix A

Numerical methods

A.1 Monte Carlo simulation

To calculate static structure factors for the model system introduced in Sect. 5.4, we

simulateN = 1600 particles within a cubic 2D box of dimensionless length L =
√
N = 40

with the standard periodic boundary conditions for particle motion. The unit length

is given by 1/
√
n, i.e. by the inverse square-root of the particle number density. We

arrange 8 virtual copies of the simulation box around it. These so-called image boxes

contain at every simulation step exactly the same particle con�gurations as the main

simulation box. To calculate the potential energy of a particle inside the main simulation

box, the interactions with all particles within the main and the 8 image boxes are taken

into account. This is necessary due to the long-ranged 1/r3-parts of the pair-potentials.

However, these potentials are absolutely integrable in 2D and thus we can calculate the

potential energies without advanced techniques like Ewald summation. A trial move for

a chosen particle consists of a local random displacement ∆x,∆y ∈ [−ε, ε], ε = 0.15, of

the considered particle (and also of its copies in the image boxes) followed by calculating

the potential energy cost ∆u for this displacement and choosing a random number

z ∈ [0, 1]. The trial move is accepted if z ≤ exp(−∆u/kBT ), and rejected, otherwise.

Typical acceptance probabilities are between 0.3 and 0.5. A so-called sweep is a sequence

consisting of exactly one trial move for every particle in the main simulation box.

The calculation of the static structure factor matrix S consists of four steps. First,

we randomly distribute the N = 1600 particles. For the simpli�ed version of the model

system introduced in Sect. 6.2, i.e. the binary point dipole model in 2D, this step is

trivial. For �nite particle radii Rα, however, we subsequently include the particles into

the simulation box as follows: we declare one of the edges of the box parallel to the x-

direction as the �top� and the opposite edge as the �bottom� of the main simulation box.
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A randomly chosen particle to be included is �rst placed by a trial-and-error method at

a random position close to the top the box such that its hard core has no overlap with

the ones of the particles already located inside the box and also with those of their 8

virtual copies inside the image boxes. Then, a simulated �sedimentation� of the newly

included particle towards the bottom of the box follows by applying 10000 trial moves

with the random displacements ∆x ∈ [−ε, ε], ∆y ∈ [−0.09ε, 0.01ε] and switched-o�

dipolar interactions where, in addition, the center of the particle is not allowed to cross

the top or the bottom of the simulation box. The particle is then �xed at its �nal position

before the procedure is repeated for the next randomly chosen particle to be included.

The procedure yields a non-overlapping, densely packed particle con�guration located

at the bottom of the box. By maximally stretching the y-coordinates of the centers

of all particles measured from the bottom of the box by a common factor such that

no overlap of the hard cores of the particles and their 8 virtual copies occurs leads

to a random con�guration which is well-suited to initialize the simulation. As second

step, we perform 10000 sweeps for equilibrating the system. As third step, we perform

20000 sweeps to record a histogram for the radial distribution functions gαβ(r). For this

purpose, r is discretized as a Lado grid [62] with a real space cuto� rmax = L/2 = 20 and

500 grid points. By calculating the Fourier transform of hαβ(r) = gαβ(r)− 1 according

to the Lado method [62] we obtain the raw data for h. As last step, we smooth the

data. The raw data for hαβk plotted as functions of k are superimposed by oscillations

stemming from an interplay of uncertainties of hαβ(r) at large r and the real space

cuto� rmax. These oscillations are most signi�cant at small k. We smooth them out

by taking the arithmetic average of the upper and lower envelope functions. With this

result we calculate the raw data for S. Now, for the �rst few of the lowest k grid points

the positive-de�niteness of Sk may be violated. We repair this as follows: let l be the

smallest index for which Skj � 0 holds for all j ≥ l. We set Skj = Skl+1
for j ≤ l. The

whole procedure can be fully automatized.

In order to be able to preform MCT calculations, we transfer the numerical result for

S from the Lado grid to the k-grid of the discretized MCTmodels by linear interpolation.

Furthermore, for �xed 0 < xs < 1, 0 < δR < 1, 0 < δχ < 1, and 0 < ϕ < 1 it turns out

to be su�cient to calculate and transfer S to the MCT grid for Γ = 20, 40, 60, . . . , and

then make use of linearly interpolated values for S in between these discrete Γ values.

c is then calculated self-consistently from the numerical data for S on the MCT grid

via Eq. (4.8).
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A.2 Solution of the Ornstein-Zernike equation

We summarize some technical details on the numerical procedure for the solution of the

Ornstein-Zernike equation (4.43).

A.2.1 Binary mixtures of hard disks/spheres

For the binary d-dimensional hard sphere model we use the PY closure given by [36]

hαβ(r) = −1, r < (Rα +Rβ),

cαβ(r) = 0, r > (Rα +Rβ).
(A.1)

In odd dimensions the coupled Eqs. (4.43) and (A.1) can be solved analytically [63]. In

even dimensions numerical methods must be employed. In our numerical solution of the

2D system we use the classical Lado algorithm [62] with a real space cuto� rmax = 50

with 4000 grid points. The static structure factor matrix S follows then from Eq. (4.8).

We transfer the numerical result for S from the Lado grid to the k-grid of the discretized

MCT models by linear interpolation. Furthermore, for �xed 0 < xs < 1 and 0 < δR < 1,

it turns out to be su�cient to calculate and transfer S to the MCT grid for ϕ = 0.68,

0.70, 0.72, and then make use of linearly interpolated values for S for 0.68 < ϕ < 0.70

and 0.70 < ϕ < 0.72, respectively. For the calculations on the 3D model, we evaluate

the analytical formula for S at ϕ = 0.514, 0.518 directly on the MCT grid and use

linearly interpolated values for ϕ in between these boundaries, for convenience. For

both 2D and 3D, c is then calculated self-consistently from the numerical data for S on

the MCT grid via Eq. (4.8).

In order to analyze in more detail the predictions of MCT as the evaluation of

Eq. (6.7) for xs → 0, we require not only the total and direct correlation functions h(0)

and c(0) evaluated in this limit, but also their derivatives h(1) and c(1) with respect to xs

at xs = 0 and ϕ = ϕc
0, i.e. at the critical packing fraction of the monodisperse system, see

Appendix B. For this purpose we solve the linear integral equations resulting from direct

di�erentiation of the Eqs. (4.43) and (A.1). For the d-dimensional binary hard sphere

model these are given explicitly by Eqs. (B.31) and (B.32) which require the solution of

Eqs. (4.43) and (A.1) at xs = 0 and ϕ = ϕc
0 as input. Thus, we �rst determine the critical

packing fractions ϕc
0 of the monodisperse models as follows: we set xs = 1/2, δR = 1,

and evaluate S for ϕ = 0.690, 0.692 for d = 2 and ϕ = 0.514, 0.518 for d = 3. Then by

using linearly interpolated values for S for 0.69 < ϕ < 0.692 and 0.514 < ϕ < 0.518,

respectively, we apply the procedure described in Appendix A.3.1. For the 2D model,
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we use then a straightforward modi�ed version of the original Lado algorithm [62] at ϕc
0

with a real space cuto� rmax = 50 and 4000 grid points. The obtained numerical results

for c(0) and c(1) are then transferred to the k-grid of the discretized MCT model by linear

interpolation. In 3D, we directly evaluate the analytical formulas for c(0) and c(1) on

the MCT k-grid at ϕc
0. For both 2D and 3D, S(0) and S(1) follow then self-consistently

from Eq. (4.8). For xs = 1, the procedure is the same.

A.2.2 Binary mixtures of point dipoles in 2D

For the binary point dipole model in 2D we use the T/2-HNC closure relation given by

ln[hαβ(r) + 1] = −2uαβ(r)/(kBT ) + hαβ(r)− cαβ(r). (A.2)

For the numerical solution of Eqs. (4.43) and (A.2) we use the classical Lado algorithm

[62] with a real space cuto� rmax = 100 with 4000 grid points and transfer the numerical

result for S from the Lado grid to the k-grid of the discretized MCT models by linear

interpolation. For �xed 0 < xs < 1 and 0 < δχ < 1 it turns out to be su�cient to

calculate and transfer S to the MCT grid for Γ = 5, 10, 15, . . . , and then make use of

linearly interpolated values for S in between these discrete Γ values. c is then calculated

self-consistently from the numerical data for S on the MCT grid via Eq. (4.8).

For the MCT calculations in the weak-mixing limit xs → 0, we determine c(0) and

c(1) by solving the linear integral equations resulting from direct di�erentiation of the

Eqs. (4.43) and (A.2) at xs = 0. These are given explicitly by Eqs. (B.31) and (B.33)

which require the solution of Eqs. (4.43) and (A.2) at xs = 0 and Γ = Γc
0 as input,

i.e. at the critical interaction parameter of the monodisperse system. Γc
0 is determined

as follows: We set xs = 1/2, δχ = 1, and evaluate S for Γ = 97.5, 98.0. Then by

using linearly interpolated values for S for 97.5 < Γ < 98.0 we apply the procedure

described in Appendix A.3.2. After this, we apply a straightforward modi�ed version

of the original Lado algorithm [62] at Γc
0 with a real space cuto� rmax = 100 and 4000

grid points. The obtained numerical results for c(0) and c(1) are then transferred to the

k-grid of the discretized MCT model by linear interpolation. S(0) and S(1) follow then

self-consistently from Eq. (4.8). For xs = 1, the procedure is the same.

A.3 Determination of glass transition lines

We brie�y describe the procedure for the determination of glass transition lines.
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A.3.1 Binary mixtures of hard disks/spheres

ϕc(xs, δR) can be determined numerically by a simple bisection algorithm monitoring

the NEPs. For this purpose, we �x 0 < xs < 1 and 0 < δR < 1, and nest ϕ until

0 < ϕ − ϕc ≤ 10−7 is reached. For the corresponding maximum eigenvalues of C we

obtain typically r ∼= 0.9995. Such a high accuracy is needed for a quantitative test of the

asymptotic scaling laws. For the determination of F , which is necessary at each bisection

step, we iterate Eq. (4.18) starting with X = S until either (i) F = 0 (within the

numerical accuracy of the used computer) is reached, or (ii) |Iαβ
k [F ]−Fαβ

k |/|Iαβ
k [F ]| < ε1

for all k, α, β with Iαβ
k [F ] 6= 0 is satis�ed, or (iii) the maximum allowed number of

iterations Imax is reached. Finally, we calculate the norm ‖F ‖ = maxk,α,β |Fαβ
k | and

identify the present state as a liquid if ‖F ‖ < ε2, and as a glass, otherwise. For the

automatized procedure we choose ε1 = 10−10, ε2 = 10−2, and Imax = 100000. We also

perform some calculations to quantify discretization e�ects on ϕc. For this purpose it

turns out to be su�cient to choose ε1 = 10−6 and nest ϕ until 0 < ϕ − ϕc ≤ 10−5 is

reached.

So far, there is an intrinsic problem in the procedure: upon approaching the (math-

ematically) true value of ϕc, the convergence of the iteration scheme toward the true

value of F drastically slows down. For a large window of iteration steps, the intermedi-

ate results remain close to the critical NEPs. Hence it may happen that the true value

for F at given ϕ is 0, criterion (ii) or (iii), however, is satis�ed before ‖F ‖ < ε2 holds.

In this case, the computer misinterprets the current state as a glass. Then the obtained

approximate value for ϕc in truth lies in the liquid regime. Obviously, this problem can

never be completely avoided on a real computer where, in addition, also rounding errors

occur. Anyhow, to have more con�dence in our results, for the �nal determination of

F c at the numerically obtained ϕc we choose ε1 = 10−12 and Imax = 200000, similarly

for the eigenvectors Hc and Ĥc (see below). In almost all cases we obtain stable rea-

sonable results. In the remaining few percent of the cases, we choose some appropriate

10−12 < ε1 < 10−6 to obtain a reasonable approximation for the critical NEPs. These

few problematic data have no in�uence on the qualitative trends in our results, hence

we do not further comment them.

Having determined some F � 0, the right-eigenvector H can be calculated up to a

normalization constant by alternately iterating Eq. (4.19) and dividing the intermediate

result by its norm. The sequence of the norms obviously converges towards the maximum

eigenvalue r of C. The left-eigenvector Ĥ can be obtained similarly. In a �nal step, H

and Ĥ have to be normalized according to Eq. (4.20).
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A.3.2 Binary mixtures of point dipoles in 2D

The procedure is in principle the same as in Appendix A.3.1. We �x 0 < xs < 1 and

0 < δχ < 1, and nest Γ until 0 < Γ − Γc ≤ 10−4 is reached. For the corresponding

maximum eigenvalues of C we obtain typically r ∼= 0.9995. This accuracy is needed for

a quantitative test of the asymptotic scaling laws. To quantify discretization e�ects on

Γc, it turns out to be su�cient to nest Γ until 0 < Γ− Γc ≤ 10−2 is reached.

A.3.3 Binary mixtures of dipolar hard disks

We �x the parameters 0 < xs < 1, 0 < δχ < 1, 0 < δR < 1, and 0 < ϕ < 1, and

determine Γc as described in Appendix A.3.2.

A.4 Calculation of time-dependent quantities

For the numerical determination of Φ(t) we implement the so-called time-decimation

algorithm. This multigrid algorithm �rst published in Ref. [64] is described in detail

in Ref. [65] for a schematic MCT model. The generalization to our matrix-valued and

k-dependent models is straightforward. One only has to carefully take into account that

products of matrices in general do not commute. Our time grids consist of 256 points, as

initial step size we choose 10−8 time units. For each time step, the implicit equation for

Φ(t) corresponding to Eq. (1.22) in Ref. [65] is iterated until either for all components

corresponding to the index triplet k, α, β the relative di�erence between two subsequent

iteration steps is less than 10−6 or the maximum number of 10000 iterations is exceeded.

Having determined Φ(t), we can similarly calculate Φself
α (t) and �nally also the δr2α(t).

For the latter, it is convenient to di�erentiate Eq. (4.13) yielding

1

D0
α

d

dt
[δr2α(t)] +

∫ t

0

dt′ mmsd
α (t− t′)

d

dt′
[δr2α(t

′)]− 2d = 0. (A.3)

Then it is straightforward to modify the time-decimation algorithm to solve Eq. (A.3).

The β-correlator G(t) is determined exactly as described in Ref. [65].
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Equations for the weak-mixing limit

Here we will describe how to evaluate the slope of a glass transition line for a binary

mixture as speci�ed in Sect. 6.3 at xs = 0, i.e. for a vanishing concentration of the

smaller particles. The procedure for a vanishing concentration of the bigger particles

xb = 0 is the same. The corresponding formulas are obtained by interchanging the

particle indices b ↔ s. Let us further remark that the explicit specialization on a

certain model system occurs only on the level of the static input for MCT.

B.1 Rewriting the mode-coupling functional

For the following, it is convenient to rewrite the mode-coupling functional as

F = nx−1F̂x−1 (B.1)

where the elements of the matrix x are de�ned by xαβk = xαδαβ. As can be read

o� from Eqs. (4.5)-(4.7), F̂ has a binlinear functional dependence on the matrix c of

direct correlation functions, and shows no further explicit dependence on the control

parameters. F̂ can be considered as a special case of a more general functional F̃ ,

F̂ [X,Y ] = F̃ [c, c;X,Y ], (B.2)

F̃αβ
k [a, b;X,Y ] =

Ωd−1

(4π)d

∑
α′,β′,α′′,β′′

∫ ∞

0

dp

∫ k+p

|k−p|
dq Ṽ αβ;α′β′,α′′β′′

k;p,q [a, b]Xα′β′

p Y α′′β′′

q , (B.3)

Ṽ αβ;α′β′,α′′β′′

k;p,q [a, b] =
pq

kd+2
ṽαα

′α′′

kpq [a]ṽββ
′β′′

kpq [b], (B.4)

ṽαβγkpq [z] =
(k2 + p2 − q2)zαβp δαγ + (k2 − p2 + q2)zαγq δαβ

[4k2p2 − (k2 + p2 − q2)2](3−d)/4
. (B.5)

101
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Hence, for �xed X and Y and some arbitrary external control parameter ξi we can

write

(∂F̂/∂ξi)[X,Y ] = Ĝ[X,Y ], (B.6)

Ĝ[X,Y ] = F̃ [∂c/∂ξi, c;X,Y ] + F̃ [c, ∂c/∂ξi;X,Y ]. (B.7)

B.2 Derivatives of the separation parameter

B.2.1 General case

For a general model system, the calculation of the slope of an arbitrary critical line via

Eq. (2.26) requires the calculation of a pair of derivatives of the separation parameter

of the form ∂σ/∂(∆ξi)|∆~ξ=~0. Since in the framework of MCT σ follows from σ̃ given by

Eq. (4.21) by linearization around ~ξc, we can write

∂σ/∂(∆ξi)|∆~ξ=~0 = ∂σ̃/∂ξi|~ξ=~ξc . (B.8)

Only, those quantities on the r.h.s. of Eq. (4.21) without the superscript c are di�er-

entiated. Then, all quantities in the resulting formula have to be taken at the critical

point ~ξc. For the following, we drop the superscript c for convenience. With Eqs. (4.21),

(B.6) and (B.8) we obtain explicitly

∂σ/∂(∆ξi)|∆~ξ=~0 = n−1(∂n/∂ξi)(Ĥ|{S − F }nx−1F̂ [F ,F ]x−1{S − F })

+(Ĥ|{S − F }nx−1Ĝ[F ,F ]x−1{S − F })

+(Ĥ|{S − F }S−1{∂S/∂ξi}nx−1F̂ [F ,F ]x−1{S − F })

+(Ĥ|{S − F }nx−1F̂ [F ,F ]x−1{∂S/∂ξi})

+(Ĥ|{S − F }n{∂x−1/∂ξi}F̂ [F ,F ]x−1{S − F })

+(Ĥ|{S − F }nx−1F̂ [F ,F ]{∂x−1/∂ξi}{S − F }). (B.9)

Note that for a one-component model we have x = x−1 = 1 and thus ∂x−1/∂ξi = 0.

Let us further remark that the �rst scalar product on the r.h.s. of Eq. (B.9) is nothing

but the well-known exponent parameter λ = (Ĥ|{S − F }F [F ,F ]{S − F }).

B.2.2 Weak-mixing limit

We specialize Eq. (B.9) to evaluate Eq. (6.7) at xs = 0. Let us start with summarizing

some important properties of S, F , F̂ , and Ĝ. By de�nition, for xs → 0 the elements
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of S and F satisfy

Sαβ
k = O(xs) if (α, β) 6= (b, b),

Fαβ
k = O(xs) if (α, β) 6= (b, b).

(B.10)

Due to the Kronecker deltas in Eq. (B.5), we also have

F̂αβ
k [F ,F ] = O(xs) if (α, β) 6= (b, b),

Ĝαβ
k [F ,F ] = O(xs) if (α, β) 6= (b, b).

(B.11)

For the following, we assume Taylor expansions for n, c, S, F , H , and Ĥ in powers of

xs around xs = 0 of the form

Z = Z(0) + xsZ
(1) +O(x2s). (B.12)

Eq. (B.10) implies

(S(0))αβk = 0 if (α, β) 6= (b, b),

(F (0))αβk = 0 if (α, β) 6= (b, b).
(B.13)

The Taylor expansions of F̂ [F ,F ] and Ĝ[F ,F ] needed below read explicitly

F̂ [F ,F ] = F̂ (0)
[F (0),F (0)] + xsĜ

(0)
[F (0),F (0)] + 2xsF̂

(0)
[F (0),F (1)] +O(x2s), (B.14)

Ĝ[F ,F ] = Ĝ
(0)
[F (0),F (0)] +O(xs), (B.15)

where the leading-order functionals are given by

F̂ (0)
[X,Y ] = F̃ [c(0), c(0);X,Y ], (B.16)

Ĝ
(0)
[X,Y ] = F̃ [c(1), c(0);X,Y ] + F̃ [c(0), c(1);X,Y ]. (B.17)

Eq. (B.13) and the Kronecker deltas in Eq. (B.5) imply

(F̂ (0)
[F (0),F (0)])αβk = 0 if (α, β) 6= (b, b),

(Ĝ(0)
[F (0),F (0)])αβk = 0 if (α, β) 6= (b, b).

(B.18)

A further important implication is the fact that (F̂ (0)
[F (0),F (1)])αβk is not dependent on

(F (1))bbk if (α, β) 6= (b, b).

Now we consider the numerator in Eq. (6.7). It follows from Eq. (B.9) by choosing

ξi = xs. Let us focus on the scalar product in the �rst term on the r.h.s. of Eq. (B.9).

The factors {S − F }x−1, n, F̂ [F ,F ], and x−1{S − F } have all well-de�ned limits for
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xs → 0 which can be calculated independently. Hence, the limit of the second argument

of the considered scalar product also exists. Thus, the xs → 0 limit of the �rst argument

of the scalar product, namely that of Ĥ , can be performed independently with Ĥ (0) as

result. Because of Eqs. (B.14) and (B.18), the �nal result for the xs → 0 limit of the

�rst term on the r.h.s. of Eq. (B.9) depends only on the matrix elements with indices

(α, β) = (b, b). We can write the result explicitly as {n(1)/n(0)}λ(0) where

λ(0) = n(0)
∑
k

(Ĥ(0))bbk {(S(0))bbk − (F (0))bbk }(F̂
(0)
[F (0),F (0)])bbk {(S(0))bbk − (F (0))bbk }

(B.19)

is nothing but the well-known exponent parameter of the corresponding monodisperse

MCT model [2, 24]. The second term on the r.h.s. of Eq. (B.9) can be discussed

similarly, here Eqs. (B.15) and (B.18) lead to

µ(0) = n(0)
∑
k

(Ĥ(0))bbk {(S(0))bbk − (F (0))bbk }(Ĝ
(0)
[F (0),F (0)])bbk {(S(0))bbk − (F (0))bbk }.

(B.20)

The treatment of the remaining terms in Eq. (B.9) is somewhat more tedious. For

this purpose we write the matrix products occurring as second arguments of the scalar

products explicitly in components. By using Eqs. (B.10) and (B.11) we realize that all

the inverse powers of xs stemming from x−1 and its derivative with respect to xs can be

compensated by other factors which are of the order xs. Hence, the xs → 0 limits for

all matrix products occurring as second arguments of the scalar products exist. Thus,

for each scalar product, the xs → 0 limit of Ĥ can be performed independently yielding

Ĥ(0). The �nal result for the numerator in Eq. (6.7) evaluated at xs = 0 can be written

as

∂σ̃/∂xs|xs=0 = {2 + n(1)/n(0)}λ(0) + µ(0) + (Ĥ(0)|{Â(0) + B̂(0)}), (B.21)

(Â(0))αβk = n(0){(S(0))αbk − (F (0))αbk }(F̂ (0)
[F (0),F (0)])bbk (S

(1))bβk

+2n(0){(S(0))αbk − (F (0))αbk }(F̂ (0)
[F (0),F (1)])bsk (F

(1))sβk

−2n(0){(S(1))αsk − (F (1))αsk }(F̂
(0)
[F (0),F (1)])sbk {(S(0))bβk − (F (0))bβk }

−4n(0){(S(1))αsk − (F (1))αsk }(F̂ (0)
[F (0),F (1)])ssk {(S(1))sβk − (F (1))sβk }

+2n(0){(S(1))αsk − (F (1))αsk }(F̂ (0)
[F (0),F (1)])ssk (S

(1))sβk , (B.22)

B̂(0) = K̂(0)L̂(0), (B.23)
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(K̂(0))bbk = 1− (F (0))bbk /(S
(0))bbk ,

(K̂(0))bsk = (F (0))bbk (S
(1))bsk /(S

(0))bbk − (F (1))bsk ,

(K̂(0))sbk = 0,

(K̂(0))ssk = 1− (F (1))ssk ,

(B.24)

(L̂(0))αβk = n(0)(S(1))αbk (F̂ (0)
[F (0),F (0)])bbk {(S(0))bβk − (F (0))bβk }

+2n(0)(S(1))αsk (F̂ (0)
[F (0),F (1)])sbk {(S(0))bβk − (F (0))bβk }

+2n(0)(S(1))αsk (F̂ (0)
[F (0),F (1)])ssk {(S(1))sβk − (F (1))sβk }. (B.25)

Due to the statement below Eq. (B.18), the �nal result, Eq. (B.21), does not depend on

(F (1))bbk . The term 2λ(0) results from the bb-elements of the last two scalar products in

Eq. (B.9). The matrix B̂(0) represents the contribution of the third term in Eq. (B.9)

where K̂(0) is nothing but the xs → 0 limit of {S−F }S−1 while L̂(0) is the corresponding

limit for the expression {∂S/∂xs}nx−1F̂ [F ,F ]x−1{S − F }. All remaining quantities

are summarized to the matrix Â(0).

Let us now consider the denominator in Eq. (6.7) which follows from Eq. (B.9)

by choosing ξi = ξ. Since Eqs. (B.10) and (B.11) remain valid if one replaces the

corresponding quantities by their derivatives with respect to ξ and since ∂x−1/∂ξ =

0, the �nal result depends only on the bb-matrix elements. Thus, the denominator

in Eq. (6.7) taken at xs = 0 follows directly from the separation parameter of the

monodisperse system. It is a positive constant.

B.3 Slope of a critical line

The explicit results above allow us to de�ne a procedure for the calculation of the slope

of a glass transition line at xs = 0. It consists of �ve steps.

B.3.1 Calculation of the critical point

The �rst step is the determination of the critical coupling parameter ξc0 and the corre-

sponding NEPs (F c,(0))bbk of the corresponding one-component model of big particles. In

the following, all quantities have to be taken at ξ = ξc0, the critical coupling parameter

of the one-component system. We drop the superscript c for convenience. The denom-

inator in Eq. (6.7) taken at xs = 0 also follows directly from the separation parameter

of the monodisperse system. It is a positive constant which we calculate by numerical

di�erentiation, for simplicity.
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B.3.2 Calculation of the static structure functions

S(0) and S(1) entering into ∂σ̃/∂xs|xs=0 trough Eqs. (B.19)-(B.25) can be easily deter-

mined from c(0) and c(1) by using Eq. (4.8). The result reads

(S(0))bbk = 1/{1− n(0)(c(0))bbk },
(S(0))bsk = 0,

(S(0))ssk = 0,

(B.26)

(S(1))ssk = 1,

(S(1))bsk = n(0)(S(0))bbk (c
(0))bsk ,

(S(1))bbk = {(S(0))bbk }2{n(0)[(c(1))bbk + (c(0))ssk ]− (n(0) − n(1))(c(0))bbk − (n(0))2

×[(c(0))bbk (c
(0))ssk − (c(0))bsk (c

(0))sbk ]} − (S(0))bbk {1 + n(0)(c(0))ssk }.
(B.27)

Hence, in the second step we have to determine c(0) and c(1). Substituting n = n(0) +

xsn
(1) + . . . , c = c(0) + xsc

(1) + . . . , h analogous, and x = x(0) + xsx
(1) into Eqs. (4.43)

and (4.44) leads to equations for c(l) and h(l) which have to be solved recursively. For

l = 0 and l = 1, they read

h(0) = c(0) + n(0)c(0)x(0)h(0) (B.28)

with the zeroth-order PY closure for the d-dimensional binary hard sphere model

(h(0))αβ(r) = −1, r < (Rα +Rβ),

(c(0))αβ(r) = 0, r > (Rα +Rβ),
(B.29)

and the zeroth-order T/2-HNC closure for the binary point dipole model in 2D

ln[(h(0))αβ(r) + 1] = (h(0))αβ(r)− (c(0))αβ(r)− (u
(0)
eff )

αβ(r),

(u
(0)
eff )

αβ(r) =
2

[πn(0)]3/2
χαχβ

χ2
b

Γ

r3
,

(B.30)

and

h(1) = c(1) + n(1)c(0)x(0)h(0) + n(0){c(1)x(0)h(0) + c(0)x(1)h(0) + c(0)x(0)h(1)} (B.31)

with the �rst-order PY closure for the d-dimensional binary hard sphere model

(h(1))αβ(r) = 0, r < (Rα +Rβ),

(c(1))αβ(r) = 0, r > (Rα +Rβ),
(B.32)
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and the �rst-order T/2-HNC closure for the binary point dipole model in 2D

(h(1))αβ(r) = {(h(0))αβ(r) + 1}{(h(1))αβ(r)− (c(1))αβ(r)− (u
(1)
eff )

αβ(r)},
(u

(1)
eff )

αβ(r) = 2{1− δ}(u(0)
eff )

αβ(r).
(B.33)

Furthermore, we have (x(0))bbk = 1, (x(1))bbk = −1, (x(1))ssk = 1, and all other components

are zero, and for the d-dimensional binary hard sphere model n(0) and n(1) are given by

n(0) = (ϕd)/(ΩdR
d
b),

n(1) = n(0)(1− (Rs/Rb)
d),

(B.34)

while for the binary point dipole model in 2D its is

n(0) = n,

n(1) = 0,
(B.35)

since for this model it is convenient to keep n �xed for all Γ, xs, δχ. Note that Eqs. (B.29),

(B.30), (B.32), (B.33), (B.34), and (B.35) are the only explicitly model-dependent equa-

tions. Hence, the procedure can be easily extended for both to arbitrary binary mix-

tures and to closure relations di�erent from PY or T/2-HNC. Let us further remark that

(c(0))bbk and (h(0))bbk are nothing but the direct and total correlations functions for the

one-component system of big particles.

B.3.3 Calculation of the critical nonergodicity parameters

Beside (F (0))bbk , the evaluation of Eqs. (B.19)-(B.25) requires also (F (1))bsk and (F (1))ssk
as input. It is straightforward to derive the equations for these quantities from the �xed-

point equation F = I[F ] following from Eq. (4.18) by considering the limit xs → 0. We

obtain

(F (1))ssk = 1− {1 + 2n(0)(F̂ (0)
[F (0),F (1)])ssk }−1, (B.36)

(F (1))bsk = 2n(0)(S(1))bsk (F̂
(0)
[F (0),F (1)])ssk {1− (F (1))ssk }

+2n(0)(S(0))bbk (F̂
(0)
[F (0),F (1)])bsk {1− (F (1))ssk }

+n(0)(S(0))bbk (F̂
(0)
[F (0),F (0)])bbk {(S(1))bsk − (F (1))bsk }. (B.37)

Since (F (0))bbk have already been determined in the �rst step, Eq. (B.36) allows to cal-

culate (F (1))ssk . The r.h.s. of Eq. (B.36) does neither depend on (F (1))bsk nor on (F (1))bbk .

The (F (1))ssk are nothing but the tagged-particle NEPs for a single small particle in the
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�uid of the big particles. Finally, Eq. (B.37) allows us to calculate (F (1))bsk , since it is

not dependent on (F (1))bbk due to the statement below Eq. (B.18).

B.3.4 Calculation of the critical eigenvectors

The evaluation of Eqs. (B.19)-(B.25) requires the zeroth-order left-eigenvector Ĥ (0) as

last input. For its unique determination, also the zeroth-order right-eigenvector H (0) is

needed. For xs → 0, Eq. (4.19) reduces to

C(0)[Y ] = 2n(0)M̂ (0)F̂ (0)
[F (0),Y ]N̂ (0), (B.38)

(M̂ (0))bbk = (S(0))bbk − (F (0))bbk ,

(M̂ (0))bsk = (S(1))bsk − (F (1))bsk ,

(M̂ (0))sbk = 0,

(M̂ (0))ssk = 1− (F (1))ssk ,

(B.39)

(N̂ (0))bbk = (S(0))bbk − (F (0))bbk ,

(N̂ (0))bsk = 0,

(N̂ (0))sbk = (S(1))sbk − (F (1))sbk ,

(N̂ (0))ssk = 1− (F (1))ssk .

(B.40)

Now, C(0) and the corresponding adjoint map C†(0) allow us to calculate the eigenvectors

H(0) and Ĥ (0) obeying the normalization∑
k

(Ĥ (0))bbk (H
(0))bbk = 1, (B.41)

∑
k

(Ĥ (0))bbk {(H (0))bbk }2/{(S(0))bbk − (F (0))bbk } = 1. (B.42)

While for H (0) only the bb-elements are nonvanishing, Ĥ (0) has nontrivial contributions

for all particle indices. (H (0))bbk and (Ĥ(0))bbk are the eigenvectors for the one-component

model of big particles.

B.3.5 Calculation of the slope

Now, we have determined all quantities for the evaluation of Eqs. (B.19)-(B.25) and are

able to calculate the slope of the glass transition line by using Eqs. (6.7) and (B.8).
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