TECHNISCHE UNIVERSITAT MUNCHEN
Lehrstuhl fur Integrierte Systeme

Software Performance Estimation
Methods for System-Level Design of
Embedded Systems

Zhonglei Wang

Vollstandiger Abdruck der von der Fakultat fiir Elektrotechnik und
Informationstechnik der Technischen Universitat Miinchen zur
Erlangung des akademischen Grades eines

Doktor-Ingenieurs

genehmigten Dissertation.

Vorsitzender: ~ Univ.-Prof. Dr.-Ing. habil. Gerhard Rigoll

Prifer der Dissertation:

1. Univ.-Prof. Dr. sc. techn. Andreas Herkersdorf
2. Univ.-Prof. Dr. sc. Samarjit Chakraborty

Die Dissertation wurde am 15.04.2010 bei der Technischen Univer-
sitat Miinchen eingereicht und durch die Fakultat fiir Elektrotechnik
und Informationstechnik am 18.10.2010 angenommen.

Abstract

Software Performance Estimation Methods for System-Level
Design of Embedded Systems

by
Zhonglei Wang
Doctor of Engineering in Electrical Engineering

Technical University of Munich

Driven by market needs, the complexity of modern embedded systems is ever in-
creasing, which poses great challenges to the design process. The design produc-
tivity based on the traditional design methods cannot keep pace with the tech-
nological advance, resulting in an ever-widening design gap. To close this gap,
System-Level Design (SLD) is seen as a promising solution. The main concept
of SLD is to reduce design complexity by modeling systems at a high abstraction
level, i.e., at system level. A systematic Design Space Exploration (DSE) method
is one of the most critical parts of a system-level design methodology. DSE at
system level is aimed at making important design decisions in early design phases
under several design constraints. Performance is one of the most important design
constraints.

Another obvious trend in embedded systems is the increasing importance of soft-
ware. It is estimated that more than 98% microprocessor chips manufactured
every year are used in embedded systems. Most parallel computing platforms use
software processors as the main processing elements and are essentially software-
centric. Several sources confirm that software is dominating overall design effort of
embedded systems. This makes software performance estimation a critical issue in
DSE of embedded systems. Hence, this work is focused on software performance
estimation methods for system-level design of embedded systems.

Much effort has been made in both academia and design automation industry to
increase the performance of cycle-accurate microprocessor simulators, but they are
still too slow for efficient design space exploration of large multiprocessor systems.
Moreover, a cycle-accurate simulator takes too much effort to build, and therefore,
it is impossible to create one for each candidate architecture. Motivated by this
fact, we focus on modeling processors at a higher level to achieve a much higher
simulation speed but without compromising accuracy. A popular technique for fast
software simulation is Source Level Simulation (SLS). SLS models are obtained

by annotating application source code with timing information. We developed
a SLS approach called SciSim (Source code instrumentation based Simulation).
Compared to other existing SLS approaches, SciSim allows for more accurate
performance simulation by taking important timing effects such as the pipeline
effect, branch prediction effect and cache effect into account. The back-annotation
of timing information into source code is based on the mapping between source
code and binary code, described by debugging information.

However, SLS has a major limitation that it cannot simulate some compiler-
optimized programs with complex control flows accurately, because after optimiz-
ing compilation it is hard to find an accurate mapping between source code and
binary code, and even when the mapping is found, due to the difference between
source level control flows and binary level control flows the back-annotated timing
information cannot be aggregated correctly during the simulation. Since, in reality,
software programs are usually compiled with optimizations, this drawback strongly
limits the usability of SLS. To solve this problem, we developed another approach
based on SciSim, called iSciSim (intermediate Source code instrumentation based
Simulation). The idea behind iSciSim is to get an intermediate representation of
source code, called intermediate source code (ISC), which has a structure close
to the structure of its binary code and thus allows for accurate back-annotation
of the timing information obtained from the binary level. The back-annotated
timing information can also be aggregated correctly along the ISC-level control
flows.

For multiprocessor systems design, iSciSim can be used to generate Transaction
Level Models (TLMs) in SystemC. In many embedded systems, especially in real
time systems, multiple software tasks may run on a single processor, scheduled by
a Real-Time Operating System (RTOS). To take this dynamic scheduling behavior
into account in system-level simulation, we created an abstract RTOS model in
SystemC to schedule the execution of software TLMs generated by iSciSim.

In addition to simulation methods, we also contributed to Worst-Case Execution
Time (WCET) estimation. We apply the concept of intermediate source code
to facilitate flow analysis for WCET estimation of compiler-optimized software.
Finally, a system-level design framework for automotive control systems is pre-
sented. The introduced software performance estimation methods are employed
in this design framework. In addition to fast software performance simulation and
WCET estimation, we also propose model-level simulation for approximate per-
formance estimation in an early design phase before application source code can
be generated.

i

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Andreas Herkersdorf.
He gave me the chance to get this great research topic and provided me a lot of
advices, inspiration, and encouragement throughout my Ph.D. study. I am truly
grateful for his help, not only in my research, but also in my life. 1 also want to
thank Prof. Walter Stechele for his guidance and support.

I would like to thank Prof. Samarjit Chakraborty for being the co-examiner of my
thesis and for his valuable comments. I also want to thank Prof. Gerhard Rigoll
for chairing the examination committee.

I am grateful to the BMW Forschung und Technik GmbH for their support of
my work in the course of the Car@TUM cooperation program. In particular, I
would like to thank Dr. Martin Wechs, BMW Forschung und Technik, for the
constructive discussions and valuable inputs throughout our collaboration.

During my three-year work in the BASE.XT project, I was fortunate to work with
a group of talented and creative colleagues from different institutes. They include:
Andreas Bauer, Wolfgang Haberl, Markus Herrmannsdorfer, Stefan Kugele, Chris-
tian Kiihnel, Stefano Merenda, Florian Miiller, Sabine Rittmann, Christian Schall-
hart, Michael Tautschnig, and Doris Wild. They expertise in different aspects in
embedded systems design. The discussions with them have always been a great
learning experience for me. In addition, I would like to thank the professors and
BMW colleagues involved in the project.

A large amount of thanks goes to my colleagues and friends at LIS. They include:
Abdelmajid Bouajila, Christopher Claus, Michael Feilen, Robert Hartl, Mattias
Ihmig, Kimon Karras, Andreas Laika, Andreas Lankes, Daniel Llorente, Michael
Meitinger, Felix Miller, Rainer Ohlendorf, Johny Paul, Roman Plyaskin, Holm
Rauchfuss, Gregor Walla, Stefan Wallentowitz, Thomas Wild, Johannes Zeppen-
feld, and Paul Zuber. In particular, I want to thank Roman Plyaskin and Holm
Rauchfuss for the constructive discussions in LIS-BMW meetings. Their com-
ments from various angels helped in improving my work. I also want to thank the
members of the institute administration for maintaining an excellent workplace.
They are: Verena Draga, Wolfgang Kohtz, Gabi Sporle, and Doris Zeller.

I also want to take the chance to thank Bernhard Lippmann, Stefan Riiping,
Andreas Wenzel and other colleagues at the department of Chipcard and Security
ICs, Infineon AG, for their support during my student job and master’s thesis
work.

Last but certainly not least, I would like to thank my parents and my wife, to
whom this thesis is dedicated. My parents raised me up and tried their best to
provide me the best possible education and a healthy atmosphere at home. They
are always supportive no matter what choice I make. Without them I would not
have been able to finish this work. I want to thank my lovely wife Yanlan for
her love, constant support, encouragement, and understanding during my work.
It was the biggest surprise in my life to meet her in Germany. She made my life
more colorful.

iv

To my parents, wife and daughter

AR 0 XA, T %)L

Contents

1

Introduction and Background 1
Introduction 3
1.1 The Scope and Objects of This Work 4

1.1.1 Software Performance Simulation 5

1.1.2 Software Performance Simulation in System-Level Design
Space Exploration 8
1.1.3 Worst-Case Execution Time Estimation 10
1.1.4 A Design Framework for Automotive Systems 12
1.2 Summary of Contributions 15
1.3 Outline of the Dissertation 16
Background 19
2.1 Embedded Systems: Definition and Market Size 19
2.2 Embedded System Trends 20
2.2.1 Application Trends 20
2.2.2 Technology and Architectural Trends 21
2.2.3 Increasing Software Development Cost 24
2.3 Traditional Embedded Systems Design 25
2.4 Design Challenges 26
2.5 System-Level Design oL 28
2.5.1 Definitions 28
2.5.2 System-Level Design Flows 29
2.5.3 Survey of SLD Frameworks 30
2.5.4 SystemC and Transaction Level Modeling 33

Software Performance Estimation Methods 35
Execution-Based Software Performance Simulation Strategies 37
3.1 Imstruction Set Simulators L. 37
3.2 Binary (Assembly) Level Simulation 39
3.3 Source Level Simulation 41
3.4 IR Level Simulation L 42

vil

Contents

4

viil

SciSim: A Source Level Approach for Software Performance Simula-
tion 45
4.1 Basic Information Lo 45
4.1.1 Compilation and Optimization 45
4.1.2 Control Flow Graph 47
4.1.3 Introduction to Source Code Instrumentation 49
4.2 The SciSim Approach 50
4.2.1 Source Code Instrumentation 50
4.2.2 Simulation 53
4.3 Experimental Results o0 0L 53
4.3.1 Performance Simulation of Unoptimized Software 55
4.3.2 Performance Simulation of Optimized Software 56
4.4 Why Does SciSim Not Work for Some Compiler-Optimized Software? 58
4.5 Summary of SciSim’s Advantages and Limitations 65

iSciSim for Performance Simulation of Compiler-Optimized Software 67

5.1 Overview of the iSciSim Approach 68
5.2 Intermediate Source Code Generation 69
5.3 Intermediate Source Code Instrumentation 72
5.3.1 Machine Code Extraction and Mapping List Construction . 72
5.3.2 Basic Block List Construction 75
5.3.3 Static Timing Analysis 7
5.3.4 Back-Annotation of Timing Information 80
5.3.5 An Example: insertsort 83
5.4 Dynamic Simulation of Global Timing Effects 83
5.5 Software TLM Generation using iSciSim for Multiprocessor Simu-
lation in SystemC 85
5.6 Experimental Results 90
5.6.1 Source Code vs. ISC 91
5.6.2 Benchmarking SW Simulation Strategies 91
5.6.3 Dynamic Cache Simulation. 99
5.6.4 Simulation in SystemC L. 103

5.6.5 Case Study of MPSoC Simulation: A Motion-JPEG Decoder 104

Multi-Task Simulation in SystemC with an Abstract RTOS Model 117
6.1 Unscheduled Execution of Task Models 117
6.2 The RTOS’s Functionality 120
6.2.1 Task 120
6.2.2 Schedulero 122
6.3 The RTOS Model in SystemC 124
6.3.1 Task Model 125
6.3.2 Scheduler Model 127
6.3.3 Timing Parameters 128
6.4 Preemption Modeling oL 128
6.4.1 Static Time-Slicing Method 130

Contents

6.4.2 Result Oriented Method 131

6.4.3 Dynamic Time-Slicing Method 132
6.5 A More Modular Software Organization of Transaction Level Pro-

cessor Modelo 134
6.6 Experimental Results 141

7 Flow Analysis on Intermediate Source Code for WCET Estimation 143

7.1 Flow Analysis and Related Work 144
7.2 Overview of the Proposed Approach and Tool Architecture 146
7.3 Flow Analysis 148
7.3.1 Constructing Control Flow Graph 149
7.3.2 Identifying Loops 150
7.3.3 Reducing Control Flow Graph 150
7.3.4 Bounding Loops and Detecting Infeasible Paths 151
7.4 Flow Facts Transformation 153
7.5 Timing Analysis and WCET Calculation 155
7.6 Experiment 156
7.6.1 Experiment Methodology 156
7.6.2 Experiment Results 158

Il Software Performance Estimation in

a System-Level Design Flow 161
8 The SysCOLA Framework 163
8.1 Design Process Overview 164
8.1.1 Related Work 165
8.2 The SysCOLA Framework 166
8.2.1 System Modeling 167
8.2.2 Virtual Prototyping 169
8.3 Case Study: An Automatic Parking System 172
8.3.1 Functionality and Design Space 172
8.3.2 System Modeling L. 174
8.3.3 Virtual Prototyping 174
8.3.4 System Realization, 176

8.4 Summary of the Employed Software Performance Estimation Tech-
DIQUES © « v v v v e e e e e e e e e 176
8.4.1 Model-Level Performance Estimation 176
8.4.2 WCET Estimation 177
8.4.3 Software Performance Simulation 178
9 Model-Level Simulation of COLA 179
9.1 Overview of COLA and SystemC 180
9.2 COLA to SystemC Translation 181

X

Contents

9.2.1 Synchronous Dataflow in SystemC
9.2.2 Translation Rules,
9.2.3 Simulation using SystemC
9.3 CaseStudy

9.3.1 The COLA Model of the Adaptive Cruise Control System

9.3.2 Simulation using SystemC

IV Summary

10 Conclusions and Future Work

10.1 Software Performance Simulation
10.1.1 Conclusions
10.1.2 Future Work

10.2 Worst Case Execution Time Estimation
10.2.1 Conclusions
10.2.2 Future Work

10.3 The SysCOLA Framework
10.3.1 Conclusions
10.3.2 Future Work

List of Abbreviations
List of Figures

Bibliography

Part |

Introduction and Background

Chapter 1

Introduction

Embedded systems are ubiquitous in our everyday lives, spanning all aspects of
modern life. They appear in small portable devices, such as MP3 players and cell
phones, and also in large machines, such as cars, aircrafts and medical equipments.

Driven by market needs, the demand for new features in embedded system prod-
ucts has been ever increasing. For example, twenty years ago, a mobile phone
has usually only the functionality of making voice calls and sending text mes-
sages. Today, a modern mobile phone has hundreds of features, including camera,
music and video playback, and GPS navigation etc. The rapid growth in applica-
tion complexity places even greater demands on the performance of the underlying
platform. A single high-performance microprocessor cannot fulfill the performance
requirement any longer. This has leaded to the advent of parallel architectures.
The typical parallel architectures used in the embedded systems domain include
distributed embedded systems and Multiprocessor System-on-Chip (MPSoC). A
distributed system consists of a number of processing nodes distributed over the
system and connected by some interconnect network. An example of distributed
systems is automotive control systems. In a car like BMW 7-series over 60 pro-
cessors are networked to control a large variety of functions. An MPSoC is a
processing platform that integrates the entire system into a single chip. Chips
with hundreds of processor cores have been fabricated. With the technological
advance, it is even possible to integrate thousands of cores in a single chip.

The complexity of today’s embedded systems opens up a large design space. De-
signers have to select a suitable design from a vast variety of solution alternatives
to satisfy constraints on characteristics such as performance, cost, and power con-
sumption. This design complexity makes the design productivity cannot keep pace
with the technological advance. This results in a gap between the advance rate
of technology and the growth rate of design productivity, called design gap. New
design methodologies are highly required to close the design gap and shorten the
time-to-market.

Most agree that System-Level Design (SLD) methodologies are the most efficient
solution to address the design complexity and thus to improve the design produc-
tivity. SLD is aimed to simplify the specification, verification and implementation

Chapter 1 Introduction

of systems including hardware and software, and to enable more efficient design
space exploration (DSE), by raising the abstraction level at which systems are
modeled. System-level DSE is aimed at making design decisions as many as pos-
sible in early design phases. Good design decisions made in early phases make up
a strong basis for the following steps. For example, to design an MPSoC, the first
important decision to be made at system level is the choice of an appropriate sys-
tem architecture that is suited for the target application domain. Then, we should
decide the number of processors and hardware accelerators, add some application
specific modules, make the decision of hardware/software partitioning and map
the tasks to the available resources. These decisions are easier to make at a high
abstraction level, where a system is modeled without too many implementation
details.

During DSE, performance is one of the most important design constraints to be
considered, especially for real-time systems. If performance requirements cannot
be met, this could even lead to system failure. Hence, many design decisions
are made in order to meet the performance requirements. If it is found in the
implementation step that some performance requirements are not satisfied, this
could lead to very costly redesign. Therefore, accurate performance estimation is
very important in order to reduce the possibility of such design errors.

1.1 The Scope and Objects of This Work

Because software-based implementations are much cheaper and more flexible than
hardware-based implementations, more and more functionality of embedded sys-
tems has been moving from hardware to software. This makes the importance
of software and its impact on the overall system performance steadily increas-
ing. Hence, this work is focused on software performance estimation methods for
system-level design of embedded systems.

Software performance estimation methods fall mainly into two categories: static
timing analysis and dynamic simulation. Static timing analysis is carried out in
an analytical way based on mathematical models. It is often applied to worst-case
execution time (WCET) estimation for hard real-time applications. In contrast,
dynamic performance simulation really executes software code and is targeted at
modeling run-time behaviors of software and estimating the timing features of
target processors with respect to typical input data sets. Software performance
simulation is our main focus, but we also researched on flow analysis for WCET
estimation of compiler-optimized software.

In addition, we also worked on a system-level design framework SysCOLA for au-
tomotive systems [98]. This framework combines a modeling environment based
on a formal modeling language COLA [65] and a SystemC-based virtual prototyp-
ing environment. Both COLA and the framework were developed in the scope of a

1.1 The Scope and Objects of This Work

cooperation project between Technical University of Munich and BMW Forschung
und Technik GmbH, called BASE.XT, where 7 Ph.D. students were involved. In
SysCOLA, my own contributions include (1) a VHDL code generator, generating
VHDL code from COLA models for hardware implementation [99], (2) a WCET
analysis tool, that estimates the WCET of each task to be used in an automatic
mapping algorithm, (3) a SystemC code generator, that generates SystemC code
from COLA models for performance simulation early at the model level before C
code can be generated [94], and (4) the SystemC-based virtual prototyping envi-
ronment for architectural design and performance validation [93]. In this thesis, I
will present the SysCOLA framework and show the role software performance es-
timation plays in the framework. Here, software performance estimation includes
software performance simulation, WCET estimation, and model-level simulation
of COLA. Software performance simulation and WCET estimation are introduced
separately, while, in the scope of SysCOLA, we introduce only model-level simu-
lation.

To summarize, the scope and objects of our work include the following three parts,
which are discussed in more detail in the following sub-sections.

e Software performance simulation methods for system-level design space explo-
ration.

e Flow analysis for WCET estimation of compiler-optimized embedded software.

e Introduction of the SysCOLA framework and model-level simulation of COLA.

1.1.1 Software Performance Simulation

Today, simulative methods are still the dominant methods for DSE of embedded
systems. They have the ability to get dynamic performance statistics of a system.
Earlier, software is usually simulated using instruction set simulators (ISSs) to get
the influence of software execution on system performance and study the run-time
interactions between software and other system components. An ISS realizes the
instruction-level operations of a target processor, including typically instruction
fetching, decoding, and executing, and allows for cycle-accurate simulation. To
simulate a multiprocessor system, a popular method is to integrate multiple ISSs
into a SystemC based simulation backbone. Many simulators are built following
this solution, including the commercial simulators from CoWare [5] and Synop-
sys [12] and academic simulation platforms like MPARM [29]. Such simulators
are able to execute target binary, boot real RTOSs, and provide cycle-accurate
performance data. However, ISSs have the major disadvantage of extremely low
simulation speed and very high complexity. Consequently, software simulation is
often a bottleneck of the overall simulation performance. This long-running sim-
ulation can be afforded only in the final stage of the development cycle, when the
design space is significantly narrowed down.

Chapter 1 Introduction

For system-level DSE, an ISS covers too many unnecessary details. Rather, tech-
niques that allow for fast simulation with enough accuracy for making high level
design decisions are more desirable. Trace-based simulation methods are in this
category. Pimentel et al. [78] use a set of coarse grained traces to represent the
workload of each task. Each trace corresponds to a function or a high-level opera-
tion, and is associated with a latency, measured using an ISS. The coarse grained
traces filter out many intra-trace events and may lead to inaccurate simulation
of the whole system. Simulations using fine-grained traces, as presented in [102],
are more accurate. However, the trace-driven simulations still have the common
drawback that traces are not able to capture a system’s functionality. Further-
more, the execution of most tasks is data-dependent, but traces can represent only
the workload of one execution path of a program.

To get a high-level simulation model that captures both the function and data-
dependent workload of a software task, software simulation techniques based on
native execution have been proposed. The common idea behind them is to gener-
ate, for each program, a simulation model that runs directly on the host machine
but can produce performance statistics of a target execution. To generate such a
simulation model, three issues are to be tackled: functional representation, tim-
ing analysis, and coupling of the functional representation and the performance
model. The existing native execution based techniques are differentiated with
each other by the choice of the functional representation level, which could be the
source level, the intermediate representation (IR) level, or the binary level. To get
accurate timing information, the timing analysis should be performed on binary
code, which will be finally executed on the target processor, using a performance
model that takes the important timing effects of the target processor into account.
Coupling of the functional representation and the performance model is realized
by annotating the functional representation with the obtained timing information.
The back-annotated timing information can generate accurate delays at simulation
run-time.

Binary level simulation (BLS) that gets functional representation by translating
target binary into a high level programming language or host binary, is proposed
in the last decade. A binary level simulator is often called compiled ISS in some
papers. It offers much faster simulation than interpretive ISSs by performing time-
consuming instruction fetching and decoding prior to simulation. The simulation
speed is in the hundreds of MIPS range for a single processor.

Recently, source level simulation (SLS) is widely used for system-level design, be-
cause of its high simulation speed and low complexity. A source level simulator
uses source code as functional representation. Timing information that represents
execution delays of the software on the target processor is inserted into the source
code according to the mapping between the source code and the generated ma-
chine code. Many early SLS approaches have the disadvantage of low simulation
accuracy. Some use coarse-grained timing information. Others use fine-grained
timing information but do not take into account the timing effects of the processor

1.1 The Scope and Objects of This Work

microarchitecture. Therefore, these approaches achieve a high simulation speed
at the expense of simulation accuracy.

In our work, we developed a SLS approach, called SciSim (Source code instrument-
ation based Simulation) [100, 101]. Compared to previously reported SLS ap-
proaches, SciSim allows for more accurate performance simulation by employing
a hybrid method for timing analysis. That is, timing analysis is performed on
target binary code, both statically for pipeline effects and dynamically for other
timing effects that cannot be resolved statically. In SciSim, we also use a simple
way to get information on the mapping between source code and binary code.
We extract the mapping information from debugging information, which can be
dumped automatically during cross-compilation. Thus, the whole approach can
be fully automated without the need of any human interaction.

However, the SLS technique, also including our SciSim approach, still has a major
disadvantage in that it cannot estimate some compiler-optimized code accurately,
because after optimizing compilation it is hard to find an accurate mapping be-
tween source code and binary code, and even when the mapping can be found,
due to the difference between source level control flows and binary level control
flows the timing information back-annotated according to the mapping cannot
be aggregated correctly during the simulation. This is especially true for control-
dominated software, the control flows of which will be significantly changed during
optimizing compilation. Since, in reality, software programs are usually compiled
with optimizations, this drawback strongly limits the usability of SLS.

Therefore, we developed another approach called iSciSim (intermediate Source
code instrumentation based Simulation) [95, 97]. iSciSim is based on SciSim but
overcomes the main limitation of SciSim. It allows for accurate simulation of
compiler-optimized software at a simulation speed as fast as native execution. The
idea behind the iSciSim approach is to transform the source code of a program
to code at another representation level that is low enough, so that the new code
has a structure close to that of the binary code and thus allows for accurate back-
annotation of the timing information obtained from the binary level. This kind
of middle-level code is called intermediate source code (ISC), to be differentiated
from the original source code. Compared with the existing software simulation
techniques, including ISS, BLS, and SLS, iSciSim achieves the best trade-off for
system-level design, concerning accuracy, speed and complexity.

SciSim is still useful, in case compiler-optimizations are not required or the soft-
ware to be simulated is data-intensive and has relatively simple control flows. The
simple control flows of such data-intensive software programs will not be changed
much during optimizing compilation, and therefore, timing information can still
be accurately back-annotated into the source code. It is our future work to address
the mapping problems in SciSim to make it able to simulate more programs accu-
rately. In comparison to iSciSim, an advantage of SciSim is that annotated source

Chapter 1 Introduction

code is more readable than annotated ISC and thus allows for easier debugging
during simulation.

1.1.2 Software Performance Simulation in System-Level
Design Space Exploration

In Figure 1.1 we show a system-level DSE flow, where DSE is based on simulation
using SystemC transaction level models (TLMs). SystemC is currently the most
important System Level Design Language (SLDL). It supports system modeling at
different levels of abstraction and allows hardware/software co-simulation within
a single framework. TLM is a widely used modeling style for system-level design
and is often associated with SystemC. In this modeling style, communication ar-
chitectures are modeled as channels, which provide interfaces to functional units.
Modeling effort can be reduced, if different communication architectures support
a common set of abstract interfaces. Thus, communication and computation can
be modeled separately. SystemC and TLM are introduced more in Section 2.5.4.

Many SLD approaches or toolsets follow a similar flow to the one shown in Fig-
ure 1.1 for DSE, for example, Embedded System Environment (ESE) from UC
Irvine [6], the commercial tool CoFluent Studio [4], SystemClick from Infineon [8§],
and the approaches introduced in [53, 79].

The flow consists of four steps: specification, computation design, communication
design and design space exploration. In the specification step, a system’s func-
tionality and the platform architecture are captured in an application model and
a platform model, respectively, usually in a graphical modeling environment. The
application model is usually a hierarchical composition of communicating pro-
cesses, which expresses the parallelism of the application. The platform model
specifies capability and services of the hardware platform. It is expressed as a
netlist of processors, memories, and communication architecture. Then, the pro-
cesses can be mapped to the processors, either manually or automatically, and the
channels connecting the processes are mapped to the communication architecture.

The design environments or toolsets mentioned above are different from each other
in terms of specification environments. ESE and CoFluent Studio are based on
their own graphical modeling environments. SystemClick uses a language Click as
its modeling foundation and design approaches introduced in [53, 79] use Simulink.

Our work on software performance simulation covers the computation design step.
Computation design is actually a process of generating software performance sim-
ulation models. The input is application tasks generated from the application
model, and the output is scheduled/timed application TLMs. This is achieved
by two steps. The first step is timing annotation. Here, the application code is
annotated with timing information given the information on which task is mapped
to which processor. In this sense, a timed application TLM is actually a native

1.1 The Scope and Objects of This Work

Application Model

Application Tasks

 /

=

Timing
Annotation

Processor
Description Files

Timed
Application TLM

|

=

Scheduling
Refinement

RTOS Models

Scheduled/Timed
Application TLM

|

Platform Model

Mapping &
Code Generation

Platform
Configuration

A J

Communication
Design

\

e == — —

Communication
TLM

|

=

Other Models

:@m TLM GeneD

System TLM

Y

Specification

2 Computation Design

3 Communication Design

4 Exploration

Figure 1.1: System Level Design Flow

Chapter 1 Introduction

execution based simulation model. In the second step, if dynamic scheduling is
used, the application TLMs are scheduled using an abstract RTOS model.

The reason why native execution based simulation is used instead of ISSs has been
discussed in Section 1.1.1. Among native execution based simulation techniques,
source level simulation (SLS) is most suitable for system-level software simula-
tion. The design frameworks or toolsets mentioned above all use source code
instrumentation to get timed application TLMs. However, as mentioned already,
SLS has a major problem raised by compiler optimizations. Here, our iSciSim
can provide a better support for computation design. The application TLMs gen-
erated by iSciSim contain fine-grained, accurate timing annotations, taking the
compiler-optimizations into account.

If multiple tasks are mapped to a single processor, an RTOS is needed to schedule
the task execution dynamically. It is important to capture this scheduling behavior
during system-level DSE. This can be achieved by combining application TLMs
and an abstract RTOS model in SystemC. This is called scheduling refinement.
In our work, we studied how to get an efficient combination of fine-grained timing
annotated application TLMs and an abstract RTOS model. In the previous works
mentioned above, only ESE has a description of its RTOS model in [104]. The
other works either address only static scheduling like SystemClick or do not provide
details about their RTOS models. Compared to the RTOS model of ESE, our work
achieved a more modular organization of timed application TLMs and the RTOS
model.

The main output of communication design is a communication TLM. As the com-
munication TLMs provide a common set of abstract interfaces, the application
TLMs can easily be connected to them to generate a TLM of the whole system.
The design space exploration is based on simulation using the TLM, and the ob-
tained design metrics are used to guide design modification or refinement.

1.1.3 Worst-Case Execution Time Estimation

Many embedded systems are hard real-time systems, which are often safety-critical
and must work even in the worst-case scenarios. Although simulative DSE meth-
ods are able to capture real workload scenarios and provide accurate performance
data, they have limited ability to cover corner cases. Hence, some analytical
methods are also needed for hard real-time systems design. An example of ana-
lytical methods is the Network Calculus based approach described in [92]. It uses
performance networks for modeling the interplay of processes on the system archi-
tecture. Another example is SymTA /S [52], which uses formal scheduling analysis
techniques and symbolic simulation for performance analysis. Such analytical
DSE methods are usually based on knowing worst-case execution times (WCETs)
of the software tasks. Hence, bounding the WCET of each task is essential in hard
real-time systems design.

10

1.1 The Scope and Objects of This Work

Today, static analysis still dominates the research on WCET estimation. Static
analysis does not execute the programs, but rather estimates the WCET bounds in
an analytical way. It yields safe WCET bounds, if the system is correctly modeled.
Typically, the static WCET analysis of a program consists of three phases: (1)
flow analysis for loop bounding and infeasible path detection, (2) low-level timing
analysis to determine instruction timing, and (3) finally, WCET calculation to
find an upper bound on the execution time given the results of flow analysis and
low-level timing analysis.

There exists a large amount of previous work addressing different aspects of WCET
estimation. We will mention some in Chapter 7. For an extensive overview of
previous work, the paper [103] is a very good reference.

In [103], the authors also point out some significant problems or novel directions
that WCET analysis is currently facing. They are listed as follows:

e Increased support for flow analysis

e Verification of abstract processor models

Integration of timing analysis with compilation

Integration with scheduling

Integration with energy awareness

Design of systems with time-predictable behavior

e Extension to component-based design

Our work mainly studied flow analysis, which, as shown above, faces some prob-
lems. The flow analysis problems are mentioned several times in [103]. In the
state-of-the-art WCET estimation methods, flow analysis is performed either on
source code or binary code. It is more convenient to extract flow facts (i.e., con-
trol flow information) from the source code level, where the program is developed.
However, as timing analysis and WCET calculation are usually performed on bi-
nary code that will be executed on the target processor, the source level flow
facts must be transformed down to the binary code level. Due to the presence of
compiler optimizations, the problem of this transformation is nontrivial. If flow
analysis is performed on binary code, the obtained flow facts can be directly used
for WCET calculation without the need of any transformation. However, flow
analysis often needs the input of some information that cannot be calculated au-
tomatically. Such information is usually given in the form of manual annotations.
Manual annotation at the binary code level is a very error-prone task. In addition,
there are some previous works that propose to use a special low-level IR for flow
analysis. This forces software developers to use a special compiler and therefore
has limited usability in practice.

11

Chapter 1 Introduction

We propose to perform flow analysis on ISC [96]. For flow analysis, ISC has the
following advantageous features: (1) It contains enough high-level information for
necessary manual annotations; (2) It has a structure close to that of binary code
for easy flow facts transformation; (3) ISC is generated from standard high-level
IRs of standard compilers, so the approach is not limited to a special compiler.
These features make flow analysis on ISC achieve a better trade-off between visi-
bility of flow facts and simplicity of their transformation to the binary code level.
Furthermore, the approach is easy to realize and no modification of compiler is
needed.

1.1.4 A Design Framework for Automotive Systems

In the BASE.XT project we first developed a new formal modeling language COLA
(the COmponent LAnguage) [65] and a modeling environment based on it for
automotive software development. The modeling process consists of three levels
as shown in Figure 1.2:

e Feature architecture: In this first step, the functional requirements are cap-
tured in a feature model. The hierarchical nature of COLA allows for de-
composition of features into sub-features. The work on feature modeling is
done by Sabine Rittmann and is introduced in detail in her Ph.D. thesis [86].

e Logical architecture: The feature model is converted to a functional model
in logical architecture throughout several steps of model transformation and
rearrangement, semi-automatically. The target of this modeling step is to
describe the complete functionality of a system by means of stepwise de-
compositions. Here, several tools are integrated to help to remove modeling
errors, e.g., a type inference tool [66] that detects and diagnoses errors at
interconnected component interfaces and a model checker that verifies the
conformance of a design to requirements expressed in SALT (Structured As-
sertion Language for Temporal Logic) [28]. The formal semantics of COLA
enables these tools to perform automatic analysis.

At this modeling level, I contributed a SystemC code generator that gener-
ates SystemC code from COLA models. The generated SystemC code allows
for functional validation and approximate performance estimation early at
the model level before C code can be generated [94].

e Technical architecture: The technical architecture bridges the functional model
and implementation. In the technical architecture, units of the functional
model are grouped into clusters. On the other hand, the hardware platform
is modeled as an abstract platform (also called a hardware model), which
captures the platform capability. Stefan Kugele and Wolfgang Haberl have
developed an automatic mapping algorithm, which maps the application
clusters onto the abstract platform [63, 64]. Here, my work was to integrate

12

1.1 The Scope and Objects of This Work

Requirements
Feature
Architecture

Logical
Architecture

clusters

Figure 1.2: The COLA-based Modeling Environment

my WCET analysis tool to provide a WCET bound of each cluster on each
possible processing element. The automatic mapping algorithm is based on

the WCETs.

After finding a proper mapping that fulfills the requirements, C code can
be automatically generated [49]. Although the project is focused on soft-
ware development, I also researched on hardware implementation of COLA
models [99]. The generation of both C and VHDL code relies on a set of
template-like translation rules.

As shown, the modeling environment covers the whole process starting from func-
tional requirements to distributed software code, with successive model refine-
ments and supported by a well-integrated toolchain. However, it lacks an envi-
ronment for systematic design space exploration. The automatic mapping can be
regarded as an analytical way of DSE, but it works well only when the target
platform is known, the WCET of each cluster is accurately estimated, and the
mapping problem is correctly formalized. This is often not the case. Our ex-
periences tell us that we cannot totally trust analytical methods, because, first,
not all the design problems can be accurately expressed by mathematical mod-
els, and second, today’s static WCET estimation techniques often produce overly
pessimistic estimates and lead to over-design.

13

Chapter 1 Introduction

Model-Level Simulation System Modeling

WCET Estimator

slusters

—

<&

Application
Tasks

(m

—
~~
Platform
Configuration
b L
~~ ~~

u1 [— iSciSim VP Generator (1 II__E
Processor @ @ Model Library

Description Files . VPAL
Timed .]
Task Models RTOS| [RTOS| [RTOS Virtual

Network Platform

g:i Integration Q
|D

(S8

Virtual
Prototyping

2
D D Virtual

Prototype

VPAL |

RTOS| |[RTOS| |RTOS Simulation &
[Network] | Exploration

Figure 1.3: Extensions Made to the COLA Environment

Therefore, we constructed a virtual prototyping environment based on SystemC.
Here, virtual prototyping is defined as a process of generating a simulation model
that emulates the whole system under design. We focus on system-level design
and use SystemC TLMs. In this sense, the virtual prototyping approach actually
covers computation and communication design shown in Figure 1.1. One differ-
ence is that a virtual prototype is divided into a virtual platform that captures
the dynamic behavior of the system platform under design and software tasks that
run on the virtual platform, instead of being divided into application TLMs and a
communication TLM. A virtual platform contains RTOS models, communication
models, and a virtual platform abstraction layer (VPAL) on the top of them, as
shown in Figure 1.3. The VPAL is aimed at wrapping the whole virtual platform
and reducing the effort of virtual prototyping. Using this layer, the virtual plat-
form can be regarded as a functional entity that provides a set of services, from
the application’s perspective. The tasks can be simulated on different virtual plat-
forms without the need of changing any code. Only adaptation of the VPAL to the
new platform is needed. VPAL also parses configuration information generated
from the abstract platform to configure the virtual platform automatically.

14

1.2 Summary of Contributions

The extensions I made to the COLA-based modeling environment are shown in
Figure 1.3, including a WCET estimator, a model-level simulation environment
and a virtual prototyping environment. Note that model-level simulation and
virtual prototyping are two different approaches, used in different design phases,
although both are based on SystemC. SystemC models for model-level simulation
are generated from COLA application models by means of one-to-one translation.
The syntactic structure and semantics of COLA models are preserved by the gen-
erated SystemC models. Model-level simulation is used for functional validation
and approximate performance estimation at an early design phase when the appli-
cation model is still under development. Whereas, software simulation models for
virtual prototyping are generated by iSciSim after application code is generated
from COLA models. Virtual prototyping is used for functional validation of the
generated code, accurate performance evaluation, and design space exploration of
the whole system.

1.2 Summary of Contributions

The contributions of this dissertation are summarized as follows:

e We introduce a hybrid timing analysis method to take into account the im-
portant timing effects of processor microarchitecture in high level software
simulation models. Hybrid timing analysis means that timing analysis is
performed both statically and dynamically. Some timing effects like pipeline
effects are analyzed at compile-time using an offline performance model and
are represented as delay values. Other timing effects like the branch predic-
tion effect and the cache effect that cannot be resolved statically are analyzed
at simulation run-time using an online performance model.

e We present the SciSim approach, which is a source level simulation approach.
SciSim employs the hybrid timing analysis method mentioned above. In
SciSim, timing information is back-annotated into application source code
according to the mapping between source code and binary code described
by debugging information. Here, timing information includes delay values
obtained from static analysis and code that is used to trigger dynamic timing
analysis at simulation run-time.

e We present the iSciSim approach, which extends SciSim to solve problems
raised by compiler-optimizations during source code timing annotation. It
extends SciSim by adding a step of transforming original source code to ISC.
ISC has accounted for all the machine-independent optimizations and has a
structure close to that of binary code, and thus, allows for accurate back-
annotation of timing information. The same as SciSim, iSciSim also uses the
hybrid timing analysis method.

15

Chapter 1 Introduction

In both SciSim and iSciSim, data cache simulation is a problem, because
target data addresses are visible in neither source code nor ISC. We propose
a solution to use data addresses in the host memory space for data cache
simulation. It has been validated that the data of a program in the host
memory and in the target memory has similar spatial and temporal locality,
if the host compiler and the cross-compiler are similar.

We introduce an abstract RTOS model that is modular and supports bet-
ter interactions with fine-grained timing annotated task models. To achieve
better modularity for the purpose of module reuse, we implement the RTOS
model as a SystemC channel. Task models are wrapped in a separate Sys-
temC module. Implemented in this way, the synchronization between tasks
and the RTOS cannot be realized easily using events. We use a novel method
to solve this synchronization problem.

We propose to perform WCET analysis on ISC to get a better support for
flow analysis. Flow analysis on ISC achieves a better trade-off between visi-
bility of flow facts and simplicity of their transformation to the binary code
level. The whole WCET analysis approach is also easy to realize without
the need of compiler modification.

We introduce a method for model-level simulation of COLA. The model-
level simulation enables functional validation and approximate performance
evaluation at a very early design phase to help in making early decisions
regarding software architecture optimization and partitioning. COLA mod-
els are essentially abstract and cannot be simulated directly. Due to similar
syntactic structures of SystemC and COLA models, we make use of SystemC
as the simulation framework. We developed a SystemC code generator that
translates COLA models to SystemC automatically, with the syntactic struc-
ture and semantics of COLA models preserved.

We present the virtual prototyping environment in the SysCOLA design
framework. Virtual prototyping is aimed at design space exploration and
functional validation of application code generated from COLA, using Syste-
mC-based simulation. The virtual prototyping environment has two advan-
tageous features: (1) it integrates iSciSim, which, together with the C code
generator, can generate fast and accurate software simulation models auto-
matically from COLA models; (2) it employs the concept of virtual platform
abstraction layer, which abstracts the underlying virtual platform with an
API and configures the virtual platform automatically according to the con-
figuration information generated from the abstract platform.

1.3 Outline of the Dissertation

The organization of this dissertation is given in the following:

16

1.3 Outline of the Dissertation

Chapter 2, Background, gives a detailed introduction to the background of
this work. In this chapter, we introduce the definition and trends of em-
bedded systems, present traditional embedded systems design and design
challenges, describe the basic concepts of system-level design, give a short
survey of system-level design frameworks, and introduce SystemC and trans-
action level modeling.

Chapter 3, Ezecution-Based Software Performance Simulation Strategies,
provides an introduction to four software simulation techniques and their
related works. The four simulation techniques are instruction set simulation
(ISS), binary level simulation (BLS), source level simulation (SLS) and IR
level simulation (IRLS). We give a discussion about the pros and cons of
each technique, which serves as a motivation of our performance simulation
methods introduced in Chapter 4 and 5.

Chapter 4, SciSim: A Source Level Approach for Software Performance Stm-
ulation, introduces some basic information about software compilation, op-
timization, and control flow graphs, gives an introduction to the SciSim
approach, presents some experimental results to show the advantages and
limitations of SciSim, explain the causes of the limitations, and finally sum-
marizes these advantages and limitations.

Chapter 5, 1SciSim for Performance Simulation of Compiler-Optimized Soft-
ware, presents the details of the work flow of iSciSim. The work flow con-
sists of ISC generation, ISC instrumentation, and simulation. Two levels
of simulation are introduced: microarchitecture-level simulation of proces-
sor’s timing effects and macroarchitecture-level simulation of multiprocessor
systems using software TLMs generated by iSciSim. We show experimental
results to compare iSciSim with three other simulation techniques including
ISS, BLS and SciSim, and demonstrate a case study of designing MPSoC
for a Motion JPEG decoder to show how iSciSim facilitates MPSoC design
space exploration.

Chapter 6, Multi- Task Simulation in SystemC with an Abstract RTOS Model,
introduces the basic functionality of RT'OSs and presents our abstract RTOS
model.

Chapter 7, Flow Analysis on Intermediate Source Code for WCET Estima-
tion, shows how the usage of ISC facilitates flow analysis for WCET estima-
tion of compiler-optimized software and how to simply transform the ISC
level flow facts to the binary level using debugging information. In addition,
in this chapter, we also propose an experiment method to demonstrate only
the effectiveness of flow analysis. This allows us to evaluate a flow analysis
method and a timing analysis method separately.

Chapter 8, The SysCOLA Framework, presents the COLA-based modeling
environment and SystemC-based virtual prototyping environment and show

17

Chapter 1 Introduction

the roles the software performance estimation tools play in the framework.
A case study of designing an automatic parking system is demonstrated.

e Chapter 9, Model-Level Simulation of COLA, proposes model-level simula-
tion for functional validation and performance estimation of designs cap-
tured in COLA in an early design phase before application source code is

generated and gives a detailed description of SystemC code generation from
COLA models.

e Chapter 10, Conclusions and Future Work, summarizes this dissertation and
outlines the directions of the future work.

All these chapters are grouped into four parts. Part I, Introduction and Back-
ground, includes Chapter 1 and 2. Chapter 3, 4, 5, 6, and 7 are all about soft-
ware performance estimation methods and are grouped to Part II, Software Per-
formance Estimation Methods. Part 111, Software Performance FEstimation in a
System-Level Design Flow, includes Chapter 8 and 9, both on the work done in
the scope of SysCOLA. Part IV, Summary, contains Chapter 10.

18

Chapter 2

Background

In this chapter, we first give the definition of embedded systems and show their
market size in Section 2.1. Next, we show the trends of increasing complexity in
embedded applications and computing platforms in Section 2.2. Following that, we
present traditional embedded systems design and design challenges in Section 2.3
and Section 2.4, respectively. These motivate system-level design methodologies.
Then, in Section 2.5, we describe the basic concepts of system-level design (SLD),
present SLD flows, give a survey of SLD frameworks, and introduce SystemC and
transaction level modeling.

2.1 Embedded Systems: Definition and Market Size

Embedded systems are computer systems that are embedded as a part of larger
machines or devices, usually performing controlling or monitoring functions. They
are a combination of computer hardware and software, and perhaps some addi-
tional mechanical parts. Embedded systems are usually microprocessor-based and
contain at least one microprocessor, performing the logic operations. Microproces-
sors are far more used in embedded systems than in general purpose computers.
It is estimated that more than 98% microprocessor chips manufactured every year
are used in embedded systems [73].

Embedded systems are ubiquitous in our everyday lives. Their market size is
huge. According to a report “Scientific and Technical Aerospace Reports” from
National Aeronautics and Space Administration (NASA) published in 2006 [19],
the worldwide embedded systems market was estimated at $31.0 billion, while
the general-purpose computing market was around $46.5 billion. However, the
embedded systems market grows faster and would soon be larger than the general-
purpose computing market. According to another more recent report, “Embedded
Systems: Technologies and Markets” available at Electronics.ca Publications [7],
the embedded systems market was estimated at $92.0 billion in 2008 and was
expected to grow at an average annual growth rate of 4.1%. By 2013, this market
will reach $112.5 billion.

19

Chapter 2 Background

@
A

— h.264 802.11n
'g 100K N
O W-CDMA
3 MPEG-4
@
Q 10K
%)
c ® A
._g MPEG-2 802.11a
S A
o 802.11b
8— 1K .

Edge
y—]
o MPEG-1
%)
c
Q ® Video (NTSC Enc.)
—_— - —_—
\2, 100 GPRS : Cellular
1) LAN
o
S

GSM
10 ¢ T T T
1990 1995 2000 2005
Year

Figure 2.1: Increasing Application Complexity due to Upgrade of Standards and Pro-
tocols (source: [37])

2.2 Embedded System Trends

2.2.1 Application Trends

Over the past several decades, the demand for new features in embedded sys-
tem products has been ever increasing, driven by market needs. Let’s take mobile
phones as an example. Twenty years ago, a mobile phone has usually only the func-
tionality of making voice calls and sending text messages. Today, a modern mobile
phone offers the user much more capabilities. It has hundreds of features, includ-
ing camera, video recording, music (MP3) and video (MP4) playback, alarms,
calendar, GPS navigation, email and Internet, e-book reader, Bluetooth and WiFi
connectivity etc. Many mobile phones run complete operating system software
providing a standardized interface and platform for application developers. An-
other example is modern cars. The features in high class cars are also increasing
exponentially. Many new cars are featured night vision systems, autonomous
cruise control systems, and automatic parking systems etc. It is estimated that
more than 80 percent of all automotive innovations now stem from electronics.

Besides, upgrade of standards and protocols also increases application complexity
and computational requirements in some application domains like the multimedia
domain and the communication domain. Figure 2.1 from [37] shows such trends.

20

2.2 Embedded System Trends

For example, the change of video coding standard from MPEG-1 to MPEG-2 has
resulted in around 10 times increase in computational requirement.

2.2.2 Technology and Architectural Trends

The rapid growth in application complexity places even greater demands on the
performance of the underlying platform. In the last decades, parallel architectures
and parallel applications have been accepted as the most appropriate solution to
deal with the acute demands for greater performance. On a parallel architecture,
the whole work is partitioned into several tasks and allocated to multiple pro-
cessing elements, which are interconnected and cooperate to realize the system’s
functionality.

The architectural advance is primarily driven by the improvement of semiconduc-
tor technology. The steady reduction in the basic VLSI feature size makes much
more transistors can fit in the same chip area. This improvement has been fol-
lowing Moore’s Law for more than half a century. Moore’s Law states that the
number of transistors on a chip doubles roughly every two years. Figure 2.2 il-
lustrates Moore’s Law through the transistor count of Intel processors over time.
The same trend applies to embedded processors and other chips.

In the following, we introduce two typical parallel architectures that are widely
used in the embedded systems domain.

Distributed Embedded Systems

In a distributed embedded system, tasks are executed on a number of processing
nodes distributed over the system and connected by some interconnect network
such as fieldbuses. The number of processing nodes ranges typically from a few
up to several hundred. An example of distributed system is the network of control
systems in a car. With reducing cost and increasing performance of microproces-
sors, many functions that were originally implemented as mechanical systems in a
car are now realized in electronic systems. As the very first embedded system in
the automotive industry, the Volkswagen 1600 used a microprocessor in its fuel in-
jection system [18], in 1968. Today, in a car like BMW T7-series over 60 processors
are contained, in charge of a large variety of functions.

Compared with the traditional centralized solution, the distributed solution suits
better for systems with distributed sensors/actuators. Distributed systems have
also the advantage of good scalability by using off-the-shelf hardware and software
building blocks. In addition, as the processing nodes are loosely coupled, a system
can be clearly separated into clusters, being developed by different teams.

21

Chapter 2 Background

1000000901 MOORE'S LAW Hanium 2

fm-mm-

1ﬂpmm-

TRANSISTORS
g
§
1

100,000 —

-
 ® _ﬁ!.‘"ﬂﬂ-ﬂ--

...

10,000 -

W000—"o70 1975 1980 1985 1960 1965 2000 2005

YEAR OF INTRODUCTION

Figure 2.2: Moore’s Law

450 100
400 //4‘&1
350

200 2590
250 /, L
200 190 I

/ 149

150 I »

100

#of Components

Max Processing Performance [TFLOPS]

50

2007
2008
2009
2010
2011

2012
2013
2014
2015
2016
2017
2018
2019

Year of Production

I B) mber of Main GPLs C—INumber of DPEs —&— I ax Processing petformance(TFLOPS) |

Figure 2.3: SoC Consumer Portable Design Complexity Trends (source: ITRS 2008)

22

2.2 Embedded System Trends

Emulator

High-Speed EMIF UART/IrDA

WLAN ab/g
I*C

omAP1710

I GPIO

lnnna LPG
Bluetooth™ TMS320C55x™

RM926
Wireless i DSP LLLLErE

&
|' I Buzzer

Debuggear
Shared Memory Controller/DMA Camera I/F CMOS Sensor
2D Graphic Accelerator Memory Stick 7] Memory Stick Card,
MMC-5D Ul MMEC-50 Card

Timers, Interrupt Controller, RTC

Modem 1

Chipset — HDQ/1 Wire i Battery |
e Security: SHA-1/MD5 DES/3DES RNG
viC

LCD
Controller

Speaker ([T5C2301 Audio Cadec
LCD Light LEGEND
speaker (1|0 ouch Screen Controller |i:||.gnt| Hggtl LCD | |
N . Audio Amplifier Comtroller M ARM peripherals

W DSP paripherals

uWire | McBSP USB OTG PWL 6" oy Ruset

M Shared peripharals
M Tl Products

Figure 2.4: TT OMAP 1710 Architecture (source: hitp://www.ti.com/’)

Multiprocessor System-on-Chip (MPSoC)

An MPSoC is a processing platform that integrates the entire system including
multiple processing elements, a memory hierarchy and 1/O components, linked
to each other by an on-chip interconnect, into a single chip. With the size of
transistors continuously scaling down, it is possible to integrate more and more
processor cores into a single chip. So, an MPSoC can be regarded as a single-chip
implementation of a distributed system. Chips with hundreds of cores have been
fabricated (e.g., Ambric Am2045 with 336 cores and Rapport Kilocore KC256
with 257 cores), and chips with thousands of cores are on the horizon.

Compared to multi-chip systems, MPSoC designs have the advantages of smaller
size, higher performance and lower power consumption. They are very widely used
in portable devices like cell phones and digital cameras, especially for multimedia
and network applications. For example, the OMAP1710 architecture, which is
used in the cell phones of Nokia’s N- and E-series, is an MPSoC. As shown in
Figure 2.4, it contains a microprocessor ARM9, a DSP, hardware accelerators for
video and graphics processing, buses, a memory hierarchy and many I/O compo-
nents. Figure 2.3 shows the number of processing elements (PEs) predicted over
the next 15 years in consumer portable devices by the International Technology

23

Chapter 2 Background

Roadmap for Semiconductors (ITRS) 2008 [21]. We can see a great increase in the
number of both processors and data processing elements (DPEs) over the next 15
years. By 2022, a portable device like a cell phone or a digital camera may con-
tain up to 50 processors and 407 DPEs. The processing performance of portable
devices increases almost in proportion to the number of processing elements.

160 -
B Software
140 E Prototype
120 - O System Validation Software
—_ B Physical
= 100 4 @ Verification & Synthesis
£ O Architecture
® 80 -
S . Verification
40 -
20 -
0 I T I I T T T 1
0.35um 0.18um 90nm 45nm 22nm
(2M) (20M) (60M) (120M) (180M)

Feature Dimension (Transistor Count)

Figure 2.5: Increase of IC Design Cost (source: IBS 2009)

2.2.3 Increasing Software Development Cost

Another remarkable trend is the dramatic increase of software development cost,
when software-based implementations are becoming more popular. The reason
why more and more functionality has been moving to software is because software-
based implementations are cheap and flexible, and in contrast, hardware-based
implementations are expensive and time-consuming. Software-based implementa-
tions have low cost, because microprocessors have increasing computational power
and shrank in size and cost. They are flexible, because microprocessors as well
as other programmable devices can be used for different applications by simply
changing the programs. In contrast, hardware-based implementations, usually as
Application Specific Integrated Circuits (ASICs), have very expensive and time-
consuming manufacturing cycles and always require very high volumes to justify
the initial expenditure. This limitation makes hardware-based implementations
uneconomical and inflexible for many embedded products. In the recent years the
number of hardware-based designs has slowly started to decrease. The important
parallel architectures such as distributed systems and MPSoCs use processors or
processor cores as the main processing elements and are software-centric in nature.

24

2.3 Traditional Embedded Systems Design

Although software is relatively cheap to develop compared to hardware, it is dom-
inating overall design effort while the portion of software dramatically increasing
in complex systems. Several sources confirm that software development costs are
rapidly outpacing hardware development costs. One source is from International
Business Strategies (IBS) [22], which has studied the distribution of IC design
costs at various technologies. In Figure 2.5 from IBS 2009, we can see that the
IC design cost has been increasing dramatically with the advance of technologies.
Since the 90 nm technology, software development cost accounts for around half
of the total cost.

Another source comes from the annual “Design” report of ITRS 2007 [20], which
has looked at the software versus hardware development costs for a typical high-
end SoC. Its cost chart shows that in the year 2000 $21 million were spent on
hardware engineering and tools and $2 million on software development. In 2007,
thanks to the improvement of very large hardware block reuse, hardware costs
decreased to $15M, but software costs increased to $24M. It is predicted that for
2009 hardware costs are $16M and software costs $30M, and for 2012, hardware
costs are $26M and software costs reach $79M.

2.3 Traditional Embedded Systems Design

Traditional embedded systems design views hardware design and software design
as two separate tasks. Because hardware and software are designed separately
and there lacks efficient communication between hardware designers and software
designers due to their different education backgrounds and experiences, this results
in a gap between hardware design and software design. This gap is called system
gap in [45]. The development of hardware synthesis tools in 1980s and 1990s has
significantly improved the efficiency of hardware design, but has not narrowed the
system gap.

In a traditional design flow, hardware design starts earlier than software design.
Register Transfer Level (RTL) is the typical entry point for design. Given an initial
and usually incomplete specification, hardware designers translate the specification
into an RTL description, which specifies the logical operations of an integrated
circuit. VHDL and Verilog are common hardware description languages for RTL
designs.

Software design starts typically after hardware design is finished or a prototype of
the hardware under design is available. The traditional way of embedded software
development is basically the same as that of PC software development, using tools
like compilers, assemblers, and debuggers etc. The entry point of software design
is manual programming using low-level languages such as C or even assembly lan-
guages. This simple flow may suit for software design for uniprocessor. However,
currently, it is also used for software design for parallel platforms with an ad-hoc

25

Chapter 2 Background

adaptation. This ad-hoc adaptation adds an additional partitioning step, where
the system’s functionality is subdivided into several pieces and they are assigned
to individual processing elements (PEs) before manual coding for each PE. This
solution for programming parallel architectures has been proven to be not efficient
enough.

To conclude, the traditional design flow has several problems for designing mixed
hardware/software embedded systems:

e [t lacks a methodology to guide design space exploration. In the traditional
design, it is highly based on the designers’ experiences to decide what to
implement in software components running on processors and what to im-
plement in hardware components. As the system’s complexity scales up, this
kind of manual partitioning is not able to get an efficient design.

e A design can be tested only when it is implemented or prototyped. Design
mistakes or errors found in this very late design phase may cause redesign
and considerable changes in the whole system. This kind of redesign is very
costly and will significantly delay the time-to-market.

e Manual implementation at low abstraction levels is very error-prone and
needs large effort.

A survey conducted by Embedded Market Forecasters [60], a market research com-
pany, shows the ineffectiveness of traditional design methodologies: Over 70% of
designs missed pre-design performance expectations by at least 30%; Over 30% of
designs missed pre-design functionality expectations by at least 50%; About 54%
of designs missed schedule, with an average delay of nearly 4 months; Nearly 13%
of designs were canceled. These statistics involve a large portion of single-processor
systems design. The failure rate could be even worse, if only multiprocessor sys-
tems were considered. According to another survey by Collett International [85]
on SoC redesign statistics, almost 40% of designs require a respin.

2.4 Design Challenges

As discussed previously, advances in hardware capability enable new application
functionality, and meanwhile, the growing application complexity places even
greater demands on the architecture. This cycle forms a driving force of the
tremendous ongoing design and manufacturing effort in embedded systems. In
addition to technical issues, the time-to-market is also a key factor to be consid-
ered. To some extent, the time-to-market decides the success of a product. For
example, the digital camera PV-D(C252 of Panasonic was 7 months later to market
than Micro-MV DCR IP7 of Sony, its retail price was 41% less [50]. As a result,
although the designs increase dramatically in complexity and require more effort,

26

2.4 Design Challenges

log # | Additional 8W required for HW

7 210 months
LoC SWIChip
Gates/Chip

Technology capabilities
2%/36 months

HW design productivity
Filling with [P and memary

HW design productivity

- o == == SWY broductivity

2ul5 \ears
-~ uy =24) I - Wy o o] P ..
b & © S o = - -
S S] 4 3 1 =4 g = T time
= bl - e - ~N ™~ ™~ ™ ™~

Figure 2.6: Productivity Gaps of Hardware and Software (source: ITRS 2007)

there is nevertheless an increasing demand on the time-to-market to yield com-
petitive products. It is hard to achieve both increase in application complexity
and reduction in design time using the traditional design methods.

Therefore, it is the key design challenge to achieve high design productivity under
a given time-to-market requirement. Since the IC design productivity is highly
limited by the technology, the design challenge is actually to make design pro-
ductivity keep pace with technological advance (i.e., Moore’s Law). However, the
inefficiency of the traditional design methodology results in a gap between the
technology advance rate and the productivity growth rate, known as design pro-
ductivity gap or design gap. This gap is still widening over time. Figure 2.6 from
ITRS 2007 [20] shows the design gaps of both hardware and software. It gives the
following information:

e The hardware design gap is widening: the capability of technology is cur-
rently doubling every 36 months, following Moore’s Law, whereas the in-
crease of hardware design productivity is below Moore’s Law.

e The hardware including software design gap is widening even faster: demand
of software required for hardware is doubling every 10 months, whereas the
increase of hardware (including software) design productivity is far behind.

e Design productivity for hardware-dependent software is only doubling every
O years.

To summarize, the design gap is caused by the conflicting demand of increased
design complexity and shortened time-to-market. New design methodologies are

27

Chapter 2 Background

needed to dramatically close the design gap and to increase the design productivity.
One promising design methodology is system level design, which is introduced in
the following section.

2.5 System-Level Design

Most agree that rising the abstraction level, at which systems are expressed, is the
most efficient solution to address the design complexity and thus to improve the
design productivity. The system-level design (SLD) methodology follows this con-
cept. The ITRS claimed that SLD would increase design productivity by 200,000
gates per designer-year and improve productivity by 60% over an “Intelligent Test-
bench” approach [39]. In this section, we will first discuss about the definition and
primary concept of SLD in Section 2.5.1. Then, an introduction to SLD flows and
a survey of SLD frameworks are given in Section 2.5.2 and Section 2.5.3, respec-
tively. As the most important System-Level Design Language (SLDL), SystemC
is introduced in Section 2.5.4.

2.5.1 Definitions

In general, “system-level design” is not an exactly defined term. A few definitions
from different sources are listed in the following:

e According to International Technology Roadmap for Semiconduc-
tors (ITRS):

system level is defined as “an abstraction level above the register transfer
level (RTL)”. At the system-level, silicon resources are defined in terms of ab-
stract functions and blocks; design targets include software (embedded code
in high level and assembly language, configuration data, etc.) and hard-
ware (cores, hardwired circuits, buses, reconfigurable cells). “Hardware”
(HW) corresponds to implemented circuit elements, and “software” (SW)
corresponds to logical abstractions (instructions) of functions performed by
hardware. Behavior and architecture are independent degrees of design free-
dom, with software and hardware being two components of architecture.
The aggregate of behaviors defines the system function, while the aggregate
of architecture blocks defines a system platform. Platform mapping from
system functionality onto system architecture is at the heart of system-level
design, and becomes more difficult with increased system complexity and
heterogeneity (whether architectural or functional).

e From Wikipedia (http://www.wikipedia.org/) ESL is defined as:

an emerging electronic design methodology that focuses on the higher ab-
straction level concerns first and foremost.

28

2.5 System-Level Design

The basic premise is to model the behavior of the entire system using a high-
level language such as C, C++, or MATLAB. Newer languages are emerging
that enable the creation of a model at a higher level of abstraction including
general purpose system design languages like SysML as well as those that
are specific to embedded system design like SMDL and SSDL supported
by emerging system design automation products like Teraptor. Rapid and
correct-by-construction implementation of the system can be automated us-
ing EDA tools such as High Level Synthesis and embedded software tools,
although much of it is performed manually today. ESL can also be accom-
plished through the use of SystemC as an abstract modeling language.

e The book “ESL Design and Verification” [23] defines ESL as:

the utilization of appropriate abstractions in order to increase comprehension
about a system, and to enhance the probability of a successful implemen-
tation of functionality in a cost-effective manner, while meeting necessary
constraints.

In the above definitions two similar terms exist: System-Level Design (SLD) and
Electronic System-Level (ESL) Design. These two terms mean the same thing
and can be used interchangeably. In the book “ESL Design and Verification” [23],
it is stated that ESL is a successor to the term SLD and will replace it in the
near future. However, to the best of our knowledge, at the time of writing this
dissertation the term SLD is still widely being used in both academia and industry.
Hence, we also use the term SLD through this dissertation.

The three definitions reach a common ground that SLD addresses many design
issues at higher abstraction levels and abstracts away implementation details.
Whereas, the definition from ITRS lays emphasis on a design flow including hard-
ware/software co-design and platform mapping from system functionality onto
system architecture, while the definition from Wikipedia states more the utiliza-
tion of design languages and EDA tools.

To summarize, SLD is aimed to simplify the specification, verification and im-
plementation of systems including hardware and software, and to enable more
efficient design space exploration, by raising the abstraction level at which sys-
tems are modeled and with sufficient support from EDA tools across design flows
and abstraction levels.

2.5.2 System-Level Design Flows

According to Daniel D. Gajski [45], a design flow is defined as “a sequence of de-
sign steps that are necessary to take the product specification to manufacturing”.
He suggests a four-step SLD flow: specification, exploration, refinement, and im-
plementation. Whereas, according to the “ESL Design and Verification” book, a
complete SLD flow should contain six steps: (1) specification and modeling, (2)

29

Chapter 2 Background

pre-partitioning analysis, (3) partitioning, (4) post-partitioning analysis and de-
bug, (5) post-partitioning verification, and (6) HW/SW implementation. These
two flows are principally the same, only from different views. The exploration
and refinement steps in the former flow may contain the work of pre-partitioning
analysis, partitioning, and post-partitioning analysis. Platform-based design [87]
advocated by Alberto Sangiovanni-Vincentelli is a similar approach, but lays em-
phasis more on system components reuse.

In Figure 2.7, we generalize typical system-level design flows using a diagram that
extends the famous Y-Chart diagram. Starting from a specification of the target
system, an initial design is modeled, with the application tasks and the system
platform developed in separate. Then, the application task models are mapped
to the available platform resources to get a system level model, which makes up
the input for the design space exploration step. Depending on the exploration
results, the architecture is iteratively modified until the design requirements are
met. Then, the design is iteratively refined to do more accurate exploration and
make lower-level decisions. The result of this exploration loop is an implementa-
tion model including executable software tasks and a specification of the platform
architecture that is used in the subsequent implementation phase.

/ Specification

Application Platform
Tasks Resources
Mapping & /
Scheduling ..

v

R Performance Evalution & .7
Design Space Exploration

v

Implementation

o
ot
ot
o
g .
......

Figure 2.7: System-Level Design Flow

2.5.3 Survey of SLD Frameworks

This section provides an overview of some important work in developing system-
level design frameworks. There are too many design frameworks that cover one
or more aspects of system-level design, developed either by research activities or

30

2.5 System-Level Design

commercial companies. Here, we can only pick some to introduce. For an extensive
overview, some survey papers like [39] can be referred to.

CoFluent Studio

CoFluent Studio [4] is a commercial SLD toolset for architecture exploration and
performance analysis, developed by the company CoFluent Design. Its essential
concept is function-architecture separation. It covers the specification and explo-
ration steps in a typical SLD flow but does not provide a link from exploration
models to implementation models. In CoFluent Studio, a system is described by
graphical models. The graphical blocks of an application model specify only the
causal order of tasks but do not provide a mechanism for implementation. The
tasks must be programmed manually in C and associated to the graphical blocks.
From the graphical models, SystemC models can be generated automatically. The
SystemC models are at a high abstraction level, where tasks are wrapped in threads
and communication is realized by simple message passing between threads.

CoWare Virtual Platform

CoWare virtual platform [5] is another SystemC based commercial tool for design
space exploration and embedded software development, from the company CoW-
are. In contrast to CoFluent Studio, CoWare virtual platform is aimed at simula-
tion at a low abstraction level, providing an environment for software development.
The simulation models describe the microarchitecture of hardware platforms and
can provide accurate performance data for design space exploration. However, it
does not support early specification and modeling issues.

Embedded System Environment (ESE)

Embedded System Environment (ESE) [6] is a toolset for modeling, synthesis
and validation of multiprocessor embedded systems. It is developed by Univer-
sity of California, Irvine. ESE consists of a front-end and a back-end for perfor-
mance evaluation and automatic synthesis, respectively. The front-end is similar
to CoFluent Studio, where the system platform is captured by graphical blocks
and the application is written in C/C++ code. For performance estimation, Sys-
temC transaction level models (TLMs) can be automatically generated from the
platform model and the application code. The back-end provides automatic syn-
thesis from TLM to RTL. Then, the RTL code can be synthesized using standard
synthesis tools. Therefore, ESE covers a complete SLD flow.

31

Chapter 2 Background

Ptolemy

Ptolemy [15] is a framework from University of California, Berkeley. It is aimed at
modeling, simulation, and design of concurrent, real-time embedded systems. It
focuses on interactions between current components and assembly of them, using
heterogeneous mixtures of models of computation (MOC). Hierarchical composi-
tion is used to handle heterogeneity. The current version of Ptolemy supports nine
MOC:s including continuous-time modeling (CT), finite state machines (FSM), and
synchronous dataflow (SDF) etc. Other nine MOC:s are still experimental. C code
can be automatically generated from models constructed within Ptolemy. Ptolemy
does not focus on function-architecture separation and mapping, which is usually
the heart of a system-level design flow.

POLIS

POLIS [24] is a framework for hardware-software codesign of embedded systems,
from UC Berkeley. In POLIS, an embedded system is specified in Esterel, a syn-
chronous programming language. The specification is then translated into CFSMs
(Codesign Finite State Machines), which are similar to classical FSMs but are glob-
ally asynchronous and locally synchronous. Each element of a network of CFSMs
describes a component of the system to be modeled, unbiased towards a hardware
or a software implementation. The toolchain of POLIS enables formal verifica-
tion, co-simulation, hardware-software partitioning, hardware-software synthesis
and interface implementation. Because of the model of computation, POLIS is
well suited for designing control-dominated systems.

Metropolis

Metropolis [25] is a system-level design framework based on the principles of
platform-based design [87] and orthogonalization of concerns [57], also from UC
Berkeley. It is aimed at representing heterogeneous systems at different abstrac-
tion levels, expressing design problems formally and solving them using automated
tools. The current version of Metropolis is based on the Metropolis Metamodel
language that can be used to describe function, architecture, and a mapping be-
tween the two. It supports a wide range of models of computation.

Compaan/Laura

The Compaan/Laura [91] approach is developed by Leiden University. The input
of the design flow is MATLAB specifications, which are then converted to Kahn
Process Networks (KPNs) using the tool Compaan. The generated KPNs are
subsequently synthesized as hardware and software using the tool Laura and then

32

2.5 System-Level Design

implemented on a specific architecture platform. The studied platform consisting
of an FPGA and a general purpose processor. The software implementation makes
use of the YAPI [38] library.

We will introduce our own SLD framework SysCOLA in Chapter 8. SysCOLA
covers the whole SLD flow as discussed in Section 2.5.2. In Chapter 8, we will also
give a short comparison between SysCOLA and other design frameworks.

2.5.4 SystemC and Transaction Level Modeling

SystemC is defined and promoted by OSCI (Open SystemC Initiative) [13]. It is
considered as the most important system-level design language (SLDL). A lot of
SLD frameworks are based on SystemC, including many commercial tools such
as CoWare Virtual Platform [5], CoFluent Studio [4], AutoESL [2], and tools
from Synopsys [12] and Cadence [3]. SystemC has been approved by the IEEE
Standards Association as IEEE 1666-2005 [55].

Essentially, SystemC is a C++ class library featuring methods for building and
composing SystemC elements. In order to model concurrent system behavior,
SystemC extends C++ with concepts used by hardware modeling languages, like
VHDL and Verilog.

CP/CPT PV /PVT
¥ RTOS [RTOS|
CPU
Model
untimed/timed untimed/timed scheduled processes cycle accurate
parallel processes scheduled processes approximate timing computation

l-m

Figure 2.8: Computation Refinement (from [62])

CP/CPT PV/PVT CcC
CDMA: CAN CAN
untimed/timed untimed/timed timing approx. cycle accurate
p-2-p com. structural com. com. communication

.-_M

Figure 2.9: Communication Refinement (from [62])

33

Chapter 2 Background

SystemC is often associated with Transaction-Level Modeling (TLM) [33, 40],
which is a widely used modeling style for system-level design. In this model-
ing style, communication architectures are modeled as channels, which provide
interfaces to functional units. Modeling effort can be reduced, if different commu-
nication architectures support a common set of abstract interfaces. Thus, com-
munication and computation can be modeled separately.

SystemC supports modeling systems at different levels of abstraction, from system
level to register-transfer level, and allows to co-simulate software and hardware
components within a single framework. The OSCI Transaction Level Working
Group has defined seven levels of abstraction supported by SystemC [40]: al-
gorithmic (ALG), communicating processes (CP), communicating processes with
time (CP+T), programmer’s view (PV), programmer’s view with time (PV+4T),
cycle accurate (CA) and register transfer level (RTL). A system can be modeled at
a high level of abstraction, for example ALG, and refined stepwise to a lower level
of abstraction, which might be RTL, where simulation is more accurate but simu-
lation time increases. Figure 2.8 and Figure 2.9 from [62] illustrate the respective
refinements of computation and communication modeled in SystemC.

34

Part ||

Software Performance Estimation
Methods

35

Chapter 3

Execution-Based Software
Performance Simulation Strategies

A software simulation model should be able to capture both functional and tem-
poral behaviors of embedded software programs. The functional behavior of a
program is usually described by a high level programming language, mostly in the
C language in embedded applications, and realized by running the cross-compiled
binary code on the target processor. The temporal behavior is expressed by the
processor’s computation delays caused by executing the program. It is dependent
on the cross-compiler, the instruction set architecture (ISA), and the timing ef-
fects of the processor microarchitecture. Correspondingly, a software simulation
model also consists of two primary components: a functional model and a per-
formance model. The functional model emulates the functionality of programs.
The performance model represents the microarchitecture of a specific processor,
models the run-time interactions between instructions and the processor compo-
nents, and provides the corresponding performance statistics. The performance
model and the functional model can be decoupled, for example in a trace-driven
simulator. However, the performance model is more often built on the functional
model. Such simulators are called ezecution-based simulators. Their simulation
accuracy depends on both the correctness of functional modeling and the accuracy
of performance modeling. The simulation techniques introduced in this chapter,
including instruction set simulation (ISS) and native execution based techniques,
are all execution based. Native execution based techniques are further categorized
into binary (assembly) level simulation (BLS), source level simulation (SLS) and
IR level simulation (IRLS), in terms of functional representation levels.

3.1 Instruction Set Simulators

Software is usually simulated by instruction set simulators (ISSs) to get the in-
fluence of software execution on system performance and study the runtime in-
teractions between software and other system components. An ISS is a piece of
software that realizes the ISA of a target processor on the host machine. Most

37

Chapter 3 Execution-Based Software Performance Simulation Strategies

available ISSs are interpretive ISSs. Lying between the program being simulated
and the host machine, an interpretive ISS imitates the target processor to fetch,
decode and execute target instructions one by one, at run-time, similar to a Java
interpreter. Figure 3.1 shows the typical processing loop of interpretive ISSs and
the corresponding pseudo code. An interpretive ISS has the ability to behave close
to real hardware and provides cycle-accurate estimates of software execution, but
it has the main disadvantage of low simulation speed due to the online interpreting
of target instructions. The simulation speed of an interpretive ISS is typically in
the range from a few hundred kiloinstructions per second (KIPS) to a few million
instructions per second (MIPS) on today’s PCs. Further, the complexity of such
an ISS often leads to long development time. PPC750Sim [76] is an example of
interpretive ISSs and is available online.

Instruction
Memory
Next PC
(a) ISS Workflow
while(run){

instruction = fetch(PC);
opcode = decode(instruction);

switch(opcode){
case ADDI: execute_addi(); break;
case:

}

(b) Pseudo Code

Figure 3.1: ISS Workflow and Pseudo Code

The simulation of a multiprocessor system needs multiple such interpretive ISSs
running simultaneously. As the bus system and hardware accelerators are often
modeled in a system level design language like SystemC [55], designers have to
handle complex timing synchronization between the processor simulators and the
SystemC simulation kernel, as discussed in [44]. Such a complex and long-running
simulation is unaffordable in the high-level design space exploration phase.

Today, there are also some fast cycle-accurate ISSs commercially available, for
example, the simulators from the company VaST [16]. The VaST simulators use
sophisticated binary translation techniques to convert target code directly into
host code at run-time and can reach speeds from tens of MIPS up to a few hundreds
of MIPS for a single processor. However, they are too time-consuming to develop.

38

3.2 Binary (Assembly) Level Simulation

According to a presentation given by VaST, it takes 2-6 months for them to develop
a new processor model. It is also inconvenient for system designers that the
processor models cannot be modified or customized.

3.2 Binary (Assembly) Level Simulation

In a binary level simulation approach, the target binary of a program is translated
to either host instructions or a high level language such as C or C++, with the
same functionality as the original program. A typical BLS approach is shown
in Figure 3.2(a). Compared with the ISS workflow in Figure 3.1(a), the BLS
approach performs the time-consuming instruction fetching and decoding prior to
simulation, i.e., at compile time, by means of code translation. The advantage of
the compile-time fetching and decoding is that they are performed only once for
each instruction. In contrast, at the run-time of an ISS, the instruction fetching
and decoding are often repeated many times for most instructions, either when
they are in a loop or when the task containing the instructions is activated many
times in an application. In the BLS workflow, the translation is performed by a
so-called simulation compiler. Therefore, a binary level simulator is often called
compiled ISS in many other papers. Nevertheless, the term ISS only indicates
interpretive ISSs in this dissertation. Mills et al. [75] were the first to propose
this technique. Figure 3.2 also presents an example of translating a basic block of
PowerPC instructions (Figure 3.2(c)), generated from the source code shown in
Figure 3.2(b), to the binary level representation in C (Figure 3.2(d)).

For simulation, the C/C++ code generated by the simulation compiler is compiled
by a host C/C++ compiler. The generated host executable is then executed to
simulate the target execution. To estimate the temporal behavior of the target
processor, timing information needs to be inserted into the functional represen-
tation. Since both the functional representation and the timing information are
obtained from the binary level, their coupling is straightforward. Thus, the sim-
ulation accuracy depends solely on timing analysis. In [26], Bammi et al. used
inaccurate statistical instruction timings to instrument binary level code, and thus,
they got inaccurate estimation results. Nevertheless, if timing information that
captures the important timing effects is used, BLS is able to achieve a simulation
accuracy close to that of ISSs. The experiments done by Zivojnovic et al. [105]
have confirmed this.

BLS offers simulation at a speed up to a few hundred MIPS on today’s PCs.
There is a slowdown of more than one order of magnitude compared with native
execution, because the C/C++ code used to describe target instructions is much
longer than the original source code. In the example in Figure 3.2, 13 lines of
C code are used to describe the instructions generated from 4 lines of C code.
Note that MEM_READ_BYTE and MEM_WRITE_BYTE in Figure 3.2(d) are both
function calls that access a memory model that maps the target address space to

39

Chapter 3 Execution-Based Software Performance Simulation Strategies

Compile Time | B Simulation Runtime

[I

[|

[i |
Target Simulation Blz\',ga%;‘::f I C/C++ X Host |

| Binary Compiler ep ' Compiler / | Binary

| (in C/C++) I |

[|

(a) BLS Workflow

while(i<10){ r [0]=MEM_READ_BYTE(r [8]+0) ;
clil=alil*b[i]; r[8]=r[8]+1;
it++; r[9]=MEM_READ_BYTE(r[11]+0) ;
} rl11]=r[11]1+1;
(b) Source Code r[0]=(sword_t) ((sdword_t) ((sword_t)r[0] *
(sword_t)r [9])&0x00000000ffffffff);
0x1800098 1bz r0,0(r8) MEM_WRITE_BYTE(r[10]+r[7], r[0]);
0x180009c addi r8,r8,1 r[10]=r[10]+1;
0x18000a0 1bz r9,0(r1l) PC=0x18000b8;

0x18000a4 addi rll,ri1,1 CTR=CIR - 1;
0x18000a8 mullw r0,r0,r9 if (CTR '= 0)
0x18000ac stbx r0,rl10,r7 {

0x18000b0 addi r10,r10,1 PC=0x01800098;
0x18000b4 bdnz+ 1800098 }

(c) Target Binary (d) Binary Level Representation in C

Figure 3.2: Binary Level Simulation Workflow and An Example

the memory of the host machine. Such accesses to the memory model are very
time-consuming and are the main cause of the slowdown.

Compared with the ISS technique, BLS also has some disadvantages. The gain of
speedup is achieved at the expense of flexibility. BLS assumes that the code does
not change during run-time. Therefore, a hybrid interpretive/compiled scheme
is needed to simulate self-modifying programs, such as the just-in-time cache-
compiled simulation (JIT-CCS) technique reported in [32]. Further, unlike direct
branches, the branch targets of which are statically known, the branch targets of
indirect branches can be resolved only at run-time, so control flows of indirect
branches are hard to be constructed statically in a BLLS approach. Zivojnovic et
al. [105] and Lazarescu et al. [68] treat every instruction as a possible target of an
indirect branch and thus set a label before the translated code of each instruction.
This solution makes the translated code less compiler-friendly and reduces the
simulation performance. Nakada et al. [77] propose to give control to an ISS when
an indirect jump is met. Neither solution is simple and efficient enough.

40

3.3 Source Level Simulation

3.3 Source Level Simulation

Concerning only the functional modeling correctness, a software program can be
simulated very simply by executing it directly on the host machine. However,
such a native execution cannot provide any information of software performance
on the target processor. The idea behind source level simulation is to annotate
timing information into the source code for a native execution that can generate
performance information of the target processor. The timing information is usually
obtained by means of analysis at the binary level. The back-annotation of the
timing information into the source code is regarded as the process of coupling the
functional representation with the performance model. It relies on the mapping
information that describes the correspondence between the source code and the
binary code. More details about important issues in a SLS workflow are presented
in the introduction to our SciSim approach in Chapter 4 and also in our paper [100].

The major difference among previous works on SLS is the way of timing analysis.
Bammi et al. [26] calculate statistical instruction timings for each target processor
using a set of benchmarks and store them in a so-called processor basis file for
performance estimation of other programs. Because the delay caused by a single
instruction is very context-related, the way to decide it statistically without taking
concrete execution contexts into account is very inaccurate. A maximal error of
80.5% is reported in their paper [26]. Giusto et al. [46] improve the accuracy by
generating one processor basis file for each processor in each application domain,
based on the idea that the timing of each instruction in programs from the same
application domain should be more constant. Still, large estimation errors are
reported in their paper, although improvements are seen compared with Bammi’s
solution.

More accurate timing information can be obtained by means of static analysis [35]
or measurement using cycle-accurate simulators [74], because the concrete con-
text of each instruction is taken into account during the analysis or simulation.
Usually, this kind of analysis and measurement is done for each basic block of
a program. In the scope of a basic block, it lacks the execution context of the
starting instructions, and global timing effects, such as the cache effect and the
branch prediction effect, cannot be resolved. To solve this problem, in [100] we
propose a way to perform dynamic analysis of the cache effect and the branch pre-
diction effect at simulation run-time. The same solution is also proposed in [90].
In [100], we also introduce a method to do static analysis of superscalar pipelines
to improve simulation accuracy when the target processor is a high performance
processor with superscalar architecture.

Although these recent works on SLS have made improvements in performance
modeling, there is still a big problem unsolved: the back-annotation of timing in-
formation into source code relies on the mapping between binary code and source
code, and optimizing compilation makes it hard to find the mapping. Even when

41

Chapter 3 Execution-Based Software Performance Simulation Strategies

the mapping is found, the timing information back-annotated according to the
mapping cannot be correctly aggregated along the source level control flows, due
to the difference between source level control flows and binary level control flows.
This problem will lead to a low accuracy in simulating compiler-optimized soft-
ware. The previous works have not addressed this problem and estimated only
unoptimized code. However, in reality, programs are usually compiled with a high
optimization level. Therefore, this problem strongly limits the usability of the SLS
technique.

3.4 IR Level Simulation

An IR level representation has accounted for processor-independent optimizations
and allows for simulation as fast as SLS. Yet, the previous works on IR level
simulation (IRLS) have not found an efficient way to describe the mapping between
IR and binary code. Without the mapping information, timing information must
be estimated also at the IR level for accurate back-annotation.

Kempf et al. propose an IRLS approach in [56]. In Figure 3.3 we take an exam-
ple from [56] to explain this approach. Figure 3.3(a) shows an example of three
address code intermediate representation (3AC IR), where all C operators and
the majority of memory accesses are visible. In order to get timing information,
each IR operation is associated with a timing value according to the processor’s
description. For example, in Figure 3.3(b) the operations “4” and “x” are associ-
ated with “cost of ADD” and “cost of MUL”, respectively, which are read from the
processor’s description file by calling GetOPCost(). Coupling of the IR code and
the timing information is straightforward by inserting after each IR operation its
associated timing value. However, these timing values have not taken into account
the timing effects of the compiler back-end and the target processor, and thus, are
very inaccurate.

a=1;
cycle += GetOPCost (ADD) ;
a=1; a=a * 4;
a=ax* 4 cycle += GetOPCost (MUL);
tmp = (Start Address of x) + a; tpp = (Start Address of x) + a;
b = LOAD(tmp) cycle += GetOPCost (ADD) ;

b = LOAD(tmp) ;//memory simulation

(a) 3AC IR (b) Timed IR

Figure 3.3: An Example of IR Level Simulation

Cheung et al. [34] also associate each IR operation with a latency. Then, to take
the processor-dependent optimizations into account, they use a SystemC back-end

42

3.4 IR Level Simulation

that emulates the back-end of the cross-compiler and optimizes both IR operations
and their associated latencies. The output of the SystemC back-end is a simula-
tion model in SystemC, annotated with timing information that has accounted for
all the compiler optimizations. A similar approach is proposed by Lee et al. [69].
They modify the back-end of the host compiler to add a so-called counter field
for each IR operation to record its cycle count. This field is combined with the
IR operation and will be deleted, moved or duplicated when the IR operation is
deleted, moved or duplicated during compiler optimizations. Thus, after compila-
tion, the annotated timing information is also “optimized”. The output simulation
model is a host binary program. However, the both approaches still cannot take
the timing effects of the target processor into account. Furthermore, they need
either modify a compiler or write a new compiler back-end. This work requires
a good knowledge of the compiler architecture and needs a large implementation
effort. Furthermore, neither the modified host compiler back-end nor the SystemC
back-end behave exactly the same as the back-end of the target cross-compiler.
This is also a cause of estimation error.

The iSciSim approach [95] proposed in this dissertation also generates simulation
models at the IR level. Unlike the previous IRLS approaches discussed above,
which use a “top-down” approach to trace the effect of compiler optimizations
on instruction timing, we use a “bottom-up” approach to annotate timing infor-
mation, which is obtained from the binary level and already takes the effects of
compiler optimizations and processor microarchitecture into account, back into
the IR level code. To get the mapping between IR and binary code, we make
IR compilable by formalizing it in the C language. We call this IR-level C code
intermediate source code (ISC). Then, the debugging information describing the
mapping can be generated during the compilation of the ISC. With the map-
ping information, the ISC can be annotated with the accurate timing information.
Hence, our approach allows for very accurate simulation. The whole approach is
also very easy to realize and does not need compiler modification.

43

Chapter 3 Execution-Based Software Performance Simulation Strategies

44

Chapter 4

SciSim: A Source Level Approach
for Software Performance Simulation

As discussed previously, for software performance simulation, cycle-accurate in-
struction set simulators (ISSs) are too slow and also too time-consuming to de-
velop. Furthermore, trace-driven simulators are not able to capture the control
flows of software execution. Only native-execution based simulation techniques are
suitable for generating high level simulation models that capture both the function
and timing of software tasks. Among several native-execution based simulation
techniques, source level simulation (SLS) has gained great popularity, because of
its high simulation performance and low complexity. A source level simulation
model uses source code as functional representation. Timing information that
represents execution delays of the software on the target processor is inserted into
the source code according to the mapping between the source code and the gener-
ated machine code. That is, a source level simulation model combines the low-level
timing information and a high-level functional model.

This chapter provides some basic information about software compilation, opti-
mization, and control flow graphs, gives an introduction to source code instrumen-
tation, and presents a new SLS approach, SciSim. Then, we present some exper-
imental results to show the advantages and limitations of the SciSim approach.
The major limitation of SciSim is that it cannot simulate some compiler-optimized
software accurately. So, we discuss about the reasons for this using some examples.
Finally, the advantages and limitations are summarized.

4.1 Basic Information

4.1.1 Compilation and Optimization

The programmability of a microprocessor is thanks to the presence of an ab-
straction layer, called instruction set architecture (ISA). The ISA abstracts the
underlying processor microarchitecture and provides a common instruction set to

45

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

/lbb1

8: while(i<10){ -

9: cli] = a[i] * bli]; 1800088: b 18000d8
10: i++ //bb2

11: } 180008c: Iwz r10,8(r31)
1800090: lwz r0,8(r31)

1800094: lis r9,385
(a) Source code 1800098: addi r9,r9,736
180009c: Ibzx r0,r9,r0
@ 18000a0: clrlwi r11,r0,24
18000a4: lwz r0,8(r31)
18000a8: lis r9,385
18000ac: addi r9,r9,748

18000b0: Ibzx r0,r9,r0
18000b4: clrlwi r0,r0,24

Cross-Compiler
(powerpc-gcc, -02)

Cross-Compiler
(powerpc-gcc, -00)

18000b8: mullw r0,r11,r0
@ 18000bc: clrlwi r11,r0,24

18000c0: addi r0,r31,8
//bb1 18000c4: add r9,r0,r10
0x1800098 Ibz r0,0(r8) 18000c8: stb r11,4(r9)
0x180009c¢ addi r8,r8,1 18000cc: lwz r9,8(r31)
0x18000a0 Ibz r9,0(r11) 18000d0: addi r0,r9,1
0x18000a4 addir11,r11,1 18000d4: stw r0,8(r31)
0x18000a8 muliw r0,r0,r9 //bb3
0x18000ac stbx r0,r10,r7 18000d8: Iwz r0,8(r31)
0x18000b0 addir10,r10,1 18000dc: cmpwi cr7,r0,9
0x18000b4 bdnz+ 1800098 18000e0: ble+ cr7,180008¢

(b) Optimized binary code (c) Unoptimized binary code

Figure 4.1: Embedded Software Cross-Compilation

different programs. An instruction set is a list of all the instructions implemented
by the microarchitecture of a processor. A typical instruction set includes four
categories of instructions: arithmetic instructions, logic instructions, data instruc-
tions, control flow instructions. Processors with different microarchitectures can
share an instruction set. In the embedded systems domain, ARM, PowerPC, MIPS
and SPARC etc. are widespread ISAs.

Today, embedded software is developed basically the same as PC software devel-
opment, using tools like compilers, assemblers, and debuggers etc. It is usually
programmed in a high-level programming language, mostly in the C language.
One difference is that, for PC software development we both develop and execute
software programs on PC, while for embedded software development the programs
developed on PC have to be ported onto a target embedded system. Thus, the
programs have to be compiled to executables that contain only instructions of
the target processor. This process of generating executables of other processors
by running compilers on a PC is called cross-compilation. The compilers used
are called cross-compilers. The cross-compilers used in our work are obtained by
porting GCC (GNU Compiler Collection) compilers to target processors. GCC
compilers can be found online and downloaded for free and support the ISAs in

46

4.1 Basic Information

common use, such as PowerPC, ARM, SPARC and MIPS etc. Figure 4.1 shows
an example of cross-compiling a program for a PowerPC processor. Each Pow-
erPC instruction is shown as a single line of assembly at a given program address:
[address: assembly]. The cross-compiler, powerpc-gee, is a GCC compiler ported
to the PowerPC processor.

During the compilation, optimizations can be performed to minimize or maximize
some attributes of the executable of a program, according to a given optimization
level. For example, we can set the compiler to minimize the time taken to execute a
program. We can also minimize the program size to save memory. During compiler
optimizations, complex statements in a program are first transformed to single
statements, which are then optimized by operations, such as dead code elimination,
code motion and instruction scheduling etc. to minimize execution time or code
size. The optimizations can be categorized into target machine independent and
dependent optimizations. Machine independent optimizations operate on abstract
programming concepts such as loops and structures, while machine dependent
optimizations exploit features of the target processor. Most widely used compilers
have two decoupled parts, namely the front-end and the back-end, for performing
target machine independent and dependent manipulations, respectively.

GCC compilers provide a range of general optimization levels. An optimization
level is chosen with the command line option -OLFEVFEL, where LEVFEL is a num-
ber from 0 to 3. Compilation with a higher optimization level can achieve more
reduction in execution time or size of an executable, but will increase in cost in-
cluding compilation time and memory requirement. For example, with the option
-02, the compiler will take longer to compile programs and require more memory
than with -O1. For most cases it is satisfactory to use -O0 for debugging and -O2
for development and deployment. With -O0, the compiler does not perform any
optimization and converts the source code directly to the corresponding instruc-
tions without any rearrangement, while with -O2, most common optimizations are
turned on and the compiler provides the maximum optimization without increas-
ing the executable size. For a detailed description of GCC compilers’ optimization
levels, please refer to the book “An Introduction to GCC” [47].

Figure 4.1(b) and Figure 4.1(c) show (disassembled) binary codes generated from
the C code in Figure 4.1(a) with optimization levels -O2 and -O0, respectively.
Without any optimizations, the four lines of source code are converted to 23
PowerPC instructions. The number of instructions is reduced to 8, when the
optimization level -O2 is used.

4.1.2 Control Flow Graph

A control flow graph (CFG) is basically a graphical representation of a program.
It is essential to many compiler optimizations and static analysis tools. We define
some basic terms to facilitate the later discussion regarding CFG.

47

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

//bb1

1800088: b 18000d8

//bb2

180008c: lwz r10,8(r31)
1800090: Iwz r0,8(r31)
while(i<10) — 1800094: lis r9,385

18000d4: stw r0,8(r31)

c[i] = a[i] * bi; //bb3

i++; 18000d8: Iwz r0,8(r31)
18000dc: cmpwi cr7,r0,9
18000€0: ble+ cr7,180008c

N v
// bb4

(a) Source Level Control Flow Graph (b) Binary Level Control Flow Graph

Figure 4.2: Control Flow Graphs

e Basic block: a basic block corresponds to a node in the CFG. It consists of
a sequence of instructions that has only one entry point and one exit point.
In the rest of the thesis, we use sometimes block instead of basic block.

e Entry block: an entry block is a special basic block, through which all control
flow enters the graph.

e Exit block: an exit block is a special basic block, through which all control
flow leaves the graph.

e Edge: an edge connects two basic blocks and represents a jump in a control
flow. It is directed.

In the different phases of compilation, a program is represented differently as
source code, intermediate representation (IR), or binary code. Each level of repre-
sentation can have a CFG. Hence, a program has a source level CFG, an IR-level
CFG, and a binary level CFG.

Both the source level CFG and the binary level CFG of the example in Figure 4.1
are shown in Figure 4.2. In the source level CFG, the while loop is splitted into
two source level basic blocks. The loop test “while(i < 10)” is a basic block. The
loop body is another basic block. The control flows in a source level CFG are
expressed by semantics of high level programming constructs. In the example, the
control flow begins with a jump from the code before the while loop to the basic
block containing the loop test. According to the loop test result, the control flow

48

4.1 Basic Information

jumps either to the block containing the loop body or to the block after the while
loop. In contrast, at the binary level, control flows are expressed explicitly by
control flow instructions. In Figure 4.2(b), the instructions b and ble+ realize an
unconditional jump and a conditional jump, respectively.

4.1.3 Introduction to Source Code Instrumentation

In the context of computer programming, instrumentation means to add some
code in application code to monitor specific components in a system, in order to
diagnose errors, measure performance, or write trace information. So, source code
instrumentation means to add some code to application source code. Recently, this
technique is becoming popular for system-level software performance simulation.
In this context, source code instrumentation is a process of generating software
simulation models by annotating application source code with some code that
expresses timing information. Instrumentation is done before simulation, i.e., at
compile-time. The code that expresses timing information is called annotation
code in the following discussion.

cycles +=5; // delay of bb1

cycles += 2; // delay of bb3
8: while(i<10)} 8: while(i<10){
9: cli] = a[i] * bl[i]; cycles + = 2; // delay of bb3
10: i+ 9: cli]=a[il*bl[i];
11: } cycles +=12; // delay of bb2
10: i++;

11: }

(a) Source code

(b) Instrumented source code

Figure 4.3: An Example of Source Code Instrumentation

Figure 4.3 presents an example of source code instrumentation. Figure 4.3(b)
shows the same functional code as in Figure 4.3(a) with delay annotations. The
annotated delay values are added to a counter variable cycles and will be ag-
gregated along the control flows during the simulation. For example, when the
instrumented source code is executed once, the delay values annotated outside
the loop will be aggregated once and the delay values annotated inside the loop
will be aggregated as often as the number of the loop iterations, 10 times in the
example. The instrumentation follows specific rules. For example, the delay value
of 603 must be annotated both before and after the while statement. We will
discuss about such instrumentation rules in the introduction to our own source
code instrumentation approach in the next section.

49

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

4.2 The SciSim Approach

To implement a SLS approach, there are two important issues: (1) the way of
getting the delay values, and (2) the way of inserting the delay values into source
code. To get accurate delay values, we need an accurate low-level performance
model, with which the timing effects of the target processor can be taken into
account. Inserting the obtained delay values back into source code relies on the
mapping between binary code and source code. We developed a new SLS ap-
proach, called SciSim. Compared to other existing SLS approaches, SciSim allows
for more accurate performance simulation by employing a hybrid method for tim-
ing analysis. That is, timing analysis is done on the target binary code, both
statically for pipeline effects and dynamically for other timing effects that cannot
be resolved statically. We also use a simple way to get information on the mapping
between source code and binary code, namely, extract the mapping information
from debugging information, which can be dumped automatically during cross-
compilation. Thus, the whole approach can be fully automated without the need
of any human interaction.

However, the existing SLS approaches, also including the proposed SciSim ap-
proach, have a major disadvantage in that they cannot estimate some compiler-
optimized programs accurately, because the back-annotation of timing information
into source code relies on the mapping between binary code and source code, and
in many cases, optimizing compilation makes it hard to find the mapping. Some-
times, even when the mapping is found, the timing information back-annotated
according to the mapping cannot be correctly aggregated along the source level
control flows, due to the difference between source level control flows and bi-
nary level control flows. This problem is especially serious for control-dominated
programs. We will describe this problem in more detail with some examples in
Section 4.4.

In this section, we show SciSim only for performance simulation of unoptimized
software. The iSciSim approach introduced in Chapter 5 extends SciSim and solves
the problem raised by compiler optimizations. It reuses the whole instrumentation
approach of SciSim. In this chapter, we only introduce the basic idea and concept
of SciSim and do not go into the details of the instrumentation approach, which
are however presented in Chapter 5 in the introduction of the iSciSim approach.

The work flow of SciSim consists of two steps, namely source code instrumentation
and simulation, which are presented in the following two subsections.

4.2.1 Source Code Instrumentation

The source code instrumentation tool is responsible for specifying what code is to
be annotated into the source code and where the code is to be annotated. The

50

4.2 The SciSim Approach

cycles +=5;
iCache(0x1800080, 0x1800088); :
— Instruction Cache
cycles += 2; .
iCache(0x18000d8, 0x1800010); Simulator
while(i<10)X
cycles + = 2; void iCache(UInt32 first_addr,
iCache(0x18000d8, 0x1800010); UInt32 last_addr) {
clil=ali]*b[il;
cycles += 12; }
10: iCache(0x180008c, 0x18000d4);
1: i++;

©COINID R WD

Figure 4.4: Instrumentation for Instruction Cache Simulation

two issues are discussed in the following. The details about the working steps of
the instrumentation tool are introduced in Section 5.3.

What code is to be annotated?

There are two categories of annotation code according to the concept of our hy-
brid timing analysis method: statically obtained delay values and code for trig-
gering dynamic timing analysis. In the instrumentation step, some timing effects
are represented by delay values obtained by static analysis. These delay values
can advance the simulation time directly while the simulator runs. Thus, time-
consuming, iterative analysis of these timing effects can be avoided at simulation
run-time. To take into account other timing effects that cannot be resolved stati-
cally but have a large impact on software performance, annotation code also con-
tains code that can send run-time data to the corresponding performance model
to trigger the dynamic analysis of these timing effects. Correspondingly, the per-
formance model is divided into two parts: an offline performance model and an
online performance model, for static timing analysis and dynamic timing analysis,
respectively.

Figure 4.4 shows an example of instrumented source code, which, when runs, can
take the instruction cache effect into account. The annotation code for each basic
block contains a delay value, which is obtained by pipeline analysis, and a func-
tion call icache(UInt32 first_addr, Ulnt32 last_addr), which will trigger dynamic
instruction cache simulation at simulation run-time. During the simulation, the
function call passes the addresses of the first instruction and the last instruction
of the basic block to an instruction cache simulator, which then decides how many
cache misses are caused by this basic block according to the present state of the
cache. To simulate other timing effects, other code has to be annotated into the

o1

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

<statement1> while(<test>){ do{
<statement2> <body> <body>
e } } while(<test>);
N N 7
) <annotation code of test> dof
<annotation code of statement1> while(<test>){ .
<statement1> <annotation code of test> <annotation code of body>
<annotation code of statement2> <annotation code of body> <body>
<statement2> <bodv> <annotation code of test>
e y y } while(<test>);
(a) Basic Statements (b) While-Loop (c) DO-While-Loop

for(<init>; <test>; <update>){ Fui\lb%g§/>
<body> return;
} } ’
S 7
<annotation code of init> FUNC()

<annotation code of test>
for(<init>; <test>; <update>){
<annotation code of test>

<annotation code of prologue>
<annotation code of body>

. <body>
<annotation code of update> <annotation code of epilogue>
<annotation code of body>] priog
return;
<body>
}
}
(d) For-Loop (e) Function

Figure 4.5: Part of Instrumentation Rules

source code. More details about dynamic timing simulation are presented in Sec-
tion 5.4, while static timing analysis for accurate delay values is introduced in
Section 5.3.3.

Where is the code to be annotated?

To automate the instrumentation approach, an easy way of describing the mapping
between source code and binary code is important. We generate the mapping
information from debugging information, which can be dumped automatically
from the object file of a program.

Using the mapping information and according to a set of instrumentation rules,
the annotation code is placed into the correct position in the source code. Part
of instrumentation rules used in SciSim is shown in Figure 4.5. Basically, the
annotation code of each basic block is inserted before the corresponding source

52

4.3 Experimental Results

line, as illustrated in Figure 4.5(a). For some complex C statements, such as loop
constructs, annotation code must be placed specially. Hence, a special instrumen-
tation rule must be defined for each of such complex constructs. In all the loop
constructs, for loop is most complex. A for statement typically contains three
parts: “< init >” that initializes the loop count, “< test >” that tests the loop
condition, and “< update >" that updates the loop count. The instrumentation
rule of the for loop is shown in Figure 4.5(d). The annotation code generated from
“<init >” is placed before the for statement, while the annotation code gener-
ated from “< update >" is placed after the for statement, i.e., in the loop body.
The annotation code generated from “< test >” is annotated both before and
after the for statement. With this placement the annotation code of “< test >”
will be executed as often as “< test >”. The annotation code generated from the
loop body is placed according to the code constructs of the loop body.

Another example of special instrumentation rules is the one defined for placing
annotation code of a function’s prologue and epilogue. As shown in Figure 4.5(e),
the annotation code of the function prologue is inserted after the first left curly
bracket “{”, i.e., in the first line of the function body. The annotation code of
the function epilogue must be inserted before each return statement. If there
is no return statement in a function, the annotation code is inserted before the
function’s last right curly bracket “}”.

4.2.2 Simulation

For performance profiling of a single software task, the instrumented source code
is compiled together with the online performance model. We just need to click
to run the generated host executable. All the annotated timing information will
then be aggregated to generate performance statistics of the target execution of
the task. To simulate a multiprocessor system, a system level design language that
supports modeling of the system’s concurrent behavior is required. Among system
level design languages (SLDL), SystemC is the most frequently used one in both
academia and industry and has become a standard for system level design space
exploration [55]. Therefore, for system level simulation, instrumented software
tasks are generated as Transaction Level Models (TLMs) in SystemC. The software
TLMs are then combined with TLMs of the other system components to get a TLM
of the whole system.

Simulation is discussed in more detail in Chapter 5 and 6.

4.3 Experimental Results

The experiments have been carried out to show the advantages and limitations of
SciSim, using a set of benchmarks. The benchmarks consisted of 6 programs with

23

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

different workloads. They were fibcall, insertsort, bsearch, crc, blowfish, and AES.
PowerPC 603e, a superscalar design of the PowerPC architecture, was chosen as
the target processor.

In the first experiment, we show the high speed and accuracy of SciSim for per-
formance simulation of the programs that were compiled without optimizations.
Since the cross-compiler was obtained by porting a GCC compiler, the optimiza-
tion level -O0 was set to compile the programs in the first experiment. In the
second experiment, we show the limitation of SciSim that it cannot estimate some
compiler-optimized software accurately. Hence, all the programs were compiled
with the optimization level -O2.

We evaluated the SciSim approach quantitatively, in terms of simulation accuracy
and speed. Simulation accuracy was measured by both instruction count accu-
racy and cycle count accuracy. Instruction count accuracy depends solely on the
mapping between functional representation and binary code, while cycle count
accuracy is dependent on both the mapping and the timing analysis.

To get a reference, we developed a regular interpretive ISS to simulate this pro-
cessor. The estimates obtained by the ISS have taken the most important tim-
ing effects into account using a simplified performance model, which contains a
pipeline model, a data cache simulator, and an instruction cache simulator. As
there are still some approximations made in the performance model, the estimates
from the ISS are not exactly the same as but close to the real execution times.
We assume that the estimates from the ISS were accurate enough and could be
used as a reference to evaluate the simulation accuracies of the other tools. The
estimation error (EE) of SciSim and the mean absolute error (MAE) of simulating
N programs are given by:

_ (BEstimategcisim — Estimaterss)
EE = Estimaterss X 100%

and
MAE = ;32X |EE

The simulation speeds of ISS and SciSim are calculated by

)) — Cinstruction
stmulation speed o 0]

where Cjpstruction 18 the total number of instructions executed when running the
program on the target processor, estimated by simulation, and Tyinuiation 1S the
simulation duration. In the experiment, the simulation duration was measured on
a 3GHz Intel CPU based PC with 4 GB memory, running Linux.

The results of the two experiments are shown in the following two subsections:

54

4.3 Experimental Results

4.3.1 Performance Simulation of Unoptimized Software

The results of this experiment are shown in Table 4.1. SciSim is able to count
instructions as accurate as the ISS for the unoptimized programs, as shown in the
table. Except AES, the instruction counts of the other five programs estimated by
SciSim are exactly the same as those estimated by the ISS. A trivial difference is
found in the numbers of instructions of AES counted by SciSim and the ISS. This
is because that SciSim had inaccurate instrumentation for the switch statements
contained in AES.

The cycle counts estimated by SciSim has an MAE of 2.02%. The reason for this
slight error is because more approximations were made in the performance model
of SciSim. In the estimates from SciSim, timing effects such as the cache effect
and the branch prediction effect were not taken into account.

Table 4.1: Performance Simulation of Unoptimized Software

ISS SciSim | Error

fheall instructions | 16311 16311 0.00%
cycles 16295 16130 -1.01%

insertsort instructions | 2330 2330 0.00%
cycles 2338 2310 -1.20%

bearch instructions | 152028 152028 0.00%
cycles 154023 152021 -1.30%

e instructions | 54068 54068 0.00%
cycles 49142 47882 -2.56%

blowfish instructions | 913167 913167 0.00%
cycles 973074 945121 -2.87%

AFS instructions | 7345439828 | 7346851268 | 0.02%
cycles 6645440614 | 6568823424 | -1.15%

Table 4.2 shows both the native execution speed and the simulation speeds, mea-
sured in MIPS (million instructions per second). The simulation speed of the ISS
is very low, in the range from 0.93 MIPS to 27.78 MIPS. It is found that the
ISS has very different simulation performance in simulating programs of different
sizes. It is because that the ISS has to do some initialization every time before
simulation can start. The time for initialization accounts for a large portion of the
simulation time of a small program and thus reduces the simulation performance.
In contrast, it is ignorable in simulating a large program.

SciSim achieved very high performance of around 13500 MIPS on average, even
2.5 times as fast as the native execution (around 5400 MIPS on average). The
reason for this is because a simulation model generated by SciSim contains timing
information of unoptimized target binary and itself is then compiled by the host

25

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

compiler with compiler optimizations. To explain this more clearly, we show the
formulas used to calculate the native execution speed and the simulation speed of
SciSim. The native execution speed is calculated by:

)) CHost Instructi
native execution speed = ost Instruction
p (TNative Execution X 1000000)’

while the simulation speed of SciSim is given by

CTa'rget Instruction
Tsimutation X 1000000)

stmulation speed = (

Because the target binary is unoptimized and the host binary of the simulation
model is highly optimized, Crarget rmstruction 15 much larger than Cost rnstruction-
On the other hand, because the back-annotated annotation code does not bring
too much overhead, Ts;muiation USUally has a comparable value to Tnative Ezvecution-
Therefore, the simulation speed of SciSim is much higher than the native execu-
tion speed for the simulation of unoptimized software. Compared with ISS, the
simulation performance of SciSim is 1386 times higher.

Table 4.2: Simulation Speeds of Simulating Unoptimized Software (in MIPS)

Native Execution | ISS | SciSim
fibcall 4634.04 2.1 | 14218.78
insertsort 4357.73 0.93 | 12057.40
bsearch 7881.79 7.34 | 10569.28
cre 4762.62 5.22 | 14008.82
blowfish 5291.19 13.04 | 13638.29
AES 5474.97 27.78 | 16506.75

4.3.2 Performance Simulation of Optimized Software

Because embedded programs are usually compiled with compiler optimizations
in practice, the efficiency of simulating compiler-optimized programs is more im-
portant for a simulation technique. We measured the execution times of the 6
programs compiled with and without optimizations, using the ISS. The results are
shown in Table 4.3. We can see, with the optimization level -O2, the software
performance increases around four times on average.

In this sub-section we show the simulation accuracy and performance of SciSim for
simulating compiler-optimized software. The results are shown in Table 4.4. Tt is
found that SciSim is still able to count instructions accurately for data-intensive

56

4.3 Experimental Results

Without Optimizations
-00 -02 ‘ Difference
instructions | 16311 4384 272.1%
fibcall - © s 16295 3307 392.7%
inSertsort instructions | 2330 630 269.8%
cycles 2338 516 353.1%
bsearch instructions | 152028 59010 157.6%
cycles 154023 46057 234.4%
ore instructions | 54068 17201 214.3%
cycles 49142 10288 377. 7%
blowfish instructions | 913167 262434 248.0%
cycles 973074 178610 444.8%
AFS instructions | 7345439828 | 3624426960 | 102.7%
cycles 6645440614 | 2292275341 | 189.9%

Table 4.4: Performance Simulation of Optimized Software

ISS SciSim ‘ Error
instructions | 4384 12973 195.92%
fibcall
cycles 3307 12996 292.98%
insertsort instructions | 630 975 54.76%
cycles 516 672 30.23%
bsearch instructions | 59010 75013 27.12%
cycles 46057 51008 10.75%
ore instructions | 17201 19385 12.70%
cycles 10288 15430 49.98%
blowfish instructions | 262434 265735 1.26%
cycles 178610 187184 4.80%
AES instructions | 3624426960 | 3624685359 | 0.01%
cycles 2292275341 | 2336484895 | 1.93%

Table 4.3: Software Execution Time Estimated by the ISS: With Optimizations vs.

o7

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

applications, like blowfish and AFES, where the control flows are relatively sim-
ple. The average instruction count error in simulating the two programs is 0.63%.
However, for the other programs, large errors are seen, because the control flows of
these programs were changed by compiler optimizations and SciSim could not find
a correct mapping between the binary code and the source code. The MAEs are
48.6% and 65.1% in instruction counting and cycle counting, respectively. There-
fore, SciSim has a very limited ability to simulate compiler-optimized software.

The average simulation speed of SciSim was 4669.0 MIPS, close to the native
execution speed, which was 5198.2 MIPS on average.

i v
//bb1
while(i<10) <« 0x1800098 Ibz r0,0(r8)
0x180009¢ addi r8,r8,1
i 0x18000a0 Ibz r9,0(r11)
0x18000a4 addi r11,r11,1
0x18000a8 mullw r0,r0,r9
cli] = a[i] * b[i]; 0x18000ac stbx r0,r10,r7
i++; 0x18000b0 addi r10,r10,1
0x18000b4 bdnz+ 1800098

|
v

(a) Source Level Control Flow Graph (b) Binary Level Control Flow Graph

Figure 4.6: Source Level CFG and Binary Level CFG Constructed from Compiler-
Optimized Binary Code

4.4 Why Does SciSim Not Work for Some
Compiler-Optimized Software?

As already presented, when we compare a source level CFG and the correspond-
ing binary level CFG constructed from unoptimized binary code, source level basic
blocks can always find their counterparts at the binary level and an instrumenta-
tion rule can be made for each complex statement for accurate back-annotation of
timing information. An example has been illustrated in Figure 4.2. However, when
compiler optimizations are enabled during the compilation, complex statements
in a program are transformed to simple statements, which are then optimized by
the compiler to minimize execution time or code size. The same statement is

o8

4.4 Why Does SciSim Not Work for Some Compiler-Optimized Software?

manipulated differently in different contexts. Such manipulations invalidate the
instrumentation rules defined for those complex statements.

As shown in Figure 4.6, compiled with optimizations, the while loop generates
only one basic block of binary code. No mapping can be established between
the source level basic blocks in Figure 4.6(a) and the binary level basic blocks in
Figure 4.6(b).

9 — 0x18000b4—0x18000b4
10 — 0x1800098—0x1800098
10 — 0x18000a0—0x18000a0
10 — 0x18000a8—0x18000ac
11 — 0x180009c—0x180009¢c
11 — 0x18000a4—0x18000a4
11 — 0x18000b0—0x18000b0

(a) Mapping Information

i //sb1
| 0x1800098 Ibz r0 ,0(r8)
1 0x180009c addi r8,r8,1

1
1
| 01800020 Ibz r9,0(r11) 1
! 0x18000a4 addir11,r11,1
:
|
1

9: while(i<10)

'

10: c[i] = a[i] * bli];

11: i++;

\

B . 0x18000a8 mullw r0,r0,r9
. 0x18000ac stbx r0,r10,r7
! 0x18000b0 addi r10,r10,1

(b) Mapping Established between Source Code and Binary Code

Figure 4.7: Mapping between Source Code and Binary Code in the Sub-block Granu-
larity

For this shown example, the mapping problem can be solved by establishing the
mapping between source lines and sub-blocks of binary code instead of basic blocks.
Here, a sub-block is either a basic block or a part of a basic block. Such a mapping
can be established with the help of debugging information. Figure 4.7(a) shows
the mapping information extracted from DWARF’s line table, a kind of debug-
ging information, which describes the correspondence between source lines and

29

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

the generated machine code. Each entry of mapping information is expressed as
“source line number — the first address of the sub-block — the last address of the
sub-block”. For example, the entry “10 — 0x18000a8-0x18000ac” denotes that
the instructions stored in the memory block “0x18000a8-0x18000ac” are gener-
ated from source line 10. It is possible that the last address of the sub-block is
the same as its first address. This means that the sub-block contains only one
instruction.

We can find that, after optimizing compilation, the instructions generated by line
10 and line 11 are arranged in an alternate order. As line 10 and 11 are in the same
source level basic block and the instructions generated from them are also in the
same binary level basic block, these instructions are merged into a single sub-block
sb1. In the same way, the sub-block sb2 is mapped to the while statement at line
9. The mapping in the granularity of sub-blocks is depicted in Figure 4.7(b).

Nevertheless, in some cases, due to optimizing compilation the DWARF’s line
table might provide incorrect mapping information. The program fibcall is an ex-
ample. According to the mapping information in Figure 4.8(a), four sub-blocks of
binary code are generated from the while statement at source line 7. Figure 4.8(b)
shows the relevant part of code and depicts the discussed mapping. There are
two errors in the mapping: (1) the basic block from 0x1800084 to 0x1800090 is
actually not generated from line 7 but the code before line 7 and (2) the instruc-
tion at 0x180009c should be generated from line 8 or line 10. Because SciSim
relies on the debugging information, during the instrumentation of fibcall it estab-
lishes a wrong mapping, and according to the mapping, it annotates the execution
time of the instructions in 0x1800084—-0x1800090 into the while loop in the source
program. During the simulation, the annotated execution time will then be aggre-
gated as the loop iterates. However, this basic block will be executed only once in
the real execution. That’s one reason why the simulation of fibcall using SciSim
had an instruction count error of 195.9% as shown in the experimental results in
Section 4.3.2. Another reason will be discussed later.

The fibcall example shows that due to optimizing compilation the DWARF’s line
tables might fail to provide accurate mapping between source code and binary
code and the inaccurate mapping information will lead to a large error in source
level simulation. To solve this problem, a more sophisticated approach is needed
to trace the code generation during the optimizing compilation. For example, the
methods introduced in [42, 58] for transforming source level flow information down
to binary level for worst case execution time estimation can be adapted for code
tracing. Nevertheless, such methods require to extend or modify the compiler and
will increase the complexity of tool development.

Nevertheless, even if we can solve the mapping problem, there still exist other

problems. One serious problem is that, due to the difference between source level
control flows and binary level control flows caused by compiler optimizations, the

60

4.4 Why Does SciSim Not Work for Some Compiler-Optimized Software?

— 0x1800078—0x1800078
— 0x1800074—0x1800074
— 0x180007¢c—0x1800090
— 0x180009¢c—0x18000a0
— 0x1800094—0x1800094
1 — 0x1800098—0x1800098

S~ O~N~N~NwW

(a) Mapping Information

40x1800074_cmpwi cr7,13,1 !
.7 | 0x1800078 mr o3 77T
e 10x180007¢ Ti r3,1 N
s -7 l0x1800080 blelr cr7 :
/7 PR - — — — — - o = — I
L - - T
! RoPte v
"
Ad 0x1800084 addi r9,r9,-1
7: while(i<=n) <] 0x1800088 i r0,1
. 0x180008c mitctr r9
i S~ 0x1800090 i r9,0
N
S ¢
8: temp = Fnew; N
9: Fnew = Fnew + FoId; \\ 0x1800094 add I’3,I’O,I’9
10: Fold = temp; T Sapl 01800098 mrro.0___ __ .
11: j++: 0x1 80009¢ mr r0,r3 |
"10x1800020_banz+ 1800094, !
|
|| 13:ans = Fnew) 4

(b) Mapping Established between Source Code and Binary Code

Figure 4.8: Mapping between Source Code and Binary Code of fibcall

timing information cannot be back-annotated straightforwardly according to map-
ping. For instance, in the fibcall example shown in Figure 4.8, it is found that the
instructions at 0x1800074, 0x180007c-0x1800080, and 0x18000a0 are really gen-
erated from source line 7. Along the binary level control flows, the instructions at
0x1800074 and 0x180007c—0x1800080 are executed only once, while the instruc-
tion at 0x18000a0 is executed the same number of times as the loop iterations.
However, if we simply annotate the timing information of these instructions after
source line 7. All the timing information will be aggregated as the loop iterates.
Therefore, this straightforward back-annotation will cause a large error in source
level simulation. As SciSim supports only straightforward back-annotation, that’s
another reason why the simulation of fibcall using SciSim had such a large error.

Another example is insertsort. Part of mapping of insertsort is depicted in Fig-
ure 4.9, which has been proven to be correct. insertsort contains two nested while
loops. The instruction at 0x1800108 is generated from the C statement at line

61

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

15. Line 15 is in the inner loop, so the timing information of the instruction at
0x1800108 is back-annotated into the inner loop. However, in fact, the instruction
is put outside the inner loop in the binary level CFG. The while statement at line
11 generates four sub-blocks of binary code. One is put inside the inner loop, while
the other three are put even outside the outer loop. If we simply annotate the
timing information of all the four sub-blocks after the while statement at line 11,
it will lead to a large error. As shown in the experiment results in Section 4.3.2,
the simulation of insertsort using SciSim had an instruction count error of 54.8%.

—.:/10x1800074 — 0x18000cc. _ _
»L0x18000d0 addi _r9.r11-1___ _;
¢+| 0x18000d4 stw r0 48(r1)
;7 |, 0x18000d8 addi_ r7,;18______
7 " | 0x18000dc riwinm r10 r11 ,2,0,29 :
/’ |4 0x18000€0 riwinm 18,r9,2,029 1
..l line 1 -8 /| ~71L0x18000e4 lwzx _r11,r10s7 __
S |,7 | 0x18000e8li_ 62 ____ ____
v S ! Ox18000ec wzx 0,817 :
i P ’ . a 0x18000f0 cmpw ¢r7,r11,r0 I
o whie(1== 1%) S0 |- 7|Loxas000m bit- or7,1800128__ !
7]
‘ // ,/ ,/ ¢
. . ,// e ‘<
10: j=i; {2 0x18000f8 addi r6,r6,1
¢ 4 | 0x18000fc cmpwi cr7,r6,10 «
,z < 0x1800100 mr ~ r9,r6
| 11: while (a[j] < a[j-1]) 0x1800104 bgt- cr7,1800138
12: { ¢
v
13 temp = af] 0x1800108 mr r11,r9
14:__all=afdL ___ v
qg;- T 0x180010c addi r9,r11,-1
175) b= 0x1800110 rlwinm r10,r11,2,0,29 | |
: 0x1800114 rlwinm r8,r9,2,0,29
0x1800118 lwzx r11,r10,r7 €
18: i++; 0x180011c lwzx r0,r8,r7
> 19} 0x1800120 cmpw cr7,r11,r0
0x1800124 bge- ¢c:r7,18000f8
.. 1/ 0x1800128 — 0x1800134 —
Ly

Figure 4.9: Mapping between Source Code and Binary Code of insertsort

The two examples show that a same statement might be manipulated differently
in different contexts during the compilation. For example, the while statement
generates only one instruction in the example in Figure 4.7, whereas the while
statement in fibcall generates many sub-blocks of instructions. We cannot simply
make instrumentation rules for compiler-optimized code as we do for unoptimized
code (Figure 4.5). Therefore, we need a method to decide the correct position in

62

4.4 Why Does SciSim Not Work for Some Compiler-Optimized Software?

a[0]=0; a[1]=11; a[2]=10; a[3]=9; a[4]=8; a[5]=7;
a[6]=6; a[7]=5; a[8]=4; a[9]=3; a[10]=2;

.../ll'line1-8

Delay(0x1800074 — 0x18000f4);

(a) Input Data

S

9: while(i <= 10){

10

Delay(0x18000f8 — 0x1800104);
Delay(0x1800108);
10: j=i;

.../ 0x1800074 — 0x18000e4
0x18000e81li 6,2
0x18000ec Iwzx r0,r8,r7
0x18000f0 cmpw cr7,r11,r0
0x18000f4 blt- ¢r7,1800128

11: while (a[j] < a[j-11)
12 {

54

0x18000f8 addi r6,r6,1
0x18000fc cmpwi c¢r7,r6,10
0x1800100 mr r9,r6
0x1800104 bgt- c¢r7,1800138

Delay(0x180010c — 0x1800124);
Delay(0x1800128 — 0x1800134;
13: temp = a[j];

14: a[j] = a[j-1];

15: a[j-1] = temp;

16: -

17: }

45

0x1800108 mrr11,r9

18: i++;
19:}

0x180010c addi r9,r11,-1
0x1800110 rlwinm r10,r11,2,0,29
0x1800114 rlwinm r8,r9,2,0,29
0x1800118 Iwzx r11,r10,r7
0x180011c lwzx r0,r8,r7
0x1800120 cmpw cr7,r11,r0
0x1800124 bge- c¢r7,18000f8

53

(b) Instrumented Source Code

and Execution Count

Figure 4.10: Instrumented Source Code and Binary Code of insertsort

.../ 0x1800128 — 0x1800134

45

(c) Binary Code and
Execution Count

63

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

the source code, where the timing information of each sub-block should be back-
annotated. For example, for insertsort the tool should annotate the timing infor-
mation of the instructions at 0x18000d0, 0x18000dc—0x18000e4, and 0x18000ec—
0x18000f4 outside the nested loops, insert the timing information of the instruc-
tions at 0x180010c—0x1800124 into the inner loop, and put the timing information
of the instruction at 0x1800108 inside the outer loop and outside the inner loop.
According to our experiences, it is very hard to get an efficient solution to realize
that automatically.

Now, we assume that all the mentioned problems have been solved. Then, for
insertsort, timing annotations shown in Figure 4.10(b) are supposed to be the
best annotations that can be achieved. Nevertheless, some annotated timing in-
formation still cannot be aggregated accurately. In Figure 4.10, we also show the
execution count of each block of source code and binary code at its right hand
side, given a set of input data shown in Figure 4.10(a). As shown, when the
instrumented source code is executed, the timing information of the instruction
block 0x180010c-0x1800124 is aggregated 45 times, but the instruction block is
executed 53 times in the real execution. The timing information of instruction at
0x1800108 is aggregated 9 times, whereas the instruction is actually executed 8
times.

Besides the mapping problems, there are also some timing problems. To facilitate
instrumentation, a basic block might be divided into sub-blocks, so static timing
analysis is performed in the scope of a sub-block. Many sub-blocks consist of
only less than three instructions. In the scope of such a small sequence of code the
pipeline effect cannot be accurately addressed, resulting in an inaccurate estimate.
Another problem is that, during the simulation, the timing information of sub-
blocks might be aggregated in a different order from the execution order of binary
code. Assume there are two sub-blocks of binary code. Block A is executed before
block B. However, in the instrumented source code, the annotation code of block
B might be executed before that of block A. If both blocks have an access to a
shared resource, the reversed access order might result in simulation errors.

If all the timing effects are accurately modeled, the cycle count error should be
close to the instruction count error. However, we find that in the simulation
of fibcall, the cycle count error was much larger than instruction count error,
while in the simulation of insertsort the cycle count error was much smaller than
instruction count error. That’s mainly because the static timing analysis in the
scope of sub-blocks resulted in a large positive error in fibcall and a large negative
error in insertsort.

Now, we conclude the above discussion. In order to get a sophisticated source
level simulation approach there are three problems to be solved:

e The problem of finding accurate mapping between source code and optimized
binary code. It is possible to solve this problem, for example, by realizing the
code tracing function in the compiler. However, this will take large effort.

64

4.5 Summary of SciSim’s Advantages and Limitations

e The problem of correct back-annotation of timing information. The tool
should find the correct position in the source code, where the timing infor-
mation should be inserted, so that the annotated timing information can be
correctly aggregated along the source level control flows.

e The problem of getting accurate timing information. We should find a way
to perform accurate timing analysis, even when the binary code is splitted
into very small pieces of code.

These problems exist not only in SciSim but also in other SLS approaches pub-
lished in previous work.

4.5 Summary of SciSim’s Advantages and
Limitations

The advantages of SciSim are summarized as follows:

e Like other source level simulation approaches, SciSim allows for ultrafast
software performance simulation.

e The generated simulation models are as readable as their original source
code. It is easy to check the contribution of each segment of source code to
the execution time of the whole program.

e SciSim uses a hybrid method for accurate performance modeling. Accord-
ing to the experiments, SciSim allows for an average accuracy of 98% in
estimating 6 benchmark programs compiled without optimizations.

e In SciSim, the whole instrumentation approach is fully automated without
the need of any human interaction. Currently, the instrumentation tool sup-
ports several processors of widely used instruction set architectures (ISAs)
including PowerPC, ARM and SPARC. The tool was designed modularly to
minimize users’ effort to extend it. To retarget the tool to a new processor
of a new ISA, we just need to add a performance model of this processor
and a decoder of the ISA and do a slight adaptation in other parts of the
tool. This work takes only 2-3 days according to our experiences.

However, SciSim has also many limitations summarized in the following. Some of
these limitations also commonly exist in other SLS approaches.

e The defined instrumentation rules highly rely on the syntax of the pro-
gramming language. Currently, only C syntax is supported. To instrument
programs in another programming language, a new set of instrumentation
rules must be defined.

65

Chapter 4 SciSim: A Source Level Approach for Software Performance Simulation

for(<init>; <test>; <update>)

for(<init>; <test>; <update>){ <body> } <body (a single statement)>

| |
~ ~

<annotation code of init>

<annotation code of test>

for(<init>; <test>; <update>)
<annotation code of test>
<annotation code of body>
<body (a single statement)>

<annotation code of init>

<annotation code for test>

for(<init>; <test>; <update>){ <body> }
<annotation code of test>
<annotation code of body>

(a) Multiple Statements in a Single Line (b) Curly Brackets are Omitted

66

Figure 4.11: Examples of Unsupported Coding Styles

e SciSim also has high requirements on the coding style of C programs to

be simulated. Two examples of unsupported coding styles are shown in
Figure 4.11. As shown, if multiple commands of a complex construct is
written on the same source line or if the curly brackets of a construct are
omitted in the case of a single-statement body, the source code cannot be
instrumented correctly. The wrong instrumentation in the first example
impacts the simulation accuracy, while the wrongly placed annotation code
in the second example even changes the functional behavior of the original
code: after instrumentation the original loop body is actually out of the
loop construct. To overcome this limitation, a tool that converts original
programs to programs in a supported coding style is needed.

The largest limitation of SciSim is the problem raised by compiler opti-
mizations. As already discussed in the last section, there are mainly three
problems to be solved. These problems are common to the current SLS tech-
nique. In practice, programs are usually compiled with optimizations. For
example, using GCC compilers, programs are usually compiled with the op-
timization level -O2. Therefore, this drawback strongly limits the usability
of SciSim as well as other source level simulation approaches.

Chapter 5

iSciSim for Performance Simulation
of Compiler-Optimized Software

As discussed in the last chapter, the problem raised by compiler optimizations
might lead to very inaccurate source code instrumentation and makes the SLS
technique hard to simulate some compiler-optimized software accurately. Moti-
vated by this fact, we developed a new approach iSciSim that converts source code
to a lower level representation, called intermediate source code (ISC), and anno-
tates timing information from the binary level back to ISC. ISC has been subject
to all the machine independent optimizations and thus has a structure close to
the structure of the binary code. Hence, timing information can be accurately
back-annotated to ISC.

This chapter is organized as follows: First, we give an overview of the iSciSim
approach in Section 5.1. The whole approach contains three working steps, inter-
mediate source code generation, intermediate source code instrumentation, and
simulation. Intermediate source code generation and instrumentation are intro-
duced in Section 5.2 and 5.3, respectively. There are two levels of simulation:
(1) simulation of the interactions between software code and a processor’s com-
ponents to analyze some timing effects of the processor, and (2) simulation of
the interactions among processors, hardware components and shared resources
to get performance statistics of a multiprocessor system. They are regarded as
microarchitecture-level and macroarchitecture-level simulations, respectively. Dy-
namic simulation of a processor’s timing effects is presented in Section 5.4. Then,
Section 5.5 describes software TLM generation using iSciSim for multiprocessor
simulation in SystemC. After that, in Section 5.6, experimental results are pre-
sented to compare all the discussed native execution based simulation techniques
and show the benefits of iSciSim, and a case study of designing an MPSoC for a
Motion JPEG decoder is demonstrated to show how iSciSim is used to facilitate
design space exploration of multiprocessor systems.

67

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

cross-comp.
(frontend))

1 source code IRto ISC IR
conversion

ISC Generation J

Cross- ELF
compilation J
target binary

ISC
B s, |
mapping info. analysis
off-line
perf. model
2 timing
. annotation
Instrumentation 7 timing info.
compilation
(host) J
. on-line
instrumented ISC perf. model
EXE
host executable
3
Simulation simulation J

Figure 5.1: The iSciSim Approach

5.1 Overview of the iSciSim Approach

The workflow of iSciSim is illustrated in Figure 5.1. The whole approach consists
of three steps: ISC generation, ISC instrumentation, and simulation. According
to our current implementation, ISC is written in the C programming language
and generated by slight modification of standard IRs of standard compilers. So,
ISC can be regarded as IR-level C code. Because the IR is the one after all the
machine-independent optimizations, the generated ISC has a structure already
very close to the structure of binary code. Therefore, there is an accurate map-
ping between the ISC and the binary code, which makes up the basis for accurate
instrumentation. More details about the ISC generation are presented in Sec-
tion 5.2. As shown in Figure 5.1, in the instrumentation step, we use the same
hybrid timing analysis method as in SciSim: some timing effects are analyzed at
compile-time using an offline performance model and represented as timing values;
other timing effects that cannot be resolved statically are simulated dynamically

68

5.2 Intermediate Source Code Generation

using an online performance model. The back-annotation of timing information
is based on the mapping information extracted from debugging information. The
details about the instrumentation step are introduced in Section 5.3. For simu-
lation of a single software task, the instrumented ISC is compiled together with
the online performance model to generate a host executable. We just need to
click the executable to get a simulation of the task. To simulate a multiprocessor
system, where multiple processors and hardware components run in parallel, the
instrumented ISC of each software task is generated as a Transaction Level Model
(TLM) in SystemC. The software TLMs are then connected with the TLMs of
other system components to get a simulator of the whole system. The ways of
dynamic simulation of a processor’s timing effects and software TLM generation
for multiprocessor simulation are described in Section 5.4 and 5.5, respectively.

5.2 Intermediate Source Code Generation

Basically, ISC can be in any form but must conform to the following definitions:

1. ISC is written in a high-level programming language and is compilable. This
feature enables the generation of debugging information, from which a map-
ping between ISC and binary code can be extracted.

2. ISC retains exactly the same semantics as its original source code. When
compiled with a C compiler, it shows exactly the same functionality as the
original source program.

3. ISC has a structure close to that of the binary code generated from it, so
that timing information can be back-annotated into it accurately.

There is more than one way to get code in accord with the definitions of ISC. In a
model-driven development process, ISC can be generated from functional models
using a code generator. It is even possible to let the programmer to write code with
simple expressions and unstructured control statements, although it is impractical.
A practical solution is to get a tool that converts complex constructs in a source
program, written in a normal programming style, into simple statements. We make
use of the compiler front-end to serve as such a tool. This sub-section describes
our ISC generation process and the overall structure of the generated ISC.

Most widely used compilers have two decoupled parts, namely the front-end and
the back-end, for performing target machine independent and dependent manip-
ulations, respectively. In a normal compilation process, a source program is first
translated to an IR by the compiler front-end, which then operates on the IR for
machine-independent optimizations. The optimized IR is then forwarded to the
compiler back-end for machine-dependent optimizations and object code gener-
ation. To get ISC, we let the compiler dump the optimized IR and then use a

69

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

program to translate it back to C code. This C code retains both the IR struc-
ture and many high-level information of the original source code, such as variable
names and high-level operators, and thus, fully conforms to the definitions of ISC.

We get cross-compilers by porting GCC (GNU Compiler Collection) compilers
to the target processors. GCC compilers can be found online and downloaded
for free and support lots of processors in common use, such as processors of the
ARM architecture and processors of the PowerPC architecture. Although we use
GCC compilers to present our work, this ISC generation approach is generally
applicable to other compilers that operate on IR in most widely used formats such
as 3AC (3-Address Code) and SSA (Static Single Assignment). In the optimizer
framework of the latest GCC compilers, the processor independent optimizations
are performed on IR in GIMPLE form and then GIMPLE code is lowered to RTL
code for processor-dependent optimizations. The GIMPLE representation is very
similar to 3AC and SSA.

Figure 5.2 shows an example of translating a C program to an ISC program. This
example is used to illustrate the whole proposed approach through this chapter.
The IR shown in Figure 5.2(b) is already the one after all the passes of processor-
independent optimizations. It is found that during the IR generation high-level
C statements in the original source code have been broken down into 3-address
form, using temporary variables to hold intermediate values. The while loop
in the original source code is unstructured with an if-else statement realizing
a conditional branch. Each jump is realized with a goto statement with the target
label. Other high-level control constructs such as for loops and nested if-else
statements are unstructured in the same manner. Although the original C code is
lowered to a structure close to that of the binary code, most high-level information
from the source code level has been retained. All the variable names are not
changed.

The IR in GIMPLE form is very similar to C code. Only some naming rules do not
conform to those of C. For example, the name of the temporal variable ivtmp.3/
contains a point, which is not allowed according to the variable naming rule of C.
Neither is the expression of labels. As the difference between IR syntax and C
syntax is very small, only a slight modification is needed to generate ISC from IR.
In the illustrated example, the IR is translated to the ISC (Figure 5.2(c)) after
modification of labels, variable names, and the representation of arrays.

Generally, the statements in ISC generated by the proposed process can be cate-
gorized into five types:

e Assignments: each assignment is in three-address form. This means that each
assignment has no more than one operator and no more than two variables
representing operands.

e Unconditional branches: an unconditional branch is a goto statement with a
target label.

70

5.2 Intermediate Source Code Generation

while(i<10){
cfi] = a[i] * b[i];
i++;

}

(a) Source Code

Compilation |
(frontend)

ivimp.34 = &al0];

ivtmp.35 = &bJ0];

<L0>:;

MEM[base:&c[0], index:i] =
MEM[base:ivtmp.34] * MEM[base:ivimp.35];
i=i+1;

ivtmp.34 = ivimp.34+1B;

ivtmp.35 = ivtmp.35+1B;

if(i'=10) goto <L0>;else goto <L2>;

<L2>:;

(b) IR

IRto ISC

Conversion |

ivtmp_34 = &al0];

ivtmp_35 = &b[0];

LO:

c[i] = (*ivtmp_34) * (*ivtmp_35);
i=i+1;

ivimp_34 = ivtmp_34+1;
ivtmp_35 = ivtmp_35+1;
if(i1=10) goto LO;else goto L2;
L2:

(c) ISC

Figure 5.2: An Example of ISC Generation

71

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

e Conditional branches: a conditional branch is normally realized by an if-else
statement, which has the general form of:
if (<Condition Test>) goto <Target Label 1> ;
else goto <Target Label 2>;
One exception is the conditional branch with multiple targets. This kind of
conditional branch is realized by a switch construct. Each case statement of
the switch construct contains a goto statement and a target label.

e Labels: labels represent the branch targets. They indicate the beginning of
a sequence of data flow and can be used to identify control low nodes at the

ISC level.

e Returns: a return statement is added implicitly for each function, even when
there is no return statement in its original source code.

As ISC is also compilable, we can easily verify the generation process by executing
both the original source code and the generated ISC with a set of input data
and comparing the output data. In our experiment presented in Section 5.6, we
compared the temporal behaviors between source code and ISC using a cycle-
accurate instruction set simulator. For the selected benchmarks, the difference
between the execution times of source code and ISC was within 1.92%. This
proves that the execution time of a program can be estimated accurately by the
timing analysis on the binary code generated from its ISC.

5.3 Intermediate Source Code Instrumentation

The ISC generated in the last step is forwarded to the tool for instrumentation.
Figure 5.3 shows the architecture of the instrumentation tool and its workflow. The
important working steps of the tool are introduced in the following sub-sections,
along with the running example shown in Figure 5.4.

5.3.1 Machine Code Extraction and Mapping List Construction

For the purpose of accurate instrumentation, an efficient way to describe the map-
ping between ISC and binary code is very important. Most compilers do not pro-
vide any information to describe the mapping between IR and binary code. Our
solution is very simple. We compile an ISC program again to generate debugging
information to express this mapping.

The object files generated by our cross-compiler are in ELF (executable and link-
able format) format, which is a standard binary format for Unix and Unix-like
systems. An object file in ELF format is organized in several sections. We use
usually only the .text section and the .line section.

72

[00], UOTYRIUSTUNIISU] 91} JO MOPIOA\ PUR 2INJINIYDIY Y, :€'G 2an31q

uonejuswnsul Joj sdejs
uonesedaud Joy sdeys <

73

5.3 Intermediate Source Code Instrumentation

wco_«_w_::mc_
Japooap ¢ a|npow — lapeo|) :uonewoyul buibbngsp
UONOBIIXD Aowsw 44vMa/413

%00|q 9Iseq

‘ojul ByBBNgep :U0I08s 9p0od

[opow "pad

sull-jo
—>

UoIoNJISUOD
1811 ¥90|q diseq

o

UoloNJI}SU0D
181] Buiddew

uonelauab

©p0o "ouue " opoo c@ﬂOccm ‘ol @:&m& uonedwoo
@ -SS0.0
1S1] %20|q 2Iseq 1s1] Buiddew
9poo uolejouue

9poo uolejouue "OU 8ul| 82IN0S

<Z)UBWae)S> \ mc_mcm / s

<lluswaje}s JO 8pod uolejouues uoneIBWNISU| <Zluswsajeis>
<ljuswsjels> <lluswsajels>

<lluawsaje)s Jo 8pod uonejouues
|00 uoljejuUBWINIISU|

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

12 ivtmp_34 = &a[0]; /lbb2
13 ivtmp_35 = &b[0]; 0x1800098 bz r0,0(r8)
14 L0: 0x180009c addi r8,r8,1
15 cfi]=(*ivtmp_34)*(*ivtmp_35); - 0x18000a0 bz~ r9,0(r11)
16 i[=]i Sf 1; P-347Cvimp_39) °r°.|sst. 0x18000a4 addi r11,r11,1
17 ivtmp_34 = ivtmp_34+1; compilation 0x18000a8 mullw r0,r0,r9
18 ivtmp_35 = ivimp_35+1; 0x18000ac stbx r0,r10,r7
19 if(i'=10) goto LO;else goto L2; 0x18000b0 addi r10,r10,1
20 L2: > 0x18000b4 bdnz+ 1800098
(a) ISC debugging information (b) binary code

15 — 0x1800098 - 0x1800098
15 — 0x18000a0 - 0x18000a0
15 — 0x18000a8 - 0x18000ac

16 — 0x18000b0 - 0x18000b0 timing Cl
17 — 0x180009c - 0x180009¢ ? I
18 — 0x18000a4 - 0x18000a4 analysis

19 — 0x18000b4 - 0x18000b4 off-line
perf. model

(c) mapping information

back: bb2:0x1800098 - 0x18000b4
annotation — <annotation code of bb2>

(d) timing information

12 ivtmp_34 = &al0];
13 ivtmp_35 = &b[0];

14 LO:
15 cli]=(*ivtmp_34)*(*ivtmp_35);
16 i=i+1;

17 ivtmp_34 = ivtmp_34+1;

18 ivtmp_35 = ivtmp_35+1;
<annotation code of bb2>

19 if(i'=10) goto LO;else goto L2;

20 L2: o/

(e) instrumented ISC

Figure 5.4: Instrumentation Example

The .text section contains the generated target machine code of a program. Fig-
ure 5.4(b) shows the code section generated from the ISC shown in Figure 5.4(a)
for a PowerPC processor. The ELF/DWARF loader, which is a part of the in-
strumentation tool, extracts the executable instructions from the code section and
stores them in a memory module for later processing. The memory module con-
structs the memory space of the target processor and maps the target memory
addresses to the host memory. The .line section holds the DWAREF’s line ta-
ble, which describes the correspondence between the source lines and the machine
code. DWARF [41] is one of common debugging data formats and is associated
with ELF. There is an existing GNU tool called readelf that can extract the
DWARF's line table from the object file. The instrumentation tool then extracts
the mapping information from the DWARF’s line table.

Each entry of mapping information contains a source line number, the first and
the last instruction addresses of the instruction block generated by this source
line. Figure 5.4(c) shows the mapping information of the running example. For
example, the entry “15—0x18000a8 - 0x18000ac” denotes that the instructions
stored in the memory block “0x18000a8 - 0x18000ac” are generated from source
line 15. If there is only one instruction generated, the first instruction address and

74

5.3 Intermediate Source Code Instrumentation

mNode —> mNode NULL
int source_line_no int source_line_no
fNode int first_address L) int first_address
char filename[100] int last_address int last_address
mNode "mList_ptr = mNode *next - mNode *next
bbNode *bbList_ptr S
fNode "next bbNode —> bbNode NULL
¢ char id[5] char id[5]
. int first_address . o o int first_address
. int last_address int last_address
. char *anno_code char *anno_code
* bbNode *next —> bbNode *next
fNode

char filename[100]
mNode *mList_ptr +—» ©* * *
bbNode *bbList_ptr +—— o o

fNode *next

L 4
| NULL |

Figure 5.5: Data Structure of Mapping Information and Timing Information

the last instruction address of this instruction block are the same. One source line
might correspond to more than one instruction block. As shown in Figure 5.4(c),
the machine code generated from source line 15 are separated into three instruction
blocks. This is the result of code motion made by the compiler back-end.

To facilitate later use, the mapping information of each program file is stored in
a linked list data structure, called mapping list (mList for short). As shown in Fig-
ure 5.5, each node of a mList, called mNode, contains four members: source_line_no,
first_address and last_address record the source line number, the first and the last
instruction addresses of the instruction block, respectively; next points to the next
mNode in the list. The list is sorted in the ascending order of source line numbers.

5.3.2 Basic Block List Construction

A basic block is a sequence of instructions that has only one entry point and
one exit point. This means that besides the first and the last instructions this
sequence of instructions contains neither a branch nor a branch target. Because
the basic blocks form the nodes of a program’s control flow graph and the sequence
of instructions of a basic block is known at compile-time, we use basic blocks as
basic units for timing information generation. The obtained timing information
of each program file is also stored in a linked list data structure, called basic block
list (bbList for short), as shown in Figure 5.5. Each node of a bbList, called
bbNode, corresponds to a basic block and contains five members: id, first_address,
and last_address hold the id of the basic block, the addresses of its first and last

5

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

instructions, respectively; anno_code points to the annotation code that expresses
the timing information of the basic block; next points to the next bbNode. The
list is sorted in the ascending order of instruction addresses.

Algorithm 1 Basic Block List Construction
1: current_address = first_address_of _program
2: while current_address # last_address_of _program do
3: instruction = getlnstruction(current_address)
4 instructionDecoding(instruction)
5 if instruction is a branch then
6: insertBBList(bbList, current_address)
7
8
9

target_address = getTargetAddress(instruction)
if target_address # first_address_of _program then
: insertBBList(bbList, target_address — 4)
10: end if

11: end if
12: current_address = current_address + 4

13: end while

14: current_bbNode = first_node_of_bbList

15: current_id = 0

16: current_bbNode — first_address = first_address_of _program
17: while current_bbNode # NULL do

18: if current_id # 0 then

19: current_bbNode — — first.address = previous_.bbNode —
last_address + 4

20: end if

21: current_bbNode — id = current_id

22: generateAnnotationCode(current_bbN ode)

23: current_id = current_id + 1

24: current_bbNode = current_bbNode — next

25: end while

We use the following algorithm to set up such a basic block list for each program:
first, the binary code is scanned to find exit points of basic blocks. Instruc-
tions that may end a basic block include primarily conditional branches, uncon-
ditional branches, and the instruction before the target instruction of a branch.
When an exit point is found in the scanning, a new node is created and inserted
into the list. After the basic block list is created, each node contains only the
value of last_address. Next, the list is traversed to assign an id and the value of
first_address to each node. In the traversal, an id is assigned to each node ac-
cording to the position of the node in the list. As the first instruction of each
basic block, except the first basic block, is actually the instruction after the last
instruction of its previous basic block, the value of first_address can be calculated
by “previous_bbNode->last_address + 4”. The value of first_address of the
first basic block is assigned with the start address of the program. Meanwhile, the

76

5.3 Intermediate Source Code Instrumentation

annotation code of each basic block is generated. During the annotation code gen-
eration, static timing analysis is performed. The whole algorithm of basic block
list construction is described in Algorithm 1.

In the running example, only one basic block of machine code is generated from
the shown ISC. It is the second basic block of the whole program. Therefore, it
gets an id of “bb2”. Figure 5.4(d) shows the timing information generated from
this basic block. The timing information entry “6b2 : 021800098 — 021800004 —<
annotation code of bb2 >" denotes that the instructions of the basic block bb2 are
stored in the memory block “0x1800098 — 0218000b4” and the timing information
of this basic block is expressed by the annotation code “< annotation code of bb2 >".

cycle_counter += 8; cycle_counter += 8;
instruction_counter += 8; iCache (0x1800098, 0x18000b4) ;
(a) Annotation Code 1 (b) Annotation Code 2

Figure 5.6: Annotation Code of the Running Example

As discussed, the annotation code of each basic block might contain not only
timing values obtained by static timing analysis but also the code that is used to
trigger dynamic timing analysis, depending on which timing effects are to be taken
into account. Figure 5.6 shows two examples of annotation code generated for
bb2. In the annotation code shown in Figure 5.6(a), the delay of the basic block (8
cycles), estimated by analyzing the timing effects of a superscalar pipeline, is added
to the cycle counter cycle_counter. In the simulation, the cycle counter aggregates
such timing values to get the timing of the whole program. In addition to timing
values, we can also extract other useful information from the binary level for other
statistics of interest. For example, the number of instructions is also counted in
Figure 5.6(a). Static analysis of pipeline effects is introduced later in Section 5.3.3.
During pipeline analysis, we assume optimistically all memory accesses hit cache
and each memory access consumes one CPU cycle. The penalties of cache misses
can be compensated at simulation run-time by means of dynamic cache simulation.
In Figure 5.6(b), we show the annotation code to trigger dynamic instruction
cache simulation. More details about dynamic timing analysis are presented in
Section 5.4.

5.3.3 Static Timing Analysis

Basically, each instruction is associated with a latency. Such instruction latencies
are usually specified in the processor manual. However, the execution time of a se-
quence of instructions cannot be estimated simply by summing up the instruction
latencies, because low-level timing effects of the processor microarchitecture, such
as superscalarity, caching and branch prediction, all can change the instruction
timing.

7

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

As already mentioned, we use a hybrid approach for timing analysis, namely a
mixture of static analysis and dynamic analysis. Correspondingly, the perfor-
mance model is divided into two parts: an offline performance model and an
online performance model to capture local timing effects and global timing effects,
respectively. Pipeline effects are a typical example of local timing effects. When
dispatched into a pipeline, only adjacent instructions affect each other, but remote
instructions do not affect their respective executions. The sequence of instructions
in a basic block is known at compile-time, so pipeline effects like data hazards,
structural hazards and superscalarity can be analyzed statically in the scope of
a basic block. The only approximation is made for the starting instructions of
a basic block, the timing of which depends on the execution context set by the
previous basic block. For example, we can assume that the pipeline is flushed
before the instructions of each basic block are dispatched onto the pipeline model
for scheduling. The advantage of static analysis is that the analysis is needed only
once for each instruction, while dynamic analysis must be repeated every time
when the same instruction is executed.

We take the basic block of the running example to explain the static pipeline
analysis. The latencies of all the instructions are shown in Figure 5.7(a). If the
instructions are scheduled onto a simple pipeline model where the instructions are
issued one after another, the total execution time of this sequence of instructions
is calculated by summing up their latencies, as shown in Figure 5.7(b). The result
is 11 CPU cycles. For superscalar architectures, this simple, sequential instruction
scheduling is no longer feasible. Instead, a model that takes the timing effect of
superscalarity into account is required. Figure 5.7(c) shows an example of such a
superscalar pipeline model, which contains four parallel execution units. In each
CPU cycle, up to 2 instructions can be fetched and issued to the execution units.
Since the pipeline is modeled at a high abstraction level, the parameters, e.g.,
the issue width and the number of execution units, and the penalty of hazards,
can be configured easily for a specific processor. Still, with this pipeline model,
the most important timing effects, such as timing overlapping between parallel
execution instructions, structural hazards, and data dependencies among adjacent
instructions, can be identified. For example, in Figure 5.7(c), the first instruction
bz and the second instruction add: are issued to two execution units in the same
clock cycle, while the instruction stbz is issued after mullw because it must wait
until mullw finishes writing the result to the destination register. The analysis
results in an estimate of 8 CPU cycles. We presented more details about static
pipeline analysis in [100].

Global timing effects are highly context-related and different execution paths set
different context scenarios for an instruction. They cannot be analyzed statically
without complex control flow analysis. Because the control flow depends on con-
crete input data during simulation, these global timing effects should be analyzed
dynamically for an accurate estimation. The cache effect and the branch predic-
tion effect are typical global timing effects.

78

5.3 Intermediate Source Code Instrumentation

SuImpoyog UOIIONIISUT O1R)G :2°G INSTI

auljadid Jejeastadng e a0y Buinpayosg uononisuj (9)

! ! | Ndg
_ na
Mnw [1ppe [1ppe | NI -
! “ Ng_“ NQ_“ ns1 ﬁ\A//
| | |

auljadid ajdwig e 10 Buiinpaysg uononaysuj (q)

[+zupd| 1ppe | xqis | mjnw

d\

| 1ppe [zqi [1ppe | zq| |

T s | G

L

ol

6

salouaje] uononaysuj (e)

+ZUpq

Ippe

Xqjs

M|InW

Ippe

Zqi

|

Ippe

L

24|

(8]9A92) Aouaye|

uononysu|

79

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

In most cases, reasonable approximations can be made for the global timing effects
to avoid dynamic timing analysis. For example, we can assume optimistically
that all memory accesses hit the cache. If an execution of a program has a high
enough cache hit rate, this approximation will cause only a small error, which is
acceptable in system level design. Otherwise, dynamic cache simulation is needed.
More details about dynamic simulation of global timing effects are presented later
in Section 5.4.

5.3.4 Back-Annotation of Timing Information

The previous steps of work can be regarded as preparation of the information
needed for instrumentation. Before instrumentation starts, all the information
has been stored in a well-organized data structure shown in Figure 5.5. FEach
program file of an application corresponds to a node in a so-called file list. Each
node, called fNode, contains two pointers to the mapping list and the basic block
list of the corresponding file and also a pointer that points to the next fNode in
the list.

In this step, the instrumentation tool makes use of the mapping information to in-
sert the annotation code of each basic block into ISC. We use a simple algorithm to
realize the instrumentation. It works as follows: the tool traverses both the map-
ping list and the basic block list and marks the mNode if this mNode corresponds
to an instruction block that is the last segment of a basic block. After that, the ISC
is read line by line and printed out into an output file until a line that is recorded
in a marked mNode is reached. Then, the annotation code of the corresponding
basic block is printed out in the output file before this ISC line is printed. After
the instrumentation is over, the output file contains both the original ISC and
the timing annotations. For the running example, the mNode that corresponds to
the last segment of bb2 is “19—0x18000b4 - 0x18000b4”. Hence, the ISC is read
and printed line by line until line 19 is reached. “< annotation code of bb2 >" is
printed before line 19 is printed. Figure 5.4(e) shows the instrumented ISC.

This simple instrumentation algorithm may cause estimation error, if there is no
exact one-to-one mapping between ISC-level basic blocks and binary-level basic
blocks. Nevertheless, this error is very small in most cases. According to our
experiment results presented in Section 5.6, this error was only 0.53% on average
for the selected six programs. This error can also be eliminated by flow anal-
ysis that is able to find an exact mapping between ISC-level control flows and
binary-level control flows. This is gained at the expense of the complexity of the
instrumentation tool and the time spent in instrumentation.

80

5.3 Intermediate Source Code Instrumentation

20 — basic block 1
26 — basic block 5
33 — basic block 2
36 — basic block 3
43 — basic block 4

(a) Mapping Information

.../line1-22 S o
23: goto L7; RN -
S~ bb1
~
24: 11 =~ .. // 0x1800074 — 0x18000d8
» 25: a[j] =D_1301; \
26: a[j_27]=D_1302; \\ bb2 v
¢ \ 0x18000dc addi r0,r7,-1
A A 0x18000€0 rlwinm r10,r7,2,0,29
> 27: L.2'_. . \\ 0x18000€4 rlwinm r8,r0,2,0,29
28 j=j27; | 0x18000e8 lwzx 11,106
;] 0x18000ec Iwzx r9,r8,r6
29 L7 \\ - “ | 0x18000f0 mr r7,r0
30: D_1302 = a[j]; \ PR 0x18000f4 cmpw cr7,r11,r9
F S v7© 0x18000f8 blt- cr7,1800114
L)] 9 -« 7 \
32: D_1301 = a[j_27]; . \ bb3
33: if(D_1302<D_1301) r \ v
goto L1; else goto L3; ‘\ 0x18000fc addi r5,r5,1
‘ \ | 0x1800100 cmpwi cr7,r5,10
v+~ | 0x1800104 mr r7,r5
34: L3 _-=" 0x1800108 ble+ cr7,18000dc
35 i=i+1; - \
36: if (i <=10) goto L9; \ bb4 y
else goto L5; \
v '’
37: L9:) e \ bb5
— 38 i27=h L7 \| 0x1800114 stwx r9,r10,r6
39: goto L2; , 0x1800118 stwx r11,r8,r6
e 0x180011cb 18000dc
o 4

(b) Mapping Established between ISC and Binary Code

Figure 5.8: Mapping between ISC and Binary Code of insertsort

81

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

(b) Instrumented ISC and Execution Count

82

a[0]=0; a[1]=11; a[2]=10; a[3]=9; a[4]=8; a[5]=7;
a[6]=6; a[7]=5; a[8]=4; a[9]=3; a[10]=2;

@

(a) Input Data

.../lline 1-22
cycles += 13; /[Delay(bb1) 1
goto L7;
L1:

afj] = D_1301; 45
cycles += 3; // Delay(bb5)

afj_27] = D_1302;
L2:

j=j2r; 33
L7:

D_1302 = a[j];

27 =j-1,

D_1301 = a[j_27]; 54
cycles += 6; // Delay(bb2)

if (D_1302 <D_1301) goto L1;

else goto L3;
L3:

i=i+1; 9
cycles += 4; // Delay(bb3)

if (i <= 10) goto L9; else goto L5;
L9:

27 =1i; 8

goto L2;
L5:

1

cycles += 1; // Delay(bb4)

S

0x1800118 stwx r11,r8,r6

0x180011c b 18000dc

bb1
.../ 0x1800074 — 0x18000c8
0x18000cc stw r9,44(r1)
0x18000d0li r5,2 1
0x18000d4 stw r0,48(r1)
0x18000d8 addi r6,r1,8
bb2
0x18000dc addi r0,r7,-1
0x18000e0 rlwinm r10,r7,2,0,29
0x18000e4 rlwinm r8,r0,2,0,29
0x18000e8 Iwzx r11,r10,r6 54
0x18000ec lwzx r9,r8,r6
0x18000f0 mr r7,r0
0x18000f4 cmpw cr7,r11,r9
0x18000f8 blt- ¢r7,1800114
bb3
0x18000fc addi r5,r5,1
0x1800100 cmpwi cr7,r5,10 9
0x1800104 mr r7,r5
0x1800108 ble+ ¢r7,18000dc
bb4
0x180010c addi r1,r1,64 1
0x1800110 blr
bb5
0x1800114 stwx r9,r10,r6

45

(c) Binary Code and Execution Count

Figure 5.9: Instrumented ISC and Binary Code of insertsort

5.4 Dynamic Simulation of Global Timing Effects

5.3.5 An Example: insertsort

In Chapter 4, we use the program insertsort to show the mapping problems of
SciSim. Now, we use the same example to show how these problems are solved
using ISC. Figure 5.8(b) shows the ISC of insertsort and the binary code generated
from the ISC. Figure 5.8(a) gives the mapping between the ISC level basic blocks
and the binary level basic blocks, established by parsing the mapping list and
the basic block list and using the simple algorithm described in Section 5.3.4.
The mapping is also depicted in Figure 5.8(b). We have manually proved its
correctness.

According to the mapping, the timing information of each binary level basic block
can be back-annotated straightforwardly. For example, basic block 2 is mapped
to ISC line 33, so the execution time of basic block 2, which is 6 cycles obtained
by static timing analysis, is simply inserted before line 33. In the same way,
the execution time of basic block 3 is inserted before line 36. Finally, we get
the instrumented ISC of insertsort as shown in Figure 5.9(b). We measured the
execution count of each ISC level basic block and binary level basic block, given a
set of input data as shown in Figure 5.9(a). The execution count is shown at the
right hand side of each basic block. It is found that all the timing information is
aggregated the same number of times as the execution count of the corresponding
binary level basic blocks. For example, basic block 2 is executed 54 times in the
real execution. Its timing information annotated in the ISC is also aggregated 54
times.

This example proves that: (1) we can establish an accurate mapping between
ISC level basic blocks and binary level basic blocks, (2) we can straightforwardly
back-annotate the timing information obtained from binary level basic blocks into
ISC according to the mapping, and (3) the back-annotated timing information can
be correctly aggregated along the ISC level control flows during the simulation.
These are validated with more programs in our experiment. The experimental
results are shown in Section 5.6.

5.4 Dynamic Simulation of Global Timing Effects

To couple ISC with the online performance model, code that triggers dynamic
timing analysis is annotated into the ISC. During simulation, the annotated code
passes run-time data to the performance model for timing analysis. As an example,
we show in Figure 5.10 how to simulate instruction cache behaviors. At runtime,
the addresses of the first instruction and the last instruction of the basic block are
sent to an instruction cache simulator by calling icache(UInt32 first_addr, Ulnt32
last_addr). The cache simulator then decides how many cache hits and how many
cache misses are caused by this basic block according to the present state of the
cache. As shown in Figure 5.10, the function iCache models the instruction cache’s

83

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

behavior. DecodeAddress extracts the tag part and the index of cache set from
an instruction address. Search is the function, which, when called, compares the
extracted tag with the tag of each cache entry in the specified set, and returns
the way number if one match is found, i.e., in the case of cache hit. Otherwise, a
negative value is returned by Search and then ReplacelLine is called. ReplaceLine is
defined as a function pointer, switching between different functions that implement
the widely used replacement strategies, such as LRU (least recently used), PLRU
(Pseudo-LRU), and LFU (least frequently used). Finally, the bits representing
the access history of each cache entry are updated by calling UpdateAge which is
also a function pointer pointing to the function that performs the corresponding
update.

#define nWays ...
#define nSets ...

>
7
\f-’é

e #define linesize ... —_—/ 3
12 ivtmp_34 = &a[0]; .) . 5
13 ivtmp_35 = &b[0]; void iCache(UInt32 first_addr, Uint32 last_addr){ S
14 LO: UInt32 addr = AlignAddress(first_addr); 2
15 c[i] = (*ivtmp_34) * (*ivtmp_35); for(; addr<=last_addr; addr+=linesize) g
16 i=i+1; { c
17 ivtmp_34 = ivtmp_34 + 1; UInt32 tag, index, way; S >
18 ivtmp_35 = ivtmp_35 + 1; DecodeAddress(addr, &tag, &index); (linesize/4) words/way
cycles+=8; way = Search(index, tag);
iCache(0x1800098, 0x18000b4); if(way>0) hit();
19 if(i = 10) goto LO; else goto L2; else{ o
20 L2: ReplaceLine(index, tag, &way); LRU(index, tag) |
. miss(); \
J/ } X PLRU(index, tag) |
}
UpdateAge(way, index); LFU(index, tag)
}

Figure 5.10: Instruction Cache Simulation

Data cache simulation is more complex, because target data addresses are not
visible in ISC. A simple solution proposed in [69] is to use a statistical data cache
model, which generates cache misses randomly, without the need of data addresses.
An alternative is to annotate code, describing register operations, to generate
target data addresses at runtime, as proposed in [100]. Here, we propose another
method, which is more accurate than the former solution and allows for much
faster simulation than the latter one. We use data addresses in the host memory
space for data cache simulation. It has been validated that the data of a program
in the host memory and in the target memory have similar spatial and temporal
localities, if similar compilers are used for host compilation and cross-compilation.
As shown in Figure 5.11, dcache_read(—write)(UInt32 addr, int data_size) sends
host data address and data size for data cache simulation.

In [100], dynamic simulation of the branch prediction effect is also presented.
These methods of dynamic timing analysis proposed for SLS are also applicable
for iSciSim. Using dynamic timing analysis, simulation accuracy is gained at the
expense of simulation speed. Users should handle this trade-off and decide which
timing effects are worth dynamic analysis.

84

5.5 Software TLM Generation using iSciSim for Multiprocessor Simulation in SystemC

12 ivtmp_34 = &a[0];
13 ivtmp_35 = &b[0];

14 LO:
dcache_read(ivtmp_34, 4);
dcache_read(ivtmp_35, 4); da_ta cache
dcache_write(&(cli]), 4); simulator
15 cli]=(*ivtmp_34)*(*ivtmp_35);
16 i=i+1,;

17 ivtmp_34 = ivtimp_34 + 1;
18 ivtmp_35 =ivtmp_35 + 1;
cycles+=8;
icache(0x1800098, 0x18000b4);
19 if(i'=10) goto LO;else goto L2;
20 L2:

/

Figure 5.11: Data Cache Simulation

5.5 Software TLM Generation using iSciSim for
Multiprocessor Simulation in SystemC

So far, we have introduced the approach of generating high-level software simula-
tion models and the way of simulating timing effects of uniprocessor microarchi-
tecture. Whereas, our target is to use the generated software simulation models
for simulation of complex multiprocessor systems, in order to accelerate the sim-
ulation speed and shorten the time needed for design space exploration.

ceut| C 1T T]
CPU1 CPU2 \ W s VT “3

| Cache | | Cache | Cache I |
1 Y
< < Bus o N
System bus - N
T T MEM X ; |

DSP || ASIC || MEM ¥ L %l Ly
t1 Lts f3ta

(a) (b)

Figure 5.12: An Example of MPSoC: (a) Architecture, (b) Part of Timing Behavior

During the design space exploration of a multiprocessor system, it is important
to model the system’s temporal behaviors and the dynamic interactions among
system components. Figure 5.12(a) shows a simplified view of an MPSoC (Mul-
tiprocessor System-on-Chip), which consists of two processor cores, a DSP, an
ASIC, a shared memory and a system bus. Figure 5.12(b) illustrates part of the

85

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

temporal behavior of the MPSoC. It involves two memory accesses from CPUI1:
one is hit in the cache, while the other is missed, resulting in different delays.
Simulation is aimed to capture such temporal behaviors to generate performance
statistics such as utilization of the system components, cache miss rate, and the
number of bus contentions. These statistics are then used for design improvement.

In a multiprocessor simulation, the software simulation models generated by iS-
ciSim can not only represent the functional behavior but also capture the workload
of the system. They can estimate accurately the delays caused by software ex-
ecution such as dy in Figure 5.12(b), in order to study the influence of software
execution on the system performance. To explore the memory hierarchy, they send
the address and size of data, with which the cache simulator can decide whether
a hit or a miss occurs. Knowing the accurate access times, we can model the
resource contentions caused by simultaneous accesses to the same resource. For
example, a bus contention will occur, if CPU2 also requires a bus transfer at t,.
This will lead to a longer delay on the bus.

To model such complex systems, where multiple processors and hardware compo-
nents run in parallel, SystemC [55] provides a desirable simulation framework. To
be integrated into a SystemC simulator, the instrumented ISC of each software
task is also written in SystemC. Such a simulation model is actually a transaction
level model (TLM) of the task. We call it a taskTLM for short in the following
discussion. There is actually no large difference between the instrumented ISC in
C and the taskTLM in SystemC. The latter has more code for declaring itself as
a SystemC thread. In addition, in order to advance SystemC simulation time, the
annotated timing information is expressed by SystemC wait() statements in the
taskTLM. The taskTLM generation approach is illustrated in Figure 5.13, along
with the running example. As shown, in the taskTLM “cycles += 8” is replaced
by “wait(8*T, SC_NS)”, where T is the duration of a CPU cycle with nanosecond
as the unit (SC_NS). This wait() statement advances the SystemC simulation time
for the execution time of the basic back, i.e., 8 cycles. This means that for each
basic block of binary code there is a wait() statement explicitly annotated.

When a taskTLM is executed, after the native execution of a part of source code,
there is a wait() statement to advance the SystemC simulation time for the cor-
responding basic block of binary code. Hence, the execution of a taskTLM can
be divided into many segments, each consisting of the execution of a segment of
source code and a wait() statement. The number of execution segments is equal
to that of wait() calls.

Here, we want to discuss about two different terms of time: simulation time and
native execution time. Simulation time is the time recorded in the SystemC sim-
ulation kernel to present the time consumed by executing an application on the
target platform. Native execution time is the physical time spent in executing the
simulation models on the simulation host. The relation between simulation time
and native execution time is illustrated in Figure 5.14 using a simple example.

86

5.5 Software TLM Generation using iSciSim for Multiprocessor Simulation in SystemC

s9|14 uonduosaq
10SS920.1d

LNdO

UoIjRIOUSY) NS} pPowl], :€1°Q 2an31rq

Jwa)sAs ul
SINT1LYSe)
"oyu| Butwi g
uonjejouuy
D Buiiuig
sisAjeuy ‘oyu| Buiddepy
Keuig 18b1e | 0S|
uonejidwo))
B __-ssoid ” |
UOISIaAUOD)
dl __osioul
puajuoiy))
‘dwo)-ssoli)

—

++J/J Ul
syse| ai1eMyos

uoljejuswinisu|

[A

uonelauan Hgj|

l

WN1LMse)

21
:Z71 0306 8sa:07 0306 (0L=iNyl
‘(SN OS ‘L.8)iem

1+G¢ dunal = Gg dunal
SL+pe dunal = € dunal
o=

(ge dunnl,).(pe dunal,)=[1]o
(¥ ‘(112)'8)23amayoe2p

{(p ‘g duyar)peal ayoeop
{(p ‘b duyar)peal syoeop
01

‘[olag = g dwynl

‘[ole = y& dwynl

<. uoljelauan
NTL

apo) 92I1n0g

]
‘[a.[Ne=[1]o
Hors>nenym

87

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

void Func(){
wait(t1); // executes for t'2

wait(t2); // executes for t'4

}

... Il code segment 1 executes for t'1

... Il code segment 2 executes for t'3

(a) An Example of taskTLM

t'1
t'2
t'3
t'4

v
Native execution time

»

Simulation time

(b) Simulation Time vs. Native Execution Time

Native execution

/1 t2
A A
| i]

| i
——

Execution segment 1

Execution segment 2

(c) Representation of Execution Segments

Figure 5.14: Segmented Execution of taskTLM

Figure 5.14(a) is an example of task TLM consisting of two segments. Figure 5.14(b)
shows the relation between simulation time and native execution time. The source
code in the first segment consumes ¢’ to execute on the host machine, whereas
it does not advance any simulation time. It is estimated that the execution of
this code segment takes ¢1 on the target processor. Therefore, wait(t1) is called
to advance the simulation time for t1. We know, a wait() statement also takes a
significant amount of native execution time. As shown in Figure 5.14(b), wait(t1)
advances simulation time = ¢7 and takes native execution time = ¢’2, resulting
in a segment of ramp. The second execution segment is also represented in the

88

5.5 Software TLM Generation using iSciSim for Multiprocessor Simulation in SystemC

same manner. For convenience, we use two rectangles to represent an execution
segment: a short gray rectangle representing the native execution of source code
and a white rectangle representing the simulation time advancement, as shown in
Figure 5.14(c). The length of the white rectangle corresponds to the amount of
simulation time being advanced.

if(hit){

cycles +=1; |

Task 1 Jelse{ HW \
: wait(cycles*T);

cycles = 0;

BUS->READ(...);
Task 3 MEM
RTOS Cache Simulator

B
CPUs us

Figure 5.15: Multiprocessor Simulation

Compared with simulation in C, simulation in SystemC has the major disadvan-
tage of low performance. The wait() statements annotated in the source code can
cause very time-consuming context switches between the software threads and the
SystemC simulation kernel. Our experiment in Section 5.6.4 shows that the wait()
statements cause software simulation slowdown of a factor of 280. To avoid this,
our solution is to keep aggregating timing information using variables. A wait()
statement is generated to advance the simulation time, only when the software
task has to interact with external devices. For example, as illustrated in Fig-
ure 5.15, a wait() statement is generated, when there is an access to an external
memory in the case of a cache miss. In this way, the number of wait() statements
is reduced significantly.

Figure 5.16 illustrates this optimization. After optimization, the execution seg-
ments between two IO or memory accesses are merged to one and the number
of wait() statements is reduced from 22 to 3. According to our experiment in
Section 5.6.4, the software simulation with the optimized taskTLMs has only a
slowdown factor of 5 compared with simulation in C.

For simulation of the whole system including other system components, such as
RTOS, peripherals and bus, additional code must be annotated during instrumen-
tation to trigger interactions between software tasks and these system components.
Figure 5.15 gives a highly simplified view of a multiprocessor system and shows
an example of modeling accesses to the shared memory. Of course, to simulate
such a system, many other complex issues have to be tackled. Here, we focus only
on software simulation.

89

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

8 segments 6 segments 8 segments

A N A
a I 4 N a I

vl vl

10 or memory access

(a) Segmental Execution

1 segment 1 segment 1 segment

A N A
' I 4 N ' I

[[

\/ T \/ y
I0 or memory access

—

(b) Optimized Segmental Execution

Figure 5.16: wait() Statements Reduction
5.6 Experimental Results

The experiments have been carried out mainly to compare the discussed software
simulation strategies, to show the benefits of iSciSim, and to demonstrate how
iSciSim facilitates MPSoC design. The simulation strategies discussed in this
dissertation include instruction set simulation (ISS), binary level simulation (BLS),
source level simulation (SLS) and intermediate representation level simulation

(IRLS).

The experiment setup was the same as in the last chapter. The same 6 benchmark
programs were used. All the programs were cross-compiled using a GCC compiler
with the optimization level -O2. The simulation performance was measured on a
3 GH Intel CPU based PC with 4 GB memory, running Linux. PowerPC 603e
was chosen as the target processor. The estimates from an interpretive ISS were
used as a reference.

In order to get a representative of the BLS technique, we also implemented a
BLS approach introduced in [77], which can represent the state-of-the-art. SciSim
was used as the representative of the SLS technique. iSciSim can be regarded
as an IRLS approach. We evaluated the four approaches quantitatively, in terms
of simulation accuracy and speed. Simulation accuracy was measured by both
instruction count accuracy and cycle count accuracy. In addition, we compared
the execution times of source code and ISC, studied how cache simulation affects

90

5.6 Experimental Results

Table 5.1: Source Code vs. ISC

ISS(Source Code) ISS(ISC)
Estimates Estimates Difference
fibeall instructions | 4384 4384 0.00%
cycles 3307 3307 0.00%
insertsort instructions | 630 631 0.16%
cycles 516 508 -1.55%
bsearch instructions | 59010 59010 0.00%
cycles 46057 46057 0.00%
cre instructions | 17201 17457 1.49%
cycles 10288 10289 0.01%
blowfish instructions | 262434 260913 -0.58%
cycles 178610 179141 0.30%
AFS instructions | 3624426960 3544426960 -2.21%
cycles 2292275341 2248279321 -1.92%

the estimation accuracy and simulation performance of iSciSim, and also did sim-
ulation in SystemC. Finally, we did a case study of designing an MPSoC for a
M-JPEG decoder.

5.6.1 Source Code vs. ISC

As timing analysis is performed on binary code generated from ISC, a justified
concern is whether this binary code is the same as the one generated from the
original source code. In the first experiment we have compared the execution
times of ISC and source code, using the ISS. We tested all the six benchmarks.
The estimates and the difference between execution times of source code and ISC
are shown in Table 5.1. The difference is also illustrated in Figure 5.17. As
shown, the ISC programs of fibcall and bsearch take exactly the same number of
CPU cycles to execute as their source programs. In the simulation of the other
four programs, a maximal error of -1.92% is found. The mean absolute error is
0.63%. This means that the ISC generation may change the temporal behavior of
a program, but this change is small enough to be ignored.

5.6.2 Benchmarking SW Simulation Strategies

All the estimates of the six programs using the four simulation approaches are
shown in Table 5.2. The estimates obtained by the ISS have taken the most im-
portant timing effects into account using a simplified performance model, which

91

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

2.00%

—e— instruction count error
1.50% I

1.00% //\\
0.50%

’ Y - / \
0.00% > . M . . AN

0.50% fibcall insertsort bsearch crc blowfish AES
-1.00%

-1.50% \\
-2.00%

-2.50%

cycle count error

Figure 5.17: Difference between Execution Times of Source Code and ISC

consists of a pipeline model, a data cache simulator, and an instruction cache sim-
ulator. As there are still some approximations made in the performance model,
the estimates from the ISS are not exactly the same as but close to the real ex-
ecution times. Assume the estimates from the ISS are accurate enough and can
be used as a reference to evaluate the simulation accuracies of the other tools.
The estimation error (EE) of a simulation and the mean absolute error (MAE) of
simulating N programs are given by:

FE — (EstimateOtgerrool — Estimaterss) x 100%
stimaterss

and
MAE = £ Y0, |EE|

The other tools follow the hybrid timing analysis approach. Namely, they analyze
pipeline effects statically at compile-time and simulate the global timing effects
dynamically during the simulation. Since all the selected programs are of small
size and the target processor has large caches (a 16 KB data cache and a 16
KB instruction cache), the execution of these programs on the target processor
has a very small cache miss rate. In this case, the cache effects are not worth
dynamic analysis. Therefore, in the estimates from BLS, SLS, and iSciSim, we
have taken only the pipeline effects into account and ignored the cache effects by
assuming optimistically that all memory accesses hit cache. The pipeline effects
were analyzed using the same pipeline model as the ISS’s.

As the mapping between binary level functional representation and binary code
is straightforward, BLS should allow for instruction counting with an accuracy
of 100%. This was proved by the experiment. As shown in Table 5.2, BLS has

92

5.6 Experimental Results

an accuracy of 100% in counting the number of executed instructions of all the
six programs. In the estimates of CPU cycles, BLS has an error introduced by
the approximation made in the performance model in comparison to the ISS. The
MAE of cycle counting is 0.83%. The same error exists in the timing analyses in

SLS and iSciSim.

SLS is able to count instructions and cycles accurately for data-intensive appli-
cations, like blowfish and AES, where control flows are relatively simple. For the
other programs, large errors are seen, because the control flows of these programs
were changed by compiler optimizations and the mapping between binary level
control flows and source level control flows was destroyed. The MAEs are 48.6%
and 65.1% in instruction counting and cycle counting, respectively.

As expected, iSciSim allows for very accurate simulation with MAE of 0.99% in
instruction counting and MAE of 1.04% in cycle counting. The simulation errors
are also shown in Figure 5.18. The largest error is found in the simulation of
AES, which is -2.21% and -1.74% in instruction counting and cycle counting,
respectively. The sources of the estimation error in iSciSim are threefold: error
caused during the ISC generation, error because of the approximations made in the
timing analysis, and error introduced by the back-annotation of timing information
using the simple algorithm. The three sources of error in the estimates of the six
programs are illustrated in Figure 5.19. It has already been discussed above that,
for the selected programs, there are MAEs of 0.63% and 0.83% caused by the ISC
generation and the simplification of timing analysis, respectively. The mapping
error introduced by back-annotation can be measured by comparing the execution
times of ISC estimated by BLS and iSciSim. For the given programs, the MAE
caused by the back-annotation is only 0.53%.

1.00%

—e— instruction count error
0.50% /,\\ cycle count error
0.00% A —f . :
ﬁbcal%sertssq bsearch / crc \waish AES
-0.50%
o po g \ / \
-1.50%

V N\
-2.00% \\

-2.50%

Figure 5.18: The Simulation Error of iSciSim

93

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

UYL~ TL09LT2STT | %E6'T G6STSTISET | %LT'0 T06TLTI6TT | 1VECLET6TT SO[040 -
%IET OF6TTHIFSE | %T0°0 6SES89FZIE | %000 0969ZFFZIE | 096927F29¢ | suononmsul
%811 GLOSLT | %087 PSILST | %1CT- 6T6GLT 0TOSLT PP ol
%85°0- 66809z | %921 GELE9T | %0070 FEFTIT FEPTOT | suononysut
%z 0 CTE0T | %8667 0EFST | %00 F8201 88201 SO[040 o
%890 CTELT | %0LET G8E6T | %000 T0ZLT 10ZLT | suonongsut
%110 80097 | %SL0T 8001¢ | %90°C 800LY L509F PO eesq
%69°1- 0TO8S | %CT'LE €10SL | %000 0106S 0T06¢ | suononysur
%9¢T- 60S | %ezoe L9 | %680 816 91¢ P osur
%910 189 | %9L7G L6 | %000 0€9 0€9 | suonpuysur
%281 £92€ | %867T6T 96621 | %6L°0- 182¢ L0€ PP
%¥9°0- 9GET | %T6'G6T €L62T | %000 FRET PSEY | suomonsur
JOXI S9jewIISH JOIIG] S9jewl)sy | JOJIf SO)ewlI)si | Sojeui)sy

wIGS! STS s1d SSI

S91899eI}G UOIIR[NWIG SUN{IBWIPDUIY :Z'G 9[qel

94

5.6 Experimental Results

2.50%
) 000/0 2.06% O ISC Generation

e B Timing Analysis

o 1.50% LT
4 O Back-Annotation
g 1.00%
m 02709,
- 0.50% 0.20% o et 0.18%
(o] 0 00% 0% 0% 0% 0.01% m 9
s | -0.04%
g -0.50% .
= 00 -0.55%
n -1. 0.79%
4 o 0.79
-1.50% _—
o -1.55% -1.52% ||
-2.00% — -1.92%
-2.50% : —213% : .
fibcall insertsort bsearch crc blowfish AES
Benchmarks
Figure 5.19: Estimation Errors Introduced by iSciSim Working Steps
6.00%

. —&— instruction count error
4.00% — cycle count error |
2.00%

9 & 1 * 1 & T T T T
0.00% /v v\//‘\

2.00% { P S8 & °
L 82 e{@ N e \4 Y4 Y4 &/
4.00% A A 4 2 4
(< N 2 S
0 & S
Q P> &
-6.00% —<# Q
-8.00%
-10.00%
-12.00%

Figure 5.20: The Influence of Input Data on Simulation Accuracy of iSciSim

In addition, we also studied how input data affects the simulation accuracy. First,
we changed the input data size of insertsort, fibcall, bsearch, and AES. The orig-
inal insertsort sorts an array of length 10. We changed the array length to 50
and got insertsort_large. Similarly, bsearch calls the function binary_search(int x)
1000 times, while bsearch_large calls the function 18000 times. In contrast, input
data of fibcall was reduced. fibcall calls the function fib(int n) seven times, each
with a different value of n, while fibcall_small calls it only once. In the previous
experiment, we simulated AES with the key length of 128 bits. Here, we also sim-
ulated it with the key length of 192 bits and 256 bits. The estimates of all these
programs are shown in Table 5.3. We can see that although the input data was
changed, the simulation accuracy of iSciSim is still very high for most programs.
The absolute cycle count error is kept within 1.4%, except for fibcall_small and
insertsort_large.

95

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

%LTO E8B00FIG6T | %00°0 EITEFFSSET | %LT0 ESVYGEIGET | LECIBERSGT so[oAd N
%80°0- €9T0TITELY | %STO 089T8IVCLY | %00°0 €IGRTIYELY | €968T99ELY | SUOHNIISUY
%GY0- €8TLTESTIT | %GT0- €9TIIEIEIT | %STO ERIGTEVVIT | LEOBTEOTIC S9[OAD —
%980~ €9GTOSTITY | %620~ 0806SS89TY | %00°0 €9LE0SOSTY | E9LEOGORTY | SUOHONIISUY
%VL T TL0LGTSTE | %EGT GBRPSVILET | %LI'0 TOGTLTIGT | IVEGLITOTE S9[oAD S—
WICT OV6TTIVPSE | %T0°0 6SES8OVEIE | %00°0 096ITTIEIE | 0969TFFTIE | suononysuy

A . A £
%0T'T B009FG | %4G1°2S R000FS | %FL0 8008FS 260254 B —
%850~ 0T00ZL | %LE'SE 00666 | %00°0 010ZE. 0T0ZZL | suononsur
BT 0- 8009F | 4G4 01 8001C | %90°C R00LY LG09F S9[oAD S—
%69°1- 0T08G | %CTLT €105L | %0070 01064 0106¢ | suononysuy
%88°F 69GTT | %EV94 95zLT | %0€°G 99T 1E0TT PO e yosmos
%10°0 TLTPT | %80°LG 8GTTE | %00°0 0LT7T 0LI¥1 | suononusur
%9€°T- 605 | %€z 0g 2l9 | %6e0 816 916 s9[oAD —
%910 169 | %9LTS QL6 | %000 0£9 089 | suoyonsul
%I0°TT- L6 | %V LI LET | BI0TT- L6 601 so[oAd]
A L 5 : [ews [eoqy
%00°0 82T | %ST 1ET 96T | %00°0 821 821 | suononmsut
%ee T £95E | %86'267 96621 | %670 18z€ L0EE S9[04D -
%¥9°0- 0%EY | %T6'S61 €L6TT | %000 VSEY FREF | Suononsur
JOddY Sojewur)sy JO0JdIY Sojewur)sy JOJIY SojewI)sy | s9jelWIISH

WSS SIS s1d SSI

Aoemdoy uoryenuwirg uo eye(] jnduyf Jo 9ouLNPU] :€°G S[qeL,

96

5.6 Experimental Results

14000

12000

10000

8000

6000
4000
2000 I I
0 _mm . , , , , , ,

test1 test2 test3 testd test5 test6 test7 test8

Execution Time in Cycles

Simulations of insertsort_large with different input data

Figure 5.21: Simulation of insertsort_large Using iSciSim: Execution Times with Re-
spect to Test Cases

10.00%

——o—cycle count error

5.00% . ———

0.00% : '/'//T//‘—. : : :

test1 te/gtz/ test3 test4 test5 test6 test7 test8
-5.00% /

-10.00% /

-15.00% /

-20.00% /

Figure 5.22: Simulation of insertsort_large Using iSciSim: Errors with Respect to Test
Cases

-25.00%

The cycle count error of fibcall_small is -11.01%, much larger than that of fibcall.
This is because that the simulation of both fibcall and fibcall_small had three
instruction cache misses and the cache effects were not taken into account in the
simulation using iSciSim. fibcall_small executed only 109 cycles. Ignoring the
cache effects had a large influence on its simulation accuracy. The simulation of
insertsort_large using iSciSim has an error of 4.88%, larger than the simulation
error of insertsort. That is mainly because of the error introduced in pipeline
analysis. The cycle count errors of iSciSim are also illustrated in Figure 5.20.

97

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

We further simulated insertsort_large with 8 different test cases using both the
ISS and iSciSim. Figure 5.21 shows the execution times estimated by iSciSim
with respect to the test cases. The columns are sorted in the ascending order
of execution times. The first test case leaded to the best case execution time of
insertsort_large, while the last test case caused the worst case execution time. The
corresponding cycle count errors are presented in Figure 5.22. It is interesting to
see a smooth curve. Test 1 has a negative error of -23.49%. This is because that
the execution of insertsort_large had 17 instruction cache misses and 7 data cache
misses and the delays caused by these cache misses were not taken into account
in the simulation using iSciSim. As insertsort_large executed only 711 cycles in
Test 1, the delays caused by cache misses accounted for a large portion of time
and ignoring them resulted in a large negative error. In Test 2, the execution time
of insertsort_large increased to 1849 cycles, because the second test case caused
more loop iterations. Nevertheless, the number of cache misses did not change,
so the influence of cache effects became smaller. The error is reduced to -1.95%.
Then, the error becomes positive and increases slowly to 4.88%. The positive error
was mainly caused by approximations made in pipeline analysis. The error was
actually very small, but, with the number of loop iterations increased from Test 3
to Test 8, the error was more and more accumulated. Nevertheless, for the worst
case, the error is still within 5%, acceptable in system level design.

100000
—_ @ISS mBLS 0O Native Execution OSLS miSciSim
[72]
o 10000
=
: .
© 1000 -
o
Q.
n
§ 100 A
5
S
E 10
n

1 ,

fibcall insertsort bsearch crc blowfish AES
Benchmarks

Figure 5.23: The Simulation Speeds and the Native Execution Speed

Figure 5.23 shows the speeds of native execution and simulations, measured in
MIPS (million instructions per second), in a log scale. The simulation speeds as
well as the native execution speed are given by

)) — Cinst7'uction
stmulation speed o 50)

98

5.6 Experimental Results

where Cjstruction 18 the total number of instructions executed when running the
program on the target processor, estimated by simulation, and Tynuiation 18 the
simulation duration.

The simulation speed of the ISS is very low, only 11.9 MIPS on average. SLS and
iSciSim allow for simulation with average simulation speeds of 4669.0 MIPS and
4765.6 MIPS, respectively, almost as fast as the native execution (5198.2 MIPS
on average) and much faster than BLS (349.4 MIPS on average).

5.6.3 Dynamic Cache Simulation

In this experiment, we first studied how dynamic cache simulation affects sim-
ulation accuracy of iSciSim. As discussed in the last sub-section, cache simula-
tion will not increase the simulation accuracy, if the programs are executed on
the target processor with the default data cache and instruction cache configura-
tions (both are 4 x 128 x 32 bytes). A cache configuration is expressed with
nWays x nSets x linesize, where nWays, nSets and linesize represent the num-
ber of ways, the number of sets and the cache line size in byte, respectively. When
both data cache and instruction cache configurations are changed to 4 x 64 x 16
(4K) bytes, there is an error of 35.2% in the estimate of AES from iSciSim with-
out cache simulation, as shown in Figure 5.24. The simulation errors of the other
programs are still within 10%. In Figure 5.24, we also show how the errors are
reduced with only data cache simulation, with only instruction cache simulation,
and with both cache simulations. Further, when both cache configurations are
changed to 4 x 64 x 8 (2K) bytes, the simulation errors of AES, insertsort, and
blowfish exceed 10%, as shown in Figure 5.25. The error in the estimate of AES
is even larger than 80%. The error in the estimate of blowfish was mainly caused
by ignoring the penalties of data cache misses, so iSciSim with data cache simu-
lation alone reduces the estimation error from 35.8% down to 1.1%. In contrast
to blowfish, the errors in the estimates of AES and insertsort were caused mainly
by ignoring the instruction cache effect. Nevertheless, in the estimate of AES, the
error caused by ignoring the data cache effect is also very large.

Further, we studied how cache simulation reduces the simulation performance of
iSciSim. The performance reduction due to data cache simulation depends mainly
on the percentage of load/store instructions in a program and the implementation
of the data cache simulator. The performance reduction due to instruction cache
simulation is dependent on the granularity of basic blocks and the implementation
of the instruction cache simulator. According to our implementation of both cache
simulators, a cache configuration that causes more cache misses will lead to a lower
simulation speed. A smaller value of nSets will lead to a little shorter time for
data/instruction address decoding.

In the experiment, we chose randomly four cache configurations. The simulation
speeds of iSciSim with data cache simulation and instruction cache simulation are

99

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

5%

fibcall insertsort bsearch crc blowfish AES
0% | | B - =
-5%

-10% +————

@ without cache simulation

Estimation Errors (Cache: 4x64x16)

-15% +—— mwith data cache simulation
) O with instruction cache simulation
-20% O with both simulations
-25%
-30%
-35%
-40%

Benchmarks

Figure 5.24: Estimation Errors of iSciSim with and without Cache Simulation (Cache
Configuration: 4 x 64 x 16)

10%

0 fibcall insertsort bsearch crc blowfish AES
C T O ‘ ‘ ?_l ‘ ‘
-10%
-20% A
-30% 1 @ without cache simulation
-40% A | with data cache simulation

0O with instruction cache simulation

_ 0, 4 000000
50% 0O with both simulations

-60%

-70%

Estimation Errors (Cache: 4x64x8)

-80%

-90%
Benchmarks

Figure 5.25: Estimation Errors of iSciSim with and without Cache Simulation (Cache
Configuration: 4 x 64 x 8)

shown in Figure 5.26 and Figure 5.27, respectively. When the data cache of the
default configuration is simulated, the average simulation speed is reduced from
4765.6 MIPS down to 1344.5 MIPS. In fibcall, the executed load/store instruc-
tions account for only 0.1% of the total instructions, so the dynamic data cache
simulation has only around 5.1% overhead. In contrast to fibcall, insertsort and
AES are two programs, where the executed load/store instructions have very high
percentages of the total instructions, which are 33.3% and 31.1%, respectively.
Therefore, the simulations of the two programs with data cache simulation have
91.8% and 93.9% performance reductions, respectively, in comparison to the sim-
ulations without data cache simulation. As the data cache size is reduced, the
cache miss rates in the simulations of blowfish and AES increase significantly.
As a result, the simulation performances are also reduced. In the simulations

100

5.6 Experimental Results

of the other programs, the different data cache configurations do not have large
impact on cache miss rates, and therefore, only very slight changes of simulation
performance are observed.

__ 5000
9D 4500 16K (4x128x32)
S 4000 - m 8K (4x128x16) ——
% 3500 - 04K (4x64%16)
@ 3000 - 02K (4x64x8)
J',- 2500 -
c 2000 -
o
5 1500 -
3 1000 -
0 ‘ ‘ ‘ e S
fibcall insertsort bsearch crc blowfish AES
Benchmarks

Figure 5.26: Simulation Performance of iSciSim with Data Cache Simulation

1600

1400 ———
1200 +———
1000 ———

I 16K (4x128x32)

m 8K (4x128x16)
04K (4x64x16)

02K (4x64x8)

800
600

Simulation Speeds (MIPS)

:

1]

400 - —
0

fibcall

insertsort

bsearch

Benchmarks

i h -

crc

blowfish AES

Figure 5.27: Simulation Performance of iSciSim with Instruction Cache Simulation

When the instruction cache of the default configuration is simulated, the average
simulation speed of iSciSim is reduced from 4765.6 MIPS down to 695.6 MIPS. In
the simulations of AES, when the instruction cache configuration is changed from
4 x 128 x 32 stepwise to 4 x 64 x 8, obvious simulation performance reductions
are seen, because the reduction of instruction cache size increases the instruction
cache miss rate significantly, from the one close to 0.0% to 50.2%. Slight perfor-
mance reductions are also observed in the simulations of insertsort. The change
of instruction cache configuration has relatively small impact on simulation per-

formance in the simulations of the other programs.

101

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

S¥ycel S ¥00°0 S6°ChI S G0T S ¢0r 9vv GERORTVOTT | 099¢¢00C SHY
St Z'08668T | S ¢'898T | SN g'LEVO6T S §°GTET S 0°LSTY 0L¢ 98694 GTERC sgMmorq
SIL6'GIRIE | S OTET St 2°9€89¢ S €'16¢ st €°0¢ €t LECT 0EvS 210
St g'GI80CT | sng'ge S g'7S80¢T sn ¢'clL S 0°6¢ i S00g ¢008T orIeesq

S €'8GL s L'9¢ st ¢'09. STt 9°R¢ SnGT ¢ 0T¢ OTT J108).Io8Ul

st T'Ty9. st L'1¢ st T°¢y9L S L'C¢ ST 14 G T0TT [re2qy

g Owoa g [Ouon | Gowoshiguuns o | [OwSAGUIUS p | DUIUS T | SSUNYIDIP Ay | SS90} 24y900p 0

uoryeIn(J UOIPe[NUIS SUTULISI(] JeY], S10308,{ PUR UOIRIN(] UOI)R[NWIS :§°'G o[qe],

102

5.6 Experimental Results

5.6.4 Simulation in SystemC

This experiment is to study the slowdown of simulation speed caused by wait()
statements, when software simulation models are wrapped in SystemC for sim-
ulation of a whole system. If cache is also simulated, the native execution time
consists of three parts: (1) the execution time of the application code on the host
machine, T,pcodes (2) the time needed for cache simulation, Tiqchesim, and (3) the
time consumed by wait() statements, Tyq(). So, the simulation speed is expressed
by

) y — Cinstruction
SszIlatzon Speed (TappCode + Teachesim + T’wait()) x 1000000

As shown in Figure 5.28, if one wait() statement is annotated for each basic block,
the average simulation speed is slowed down to 4.8 MIPS. If a wait() statement is
generated only before an access to the external memory in the case of a data cache
miss, the simulation runs at an average speed of 254.5 MIPS. Compared with the
simulation in C, which is at 1344.5 MIPS on average, there is a slowdown factor
of 5.

100000
@ Simulation in C with data cache simulation
@ Simulation in SystemC (wait() per data cache miss)
g_’ 10000 O Simulation in SystemC (wait() per basic block) N
= D
w1000 =
§ i |
)
o
) 100
c
L
= 10 +
S
E
(7] 1 4
0,1
fibcall insertsort bsearch crc blowfish AES
Benchmarks

Figure 5.28: Simulation in C vs. Simulation in SystemC

The data shown in Table 5.4 helps us to understand the factors that determine
the simulation speeds. Cyy, Cycacheaccesss and Cyeaenenriss are the number of basic
blocks, the number of data reads/writes, and the number of data cache misses,
respectively. Tsimmc, Tsiminsystemc 1, and Tgimmsystemc2 are respective times spent
in simulation in C, simulation in SystemC with one wait() executed while a cache
miss occurs, and simulation in SystemC with one wait() for each basic block.
As simulation in C has no overhead due to wait() statements, Ty;mmc is equal

103

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

to Thppcode + Leachesim- Therefore, by subtracting Timme from Tsimmsystemc1
and Tyiminsystemc2, We get the times consumed by wait() statements Twairy1 and
Twaitg2. Assuming that each wait() consumes a constant time t,.:(), we get
Twait) = twait() X Nwait(), Where Nyg) is the number of wait() statements. If
one wait() corresponds to each basic block, Nya() is equal to the number of basic
blocks Cy. So, we get Tyait)2 = twair() X Cw. According to the measured data,
a single wait() takes around 7 us to execute on the experiment PC. Compared
with Tipaie)2, Tappcode + Teachesim 15 almost ignorable. If one wait() corresponds
to each data cache miss, Ny () is equal to the number of cache misses plus one
wait() that is used to advance the simulation time for the code after the last cache
miss. Thus, Tyeit)l = twait() X (Cacacherriss +1). Usually, Cacachenriss + 1 is much
smaller than Cy,. That is the reason why this strategy can significantly improve
the simulation speed.

5.6.5 Case Study of MPSoC Simulation: A Motion-JPEG
Decoder

We also did a case study to show how iSciSim facilitates MPSoC design space ex-
ploration. In the case study we designed an MPSoC for a Motion-JPEG (M-JPEG)
decoder. We have chosen this application because it is a real-life application. Al-
though it is not too complicated but has enough features to illustrate the use of
our simulation method. This experiment was carried out on a laptop equipped
with an Intel Core2 Duo CPU at 2.26 GHz and 2 GB memory. The execution
environment was Cygwin on Windows XP.

Huffman Tables

JPEG v DC
Frames COEfﬁCient§
—» DEMUX—VLD> ZZ » 1Q >IDCT>CONV—> LIBU
AC |
Coefficients % Decoded Images

Quantization Tables

Image Size

Figure 5.29: M-JPEG Decoder Block Diagram

M-JPEG is a multimedia format, where each video frame is compressed as a JPEG
image, and the M-JPEG decoder is a typical multimedia application. The most
building blocks of a M-JPEG decoder are also used in many other image/video
processing applications. The block diagram of the M-JPEG decoder used in this
case study is shown in Figure 5.29. The input is a stream of JPEG images.
DEMUX extracts some information data from each image, such as Huffmann ta-
bles, quantization tables, image blocks, and image size, and sends them to the

104

5.6 Experimental Results

corresponding blocks. VLD, ZZ, 1Q, and IDCT perform wvariable length decoding,
Zigzag scanning, inverse quantization, and inverse discrete cosine transformation,
respectively. Then, CONV converts the image format from YUV to RGB. LIBU
receives RGB blocks and orders them in lines. At last, the RGB lines are sent for
displaying.

The video used in the case study has a resolution of 256x144 pixels per frame. The
design was aimed at archiving 25 frames per second (fps) decoding rate. We used
the proposed simulation method to perform system level design space exploration
to find the best design from the design alternatives. In principle, the design space
for such an application could be very large. The target platform could be a high-
performance uniprocessor or a multiprocessor system-on-chip (MPSoC) that is
either homogeneous or heterogeneous. However, we considered only homogeneous
MPSoCs consisting of multiple identical PowerPC cores to simplify the design
problem. Each processor has a 16 KB instruction cache and a 16 KB data cache.
This kind of simplification does not hinder the demonstration of the key concepts.
The same simulation methodology is surely applicable for exploring a larger design
space.

The described M-JPEG decoder was first implemented in a sequential C program.
Then, the C program was transformed to an ISC program. We measured the exe-
cution times of both the source program and the ISC program on the experiment
PC. For a sequence of 200 frames of size 256x144 pixels, the execution times were
1.47 s and 1.54 s, respectively. This proves again that the execution time of an
ISC program is close to its original source program. Hence, it is fully feasible to
use the ISC program for implementation instead of the source program.

Table 5.5: Performance Profiling of the M-JPEG Decoder

Module Execution time in cycles | Time percentage
All 5612778816 100%
VLD 590901512 10.5%
1Q+7Z7Z 578880000 10.3%
IDCT 3177253144 56.6%
CONV 1175923358 21.0%
LIBU 71614200 1.3%
DEMUX and Others 18206602 0.3%

Before parallelizing the sequential program, we profiled the execution time of the
application on the target processor and got the contribution of each module to
the total execution time, as shown in Table 5.5. The data is also illustrated in
Figure 5.30. The execution times were obtained by running the instrumented ISC
of the whole program. The execution of the instrumented ISC took only 2.12 s.

105

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

3500000000 - 56.6%

3000000000

2500000000

2000000000

1500000000

1000000000 -

10.5% 10.3%

Execution time in cycles

500000000

0,
VLD 1Q+Z2Z IDCT CONV LIBU DEMUX and
Others

Figure 5.30: Performance Profiling of the M-JPEG Decoder

I |

<
«
-
<

PPC PPC PPC PPC /
' core core core core /,
03 T T T
\\ System bus > ,'I
ES3 S T 7
N VIN VOUT |-’
-~ ’ "
(HW) Memory (HW)

O Task graph node [|Hardware block — Data flow ---# Mapping

Figure 5.31: Mapping of the M-JPEG Application onto the MPSoC Architecture

106

5.6 Experimental Results

’a I o mer)+ +(ow)
O = OO M=o =N

cpU1 CPU3 CPU4

gk
Figure 5.32: Point-to-Point Communication Using FIFOs

This fast program performance profiling is also an advantage of our approach,
because profiling using iSciSim is much faster and easier than using an ISS.

The performance data shown in Table 5.5 is very useful for parallelizing the ap-
plication model and its mapping onto the target platform. As IDCT is the most
computationally-intensive block and contributes 56.6% to the total execution time,
we should either run IDCT on a high-performance processor core or on more than
one cores in parallel or implement it as a hardware co-processor, to achieve the
desired performance. However, as mentioned, we considered only MPSoC archi-
tectures with a set of identical PowerPC cores, so we chose to parallelize IDCT
on multiple cores. In contrast, some other blocks that are less computationally-
intensive were grouped together. In this way, we can achieve load-balancing be-
tween the processor cores. An example of parallelization of the application model
and its mapping onto four processor cores is illustrated in Figure 5.31.

Table 5.6: M-JPEG Decoder Performances of Different Configurations (Point-to-Point
Communication with Untimed FIFOs)

Configuration Frames/Sec | Simulation Duration
1: Three Cores @ 100 MHz 6.29 7.7 sec
2: Four Cores @ 100 MHz 12.58 7.4 sec
3: Five Cores @ 100 MHz 16.01 7.2 sec
4: Four Cores @ 200 MHz 25.16 7.5 sec
5: Five Cores @ 200MHz 32.03 7.4 sec

Then, each task was modeled at transaction level in SystemC, annotated with
accurate timing information. Each processor was modeled as a SystemC module
and each task corresponded to a thread in the processor module that the task
was mapped to. After getting the computation model we can start to refine the
communication. At the beginning of the communication refinement, we first used
FIFOs to realize point-to-point communications among the processing elements,
as shown in Figure 5.32. Using fast simulation at this high abstraction level,
we can get a rapid validation of system’s functionality after the partitioning and

107

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

mapping, and at the same time, get the first idea of the system’s performance.
In Table 5.6, we show the performances of five selected design alternatives. The
first three designs are architectures consisting of three, four, and five PowerPC
cores, respectively, all running at 100 MHz. As shown, even the implementation
on five cores achieves only the performance of 16.01 fps, far away from the desired
throughput. By increasing the frequency of the processor cores from 100 MHz
to 200 MHz, the performances of the implementations on four cores and five
cores are increased to 25.16 fps and 32.03 fps, respectively, both higher than the
requirement.

As the communication timing has not been taken into account, the performance
data is not accurate enough to make the final choice. However, we know that
the real performance can only be worse than the estimation, so we can for sure
exclude the first three designs and consider only Design 4 and Design 5 that fulfill
the performance requirement in the following design phases.

As shown in Table 5.6, the simulations at this level are very fast. For a sequence
of 200 video frames, each simulation takes only around 7 seconds, as shown in
Table 5.6. It takes only less than one minute to evaluate the five design alternatives
and exclude three of them. Hence, the simulation at this abstraction level can
narrow the design space significantly in a very short time.

Table 5.7: Communication Workload Profiling

From To Communicated data size (MB)
VIN CPU1 0.91
CPU1 | CPU2 42.19
CPU1 | CPU3 42.19
CpPU2 | CPU4 10.55
CPU3 | CPU4 10.55
CPU4 | VOUT 21.10

In addition, we can analyze the communication workload among the processing el-
ements. The obtained workload statistics can help in communication refinement,
for example, to make the choice of an appropriate communication architecture
and to optimize the communication protocol. Table 5.7 shows the communication
workload obtained for the mapping shown in Figure 5.31. The most data trans-
ferred among the processing elements is in form of large data blocks. If we choose
a conventional bus as the communication fabric, it is better to use a wide data bus
that supports burst transfer. The burst length should be set as large as possible.

As the task models capture both functional and timing behaviors, during the sim-
ulation we can not only get the performance statistics but also see the decoded

108

5.6 Experimental Results

Start performing IDCT B 995194118
i Start processing B 997957268 nst
&%= MJFEG_SCEUs § Start performing IDCT B 998BAVERA
+-E§MREQACHE' Start processing B 1881687378 ns!?
(&7 WIPEG_4CFUs § Start performing IDCT B 1882792740
+.t§MREQﬂCHh: Start process%ng B 1885165298 nst
(=% NIPEG_SCFIls gtart perform?ng éDf;Bg7;g$23521?B
o ‘_,-_% I'.'IJ'PEG_SCPUs. tart processing nst

Start performing IDCT B 1B8111R5438
Start processing B 10122810898 n=t

52 MIPEG SCEUs §

= 3 Binaries) Start performing IDCT B 1814999638 ns?
G fgl Includesd Start processing B 1B1583899@ ns!
- BUS : Start performing IDCT B 1818858438 ns?
= (= epul i Start processing B 1819396898 ns?
iiﬂ cpul. ¢ Start processing B 1823551748 ns?
-] fetelg Start fetching frame 15 B 1823596328 ns!?
= cpul i Start performing IDCT @ 1823736188 nst
- [h] epu. § Start performing IDCT B 1827582758 ns?
&Ll Start processing @ 1827589818 ns?

Start performing IDCT B 1832858688 nst
Start performing IDCT B 1837781618 nst
Start processing B 1639637718 n=t
Start processing B 1839822398 n=t
Start performing IDCT B 18418368688 nst

Hbe) idets)
=52 cpud)

]] cpud. |

117LE1:
118 iwvtmp 183 = ivtmp 164:

F cpus. b
£ c_', dizpatch. cpp

Figure 5.33: Execution Environment

video frames to validate the system’s functionality, as shown in Figure 5.33. Af-
ter each step of communication refinement, it is necessary to verify whether the
system’s functionality is still correctly modeled.

Table 5.8: M-JPEG Decoder Performances of Different Configurations (Point-to-Point
Communication with Timed FIFOs)

Configuration Frames/Sec | Simulation Duration
1: Three Cores @ 100 MHz 5.98 17.7 sec
2: Four Cores @ 100 MHz 11.96 17.1 sec
3: Five Cores @ 100 MHz 14.91 16.9 sec
4: Four Cores @ 200 MHz 22.77 18.1 sec
5: Five Cores @ 200MHz 26.93 17.5 sec

In the next step, we annotated a delay for each inter-processor transfer of a buffer
of data. For example, assume a bus is used and it does not support burst mode.
Let the bus width be BUS_WIDTH bytes. To transfer a buffer of data with a size
of n bytes, n/BUS_WIDTH bus transactions are needed. Let the time needed by
the processor to set up a bus transaction be T_SETUP ns. Assume the transfer
of each word consumes a constant time T_-TRANSFER ns on the bus. Then,

109

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

System Bus

o

Figure 5.34: Communication Using a System Bus

we annotate “wait((n/BUS_-WIDTH)*(T_TRANSFER+T_SETUP), SC_NS)” for
a transfer of n bytes data.

With the simulation using timed FIFOs, we can test the parameters of the com-
munication architecture, such as buffer size, bus width, and burst length. In the
case study, a simple bus that is 32 bits wide and does not support burst mode was
tested. As discussed above, in this step we need only to evaluate Design 4 and
Design 5. Nevertheless, in order to get a complete comparison of different simu-
lation levels, we still simulated all the design alternatives. The simulation results
are shown in Table 5.8. We can see that when the communication timing is taken
into account, the performances of all the designs are reduced. The performance of
Design 4 is reduced from 25.16 fps to 22.77 fps and does not fulfill the requirement
any more. As the communication was only approximately simulated and bus con-
tentions have not been taken into account, the real performances should still be
worse than the simulation results. Hence, only Design 5 needs to be considered in
the next refinement step.

As shown in Table 5.8, delay annotations for data transfers bring a large overhead
in simulation performance. For a sequence of 200 frames, the simulation duration
increases from 7 seconds to 17.5 seconds on average. This simulation speed is still
very fast.

At last, the timed FIFOs were replaced by a bus simulation model and a shared
memory model. The processing elements are connected to the bus using the inter-
face provided by the bus model, as shown in Figure 5.34. The bus model simulates
each bus transaction accurately and takes the bus contentions into account. We
first set the bus width to 32 bits. To get a complete comparison of the simulation
levels, we simulated all the five designs. The simulation results are shown in Ta-
ble 5.9. We can see that the estimated decoding performances are further reduced.

110

5.6 Experimental Results

The estimated performance of Design 5 is reduced from 26.93 fps to 21.67 fps and
does not fulfill the requirement either.

The simulation using the accurate bus model is very slow. For a sequence of 200
frames, each simulation takes around 22 minutes. Fortunately, at this design step,
the design space has been narrowed down. We do not need to run too many such
slow simulations.

So far, we still do not get a design that fulfills the requirement, although the
performances of Design 4 and Design 5 are close to the requirement. To further
improve the designs, it is useful to get utilizations of system components to find
the performance bottlenecks. Figure 5.35 and Figure 5.36 show the utilizations
of system components of 4-CPU and 5-CPU architectures, respectively. If the
decoder is realized on the architecture with 5 processor running at 200 MHz and
a 32-bit bus, the utilizations of CPU 1, CPU 2, CPU 3, CPU 4, and CPU 5 are
99%, 70%, 71%, 71%, and 84%, respectively. CPU 1 is fully loaded, with 65%
of time busy with execution and 34% of time busy with I/O. The bus utilization
is 44%. As the processors spent a large portion of time being busy with IO,
we decided to improve the bus. We first increase the bus width. As shown in
Table 5.10, when the bus is widened to 64 bits, the performances of Design 4 and
Design 5 are increased to 22.70 fps and 26.47 fps, respectively. Finally, we got a
design that fulfills the requirement. We can also see that when the bus width is
increased, there are less bus transactions to be simulated and thus the simulation
performance is higher. The two simulations using the 64-bit bus model take 11
min 34 sec and 10 min, respectively, much less than the simulations using the
32-bit bus model.

Table 5.9: M-JPEG Decoder Performances of Different Configurations (Communica-
tion with 32-bit Bus)

Configuration Frames/Sec | Simulation Duration
1: Three Cores @ 100 MHz 5.70 18 min 36 sec
2: Four Cores @ 100 MHz 11.33 22 min 19 sec
3: Five Cores @ 100 MHz 13.37 22 min 35 sec
4: Four Cores @ 200 MHz 20.72 22 min 29 sec
5: Five Cores @ 200MHz 21.67 22 min 49 sec

Table 5.10: M-JPEG Decoder Performances of Different Configurations (Communica-
tion with 64-bit Bus)

Configuration Frames/Sec | Simulation Duration
4: Four Cores @ 200 MHz 22.70 11 min 34 sec
5: Five Cores @ 200 MHz 26.47 9 min 57 sec

111

Chapter 5 iSciSim for Performance Simulation

of Compiler-Optimized Software

VIN f 7 |
CPU1
CPU2 B Executing
CPU3 O Busy with 10
Oldle
CPU4
VOUT 5] 94
BuS | 7
0% 20% 40% 60% 80% 100%
(a) 4 CPU Cores Running at 100 MHz and 32 bit Data Bus
VIN
CPU1
CPU2 B Executing
CPU3 O Busy with 10
Oldle
CPU4
VOUuT
BUS
0% 20% 40% 60% 80% 100%
(b) 4 CPU Cores Running at 200 MHz and 32 bit Data Bus
VIN
CPU1
CPU2 @ Executing
CPU3 O Busy with 10
Oldle
CPU4
VOUT
BUS
0% 20% 40% 60% 80% 100%

(c) 4 CPU Cores Running at 200 MHz and 64 bit Data Bus

Figure 5.35: Utilizations of Processing Components of the 4-CPU Architecture

112

5.6 Experimental Results

B Executing

0O Busy with 10

Oldle

0% 20% 40% 60%

80%

100%

(a) 5 CPU Cores Running at 100 MHz and 32 bit Data Bus

VIN
CPU1 34 f
CPU2 | 30
B Executing
CPU3 | 29 O Busy with 10
CPU4 | 29 Oldle
CPU5 16 16
voutT { 9 | 89
BUS h 56
0% 20% 40% 60% 80% 100%

(b) 5 CPU Cores Running at 200 MHz and 32 bit Data Bus

VIN
CPU1
CPU2

B Executing
CPU3 O Busy with 10
CPU4 Oldle
CPUS
vout { 7 | 87
sus I £
0% 20% 40% 60% 80% 100%

(c) 5 CPU Cores Running at 200 MHz and 64 bit Data Bus

Figure 5.36: Utilizations of Processing Components of the 5-CPU Architecture

113

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

Frames per second

Untimed FIFO

Timed FIFO

5Cores@ 4Cores@ 5Cores@ 4Cores@ 3Cores@
200 MHz 200 MHz 100 MHz 100 MHz 100 MHz

Figure 5.37: MJPEG-Decoder Performances Obtained by Simulations at Different
Levels

32.0

5.2

307 16.0

25+ 26. A 12.6

22.7| T
20 6.3

15— Untimed FIFO
10- Timed FIFO
32-bit Bus

Frames per second

64-bit Bus

5Cores@ 4Cores@ 5Cores@ 4Cores@ 3Cores@
200 MHz 200 MHz 100 MHz 100 MHz 100 MHz

Figure 5.38: Necessary Simulations at Different Levels

114

5.6 Experimental Results

Now, we make a short conclusion. This case study demonstrated how iSciSim is
used to facilitate MPSoC design. Given a sequential implementation of an applica-
tion, iSciSim can be used for performance profiling to get statistics for application
model partitioning. After partitioning and mapping, we use iSciSim to generate
software TLMs annotated with accurate timing information. The timed software
TLMs allow for very fast software performance simulation. With stepwise refine-
ment of the communication architecture, the software TLMs can be connected to
the communication model without modification. In the case study, we presented
three levels of communication model: FIFOs, timed FIFOs and a timing-accurate
bus model. We selected five design alternatives to present the process of system
refinement. We evaluated all the five designs using the three simulation levels.
Figure 5.37 gives an overview of the simulation results. With FIFOs realizing
point-to-point communications among the processors, communication timing can-
not be taken into account. We got very optimistic estimates. When each data
transfer is annotated with a delay, we can get more accurate estimates. How-
ever, as resource contentions cannot be modeled, the estimates are still optimistic.
Simulations at these two abstraction levels are very fast. When a timing-accurate
bus model was used, we got very accurate statistics but the simulation speed was
slowed down significantly. Although we simulated all the design alternatives at
different levels to get a complete comparison, actually only part of them is neces-
sary in the real design. With the fast simulations at the highest abstraction level,
we can already narrow the design space and leave only two designs still under con-
sideration: architectures consisting of 4 and 5 cores running at 200 MHz. Next,
the simulations at a lower level can provide more accurate performance data, with
which it is found that only 5-core system can fulfill the performance requirement.
Then, we need to simulate only the 5-core system with the accurate bus model
and find that the decoder performance is still under the requirement when the
communication overhead is accurately taken into account. As the decoder perfor-
mance is close to the requirement, we improve the communication performance by
increasing the width of the data bus from 32 bits to 64 bits. With two more sim-
ulations we can obtain the system that fulfills the requirement: 5 PowerPC cores
running at 200 MHz connected by a 64-bit bus. All the simulations performed
are illustrated in Figure 5.38, with the unnecessary ones shown with transparent
columns.

115

Chapter 5 iSciSim for Performance Simulation of Compiler-Optimized Software

116

Chapter 6

Multi-Task Simulation in SystemC
with an Abstract RTOS Model

In many embedded systems, especially in real time systems, a complex application
is splitted into tasks, each responsible for a portion of the work. The tasks are
executed according to their real-time requirements. The sequence of task execution
on a single processor is managed by a real time operating system (RTOS). Different
scheduling policies of the RT'OS may result in very different timing behaviors of the
system. Therefore, it is desired that the scheduling behavior can also be captured
during system-level design space exploration. Since a particular RTOS may not yet
be decided at early design stages, an abstract RT'OS model that provides common
RTOS services, such as scheduling, synchronization and interrupt handling, and
captures the most important RT'OS temporal behaviors, such as context switching
time and scheduling latency, could be very useful.

In this chapter, we describe the way of modeling an RTOS at the system level with
SystemC and present how to use the abstract RTOS model to schedule the timed
task models generated by iSciSim. Section 6.1 shows the necessity of modeling an
RTOS at system level. Then, in Section 6.2, the common services and temporal
behaviors of RTOSs are introduced. An implementation of RTOS model and
preemption modeling are described in detail in Section 6.3 and 6.4, respectively.
Section 6.5 presents a more modular design of RTOS model. Finally, we show
some experimental results in Section 6.6.

6.1 Unscheduled Execution of Task Models

As already discussed before, a design in a typical system-level design process starts
with a specification model. Then, the partitioning and mapping step decides how
to implement the computation and communication, captured in the specification
model, on a set of processing elements (PEs) connected with a bus or a network.
After partitioning, the system is represented as a set of concurrent, communicat-
ing tasks, each consisting of a piece of code and realizing a part of the system’s
functionality.

117

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

During mapping, more than one task may be allocated onto a single PE. We model
a PE with a SystemC module and the transaction level task models (taskTLMs)
mapped to the PE are declared as SystemC threads. The relation among the
taskTLMs, the SystemC kernel and the simulation host is shown in Figure 6.1. As
the taskTLMs are not scheduled, the independent tasks can run fully concurrently.

Application
T1||{T2| eee |Tn

SystemC

Simulation Host

Figure 6.1: Layers of the Simulation Setup

In Figure 6.2, we use an example of a priority based scheduling to motivate schedul-
ing simulation with an RTOS model. First, the real execution trace is shown in
Figure 6.2(a). The example involves two tasks running on a target processor.
Task2 has a higher priority than Taskl. Both tasks access a global variable gu.
Taskl starts its execution at 0 us. It writes valuel to the global variable at 8 us.
At 14 us, Task? is activated and preempts Taskl. It reads valuel from gv and
then executes until blocked at 22 us by waiting for some I/O data. At the same
time, Taskl is resumed. It writes value2 to gv at 26 us. At 38 us, Task2 gets the
required I/O data and is activated again. At the same time, Taskl is preempted
again. Task2 gets value2 from gv at 46 us. Taskl is kept in the ready state until
Task?2 finishes its current cycle at 50 us. Then Taskl resumes and terminates at 58
us. In the real execution, each external interrupt will trigger an interrupt service
routine (ISR). The ISR will then activate a ready task. For clarity, the execution
of ISRs is not considered in the example.

Figure 6.2(b) illustrates the simulation trace of the unscheduled taskTLMs. As
in a taskTLM a wait() statement is generated only before an access to the global
variable, the taskTLMs of Taskl and Task2 both are divided into three execution
segments. For more information about segmental execution of taskTLM, please
refer to Section 5.5. We can see, taskTLM1 and taskTLM2 execute truly in
parallel and their simulated delays fully overlap. Both taskTLMs run to the end
without being interrupted. The total simulated delay is only 38 us. Compared
with the real delay 58 us, the error is large. Even worse, the order of the global
variable accesses is also different from the real execution. This might lead to wrong
functional results. In the example, taskTLM2 gets a wrong value of gv in the first
read. It should get valuel but it gets value?.

The above example shows the importance of modeling scheduling behaviors in the
system level design space exploration.

118

6.1 Unscheduled Execution of Task Models

t=0 us:
t=8 us:
t = 14us:

t = 22us:
t = 26us:

t = 38us:

t = 50us:
t = 58us:

t=0 us:
t=8 us:

t = 18us:

t = 38us:

Task1 Global Task2
Priority: 1 variable (gv) Priority: 2
activated '>J‘
writes gv > valuels, |
preempted S>h--------oooooposoooooooos <- t=14us:
q valuel 5] g t=20us:
resume -; '"{,é]ggg"s'z """"" TR t=22us:
writes gv =
preempted > - sooooofemomoooooooo- <- t=38us:
I —value2 » E- t = 46us:
resumed > T<- t=50us:
ends cycle ->-|-
(a) Real Execution
taskTLM1 Global taskTLM2
Priority: 1 variable (gv) | |Priority: 2
activated g
writesgv valuel s !
1 - :
, | value2_ ! =<-t=14us:
writes gv. > >E| value2 St = 20us:
ﬁ% -t=30us:
ends cycle >+ t=3dus:

(b) Simulation with Unscheduled taskTLMs

Native execution

activated

reads gv
blocked

resumed

reads gv

activated
reads gv

reads gv
ends cycle

[] Simulation time advancement

Figure 6.2: An Example of Multi-Task Execution

ends cycle

119

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

6.2 The RTOS’s Functionality

An RTOS performs basically two primary functions, (1) providing a consistent
and convenient interface to the application software and the resources, and (2)
scheduling the software tasks and managing the hardware resources. At system
level we are not interested in the exact functionality at the implementation level,
but rather how its scheduling policies, management schemes, and timing parame-
ters etc. affect the system performance. In this context, we introduce some basic
information on task and scheduler of a typical RTOS in this section.

6.2.1 Task

Typically, there are several tasks competing for the processor at the same time,
but the processor can only execute one task at a time. To solve this problem, each
task is modeled as a state machine. The scheduler organizes the task execution
by means of task state transitions. The most basic task state model consists of
three states, as shown in Figure 6.3:

activated

blocked
terminate

Figure 6.3: 3-State Task Model

e ready: the task in this state is already runnable. However, it must wait for
allocation of the processor, because the processor is still occupied by another
task.

e running: the task in this state is actually using the processor. As the proces-
sor can execute one task at any time, there is only one task in the running
state.

e waiting: the task in this state is unable to run until some external event
happens

The initial state of a task is waiting. After a task is created, there are four
transitions possible among the three states. The transition from ready to running
occurs when the task is selected by the scheduler to execute next. Note that only

120

6.2 The RTOS’s Functionality

ready tasks can transit into the running state. There is no direct transition from
waiting to running. There may be more than one ready task. It’s the duty of
the scheduler to decide which ready task can get control of the processor next.
Typically, the ready task with the highest priority is selected. In contrast, the
transition from running to ready occurs, when the running task is preempted by
a higher priority task.

The transition from running to waiting occurs, when the running task terminates
normally or it is blocked by waiting for an external event (e.g., waiting for an I/0O
operation to complete, a shared resource to be available, or time to expire etc.).
In contrast, when the external event for which a task was waiting happens, the
task transits from waiting to ready.

In specific designs, a task may have more states. For example, in the OSEK
OS [10], the waiting state introduced above is subdivided into two states, waiting
and suspended, as shown in Figure 6.4. An extended task of the OSEK OS transits
from running to waiting when being blocked by waiting for an event. It transits
from running to suspended when it terminates normally. A task of uC/OS-II [67]
has five states. It has the ISR state and the dormant state in addition to the three
basic states.

activated release

suspen-
ded

terminate

blocked

Figure 6.4: 4-State Task Model of the OSEK OS

When a task is created, it is assigned a task context block (TCB). A TCB is a data
structure containing the information needed to manage a task. This information
includes typically the task id, the task priority, hardware register values, and the
task address space etc. When a running task is preempted, the RTOS first stops
the execution of the running task and saves its context (the values in hardware
registers) to its TCB. Then, the RTOS updates the hardware registers with the
context of the new running task from its TCB. This process is called a context
switch. A context switch is necessary to make a preempted task can resume
execution exactly where it is interrupted.

121

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

6.2.2 Scheduler

As mentioned above, the scheduler is responsible for determining which ready
task will run next. This decision is made according to a specific scheduling algo-
rithm. There are several scheduling algorithms, including round-robin scheduling,
fized priority based scheduling, and earliest deadline first approach etc. Among
these algorithms, fixed priority based scheduling is the most widely used one. A
scheduling algorithm can be either non-preemptive or preemptive.

Interrupt activating Task2

ISR | i |
| A | |
. . 1 " 1 1
Task1 (Low Priority) | running running waiting
Task2 (High Priority) | Waliting ready running
0 t1 12 3 4 time
Figure 6.5: Non-Preemptive Scheduling
Interrupt activating Task2
ISR !] ! !
| A | |
. . 1 " 1 1
Task1 (Low Priority) | running ready running
Task2 (High Priority) | Waliting running waiting

(0] t1t2 t3 t4 time

Figure 6.6: Preemptive Scheduling

Using non-preemptive scheduling, a running task can not be interrupted until it
terminates, unless it explicitly gives up control of the processor. A simple priority-
based, non-preemptive scheduling scenario is illustrated in Figure 6.5. Taskl is
first running but gets interrupted at t1 by an event, which the higher priority task
Task2 is waiting for. The processor jumps to an ISR (interrupt service routine) to
handle the event. The ISR makes Task2 ready to run. At the completion of the

122

6.2 The RTOS’s Functionality

ISR, the processor returns to Taskl. Taskl resumes at the instruction following the
interrupted point. It gives up control of the processor when terminating normally
at t3. Then, Task2 gets control of the processor to the event signaled by the ISR.

The main drawback of non-preemptive scheduling is its low responsiveness. A
higher priority task that has been made ready has still to wait a long time for a
lower priority task to finish. It also makes the response time of a safety-critical
application non-deterministic, because you never really know when the highest
priority task will get control of the processor. Due to this drawback of non-
preemptive scheduling, most existing RTOSs use preemptive scheduling.

In contrast to non-preemptive scheduling, when preemptive scheduling is used,
the ready task with the highest priority can always get control of the processor.
Therefore, with preemptive scheduling, execution of the highest priority task is
deterministic. Figure 6.6 shows an execution scenario of preemptive scheduling.
As illustrated, with preemptive scheduling, the high priority task Task2 is made
ready to run and then immediately gets control of the processor at the completion
of the ISR, while the interrupted low priority task Taskl is suspended and transits
into the ready state. Taskl resumes, after Task2 terminates.

SC_MODULE: RTOS

N taskN()
I sc_event: | SC_THREAD: schedule()

SC_THREAD: task1() - schedule Y

[||]|::> — wait(schedule)
sc_event: Select the task
- preempt to run next
- dispatchli] +
Notify events to
]” preempt and
start tasks
terminate —

Figure 6.7: Implementing the RTOS Model and Task Models in a Single Module

123

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

6.3 The RTOS Model in SystemC

In our first implementation, both tasks and the scheduler are modeled as SystemC
threads in a single module. The synchronization between the tasks and the sched-
uler is realized by SystemC events. This implementation is depicted in Figure 6.7.
Before a particular RTOS has been decided, we use the most general task state
model with three basic states. When an RTOS with a specific state model is cho-
sen later, the state model used in simulation can be easily extended. As shown,
the task state transitions are triggered by events from the scheduler. To manage
the execution of the tasks with the three basic states, the scheduler needs only the
preempt event and a dispatch event for each task. All the dispatch events are put
in an array. Each task is assigned an unique id, ¢d € Z and 0 < id < N, where
N is the number of tasks allocated to the processor. The scheduler notifies the
event dispatchfi] to dispatch the corresponding task, which has id = i. There is
only one running task, so the scheduler needs only one preempt event to interrupt
the running task.

The scheduler performs a scheduling when there is a new task gets ready or the
running task terminates. Hence, the scheduler process is triggered by the schedule
event notified by a task at its beginning and completion. With the RTOS model
refined, more events can be added to handle more complex synchronizations.

The following code gives a basic idea of the RTOS module definition.

1. enum TASK_STATE{waiting, ready, running};
2.

3. SC_MODULE(cpu_model){

4. private:

5. int *priorities;

6. TASK_STATE *states;

7. sc_event preempt, schedule, *disptach;
8. ... // other variables

9.

10. public:

11. int task_number;

12. void scheduler(){ ... }

13. void task_init(...){ ... }

14. void task1(){ ... }

15. void task2(O{ ... }

16. ... // other functions

17.

18. SC_CTOR(cpu_model){

19. task_number = 2;

20. priorities = new int[task_number];
21 states = new TASK_STATE[task_number] ;

124

6.3 The RTOS Model in SystemC

22. dispatch = new sc_event [task_number];
23. SC_THREAD (task1) ;

24 . SC_THREAD (task?2) ;

25. SC_THREAD (scheduler) ;

26. ... // other thread declarations

27 . +

28. };

In a real RTOS, TCBs are usually implemented as a linked list. In our RTOS
model, we do not simulate software at the assembler level, so all the register
operations are abstracted away. Therefore, there is no need to copy hardware
register values during a context switch. Some other information in a TCB such
as task address space is also not required during the abstract RTOS simulation.
Only the information like task id, task state, and priority needs to be recorded. To
increase simulation performance, we do not construct a TCB list as a real RTOS
does, but store the necessary information in variables or arrays. As shown in the
above code, we declare two arrays priorities and states to store the priorities and
states of all the tasks (line 5 and 6), respectively. Each task accesses its own
priority and state using its id as the index.

The events used for task management are declared in line 7. The size of the arrays
priorities, states, and dispatch is equal to the number of tasks. These arrays are
instantiated in the constructor of the module (line 20 through line 22). Thus, we
need only to change the value of task_number when the number of tasks changes.
All the tasks and the scheduler are declared as SystemC threads (line 23 through
line 25). In the shown code, there are two tasks declared. The task state array is
declared as an enumerated type TASK_STATE, the elements of which are the task
states (line 1).

6.3.1 Task Model

According to the discussion in Section 6.2, a task realizes a portion of the appli-
cation’s work and must have the notion of states to compete the processor with
other tasks. Therefore, a task model contains three parts of code: behavioral code,
timing annotations, and the code that realizes state transitions and synchroniza-
tions. An example of task model is shown in Figure 6.8(a) and gives a basic idea
of task model definition. As already discussed, a task model is implemented as a
SC_THREAD. At the beginning of the thread, the task is assigned an id (line 2)
and calls the function task_init(int task_id, char® task_name, int priority, sc_time
deadline) (line 3), which initializes the task’s context (the parameters such as task
name, priority and deadline) and sets the task the waiting state.

125

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

uep ajqudnusiul (p)

MeAN OAT}duoalI] pue [OPOJN SR, :8°9 2In3I1q

Jaddelip) anupnN/peDY (0)

DS| payuswnysu| (q)

[SpO\ Mse] (e)

{eL

([P ise]yojedsip)yem ‘0l
‘Apeal = [pI yselsajers
HIWIL 0YIZ OS =i dwiy axa)y
‘Je)s - doys =- swl} axa
{()dweys awn os = dojs
{(1dwaaid ‘swn oxa)uem
{()dweys swiy oS = uels
HIWIL 0YTZ OS<dwiy 8xa) ajiym
‘dojs ‘peys swiy 0s
Hown axa
|WIy S ‘pI” ¥SE} JUIBAAIUI PIOA *

NOTI0DONOD

~—

{" - }ozI1s ju ‘Jppe jul paubisun
‘$910A0 ,Jul ‘PI ¥SE) JUI)SJUM PIOA'GL

{1

{ <

lepow snq 0} 8oepBIUI // T ZL
Jpus ||

‘(own oxa)yem 0|

os|e# '6

‘(own~axa ‘pI-yse})epmIul _ 8

ANILANTIEC Jopi# "L

‘0 = s9joko, 9

‘1, S9I9A0, = awiy oxd S

K(ezis Jppe)avay IHOVOQM ¥
‘owly axa 8wl 9s ‘¢

}e

(9zIs I “appe jul paubisun
‘s8[0A0 ,Jul ‘I HSE) JUI)pESI PIOA -

-—

‘271 0106 8sj2:07 0306 (0L=iNH!
‘e =+ S9J2AD
(' ([o)g selohom i Yse))olum
¥ = + S9|9AD

(v ‘gg” dunal
‘sa[0Aowg ‘pI yse})peal
‘} =+ s9|9hd

‘¥ ‘pe dunal
‘sajohog ‘pIyse})peal

TT+GE QA = G& aunAl

(ge™dwal,) (€ dwal,)=[1lo
01

}(PITMSE) JUI)Op0o0 ™ |)SE) PIOA

A.
t

‘OAourajnpayos
‘Buniem = [pI ysel]saiers

‘(pr sey)opoo” |yise |

‘Buluuni = [pI ysei]saels
([P yselyojedsip)yem
‘OAmourajnpayos
‘Apeal = [pI ysey]seiels
UoljeAljo. 10} JIem J/ -

Henn)ajiym

((SW DS ‘L)own s
‘| “ise, ‘proseiul se)
-0 = P! Mse}ul
}) 1)Ise) ploA

142
€l
cl

N2
0l

6
8
L
9
S
14

-~ ®

126

6.3 The RTOS Model in SystemC

The task body is an infinite loop. As the task is in the waiting state, it is unable
to run until being activated by some external event (line 5). When the event for
which the task is waiting occurs, the task transits from waiting to ready (line 6).
Then, the task notifies the schedule event to trigger a rescheduling (line 7) and
waits for its turn of execution (line 8). Because the task has the id = 0, it transits
into the running state and gets control of the processor when it receives the event
dispatch[0] from the scheduler (line 9). Then, it calls the function taski_code()
to execute the instrumented ISC generated by iSciSim (line 10). When the task
terminates normally, it transits into the waiting state again (line 11) and requests
the scheduler to determine the task to run next (line 12). Then, the task waits
for the next activation.

Figure 6.8(b) shows an example of instrumented ISC. It is generated by iSciSim,
given the source code of the task. The instrumented ISC is integrated into the task
model without any change, by means of a function call. In the shown code, there
are no explicit I/O accesses. The only accesses to external modules happen, when
memory accesses due to load/store instructions are missed in the cache. During
ISC instrumentation, we annotate calls to read/write wrapper functions: read(int
task_id, int* cycles, unsigned int addr, int size) and write(int task_id, int™ cycles,
unsigned int addr, int size), instead of direct calls to the cache simulator. The
two functions are responsible to advance the SystemC simulation time and realize
interruptible waits.

Figure 6.8(c) shows the implementation of the read/write wrapper functions. In
the read function, the values of addr and size are forwarded to the cache simulator
for data cache simulation by calling DCACHE_READ (unsigned int addr, int size)
(line 4). When a cache miss occurs, the function returns the true value. In this
case, the aggregated cycle value is converted to sc_time by multiplying the cycle
value with 7, the duration of one CPU cycle (line 5). The cycle counter is cleared
for cycle counting of the next execution segment (line 6). When non-preemptive
scheduling is used, this execution segment can run to the end, so we just use a
standard SystemC wait statement to advance the simulation time (line 10). In the
case of preemptive scheduling, a function realizing an interruptible wait int Wait()
is called instead (line 8). The preemption modeling will be discussed in separate
in Section 6.4. Details about interruptible wait are also described there. At the
completion of the execution segment, a memory access through communication
architecture is simulated (line 12). The code of write() is similar to read() and is
not shown.

6.3.2 Scheduler Model

The scheduler thread waits initially for the event schedule from the task threads.
Once it receives the notification of the event, it starts to select the task to run
next according a specific scheduling policy. If a priority based scheduling policy

127

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

is used, the task with the highest priority will be chosen from the ready tasks. If
the selected task has a higher priority than the running task, the event preempt is
notified to interrupt the running task. At the same time, the event dispatch|task_id]
is sent out to start this selected task. Then, the scheduler thread is blocked by
waiting for the next notification of the event schedule.

6.3.3 Timing Parameters

During the RTOS simulation, it is important to take the RTOS overhead into
account. Therefore, the abstract RT'OS model should capture the time required by
the RTOS to perform typical services, such as task scheduling, context switching,
task synchronization, and interrupt handling. The following timing parameters
are considered as most important:

e The scheduling duration: the time required by the RTOS to select from
the ready queue the task to run next. This overhead depends on both the
scheduling algorithm and the number of ready tasks.

e The context switching duration: the time required by the RTOS to save the
context of the running task and then update the processor registers with the
context of the new running task from its TCB.

e The interrupt handling duration: the time spent by the RTOS to handle an
interrupt.

The value of these timing parameters depends on the type of RTOS and the pro-
cessor running the RTOS. To get these values, we can use the RTOS characteristics
provided by the vendor. Another option is to measure the RTOS overhead on the
target processor or on a cycle-accurate processor simulator, as done in [54]. How-
ever, this requires both the RTOS and the target processor or a cycle-accurate
processor simulator available. This is often not the case in an early design phase.
In this case, reasonable assumptions can be made according the designer’s expe-
rience. For example, we can assign each RTOS operation with a reasonable delay.
This loosely-timed RTOS model can give a first idea how the RTOS overhead influ-
ences the system performance. When the model is refined, the timing parameters
can be updated with more accurate timing values.

6.4 Preemption Modeling

As most RTOS schedulers support preemptive scheduling, it is very important to
get an efficient method for preemption modeling in abstract RTOS simulation.
However, the simulation method introduced so far does not support preemption
modeling. That is, the simulation time advancement of an execution segment

128

6.4 Preemption Modeling

Task1 Global Task2
Priority: 1 variable (gv) Priority: 2

t=0 us: activated =>
t=8 us: writesgv > valuel s |

(at 14 us) _) .
t=18us: preempted >T-------------f- T — <-t=18us: activated
t = 24us: resumed => value2 Cep-----------C € -t = 24us: blocked

writes gv

at 38 us

t = 44us: ends cycle > ""(““"U“)I:]%_ < -t = 44us: resumed
reads gv

value2 -t = 54us: reads gv
-t =58us: ends cycle

Figure 6.9: Example of Preemption Modeling

cannot be interrupted. Figure 6.9 shows the simulation trace of simulating the
example in Figure 6.2(a) using the simulation method introduced so far. The
execution order of the two tasks is scheduled. However, the simulation trace
is not exactly the same as the real execution, because the preemptions are not
correctly handled. As we can see, an interrupt occurs at 14 us, while a wait()
is running. This interrupt cannot be handled until the wait() call returns. As a
result, although the activation event of Task2 occurs at 14 us, Task2 can actually
execute until Taskl finishes the second execution segment at 18 us. During the
first execution segment of Task2, at 22 us, the event that blocks Task2 occurs. This
event is reacted after Task2 finishes its first execution segment at 24 us. As soon
as Taskl is resumed, it writes value2 to gv. The event that unblocks Task2 occurs
at 38 us, during the third execution segment of Taskl. In the same manner, only
at 44 us, this event can be reacted and Task?2 is actually resumed. The second and
third segments of Task2 are then executed one after another without breaking.
Task2 gets value?2 in the both reads of gv at 44 us and 58 us.

Modeled in this way, both the order of execution segments and the order of global
variable accesses are different from the real execution shown in Figure 6.2(a). Due
to the wrong order of global variable accesses, Task2 gets a wrong value of gv
in the first read. This wrong value can lead to different execution times of the
following execution segments, although this effect is not depicted in the figure.
Even worse, the functional results will be wrong. As a result, in the simulation
the whole system behaves totally different from the real implementation. Such
simulation results will mislead the design.

If such interrupts are predictable at the design time, a solution is to split the
wait() call of an execution segment, during which an interrupt will occur, into two
wait() calls. The first wait() advances the simulation time to the time point when

129

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

the interrupt occurs. After the interrupt is reacted, the second wait() advances
the rest simulation time of the execution segment.

However, most interrupts from the environment are not predictable. In this case,
several other solutions have been proposed in previous work including time-slicing
method [80] and result oriented method [89]. In the following subsections, we
will introduce the two solutions. After that, the method we use for preemption
modeling is introduced.

6.4.1 Static Time-Slicing Method

The time-slicing method (TSM) is proposed in [80]. The idea of TSM is to split
one wait() statement in each execution segment into several wait() statements,
each advancing a smaller interval of simulation time. Thus, there are more time
points to detect interrupts. This idea is depicted in Figure 6.10. We can see, as
the simulation time intervals are shortened, the interrupt can be earlier detected
and reacted, and as a result, the simulation error is smaller. However, as the
simulation time intervals are refined, more wait() statements are needed. As
discussed before, a wait() can cause a very time-consuming context switch between
the thread and the SystemC simulation kernel and thus introduces a very large
simulation overhead.

(@ I

.
NG |
wait(6t) !
N)
Y
Error
(b) [I I
\ Y J { Y J
wait(2t) Error
(c) O I | I
—r T
wait(t) Error

Figure 6.10: Time-Slicing Method for Preemption Modeling

Another large disadvantage of this method is that the possibility of wrong func-
tional result still exists. In some cases, even a very small simulation error can lead
to wrong functional results. For example, if two tasks communicate with each
other using global variables, a mall timing error may change the access order of a
global variable and thus lead to functional errors.

Figure 6.11 shows the simulation trace of simulating the example in Figure 6.2(a)
using TSM. As shown, if the time interval is reduced to 2 us, all the three interrupts

130

6.4 Preemption Modeling

Task1 Global Task2
Priority: 1 variable (gv) | |Priority: 2

t=0 us: activated >

t=8 us: writesgv > | valuet 5, 1,
t = 14us: preempted > <— (at 14 us)

<~ t=14us: activated

t = 20us: reads gv

=1 s
t=22us: resumed Sl Eﬁ & :

lue2 t22 us t = 22us: blocked
t=26us: writes g SFH———>)

t = 38us: preempted > = GiEgas)[T T -

—valueZ | - t=46us: reads gv
t=50us: resumed S| <~ t=50us: ends cycle

t = 58us: end cycle >

Figure 6.11: Example of Preemption Modeling Using TSM

can be detected and reacted in time without any error. Modeled in this way, the
number of wait() statements used in the whole execution is increased from 6 to
29. This reduces the simulation performance significantly. Furthermore, in the
simulation of a real system, there are much more interrupts and each interrupt can
occur at any random time. It’s very hard to find a time interval value to guarantee
that all the interrupts can be handled in time. The only way to eliminate the error
is to refine the simulation time intervals to the cycle level, i.e., to use one wait() to
advance the simulation time for one CPU cycle. Using so many wait() statements,
the software simulation performance will be reduced to an unacceptable level.

To summarize, TSM reduces the simulation error caused by synchronizations at the
expense of simulation performance. As the simulation error cannot be eliminated,
it is only suitable for the cases where small synchronization errors will not lead to
serious consequences like functional errors.

6.4.2 Result Oriented Method

The result oriented method (ROM) is introduced by Gunar Schirner in [89]. ROM
is a general modeling concept that achieves simulation optimization by hiding in-
termediate states of the system execution and focusing only on the final simulation
outcome. In [89] this modeling concept is applied for preemption modeling in an
abstract RTOS model. This solution is very simple but allows for accurate pre-
emption modeling.

The concept of ROM is depicted in Figure 6.12. In the example, there are two
tasks. Taskl with a lower priority is activated first. During its execution, an

131

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

Interrupt activating Task2

running N ready running running
Task1 (Low Priority) [] ' ' | |
waiting running waiting waiting
Task2 (High Priority) ! il | : :

0 t1 2 3 t4 time
\)
Y
t2 —t1

Figure 6.12: Result Oriented Method for Preemption Modeling

interrupt that activates Task2 with a higher priority occurs at ¢1. Although the
interrupt does not break the execution segment of Taskl, it changes the state
of Taskl from running to ready and records the time point when the interrupt
occurs. Once the state of Taskl changes, the scheduler is triggered and selects
the next running task. In the example, Task2 is activated. When Task2 finishes
the execution, the time point ¢2 is also recorded. After that, the state of Taskl
changes back to running. Once the current execution segment of Taskl ends, it is
calculated how the execution of the preempted task would have been effected by
the preemption. For the shown example, Taskl should have been delayed for the
execution duration of Task2. With the recorded time points, it is easy to calculate
this duration, which is t2 — t1. This time is then compensated to Taskl using an
extra wait(). Modeled in this way, all the time stamps including the start times
and stop times of both tasks match the real execution.

Figure 6.13 shows the simulation trace of simulating the example in Figure 6.2(a)
using ROM. In the figure, the waits compensated to preempted tasks are referred
to as ROM waits.

6.4.3 Dynamic Time-Slicing Method

The method we use is called dynamic time-slicing method (DTSM). The concept
of this method is illustrated in Figure 6.14. As shown, the execution segment of
Taskl breaks, when the interrupt occurs. The rest time is recorded. Meanwhile,
the state of Taskl is changed from running to ready. Then, Task2 can start to
run. After the execution segment of Task2 ends, Taskl resumes and the rest time
of its execution segment is converted to the SystemC simulation time using an
extra wait(). In this way, the system can be simulated exactly the same as the
real execution. From the programmer’s view, the execution segment of Taskl is
splitted dynamically into two parts at the point where the interrupt occurs. That’s
why the method is called dynamic time-slicing method.

132

6.4 Preemption Modeling

Task1 Global Task2
Priority: 1 variable (gv) | |Priority: 2

t=0 us: activated =
t=8 us: writesgv 3 valuels, |
t = 14us: preempted = <~ t=14us: activated

t=18uss 77 - t=20us: reads gv
t = 22us: resumed 3> alue? = t=22us: blocked
t = 26us: writes gv > - t=30us

value1

t = 38us: preempted =>| W==->------=-1------------- <~ t=38us: resumed
t = 46us S value2 <- t=46us: reads gv
t=50us: resumed Dpg Tt <~ t=50us: ends cycle
t = 58us: ends cycle =

71 ROM wait
Figure 6.13: Example of Preemption Modeling Using ROM

Interrupt activating Task2

running ready running running
Task1 (Low Priority) '

waiting

running waiting waiting

Task2 (High Priority)

t0 t1 t2 t3 t4 time

Figure 6.14: Dynamic Time-Slicing Method

The implementation of this method is shown in Figure 6.8. Using DTSM, there is
no need of modifying task models. We just need to define the macro PREEMPTIVE.
Then, the call to the interruptible wait int Wait(int task_id, sc_time exe_time) is
compiled instead of the standard wait() call (Figure 6.8(c), line 8).

Figure 6.8(d) shows the implementation of intWait. In line 5, we use a wait
statement wait(exe_time, preempt) with both a time and an event as arguments.
This statement is provided by SystemC. It suspends a thread by waiting for the
event. As soon as the event is notified, the thread will resume. If the event does
not occur within the given time, the thread will give up on the wait and resume.
In our case, the time is the simulation time of an execution segment and the event
is preempt from the scheduler. In line 4 and 6, the simulation time stamps before
and after the wait() statement are recorded. Their difference stop - start is the
actual simulation time advanced by the wait() statement. By subtracting this

133

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

Task1 Global Task2
Priority: 1 variable (gv) | |Priority: 2

t=0 us: activated ->%|

t=8 us: writesgv > valuels, |

t = 14us: preempted => t = 14us: activated
t = 20us: reads gv
t=22us: resumed 3| t = 22us: blocked

t=26us: writesgv >

t = 38us: resumed

t = 38us: preempted >

t = 46us: reads gv
t = 50us: ends cycle

t=50us: resumed >
t = 58us: ends cycle >

Figure 6.15: Example of Preemption Modeling Using Interruptible Waits

actually advanced simulation time from exe_time, we get the remaining time, i.e.,
exe_time -= (stop - start) (line 7). If the remaining time is zero, this means that
the simulation time has been advanced without being interrupted. Otherwise, it
indicates the occurrence of an interrupt. In this case, the task is preempted and
its state is changed from running to ready. The code in line 9 and 10 changes the
state of the task and suspends the thread by waiting for the notification of the
dispatch|task_id] event from the scheduler.

Figure 6.15 shows the simulation trace of simulating the example in Figure 6.2(a)
using the proposed method. As shown, the simulation trace is exactly the same
as the real execution.

6.5 A More Modular Software Organization of
Transaction Level Processor Model

So far, we have described the transaction level models of application task, cache,
and RTOS, which are primary components of a processor. Hence, we can get a
transaction level processor model by combining these models. We call a trans-
action level processor model cpuTLM for short in the following discussion. A
cpuTLM is functionally identical to the target processor, and meanwhile, can ac-
curately estimate the delays caused by software execution on the target processor.
Further, to simulate a multiprocessor system, several cpuTLMs simulating the
software processors are connected to HW simulation models and memory models
through communication architecture. This is illustrated in Figure 6.16. As shown,
a cpuTLM is modeled as a single SystemC module, where application tasks are

134

6.5 A More Modular Software Organization of Transaction Level Processor Model

7| cpuTLM (SC_MODULE)

7/
CPU1 CPU2 T1
Cache Cache
o = Shale
< System bus N\ Wrapper
e i e

psP || asic || MEM Interface to bus

Figure 6.16: Transaction Level Processor Model

modeled as SystemC threads and the services of the RTOS and cache are invoked
by function calls. Modeled in this way, the advantage is that in a single SystemC
module the synchronization between different components can be easily realized
by events. The simple synchronization can result in high simulation performance.
Nevertheless, this implementation has the disadvantage of less reusability and
modularity of the model components. In a multiprocessor system simulation, a
copy of RTOS model and cache model is needed in each cpuTLM. A modification
or refinement of the RTOS model or the cache model will lead to the change of
all the processor models.

To achieve a more modular software organization, we implement both cache and
RTOS as SystemC hierarchical channels. The software task threads are wrapped
in a separate module taskTLM. The threads use the services provided by RTOS
and cache through the interfaces of the RTOS and cache channels. Nevertheless,
this software organization has the difficulty of synchronizing the task threads in
the taskTLM module using functions or threads in the RTOS module, because
the communication between two modules cannot be realized easily using SystemC
events. In other words, the scheduler in the RTOS module is not able to schedule
the threads in the taskTLM module directly.

Our solution to this problem is to divide an original task model into two parts: a
task model and a shadow task model, as shown in Figure 6.17. The task model
executes the functional code and aggregates the annotated cycle values for each
execution segment and the shadow task model advances the simulation time given
the aggregated cycle value of the execution segment. The shadow task model
is located in the RTOS channel and therefore can be easily controlled by the
scheduler, while the task model is in the taskTLM module. The task model and
the shadow task model are tightly coupled using FIFOs. There are three FIFOs
connecting each pair of task model and shadow task model, namely, fifo_start,
fifo_cycles, and fifo_ack. They are all one-stage FIFOs, accessed by blocking read

135

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

SC_MODULE: cpuTLM

SC_MODULE: taskTLM SC_MODULE: RTOS
Task Models
c
w STM1()
3
Interface to ~ ©°
BUS model T & <ﬁ =)
& ||
kel
= @) |
=
> t
= ' @sc_evens
< - _
@
Instruction Data
Cache Cache

Figure 6.17: A More Modular Software Organization

and write, for the sake of correct synchronization between the task model and the
shadow task model.

The proposed strategy is depicted in Figure 6.18 with an example. The example
is kept simple for the purpose of clarity. Figure 6.18(a) shows the simulation
trace using the way introduced in the last section. In the example, there are two
tasks. The first task model (TM1) has a lower priority than the second task model
(TM2) and starts first. It is first inserted into the ready queue and requests for a
scheduling by sending the schedule event to the scheduler. As at that time there is
only one task in the ready queue, TM1 is immediately activated after receiving the
dispatch[0] event from the scheduler. During its execution, an event that activates
TM2 occurs. In the same way, TM2 is inserted in the ready queue and requests
for a scheduling. As TM2 has a higher priority, it can run next and therefore TM1
is preempted. When TM2 finishes its execution, it sends the schedule event to
trigger a scheduling again. As TM1 is the only ready task left, it can resume its
execution. Totally, TM1 contains two execution segments and TM2 has only one.

Figure 6.18(b) shows the simulation trace using the proposed strategy. As shown,
each task model in the taskTLM module has a corresponding shadow task model in
the RTOS channel. As all the shadow task models do the same thing and therefore
can reuse the same code. The code is shown in Figure 6.19(c). The task models
still play the role in reacting with the environment. In the illustrated example,
at the beginning, both task models wait for being activated by an external event,
while both shadow task models are also blocked by reading the blocking FIFO
fifo_start, which is initially empty (Figure 6.19(c), line 6). Then, TM1 can start
first. It writes START to fifo_start. Its shadow task model STM1 gets the data
and is also activated. It then changes the task state from waiting to ready (line
7). Next, it reads the cycle value of the current execution segment from fifo_cycles

136

6.5 A More Modular Software Organization of Transaction Level Processor Model

SC_MODULE: cpuTLM

™1

™ 2

| _schedule
dispatch[0] H

preempt Y~ — schedule
Scheduler. Y"1

dispatch[0]

schedule

(a) Modeling Using a Single SystemC Module

SC_MODULE: taskTLM

SC_MODULE: RTOS

™ 1 STM 1 STM 2 ™ 2
J§TART _ ! schedule
cycles | [dispatch[0]
! <LPreempt E schedule ¢ {START]
- i ™ cycles
) Scheduler\jd'Sp'[1lj> ACK_
- “schedule .
ACK dispatch[0] END
= I~
cycles N
-

(b) Modeling RTOS Using a SystemC Channel

Figure 6.18: An Example of Multi-Task Simulation Using Abstract RTOS Models

137

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

sent by TM1. If the cycle value does not exist, STM1 is blocked. Meanwhile, TM1
executes the functional code and calculates the cycles that the current execution
segment takes. An execution segment ends when there is an access to an external
device. Before modeling the access, the aggregated cycle value must be converted
to the simulation time. Therefore, TM1 sends the cycle value to fifo_cycles and
then is blocked by waiting for an acknowledgment from STM1, which indicates the
completion of the simulation time advancement of the current execution segment.

As soon as STM1 gets the cycle value, it is really ready to run. The cycle value
is first converted to sc_time by multiplying with the duration of each CPU cycle
T (line 9). The resulting time is assigned to a variable ezecution_time. Then, it
is checked whether the task is already running (line 10). If the current execution
segment is the first execution segment of the task, the task state is not running
but ready and hence we have to notify the schedule event to request a scheduling
(line 11). For the first execution segment, STM1 sends the schedule event to the
scheduler and waits for its turn to run (line 14). The scheduler then decides which
task can run next. As currently there is only one task ready, STM1 gets the
dispatch[0] immediately and changes its state from ready to running (line 15).
The code from line 17 to line 22 advance the simulation time, taking preemption
into account. execution_time is the time to be converted to the simulation time,
while the difference between the two time stamps stop and start calculates the
really advanced simulation time. Therefore, at line 20, “execution_time -= stop -
start” calculates the rest of time to be converted to simulation time. If the rest of
time is zero, this means that the execution time of the current execution segment
has been completely converted to the simulation time without being interrupted.
Otherwise, the task has been preempted and its state is changed to ready (line
22). Then, the loop begins the next iteration from line 12. It iterates until the
simulation time of the current execution segment is completely advanced. In the
example, during the first execution segment, STM1 is preempted and suspended
by waiting for being dispatched (line 14). STM2 runs in the same manner. When
it finishes its execution, STM1 resumes and converts the rest of execution time
to the simulation time. At the completion of the first execution segment, STM1
sends an acknowledgment ACK to fifo_ack (line 24) and then jumps back to line
8, waiting for the cycle value of the next execution segment.

At the TM1 side, when it gets ACK from fifo_ack, it starts the next execution
segment. TM1 has only two execution segments. After finishing the last execution
segment, it sends END to fifo_cycles. In STM1, as the variable cycles gets END,
the loop ends (Figure 6.19(c), line 8). The task state is changed to waiting (line
26) and a rescheduling is requested (line 27). STM1 then waits for the next round
of activation (line 6).

As described above, using one-stage FIFOs, the task model and the shadow task
model are well synchronized. An execution segment in the task model starts
from functional code execution and ends with receiving an acknowledgment from
the shadow task model. An execution segment in the shadow task model starts

138

6.5 A More Modular Software Organization of Transaction Level Processor Model

.

'1.void taskTLM:task 10 i bool DCACHE_READ (. . .{
2. inttask_id = 0, cycles = 0; ! S
3. rtos_port->task_init(task_id, "task1", 1, i }
sc_time(1, SC_MS)); i
4. while(true){ ! _C bool DCACHE_WRITE (. . . X
5 ... Il wait for activation H L
6 fifo_start[task_id].write(START); E }
7. task1_code(task_id, &cycles); !
8 fifo_cycles|task_id].write(END); \ The Cache Channel
9 fifo_ack(task_id].read(); 5
1 i
1 i

12. void taskTLM::task1_code(int task_id, I
int *cycles){

S . E dispatch[task_id]
cli]=(*ivtmp_34)*(*ivtmp_35); ' schedule preempt

i 1. void rtos::STM(int task_id) {

! 2. intcycles = 0;

2

3

4

5

6. ...

7. ivtmp_35 = ivtmp_35+1;

8. read(task_id, cycles, ivtmp_34, 4);
9. “*cycles +=1;
0

1

2

3

4

5

6

3. sc_time start, stop, execution_time =

read(task_id, cycles, ivtmp_35, 4); SC ZERO TIME:

*cycles + =4

write(task_id, cycles, &(c[i]), 4);
*cycles += 3;

if(i'=10) goto LO;else goto L2;

4.

5. while (true) {

6. fifo_start[task_id].read();

7. states[task_id] = ready;

8. while((cycles=fifo_cycles[task_id].read())

e 1= END){

9. execution_time = cycles * T;

10. if(states[task_id] != running)

(a) Task Model 11. schedule.notify(SC_ZERO_TIME);

12. while(execution_time>
SC_ZERO_TIME)

l *@— 13. if(states[task_id] != running){

NNONNNNNONN = A A

1. void read(int task_id, int* cycles, UInt32 addr, 14. wait(dispatch[task_id));
int size){ 15. states[task_no] = running;
2. if(cache_port->DCACHE_READ(addr, size)}{ - 1? }Start_ . time_stampl):
£ il EEEEIEEl 00 NS Es NN | 18: wait(exec]tion_time I:m;empt)'
4 lcycle =0; ; 19. stop = sc_timeistamp();
5. fifo_ack[task_id].read(); 4 20. execution_time -= stop — start;
6. .../ interface to bus 21. if(execution_time!=SC_ZERO_TIME)
7.} 22. states[task_id] = ready;
8.} 23}
M| ACK -] 24. fifo_ack[task_id].write(ACK);
25.
9. void write(int task_id, int* cycles, UInt32 addr, 26. statestask_id] = waiting;
int size){ 27. schedule.notify(SC_ZERO_TIME);
10. ... 28.
}
11.} 29}
(b) Read/Write Wrapper (c) Shadow Task Model
The taskTLM Module The RTOS Channel

Figure 6.19: The Code Structure of a cpuTLM

139

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

from receiving the cycle value from the task model and ends with sending an
acknowledgment to the task model.

In Figure 6.19, we show the code structure of a cpuTLM. The illustrated example
of task model is the same as the one in Figure 6.8. A task model is declared
as a thread in the taskTLM module. At the beginning of the thread, the task is
assigned an id (line 2) and calls the interface method task_init() implemented in the
RTOS channel through the port rtos_port, through which taskTLM is connected
to the RTOS channel (line 3). This interface method is responsible to spawn a
thread for the shadow task model and initializes the task’s context. The code of
task_init() is shown as follows:

1. int rtos::task_init(int task_id, char *task_name, int priority,
sc_time deadline){

2. sc_spawn(sc_bind(&rtos::STM,this,task_id));

3. task_names[task_id] = task_name;

4. priorities[task_id] = priority;

5. states([task_id] = waiting;

6. deadlines[task_id] = deadline;

7. return O;

8. }

In the above code, the function sc_spawn() is called to spawn a SystemC thread
for a shadow task model (line 2). Because the shadow task models of different
tasks do exactly the same thing, the same function STM(int task-id) shown in
Figure 6.19(c) is attached to all the threads of shadow task models. Given task_id
as a parameter, the code in STM() can access the correct FIFOs and task pa-
rameters, which are stored in arrays indexed by the task id. sc_spawn() relies on
an additional function sc_bind() to attach the function STM(). This is done by
passing the address of STM() as an argument. Another argument this is used to
indicate that STM() is a member function. Finally, as the function STM() has
one input parameter task_id of type int, we set the actual task id of a task inside
the sc_bind() call.

The task body is an infinite loop. At the beginning of the loop, the task waits for
being activated (Figure 6.19(a), line 5). Once it is activated, it sends START to
fifo_start to notify the shadow task model (line 6). Then, it runs the instrumented
ISC (line 12 through line 26), which is exactly the same as in Figure 6.8(b). This
means that for the new RTOS model the instrumented ISC generated by iSciSim
does not need any modification. During the execution of the instrumented ISC,
the functional code is executed and meanwhile the software execution delays are
aggregated using the variable cycle. As an example of memory access, at line
18, a wrapper function read() is called. In the read() function, the interface
method DCACHE_READ() implemented in the cache channel is called through
cache_port for cache simulation (Figure 6.19(b), line 2). In the case of a cache

140

6.6 Experimental Results

miss, the aggregated cycle value is sent to fifo_cycles (line 3). Then, the cycle
counter is cleared (line 4) and an access to the memory starts (line 6) after an
acknowledgment from the shadow task model is received (line 5). The write()
function is implemented in the same way. After the execution of the instrumented
ISC, the task model sends END to notify the shadow task model of the termination
of the task (Figure 6.19(a), line 8). After getting an acknowledgment, the task
really terminates.

6.6 Experimental Results

In the experiment, we evaluated our modeling method with simulating a simple
example: a single processor running 6 independent, periodic tasks. The tasks
are the same as those used in the experiment in Chapter 5. A PowerPC 100
MHz processor was selected the target processor. The simulations ran on a laptop
equipped with an Intel Core 2 Duo CPU at 2.26 GHz and 2 GB memory. The
execution environment was Cygwin on Windows XP.

Table 6.1: Task Parameters

Period | Priority | Deadline
fibcall 1 ms 4 1 ms
insertsort | 0.1 ms 6 0.1 ms
bsearch 3 ms) 3 ms
cre 1 ms 3 1 ms
blowfish 5 ms 2 5 ms
AES 50 s 1 50 s

We used iSciSim to generate fast and accurate transaction level task models for
all the tasks. It has been validated in Chapter 5 that all these taskTLMs allow
for very accurate performance simulation, comparable to simulation using an ISS.

First, we tested one of the most common static-priority scheduling algorithms: the
priority of each task is pre-defined by the user. In Table 6.1, we define the param-
eters of these tasks, including deadline, period, and priority. The deadline is equal
to the period. We ran the simulation for a simulated time of 150 seconds. The
host execution time was 138 seconds. This means that the simulation performance
was around 109 Mcycles/sec. It is a very high simulation speed, which allows for
exploring various design alternatives in a short time. Table 6.2 shows the simu-
lation results, including the total execution time (Total ET) and the worst-case
response time (WCRT) of each task. We can see that except AES all the other
tasks finish execution before the deadline. In the period of 150 seconds, AES runs

141

Chapter 6 Multi-Task Simulation in SystemC with an Abstract RTOS Model

only once. The worst-case response time is 65.18 seconds, larger than the dead-
line 50 seconds. The processor was already fully loaded with a utilization rate of

91.9%.

Table 6.2: Simulation Results

Total ET WCRT Deadline
FP | EDF | FP EDF
fibcall 488 s | 491 s | 484.19 us | 145.89 us 1 ms
insertsort | 5.99s | 5.99 s 4.34 us 4.34 us 0.1 ms
bsearch 21.48 s | 21.50 s | 451.33 us | 592.88 us 3 ms
cre 15.43 s | 15.06 s | 592.78 us | 139.85 us 1 ms
blowfish | 50.29 s | 50.29 s | 2.63 ms 2.63 ms 5 ms
AES 39.81s|3985s| 65.18s 65.00 s 50 s

We also tested the EDF scheduling algorithm. For the same scenario, we got
similar results as FP: AES missed the deadline and the other tasks all could
complete before the respective deadlines. From Table 6.2, we find that with EDF
fibcall and cre have significantly shorter WCRTs than with FP. This is because
the two tasks have both relatively short deadlines. In the simulation using EDF,
they can get higher priorities than the priorities set in the simulation using FP.
In contrast, bsearch gets a longer WCRT using EDF. The simulation results show
that changing the scheduling algorithm can not help in getting a safe design. There
are two solutions: either to use a processor with higher computing power or to
implement AFES in hardware.

So far, we tested the RTOS model only with this simple scenario. It is our future
work to apply it in practical designs.

142

Chapter 7

Flow Analysis on Intermediate
Source Code for WCET Estimation

Constraining the possible control flows in a program is essential for a tight WCET
bound. The results of flow analysis are pieces of control flow information on loop
bounds and infeasible paths, which are often called flow facts. It is most conve-
nient to extract flow facts from the source level, where the program is developed.
However, as timing analysis and WCET calculation are usually performed on the
binary code that will be executed on the target processor, the source level flow
facts must be transformed down to the binary level. Due to optimizing compila-
tion, the problem of this transformation is nontrivial.

This chapter introduces an efficient WCET approach that performs flow analysis
on intermediate source code (ISC). On one hand, ISC is high level enough for
manual annotations and automatic flow facts extraction. On the other hand, it
is low level enough to keep flow facts transformation easy. The approach has
another advantage that it is easy to realize and to use and does not require any
modification of standard tools for software development.

The concrete contributions of this dissertation to WCET estimation are threefold:

1. We show how the usage of ISC facilitates the extraction of flow facts. In ISC,
complex statements are unstructured to simple statements, which makes
analyses like program slicing, syntax analysis, and abstract interpretation
much easier.

2. We show how to simply transform the ISC level flow facts to the low level
by using debugging information.

3. We propose an experiment method to demonstrate only the effectiveness of
flow analysis. This allows us to evaluate a flow analysis method and a timing
analysis method separately.

This chapter is organized as follows: An overview of the proposed approach as
well as the tool architecture is presented in Section 7.2 after an overview of related
work on flow analysis in Section 7.1. The whole work flow consists of four steps:

143

Chapter 7 Flow Analysis on Intermediate Source Code for WCE'T Estimation

ISC generation, flow analysis, flow facts transformation, and timing analysis and
WCET calculation. ISC generation has been introduced in Chapter 5. The other
three steps are described in Section 7.3, 7.4, and 7.5, respectively. Experiment
methodology and results are presented in Section 7.6.

7.1 Flow Analysis and Related Work

In this section, we discuss only about previous work on flow analysis. There are
also many research activities that focus on other aspects of WCET analysis. It is
outside the scope of this dissertation to give an overview of these works. Instead,
some survey papers like [103] can be referred to.

According to the representation level of programs, where flow analysis is per-
formed, the existing flow analysis approaches can be grouped into three categories,
as shown in Figure 7.1. In the first category of approaches (Figure 7.1(a)), both
flow analysis and timing analysis are performed on binary code. The obtained flow
facts can be directly forwarded to timing analysis and WCET calculation without
the need of any transformation. The approach described in [72] and the well-known
commercial tool aiT [1] are in this category. They apply symbolic execution and
abstract interpretation [36] for flow analysis, respectively. The approaches in this
category have a common limitation that the automatic flow analysis succeeds only
for simple control flows that do not depend on input data. Otherwise, additional
flow facts have to be given manually at the binary level, which is a very error-prone
task.

It is much easier to do manual annotations at the source level, where programs
are developed. Also, it is advantageous to do automatic flow analysis at this level,
as the programmer can easily check the correctness of the obtained flow facts. To
support manual annotations in source programs, some previous works propose to
use special annotation languages such as MARS-C [84] and wcetC [59]. Using
state-of-the-art flow analysis techniques, most input data independent flow facts
can be extracted automatically without manual annotations. The approach for
source level flow analysis proposed by Healy et al. in [51] is able to bound the
number of iterations automatically but is limited to three special types of loops.
Ermedahl and Gustafsson [43] use abstract execution, which is a type of abstract
interpretation, to discover false paths and loop bounds. In abstract execution,
loops are ‘“rolled out” dynamically and each iteration is analyzed individually.
However, the high level flow facts obtained using these approaches cannot be used
directly for low level timing analysis and WCET calculation, because optimizing
compilation can change the control flows of a program significantly. Therefore, a
mechanism to map the high level flow facts to the binary level is necessary. As
shown in Figure 7.1(b), the flow analysis in this category of approaches consists
of two phases: (1) automatic flow facts extraction and manual annotation at the
source level and (2) flow facts transformation to the binary level.

144

7.1 Flow Analysis and Related Work

S[0QT, SISATeuy THOAM JO SMO[] JIOA\ [ed1dAT, :T°2 9In31q

sisAjeuy moj4 |aAaT Y| (9)

pusjuo.ig |00 13OM

_ Sjoej Moy} \ sisjeue moyy
139M uonenoles 9 Bl

sisAjeue Buiwin

puayoeg [001 13DM _ Ao o dl dl

J9)1dwo9n _omN_Eoum:o

130M \ uone|nNoles

sisAjeue Buiwi

puayoeg |00l 13OM

139M Ao:m_:o_mow Aozﬁo:cm [enuew

sisAjeue Buiwiy B sisAjeue moy}

sisAjeuy mo|4 |9Aa7 924n0S (q)

S10B} MOJ} Azmcto%wcm: sjoe} SJoe} MOJ}
9 0 MO[} g uone|idwod QO

Jajidwoy paziwolsny

sisAjeuy mo|4 |9Aa] Aseulg (e)

d| 0} O _ o

suoljejouue [enuew
9 sisAjeue moj}

puajuolid |00] 1IDM

\co_um__QEoo _ 5

|00l 13DM J9)idwo) piepuels

ﬂo.l

145

Chapter 7 Flow Analysis on Intermediate Source Code for WCE'T Estimation

The problem of flow facts transformation is nontrivial. Puschner presents a low-
cost approach in [83] to transform source level flow facts to the binary level, but
this approach is limited to moderately optimized programs. To support WCET
analysis of programs compiled with usual, standard optimizations, one feasible
solution is to integrate flow facts transformation within program compilation to
keep track of the influence of compiler optimizations on the flow facts. This is
achieved using two separate tools in [42]: a modified compiler tracing the com-
piler optimizations and, given the traces, a co-transformer performing flow facts
transformation. In [58] Kirner and Puschner integrate a similar transformation
approach fully into a GCC compiler. The tool TuBound [81] uses abstract in-
terpretation for automatic flow analysis and Kirner’s method [58] for flow facts
transformation.

The third category of approaches shown in Figure 7.1(c) performs flow analysis
on a low-level IR. It achieves a better trade-off between visibility of flow facts
and simplicity of their transformation to the binary level. The tool SWEET [48]
belongs to this category. It uses a special compiler to transform C programs to
a new IR called new intermediate code (NIC), which can be regarded as a high-
level assembler code format and is written in a LISP-like syntax. Flow analysis is
performed on the NIC code. As the NIC code has a structure close to the structure
of the binary code, the generated flow facts can easily be mapped to the binary
level. Nevertheless, this approach relies on the special compiler and the special IR
format and thus has limited usability in practice. In addition, NIC code has very
limited readability according to the example shown in [48].

7.2 Overview of the Proposed Approach and Tool
Architecture

From our point of view, a gopod WCET analysis approach should have the following
properties:

e To get a tight WCET bound, the representation level of programs for flow
analysis, on one hand, should be high enough to facilitate flow facts extrac-
tion, and on the other hand, should be low enough, so that the effort for
flow facts transformation is kept low.

e Timing analysis should be performed on the binary code, which is to be
executed on the target hardware, for accurate timing modeling.

e The WCET analysis approach should be general enough and not limited to
a special compiler.

According to the discussion in Section 7.1, none of the existing approaches achieve
all the above properties. Motivated by this fact, we developed a new approach that

146

7.2 Overview of the Proposed Approach and Tool Architecture

C Program
(*.c)
ISC
Generation
ISCinC |
l (*.is.c) | l
Cross- WCET Simulation
Compilation Analysis
l Estimated Observed
1% WCET WCET
@
> ~
Execution Validation

Figure 7.2: The Usage of ISC

performs WCET analysis on ISC. According to the descriptions in Chapter 5, ISC
has the following features: (1) it is written in a high-level programming language,
and thus, is compilable; (2) it has the same functional behavior as the original
source code; (3) it contains enough high-level information for necessary manual
annotations; (4) it has a structure close to that of the binary code for easy flow
facts transformation.

In our current implementation, ISC is written in the C programming language and
generated by slight modification of standard IRs of standard compilers. The ISC
generation has been introduced in Chapter 5. Here, we do not repeat it but just
illustrate it with another example, the program insertsort from the Malardalen
WCET benchmark suite [9], which will be used to illustrate the whole proposed
approach through this chapter. Figure 7.3 shows this example. Figure 7.3(b)
contains the generated ISC. As many high-level information of the original source
program has been retained in the ISC, the programmer can easily specify the value
intervals of the input variables, which cannot be computed automatically by the
tool.

ISC retains exactly the same semantics and executability of its original source code.
When compiled with a C compiler, it shows exactly the same functionality as the
original C program. Nevertheless, there might be a slight difference between the
temporal behaviors of the ISC and the original source code. As we perform timing
analysis on the binary code generated by the ISC, this binary code should also be

147

Chapter 7 Flow Analysis on Intermediate Source Code for WCE'T Estimation

a[0] = 0;
i=2
i=2;
goto L7;
al0]=0; L1:
i=2; afj] = D_1301;
while(i <= 10){ alj_27]1=D_1302;
i=i L2:
while (a[j] < a[j-1]) \ j=j_27;
{ L7:
temp = a[j]; D_1302 = a[j];

afl] = a[i-1]; ISC Generation i27=j-1;
afj-1] = temp; D_1301 = a[j_27];
J= if (D_1302<D_1301) goto L1 ;else goto L3;

} L3:
i+ i=i+1;
} if (i <= 10) goto L9 ; else goto L5;
- i2r=i
(a) Original Source Code goto L2:
L5:

return;

(b) Intermediate Source Code

Figure 7.3: An Example of ISC Generation

finally executed on the target processor, as shown in Figure 7.2. In our experiments
presented in Chapter 5, we have already shown that the binary code generated
from an ISC program has similar performance as the one generated from the
original source program. This validated that the usage of ISC for execution on the
target hardware will not reduce the system performance. As shown in Figure 7.2,
we also get observed WCET by means of simulation. This observed WCET is
used to validate the estimated WCET. This is discussed more in Section 7.6.

The work flow of WCET analysis on ISC is illustrated in Figure 7.4. The whole
approach consists of five steps: (1) First, flow facts are extracted automatically
from ISC. (2) Next, if necessary, we can give manually additional flow information
that cannot be computed by the tool. (3) After that, the program is compiled
to generate binary code and debugging information. The debugging information
is then used to map the flow facts to the binary level. (4) Timing analysis is
performed on the binary code based on a hardware model. (5) Given the low-level
flow facts and timing information, the WCET is finally calculated. As shown, the
whole approach is performed fully outside the standard compilation approach.

7.3 Flow Analysis

In this section, we present the approach for bounding loop iterations and detecting
infeasible paths. The whole approach consists of four steps: (1) First, a control
flow graph (CFG) is constructed for each program at the ISC level. (2) Next,
the unstructured loops are identified and the conditional branches within a loop

148

7.3 Flow Analysis

Standard Compilation Approach

C Program) Binary P
(*.is.c) | Compiler Code | ¢
Debugging

Information

\/-\

Automatic Flow Facts Low-Level
— Flow Facts f|— Flow Facts —— Transform- |—> Analysis & |>WCET
Extraction ———— ation Calculation
| Manual /
» Annotations
—~——

WCET Analysis

Figure 7.4: The Work Flow of Our WCET Analysis Tool

that can affect the number of loop iterations are identified. (3) Then, the CFG
is reduced for special analyses, in order to reduce the analysis complexity. (4)
Finally, loops are bounded and infeasible paths are identified. These working
steps are introduced in the following sub-sections.

7.3.1 Constructing Control Flow Graph

A CFG is basically a graphical representation of a program. It is essential to
many compiler optimizations and static analysis tools. Each node of the CFG
corresponds to a basic block, which consists of a sequence of instructions that has
only one entry point and one exit point. Basic blocks are connected with edges,
which represent jumps in the control flow. An edge in the CFG is directed. A
back edge is a special edge that points to an ancestor in a depth-first traversal of
the CFG.

According to our implementation, a CFG is represented using a linked list. The
labels contained in an ISC program simplify the work of constructing its CFG list.
When a label is encountered while parsing the program, one new node is to be
added into the CFG list. By parsing the ISC statements between two labels we
can get all the needed information about the corresponding basic block. The CFG
of the running example is shown in Figure 7.5(a).

149

Chapter 7 Flow Analysis on Intermediate Source Code for WCE'T Estimation

Exit (Loop1)

Exit (Loop2)

LS

(a) ISC-Level CFG (b) Identified Loops

Figure 7.5: Identifying Loops

7.3.2 Identifying Loops

Each loop in a CFG contains at least one back edge. We define this kind of back
edges as loop-forming back edges. Finding a back edge is considered as a necessary
condition but not the sufficient condition of identifying a loop. To make sure that
a back edge is really a loop-forming back edge, it must be checked whether there is
a control flow leads the destination block of the back edge to its source block, i.e.,
to find a closed graph. For the running example, two nested loops are identified,
as shown in Figure 7.5(b).

Next, the conditional branches that can directly or indirectly affect the number
of loop iterations are identified. Such conditional branches are called iteration
branches. Identifying iteration branches is mandatory for reducing CFG and
bounding loop iterations. A branch that can leads the control flow to an exit
edge is identified as a direct iteration branch, while a branch that leads to two
different paths, affecting the number of iterations differently, is identified as an
indirect iteration branch. The blocks containing iteration branches are shown in
gray in Figure 7.5(b).

7.3.3 Reducing Control Flow Graph

In the ISC of a program, there might be many assignments that do not affect
the conditions of conditional branches and thus do not affect the control flows.
If these assignments are removed, the CFG will be reduced and the flow analysis

150

7.3 Flow Analysis

complexity will be reduced accordingly, but the outcome of the analysis will still
be the same.

In the running example, none of the assignments can be removed. To show the
effect of CFG reduction, we give another example in Figure 7.6. The CFG in
Figure 7.6(a) is constructed for the function icre() in the benchmark cre [9]. In
Figure 7.6(b), the blocks that do not affect the iteration branches are identified,
shown in gray. For loop bounding these blocks can be removed. Figure 7.6(c)
shows the reduced CFG. In addition, in each remaining block, the assignments
that do not affect the iteration branches are removed. Analysis on this reduced
CFG will be much easier and faster.

head

et

&

LO
L1
L3
L5
L6
36
L7
L8
37
11
12
15
38
17
18

L
L
L
L

L10 |

_to]
L7 |
_Liz |

L13

L
L
o
L L18 L;S

(a) (b) (c)

Figure 7.6: CFG Reduction

7.3.4 Bounding Loops and Detecting Infeasible Paths

Given the reduced CFG, we use three methods to bound loops and detect infeasible
paths: pattern analysis, code instrumentation, and abstract execution. Pattern

151

Chapter 7 Flow Analysis on Intermediate Source Code for WCE'T Estimation

L1: ...
i += INIT; +
L1:
cnt_L2 ++; ...
i += INCREMENT; ... o

. L8:

If(... ¢

L8: cnt_L8 2 ++;
If(i < LIMIT) goto L1; goto L2;
else ...; }else ...;
(a) Loop Pattern (b) Instrumentation

Figure 7.7: Loop Bounding Methods

analysis is used for bounding the loops that match some simple patterns. One of
the simplest patterns is shown in Figure 7.7(a), where i is the loop counter and
INIT, INCREMENT, and LIMIT are all constants. The number of iterations can

be calculated simply using the equation:

N = |(LIMIT — INIT)/INCREMENT|.

Many loops like nested loops have more complicated structures and do not match
any such simple patterns. If the number of iterations of such a complicated loop
does not depend on input data, i.e, is statically known, we can apply the instru-
mentation technique to get its bound. Figure 7.7(b) illustrates this technique with
an example. When the program is executed, the annotated variables cnt_L2 and
ent_L8_2 will count how many times L2 is executed and the number of jumps from
L8 to L2, respectively.

The first two methods are not applicable to the loops, the iteration numbers
of which depend on input data. To bound such loops, we can use the abstract
execution technique, which is introduced in detail in [43, 48]. Using abstract
execution, the infeasible paths can also be exploited. Our own work on abstract
execution is still ongoing.

We output obtained flow facts in a separate file and the flow facts are expressed
in a simple form. A loop bound is expressed by bounding the execution count of a
block containing an iteration branch. For the running example, two loop bounds
are obtained: (1) L7 < 54, (2) L3 = 9.

152

7.4 Flow Facts Transformation

(\ B1
mapping 4
ey]

B2

(a) ISC-Level CFG (b) Binary-Level CFG
Figure 7.8: Mapping between ISC-Level CFG and Binary-Level CFG

7.4 Flow Facts Transformation

The structure of ISC is already highly optimized by the compiler frontend. If
the ISC is compiled using the same compiler, the frontend will not change its
structure any more. However, when the IR is lowered to the binary code, the
compiler backend will further optimize the code structure to adapt to the special
features of the target machine, e.g., by means of code motion and elimination. As
shown in Figure 7.8, the two CFGs from the ISC level and the binary level look
different. This difference makes it impossible to get a straightforward mapping,
but fortunately, the two CFGs are still similar enough for flow facts transformation.
As shown in Figure 7.9, if we reorganize the CFGs, the similarity is quite obvious.

head I 1

L2 b L7 = L2
l\>|_1

ot

B5
L3 3
L9
L5 |
(a) ISC-Level CFG (b) Binary-Level CFG

Figure 7.9: CFGs after Re-organization

The structure of a CFG is decided mainly by conditional branches. Such condi-
tional branches can be regarded as mapping points to map the control flows. Our

153

Chapter 7 Flow Analysis on Intermediate Source Code for WCE'T Estimation

ISC Code Segment Basic Block

L1: ... B5, B2
L2:

=] 27 NULL NULL
L7:

if (D_1302 <D_1301) goto... 0x18000f4 - 0x18000f8 B2
L3:

i=i+1;

if (i <=10) goto L9 ; else ... 0x1800100 - 0x1800108 B3
L9: ... NULL NULL

Figure 7.10: Mapping Information

method for finding the counterparts of ISC-level conditional branches in the bi-
nary code is very simple: we make use line table, a kind of debugging information,
which describes the correspondence between the ISC statements and the generated
binary code. The line table of a program can be generated automatically during
program compilation.

To transform loop bounds from the ISC level to the binary level, we just need to
get a mapping of iteration branches. In each loop, there is at least one iteration
branch that can find its counterpart in the binary code. That’s the reason why
we express a loop bound by bounding the execution count of a block containing
an iteration branch.

In the following, we explain how the first flow fact L7 < 54 of the running example
is transformed. Figure 7.10 shows all the information used in the description, in-
cluding the ISC code, the binary code segments generated by some important ISC
statements, and the basic blocks these code segments belong to. First, we find the
iteration branch corresponding to the flow fact: “if (D_1302<D_1301) goto ...".
Next, we get the line number of this iteration branch in the ISC program. Us-
ing this line number, the code segment “0x18000f4 - 0x18000f8” generated by the
iteration branch is found by looking up the line table. Here, a code segment is
usually either a basic block or part of a basic block. Thus, we get a mapping
between the ISC-level basic block L7 that contains the iteration branch and the
binary level basic block B2 that contains the code segment generated from the
iteration branch. Based on this mapping, the loop bound is transformed to a low
level loop constraint 2 < 54. In the same way, a mapping between L3 and B3
can be established and the second flow fact L3 =9 is transformed to x3 = 9.

Figure 7.10 also shows that no code is generated by L2 and L9 and the code
generated by L1 is partly in B2 and partly in B5, indicating that their structure has

154

7.5 Timing Analysis and WCE'T Calculation

been changed by the machine-dependent optimizations. Flow facts transformation
based on the mapping of these blocks instead of the iteration branches will result
in a wrong estimate.

Flow facts on infeasible paths can be transformed to the low level in a similar
manner. The only difference is that an ISC level flow fact on an infeasible path
should be expressed as a constraint on an edge in the infeasible path, instead of a
block. This edge can find its corresponding edge at the binary level using the line
table. With this mapping the flow fact can be transformed.

7.5 Timing Analysis and WCET Calculation

Our flow analysis approach is fairly general to be adapted to any low level analy-
sis. There are three main classes of WCET calculation methods: structure-based,
path-based, and techniques using implicit path enumeration (IPET). Our current
implementation of timing analysis and WCET calculation is based on IPET, which
is first proposed by Li and Malik [71] and is recently the most widely used method
for WCET calculation.

In TPET, finding a WCET bound of a task is expressed by an integer linear
programming (ILP) problem: the total execution time of the task is represented
as a linear expression) ., ; * t;, where the time coefficient t; expresses the
execution time bound of the basic block ¢ and the count variable x; corresponds to
the number of times the block is executed. The WCET is calculated by maximizing
the expression, given a set of arithmetic constraints reflecting the structure of
the task and possible flows. This formula can also be extended to express more
complex flows and more complex timing effects. For example, Li has made IPET
capable of expressing the timing effects of out-of-order pipeline, branch predictor
and instruction cache in his Ph.D. thesis [70].

Figure 7.11(c) shows the ILP problem and the constraints generated by the IPET-
based WCET calculation method for the running example. Figure 7.11(b) shows
the execution time bounds of all the five basic blocks. The count variables are
marked in the CFG in Figure 7.11(a), where x,, expresses the number of times the
block n is executed and z,, , expresses how many times the control is transferred
from the block m to the block n. There are three classes of constraints shown in
Figure 7.11(c): The start and exit constraints state that the task must be started
and exited once. The structural constraints reflect the possible program flow,
based on the fact that a basic block is entered the same number of times as it is
exited. The loop bounds obtained by flow analysis constrain the number of times
the loops are executed. With these constraints, the ILP problem can be solved
using an ILP solver to output a WCET bound.

155

Chapter 7 Flow Analysis on Intermediate Source Code for WCE'T Estimation

t1=26; 2=8;13=4; t4=2;t5=3;

x1 B1

(b) Timing Information
max; 26*x1+8*x2+4*x3+2*x4+3*x5;

/I Start and exit constraints

x1=1;x4 =1;
/I Structural constraints
x1=x1_2;

X2 = x1_2+x3_2+x5 2 =x2_5+x2_3;
x3 =x2_3 =x3_2+x3 _4;

x4 = x3_4;

x5 =x2_5=x5_2;

// Loop bounds

x3 = 9; x2 <= 54;

(a) Low-Level CFG (c) ILP Problem and Constraints

Figure 7.11: WCET Calculation Using IPET

7.6 Experiment

7.6.1 Experiment Methodology

As it is very hard (if not impossible) to find the actual WCET of a program, the
most widely used way to evaluate a WCET estimation method is to compare the
estimated WCET with the observed WCET measured by simulation. Knowing
test; > tact; = tsim, and Test, > Taer, > Toim, for each basic block i, it yields:

Estimated WCET > Actual WCET > Observed WCET

Assuming that the observed WCET is very close to the actual WCET, the com-
parison between the estimated WCET and the observed WCET is able to show
the tightness of WCET estimation. However, if an overestimation is found, it is
unable to know whether this overestimation is caused by flow analysis or timing
analysis.

To show only the effectiveness of flow analysis, we introduce another observed
WCET: observedW CET' = Zie B Tsim, * test;- It is a combination of simulated
control flows and estimated timing information. Given a set benchmarks, the
worst test cases of which are known, we get: Zg,, = Taw,. Therefore, we can
evaluate the quality of our flow analysis approach very accurately, by comparing
estimatedW C E'T and observedW CET".

156

7.6 Experiment

BT - > void B1 (){ WCET +=26; ... }
1800074: ... 18000d8: ...

v

B2
18000dc: ... 18000f8: ...

v

B3
... 1800108: ...

void B2 () WCET +=8; ...}

void B3 (){ WCET +=4; ...}

18000fc:

void B4 (){ WCET +=2; ... }

B4
180010c: ... 1800110: ...

void B5 ()
WCET +=3;
STORE_WORD(R[10]+R[6], R[9]);
STORE_WORD(R[8]+R[6], R[11]);
PC = 0x018000dc;

}

B5
1800114: stwx r9,r10,r6
1800118: stwx r11,r8,r6
180011c: b 18000dc

(a) Low-Level CFG (b) Translated C Functions

Figure 7.12: Simulation Strategy

To get observedW C ET', we make use of binary level simulation (BLS). In BLS, the
compiled binary code of a program is translated back to C code, which has exactly
the same functionality as the original program. One basic block corresponds to a
translated C function, which contains both the behavioral code and the execution
time bound of this basic block.

Figure 7.12 shows the five C functions translated from the five basic blocks of
the running example. The execution time bounds shown in Figure 7.11(b) are
annotated. The name of each function indicates the corresponding basic block.
The C function corresponding to B5 is shown in detail.

The control flows between the basic blocks are constructed using a switch state-
ment in a while loop. Each case of the switch construct corresponds to a basic
block. After executing the C function corresponding to a basic block, the PC value
is updated and the control is transferred to the case branch corresponding to the
next basic block. For the shown example, the code looks as follows:

1: PC = 0x1800074;
2: while((PC>=0x1800074) && (PC<=0x180011c)){

3 switch(PC){

4: case 0x1800074: B1(); break;
5 case 0x18000dc: B2(); break;
6 case 0x18000fc: B3(); break;

157

Chapter 7 Flow Analysis on Intermediate Source Code for WCE'T Estimation

7 case 0x180010c: B4(); break;
8: case 0x1800114: B5(); break;
9 default: sim_end(); break;

7.6.2 Experiment Results

The experiments were carried out mainly to evaluate our flow analysis approach.
A PowerPC processor was chosen as the target processor. 10 programs were ran-
domly selected from the Mélardalen WCET benchmark suite [9]. All the programs
were cross-compiled using a GCC compiler with the optimization level -O2.

All the 10 programs were first converted to the corresponding ISC programs. Both
WCET analysis and simulation were performed on the ISC programs. Before
WCET analysis on ISC, the correctness of the ISC generation was verified by
executing both the source programs and the ISC programs with a set of input
data and comparing the output.

Table 7.1 shows both the estimated WCETs and the observed WCETSs obtained
by the proposed simulation technique. The estimated WCETSs of 9 programs are
exactly the same as their observed WCETs. This means that our flow analysis
method has successfully extracted and transformed all the flow facts in 9 programs.
The only overestimation is found by the estimate of the program janne_complez.
In the following, we discuss about the cause of this overestimation. The source
code of janne_complex is shown as follows:

while(a < 30){
while(b < a){
cnt_in++;
if(b > 5)
b=D>b % 3;
else
b=D>b+ 2;
if(b >= 10 && b <= 12)
a=a+ 10;

else
a=a+1;

}

a=a+ 2;

b=>b - 10;

158

7.6 Experiment

Table 7.1: WCET Estimates (in cycles)

Obs. WCET' | Est WCET | Difference
ns 5230 5230 0%
matmul 129700 129700 0%
janne_complex 186 214 15%
cre 17587 17587 0%
insertsort 631 631 0%
edn 66526 66526 0%
cnt 3648 3648 0%
adpcm 330632 330632 0%
COmpress 4062 4062 0%
cover 2130 2130 0%

In the program, the two variables a and b are supposed to have the same value
interval [1,30]. Although this program has a very small code size, but has a fairly
complex structure. Our flow analysis found the bounds of both the outer loop and
the inner loop, which are 11 and 13, respectively. In the WCET calculation, the
both bounds were used to constrain control flows. This causes the overestimation,
because, in reality, there is probably no input data that leads to the maximum
iterations of both the outer loop and the inner loop. Table 7.2 shows the three
test cases that might lead to the WCET. None of these test cases cause maximum
iterations of both the outer loop and the inner loop. Which one finally results in
the WCET depends on the instruction timing. The simulation results of the three
test cases show that the test case a=1, b=7 leads to the observed WCET.

This example was originally used in [43]. However, in [43] a different result is
shown. Our simulation proved the correctness of our analysis.

Table 7.2: Simulation Results of janne_complex

a | b | max. loop_out | max. loop_in | Obs. WCET'’
1119 11 9 162
1 9 13 186
1 10 11 174

159

Chapter 7 Flow Analysis on Intermediate Source Code for WCE'T Estimation

160

Part 11

Software Performance Estimation in
a System-Level Design Flow

161

Chapter 8

The SysCOLA Framework

A modeling language with formal semantics is able to capture a system’s function-
ality unambiguously, without concerning implementation details. Such a formal
language is well-suited for a design process that employs formal techniques and
supports hardware/software synthesis. On the other hand, SystemC is a widely
used system level design language with hardware-oriented modeling features. It
provides a desirable simulation framework for system architecture design and ex-
ploration. This chapter introduces a design framework, called SysCOLA, that
makes use of the unique advantages of both a new formal modeling language,
COLA, and SystemC, and allows for parallel development of application software
and system platform. Here, the term system platform represents the whole plat-
form lying under the application software layer, including a software platform and
a hardware platform. The software platform contains software layers that provide
services required for realizing the designated functionality. In SysCOLA, function
design and architecture exploration are done in the COLA based modeling envi-
ronment and the SystemC based virtual prototyping environment, respectively.
The concepts of abstract platform and virtual platform abstraction layer facilitate
the orthogonalization of functionality and architecture by means of mapping and
integration in the respective environments. Currently, the framework is targeted
at the automotive domain.

The framework was developed in the scope of the BASE.XT project, a cooperation
project between Technical University of Munich and BMW Forschung und Technik
GmbH, where mainly 7 Ph.D. students were involved. My own contributions to
the framework include the software performance estimation tools and the virtual
prototyping environment. This chapter introduces the framework as a whole. To
get an overview of who has done which part of work, please refer to Section 1.1.4.

The chapter is organized as follows: first, in Section 8.1, we give an overview of
design process. Section 8.2 presents some details of the SysCOLA framework. A
case study of designing an automatic parking system is shown in Section 8.3. Fi-
nally, the software performance estimation techniques employed in the framework
are summarized in Section 8.4.

163

Chapter 8 The SysCOLA Framework

4)

== Application Model Abstract Platform |<@===
\ Allocation & / .
. Scheduling H vv."
- System :
\ : Modeling /\ = j
: Application Tasks Virtual Platform :
s , N (srene
R Integration & NA i iarannanas :
Virtual Exploration
\ Prototyping
Validated Tasks Real Platform
\ Implementation /
System

\ Realization

Figure 8.1: Design Process

8.1 Design Process Overview

The proposed design process is divided into three stages, namely system modeling,
virtual prototyping, and system realization, as depicted in Figure 8.1. There exist
different understandings of the term wvirtual prototyping. In this dissertation, it is
defined as a process of generating an executable model that emulates the whole
system under design. System modeling and virtual prototyping are carried out
in two separate environments of SysCOLA. A newly developed formal language,
the component language (COLA) serves as the formal foundation of the modeling
environment, while the virtual prototyping environment is based on SystemC.
Corresponding to the three design stages, three abstraction levels of a system
platform are defined: the abstract platform at the model level, the virtual platform
in SystemC and finally the implemented real platform.

In the modeling environment, the system’s functionality is captured with an ap-
plication model. The model is refined and then partitioned into clusters, which
are tasks from an operational point of view. The system platform is modeled as
an abstract platform, allowing for automatic mapping of the software clusters and
automatic code generation. However, the abstract platform is specified solely with
a set of resource figures and thus cannot provide an insight into the system ar-
chitecture for design space exploration. Therefore, it is only used to find suitable
topologies of the system platform and fix some parameters. Rather, the detailed

164

8.1 Design Process Overview

exploration is done on a virtual platform, using a simulative approach. Different
from the abstract platform, the virtual platform is an executable SystemC model
that captures the dynamic behavior of the system platform under design and can
execute the generated software tasks. It gives an environment for functional vali-
dation and allows early system integration as well as performance evaluation. For
system realization, the real platform is implemented, according to design decisions
made on the virtual platform, and the validated tasks are then executed on the
finished real platform.

Within SysCOLA, the application software and the system platform are developed
in parallel, in a tightly coupled loop. Software errors found by testing on the virtual
platform or a change of the virtual platform architecture may lead to a change
at the model level. Then, newly generated code is tested again on the virtual
platform. Such iterations reduce the possibility of errors in the final system and
avoid costly redesigns.

8.1.1 Related Work

There exist many high level design frameworks that cover both application mod-
eling and system platform design, such as SystemClick [88], CoFluent Studio [4],
and Metropolis [25]. These frameworks as well as ours are based on the similar
ideas but are different from each other in terms of target application domains and
conceptual approaches. SystemClick is specially targeted at WLAN design. Un-
like COLA, the modeling language Click, used in SystemClick, defines the causal
order of tasks and their resource requirements, but does not deal with specify-
ing their implementation. Tasks are implemented by hand. CoFluent Studio and
other purely SystemC-based design solutions model the system’s functionality us-
ing C/C++ semantics. They rule out formal techniques and hinder automated
synthesis. Simulink-based solutions like [53] have the same limitation. Among
these design frameworks, the most similar one to ours is Metropolis, which sup-
ports both function and architecture modeling in an integrated environment. In
contrast, we prefer separation of function design and architecture exploration in
two different environments to make use of the unique advantages of a formal lan-
guage like COLA and a system level design language like SystemC. The orthogo-
nalization of functionality and architecture is achieved by means of mapping and
integration in the respective environments. Also, some key concepts like abstract
platform, logical communication, and virtual platform abstraction layer (VPAL)
make our methodology different from Metropolis’s.

The AUTOSAR project [14] also focuses on automotive systems design and has
similar objectives as ours. However, it is aimed more at defining a standard
for automotive systems design, while we focus on establishing a concrete design
framework. When needed, SysCOLA can be adapted to generate AUTOSAR
compatible designs.

165

Chapter 8 The SysCOLA Framework

8.2 The SysCOLA Framework

SysCOLA employs techniques of graphical modeling, model-level simulation, for-
mal verification, automatic mapping and scheduling, and hardware/software code
generation etc., supported by a well-integrated tool-chain in the modeling envi-
ronment. Within this environment a system’s functionality is modeled, verified
and then realized in hardware or software. We focus more on the software-based
implementation because of its flexibility and low cost. The main work in the vir-
tual prototyping environment is to generate a virtual prototype that emulates the
system under design. With such a virtual prototype at hand, the functionality of
the generated tasks is validated and the design space of the system platform is
explored. The concept of VPAL is introduced to facilitate the integration of the
application software and the virtual platform and reduce design effort.

4)

Application Tasks

—]||—/

Application Tasks

VPAL

Applicatii! Model ‘\\ Basic Software Components
Mapping e
U— 7~ RTOS | Com. Driv.

VPAL Configuration

[AHECU1||ECU2||ECU3H S]
I I |
| Network |

e

HW Configuration

Virtual Platform

SystemC
Platform
Components

System Modeling Virtual Prototyping

Figure 8.2: The SysCOLA Framework

Figure 8.2 shows the architecture of the SysCOLA framework. A prototype of
the framework was implemented based on the Eclipse platform. As shown in
Figure 8.2, the application behavior and important information captured in the
COLA model are forwarded to the virtual prototyping environment in the form of
application tasks and configuration files. A detailed introduction to both design
environments is given in the following sub-sections.

166

8.2 The SysCOLA Framework

8.2.1 System Modeling
Modeling Language and Semantics

Model-driven development, based on a formally defined language, allows for a
clear and unambiguous description of a system’s functionality, without concerning
implementation details. To set up a modeling environment, one critical issue is to
find a suitable model of computation, which can capture the target system’s char-
acteristics efficiently. We aim at automotive control systems as our target systems.
Data flow, as used e.g. in MATLAB/Simulink, is the state-of-the-art concept for
models in this domain. Unfortunately, the tools like MATLAB/Simulink lack ei-
ther formally defined semantics or integrated tool support throughout the entire
development process. Therefore, a new modeling language, COLA, that follows
the paradigm of synchronous data flow was developed as the formal foundation
of our modeling environment. COLA offers an easily understandable graphical
syntax and a formally defined semantics. Being a synchronous formalism, COLA
follows the hypothesis of perfect synchrony [30]. Basically, this asserts that compu-
tations and communication take no time. Components in a synchronous dataflow
language then operate in parallel, processing input and output signals at discrete
instants of time. This discrete uniform time-base allows for a deterministic de-
scription of concurrency by abstracting from concrete implementation details, such
as physical bus communication, or signal jitter. We describe the modeling concept
and basic units of COLA in Chapter 9. For more details about COLA syntax and
semantics, please refer to our technical report [65].

Application Modeling

In COLA, design starts from modeling functional requirements in a feature model.
The feature model is converted to a functional model throughout several steps
of model transformation and rearrangement. In a functional model, the data
flows are expressed by networks of COLA wunits. A unit can be further composed
hierarchically, or occurs in terms of blocks that define the basic (arithmetic and
logical) operations. The communication between units is realized by channels.
In addition to the hierarchy of networks, COLA provides automata to express
control flows in a functional model. With automata complex networks of units
can be partitioned into disjoint operating modes, the activation of which depends
on the input events.

COLA allows for modeling in a component-based flavor, which facilitates model

reusability. The correctness of modeling and model refinement is checked by
model-level simulation [94] and formal verification.

167

Chapter 8 The SysCOLA Framework

C1 c2 T T2 T3
VAPL API - VAPL API | | VAPL API

3 L Data Buffer
C3 SW Clusters
VPAL
(a) (b)
4)
(ECU1 \(Ecu2
- T2 T3 ECU1 ECU2
- VAPL API H VAPL API - - VAPL API F T1 T2 T3
VPAL VAPL API|_| VAPL API VAPL API
Basic Software Comp. BSC L U H L+
HW Components HW Com VPAL VPAL
\L ? 1) U : =y ! I
| Network Network

(d) (c)

Figure 8.3: Logical Communication and Virtual Platform Refinement

Clustering and Logical Communication

Before mapping model entities to computing nodes of the platform, units of the
functional model are grouped into clusters—the model representation of software
tasks, each annotated with resource requirements on each possible processing el-
ement the task might be mapped to. Among the resource requirements, worst-
case execution time (WCET) is the most important one. A clustering is derived
from an optimized software architecture w.r.t. reusability, maintainability, design
guidelines, documentation and others.

To enable software development independent on the system platform, we intro-
duce the notion of logical communication. According to the concept of logical
communication, two clusters exchange data by means of a logical address (i.e.,
data id) assigned to each channel between them, as shown in Figure 8.3(a). Af-
ter mapped to a networked system, this logical communication is retained. The
generated software tasks communicate with each other still by logical addresses,
without caring whether they are located at the same node or not. The realization
of the logical communication on a concrete platform is introduced later.

Automatic Mapping and Scheduling

An abstract platform is constructed using the hardware modeling capabilities of
COLA. The purpose of the abstract platform is to specify the topology and ca-

168

8.2 The SysCOLA Framework

pabilities of the target platform and thus give a basis for mapping of clusters.
We have developed an automatic mapping algorithm, which takes the application
clusters and the abstract platform as its input and tries to find a valid mapping
with the resource requirements of the tasks and the platform capabilities as the
foundation of its decision. We describe this mapping algorithm in [64].

The execution order of the tasks can be decided either at runtime by a dynamic
scheduling algorithm or pre-runtime by a static scheduling algorithm. To guaran-
tee that the resulting system behaves the same as modeled, we propose to use static
scheduling. An algorithm for static scheduling of COLA tasks is also introduced
in [64].

Code Generation

After finding a proper mapping that fulfills the requirements, C code is gener-
ated [49]. COLA also allows for hardware implementation of the modeled function-
ality for higher performance [99]. The code generation relies on a set of template-
like translation rules. As COLA has a slender syntax, the number of translation
rules is small. The translation rules are well documented in [49] and [99]. As
an example, the task generated from the cluster C2 (Figure 8.3) is shown in Fig-
ure 8.4. It reads the input data from the logical addresses 1 and 2 and sends the
output data to the logical address 3. The behavioral code is not shown here.

1. void T20){

2 Int in_0, in_1; Int out_O;

3. receive_data(&in_0, sizeof(in_0), 1);
4. receive_data(&in_1, sizeof(in_1), 2);
5 ... // behavioral code

6. send_data(&out_0, sizeof(out_0), 3);
7.}

Figure 8.4: An Example of Generated Code

8.2.2 Virtual Prototyping
Virtual Platform Abstraction Layer

The VPAL is aimed at wrapping the whole virtual platform. Using this layer,
the virtual platform can be regarded as a functional entity that provides a set of
services, from the application’s perspective. The software tasks use these services
by calling a fixed VPAL API. In this way, the tasks can be simulated on different
virtual platforms without the need of changing any code. Only adaptation of the
VPAL to the new platform is needed. To achieve a small and simple VPAL API,

169

Chapter 8 The SysCOLA Framework

the VPAL provides four basic functions, as shown in Figure 8.5. The API is easily
extendable. The functions send_data() and receive_data() are defined for sending
and receiving data, respectively. The first argument is a pointer to a variable the
data is read from or written to. The second argument represents the length of the
data. The logical address is passed to the function as the third argument. We
define a task as a stateful task, if the execution of this task depends on its history
(state). This state data is read at the beginning of the task’s execution and saved
in the end, by calling read_state() and save_state(), respectively.

send_data(void *buf, ssize_t len, unsigned short int dataid);
receive_data(void *buf, ssize_t len, unsigned short int dataid);
read_state(void *buf, ssize_t len, unsigned short int taskid);
save_state(void *buf, ssize_t len, unsigned short int taskid);

Figure 8.5: VPAL API

It is one of the duties of the VPAL to retain the logical communication between
software tasks on the virtual platform. It can be realized by a shared data buffer,
where the tasks exchange data using logical addresses, as shown in Figure 8.3(b).
To go one step further, the logical communication between tasks on different
nodes is mapped to the physical communication that is emulated by a network
simulation model, as shown in Figure 8.3(c). To set up exactly the same logical
communication as the model level, configuration information generated from the
model is used. Using this configuration information, the VPAL is able to allocate
buffer space during the startup phase, initialize sensor and actuator hardware for
operation, and distinguish between local and remote communications. A segment
of configuration information is shown in Figure 8.6. It is used to configure the
VPAL for the task shown in Figure 8.4.

<node id="1">

<task id="2" name="T2">
<data id="1" channel="c_in_0" name="in_0" type="INT" len="4"/>
<data id="2" channel="c_in_1" name="in_1" type="INT" len="4"/>
<data id="3" channel="c_out" name="out_0" type="INT" len="4"/>
</task>

</node>
Figure 8.6: VPAL Configuration Information
System Platform Design
The system platform design can be regarded as the process of building and refin-

ing a virtual platform. It starts with defining the critical platform services in the
VPAL, including communication mechanisms, device interaction, and scheduling.

170

8.2 The SysCOLA Framework

These services are then refined and realized in the corresponding basic software
components (BSCs), as shown in Figure 8.3(d). For example, an RTOS is cho-
sen and modeled to take charge of scheduling and device drivers are developed
to interact with devices. The VPAL lies between the application tasks and the
basic software components and controls the interaction between these software
components. Meanwhile, the hardware platform is designed to realize these ser-
vices in hardware components including processing nodes, sensors and actuators,
interconnected by a network. During the design, both functional and performance
simulations are needed. Functional simulation is used to verify each change or
refinement of the virtual platform, while performance simulation provides perfor-
mance statistics to explore the system architecture.

To which level a platform component should be refined depends on how many
details we need to explore. If a new component is to be developed, its model
should be refined down to implementation. In contrast, if we decide to use an
existing one, it is unnecessary to simulate all the details as accurate as the real
one. To achieve low simulation complexity and high simulation speed, we just
need an abstract model that captures the most important features of the existing
component and is accurate enough to make important design decisions.

Functional Simulation

In SysCOLA, functional simulation can be performed early during modeling, by
means of model-level simulation [94]. This model-level simulation tests a func-
tional model before mapping and code generation and thus cannot take the un-
derlying platform into account. Different from the model-level simulation, the
simulation on a virtual platform allows for testing of both generated code and the
services provided by the target platform.

Thanks to the VPAL, the details of the virtual platform are transparent from the
application software’s point of view, and thus the software tasks can run on the
virtual platform at an arbitrary abstraction level. Validation of application soft-
ware is made possible early in the design cycle, even when there is only the VPAL
available. The refinement of the virtual platform can be verified by comparing
functional simulation results from the refined virtual platform and an earlier one.
For example, the network design can be verified by comparing simulation results
from the setup shown in Figure 8.3(b) and the one shown in Figure 8.3(c).

Performance Simulation

During embedded systems design, performance is one of the most important factors
to be considered. If performance requirements cannot be met, this could lead to
system failure. It is necessary to handle performance issues from early design
phases until system implementation.

171

Chapter 8 The SysCOLA Framework

We estimate the WCET of each task, which serves as a basis for automatic map-
ping and scheduling. However, these static analyses have limited ability to capture
real workload scenarios and often result in an over-designed system. Therefore,
we use performance simulation to validate whether the performance requirements
are really satisfied and show how pessimistic the static analyses are.

At system level, we use iSciSim to generate software performance simulation mod-
els for fast architectural exploration. The iSciSim tool has been integrated into
the SysCOLA framework, and thus, C code generated from COLA models is auto-
matically forwarded to the iSciSim tool for ISC generation and timing annotation.
This means that we just need one button click to generate timed simulation models
from COLA. The temporal behavior of the system platform can also be abstracted
with delay values, to be annotated into the functional simulation model. For ex-
ample, a network model is annotated with delays, determined with respect to the
bus protocol and the data length. Similarly, as already introduced in Chapter 6,
each RTOS overhead due to, e.g. scheduling or context switches, is also associ-
ated with a delay. Such delay values can be obtained by means of measurement.
The simulation models of these system components are linked with the simulation
models of software tasks to generate a simulator of the whole system, which we
call a virtual prototype. Depending on the simulation results, system architecture
will then be adjusted and refined iteratively. With the stepwise refinement of the
virtual platform, the granularity of the timing values can also be refined, down to
cycle-accurate if necessary.

8.3 Case Study: An Automatic Parking System

The presented approach has been evaluated using a case study. As the framework
is targeted at the automotive domain, we chose an upcoming feature of premium
cars, namely an automatic parking system, to imitate the concerns and require-
ments of automotive design. We chose a model car with a scale of 1:10 as the basis
for system realization.

8.3.1 Functionality and Design Space

The intended functionality includes (i) manual steering via remote control, (ii) au-
tomatic discovery and parking into a parking space of sufficient length, and (iii) abil-
ity to run alongside a, not necessarily straight, wall while going around all con-
vexities.

172

8.3 Case Study: An Automatic Parking System

Apniyg oase)) :2°8 2aIn31q

BuidAjojoud jenyip (9)

()
_ NIoMIaN _
_ _
[o1] [N] Lo] [N
wan] [ndo] mH waw] [ndo] mH
‘A _ ‘wo) _ SO A9 _ wo) _ SO ‘Ao _ ‘wop) _ SO
IvdA IVdA IvdA
o] - el |5 (]| B (=00
\. J
Buiinpayos pue Buiddep (q)
(]])
mlc%%ﬂ_n_z 2ioleos €no3
s P
W,.. .. TOTTT R TPPPPPPP L m
2 |Nmﬁ_ﬁ> Nu,%En_z Leleds | | g | 203
5 2
D L erscsenssensssnssensssnsssnsasse s s s s s s B |-
@[g | e] womor |[129] |7 {100
L | Ao OpS L

Jed |apouw e uj uonejuawajdwy (p)

V109 ui Buijapoly (e)

uonejol

|0J}U0D
“poads

-

G
oy e

apow 9|91yaAn

<« wo 0} eyul

wo 0} esyul

A

J9|eos

173

Chapter 8 The SysCOLA Framework

In principle, the design space for the designated functionality could be very large.
The target platform could be an MPSoC or a networked embedded system. Im-
plementations could vary from application-specific integrated circuits (ASICs) to
general purpose micro-controllers. Also, different micro-controllers, communica-
tion fabrics and BSCs are free to choose. However, in our case study, the design
space was constrained by the availability of resources and our research interests.
We chose Gumstix micro computers [8] as processing nodes. An Ethernet network
with RTnet protocol [11] was chosen as the communication fabric to study the
real-time capability of the Ethernet. RTnet is based on Xenomai [17], which im-
plements an RTOS emulation framework on Linux. These constraints reduce the
design space but do not hinder the demonstration of the key concepts. The same
methodology is surely applicable for exploring a larger design space.

8.3.2 System Modeling

The discussed functionality was transferred into a COLA model. Eleven dis-
tributable clusters are defined, as shown in Figure 8.7(a). The system is separated
into three operating modes, namely normal, parking, and sdc_active, each cor-
responding to one defined function. In the normal mode, the user can modify
speed and direction using the remote control. The parking mode makes the
model car run in parallel to a wall and search for a gap of sufficient size to park.
In the sdc_active mode, the car just runs parallel to a given wall and adjusts
its distance to all convexities found. The mode cluster vehicle_mode controls
the transitions between the three operating modes, which are triggered using the
remote control.

After specification of the software model and an abstract platform, the clusters
were distributed onto available computing nodes and a scheduling plan was gen-
erated automatically. Figure 8.7(b) shows an exemplified result of mapping and
scheduling on a network of three computing nodes. As shown, the scheduling
cycle starts from reading input data from sensors and ends with writing output
data to actuators. The tasks are scheduled in between, with the starting time
explicitly specified. The tasks that can be executed in parallel are mapped to
different nodes. Whereas, normal, parking, and sdc_active must be delayed
until the mode decision is made by vehicle_mode. As they execute exclusively,
they are mapped to the same node. In the same way, mapping and scheduling
were repeated for two-node and four-node systems. At last, software tasks and
configuration files were generated from the model.

8.3.3 Virtual Prototyping

As the design space was narrowed down by the constraints discussed before, the
work in this phase was significantly eased, including: (i) refining VPAL services

174

8.3 Case Study: An Automatic Parking System

distance right distance front right steering speed
60 —‘ distance right distance front right 60 distance right distance front right
50 - 50 -
40 - 40 -
30 -+ 30 -
20 -) 20 -
speed
10 - speed 10 + p
0 AT S A B 1 U— O Mo — T = O W T T N
10 100/ 200 300 400 500 600 700 g&o 900 1000 .10 1100 200 BOO 400|500 600 700 800 900 1000
-2 i -20 i
steering steering
-30 -30
-40 -40
(a) Testing the parking mode (b) Testing the sdc_active mode
207 response time (mi) 901 response time (ms)
357 801 ——
301 707
251 60
20 >0
407
15 30
10 H 20
51 101
- HD 0 m B om W
read scaler infra_ vehicle_parking speed_ write read infra_ rotation scaler infra_ write
sensors to_cm mode controlactuators sensors to_cm to_cm actuators
(c) Tasks in ECU1 (d) Tasks in ECU2

Figure 8.8: Simulation Results

down to implementation, (ii) writing device drivers, (iii) deciding the number of
computing nodes, (iv) system integration, (v) functional validation and perfor-
mance evaluation.

By integrating the generated code into a virtual platform, an executable virtual
prototype was generated for functional validation. By the time of functional vali-
dation, the virtual platform was at a high level of abstraction, containing the VPAL
and the functional models of RTOS, devices and network. Figure 8.8(a) and (b)
show the exemplified simulation results. The two simulations, each running with
1000 test cases, took only 1.92 and 1.98 seconds, respectively, with useful logging
information generated for error detection. The first simulation tested the system
in the parking mode, while the second one tested the system in the sdc_active
mode. The distances from the wall to the right side and the front-right side of
the car were calculated using randomly generated data representing the sensor
data. Both the parking and steering algorithms depend on the two distances. The
distances from the car to the front, back and left obstacles were set constants in
the value range of safe distances. In both figures, we can see the changes of the
steering value with respect to the distance values. In Figure 8.8(a), we can also
see the parking behavior after around 700 simulation steps.

The parking system must react to the environment fast enough, so we defined
that the scheduling cycle could not extend 200 ms. To decide the number of

175

Chapter 8 The SysCOLA Framework

ECUs needed to satisfy this performance requirement, the virtual platform was
refined for fine-grained timing annotation and performance simulation. To connect
all the sensors, at least two ECUs were needed. Figure 8.8(c) and (d) show the
respective maximal response times of all the tasks mapped to two ECUs, obtained
by simulation with 10000 test cases. The simulation took less than one minute.
According to the simulation results, the scheduling cycle was adjusted, which
resulted in a cycle length of 238 ms. In the same way, the systems with 3 ECUs
and 4 ECUs were evaluated and resulted in cycle lengths of 178.5 ms and 145 ms,
respectively. The increase of the number of ECUs cannot improve the performance
anymore, because there are five tasks that must run sequentially due to data
dependencies. For higher performance and lower cost, these five tasks should be
allocated to an ECU with higher computing power, while the other tasks can run
on cheaper ECUs. Another solution is to reduce the overhead of the basic software
components. According to the exploration result, we decided to implement the
three-node system. After all the high-level design decisions were made, the VPAL
was refined and implemented as a middleware. All the device drivers were also
implemented.

8.3.4 System Realization

For system realization, three Gumstix micro-computers were embedded into the
model car shown in Figure 8.7(d). The infrared and supersonic sensors were
used for distance sensing and connected via serial and 12C buses, respectively. A
cellular phone was connected via bluetooth and served as the user interface for
remote control. Control of steering, motor, and light system was realized by an
interface board, equipped with a serial interface. Executing the application code,
the middleware and the basic software components on the real platform confirmed
the simulation results obtained in the virtual prototyping phase.

8.4 Summary of the Employed Software
Performance Estimation Techniques

Important performance issues along with the process are shown in the right-hand
side of Figure 8.9. Among them, the software performance estimation techniques
are discussed in the following.

8.4.1 Model-Level Performance Estimation

The performance estimation, early at the model level, is aimed at determining
the approximate temporal behavior of the system by associating each COLA unit

176

8.4 Summary of the Employed Software Performance Estimation Techniques

SysCOLA

. Application Abstract - - l\/!odeI-ITeveI Performance
Model Platform . Slmu_latlon for Softwa_re
Architecture Exploration
\ Allocation & / : o
— Scheduling : - WCET Estimation for
ystem * Mapping and Scheduling
Modeling : j
// \\ :
: Application i : - Software Performance
Tasks Virtual Platform : Simulation
e\ sgmins o E s CoSmuaion
Virtual Exp|0rati0n for ArChI.teCtUI’al
. Exploration
Prototyping j

Figure 8.9: The Performance Estimation Techniques Applied in the Design Framework

with a timing value, which is obtained by means of statistical measurements. It
can help in optimizing software architecture and making initial decisions regarding
hardware/software partitioning. It is especially useful when the application model
is still under development and C code cannot be generated.

Because COLA models are inherently abstract and cannot be executed immedi-
ately. SystemC is chosen to serve as a back-end simulation framework, because of
its similar syntactic structures to COLA’s. We established an automated transla-
tion procedure from COLA models to SystemC. Please note the difference between
SystemC based model-level simulation and SystemC based virtual prototyping.
The latter is used to simulate the whole system, executing application code gener-
ated from COLA, while model-level simulation is performed before code generation
for some initial decisions in an early design phase.

8.4.2 WCET Estimation

After getting an initial partitioning of the software architecture, software tasks
are generated. Since SysCOLA is targeted at the automotive domain, where most
applications are real-time applications, knowing the WCET of each task is manda-
tory for task allocation and schedulability analysis.

We apply the static analysis technique introduced in Chapter 7 for WCET es-
timation. As introduced before, static WCET analysis consists of three phases:
flow analysis, timing analysis, and WCET calculation. So far, we focused more on
flow analysis. For timing analysis, we established only a very simple model that

177

Chapter 8 The SysCOLA Framework

does not take into account the complex timing effects, such as the timing effects
of out-of-order pipeline, cache, and branch predictor. It is our future work to im-
prove timing analysis in our WCET tool. WCETSs estimated by the current tool
cannot guarantee the safety. The mapping and scheduling based on such WCETs
is probably inaccurate. In this situation, it is especially important to validate the
design using simulative methods.

8.4.3 Software Performance Simulation

After software tasks are mapped to the available resources and a suitable schedul-
ing is found, accurate HW /SW co-simulation is performed for design space explo-
ration and design refinement. A virtual platform in SystemC captures the dynamic
behavior of the system platform under design and can execute the generated soft-
ware tasks. For fast software performance simulation, we integrate iSciSim in the
framework to generate software simulation models directly from COLA models.

Both WCET estimation and software performance simulation have already been
described. Model-level simulation of COLA is presented in the next chapter.

178

Chapter 9

Model-Level Simulation of COLA

As introduced in the last chapter, COLA is the formal foundation of the SysCOLA
design framework. It offers a graphical representation to specify the functional be-
havior of the modeled application. To take the resulting models to the designated
hardware platform, automated code generation is supported by our established
toolchain.

Still, not only execution on the target hardware is sought after, but also model-level
simulation plays an important role in the design process. Model-level simulation
is aimed at support for early error detection and performance analysis. Following
the nomenclature described in [82], this allows for behavioral simulation based on
the logical architecture, without knowing the technical architecture a priori. This
is important as the latter may not yet be available in early process stages. Fur-
thermore, once the target platform of the application is known or shall be chosen
among several alternatives, performance analysis based on model-level simulation
is also possible. This is realized either by annotating timing information to corre-
sponding software models or by combining software models and hardware models.

However, COLA models are inherently abstract and cannot be executed immedi-
ately. This calls for a translation process to translate COLA models to executable
models supported by a suitable simulation framework. SystemC is the one that
appears to be the most suitable for our purpose. It closely matches the common
syntactic elements of many component-based modeling languages, including com-
ponents, ports and hierarchical composition. It has been made use of, e.g., in the
analysis of AUTOSAR models in [61]. As an SLDL (system level design language)
SystemC has become a standard in system level design [55].

We established an automated translation procedure from COLA models to Sys-
temC to enable model-level behavioral simulation. The translation requires not
only a close match of the syntactic structure of SystemC- and COLA models, but
also the preservation of the COLA’s formal semantics in SystemC models. This
implies a methodology for modeling the zero execution and communication time
assumption of such a synchronous language.

This chapter is organized as follows: Section 9.1 gives a brief introduction to
COLA and SystemC. Following this, Section 9.2 contains a detailed description

179

Chapter 9 Model-Level Simulation of COLA

of the translation procedure from COLA to SystemC and a brief introduction to
the simulation using SystemC. In Section 9.3 a case study from the automotive
domain is considered to validate the proposed approach.

9.1 Overview of COLA and SystemC

The key concept of COLA is that of units. They can be composed hierarchically,
or occur in terms of blocks that define the basic (arithmetic and logical) operations
of a system.

Each unit has a set of typed ports describing the interface, which form the signature
of the unit. Ports are categorized into input and output ports. Units can be used
to build more complex components by building a network of units and defining
an interface to such a network. Channels are used to connect the sub-units in a
network.

In addition to the hierarchy of networks, COLA provides a decomposition into
automata (i.e., finite state machines, similar to Statecharts [31]). If a unit is de-
composed into an automaton, each state of the automaton is associated with a
corresponding sub-unit, which determines the behavior in that particular state.
This definition of an automaton is therefore well-suited to partition complex net-
works of units into disjoint operating modes (cf. [27]), whose respective activation
depends on the input signals of the automaton.

A further introduction to individual COLA elements is given in the next section,
based on their graphical representations. For more information about COLA’s
syntax and semantics refer to [65].

SystemC supports system modeling at different levels of abstraction, from sys-
tem level to register-transfer level. Essentially, it is a C++ class library featuring
methods for building and composition of SystemC elements. In order to model
concurrent system behavior, SystemC extends C++ with concepts used by hard-
ware modeling languages, like VHDL and Verilog, making use of the notion of
delta-cycles. A delta-cycle lasts for an infinitesimal amount of time, such that
no simulation time advances when processing delta-cycles (zero-delay semantics).
Thus the processes triggered by events that occur in the same sequence of delta-
cycles are said to run simultaneously. The simulation time can be advanced either
by triggering processes with events ordered by time or by suspending processes
for an amount of time.

The basic building blocks within a SystemC design are modules. Each module
contains ports, through which the module communicates with its environment,
and at least one process to describe the behavior of the module. A SystemC
module can consist hierarchically of other modules connected by channels.

180

9.2 COLA to SystemC' Translation

There are two kinds of processes in SystemC, namely method processes and thread
processes. Once triggered, a method process cannot be suspended, whereas a
thread process may be suspended by some special operations, e.g., accessing a full
(empty) FIFO with blocking writes (reads). More often, wait() statements are
used to suspend thread processes, in order to advance simulation time by waiting
for a defined amount of time or for some events to happen. As wait() statements
in concurrently running modules advance simulation time in parallel, they are
well-suited to describe a system’s temporal behavior.

9.2 COLA to SystemC Translation

There are obvious similarities between COLA units and SystemC modules in terms
of their structure. Both contain input ports, output ports and an implementation
of the intended functionality. A higher level element may be composed hierarchi-
cally of several such elements which are connected by channels. The simulation
semantics of SystemC is also able to retain COLA semantics. In this section, we
describe how COLA semantics is followed by SystemC and present in detail the
mapping between COLA and SystemC elements. Following this, a brief introduc-
tion to simulation using SystemC is given.

9.2.1 Synchronous Dataflow in SystemC

Being a synchronous formalism, COLA asserts that computation and communica-
tion occur instantly in a system, i.e., take no time. The COLA components then
operate in parallel at discrete instants of time, only constrained by the causality
induced by data dependencies. This behavior of COLA designs can be efficiently
modeled in SystemC by means of its delta-cycles (i.e., zero-delay) mechanism
(cf. Section 9.1). Nevertheless, effort must be spent on mapping COLA chan-
nels onto SystemC elements. Since SystemC is a modeling language in a discrete
event-driven paradigm, the primitive channels in SystemC have specific events as-
sociated with updating of the channels. In COLA, however, communication has
no notion of events. Channels propagate data from source ports to destination
ports without delay. Therefore, data going through paths of possibly different
lengths arrive at the destination ports of a unit at the same time.

As the first attempt, we mapped COLA channels onto SystemC signal channels,
each having an event associated with a change in its value. The process sensitive
to this event is triggered whenever one of the channels bound to input ports of
the module is updated. This results in the module being triggered more than
once in each computation, if the channels are not updated in the same delta-cycle.
Therefore, the COLA semantics cannot be followed exactly. One feasible solution
to this problem is to model COLA channels by one-stage FIFO channels. We call

181

Chapter 9 Model-Level Simulation of COLA

channel: I —
|
I
I
delay: I S| | M—
|
I
_int:int _lintiint@A _
unit: Unit [outintt SC ModuleE] out:int
in2:int Lin2:int[

Figure 9.1: SystemC Modules Corresponding to the COLA Channel, Delay and Unit

the one-stage FIFO channels FIFOs for short. A FIFO has an event associated
with the change from being empty to having data written to it, and another with
the change from being full to having data read from it. In order to fulfill the
causality requirement of COLA models, the FIFOs are accessed by blocking reads
and writes. A blocking read will cause the calling process to suspend, until data is
available, if a FIFO is empty. Likewise, a process will also suspend, if it accesses a
full FIFO with a blocking write. In this way, the SystemC process that realizes the
functionality of a COLA unit can perform computation only after all the FIFOs
bound to its input ports are full.

0.2.2 Translation Rules

In this sub-section, we take a closer look at individual COLA elements. We give
a description of each element and illustrate its mapping to SystemC.

Channels and Delays

Graphically, a COLA channel is simply represented by a line (cf. Figure 9.1)
connecting the ports in question. As discussed previously, we map a COLA channel
onto a SystemC FIFO, which is represented by a tube with the two ends in dark
gray depicting interfaces of the FIFO.

In the current version of COLA the delay is the only element whose behavior is
dependent on time. It is used to delay the dataflow for one tick. Intuitively this
is a representation of memory, which is initialized with a given default value. At
the first evaluation of the delay, the default value is written to the output port
and the value present at the input port is used as the new internal state. In all
further steps, the internal state is written to the output port and again the input
port value is stored as the new internal state. A COLA delay is represented by

182

9.2 COLA to SystemC' Translation

two vertical lines drawn in parallel. It has exactly one input and one output port,
represented by the triangles on the vertical lines. Modeled by a SystemC FIFO
that is initialized with a default value before simulation, the semantics of the delay
can be preserved. We call such a initially filled FIFO a DFIFO. The body of its
graphical notation is colored in light gray, as shown in Figure 9.1.

The following simple example shows how a DFIFO models a COLA delay (Fig-
ure 9.2). The SystemC FIFOs’ names are constructed using a combination of the
prefix fifo_ and the corresponding channel name. Because the data in the DFIFO
is already available at the beginning of simulation, the module is triggered once
fifo_cl is filled. At the first computation, the default data in the DFIFO is read
by the process of the module. The resulting data is then output to both fifo_c2
and the DFIFO. The data stored in the DFIFO is then delayed to be used in the
next step of computation.

COLA @ SystemC
1
34— =

o Unit c2

fifo_c1 SC_ fifo_c2

|
|
|
I
: Module

Figure 9.2: Example: Modeling a COLA Delay with a DFIFO

Units and Blocks

Units are the abstract computing elements within COLA. Each unit defines a
relation on a set of input and output values. A unit is denoted by a box labeled
with the identifier of the unit (cf. Figure 9.1). Its ports are represented by triangles
on the border. When a COLA unit is mapped onto a SystemC module, its input
and output ports correspond exactly to the respective input and output ports of
the SystemC module and its functionality is described by a thread process. The
generated SystemC code that represents the COLA unit depicted in Figure 9.1 is
given in Figure 9.3.

Blocks are units that cannot be further decomposed. They define basic com-
putational behaviors. Examples of blocks include arithmetic operations, logical
operations, and constants. The graphical notation of a block is distinguished
from those of the other units by drawing a black triangle in its upper right cor-
ner (cf. Figure 9.4). For each block we do not generate a SystemC module but
generate one code line in the process of the module that includes the block. If
several blocks are interconnected, the generated code is inlined. Figure 9.4 shows

183

Chapter 9 Model-Level Simulation of COLA

SC_MODULE (module_name) {

// ports

sc_fifo_in<int> inl;

sc_fifo_in<int> in2;

sc_fifo_out<int> out;

... // channels

// the thread process that realizes the functionality

void func_imp(){

while(1){

// blocking read
int temp_inl = inl.read();
int temp_in2 = in2.read();

// blocking write
out.write(...);

}
SC_CTOR (module_name) {
... // body of constructor:
SC_THREAD (func_imp); // declare the process

Figure 9.3: SystemC Module Definition for a COLA Unit

an example of a composite unit that is composed of a set of blocks. The generated
code describing the blocks’™ behavior is:

fifo_cb = fifo_cl1x(-1)/20;

As inlining is applied here, the FIFOs that interconnect the blocks are not speci-
fied.

Networks and Automata

A composite COLA unit can be either a network or an automaton. A network
contains sub-units connected by channels. It is used to describe data flow. Figure
9.5 illustrates the mapping of a COLA network, which is composed of three sub-
units and a delay, to a SystemC module.

Control flows are modeled using automata in COLA designs. The states of au-
tomata are also referred to as operating modes. Each state of an automaton rep-
resents an operating mode and is associated with a behavior. For each state a
sub-unit is given to realize the state-associated behavior and computes the output

184

9.2 COLA to SystemC' Translation

Figure 9.4: A Network Composed of Blocks

COLA @ SystemC
<99 '

|

|

> |
in2[> Unit1 ko » !
. > |
in3[> > out2 |
|

|

1

1

|

|

]

in1[o 5
n2[> Units
in3[> ou

Figure 9.5: Mapping from a COLA Network onto a SystemC Hierarchical Module

of the automaton. There is only one active sub-unit in an automaton, namely the
sub-unit which corresponds to the enabled state of the automaton. The passive
sub-units freeze, i.e., retain their current state. The transitions between the states
are guarded by predicates.

The mapping of a COLA automaton to a SystemC module follows the semantics
described above. In the SystemC module, computation and communication are
divided into several paths. Each path is associated with a state of the automaton
to be modeled. Based on predicates, the flow of data is redirected to the sub-
module implementing the enabled state. Figure 9.6 illustrates an example of a
COLA automaton with two states, two input ports and one output port. The
activation of the path depends on whether the input p is equal to I or not. All
the input data are then forwarded to the active sub-module. The switch structures
(in gray) drawn in the SystemC module are only for clarity. The real code of the
process realizing the behavior of the given automaton is presented in Figure 9.7.

9.2.3 Simulation using SystemC
After an automated mapping as described above has been established, simulating

realistic scenarios still requires a proper definition of external stimuli (environ-
mental /user events). SystemC offers the flexibility to either specify when and

185

Chapter 9 Model-Level Simulation of COLA

1

fifo_c11

p::
in &

[>out

p[> PE

pl=1

Figure 9.6: Mapping from a COLA Automaton to a SystemC Hierarchical Module

void automaton_imp(){
int atm_state = 1;
while(1){
int temp_in = in.read();
int temp_p = p.read();
switch(atm_state)q{
case 1:
if ((temp_p == 1)){
atm_state = 2;
fifo_c21 = temp_in;
fifo_c22 = temp_p;

out.write(fifo_c23.read());

break;
}
fifo_cll = temp_in;
fifo_cl2 = temp_p;

out.write(fifo_c13.read());

break;
case 2:

}

Figure 9.7: Part of Generated Code for the Given Automaton

186

9.2 COLA to SystemC' Translation

which data is measured or simulate the interactions between the system and its
environment. In this way the functionality of the system can be validated without
knowing the target platform.

For the time being, the hardware platform related issues have not been taken
into account. The whole system is modeled as concurrently running modules
connected by FIFOs which implement the point-to-point communication scheme.
Both computation and communication are modeled at the untimed level.

Once the target platform is known, approximate performance simulation can be
performed at a high abstraction level. It is achieved by annotating timing informa-
tion to software components and replacing the untimed FIFOs with timed FIFOs
to take communication time into account. Such a performance simulation can
help in making early decisions regarding task allocation and hardware/software
partitioning. COLA units are annotated with their respective timing information
and stored in a repository, to facilitate reuse. We propose two ways to get the
approximate timing information. The first way is to run C code that corresponds
to individual components on processor simulators. The execution times are mea-
sured for best, worst and/or average cases with the most widely used processors
as targets. The second way is to annotate timing-related properties which are
defined general enough for all the processors. For example, the number of COLA
blocks and sub-units included in a COLA network can be put in relation to the
execution time of the network, since basic operations and function calls will be
generated for COLA blocks and sub-units, respectively, during C code generation.
Later, each timing-related property will be associated with a timing value, de-
pending on the implementation of the code generator, the compiler and the target
processor. Because the tasks mapped onto different processing elements may run
concurrently while all the sub-modules of a task must run sequentially, we define
a global variable to aggregate the execution times of the modules contained in the
same task and make use of wait() statements to represent timing of concurrent
tasks.

task1 task3
wait(dela
wait(delay 7)E (aeler
sk g E delay3 += 50 H—{Z] delay3 += 100
wait(delay2) delay3 += 50

Figure 9.8: Timing Annotation

Consider the example shown in Figure 9.8, where an application with three tasks
is illustrated. Suppose that a task is suspended until all its inputs have arrived.

187

Chapter 9 Model-Level Simulation of COLA

The module that corresponds to task3 has two sub-modules, annotated with the
respective execution times. Because the two sub-modules run one after the other,
their execution times are aggregated using a global variable delay3. At the task
level, three tasks are annotated with wait() statements. As taskl and task2 run
concurrently, the advance in simulation time is the maximum of delay! and delay2.
Once the two tasks finish, task3 is triggered. Its delay is the sum of the top-level
module’s and its sub-modules’ computation times, with the communication time
between the sub-modules ignored. Therefore, in the example, task3 delays for 200
time units.

9.3 Case Study

We now show how the proposed simulation approach can be applied, using a case
study taken from the automotive domain. The modeled adaptive cruise control
(ACC) enables cars to keep their speed at a constant value set by the driver, while
maintaining a minimum distance to the car running ahead. This example is an
imitation of the concerns and requirements of automotive design, and does not
represent a real set of control algorithms for an actual product or prototype.

When implementing such a control system, usually an informal specification in
natural language is given. The intended functionality of the ACC is described
as follows. When the ACC is turned on, the speed and distance regulation is
activated. This includes the measurement and comparison of the pace set by the
user and the actual measured car velocity. If the desired user speed differs from
the actual speed, the value for the motor control is corrected accordingly. This
regulation is used as long as no object is detected within a safety distance ahead
of the car. We chose 35 units for our example. If the distance drops below this
threshold, the actual speed is continuously decreased by 5 percent. The minimum
distance allowed is set to 15 units. If the actual distance is below 15 units, the car
must perform an emergency stop.

According to this specification, the system was modeled using COLA. The design
was then simulated at model level for both functional validation and performance
evaluation.

9.3.1 The COLA Model of the Adaptive Cruise Control System

The top-level network, i.e., the COLA system representing the ACC model, is
shown in Figure 9.9. The main components are the user interface (net_ui), which
realizes the control actions, the display (DEV_A_DISPLAY), the computation of the
actual speed (net_rotation), the distance sensing (net_radar), the connection to the
engine (DEV_A_MOTOR), and the main control code (net_acc_on_off).

188

9.3 Case Study

net_ACC

|
EV_A_DISPLAY

net_acc_on_off

net_rotation

) |
DEV_A MOTOR

net_radar

net_radar
DEV_S ULTRA
*
125 _ - R
100 -~ S
- N
~
- ~
—- = AN «
in<=2 atm_ultra
in:intt> @ @_D h
in>2

Figure 9.9: ACC Top-Level View and Decomposition of the Component net_radar

As an example, we present the decomposition of net_radar in Figure 9.9. The
network is implemented by constants and basic arithmetic operations on data
provided by the ultrasonic sensor (DEV_S_ULTRA). The interface of the network
consists of a single output port, whereas all sensor specific data manipulations
are encapsulated within this network. The characteristics of the employed hard-
ware require further computation, performed within an automaton (atm_ultra).
Depending on whether the value resulting from the post-processing of the data
provided by the ultrasonic sensor is greater than 2 or not, either the constant
value 15 must be added, or the constant value 0 is returned. This function is
implemented using an automaton with two states. For brevity, in Figure 9.9 the
sub-units are drawn inside the respective states. In a similar manner, the other
components of the ACC can be decomposed.

9.3.2 Simulation using SystemC

The complete COLA model was mapped onto SystemC for simulation (cf. Fig-
ure 9.10). The test data were defined before simulation, except for the test data
of the rotation sensor. As shown in the figure, we add a module rotation_gen to
simulate feedback between motor and rotation in order to generate more realistic

189

Chapter 9 Model-Level Simulation of COLA

test data. rotation_gen delays the motor’s speed and converts it into appropriate
rotation data, which will be forwarded to the rotation sensor.

$ rotation_gen $

I ———————————————————————————— -
| ifo s us I
I
| ui fifo_disp . I
I fifomod display | |
> rotation [P— L 1
I radar ifo_dist [

Figure 9.10: The ACC Modeled Using SystemC

70 7
E 601 distance e
."’....l"
850 My
% IIIII - Ty _,....r"""r !
T 40 - s_user i S o
o # ""__L IIIII ~ ’...l'
® a2
E 30
©
Q 20 1
S%J_ s_act
10 s_mot
0 T T T T T
0 50 100 150 200 250 300 350 400 450

simulation steps

Figure 9.11: Simulation of the Modeled ACC

In Figure 9.11 the results of simulating the SystemC model are displayed. The
simulation is run for 500 steps in this example. The ACC is enabled permanently
during the simulation. The diagram features the intermediate data as well as
the output value. The motor speed (s_mot) is the only output value shown in
the diagram. Intermediate data include the desired speed (s_user), the actual
speed (s_act) and the distance (distance) that are generated by ui, rotation and
radar, respectively. s_user is increased or decreased by 1 in each simulation step,

190

9.3 Case Study

controlled by two triggers in ui. In the diagram, s_user is increased from 0 to 30
during the first 30 steps. distance is defined arbitrarily in the example. It decreases
linearly during the first 300 steps and increases during the last 200 steps. s_act is
calculated interactively using the data fed back from the motor. The delay in the
increase of s_mot, visible in the diagram, results from the soft start functionality
of the ACC. s_mot is reduced in some steps when distance is lower than 35 and
increases smoothly again after distance exceeds 35 units. As can be seen, the
functional behavior of the designed system can be monitored well using SystemC.

Further, the performance simulation with a PowerPC processor as target was per-
formed. We assumed that the whole application is mapped to this single processor.

The observed worst case execution times of the top-level components are given in
Table 9.1.

Table 9.1: Timing Simulation Results

application components ET (cycles)
net_ui 235
net_rotation 5

net_radar 141
net_acc_on_off(acc off) 96
net_acc_on_off(acc on, distance < 35) 698
net_acc_on_off(acc on, 15 < distance < 35) 568
net_acc_on_off(acc on, distance < 15) 342

191

Chapter 9 Model-Level Simulation of COLA

192

Part 1V

Summary

193

Chapter 10

Conclusions and Future Work

This thesis is focused on software performance estimation methods for system-
level design (SLD) of embedded systems. We studied both software performance
simulation and WCET estimation for simulative and analytical design space explo-
ration methods, respectively. Software performance simulation is the main focus.
To say more precisely, about 60% of effort was dedicated to software performance
simulation. We proposed two software performance simulation approaches, called
SciSim and iSciSim. They generate high-level software simulation models by an-
notating source code and intermediate source code (ISC) with timing information.
For multiprocessor simulation, both can generate software TLMs in SystemC. We
proposed an abstract RTOS model in SystemC to schedule the execution of soft-
ware TLMs. In our work on WCET analysis, we have attacked the problem of flow
analysis. We proposed to perform flow analysis on ISC to get an efficient WCET
estimation approach. In addition, we presented a system-level design framework
for automotive systems, called SysCOLA. We showed how the introduced software
performance estimation methods are used in SysCOLA.

So, the work can be divided to three parts: software performance simulation,
WCET estimation, and the work done in the scope of SysCOLA. In the following
sections, the three parts of work are summarized and their respective future works
are outlined.

10.1 Software Performance Simulation

10.1.1 Conclusions

For design space exploration of a complex embedded system, simulation is one
of the most efficient ways to capture real workload scenarios and get dynamic
performance statistics. As the importance of software and its impact on the over-
all system performance are steadily increasing, an efficient technique for fast and
accurate software performance simulation is especially important. Accurate soft-
ware performance simulation can help study the influence of software on the whole

195

Chapter 10 Conclusions and Future Work

system performance and make decisions of hardware/software partitioning, task
mapping and scheduling in early design phases. The simulation must also be fast
enough for iterative design space exploration loops. Therefore, it is important
to concern the trade-off between simulation accuracy and simulation performance
while choosing a simulation tool. Besides simulation accuracy and performance,
low complexity is also an important criterion to evaluate a simulation technique.
A good simulation technique should be easy to realize and to use.

In this thesis, we focused only on execution-based simulations, which can capture
both functional and temporal behaviors of systems. We introduced four execution-
based simulation strategies and provided a discussion about their advantages and
limitations. The four simulation strategies are interpretive instruction set sim-
ulation (ISS), binary level simulation (BLS), source level simulation (SLS) and
intermediate representation level simulation (IRLS). In the four simulation tech-
niques, ISS allows for the most accurate simulation but has the lowest speed and
the highest complexity. BLS offers up to two orders of magnitude faster simula-
tion than ISS. This speedup is achieved by the idea of performing time-consuming
instruction fetching and decoding prior to simulation. BLS has moderate com-
plexity and simulation speed. Its simulation accuracy is high enough for design
space exploration. Both SLS and IRLS allow for ultrafast simulation based on the
idea of using source code or its IR as functional representation. Simulation using
the IRLS approaches proposed in previous work is not accurate enough. Some
approaches are even compiler-intrusive and are therefore complex to realize. That
is why the IRLS approaches are not widely used in practical system design.

We first developed a SLS approach, called SciSim. Compared to other existing
SLS approaches, SciSim allows for more accurate performance simulation using
a hybrid timing analysis method. SciSim has many advantages. It allows for
ultrafast and accurate simulation. The simulation models are highly readable.
This helps in debugging a complex system by means of simulation. The whole
approach is very easy to realize. It takes only days to extend the tool to support
a new processor. Nevertheless, disadvantages are also many. SciSim is restricted
in simulation of programs in the C language, written in a required coding style.
Maybe, this is not a big problem, because most embedded applications are written
in C and the coding style problem can also be solved by getting a tool that converts
original programs to programs in a supported coding style. Nevertheless, the
mapping problems raised by compiler optimizations are more serious. They are
summarized as follows:

1. The problem of finding accurate mapping between source code and optimized
binary code: For some programs, where complex code structures like nested
loops are used, it is hard to find an accurate mapping between source code
and binary code after optimizing compilation. In many cases, the easy way
of describing the mapping using debugging information no longer works.

196

10.1 Software Performance Simulation

2. The problem of correct back-annotation of timing information: Assume the
correct mapping between source code and binary code is found using a so-
phisticated method. If the timing information is annotated straightforwardly
before or after the corresponding source code statements, it cannot be ag-
gregated correctly along the source level control flows during the simulation,
because, after optimizing compilation, no constant instrumentation rule can
be found for a complex C statement.

Even if the above problems can be solved, a large error still exists in the simulation
of some programs like insertsort, as discussed in Section 4.4. Therefore, instead of
making effort to solve these problems in source code instrumentation, we proposed
a more efficient approach, called iSciSim, which converts source code to a lower-
level representation that has a structure close to the structure of binary code and
annotates timing information to this lower-level representation instead of source
code. This lower-level code is called intermediate source code (ISC) to be differ-
entiated from the original source code. ISC is formalized in the C language and is
compilable. Because of the similar structures between ISC and binary code, the
mapping between ISC and binary code can be accurately described using debug-
ging information. In the current implementation, ISC is obtained by modifying
standard IRs from standard compilers. In this sense, iSciSim can be regarded as
an IRLS approach.

To show the advantages of iSciSim, we presented a quantitative comparison of
all the discussed simulation strategies, in terms of simulation speed and accuracy
using six benchmark programs with different workloads. For this purpose, we
implemented representative approaches of ISS and BLS in the experiment. SciSim
was used to represent the state-of-the-art of the SLS technique. According to the
experiment results, iSciSim allowed for simulation with an average accuracy of
98.6% at an average speed of 4765.6 MIPS, close to the native execution (5198.2
MIPS on average). It achieved the best trade-off concerning simulation speed and
accuracy in comparison to the other approaches.

In the iSciSim approach, ISC generation, timing analysis, and back-annotation
of timing information might cause errors in the final simulation. According to
the experimental results, the error caused by ISC generation is very small. We
can eliminate this error by using the binary code generated by ISC also for final
execution on the target processor. The error caused by static timing analysis
could be large, but this error can be compensated with dynamic timing analysis.
As dynamic timing analysis will reduce the simulation speed, users have to handle
the trade-off between simulation accuracy and speed. The error caused by back-
annotation was also proved to be small. We can eliminate this error by using flow
analysis to get a mapping between ISC level control flows and binary level control
flows, instead of a mapping between ISC level basic blocks and binary level basic
blocks.

197

Chapter 10 Conclusions and Future Work

iSciSim is also very easy to realize, without the need of modifying the compiler.
The tool is easily retargetable to a new processor by adding the processor’s per-
formance model and a new instruction decoder. For someone who is familiar with
the tool, the work of retargeting takes only 2-3 days.

The advantages of iSciSim make it well-suited to be employed in system level
design space exploration of complex systems. Nevertheless, iSciSim has also a
limitation that it requires source code to be available, and therefore, is not appli-
cable for systems design with software in the form of IPs. In this case, a hybrid
solution that combines iSciSim for simulating software with available source code
and another technique, either binary level simulation or instruction set simulation,
for simulating software IPs would be useful. Furthermore, compared to source level
simulation models, simulation models generated by iSciSim are less readable.

For multiprocessor simulation, software TLMs in SystemC can be generated by
iSciSim. Software TLMs are then combined with TLMs of other system com-
ponents to generate a simulator of the whole system. We demonstrated a case
study of designing MPSoC for a Motion-JPEG decoder to show how iSciSim facil-
itates multiprocessor systems design. We also proposed an abstract RTOS model
that can efficiently schedule the execution of software TLMs to take into account
scheduling effects in system-level design.

10.1.2 Future Work

All the discussed software simulation techniques have both advantages and disad-
vantages. Different techniques are useful in different situations.

e [SSs are very accurate and can be used to calibrate high-level simulation
models.

e Source level simulation models are very fast and are highly readable. If
source level simulation models are accurate enough, they should be the first
choice for system-level design.

e Simulation models generated by iSciSim allow for very fast and accurate sim-
ulation. Compared to source level simulation models, they have the major
advantage in that they can simulate compiler-optimized software accurately.
However, compared to SciSim, iSciSim has also some minor disadvantages
that an extra step of ISC generation is needed and generated simulation
models are less readable.

e Both SciSim and iSciSim require source code available. In case that the
source code of some programs is not available, binary level simulation mod-
els are a good alternative. Binary level simulation models have moderate
complexity and simulation speed. They are also very accurate.

198

10.1 Software Performance Simulation

Source code
available?

Y

annotated source code and ISS

Error<Threshold

Compare simulations using |

Y Generate TLM from
annotated source code

Compare simulations using
annotated ISC and ISS

'

Error<Threshold

Generate TLM from
annotated ISC

Generate TLM by binary code |

translation

Figure 10.1: Future Work on Software TLM Generation

One of our future works is to get a software TLM generation framework that
combines the advantages of all these simulation techniques. This can be achieved
in a way illustrated in Figure 10.1. Given a program, it is first checked if the
source code is available. If not available, the software TLM is generated by binary
code translation. Otherwise, the SLS model is the first choice. We compare the
simulations using an ISS and the SLS model. If the error is within the given
threshold, the SLS model is used. Otherwise, the source code is converted to
ISC. In most cases, the instrumented ISC can fulfill the accuracy requirement
and the TLM is generated from the instrumented ISC. If in a very rare case
the instrumented ISC still cannot fulfill the requirement, the BLS model is used
instead.

Currently, SciSim only allows for accurate simulation of unoptimized programs or
programs that do not contain complex control structures. In future we will also
address the mapping problems of SciSim to make it can simulate more programs
accurately.

In addition, we will continue the work on abstract RTOS modeling. In the thesis,
we focused more on simulation of the scheduling behavior of RTOSs. In future,

199

Chapter 10 Conclusions and Future Work

other important services of RT'OSs, such as interprocess communication and mem-
ory management, will be realized in the abstract RTOS model. We will also study
the way of getting accurate estimation of the RTOS overhead.

Our M-JPEG decoder case study showed that even when the software is simulated
in a very high speed, the slow communication simulation will pull down the overall
simulation performance significantly. It is also our future work to get an appropri-
ate abstraction of communication models to speed up communication simulation
without compromising accuracy.

10.2 Worst Case Execution Time Estimation

10.2.1 Conclusions

Bounding WCETs of software tasks is essential in hard real-time systems design.
Today, static analysis still dominates the research on WCET estimation. A typical
static WCET analysis approach consists of three steps: flow analysis, timing anal-
ysis and WCET calculation. Flow analysis, which constrains the possible control
flows in a program, is essential for a tight WCET bound. In the state-of-the-art
WCET analysis approaches, flow analysis faces some problems. If flow analysis
is performed on the source level, the obtained source level flow facts must be
transformed down to the binary level for WCET calculation. Due to optimizing
compilation, the problem of this transformation is nontrivial. If it is performed on
binary code, it is hard to get programmers’ inputs, which are often mandatory, at
the binary level.

In this thesis we proposed to perform flow analysis on intermediate source code
to facilitate WCET estimation. ISC simplifies flow facts extraction because of
its simple statements and allows for easy flow facts transformation thanks to its
structure close to that of the binary code. The whole approach does not require
modification of any standard tools and is not limited to a special compiler. The
effectiveness of the approach was demonstrated with experiments using standard
WCET benchmarks. The experiment was specially designed to show only the
effectiveness of the flow analysis by removing the effect of timing analysis on the
WCET estimates.

10.2.2 Future Work

In the thesis we focused more on flow analysis. For timing analysis we just created
a very simple model that does not take into account the complex timing effects,
such as the timing effects of out-of-order pipeline, cache, and branch predictor. It
is our future work to improve timing analysis in our WCET tool. Some timing

200

10.3 The SysCOLA Framework

effects such as the branch prediction effect and the instruction cache effect have
been frequently studied in previous work, while for the out-of-order pipeline effect
and the data cache effect there are few efficient approaches proposed. In future,
we will realize the state-of-the-art methods for the well-studied timing effects and
research on timing analysis of the out-of-order pipeline effect and the data cache
effect.

10.3 The SysCOLA Framework

10.3.1 Conclusions

In the thesis, we presented the SysCOLA framework, which consists of two design
environments: a modeling environment and a virtual prototyping environment.
The concepts of logical communication, abstract platform and virtual platform
abstraction layer (VPAL) were introduced to facilitate parallel development of ap-
plication software and system platform. In the modeling environment, a system’s
functionality is captured in a COLA model, verified and validated using formal
techniques, and finally realized in software by means of automatic code genera-
tion. An abstract platform provides an abstract view of the system architecture
and serves as the basis for automatic mapping of the software model onto the
system platform. A system platform is designed in the form of a virtual plat-
form in the SystemC based virtual prototyping environment. The VPAL wraps
the virtual platform and enables early system integration. The generated code
using the VPAL API can be executed on the virtual platform without caring the
implementation details.

The software estimation techniques employed in SysCOLA include:

e Model-level simulation of COLA: it is aimed at early, approximate performance
evaluation before source code can be generated. The approximate perfor-
mance data can be used for software architecture exploration. As COLA
models are essentially abstract and cannot be executed directly, executable

SystemC code is generated for simulation, by means of one-to-one translation
from COLA models to SystemC.

e WCET estimation: it is aimed at bounding a WCET for each COLA cluster.
The WCETs are then used in the automatic mapping and scheduling algo-
rithm. The whole process consists of generating C code from each COLA
cluster, bounding a WCET of each task, and back-annotation of the WCET's
to the corresponding COLA clusters to be used in mapping and scheduling.

e Software performance simulation: it is aimed at generating fast and accurate
software simulation models to be used in virtual prototyping. SciSim or
iSciSim is used to generate software simulation models.

201

Chapter 10 Conclusions and Future Work

10.3.2 Future Work

The BASE.XT project was successfully completed. There are several projects at
BMW that follow up to either continue the work on the framework or apply it
to design some practical automotive systems. I am no longer involved in these
projects and will not directly work on SysCOLA, but I will continue the research
on system-level design frameworks for different application domains. Here, I would
like to point out some possible future works on software performance estimation
and virtual prototyping in the scope of SysCOLA. The possible future work in-
cludes:

202

e Future work on model-level simulation: on this part of work most effort has

been made to get a translation tool that generates SystemC code from COLA
models. The generated SystemC code is compiled and executed outside
the graphical modeling environment. It will be much more convenient for
modelers, if model-level simulation can be integrated into the graphical en-
vironment. Therefore, it is the future work to realize this to get a better
combination between COLA models and SystemC simulation models and to
visualize the simulation on graphical models.

Future work on WCET estimation: one work is to improve timing analysis in
the WCET analysis tool, as already discussed in Section 10.2.2. Another pos-
sible work is to enable WCET estimation earlier at the model level. We can
associate each COLA block or each basic operation with a pessimistic timing
value for each possible target processor, and then, perform flow analysis to
find the worst-case data path at the model level. This kind of model-level
WCET estimation can provide the first idea about the system’s worst case
performance to help in software architecture exploration. Flow analysis at
the model level is easier to get automated. The obtained model-level flow
facts can be transformed down to facilitate WCET estimation of generated
C programs.

Future work on virtual prototyping: in the current version of virtual prototyp-
ing environment, the model library contains only simple RTOS and network
models. To enable virtual prototyping of any real design, much effort should
be made to create SystemC simulation models of RTOSs and networks used
in practice, such as the OSEK RTOS, CAN bus, and FlexRay.

List of Abbreviations

3AC
ACC
ALG
API
ASIC
bbList
bbNode
BLS
BSC
CA
CCE
CFG
CFSM
COLA
CP
CP+T
cpuTLM
CcT
DSE
DPE
DSP
DTSM
ECU
EDF
ELF
ESE

3-Address Code

Adaptive Cruise Control
Algorithmic

Application Programming Interface
Application Specific Integrated Circuit
Basic Block List

Basic Block Node

Binary Level Simulation

Basic Software Component

Cycle Accurate

Cycle Count Error

Control Flow Graph

Codesign Finite State Machine

the Component Language
Communicating Processes
Communicating Processes with Time
Transaction Level Processor Model
Continuous-Time Modeling

Design Space Exploration

Data Processing Element

Digital Signal Processor

Dynamic Time-Slicing Method
Electronic Control Unit

Earliest Deadline First

Executable and Linkable Format

Embedded System Environment

203

Chapter 10

Conclusions and Future Work

ESL
FIFO
fNode
FP
fps
FSM
GCC
HW
IBS
IC
ICE
IDCT
ILP
IPET
IQ

IR
IRLS
ISA
ISC
iSciSim
ISR
ISS
ITRS
KIPS
KPN
LFU
LRU
M-JPEG
MAE
MIPS

mlist

204

Electronic System Level

First In First Out

File Node

Fixed Priority

Frame per Second

Finite State Machine

GNU Compiler Collection

Hardware

International Business Strategies

Integrated Circuit

Instruction Count Error

Inverse Discrete Cosine Transformation

Integer Linear Programming

Implicit Path Enumeration Technique

Inverse Quantization

Intermediate Representation

Intermediate Representation Level Simulation
Instruction Set Architecture

Intermediate Source Code

Intermediate Source Code Instrumentation Based Simulation
Interrupt Service Routine

Instruction Set Simulator or Instruction Set Simulation
International Technology Roadmap for Semiconductors
Kiloinstructions per Second

Kahn Process Network

Least Frequently Used

Least Recently Used

Motion-JPEG

Mean Absolute Error

Million Instructions per Second

Mapping List

10.3 The SysCOLA Framework

mNode
MOC
MPSoC
OS
OSCI
PE
PLRU
PV
PV+T
ROM
RTL
RTOS
SALT
SciSim
SDF
SLD
SLDL
SLS
SoC
SSA
STM
SW
taskTLM
TCB
TLM
™
TSM
VLD
VLSI
VPAL
WCET

Mapping Node

Model of Computation

Multiprocessor System-on-Chip

Operating System

Open SystemC Initiative

Processing Element

Pseudo Least Recently Used

Programmer’s View

Programmer’s View with Time

Result Oriented Method

Register Transfer Level or Register Transfer Language
Real-Time Operating System

Structured Assertion Language for Temporal Logic
Source Code Instrumentation Based Simulation
Synchronous Dataflow

System-Level Design

System-Level Design Language

Source Level Simulation

System-on-Chip

Single Static Assignment

Shadow Task Model

Software

Transaction Level Task Model

Task Context Block

Transaction Level Modeling or Transaction Level Model
Task Model

Time-Slicing Method

Variable Length Decoding

Very Large Scale Integration

Virtual Platform Abstraction Level

Worst Case Execution Time

205

Chapter 10 Conclusions and Future Work

WCRT Worst Case Response Time
77 Zigzag Scanning

206

List of Figures

1.1 System Level Design Flow 9
1.2 The COLA-based Modeling Environment 13
1.3 Extensions Made to the COLA Environment 14
2.1 Increasing Application Complexity due to Upgrade of Standards
and Protocols (source: [37]) oL 20
22 Moore’s Lawo 22
2.3 SoC Consumer Portable Design Complexity Trends (source: ITRS
2008) . . 22
2.4 TI OMAP 1710 Architecture (source: http://www.ti.com/) 23
2.5 Increase of IC Design Cost (source: IBS2009) 24
2.6 Productivity Gaps of Hardware and Software (source: ITRS 2007) . 27
2.7 System-Level Design Flow 30
2.8 Computation Refinement (from [62]) 33
2.9 Communication Refinement (from [62]) 33
3.1 ISS Workflow and Pseudo Code 38
3.2 Binary Level Simulation Workflow and An Example 40
3.3 An Example of IR Level Simulation 42
4.1 Embedded Software Cross-Compilation 46
4.2 Control Flow Graphs 48
4.3 An Example of Source Code Instrumentation 49
4.4 Instrumentation for Instruction Cache Simulation 51
4.5 Part of Instrumentation Rules 52
4.6 Source Level CFG and Binary Level CFG Constructed from Compiler-
Optimized Binary Code 58
4.7 Mapping between Source Code and Binary Code in the Sub-block
Granularity 29
4.8 Mapping between Source Code and Binary Code of fibcall 61
4.9 Mapping between Source Code and Binary Code of insertsort . . . 62
4.10 Instrumented Source Code and Binary Code of insertsort 63
4.11 Examples of Unsupported Coding Styles 66
5.1 The iSciSim Approach 68
5.2 An Example of ISC Generation 71
5.3 The Architecture and Workflow of the Instrumentation Tool 73

207

List of Figures

208

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

5.22

5.23
5.24

5.25

5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37

5.38

6.1
6.2
6.3
6.4

Instrumentation Example 00000 74
Data Structure of Mapping Information and Timing Information . . 75
Annotation Code of the Running Example 7
Static Instruction Scheduling 79
Mapping between ISC and Binary Code of insertsort 81
Instrumented ISC and Binary Code of insertsort 82
Instruction Cache Simulation 84
Data Cache Simulation 85
An Example of MPSoC: (a) Architecture, (b) Part of Timing Behavior 85
Timed taskTLM Generation 87
Segmented Execution of taskTLM 88
Multiprocessor Simulation 89
wait() Statements Reduction 0oL 90
Difference between Execution Times of Source Code and ISC 92
The Simulation Error of iSciSim 93
Estimation Errors Introduced by iSciSim Working Steps 95
The Influence of Input Data on Simulation Accuracy of iSciSim . . 95
Simulation of insertsort_large Using iSciSim: Execution Times with

Respect to Test Cases, 97
Simulation of insertsort_large Using iSciSim: Errors with Respect

to Test Cases e 97
The Simulation Speeds and the Native Execution Speed 98
Estimation Errors of iSciSim with and without Cache Simulation

(Cache Configuration: 4 x 64 x 16) 100
Estimation Errors of iSciSim with and without Cache Simulation

(Cache Configuration: 4 x 64 X 8) 100
Simulation Performance of iSciSim with Data Cache Simulation . . 101
Simulation Performance of iSciSim with Instruction Cache Simulation101
Simulation in C vs. Simulation in SystemC 103
M-JPEG Decoder Block Diagram 104
Performance Profiling of the M-JPEG Decoder 106
Mapping of the M-JPEG Application onto the MPSoC Architecture 106
Point-to-Point Communication Using FIFOs 107
Execution Environmento o oL 109
Communication Using a System Bus 110

Utilizations of Processing Components of the 4-CPU Architecture . 112
Utilizations of Processing Components of the 5-CPU Architecture . 113
MJPEG-Decoder Performances Obtained by Simulations at Differ-

ent Levels 114
Necessary Simulations at Different Levels 114
Layers of the Simulation Setup 118
An Example of Multi-Task Execution 119
3-State Task Model 120
4-State Task Model of the OSEK OS 121

List of Figures

6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

9.1

9.2
9.3
9.4

Non-Preemptive Scheduling 122
Preemptive Scheduling 0. 122
Implementing the RTOS Model and Task Models in a Single Module123
Task Model and Preemptive Wait 126
Example of Preemption Modeling 129
Time-Slicing Method for Preemption Modeling 130
Example of Preemption Modeling Using TSM 131
Result Oriented Method for Preemption Modeling 132
Example of Preemption Modeling Using ROM 133
Dynamic Time-Slicing Method 133
Example of Preemption Modeling Using Interruptible Waits 134
Transaction Level Processor Model 135
A More Modular Software Organization 136
An Example of Multi-Task Simulation Using Abstract RTOS Models137
The Code Structure of a cpuTLM 139
Typical Work Flows of WCET Analysis Tools 145
The Usage of ISC 147
An Example of ISC Generation 148
The Work Flow of Our WCET Analysis Tool 149
Identifying Loops 150
CFG Reduction 151
Loop Bounding Methods, 152
Mapping between ISC-Level CFG and Binary-Level CFG 153
CFGs after Re-organization 153
Mapping Information 154
WCET Calculation Using IPET 156
Simulation Strategy oo 157
Design Processo 164
The SysCOLA Framework 166
Logical Communication and Virtual Platform Refinement 168
An Example of Generated Code 169
VPAL APL. 170
VPAL Configuration Information 170
Case Study 173
Simulation Results 0oL 175
The Performance Estimation Techniques Applied in the Design

Framework 177
SystemC Modules Corresponding to the COLA Channel, Delay and

Unit 182
Example: Modeling a COLA Delay with a DFIFO 183
SystemC Module Definition for a COLA Unit 184
A Network Composed of Blocks 185

209

List of Figures

9.5 Mapping from a COLA Network onto a SystemC Hierarchical Module185
9.6 Mapping from a COLA Automaton to a SystemC Hierarchical Module 186

9.7 Part of Generated Code for the Given Automaton 186
9.8 Timing Annotation 187
9.9 ACC Top-Level View and Decomposition of the Component net_radar189
9.10 The ACC Modeled Using SystemC 190
9.11 Simulation of the Modeled ACC 190
10.1 Future Work on Software TLM Generation 199

210

Bibliography

L)

=l

— — o/ — o o —

—_
—_

[— — =
L R e S)

—_

— — — — — — — — —

[19]

[20]

ai'T: Worst-Case Execution Time Analyzers, http://www.absint.com/ait.
AutoESL, http://www.autoesl.com.

Cadence, http://www.cadence.com.

CoFluent Design, http://www.cofluentdesign.com.

CoWare, http://www.coware.com.

Embedded System Environment (ESE), http://www.cecs.uci.edu/.

Embedded Systems: Technologies and Markets. Available at http://
www.electronics.ca/.

Gumstix Homepage, http://www.gumstix.com.

Maélardelaen WCET benchmark programs, http://www.mrtc.mdh.se/
projects/wcet /benchmarks.html.

OSEK/VDX Operating System, http://www.osek-vdx.org.

RTnet Homepage, http://www.rtnet.org.

Synopsys, http://www.synopsys.com.

SystemC Homepage, http://www.systemc.org,.

The AUTOSAR Development Partnership, http://www.autosar.org.
The Ptolemy Project, http://ptolemy.eecs.berkeley.edu/.

VaST Systems Technology, http://www.vastsystems.com.

Xenomai: Real-Time Framework for Linux, http://www.xenomai.org.

F.A.S.T. and TUM, study of worldwide trends and R&D programmes in
embedded systems in view of maximising the impact of a technology platform
in the area, 2005.

Scientific and Technical Aerospace Reports, National Aeronautics and Space
Administration (NASA). Available at http://www.nasa.gov, 2006.

International technology roadmap for semiconductors: Design, 2007 edition.
Available at http://www.itrs.net, 2007.

211

Bibliography

[21]

[22]

[23]

[24]

[25]

[20]

[27]

[30]

[31]

[32]

212

International technology roadmap for semiconductors: Overview, 2008 up-
date. Available at http://www.itrs.net, 2008.

International Business Strategies, http://www.internationalbusinessstrat-
egies.com/, 20009.

B. Bailey, G. Martin, and A. Piziali. FESL Design and Verification - A
Prescription for Electronic System-Level Methodology. Morgan Kaufmann,
2007.

F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara. Hardware-Software Co-design of Embedded Systems: The PO-
LIS Approach. Kluwer Academic Publishers, 1997.

F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: An Integrated Electronic System
Design Environment. Computer, pages 45-52, 2003.

J. R. Bammi, W. Kruijtzer, L. Lavagno, E. Harcourt, and M. Lazarescu.
Software performance estimation strategies in a system-level design tool. In
Proceedings of the International Workshop on Hardware/Software Codesign,
pages 82-86, San Diego, CA, USA, 2000.

A. Bauer, M. Broy, J. Romberg, B. Schéatz, P. Braun, U. Freund, N. Mata,
R. Sandner, and D. Ziegenbein. AutoMoDe— Notations, Methods, and
Tools for Model-Based Development of Automotive Software. In Proceed-
ings of the SAE 2005 World Congress, Detroit, MI, April 2005. Society of
Automotive Engineers.

A. Bauer, M. Leucker, and J. Streit. SALT—structured assertion language
for temporal logic. In Proceedings of the Eighth International Conference
on Formal Engineering Methods, volume 4260 of Lecture Notes in Computer
Science, pages 757-775, sep 2006.

L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri. MPARM:
Exploring the Multi-Processor SoC Design Space with SystemC. Springer
Journal of VLSI Signal Processing, 41(2):169-182, 2005.

A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone. The synchronous languages 12 years later. Proceedings of the
IEEE, 91(1), January 2003.

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, R. Leupers, and H. Meyr.
A universal technique for fast and flexible instruction-set architecture simu-
lation. IEEE Transaction on Computer-Aided Design of Integrated Clircuits
and Systems, pages 1625-1639, 2004.

Bibliography

[33]

[34]

[35]

[36]

[43]

[44]

L. Cai and D. Gajski. Transaction level modeling: an overview. In Pro-
ceedings of the 1st IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis (CODES+1555°03), pages 19—
24, Newport Beach, CA, USA, 2003.

E. Cheung, H. Hsieh, and F. Balarin. Framework for fast and accurate
performance simulation of multiprocessor systems. In Proceedings of IEEE
International Workshop on High Level Design Validation and Test, pages
21-28, 2007.

M.-K. Chung, S. Yang, S.-H. Lee, and C.-M. Kyung. System-level HW /SW
co-simulation framework for multiprocessor and multithread SoC. In Pro-
ceedings of IEEE VLSI-TSA international symposium on VLSI Design, Au-
tomation and Test, pages 177-180, 2005.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles
of programming languages (POPL 77), pages 238-252, 1977.

A. Davare. Automated Mapping for Heterogenous Multiprocessor Embed-
ded Systems. Ph.D. Thesis, Electrical Engineering and Computer Sciences,
University of California at Berkeley, 2007.

E. de Kock, G. Essink, W. Smits, P. van der Wolf, J. Brunel, W. Kruijtzer,
P. Lieverse, and K. Vissers. YAPI: Application Modeling for Signal Pro-

cessing Systems. In Proceedings of the 37th Design Automation Conference
(DAC"00), pages 402405, Los Angeles, California, United States, 2000.

D. Densmore, R. Passerone, and A. Sangiovanni-Vincentelli. A Platform-
Based Taxonomy for ESL Design. IEEE Des. Test, 23(5):359-374, 2006.

A. Donlin. Transaction level modeling: flows and use models. In Proceedings
of the 2nd IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis (CODES+I1S55°04), pages 75-80, Stockholm,
Sweden, 2004.

M. J. Eager. Introduction to the DWARF debugging format, 2007.

J. Engblom, A. Ermedahl, and P. Altenbernd. Facilitating worst-case execu-
tion times analysis for optimized code. In Proceedings of the 10th Euromicro
Workshop on Real-Time Systems, pages 146-153, 1998.

A. Ermedahl and J. Gustafsson. Deriving annotations for tight calculation
of execution time. In Proceedings of the Third International Euro-Par Con-
ference on Parallel Processing (Euro-Par '97), pages 1298-1307, 1997.

F. Fummi, G. Perbellini, M. Loghi, and M. Poncino. ISS-centric modu-
lar HW/SW co-simulation. In Proceedings of the 16th ACM Great Lakes
symposium on VLSI (GLSVLSI’06), pages 31-36, 2006.

213

Bibliography

[45]

[46]

[54]

[55]

[56]

214

D. D. Gajski. System Level Design: Past, Present, and Future. In Design,
Automation, and Test in Europe: The Most Influential Papers of 10 Years
DATE. Springer, 2008.

P. Giusto, G. Martin, and E. Harcourt. Reliable estimation of execution
time of embedded software. In Proceedings of the conference on Design,
Automation and Test in Europe (DATE’01), pages 580-589, 2001.

B. J. Gough. An Introduction to GCC. Network Theory Limited, 2004.

J. Gustafsson, A. Ermedahl, and B. Lisper. Towards a flow analysis for
embedded system C programs. In 10th IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS 2005), pages 287—
297, Feb. 2005.

W. Haberl, M. Tautschnig, and U. Baumgarten. From COLA Models to Dis-
tributed Embedded Systems Code. IAENG International Journal of Com-
puter Science, 2008.

P. Hardee. CoWare CODES-ISSS Panel presentation. System Level Design
Tools: Who needs them, who has them and how much should they cost?,
2003.

C. Healy, M. Sjodin, V. Rustagi, and D. Whalley. Bounding loop itera-
tions for timing analysis. In Proceedings of IEEE Real-Time Technology and
Applications Symposium, pages 12-21, Jun 1998.

R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System
level performance analysis - the SymTA /S approach. In IEE Proceedings of
Computers and Digital Techniques, pages 148-166, Mar 2005.

K. Huang, S.-i. Han, K. Popovici, L. Brisolara, X. Guerin, L. Li, X. Yan,
S.-1. Chae, L. Carro, and A. A. Jerraya. Simulink-based MPSoC design
flow: case study of Motion-JPEG and H.264. In Proceedings of the 44th
annual Design Automation Conference (DAC’07), pages 39-42, San Diego,
California, 2007.

Y. Hwang, G. Schirner, S. Abdi, and D. G. Gajski. Accurate Timed RTOS
Model for Transaction Level Modeling. In Proceedings of the conference
on Design, automation and test in Europe (DATE’10), Dresden, Germany,
2010.

Institute of Electrical and Electronics Engineers. IEEE Std 1666 - 2005 IEEE
Standard SystemC Language Reference Manual. IEEFE Std 1666-2005, 2006.

T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and H. Meyr.
A SW performance estimation framework for early system-level-design using
fine-grained instrumentation. In Proceedings of the conference on Design,
Automation and Test in Europe (DATE’06), pages 468-475, 2006.

Bibliography

[57]

[60]

[61]

[64]

[65]

[67]

K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli. System level design: Orthogonolization of concerns and
platform-based design. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 19(12), December 2000.

R. Kirner and P. Puschner. Transformation of path information for wcet

analysis during compilation. In Proceedings of the 13th Euromicro Confer-
ence on Real-Time Systems (ECRTS ’01), 2001.

R. Kirner and P. Puschner. Classification of WCET Analysis Techniques. In
Proceedings of the Fighth IEEFE International Symposium on Object-Oriented
Real-time distributed Computing, 2005.

J. Krasner. Embedded market forecasters, embedded software development
issues and challenges: Failure is not an option—it comes bundled with the
software. Available at http://www.embeddedforecast.com, 2003.

M. Krause, O. Bringmann, A. Hergenhan, G. Tabanoglu, and W. Rosenstiel.
Timing simulation of interconnected AUTOSAR software-components. In

Proceedings of Design, Automation and Test in Furope Conference and Ezx-
position (DATE 2007), pages 474-479, Nice, France, March 2007. EDAA.

M. Krause, O. Bringmann, and W. Rosenstiel. Target software generation:
an approach for automatic mapping of SystemC specifications onto real-time

operating systems. Journal of Design Automation for Embedded Systems,
10(4), December 2005.

S. Kugele and W. Haberl. Mapping Data-Flow Dependencies onto Dis-
tributed Embedded Systems. In Proceedings of the 2008 International Con-
ference on Software Engineering Research € Practice, SERP 2008, Las Vegas
Nevada, USA, July 2008.

S. Kugele, W. Haberl, M. Tautschnig, and M. Wechs. Optimizing Automatic
Deployment Using Non-Functional Requirement Annotations. In Leveraging
Applications of Formal Methods, Verification and Validation, volume 17,
pages 400-414. Springer Berlin Heidelberg, 2009.

S. Kugele, M. Tautschnig, A. Bauer, C. Schallhart, S. Merenda, W. Haberl,
C. Kiihnel, F. Miiller, Z. Wang, D. Wild, S. Rittmann, and M. Wechs.
COLA — The component language. Technical Report TUM-10714, Institut
fiir Informatik, Technische Universitat Miinchen, Sept. 2007.

C. Kiihnel, A. Bauer, and M. Tautschnig. Compatibility and reuse in
component-based systems via type and unit inference. In Proceedings of
the 33rd EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA). IEEE Computer Society Press, 2007.

J. J. Labrosse. MicroC/OS-11: The Real-Time Kernel, Second Edition. CMP
Books, 1998.

215

Bibliography

[68]

[71]

[72]

[79]

[80]

216

M. Lazarescu, M. Lajolo, J. Bammi, E. Harcourt, and L. Lavagno.
Compilation-based software performance estimation for system level design.
In Proceedings of the International Workshop on Hardware/Software Code-
sign, pages 167-172, 2000.

J.-Y. Lee and I1.-C. Park. Timed compiled-code simulation of embedded
software for performance analysis of SOC design. In Proceedings of the
Design Automation Conference (DAC’02), pages 293-298, 2002.

X. Li. Microarchitecture Modeling for Timing Analysis of Embedded Soft-
ware. Ph.D. Thesis, School of Computing, National University of Singapore,
2005.

Y.-T. Li and S. Malik. Performance analysis of embedded software using
implicit path enumeration. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 16(12):1477-1487, Dec 1997.

T. Lundqvist and P. Stenstrom. An integrated path and timing analysis
method based on cycle-level symbolic execution. Real-Time Systems, 17(2-
3):183-207, 1999.

B. Mehradadi. Why study for an embedded systems degree? Available at
http://www.science-engineering.net/.

T. Meyerowitz, M. Sauermann, D. Langen, and A. Sangiovanni-Vincentelli.
Source-level timing annotation and simulation for a heterogeneous multipro-
cessor. In Proceedings of the conference on Design, Automation and Test in
FEurope (DATE’08), pages 276-279, Munich, Germany, 2008.

C. Mills, S. C. Ahalt, and J. Fowler. Compiled instruction set simulation.
Software-Practice Experience, 21(8):877-889, 1991.

G. Mouchard. ppc750sim, http://microlib.org/projects/ppc750sim/, 2003.

T. Nakada, T. Tsumura, and H. Nakashima. Design and implementation of
a workload specific simulator. In Proceedings of the 39th Annual Symposium
on Simulation (ANSS’06), pages 230-243, 2006.

A. D. Pimentel, M. Thompson, S. Polstra, and C. Erbas. Calibration of ab-
stract performance models for system-level design space exploration. Journal
of Signal Processing Systems, 50(2):99-114, 2008.

K. Popovici, X. Guerin, F. Rousseau, P. S. Paolucci, and A. A. Jerraya.
Platform-based software design flow for heterogeneous MPSoC. ACM Trans-
actions on Embedded Computing Systems, 7(4):1-23, 2008.

H. Posadas, E. Villar, and F. Blasco. Real-Time Operating System Modeling
in SystemC for HW/SW Co-Simulation. In Proceedings of DCIS, IST, 2005.

Bibliography

[81]

[82]

[33]

[84]

[85]

[80]

[87]

[38]

[89]

[90]

[91]

[92]

A. Prantl, M. Schordan, and J. Knoop. TuBound — A Conceptually New Tool
for Worst-Case Execution Time Analysis. In 8th International Workshop on
Worst-Case Ezecution Time Analysis (WCET 2008), pages 141-148, 2008.

A. Pretschner, M. Broy, I. H. Kriiger, and T. Stauner. Software engineering
for automotive systems: A roadmap. In Future of Software Engineering
(FOSE °07), pages 5571, Los Alamitos, CA, USA, 2007. IEEE Computer
Society.

P. Puschner. Worst-case execution time analysis at low cost. Control Engi-
neering Practice, 6:129-135, 1998.

P. Puschner and C. Koza. Calculating the maximum, execution time of
real-time programs. Real-Time Systems, 1(2):159-176, 1989.

W. C. Rhines. DVCon 2005 presentation: Verification discontinuities in the
nanometer age, 2005.

S. Rittmann. SA methodology for modeling usage behavior of multi-
functional systems. PhD thesis, Technische Universitat Miinchen, 2008.

A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and soft-
ware design methodology for embedded systems. Design € Test of Comput-
ers, IEEE, 18(6):23-33, Nov/Dec 2001.

C. Sauer, M. Gries, and H.-P. Lob. SystemClick: a domain-specific frame-
work for early exploration using functional performance models. In Proceed-
ings of the 45th annual Design Automation Conference (DAC’08), pages
480-485, Anaheim, California, 2008.

G. Schirner and R. Domer. Introducing preemptive scheduling in abstract
RTOS models using result oriented modeling. In Proceedings of the confer-
ence on Design, automation and test in Europe (DATE’08), pages 122127,
Munich, Germany, 2008.

J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel. High-performance
timing simulation of embedded software. In Proceedings of the Design Au-
tomation Conference (DAC’08), pages 290-295, Anaheim, CA, USA, Jun
2008.

T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprettere. Sys-
tem Design Using Kahn Process Networks: The Compaan/Laura Approach.
In Proceedings of the Conference on Design, Automation and Test in Furope
(DATE’04), pages 340345, 2004.

L. Thiele and E. Wandeler. Performance analysis of distributed systems.
Embedded Systems Handbook, R. Zurawski (Ed.), CRC Press.

217

Bibliography

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

218

7. Wang, W. Haberl, A. Herkersdorf, and M. Wechs. A Simulation Approach
for Performance Validation during Embedded Systems Design. In Leveraging
Applications of Formal Methods, Verification and Validation, volume 17,
pages 385-399. Springer Berlin Heidelberg, 2009.

7. Wang, W. Haberl, S. Kugele, and M. Tautschnig. Automatic generation of
SystemC models from component-based designs for early design validation
and performance analysis. In Proceedings of the 7th International Workshop
on Software and Performance (WOSP’08), pages 139144, Princeton, NJ,
USA, Jun 2008.

7. Wang and A. Herkersdorf. An Efficient Approach for System-Level Timing
Simulation of Compiler-Optimized Embedded Software. In Proceedings of
the 46th Annual Design Automation Conference (DAC’09), pages 220-225,
San Francisco, California, July 2009.

Z. Wang and A. Herkersdorf. Flow Analysis on Intermediate Source Code
for WCET Estimation of Compiler-Optimized Programs. In Proceedings
of the 15th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’09), pages 22-27, Beijing,
China, August 2009. IEEE Computer Society.

Z. Wang and A. Herkersdorf. Software performance simulation strategies for
high-level embedded system design. Performance Fvaluation, 67(8):717-739,
2010.

7. Wang, A. Herkersdorf, W. Haberl, and M. Wechs. SysCOLA: a frame-
work for co-development of automotive software and system platform. In
Proceedings of the 46th Annual Design Automation Conference (DAC’09),
pages 37—42, San Francisco, California, 2009.

7. Wang, S. Merenda, M. Tautschnig, and A. Herkersdorf. A Model Driven
Development Approach for Implementing Reactive Systems in Hardware. In
Proceedings of International Forum on Specification and Design Languages
(FDL’08), pages 197-202, Stuttgart, Germany, September 2008.

Z. Wang, A. Sanchez, and A. Herkersdorf. SciSim: A Software Perfor-
mance Estimation Framework using Source Code Instrumentation. In Pro-
ceedings of the Tth International Workshop on Software and Performance

(WOSP’08), pages 33-42, Princeton, NJ, USA, Jun 2008.

7. Wang, A. Sanchez, A. Herkersdorf, and W. Stechele. Fast and Accurate
Software Performance Estimation during High-Level Embedded System De-
sign. In Proceedings of edaWorkshop, Hannover, Germany, May 2008.

T. Wild, A. Herkersdorf, and G.-Y. Lee. TAPES—Trace-based architecture
performance evaluation with SystemC. Journal of Design Automation for
Embedded Systems, 10(2-3):157-179, 2005.

Bibliography

[103] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley,

[104]

[105]

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenstrom. The worst-case execution-

time problem—overview of methods and survey of tools. ACM Transactions
on Embedded Computing Systems, 7(3):1-53, 2008.

H. Yu, A. Gerstlauer, and D. Gajski. RTOS scheduling in transaction level
models. In Proceedings of the 1st IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis (CODES+1555°03),
pages 31-36, 2003.

V. Zivojnovic and H. Meyr. Compiled HW /SW co-simulation. In Proceedings
of the Design Automation Conference (DAC’96), pages 690695, Jun 1996.

219

	Introduction and Background
	Introduction
	The Scope and Objects of This Work
	Software Performance Simulation
	Software Performance Simulation in System-Level Design Space Exploration
	Worst-Case Execution Time Estimation
	A Design Framework for Automotive Systems

	Summary of Contributions
	Outline of the Dissertation

	Background
	Embedded Systems: Definition and Market Size
	Embedded System Trends
	Application Trends
	Technology and Architectural Trends
	Increasing Software Development Cost

	Traditional Embedded Systems Design
	Design Challenges
	System-Level Design
	Definitions
	System-Level Design Flows
	Survey of SLD Frameworks
	SystemC and Transaction Level Modeling

	Software Performance Estimation Methods
	Execution-Based Software Performance Simulation Strategies
	Instruction Set Simulators
	Binary (Assembly) Level Simulation
	Source Level Simulation
	IR Level Simulation

	SciSim: A Source Level Approach for Software Performance Simulation
	Basic Information
	Compilation and Optimization
	Control Flow Graph
	Introduction to Source Code Instrumentation

	The SciSim Approach
	Source Code Instrumentation
	Simulation

	Experimental Results
	Performance Simulation of Unoptimized Software
	Performance Simulation of Optimized Software

	Why Does SciSim Not Work for Some Compiler-Optimized Software?
	Summary of SciSim's Advantages and Limitations

	iSciSim for Performance Simulation of Compiler-Optimized Software
	Overview of the iSciSim Approach
	Intermediate Source Code Generation
	Intermediate Source Code Instrumentation
	Machine Code Extraction and Mapping List Construction
	Basic Block List Construction
	Static Timing Analysis
	Back-Annotation of Timing Information
	An Example: insertsort

	Dynamic Simulation of Global Timing Effects
	Software TLM Generation using iSciSim for Multiprocessor Simulation in SystemC
	Experimental Results
	Source Code vs. ISC
	Benchmarking SW Simulation Strategies
	Dynamic Cache Simulation
	Simulation in SystemC
	Case Study of MPSoC Simulation: A Motion-JPEG Decoder

	Multi-Task Simulation in SystemC with an Abstract RTOS Model
	Unscheduled Execution of Task Models
	The RTOS's Functionality
	Task
	Scheduler

	The RTOS Model in SystemC
	Task Model
	Scheduler Model
	Timing Parameters

	Preemption Modeling
	Static Time-Slicing Method
	Result Oriented Method
	Dynamic Time-Slicing Method

	A More Modular Software Organization of Transaction Level Processor Model
	Experimental Results

	Flow Analysis on Intermediate Source Code for WCET Estimation
	Flow Analysis and Related Work
	Overview of the Proposed Approach and Tool Architecture
	Flow Analysis
	Constructing Control Flow Graph
	Identifying Loops
	Reducing Control Flow Graph
	Bounding Loops and Detecting Infeasible Paths

	Flow Facts Transformation
	Timing Analysis and WCET Calculation
	Experiment
	Experiment Methodology
	Experiment Results

	Software Performance Estimation in a System-Level Design Flow
	The SysCOLA Framework
	Design Process Overview
	Related Work

	The SysCOLA Framework
	System Modeling
	Virtual Prototyping

	Case Study: An Automatic Parking System
	Functionality and Design Space
	System Modeling
	Virtual Prototyping
	System Realization

	Summary of the Employed Software Performance Estimation Techniques
	Model-Level Performance Estimation
	WCET Estimation
	Software Performance Simulation

	Model-Level Simulation of COLA
	Overview of COLA and SystemC
	COLA to SystemC Translation
	Synchronous Dataflow in SystemC
	Translation Rules
	Simulation using SystemC

	Case Study
	The COLA Model of the Adaptive Cruise Control System
	Simulation using SystemC

	Summary
	Conclusions and Future Work
	Software Performance Simulation
	Conclusions
	Future Work

	Worst Case Execution Time Estimation
	Conclusions
	Future Work

	The SysCOLA Framework
	Conclusions
	Future Work

	List of Abbreviations
	List of Figures
	Bibliography

