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In this thesis we analyse the abilities of agents that act, one way or an-
other, rationally. We propose logic-based methods for modelling and reasoning
about such agents. Each of the presented frameworks addresses a different as-
pect of modelling rational behaviour. Finally, we analyse the complexity of
the corresponding model checking problems.

1.1 Introduction

Temporal logics for specifying and verifying reactive systems have a long tra-
dition in computer science. In [Pnueli, 1977] Amir Pnueli proposed the lin-
ear time temporal logic LTL, a temporal logic to reason about linear time
properties of infinite computations. Properties of the kind “the system never
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ends up in a deadlock” (�©>) or “the reactor will eventually shut down”
(♦shut down) can be expressed within this logic. Some years later, Edmund
Clarke, Allen Emerson, and Joseph Halpern [Clarke and Emerson, 1981; Emer-
son and Halpern, 1982] proposed the computation-tree logics CTL and CTL?.
These logics allow to quantify over different system behaviours; they model
branching time rather than linear time. The logic CTL is a restricted vari-
ant of CTL? with better computational properties. These logics became the
most popular ones in computer science and are often used for specifying and
verifying reactive systems [Clarke et al., 1986; Queille and Sifakis, 1982].

1.1.1 Agents and Multi-Agent Systems

The temporal logics LTL, CTL?, and their derivatives allow to reason about
(temporal) properties (e.g. fairness, liveness, and safety properties) of reactive
systems. At the end of the 20th century the notion of agent was introduced.
The agent paradigm [Wooldridge, 2000, 2002; Weiss, 1999] provides a neat
way to talk about (distributed) systems which are ascribed additional proper-
ties e.g. heterogeneity, autonomy, pro-activeness, rationality, intelligence, etc.
Agents can be considered as (autonomous, etc.) processes and multi-process
systems as multi-agent systems (MASs). Due to the specific settings and sys-
tems of interest, cooperation and group ability became focal points in research
on MASs. Formal tools developed for reactive systems turned often out in-
sufficient for the modelling and verification of specific properties (e.g. abilities
of groups of agents) related to MASs. Suitable tools were required to address
the important aspects of cooperation and power.

Alternating time temporal logics (ATLs) were proposed [Alur et al., 1997,
2002] to model open systems and the power of groups of agents. Nowadays
they are among the most popular and influential logics for modelling and
reasoning about strategic abilities of agents.

The logics ATL∗ and ATL can be considered as multi-agent extensions
of CTL? and CTL, respectively. Path quantifiers are replaced by coalitional
operators 〈〈A〉〉 which allow to reason about the group ability of the team A
of agents. These operators allow for a finer-grained quantification over com-
putation paths (not only universally or existentially). Basic game-theoretic
notions underly the semantics of the ATLs.

In order for a formula 〈〈A〉〉γ being true group A is supposed to have a
winning strategy to enforce γ. The opponents can behave in arbitrary ways.
Analogously to LTL and CTL? being used for the specification and verification
of reactive (closed systems), the new class of logics is suitbale for specifying
and verifying multi-agent systems (open systems).

However, although extensively studied and applied to MAS, ATLs do
not take into account basic characteristics of MASs that go beyond the pure
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execution of actions, e.g. agents’ goals or other mental attitudes that influence
agents’ behaviours.

1.1.2 Agents That Act Rationally

ATLs make use of very basic game-theoretic concepts when it comes to the
joint execution of actions. The use of such methods is very limited. However,
agents are often ascribed other properties like pro-activeness, rationality, or
intelligence which are not addressed in the ATLs.

Arguably, there is a need to reason about rational agents. In the last
years the variety of products has been steadily increased and new application
domains have arisen. Good examples are the family of e-products: e-auctions,
e-commerce, e-learning, e-gaming, e-book-store, e-recommender-systems, e-
learning-platforms, etc. A characteristic which most of these products share
is the interaction with humans. Programs try, e.g., to support, to influence,
or to inform buyers and sellers. These are scenarios were reasoning about and
the analysis of rational behaviour can pay off. A good mechanism supports
the auctioneer to maximise the money he gets from the participators. The e-
store increases its sales if it suggests products that match with the customers’
interests, etc. Of course, humans do often not act rationally. Hence, in the
following we consider rationality from a more abstractly as plausible behaviour
with respect to a certain context.

Game theory and the analysis of rational behaviour have a long tradition.
For example, in order to solve games it is usually assumed that players play
rationally (e.g. think about the method of backward induction). So unsur-
prisingly, it it did not take long until research on ATLs has included other
ideas from game theory. Several researchers have considered the interplay be-
tween strategic ability and knowledge (e.g. [van der Hoek and Wooldridge,
2002; Jamroga and van der Hoek, 2004; van Otterloo et al., 2003]). Questions
typically asked were of the following kind:

• Are agents aware that they can win?
• If agents know that they can win do they also know how?

Another focus has been the characterisation and usage of game-theoretic
solution concepts. The idea has been inspired by the way in which games
are analysed in game theory. Firstly, game theory identifies a number of so-
lution concepts (e.g., Nash equilibrium, undominated strategies, Pareto op-
timality) that can be used to define rational behaviour of players. Secondly,
it is usually assumed that players play rationally in the sense of one of the
above concepts, and it is asked about the outcome of the game under this
assumption. The first issue has been studied in the framework of logic, for
example in [Bacharach, 1987; Bonanno, 1991; Stalnaker, 1994, 1996]; more
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recently, game-theoretical solution concepts have been characterised in dy-
namic logic [Harrenstein et al., 2002, 2003], dynamic epistemic logic [Baltag,
2002; van Benthem, 2003], and extensions of ATL [van der Hoek et al., 2005a;
Jamroga et al., 2005]. The second thread seems to have been neglected in logic-
based research: The work [van Otterloo et al., 2004; van der Hoek et al., 2004;
van Otterloo and Roy, 2005; van Otterloo and Jonker, 2004] are the only
exceptions we know of. Moreover, each proposal from [van Otterloo et al.,
2004; van der Hoek et al., 2004; van Otterloo and Roy, 2005; van Otterloo
and Jonker, 2004] commits to a particular view of rationality (Nash equilibria,
undominated strategies etc.).

This is one aspect to rational agents we try to generalise in this thesis.
We propose a logic, alternating time temporal logic with plausibility (ATLP),
that allows to “plug in” any solution concept of choice (that we are able
to formalise). Moreover, we show that this logic does also allow to describe
solution concepts in a more expressive way. The main idea is that we often
know that agents behave according to some rationality assumptions, they
are not completely dumb. Therefore we do not have to check all possible plays
(what is the case for ATLs) – only those that are plausible in some reasonable
sense.

Rationality means more than selecting appropriate strategies. Coalitions
itself should have some underlying rationale in order to work together. In
order to join a coalition, agents usually require some kind of incentive (e.g.
sharing common goals, getting rewards, etc.), since usually forming a coalition
does not come for free (fees have to be paid, communication costs may occur,
etc.). To address this important aspect we extend ATLs by another dimension
which takes the coalition formation process into account. For this purpose we
combine an argumentative approach to coalition formation with the logics’
semantics.

Both extensions are presented in the context of perfect information. Agents
know the current state of the world and the opponents are able to commu-
nicate and cooperate arbitrarily. These assumptions do not always hold in
MASs. For this purpose, we propose two logics to model such settings. For
the first point we combine our method of plausibility used in ATLP with an
epistemic logic for strategic ability. The proposed logic CSLP goes beyond
the pure union of the parts it is composed of. The rationality concept allows
us to neatly define the relationship between epistemic and doxastic concepts.
Secondly, it enables us to analyse rational play under incomplete information
and to describe appropriate solution concepts.

Another angle to incomplete information is addressed by adding prob-
abilistic concepts to ATL. These concepts are used to probabilistically pre-
dict the opponents’ behaviour if their ability to communicate and to find the
“best” strategy is somehow limited. The motivation is that there are sce-
narios in which the common assumption that opponents behave in the most
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destructive way is not sensible. For example, due to the lack of communication
channels agents may not be able to agree on their most destructive counter
strategy. This is the case for multiple Nash equilibria. In order to play a Nash
equilibrium strategy agents are required to signalise which of them they are
going to select. We model this by assuming some probabilistic behaviour of
the opponents.

Finally, we consider yet another angle to rationality in MASs. Up to now
the viewpoint of agents being entities perceiving changes in their environment
and acting according to a set of rules or plans in the pursuit of goals does not
take resources into account. This assumption is not always realistic; especially
in times of shared and globally offered applications the use of them does often
not come for free. In order to be able to model such scenarios we assign costs to
actions and show that the verification problem may become difficult. We show
that it is usually impossible (i.e. undecidable) to reason about such settings
without imposing strong restrictions. In parallel to our work, such settings
were also considered by other researchers [Alechina et al., 2009b,a, 2010].

1.1.3 Verification of Rational Agents

We have motivated the use of logics for modelling rational agents. Apart form
modelling, an automatic way to prove properties and to verify systems is of
great importance. Verification of (multi-)agent systems is among the most
important applications of linear time and strategic logics in computer science.
Above, we have pointed out that LTL and CTL? can be used for the spec-
ification of reactive systems. In particular, the model checking problem has
attracted much attention. Model checking is the process to check whether a
given formula holds in a given model. It is used to check whether a system
complies with a given set of specifications. The complexity of this problem is
proven to be P-complete (resp. PSPACE-complete) for CTL (resp. LTL and
CTL?). Surprisingly, the multi-agent case for the basic logic ATL is not harder.
However, for ATL∗ it is already 2EXPTIME-complete. In the multi-agent
cases the different settings of perfect information, imperfect information, per-
fect recall, and imperfect recall have an enormous influence on the complexity.
For example, the case for ATL∗ with perfect recall and imperfect information
is believed to be undecidable [Alur et al., 2002]. Clearly, this limits its practical
use as a verification language for MASs.

Thus, in this thesis we do also consider the model checking problems for
our proposed logics. We show that the picture is manifold. In general, the
complexity of verifying rational agents is harder than for the “standard” cases
(i.e. without rationality assumptions). However, we also have positive results
that rationality must not necessarily increase the complexity of model check-
ing. We show that resources make the verification particularly difficult, even
undecidable in many settings.
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1.2 Structure of The Thesis

The thesis is divided into the following five parts.

Part I – Preliminaries

In the first part background material and related work is presented. In Chap-
ter 2 the basic temporal (e.g. LTL, CTL, and CTL?) and strategic logics
(e.g. ATL and ATL∗) are introduced. The differences and dependencies be-
tween perfect vs. imperfect recall and perfect vs. imperfect information are
discussed.

Chapter 3 focusses on the connection between games and strategic logics.
A brief introduction to game theory followed by a discussion on logics for
reasoning about games is given. We also discuss logical characterisations of
solution concepts.

Chapter 4 serves as a collection of theoretical background material needed
in the thesis. Firstly, an introduction to complexity theory is given. Then,
we present an argumentative approach to coalition formation and provide
brief introductions to probability theory and to Petri nets. Chapter 5 is on
model checking strategic logics. The general problem is formulated and upper
and lower complexity bounds of the well-known temporal and strategic logics
introduced in Chapter 2 are summarised.

Part II – Rational Agents: Models and Logics

This is one of the two main parts of this thesis. Models and logics for reasoning
about rational agents are presented. In Chapter 6 we propose logics for ratio-
nal agents with perfect information. The logic alternating time temporal logic
with plausibility (ATLP) is introduced and it is shown how it can be used to
characterise game-theoretic solution concepts and how to impose them on the
agents in order to restrict their behaviour. Secondly, ATL is enriched by an
argumentative approach to coalition formation to reason about the abilities
of rational coalitions. The logic is called CoalATL.

In Chapter 7 we consider rational agents under incomplete information.
The logic CSLP (constructive strategic logic with plausibility) is an incom-
plete information extension of ATLP. It allows to characterise and to speak
about imperfect information games. Moreover, the concepts of knowledge and
plausibility allow to define a neat notion of belief. The relations among these
concepts are discussed. We also address another angle to incomplete infor-
mation. The alternating time temporal logic with probabilistic success (pATL)
allows to model abilities of agents under the assumption that the communica-
tion between the opponents is somehow restricted. It cannot be assumed – as
it is done in the ATLs– that the opponents act in the most destructive way.
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In the last Chapter of this part we consider resource-bounded agents.
Firstly, we present resource-bounded logics for the single agent case (RTL
and RTL?). Then, we turn to the more interesting case of multiple agents. We
consider a flexible setting resulting in many different logics.

Part III – Complexity of Verifying Rational Agents

In Part III we consider the complexity of model checking the logics introduced
in Part II. In Chapter 9 we analyse the agents with memory affect the model
checking complexity. In Chapter 10 we analyse the logics for rational play.
Then, in Chapter 11 we consider resources and show that these settings are
generally much harder. Apart from a single-agent case and some restricted
settings we show that the model checking problems are undecidable.

Part IV and V – Conclusion and Appendix

In Part IV we conclude and summarise related work. The last part contains
detailed proofs and some additional material.

1.3 Publications

Some results reported in this thesis have been already published. In the fol-
lowing we list the publications relevant for each chapter.

• Chapter 2 includes a part from [Bulling et al., 2010].
• Chapter 3 takes chapters from [Bulling et al., 2009b].
• Chapter 5 is based on [Bulling et al., 2010] and [Bulling and Jamroga,

2010a, 2009a, 2010b].
• Chapter 6 incorporates several publications. The sections on ATLP ap-

peared in [Bulling et al., 2009b] which in turn is based on [Bulling and
Jamroga, 2007b; Jamroga and Bulling, 2007b,a]. The sections related to
CoalATL are taken from [Bulling and Dix, 2010] and from [Bulling et al.,
2008, 2009a; Bulling and Dix, 2008].

• Chapter 7 is a combination of work that appeared in [Bulling and Jamroga,
2009b] and [Bulling and Jamroga, 2009c, 2008].

• Chapters 8 and 11 are based on [Bulling and Farwer, 2010a] and [Bulling
and Farwer, 2010c].

• Parts of chapter 9 has appeared in [Bulling and Jamroga, 2010a, 2009a,
2010b].

• Chapters 10 is based on the same publications as Chapters 6 and 7.
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1.4 Notation

In the following we summarise notation used throughout the thesis.

1.4.1 General Symbols

Agt denotes a non-empty and finite set of agents. If not specified otherwise,
we assume that Agt = {1, . . . , k}. We often use a, b, . . . and a1, a2, . . . as
placeholders for agents. We use A, A′, B,. . . to denote groups of agents.

Π is a non-empty set of propositional symbols. Propositions are typeset as
follows: p, q,A proposition, . . . . Usually, π is used as labelling function.

Q is a non-empty set of states. If not stated otherwise we assume that the
set is finite. Usually, we use q, q′, q1, q2, . . . as names for states and also as
variables referring to them.

λ, λ′, λ1, λ2, . . . are used to denote paths.
sa denotes a strategy for agent a
sA is a set {sa | a ∈ A} of strategies, one per agent in A.
s∅ denotes the empty strategy of the empty coalition.
sA|B is defined as {sa | a ∈ A ∩B}.
sA|a is defined as sa ∈ {sa | a ∈ A ∩ {a}}.
ΣA denotes the set of common strategies of A.

N denotes the set of integers {1, 2, . . . }.
N0 :=N ∪ {0}
X+ is the set of all finite and non-empty sequences of elements over X, for

non-empty X.
X∗ := X+ ∪ {ε} for non-empty X.
Xω denotes all infinite sequences of elements over X for non-empty X.
X≤ω := X+ ∪Xω for non-empty X.

1.4.2 Acronyms and Fonts.

Acronym: For acronyms we use the font AnAcronym.
LLanguage: Logical languages are denoted LLogicname

Logicname: Logics are denoted by ID and are considered as triple (LID, |=ID

,Struc) consisting of a logical language LID, a satisfaction relation, and a
class Struc of models. More precisely, we consider the valid sentences over
this triple. Subscripts may be omitted; as well as, the class of structures
if clear from context.

Proposition: For propositions we use the font proposition.
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In this section we introduce standard logics for reasoning about time
and strategic ability. We present the linear time logic LTL [Pnueli, 1977], the
computation-tree logics CTL and CTL? [Emerson and Halpern, 1986], and
the alternating time temporal logics ATL and ATL∗ [Alur et al., 2002, 1997,
1998b] as well as variants of them. We use the acronyms LTLs, CTLs, and
ATLs, respectively, to refer to the logics belonging to the same “class”.

For the ATLs we discuss the relations between perfect vs. imperfect in-
formation on one hand, and perfect vs. imperfect recall on the other, and we
show how they give rise to different logics.

We introduce two more logics for reasoning about epistemic properties in a
strategic context. These are the constructive strategic logic (CSL) CSL [Jam-
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roga and Ågotnes, 2006, 2007] and the alternating time temporal epistemic
logic ATEL [van der Hoek and Wooldridge, 2003].

Remark 2.1 (Notation). In the rest of this thesis we assume that Π is a non-
empty set of propositional symbols, Q a non-empty and finite set of states,
and Agt a non-empty set of agents. If not said otherwise we assume that

Agt = {1, . . . , k}

and sometimes, in order to make the examples easier to read, we may also use
symbolic names (a, b, c, . . . ) when referring to agents. We use p, r, . . . (resp.
q, q′, q1, . . . ) as typical representatives for propositions (resp. states).

Remark 2.2 (Language, Semantics and Logic). In the following we proceed as
follows. We introduce a logical language, say L, which is defined as a set of
formulae. We write L(P1, P2, . . . ) to emphasise that the language is built over
parameters P1, P2, . . . . However, if the parameters are clear from context
we omit them; for example, we use L as a shorthand for L(Π). Elements of
L are called L-formulae. Then, we consider (possibly several) semantics for
the language. We refer to each tuple consisting of a language and a suitable
semantics over a class of models as a logic. We can thus consider the logic as
the set of valid formulae over the specified semantics and class of models.

The logic CTL, for instance, is given by the language LCTL using the
standard Kripke semantics.

2.1 Linear and Branching Time Logics

We begin by recalling two well-known classes of temporal logics: The linear
time logic LTL and the branching time logics CTL and CTL?.

2.1.1 The Languages LLTL, LCTL, and LCTL∗

LLTL [Pnueli, 1977] extends the language of propositional logic with operators
that allow to express temporal patterns over an infinite sequences of states,
called paths. The basic temporal operators are U (until) and © (in the next
state).

Definition 2.3 (Language LLTL [Pnueli, 1977]). The language LLTL(Π)
is given by all formulae generated by the following grammar, where p ∈ Π is
a proposition:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕUϕ | ©ϕ.
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LLTL-formula ©(ϕ ∧ ψ), for instance, expresses that ϕ and ψ hold in the
next moment; ϕUψ states that property ϕ is true at least until ψ becomes true
which will eventually be the case. The additional operators ♦ (sometime from
now on) and � (always from now on) can be defined as macros by ♦ϕ ≡ >Uϕ
and �ϕ ≡ ¬♦¬ϕ, respectively. The standard Boolean connectives >,⊥,∨,→,
and ↔ are defined in their usual way.

The logic is called linear time since formulae are interpreted over infinite
linear orders of states. CTLs [Emerson and Halpern, 1986] explicitly refer to
patterns of properties that can occur along a particular temporal path, as well
as to the set of possible time series, and thus extend LTL by new branching
time operators. The latter dimension is handled by path quantifiers: E (there
is a path) and A (for all paths) where the quantifier A is defined as macro:
Aϕ ≡ ¬E¬ϕ. The language of CTL?, LCTL∗ , extends LLTL by adding the
existential path quantifier E.

Definition 2.4 (Language LCTL∗ [Emerson and Halpern, 1986]). The
language LCTL∗(Π) is given by all formulae generated by the following gram-
mar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eγ where γ ::= ϕ | ¬γ | γ ∧ γ | γUγ | ©γ

and p ∈ Π. Formulae ϕ (resp. γ) are called state (resp. path) formulae.

Additionally, the same abbreviations as for LLTL are defined. LCTL∗ -formula
E♦ϕ, for instance, ensures that there is at least one path on which ϕ holds
now or at some future time moment. Thus, LCTL∗ -formulae do not only talk
about temporal patterns on a given path but also quantify (existentially or
universally) over such paths.

Finally, we define a fragment of CTL? called CTL [Clarke and Emerson,
1981] which is strictly less expressive but has better computational properties.
The language LCTL restricts LCTL∗ in such a way that each temporal operator
must be directly preceded by a path quantifier. For example, A�E© p is an
LCTL-formula whereas A�♦p is not. Although this completely characterises
the language we also provide the original definition in which modalities are
given by path quantifiers coupled with temporal operators. Note that, chrono-
logically, CTL was proposed and studied before CTL?.

Definition 2.5 (Language LCTL [Clarke and Emerson, 1981]). The lan-
guage LCTL(Π) is given by all formulae generated by the following grammar,
where p ∈ Π:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | E(ϕUϕ) | E© ϕ | E�ϕ.

Again, the Boolean connectives are given by their usual abbreviations. In
addition to that, we define the following: ♦ϕ ≡ >Uϕ, A© ϕ ≡ ¬E© ¬ϕ,
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A�ϕ ≡ ¬E♦¬ϕ, and AϕUψ ≡ ¬E((¬ψ)U(¬ϕ ∧ ¬ψ)) ∧ ¬E�¬ψ. We note that
in the definition of the language the existential quantifier cannot be replaced
by the universal one without losing expressiveness (cf. [Laroussinie, 1995]).

2.1.2 Semantics: LTL, CTL?, and CTL

As mentioned above, the semantics of LTL is given over paths that are infinite
sequences of states from Q and a labelling function π : Π → P(Q) that
determines which propositions are true at which states.

Definition 2.6 (Path λ). A path λ over a set of states Q is an infinite
sequence from Qω. We also identify it with a mapping N0 → Q. We use λ[i]
to denote the ith position on path λ (starting from i = 0) and λ[i,∞] : N0 →
Q to denote the subpath λ[i,∞] = λ[i]λ[i + 1] . . . of λ starting from i, i.e.
λ[i,∞][j] = λ[i+ j] for all j ∈ N0.

Definition 2.7 (Semantics |=LTL). Let λ be a path and π : Π → P(Q)
be a labelling function. The semantics of LLTL-formulae is defined by the
satisfaction relation |=LTL defined as follows:

λ, π |=LTL p iff λ[0] ∈ π(p) and p ∈ Π;
λ, π |=LTL ¬ϕ iff not λ, π |=LTL ϕ (we also write λ, π 6|=LTL ϕ);
λ, π |=LTL ϕ ∧ ψ iff λ, π |=LTL ϕ and λ, π |=LTL ψ;
λ, π |=LTL ©ϕ iff λ[1,∞], π |=LTL ϕ; and
λ, π |=LTL ϕUψ iff there is an i ∈ N0 such that λ[i,∞], π |= ψ and

λ[j,∞], π |=LTL ϕ for all 0 ≤ j < i.

Thus, according to Remark 2.2, the logic LTL is given by (LLTL, |=LTL). Paths
are considered as (canonical) models for LLTL-formulae.

For model checking1 we require a finite representation of the input λ. To
this end, we use a (pointed) Kripke model M, q and consider the problem
whether an LLTL-formula holds on all paths of M starting in q.

Definition 2.8 (Kripke model). A Kripke model (or unlabelled transition
system) is given by M = 〈Q ,R, Π, π〉 where Q is a nonempty set of states (or
possible worlds), R ⊆ Q × Q is a serial transition relation on states, Π is a
set of atomic propositions, and π : Π → P(Q) is a valuation of propositions.
We use XM to refer to an element X of M. Often, we omit the subscript
“M”.

An M-path λ (or computation) is an infinite sequence of states that refers
to a possible course of action.
1 Model checking is the process of checking whether a given formula holds in a

given model.
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Definition 2.9 (M-path, ΛM(q)). An M-path (or M-computation) is given
by λ ∈ Qω

M such that subsequent states are connected by transitions from RM.
We use the same notation for these paths as introduced in Definition 2.6. For
q ∈ Q we use ΛM(q) to denote the set of all M-paths starting in q and we
define ΛM as

⋃
q∈Q ΛM(q). We refer to a path from ΛM(q) as a path (M, q)-

path. The subscript “M” is often omitted and we refer to an M-path simply
as path when clear from context.

LCTL∗ - and LCTL-formulae are interpreted over Kripke models. In addition
to LLTL-(path) formulae (which can only occur as subformulae) it must be
specified how state formulae are evaluated.

Definition 2.10 (Semantics |=CTL?). Let M be a Kripke model, q ∈ Q and
λ ∈ Λ. The semantics of LCTL∗- and LCTL-formulae are given by the satis-
faction relation |=CTL? as follows:

M, q |=CTL? p iff λ[0] ∈ π(p) and p ∈ Π;
M, q |=CTL? ¬ϕ iff M, q 6|=CTL? ϕ;
M, q |=CTL? ϕ ∧ ψ iff M, q |=CTL? ϕ and M, q |=CTL? ψ;
M, q |=CTL? Eϕ iff there is a path λ ∈ Λ(q) such that M, λ |=CTL? ϕ;

and for path formulae by:

M, λ |=CTL? ϕ iff M, λ[0] |=CTL? ϕ for a state formula ϕ;
M, λ |=CTL? ¬γ iff M, λ 6|=CTL? γ;
M, λ |=CTL? γ ∧ δ iff M, λ |=CTL? γ and M, λ |=CTL? δ;
M, λ |=CTL? ©γ iff λ[1,∞], π |=CTL? γ; and
M, λ |=CTL? γUδ iff there is an i ∈ N0 such that M, λ[i,∞] |=CTL? δ and

M, λ[j,∞] |=CTL? γ for all 0 ≤ j < i.

Alternatively, an equivalent state-based semantics for CTL can be given:

M, q |=CTL p iff q ∈ π(p) and p ∈ Π;
M, q |=CTL ¬ϕ iff M, q 6|=CTL ϕ;
M, q |=CTL ϕ ∧ ψ iff M, q |=CTL ϕ and M, q |=CTL ψ;
M, q |=CTL E© ϕ iff there is a path λ ∈ Λ(q) such that M, λ[1] |=CTL ϕ;
M, q |=CTL E�ϕ iff there is a path λ ∈ Λ(q) such that M, λ[i] |=CTL ϕ for

each i ∈ N0;
M, q |=CTL EϕUψ iff there is a path λ ∈ Λ(q) such that M, λ[i] |=CTL ψ for

some i ∈ N0, and M, λ[j,∞] |=CTL ϕ for all 0 ≤ j < i.

This equivalent semantics underlies the model checking algorithm for CTL
which can be implemented in P rather than PSPACE which is the case for
CTL? (cf. Section 5.2). The logics CTL and CTL? are given by (LCTL, |=CTL)
and (LCTL∗ , |=CTL?), respectively.



16 2 Temporal and Strategic Logics

1 2

1

2

1

2

pos0

pos1pos2

q0

q2 q1

pos0

pos1pos2

Fig. 2.1. Two robots and a carriage: A schematic view (left) and a Kripke model
M0 that models the scenario (right).

Remark 2.11. Note that model checking problem for an LLTL-formula ϕ with
respect to a given Kripke model M and a state q is equivalent to the CTL?

model checking problem M, q |=CTL? Aϕ.

We end this section with an example.

Example 2.12 (Robots and Carriage). We consider the scenario depicted in
Figure 2.1. Two robots push a carriage from opposite sides. As a result, the
carriage can move clockwise or anticlockwise, or it can remain in the same
place – depending on who pushes with more force (and, perhaps, who refrains
from pushing). To make our model of the domain discrete, we identify 3 dif-
ferent positions of the carriage, and associate them with states q0, q1, and q2.
The arrows in transition system M0 indicate how the state of the system can
change in a single step. We label the states with propositions pos0, pos1, pos2,
respectively, to allow for referring to the current position of the carriage in
the object language.

For example, we have M0, q0 |=CTL E♦pos1: In state q0, there is a path
such that the carriage will reach position 1 sometime in the future. Of course,
the same is not true for all paths, so we also have that M0, q0 |=CTL ¬A♦pos1.

2.1.3 CTL+

The language L
CTL+ is the subset of LCTL∗ that requires each temporal op-

erator to be followed by a state formula, but path quantifiers are allowed to
be followed by a Boolean combinations of path subformulae.
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Definition 2.13 (Language L
CTL+). The language L

CTL+(Π) is given by
all formulae generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ |
Eγ where γ ::= ¬γ | γ ∧ γ | ϕUϕ | ©ϕ, and p ∈ Π.

We define the logic CTL+ analogously to CTL?. We would like to point out
that the logic CTL+ is not more expressive than CTL [Emerson and Halpern,
1985] but allows for an exponentially more succinct presentation [Wilke, 1999].
This more compact representation has its price in terms of model checking;
the complexity increases from P to ∆P

2 (cf. Section 5.2).

2.2 Alternating Time Temporal Logics

In the following we present alternating time temporal logics (ATLs). These
logics can be used to model and to reason about strategic abilities of agents.
We consider semantics based on perfect and on imperfect information. Here
“perfect information” is understood in such a way that agents know the cur-
rent state of the system: Agents are able to distinguish all states of the sys-
tem. This is fundamentally different from the imperfect information setting
presented in Section 2.2.3 where different states possibly provide the same
information to an agent and thus make them appear indistinguishable to it.
This must be reflected in the agents’ available strategies.

2.2.1 The Languages LATL∗ and LATL

ATLs [Alur et al., 1997, 2002] are generalisations of CTLs. In LATL∗/ LATL

the path quantifiers E,A are replaced by cooperation modalities 〈〈A〉〉 where
A ⊆ Agt is a team of agents. Formula 〈〈A〉〉γ expresses that team A has a
collective strategy to enforce γ. The definition of the language is given below.

Definition 2.14 (Language LATL∗ [Alur et al., 1997]). The language
LATL∗(Π,Agt) is given by all formulae generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ where γ ::= ϕ | ¬γ | γ ∧ γ | γUγ | ©γ,

A ⊆ Agt, and p ∈ Π. Formulae ϕ (resp. γ) are called state (resp. path)
formulae.

We use similar abbreviations to the ones introduced in Section 2.1.1. In the
case of a single agent a we will also write 〈〈a〉〉 instead of 〈〈{a}〉〉. An example of
an LATL∗ -formula is 〈〈A〉〉�♦p which expresses that coalition A can guarantee
that p is satisfied infinitely many times (ever and ever again in the future).

The language LATL restricts LATL∗ in the same way as LCTL restricts
LCTL∗ . Each temporal operator must be directly preceded by a cooperation
modality.
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Definition 2.15 (Language LATL [Alur et al., 1997]). The language
LATL(Π,Agt) is given by all formulae generated by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 © ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕUϕ

where A ⊆ Agt and p ∈ Π.

LATL∗ -formula 〈〈A〉〉�♦p is obviously not a formula of LATL as it includes
two consecutive temporal operators. In more general terms, LATL does not
allow to express abilities related to, e.g., fairness properties. Still, many in-
teresting properties are expressible. For instance, we can state that agent a
has a strategy that permanently takes away the ability to enforce ©p from
coalition B: 〈〈a〉〉�¬〈〈B〉〉 © p. As for the two computation tree logics, the
choice between LATL∗ and LATL reflects a tradeoff between expressiveness
and practicality.

2.2.2 Perfect Information Semantics: ATLIy, ATL∗Iy

The semantics for LATL∗ and LATL are defined over a variant of transition
systems where transitions are labeled with combinations of actions, one per
agent.

Definition 2.16 (CGS). A concurrent game structure (CGS) is a tuple

M = 〈Agt,Q , Π, π,Act, d, o〉

which includes a nonempty finite set of all agents Agt = {1, . . . , k}, a
nonempty set of states Q, a set of atomic propositions Π and their valuation
π : Π → P(Q), and a nonempty finite set of (atomic) actions Act. Function
d : Agt×Q → P(Act) defines nonempty sets of actions available to agents at
each state, and o is a (deterministic) transition function that assigns the out-
come state q′ = o(q, α1, . . . , αk) to state q and a tuple of actions 〈α1, . . . , αk〉
for αi ∈ d(i, q) and 1 ≤ i ≤ k, that can be executed by Agt in q. We also write
da(q) instead of d(a, q).

It is assumed that all the agents execute their actions synchronously: The
combination of actions together with the current state determines the next
transition of the system.

A strategy of agent a is a conditional plan that specifies what a is going
to do in each situation. It makes sense, from a conceptual and computational
point of view, to distinguish between two types of “situations” (and hence
strategies): An agent might base its decision only on the current state or on
the whole history of events that have happened. A history is considered as a
finite sequence of states of the system.
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Definition 2.17 (IR- and Ir-strategies). A perfect information perfect
recall strategy for agent a ( IR-strategy for short)2 is a tuple (sa, a) where
sa : Q+ → Act is a function such that sa(q0q1 . . . qn) ∈ da(qn). The set of
such strategies is denoted by ΣIR

a .
A perfect information memoryless strategy for agent a ( Ir -strategy for

short) is given by a tuple (sa, a) consisting of a function sa : Q → Act where
sa(q) ∈ da(q). The set of such strategies is denoted by ΣIr

a . We will use the
term strategy to refer to any of these two types.

Remark 2.18 (Notation for strategies). In the following we shall identify (sa, a)
with sa. However, formally one has to assume that strategies are given as
tuples. For, otherwise one would not be able to “select” an agent’s strategy
from a set of strategies (cf. Definition 2.19).

We will also consider a memoryless strategy as a perfect recall strategy
satisfying s(hq) = s(h′q) for all h, h′ ∈ Q∗.

Definition 2.19 (Collective strategy, sA|a, sA|B, s∅). A collective strat-
egy (memoryless or perfect recall) for a group of agents A = {a1, . . . , ar} ⊆
Agt is a set

sA = {sa | a ∈ A, sa is a strategy for a}
of strategies, one per agent from A. The set of A’s collective perfect informa-
tion strategies is given by ΣIR

A =
∏
a∈AΣ

IR
a (in the perfect recall case) and

ΣIr
A =

∏
a∈AΣ

Ir
a (in the memoryless case). The set of all (complete) strategy

profiles is given by ΣIR = ΣIR
Agt (resp. ΣIr = ΣIr

Agt).
By sA|a, we denote agent a’s strategy sa of the collective strategy sA where

a ∈ A; i.e. sA|a ∈ sA ∩ ΣIx
a for x ∈ {R, r}. For a group B of agents we use

sA|B to refer to B’s collective substrategy; i.e.

sA|B := sA ∩ΣB .

We use the special strategy s∅ to refer to the empty strategy ∅.

Remark 2.20 (Strategies).

(a) For convenience we sometimes refer to a collective strategy as a tuple.
(b) We note that there is a formal difference between sa and s{a}. The former

is a strategy the latter is a set containing a strategy.

Function out(q, sA) returns the set of all paths that may occur when agents
A execute strategy sA from state q onward.

2 The notation was introduced in [Schobbens, 2004] where i (resp. I ) stands for
imperfect (resp. perfect) information and r (resp. R) for imperfect (resp. perfect)
recall. Also compare with Section 2.2.3.
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Definition 2.21 (Outcome). The outcome outM(q, sA) of sA from state q
in model M is the set of all paths λ = q0q1q2 . . . such that q0 = q and for each
i = 1, 2, . . . there exists a tuple of agents’ decisions 〈αi−1

a1
, . . . , αi−1

ak
〉 such that

αi−1
a ∈ da(qi−1) for every a ∈ Agt, and αi−1

a = sA|a(q0q1 . . . qi−1) for every
a ∈ A, and o(qi−1, α

i−1
a1

, . . . , αi−1
ak

) = qi.
In line with Remark 2.20 we identify outM(q, sa) with outM(q, {sa}). Of-

ten, we will omit the subscript “M” if clear from context. For an Ir-strategy
sA the outcome is defined analogously: “sA|a(q0q1 . . . qi−1)” is simply replaced
by “sA|a(qi−1)”.

The semantics for LATL and LATL∗ , one for each type of strategy, are
shown below. Informally speaking, M, q |= 〈〈A〉〉γ if, and only if, there exists a
collective strategy sA such that γ holds for all computations from out(q, sA).

The semantics is defined in a similar way to |=CTL? from Definition 2.10
only the rule for Eϕ is replaced.

Definition 2.22 (Perfect information semantics |=IR and |=Ir). Let M
be a CGS. The perfect information perfect recall semantics for LATL∗ and
LATL, IR-semantics for short, denoted by |=IR, is defined by the following
clauses:

M, q |=IR p iff λ[0] ∈ π(p) and p ∈ Π;
M, q |=IR ¬ϕ iff M, q 6|=IR ϕ;
M, q |=IR ϕ ∧ ψ iff M, q |=IR ϕ and M, q |=IR ψ;
M, q |=IR 〈〈A〉〉γ iff there is an IR-strategy sA ∈ ΣIR

A for A such that for
every path λ ∈ out(q, sA), we have M, λ |=IR γ;

and for path formulae by:

M, λ |=IR ϕ iff M, λ[0] |=IR ϕ;
M, λ |=IR ¬γ iff M, λ 6|=IR γ;
M, λ |=IR γ ∧ δ iff M, λ |=IR γ and M, λ |=IR δ;
M, λ |=IR ©γ iff λ[1,∞], π |=IR γ; and
M, λ |=IR γUδ iff there is an i ∈ N0 such that M, λ[i,∞] |=IR δ and

M, λ[j,∞] |=IR γ for all 0 ≤ j < i.

The perfect information memoryless semantics for LATL∗ and LATL, Ir-
semantics for short, is given as above but “IR” is replaced by “Ir” everywhere.

Remark 2.23. We note that cooperation modalities are neither “diamonds”
nor “boxes” in terms of classical modal logic. Rather, they are combinations
of both as their structure can be described by “∃∀”: We ask for the existence
of a strategy of the proponents which is successful against all responses of the
opponents.

In [Broersen et al., 2006] it was shown how the cooperation modalities
can be decomposed into two parts in the context of STIT logic. A similar
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decomposition is considered in [Jamroga, 2008b] for the analysis of stochastic
multi-agent systems.

The LCTL∗ path quantifiers A and E can be embedded in LATL∗ using the
IR-semantics in the following way: Aγ ≡ 〈〈∅〉〉γ and Eγ ≡ 〈〈Agt〉〉γ.

Analogously to CTL, it is possible to provide a state-based semantics for
LATL. We only present the clause for 〈〈A〉〉�ϕ (the cases for the other temporal
operators are given in a similar way):

M, q, |=ATL
Ix 〈〈A〉〉�ϕ iff there is an Ix -strategy sA ∈ ΣIx

A such that for all
λ ∈ out(q, sA) and i ∈ N0 it holds that M, q, |=ATL

Ix ϕ

where x is either R or r.
This already suggests that dealing with LATL is computationally less ex-

pensive than with LATL∗ . On the other hand, LATL lacks expressiveness:
There is no formula which is true for the memoryless semantics and false for
the perfect recall semantics, and vice versa.

Theorem 2.24. 3 For LATL, the perfect recall semantics is equivalent to
the memoryless semantics under perfect information, i.e., M, q |=IR ϕ iff
M, q |=Ir ϕ. Both semantics are different for LATL∗ .

Thus, when referring to LATL using the perfect information semantics, we can
omit the subscript in the satisfaction relation |=.

Definition 2.25 (ATLIx, ATL∗Ix, ATL, ATL∗). We define ATLIx and ATL∗Ix
as the logics (LATL, |=Ix) and (LATL∗ , |=Ix) where x ∈ {r,R}, respectively.
Moreover, we use ATL (resp. ATL∗) as abbreviation for ATLIR (resp. ATL∗IR).

We note that ATLIR and ATLIr are equivalent logics (i.e. their sets of validities
coincide). We end our presentation of the language and semantics with an
example.

Example 2.26 (Robots and Carriage, ctd.). Transition system M0 from Fig-
ure 2.1 enabled us to study the evolution of the system as a whole. However,
it did not allow us to represent who can achieve what, and how the possible
actions of the agents interact. Concurrent game structure M1, presented in
Figure 2.2, fills the gap. We assume that each robot can either push (action
push) or refrain from pushing (action wait). Moreover, they both use the
same force when pushing. Thus, if the robots push simultaneously or wait
simultaneously, the carriage does not move. When only one of the robots is
pushing, the carriage moves accordingly.

3 The property has been first observed in [Schobbens, 2004] but it follows from [Alur
et al., 2002] in a straightforward way.
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Fig. 2.2. The robots and the carriage: A concurrent game structure M1.

As the outcome of each robot’s action depends on the current action of the
other robot, no agent can make sure that the carriage moves to any particular
position. So, we have for example that M1, q0 |= ¬〈〈1〉〉♦pos1. On the other
hand, the agent can at least make sure that the carriage will avoid particular
positions. For instance, it holds that M1, q0 |= 〈〈1〉〉�¬pos1, the right strat-
egy being s1(q0) = wait, s1(q2) = push (the action that we specify for q1 is
irrelevant).

2.2.3 Imperfect Information Semantics: ATLiy, ATL∗iy

The logics introduced so far include no way of addressing uncertainty that
an agent or a process may have about the current situation. Several exten-
sions capable of dealing with imperfect information have been proposed, e.g.,
in [Alur et al., 2002; Schobbens, 2004; Jamroga and Ågotnes, 2007].

Here, we take Schobbens’ version from [Schobbens, 2004] as the “core”,
minimal LATL∗ -based language for strategic ability under imperfect informa-
tion. We use the already defined languages LATL∗ and LATL but here the
cooperation modalities have an additional epistemic flavour by means of a
modified semantics as we shall show below.4 The models can be seen as CGSs
augmented with a family of indistinguishability relations ∼a⊆ Q×Q , one per
agent a ∈ Agt. The relations describe agents’ uncertainty: q ∼a q′ means that
agent a cannot distinguish between states q and q′ of the system. Each ∼a is
assumed to be an equivalence relation. It is also required that agents have the
same choices in indistinguishable states.

4 In [Schobbens, 2004] the cooperation modalities are presented with a subscript:
〈〈A〉〉ir to indicate that they address agents with imperfect information and im-
perfect recall. Here, we take on a rigorous semantic point of view and keep the
syntax unchanged.
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Definition 2.27 (ICGS). An imperfect information concurrent game struc-
ture (ICGS) is given by

M = 〈Agt,Q , Π, π,Act, d, o, {∼a| a ∈ Agt}〉

where 〈Agt,Q , Π, π,Act, d, o〉 is a CGS, each ∼a⊆ Q × Q is an equivalence
relation, and if q ∼a q′ then d(a, q) = d(a, q′).

Indistinguishability between states can now be extended to histories which
are finite sequences of states. Such finite sequences of states appear identical
to an agent if they have the same length and provide the same information to
the agent at each step.

Definition 2.28 (Indistinguishable histories). Two histories h = q0q1 . . .
qn ∈ Q+ and h′ = q′0q

′
1 . . . q

′
n′ ∈ Q+ are said to be indistinguishable for agent

a, h ∼a h′, if and only if, n = n′ and qi ∼a q′i for i = 0, 1, . . . , n.

This means, according to the definition of indistinguishability we deal with
the synchronous notion of recall according to the classification in [Fagin et al.,
1995].

An imperfect information strategy5–memoryless or perfect recall–of agent a
is a plan that takes into account a’s epistemic limitations. An executable strat-
egy must prescribe the same choices for indistinguishable situations. There-
fore, we restrict the strategies that can be used by agents in the following
way.

Definition 2.29 (iR-, ir-strategies). An imperfect information perfect re-
call strategy (iR-strategy for short) of agent a is an IR-strategy satisfying the
following additional constraint: For all histories h, h′ ∈ Q+, if h ∼a h′ then
sa(h) = sa(h′).

An imperfect information memoryless strategy (ir-strategy for short) is an
Ir-strategy satisfying the following constraint: if q ∼a q′ then sa(q) = sa(q′).

The set of a’s ir (resp. iR) strategies is denoted by Σir
a (resp. ΣiR

a ). A col-
lective iR/ir -strategy is a combination of individual iR/ir-strategies. The set
of A’s collective imperfect information strategies is given by ΣiR

A =
∏
a∈AΣ

iR
a

(in the perfect recall case) and Σir
A =

∏
a∈AΣ

ir
a (in the memoryless case). The

set of all strategy profiles is given by ΣiR = ΣiR
Agt (resp. Σir = Σir

Agt).
We use the same notation as introduced in Definition 2.19.

That is, an iR-strategy is required to assign the same actions to indistin-
guishable histories. As before, a perfect recall strategy (memoryless or not)
assigns an action to each element from Q+.

The outcome function out(q, sA) for the imperfect information cases is
defined as before (cf. Definition 2.21).
5 Also called uniform strategy.
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Definition 2.30 (Imperfect information semantics |=iR and |=ir). Let
M be an ICGS, and let img(q, ρ) = {q′ | ρ(q, q′)} be the image of state q wrt.
a binary relation ρ. The imperfect information perfect recall semantics ( iR-
semantics) for LATL∗ and LATL, denoted by |=iR, is given as in Definition 2.22
with the rule for 〈〈A〉〉γ replaced by the following clause:

M, q |=iR 〈〈A〉〉γ iff there is an iR-strategy sA ∈ ΣiR
A such that, for each

q′ ∈ img(q,∼A) and each λ ∈ out(sA, q′), we have M, λ |=iR γ (where
∼A:=

⋃
a∈A
∼a).

The imperfect information memoryless semantics for LATL∗ and LATL, ir -
semantics for short, is given as above but “iR” is replaced by “ir” everywhere.

Note that M, q |=ix 〈〈A〉〉γ requires A to have a single strategy that is
successful in all states indistinguishable from q.

Remark 2.31 (Implicit knowledge operators). We note that some knowledge
operators are implicitly given by the cooperation modalities if the imperfect
information semantics is used. In this setting a formula 〈〈A〉〉γ is read as fol-
lows: Each agent in A knows that they (the agents in A) have a collective
strategy to enforce γ. In particular, one can express Kaϕ (“a knows that
ϕ”) by 〈〈a〉〉ϕUϕ, and EAϕ (“everybody in A knows that ϕ”) by 〈〈A〉〉ϕUϕ.
More sophisticated epistemic versions of ATL which contain explicit knowl-
edge operators (including ones for common and distributed knowledge) are,
for instance, considered in [Jamroga and Ågotnes, 2007; van der Hoek and
Wooldridge, 2003; van Otterloo et al., 2003; Goranko and Jamroga, 2004]. We
present some of these settings in Section 2.3.2.

Definition 2.32 (ATLix, ATL∗ix). We define ATLix and ATL∗ix as the logics
(LATL, |=ix) and (LATL∗ , |=ix) where x ∈ {r,R}, respectively.

Example 2.33 (Robots and Carriage, ctd.). We refine the scenario from Exam-
ples 2.12 and 2.26 by restricting perception of the robots. Namely, we assume
that robot 1 is only able to observe the colour of the surface on which it is
standing, and robot 2 perceives only the texture (cf. Figure 2.3). As a conse-
quence, the first robot can distinguish between position 0 and position 1, but
positions 0 and 2 look the same to it. Likewise, the second robot can distin-
guish between positions 0 and 2, but not 0 and 1. We also assume that the
agents are memoryless, i.e., they cannot memorise their previous observations.

With their observational capabilities restricted in such way, no agent can
make the carriage reach or avoid any selected states singlehandedly. E.g.,
we have that M2, q0 |=ir ¬〈〈1〉〉�¬pos1. Note in particular that strategy s1

from Example 2.26 cannot be used here because it is not uniform (indeed,
the strategy tells robot 1 to wait in q0 and push in q2 but both states look
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Fig. 2.3. Two robots and a carriage: A schematic view (left) and an imperfect
information concurrent game structure M2 that models the scenario (right).

the same to the robot). The robots cannot even be sure to achieve the task
together: M2, q0 |=ir ¬〈〈1, 2〉〉�pos1 (when in q0, robot 2 considers it possible
that the current state of the system is q1, in which case all the hope is gone).
So, do the robots know how to play to achieve anything? Yes, for example they
know how to make the carriage reach a particular state eventually: M2, q0 |=ir

〈〈1, 2〉〉♦pos1 etc. – it suffices that one of the robots pushes all the time and
the other waits all the time. Still, M2, q0 |=ir ¬〈〈1, 2〉〉♦�posx (for x = 0, 1, 2):
there is no memoryless strategy for the robots to bring the carriage to a
particular position and keep it there forever.

Most of the above properties hold for the iR-semantics as well. Note,
however, that for robots with perfect recall we do have that M2, q0 |=iR

〈〈1, 2〉〉♦�posx. The right strategy is that one robot pushes and the other waits
for the first 3 steps. After that, they know their current position exactly, and
can go straight to the specified position.

2.2.4 Coalition Logic CL

Coalition logic (CL), introduced in [Pauly, 2002], is another logic for modelling
and reasoning about strategic abilities of agents. The main construct of CL,
[A]ϕ, expresses that coalition A can bring about ϕ in a single-step game.

Definition 2.34 (Language LCL [Pauly, 2002]). The language
LCL(Π,Agt) is given by all formulae generated by the following grammar:
ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [A]ϕ, where p ∈ Π and A ⊆ Agt.

In [Pauly, 2002], coalitional models have been chosen as semantics for LCL.
These models are given by (Q , E, π) consisting of a set of states Q , a playable
effectivity function E, and a valuation function π. The effectivity function
determines the outcomes that a coalition can guarantee to achieve, i.e., given
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a set X ⊆ Q of states a coalition C is said to be effective for X iff it can
enforce the next state to be in X. However, in [Goranko and Jamroga, 2004]
it has been shown that CGSs provide an equivalent semantics, and that CL
can be seen as the next-time fragment of ATL. Hence, for this presentation we
will interpret LCL-formulae over CGSs, and consider [A]ϕ as an abbreviation
for 〈〈A〉〉©ϕ. The various logics CLxy that we obtain using the semantics |=xy

for x ∈ {i, I} and y ∈ {r,R} are defined analogously to ATLxy.

2.2.5 ATL+

The language L
ATL+ is the subset of LATL∗ that requires each temporal opera-

tor to be followed by a state formula, but cooperation modalities are allowed to
be followed by Boolean combinations of LATL-based path formulae. Formula
〈〈A〉〉(�p ∧ ♦q), for instance, is an L

ATL+ -formula but not an LATL-formula.
Formally, the language is given as follows:

Definition 2.35 (Language L
ATL+). The language L

ATL+(Π,Agt) is given
by all formulae generated by the following grammar: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ |
〈〈A〉〉γ where γ ::= ¬γ | γ ∧ γ | ϕUϕ | ©ϕ, A ⊆ Agt and p ∈ Π.

We define the various logics emerging from L
ATL+ together with one

of the introduced semantics analogously to the case of LATL∗ . The logic
ATL+

IR is strictly more expressive than ATLIR (contrary to common belief,
each ATL+

IR formula can only be translated to an equivalent ATLIR for-
mula if the “release” or “weak until” operator is added to the language
of LATL [Bulling and Jamroga, 2010a; Laroussinie et al., 2008; Harding
et al., 2002]) but it enables a more succinct encoding of properties (this
follows from the results in [Wilke, 1999]). Still, many formulae of ATL+

IR
have their equivalent counterparts in ATL. For instance, the ATL+

IR formula
〈〈jamesbond〉〉(�¬crash ∧ ♦land) can be equivalently rephrased in ATL as
〈〈jamesbond〉〉(¬crash)U(land ∧ 〈〈jamesbond〉〉�¬crash).

In particular, we have that ATL+
IR formulae can be equivalently translated

into ATLIR with the “weak until” operator [Harding et al., 2002]. We observe
that in some cases the translation results in an exponential blowup of the
length of the formula. Thus, ATL+

IR has the same expressive power as “vanilla”
ATLIR with “weak until”, but it seems to allow for exponentially more succinct
and intuitive specifications of some properties (in a similar way to CTL+ vs.
CTL, cf. [Wilke, 1999]).

In Section 5 we shall see that the more succinct language has its price:
The model checking problem becomes computationally more expensive.

It is well known that the memoryless and perfect recall semantics for LATL

formulae coincide [Alur et al., 2002; Schobbens, 2004] (cf. Theorem 2.24). The
same is not true for LATL∗ , and in fact, already for L

ATL+ . As a consequence,



2.2 Alternating Time Temporal Logics 27

L
ATL+ can be seen as the minimal well-known syntactic variant of the al-

ternating time logics that distinguishes between the memoryless and perfect
recall semantics.

We note that the IR- and Ir -semantics yield different validities for L
ATL+ .

For example, the formula

〈〈A〉〉(♦p1 ∧ ♦p2)↔ 〈〈A〉〉♦
(
(p1 ∧ 〈〈A〉〉♦p2) ∨ (p2 ∧ 〈〈A〉〉♦p1)

)

is valid in the perfect recall semantics (IR), but not in the memoryless variant
(Ir). Since ATLIR and ATLIr have the same validities, L

ATL+ can also be seen
as the minimal variant of the alternating time logics for which the IR- and
Ir -semantics give rise to different logics in the traditional sense (as sets of
valid sentences).

In conceptual terms, we can use L
ATL+ to specify a set of goals that should

be achieved without saying in which order they should be accomplished,
like in 〈〈robot〉〉(♦cleanRoom ∧ ♦packageDelivered). Moreover, L

ATL+ allows
for reasoning about what can be achieved under certain assumptions about
the agents’ behaviour, as Example 2.36 shows. This kind of properties has
been especially studied in deontic logic and normative systems (e.g., [Lomus-
cio and Sergot, 2003, 2004; Wozna and Lomuscio, 2004; van der Hoek et al.,
2005b]), but also in reasoning about plausible behaviour of agents [Bulling
and Jamroga, 2007a].

Example 2.36. Consider a class of systems, each represented by a concurrent
game structure M and a collection of behavioural constraint sets Ba, one per
agent a ∈ Agt. Like in [van der Hoek et al., 2005b], we define each behavioural
constraint from Ba to be a pair (q, α), with the underlying interpretation that
action α is forbidden for agent a in state q (for instance, by a social norm
or law). Such representations can be reconstructed into a single CGS M′ by
adding special propositions Va, a ∈ Agt, with the intuitive meaning “agent
a has committed a violation with its last action”. If necessary, several copies
of an original state q from M can be created, with different configurations of
the Va labels. Note that M′ is only linearly larger than M wrt the number of
original transitions in M.

Now, property “a can enforce property γ while complying with social
norms” can be captured in M′ by the L

ATL+ -formula 〈〈a〉〉((�¬Va) ∧ γ). A
similar property, “b can enforce γ provided that a complies with norms” can
be expressed with 〈〈b〉〉((�¬Va)→ γ).

2.2.6 EATL+

Fairness conditions allow to focus on computations where no agent is neglected
wrt given resources (e.g., access to power supply, processor time, etc.). Fairness
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is extremely important in asynchronous composition of agents. In general, it
may happen that requests of a group A ⊂ Agt are postponed forever in
favour of actions from other agents. As a consequence, if we want to state
any positive property about what A can achieve, we need to refer explicitly
to paths where A’s actions are always eventually executed. To this end, it is
enough to augment L

ATL+ with the “always eventually” combination �♦ as

an additional primitive
∞
♦.

Definition 2.37 (L
EATL+). L

EATL+(Π,Agt) is a subset of LATL∗(Π,Agt)
obtained by extending L

ATL+-path formulae. The language is given as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ, where γ ::= ¬γ | γ ∧ γ | ©ϕ | ϕUϕ | ∞♦ϕ.

We note that in LATL∗ ,
∞
♦ϕ is expressible by �♦ϕ . Hence, we can use the

ordinary LATL∗ -semantics to give truth to L
EATL+ -formulae.

By the fact that ECTL+ is more expressive than CTL+ (which follows
from ECTL being more expressive than CTL [Emerson, 1990]), we conjecture
that EATL+

IR is also more expressive than ATL+
IR. In particular, we conjecture

that fairness constraints cannot be expressed in ATL+
IR; that is, EATL+

IR is
strictly more expressive than ATL+

IR.
Hence the importance of EATL+

IR which allows for reasoning about the out-
come of fair computations in model M. This is extremely important for the
specification and verification of agents that act in an asynchronous environ-
ment. For example, most agent (and multi-agent) programming frameworks
assume an asynchronous execution platform. In such settings, the following
property from [Dastani and Jamroga, 2010] holds.

Proposition 2.38 ([Dastani and Jamroga, 2010]). Let M be a multi-
agent program model, q a state in M, and ϕ an ATL formula. If there is a
path in M, q on which ϕ never holds, then there must be an agent i in M so
that, for each coalition A ⊆ Agt \ {i}, we have M 6|= 〈〈A〉〉♦ϕ.

In other words, if the design of the program does not guarantee that ϕ must
eventually happen, then the execution platform (agent i in the proposition
above) can prevent actions of every coalition of “real” agents (from Agt \ {i})
and prevent them from achieving ϕ.

In EATL+
IR, this can be overcome by putting fairness constraints explicitly

in the formula. To make our discussion more concrete, let us assume that M
is an asynchronous CGSs as defined in [Alur et al., 2002]. That is, M is a
CGS where agent k is designated as the scheduler. The scheduler’s task is to
choose the agent whose action is going to be executed, i.e., dk(q) = Agt \ {k}
for every q ∈ Q , and for every pair of action profiles α,α′ that agree on the
action of agent j we have o(q,α, j) = o(q,α′, j). In our construction, we also
assume that transitions by different agents lead to different states (o(q,α, i) 6=
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o(q,α′, j) for i 6= j). Moreover, each state is labeled by proposition acti, where
i is the agent whose action was executed last.

Now, for example, the L
EATL+ formula

〈〈1, 2〉〉
(
(
∞
♦act1 ∧

∞
♦act2)→ ♦cleanRoom)

says that agents 1 and 2 can cooperate to make the room clean for each course
of events on which no agent is blocked forever.

2.3 Further Strategic Epistemic Logics

In the previous section we have introduced extensions of ATLs by incomplete
information (iR- and ir -semantics). The epistemic part was purely semantical
and directly incorporated into the denotation of the cooperation modalities.
There are more general attempts to logics combining strategic and epistemic
concepts. The alternating time temporal epistemic logic ATEL from [van der
Hoek and Wooldridge, 2003] extends ATL by standard knowledge operators.
The logics feasible ATEL [Jonker, 2003], uniform ATEL [Jamroga, 2003] and
alternating time temporal observational logic [Jamroga and van der Hoek,
2004] are of the same kind and overcome some problems encountered with
ATEL. Similarly, epistemic temporal strategic logic [van Otterloo and Jonker,
2004] restricts to undominated strategies. Finally, the logic CSL (constructive
strategic logic) has been proposed in [Jamroga and Ågotnes, 2006, 2007], an
expressive logic that combines strategic and epistemic reasoning in a neat way.
The latter comes for the cost of a non-standard semantics. In the following, we
will present ATEL and CSL in more detail; the latter is used as the underlying
logic of CSLP presented in Section 7.1. In that section we also point out the
benefits of CSL. For a detailed discussion and a general overview of epistemic
logics we refer to the original papers and to [Jamroga and Ågotnes, 2007;
Jamroga and van der Hoek, 2004; Jamroga, 2004].

2.3.1 Alternating-Time Temporal Epistemic Logic: ATEL

The alternating time temporal epistemic logic ATEL [van der Hoek and
Wooldridge, 2003] is a fusion of ATL with a standard S5 epistemic logic
together with group, distributed and common knowledge operators. The lan-
guage of ATEL is given as follows:

ϕ ::= ψ | Kaϕ | CAϕ | EAϕ where ψ ∈ LATL

a ∈ Agt and A ⊆ Agt. The epistemic operators have their standard meaning
(from left to right): a knows ϕ, group A has common knowledge that ϕ,
and everybody in A knows that ϕ. In [van der Hoek and Wooldridge, 2003]



30 2 Temporal and Strategic Logics

alternating epistemic transitions systems were used to provide a semantics for
the logic. Equivalently, we use ICGSs from Definition 2.27 (let M be such a
model) and extend the Ir -semantics from Definition 2.22 to give a meaning
to the epistemic operators:

M, q |=Ir Kaϕ iff for all q′ ∈ QM with q ∼a q′ we have that M, q′ |=Ir ϕ,
M, q |=Ir EAϕ iff for all q′ ∈ QM with q ∼EA q′ we have that M, q′ |=Ir ϕ,
M, q |=Ir CAϕ iff for all q′ ∈ QM with q ∼CA q′ we have that M, q′ |=Ir ϕ,

where ∼EA:=
⋃
a∈A ∼a and ∼CA:= (∼EA)∗. The latter denotes the reflexive and

transitive closure of ∼EA. As mentioned in the literature, e.g. in [Jamroga,
2003; Jamroga and van der Hoek, 2004; Jonker, 2003], the logic yields some
counterintuitive settings when it comes to the interplay of strategic ability and
knowledge. The formula Ka〈〈a〉〉ϕ, for instance, expresses that a knows that it
has a strategy to enforce ϕ. However, a might not be able to identify a strategy
since there can be a different winning strategy in each of the indistinguishable
states. But the incomplete knowledge makes it impossible for the agent to
identify (and thus execute) the correct strategy in each of these states.

In [Jonker, 2003] an extension of ATEL named feasible ATEL has been
proposed in which additional modalities are introduced focussing on uniform
strategies. We have introduced the notion ir -strategy to refer to the latter
kind of strategies (cf. Definition 2.29).

2.3.2 Constructive Strategic Logic: CSL

In this section we present constructive strategic logic CSL [Jamroga and
Ågotnes, 2006, 2007] which we will later extend by a concept of plausibility to
reason about rational agents under incomplete information (see Chapter 7).
On top of standard epistemic operators the language of CSL comes with con-
structive epistemic operators. The latter kind of operators model constructive
knowledge of agents: Knowledge about the existence of a strategy does imply
that the agents are also able to identify it.

Definition 2.39 (LCSL). The logic LCSL(Π,Agt) is generated by the follow-
ing grammar:

ϕ ::= ψ | CAϕ | EAϕ | DAϕ where ψ ∈ LATL(Π,Agt).

Individual constructive knowledge operators are defined as Ka := C{a}
and the standard epistemic operators (occurring, e.g., in ATEL) as

Kaϕ := Ka〈〈∅〉〉ϕUϕ

and analogously for standard common (CA), mutual (EA), and distributed
knowledge (DA) operators (cf. [Jamroga and Ågotnes, 2007] for details).
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ICGSs from Definition 2.27 serve as models for CSL. Now we define the
notion of formula ϕ being satisfied by a (non-empty) set of states Q′ in model
M, written M, Q′ |= ϕ. We will also write M, q |= ϕ as a shorthand for
M, {q} |= ϕ. It is the latter notion of satisfaction (in single states) that we
are ultimately interested in–but it is defined in terms of the (more general)
satisfaction in sets of states. Let img(q,R) be the image of state q with respect
to binary relation R, i.e., the set of all states q′ such that qRq′. Moreover, we
use out(Q′, sA) as a shorthand for

⋃
q∈Q′ out(q, sA) (cf. Definition 2.21), and

img(Q′,R) as a shorthand for
⋃
q∈Q′ img(q,R).

Definition 2.40 (Semantics, CSL). Let M be an ICGS. The semantics for
LCSL, denoted by |=CSL, is given by the following clauses:

M, Q′ |=CSL p iff p ∈ π(q) for each q ∈ Q′;
M, Q′ |=CSL ¬ϕ iff M, Q′ 6|=CSL ϕ;
M, Q′ |=CSL ϕ ∧ ψ iff M, Q′ |=CSL ϕ and M, Q′ |=CSL ψ;
M, Q′ |=CSL 〈〈A〉〉 © ϕ iff there exists an ir-strategy sA ∈ Σir

A such that, for
each λ ∈ out(Q′, sA), we have that M, {λ[1]} |=CSL ϕ;

M, Q′ |=CSL 〈〈A〉〉�ϕ iff there exists an ir-strategy sA ∈ Σir
A such that, for each

λ ∈ out(Q′, sA) and i ∈ N0, we have M, {λ[i]} |=CSL ϕ;
M, Q′ |=CSL 〈〈A〉〉ϕUψ iff there exists an ir-strategy sA ∈ Σir

A such that, for
each λ ∈ out(Q′, sA), there is an i ∈ N0 for which M, {λ[i]} |=CSL ψ and
M, {λ[j]} |=CSL ϕ for each 0 ≤ j < i.

M, Q′ |=CSL K̂Aϕ iff M, img(Q′,∼KA) |=CSL ϕ (where K̂ = C,E,D and K =
C,E,D, respectively).

where relations ∼EA, ∼CA and ∼DA , used to model group epistemics, are derived
from the individual relations of agents from A. First, ∼EA is the union of
relations ∼a, a ∈ A. Next, ∼CA is defined as the transitive closure of ∼EA.
Finally, ∼DA is the intersection of all the ∼a, a ∈ A.

The macros of the standard epistemic operators may seem awkward but
they actually meet the expected semantics as illustrated below:

M, Q′ |=CSL Kaϕ
iff M, img(Q′,∼C{a}) |=CSL 〈〈∅〉〉ϕUϕ
iff for each λ ∈ out(img(Q′,∼C{a}), ∅), M, λ[0] |=CSL ϕ

iff for each q ∈ img(Q′,∼C{a}), M, q |=CSL ϕ.

Due to the non-standard semantics, knowledge is an KD45 -modality; the
truth axiom T is not valid. This issue is discussed in more detail in [Jamroga
and Ågotnes, 2007].
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In this chapter we analyse the connection between game theory and strate-
gic logics. We show how these logics can be used to characterise game-theoretic
solution concepts. In Part II of this thesis we use descriptions of the latter
kind to model and to reason about agents’ rational behaviour.

3.1 Concepts From Game Theory

The following introduction to game theory is taken from [Bulling et al., 2009b]
which in turn is mostly based on [Osborne and Rubinstein, 1994].

We start with the definition of a normal form game, also called strategic
game. We follow the terminology of [Osborne and Rubinstein, 1994].

Definition 3.1 (Normal Form (NF) Game, ai, a−i). A (perfect infor-
mation) normal form game Γ , is a tuple of the form Γ = 〈P,A1, . . . ,Ak, µ〉,
where
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Fig. 3.1. Payoff matrix for 2 players and 2× 2 strategies
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Fig. 3.2. Payoff matrices for Matching Pennies, Prisoner’s Dilemma, and Hawk-
Dove. Nash equilibria are set in bold font.

• P is a finite set of players (or agents), with |P| = k,
• Ai are nonempty sets of actions (or strategies) for player i,
• µ : P → (×ki=1Ai → R) is the payoff function (which we also write
〈µ1, . . . , µk〉).

Combinations of actions (resp. strategies, payoffs), one per player, will be
called action profile (resp. strategy profile, payoff profile). Given a strategy
profile a ∈ ×ki=1Ai we write ai (resp. a−i) to denote i’s strategy ai (resp. the
strategy profile (a1, . . . , ai−1, ai+1, . . . , ak) of all players apart from i). More-
over, we use (ai, a′−i) to refer to the complete strategy profile resulting from
combining the strategies a−i with the strategy ai.

Such games are usually depicted as payoff matrices. For example, a game
with 2 players having 2 strategies each is represented by the matrix in Fig-
ure 3.1.

Example 3.2 (Classical NF Games). Some classical NF games with 2 players
and 2 strategies are shown in Figure 3.2. In the Matching Pennies game, player
1 wins when both pennies show the same side. Otherwise player 2 wins. In
the Prisoner’s Dilemma, two prisoners can either cooperate or defect with the
police. Finally, the Hawk-Dove game is similar, but the payoffs are different.
The higher the payoff the better it is for the respective player.

Definition 3.3 (Solution concepts in games). There are several well-
known solution concepts such as follows.

Best Response (BR): A strategy ai is a best response of i against a−i if it
is among the best strategy i can chose if the opponents play a−i; i.e.

∀a′i ∈ Ai (µi((a−i, ai)) ≥ µi((a−i, a′i))).
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Nash Equilibrium (NE): A strategy profile such that no agent can unilat-
erally deviate from its strategy and get a better payoff; i.e., a profile a∗ is
a NE if for each player i, a∗i is a best response to a∗−i.

Pareto Optimality (PO): There is no other strategy profile that leads to a
payoff profile which is at least as good for each agent, and strictly better
for at least one agent; i.e., a∗ is PO if there is no profile a′ such that for
all players i, µi(a′) ≥ µi(a∗) and for some player j, µj(a′) > µj(a∗).

Weakly Undominated Strategies (UNDOM): These are strategies that
are not dominated by any other strategy, i.e., ai is weakly undominated
for i if there is no strategy a′i at least as good for all the responses of the
opponent, and strictly better for at least one response.

We point out that some solution concepts yield sets of individual strategies
(UNDOM), while others produce rather sets of strategy profiles (NE, PO).

In the examples from Figure 3.2, there is no Nash equilibrium for the
Matching Pennies game, exactly one Nash equilibrium for the Prisoner’s
Dilemma (namely, the strategy profile 〈D,D〉), and two Nash equilibria for
the Hawk-Dove game (〈Hawk,Dove〉 and 〈Dove,Hawk〉).

In NF games, agents do their moves simultaneously : They do not see the
move of the opponents and therefore cannot act accordingly. On the other
hand, there are many games where the move of one player should depend on
the preceding move of the opponent, or even on the whole history. This idea
is captured in games of extensive form.

Definition 3.4 (Extensive Form (EF) Game). A (perfect information)
extensive (form) game Γ is a tuple of the form Γ = 〈P,A, H, ow, u〉, where:

• P is a finite set of players,
• A a finite set of actions (moves),
• H is a set of finite action sequences (game histories), such that (1) ∅ ∈ H,

(2) if h ∈ H, then every initial segment of h is also in H. We use the
notation A(h) = {m | h ◦m ∈ H} to denote the moves available at h, and
we define Term = {h | A(h) = ∅}, the set of terminal positions,

• ow : H → P defines which player “owns” history h, i.e., has the next move
given h,

• u : P × Term → U assigns agents’ utilities to every terminal position of
the game.

We will usually assume that the set of utilities U is finite.

Such games can be easily represented as trees of all possible plays.

Example 3.5 (Bargaining). Consider bargaining with discount [Osborne and
Rubinstein, 1994; Sandholm, 1999]. Two players, 1 and 2, bargain about how
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Fig. 3.3. The bargaining game.

to split goods worth initially w0 = 1 EUR. After each round without agree-
ment, the subjective worth of the goods reduces by discount rates δ1 (for
player a1) and δ2 (for player a2). So, after t rounds, the goods are worth
〈δt1, δt2〉, respectively. Subsequently, a1 (if t is even) or a2 (if t is odd) makes
an offer to split the goods in proportions 〈x, 1 − x〉, and the other player
accepts or rejects it. If the offer is accepted, then a1 takes xδt1, and a2 gets
(1−x)δt2; otherwise the game continues. The (infinite) extensive form game is
shown in Figure 3.3. Note that the tree has infinite depth as well as an infinite
branching factor.

In order to obtain a finite set of payoffs, it is enough to assume that
the goods are split with finite precision represented by a rounding function
r : R → R. So, after t rounds, the goods are in fact worth 〈r(δt1), r(δt2)〉,
respectively, and if the offer is accepted, then a1 takes r(xδt1), and a2 gets
r((1− x)δt2).

A strategy for player i ∈ P in extensive game Γ is a function that assigns
a legal move to each history owned by i. A strategy profile (i.e., a combination
of strategies, one per player) determines a unique path from the game root (∅)
to one of the terminal nodes (and hence also a single profile of payoffs). As a
consequence, one can construct the corresponding normal form game NF (Γ )
by enumerating strategy profiles and filling the payoff matrix with resulting
payoffs.

Example 3.6 (Sharing Game). Consider the Sharing Game in Figure 3.4A. Its
corresponding normal form game is presented in Figure 3.4B. Firstly, player
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Fig. 3.4. The Sharing game: (A) Extensive form; (B) Normal form. Nash equilibria
are set in bold font. A strategy abc (a, b, c ∈ {y, n}) of player 2 denotes the strategy
in which 2 plays a (resp. b, c) if player 1 has played (2, 0) (resp. (1, 1), (0, 2)) where
n refers to “no” and y to “yes”.

1 can suggest how to share, say, two 1 EUR coins. E.g. (2, 0) means that 1
gets two EUR and 2 gets nothing. Subsequently, player 2 can accept the offer
or reject it; in the latter case both players get nothing.

The game includes 3 strategies for player 1 (which can be denoted by the
action that they prescribe at the beginning of the game), and 8 strategies for
player 2 (generated by the combination of actions prescribed for the second
move), which gives 24 strategy profiles in total. However, not all of them seem
plausible. Constraining the possible plays to Nash equilibria only, we obtain
9 “rational” strategy profiles (cf. Figure 3.4B), although it is still disputable
if all of them really “make sense”.

A subgame of an extensive game Γ is defined by a subtree of the game
tree of Γ .

Definition 3.7 (Subgame Perfect Nash Equilibrium (SPN)). This so-
lution concept is an extension of NE: A strategy is a SPN in Γ if it is a NE
in Γ and, in addition, a NE in all subgames of Γ .

Example 3.8 (Sharing Game ctd.). Consider again the game from Exam-
ple 3.6. While the game has 9 Nash equilibria, only two of them are subgame
perfect (〈(2, 0), yyy〉 and 〈(1, 1), nyn〉).
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Example 3.9 (Bargaining ctd.). We consider the bargaining game from Exam-
ple 3.12. The game has an immense number of possible outcomes. Still worse,
every strategy profile

sx :

{
a1 always offers 〈x, 1− x〉, and agrees to 〈y, 1− y〉 for y ≥ x
a2 always offers 〈x, 1− x〉, and agrees to 〈y, 1− y〉 iff 1− y ≥ 1− x

is a Nash equilibrium (NE): An agreement is reached in the first round. Thus,
each split 〈x, 1−x〉 can be achieved through a Nash equilibrium; it seems that
a stronger solution concept is needed. Indeed, the game has a unique subgame
perfect Nash equilibrium. Because of the finite precision, there is a minimal
round T with r(δT+1

i ) = 0 for i = 1 or i = 2. For simplicity, assume that i = 2
and agent a1 is the offerer in T (i.e., T is even). Then, the only subgame perfect

NE is given by the strategy profile sκ with κ = (1− δ2) 1−(δ1δ2)
T
2

1−δ1δ2 + (δ1δ2)
T
2 .

The goods are split 〈κ, 1− κ〉; the agreement is reached in the first round (cf.
Section A.4).1

3.2 Reasoning about Games

In this section we present some important ideas that form the starting point
for later sections when analysing the behaviour of rational agents (cf. Chapter
6 and 7). We discuss informally how the notion of strategic ability in ATL can
be refined so that it takes into account only “sensible” behaviour of agents
and we summarise a correspondence between extensive games and CGSs, the
models of ATLs. Subsequently, we present two logics that can be used to
implement these ideas from game theory directly. The first logic Game Logic
with preferences GLP [van der Hoek et al., 2004] does so in a limited way.
The other extension of ATL, called ATLI (“ATL with Intentions”) [Jamroga
et al., 2005], is more general and will later serve as an intermediate logical
framework and as a motivation for our logic ATLP defined in Section 6.1.
Finally, we demonstrate how several game-theoretical solution concepts can
be expressed in ATLI. For this purpose we introduce general or qualitative
solution concepts, where ATL path formulae are used to define the winning
conditions, instead of utilities.

3.2.1 ATL and Rational Play

We begin this section with an example.
1 For the standard version of bargaining with discount (with the continuous set of

payoffs [0, 1]), cf. [Osborne and Rubinstein, 1994; Sandholm, 1999]. Restricting
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Fig. 3.5. Asymmetric matching pennies: (A) Concurrent game structure M1. In
q0 the agents can choose to show head or tail. Both agents can only execute action
nop (no operation) in states q1, q2, q3. (B) The corresponding NF game. We use sh
(resp. st) to denote the strategy in which the player always shows head (resp. tail)
in q0 and nop in q1, q2, and q3.

Example 3.10 (Asymmetric matching pennies). Consider a variant of the
matching pennies game, presented in Figure 3.5A. Formally, the model is
given as follows:

M1 = 〈{1, 2}, {q0, q1, q2, q3}, {start,money1,money2}, π, {head , tail ,nop}, d, o〉

where π is defined as in the picture (π(q0) = {start} etc.), d(a, q0) =
{head , tail} for a = 1, 2, and d(a, q) = {nop} for a = 1, 2 and q = q1, q2, q3.
The transition function o can also be read off from the picture. We use nop
(no operation) as a “default” action in states q1, q2, and q3 that brings the
system back to the initial state. The intuition is that the game is played ad
infinitum. Alternatively, one might add loops to states q1, q2 and q3 to model
a game that is played only once.

If both players show heads in q0, both win a prize in the next step; if
they both show tails, only player 2 wins. If they show different sides, nobody
wins. Note that, e.g., M1, q0 |= 〈〈2〉〉�¬money1, because agent 2 can play
tail all the time, preventing 1 from winning the prize. On the other hand,
M1, q0 |= ¬〈〈2〉〉♦money2: Agent 2 has no strategy to guarantee that it will
win.

The CGS in Figure 3.5A determines the set of available strategy profiles.
However, it does not say anything about players’ preferences. Suppose now
that the players are only interested in getting some money sometime in the

the payoffs to a finite set requires to alter the solution slightly [St̊ahl, 1972; Mas-
Colell et al., 1995], see also Appendix A.4.
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future (but it does not matter when and/or how much). The corresponding
normal form game under this assumption is depicted in Figure 3.5B.

Such an analysis of the game is of course correct, yet it appears to be
quite coarse. It seems natural to assume that players prefer winning money
over losing it. If we additionally assume that the players are rational thinkers,
it seems plausible that player 1 should always play head, as it keeps the pos-
sibility of getting money open (while playing tail guarantees loss). Under this
assumption, player 2 has complete control over the outcome of the game: It can
play head too, granting itself and the other agent with the prize, or respond
with tail, in which case both players lose. This kind of analysis corresponds
to the game-theoretical notion of weakly dominant strategy : For agent 1, play-
ing head is dominant in the corresponding normal form game in Figure 3.5B,
while both strategies of player 2 are undominated, so they can be in principle
considered for playing.

It is still possible to refine our analysis of the game. Note that 2, knowing
that 1 ought to play head and preferring to win money too, should decide to
play head herself. This kind of reasoning corresponds to the notion of iterated
undominated strategies. If we assume that both players do reason this way,
then 〈sh, sh〉 is the only rational strategy profile, and the game should end
with both agents winning the prize.

3.2.2 CGSs vs. Extensive Games

In this section we recall the correspondence between extensive form games
and the semantical models of ATL, proposed in [Jamroga et al., 2005] and
inspired by [Baltag, 2002; van der Hoek et al., 2005a].

We recall after [Baltag, 2002; Jamroga et al., 2005] that CGSs embed
extensive form games with perfect information in a natural way. This can be
done, e.g., by adding auxiliary propositions to CGSs, that describe the payoffs
of agents. With this perspective, concurrent game structures can be seen as a
strict generalisation of extensive form games.

We only consider game trees in which the set of payoffs is finite. Let U
denote the set of all possible utility values in a game; U will be finite and fixed
for any given game. For each value v ∈ U and agent a ∈ Agt, we introduce a
proposition pv

a into our set Π, and fix pv
a ∈ π(q) iff a gets payoff of at least v in

q.2 States in the model represent finite histories in the game. In particular, we
us ∅ to denote the root of the game. The correspondence between an extensive
game Γ and a CGS M can be captured as follows.

Definition 3.11 (From extensive form games to CGSs). We say that
a CGS M = 〈Agt,Q , Π, π,Act, d, o〉 corresponds to an extensive form game
Γ = 〈P,A, H, ow, u〉 if, and only if, the following holds:
2 Note that a state labeled by pv

a is also labeled by pv′
a for all v′ ∈ U where v′ < v.
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Fig. 3.6. CGS M2 for the bargaining game

• Agt = P,
• Q = H,
• Π and π include propositions pv

a to emulate utilities for terminal states in
the way described above,

• Act = A ∪ {nop},
• da(q) = A(q) if a = ow(q) and da(q) = {nop} otherwise,
• o(q, nop, . . . ,m, . . . , nop) = q ·m, and
• o(q, nop, nop, . . . , nop) = q for q ∈ Term.

We use M(Γ ) to refer to the CGS which corresponds to Γ .

Example 3.12 (Bargaining in a CGS). We consider the bargaining game from
Example 3.5, but this time as a CGS. The CGS corresponding to the game is
shown in Figure 3.6. Nodes represent various states of the negotiation process,
and arcs show how agents’ moves change the state of the game. A node label
refers to the history of the game for better readability. For instance,

24 0, 1
1, 0
acc

35 has

the meaning that in the first round 1 offered 〈0, 1〉 which was rejected by 2.
In the next round 2’s offer 〈1, 0〉 has been accepted by 1 and the game has
ended.

Note that, for each extensive form game Γ , there is a corresponding CGS,
but the reverse is not true: Concurrent game structures can include cycles
and simultaneous moves of players, which are absent in game trees. For those
CGSs that correspond to some extensive form game, we get an implicit cor-
respondence to a normal form game. We will extend this notion of correspon-
dence to all CGSs in Section 3.3.2.
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3.2.3 A Modal Logic for Games

In [Harrenstein et al., 2003] a modal logic for characterising solution concepts
is presented. The main construct of the logic is [β]ϕ where β ranges over
preference relations, and complete and partial strategy profiles. The three
kinds of operators have the following meaning where pref i (resp. σ and i)
represents the preference relation of player i (resp. a complete strategy profile,
a player):

[pref i]ϕ: ϕ holds in all states at least as preferable to player i as the current
one.

[σ]ϕ: ϕ will hold in the final state reached if all players follow σ.
[σ−i]ϕ: ϕ will hold in all final states reached if all players apart from i follow
σ.

Note, that the modal logic is built on a great number of modal operators.
In the paper it is shown how solution concepts can be described by formulae
of this logic. For instance, the formulae

(¬[σ−i]¬[pref i]ϕ)→ [σ]ϕ

expresses that σi is a best response to σ−i with respect to ϕ: If there is a
strategy of i (note that σ−i does not fix a strategy for i) such that the state
reachable satisfies ϕ and is among the most preferred ones regarding i then
the strategy σi (which is included in σ) does also bring about ϕ.

A complete axiomatisation is also presented. The logic is a very special-
purpose logic; strategies and preferences are first-class citizens. The main task
of the logic is to reason about the outcome of extensive form games; in prin-
cipal, these are also taken as models for the logic. So, it is not possible to
reason about temporal behaviours of players. The logic ATLP presented in
Section 6.1 overcomes this limitation.

3.2.4 Game Logic with Preferences

Game logic with preferences [van der Hoek et al., 2004] (GLP) is, to our
knowledge, the only logic designed to address the outcome of rational play in
games with perfect information. Here, we briefly summarise the idea.

The central idea of GLP is facilitated by the preference operator [A : ϕ].
The interpretation of [A : ϕ]ψ in model M is given as follows: If the truth of
ϕ can be enforced by group A, then we remove from the model all the actions
of a that do not enforce it and evaluate ψ in the resulting model. Thus, the
evaluation of GLP formulae is underpinned by the assumption that rational
agents satisfy their preferences whenever they can. The requirement applies
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to all the subtrees of the game tree, and is called “subgame perfectness” by
the authors. Formulae of GLP are defined by

ϕ ::= ϕ0 | ϕ ∨ ϕ | ¬ϕ | [A : ϕ0]ϕ

where ϕ0 is a propositional formula over some set Π of proposition and
A ⊆ Agt a group of agents. Models of GLP are essentially finite perfect
information extensive form games (without utility functions) extended with a
labelling function assigning propositions to final nodes of histories. Formally,
let 〈P,A, H, ow, u〉 be a perfect information extensive form game (cf. Defi-
nition 3.4) and let π : Z(H) → P(Π) assign to each final history a set of
propositions true at it. Z(H) denotes the set of finite histories of H. Then, a
GLP-model is given by

Γ = (P,A, H, ow,Π, π).

Propositional formulae ϕ0 are interpreted over π and final histories h ∈ Z(H)
as usual; we write π, h |= ϕ0 if ϕ0 is true with respect to π and h. The other
formulae are interpreted as stated below:

Γ |= �ϕ0 iff for all h ∈ Z(H) : π, h |= ϕ0,
Γ |= ϕ ∨ ψ iff Γ |= ϕ or Γ |= ψ,
Γ |= ¬ϕ iff Γ 6|= ϕ,
Γ |= [A : ϕ0]ϕ iff Up(Γ,A, ϕ0) |= ψ.

The model update operator Up removes from the model all actions not en-
suring ϕ0 if there is a way to ensure ϕ0. More precisely, it takes the most
general choice strategy sA of players A such that for each subgame Γ ′ of Γ all
final histories consistent with sA satisfy ϕ0 if such a strategy exists. A choice
strategy is a generalisation of a strategy in extensive form games. Formally, a
choice strategy for a is a function assigning possibly more than one action to
each history owned by a; that is, it is a function (cf. Definition 3.4)

sa : {h ∈ H | ow(h) = a} → P(A) with sa(h) ⊆ A(h).

As before, a collective choice strategy is a set of individual choice strategies.
Such a choice strategy can be considered as the union of strategies. More
formally, Up(Γ,A, ϕ0) is the game that results if Γ is restricted according to
choice strategy s∗A which is defined as follows. s∗A is the most general choice
strategy such that if any subgame Γ ′ of Γ in which A has a choice strategy s′A
such that the restriction of Γ ′ according to s′A satisfies �ϕ0, then the strategy
s∗A enforces �ϕ0 in Γ ′. Intuitively, s∗A removes a minimal number of actions
in each subgame such that �ϕ0 if there is a way to ensure ϕ0. We note that
if ϕ0 cannot be ensured in a subgame no action is removed. We call s∗A the
subgame-perfect strategy of A for ϕ0 in Γ and denote it by
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s∗A = s∗(A,Γ, ϕ0).

The scope of GLP, however, is limited for several reasons. Firstly, the mod-
els of GLP are restricted to finite game trees (in the sense that propositional
formulae can only be evaluated at finite histories). Secondly, agents’ prefer-
ences must be specified with propositional (non-modal) formulae, and they are
evaluated only at the terminal states of the game. The temporal part of the
language is limited, too. Lastly, and perhaps most importantly, the semantics
of GLP is based on a very specific notion of rationality (see above). One can
easily imagine variants of the semantics, in which other rationality criteria
are used (Nash equilibria, Pareto optimal strategies, undominated strategies,
etc.) to eliminate “irrational” strategies. The strategies used seem to be quite
strong either there is such a “very good” strategy or not. Indeed, a prelimi-
nary version of GLP was based on the notion of Nash equilibrium rather than
“subgame perfectness” [van Otterloo et al., 2004]. In this thesis, we want to
allow as much flexibility as possible with respect to the choice of a suitable
solution concept.

In Section 6.3 we show that the logic ATLP embeds GLP by just plugging-
in this very notion of rationality.

3.2.5 ATLI: ATL with Intentions

The correspondence between extensive form games and concurrent game
structures gives us a way of performing game-theoretical analyses on the lat-
ter. In particular, game-theoretical solution concepts become meaningful for
these CGSs. In this section we present the logic ATLI [Jamroga et al., 2005]
that allows to describe several important notions of rationality from game
theory. We will later show how these characterisations can be “plugged” into
the new logic ATLP introduced in Chapter 6 so that one can reason about
the outcome of rational play in a precisely defined sense.

We also point out after [Jamroga et al., 2005] that these characterisations
give rise to generalised versions of solution concepts which can be applied
to all CGSs, and not only to those that correspond to some extensive form
game. These solution concepts are also more flexible in describing winning
criteria to agents.

Alternating time temporal logic with intentions (ATLI) extends ATL with
formulae (straσa)ϕ with the intuitive reading: Suppose that player a intends to
play according to strategy σa, then ϕ holds. Thus, it allows to refer to agents’
strategies explicitly via terms σa. Let Str =

⋃
a∈Agt Stra be a finite set of

strategic terms. Stra is used to denote individual strategies of agent a ∈ Agt;
we assume that all Stra are disjoint.



3.2 Reasoning about Games 45

Definition 3.13 (LATLI [Jamroga et al., 2005]). Let p ∈ Π, a ∈ Agt,
A ⊆ Agt, and σa ∈ Stra. The language LATLI(Agt, Π,Str) is defined as:

θ ::= p | ¬θ | θ ∧ θ | 〈〈A〉〉 © θ | 〈〈A〉〉�θ | 〈〈A〉〉θUθ | (straσa)θ.

Models for ATLI M = 〈Agt,Q , Π, π,Act, d, o, I,Str, [·]〉 extend concurrent
game structures with intention relations I ⊆ Q×Agt×Act (where qIaα means
that a possibly intends to do action α when in q). Moreover, strategic terms
are interpreted as strategies according to function

[·] : Str→
⋃

a∈Agt

Σir
a such that [σa] ∈ Σir

a for σa ∈ Stra

(Σir
a denotes the set of a’s strategies). The set of paths consistent with all

agents’ intentions is defined as

ΛI = {λ ∈ ΛM | ∀i ∃α ∈ d(λ[i]) (o(λ[i], α) = λ[i+ 1] ∧ ∀a ∈ Agt λ[i]Iaαa)}.
We impose on I the natural requirement that qIaα implies that α ∈ da(q) for
a ∈ Agt; that is, agents only intend to do actions if they are actually able to
perform them.

We say that strategy sA is consistent with A’s intentions if qIasaA(q) for
all q ∈ Q , a ∈ A. The intention-consistent outcome set is defined as:

outI(q, sA) = out(q, sA) ∩ ΛI .
The semantics of strategic operators in ATLI extends and replaces the seman-
tic rules of ATL as follows:

M, q |= 〈〈A〉〉 © θ iff there is a collective strategy sA consistent with A’s
intentions, such that for each λ ∈ outI(q, sA), we have that M, λ[1] |= θ;

M, q |= 〈〈A〉〉�θ and M, q |= 〈〈A〉〉θUθ′: analogously;
M, q |= (straσ)θ iff revise(M, a, [σ]), q |= θ.

The function revise(M, a, sa) updates model M by setting a’s intention rela-
tion to

Ia = {〈q, sa(q)〉 | q ∈ Q},
so that sa and Ia represent the same mapping in the resulting model. A pure
CGS M can be seen as a CGS with the full intention relation

I0 = {〈q, a, α〉 | q ∈ Q , a ∈ Agt, α ∈ da(q)}.
Additionally, for A = {ai1 , . . . , air} and σA = 〈σai1 , . . . , σair 〉, we define:
(strAσA)ϕ ≡ (strai1σai1 ) . . . (strairσair )ϕ. Furthermore, for B = {b1, . . . , bl}
⊆ A we use σA[B] to refer to B’s substrategy, i.e. to 〈σb1 , . . . , σbl〉.
Example 3.14 (Asymmetric matching pennies ctd.). Coming back to our match-
ing pennies example from Figure 3.5, we have for instance that M1, q0 |=
(str1σ)〈〈2〉〉♦money2 if the denotation of σ is set to sh .
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3.2.6 Further Logics for and about Games

Game Logic (GL)[Parikh, 1985] is another logic about games. It builds upon
propositional dynamic logic (PDL) [Fischer and Ladner, 1979]. The logic can
be used to reason about determined two player games [Blackburn et al., 2006].
The idea is to interpret the normal PDL operators in a game theoretic context
and add some new constructs.

We would also like to mention the work [van Benthem, 2003] on rational
dynamics and [Bonanno, 2002] on modal logic and game theory.

3.3 Logical Characterisation of Solution Concepts

In the following we show how game-theoretic solution concepts can be specified
within ATLI. We discuss a classical approach and generalised solution concepts
which are not based on utility values.

3.3.1 Standard Solution Concepts

Let σ = 〈σ1, . . . , σk〉 be a profile of strategic terms, and let T stand for any
of the following operators: ©,�,♦, Uψ,ψU and let a be an agent. Then we
consider the following LATLI formulae:

BRTa (σ) ≡ (strAgt\{a}σ[Agt \ {a}])
∧

v∈U

(
(〈〈a〉〉Tpv

a)→ ((straσ[a])〈〈∅〉〉Tpv
a)
)
,

NET (σ) ≡
∧

a∈Agt

BRTa (σ),

SPNT (σ) ≡ 〈〈∅〉〉�NET (σ).

BRTa (σ) refers to σ[a] being a T -best strategy for a against σ[Agt \ {a}];
NET (σ) expresses that strategy profile σ is a T-Nash equilibrium; finally,
SPNT (σ) defines σ as subgame perfect T-NE. Thus, we have a family of
equilibria: ©-Nash equilibrium, �-Nash equilibrium etc., each corresponding
to a different temporal pattern of utilities. For example, we may assume that
agent a gets v if a utility of at least v is guaranteed for every time moment
(�pv

a), is eventually achieved (♦pv
a), and so on.

The correspondence between solution concepts and their temporal coun-
terparts for extensive games is captured by the following proposition.

Proposition 3.15. Let Γ be an extensive game. Then the following holds:

1. M(Γ ), ∅ |= BR♦
a (σ) iff [σ[a]]M(Γ ) is a best response for a in Γ against

[σ[Agt\{a}]]M(Γ ).
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2. M(Γ ), ∅ |= NE♦(σ) iff [σ]M(Γ ) is a NE in Γ [Jamroga et al., 2005].
3. M(Γ ), ∅ |= SPN♦(σ) iff [σ]M(Γ ) is a SPN in Γ .

Proof.

1. Note that M(Γ ) corresponds to an EF game so, the “payoff” propositions
pv

a can only become true at the “end” of each path in M(Γ ) (i.e. at
the nodes that are reflexive and labelled by payoff propositions). Thus,
BR♦

a (σ) in M(Γ ), ∅ holds iff, whenever a can achieve the payoff of at least
v against σ[Agt \ {a}] (by any strategy for a), it can also achieve it by
using σ[a].

2. s = (s1, . . . , sk) is a NE iff sa is a best response to s−a for all a. Hence,
M(Γ ), ∅ |= NE♦(σ) iff for all a, M(Γ ), ∅ |= BR♦

a (σ) iff (by 1) for all
a, [σ[a]]M(Γ ) is a best response for a in Γ against [σ[Agt\{a}]]M(Γ ) iff
[σ]M(Γ ) is a NE in Γ .

3. M(Γ ), ∅ |= SPN♦(σ) iff M(Γ ), q |= NE♦(σ) for each q reachable from the
root ∅ (*). Since Γ is a tree every node is reachable from ∅ in M(Γ ). So,
by the second part, (*) iff σ denotes a Nash equilibrium in every subtree
of Γ .

�

We can use the above LATLI-formulae to express game-theoretical proper-
ties of strategies in a straightforward way.

Example 3.16 (Bargaining ctd.). We extend the CGS in Figure 3.6 to a CGS
with intentions; then, we have M2, q0 |= NE♦(σ), with σ interpreted in M2

as sx (for any x ∈ [0, 1]). Still, M2, q0 |= SPN♦(σ) if, and only if, [σ]M2 = sκ.

We also propose a (tentative) LATLI characterisation of Pareto optimality.
For normal form games we have the following characterisation [van der Hoek
et al., 2005a] :

POT (σ) ≡
∧

v1

· · ·
∧

vk

(
(〈〈Agt〉〉T

∧

i

pvi

i )→

(strAgtσ)
(
(〈〈∅〉〉T

∧

i

pvi

i ) ∨ (
∨

i

∨

v′ s.t.
v′ > vi

〈〈∅〉〉Tpv′
i )
))
.

That is, the strategy profile denoted by σ is Pareto optimal iff, for every
achievable pattern of payoff profiles, either it can be achieved by σ, or σ obtains
a strictly better payoff profile for at least one player. We note that the above
formula has exponential length with respect to the number of payoffs in U .
Moreover, it is not obvious that this characterisation is the intuitively right
one, as it refers in fact to the evolution of payoff profiles (i.e., combinations of
payoffs achieved by agents at the same time), and not on temporal patterns of
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payoff evolutions for each agent separately. So, for example, PO♦(σ) may hold
even if there is a strategy profile σ′ that makes each agent achieve eventually
a better payoff, as long as not all of them will achieve these better payoffs at
the same moment. Still, the following holds.

Proposition 3.17. Let Γ be an extensive game. Then M(Γ ), ∅ |= PO♦(σ) iff
[σ]M(Γ ) is Pareto optimal in Γ .

Proof. “⇒“: Let M(Γ ), ∅ |= PO♦(σ). Then, for each payoff profile 〈v1, . . . , vk〉
reachable in Γ , we have that either [σ] obtains an at least as good profile,3 or it
obtains an incomparable payoff profile. Thus, [σ] is Pareto optimal. “⇐“:The
proof for the other direction is done analogously. �

Example 3.18 (Asymmetric matching pennies ctd.). Let M′1 be our matching
pennies model M1 with additional propositions p1

i ≡ moneyi (so, we assign to
moneyi a utility of 1 for i). Then, we have M′1, q0 |= PO♦(σ) iff σ denotes the
strategy profile 〈sh , sh〉.

3.3.2 General Solution Concepts

We also propose an alternative approach to defining solution concepts for
games that involve an infinite flow of time. In the new approach, path for-
mulae of LATL are used to specify the “winning conditions” of each player.
This implicitly leads to a normal form game, where the traditional solution
concepts are well defined. We also demonstrate how these “qualitative” solu-
tion concepts (parametrised by LATL-path formulae) can be characterised in
ATLP. In the following we sketch the idea of general solution concepts. We
shall elaborate on these concepts in Section 6.4.2, using the logic ATLP.

We have seen in Section 3.2.2 that some (but not all!) concurrent game
structures can be seen as extensive form games. These CGSs are be turn-based
(i.e., players play by taking turns) and have a tree-like structure; moreover,
they include special propositions that emulate payoffs and can be used to
define agents’ preferences. Now, we want to extend the correspondence to
arbitrary CGSs. Our idea is to determine the outcome of a game by the truth
of certain path formulae (e.g., in the case of binary payoffs, we can see the
formulae as winning conditions). So, we give up the idea of assigning payoffs to
leaves in a tree. Instead, we see a concurrent game structure as a game, paths
in the structure as plays in the game, and satisfaction of some pre-specified
formula as the mechanism that defines agents’ outcome for a given play.

Which formulae can be used in this respect? We propose that player
i’s preferences can be specified by a finite list of LATL-path formulae ηi =

3 We recall that
V
i p

vi
i means that each player i gets at least vi.
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〈η1
i , . . . , η

ni
i 〉 (where ni ∈ N) with the underlying assumption that agent i

prefers η1
i most, η2

i comes second etc., and the worst outcome occurs when no
η1
i , . . . , η

ni
i holds for the actual play. Thus, ηi imposes a total order on paths

in a CGS.
For k players, we need a k-vector of such preference lists −→η = 〈η1, . . . , ηk〉.

Then, every concurrent game structure gives rise to the strategic game defined
as below.

Definition 3.19 (From CGS to NF game). Let M be a CGS, q ∈ QM

a state, and −→η = 〈η1, . . . , ηk〉 a vector of lists of LATL-path formulae, where
k = |Agt|.

Then we define S(M,−→η , q), the NF game associated with M, −→η , and q,
as the strategic game 〈Agt,A1, . . . ,Ak, µ〉, where the set Ai of i’s strategies is
given by Σi for each i ∈ Agt, and the payoff function is defined as follows:

µi(a1, . . . , ak) =





ni − j + 1 if ηji is the first formula from ηi such that
M, λ |= ηji for all λ ∈ out(q, 〈a1, . . . , ak〉),

0 no ηji is satisfied

where ηi = 〈η1
i , . . . , η

ni
i 〉, 1 ≤ j ≤ ni and we write µi for µ(i).

Below, we present the generalised version of temporal Nash equilibrium
and temporal subgame perfect NE:

BR
−→η
a (σ) ≡ (strAgt\{a}σ[Agt \ {a}])

∧

j∈{1,...na}

(
(〈〈a〉〉ηja)→ ((straσ[a])

∨

r≤j
〈〈∅〉〉ηra)

)
,

NE
−→η (σ) ≡

∧

a∈Agt

BR
−→η
a (σ),

SPN
−→η (σ) ≡ 〈〈∅〉〉�NE−→η (σ).

In Section 6.4.2 we do also provide proofs that these characterisations (in
terms of the logic ATLP) correspond to their game-theoretic counterparts.

The case with a single “winning condition” per agent is particularly in-
teresting. Clearly, it gives rise to a normal form game with binary payoffs
(cf., for instance, our informal discussion of the “matching pennies” variant in
Example 3.10). We will stick to such binary games throughout the rest of this
thesis (especially in Section 6.4.2 where general solution concepts are studied
in more detail), but one can easily imagine how the binary case extends to
the case with multiple levels of preference.
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Throughout this thesis we make use of different sorts of theories. In this
chapter we introduce the basic concepts needed. Firstly, we consider complex-
ity theory. Then, we proceed with (abstract) argumentation from a coalition
formation perspective. Finally, we turn to probability theory and Petri nets.

4.1 Background in Complexity Theory

Complexity theory plays an important role in many applications of computer
science. We will make use of it when determining the model checking complex-
ity. We begin with introducing Turing machines (TMs), present the relevant
complexity classes, and recall basic results about them. Then, we introduce
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the notions of reduction and completeness and present some complete prob-
lems which we are going to use in the remainder of the thesis. For a more
detailed introduction we refer the reader to [Papadimitriou, 1994; Hopcroft
and Ullman, 1979].

4.1.1 Turing Machines

In this section we recall the basic notions of computation. The presentation
follows mostly [Papadimitriou, 1994].

A Turing machine (TM) has an infinite read/write band. The machine
can move its read/write head to the left, to the right, or write some symbol
drawn from a finite alphabet Σ, respectively. We assume the presence of a
special symbol # (the blank symbol) in Σ. This symbol is not permitted as
an input symbol. The mode of operation depends on the symbol read and the
current state of the machine. The set of states K is finite. We assume that the
initial state sI belongs to K. A TM halts on an input if it reaches the halting
state h 6∈ K from the initial state sI . Two additional halting states Y,N 6∈ K
indicate that the machine accepts (Y) and rejects (N) the input, respectively.
Formally, a TM is given by a tuple

A = (K,Σ, δ)

where δ is the transition function. If A is a deterministic TM the function is
given by

δ : K ×Σ → K ∪ {h, Y,N} × (Σ ∪ {L,R}).
In case that the TM is non-deterministic we define

δ : K ×Σ → P(K ∪ {h, Y,N} × (Σ ∪ {L,R})).

The transition (q′, L) = δ(q, a) (resp. (q′, L) ∈ δ(q, a)) indicates that the
machine changes its state to q′ and moves its head to the left provided that
the current state is q and symbol a is under the read/write head.

A configuration of a TM is a word from K ∪ {h, Y,N} × Σ+ × Σ∗. A
configuration (q, vx, y), x ∈ Σ, encodes that the current state is q, the cell
on which the head is contains symbol x (the machine reads x); the word left
of the head is given by the (possibly empty) word v and the word right of
the head by the (possibly empty) word y. We assume that v and y contain
only necessary information; that is, no unnecessary blank symbols on the left
(resp. right) of the last non-blank symbol left (resp. right) from x.

A computation of a TM is a sequence of configurations that can result
from the operation of the machine. The state of the initial configuration is
given by sI . We say that a computation is halting if it is finite and the state
of the final configuration is among h, Y,N . If there is a halting configuration
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we say that the machine halts; in notation, A(w) ↓: The Turing machine A
halts on input w. Otherwise, we say the machine does not halt and we write
A(w) 6↓.

For deterministic TMs we also define what it means to decide a language.
A configuration is said to be accepting (resp. rejecting) if it is halting and
the state of the final configuration is Y (resp. N). We write A(w) ↓Y and
A(w) ↓N , respectively. We say that a deterministic TM A accepts a language
L if A(w) ↓Y (resp. A(w) 6↓) for all w ∈ L (resp. w 6∈ L). Similarly, a A is
said to decide a language L if A(w) ↓Y (resp. A(w) ↓N ) for all w ∈ L (resp.
w 6∈ L). Finally, a language is said to be acceptable (resp. decidable) if there is
a deterministic TM that accepts (resp. decides) the language. Note, that the
halting state can be used to compute functions. Given an input x the output,
denoted by A(w), is the content on the band once the machine has halted,
provided that A(w) ↓.

In order to define the complexity of languages/problems it is important
how many steps a machine does and how many space cells it uses. We say
that a machine A needs time (resp. space) k to accept input w if it makes
k steps (resp. needs k storage cells) to accept w, provided it accepts w. The
“best” (i.e. shortest) accepting configuration is considered. Now, let f : N→ N
be some function. We say that machine A is f -time bounded (resp. f -space
bounded) if it accepts/decides every accepted input w of size n within f(n)
steps (resp. f(n) space cells). In the case of space, one considers offline TMs.
These machines have a read-only input tape and a separate readable and
writeable working tape. Only the latter counts in the calculation in terms of
space. For further details we refer to [Papadimitriou, 1994].

Finally, we define DTIME(f ) (resp. DSPACE(f )) as the set of all lan-
guages acceptable by some f -time bounded (resp. f -space bounded offline)
deterministic TM. The classes NTIME(f ) and NSPACE(f ) are analogously
defined for non-deterministic machines.

4.1.2 Standard Complexity Classes between P and PSPACE

We have provided the very basic concept of TMs. In the following we consider
standard complexity classes and recall some important results.

In general, a complexity class is a set of languages that share some compu-
tational properties regarding their acceptance by TMs. The most basic classes
are the set of languages acceptable by deterministic and non-deterministic
Turing machines in polynomial time and polynomial space. These classes are
called P (polynomial deterministic time), NP (polynomial non-deterministic
time), and PSPACE (polynomial deterministic space), respectively. We did
not introduce the class “polynomial non-deterministic space” as this class co-
incides with PSPACE by Savitch’s well-known result. The following relation
is obvious:
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P ⊆ NP ⊆ PSPACE.

Given a complexity class C we use co C (complementary class of C) to
denote the class of languages with their complement being in C.

The finer-grained classification of the space between P and PSPACE is
described by the polynomial hierarchy (cf. [Papadimitriou, 1994; Garey and
Johnson, 1979]). The classes are recursively defined as follows.

Definition 4.1 (Polynomial hierarchy). We define the classes ∆P
0 =

ΣP
0 = ΠP

0 := P and for i ≥ 0

∆P
i+1 := PΣP

i , ΣP
i+1 := NPΣP

i , ΠP
i+1 := coNPΣP

i

and the complete polynomial hierarchy as PH :=
⋃
i≥0 ΣP

i .

We have the following relation:

P = ∆P
1 ⊆ NP = ΣP

1 ⊆∆P
2 ⊆ ΣP

2 ⊆∆P
3 ⊆ · · · ⊆ PH ⊆ PSPACE.

The following two results are useful to prove that languages reside in some
class of the polynomial hierarchy. Firstly, we need two more notations. A
relation R ⊆ Σ∗×Σ∗ is said to be polynomially time decidable if the language
{(x, y) | (x, y) ∈ R} is in P. Such a relation is said to be polynomially balanced
if there is a number k such that if (x, y) ∈ R implies that |y| ≤ |x|k.

Theorem 4.2 ([Papadimitriou, 1994]). Let L be a language and i ≥ 1.
Then, we have that L ∈ ΣP

i if, and only if, there is a polynomially balanced
relation R such that {x; y | (x, y) ∈ R} ∈ ΠP

i−1 and L = {x | ∃y ((x, y) ∈ R)}.
Corollary 4.3 ([Papadimitriou, 1994]). For any language L and i ≥ 0 we
have the following. L ∈ ΣP

i if, and only if, there is a polynomially balanced,
polynomially time decidable (i+ 1)-ary relation R such that

L = {x | ∃y1∀y2 . . . Qyi ((x, y1, . . . , yi) ∈ R)}
where Q = ∀ (resp. Q = ∃) if i is even (resp. odd).

4.1.3 The Complexity Classes PP, #P, and P#P

In this section we consider some more exotic complexity classes which will be
used in the thesis.

An input is accepted by a non-deterministic TM if at least one of the
machine’s computations is accepting. It is possible that all other computations
are indeed rejecting. The complexity class PP (probabilistic polynomial time)
is based on the idea that at least half of the computations must be accepting
in order to accept the input.
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Definition 4.4 (PP [Papadimitriou, 1994; Beigel et al., 1995]). Let A
be a non-deterministic TM and w an input. By Pos(A, w) we denote the num-
ber of accepting computations minus the number of non-halting computations
of A on w.

The complexity class PP contains all languages L for which there is a
polynomial time bounded non-deterministic TM such that for all w ∈ Σ∗ it
holds that

Pos(A, w) > 0 if, and only if, w ∈ L.

Alternatively, one may define PP according to its original definition in
terms of probabilistic TMs [Gill, 1977].

It is easily seen, that a language in NP is also in PP. One can simply add
accepting computations such that just one more (the accepting one of the NP
problem) is needed for a majority of accepting computations. Intuitively, the
new machine nondeterministically guesses to work in the very same way as
the old machine or to work like a slightly modified version of it. The difference
of the modified version is that every computation is accepting.

Theorem 4.5 ([Papadimitriou, 1994]). NP ⊆ PP

In [Beigel et al., 1995] it is shown that the class PP is closed under various
operations including intersection and union. In addition to that in [Gill, 1977]
the closure under complementation is shown.

Theorem 4.6 ([Gill, 1977; Beigel et al., 1995]). The class PP is closed
under union, intersection, and complement.

From that we do also get that

coNP ⊆ PP.

The real power of the class PP is seen if it is used as an oracle of a
polynomial time deterministic TM; then, it contains the whole polynomial
hierarchy.

Theorem 4.7 ([Toda, 1989]). PH ⊆ PPP

A different type of complexity class is #P. Although this class contains
functions (instead of languages) it is closely related to PP. Suppose R is a
polynomially balanced, polynomial time decidable binary relation. Then, we
define the R-counting problem as the function that returns the number of
strings y such that (x, y) ∈ R given x as input. So, the solution to the R-
counting problem can be seen as a function fR : Σ∗ → N0; fR(x) denotes the
number of y’s such that (x, y) ∈ R. The complexity class #P contains all such
functions that are associated with an R-counting problem [Papadimitriou,
1994].
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Definition 4.8 (#P[Papadimitriou, 1994]). The complexity class #P
contains the function fR associated with the R-counting problem for each poly-
nomially balanced, polynomial time decidable binary relation R.

The relation to the probabilistic class PP is shown by the following inter-
esting result.

Theorem 4.9 ([Angluin, 1980]). PPP = P#P

4.1.4 Reductions, Completeness, and Decidability

In order to show the difficulty of our model checking problems we use them
to solve other problems already shown to be difficult in one sense or another.
Formally, this is captured by reductions. Let L1 and L2 be two languages. A
reduction R is a function that transforms each instance w of L1 to an instance
R(w) of L2 such that

w ∈ L1 if, and only if, R(w) ∈ L2.

This shows that the problem L2 is at least as hard as L1 provided that the
calculation of the reduction itself is not too difficult. We say that L1 is reducible
to L2.

Definition 4.10 (Reduction, complexity). A language L1 is f -space (resp.
f -time) reducible to L2 if there is a function R : Σ∗ → Σ∗ computable by a
f -space (resp. f -time) bounded deterministic TM such that

w ∈ L1 if, and only if, R(w) ∈ L2.

Then, we write L1 ≤f L2 and call R a reduction of L1 to L2. In this paper,
we will usually consider logarithmic space or polynomial time reductions.

It is important to note that the following definition does strongly depend
on the specific reduction used. For example, if one considers the complexity
class P and polynomial time reductions any problem from P is trivially P-
complete. Reductions have to be chosen carefully.

Definition 4.11 (Hardness and Completeness). Given a complexity class
C and a language L we say that L is C-hard under f -time (resp. f -space)
reductions if any problem from C can be f -time (resp. f -space) reduced to L.
L is called C-complete if additionally L ∈ C.

Reductions can also be used to show that problems are undecidable. In-
stead of classifying reductions according to their computational complexity
one can simply consider decidable reductions. Then, if one reduces an un-
decidable problem L1 to a problem L2 the latter must also be undecidable.
Similarly, if a problem L1 is reduced to a decidable problem L2; then, L1 must
also be decidable.
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Definition 4.12 (Reduction, Decidability). A language L1 is reducible
to L2 if there is a total decidable function R : Σ∗ → Σ∗ such that

w ∈ L1 if, and only if, R(w) ∈ L2.

All these reductions are called many-to-one reductions. A second kind of
(weaker) reductions are called Turing reductions. A problem L1 is Turing-
reducible to L2 iff L1 can be decided by help of an L2-oracle TM.

4.1.5 Some Complete Problems

To show that a problem is hard with respect to some complexity class (i.e.
that there is no other problem in the complexity class of interest that is
significantly harder to solve) one often reduces problems already known to
have this properties to the new one. Here, we introduce some of these known
problems that we are going to facilitate in this thesis.

A typical PSPACE-complete problem is quantified satisfiability (QSAT),
given a quantified Boolean formula one is interested whether it is satisfiable.

Definition 4.13 (QSAT [Papadimitriou, 1994; Garey and Johnson,
1979]).
Input: A Boolean formula ϕ with i variables x1, . . . , xi.
Output: True if ∃x1∀x2 . . . Qixi ϕ is satisfiable, false otherwise (where Q = ∀
if i is even, and Q = ∃ if i is odd).

Theorem 4.14 ([Papadimitriou, 1994; Garey and Johnson, 1979]).
QSAT is PSPACE-complete.

The input formula is often assumed to be in a more restricted form with-
out changing the problem’s complexity. One might assume that the input is
presented in conjunctive normal form (CNF), or even in CNF with only 3
literals per clause [Garey and Johnson, 1979], or in negation normal form
(NNF) (that is, negations occur only at literals). Simple rewrite rules allow
to obtain the latter normal form.

The number of alternations in QSAT is unbounded. The problem which
contains all such formulas up to a bounded number of alternations, say k, is
shown to be ΣP

k -complete in [Meyer and Stockmeyer, 1972]. We are interested
in an apparently harder variant of these problems.

Definition 4.15 (SNSATi,[Laroussinie et al., 2008]).
Input: p sets of propositional variables Xj

r = {xj1,r, ..., xjk,r} for each j =
1, . . . , i; p propositional variables zr, and p Boolean formulae ϕr in positive
normal form (i.e., negation is allowed only on the level of literals) for r =
1, . . . , p. Each ϕr involves only variables from

⋃i
j=1X

j
r ∪ {z1, ..., zr−1}, with

the following requirement:
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zr ≡ ∃X1
r∀X2

r∃X3
r . . . QX

i
r.ϕr(z1, ..., zr−1, X

1
r , . . . , X

i
r) where Q = ∀ (resp.

Q = ∃) if i is even (resp. odd).
Output: The value of zp.

Theorem 4.16 ([Laroussinie et al., 2008]). SNSATi is ∆P
i -complete for

i ≥ 1.

The following problem is the “satisfiability problem” for PP. A Boolean
formula belongs to MAJSAT if more than half of the truth assignments satisfy
the formula.

Definition 4.17 (MAJSAT). Given a formula ϕ in CNF with propositional
variables x1, . . . , xn, answer YES if more than half of all assignments of
x1, . . . , xn make ϕ true, and NO otherwise.

Theorem 4.18 ([Papadimitriou, 1994]). MAJSAT is PP-complete.

In the following, we consider some graph theoretical problem.

Definition 4.19 (Graph reachability). Let G = (V,E) be graph. Given
two vertices u, v ∈ V the graph-reachability problem is the question whether
v is reachable from u.

Theorem 4.20 ([Jones, 1977, 1975]). The graph-reachability problem is
NLOGSPACE-complete under logarithmic space reductions.

An and-or graph (or alternating graph)[Immerman, 1981] is a tuple (G, l)
such that G = (E, V ) is a directed acyclic graph and l : V → {∧,∨} a function
labelling each state of G either as an or-node (∨) or as an and-node (∧). Given
two vertices u and v of G we define what it means that v is reachable from u.
Let x1, . . . , xn denote all successor nodes of u. Then, v is said to be reachable
from u iff

1. u = v; or
2. l(u) = ∧, n ≥ 1, and v is reachable from all xi’s; or
3. l(u) = ∨, n ≥ 1, and v is reachable from some xi.

Definition 4.21 (And-Or-Graph Reachability Problem [Immerman,
1981]). Let an and-or graph ((V,E), l) and two vertices u, v ∈ V be given.
The and-or-graph reachability problem is the question whether v is reachable
from u.

Theorem 4.22 ([Immerman, 1981]). The and-or-graph reachability prob-
lem is P-complete.
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The following problem is used to establish the lower bound of ATL∗ model
checking. Let λ be a path; i.e. an ω-sequence of states. An x-labelling is a
function πx : N0 → {x, ∅}. It can be used to label position λ[i] of path λ with
πx(i); hence, such a function may label some positions of the path with x.
An (x, y)-program is a function P xy : {x, ∅}+ → {y}. Such an (x, y)-program
together with a πx-labelling induces a y-labelling πy as follows:

πy(i) = y iff P xy(πx(λ[0]) . . . πx(λ[i])) = y.

Hence, a πy labelling labels states of λ with a proposition y subject to the
labels assigned to the path by a πx-labelling following a given (x, y)-program
P xy. Given a πx and πy labelling we use πx,y to denote the combined labelling

πx,y(·) = πx(·) ∪ πy(·).

Definition 4.23 (LTL-realisability [Pnueli and Rosner, 1989; Rosner,
1992]). Let λ be a path. An LLTL({x, y})-formula ϕ(x, y) over propositions x
and y is said to be realisable iff for any x-labelling πx there is an (x, y)-
program such that for the induced πy labelling we have that λ, πx,y |=LTL

ϕ(x, y).

Theorem 4.24 ([Pnueli and Rosner, 1989; Rosner, 1992]).
LTL-realisability is 2EXPTIME-complete.

4.1.6 Automata Theory

In Section 5 we often present automata-based model checking algoritms. We
assume that the reader is familiar with finite automata on finite words. In this
section we briefly introduce finite automata on infinite words and trees.

Automata on Infinite Words

Definition 4.25 (ω-automaton). An ω-automaton is a quintuple

A = (Q,Σ,∆, qI , C)

where

• Q is a finite set of states;
• Σ is a finite alphabet;
• ∆ ⊆ Q×Σ ×Q a transition relation; and
• C an acceptance component (which is specified in the following).

Definition 4.26 (Run). A run of A ρ on a word w = w1w2 · · · ∈ Σω is an
infinite sequence of states of A ρ = ρ(0)ρ(1) · · · ∈ Qω such that:
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1. ρ(0) = qI and
2. ∆(ρ(i− 1), wi, ρ(i)) ∈ ∆ for i ≥ 1.

We define Inf (ρ) as the set of all states that occur infinitely often on ρ;
that is,

Inf (ρ) = {q ∈ Q | ∀i∃j(j > i ∧ ρ(j) = q}.
Depending on the accepting condition various types of automata arise.

Definition 4.27 (Büchi automaton). A Büchi automaton is an
ω-automaton

A = (Q,Σ,∆, qI , F )

where F ⊆ Q with the following acceptance condition: A accepts w ∈ Σω if,
and only if, there is a run ρ of A on w such that

Inf (ρ) ∩ F 6= ∅.

Thus, such an automaton accepts all words such that some state from F is
visited infinitely often on a corresponding run.

Definition 4.28 (Language). The language of A, L(A) consists of all words
accepted by A; that is,

L(A) = {w ∈ Σω | A accepts w}.

Theorem 4.29 (Characterisation of ω-languages). A language L is
Büchi acceptable if, and only if, there are finitely many regular languages
U1, . . . , Un and V1, . . . , Vn such that

L =
⋃

i=1,...,n

Ui(Vi)ω

Corollary 4.30 ([Vardi and Wolper, 1994]). Any Büchi recognisable non-
empty language L contains an ultimately periodic word.

For the model checking algorithms we need to check whether the language
of a Büchi automaton is empty or not.

Theorem 4.31 ([Vardi and Wolper, 1994]). The non-emptiness problem
for Büchi automata NLOGSPACE-complete under logarithmic space reduc-
tions.

Proof. [Sketch] We check if there is some ultimately periodic word by deter-
mining a reachable accepting state that is reachable from itself. The following
algorithm runs in non-deterministic logarithmic space: 1) Guess an initial state
i and accepting state r. 2) Check whether reach(i, r) and reach(r, r) where
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reach(x, y) choses a transition from x to some successor x′ and returns “yes”
if x′ = y; otherwise, recursively performs reach(x′, y).

Hardness is shown by a reduction of the NLOGSPACE-complete prob-
lem Graph reachability from Definition 4.19. The reduction is straight-
forward. Given G, u, v, transform G to a Büchi automaton with initial state
u and final state v and add a loop to v. �

Automata on Infinite Trees

As we will later see, ω-automata provide means to model check linear-time
logics. For branching time or strategic logics tree automata can be used. Such
automata do not focus on ω-ordered linear sequences but rather on infinite
trees.

As before let Σ be a finite alphabet and k a natural number. A k-ary
Σ-tree t = (domt, L) is a tree with maximal branching k and in which each
node is labelled by an element from Σ. That is

L : domt → Σ

where domt ⊆ {0, . . . , k − 1}∗ denotes the domain of the tree. It is required
that domt is closed under prefixes, i.e.

wx ∈ domt → ∀y(0 ≤ y < x→ wy ∈ domt).

A k-ary ω-tree automaton over the alphabet Σ is an automaton that ac-
cepts infinite k-ary Σ-trees.

Definition 4.32 (k-ary ω-tree automaton). A k-ary ω-tree automaton
over the alphabet Σ is given by a tuple

A = (Q , qI , ∆,C)

where

• Q is a set of states,
• qI ∈ Q the initial state,
• ∆ : Q ×Σ × {1, . . . , k} → P(∪i=1...kQ i) with ∆(q, a, i) ⊆ Q i a transition

relation, and
• C an acceptance component (which is specified in the following).

Definition 4.33 (Run, path, successful, accepting). A run of a k-ary
ω-tree automaton A on an infinite k-ary Σ-tree t = (domt, Lt) is an infinite
k-ary Q-tree r = (domr, Lr) such that

1. domr = domt,
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2. Lr(∅) = qI and
3. ∀w ∈ domt : (Lr(w0), . . . , Lr(wi)) ∈ ∆(Lr(w), Lt(w), i) where i =

max{j | wj ∈ domt}.
A path of the run r is an infinite linearly ordered subset of domr (i.e. it
denotes a branch in the tree). We say that run r is successful if each path of
r satisfies the accepting condition C. An input tree t is accepted by A if there
is a successful run.

Finally, we instantiate the acceptance condition of ω-tree automata and
obtain Büchi and Rabin tree automata.

Definition 4.34 (Büchi tree automaton). A Büchi tree automaton is
given by an ω-tree automaton A = (Q , qI , ∆, F ) where F ⊆ Q is a set of
final states. A run r = (domr, L) is successful if, and only if, for each path p
on r there is a state that occurs infinitely often on p; i.e. for all paths p of r
we have that

Inf (L|p) ∩ F 6= ∅.
L|p denotes the set of states in L which do also appear on p.

Definition 4.35 (Rabin tree automaton). A Rabin tree automaton is
given by an ω-tree automaton A = (Q , qI , ∆,Ω) where

Ω = {(L1, U1), . . . , (Ln, Un)}

where each pair (Li, Ui) ⊆ Q × Q is a set of “accepting” pairs (these pairs
are called Rabin pairs). A run r = (domr, L) is successful if, and only if, for
each path p on r there is an index i ∈ {1, . . . , n} such that no state (resp. a
state) from Li (resp. from Ui) occurs infinitely often on p; i.e.

Inf (L|p) ∩ Li = ∅ and Inf (L|p) ∩ Ui 6= ∅

One can easily see that any set of trees acceptable by a Büchi tree automa-
ton is also acceptable by a Rabin tree automaton (one takes as Rabin pairs
the set {(∅, F )} where F is the set of final states of the Büchi tree automaton).
However, the converse is not true.

Theorem 4.36 ([Rabin, 1970]). There is a set of trees that is acceptable by
a Rabin tree automaton but not by any Büchi tree automaton.

Theorem 4.37 ([Rabin, 1970; Vardi and Wolper, 1984]). The empti-
ness problem for Büchi tree automata is decidable and P-complete under log-
arithmic space reductions.

Theorem 4.38 ([Emerson and Jutla, 1988; Pnueli and Rosner, 1989]).
The non-emptiness problem for Rabin tree automata is decidable and complete
for NP.
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4.2 An Argumentative Approach to Coalition Formation

In this section we present an argument-based characterisation of coalition
formation that will be used later to extend ATL. We follow the approach
from [Amgoud, 2005a], where the argumentation framework for generating
coalition structures is defined. The approach is a generalisation of the frame-
work of Dung for argumentation [Dung, 1995], extended with a preference
relation. The basic notion is that of a coalitional framework, which contains a
set of elements C (usually seen as agents or coalitions), an attack relation (for
modelling conflicts among elements of C), and a preference relation between
elements of C (to describe favourite agents/coalitions).

Definition 4.39 (Coalitional framework [Amgoud, 2005a]). A coali-
tional framework is a triple CF = (C,A,≺) where C is a non-empty set of
elements, A ⊆ C × C is an attack relation, and ≺ is a preorder on C repre-
senting preferences on elements in C.

Let S be a non-empty set of elements. CF(S) denotes the set of all coali-
tional frameworks where elements are taken from the set S, i.e. for each
(C,A,≺) ∈ CF(S) we have that C ⊆ S.

The set C in Definition 4.39 is intentionally generic, accounting for vari-
ous possible alternatives. One alternative is to consider C as a set of agents
Agt = {1, . . . , k}: CF = (C,A,≺) ∈ CF(Agt). Then, a coalition is given
by C = {i1, . . . , il} ⊆ C and “agent” can be used as an intuitive refer-
ence to elements of C. Another alternative is to use a coalitional framework
CF = (C,A,≺) based on CF(P(Agt)). Now elements of C ⊆ P(Agt) are groups
or coalitions (where we consider singletons as groups too) of agents. Under
this interpretation a coalition C ⊆ C is a set of sets of agents. Although “coali-
tion” is already used for C ⊆ C, we also use the intuitive reading “coalition” or
“group” to address elements in C.1 Yet another way is not to use the specific
structure for elements in C, assuming it just consists of abstract elements, e.g.
c1, c2, etc. One may think of these elements as individual agents or coalitions.
This approach is followed in [Amgoud, 2005a].

In the rest of this paper we mainly follow the first alternative when in-
formally speaking about coalitional frameworks, i.e. we consider C as a set of
agents.

Example 4.40. Consider the following two coalitional frameworks: (i) CF1 =
(C,A,≺) where C = {a1, a2, a3}, A = {(a3, a2), (a2, a1), (a1, a3)} and agent
a3 is preferred over a1, i.e. a1 ≺ a3; and (ii) CF2 = (C′,A′,≺′) where
C′ = {{a1}, {a2}, {a3}}, A′ = {({a3}, {a2}), ({a2}, {a1}), ({a1}, {a3})} and

1 The first interpretation is a special case of the second (coalitional frameworks are
members CF(P(Agt))).
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(a)
a1 a2 a3

where a1 ≺ a3

(b)

a1 a2 a3

where a2 ≺ a3

Fig. 4.1. Figure (a) (resp. (b)) corresponds to the coalitional frameworks defined
in Example 4.40 (resp. 4.49 (b)). Nodes represent agents and arrows between nodes
stand for the attack relation.

group {a3} is preferred over {a1}, i.e. {a1} ≺′ {a3}. They capture the
same scenario and are isomorphic but CF1 ∈ CF({a1, a2, a3}) and CF2 ∈
CF(P({a1, a2, a3})); that is, the first framework is defined regarding single
agents and the latter over (trivial) coalitions. Figure 4.1 (a) shows a graphical
representation of the first coalitional framework.

Let CF = (C,A,≺) be a coalitional framework. For C,C ′ ∈ C, we say
that C attacks C ′ iff CAC ′. The attack relation represents conflicts between
elements of C; for instance, two agents may rely on the same (unique) resource
or they may have disagreeing goals, which prevent them from cooperation.
However, the notion of attack may not be sufficient for modelling conflicts, as
some elements (resp. coalitions) in C may be preferred over others. This leads
to the notion of defeater which combines the notions of attack and preference.

Definition 4.41 (Defeater). Let CF = (C,A,≺) be a coalitional framework
and let C,C ′ ∈ C. We say that C defeats C ′ if, and only if, C attacks C ′ and
C ′ is not preferred over C (i.e., not C ≺ C ′). We also say that C is a defeater
for C ′.

Attacks and defeats are defined between single elements of C. As we are
interested in the formation of coalitions it is reasonable to consider conflicts
between coalitions. Members in a coalition may prevent attacks to members in
the same coalition; they protect each other. The concept of defence, introduced
next, captures this idea of mutual protection.

Definition 4.42 (Defence). Let CF = (C,A,≺) be a coalitional framework
and C,C ′ ∈ C. We say that C ′ defends itself against C if, and only if, C ′ is
preferred over C, i.e., C ≺ C ′, and C ′ defends itself if it defends itself against
any of its attackers. Furthermore, C is defended by a set S ⊆ C of elements
of C if, and only if, for all C ′ defeating C there is a coalition C ′′ ∈ S defeating
C ′.

In other words, if an element C ′ defends itself against C then C may attack
C ′ but C is not allowed to defeat C ′.
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A minimal requirement one should impose on a coalition is that its mem-
bers do not defeat each other; otherwise, the coalition may be unstable and
break up sooner or later because of conflicts among its members. This is for-
malised in the next definition.

Definition 4.43 (Conflict-free). Let CF = (C,A,≺) be a coalitional frame-
work and S ⊆ C a set of elements in C. Then, S is called conflict-free if, and
only if, there is no C ∈ S defeating some member of S.

It must be remarked that our notions of “defence” and “conflict-free”
are defined in terms of “defeat” rather than “attack”.2 Given a coalitional
framework CF we will use argumentation to compute coalitions with desir-
able properties. In argumentation theory many different semantics have been
proposed to define ultimately accepted arguments [Dung, 1995; Caminada,
2006]. We apply this rich framework to provide different ways to coalition
formation. A semantics can be defined as follows.

Definition 4.44 (Coalitional framework semantics). A semantics for a
coalitional framework CF = (C,A,≺) is a (isomorphism invariant) mapping
sem which assigns to a given coalitional framework CF = (C,A,≺) a set of
subsets of C, i.e., sem(CF) ⊆ P(C).

Let CF = (C,A,≺) be a coalitional framework. To formally characterise
different semantics we will define a function FCF : P(C)→ P(C) which assigns
to a set of coalitions S ∈ P(C) the coalitions defended by S.

Definition 4.45 (Characteristic function F). Let CF = (C,A,≺) be a
coalitional framework and S ⊆ C. The function F defined by

FCF : P(C)→ P(C)
FCF (S) = {C ∈ C | C is defended by S}

is called characteristic function.3

F can be applied recursively to coalitions resulting in new coalitions. For
example, F(∅) provides all undefeated coalitions and F2(∅) constitutes the
set of all elements of C which members are undefeated or are defended by
undefeated coalitions.

Example 4.46. Consider again the coalitional framework CF1 given in Exam-
ple 4.40. The characteristic function applied on the empty set results in {a3}
since the agent is undefeated, F(∅) = {a3}. Applying F on F(∅) determines
the set {a1, a3} because a1 is defended by a3. It is easy to see that {a1, a3} is
a fixed-point of F .
2 In [Amgoud, 2005a,b] these notions are defined the other way around, resulting

in a different characterisation of stable semantics.
3 We omit the subscript CF if it is clear from context.
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We now introduce the first concrete semantics called coalition structure
semantics, which was originally defined in [Amgoud, 2005a].

Definition 4.47 (Coalition structure semcs [Amgoud, 2005a]). Let CF =
(C,A,≺) be a coalitional framework. Then

semcs(CF) :=

{ ∞⋃

i=1

F iCF (∅)
}

is called coalition structure semantics or just coalition structure for CF .

For a coalitional framework CF = (C,A,≺) with a finite set C4 the char-
acteristic function F is continuous [Dung, 1995, Lemma 28]. Since F is also
monotonic it has a least fixed-point given by F(∅) ↑ω (according to Knaster-
Tarski). We have the following straightforward properties of coalition struc-
ture semantics.

Proposition 4.48 (Coalition structure). Let CF = (C,A,≺) be a coali-
tional framework with a finite set C. There is always a unique coalition struc-
ture for CF . Furthermore, if no element of C ∈ C defends itself then the
coalitional structure is empty, i.e. semcs(CF) = {∅}.

Example 4.49. The following situations illustrate the notion of coalitional
structure:

(a) Consider Example 4.46. Since {a1, a3} is a fixed-point of FCF1 the coali-
tional framework CF1 has {a1, a3} as coalitional structure.

(b) CF3 := (C,A,≺) ∈ CF({a1, a2, a3}) (shown in Figure 4.1(b)), is a coali-
tional framework with C = {a1, a2, a3}, A = { (a1, a2), (a1, a3) , (a2, a1),
(a2, a3), (a3, a1)} and a3 is preferred over a2, a2 ≺ a3, has the empty
coalition as associated coalition structure, i.e. semcs(CF) = {∅}.

Since the coalition structure is often very restrictive, it seems reasonable
to introduce other less restrictive semantics. Each of the following semantics
are well-known in argumentation theory [Dung, 1995] and can be used as a
criterion for coalition formation (cf. [Amgoud, 2005a]).

Definition 4.50 (Argumentation semantics). Let (C,A,≺) be a coali-
tional framework, S ⊆ C a set of elements of C. S is called

(a) admissible extension iff S is conflict-free and S defends all its elements,
i.e. S ⊆ F(S).

(b) complete extension iff S is conflict-free and S = F(S).

4 Actually, it is enough to assume that CF is finitary (cf. [Dung, 1995, Def. 27]).
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(c) grounded extension iff S is the smallest (wrt. to set inclusion) complete
extension.

(d) preferred extension iff S is a maximal (wrt. to set inclusion) admissible
extension.

(e) stable extension iff S is conflict-free and it defeats all arguments not in
S.

Let semcs (resp. semcomplete, semgrounded, sempreferred and semstable) denote
the semantics which assigns to a coalitional structure CF all its admissible
(resp. complete, grounded, preferred, and stable) extensions.

Remark 4.51. We note that the grounded extension is equivalent to the coali-
tion structure semantics.

There is only one unique coalition structure (possibly the empty one) for
a given coalitional framework, but there can be several stable and preferred
extensions. The existence of at least one preferred extension is guaranteed
which is not the case for the stable semantics. Thus, the possible coalitions
very much depend on the used semantics.

Example 4.52. For CF3 from Example 4.49 the following holds:

semcs(CF) = semgrounded(CF) = {∅}
semadmissible(CF) = {∅, {a1}, {a2}, {a3}, {a2, a3}}
semcomplete(CF) = {∅, {a1}, {a2, a3}}
sempreferred(CF) = semstable(CF) = {{a1}, {a2, a3}}

Analogously, for the coalitional framework CF1 from Example 4.40 there exists
one complete extension {a1, a3} which is also a grounded, preferred, and stable
extension.

4.3 Probability Theory

In this section we recall some basic notions from probability theory. Let X
be a non-empty set and let F ⊆ P(X) be a set of subsets. F is called a (set)
algebra over X iff: (i) ∅ ∈ F ; (ii) if A ∈ F then also Ā := X \ A ∈ F ;
(iii) if A,B ∈ F then also A ∪ B ∈ F . F is called σ-algebra iff also (iv)⋃∞
i=1Ai ∈ F for all A1, A2, · · · ∈ F .

Let S be a σ-algebra over X. We say that a function µ : S → R is a measure
(on S) iff it is non-negative, i.e. µ(A) ≥ 0 for all A ∈ S, and σ-additive, i.e.
µ(
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) whenever

⋃∞
i=1Ai ∈ S and all Ai pairwise disjoint.

We note that these properties imply that µ(∅) = 0.
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Finally, we say that the measure µ is a probability measure if µ(X) = 1
and call the triple (X,S, µ) a probability space. By Ξ(S) we denote the set of
all probability measures over S.

Note that whenever X is finite it is sufficient to define the probabilities
of the basic elements x ∈ X. Then, the probability of an event E ⊆ X is
given by the sum of the basic probabilities: µ(E) =

∑
x∈E µ({x}), and the

corresponding probability measure is uniquely determined over the σ-algebra
P(X). In such cases, we can also write µ(x) instead of µ({x}) and Ξ(X)
instead of Ξ(P(X)), and do also refer to a probability measure over P(X) as
probability measure over X. The support of a probability measure µ ∈ Ξ(X)
is the set of elements x ∈ X such that µ(x) > 0, denoted by

Supp(µ) = {x ∈ X | µ(x) > 0}.

Next, we introduce a Markov decision process (MDP). The definition is
based on [de Alfaro et al., 2004]. We note that in the literature there are subtle
differences how rewards are included in MDPs.

Definition 4.53 (Markov decision process). A (finite) Markov decision
process (MDP) is defined as a tuple

D = (Q , τ,Π, [·])

where

• Q is a finite set of states.
• τ : Q → P(Ξ(Q))\∅ a probabilistic transition relation. It assigns to each

state a non-empty set of probability distributions over the set of states.
Each element a ∈ τ(q) is an action that determines the transition proba-
bilities to the next states.

• Π is a set of propositions.
• [·] : Π → (Q → [0, 1]) is a valuation function assigning to each proposition

a state-depended reward.

Similarly to CGSs the system may evolve in different ways resulting in an
execution tree of infinite paths. We define a finite (resp. infinite) trajectory
(or path) of D as a finite (resp. infinite) sequence q0q1 . . . qi ∈ Q+ (resp.
q0q1 . . . ∈ Qω) of states such that for all j < i (resp. j ≥ 0) there is an action
aj ∈ τ(qj) with qj ∈ Supp(aj). We define Traj and FTraj as the infinite
and finite trajectories and Traj (q) as the subset of Traj that contains all
trajectories starting in q.

Definition 4.54 (Policy). A policy of an MDP D is a function

pol : FTraj → Ξ(
⋃

q∈Q
τ(q))



4.4 Petri Nets 69

such that Supp(pol(q0 . . . qi)) ⊆ τ(qi). We denote by PolsD the set of all such
policies over D.

We note that a policy is history dependent similarly to perfect recall strate-
gies (IR-strategies) from Definition 2.17. For each finite history, a policy choses
a probability over the available actions (which are themselves probability dis-
tributions over transitions).

Now, given q0 . . . qi and a policy pol the probability that the next state
will be qi+1 is defined as follows:

nextpol(qi+1 | q0 . . . qi) :=
∑

a∈τ(qi)

pol(q0 . . . qi)(a) · a(qi+1).

For an initial state q ∈ Q we can define the trajectory probability space
of a MDP wrt. a policy at hand.

Definition 4.55 ((D, pol, q)-trajectory probability space). Let D be a
MDP, pol ∈ PolsD, and s ∈ QD. The (D, pol, q)-trajectory probability space
is defined as

TD,pol,q = (Traj (q),Bq, P pol
q )

where

• Bq is the set of measurable subsets of Traj (q) and
• P pol

q is the probability measure over Bq induced by nextpol(·).
We use Epol

q [X] to denote the expected value of the random variable X over
TD,pol,q.

4.4 Petri Nets

In the following we introduce Petri nets and some basic problems about them.
The latter are required for the proofs in Section 11.2.

4.4.1 Basic Definitions

Definition 4.56 (Petri net). A Petri net is a tuple

N = (S, T,W,mI)

where

• S and T are non-empty and disjoint sets of places and transitions, respec-
tively;
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• W : (S × T ) ∪ (T × S) → N0 represents arc weights that determine how
many tokens are needed by and produced by each transition; and

• mI : S → N0 is the initial marking, i.e., a distribution of tokens on the
places in the net.

The state (also called marking) of a Petri net is defined as the distri-
bution of tokens. Given a state some transitions are activated namely those
transitions t for which sufficient tokens are available in the respective places.

Definition 4.57 (State, enabled, subsequent marking, firing). Let N =
(S, T,W,mI) be a Petri net.

(a) A state or marking of N is a function m : S → N0.
(b) A transition t ∈ T is enabled by a marking m, denoted by m[t〉, iff m(s) ≥

W (s, t) for all s ∈ S.
(c) If t is enabled by m we say that m′ is a subsequent state, denoted m[t〉m′,

if m′(s) = m(s)−W (s, t) +W (t, s) for all s ∈ S. We also say that t fires
in m and yields m′.

For a sequence σ = t1 . . . tn ∈ T ∗ of subsequently enabled transitions we
can lift the notion of firing, we write m[σ〉 and m[σ〉m′, respectively. Given
the initial state m each subsequence t1 . . . ti of σ with i < n determines a
unique state referred to as mi. Then, we do also write

σm := mt1m1 . . . timi.

Later, we shall be interested whether a Petri net can fire infinitely often.
This corresponds to an infinite sequence of subsequently firing transitions.

Definition 4.58 (m-run). Let N be a Petri net and m a state in it. An m-
run in a Petri net N is a infinite sequence σ = t1t2 . . . ∈ Tω of subsequently
enabled transitions; that is, for each i ≥ 1 we have that m[t1 . . . ti〉.

4.4.2 Reachability Problems

A well-known and computationally complex problem for Petri nets is the
reachability problem. The problem is characterised by the question whether
some state m2 is reachable from a state m1. That is, we are after the existence
of a (finite) firing sequence σ such that m1[σ〉m2. Formally, the reachability
problem Reach is given by the following set

{(N,m1,m2) | N = (S, T,W,m1), m1,m2 : S → N0,∃σ ∈ T ∗ (m1[σ〉m2)}.

The problem ExtReach (extended reachability problem) is an extension of
the reachability problem and asks for a run along which specific states occur
infinitely often. In Section 11.2 we will use this problem to show that the
resource-bounded logic RTL is decidable.
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Definition 4.59 (Extended Reachability [Jančar, 1990, Def. 2.9]). Let
a Petri net N = (S, T,W,mI) and a pair (A, f) such that A ⊆ S and f : A→
N0 be given. The extended reachability problem ExtReach is given as follows:

Is there an mI-run σ = t1t2 . . . such that there are infinitely many
indices i such that the marking mi that occurs after ti restricted to
the states in A equals f (i.e., mi �A≡ f for infinitely many i)?

Theorem 4.60 ([Jančar, 1990]). The problem ExtReach is decidable.
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Model checking is a powerful method which can for instance be used for the
verification of computer systems. Given a model and a formula in a certain
logic, model checking determines whether the formula is true in the model.
Often, it is used to check specifications of desirable properties a system should
fulfil. If the formula is true, we know that the property expressed by the
formula is satisfied in the model. If not, it might lead us to change the system
or at least gives hints how to debug it. The advantage of model checking
over other methods like simulation and testing (see for instance [Myers and
Sandler, 2004]) and deductive reasoning (Hoare calculus) is that it is usually
decidable; albeit, there are exceptions to this.
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Model checking was invented and pioneered by the work of Edward Melson
Clarke, Ernest Allen Emerson, and by Joseph Sifakis and Jean Pierre Queille
in the 80ies as a means for formal verification of finite-state concurrent sys-
tems. Specifications about the system were expressed as temporal logic formu-
lae. It was especially suited for checking hardware designs, but also applied to
checking software specifications. While it started as a new approach replacing
the then common Floyd-Hoare style logic, it could only handle relatively small
(though non-trivial) examples. Scalability was an important motivation right
from the beginning. The last years have seen many industrial applications,
and a number of powerful model checkers are available today. As founders of
a new and flourishing area in computer science, Clarke, Emerson and Sifakis
have been honoured with the Turing award in 2007.

Logic-based verification of multi-agent systems has become an important
subfield on its own. Some important model checkers are:

• Mocha [Alur et al., 1998a], available for download at
http://www.cis.upenn.edu/ mocha/,

• VeriCS [Dembiński et al., 2003], available at
http://pegaz.ipipan.waw.pl/verics/,

• MCMAS [Raimondi and Lomuscio, 2004; Raimondi, 2006], available at
http://www-lai.doc.ic.ac.uk/mcmas/.

In this chapter, we do not deal with practical aspects of MASs verification.
Instead, we offer a comprehensive survey of theoretical results concerning the
computational complexity of model checking for relevant properties of agents
and their teams. To this end, we focus on the class of properties that can be
specified in the temporal and strategic logics presented in Chapter 2.

Naturally, there is more than model checking to be studied. In [Goranko
and van Drimmelen, 2003] a complete axiomatisation for ATLIR is presented.
Also the satisfiability problem of ATLIR and ATL∗IR has been considered by
researchers: The problem was proven EXPTIME-complete for ATLIR [van
Drimmelen, 2003; Walther et al., 2006] and 2EXPTIME-complete for ATL∗IR
[Schewe, 2008]. Axiomatisation and satisfiability of other variants of alternating-
time temporal logic still remain open.

5.1 The Model Checking Problem

Model checking is a technique for verifying finite state systems. Naturally
this is achieved in a fully automated way which is an advantage over other
methods like simulation and testing and deductive reasoning. The latter has
the advantage that it can also cope with infinite state systems but usually
this cannot be achieved fully automatically.
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The process of model checking seeks to answer the question whether a
given formula ϕ is satisfied in a state q of model M. Formally, local model
checking is the decision problem that determines membership in the set

MC(L,Struc, |=) := {(M, q, ϕ) ∈ Struc× L | M, q |= ϕ},
where L is a logical language, Struc is a class of (pointed) models for L (i.e.
a tuple consisting of a model and a state), and |= is a semantic satisfaction
relation compatible with L and Struc. We omit parameters if they are clear
from context, e.g., we use MC(CTL) to refer to model checking of LCTL over
the class of (pointed) Kripke models and the introduced semantics.

It is often useful to compute the set of states in M that satisfy formula ϕ
instead of checking if ϕ holds in a particular state. This variant of the problem
is known as global model checking. It is easy to see that, for the settings we
consider here, the complexities of local and global model checking coincide,
and the algorithms for one variant of model checking can be adapted to the
other variant in a simple way. As a consequence, we will use both notions of
model checking interchangeably.

In the following, we are interested in the decidability and the computa-
tional complexity of determining whether an input instance (M, q, ϕ) belongs
to MC(. . . ). The complexity is always relative to the size of the instance; in the
case of model checking, it is the size of the representation of the model and the
representation of the formula that we use. Thus, in order to establish the com-
plexity, it is necessary to fix how we represent the input and how we measure
its size. In the following sections, we firstly consider explicit representation of
models and formulae, together with the “standard” input measure, where the
size of the model (|M|) is given by the number of transitions in M, and the
size of the formula (|ϕ|) is given by its length (i.e., the number of elements it is
composed of, apart from parentheses). For example, the model in Figure 2.2
includes 12 (labeled) transitions, and the formula 〈〈1〉〉 © (pos0 ∨ pos1) has
length 5.

5.2 Linear- and Branching Time Logics: LTL, CTL?, and
CTL

An excellent survey on the model checking complexity of temporal logics has
been presented in [Schnoebelen, 2003]. Here, we only recall the results relevant
for the subsequent analysis of strategic logics.

Let M be a Kripke model and q be a state in the model. Model checking
an LCTL/LCTL∗ -formula ϕ in M, q means to determine whether M, q |= ϕ,
i.e., whether ϕ holds in M, q. For LTL, checking M, q |= ϕ means that we
check the validity of ϕ in the pointed model M, q, i.e., whether ϕ holds on
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function mcheck(M, ϕ).

Model checking formulae of CTL. Returns the exact subset of Q for which formula
ϕ holds.

case ϕ ≡ p : Â return {q ∈ Q | p ∈ π(q)}
case ϕ ≡ ¬ψ : return Q \mcheck(M, ψ)
case ϕ ≡ ψ1 ∧ ψ2 : return mcheck(M, ψ1) ∩mcheck(M, ψ2)
case ϕ ≡ E© ψ : return pre(mcheck(M, ψ))
case ϕ ≡ E�ψ :
Q1 := Q; Q2 := Q3 := mcheck(M, ψ);
while Q1 6⊆ Q2 do Q1 := Q1 ∩Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

case ϕ ≡ Eψ1Uψ2 :
Q1 := ∅; Q2 := mcheck(M, ψ2); Q3 := mcheck(M, ψ1);
while Q2 6⊆ Q1 do Q1 := Q1 ∪Q2; Q2 := pre(Q1) ∩Q3 od;
return Q1

end case

Fig. 5.1. The CTL model checking algorithm from [Clarke and Emerson, 1981].

all the paths in M that start from q (equivalent to CTL? model checking of
formula Aϕ in M, q, cf. Remark 2.11).

It has been known for a long time that formulae of CTL can be model
checked in time linear with respect to the size of the model and the length
of the formula [Clarke et al., 1986], whereas formulae of LTL and CTL? are
significantly harder to verify.

Theorem 5.1 (CTL [Clarke et al., 1986; Schnoebelen, 2003]). Model
checking CTL is P-complete, and can be done in time O(|M| · |ϕ|), where |M|
is given by the number of transitions.

Proof. [Sketch] The algorithm determining the states in a model at which a
given formula holds is presented in Figure 5.1. The lower bound (P-hardness)
can for instance be proven by a reduction of the Circuit-value problem [Sch-
noebelen, 2003]. �

Theorem 5.2 (LTL [Sistla and Clarke, 1985; Lichtenstein and Pnueli,
1985; Vardi and Wolper, 1986]). Model checking LTL is PSPACE-
complete, and can be done in time 2O(|ϕ|)O(|M|), where |M| is given by the
number of transitions.

Proof. [Sketch] We sketch the approach given in [Vardi and Wolper, 1986].
Firstly, given an LLTL-formula ϕ, a Büchi automaton A¬ϕ of size 2O(|ϕ|) ac-
cepting exactly the paths satisfying ¬ϕ is constructed. The pointed Kripke
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Tape Cell 1 Tape Cell 2 Tape Cell n^k

Content of one cell

A configuration (Instant Description)
ID-Start

ID-End

Fig. 5.2. Encoding of a S(n)-space bounded DTM as a Kripke model.

model M, q can directly be interpreted as a Büchi automaton AM,q of size
O(|M|) accepting all possible paths in the Kripke model starting in q.
Then, the model checking problem reduces to the non-emptiness check of
L(AM,q)∩L(A¬ϕ) which can be done in time O(|M|) ·2O(|ϕ|) by constructing
the product automaton. (Emptiness can be checked in linear time wrt to the
size of the automaton.) A PSPACE-algorithm is obtained by “guessing” a
periodic paths that falsifies ϕ (cf. Corollary 4.30). For details we refer e.g.
to [Baier and Katoen, 2008].

A PSPACE-hardness proof can for instance be found in [Sistla and
Clarke, 1985]. The idea is to simulate the computation of a polynomially
space-bounded deterministic TM as a Kripke model and to use LTL-formulae
to ensure that the machine is simulated correctly (cf. Figure 5.2). States of
the model are taken as the symbols of the input alphabet of the TM, tuples
(s, a) where s (resp. a) is a state of the machine (resp. input symbol), and two
fresh states indicating the start and end of a configuration, respectively. A
formula ϕ is used to describe the initial and final configuration and to ensures
that subsequent configuration are valid. Then, we have that the TM halts on
input w iff M, q0 |= ϕ. �

The hardness of CTL? model checking is immediate from Theorem 5.2 as
LLTL can be seen as a fragment of LCTL∗ . For the proof of the upper bound
one combines the CTL and LTL model checking techniques. We consider an
LCTL∗ -formula ϕ which contains a state subformula Eψ where ψ is a pure
LLTL-formula. Firstly, we can use LTL model checking to determine all states
which satisfy Eψ (these are all states q in which the LLTL-formula ¬ψ is not
true) and label them by a fresh propositional symbol , say p, and replace Eψ
in ϕ by p as well. Applying this procedure recursively yields a pure LCTL-
formula which can be verified in polynomial time. Hence, the procedure can
be implemented by an oracle machine of type PPSPACE = PSPACE (the
LTL model checking algorithm might be employed polynomially many times).
Thus, the complexity for CTL? is the same as for LTL.
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Theorem 5.3 (CTL? [Clarke et al., 1986; Emerson and Lei, 1987]).
Model checking CTL? is PSPACE-complete, and can be done in time
2O(|ϕ|)O(|M|), where |M| is given by the number of transitions.

In Section 2.2.5 we introduced ATL+, a variant of ATL. As the model
checking algorithm for ATL+ will rely on the complexity of CTL+ model
checking, we mention the latter result here.

Theorem 5.4 (CTL+ [Laroussinie et al., 2001]). Model checking CTL+

is ∆P
2 -complete in the number of transitions in the model and the length of

the formula.

5.3 Alternating Time Temporal Logics

In the following we consider the model checking problems for the strategic
logics based on ATLs.

5.3.1 ATL and CL: Perfect Information

One of the main results concerning ATL states that its formulae can also
be model checked in deterministic linear time, analogously to CTL. It is im-
portant to emphasise, however, that the result is relative to the number of
transitions in the model and the length of the formula. In Section 5.4.1 we
discuss an alternative input measure in terms of agents, states, and the length
of the formula, and show that this causes a substantial increase in complexity.

The ATL model checking algorithm from [Alur et al., 2002] is presented in
Figure 5.3. The algorithm employs the well-known fixedpoint characterisations
of strategic-temporal modalities:

〈〈A〉〉�ϕ↔ ϕ ∧ 〈〈A〉〉 © 〈〈A〉〉�ϕ,
〈〈A〉〉ϕ1Uϕ2 ↔ ϕ2 ∨ ϕ1 ∧ 〈〈A〉〉 © 〈〈A〉〉ϕ1Uϕ2,

and computes a winning strategy step by step (if it exists). That is, it starts
with the appropriate candidate set of states (∅ for U and the whole set Q
for �), and iterates backwards over A’s one-step abilities until the set gets
stable. It is easily seen that the algorithm needs to traverse each transition at
most once per subformula of ϕ. It does not matter whether perfect recall or
memoryless strategies are used: The algorithm is correct for the IR-semantics,
but it always finds an Ir -strategy. Thus, for the LATL-formula 〈〈A〉〉γ, if A have
an IR-strategy to enforce γ, they also have an Ir -strategy to obtain it.

Theorem 5.5 (ATLIr and ATLIR [Alur et al., 2002]). Model checking
ATLIr and ATLIR is P-complete, and can be done in time O(|M| · |ϕ|), where
|M| is given by the number of transitions in M.
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function mcheck(M,ϕ).

ATL model checking. Returns the set of states in model M = 〈Agt,Q , Π, π, o〉 for
which formula ϕ holds.

case ϕ ∈ Π : return π(p)
case ϕ = ¬ψ : return Q \mcheck(M,ψ)
case ϕ = ψ1 ∨ ψ2 : return mcheck(M,ψ1) ∪mcheck(M,ψ2)
case ϕ = 〈〈A〉〉 © ψ : return pre(M,A,mcheck(M,ψ))
case ϕ = 〈〈A〉〉�ψ :
Q1 := Q ; Q2 := mcheck(M,ψ); Q3 := Q2;
while Q1 6⊆ Q2

do Q1 := Q2; Q2 := pre(M,A,Q1) ∩Q3 od;
return Q1

case ϕ = 〈〈A〉〉ψ1Uψ2 :
Q1 := ∅; Q2 := mcheck(M,ψ1);
Q3 := mcheck(M,ψ2);
while Q3 6⊆ Q1

do Q1 := Q1 ∪Q3; Q3 := pre(M,A,Q1) ∩Q2 od;
return Q1

end case

function pre(M,A,Q).

Auxiliary function; returns the exact set of states Q′ such that, when the system is
in a state q ∈ Q′, agents A can cooperate and enforce the next state to be in Q.

return {q | ∃αA∀αAgt\A o(q, αA, αAgt\A) ∈ Q}

Fig. 5.3. The ATL model checking algorithm from [Alur et al., 2002]

Proof. [Sketch] Each case of the algorithm is called at most O(|ϕ|) times
and terminates after O(|M|) steps [Alur et al., 2002]. The latter is shown
by translating the model to a two player game [Alur et al., 2002], and then
solving the “invariance game” on it in polynomial time [Beeri, 1980]. Hardness
is shown by a reduction of reachability in And-Or-Graphs, which was shown
to be P-complete (cf. Theorem 4.22, [Immerman, 1981]), to model checking
the (constant) LATL-formula 〈〈1〉〉♦p in a two player game. In each Or-state it
is the turn of player 1 and in each And-state it is player 2’s turn [Alur et al.,
2002]. �

In the next theorem, we show that the model checking problem of coalition
logic is as hard as for ATL. To our knowledge, this is a new result; the proof is
done by a slight variation of the hardness proof for ATL in [Alur et al., 2002]
(cf. the proof of Theorem 5.5).
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Theorem 5.6 (CLIr and CLIR). Model checking CLIr and CLIR is P-complete,
and can be done in time O(|M| · |ϕ|), where |M| is given by the number of
transitions in M.

Proof. The upper bound follows from the fact that LCL is a sublanguage
of LATL. We show P-hardness by the following adaption of the reduction of
And-Or-Graph reachability from [Alur et al., 2002]. Firstly, we observe that
if a state y is reachable from x in graph G then it is also reachable via a path
whose length is bounded by the number n of states in the graph. Like in the
proof of Theorem 5.5, we take G to be a turn-based CGS in which player 1
“owns” all the Or-states and player 2 “owns” all the And-states. We also label
node y with a special proposition y, and replace all the transitions outgoing
from y with a deterministic loop. Now, we have that y is reachable from x in
G iff G, x |= 〈〈1〉〉 © . . . 〈〈1〉〉©︸ ︷︷ ︸

n-times

y. The reduction uses only logarithmic space.�

It is worth pointing out, however, that checking strategic properties in one-
step games is somewhat easier. We recall that AC0 is the class corresponding
to constant depth, unbounded fanin, polynomial size Boolean circuits with
AND, OR, and NOT gates [Furst et al., 1984]. We call a formula flat if it
contains no nested cooperation modalities. Moreover, a formula is simple if it
is flat and does not include Boolean connectives. For example, the language of
“simple CL” consists only of formulae p and 〈〈A〉〉©p, for p ∈ Π and A ⊆ Agt.

Theorem 5.7 (Simple CLIr and CLIR [Laroussinie et al., 2008]). Model
checking “simple CLIr” and “simple CLIR” with respect to the number of tran-
sitions in the model and the length of the formula is in AC0.

Proof. [Sketch] For M, q |= 〈〈A〉〉©p, we construct a 3-level circuit [Laroussinie
et al., 2008]. On the first level, we assign one AND gate for each possible
coalition B and B’s collective choice αB . The output of the gate is “true” iff
αB leads to a state satisfying p for each response of Agt \ B. On the second
level, there is one OR gate per possible coalition B that connects all B’s gates
from the first level and outputs “true” iff there is any successful strategy for
B. On the third level, there is a single AND gate that selects the right output
(i.e., the one for coalition A). �

5.3.2 ATL and CL: Imperfect Information

In contrast to the perfect information setting, analogous fixedpoint charac-
terisations do not hold for the incomplete information semantics over LATL

because the choice of a particular action at a state q has non-local conse-
quences: It automatically fixes choices at all states q′ indistinguishable from q
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for the coalition A. Moreover, the agents’ ability to identify a strategy as win-
ning also varies throughout the game in an arbitrary way (agents can learn
as well as forget). This suggests that winning strategies cannot be synthe-
sised incrementally. In order to check M, q |= 〈〈A〉〉γ (where γ includes no
nested cooperation modalities), the following procedure suffices. Firstly, we
guess a uniform strategy sA of team A (by calling an NP oracle), and then
we verify the strategy by pruning M accordingly (removing all the transitions
that are not going to be executed according to sA) and model checking the
LCTL-formula Aγ in the resulting model. For nested cooperation modalities,
we proceed recursively (bottom up). Since model checking CTL can be done
in polynomial deterministic time, the procedure runs in polynomial determin-
istic time with calls to an NP oracle, which demonstrates the inclusion in
∆P

2 = PNP [Schobbens, 2004]. As it turns out, a more efficient procedure
does not exist, which is confirmed by the following result.

Theorem 5.8 (ATLir [Schobbens, 2004; Jamroga and Dix, 2008]).
Model checking ATLir is ∆P

2 -complete in the number of transitions in the
model and the length of the formula.

Proof. [Sketch] The discussion above proves membership in ∆P
2 . ∆P

2 -hardness
is shown in [Jamroga and Dix, 2008] through a reduction of sequential sat-
isfiability (SNSAT2), a standard ∆P

2 -complete problem (cf. Definition 4.15,
[Laroussinie et al., 2001]). The idea is that there are two agents where one
agent tries to verify a (nested) propositional formula and a second agent tries
to refute it. A winning strategy of the “verifier agent” corresponds to a satis-
fying valuation of the formula. Uniformity of the verifier’s strategy is needed
to ensure that identical proposition symbols, occurring at different places in
the formula, are assigned the same truth values. �

Now we consider the incomplete information setting for coalition logic. It is
easy to see that the iR- and ir-semantics are equivalent for LCL since© is the
only temporal operator, and thus only the first action in a strategy matters.
As a consequence, whenever there is a successful iR-strategy for agents A to
enforce©ϕ, then there is also an ir -strategy for A to obtain the same. Perfect
recall of the history does not matter in one-step games.

Theorem 5.9 (CLir and CLiR). Model checking CLir and CLiR is P-complete
wrt the number of transitions in the model and the length of the formula, and
can be done in time O(|M| · |ϕ|).

Proof. The P-hardness follows from Theorem 5.6 (perfect information CGSs
can be seen as a special kind of ICGSs where the indistinguishability relations
contain only the reflexive loops). For the upper bound, we use the following
algorithm. For M, q |= 〈〈A〉〉©p, we check if there is a collective action αA such
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that for all responses αAgt\A we have that
⋃
{q′|q∼Aq′}{o(q′, αA, αAgt\A)} ⊆

π(p). For 〈〈A〉〉©ϕ with nested cooperation modalities, we proceed recursively
(bottom up). �

Theorem 5.10 (Simple CLir and CLiR). Model checking “simple” formulae
of CLir and CLiR with respect to the number of transitions in the model and
the length of the formula is in AC0.

Proof. For M, q |= 〈〈A〉〉©p, we extend the procedure from [Laroussinie et al.,
2008] by creating one copy of the circuit per q′ ∈ img(q,∼A). Then, we add
a single AND gate on the fourth level of the circuit, that takes the output of
those copies and returns “true” iff A have a strategy that is successful from
all states indistinguishable from q. �

That leaves us with the issue of LATL with the semantics assuming im-
perfect information and perfect recall. To our knowledge, there is no formal
proof published in the literature regarding the complexity of model checking
LATL with iR-strategies. However, the problem is commonly believed to be
undecidable and just recently a proof has been proposed by Dima and Tiplea
(June 2010).

Conjecture 5.11 ( ATLiR [Alur et al., 2002]). Model checking ATLiR is unde-
cidable.

5.3.3 ATL∗

We now turn to model checking logics over broader subsets of LATL∗ . In
the first case we consider perfect recall strategies in the perfect information
setting. The complexity results established here are based on an automata-
theoretic approach which is explained below.

Let M be a CGS and 〈〈A〉〉ψ be an LATL∗ -formula (where we assume that
ψ is an LLTL-formula). Given a strategy sA of A and a state q in M the model
can be unfolded into a q-rooted tree representing all possible behaviours with
agents A following their strategy sA. This structure can be seen as the tree
induced by out(q, sA) and we will refer to it as a (q, A)-execution tree. Note
that every strategy profile for A may result in a different execution tree. Now,
a Büchi tree automaton AM,q,A can be constructed that accepts exactly the
(q, A)-execution trees [Alur et al., 2002].

Secondly, it was shown that one can construct a Rabin tree automaton
which accepts all trees that satisfy the LCTL∗ -formula Aψ [Emerson and
Sistla, 1984]. Hence, the LATL∗ -formula 〈〈A〉〉ψ is satisfied in M, q if there is
a tree accepted by AM,q,A (i.e., it is a (q,A)-execution tree) and by Aψ (i.e.,
it is a model of Aψ).
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Theorem 5.12 (ATL∗IR [Alur et al., 2002]). Model checking ATL∗IR is
2EXPTIME-complete in the number of transitions in the model and the
length of the formula.

Proof. [Sketch] We briefly analyse the complexity for the procedure described
above. Firstly, the Büchi tree automaton AM,q,A is built by considering the
states A is effective for [Alur et al., 2002]. That is, in a state of the automa-
ton corresponding to a state q ∈ Q of M the automaton nondeterministically
chooses a sequence (q′1, q

′
2, . . . , q

′
n) of successors of q such that A has a com-

mon action to guarantee that the system will end up in one of the states
{q′1, q′2, . . . , q′n} in the next step. It is assumed that the sequence is minimal.
Incrementally, this models any sA strategy of A and thus accepts all (q, A)-
execution trees. The transition function of the automaton is constructed in the
described way. As the number of transitions in each state of the automaton
is bounded by the move combinations of agents A, the size of the automaton,
|AM,q,A|, is bounded by O(|M|). All states are defined as acceptance states,
such that AM,q,A accepts all possible execution trees of A.

Following the construction of [Emerson and Sistla, 1984], the automaton
Aψ is a Rabin tree automaton with 22O(|ψ|)

states and 2O(|ψ|) Rabin pairs.
The product automatonAψ×AM,q,A, accepting the trees accepted by both

automata, is a Rabin tree automaton with n := O(|Aψ|·|AM,q,A|) many states
and r := 2O(|ψ|) many Rabin pairs (note that AM,q,A can be seen as a Rabin
tree automaton with one Rabin pair composed of the states of the automaton
and the empty set). Finally, to determine whether the language accepted by
the product automaton is empty can be done in time O(n · r)3r [Emerson
and Jutla, 1988; Pnueli and Rosner, 1989]; hence, the algorithm runs in time
|M|2O(|ψ|)

(it might be employed at each state of the model and for each
subformula).

The lower bound is shown by a reduction of the 2EXPTIME-complete
problem of the realisability of LTL-formulae [Pnueli and Rosner, 1989; Rosner,
1992; Alur et al., 2002] (cf. Theorem 4.24). �

The next result shows that model checking LATL∗ with memoryless strate-
gies is no worse than for LTL and CTL? for both perfect and imperfect infor-
mation.

Theorem 5.13 (ATL∗ir and ATL∗Ir [Schobbens, 2004]). Model checking
ATL∗ir and ATL∗Ir is PSPACE-complete in the number of transitions in the
model and the length of the formula.

Proof. [Sketch] LLTL is contained in LATL∗ which makes LATL∗ under the
perfect information memoryless semantics to be at least PSPACE-hard.

On the other hand, there is a PSPACE algorithm for model checking
LATL∗ under the imperfect information memoryless semantics. Consider the



84 5 Model Checking Temporal and Strategic Logics

formula 〈〈A〉〉ψ where ψ is an LLTL-formula. Then, an ir -strategy sA for A is
guessed and the model is “trimmed” according to sA, i.e. all transitions which
cannot occur by following sA are removed. A memoryless strategy can be
guessed in polynomially many steps, and hence also using only polynomially
many memory cells. In the new model the LCTL∗ -formula Aψ is checked. This
procedure can be performed in NPPSPACE, which renders the complexity of
the whole language to be in PNPPSPACE

= PSPACE. �

5.3.4 ATL+ and EATL+

We consider the more limited language L
ATL+ . Boolean combinations of path

formulae prevent us from using the fixed-point characterisations for model
checking. Instead, given a formula 〈〈A〉〉ψ with no nested cooperation modal-
ities, we can guess a (memoryless) strategy of A, “trim” the model accord-
ingly, and model check the L

CTL+ -formula Aψ in the resulting model. Since
the model checking problem for CTL+ is ∆P

2 -complete (cf. Theorem 5.4), we

get that the overall procedure runs in time ∆P
2

∆P
2 = ∆P

3 [Schobbens, 2004].

Theorem 5.14 (ATL+
ir and ATL+

Ir [Schobbens, 2004]). Model checking
ATL+

ir and ATL+
Ir is ∆P

3 -complete in the number of transitions in the model
and the length of the formula.

Proof. [Sketch] The above procedure shows the membership. In the incomplete
information case one has to guess a uniform strategy. Again, it is essential
that a strategy can be guessed in polynomially many steps, which is indeed
the case for Ir - and ir -strategies. The hardness proof can be obtained by a
reduction of the standard ∆P

3 -complete problem SNSAT3, cf. [Schobbens,
2004] for the construction. �

What about ATL+
IR? It has been believed that verification with L

ATL+

is ∆P
3 -complete for perfect recall strategies, too. However, it turns out that

the complexity of ATL+
IR model checking is apparently much harder, namely

PSPACE [Bulling and Jamroga, 2010a,b]. Since the ∆P
3 -completeness for

memoryless semantics is correct, we get that memory makes verification
harder already for L

ATL+ , and not just for LATL∗ as it was believed before.
We treat this case in more detail in Section 9.1; here, we just present the
result.

Theorem 5.15 (ATL+
IR [Bulling and Jamroga, 2010b]). Model checking

ATL+
IR is PSPACE-complete with respect to the number of transitions in the

model and the length of the formula. It is PSPACE-complete even for turn-
based models with two agents and “flat” L

ATL+-formulae.
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Ir IR ir iR

Simple LCL AC0 AC0 AC0 AC0

LCL P P P P

LATL P P ∆P
2 Undecidable†

L
ATL+ ∆P

3 PSPACE ∆P
3 Undecidable†

LATL∗ PSPACE 2EXPTIME PSPACE Undecidable†

Fig. 5.4. Overview of the model checking complexity results for explicit models. All
results except for “Simple CL” are completeness results. Each cell represents the
logic over the language given in the row using the semantics given in the column.
† These problems are believed to be undecidable, though no formal proof has been
proposed yet (cf. Conjectures 5.11, 5.16, and 5.17).

The following conjectures are immediate consequences of Conjecture 5.11
as LATL is a fragment of LATL∗ as well as L

ATL+ .

Conjecture 5.16 ( ATL∗iR). Model checking ATL∗iR is undecidable.

Conjecture 5.17 ( ATL+
iR). Model checking ATL+

iR is undecidable.

Figure 5.4 presents an overview of the model checking complexity results
for explicit models.

5.4 Model Checking on Implicit Models

In the following we consider how the model checking results change if the size
of the models is not given in the most straightforward way (i.e. in terms of
the number of states and transitions) but rather in a compressed form.

5.4.1 Implicit Models

We have seen several complexity results for the model checking problem in
logics like LTL, CTL, and ATL. Some of these results are quite attractive:
One usually cannot hope to achieve verification with complexity better than
linear.

However, it is important to remember that these results measure the com-
plexity with respect to the size of the underlying model. Often, these models
are so big, that an explicit representation is not possible and we have to repre-
sent the model in a “compressed” way. To give a simple illustration, consider
the famed primality problem: checking whether a given natural number n is
prime. The well-known algorithm uses

√
n-many divisions and thus runs in
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polynomial time when the input is represented in unary. But a symbolic rep-
resentation of n needs only log(n) bits and thus the above algorithm runs in
exponential time with respect to its size. This does not necessarily imply that
the problem itself is of exponential complexity. In fact, the famous and deep
result of Agrawal, Kayal and Saxena shows that the primality problem can
be solved in polynomial time.

One may consider model checking of temporal and strategic logics for
such highly compressed representations (in terms of state space compression
and modularisation). However, such a rigorous compressed representation is
not the only way in which the model checking complexity can be influenced.
Another important factor is how we encode the transition function. So far, we
assumed that the size of a model is measured with respect to the number of
transitions in the model.

In this section we consider the complexity of the model checking problem
with respect to the number of states, agents, and an implicitly encoded transi-
tion function rather than the (explicit) number of transitions. It is easy to see
that, for CGSs, the number of transitions can be exponential in the number
of states and agents. Therefore, all the algorithms presented in Section 10.1
give us only exponential time bounds provided that the transition function is
encoded sufficiently small.

Remark 5.18 ([Alur et al., 2002; Jamroga and Dix, 2005]). Let n be the num-
ber of states in a concurrent game structure M, let k denote the number of
agents, and d the maximal number of available decisions (moves) per agent
per state. Then, m = O(ndk). Therefore the ATLIR model checking algorithm
from [Alur et al., 2002] runs in time O(ndkl), and hence its complexity is
exponential if the number of agents is a parameter of the problem.

In comparison, for an unlabelled transition system with n states and m
transitions, we have that m = O(n2). This means that CTL model checking
is in P also with respect to the number of states in the model and the length
of the formula. The following theorem is an immediate corollary of this fact
(and Theorem 5.1).

Theorem 5.19 ([Clarke et al., 1986]). CTL model checking over unlabelled
transition systems is P-complete in the number of states and the length of the
formula, and can be done in time O(n2l).

For ATL and concurrent game structures, however, the situation is differ-
ent. In the following we make precise what we mean by a compressed transition
function.

Implicit concurrent game structures (called this way first in [Laroussinie
et al., 2006], but already present in the ISPL modelling language behind MC-
MAS [Raimondi and Lomuscio, 2004; Raimondi, 2006]) are defined similarly
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to a CGS but the transition function is encoded in a particular way often
allowing for a more compact representation than the explicit transition table.
Formally, an implicit CGS is given by M = 〈Agt,Q , Π, π,Act, d, ô〉 where ô,
the encoded transition function, is given by a sequence

((ϕr0, q
r
0), . . . , (ϕrtr , q

r
tr ))r=1,...,|Q|

where tr ∈ N0, qri ∈ Q and each ϕri is a Boolean combination of propositions
execj

α where j ∈ Agt, α ∈ Act, i = 1, . . . , t and r = 1, . . . , |Q |. It is required
that ϕrtr = >. The term execj

α stands for “agent j executes action α”. We
use ϕ[α1, . . . , αk] to refer to the Boolean formula over {>,⊥} obtained by
replacing exec

aj
α with > (resp. ⊥) if αj = α (resp. αj 6= α). The encoded

transition function induces a standard transition function oô as follows:

oô(qi, α1, . . . , αk) = qij where j = min{κ | ϕiκ[α1, . . . , αk] ≡ >}.

That is, oô(qi, α1, . . . , αk) returns the state belonging to the formula
ϕiκ (associated with state qi) with the minimal index κ that evaluates to
“true” given the actions α1, . . . , αk. We use ô(qi, α1, . . . , αk) to refer to
oô(qi, α1, . . . , αk). Note that the function is well defined as the last formula in
each sequence is given by >: No deadlock can occur. The size of ô is defined as
|ô| =

∑
r=1,...,|Q|

∑
j=1,...,tr

|ϕrj |, that is, the sum of the sizes of all formulae.
Hence, the size of an implicit CGS is given by |Q | + |Agt| + |ô|. We recall,
that the size of an explicit CGS is |Q |+ |Agt|+m where m is the number of
transitions. Finally, we require that the encoding of the transition function is
reasonably compact, that is, |ô| ≤ O(|oô|).

Now, why should the model checking complexity change for implicit
CGSs? Firstly, one can observe that we can take the trivial encoding of an
explicit transition function yielding an implicit CGS that has the same size
as the explicit CGS. This implies that all the lower bounds proven before are
still valid.

Proposition 5.20 ([Bulling et al., 2010]). Model checking with respect to
implicit CGSs is at least as hard as model checking over explicit CGSs for
CTL, CTL?,LTL, ATLxy, ATL∗xy, and ATL+

xy for x ∈ {i, I} and y ∈ {r,R}.

Therefore, we focus on the question whether model checking can become
more difficult for implicit CGSs. Unfortunately, the answer is yes: Model
checking can indeed become more difficult.

We illustrate this by considering the presented algorithm for solving the
ATLIR model checking problem. It traverses all transitions and as transitions
are considered explicitly in the input, the algorithm runs in polynomial time.
But if we choose an encoding ô that is significantly smaller than the explicit
number of transitions, the algorithm still has to check all transitions, yet now
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the number of transitions can be exponential with respect to the input of size
|Q |+ |Agt|+ |ô|.

Henceforth, we are interested in the cases in which the size of the encoded
transition function is much smaller, in particular, when the size of the encoding
is polynomial with respect to the number of states and agents. This is the
reason why we will often write that we measure the input in terms of states (n)
and agents (k), neglecting the size of ô when it is supposed to be polynomial
in n, k.

Remark 5.21. An alternative view is to assume that the transition function is
provided by an external procedure (a “black box”) that runs in polynomial
time, similar to an oracle [Jamroga and Dix, 2005]. In our opinion, this view
comes along with some technical disadvantages, and we will not discuss it
here.

5.4.2 ATL and CL

As argued above the complexity of O(ml) may (but does not have to) in-
clude potential intractability if the transition function is represented more
succinctly. The following result supports this observation.

Theorem 5.22 ([Laroussinie et al., 2008; Jamroga and Dix, 2005,
2008]). Model checking ATLIR and ATLIr over implicit CGSs is ∆P

3 -complete
with respect to the size of the model and the length of the formula (l).

Proof. [Sketch] The idea of the proof for the lower bound is clear if we refor-
mulate the model checking of M, q |= 〈〈a1, . . . , ar〉〉 © ϕ as

∃(α1, . . . , αr)∀(αr+1, . . . , αk) M,o(q, α1, . . . , αk) |= ϕ,

which closely resembles QSAT 2, a typical ΣP
2 -complete problem. A reduction

of this problem to our model checking problem is straightforward: For each
instance of QSAT 2, we create a model where the values of propositional vari-
ables p1, . . . , pr are “declared” by agents A and the values of pr+1, . . . , pk by
Agt \A. The subsequent transition leads to a state labeled by proposition yes
iff the given Boolean formula holds for the underlying valuation of p1, . . . , pk.
Then, QSAT 2 reduces to model checking formula 〈〈a1, . . . , ar〉〉 © yes [Jam-
roga and Dix, 2005]. In order to obtain ∆P

3 -hardness, the above schema is
combined with nested cooperation modalities, which yields a rather technical
reduction of the SNSAT3 problem that can be found in [Laroussinie et al.,
2008].

For the upper bound, we consider the following algorithm for checking
M, q |= 〈〈A〉〉γ with no nested cooperation modalities. Firstly, guess a strategy
sA of the proponents and fix A’s actions to the ones described by sA. Then
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check if Aγ is true in state q of the resulting model by asking an oracle about
the existence of a counterstrategy sĀ for Agt \A that falsifies γ and reverting
the oracle’s answer. The evaluation takes place by calculating ô (which takes
polynomially many steps) regarding the actions prescribed by (sA, sĀ) at most
|Q | times. For nested cooperation modalities, we proceed recursively (bottom-
up). �

Surprisingly, the imperfect information variant of ATL is no harder than
the perfect information one under this measure:

Theorem 5.23 ([Jamroga and Dix, 2008]). Model checking ATLir over
implicit CGSs is ∆P

3 -complete with respect to the size of the model and the
length of the formula. This is the same complexity as for model checking ATLIr

and ATLIR.

Proof. [Sketch] For the upper bound, we use the same algorithm as in checking
ATLIr. For the lower bound, we observe that ATLIr can be embedded in ATLir

by explicitly assuming perfect information of agents (through the minimal
reflexive indistinguishability relations). �

The ∆P
3 -hardness proof in Theorem 5.22 uses the “next time” and “until”

temporal operators in the construction of an ATL formula that simulates
SNSAT3 [Laroussinie et al., 2008]. However, the proof can be modified so
that only the “next time” sublanguage of LATL is used. We obtain thus an
analogous result for coalition logic.

Theorem 5.24 ([Bulling, 2010]). Model checking CLIR, CLIr, CLir, and
CLiR over implicit CGSs is ∆P

3 -complete with respect to the size of the model
and the length of the formula. Moreover, it is ΣP

2 -complete for the “simple”
variants of CL.

The proof and details of the new construction can be found on page 322.
It is worth mentioning that model checking “Positive ATL” (i.e., the frag-

ment of LATL where negation is allowed only on the level of literals) is ΣP
2 -

complete with respect to the size of implicit CGSs, and the length of formulae
for the IR, Ir , and ir -semantics [Jamroga and Dix, 2008]. The same applies
to “Positive CL”, the analogous variant of coalition logic.

5.4.3 CTL and CTL+ Revisited

At the beginning of Section 5.4.1, we have mentioned that the complexity of
model checking computation tree logic is still polynomial even if we measure
the size of models with the number of states rather than transitions. That
is certainly true for unlabelled transition systems (i.e., the original models of
CTL). For concurrent game structures, however, this is no longer the case.
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Theorem 5.25 ([Bulling et al., 2010]). Model checking CTL over implicit
CGSs is ∆P

2 -complete with respect to the size of the model and the length of
the formula.

Proof. [Sketch] For the upper bound, we observe that M, q |=CTL Eγ iff
M, q |=IR 〈〈Agt〉〉γ which is in turn equivalent to M, q |=Ir 〈〈Agt〉〉γ. In other
words, Eγ holds iff the grand coalition has a memoryless strategy to achieve
γ. Thus, we can verify M, q |= Eγ (with no nested path quantifiers) as follows:
we guess a strategy sAgt for Agt (in polynomially many steps), then we con-
struct the resulting model M′ by asking ô which transitions are enabled by
following the strategy sA and check if M′, q |= Eγ and return the answer. Note
that M′ is an unlabelled transition system, so constructing M′ and checking
M′, q |= Eγ can be done in polynomial time. For nested modalities, we proceed
recursively.

For the lower bound, we sketch the reduction of the satisfiability prob-
lem (SAT) to model checking LCTL-formulae with only one path quantifier.
For propositional variables p1, . . . , pk and boolean formula ϕ, we construct
an implicit CGS where the values of p1, . . . , pk are “declared” by agents
Agt = {a1, . . . , ak} (in parallel). The subsequent transition leads to a state la-
beled by proposition yes iff ϕ holds for the underlying valuation of p1, . . . , pk.
Then, SAT reduces to model checking formula 〈〈Agt〉〉 © yes. The reduction
of SNSAT2 (to model checking LCTL-formulae with nested path quantifiers)
is an extension of the SAT reduction, analogous to the one in [Jamroga and
Dix, 2006, 2008]. �

It turns out that the complexity of CTL+ does not increase when we
change the models to implicit concurrent game structures: It is still ∆P

2 .

Theorem 5.26 ([Bulling et al., 2010]). Model checking CTL+ over im-
plicit CGSs is ∆P

2 -complete with respect to the size of the model and the
length of the formula.

Proof. [Sketch] The lower bound follows from Theorem 5.4 and Proposi-
tion 5.20.

For the upper bound, we observe that the CTL+ model checking algorithm
in [Laroussinie et al., 2001] verifies M, q |= Eγ by guessing a finite history h
with length |QM | · |γ|, and then checking γ on h. We recall that Eγ ≡ 〈〈Agt〉〉γ.
Thus, for a concurrent game structure, each transition in h can be determined
by guessing an action profile in O(|Agt|) steps, calculating ô wrt the guessed
profile, and the final verification whether γ holds on the finite sequence h
which can be done in deterministic polynomial time (cf. [Bulling and Jamroga,
2010a]). Consequently, we can implement this procedure by a nondeterministic
Turing machine that runs in polynomial time. For nested path quantifiers, we
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proceed recursively which shows that the model checking problem can be
solved by a polynomial time Turing machine with calls to an NP-oracle. �

We will use the last result in the analysis of ATL+ in Section 5.4.4.

5.4.4 ATL∗, ATL+, and EATL+

Theorem 5.27. Model checking ATL∗Ir and ATL∗ir over implicit CGSs is
PSPACE-complete with respect to the size of the model and the length of
the formula.

Proof. The lower bound follows from Theorem 5.13 and Proposition 5.20.
For the upper bound, we model check M, q |= 〈〈A〉〉γ by guessing a mem-

oryless strategy sA for coalition A, then we guess a counterstrategy sĀ of the
opponents. Having a complete strategy profile, we proceed as in the proof of
Theorem 5.25 and check the LTL path formula γ on the resulting (polynomial
model) M′ which can be done in polynomial space (Theorem 5.13). For nested
cooperation modalities, we proceed recursively. �

Theorem 5.28 ([Laroussinie et al., 2008]). Model checking ATL∗IR over
implicit CGSs is 2EXPTIME-complete with respect to the size of the model
and the length of the formula.

Proof. The lower bound follows from Theorem 5.12 and Proposition 5.20.
For the upper bound, we have to modify the algorithm given in the proof of
Theorem 5.12 such that it is capable of dealing with implicit models. More
precisely, we need to modify the construction of the Büchi automaton AM,q,A

that is used to accept the (q, A)-execution trees. Before, we simply checked
all the moves of A in polynomial time and calculated the set of states A is
effective for (as the moves are bounded by the number of transitions). Here,
we have to incrementally generate all these moves from A using ô. This may
take exponential time (as there can be exponentially many moves in terms of
the number of states and agents). However, as this can be done independently
of the non-emptiness check, the overall runtime of the algorithm is still double
exponential. �

Theorem 5.29 ([Laroussinie et al., 2008]). Model checking ATL+
Ir , and

ATL+
ir over implicit CGSs is ∆P

3 -complete with respect to the size of the
model and the length of the formula.

Proof. The lower bounds follow from Theorem 5.14 and Proposition 5.20.
For the upper bound we model check M, q |= 〈〈A〉〉γ by guessing a memo-
ryless strategy sA for coalition A, and constructing an unlabelled transition
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Fig. 5.5. Overview of the model checking complexity results for implicit CGS. All
results are completeness results. Each cell represents the logic over the language
given in the row using the semantics given in the column. † These problems are
believed to be undecidable, though no formal proof has been proposed yet.

system M′ as follows. For each state qi we evaluate formulae contained in
((ϕi0, q

i
0), . . . , (ϕiti , q

i
ti)) according to the guessed strategy. Then, we introduce

a transition from qi to qij if (
∧
k=0,...,j−1 ¬ϕik) ∧ ϕij is satisfiable (i.e., there

is a countermove of the opponents such that ϕji is true and j is the minimal
index). This is the case iff the opponents have a strategy to enforce the next
state to be qij . These polynomially many tests can be done by independent
calls of an NP-oracle. The resulting model M′ is an explicit CGS of polyno-
mial size regarding the number of states and agents. Finally, we apply CTL+

model checking to Aγ which can be done in time ∆P
2 . �

Finally, we consider the case for perfect recall strategies. The lower and
upper bound directly follow from the proof of Theorem 5.15 (also cf. Sec-
tion 9.3).

Theorem 5.30 ([Bulling and Jamroga, 2010a]). Model checking ATL+
IR

over implicit CGSs is PSPACE-complete with respect to the size of the model
and the length of the formula.

A summary of complexity results for the alternative representation/measure
of the input is presented in Figure 5.5. It turns out that, when considering
the finer-grained representation that comes along with a measure based on
the number of states, agents, and an encoded transition function rather than
just the number of transitions, the complexity of model checking LATL seems
distinctly harder than before for games with perfect information, and only
somewhat harder for imperfect information. In particular, the problem falls
into the same complexity classes for imperfect and perfect information anal-
ysis, which is rather surprising, considering the results from Section 10.1.
Finally, the change of perspective does not influence the complexity of model
checking of LATL∗ as well as L

ATL+ at all.
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What can rational agents enforce and how to model rational play? This is
one of the main question addressed in this section. ATLs presented in Sec-
tion 2.2 allow to express that a group of agents is able to bring about ψ.
All possible behaviours are taken into account. However, such a statement is
weaker than it seems. Often, we know that agents behave according to some
rationality assumptions, they are not completely dumb. Therefore we do not
have to check all possible plays – only those that are plausible in some reason-
able sense. This has striking similarities to non-monotonic reasoning, where
one considers default rules that describe the most plausible behaviour and
allow to draw conclusions when knowledge is incomplete. In the presented ap-
proach, some strategies (or rather strategy profiles) can be assumed plausible,
and one can reason what can be plausibly achieved by agents under such an
assumption. Therefore, we extend ATL by the notion of plausibility, and call
the resulting logic ATLP (alternating time temporal logic with plausibility).
We claim that this logic is suitable to model and to reason about rational
behaviour of agents.

As for ATL the resulting logics obtained by adding the concept of plausi-
bility reason about the group of agents at stake. That is, given 〈〈A〉〉ϕ, whether
the agents in A have a winning strategy for ensuring ϕ. However, this operator
accounts only for the theoretical existence of such a strategy, not taking into
account whether the coalition A can be actually formed. Indeed, in order to
join a coalition, agents usually require some kind of incentive (e.g. sharing
common goals, getting rewards, etc.), since usually forming a coalition does
not come for free (fees have to be paid, communication costs may occur, etc.).
To address this important aspect we extend ATL by another dimension which
takes the coalition formation process into account. For this purpose we com-
bine the naive argumentative approach to coalition formation from Section 4.2
with ATL and call the resulting logic CoalATL (coalitional alternating time
temporal logic). The new construct 〈|A|〉ϕ denotes that the group A of agents
is able to build a coalition B, A ∩ B 6= ∅ if A 6= ∅, such that B can enforce
ϕ. That is, it is assumed that agents in A work together and try to form a
coalition B.

The main content of this section is summarised as follows:

1. We extend ATL to a new logic ATLPbase that allows to reason about what
agents can achieve under an arbitrary plausibility assumption. Several
expressiveness properties are shown. (These results are based on: [Bulling
et al., 2009b; Jamroga and Bulling, 2007a].)
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2. We present more expressive versions of ATLPbase: ATLPk and ATLP.
(These results are based on: [Bulling et al., 2009b; Bulling and Jamroga,
2007b].)

3. It is shown how classical and general solution concepts (Nash equilibrium,
subgame perfect Nash equilibrium, Pareto optimality, and others) can be
characterised in the object language of ATLP. (These results are based on:
[Bulling et al., 2009b; Jamroga and Bulling, 2007b; Bulling and Jamroga,
2007b].)

4. We turn our focus on the abilities of sensible coalitions and propose an
naive way how this can be added to ATL resulting in the new logic
CoalATL. (These results are based on: [Bulling et al., 2009a; Bulling and
Dix, 2008; Bulling et al., 2008; Bulling and Dix, 2010].)

6.1 Reasoning About Rational Play

Agents have limited ability to predict the future. However, some lines of action
seem often more sensible or realistic than others. If a rationality criterion is
available, we obtain means to focus on a proper subset of possible plays. In
game theoretic terms, we solve the game, i.e., we determine the most plausible
plays, and compute their outcome. In game theory, the outcome consists of the
payoffs (or utilities) assigned to players at the end of the game. In temporal
logics, the outcome of a play can be seen in terms of temporal patterns that
can occur — which allows for much subtler descriptions. In Section 3.2.5 we
have explained how rationality can be characterised with formulae of modal
logic (ATLI in this case). Now we show how the outcome of rational play can
be described with a similar (but richer) logic, and that both aspects can be
seamlessly combined.

Our logic ATLP (alternating time temporal logic with plausibility) comes
in several steps, based on different underlying languages. In this section, we
introduce the base language.

Lbase
ATLP: Sets of plausible/rational strategy profiles can be only referred to via

atomic plausibility terms (constants) whose interpretation is “hardwired”
in the model. A typical Lbase

ATLP statement is (set-pl ω)Plϕ: Suppose that
the set of rational strategy profiles is defined by ω – then, it is plausible
to expect that ϕ holds. For instance, one can reason about what should
happen if only Nash equilibria were played, or about the abilities of players
who play only Pareto optimal profiles, had terms for Nash equilibria and
Pareto optimal strategies been included in the model.

The language Lbase
ATLP is presented in Sections 6.1.2 and the semantics in

Section 6.1.4.
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Then, in Section 6.2 we introduce the full logic ATLP. We start with an
intermediate step in Section 6.2.1, namely plausibility terms written in LATLI.
This logic is named ATLPATLI. It serves as a motivation to extend Lbase

ATLP to
L1

ATLP, and, more generally, to a hierarchy LATLP = limk→∞ LkATLP which
denotes the language of ATLP.

6.1.1 The Concept of Rational Behaviour, Related Work

The idea has been inspired by the way in which games are analysed in game
theory. Firstly, game theory identifies a number of solution concepts (e.g.,
Nash equilibrium, undominated strategies, Pareto optimality) that can be
used to define rational behaviour of players. Secondly, it is usually assumed
that players play rationally in the sense of one of the above concepts, and it
is asked about the outcome of the game under this assumption.

In general, plausibility can be seen as a broader notion than rationality:
One may obtain plausibility specifications e.g. from learning or folk knowledge.
In this section, however, we mostly focus on plausibility as rationality in a
game-theoretical sense.

There are two possible points of focus in this context. Research within
game theory understandably favours work on the characterisation of various
types of rationality (and defining most appropriate solution concepts). Appli-
cations of game theory, also understandably, tend toward using the solution
concepts in order to predict the outcome in a given game (in other words, to
“solve” the game).

The first issue has been studied in the framework of logic, for exam-
ple in [Bacharach, 1987; Bonanno, 1991; Stalnaker, 1994, 1996]; more re-
cently, game-theoretical solution concepts have been characterised in dynamic
logic [Harrenstein et al., 2002, 2003], dynamic epistemic logic [Baltag, 2002;
van Benthem, 2003], and extensions of ATL [van der Hoek et al., 2005a; Jam-
roga et al., 2005].

The second thread seems to have been neglected in logic-based research:
The work [van Otterloo et al., 2004; van der Hoek et al., 2004; van Otterloo and
Roy, 2005; van Otterloo and Jonker, 2004] are the only exceptions we know of.
Moreover, each proposal from [van Otterloo et al., 2004; van der Hoek et al.,
2004; van Otterloo and Roy, 2005; van Otterloo and Jonker, 2004] commits to
a particular view of rationality (Nash equilibria, undominated strategies etc.).
Here, we try to generalise this kind of reasoning in a way that allows to “plug
in” any solution concept of choice (that we are able to formalise). We also
try to fill in the gap between the two threads by showing how sets of rational
strategy profiles can be specified in the object language, and building upon
the existing work on modal logic characterisations of solution concepts [Har-
renstein et al., 2002, 2003; Baltag, 2002; van Benthem, 2003; van der Hoek
et al., 2005a; Jamroga et al., 2005]. We show that our logic can describe all
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the solution concepts that these existing approaches can describe but also
additional ones, e.g. dominant strategies were it seems fundamental to allow
some kind of quantification over strategy profiles.

6.1.2 The Language Lbase
ATLP

We start with extending the language of LATL (cf. Definition 2.15) with oper-
ators PlA , (set-pl ω), and (refn-pl ω). The first assumes plausible behaviour
of agents in A; the latter are used to fix the actual meaning of plausibility by
plausibility terms ω. As yet, the terms are simple constants with no internal
structure. Their meaning will be given later by a denotation function linking
plausibility terms to sets of strategy profiles. Finally, the last operator is used
to refine a given notion of plausibility.

Definition 6.1 (Lbase
ATLP). The base language Lbase

ATLP(Agt, Π,Ω) is defined
over non-empty and finite sets: Π of propositions , Agt of agents, and Ω
of plausibility terms. LATLP(Agt, Π,Ω)-formulae are defined by the following
grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 © ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕUϕ |
PlA ϕ | (set-pl ω)ϕ | (refn-pl ω)ϕ.

Additionally, we define ♦ϕ as >Uϕ, Pl as PlAgt , and Ph as Pl∅ .

We use p, a, ω to refer to typical elements of Π,Agt, Ω, respectively, and
A to refer to a group of agents.

PlA assumes that agents in A play rationally; this means that the agents
can only use strategy profiles that are plausible in the given model. In par-
ticular, Pl (≡ PlAgt ) imposes rational behaviour on all agents in the system.
Similarly, Ph disregards plausibility assumptions, and refers to all physically
available scenarios. The model update operator (set-pl ω) allows to define (or
redefine) the set of plausible strategy profiles (referred to by Υ in the model)
to the ones described by plausibility term ω (in this sense, it implements revi-
sion of plausibility). Operator (refn-pl σ) enables refining the set of plausible
strategy profiles, i.e. selecting a subset of the previously plausible profiles.

With Lbase
ATLP, we can for example say that

Pl 〈〈∅〉〉�(closed ∧Ph 〈〈guard〉〉 © ¬closed) :

It is plausible to expect that the emergency door will always remain closed, but
the guard retains the physical ability to open it ; or

(set-pl ωNE)Pl 〈〈2〉〉♦money2 :

Suppose that only playing Nash equilibria is rational; then, agent a can plau-
sibly reach a state where it gets some money.
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We note that, in contrast to [Friedman and Halpern, 1994; Su et al., 2005;
Bulling and Jamroga, 2006], the concept of plausibility presented in this article
is objective, i.e. it does not vary from agent to agent. This is very much in the
spirit of game theory, where rationality criteria are used in an analogous way.
Moreover, it is global, because plausibility sets do not depend on the state
of the system. We note, however, that the denotation of plausibility terms
depends on the actual state.

6.1.3 Concurrent Game Structures with Plausibility

To define the semantics of Lbase
ATLP (and also LATLP introduced in the following

section), we extend CGSs to concurrent game structures with plausibility.
Apart from an actual set of plausible strategies Υ , a concurrent game structure
with plausibility (CGSP) must specify the denotation of plausibility terms
ω ∈ Ω. It is defined via a plausibility mapping

[[·]] : Q → (Ω → P(Σ)).

Instead of [[q]](ω) we will often write [[ω]]q to turn the focus to the plausibility
terms. Each term is mapped to a set of strategy profiles. We note also, that the
denotation of a term depends on the state. In a way, the current state of the
system defines the “initial position in the game”, and this heavily influences
the set of rational strategy profiles for most rationality criteria. For example,
a strategy profile can be a Nash equilibrium (NE) in q0, and yet it may not
be a NE in some of its successors.

We will propose a more concrete (and more practical) implementation of
plausibility terms in Section 6.2.1 and 6.2.2.

Definition 6.2 (CGSP). A concurrent game structure with plausibility
(CGSP) is given by a tuple

M = 〈Agt,Q , Π, π,Act, d, o, Υ ,Ω, [[·]]〉

where 〈Agt,Q , Π, π,Act, d, o〉 is a CGS (cf. Definition 2.16), Υ ⊆ Σ is a set
of plausible strategy profiles (called plausibility set); Ω is a set of of plausibility
terms, and [[·]] is a plausibility mapping over Q and Ω.

By CGSP (Agt, Π,Ω) we denote the set of all CGSPs over Agt, Π and
Ω. Furthermore, for a given CGSP M we use XM to refer to element X of
M, e.g., QM to refer to the set Q of states of M.

Definition 6.3 (Compatible model). Given a formula ϕ ∈ LATLP(Agt, Π,
Ω) a CGSP M is called compatible with ϕ if, and only if, M ∈ CGSP (Agt, Π,
Ω). That is, the model interprets all symbols occurring in ϕ. A model M is
called compatible with a set L of LATLP-formulae if, and only if, M is com-
patible with each formula in L.
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We will assume by default that, given a formula or a set of formulae, the
model we consider is compatible with it.

The formula Pl 〈〈A〉〉γ implies that A can only play plausible strategies.
Thus, A’s part of the strategy profiles in Υ is of particular interest which
motivates the following definition.

Definition 6.4 (PB |A). For a given set PB ⊆ ΣB of collective strategies of
agents B, PB |A with A 6= ∅ denotes the set of A’s substrategies in PB, i.e.:

PB |A = {sA ∈ ΣA | ∃s′B ∈ PB (s′B |A = sA)}.

For A = ∅ we define PB |∅ to consist of the empty strategy; i.e.,

PB |∅ = {s∅}.

In particular, if ∅ 6= A 6⊆ B we have that PB |A = ∅. (We would like to note
that this is different from {s∅}.)

Often, we impose restrictions only on a subset B ⊆ Agt of agents, with-
out assuming rational play of all agents. This can be desirable due to several
reasons. It might, for example, be the case that only information about the
proponents’ play is available; hence, assuming plausible behaviour of the op-
ponents is neither sensible nor justified. Or, even simpler, a group of (simple
minded) agents might be known to not behave rationally.

Consider formula PlB 〈〈A〉〉γ: The team A looks for a strategy that brings
about γ, but the members of the team who are also in B can only choose
plausible strategies. The same applies to A’s opponents that are contained in
B. Strategies which comply with B’s part of some plausible strategy profile
are called B-plausible.

Definition 6.5 (B-plausibility of strategies). Let A,B ⊆ Agt and sA ∈
ΣA. We say that sA is B-plausible in M if, and only if, B’s substrategy in sA
is part of some plausible strategy profile in M, i.e., if sA|A∩B ∈ ΥM|A∩B.

By ΥM(B) we denote the set of all B-plausible strategy profiles in M.
That is, ΥM(B) = {s ∈ Σ | s|B ∈ ΥM|B}. Note that sA is B-plausible iff sA ∈
ΥM(B)|A.

We observe that sA is trivially B-plausible whenever A and B are disjoint.

Remark 6.6. We note, that the set of ∅-plausible strategy profiles is given by
the set of all strategy profiles (cf. Definition 6.4):

Υ (∅) = {s ∈ Σ | s|∅ ∈ Υ |∅} = {s ∈ Σ | ∅ ∈ {∅}} = Σ

and for Υ = ∅ we have that Υ (A) = ∅ for A 6= ∅.
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As mentioned above, if some opponents belong to the set of agents who are
assumed to play plausibly then they must also comply with the actual plau-
sibility specifications when choosing their actions; this is taken into account
by the following notion of plausible outcome.

Definition 6.7 (B-plausible outcome). The B-plausible outcome,

outM(q, sA, B),

with respect to strategy sA and state q is defined as the set of paths which can
occur when only B-plausible strategy profiles can be played and agents in A
follow sA:

outM(q, sA, B) = {λ ∈ ΛM(q) | there exists a B-plausible t ∈ Σ such that
t|A = sA and outM(q, t) = {λ}}.

As before we will leave out the subscript “M” if clear from context.

We note that the outcome outM(q, sA, B) is empty whenever (A∩B)’s part
of sA is not part of any plausible strategy profile in ΥM. For example, assume
that all agents in B play only parts of Nash equilibria. Then for a given sA
there are two possibilities for the B-consistent outcome. Either it is empty
because (A ∩ B)’s part of sA does not belong to any Nash equilibrium, or it
consists of all paths which can occur when (1) A sticks to sA, (2) B (including
A ∩ B) plays according to some Nash equilibrium, and (3) the other agents
behave arbitrarily.

6.1.4 Semantics: The Logic ATLPbase

The truth of Lbase
ATLP-formulae is given with respect to a CGSP, a state q,

and a set B of agents. The intuitive reading of M, q |=B ϕ is: ϕ is true in
model M and state q if it is assumed that players in B play rationally (i.e., by
using only plausible combinations of strategies). No constraints are imposed
on the behaviour of agents outside B, but the plausibility operator PlA can
be used to change the set of agents (viz. A) whose play is restricted. The
update/refinement modalities (set-pl ω)/(refn-pl ω) are used to change the
plausibility set ΥM in the model.

Definition 6.8 (Semantics of Lbase
ATLP). Let M ∈ CGSP (Agt, Π,Ω) and

A,B ⊆ Agt. The semantics of LATLP(Agt, Π,Ω)-formulae is given as follows:

M, q |=B p iff p ∈ π(q) and p ∈ Π;
M, q |=B ¬ϕ iff M, q 6|=B ϕ;
M, q |=B ϕ ∧ ψ iff M, q |=B ϕ and M, q |=B ψ;
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M, q |=B 〈〈A〉〉 © ϕ iff there is a B-plausible sA such that M, λ[1] |=B ϕ for
all λ ∈ outM(q, sA, B);

M, q |=B 〈〈A〉〉�ϕ iff there is a B-plausible sA such that M, λ[i] |=B ϕ for all
λ ∈ outM(q, sA, B) and all i ∈ N0;

M, q |=B 〈〈A〉〉ϕUψ iff there is a B-plausible sA such that, for all
λ ∈ outM(q, sA, B), there is i ∈ N0 with M, λ[i] |=B ψ, and M, λ[j] |=B ϕ
for all 0 ≤ j < i;

M, q |=B PlA ϕ iff M, q |=A ϕ;
M, q |=B (set-pl ω)ϕ iff M′, q |=B ϕ where the new model M′ is equal to M

but the new set ΥM′ of plausible strategy profiles of M′ is set to [[ω]]qM;
M, q |=B (refn-pl ω)ϕ iff M′, q |=B ϕ where M′ is equal to M but ΥM′ set to

ΥM ∩ [[ω]]qM.

The “absolute” satisfaction relation |= is given by |=∅.
Definition 6.9 (Validity). Let ϕ ∈ LATLP(Agt, Π,Ω) and M ⊆
CGSP (Agt, Π,Ω) be a set of models. Formula ϕ is valid with respect to M
if, and only if, M, q |= ϕ for each M ∈M and each state q ∈ QM.

An ordinary concurrent game structure (without plausibility) can be in-
terpreted as a CGSP with all strategy profiles assumed plausible, i.e., with
Υ = Σ, and empty set of plausibility terms Ω.

Let us clarify the semantics behind PlB〈〈A〉〉γ once more. The proponents
(viz. A) look for a strategy that enforces γ; some of them (viz. A ∩ B) are
assumed to play a part of a plausible strategy profile while the others (viz. A\
B) can choose an arbitrary collective strategy. Analogously, some opponents
(viz. B \ A) are supposed to play plausibly (their choice complies to set ΥM

together with the strategy already chosen by A ∩ B), while the rest (viz.
Agt \ (A ∪ B)) has unrestricted choice. In particular, when B = A, only
the choices of the proponents are restricted; for B = Agt \ A plausibility
restrictions apply to the opponents only.

Remark 6.10. We observe that our framework is semantically similar to the
approach of social laws [Shoham and Tennenholz, 1992; Moses and Tennen-
holz, 1995; van der Hoek et al., 2005b]. However, we refer to strategy profiles
as rational or not, while social laws define constraints on agents’ individual
actions. Also, our motivation is different: In our framework, agents are ex-
pected to behave in a specified way because it is rational in some sense; social
laws prescribe behaviour sanctioned by social norms and legal regulations.

Example 6.11 (Asymmetric matching pennies ctd.). We continue our Exam-
ple 3.10. Suppose that it is plausible to expect that both agents are ratio-
nal in the sense that they only play undominated strategies.1 Then, Υ =
1 We recall from Section 3.1 that a strategy sa ∈ Σa is called undominated if, and

only if, there is no strategy s′a ∈ Σa such that the achieved utility of s′a is at least
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{(sh , sh), (sh , st)}. Under this assumption, agent 2 is free to grant itself with
the prise or to refuse it: Pl (〈〈2〉〉♦ money2 ∧ 〈〈2〉〉�¬money2). Still, it cannot
choose to win without making the other player win too: Pl¬〈〈2〉〉♦(money2 ∧
¬money1). Likewise, if rationality is defined via iterated undominated strate-
gies, then we have Υ = {(sh , sh)}, and therefore the outcome of the game is
completely determined: Pl 〈〈∅〉〉�(¬start→ money1 ∧money2).

In order to include both notions of rationality in the model, we can en-
code them as denotations of two different plausibility terms – say, ωundom
and ωiter, with [[ωundom]]q0 = {(sh , sh), (sh , st)}, and [[ωiter]]q0 = {(sh , sh)}.
Let M′1 be model M1 with plausibility terms and their denotation de-
fined as above. Then, we have that M′1, q0 |= (set-pl ωundom)Pl (〈〈2〉〉♦
money2∧〈〈2〉〉�¬money2)∧(set-pl ωiter)Pl 〈〈∅〉〉�(¬start→ money1∧money2).

Out of many solution concepts, Nash equilibria are the most widely ac-
cepted, especially for non-cooperative games. We briefly extend our working
example with game analysis based on Nash equilibria. In this case, it is not
possible to define rationality with independent constraints on agents’ indi-
vidual strategies (like in normative systems). These are full strategy profiles
being rational or not, since rationality of a strategy depends on the actual
response of the other players.

Example 6.12 (Asymmetric matching pennies ctd.). Suppose that rationality
is defined through Nash equilibria. Then, Υ = {(sh , sh), (st , st)}. Under this
assumption, agent 2 is sure to get the prise: Pl 〈〈∅〉〉�(¬start→ money2).

Moreover, by choosing the right strategy, 2 can control the outcome of
the other agent: Pl (〈〈2〉〉�(¬start → money1) ∧ 〈〈2〉〉�¬money1). Note that
agent 1 can control its own outcome too, if we assume that the players are
obliged to play rationally: Pl (〈〈1〉〉�(¬start→ money1)∧〈〈1〉〉�¬money1). This
may seem strange, but a Nash equilibrium assumes implicitly that the agents
coordinate their actions somehow. Then, assuming a particular choice of one
agent in advance constrains the other agent responses considerably, which
puts the first agent at advantage.

Example 6.13 (Bargaining ctd.). We continue Example 3.12. Let ωNE denote
the set of Nash equilibria (every payoff can be reached by a Nash equilibrium),
and ωSPN the set of subgame perfect Nash equilibria in the game. Then, the
following holds for every x ∈ [0, 1]:

M′2, q0 |=
(set-pl ωNE)〈〈1, 2〉〉♦(px

1 ∧ p1−x
2 ) ∧ (set-pl ωSPN )〈〈∅〉〉♦(p

1−δ2
1−δ1δ2
1 ∧ p

δ2(1−δ1)
1−δ1δ2

2 ).

as good as for sa for all counterstrategies s−a ∈ ΣAgt\{a} and strictly better for
at least one counterstrategy s−a ∈ ΣAgt\{a}.



6.2 Alternating-Time Temporal Logic with Plausibility: ATLP 105

where M′2 is given by M2 extended by plausibility terms and their denotation
as introduced above.

Finally, we observe that the “plausibility refinement” operator (refn-pl ·)
can be used to combine several solution concepts, e.g., (set-pl ωNE)
(refn-pl ωPO) restricts plausible play to Pareto optimal Nash equilibria. We
can also use (refn-pl ·) to compare different notions of rationality. For exam-
ple,

(set-pl ωNE)(refn-pl ωPO)〈〈Agt〉〉 © >
can be used to check if Pareto optimal strategies that are also Nash equilibria
exist in the model at all.

The base language Lbase
ATLP allows to restrict the analysis to a subset of

available strategy profiles. One drawback of Lbase
ATLP is that we cannot specify

sets of plausible/rational strategy profiles in the object language, simply be-
cause our terms do not have any internal structure — they are just constants.
Ideally, one would like to have a flexible language of terms that allows to spec-
ify any sensible rationality assumption, and then impose it on the system.

Our first step is to employ LATLI-formulae and make use of the results
in Section 3.2.5. The second step is to define a proper extension of Lbase

ATLP

where these concepts can be expressed, thus enabling both specification of
plausibility and reasoning about plausible behaviour to be conducted in ATLP.
The idea is to use LATLP formulae θ themselves to specify sets of plausible
strategy profiles, with the intended meaning that Υ collects exactly the profiles
for which θ holds. Then, we can embed such an LATLP-based plausibility
specification in another formula of LATLP.

6.2 Alternating-Time Temporal Logic with Plausibility:
ATLP

In this section we extend the language Lbase
ATLP and present the following lan-

guages:

L0
ATLP: A slight extension of Lbase

ATLP. We allow some combinations of the
constants of Lbase

ATLP to form more complex terms.
LATLI

ATLP: An intermediate language, where rational strategy profiles are char-
acterised by LATLI-formulae.

LkATLP: Here we have nestings of plausibility updates up to level k. It turns
out that the logic over LATLI

ATLP is already embedded in the logic over L1
ATLP.

LATLP: Unbounded nestings of formulae are allowed.

The full logic ATLP (alternating time temporal logic with plausibility) is based
on the last, most expressive language.
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6.2.1 Plausibility Terms based on LATLI

In Section 3.2.5 we have recalled the logic ATLI, a logic suitable to characterise
game-theoretic solution concepts. Here, we take such formulae and use them
as the strategic terms used in Lbase

ATLP.

Definition 6.14 (The language LATLI
ATLP, Ω∗). Let

Ω∗ = {(σ.θ) | θ ∈ LATLI(Agt, Π, {σ[1], . . . , σ[k]})}.

That is, Ω∗ collects terms of the form (σ.θ), where θ is an LATLI-formula
including only a single strategic term σ[a] for each agent a. The language
LATLI

ATLP(Agt, Π) is defined as Lbase
ATLP(Agt, Π,Ω∗).

The idea underlying terms is as follows. We have an LATLI
ATLP-formula θ,

parameterised with a variable σ that ranges over the set of strategy profiles
Σ. Now, we want (σ.θ) to denote exactly the set of profiles from Σ, for which
formula θ holds. However – as σ denotes a strategy profile, and ATLI allows
only to refer to strategies of individual agents – we need a way of addressing
substrategies of σ in θ. This can be done by using LATLI-terms σ[i], which
are interpreted as i’s substrategy in σ.

For example, we may assume that a rational agent does not grant other
agents with too much control over its life:

(σ .
∧

a∈Agt

((straσ[a])¬〈〈Agt \ {a}〉〉♦deada)).

Games defined by CGSs are, in general, not determined, so the above speci-
fication does not guarantee that each rational agent can efficiently protect its
life. It only requires that it should behave cautiously so that its opponents do
not have complete power to kill it.

Definition 6.15 (Denotation of LATLI-based plausibility terms). Let
M = 〈Agt,Q , Π, π,Act, d, o〉 be a CGS and Ω∗ be as in Definition 6.14. For
each s ∈ Σ we define Ms to be the following CGS with intentions:

Ms = 〈Agt,Q , Π, π,Act, d, o, I0,Str, [·]〉

with Stra = {σ[a]}, [σ[a]] = s|a, and Str =
⋃
a∈Agt Stra. We recall from

Section 3.2.5 that I0 represents the full intention relation.
The plausibility mapping for terms from Ω∗ is defined as:

[[σ.θ]]q = {s ∈ Σ |Ms, q |=ATLI θ}.

It is now possible to plug in arbitrary LATLI-specifications of rationality,
and to reason about their consequences.
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Example 6.16 (Asymmetric matching pennies ctd.). It seems that explicit
quantification over the opponents’ responses (not available in ATLI) is essen-
tial to express undominatedness of strategies (cf. [van der Hoek et al., 2005a]
and Section 6.4.2) if one does not want to enumerate all possible strategies
explicitly. Still, we can at least assume that a rational player should avoid
playing strategies that guarantee failure if a potentially successful strategy is
available. Under this assumption, player 1 should never play tail, and as a
consequence player 2 controls the outcome of the game:

M′′1 , q0 |= (set-pl σ.
∧
a∈Agt(〈〈Agt〉〉♦moneya → (straσ[a])〈〈Agt〉〉♦moneya))

Pl
(
〈〈2〉〉♦(money1 ∧money2) ∧ 〈〈2〉〉�¬(money1 ∧money2)

)
,

where M′′1 is the CGS M1 extended with propositions p1
i ≡ moneyi, LATLI-

based plausibility terms, and their denotation according to Definition 6.15.
Moreover, if only Pareto optimal strategy profiles can be played, then both

players are bound to keep winning money:

M′′1 , q0 |= (set-pl σ.PO♦(σ)) Pl 〈〈∅〉〉�(¬start→ money1 ∧money2).

Finally, restricting plausible strategy profiles to Nash equilibria guarantees
that player 2 should plausibly get money, but the outcome of player 1 is not
determined:

M′′1 , q0 |= (set-pl σ.NE♦(σ)) Pl
(
〈〈∅〉〉�(¬start→ money2)

∧¬〈〈∅〉〉♦money1 ∧ ¬〈〈∅〉〉�¬money1

)
.

NE and PO refer to the formulae defined in Section 3.3.1.

Example 6.17 (Bargaining ctd.). For the bargaining agents and κ = (1 −
δ2) 1−(δ1δ2)

T
2

1−δ1δ2 + (δ1δ2)
T
2 , we have accordingly:

1. M′2, q0 |= (set-pl σ.NE♦(σ))Pl 〈〈∅〉〉 © (px
1 ∧ p1−x

2 ) for every x;
2. M′2, q0 |= (set-pl σ.SPN♦(σ))Pl 〈〈∅〉〉 © (pκ1 ∧ p1−κ

2 );
3. M′2, q0 |= (set-pl σ.SPN♦(σ))Pl 〈〈∅〉〉�(¬px1

1 ∧¬px2
2 ) for every x1 6= κ and

x2 6= 1− κ
where M′2 is the CGSP obtained from CGS M2 by adding LATLI-based
plausibility terms and their denotation. Where NE, PO, and SPN refer to the
formulae defined in Section 3.3.1.

Thus, we can encode a game as a CGS M, specify rationality assumptions
with an LATLI-formula θ, and ask if a desired property ϕ of the system holds
under these assumptions by model checking (set-pl σ.θ)ϕ in M. Note that
the denotation of plausibility terms in Ω∗ is fixed. We report our results on
the complexity of solving such games in Section 10.1.
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6.2.2 The Languages LkATLP and LATLP

As we have already explained, our main idea is to use ATLP for both speci-
fication of rationality assumptions and description of the outcome of rational
play. Thus, we need a possibility to embed an LATLP-formula ϕ (that defines
the rationality condition) in a “higher-level” formula of LATLP, as a part of
plausibility term (set-pl σ.ϕ). The reading of (set-pl σ.ϕ)ψ is, again: “Let
the plausibility set consist of profiles σ that satisfy ϕ; then, ψ holds”. Apart
from the possibility of nesting formulae via plausibility updates, we also pro-
pose to add quantifier-like structures to the language of terms. Consider, for
example, the term σ1.(∃σ2)ϕ. We would like to collect all strategies s1 such
that there is a strategy s2 for which ϕ holds (we use σi to refer to si). Thus,
σ1.(∃σ2)ϕ is supposed to act in a similar way as the first order logic-based
set specification {x | ∃y : ϕ(x, y)}. It is easy to see that e.g. the set of all
undominated strategies can now be specified in a straightforward way.

As before, the full logic ATLP is given over a set Agt of agents, a set Π
of propositions, and a set Ω of primitive plausibility terms (cf. Section 6.1.4).
In addition to these sets, we also include a set Var of strategic variables.
Variables in Var range over strategy profiles; we need them to characterise
specific rationality criteria, in a way similar to first order logic specifications.

The definition of LATLP is given recursively. In each step the structure
of plausibility terms becomes more sophisticated. At first, we only consider
terms out of Ω; their interpretation is given in the model. On the next level, we
also allow plausibility terms to be quantified LATLP-formulae which contain
strategic variables and elements from Ω. Plausibility terms of subsequent
levels can again be based on terms from the previous levels, and so forth. As
a consequence, the core 0-level language of LATLP is almost the same as the
base language Lbase

ATLP defined in Section 6.1.2: It only extends it with simple
combinations of terms.

In general, all the levels of the language can be seen as containing ordinary
formulae of Lbase

ATLP, the only thing that changes as we move to higher levels
is the complexity of plausibility terms. We begin with defining simple com-
binations of plausibility terms, and then present the hierarchy of languages
LkATLP, with the underlying idea that LkATLP allows for at most k (k ∈ N0)
nested plausibility update operators. The full language LATLP allows for any
arbitrary finite number of nestings. Firstly, we define how strategy profiles
can be combined and mixed.

Definition 6.18 (Strategic combination). Let X be a non-empty set of
symbols. We say that y is a strategic combination of X if it is generated by
the following grammar:

y ::= x | 〈y, . . . , y〉 | y[A]
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where x ∈ X, 〈y, . . . , y〉 is a vector of length |Agt|, and A ⊆ Agt. The set
of strategic combinations over X is defined by T(X). It is easy to see that
operator T is idempotent (i.e. T(X) = T(T(X))).

The intuition is that elements of x ∈ X are symbols in the object language
that refer to sets of strategy profiles (as the basic plausibility terms do), and
the elements of T(X) allow to combine these sets to new sets.2 Let x refer to
a set of strategy profiles χ ⊆ Σ. Then, x[A] refers to all the profiles in Σ in
which A’s substrategy is part of some profile from χ. Similarly, if x1, . . . , xk
denote sets of strategy profiles χ1, . . . , χk, then 〈x1, . . . , xk〉 refers to all the
profiles that agree on agent i’s strategy with i’s part on at least one profile
from χi for each i = 1, . . . , k.

Definition 6.19 (LkATLP). Let Agt be a set of agents, Π a set of propositions,
Ω be a set of primitive plausibility terms, and Var a set of strategic variables
(with typical elements σ, σ1, σ2, . . . ). The languages LkATLP(Agt, Π,Var, Ω),
for k = 0, 1, 2, . . . , are recursively defined as follows:

• L0
ATLP(Agt, Π,Var, Ω) = Lbase

ATLP(Agt, Π,Ω0), where Ω0 = T(Ω);

• LkATLP(Agt, Π,Var, Ω) = Lbase
ATLP(Agt, Π,Ωk), where:

Ωk = T(Ωk−1 ∪Ωknew),
Ωknew = {σ1.(Q2σ2) . . . (Qnσn)ϕ | n ∈ N,∀i (1 ≤ i ≤ n⇒
σi ∈ Var, Qi ∈ {∀,∃}, ϕ ∈ Lbase

ATLP(Agt, Π, T(Ωk−1 ∪ {σ1, . . . , σn}))) }.

Thus, plausibility terms on level k (i.e., Ωk) augment terms from the pre-
vious level (Ωk−1) with new terms Ωknew that combine quantification over
strategic variables σ1, . . . σn with formulae possibly containing these strategic
variables. Such terms are used to collect (or describe) specific strategy profiles
(referred to by variable σ1 which plays a distinctive role in comparison with
the other variables). In the following we will often use σ to refer to σ1.

Definition 6.20 (LATLP). The set of LATLP-formulae with arbitrary finite
nesting of plausibility terms is defined by

LATLP(Agt, Π,Var, Ω) := L∞ATLP(Agt, Π,Var, Ω)

:= lim
k→∞

LkATLP(Agt, Π,Var, Ω).

Definition 6.21 (k-formula, k-term). Formula ϕ ∈ LATLP(Agt, Π,Var, Ω)
is called an LkATLP-formula (or simply k-formula) if, and only if, ϕ ∈
LkATLP(Agt, Π,Var, Ω). Analogously, a plausibility term occurring in a k-
formula is called a k-(plausibility) term.

2 This correspondence will be given formally in Definition 6.24 (Section 6.2.3).
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Remark 6.22. We use the acronym ATLP to refer to both the full logic ATLP,
the base logic ATLPbase and so on.

Example 6.23 (Illustration of plausibility terms in LkATLP). Below we present
some simple formulae illustrating the different levels of our logic.

Lbase
ATLP: (set-pl ωNE)Pl 〈〈A〉〉γ; group A can enforce γ if only Nash equilibria

are played (we assume that ωNE denotes exactly the set of Nash equilibria
in the model).

L0
ATLP: (set-pl 〈ωNE, . . . , ωNE〉)Pl 〈〈A〉〉γ; plausibility terms can be com-

bined. We note the difference to the previous formula, agents are assumed
to play a strategy which is part of some NE. The resulting strategy profile
does not have to be a NE, though.

L1
ATLP: ϕ ≡ (set-pl σ.∃σ1ϕ

′(σ, σ1))Pl 〈〈A〉〉γ where ϕ′(σ, σ1) is a formula
possibly containing operators (set-pl ω) with ω ∈ T(Ω ∪ {σ, σ1}); e.g.

ϕ′ ≡ (set-pl 〈σ, . . . σ, σ1, ωNE〉)Pl 〈〈A〉〉γ′.
We have a closer look at the (set-pl ·) operator in ϕ. The operator collects
all strategies σ such that there exists another strategy profile σ1 for which
Pl 〈〈A〉〉γ′ holds if all but the last 2 agents play according to σ, the second
to last agent plays according to σ1, and the last one according to a fixed
strategy out of ωNE.

L2
ATLP: Consider the previous formula ϕ again, but this time ϕ′(σ, σ1) can

also contain quantification and nesting; e.g.

ϕ′ ≡ ((set-pl 〈σ, . . . , σ, σ1, ωNE〉)Pl 〈〈B〉〉γ′)→
((set-pl σ′.∃σ′1ϕ′′(σ′, σ′1))Pl 〈〈A〉〉γ)

where ϕ′′(σ′, σ′1) is a base formula with plausibility terms taken from
T(Ω ∪ {σ′, σ′1}).

In the next section we show how the denotation of complex terms is con-
structed, and how it is plugged into the semantics of ATLPbase from Sec-
tion 6.1.4.

6.2.3 Semantics: The Logic ATLP

LkATLP does not change the very structure of base formulae, it only extends
Lbase

ATLP by more ornate plausibility terms. Therefore, it seems natural that the
plausibility mapping for these terms is of particular interest; the denotation
reflects the construction of strategic combinations given in Definition 6.18.

Definition 6.24 (Extended plausibility mapping [̂[·]]). Let M be CGSP.
The extended plausibility mapping [̂[·]]M with respect to [[·]]M is defined as
follows:
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1. If ω ∈ Ω then [̂[ω]]
q

M = [[ω]]qM;
2. If ω = ω′[A] then [̂[ω]]

q

M = {s ∈ Σ | ∃s′ ∈ [̂[ω′]]
q

M s|A = s′|A};
3. If ω = 〈ω1, . . . ωk〉 then [̂[ω]]

q

M = {s ∈ Σ | ∃t1 ∈ [̂[ω1]]
q

M, . . . ,∃tk ∈
[̂[ωk]]

q

M∀i = 1, ..., k s|ai = ti|ai)};
4. If ω = σ1.(Q2σ2) . . . (Qnσn)ϕ then

[̂[ω]]
q

M = {s1 ∈ Σ | Q2s2 ∈ Σ, . . . , Qnsn ∈ Σ (Ms1,...,sn , q |= ϕ)},

where Ms1,...,sn is equal to M except that we fix ΥMs1,...,sn = Σ,
ΩMs1,...,sn = ΩM ∪ {σ1, . . . , σn}, [[σi]]

q
Ms1,...,sn = {si}, and [[ω]]qMs1,...,sn =

[[ω]]qM for all ω 6= σi, 1 ≤ i ≤ n, and q ∈ QM. That is, the denotation of
σi in Ms1,...,sn is set to strategy profile si.3

Consider, for instance, plausibility term σ1.∀σ2ϕ. The extended plausibil-
ity mapping ̂[[σ1.∀σ2ϕ]]q collects all strategy profiles s1 ∈ Σ (referred to by
σ1) such that for all strategy profiles s2 ∈ Σ (referred to by σ2) ϕ is true in
model Ms1,s2 and state q ∈ Q , i.e. Ms1,s2 , q |= ϕ for all s2 ∈ Σ.

Remark 6.25. Note that if the language includes a term ω> that refers to all
strategy profiles, then x[A] can be expressed as 〈ω1, . . . , ωk〉, where ωa = xa
for a ∈ A, and ωa = ω> otherwise. We also observe that in LkATLP, k > 0, ω>
can be expressed as σ.>.

In Definition 6.8 we defined the semantics of the base language. Truth
of LkATLP formulae is defined in the same way, we only need to replace the
previous (simple) plausibility mapping by the extended one in the semantics
of plausibility updates.

Definition 6.26 (Semantics of LATLP, ATLP). The semantics for LATLP-
formulae is given as in Definition 6.8 with the extended plausibility mapping
[̂[·]]M used instead of [[·]]M. I.e., only the semantic clauses for (set-pl ω)ϕ and
(refn-pl ω)ϕ change as follows:

M, q |=B (set-pl ω)ϕ iff M′, q |=B ϕ where the new model M′ is equal to M

but the new set ΥM′ of plausible strategy profiles is set to [̂[ω]]
q

M;
M, q |=B (refn-pl ω)ϕ iff M′, q |=B ϕ where the new model M′ is equal to M

but the new set ΥM′ of plausible strategy profiles is set to ΥM ∩ [̂[ω]]
q

M.

We define the logic ATLP as (LATLP, |=).

3 It should be emphasised that model Ms1,...,sn in which plausibility of profile s1
is evaluated does not presuppose any notion of plausibility, i.e., ΥMs1,...,sn = Σ.
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Remark 6.27. By slight abuse of notation, we also refer to the extended plau-
sibility mapping with the same symbol as to the simple plausibility mapping,
i.e., with [[·]].

We will discuss some important examples of LATLP-formulae and terms
(together with their interpretation) in Sections 6.4.1 and 6.4.2 where ATLP
characterisations of solution concepts are presented.

6.3 Expressiveness of ATLP

In this section, we compare ATLP with several related logics and show their
formal relationships. To this end, we first define notions that allow to compare
expressivity of logical systems. Embedding takes place on the level of satisfac-
tion relations (|=): Logic L1 embeds L2 if models and formulae of L2 can be
simulated in L1 in a truth-preserving way. Subsumption refers to the level of
valid sentences: L1 subsumes L2 if all the validities of L2 are validities of L1

as well.

Definition 6.28 (Embedding). Logic L1 embeds logic L2 iff there is a
translation tr of L2 formulae into formulae of L1, and a transformation TR
of L2 models into models of L1, such that M, q |=L2

ϕ iff TR(M), q |=L1
tr(ϕ)

for each pointed model M, q and formula ϕ of L2.

Note that the translation of formulae and transformation of models are
supposed to be independent. This prevents translation schemes that transform
M, q |= ϕ in L2 to M′, q |= >, and M, q 6|= ϕ in L2 to M′, q 6|= ⊥ (with an
arbitrary model M′), that would yield embeddings between any pair of logics.

If not said otherwise all transformations and translation schemes proposed
in this section can be computed in polynomial time and incur only a polyno-
mial increase in the size of models and the length of formulae. Thus, we are
in fact interested in polynomial embeddings of logics in ATLP.

Definition 6.29 (Subsumption). Logic L1 subsumes logic L2 iff the set of
validities of L1 subsumes validities of L2.

Proposition 6.30. ATLP embeds ATL.

Proof. We use the identity translation of formulae: tr(ϕ) ≡ ϕ. As for models,
TR(M) = M′ extends M with an arbitrary set of plausible strategy profiles
Υ . It is easy to see that the plausibility assumptions Υ will never be used in
the evaluation of ϕ since ϕ includes no Pl operators. Thus, the result of the
evaluation will be the same as for M, q |= ϕ. �

The above reasoning implies also that ATL validities hold for all ATLP
models.
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Corollary 6.31. ATLP subsumes ATL.

The relationship of ATLP to most other logics can be studied only in the
context of embeddings, as they use different modal operators (and thus yield
incomparable sets of valid formulae). We begin with embedding ATLI [Jam-
roga et al., 2005] (Section 3.2.5) in ATLP. Then, we show that “CTL with
Plausibility” from [Bulling and Jamroga, 2007a] can be embedded in ATLP
for a limited (but very natural) class of models. Finally, we propose an embed-
ding of game logic with preferences [van Otterloo et al., 2004; van der Hoek
et al., 2004] (cf. Section 3.2.4) which allows to reason about what can happen
under particular game-theoretical rationality assumptions.

Proposition 6.32. ATLP embeds ATLI.

Proof. [Idea] For an ATLI-model we construct an CGSP with a plausibility
term for each strategic one. Strategically combining plausibility terms allows
to restrict only the behaviour of individual agents as in ATLI. Then, we have,
e.g. M, q |=ATLI (straσa)〈〈A〉〉�p iff

TR(M), q |=ATLP Pl (set-pl 〈ω>, . . . , ωσa , . . . , ω>〉)〈〈A〉〉�p.

The complete proof is given on page 303. �

CTLP, i.e., “CTL with Plausibility” [Bulling and Jamroga, 2007a], is an
extension of the branching-time logic CTL with a similar notion of plausibility
as the one we use here. We present the logic in Appendix A.1. The main differ-
ence lies in the fact that CTLP formulae refer to plausible paths rather than
strategy profiles. To transform models, we first observe that every transition
system M can be seen as a concurrent game structure that includes only a
single agent a1. Furthermore, we can transform M to a CGSP TR(M) by
adding Υ = Σ and Ω = ∅ (cf. Section 6.1.2).

The main idea of the embedding followed in [Bulling et al., 2009b] to
encode (set-pl γ) of CSLP as a plausibility term σ.(set-pl σ)Pl 〈〈∅〉〉γ is
flawed. It does not seem possible to use the plausibility operator of ATLP to
define each set of paths describable by a LCTL-formulae. For illustration we
present the following example.

Example 6.33. We consider the CGS M shown in Figure 6.1. The path formula
γ = ♦r is true on the q0-paths (q0q1)∗q0(q2)ω and (q0q1)ω where ∗ denotes
the Kleene star and is understood as for regular expressions. We call this
(infinite) set of paths P . We claim that this set is not representable by any
set of memoryless strategies. The problem are the paths that visit q1 and q2.
Only the path (q0q1)ω can be represented by a memoryless strategy. However,
then we have that
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q0

q1

q2

r

s

Fig. 6.1. A CGS with three states and propositions r and s.

M, q0 |=ATLP (set-pl σ.(set-pl σ)Pl 〈〈∅〉〉γ)Pl 〈〈∅〉〉�¬s

but

M, q0 6|=CTLP (set-pl γ)Pl A¬s.

The proof of the following theorem is based on the result that CTLP can be
encoded in CTL+. We note that the embedding may result in an exponential
blow-up of the formula.

Proposition 6.34. ATLP embeds CTLP in the class of transition systems.

Proof. In [Bulling and Jamroga, 2007a] it is shown that every CTLP formulae
in which plausible paths are described by temporal formulae can be trans-
lated to an equivalent CTL+-formula. Since CTL and CTL+ have the same
expressive power [Emerson and Halpern, 1985] we can construct an equiva-
lent CTL-formula (we note again that this formula may yield an exponential
blow-up [Wilke, 1999]). Finally, the CTL formula can be embedded in ATL
and thus also in ATLP (Proposition 6.30). �

Proposition 6.35. If P 6= NP then ATLP cannot be polynomially embedded
in neither ATL, nor ATLI, nor CTLP.

Proof. Suppose that any of these logics polynomially embeds ATLP. Then,
the embedding provides a polynomial reduction of model checking from ATLP
to that logic. Since model checking of ATL, ATLI, and CTLP can be done in
polynomial deterministic time [Alur et al., 2002; Jamroga et al., 2005; Bulling
and Jamroga, 2007a], we get that the problem for ATLP is in P, too. But
model checking ATLP is ∆P

3 -hard already for Lbase
ATLP (see Section 10.1). �
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There is not much work on logical descriptions of behaviours of agents
under rationality assumptions based on game-theoretical solution concepts.
In fact, we know only of one such logic for agents with perfect information,
which is GLP from [van der Hoek et al., 2004] presented in Section 3.2.4. In
this logic agents have qualitative preferences (i.e., a propositional formula ϕ0

that they supposedly want to make eventually true). They are assumed to play
rationally in the sense that if they have strategies that guarantee ♦ϕ0, they
can use only those strategies in their play. Interestingly enough, the preference
criterion was different in a preliminary version of GLP [van Otterloo et al.,
2004], where it was based on the notion of Nash equilibrium. We show that
GLP can be embedded in ATLP. One may embed game logics with other
preference criteria in an analogous way.

Proposition 6.36. GLP can be embedded in ATLP.

Proof. [Idea] For the translation of models, we transform game trees of GLP
to concurrent game structures using the construction from Section 3.2.2, and
transform the CGS to a CGSP by taking Υ = Σ and Ω = ∅. Then, the
preference operator [A : ϕ0]ψ is encoded by setting the plausible strate-
gies to the ones satisfying ♦ϕ0. That is, with each subsequent preference
operator [A : ϕ0], only those from the (currently) plausible strategy pro-
files are selected that are preferred by a. The preference is based on the
(subgame perfect) enforceability of the outcome ϕ0 at the end of the game:
if ϕ0 can be enforced at all, then a prefers strategies that do enforce it.
The complete proof is given on page 304. �

We note that a couple other logics were defined for various solution con-
cepts with respect to incomplete information games [van Otterloo and Roy,
2005; van Otterloo and Jonker, 2004].

Remark 6.37. We have presented embeddings of several quite different log-
ics into ATLP, which suggests substantial gain in expressive power. Most of
them (ATL, ATLI, and CTLP) are embedded already in the lowest levels of
the ATLP hierarchy (i.e., ATLPbase or ATLP1 with no quantifiers). GLP for-
mulae with at most k preference operators are embedded in ATLPk, which
is inevitable given their semantics that combines model update and irrevo-
cable strategic quantification (cf. the discussion and the complexity results
in [Ågotnes et al., 2007a; Brihaye et al., 2008]).

6.4 Solution Concepts Revisited

Solution concepts do not only help to determine the right decision for an agent.
Perhaps more importantly, they constrain the possible (predicted) responses
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of the opponents to a proper subset of all the possibilities. For many games
the number of all possible outcomes is infinite, although only some of them,
often finitely many, make sense. We need a notion of rationality (like subgame-
perfect Nash equilibrium) to discard the less sensible ones, and to determine
what should happen had the game been played by ideal players.

While ATL is already a logic that incorporates some game theoretical
concepts, we claim that extending ATL by other useful constructs not only
helps us to better understand the classical solution concepts in game theory,
but it also paves the way for defining new solution concepts (which we call
general).

We show in the line with Section 3.3.1 and 3.3.2:

1. That several classical solution concepts for extensive games (Nash equi-
libria, subgame perfect Nash equilibria, Pareto Optimality), can be char-
acterised already in the language ATLP1 (Section 6.4.1),

2. That these solution concepts can be also reformulated in a qualitative
way, through appropriate formulae of ATLP parameterised by ATL path
formulae (Section 6.4.2).

6.4.1 Classical Solution Concepts in ATLP1

In Section 3.2.2 we have shown how extensive games Γ (with a finite set of
utilities) can be expressed by CGSs: Each Γ can be transformed in a CGS
M(Γ ) such that they correspond to each other (in the sense of Definition 3.11).

The following terms rewrite the specification of best response profiles,
Nash equilibria, and the specification of subgame-perfect Nash equilibria from
Section 3.2.5. Note that the new specifications use only ATLP operators.

BRTa (σ) ≡ (set-pl σ[Agt \ {a}])Pl
∧

v∈U

(
(〈〈a〉〉Tpv

a)→ (set-pl σ)〈〈∅〉〉Tpv
a

)
,

NET (σ) ≡
∧

a∈Agt

BRTa (σ),

SPNT (σ) ≡ 〈〈∅〉〉�NET (σ).

Recalling briefly the ideas behind the above specifications, BRTa (σ) holds
iff σ[a] is a best response to σ[Agt \ {a}]. That is, after we fix Agt \ {a}’s
collective strategy to σ[Agt \ {a}], agent a cannot obtain a better temporal
pattern of payoffs than by playing σ[a]. Then, σ is a Nash equilibrium if
each individual strategy σ[a] is the best response to the opponent’s strategies
σ[Agt \ {a}] (cf. [Osborne and Rubinstein, 1994]). The formalisation of a
subgame perfect Nash equilibrium is straightforward: We require profile σ
to be a Nash equilibrium in all reachable states (seen as initial positions of
particular subgames).
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The following propositions are simple adaptations of the results from Sec-
tion 3.2.5.

Proposition 6.38. Let Γ be an extensive game with a finite set of utilities.
Then the following holds:

1. s ∈ [[σ.BR♦
a (σ)]]∅M(Γ ) iff s|a is a best response for a against s|Agt\{a} in Γ .

2. s ∈ [[σ.NE♦(σ)]]∅M(Γ ) iff s is a Nash equilibrium in Γ .

3. s ∈ [[σ.SPN♦(σ)]]∅M(Γ ) iff s is a subgame perfect Nash equilibrium in Γ .

Proof. The proof is done completely analogous to the one given for Proposi-
tion 3.15. �

In Section 3.2.5 we defined a quantitative version of Pareto optimality
formulated in LATLI. However, as we pointed out, the LATLI-formula had ex-
ponential length and some counterintuitive implications. Quantification allows
to propose a more compact and intuitive specification:

POT (σ) ≡ ∀σ′ Pl
( ∧

a∈Agt

∧

v∈U

(
(set-pl σ′)〈〈∅〉〉Tpv

a → (set-pl σ)〈〈∅〉〉Tpv
a

)
∨

∨

a∈Agt

∨

v∈U

(
(set-pl σ)〈〈∅〉〉Tpv

a ∧ ¬(set-pl σ′)〈〈∅〉〉Tpv
a

))
.

This definition of Pareto optimality is more intuitive than the one given
in Section 3.2.5 because it does not focus on the temporal evolution of whole
payoff profiles, but rather on the interaction between temporal patterns of
individual patterns. Although the definition is more intuitive (and thus differ-
ent from the one of Proposition 3.17) we get the same result. This is, because
payoffs are only assigned to leaf nodes if one considers the translation of an
extensive form game.

Proposition 6.39. Let Γ be an extensive game with a finite set of utilities.
Then s ∈ [[σ.PO♦(σ)]]∅M(Γ ) iff s is Pareto optimal in Γ .

Proof. “⇒“: Let s ∈ [[σ.PO♦(σ)]]∅M(Γ ). Then, the formula imposes the fol-
lowing restrictions on s. For each payoff profile 〈v1, . . . , vk〉 reachable by some
strategy σ′ in Γ , it must also be reachable if the agents follow σ. Or, if for
some strategy σ′ this is not the case; then, there must be some agent a and
some payoff v such that the agent can enforce the payoff regarding σ but not
regarding σ′. Thus, both profiles are incomparable. The restriction is captured
by the restricting to plausible behaviour. Thus, the strategy σ is indeed Pareto
optimal. Note, that payoffs are only assigned to leaf nodes.
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“⇐“:The proof for the other direction is done similarly. �

Let 〈xA, yAgt\A〉 be a shorthand for the term 〈z1, . . . , zk〉 with za = x
for a ∈ A and za = y otherwise. The following specification, formulated
as an L1

ATLP-formula, characterises the set of strategy profiles that include
undominated strategies for agent a:

UNDOM T
a (σ) ≡ ∀σ1∀σ2∃σ3

Pl
“ ^
v∈U

`
(set-pl 〈σ{a}1 , σ

Agt\{a}
2 〉)〈〈∅〉〉Tpv

a → (set-pl 〈σ{a}, σAgt\{a}
2 〉)〈〈∅〉〉Tpv

a

´
∨
_
v∈U

`
(set-pl 〈σ{a}, σAgt\{a}

3 〉)〈〈∅〉〉Tpv
a ∧ ¬(set-pl 〈σ{a}1 , σ

Agt\{a}
3 〉)〈〈∅〉〉Tpv

a

´”
.

Proposition 6.40. Let Γ be an extensive game with a finite set of utilities.
Then, s ∈ [[σ.UNDOM ♦

a (σ)]]∅M(Γ ) iff s|a is undominated in Γ .

Proof. “⇒”: Let s ∈ [[σ.UNDOM ♦
a (σ)]]∅M(Γ ). Assume that s|a is domi-

nated by some strategy s′|a. That is, s′|a always yields an outcome for
a at least as good as s|a and strictly better for some profile s′′|Agt\{a}.
Say, the latter ensures a payoff v′. Then, let the denotation of σ1 (resp.
σ2) be such that [[〈σ{a}1 , σ

Agt\{a}
2 〉]] = (s′|a, s′′|Agt\{a}). Then, we have that

(set-pl 〈σ{a}1 , σ
Agt\{a}
2 〉)〈〈∅〉〉♦pv′

a but ¬(set-pl 〈σ{a}, σAgt\{a}
2 〉)〈〈∅〉〉♦pv′

a

)
.

Moreover, since s′|a always yields an outcome for a at least as good as s|a, we
also have (set-pl 〈σ{a}, σAgt\{a}

3 〉)〈〈∅〉〉♦pv
a → (set-pl 〈σ{a}1 , σ

Agt\{a}
3 〉)〈〈∅〉〉♦pv

a

for all payoffs v. Contradiction!
“⇐”: Suppose s|a is undominated. Then, for any other profile s1|a and

s2|−a the payoff v reachable by (s1|a, s2|−a) is also reachable by (s|a, s2|−a)
(this is captured be the left side of the disjunction). Or they are incomparable.
That is, there is some payoff reachable by (s|a, s3|−a) for some strategy s3|−a
of the opponents that is not reachable of a following s1|a. This is captured by
the right side of the conjunction. Thus, the formula is satisfied. �

6.4.2 General Solution Concepts in L1
ATLP

In this section, we return to the idea of general solution concepts from Sec-
tion 3.3.2 and show how qualitative versions of NE, SPN, PO and Un-
dom can be captured in ATLP. Like for temporalised solution concepts,
it turns out that their qualitative counterparts can be already specified in
L1

ATLP(Agt, Π, ∅). That is, we need only one level of nested plausibility up-
dates (and no “hardwired” plausibility terms) to effectively capture classical
notions of rationality and extend them to more general games which we study
in this thesis.
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We only consider one “winning condition” per agent to represent agents’
preferences, but this view can be naturally extended to full preference lists, as
in Section 3.5. In what follows, let −→η = 〈η1, . . . , ηk〉 be a vector of LATL-path
formulae. We first define the normal form game corresponding to a CGSP.

Definition 6.41 (Transforming CGSP into normal form game). Let
M ∈ CGSP (Agt, Π,Ω) and q ∈ QM. The associated NF game S(M,−→η , q)
with respect to −→η is given as in Definition 3.19 with M interpreted as a pure
CGS by removing Υ and [[·]] from it.

Our aim is to define analogues of classical solution concepts (Nash equi-
libria and such) that are based on explicit “winning conditions” ηi instead of
numerical payoffs. We can build on our results from the previous section; we
only need to replace temporal patterns of payoffs with the formulae ηi:

BR
−→η
a (σ) ≡ (set-pl σ[Agt\{a}])Pl

(
〈〈a〉〉ηa → (set-pl σ)〈〈∅〉〉ηa

)
,

NE
−→η (σ) ≡

∧

a∈Agt

BR
−→η
a (σ),

SPN
−→η (σ) ≡ 〈〈∅〉〉�NE−→η (σ),

PO
−→η (σ) ≡ ∀σ′ Pl

( ∧

a∈Agt

((set-pl σ′)〈〈∅〉〉ηa → (set-pl σ)〈〈∅〉〉ηa) ∨

∨

a∈Agt

((set-pl σ)〈〈∅〉〉ηa ∧ ¬(set-pl σ′)〈〈∅〉〉ηa
)
,

UNDOM
−→η
a (σ) ≡ ∀σ1∀σ2∃σ3 Pl((

(set-pl 〈σ{a}1 , σ
Agt\{a}
2 〉)〈〈∅〉〉ηa → (set-pl 〈σ{a}, σAgt\{a}

2 〉)〈〈∅〉〉ηa
)

∨
(
(set-pl 〈σ{a}, σAgt\{a}

3 〉)〈〈∅〉〉ηa ∧ ¬(set-pl 〈σ{a}1 , σ
Agt\{a}
3 〉)〈〈∅〉〉ηa

))
.

The intuitions of these concepts are the same as in the quantitative case.
Note that we did not have to include the big conjunctions/disjunctions over
all possible utility values in the case of Pareto optimal and undominated
strategies. This is, because the corresponding normal form game can be seen
as a game with only two possible outcomes per agent.

The following proposition shows that NE
−→η , PO

−→η , and UNDOM
−→η indeed

extend the classical notions of Nash equilibrium, Pareto optimal strategy pro-
file, and undominated strategy.

Proposition 6.42.

1. The set of a’s best response strategies in S(M,−→η , q) is given by

[[σ.BR
−→η
a (σ)]]qM.
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2. The set of Nash equilibrium strategies in S(M,−→η , q) is given by

[[σ.NE
−→η (σ)]]qM.

3. The set of Pareto optimal strategies in S(M,−→η , q) is given by

[[σ.PO
−→η (σ)]]qM.

4. The set of a’s undominated strategies in S(M,−→η , q) is given by(
[[σ.UNDOM

−→η
a (σ)]]qM

)
|a.

Proof. Let S = S(M,−→η , q).
1. “⊆”: Suppose sa is a best response to s−a in S. Let σ be the strate-

gic variable with denotation s = (sa, s−a). Then, if µa(s) = 0 there
is no other strategy s′a of a such that µa(s′a, s−a) = 1. Now, assume
that (set-pl σ[Agt\{a}])Pl 〈〈a〉〉ηa holds in M, q. Then, there is a strategy
s′a of a such that ηa holds along all paths from out(q, (s′a, s−a)); hence,
µa(s′a, s−a) = 1. Now, suppose that s = (sa, s−a) 6∈ ̂[[σ.BRηa (σ)]]

q

M; i.e.,
that (set-pl σ)〈〈∅〉〉ηa does not hold in M, q. Then, there is a path in
out(q, s) along which ηa is false and thus µa(s) = 0. Contradiction!
“⊇”: Suppose s ∈ ̂[[σ.BRηa (σ)]]

q

M with [[σ]]qM = s. That is, BRη
a(σ) is true in

M, q. Then, following the same reasoning as above we have that if µa(s) =
0; then, there is no other strategy s′a of a such that µa(s′a, s−a) = 1. I.e.
sa is a best response to s−a.

2. Follows from 1 and the fact that s is a NE iff sa is a best response to s−a
for each agent a.

3. “⊆”: Let s be Pareto optimal in S. That is, there is no profile s′ such that
for all agents a, µa(s′) ≥ µa(s) and for some agent a, µa(s′) > µa(s). We
show that M, q |= POη(σ). For the sake of contradiction assume the con-
trary; that is, there is s′ such that Ms′ , q |= Pl

(∨
a∈Agt((set-pl σ′)〈〈∅〉〉ηa∧

¬(set-pl σ)〈〈∅〉〉ηa) ∧∧a∈Agt((set-pl σ)〈〈∅〉〉ηa → (set-pl σ′)〈〈∅〉〉ηa)). We
use s′ to denote σ′ for which the formula evaluates true. According to the
left-hand site of the outermost (wrt. infix notation) conjunction, there has
to be an agent a′ such that ηa′ is achievable with respect to s′ but not
with respect to s. From the right-hand side of the conjunction, we learn
that the profile s′ is at least as good as s (every payoff achievable following
s is also achievable following s′). However, this means that s is not Pareto
optimal. Contradiction!
“⊇“: This part follows the same reasoning as the other direction.

4. “⊆”: Suppose sa is undominated in S(M,−→η , q). That is, there is no other
strategy s′a such that for all s−a, µa(s′a, s−a) ≥ µa(sa, s−a) and for some
s′−a, µa(s′a, s

′
−a) > µa(sa, s′−a). Suppose that sa 6∈

(
[[σ.UNDOM

−→η
a (σ)]]qM

)
|a.
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Hence, there are profiles σ1, σ2 such that for all profiles σ3 we have that
(set-pl 〈σ{a}1 , σ

Agt\{a}
2 〉)〈〈∅〉〉ηa and ¬(set-pl 〈σ{a}, σAgt\{a}

2 〉)〈〈∅〉〉ηa and
(set-pl 〈σ{a}, σAgt\{a}

3 〉)〈〈∅〉〉ηa → (set-pl 〈σ{a}1 , σ
Agt\{a}
3 〉)〈〈∅〉〉ηa. The

first part says that σ1[a] is strictly better than σ[a] regarding σ2[Agt\{a}]
(i.e. yields a better payoff). The second part expresses that σ1[a] is at
least as good as σ[a] against all responses σ3[Agt\{a}] of the opponents.
Contradiction to the assumption that sa is undominated.
“⊇“: This part follows the same reasoning as the other direction.

�

Subgame perfect Nash equilibria are related to normal form games in the
following way.

Proposition 6.43. Let Q ′ be the set of states reachable from q in M. Then,
[[σ.SPNη(σ)]]qM =

⋂
q∈Q′ [[σ.NE

η(σ)]]qM.

Proof. We have that s ∈ ̂[[σ.SPN η(σ)]]
q

M iff for all paths λ ∈ out(q, s∅) and
all i ∈ N0, M, λ[i,∞] |= NEη(σ) iff ∀q′ ∈ Q′, M, q′ |= NEη(σ) iff ∀q′ ∈ Q′,
s ∈ ̂[[σ.NEη(σ)]]

q′

M iff s ∈ ⋂q′∈Q′ ̂[[σ.NEη(σ)]]
q′

M. �

Example 6.44 (Extended matching pennies). In Figure 6.2 we consider a
slightly more complex version of the asymmetric matching pennies game pre-
sented in Figure 3.5. The new game consists of two phases (played ad in-
finitum). First, player 1 wins some money if the sides of the pennies match,
otherwise the money goes to player 2. In the second phase, both win a prize
if both show heads; if they both show tails, only player 2 wins. If they show
different sides, nobody wins.

We denote particular strategies as sα1α2α3 , where α1 is the action played
at state q0, α2 is the action played at state q1, and α3 is played at q2. We note
that every combination of strategies (i.e., every strategy profile) determines
a single temporal path. For example, if agent 1 plays shtt and agent 2 plays
sttt, then they ensure the (infinite) temporal path q0q2q5(q0q2q5)ω.

Let us additionally assume that the winning conditions are:
η1 ≡ �(¬start→ money1) for player 1 and η2 ≡ ♦money2 for player 2. That is,
agent 1 is only happy if it gets money all the time (whenever possible). Agent 2
is more minimalistic: It is sufficient for it to win money once, sometime in the
future. So, for instance, the play that results from strategy profile 〈shtt, sttt〉
satisfies the second player’s preferences, but not the first player ones. This way,
it is easy to construct a table of binary payoffs that indicates which strategy
profiles are “winning” for whom, shown in the table in Figure 6.2B. Now,
we can for instance observe that the profile 〈shtt, sttt〉 is a Nash equilibrium
(player 1 cannot make itself happy by unilaterally changing its strategy), but it
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(A)

q0 start
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money2
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money2
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n
n

n
n

n
n

(B)

η1\η2 shhh shht shth shtt sthh stht stth sttt

shhh 1,1 1,1 0,0 0,0 0,1 0,1 0,1 0,1

shht 1,1 1,1 0,0 0,0 0,1 0,1 0,1 0,1

shth 0,0 0,0 0,1 0,1 0,1 0,1 0,1 0,1

shtt 0,0 0,0 0,1 0,1 0,1 0,1 0,1 0,1

sthh 0,1 0,1 0,1 0,1 1,1 1,1 0,0 0,0

stht 0,1 0,1 0,1 0,1 1,1 1,1 0,0 0,0

stth 0,1 0,1 0,1 0,1 0,0 0,0 0,1 0,1

sttt 0,1 0,1 0,1 0,1 0,0 0,0 0,1 0,1

Fig. 6.2. “Extended matching pennies”: (A) CGS M3; again, action profile xy
refers to action x played by player 1 and action y played by 2. (B) Strategies and
their outcomes for η1 ≡ �(¬start→ money1), η2 ≡ ♦money2. Pareto optimal profiles
are indicated with bold font, Nash equilibria with grey background.

is not Pareto optimal (〈shhx, shhy〉 and 〈sthx, sthy〉 yield strictly better payoff
profiles for x, y ∈ {t, h}). As before, the CGS M3 in Figure 6.2A can be seen
as a CGSP by adding Υ = Σ and Ω = ∅. Now, we have that:

• [[σ.NEη1,η2(σ)]]q0M3
= {〈shhx, shhy〉, 〈shhx, stty〉, 〈shtx, shty〉, 〈shtx, stty〉,

〈sthx, shty〉, 〈sthx, sthy〉, 〈sttx, shty〉, 〈sttx, stty〉 | x, y ∈ {h, t}}, and

• [[σ.POη1,η2(σ)]]q0M3
= {〈shh, shh〉, 〈sth, sth〉 | x, y ∈ {h, t}}.

Suppose that agent 1 wants money always, and 2 wants money eventually,
and only Pareto optimal Nash equilibria are played. Then, agent 1 is bound
to get money at the beginning of each round of the game. Formally:

M3, q0 |=(set-pl σ.NEη1,η2(σ))
(refn-pl σ.POη1,η2(σ))Pl (start→ 〈〈∅〉〉 ©money1).
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In ATLP, we can also describe relationships between different solution con-
cepts in a CGS. For example, in the “extended matching pennies” game, all
Pareto optimal profiles happen to be a Nash equilibrium, which is equivalent
to the following formula:

(set-pl σ.POη1,η2(σ))(refn-pl σ.¬NEη1,η2(σ))Pl¬〈〈Agt〉〉 © >,

and the formula does indeed hold in M3, q0.

6.5 Abilities of Rational Coalitions: CoalATL

In the previous sections we have recalled ATLs and have shown that these
temporal logics can be used for reasoning about the abilities of agents. The
logic ATLP can be used to fix some notions of plausibility/rationality so that
choices of specified groups of agents are restricted. In all these logics the key
construct has the form 〈〈A〉〉ϕ, which expresses that coalition A of agents can
enforce formula ϕ. Under a model theoretic viewpoint, 〈〈A〉〉ϕ holds whenever
the agents in A have a winning strategy for ensuring that ϕ holds (indepen-
dently of the behaviour of A’s opponents). However, this operator accounts
only for the theoretical existence of such a strategy, not taking into account
whether the coalition A can be actually formed. Indeed, in order to join a
coalition, agents usually require some kind of incentive (e.g. sharing common
goals, getting rewards, etc.), since usually forming a coalition does not come
for free (fees have to be paid, communication costs may occur, etc.). Con-
sequently, several possible coalition structures among agents may arise, from
which the best ones should be adopted according to some rationally justifiable
procedure.

In this section we present an argumentative approach to extend ATL for
modelling coalitions. We provide a formal extension of ATL, CoalATL (Coali-
tional ATL ), by including a new construct 〈|A|〉ϕ which denotes that the group
A of agents is able to build a coalition B, A∩B 6= ∅ provided that A 6= ∅, such
that B can enforce ϕ. That is, it is assumed that agents in A work together
and try to form a coalition B.

The main inspiration for our work is the argument-based model for reason-
ing about coalition structures proposed by Amgoud [Amgoud, 2005a]. Indeed,
our notion of coalitional framework (Def. 4.39) is based on the notion of frame-
work for generating coalition structures (FCS) presented in Amgoud’s paper.
However, in contrast with Amgoud’s proposal, our work is concerned with
extending ATL by argumentation in order to model coalition formation.

Previous research by Hattori et al. [Hattori et al., 2001] has also ad-
dressed the problem of argument-based coalition formation, but from a dif-
ferent perspective than ours. In [Hattori et al., 2001] the authors propose an
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argumentation-based negotiation method for coalition formation which com-
bines a logical framework and an argument evaluation mechanism. The re-
sulting system involves several user agents and a mediator agent. During the
negotiation, the mediator agent encourages appropriate user agents to join in
a coalition in order to facilitate reaching an agreement. User agents advance
proposals using a part of the user’s valuations in order to reflect the user’s
preferences in an agreement. This approach differs greatly from our proposal,
as we are not concerned with the negotiation process among agents, and our
focus is on modelling coalitions within an extension of an expressive strategic
logic, where coalition formation is part of the logical language.

Modelling argument-based reasoning with bounded rationality has also
been the focus of previous research. In [Rovatsos et al., 2005] the authors pro-
pose the use of a framework for argument-based negotiation, which allows for
a strategic and adaptive communication to achieve private goals within the
limits of bounded rationality in open argumentation communities. In contrast
with our approach, the focus here is not on extending a particular logic for
reasoning about coalitions, as in our case. Recent research in formalising coali-
tion formation has been oriented towards adding more expressivity to Pauly’s
coalition logic [Pauly, 2002]. E.g. in [Ågotnes et al., 2007b], the authors define
Quantified Coalition Logic, extending coalition logic with a limited but useful
form of quantification to express properties such as “there exists a coalition C
satisfying property P such that C can achieve ϕ”. In [Borgo, 2007], a semantic
translation from coalition logic to a fragment of an action logic is defined, con-
necting the notions of coalition power and the actions of the agents. However,
in none of these cases argumentation is used to model the notion of coalition
formation as done in this thesis.

It must be noted that the adequate formalisation of preferences has
deserved considerable attention within the argumentation community. In
preference-based argumentation theory, an argument may be preferred to an-
other one when, for example, it is more specific, its beliefs have a higher
probability or certainty, or it promotes a higher value. Recent work by Kaci
et al. [Kaci and van der Torre, 2008; Kaci et al., 2007] has provided interesting
contributions in this direction, including default reasoning abilities about the
preferences over the arguments, as well as an algorithm to derive the most
likely preference order.

6.5.1 Rational Coalition Formation

During the last decade, argumentation frameworks [Prakken and Vreeswijk,
2002; Chesñevar et al., 2000] have evolved as a successful approach to formalise
common-sense reasoning and decision making in multiagent systems (MASs).
Application areas include issues such as joint deliberation, persuasion, negoti-
ation, knowledge distribution and conflict resolution (e.g. [Tang and Parsons,
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2005; Rahwan and Amgoud, 2006; Rahwan et al., 2007; Brena et al., 2007;
Karunatillake et al., 2006]), among many others. Particularly, recent research
by Leila Amgoud [Amgoud, 2005a,b] has shown that argumentation provides
a sound setting to model reasoning about coalition formation in MASs. The
approach is based on using conflict and preference relationships among coali-
tions to determine which coalitions should be adopted by the agents. This
is done according to a particular argumentation semantics. The work is pre-
sented in Section 4.2 The actual computation of the coalition is modelled
in terms of a given argumentation semantics [Dung, 1995] in the context of
coalition formation [Amgoud, 2005a].

The formation process is quite abstract. As mentioned above, agents usu-
ally require some kind of incentive (e.g. sharing common goals, getting re-
wards, etc.), since usually forming a coalition does not come for free (fees have
to be paid, communication costs may occur, etc.). Thus, in a second step we
consider goals as the main motivation to join coalitions. Agents should only
work together if the group is conflict-free (i.e. acceptance according to the
coalition formation framework just discussed) and each agent inside the coali-
tion should somewhat benefit from the participation. In Section 6.6 we make
this idea formal and enrich CoalATL with goals. We address the question why
agents should cooperate. Goals refer to agents’ subjective incentives to join
coalitions.

6.5.2 The Language LCoalATL

In this section we combine argumentation for coalition formation from Sec-
tion 4.2 and LATL and introduce the language LCoalATL. The latter extends
LATL by new operators 〈|A|〉 for each subset A ⊆ Agt of agents. These new
modalities combine, or rather integrate, coalition formation into the original
cooperation modalities 〈〈A〉〉. The intended reading of 〈|A|〉ϕ is that the group
A of agents is able to form a coalition B ⊆ Agt such that some agents of A
are also members of B, if A 6= ∅ then A ∩B 6= ∅, and B can enforce ϕ.

Our main motivation for this logic is to make it possible to reason about
the ability of building coalition structures, and not only about an a priori
specified group of agents (as it is the case for 〈〈A〉〉ϕ). The new modality 〈|A|〉
provides a rather subjective view to the agents in A and their power to create
a group B which in turn is used to reason about the ability to enforce a given
property.

The language of LCoalATL is defined as follows.

Definition 6.45 (LCoalATL). The language LCoalATL(Π,Agt) is defined by
the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉 © ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕUϕ | 〈|A|〉 © ϕ | 〈|A|〉�ϕ |
〈|A|〉ϕUϕ
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where A ⊆ Agt and p ∈ Π.

6.5.3 Semantics: The Logic CoalATL

We extend concurrent game structures by coalitional frameworks and the argu-
mentative semantics from Section 4.2, Definitions 4.39 and 4.44. A coalitional
framework is assigned to each state of the model capturing the current “con-
flicts” among agents. In doing so, we allow that conflicts change over time,
being thus state dependent. Moreover, we assume that coalitional frameworks
depend on groups of agents. Two initial groups of agents may have different
skills to form coalitions. Consider for instance the following example.

Example 6.46. Imagine the two agents a1 and a2 are not able (because they
do not have the money) to convince a3 and a4 to join. But a1, a2 and a3

together have the money and all four can enforce a property ϕ. So {a1, a2}
are not able to build a greater coalition to enforce ϕ; but {a1, a2, a3} are. So
we are not looking at coalitions per se, but how they evolve from others.

We assume that the argumentative semantics is the same for all states.

Definition 6.47 (CGM). A coalitional game model (CGM) is given by a
tuple

M = 〈Agt,Q , Π, π,Act, d, o, ζ, sem〉
where 〈Agt,Q , Π, π,Act, d, o〉 is a CGS, ζ : P(Agt) → (Q → CF(Agt)) is a
function which assigns a coalitional framework over Agt to each state of the
model subjective to a given group of agents, and sem is an (argumentative)
semantics as defined in Definition 4.44. The set of all such models is given by
M(Q ,Agt, Π, sem, ζ).

A model provides an argumentation semantics sem which assigns all
formable coalitions to a given coalitional framework. As argued before we
require from a valid coalition that it is not only justified by the argumenta-
tion semantics but that it is also not disjunct with the predetermined starting
coalition. This leads to the notion valid coalition.

Definition 6.48 (Valid coalition). Let A, B ⊆ Agt be groups of agents,
M = 〈Agt,Q , Π, π,Act, d, o, ζ, sem〉 be a CGM and q ∈ Q.

We say that B is a valid coalition with respect to A, q, and M whenever
B ∈ sem(ζ(A)(q))) and if A 6= ∅ then A ∩ B 6= ∅. Furthermore, we use
VCM(A, q) to denote the set of all valid coalitions regarding A, q, and M.

The subscript M is omitted if clear from context.
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Remark 6.49. In [Bulling et al., 2008] we assume that the members of the
initial group A work together, whatever the reasons might be. So group A
was added to the semantics. This ensured that agents in A can enforce ψ on
their own, if they are able to do so. Even if A is not accepted originally by
the argumentation semantics, i.e. A 6∈ sem(ζ(A)(q)). Here, we do not require
this condition. As pointed out in [Bulling and Dix, 2008] the “old” semantics
is just a special case of this new one: The operator from [Bulling et al., 2008]
can be defined as 〈|A|〉γ ∨ 〈〈A〉〉γ.

Moreover, we changed the condition that the predefined group given in the
coalitional operator must be a subset of the formed coalition, A ⊆ B, to the
requirement that some member of the initial coalition (if A 6= ∅) should be in
the new one, A ∩ B 6= ∅. Both definitions make sense in different scenarios;
however, the new one seems to be more generic.

The semantics of the new modality is given by

Definition 6.50 (CoalATL semantics). Let a CGM M, a group of agents
A ⊆ Agt, and q ∈ Q be given. The semantics of CoalATL extends the
one of ATL, given in Definition 2.22, by the following rule where 〈|A|〉ψ ∈
LCoalATL(Agt, Π):

M, q |= 〈|A|〉ψ iff there is a coalition B ∈ VC(A, q) such that M, q |= 〈〈B〉〉ψ.

Remark 6.51 (Different Semantics, |=sem). We have just defined a whole class
of semantic rules for modality 〈| · |〉. The actual instantiation of the semantics
sem, for example semstable, sempref, and semcs defined in Section 4.2, affects
the semantics of the cooperation modality.

For the sake of readability, we sometimes annotate the satisfaction relation
|= with the presently used argumentation semantics. That is, given a CGM
M with an argumentation semantics sem we write |=sem instead of |=.

The underlying idea of the semantic definition of 〈|A|〉ψ is as follows. A
given (initial) group of agents A ⊆ Agt is able to form a valid coalition B
(where A and B must not be disjoint if A 6= ∅), with respect to a given
coalitional framework CF and a particular semantics sem, such that B can
enforce ψ.

Remark 6.52. Similarly to the alternatives to our definition of valid coalitions
there are other sensible semantics for CoalATL. The semantics we presented
here is not particularly dependent on time; i.e., except from the selection
of a valid coalition B at the initial state there is no further interaction be-
tween time and coalition formation. We have chosen this simplistic definition
to present our main idea–the connection of ATL and coalition formation by
means of argumentation–as clear as possible.
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In the semantics presented in Definition 6.50 a valid coalition is initially
formed and kept until the property is fulfilled. For instance, consider formula
〈|A|〉�ϕ. The formula is true in q if a valid coalition B in q can be formed
such that it can ensure �ϕ. On might strengthen the scenario and require
that B must be valid in each state on the path λ satisfying ϕ. Formally, the
semantics could be given as follows: q |= 〈|A|〉�ϕ if, and only if, q |= ϕ and
there is a coalition B ∈ VC(q, A) and a common strategy sB ∈ ΣB such that
for all paths λ ∈ out(q, sB) and for all i ∈ N0 it holds that λ[i] |= ϕ and
B ∈ VC(λ[i], A). The last part specifies that B must be a valid coalition in
each state qi = λ[i] of λ.

In the semantics just presented the formed coalition B must persist over
time until ϕ is enforced. One can go one step further. Instead of keeping the
same coalition B it can also be sensible to consider “new” valid coalitions in
each time step (wrt. A), possibly distinct from B. This leads to some kind of
fixed-point definition. At first, B must be a valid coalition in state q leading
to a state in which ϕ is fulfilled and in which another valid coalition (wrt. A
and the new state) exists which in turn can ensure to enter a state in which,
again, there is another valid coalition and so on.

Proposition 6.53. Let A ⊆ Agt and 〈|A|〉ψ ∈ LCoalATL(Agt, Π). Then
〈|A|〉ψ → ∨

B∈P(Agt)〈〈B〉〉ψ is valid in the class of CGMs.

Proof. Suppose M, q |= 〈|A|〉ψ. Then, there is a valid coalition B such that B
can enforce ψ. Since B is valid we particularly have that B ⊆ Agt. �

Compared to ATL, a LCoalATL-formula like 〈|A|〉ϕ does not refer to the
ability of A to enforce ϕ, but rather to the ability of A to constitute a coalition
B, such that A ∩ B 6= ∅ provided A 6= ∅, and then, in a second step, to the
ability of B to enforce ϕ. Thus, two different notions of ability are captured
in these new modalities. For instance, 〈〈A〉〉ψ ∧¬〈|∅|〉ψ expresses that group A
of agents can enforce ψ, but there is no reasonable coalition which can enforce
ψ (particularly not A, although they possess the theoretical power to do so).

Example 6.54. There are three agents a1, a2, and a3 which prefer different
outcomes. Agent a1 (resp. a2, a3) desires to get outcome r (resp. s, t). One
may assume that all outcomes are distinct; for instance, a1 is not satisfied
with an outcome x whenever x 6= r. Each agent can choose to perform action
α or β. Action profiles and their outcomes are shown in Figure 6.3. The ? is
used as a placeholder for any of the two actions, i.e. ? ∈ {α, β}. For instance,
the profile (β, β, ?) leads to state q3 whenever agent a1 and a2 perform action
β and a3 either does α or β.

According to the scenario depicted in the figure, a1 and a2 cannot com-
monly achieve their goals. The same holds for a1 and a3. On the other hand,
there exists a situation, q1, in which both agents a2 and a3 are satisfied. One
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Fig. 6.3. A simple CGS defined in Example 6.54.

can formalise the situation as the coalitional game CF = (C,A,≺) given in
Example 4.49(b), that is, C = Agt, A = {(a1, a2), (a1, a3), (a2, a1), (a2, a3),
(a3, a1)} and a2 ≺ a3.

We formalise the example as the CGM M = 〈Agt,Q , Π, π,Act, d, o, ζ, sem〉
where Agt = {a1, a2, a3},Q = {q0, q1, q2, q3}, Π = {r, s, t}, and ζ(A)(q) = CF
for all states q ∈ Q and groups A ⊆ Agt. Transitions and the state labelling
can be seen in Figure 6.3. Furthermore, we do not specify a concrete semantics
sem yet, and rather adjust it in the remainder of the example.

We can use pure LATL-formulas, i.e. formulas not containing the new
modalities 〈| · |〉, to express what groups of agents can achieve. We have, for
instance, that agents a1 and a2 can enforce a situation which is undesirable
for a3: M, q0 |= 〈〈a1, a2〉〉 © r. Indeed, {a1, a2} and the grand coalition Agt
(since it contains {a1, a2}) are the only coalitions which are able to enforce
©r; we have

M, q0 |= ¬〈〈X〉〉 © r (6.1)

for all X ⊂ Agt and X 6= {a1, a2}. Outcomes s or t can be enforced
by a2: M, q0 |= 〈〈a2〉〉 © (s ∨ t). Agents a2 and a3 also have the ability
to enforce a situation which agrees with both of their desired outcomes:
M, q0 |= 〈〈a2, a3〉〉 © (s ∧ t).

These properties do not take into account the coalitional framework, that
is, whether specific coalitions can be formed or not. By using the coalitional
framework, we get

M, q0 |=sem 〈〈a1, a2〉〉 © r ∧ ¬〈|a1|〉 © r ∧ ¬〈|a2|〉 © r

for any semantics sem introduced in Definition 4.44 and calculated in Exam-
ple 4.52. The possible coalition (resp. coalitions) containing a1 (resp. a2) is
{a1} (resp. are {a2} and {a2, a3}). But neither of these can enforce ©r (in
q0) because of (6.1). Thus, although it is the case that the coalition {a1, a2}
has the theoretical ability to enforce r in the next moment (which is a “los-
ing” situation for a3), a3 should not consider it as sensible since agents a1
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and a2 would not agree to constitute a coalition (according to the coalitional
framework CF).

The decision for a specific semantics is a crucial point and depends on the
actual application. The next example shows that with respect to a particular
argumentation semantics, agents are able to form a coalition which can suc-
cessfully achieve a given property, whereas another argumentative semantics
does not allow that.

Example 6.55. CoalATL can be used to determine whether a coalition for
enforcing a specific property exists. Assume that sem represents the grounded
semantics. For instance, the statement

M, q0 |=semcomplete 〈|∅|〉 © t

expresses that there is a complete coalition (i.e. a coalition wrt to the grounded
semantics) which can enforce ©t, namely the coalition {a2, a3}. This result
does not hold for all semantics; for instance, we have

M, q0 6|=semcs 〈|∅|〉 © t

with respect to the coalition structure semantics, since the coalition structure
is the empty coalition and M, q0 6|= 〈〈∅〉〉 © t.

In the following section we sketch how the language can be extended by
an update mechanism, in order to compare different argumentative semantics
using formulae inside the object language.

6.5.4 An Update Mechanism

In Example 6.55 we have shown that the underlying semantics of the coalition
framework is crucial for the truth of a formula. We showed, for instance, that
〈|∅|〉 © t is true wrt the complete semantics but false regarding the coalition
structure semantics. This comparison took place on the meta-level; two CGMs
were defined, using grounded and coalition structure semantics, respectively.
In this section, we introduce semantics as first-class citizens in the object
language. Therefore, we extend the language by semantic terms, out of a setΩ,
and an update operator (set-sem ·). Semantically, a CGM M is enriched by a
denotation function [[·]] : Ω → (CF(Agt)→ P(P(Agt))) which maps semantic
terms to an argumentation semantics. The idea is that (set-sem sem) resets
the semantics in M to [[sem]], where sem ∈ Ω. The intended reading for
(set-sem sem)ϕ is that ϕ holds if the argumentation semantics is given by
[[sem]]. We formally define the new language and its models.
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Definition 6.56 (LCoalATL plus update). Let Ω be a non-empty set, its
elements are called semantic symbols (with typical element sem).

The logic Lu
CoalATL(Agt, Π,Ω) is given by all formulas of LCoalATL(Agt, Π)

and for all ϕ ∈ Lu
CoalATL(Agt, Π,Ω) we also have (set-sem sem)ϕ ∈

Lu
CoalATL, where sem ∈ Ω.

Remark 6.57 (Standard semantic terms). We assume that for all semantics
defined in Definitions 4.44 and 4.47 there is a corresponding semantic term
in Ω. For example, for the grounded semantics semgrounded there is a term
semgrounded in Ω.

We need to define the denotation of the new syntactic objects.

Definition 6.58 (CGM + update). A coalitional concurrent game struc-
ture with update (u+CGM) is given by a tuple

M = 〈Agt,Q , Π, π,Act, d, o, ζ, sem, Ω, [[·]]〉

where 〈Agt,Q , Π, π,Act, d, o, ζ, sem〉 is a CGM, Ω is a non-empty set of se-
mantic terms, and [[·]] : Ω → (CF(Agt) → P(P(Agt))) is a denotation func-
tion, such that [[sem]] is an argumentation semantics over CF(Agt) (cf. Defi-
nition 4.44) for all sem ∈ Ω.

In accordance with Remark 6.57 we assume that the denotation of seman-
tic terms belonging to one of the “standard” semantics connects the terms
with their semantics. That is, we assume, for instance, that the denotation of
semgrounded is semgrounded.

In addition to all semantic rules given before, we also need to interpret
(set-sem ·).

Definition 6.59 (Semantics). Let M = 〈Agt,Q , Π, π,Act, d, o, ζ, sem, Ω, [[·]]〉
be a u+CGM and sem ∈ Ω. The semantics of CoalATL plus update ex-
tends that of CoalATL, given in Definition 6.50 , by the following rule
(ψ ∈ Lu

CoalATL(Agt, Π,Ω)):

M, q |= (set-sem sem)ψ iff M[[sem]], q |= ψ

where M[[sem]] is a u+CGM equal to M but its argumentation semantics is
given by (set to) [[sem]].

Example 6.60. Let M′ be the u+CGM which corresponds to the CGM M
given in Example 6.55 extended by a set Ω of semantic terms and denota-
tion function [[·]]. We can state the relation between complete and coalition
structure semantics directly on the object level:

M, q0 |= (set-sem semcomplete)〈|∅|〉 © t ∧ ¬(set-sem semcs)〈|∅|〉 © t.
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6.6 Cooperation and Goals

Why should agents join coalitions? They must have reasons to do so. Here,
we consider goals as the main motivation, and we assume that agents act to
reach their goals. Firstly, we propose an abstract goal framework. Secondly,
we use specific languages for goals and objectives, and we propose ATL as a
suitable language to capture agents’ goals. Finally, we implement goals into
the semantics of CoalATL, discuss their benefits and illustrate it with an
example.

6.6.1 Goals and Agents

Pro-activeness and social ability are among the widely accepted characteristics
of intelligent agents [Wooldridge, 2002]. In BDI frameworks, also goals (or
desires) and beliefs play an important role [Bratman, 1987; Rao and Georgeff,
1991].

We believe that also the social ability to join coalitions, should be based on
some incentive. Agents are usually not developed to offer their services for free.
Also in the agent programming community several types of goals (e.g. achieve-
ment or maintenance goals) are commonly considered as an agent’s main
motivation. Here, we present a simple abstract framework to deal with these
notions.

Definition 6.61 (G, goal mapping g). Let Ga be a non-empty set of el-
ements (set of goals), one for each agent a ∈ Agt, and G :=

⋃
a∈Agt Ga.

By “g” we denote a typical element from G. A goal mapping is a function
g : Agt→ (Q+ → P(G)) assigning a set of goals to a given sequence of states
and agent.

So, a goal mapping assigns a set of goals to a history, depending on an
agent. This is needed to introduce goals into CGMs. The history dependency
can be used, for instance, to model when a goal should be removed from the
list: An agent having a goal ♦s may drop it after reaching a state in which s
holds. Alternatively, a model update mechanism can be used to achieve the
same regarding state-based goal mappings; however, in our opinion the former
seems more elegant.

An agent might have several goals. Often, goals can not be reached simul-
taneously which requires means to decide which goal should be selected first.
We model this by a preference ordering.

Definition 6.62 (Goal preference relation). A goal preference ordering
(gp-ordering) � over a set of goals G′ ⊆ G is a complete, transitive, antisym-
metric, and irreflexive relation �⊆ G′ × G′. We say that a goal g is preferred
to g′ if g � g′.
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Given a goal mapping ga for a ∈ Agt we assume that there implicitly also
is a gp-ordering �a (a’s gp-ordering).

So far, we did not say how goals can be actually used to form coalitions. We
assume, given some task, that agents having goals satisfied or partly satisfied
by the outcome of the task are willing to cooperate to bring about the task.
In the following we will use the notion objective (or objective formula) to refer
to both the task itself and the outcome of it. A typical objective is written as
o. Agents which have goals fulfilled or at least partly supported by objective
o are possible candidates to participate in a coalition aiming at o.

We say that an objective o satisfies goal g, o ↪→ g, if the complete goal g
is fulfilled after o has been accomplished. If a goal is (partly) satisfied by o we
say that o supports g, o ↪→s g; i.e. there is another goal g′ which is a subgoal
of g and which is satisfied. These notions will be made precise in the following
sections. Intuitively, an objective �t satisfies goal �(t ∨ s).

6.6.2 Specifying Goals and Objectives

In this section, we propose to use LATL-path formulas for specifying goals. It
has been shown that temporal logics like LTL and CTL can be used as goal
specification languages [Bacchus and Kabanza, 1998; Baral and Zhao, 2007;
Baral et al., 2001].

Goals formulated in LLTL are very intuitive. Formulae like ♦rich (even-
tually being rich), ©takeUmbrella (take umbrella in the next moment), or
�♦sleep (going to sleep again and again) have clear interpretations. But goals
formulated in LCTL can be ambiguous. A goal like A♦rich4 does not seem
fundamentally different from ♦rich from the agent’s point of view. Its goal of
being rich in the future can be read implicitly as being rich in all possible
futures; only one of them can actually become true and in that particular one
the agent wants to be rich.

In this section we will use LATL for expressing agents’ goals. At first glance,
this seems to contradict the statement made above since LCTL can be seen
as a special case (the one agent fragment) of LATL. But this is not the case:
LCTL refers to a purely temporal setting whereas LATL talks about abilities of
agents. Here is a clarifying example. Assume that there are two agents a and
b both having access to the same critical section; that is, either a or b should
access this section but not both. In such a case it is reasonable that agent a
has the goal of preventing b to enter this section on its own: ¬〈〈b〉〉♦critical.
However, it might be acceptable for a that b together with another agent c
enters the critical section because then c has to unlock resources a could use
instead. Let us consider a more detailed example.
4 The operator A refers to all possible paths starting in a state. In ATL this operator

can be expressed as 〈〈∅〉〉.
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Fig. 6.4. Two simple models showing that ATL goals are useful. ? ∈ {α, β} is used
as a placeholder for any of the two actions.

Example 6.63 (LATL-goals). In the example we consider two agents a and
b. Both agents can perform actions α and β. The first agent, leader of a
research group, would like to get a better salary (bs) and wants to retain the
power to decide when to take vacation (vac). So, a’s goal can be expressed as
γ ≡ �(¬now→ bs∧ vac). Interpreting the models shown in Figure 6.4 purely
temporally (i.e. without action profiles) the LCTL-formula Eγ is satisfied in
q0 in both models: There are q0-paths which satisfy γ. On the other hand, Aγ
is false in both models in q0.

Now agent b enters the stage. A higher salary would require a to move to
a company in which the agent has a boss who might be able to decide on a’s
vacation (depending on the contract). Actually, although a would like to have
a better salary it prefers to decide on its vacation on its own. Thus, its goal can
be reformulated to γ′ ≡ �(¬now → bs ∧ ¬〈〈b〉〉♦¬vac), or equivalently in this
example �(¬now→ bs∧〈〈a〉〉�vac). Now, it is easy to see that M1, q0 |= 〈〈a〉〉γ′
but M2, q0 6|= 〈〈a〉〉γ′. In the first model b does not have the power to decide
on a’s vacation but b has this ability in the second model.

This quite simplistic example shows that LATL-formulae can make sense
as goal specification language.
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Definition 6.64 (LATL-Goal). Let γ, γ′ be LATL-path formulae. An LATL-
goal has the form γ or γ ∧ γ′5.

Note that goals can easily be defined as LCoalATL-formulae; however, due
to simplicity we stick to pure LATL-formulae.

It remains to define the objective language. Consider the LCoalATL-formula
〈|A|〉γ. The question is whether there is a rational group to bring about γ; thus,
only agents which gain advantage when γ is fulfilled should cooperate. Hence,
we consider γ as objective.

Definition 6.65 (LCoalATL-objective). An LCoalATL-objective is an
LCoalATL-path formula.

6.6.3 Goals as a Means for Cooperation

In this section we combine CoalATL with the goal framework described above.
The syntax of the logic is given as in Section 6.5.2. The necessary change takes
place in the semantics. We redefine what it means for a coalition to be valid.

Up to now valid coalitions were solely determined by coalitional frame-
works. Conflicts represented by such frameworks are a coarse, but necessary,
criterion for a successful coalition formation process. However, nothing is said
about incentives to join coalitions, only why coalitions should not be joined.

Goals allow to capture the first issue. For a given objective formula o and a
finite sequence of states, called history, we do only consider agents which have
some goal supported by the current objective. CGMs with goals are given as
a straightforward extension of CGMs (cf. Definition 6.47).

Definition 6.66 (CGM with goals). A CGM with goals (g+CGM) M is
given by a model of M(Q ,Agt, Π, sem, ζ) extended by a set of goals G and a goal
mapping g over G. The set of all such models is denoted Mg(Q ,Agt, Π, sem, ζ,
G, g) or just Mg if we assume standard naming.

To define the semantics we recall some additional notation. Given a path
λ ∈ Qω we use λ[i, j] to denote the sequence λ[i]λ[i+ 1] . . . λ[j] for i, j ∈ N0 ∪
{∞} and i < j. A history is a finite sequence h = q1 . . . qn ∈ Q+, h[i] denotes
state qi if n ≥ i, qn for i ≥ n, and ε for i < 0 where i ∈ Z∪{∞}. Furthermore,
given a history h and a path or history λ the combined path/history starting
with h extended by λ is denoted by h ◦ λ.

Finally, we present the semantics of CoalATL with goals. It is similar
to Definition 6.50. Here, however, it is necessary to keep track of the steps
(i.e. visited states) made to determine the goals of the agents which remain
unsatisfied.

5 Note that γ ∧ γ′ is not an LATL-path formula anymore.
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Definition 6.67 (Goal-based semantics for LCoalATL). Let M be a
g+CGM, q a state, ϕ,ψ state-, γ a path formula, and i, j ∈ N0. Semantics
of CoalATL+goals formulae is given as follows:

M, q, τ |= p iff p ∈ π(q),
M, q, τ |= ϕ ∧ ψ iff M, q, τ |= ϕ and M, q, τ |= ψ,
M, q, τ |= ¬ϕ iff not M, q, τ |= ϕ,
M, q, τ |= 〈〈A〉〉γ iff there is a strategy sA ∈ ΣA such that for all λ ∈ out(q, sA)

it holds that M, λ, τ |= ϕ,
M, q, τ |= 〈|A|〉γ iff there is A′ ∈ VCg(q, A, γ, τ) such that M, q, τ |= 〈〈A〉〉γ,
M, λ, τ |= ϕ iff M, λ[0], τ |= ϕ,
M, λ, τ |= �ϕ iff for all i ∈ N0 it holds that M, λ[i], τ ◦ λ[1, i] |= ϕ,
M, λ, τ |=©ϕ iff it holds that M, λ[1], τ ◦ λ[1] |= ϕ,
M, λ, τ |= ϕUψ iff there is a j ∈ N0 such that M, λ[j], τ ◦ λ[1, j] |= ψ and for

all 0 ≤ i < j it holds that M, λ[i], τ ◦ λ[1, i] |= ϕ.

Ultimately, we are interested in M, q |= ϕ defined as M, q, q |= ϕ.

We have to define when a goal is satisfied. Although the definition of
support can be defined similarly, we focus on the former notion only.

Definition 6.68 (Satisfaction of goals). Let g be an LATL-goal, o an
LCoalATL-objective, and τ ∈ Q+. We say that objective o satisfies g, for short
o ↪→M,τ,B g, with respect to M, τ , and B if, and only if, for all strategies
sB ∈ ΣB and for all λ ∈ out(τ [∞], sB) it holds that M, λ, τ |= o implies
M, λ |= g.

A goal is satisfied by an objective if each path (enforceable by B) that
satisfies the objective does also satisfy the goal. That is, satisfaction of the
objective will guarantee that the goal becomes true.

All the new functionality provided by goals is captured by the new valid
coalition function VCg

Definition 6.69 (Valid coalitions, VCg(q,A, o, τ)). Let M ∈Mg, τ ∈ Q+,
A,B ⊆ Agt, o an LCoalATL-objective.

We say that B is a valid coalition after τ with respect to A, o, and M if,
and only if,

1. B ∈ sem(ζ(A)(τ [∞])), A ∩B 6= ∅ if A 6= ∅, and
2. there are goals gbi ∈ gbi(τ), one per agent bi ∈ B, such that o ↪→M,τ,B

gb1 ∧ · · · ∧ gb|B|
The set VCg(q, A, o, τ) consists of all such valid coalitions wrt to M.

Thus, for the definition of valid coalitions among other things, a goal map-
ping, a function ζ and a sequence of states τ are required. The intuition of τ
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is that it represents the history (the sequence of states visited so far including
the current state). So, τ is used to determine which goals of the agents are
still active.

Proposition 6.70. If M, q, τ |= 〈|A|〉γ then there is a coalition B ∈ VC(A, q)
and goals gb ∈ gb(τ) one for each b ∈ B such that M, q, τ |= 〈〈B〉〉(γ∧∧b∈B gb).

Proof. Suppose M, q, τ |= 〈|A|〉γ. Then, there is a coalitionB ∈ VCg(q, A, o, τ)
such that M, q, τ |= 〈〈B〉〉γ iff B ∈ sem(ζ(A)(τ [∞])), A ∩ B 6= ∅ if A 6= ∅ and
there are goals gbi ∈ gbi(τ), one per agent bi ∈ B, such that γ ↪→M,τ,B

gb1 ∧ · · · ∧ gb|B| iff there is a B ∈ sem(ζ(A)(τ [∞])), A ∩B 6= ∅ if A 6= ∅ and a
strategy sB such that for all λ ∈ out(q, sB), M, λ, τ |= γ and there are goals
gbi ∈ gbi(τ), one per agent bi ∈ B, such that for all strategies s′B ∈ ΣB and
all λ ∈ out(τ [∞], s′B) it holds that M, λ, τ |= γ implies M, λ |= g. We have
that γ is satisfied on all paths resulting from sA; hence, also gb1 ∧ · · · ∧ gb|B|
and we have that there is a B ∈ sem(ζ(A)(τ [∞])), A ∩ B 6= ∅ if A 6= ∅ and
a strategy sB and goals gbi ∈ gbi(τ), one per agent bi ∈ B, such that for all
λ ∈ out(q, sB), M, λ, τ |= γ ∧∧b∈B gb. �

Remark 6.71 (Preferred goals). In the abstract goal framework presented in
Section 6.6.1 we defined a preference ordering over goals. The gp-orderings
highly influence the coalition formation process. However, for this paper we
decided to focus on the pure goal framework since the interplay between the
formation process becomes much more sophisticated if preferences are taken
into account. We just give a brief motivation for preferences and why they
increase the complexity of coalition building.

The set of valid coalitions consists of all coalitions which are acceptable/
conflict-free (according to a coalitional framework) and in which all agents
have an incentive to join the coalition (that is, some goal has to be satis-
fied/supported). Let us consider two valid groups B and B′ both containing
the agent a. Both groups are somewhat appealing for a since they satisfy some
of his goals, say B (resp. B′) can bring about g (resp. g′). In our framework
B and B′ are treated equally good. Is this reasonable? From an abstract level
it is; however, a finer grained analysis should incorporate the preferences be-
tween goals. If, for instance, g is preferred over g′ agent a should rather go
for coalition B instead of B′. The agent would prefer to bring about g thus
joining B. On the other hand, if a refuses to join B′ it might be possible, by
a symmetric argument, that another agent, say b, refuses to take part in B,
such that in the end neither B nor B′ will form. Of course, in such a situation
both agents prefer to bring about their less preferred goals. This is still better
than getting nothing.

This reasoning very much reminds on game theoretic rationality concepts.
For example, the motivation behind a Nash equilibrium strategy shows a
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strong connection: No agent has an incentive to unilaterally choose another
strategy. Even closer are concepts from cooperative game theory. This discus-
sion shows that the incorporation of a preference ordering over goals is quite
interesting.

6.6.4 Progression of LATL-goals

A goal mapping takes the history into account to be able to reflect if a goal has
become fulfilled. For example, if an agent has goal ♦p and p became satisfied
in a state on the current history the goal should be marked as completed in
the following state. (Of course, a new goal in this state can again be ♦p.)
Another, more practical but also restricted option, is to consider an initial
goal base GB and modify, specialise or remove, the formulae according to the
steps taken. So, goal ♦p∧�q should be specialised to �q if a state is reached in
which p holds. In [Bacchus and Kabanza, 2000] such a progression procedure
is presented for first-order linear time temporal logic.

6.7 Summary

We have proposed logics to reason about abilities of rational agents under
perfect information, among them ATLP and CoalATL. The first logic can
be used to study the outcome of rational play in a logical framework, under
various rationality criteria. To our knowledge, there has been very little work
on this issue (although solving game-like scenarios with help of various solution
concepts is arguably the main application of game theory). We note that we
are not discussing the merits of this or that rationality criterion here, nor
the pragmatics of using particular criteria to predict the actual behaviour of
agents. Our aim was to propose a conceptual tool to study the consequences
of accepting one or another criterion.

We believe that the logic we have proposed provides much flexibility and
modelling power. The results presented in Sections 6.4 and 10.1 also suggest
that the expressiveness of the language is quite high. We have discussed how
ATLP can be used to describe the two kinds of solution concepts from Section
3.3 in a uniform way.

We have constructively shown that several logics can be embedded into
ATLP. That is, we have demonstrated how models and formulae of those
logics can be (independently) transformed to their ATLP counterparts in a
way that preserves truth.

We have extended the results from [van der Hoek et al., 2005a; Jamroga
et al., 2005] presented in Section 3.3, and have shown that the classical so-
lution concepts (Nash equilibrium, subgame perfect Nash equilibrium, Pareto
optimality, and others) can be also characterised in LATLP in a uniform way.
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We have proposed expressions in LATLP that, given an extensive form game,
denote exactly the set of Nash equilibria (subgame perfect NE’s, Pareto op-
timal profiles, etc.) in that game. As a consequence, ATLP can serve both as
a language for reasoning about rational play, and for specifying what rational
play is. We have pointed out that these characterisations extend traditional
solution concepts to the more general class of multi-stage multi-player games
defined by concurrent game structures. Similarly, we have considered general
solution concepts from Section 3.3.2

In Chapter 7 we present an extension of ATLP which allows us to study
strategies, time, knowledge, and plausible/rational behaviour under both per-
fect and imperfect information. It turns out that putting so many dimensions
in one framework has many side effects – even more so in this case because
the interaction between abilities and knowledge is non-trivial (cf. [Jamroga
and van der Hoek, 2004; Jamroga and Ågotnes, 2006; Herzig and Troquard,
2006]). In [Bulling and Jamroga, 2007a], we have investigated time, knowledge
and plausibility.

The second logic that has been presented is CoalATL an extension of
ATL which is able to model coalition formation through argumentation. Our
formalism includes two different modalities, 〈〈A〉〉 and 〈|A|〉, which refer to
different kinds of abilities agents may have. Note that the original operator
〈〈A〉〉 is used to reason about the pure ability of the very group A. However, the
question whether it is reasonable to assume that the members of A collaborate
is not taken into account in ATL. With the new operator 〈|A|〉 we have tried to
close this gap, providing also a way to focus on sensible coalition structures.
In this context, “sensible” refers to acceptable coalitions with respect to some
argumentative semantics (as characterised in Def. 4.44).

Furthermore, we have defined the formal machinery required for charac-
terising argument-based coalition formation in terms of the proposed operator
〈|A|〉. Coalitions can be actually computed in terms of a given argumentation
semantics, which can be given as a parameter within our model, thus providing
a modular way of analysing the results associated with different alternative
semantics. This has allowed us to compare the ability of agents to form partic-
ular coalitions and study emerging properties regarding different semantics. In
Section 10.2 the model checking algorithm used in ATL is extended to model
check CoalATL.
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In Section 6 we have considered how the behaviour of rational agents can be
modelled and analysed. The setting was restricted to agents being aware of the
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current state of the world. In this section we turn to incomplete information
settings. We consider two different approaches to incomplete information.

In the first setting, we present constructive strategic logic with plausibility
(CSLP), a combination of CSL (compare Section 2.3.2) and ATLP (Section
6.2) where the new language goes far beyond the pure union of both logics.
The plausibility concept allows us to neatly define the relationship between
epistemic and doxastic concepts. It allows to analyse rational play under in-
complete information where the latter notion refers to the indistinguishability
of states.

In the second proposal, we focus on rational play of a group of agents which
has some (incomplete) prediction about the opponents’ behaviour. More pre-
cisely, usually it is assumed that the opponents behave in the most destructive
way. However, there are scenarios were such an assumption is not reasonable;
for example, due to the lack of communication channels. We model this by
assuming some probabilistic behaviour of the opponents. The proposed logic
introduces a notion of “randomness” to the responses of the opponents; there-
fore, we named the logic alternating time temporal logics with probabilistic
success.

7.1 Rational Play under Incomplete Information: CSLP

The logic CSL presented in Section 2.3.2 unified several attempts to incor-
porate epistemic concepts into ATL, and solved problems of these previous
attempts. However, it includes only strategic and epistemic modalities; in
particular, doxastic and rationality concepts are absent. On the other hand,
ATLP introduced in Chapter 6 allows for reasoning about rational or plau-
sible behaviour. In this chapter we combined both ideas. The resulting logic
constructive strategic logic with plausibility (CSLP) allows to reason about
strategic ability and rational behaviour under incomplete information. We
use the plausibility concept to define the relationship between epistemic and
doxastic concepts, in a similar way to the logic CTLKP from [Bulling and Jam-
roga, 2007a]. This logic is a result of extending CTLK [Penczek and Lomuscio,
2003], a direct combination of the branching time logic CTL [Emerson, 1990]
and standard epistemic logic [Fagin et al., 1995], by a notion of plausibility
which in turn was used to define a particular notion of beliefs. Plausibility
assumptions were defined in terms of paths in the underlying system. Then,
an agent’s beliefs were given by its knowledge if only plausible paths were
considered. The idea to build beliefs on top of plausibility has been inspired
by [Su et al., 2005; Friedman and Halpern, 1994]. Another source of inspira-
tion is [van der Hoek et al., 2004; van Otterloo and Jonker, 2004], where the
semantics of ability was influenced by particular notions of rationality.
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As the basic modalities of CSLP we introduce weak constructive rational
beliefs: CWA (common beliefs), DWA (distributed beliefs), and EWA (mutual
beliefs). The term constructive is used in the same sense as in CSL, where it
referred to an “operational” kind of knowledge that, in order to “know how
to play”, requires the agents to be able to identify and execute an appropriate
strategy. Like for CSL, the semantics of CSLP is non-standard: Formulae are
interpreted in sets of states. For example, the intuitive reading of M, Q′ |=
〈〈A〉〉γ is that agents A have a collective strategy which enforces γ from each
state in Q′. Thanks to the plausibility concept provided by ATLP we can
define knowledge and rational beliefs on top of weak beliefs. We point out that
our notion of rational belief is rather specific, and show interesting properties
of knowledge, rational belief, and plausibility. In particular, it is shown that
knowledge and belief are KD45 modalities.

We show that CSLP is very expressive, and we demonstrate how solution
concepts for imperfect information games can be characterised and used in
CSLP. It also turns out that, despite the logic’s expressiveness, the model
checking complexity does not increase when compared to a specific fragment
of ATLP, and increases only slightly compared to CSL when plausibility and
rational beliefs are added (cf. Section 10.3) .

In summary, CSLP is an attempt to integrate the notions of time, knowl-
edge, belief, strategic ability, rationality, and uncertainty in a single logical
framework.

7.1.1 Agents, Beliefs, and Rational Play

In this section we informally describe and summarise the ingredients of CSLP.
In the following, let A ⊆ Agt be a team of agents. Formulae of CSLP are
interpreted given a model M and a set of states Q′ (as in the case of CSL,
cf Section 2.3.2). The reading of M, Q′ |= 〈〈A〉〉γ is that agents A have a
collective strategy which enforces γ from all states in Q′. PlA ϕ assumes that
agents in A play plausibly according to some rationality criterion which can
be set (resp. refined) by operators (set-pl ω) (resp. (refn-pl ω)). The set
of such rational agents is denoted by Rgt. Plausibility terms ω refer to sets
of strategy profiles that implement the rationality criteria. Finally, the logic
includes operators for constructive weakly rational belief (constructive weak
belief /CWB in short):

• CWAϕ (agents A have common CWB in ϕ);
• EWAϕ (agents A have mutual CWB in ϕ); and
• DWAϕ (agents A have distributed CWB in ϕ).

Semantically, the CWB operators yield “epistemic positions” of team A that
serve as reference for the semantic evaluation of strategic formulae.
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Let us consider M, Q′ |= EWAPlAgt\A 〈〈A〉〉�safe (coalition A has con-
structive mutual weak belief that they can keep the system safe forever if the
opponents behave rationally) in model M and set of states Q′. Firstly, Q′

is extended with all states indistinguishable from some state in Q′ for any
agent from A. Let us call the extended set Q′′. Agents in A have CWB in
PlAgt\A 〈〈A〉〉�safe iff they have a strategy that maintains safe from all states
in Q′′ assuming that implausible behaviour of agents in Agt\A is disregarded.

Later, we will define strongly rational beliefs (resp. knowledge) as a special
case of CWBs in which all agents are (resp. no agent is) assumed to play
plausibly.

7.1.2 The Language Lbase
CSLP

We proceed similar to Sections 6.1 and 6.2 and define a hierarchy of lan-
guages/logics. We begin with the base language Lbase

CSLP. It includes atomic
propositions, Boolean connectives, strategic formulae, operators for construc-
tive weakly rational beliefs, and operators that handle plausibility updates. As
we will see, standard/constructive strongly rational beliefs and knowledge can
be defined on top of these.

Definition 7.1 (Lbase
CSLP). Let Ω be a set of primitive plausibility terms. The

logic Lbase
CSLP(Agt, Π,Ω) is generated by the following grammar:

ϕ ::= p |¬ϕ |ϕ ∧ ϕ | 〈〈A〉〉 © ϕ | 〈〈A〉〉�ϕ | 〈〈A〉〉ϕUϕ | CWAϕ | EWAϕ | DWAϕ |
PlA ϕ | (set-pl ω)ϕ | (refn-pl ω)ϕ.

The temporal operators ©,�, and U have their usual meaning. Moreover
we define

• Nowϕ ≡ ϕUϕ (now),
• Pl ≡ PlAgt (reasoning under the assumption that all agents behave plau-

sibly), and
• Ph ≡ Pl∅ (reasoning about outcome of all “physically” possible be-

haviours).

Constructive weak belief operators for individual agents and standard weak
belief operators are defined as follows:

• Nowϕ ≡ ϕUϕ (now),
• Waϕ ≡ CW{a}ϕ (individual CWB),
• CWAϕ ≡ CWA〈〈∅〉〉Nowϕ,EWAϕ ≡ EWA〈〈∅〉〉Nowϕ,

DWAϕ ≡ DWA〈〈∅〉〉Nowϕ (standard weak belief, WB),
• Waϕ ≡ CW{a}ϕ (individual WB).

Finally, we define operators for constructive and standard strongly rational
belief (CRB) as:
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Bela ≡WaPl , CBelA ≡ CWAPl ,
EBelA ≡ EWAPl , DBelA ≡ DWAPl ,
Bela ≡ Ph WaPl , CBelA ≡ Ph CWAPl ,
EBelA ≡ Ph EWAPl , DBelA ≡ Ph DWAPl ,

and the constructive and standard knowledge operators as:

Ka ≡ Ph Wa, CA ≡ Ph CWA, EA ≡ Ph EWA,
DA ≡ Ph DWA, Ka ≡ Ph Wa, CA ≡ Ph CWA,
EA ≡ Ph EWA, DA ≡ Ph DWA.

In Section 7.1.4 we show that these definitions capture the respective no-
tions of knowledge and belief appropriately.

7.1.3 Semantics: The Logic CSLPbase

ICGSs from Definition 2.27 extended with plausibility (cf. Definition 6.2)
serve as models for Lbase

CSLP. The relations ∼EA, ∼CA and ∼DA , used to model
group epistemics, are derived from the individual relations of agents from A
as defined in Definition 2.40.

Here, we use the notion strategy sa of agent a to refer to an ir -strategy from
Definition 2.29 (i.e. to a memoryless imperfect information or to a uniform
strategy). That is, q ∼a q′ implies sa(q) = sa(q′). We also use the other
notations introduced so far.

Definition 7.2 (ICGSP, plausibility model). An imperfect information
concurrent game structure with plausibility (ICGSP) is given by

M = 〈Agt,Q , Π, π,Act, d, o,∼1, . . . ,∼k, Υ ,Rgt, Ω, [[·]]〉,
where

• 〈Agt,Q , Π, π,Act, d, o,∼1, . . . ,∼k〉 is an ICGS (cf. Definition 2.27),
• Υ ⊆ Σ is a set of plausible strategy profiles (called plausibility set),
• Rgt ⊆ Agt is a set of rational agents (i.e., the agents to whom the plau-

sibility assumption will apply),
• Ω is a set of plausibility terms, and
• [[·]] : P(Q) → (Ω → Σ) is a plausibility mapping that provides the deno-

tation of the terms.1

We refer to (Υ ,Rgt) as the plausibility model of M. When necessary, we
write XM to denote the element X of model M.

1 In this section, the denotation of such terms is fixed; in Section 7.1.5 we present
a more flexible version.
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Note, that differently from Section 6.1.4 the denotation depends on sets
of states rather than single states.

Remark 7.3 (Rational group of agents). Differently to ATLP we have added
the group of rational agents Rgt to the model rather than annotating the sat-
isfaction relation. Both approaches are equivalent but we believe that adding
the agents to the models turns the focus to the new epistemic and doxastic
concepts.

Imposing strategic restrictions on a subset Rgt of agents can be desirable
due to several reasons. It might, for example, be the case that only information
about the proponents’ play is available; hence, assuming plausible behaviour
of the opponents is neither sensible nor justified. Or, even simpler, a group of
(simple minded) agents might be known not to behave rationally.

Consider now formula 〈〈A〉〉γ: Team A tries to execute a strategy that
brings about γ, but the members of the team who are also in Rgt can only
choose plausible strategies. The same applies to A’s opponents that are con-
tained in Rgt. So it is exactly as for ATLP. Due to the plausibility model
we can simplify the notation of B-plausible strategies and their outcome (cf.
Definition 6.5 and 6.7).

Definition 7.4 (Plausibility of strategies). We say that sA is plausible
iff it is Rgt-plausible (in the sense of Definition 6.5).

By Σ∗ we denote the set of all plausible strategy profiles in which Rgt’s
substrategy is plausible; i.e. Σ∗ = ΥM(Rgt).

Remark 7.5. Analogously to Remark 6.6 and from Definition 6.4 we have that
every profile is ∅-plausible; i.e. Σ∗ = ΥM(∅) for Rgt = ∅. We also have that
Σ∗ = ΥM(Rgt) = ∅ for Rgt 6= ∅ and Υ = ∅.

Similarly, we simplify the notion of the outcome.

Definition 7.6 (Plausible outcome paths). The plausible outcome,

out(q, sA, Σ∗),

of strategy sA from state q is defined as the set of paths (starting from q)
which can occur when only plausible strategy profiles can be played and agents
in A follow sA; that is, out(q, sA, Σ∗) = {λ ∈ Λ(q) | ∃t ∈ Σ∗ (t|A =
sA and out(q, t) = {λ})}.

In the following we will just write out(q, sA) to refer to the plausible out-
come out(q, sA, Σ∗) if clear from context.

Remark 7.7. Note, that for Rgt = ∅ we have that the plausible outcome is
equal to the standard outcome of ATLs; i.e., out(q, sA, Σ∗) = out(q, sA).
Moreover, for Rgt 6= ∅ and Υ = ∅ we have that out(q, sA, ∅) = ∅.
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We define the notion of formula ϕ being satisfied by a (non-empty) set of
states Q′ in model M, written M, Q′ |= ϕ. We will also write M, q |= ϕ as
a shorthand for M, {q} |= ϕ. It is the latter notion of satisfaction (in single
states) that we are ultimately interested in–but it is defined in terms of the
(more general) satisfaction in sets of states. As in Section 2.3.2 let img(q,R)
be the image of state q with respect to binary relation R, i.e., the set of all
states q′ such that qRq′. Moreover, we use out(Q′, sA) as a shorthand for⋃
q∈Q′ out(q, sA), and img(Q′,R) as a shorthand for

⋃
q∈Q′ img(q,R). The

semantics of CSLP is a simple combination of the one for CSL (cf. Defini-
tion 2.40) and ATLP (cf. Definition 6.8).

Definition 7.8 (Semantics, CSLPbase). Let M be an ICGSP, Q′ ⊆ QM be
a set of states. The semantics for Lbase

CSLP is defined as follows:

M, Q′ |= p iff p ∈ π(q) for every q ∈ Q′;
M, Q′ |= ¬ϕ iff M, Q′ 6|= ϕ;
M, Q′ |= ϕ ∧ ψ iff M, Q′ |= ϕ and M, Q′ |= ψ;
M, Q′ |= 〈〈A〉〉 © ϕ iff there exists sA ∈ Σ∗|A such that, for each

λ ∈ out(Q′, sA), we have that M, {λ[1]} |= ϕ;
M, Q′ |= 〈〈A〉〉�ϕ iff there exists sA ∈ Σ∗|A such that, for each λ ∈ out(Q′, sA)

and i ≥ 0, we have M, {λ[i]} |= ϕ;
M, Q′ |= 〈〈A〉〉ϕUψ iff there exists sA ∈ Σ∗|A such that, for each λ ∈ out(Q, sA),

there is an i ≥ 0 for which M, {λ[i]} |= ψ and M, {λ[j]} |= ϕ for every
0 ≤ j < i.

M, Q′ |= K̂WAϕ iff M, img(Q′,∼KA) |= ϕ (where K̂ = C,E,D and K =
C,E,D, respectively).

M, Q′ |= PlA ϕ iff M′, Q′ |= ϕ, where the new model M′ is equal to M but the
new set RgtM′ of rational agents in M′ is set to A.

M, Q′ |= (set-pl ω)ϕ iff M′, Q′ |= ϕ where M′ is equal to M with ΥM′ set to
[[ω]]Q

′

M .
M, Q′ |= (refn-pl ω)ϕ iff M′, Q′ |= ϕ where M′ is equal to M with ΥM′ set

to ΥM ∩ [[ω]]Q
′

M .

As in CSL, we use two notions of validity, weak and strong, depending on
whether formulae are evaluated with respect to single states or sets of states.

Definition 7.9 (Validity). We say that ϕ is valid if M, q |= ϕ for all ICGSP
M with plausibility model (Σ, ∅) (i.e. all strategies are assumed to be plausible
and no agent plays plausibly yet) and all states q ∈ QM.

In addition to that, we say that ϕ is strongly valid if M, Q′ |= ϕ for all
ICGSP M and all sets of states Q′ ⊆ QM.

Note that strong validity is interpreted in all models and not only in
those with plausibility model (Σ, ∅). This stronger notion is necessary for
interchangeability of (sub)formulae. The following results are straightforward.
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Proposition 7.10. Strong validity implies validity.

Proposition 7.11. If ϕ1 ↔ ϕ2 is strongly valid, and ψ′ is obtained from ψ
through replacing an occurrence of ϕ1 by ϕ2, then M, Q′ |= ψ iff M, Q′ |= ψ′.

Proof. The proof is done in a straightforward way by structural induction on
ψ. �

We also say that ϕ is satisfiable if M, q |= ϕ for some ICGSP with plau-
sibility model (Σ, ∅).

7.1.4 Knowledge and Rational Beliefs

In this section we motivate the logic’s epistemic and doxastic operators. We
show that the syntactic definitions for the derived knowledge and belief oper-
ators have an intuitive semantics.

Knowledge

The concept of knowledge is very simple: It is about everything which is
“physically” possible, i.e., all behaviours are taken into account (not only
the plausible ones). In particular this means that, once a knowledge opera-
tor occurs, the set of rational agents in the plausibility model becomes void,
indicating that no agent is assumed to play rationally.

Weakly and Strongly Rational Beliefs

Constructive weak beliefs (CWB) (“common belief”, “distributed belief”,
and “mutual belief”) are primitive operators in our logic. All other be-
lief/knowledge operators are derived from CWB and plausibility. In this sec-
tion, we mainly discuss individual knowledge and beliefs, but the analysis
extends to collective attitudes in a straightforward way.

Let us for example consider the individual CWB operator Waϕ, with the
following reading: Agent a has constructive weak belief in ϕ iff ϕ holds in
all states that a considers possible, where all agents behave according to the
currently specified plausibility model (Υ ,A). That is, agents in A are assumed
to play as specified in Υ . It is important to note that weakly rational beliefs
restrict only the behaviour of the agents specified in the current plausibility
model (i.e. A). This is the difference between weak and strong belief – the
latter assume plausible behaviour of all agents. This is why we call such
beliefs strongly rational, as it restricts the behaviour of the system in a more
rigorous way due to stronger rationality assumptions.
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Using rationality assumptions to define beliefs makes them quite specific.
They differ from most “standard” concepts of belief in two main respects.
Firstly, our notion of beliefs is focused on behaviour and abilities of agents.
When no action is considered, all epistemic and doxastic notions coincide.

Proposition 7.12. Let ϕ be a propositional formula. Then, Waϕ↔ Belaϕ↔
Kaϕ is strongly valid.

Proof. The notions of beliefs and knowledge only differ in the way they
address the set of plausible strategies. However, plausible strategies do only
affect strategic properties. Since ϕ is propositional and the set of considered
states does not change, its truth value is the same for the three operators. �

Secondly, rational beliefs are about restricting the expected behaviour due
to rationality assumptions: Irrational behaviours are simply disregarded. To
strengthen this important point consider the following statements:

(i) Ann (a) knows that Bill (b) can commit suicide (which can be formalised
as Ka〈〈b〉〉♦suicide);

(ii) Ann constructively believes that Bill can commit suicide (which we tenta-
tively formalise as Bela〈〈b〉〉♦suicide).

In the usual treatment of beliefs, statement (i) does not imply statement
(ii), but this does not hold for rational beliefs. That is because, typically,
beliefs and knowledge are both about “hard facts”. Thus, if a knows some
fact to be true, it should also include it in its belief base. On the other hand,
our reading of Bela〈〈b〉〉♦suicide is given as follows: If all agents are constrained
to act rationally then Ann knows a strategy for Bill by which he can commit
suicide. However, it is natural to assume that no rational entity would commit
suicide.2 Hence, Bill’s ability to commit suicide is out of question if we assume
him to act rationally. Such an irrational behaviour is just unthinkable and thus
disregarded by Ann! While she knows that Bob can commit suicide in general,
she has no plausible recipe for Bob to do that.

A similar analysis can be conducted for standard (i.e., non-constructive)
beliefs. Consider the following variants of (i) and (ii):

(i’) Ann knows that Bill has some way of committing suicide (Ka〈〈b〉〉♦suicide);
(ii’)Ann believes, taking only rational behaviour of all agents into account (in

particular of Bill), that Bill has the ability to commit suicide
(Bela〈〈b〉〉♦suicide).

Like before, (i’) does not imply (ii’). While Ann knows that Bill “physically”
has some way of killing himself, by assuming him to be rational she disregards

2 This assumption is given in the plausibility model; it can be any assumption the
designer would like to impose on the agents.
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q0 q1 suicide
(nop, jump)

(nop, nop) (nop,nop)

Fig. 7.1. A simple ICGSP.

the possibility. Bob’s assumed rationality constrains his choices in Ann’s view.
This shows that in our logic knowing ϕ does not imply rational belief in ϕ.
We will justify the intuition in a more concrete example.

Example 7.13. There are two agents 1 (Ann) and 2 (Bill). Agent 2 has the
ability to jump from a building and commit suicide. However, agent 1 dis-
regards this possibility and considers it rational that 2 will not jump. The
corresponding ICGSP is shown in Figure 7.1 where all different states are
distinguishable from each other; the set of plausible strategy profiles consists
of the single profile s in which both agents play action nop, i.e., they do noth-
ing (in particular, we want to impose that Bill does not jump). Hence, we
have M, q0 |= K1〈〈2〉〉 © suicide but M, q0 6|= Bel1〈〈2〉〉 © suicide.

The following result, in line with [Bulling and Jamroga, 2007a], is imme-
diate:

Theorem 7.14. In general, standard (resp. constructive) knowledge does not
imply standard (resp. constructive) rational belief. That is, formulae Kaϕ ∧
¬Belaϕ, Kaϕ ∧ ¬Waϕ, Kaϕ ∧ ¬Belaϕ, Kaϕ ∧ ¬Waϕ are satisfiable.

Proof. The model from Example 7.13 can be used to show that all the formulas
are satisfiable. �

Non-Constructive Knowledge and Beliefs

In this section, we have a closer look at the standard (non-constructive) epis-
temic and doxastic operators. We mainly focus on strong beliefs; the cases for
knowledge and weak beliefs are given analogously.

The non-constructive versions of distributed, common, and everybody be-
lief are based on a specific construction involving the “until” operator. For
example, the non-constructive belief of agent a in ϕ, Belaϕ, is defined as a’s
constructive belief in the ability of the empty coalition to enforce ϕ until
ϕ. In [Jamroga and Ågotnes, 2007] it was already shown that this definition
captures the right notion; we recall the intuition here.

The cooperation modality 〈〈∅〉〉 ensures that the state formula ϕ is evalu-
ated independently in each indistinguishable state in Q′ (thus getting rid of
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its constructive flavour). However, a cooperation modality must be followed
directly by a path formula, and ϕ is a state formula. The trick is to use
ϕUϕ instead, which ensures that ϕ is true in the initial state of the path.
Thus, a believes in ϕ iff Plϕ is independently true in every indistinguishable
state. The following proposition (analogous to [Jamroga and Ågotnes, 2007,
Theorem 46]) states that all non-constructive operators match their intended
intuitions.

Proposition 7.15. Let M be an ICGSP, Q′ ⊆ QM, and ϕ be a CSLPbase

formula. Then, the following holds where K = C,E,D, respectively:

1. M, Q′ |= KWAϕ iff Υ = ∅ 6= Rgt or M, q |= ϕ for all q ∈ img(Q′,∼KA);
2. M, Q′ |= KBelAϕ iff M, q |= Plϕ for all q ∈ img(Q′,∼KA);
3. M, Q′ |= KAϕ iff M, q |= Phϕ for all q ∈ img(Q′,∼KA).

Proof.

1. M, Q′ |= KWAϕ iff
M, img(Q′,∼KA) |= 〈〈∅〉〉Nowϕ iff ∀λ ∈ out(img(Q′,∼KA), s∅) : M, λ[0] |= ϕ
iff Υ = ∅ 6= Rgt (cf. Remark 7.7) or ∀q ∈ img(Q′,∼KA) : M, q |= ϕ.

2. M, Q′ |= KBelAϕ iff M, Q′ |= PhKBelA〈〈∅〉〉NowPlϕ iff M′, img(Q′,∼KA) |=
〈〈∅〉〉NowPlϕ where RgtM′ = ∅ and otherwise M′ equals M iff ∀q ∈
img(Q′,∼KA), M′, q |= Plϕ iff ∀q ∈ img(Q′,∼KA), M, q |= Plϕ.

3. Analogously.
�

7.1.5 The Full Logic CSLP

In this section we present LCSLP which extends Lbase
CSLP in such a way that

plausibility terms are constructed from LCSLP-formulae. In the following we
proceed in the very same way as in Sections 6.2.2 and Sections 6.2.3.

Analogously, to Definition 6.19 we define the languages LkCSLP and LCSLP.

Definition 7.16 (LkCSLP). The languages LkCSLP(Π,Agt, Ω) and
LCSLP(Π,Agt, Ω) are defined as in Definitions 6.19 and 6.20, respectively,
but everywhere “ATLP” is replaced by “CSLP”.

The extended plausibility mapping is defined as in Definition 6.24 but the
mapping is annotated with a set Q′ of states instead of a single state q.

An example L1
CSLP formula is

(set-pl σ.〈〈∅〉〉�(Ph 〈〈Agt〉〉 © alive→ (set-pl σ)Pl 〈〈∅〉〉 © alive))
¬Bela〈〈b〉〉♦suicide
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which expresses the following: Assuming that rational agents avoid death
whenever they can, it is not rational of Ann to believe that Bob can com-
mit suicide.

Finally, we can define the semantics for LCSLP and obtain the logic CSLP
in the very same way as in Definition 6.26.

Definition 7.17 (Semantics of LCSLP, CSLP). The semantics for LCSLP-
formulae is given as in Definition 7.8 with the extended plausibility mapping
[̂[·]]M used instead of [[·]]M. I.e., only the semantic clauses for (set-pl ω)ϕ and
(refn-pl ω)ϕ change as follows:

M, Q′ |= (set-pl ω)ϕ iff M′, Q′ |= ϕ where the new model M′ is equal to M

but the new set ΥM′ of plausible strategy profiles is set to [̂[ω]]
Q′

M ;
M, Q′ |= (refn-pl ω)ϕ iff M′, Q′ |= ϕ where the new model M′ is equal to M

but the new set ΥM′ of plausible strategy profiles is set to ΥM ∩ [̂[ω]]
Q′

M .

We have that CSLP is given by (LCSLP, |=).

7.2 Properties of CSLP

In this section, we examine the relationship between plausibility, knowledge
and beliefs, and discuss the standard axioms about epistemic and doxastic
concepts.

7.2.1 Plausibility, Knowledge and Beliefs

Firstly, we observe that knowledge is commutative with Ph and belief with
Pl , which is a technically important property.

Proposition 7.18. Let ϕ be a LCSLP-formula. Then, we have that Ph Kaϕ↔
KaPhϕ and Pl Belaϕ↔ BelaPl are strongly valid.

Proof. Both validities are clear from the following equations:

Ph Ka = Ph (Ph Wa) = Ph (Ph Wa)Ph = (Ph Wa)Ph = KaPh

and

Pl Bela = Pl (WaPl ) = Pl (WaPl )Pl = (WaPl )Pl = BelaPl .

�

From the definition of knowledge and belief it follows that a sequence of
such operators collapses to the final operator in the sequence.
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Proposition 7.19. Let a ∈ Agt, ϕ be a LCSLP-formula, and X,Y be se-
quences of belief/knowledge operators; i.e. X,Y ∈ {Bela,Ka}∗. Then the fol-
lowing formulae are strongly valid:

(i) XBelaϕ↔ Y Belaϕ, (ii) XKaϕ↔ YKaϕ.

Proof. The result is clear from the observation that the indistinguishability
relations are equivalence relations and only the most recent plausibility oper-
ator is relevant. �

In particular, we have that the following formulae are strongly valid: (1)
KaBelaϕ↔ Belaϕ: Agent a knows that it believes ϕ iff it believes ϕ; and (2)
BelaKaϕ↔ Kaϕ: Agent a believes that it knows ϕ iff it knows ϕ.

Corollary 7.20. The following formulae are not valid: (i) XBelaϕ↔ YKaϕ;
(ii) Belaϕ→ BelaKaϕ; (iii) Belaϕ→ Kaϕ.

Proof. (i) follows from (iii) and also from Theorem 7.14. (ii) follows from (iii)
and Proposition 7.19. Example 7.13 provides a counterexample for (iii). We
have that M, q0 |= Bel1〈〈1〉〉 © ¬suicide and M, q0 6|= K1〈〈1〉〉 © ¬suicide. �

Corollary 7.20 expresses that (ii) an agent who has rational belief in ϕ does
not necessarily believe that it also knows ϕ; and (iii) an agent who believes in
ϕ does not necessarily know ϕ. Indeed, both formulae should intuitively not
hold in a logics of knowledge and belief.

Our definitions of epistemic and doxastic operators from Section 7.1.2
strongly suggest that the underlying concepts are related. Let us consider for-
mula KaPlBϕ: Agent a has constructive knowledge in ϕ if agents in B behave
rationally. This sounds similar to beliefs which is formally shown below.

Proposition 7.21. PlAKaPlAϕ↔ PlAWaϕ is strongly valid. We also have
that Kaϕ↔Waϕ is valid (but not strongly valid).

Proof. Unfolding PlAKaPlA yields PlAPh WaPlA. It is easy to see that
only the last plausibility operator is relevant which yields WaPlA. Finally, it
remains to observe that the plausibility operator is commutable with Wa as
the latter does not effect the plausibility model.

The second claim follows since valid formulae are only interpreted in mod-
els in which all agents are assumed to play plausibly. The latter is not the
case for strong validities, a counterexample is straightforward. �

Finally, we conclude that rational beliefs and knowledge can also be defined
in terms of each other.

Theorem 7.22. Belaϕ↔ KaPlϕ and Kaϕ↔ BelaPhϕ are strongly valid.
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1
p

q0 q1

(α1, β) (α1, β)
(α2, β)

(α2, β)

Fig. 7.2. ICGSP for the proof of Theorem 7.23.

Proof. Straightforward by unfolding the definitions and from the observation
that only the last plausibility operator is relevant. �

That is, believing in ϕ is knowing that ϕ plausibly holds, and knowing
that ϕ is believing that ϕ is the case in all physically possible plays.

7.2.2 Axiomatic Properties

In this section we review the well-known KDT45 axioms. For a modality O
these axioms are given as follows:

(KO) O(ϕ→ ψ)→ (Oϕ→ Oψ) (DO) Oϕ→ ¬O¬ϕ
(TO) Oϕ→ ϕ (4O) Oϕ→ OOϕ
(5O) ¬Oϕ→ O¬Oϕ

We say, for instance, that O is an K4 modality if axioms KO and 4O are
strongly valid over the class of all ICGSP. The following result is obtained in
a way analogous to [Jamroga and Ågotnes, 2007, Theorem 37].

Theorem 7.23 (Weak beliefs: KD45). Wa (standard weak beliefs) and Wa

(constructive weak beliefs) are KD45 modalities. Axiom T is not valid (resp.
not strongly valid) for Wa (resp. Wa).

Proof.

K : Straightforward.
D : M, Q′ |= Waϕ then M, img(Q′,∼a) |= ϕ then not M, img(Q′,∼a) |= ¬ϕ

then not M, Q′ |= Wa¬ϕ then M, Q′ |= ¬Wa¬ϕ.
T : Consider a model M presented in Figure 7.2 taken from [Jamroga and

Ågotnes, 2007]. We have that M, q0 |= Wa¬〈〈1〉〉 © p (since there is no
uniform winning strategy) but not M, q0 |= ¬〈〈1〉〉©p. For Wa we consider
the formula ϕ = 〈〈1〉〉 © p regarding the set Q′ = {q0, q1}. Then, we have
M, Q′ |= Wa〈〈1〉〉 © p but M, Q′ 6|= 〈〈1〉〉 © p.
Axiom T is valid with respect to Wa. M, q |= Waϕ iff M, q |= ϕ for
all q ∈ img({q},∼Ca ) (by Proposition 7.15). The claim follows from the
reflexivity of ∼a.

4 : Immediate from img(Q,∼a) = img(img(Q,∼a),∼a)
5 : Analogously to D and 4.
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�

Remark 7.24. Despite the similarities to [Bulling and Jamroga, 2007a], axiom
D is not strongly valid for beliefs in CTLKP because the belief operator
directly refers to plausible paths. Hence, if the set of paths is empty some
formulae are trivially true (Belϕ) and others are trivially false (¬Belϕ). In
CSLP the notions of belief and plausibility are more modular.

For knowledge and strong beliefs it is easily seen that they also satisfy the
KD45 axioms. It just remains to check whether axiom T holds for knowledge
or strong beliefs. However, for the same reason as in pure CSL this axiom does
usually not hold; we refer to [Jamroga and Ågotnes, 2007] for a more detailled
discussion on this issue. The problem that T is not true for knowledge (which
is usually assumed to be a sensible requirement) is due to the non-standard
semantics defined in terms of sets of states.

Theorem 7.25 (Strong beliefs: KD45). Standard strong beliefs Bela and
constructive strong beliefs Bela are KD45 modalities. Axiom T is not valid
for both notions of beliefs.

Proof. The proof for KD45 is done analogously to the one of Theo-
rem 7.23. We proof that Bela is not valid. Again, we consider Example 7.13.
Let ω be a plausibility term with [[ω]]{q0} = {s} where s is the strat-
egy in which agents always perform the nop action. Then, we have that
M, q0 |= Bela(set-pl ω)〈〈1〉〉©¬suicide but M, q0 6|= (set-pl ω)〈〈1〉〉©¬suicide.
In the latter case, no agent is assumed to play plausibly and all strategies are
considered. �

Theorem 7.26 (Knowledge: KD45). Standard knowledge Ka and con-
structive knowledge Ka are KD45 modalities. Axiom T is not valid for both
notions of knowledge. Axiom T is not valid (resp. not strongly valid) for Ka

(resp. Ka).

Proof. The proof for KD45 is done analogously to the one of Theorem 7.23.
Also the proof that T is not valid (resp. strongly valid) is done similarly. �

If we consider a formula ϕ which does not contain any constructive oper-
ators then the following holds.

Theorem 7.27. Let L consist of all CSLP formulae that contain no con-
structive operators. Then:

1. Ka is a KD45 modality in L. Axiom TKa is valid (but not strongly valid),
and Ka(Kaϕ→ ϕ) is strongly valid in L.



156 7 Rational Agents: Imperfect Information

2. Bela is a KD45 modality and Bela(Belaϕ→ ϕ) is strongly valid in L.

Proof.

1. That Ka is a KD45 modality and that TKa holds is shown in The-
orem 7.25. For the latter part, we have M, Q′ |= Ka(Kaϕ → ϕ) iff
M′, q |= Kaϕ→ ϕ for all q ∈ img(Q′,∼a) where M′ is the model in which
no agent is supposed to play plausibly. Now, the result follows since there
are no more constructive operators involved.

2. This part is shown analogously.
�

We observe that the validities Ka(Kaϕ → ϕ) and Bela(Belaϕ → ϕ) are
similar to the truth axiom T.

7.2.3 Relationship to Existing Logics

In this section, we compare CSLP with some relevant logics and show their
formal relationships. To this end, we use the notion of embedding from Defi-
nitions 6.28.

The following theorem is straightforward from the definition of the logic.

Theorem 7.28. CSLP embeds ATL, ATLP, and CSL.

It is easy to see that Ka is even a KDT45 modality for the “non-strategic”
sublanguage of LCSLP and that this sublanguage can embed standard epis-
temic propositional logic.

Proposition 7.29. CSLP embeds standard epistemic propositional logic.

Proof. We define the sublanguage L of LCSLP as the set of formulae generated
by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kaϕ
where p ∈ Π and a ∈ Agt. From Theorem 7.27 we know that Ka is a KD45
modality. We show that axiom T is also strongly valid for L. Let ϕ0 be a
propositional formula. Then, we have that M, Q′ |= Kaϕ0 iff ∀q ∈ img(Q′,∼a),
M, q′ |= Phϕ0 iff ∀q ∈ img(Q′,∼a), M, q′ |= ϕ0. This implies M, Q′ |=
ϕ0 since ϕ0 is purely propositional. The inductive step is done analogously.
Finally, it is easy to see that L embeds standard epistemic logic. �

The next result follows from Proposition 7.29 and Proposition 6.34.

Proposition 7.30. CSLP embeds CTLKP in the class of epistemic Kripke
structures.
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Remark 7.31. In [Jamroga and Ågotnes, 2007] and Section 6.3 it was shown
that CSL and ATLP, respectively, embed several other logics, e.g., ATEL
[van der Hoek and Wooldridge, 2003], ATLI [Jamroga et al., 2005], and
GLP [van der Hoek et al., 2004]. Due to Theorem 7.28 all these logics are
also embeddable in CSLP.

7.3 General Solution Concepts under Uncertainty

In [Jamroga and Bulling, 2007a; Bulling et al., 2009b] and Section 6.4 we
have shown that ATLP can be used to reason about temporal properties of
rational play. In particular it was shown that the logic allows to characterise
game theoretic solution concepts of perfect information games [Osborne and
Rubinstein, 1994]. These characterisations were then used to describe agents
rational behaviour and impose the resulting rationality constraints on them.
Here we show that CSLP can be used for the same purpose in the more
general case of imperfect information games (IIGs). A natural question is
how solution concepts for both game types differ?

Solution concepts for both kinds of games are very similar. For instance,
a Nash equilibrium is a strategy profile from which no agent can deviate
to obtain a better payoff, for both the perfect and imperfect information
case. However, only uniform strategies are considered for IIG. Moreover, we
require the agent to know/identify a strategy that is successful in all states
indistinguishable for it.

In this section we characterise solution concepts for IIGs in L1
CSLP. Before

we do that, however, we need some way to evaluate different strategies. We
follow the approach of general solution concepts presented in Sections 3.3.2
and 6.4.2. So, we assume agents are equipped with winning criteria η =
〈η1, . . . , ηk〉 (one per agent) where k = |Agt|. Each criterion ηa of agent a
is a temporal formula. Intuitively, a given strategy profile is successful for
an agent a iff the winning criterion is fulfilled on all resulting paths starting
from any indistinguishable state given the strategy profile. This requirement
is motivated by the fact that an agent does not know whether the system is
in q or q′ provided that q and q′ are indistinguishable for it. The agent should
play a strategy which is “good” in both states to ensure success. The following
definition is the incomplete information counterpart of Definition 6.41.

Definition 7.32 (Transform ICGSP to normal form game). Let M be
an ICGSP, q ∈ QM, and η be a vector of winning criteria.

We define N (M,−→η , q), the normal form game associated with M, −→η ,
and q, as the normal form game 〈Agt,S1, . . . ,Sk, µ〉, where the set Sa of a’s
strategies is given by Σir

a (a’s uniform strategies) for each a ∈ Agt, and the
payoff function is defined as follows:
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µa(a1, . . . , ak) =





1 if M, λ |= ηa

for all λ ∈ out(img(q,∼a), 〈a1, . . . , ak〉),
0 else.

To give a clear meaning to solution concepts in an ICGSP, we relate them
to the associated normal form game. The first solution concept we will define
is a best response strategy for IIGs. Given a strategy profile s−a := (s1, . . . ,
sa−1, sa+1, . . . , sk) where k = |Agt|, a strategy sa is said to be a best response
to s−a if there is no better strategy for agent a given s−a. Now, s is a best
response profile wrt a if sa is a best response against s−a. According to 6.4.2
σ is a best response profile for perfect information games wrt a and γ in M, q
if

M, q |= (set-pl σ[Agt\{a}])Pl
(
〈〈a〉〉ηa → (set-pl σ)〈〈∅〉〉ηa

)
.

The formula is read as follows: If agent a has any strategy to enforce ηa against
σ[Agt \ {a}] then its strategy given by σ should enforce ηa as well.

What do we have to modify to make it suitable for imperfect information
games? Firstly, we have to ensure that the strategy σ is uniform, and indeed
only uniform strategies are taken into account in the semantics of CSLP.
Secondly, since the agent might not be aware of the real state of the system
the described strategy should have its desired characteristics in each indistin-
guishable state. The agent should be able to identify the strategy; the main
motivation of CSL. For this purpose CSLP provides the constructive belief
operators; recall that Wa〈〈a〉〉 means that a has a single strategy successful in
all indistinguishable states. To ensure this second point we just have to cou-
ple strategic operators with constructive operators. So we obtain the following
description of a best response strategy for IIGs:

BRηa (σ) ≡ (set-pl σ[Agt\{a}])Pl (Wa〈〈a〉〉ηa → (set-pl σ)Wa〈〈∅〉〉ηa).

Other solution concepts characterised in 6.4.2 can be adapted to IIGs
following the same scheme, e.g.:
Nash equilibrium (NE): NEη(σ) ≡ ∧i∈Agt BRηi (σ);
Subgame perfect NE: SPN η(σ) ≡ EWAgt〈〈∅〉〉� NEη(σ);
Pareto optimal strategy (PO):

POη(σ) ≡ ∀σ′ Pl
(

∧

a∈Agt

((set-pl σ′)Wa〈〈∅〉〉ηa → (set-pl σ)Wa〈〈∅〉〉ηa) ∨

∨

a∈Agt

((set-pl σ)Wa〈〈∅〉〉ηa ∧ ¬(set-pl σ′)Wa〈〈∅〉〉ηa
)
.
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The following result shows that these concepts match their underlying
intuitions.

Theorem 7.33. Let M be an ICGSP, q ∈ QM, η a vector of winning criteria,
and N := N (M,−→η , q). Then, the following points hold:

1. The set of best response profiles wrt player a in N is given by ̂[[σ.BRηa (σ)]]
{q}
M .

2. The set of NE strategies in N is given by ̂[[σ.NEη(σ)]]
{q}
M .

3. The set of PO strategies in N is given by ̂[[σ.POη(σ)]]
{q}
M

4. Let Q′ collect the states that any agent from Agt considers possible (i.e.,
img({q},∼EAgt)) plus all states reachable from them by (a sequence of) tem-

poral transitions. Then, ̂[[σ.SPN η(σ)]]
{q}
M is equal to

⋂
q′∈Q′

̂[[σ.NEη(σ)]]
{q′}
M .

Proof. Let [[σ]]Q
′

= s for all Q′ ⊆ Q.

1. “⊆”: Suppose sa is a best response to s−a in N . Let ω be the plausi-
bility term with denotation s = (sa, s−a). Then, if µa(s) = 0 there is
no other strategy s′a of a such that µa(s′a, s−a) = 1. Now, assume that
(set-pl σ[Agt\{a}])Pl Wa〈〈a〉〉ηa holds in M, q. Then, there is a strategy
s′a of a such that ηa holds along all paths from out(img(a,∼a), (s′a, s−a));

hence, µa(s′a, s−a) = 1. Now, suppose that s 6∈ ̂[[σ.BRηa (σ)]]
{q}
M ; i.e., that

(set-pl σ)Wa〈〈∅〉〉ηa does not hold in M, q. Then, there is a path in
out(img(a,∼a), s) along which ηa is false and thus µa(s) = 0. Contra-
diction!
“⊇”: Suppose s ∈ ̂[[σ.BRηa (σ)]]

{q}
M with [[σ]]{q}M = s. That is, BRη

a(σ) is
true in M, q. Then, following the same reasoning as above we have that if
µa(s) = 0; then, there is no other strategy s′a of a such that µa(s′a, s−a) =
1. I.e. sa is a best response to s−a.

2. Follows from 1 and the fact that s is a NE iff sa is a best response to s−a
for each agent a.

3. “⊆”: Let s be Pareto optimal in N . That is, there is no profile s′ such
that for all agents a, µa(s′) ≥ µa(s) and for some agent a, µa(s′) > µa(s).
We show that M, q |= POη(σ). For the sake of contradiction assume
the contrary; that is, M, q |= ∃σ′Pl

(∨
a∈Agt((set-pl σ′)Wa〈〈∅〉〉ηa ∧

¬(set-pl σ)Wa〈〈∅〉〉ηa) ∧ ∧a∈Agt((set-pl σ)Wa〈〈∅〉〉ηa → (set-pl σ′)
Wa〈〈∅〉〉ηa))

)
. We use s′ to denote σ′ for which the formula evaluates

true. According to the left-hand site of the outermost (wrt. infix nota-
tion) conjunction, there has to be an agent a′ such that ηa is achievable
with respect to s′ but not with respect to s. From the right-hand side of
the conjunction, we learn that the profile s′ is at least as good as s (every
payoff achievable following s is also achievable following s′). However, this
means that s is not Pareto optimal. Contradiction!
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Fig. 7.3. Simple ICGS.

“⊇“: This part follows the same reasoning as the other direction.

4. We have that s ∈ ̂[[σ.SPN η(σ)]]
{q}
M iff for all paths λ ∈ out(img(q,∼EAgt), s∅)

and all i ∈ N0, M, λ[i,∞] |= NEη(σ) iff ∀q′ ∈ Q′, M, q′ |= NEη(σ) iff

∀q′ ∈ Q′, s ∈ ̂[[σ.NEη(σ)]]
{q′}
M iff s ∈ ⋂q′∈Q′ ̂[[σ.NEη(σ)]]

{q′}
M .

�

Example 7.34. Let us consider the ICGSP shown in Figure 7.3. There are
two agents, 1 and 2, and a coin which initially shows tail (q0) or head (q1);
agent 1 cannot distinguish between them. Now, both agents win if 1 guesses
the right side of the coin or if both agents agree on one side (regardless of
whether it is the right one). For instance, the tuple th denotes that 1 says tail
and 2 head. Moreover, we assume that both agents have the winning criterion
©win. The associated NF game wrt q0 is also given in Figure 7.3. Now we

have that ̂[[σ.NEη(σ)]]
{q}
M = {hh, tt}: Only if both agents agree on the same

side, winning is guaranteed.

7.4 Uncertainty in Opponents’ Behaviour

In this section we turn to another kind of incomplete information which is
not related to information states provide to agents. We would like to recall
the meaning of the cooperation modalities: 〈〈A〉〉γ is satisfied if the group
of agents A has a collective strategy to enforce temporal property γ. That
is, 〈〈A〉〉γ holds if A has a strategy that succeeds to make γ true against
the worst possible response from the opponents. So, the semantics of ATLs
share the “all-or-nothing” attitude of many logical approaches to computation,
justified by von Neumann’s maximin evaluation of strategies in classical game
theory [von Neumann and Morgenstern, 1944].

Such an assumption does seem appropriate in some application areas. For
life-critical systems, security protocols, and expensive ventures like space mis-
sions it is indeed essential that nothing can go wrong (provided that the
assumptions being made are correct). In many cases, however, one might be
satisfied if the goal is achieved with reasonable likelihood. Also, it does not
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seem right to assume that the rest of agents will behave in the most hostile
and destructive way; they may be friendly, indifferent, or simply not powerful
enough (for example, due to incomplete knowledge). Thus, to evaluate avail-
able strategies, a finer measure of success is needed that takes into account
the possibility of a non-adversary response.

A naive (but nevertheless appealing) idea is to evaluate a strategy s by
counting against how many opponents’ responses it succeeds. If the ratio we
get is, say 50%, we can say that s succeeds in 50% of the cases. This approach
is underpinned by the assumption that each response from the other agents
is equally likely; that is, we in fact assume that those agents play at random.
Or, putting it in another way: As we do not have any information about
the future strategy of the opponents, we assume a uniform distribution over
all possible response strategies. On the other hand, assuming the uniform
distribution is too strong in many scenarios, where the “proponents” may
have a more specific idea of what the opponents will do (obtained e.g. by
statistical analysis and/or learning). In order to properly address the issue,
we introduce modalities 〈〈A〉〉pωγ that express that agents A have a collective
strategy to enforce γ with probability of at least p ∈ [0, 1], assuming that the
expected behaviour of the opponents is described by the prediction symbol ω.

In this section, we assume that the response from the opponents is indepen-
dent from the actual strategy used by the proponents. It might be interesting
to consider dependencies between choices of the two parties. This corresponds
to situations in which the opponents have partial knowledge of the proponents’
strategy.

We propose and discuss our new logics: ATLs with probabilistic success.
Firstly, we define syntax and semantics on an abstract level. Then, we in-
stantiate the semantics for two different ways of modelling the opponents’
behaviour: mixed vs. behavioural memoryless strategies.

7.4.1 The Language LpATL

In LpATL, cooperation modalities 〈〈A〉〉 of LATL are replaced with a richer
family of strategic modalities 〈〈A〉〉pω.

Definition 7.35 (LpATL). The basic language LpATL(Agt, Π,Ω) is defined
over the nonempty sets Π of propositions, Agt = {1, . . . , k} of agents, and Ω
of prediction symbols. The language consists of all state formulae ϕ defined
as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉pωγ; where γ ::=©ϕ | �ϕ | ϕUϕ,

ω ∈ Ω, and p ∈ [0, 1]. Additional temporal operators are defined as before.
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We use p, ω, a, A to refer to a typical proposition, a prediction symbol, an
agent, and a group of agents, respectively. The informal reading of formula
〈〈A〉〉pσγ is: Team A can bring about γ with success level of at least p when the
opponents behave according to σ. The prediction symbols are used to assume
some “predicted behaviour” of the opponents.

7.4.2 Semantics: The Generic Logic pATLBH

In the following we define the semantics for LpATL in a very generic way be-
fore considering more concrete settings. Models for pATLBH extend concur-
rent game structures with strategic prediction denotation functions (prediction
denotation function for short) which assign prediction symbols to predicted
behaviours of a given group of agents. For now, we use a non-empty set BH
to refer to the agents possible predicted behaviours. There are several sensi-
ble ways how the set BH may actually be specified: Mixed and behavioural
strategies provide two well-known possibilities. We will present the semantics
for LpATL based on these two notions in Sections 7.4.3 and 7.4.4, respectively.
However, one could also think about other predictions, for instance, as a com-
bination of mixed and behavioural strategies: The behaviour of some agents
is predicted by the former and others by the latter.

Definition 7.36 (Prediction denotation function). Let BH be a non-
empty set representing possible (probabilistic) behaviours of the agents. A pre-
diction denotation function is a function [[·]] : Ω×P(Agt)→ BH where [[ω,A]]
denotes a (probabilistic) prediction of A’s behaviour according to the prediction
symbol ω ∈ Str. We write [[ω]]A for [[ω,A]].

Models for pATLBH extend CGSs with such functions.

Definition 7.37 (pCGS). A concurrent game structure with probability
(pCGS) is given by a tuple M = 〈Agt,Q , Π, π,Act, d, o,Ω, [[·]]〉 where
〈Agt,Q , Π, π,Act, d, o〉 is a CGS, Ω is a set of probability terms, and [[·]]
is a prediction denotation function.

The semantics of 〈〈A〉〉pω is based on a generic notion of a success measure.
The actual instantiation of the notion will usually depend on a (probabilistic)
prediction (from BH) specified by the prediction denotation function and a
prediction symbol. A success measure indicates “how successful” a group of
agents is to enforce some property γ (i.e. with which probability the formula
may become satisfied) if the opponents behave according to their predicted
behaviour.

Definition 7.38 (Success measure). A success measure success is a func-
tion that takes a strategy (of the proponents) sA, a probabilistic prediction
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[[ω]]Agt\A (of the opponents’ behaviour), the current state of the system q, and
the an LpATL?-formula γ and returns a score success(sA, [[ω]]Agt\A, q, γ) ∈
[0, 1].

The semantics of pATLBH, parameterised by a success measure and a
prediction denotation function, updates the ATL Ir -semantics from Defini-
tion 2.22 by replacing the rule for the cooperation modalities. Note, that we
do only consider perfect information memoryless strategies for the proponents.

Definition 7.39 (Semantics of pATLBH). Let M be a pCGS. The seman-
tics of pATLBH updates the clauses from Definition 2.22 by replacing the
clause for 〈〈A〉〉 with the following:

M, q |= 〈〈A〉〉pωγ iff there is sA ∈ ΣIr
A such that success(sA, [[ω]]Agt\A, q, γ) ≥

p.

Various success measures may prove appropriate for different purposes;
they inherently depend on the type of the prediction denotation functions
and therewith on the possible predicted behaviour represented by BH.

7.4.3 Opponents’ Play: Mixed Strategies

As the first instantiation of the generic framework, we consider mixed mem-
oryless strategies which are probability distributions over pure memoryless
strategies of the opponents. This notion of behaviour fits well our initial in-
tuition of counting the favourable opponents’ responses in order to determine
the success level of a strategy.

Definition 7.40 (Mixed memoryless strategy). A mixed memoryless
strategy (MMS) σA for A ⊆ Agt is a probability measure over P(ΣIr

A ).

Definition 7.41 (MMS denotation function). A MMS denotation func-
tion is a prediction denotation function with BH =

⋃
A⊆AgtΞ(ΣIr

A ), such that
[[ω]]A ∈ Ξ(ΣIr

A ). [[ω]]A(s) denotes the probability that s will be played by A
according to the prediction symbol ω.

Similarly, the abstract success measure introduced in Definition 7.38 can
be instantiated as follows. A success measure for MMSs is given by a func-
tion which maps a strategy sA ∈ ΣIr

A , a MMS σAgt\A ∈ Ξ(ΣAgt\A), a state
q ∈ Q , and an LpATL-path formula γ to a value between 0 and 1, i.e.
success(sA, σAgt\A , q, γ) ∈ [0, 1]. The success function tells to what extent
agents A will achieve γ by playing sA from q on, when we expect the oppo-
nents (Agt \A) to behave according to σAgt\A .

In this paper, we take the success measure to be the expected probability
of making γ true. For this purpose, we first define the outcome of a strategy.
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Definition 7.42 (Outcome of a strategy against MMSs). The outcome
of strategy sA against a mixed memoryless strategy σAgt\A at state q is the
probability distribution over Λ(q) given by:

O(sA, σAgt\A, q)(λ) :=
∑

t∈Resp(sA,λ)

σAgt\A(t)

where Resp(sA, λ) = {t ∈ ΣIr
Agt\A | λ ∈ out(q, 〈sA, t〉)} is the set consisting of

all responses t of the opponents that, together with A’s strategy sA, result in
path λ.3

Remark 7.43. In Proposition 7.45 we show that the outcome is well defined.

Thus, O(sA, σAgt\A , q)(λ) sums up the probabilities of all responses in
Resp(sA, λ), for each path λ. As a consequence, O(sA, σAgt\A , q)(λ) denotes
the probability that the opponents will play a strategy resulting in λ. We also
note again that, if memoryless strategies are played, the same action vector
is performed every time a particular state is revisited, which restricts the set
of paths that can occur.

Definition 7.44 (Minimal periodic path, Λmp(q)). We say that a path
λ ∈ Λ(q) is minimal periodic if, and only if, the path can be written as λ =
λ[0, j]λ[j+ 1, i] . . . λ[j+ 1, i] where i ∈ N0 is the minimal natural number such
that there is some j < i and λ[i] = λ[j]. The set of all minimal periodic paths
starting in q is denoted by Λmp(q). For a finite model, the set Λmp(q) consists
of only finitely many paths.

Proposition 7.45. O(sA, σAgt\A, q) is a probability measure over Λ(q) and
over Λmp(q).

Proof. ThatO(sA, ·, q) is non-negative follows from the fact that σAgt\A(t) ≥ 0
for all response strategies t. It is easy to see that all non minimal periodic
paths have probability zero since they cannot occur of memoryless strategies
are played. This implies that there are only finitely many paths with non-
zero probability. Thus, O(sA, σAgt\A, q) is σ-additive, and the following holds:
O(sA, σA, q)(Λ(q)) = O(sA, σA, q)(Λmp(q)) =

∑
λ∈Λmp(q)

∑
t∈Resp(sA,λ) σB(t)

=
∑
t∈ ˆResp(sA) σB(t) where ˆResp(sA) consists of all strategies t ∈ ΣIr

B such

that there is a path λ ∈ Λmp(q) with λ ∈ out(q, 〈sA, t〉). But then ˆResp(sA) =
ΣIr
B and thus the sum is equal to 1. �

3 Note that for a complete deterministic strategy profile 〈sA, tAgt\A〉 the outcome
set contains exactly one path.
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Fig. 7.4. A simple CGS M1 = 〈{1, 2}, {q0, q1, q2}, {r, s}, π, {α, α′, β, β′}, d, o〉; π, d,
and o can be read off from the figure. By ? we refer to any possible action.

Definition 7.46 (Success measure with MMSs). The success measure for
mixed memoryless strategies is defined as follows:

success(sA, σAgt\A, q, γ) =
∑

λ∈Λ(q)

holdsγ(λ) · O(sA, σAgt\A, q)(λ),

where holdsγ(λ) =

{
1 if M, λ |= γ

0 else.

Function holdsγ : Λ → {0, 1} can be seen as characteristic function of the
path formula γ: It indicates, for each path λ, whether γ holds on λ.

Definition 7.47 ( pATLMMS). We define the logic pATLMMS as the instan-
tiation of pATLBH with the success measure and MMS denotation function
as described in Definitions 7.46 and 7.41, respectively.

By Proposition 7.45, success(sA, σAgt\A, q, γ) is indeed an expected value,
and it is defined by a finite sum. Moreover, measuring the success of strategy
sA by counting the favourable vs. all responses of the opponents is a special
case, obtained by setting [[ω]]Agt\A to the uniform probability distribution over
ΣAgt\A.

Example 7.48. Let us consider a simple scenario with two agents 1 and 2
depicted in Figure 7.4. Agent 1 (resp. 2) can perform actions α and α′ (resp.
β and β′). For example, strategy profile (α, β), performed in q0, leads to
state q1 in which r holds. Agent 1 cannot enforce any of the outcomes on
its own: M1, q0 |= ¬〈〈1〉〉 © r ∧ ¬〈〈1〉〉 © s, neither can agent 2. However,
both agents have the power to determine the outcome when they cooperate:
M1, q0 |= 〈〈1, 2〉〉 © r ∧ 〈〈1, 2〉〉 © s.

It might be the case that additional information about 2’s behaviour is
available. Assume, for instance, that 1 has observed that 2 plays action β′

more often than β (say, seven out of every ten times). This kind of observation
can be formalised by a probability measure σ over {β, β′} with σ2(β) = 0.3
and σ2(β′) = 0.7.
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Using ATL, it was not possible to state any “positive” fact about 1’s
power. pATLMMS allows a finer-grained analysis. We can now state that 1 can
actually enforce any outcome (r or s) with probability at least 0.7. Formally,
let [[ω]]2 = σ. We have that M, q0 |= 〈〈1〉〉

0.7

ω © r ∧ 〈〈1〉〉0.7ω © s. If 1 desires r,
it should play α′ since 〈α′, β′〉 leads to r; otherwise the agent should select
action α in q0.

7.4.4 Opponents’ Play: Behavioural Strategies

In this section we present an alternative instantiation of the semantics, where
the prediction of opponents’ play is based on behavioural strategies. Such
strategies are based on the Markovian assumption that the probability of
taking an action depends only on the state where it is executed. We show
that the semantics is well defined for LpATL.

Definition 7.49 (Behavioural strategy). A behavioural strategy for A ⊆
Agt is a function βA : Q → ⋃

q∈Q Ξ(dA(q)) such that βA(q) is a probability
measure over dA(q), i.e., βA(q) ∈ Ξ(dA(q)). We use BA to denote the set of
behavioural strategies of A.

Definition 7.50 (Behavioural strategy denotation function).
A behavioural strategy denotation function is a prediction denotation function
with BH =

⋃
A⊆Agt BA, such that [[ω]]A ∈ BA. Thus, [[ωA]](q)(−→α ) denotes the

probability that the collective action −→α will be played by agents A in state q
according to the prediction symbol ω.

As in the case of mixed memoryless strategies (cf. Definition 7.42), the out-
come of a strategy against behavioural predictions is a probability measure
over paths. However, the setting is more complicated now. For mixed predic-
tions it suffices to consider a probability distribution over the finite set of pure
strategies which induces a probability measure over the set of paths. Indeed,
only finite prefixes of paths, namely the non-looping parts, are relevant for
the outcome (once a state is reentered, the same actions are performed again
in a memoryless strategy). For behavioural strategies, actions (rather than
strategies) are probabilistically determined, which makes it possible for dif-
ferent actions to be executed when the system returns to a previously visited
state. Thus, the probability of a specific set of paths depends on the complete
length of each path in the set, a finite prefix is not sufficient.

To define the outcome of a behavioural strategy we first need to define the
probability space induced by the probabilities of one-step transitions. To this
end, we follow the construction from [Kemeny et al., 1966]. We recall that
Λ(q) denotes the set of all infinite paths starting in q. The probability of a
set of paths is defined inductively by consistently assigning probabilities to
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all finite initial segments (prefixes) of a path. The intuition is that prefix h
can be used to represent the set of infinite paths that extend h. By imposing
the closure wrt complement and (countable) union, we obtain a probability
measure over sets of paths.

We use Λn(q) to denote the set of finite prefixes (histories) of length n of
the paths from Λ(q). Λn(q) is always finite for finite models. Now, we define
Fn(q) and F(q) to be the following set of subsets of Λ(q):

Fn(q) :=
{
{λ | λ[0, n− 1] ∈ T}

∣∣ T ⊆ Λn(q)
}

and F(q) :=
∞⋃

n=0

Fn(q).

That is, for each set of prefixes T ⊆ Λn(q), the set Fn(q) includes the set
of all their infinite extensions. We note that each Fn(q) is a σ-algebra. Each
element S of Fn(q) (often called cylinder set) can be written as a finite union
of basic cylinder sets [hi] := {λ ∈ Λ(q) | hi ≤ λ} where hi ∈ Λn(q) is a history
of length n and hi ≤ λ denotes that hi is an initial prefix of λ. We have that
S =

⋃
i[hi] for appropriate hi ∈ Λn(q). We use these basic cylinder sets to

define an appropriate probability measure.
A basic cylinder set [hi] consists of all extensions of hi; hence, the proba-

bility that one of hi’s extensions λ ∈ [hi] will occur is equal to the probability
that hi will take place. Given a strategy sA and a behavioural response βAgt\A ,
the probability for [hi], hi = q0 . . . qn, is defined as the product of subsequent
transition probabilities:

νsAβAgt\A
([hi]) :=

n−1∏

i=0

∑

−→α∈Act(sA,qi,qi+1)

βAgt\A(qi)(−→α )

where Act(sA, qi, qi+1) = {−→α ∈ dAgt\A(qi) | qi+1 = o(qi, 〈sA(qi),−→α 〉)} consists
of all action profiles which can be performed in qi and which lead to qi+1 given
the choices sA of agents A. According to [Kemeny et al., 1966], the function
νsAβAgt\A

is uniquely defined on F(q) and the restriction of νsAβAgt\A
to Fn(q) is

a measure on Fn(q) for each n. It is also noted that F(q) is not a σ-algebra.
Therefore, we take S(q) to be the smallest σ-algebra containing F(q) and

extend νsAβAgt\A
to a measure on S(q) as follows:

µsAβAgt\A
(S) := inf

C∈H(S)




∑

[h]∈C
νsAβAgt\A

([h])





where S ∈ S(q) and H(S) denotes the denumerable set of coverings of S by
basic cylinder sets. That is, H(S) consists of sets {[h1], [h2], . . . } such that
S ⊆ ⋃i[hi]. According to [Kemeny et al., 1966], we have that



168 7 Rational Agents: Imperfect Information

(Λ(q),S(q), µsAβAgt\A
)

is a probability space. Actually, µsAβAgt\A
is the unique extension of νsAβAgt\A

on

Fn(q) to the σ-algebra S(q) [Kemeny et al., 1966, Theorem 1.19]; in particular,
this means that both measures coincide on all sets from F(q). We refer to
µsAβAgt\A

as the probability measure on S(q) induced by the pure strategy sA

and the behavioural strategy βAgt\A .

Definition 7.51 (Success measure with behavioural memoryless
strategies). As in the previous section, the success measure of strategy sA
wrt the formula γ is defined as the expected value of the characteristic function
of γ (i.e., holdsγ) over (Λ(q),S(q), µsAβAgt\A

).

success(sA, βAgt\A , q, γ) := E[holdsγ ] =
∫

Λ(q)

holdsγdµsAβAgt\A
.

Note that the formulation uses a Lebesgue integral over the σ-algebra S(q).
Now we can show that the semantics of LpATL with behavioural strate-

gies is well-defined. We first prove that holdsγ is S(q)-measurable (i.e., every
preimage of holdsγ is an element of S(q) and thus can be assigned a measure);
then, we show that holdsγ is integrable.

Proposition 7.52. Function holdsγ is S(q)-measurable and µsAβAgt\A
-integrable

for any LpATL-path formula γ.

The complete proof is given on page 306. This result allows to define the fol-
lowing logic.

Definition 7.53 (pATLBS). We define the logic pATLBS as the instantia-
tion of pATLBH with the success measure and the BS denotation function as
described in Definitions 7.51 and 7.50, respectively.

Note that pATLBS can be seen as a special case of the multi-agent Markov
Temporal Logic mtl from [Jamroga, 2008a], since 〈〈A〉〉pωγ can be rewritten
as the mtl formula p 4 (strAgt\Aω)〈〈A〉〉γ.

7.5 Properties

Firstly, we observe that an analogous success measure can be constructed for
ATL:

successATL(sA, q, γ) = min
λ∈out(sA,q)

{holdsγ(λ)}.

Then,
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M, q |=
ATL

〈〈A〉〉γ iff there is sA ∈ ΣIr
A such that successATL(sA, q, γ) = 1.

Thus, the abstract framework can be instantiated in a way that embraces
ATL. Alternatively, we can try to embed ATL in pATL using the probabilistic
success measures we have already defined.

7.5.1 Embedding ATL in pATLMMS

We consider LpATL with mixed memoryless strategies. The idea is to require
that every response strategy has a non-zero probability. Note that a given
pCGS M induces a CGS M′ in a straightforward way: Only the set of pre-
diction symbols and the strategy denotation function must be left out. In
the following we will also use pCGSs together with LATL formulae (without
probability) by implicitly considering the induced CGSs.

Theorem 7.54. Let γ be a LATL-path formula with no cooperation modalities,
and let ω describe a mixed memoryless strategy symbol such that [[ω]]Agt\A(t) >
0 for every t ∈ ΣAgt\A. Then, for all models M and states q in M it holds
that:

M, q |=
ATL

〈〈A〉〉γ iff M, q |=
pATLMMS

〈〈A〉〉1ωγ.

Proof. Let Ā := Agt\A for A ⊆ Agt. “⇒”: Assume that sA ∈ ΣIr
A and that for

all λ ∈ out(q, sA) it holds that M, λ |= γ. Now suppose that M, q 6|=
pATLMMS

〈〈A〉〉1ωγ. In particular that would mean that

success(sA, σA, q, γ) =
∑

λ∈Λ(q)

holdsγ(λ) ·
∑

t∈Resp(sA,λ)

σĀ(t) < 1.

This can only be caused by two cases:
(1) There is a path λ ∈ Λ(q) a strategy t ∈ Resp(sA, λ) with σĀ(t) > 0 and
holdsγ(λ) = 0. But then λ ∈ out(q, sA) contradicts the assumption that sA is
successful.
(2) There is a strategy t ∈ ΣĀ with σĀ(t) > 0 and for all λ ∈ Λ(q) it holds
that t 6∈ Resp(sA, λ) (*). But there must be a path λ with {λ} = out(q, (sA, t))
and thus t ∈ Resp(sA, λ), which contradicts (*).

“⇐”: Assume that sA ∈ ΣA and success(sA, σA, q, γ) = 1. Suppose that
there is a path λ ∈ out(q, sA) with M, λ 6|= γ. This means that strategy t with
out(q, (sA, t)) = {λ} is in Resp(sA, λ) but plays no role in the calculation of
the success value since holdsγ(λ) = 0. This contradicts the assumption that
success(sA, σA, q, γ) = 1. �

The condition [[ω]]Agt\A(t) > 0 ensures that no “bad response” of the
opponents is neglected because of zero probability. Since we only deal with
finite models, the uniform distribution over ΣIr

A is always well defined.
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q1 q2 p
(α, β)

(α, α) (α, α)

Fig. 7.5. CGS M2 with actions α and β. The ? ∈ {α, β} refers to any of the two
actions.

Corollary 7.55. Let uA be a term that denotes the uniform distribution over
strategies of the agents in A, and let tr(ϕ) replace all occurrences of 〈〈A〉〉 by
〈〈A〉〉1uAgt\A in ϕ. Then, M, q |=

ATL
ϕ iff M, q |=

pATLMMS
tr(ϕ).

7.5.2 ATL versus pATLBS

In this section we examine the connection between ATL and pATLBS . In The-
orem 7.54 we have shown that, under the semantics based on mixed response
strategies, the ATL operator 〈〈A〉〉 can be replaced by 〈〈A〉〉1ω if all response
strategies have non-zero probability according to ω. One could expect the
same for behavioural strategies if it is assumed that each “response action” is
left possible; however, an analogous result does not hold.

The reason is that we consider probabilities over all infinite paths in the
system, which necessitates a continuous probability space. Thus, the proba-
bility that a particular path will occur is zero. The following example shows
that satisfying a path property with probability 1 does not imply that the
property can be ensured in the sense of ATL.

Example 7.56. Let M′2 be the pCGS based on CGS M2 shown in Figure 7.5.
We have that M, q1 |= ¬〈〈1〉〉♦p. What happens if agent 2 behaves according to
a behavioural strategy? Let β2 be the behavioural strategy specified as follows:
β2(q1)(α) = ε, β2(q1)(β) = 1 − ε, and β2(q2)(α) = 1 where 0 < ε < 1. This
behavioural strategy assigns non-zero probability to all actions of 2. Then,
for a term ω with [[ω]]2 = β2 we have that M, q1 |= 〈〈1〉〉1ω♦p. Thus, 1 has a
strategy which guarantees ♦p with expected probability 1. This is due to the
fact that the only possible path which can prevent ♦p is q1q1q1 . . . . But the
probability that this is going to happen is limn→∞

∏n
i=1 ε = 0. More formally,

let s1 be the strategy of 1 that assigns move α to be executed in both states.
Then, we have
∫

Λ(q)

holds♦pdµ
s1
β2

= µs1β2
(holds♦p) = 1− µs1β2

(Λ(q)\holds♦p)

= 1− µs1β2
({(q1)ω}) = 1− µs1β2

(
⋂

i

[qi1]) = 1− lim
i→∞

µs1β2
([qi1])

= 1− lim
i→∞

εi = 1
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as [qi1] ⊃ [qi+1
1 ] for i = 1, 2, . . . .

The example above shows that pATLBS , if behavioural strategies are used,
cannot simulate pure ATL operators in a straightforward way.

Proposition 7.57. There is an LATL-path formula γ, a model M and a state
q such that M, q |=

ATL
¬〈〈A〉〉γ but M, q |=

pATLBS
〈〈A〉〉1ωγ for every be-

havioural strategy [[ω]]Agt\A in which every action is possible.

Proof. A counter example is provided by Example 7.56. �

Let us define a sink state as a state with a loop to itself being the only
outgoing transition. A CGS (resp. pCGS) is acyclic iff it contains no cy-
cles except for the loops at sink states. Such a model includes only a finite
number of paths, so the following proposition can be proven analogously to
Theorem 7.54.

Proposition 7.58. Let M be an acyclic pCGS and ω denote a behavioural
prediction for Agt\A in which every action is possible (i.e., [[ω]]Agt\A(q)(−→α ) >
0 for every q ∈ Q ,−→α ∈ dAgt\A(q)). Then,

M, q |=
ATL

〈〈A〉〉γ iff M, q |=
pATLBS

〈〈A〉〉1ωγ.

Proof. Let q be some state in the model. If q is a sink state, then there is
exactly one path starting from it. In the case that q is not a sink state there
are only finitely many sequences of finite length to reach any sink state and
clearly there is no path starting from q without visiting a sink state. We have
just argued that each acyclic model has only finitely many paths. Each finite
sequence of states to a sink state has non-zero probability. Once a sink state is
reached the probability of this sequence does not change. Hence, all possible
paths have non-zero probability. The rest of the proof is done similarly to the
proof of Theorem 7.54. �

7.6 Summary

In this section we have proposed logics to model agents with incomplete in-
formation.

In the first setting, we have considered the (classical) indistinguishabil-
ity between states. We have proposed the logic CSLP that relates epistemic
and doxastic concepts in a specific way; more importantly, it allows to rea-
son about the outcome of rational play in imperfect information games. In
the logic beliefs are defined on top of the primitive notions of plausibility and
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indistinguishability. We have analysed the relationship between beliefs, knowl-
edge, and rationality, and have proven in particular that rational beliefs form
a KD45 modality. CSLP embeds both ATLP and CSL; thus, the combination
of knowledge, rationality, and strategic action turns out to be strictly more
expressive than each of its parts if considered separately.

Moreover, we have shown how some important (generalised) solution con-
cepts can be characterised and used for reasoning about imperfect information
scenarios. In Section 10.3, we prove that the model checking problem for the
basic variant of CSLP is ∆P

3 -complete. That is, the complexity of model
checking is only slightly higher than for CSL, and no worse than for ATLP.

Secondly, we have considered a setting in which the opponents may be
unable to identify the worst response to strategies of the proponents. We have
combined the rigorous approach to success of ATLs with a quantitative anal-
ysis of the possible outcome of strategies. The resulting logic goes beyond the
usual ”all-or-nothing” reasoning: Instead of always looking at the opponents’
worst response, we have assumed that they select strategies according to some
probabilistic prediction. To this end, we have used new cooperation modali-
ties 〈〈A〉〉pωγ with the intuitive reading that group A has a strategy to enforce
γ with probability p assuming that the opponents behave according to the
probability distribution referred to by ω. Although we have introduced two
specific notions of success (one based on mixed response strategies, the other
on behavioural predictions), the idea of success measure is generic and can be
implemented according to the designer’s needs. This enables the logic to be
used in a very flexible way and in various scenarios.

We have shown that the semantics of pATLMMS based on mixed responses
embeds ATL, while the semantics of pATLBS based on behavioural responses
does not (or, at least, not in a straightforward way). Furthermore, in Sec-
tion 10.4 we prove that model checking pATLMMS is significantly harder
than for pATLBS . Thus, we obtain the surprising result that the first seman-
tics (which looks more intuitive and less mathematically advanced at first
glance) turns out to be more difficult in terms of complexity when compared
to the other semantics.
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The modelling and verification of multi-agent systems, in particular the
model checking problem (i.e. whether a given property holds in a given model),
have attracted much attention in recent years [Clarke et al., 1999; Clarke
and Emerson, 1981; Alur et al., 2002; Kupferman et al., 2000; Pnueli and
Rosner, 1989; Jamroga and Dix, 2008]. Most of these results focus on well-
established logics like the computation tree logics or alternating time temporal
logics [Clarke and Emerson, 1981; Alur et al., 2002]. Just recently these logics
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have been extended to verify various aspects of rational agents [Bulling et al.,
2009b; Bulling and Jamroga, 2009c]. However, the basic idea of rational agents
being autonomous entities perceiving changes in their environment and acting
according to a set of rules or plans in the pursuit of goals does not take into
account resources. However, many actions that an agent would execute in
order to achieve a goal can – in real life – only be carried out in the presence of
certain resources. Without sufficient resources some actions are not available,
leading to plan failure. The analysis and verification of agent systems with
resources of this kind is still in its infancy; the only work we are aware of in
this direction is [Bulling and Farwer, 2010c,a; Alechina et al., 2009b,a, 2010].

In this chapter we take first steps in modelling resource bounded sys-
tems (which can be considered as the single agent case of the scenario just
described) and resource-bounded multi-agent systems. Well-known compu-
tational models are combined with a notion of resource to enable a more
systematic and rigorous specification and analysis of such systems. The main
motivation of this chapter is to propose a fundamental formal setting.

For the single agent case, the proposed logic builds on Computation Tree
Logic [Clarke and Emerson, 1981]. Essentially, the existential path quantifier
Eϕ (there is a computation that satisfies ϕ) is replaced by 〈ρ〉γ where ρ repre-
sents a set of available resources. The intuitive reading of the formula is that
there is a computation feasible with the given resources ρ that satisfies γ.

In the multi-agent setting we extend LATL with resources, resource-
bounded agent logic, and introduce restricted settings. The main motivation
is to investigate the boundaries of what can and cannot be verified about
resource-bounded agents. It turns out that the handling of resources is harder
than it may seem at first glance: In Chapter 11 we prove that in many set-
tings the model checking problem is undecidable. We do also consider the
decidability of model checking for the single agent logics. We show that RTL
(resource-bounded tree logic), the less expressive version, has a decidable model
checking problem as well as restricted variants of the full logic RTL? and its
models.

8.1 Modelling Resource-Bounded Systems

In this section we introduce resource-bounded models (RBMs) for modelling
systems with limited resources. Then, we propose the logics RTL? and RTL
(resource-bounded tree logics), for the verification of such systems. We in-
troduce cover models and graphs and consider several properties and special
cases of RBMs.

While most agent models do not come with an explicit notion of resources,
there is some recent work that take resources into account. [Shaw et al., 2008]
consider resources in conjunction with reasoning about an agent’s goal-plan
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tree. Time, memory, and communication bounds are studied as resources in
[Alechina et al., 2008]. In [Ågotnes and Walther, 2009] the abilities of agents
under bounded memory are considered. In their setting, a winning strategy
has to obey given memory limitations.

Moreover, we are interested in the reasoning about and modelling of abili-
ties of multiple agents having limited resources at their disposal. In Section 8.4
we consider an extension of the resource-bounded setting introduced here in
the context of multi-agent systems (influenced by ATL [Alur et al., 2002] a
logic for reasoning about strategic abilities of agents). We show that the prob-
lem is undecidable in general. On the other hand, if productions of resources
are not allowed (as in [Alechina et al., 2008]) it was recently shown that the
model checking problem is decidable [Alechina et al., 2010]. The authors of
[Alechina et al., 2010] do also propose a sound and complete axiomatisation
of their resource-based extension of ATL (the logic is called resource-bounded
alternating-time temporal logic).

8.1.1 Multisets

We define some variations of multisets used in the following sections. We
assume that N0 = {0, 1, 2, . . . } and Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

Definition 8.1 (Z/Z∞-multiset,X±, X±, N0/N∞0 -multiset, X⊕, X⊕ ).
Let X be a non-empty set.

(a) A Z-multiset Z : X−→Z over the set X is a mapping from the elements
of X to the integers.
A Z∞-multiset Z : X−→Z ∪ {−∞,∞} over the set X is a mapping from
the elements of X to the integers extended by −∞ and ∞.
The set of all Z-multisets (resp. Z∞-multisets) over X is denoted by X±

(resp. X±).
(b) An N0-multiset (resp. N∞0 -multiset) N over X is a Z-multiset (resp. Z∞-

multiset) over X such that for each x ∈ X we have N(x) ≥ 0. The set
of all N0-multisets (resp. N∞0 -multisets) over X is denoted by X⊕ (resp.
X⊕).

Whenever we speak of a ‘multiset’ without further specification, the argu-
ment is supposed to hold for any variant from Def. 8.1. In general, we over-
load the standard set notation and use it also for multisets, i.e., ⊆ denotes
multiset inclusion, ∅ is the empty multiset, etc. We assume a global set of
resource types Res. The resources of an individual agent form a multiset over
this set. Z-multiset operations are straightforward extensions of N0-multiset
operations.

Multisets are frequently written as formal sums, i.e., a multiset M :
X−→N0 is written as

∑
x∈X M(x). Given two multisets M : X−→N0 and
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M′ : X−→N0 over the same set X, multiset union is denoted by +, and
is defied as (M + M′)(x) := M(x) + M′(x) for all x ∈ X. Multiset differ-
ence is defined only if M has at least as many copies of each element as M′.
Then, (M −M′)(x) := M(x) −M′(x) for all x ∈ X. For Z-multisets, + is
defined exactly as for multisets, but the condition is dropped for multiset dif-
ference, since for Z-multisets negative multiplicities are possible. Finally, for
Z∞-multisets we assume the standard arithmetic rules for −∞ and ∞ (for
example, x+∞ =∞, x−∞ = −∞, etc).

We define multisets with a bound on the number of elements of each type.

Definition 8.2 (Bounded multisets). Let k, l ∈ Z. We say that a multiset
M over a set X is k-bounded iff ∀x ∈ X (M(x) ≤ k). We use kX±∞ to denote
the set of all k-bounded Z∞-multisets over X; and analogously for the other
types of multisets.

Finally, we define the (positive) restriction of a multiset with respect to
another multiset, allowing us to focus on elements with a positive multiplicity.

Definition 8.3 ((Positive) restriction, M �N). Let M be a multiset over
X and let N be a multiset over Y . The (positive) restriction of M regarding
N, M �N, is the multiset M �N over X ∪ Y defined as follows:

M �N (x) :=

{
M(x) if N(x) ≥ 0 and x ∈ Y,
0 otherwise.

So, the multiset M �N equals M for all elements contained in N which
have a non-negative quantity, and 0 for all others elements.

8.1.2 Resource-Bounded Systems

A resource-bounded agent has at its disposal a (limited) repository of re-
sources. Performing actions reduces some resources and may produce others;
thus, an agent might not always be able to perform all of its available actions.
In the single agent case considered here, this corresponds to the activation or
deactivation of transitions.

Definition 8.4 (Resources Res, resource quantity (set), feasible).
An element of the non-empty and finite set Res is called resource. A tuple
(r, c) ∈ Res×Z∞ is called resource quantity and we refer to c as the quantity
of r. A resource-quantity set is a Z∞-multiset ρ ∈ Res±. Note that ρ specifies
a resource quantity for each r ∈ Res.

Finally, a resource-quantity set ρ is called feasible iff ρ ∈ Res⊕; that is, if
all resources have a non-negative quantity.
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We model resource-bounded systems by an extension of Kripke frames,
allowing each transition to consume and produce resources. We assign pairs
(c,p) of resource-quantity sets to each transition, denoting that a transition
labelled (c,p) produces p and consumes c.

Definition 8.5 (Resource-bounded model). A resource-bounded model
(RBM) is given by M = (Q ,→, Π, π,Res, t) where

• Q, Res, and Π are finite sets of states, resources, and propositions, re-
spectively;

• (Q ,→, Π, π) is a Kripke model; and
• t : Q × Q → Res⊕ × Res⊕ is a (partial) resource function, assigning to

each transition (i.e., tuple (q, q′) ∈→) a tuple of feasible resource-quantity
sets. Instead of t(q, q′) we sometimes write tq,q′ and for tq,q′ = (c,p) we
use •tq,q′ (resp. t •q,q′) to refer to c (resp. p).

Hence, in order to make a transition from q to q′, where q → q′, the
resources given in •tq,q′ are required ; and in turn, tq,q′ • are produced after
executing the transition. Note, that we only allow finite productions and con-
sumptions.

A path of an RBM is a path of the underlying Kripke structure. We also
use the other notions for paths introduced above.

The consumption and production of resources of a path can now be defined
in terms of the consumptions and productions of the transitions it comprises.
Intuitively, not every path of an RBM is feasible; consider, for instance, a
system consisting of a single state q only where q → q and t •q,q = •tq,q.
It seems that the transition “comes for free” as it produces the resources
it consumes; however, this is not the case. The path qqq . . . is not feasible
as the initial transition is not enabled due to the lack of initial resources.
Hence, in order to enable it, at least the resources given in •tq,q are necessary.
Intuitively, a path is said to be ρ-feasible if each transition in the sequence
can be executed with the resources available at the time of execution.

Definition 8.6 (ρ-feasible path, resource-extended path). A path λ =
q1q2q3 · · · ∈ ΛM(q) where q = q1 is called ρ-feasible if for all i ∈ N the
resource-quantity set

(
ρ+Σi−1

j=1(t •qjqj+1
− •tqjqj+1)

)
�•tqiqi+1

−•tqiqi+1 is feasible.

A resource-extended path is given by λ ∈ (Q × Res±)ω such that the
restriction of λ to states, denoted λ|Q , is a path in the model and the second
component keeps track of the currently available resources; we use λ|Res to
refer to the projection to the second component.
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8.1.3 Resource-Bounded Tree Logic

We present a logic based on CTL? which can be used to verify systems with
limited resources. In the logic we replace the CTL? path quantifier E by 〈ρ〉
where ρ is a resource-quantity set. The intuitive reading of a formula 〈ρ〉γ is
that there is a(n) (infinite) ρ-feasible path λ on which γ holds. Note that E
(there is a path in the system) can be defined as 〈ρ∞〉 where ρ∞ is the resource
set assigning ∞ to each resource type. Formally, the language is defined as
follows.

Definition 8.7 (LRTL?). Let Res be a set of resources. The language
LRTL?(Π,Res) is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈ρ〉γ where γ ::= ϕ | ¬γ | γ ∧ γ | ϕUϕ | ©ϕ

and p ∈ Π and ρ ∈ Res±. Formulae ϕ (resp. γ) are called state (resp. path)
formulae.

Moreover, we define fragments of LRTL? in which the domain of ρ is re-
stricted. Let X be any set of multisets over Res. Then LRTL?X

restricts LRTL?

in such a way that ρ ∈ X. Finally, we define [ρ], the dual of 〈ρ〉, as ¬〈ρ〉¬.

Analogously to the language of CTL we define LRTL as the fragment of
LRTL? in which each temporal operator is immediately preceded by a path
quantifier.

Definition 8.8 (LRTL). Let Res be a set of resources. The language
LRTL(Π,Res) is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈ρ〉 © ϕ | 〈ρ〉�ϕ | 〈ρ〉ϕUϕ

where p ∈ Π, ρ ∈ Res±. Fragments RTLX are defined in analogy to Def. 8.7.

As in the language of CTL we define ♦ϕ as >Uϕ and we use the following
abbreviations for the universal quantifiers (they are not definable as duals in
LRTL as, for example, ¬〈ρ〉¬�ϕ is not an admissible LRTL-formula):

[ρ]© ϕ ≡ ¬〈ρ〉 © ¬ϕ,
[ρ]�ϕ ≡ ¬〈ρ〉♦¬ϕ,
[ρ]ϕUψ ≡ ¬〈ρ〉((¬ψ)U(¬ϕ ∧ ¬ψ)) ∧ ¬〈ρ〉�¬ψ.

Next, we give the semantics for both languages.

Definition 8.9 (Semantics, RTL?). Let M be an RBM, let q be a state
in M, and let λ ∈ ΛM. The semantics of LRTL?-formulae is given by the
satisfaction relation |= which is defined as follows:

M, q |= p iff λ[0] ∈ π(p) and p ∈ Π;
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Fig. 8.1. In Figure (a) a simple RBM M is shown and (b) presents some corre-
sponding cover graphs.

M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;
M, q |= 〈ρ〉ϕ iff there is a ρ-feasible path λ ∈ Λ(q) such that M, λ |= ϕ;
M, λ |= ϕ iff M, λ[0] |= ϕ;

and for path formulae:

M, λ |= ¬γ iff not M, λ |= γ;
M, λ |= γ ∧ ψ iff M, λ |= γ and M, λ |= ψ;
M, λ |= �ϕ iff for all i ∈ N we have that λ[i,∞] |= ϕ;
M, λ |=©ϕ iff λ[1,∞] |= ϕ; and
M, λ |= ϕUψ iff there is an i ≥ 0 such that M, λ[i,∞] |= ψ and M, λ[j,∞] |=

ϕ for all 0 ≤ j < i.

We consider the logic RTL? as the tuple (LRTL? , |=) over all RBMs and
analogously for all other fragments. These clauses are also used to define the
semantics for LRTL (therefore, we also stated the clause for �ϕ).

Thus the meaning of [ρ]�p is that proposition p holds in every state on
any ρ-feasible path.

We now discuss some interpretations of the formula 〈ρ〉γ considering var-
ious resource-quantity sets. For ρ ∈ Res⊕ it is assumed that ρ consists of an
initial (positive) amount of resources which can be used to achieve γ where the
quantity of each resource is finite. ρ ∈ Res⊕ allows to ignore some resources
(i.e., it is assumed that there is an infinite quantity of them). Initial debts of
resources can be modelled by ρ ∈ Res±.

Example 8.10. Consider the RBM M in Figure 8.1(a). Each transition is la-
beled by (c1, c2), (p1, p2) with the interpretation: The transition consumes ci
and produces pi quantities of resource ri for i = 1, 2. We encode the resource-
quantity set by (a1, a2) to express that there are ai quantities of resource ri
for i = 1, 2.
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• If there are infinitely many resources available proposition t can become
true infinitely often: M, q0 |= 〈(∞,∞)〉�♦t

• We have M, q0 6|= 〈(1, 1)〉�> as there is no (1, 1)-feasible path. The formula
〈(1,∞)〉�(p ∨ t) holds in q0.

• Is there a way that the system runs forever given specific resources? Yes,
if we assume, for instance, that there are infinitely many resources of r1

and at least one resource of r2: M, q0 |= 〈(∞, 1)〉>

These simple examples show, that it is not always immediate whether a for-
mula is satisfied, sometimes a rather tedious calculation might be required.

8.2 Properties of Resource-Bounded Models

8.2.1 Cover Graphs and Cover Models

In this section we introduce a transformation of RBMs into Kripke models.
This allows us, in general, to reduce truth in RTL to truth in CTL as shown
in Section 8.3.1.

We say that a resource-quantity set covers another, if it has at least as
many resources of each type with at least one amount actually exceeding that
of the other resource-quantity set. We are interested in cycles of transition
systems that produce more resources than they consume, thereby giving rise
to unbounded resources of some type(s). This is captured by a cover graph
for RBMs, extending ideas from [Karp and Miller, 1969] and requiring an
ordering on resource quantities.

Definition 8.11 (Resource ordering <). Let ρ and ρ′ be resource sets in
Res±. We say ρ < ρ′ iff (∀r ∈ Res (ρ(r) ≤ ρ′(r)))∧(∃r ∈ Res (ρ(r) < ρ′(r))).
We say ρ has strictly less resources than ρ′ or ρ′ covers ρ.

The ordering is extended to allow values of ω by defining for x ∈ N that
∞+ ω =∞, ∞− ω =∞, ω −∞ = −∞, ω + x = ω, ω − x = ω, and ω <∞.

Definition 8.12 (ρ-feasible transition,
ρ−→). We say that a transition q →

q′ is ρ-feasible and write q
ρ−→q′ if for all r ∈ Res we have that 0 < •tq,q′(r)

implies •tq,q′(r) ≤ ρ(r).

So, given a specific amount of resources ρ a transition is said to be ρ-
feasible if it can be traversed given ρ. A node of the cover graph consists of
tuples (q, (xi)i=1,...,|Res|) where q is a state of the RBM and (xi)i is a vector
representing the currently available resources. The variable xi denotes that
there are xi units of resource ri.
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Fig. 8.2. An RBM M (Fig. (a)), its cover model, 2-cover model, and κ-cover model
(Fig. (b)).

Definition 8.13 ((ρ, q)-cover graph of an RBM, path, λ|Q). Let M =
(Q ,→,Π, π,Res, t), let q be a state in Q, and let ρ ∈ Res±. Without loss of
generality, assume Res = {r1, . . . , rn} and consider (xi)i as an abbreviation
for the sequence (xi)i=1,...,n. The (ρ, q)-cover graph CG(M, ρ, q) for M with
initial state q ∈ Q and an initial resource-quantity set ρ is the graph (V,E)
defined as the least fixed-point of the following specification:

1. (q, (ρ(ri))i) ∈ V (the root vertex).

2. For (q′, (xi)i) ∈ V and q′′ ∈ Q with q′
(xi)i−−−→q′′ then either:

a) if there is a vertex (q′′, (x̂i)i) on the path from the root to (q′, (xi)i) in
V , with (x̂i)i < (xi − •tq′,q′′(ri) + tq′,q′′

•(ri))i then (q′′, (x̃i)i) ∈ V
and ((q′, (xi)i), (q′′, (x̃i)i)) ∈ E where we define

x̃i :=

{
max{ω, xi − •tq′,q′′(ri) + tq′,q′′

•(ri)} if x̂i < xi,

xi − •tq′,q′′(ri) + tq′,q′′
•(ri) otherwise;

b) or else (q′′, (xi − •tq′,q′′(ri) + tq′,q′′
•(ri))i) ∈ V and

((q′, (xi)i), (q′′, (xi − •tq′,q′′(ri) + tq′,q′′
•(ri))i) ∈ E.

A path in CG(M, ρ, q) is an infinite sequence of pairwise adjacent states.
Given a path λ = (q1, (x1i)i)(q2, (x2i)i) . . . we use λ|Q to denote the path
q1q2 . . . , i.e., the states of M are extracted from the states in V .

Cover graphs can be viewed as Kripke frames. It is obvious how they can
be extended to models given an RBM.

Definition 8.14 ((ρ, q)-cover model of an RBM). Let G = (V,E) be
the (ρ, q)-cover graph of an RBM M = (Q ,→, Π, π,Res, t). The (ρ, q)-cover
model of M, CM(M, ρ, q), is given by (V,E,Π, π′) with π′((q, (xi)i)) := π(q)
for all (q, (xi)i) ∈ V .

Figure 8.2 shows the RBM M in (a) and its cover model CM(M, 0, q0)
at the very top of (b). In the cover model, ω denotes the reachability of
unbounded resources.
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In Section 8.3.1 we analyse the relation between cover models and truth in
RTL. Unfortunately, as illustrated in the next example, “simple” cover models
in their current form are not yet suitable for that.

Example 8.15. Let λ be the path of CM(M, 0, q0) shown in Figure 8.2(b)
with λ|Q = q0q0(q1)ω. Obviously, this path is not 0-feasible in model M from
Fig. 8.2(a). The problem is, that subsequent selections of the transition q0 →
q0 allows to generate any finite amount of resources, thus is covered by ω, but
any finite amount is not enough for the subpath (q1)ω. This implies, that we
cannot directly use cover models as alternative models.

We note, however, that the following result is obvious by the definition
of a cover model: Each ρ-feasible path in the model is also a path in the
corresponding cover model. The other direction is the one that causes trouble.

Proposition 8.16. If λ is a ρ-feasible q-path in M then there is a (q, ρ)-path
λ′ in CM(M, ρ, q) such that λ = λ′|Q.

Proof. Let λ be a ρ-feasible q-path and ηi be the resources available at λ[i]
after λ[0, i], for i = 1, 2, . . . ; in particular, we have that η0 = ρ. By induction on
the number of transitions we show that there is a (q, ρ)-path λ′ in CM(M, ρ, q)
where (V,E) denotes the underlying graph such that λ = λ′|Q. By definition
is (λ[0], ρ(ri)i) ∈ V . For every state q′ with a ρ-feasible transition from λ[0] to
q′ we have that (q′, . . . ) ∈ V and an edge ((λ[0], ρ), (q′, . . . )) ∈ E (according to
the construction of the cover model). In particular, we have that (λ[1], ζ) ∈ V
with ζ ≥ω η1.

Now suppose the claim is proven up to position k. Let (λ[k], ζ) ∈ V with
ζ ≥ω ηk be the k + 1st state on λ′. Following the same reasoning as above
there is a transition ((λ[k], ζ), (λ[k + 1], ζ ′)) ∈ E with ζ ′ ≥ω ηk+1. �

In order to avoid the problem discussed in Example 8.15 we modify the
cover graph construction as follows. The construction changes for those tran-
sitions that consume from the ω quantified resource type. Instead of using the
rule “ω − k = ω”, we (try to) expand the nodes for a fixed number of times
ensuring that other loop’s resource requirements can be met. But we abstain
of introducing ω’s as done in the cover graphs.

For the construction, we replace ω by κ new symbols ωlκ for l = 0, . . . κ−1
and κ ∈ N0. For i ∈ N0 we define: ωlκ − i = 0 for l + i ≥ κ, ωlκ − i = ωl+iκ

for l + i < κ, ωlκ + i = ω
min{l−i,0}
κ , and we set ωκ = ω0

κ. The symbol ωκ is
used to represent that at least κ units of some resource type are stored, and
ωlκ indicates that there are κ− l resources left. Finally, we set ωlκ +∞ =∞.

Identifying the symbol ωlκ with the number κ − l allows to extend the
resource ordering from Definition 8.11 in a natural way; e.g. we have i ≤ ωlκ
iff i ≤ κ − l. Moreover, this does also make it possible to lift the notation of
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ρ-feasible transition etc. to this extended case. Finally, we define a class of
cover models.

Definition 8.17 (CMκ(M, ρ, q)). The construction of the (ρ, q, κ)-cover graph
is defined as in Definition 8.13 but ω in 2. is replaced by ωκ; that is,

x̃i :=

{
max{ωκ, xi − •tq′,q′′(ri) + tq′,q′′

•(ri)} if x̂i < xi,

xi − •tq′,q′′(ri) + tq′,q′′
•(ri) otherwise.

The (ρ, q, κ)-cover model, CMκ(M, ρ, q), is defined analogously to Definition
8.14.

In Figure 8.2(b) we have also drawn the 2- and κ-cover model of the model
M. In the next example we show that this generalised cover models overcome
the problem discussed in Example 8.15.

Example 8.18. The “bad” path λ of Example 8.15 is neither possible in
CM2(M, 0, q0) nor in CMκ(M, 0, q0) for any κ ≥ 0. This is, because for any
fixed κ the path (q1)ω will eventually have consumed all resources from ωκ.

However, another problem arises. If the κ is chosen too small then we might
abort the construction too early. The cover model CM2(M, 0, q0) illustrates
the problem: In principal, it is possible to reach state q1 if the loop q0 → q0 is
traversed at least three times. However, as ω2 does not allow to “remember”
more than two units of resources state q1 is never visited.

In order to avoid this problem we need to find an appropriate κ such that
a theorem similar to Proposition 8.16 with respect to κ-cover models holds.
Indeed, such a κ is constructible but the computation is computationally very
expensive (cf. Theorem 11.9 and 11.13 and Remark 11.10).

We end the section with two results.

Proposition 8.19. Let ρ ∈ Res±, let M be an RBM, let q be a state in M,
and let G denote the (ρ, q)- or (ρ, q, κ) cover graph of M. Then, for each node
(q, (xi)i) of G the property xi ≥ min{ρ(ri), 0} holds.

Proof. Suppose there is a node (q, (xi)i) in the cover graph G and an index i
such that xi < min{ρ(ri), 0}. We first consider the case in which the minimum
is equal to 0. Then, there must be a transition inG which causes a non-negative
quantity of ri to become negative. But such a transition is not feasible due to
the construction of G! The case in which the minimum is equal to ρ(ri) < 0
yields the same contradiction as a negative quantity of ri reduces even further
which is not allowed in the construction of G. �

The proposition states that non-positive resource quantities cannot de-
crease further. Theorem 8.20 states that cover models are finite; its proof is
similar to the corresponding proof for Karp-Miller graphs [Karp and Miller,
1969].
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Theorem 8.20 (Finiteness of the (κ-)cover graph). Let ρ ∈ Res± and
κ ∈ N. The (ρ, q)- and (ρ, q, κ)-cover graphs of the RBM M, q ∈ QM, are
finite.

Proof. Let G denote the (ρ, q)-cover graph of M and let Q be the set of states
in M. Assume G is infinite (i.e., G has infinitely many nodes). Then, there
is an infinite path l = v1v2 . . . in G that contains infinitely many different
states. Since Q is finite there is some state, say q′ ∈ Q , of M and an infinite
subsequence of distinct states l′ = vi1vi2 . . . on l with vij = (q′, (xjk)k) and
ij < ij+1 for all j = 1, 2, . . . . Due to the construction of the cover graph, it
cannot be the case that (xjk)k ≤ (xj

′

k )k for any 1 ≤ j < j′; otherwise, an ω-node
would have been introduced and the infinite sequence would have collapsed.
So, there must be two distinct indices, o and p, with 1 ≤ o, p ≤ |Res| such
that, without loss of generality, xjo < xj

′
o and xjp > xj

′
p . But by Prop. 8.19 we

know that each xjk ≥ min{ρ(rk), 0}; hence, the previous property cannot hold
for all indices o, p, j, j′ but for the case in which ρ(r) = −∞ for some resource
r. However, this would also yield a contradiction as any non-negative resource
quantity is bounded by 0. This proves that such an infinite path cannot exist
and that the cover graph therefore has to be finite. �

8.2.2 Resource-Bounded Models

In Section 11.2 we show that the model checking problem is decidable for
RTL. Decidability of model checking for (full) RTL? over arbitrary RBMs is
still open. However, we identify interesting subclasses in which the problem
is decidable. Below we consider some restrictions which may be imposed on
RBMs.

Definition 8.21 (Production free, zero (loop) free, k-bounded).
Let M = (Q ,→, Π, π,Res, t) be an RBM.

(a) We say that M is production free if for all q, q′ ∈ Q we have that tq,q′ =
(c, ∅). That is, actions cannot produce resources they only consume them.

(b) We say that M is zero free if there are no states q, q′ ∈ Q with q 6= q′

and tq,q′ = (∅,p). That is, there are no transitions between distinct states
which do not consume any resources.

(c) We say that M is zero-loop free if there are no states q, q′ ∈ Q with tq,q′ =
(∅,p). That is, in addition to zero free models, loops without consumption
of resources are also not allowed.

(d) We say that M is (structurally) k-bounded for ρ ∈ kRes±∞ iff the avail-
able resources after any finite prefix of a ρ-feasible path are bounded by k,
i.e., there is no reachable state in which the agent can have more than k
resources of any resource type.
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In the following we summarise some results which are important for the
model checking results presented in Section 11.2.

Proposition 8.22. Let M be an RBM and let ρ ∈ Res± be a resource-
quantity set. Then, there is an RBM M′ and a ρ′ ∈ Res±, both effectively
constructible from M and ρ, such that the following holds: A path is ρ-feasible
in M if, and only if, it is ρ′-feasible in M′.

Proof. Let ρ′ be equal to ρ but the quantity of each resource r with ρ(r) ∈
{−∞,∞} is 0 in ρ′ and let M′ equal M apart from the following exceptions.
For each transition (q, q′) with tqq′ = (c,p) in M do the following: Set c(r) = 0
in M′ for each r with ρ(r) = ∞; or remove the transition (q, q′) completely
in M′ if c(r) > 0 (in M) and ρ(r) = −∞ for some resource r. Obviously,
ρ ∈ Res±.

Now, the left-to-right direction of the result is straightforward as only
transitions were omitted in M′ which can not occur on any ρ-feasible path
in M. The right-to-left direction is also obvious as only resource quantities
in M′ were set to 0 from which an infinite amount is available in ρ and only
those transitions were removed which can never occur due to an infinite debt
of resources. �

The next proposition presents some properties of special classes of RBMs
introduced above. In general there may be infinitely many ρ-feasible paths.
We study some restrictions of RBMs that reduce the number of paths:

Proposition 8.23. Let M = (Q ,→, Π, π,Res, t) be an RBM.

(a) Let ρ ∈ Res± and let M be production and zero-loop free; then, there are
no ρ-feasible paths.

(b) Let ρ ∈ Res± and let M be production and zero free. Then, for each ρ-
feasible path λ there is an (finite) initial segment λ′ of λ and a state q ∈ Q
such that λ = λ′ ◦ qqq . . . .

(c) Let ρ ∈ Res± and let M be production free. Then, each ρ-feasible path λ
has the form λ = λ1 ◦ λ2 where λ1 is a finite sequence of states and λ2 is
a path such that no transition in λ2 consumes any resource.

(d) Let ρ ∈ Res± and let M be k-bounded for ρ. Then there are only finitely
many state/resource combinations (i.e., elements of Q × Res±) possible
on any ρ-feasible path.

Proof.
(a) As there are no resources with an infinite amount and each transition

is production free and consumes resources some required resources must be
exhausted after finitely many steps.

(b) Apart from (a) loops may come for free and this is the only way how
ρ-feasible paths can result.
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(c) Assume the contrary. Then, in any infinite suffix of a path there is a
resource-consuming transition that occurs infinitely often (as there are only
finitely many transitions). But then, as the model is production free, the path
cannot be ρ-feasible.

(d) We show that there cannot be infinitely many state/resource combi-
nations reachable on any ρ-feasible path. Since the condition of ρ-feasibility
requires the consumed resources to be present, there is no possibility of infi-
nite decreasing sequences of resource-quantity sets. This gives a lower bound
for the initially available resources ρ. The k-boundedness also gives an upper
bound. �

We show that k-boundedness is decidable for RBMs.

Proposition 8.24 (Decidability of k-boundedness). Given a model M
and an initial resource-quantity set ρ, the question whether M is k-bounded
for ρ is decidable.

Proof. First, we check that ρ ∈ kRes⊕∞. If this is not the case, then M is not
k-bounded for ρ. Then we construct the cover graph of M and check whether
there is a state (q, (xi)i) in it so that xi > k for some i. If this is the case M
is not k-bounded; otherwise it is.

�

We end this section with a simple result showing a sufficient condition for
a model to be k-bounded.

Proposition 8.25. Let ρ ∈ Res±. Each production-free RBM is k-bounded
for ρ where k := max{i | ∃r ∈ Res (ρ(r) = i)}.

8.3 Properties of Resource-Bounded Tree Logics

Before discussing specific properties of RTL and RTL? and showing the decid-
ability of the model checking problem for RTL and for special cases of RTL?

and its models, we note that our logics conservatively extend CTL? and CTL.
This is easily seen by defining the path quantifier E as 〈ρ∞〉 and by setting
tqq′ = (∅, ∅) for all states q and q′ where ρ∞ denotes the resource set assigning
∞ to each resource type. Hence, every Kripke model has a canonical represen-
tation as an RBM. Moreover, given an RBM we can express the existence of
a path (neglecting resources) by E := 〈ρ∞〉. This allows to directly interpret
CTL and CTL? formulae over RBMs.

Proposition 8.26 (Expressiveness). CTL? (resp. CTL) can be embedded
in RTL? (resp. RTL) over Kripke models and RBMs.
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Proof. Given a CTL? formula ϕ and a Kripke model M we replace each
existential path quantifier in ϕ by 〈ρ∞〉 and denote the result by ϕ′. Then, we
extend M to the canonical RBM M′ if it is not already an RBM and have
that M, q |= ϕ iff M′, q |= ϕ′. �

8.3.1 RTL and Cover Models

We show that if there is a satisfying path in any κ-cover model; then, there
also is a path in the corresponding RBM. Note however, that this result does
only hold for positive formulae of the form 〈ρ〉γ.

Let λ be a finite sequence of states. Then, we recursively define λn for
n ∈ N0 as follows: λ0 := ε and λi := λi−1λ for i ≥ 1. That is, λn is the path
which results from putting λ n-times in sequence.

The following lemma states that for flat LRTL-path formulae1 it does not
matter whether a cycle is traversed just once or many times. It can be proved
by a simple induction on the path formula γ.

Lemma 8.27. Let γ be an LRTL-path formula containing no more path quan-
tifiers, let M be an RBM and let λ be a path in M. Now, if λ̃ = q1 . . . qn is a
finite subsequence of λ with q1 = qn (note, that a single state is permitted as
well), then, λ can be written as λ1λ̃λ2 where λ1, λ2 are subsequences of λ and
we have that : M, λ |= γ if, and only if, M, λ1λ̃

nλ2 |= γ for all n ∈ {1, 2, . . . }.

The second lemma states that one can always extend a path in the κ-cover
model to a feasible path in the RBM by duplicating loops.

Lemma 8.28. Let λ be a path in CMκ(M, ρ, q), (q, ρ) and λ′ = λ|Q ; then,
there are tuples (ai, bi, ci) ∈ N2

0×N for i = 1, 2, . . . such that for all j = 1, 2, . . .
we have that aj ≤ bj < aj+1 and λ′[aj ] = λ′[bj ] and the path

(λ′[ai, bi]ci)i=1,2,... is ρ-feasible in M.

Proof. Let a (q, (ρ(ri))i)-path λ = l1l2 . . . in G := CMκ(M, ρ, q) = (V,E) be
given. We extend λ to a path λ′ (having the structure as stated in the lemma)
such that λ′|Q is ρ-feasible in M.

If λ|Q is ρ-feasible we just take λ′ as λ. So, suppose λ|Q = qi1qi2 . . . is
not ρ-feasible. Then, there is a transition in λ that is not feasible in M. Let
l1 . . . lk+1 be the minimal length initial subpath of λ such that (l1 . . . lk+1)|Q
is not feasible in M and let lk = (q, (xi)i). According to the construction of
cover graphs this can only be caused by a resource rl such that xl = ωtκ for
0 ≤ t ≤ κ. Let lo = (q′, (x′i)i) with 1 ≤ o ≤ k and o maximal be the state on
λ at which x′l was set to ωκ most recently. Then, there must be another state
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Fig. 8.3. Proof of Lemma 8.28.

lp = (q′, (x′′i )i), 1 ≤ p < o and p maximal, with (x′′i )i < (x′i)i and x′′l < x′l.
The setting is depicted in Figure 8.3.

So, we extend λ to λ′ by duplicating the subsequence lplp+1 . . . lo in l and
adjusting the resources of the states preceding lp accordingly. Thus, we have
that λ′|Q = qi1 . . . qipqip+1 . . . qioqip . . . qioqio+1 . . . . We subsequently continue
this procedure (now applied to λ′) and do only duplicate transitions that are
also present in λ (i.e. not the new ones). It remains to show that this procedure
does not force some ci to become infinite.

Suppose that there is some ci that becomes infinite following this construc-
tion. Then, there is a set of resources that requires the resources produced by
λ[ai, bi]; and there is no other loop (or set of loops) that starts after λ[bi]
that would also provide the needed resources (otherwise these loops would be
duplicated as the construction looks for the latest possibility). In a κ-cover
model, however, one can only “remember” κ units of a resource; hence, one
can have at most κ transitions consuming of a specific resource until some
other transition has to produce this very resource again. Thus, in order to
ensure that λ is a path in G there must be a producing transition after λ[bi],
in particular, a cycle introducing another ωκ-node following the same line of
argumentation as above, which contradicts our supposition. Hence, we will
actually obtain a path λ′ such that λ′|Q is ρ-feasible and has the structure
(λ|Q [ai, bi]ci)i=1,2,.... �

Theorem 8.29. Let ρ ∈ Res±, let M be an RBM, let q be a state in M.
Then, for any κ and any flat LRTL-formula 〈ρ〉γ we have that:

If CMκ(M, ρ, q), (q, ρ) |= Eγ then M, q |= 〈ρ〉γ.

Proof. The result follows from Lemma 8.27 and 8.28. Firstly, the path λ is
extended to a path λ′ such that λ′|Q is ρ-feasible according to Lemma 8.28;
then, Lemma 8.27 shows that the truth of the flat path formula according to
λ′ does not change.

�

1 A formula is said to be flat if it does not contain any path quantifier.
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Remark 8.30. Note, that the proof of Theorem 11.13 gives an algorithm that
particularly allows to construct a fixed index κ from an RBM and 〈ρ〉γ such
that the “reverse” of Theorem 8.29 holds: If CMκ(M, ρ, q), (q, ρ) |= Eγ then
M, q |= 〈ρ〉γ. This construction of κ however does already “solve” the model
checking problem and is computationally very expensive.

8.3.2 RTL? and Bounded Models

The case for RTL? is more sophisticated as the language is able to characterise
more complex temporal patterns. It is still open whether the general case is
decidable. In the following, we discuss the effects of various properties of
RBMs with respect to RTL?. For a given resource quantity it is possible to
transform a structurally k-bounded RBM into a production-free RBM such
that satisfaction of specific path formulae is preserved.

Proposition 8.31. Let ρ ∈ Res±, let M be a structurally k-bounded RBM
for ρ, and let q be a state in M. Then, we can construct a finite, production-
free RBM M′ such that for every LRTL?-path formula γ containing no more
path quantifiers the following holds:

M, q |= 〈ρ〉γ if, and only if, M′, q′ |= 〈∅〉γ.

Proof. We take M′ as the reachability graph of M. This graph is built sim-
ilar to the cover graph but no ω-nodes are introduced. Because there are
only finitely many distinct state/resource combinations in M (Prop. 8.23) the
model is finite and obviously also production free.

Let M, q |= 〈ρ〉γ and let λ be a ρ-feasible path satisfying γ. Then, the path
obtained from λ by coupling each state with its available resources is a path
in M′ satisfying γ. Conversely, let λ be a path in M′ satisfying γ. Then, λ|Q
is a γ satisfying ρ-feasible path in M due to the construction of M′. �

The following corollary is needed for the model checking results in Sec-
tion 11.2.

Corollary 8.32. Let ρ ∈ Res±, let M be a structurally k-bounded RBM for
ρ, and let q be a state in M. Then, we can construct a finite Kripke model
such that for every LRTL?-path formula γ containing no more path quantifiers
the following holds:

M, q |= 〈ρ〉γ if, and only if, M′, q′ |= Eγ.

Lemma 8.33 states that loops that do not consume resources can be re-
duced to a fixed number of recurrences. For a path λ, we use λ[n] to denote the
path which is equal to λ but each subsequence of states q1q2 . . . qkq occurring
in λ with q′ := q1 = q2 = · · · = qk 6= q and k > n where the transition q′ → q′
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does not consume any resource (i.e. the first k states represent a consumption-
free loop that is traversed k times) is replaced by q1q2 . . . qnq. That is, states
qn+1qn+2 . . . qk are omitted. Note, that λ[n] is also well-defined for pure Kripke
models. The following lemma follows as a special case from [Kucera and Stre-
jcek, 2002].

Lemma 8.33.

(a) Let M be a Kripke model and γ be a path formula of CTL? containing no
path quantifiers and length |γ| = n. For each path λ in ΛM we have that
M, λ |= γ if, and only if, M, λ[n] |= γ [Kucera and Strejcek, 2002].

(b) Let M be a production- and zero-free RBM and γ be an LRTL?-path for-
mula containing no path quantifiers and length |γ| = n. Then, for each
path λ in ΛM the following holds true: M, λ |= γ if, and only if,
M, λ[n] |= γ.

Note that we might want to allow to re-enter loops n-times for cases in
which the formula has the form ©© . . .© ♦ϕ.

8.4 Resource-Bounded Agent Logic

In this section we extend the single agent settings presented in the previous
section to the multi-agent one.

Resource-bounded tree logics, introduced in [Bulling and Farwer, 2010a],
extend the well-known computation tree logics [Clarke and Emerson, 1981]
by resources. Instead of asking for the mere existence of an infinite path
satisfying some temporal property, this path must also be feasible given a set
of available resources. As shown in [Bulling and Farwer, 2010b] these logics
can be considered as the resource-flat single agent fragments of the logics
presented here.

Resource-bounded coalition logic (RBCL), an extension of coalition logic
with resources, is introduced in [Alechina et al., 2009b]. This logic can be seen
as a first step towards a multi-agent extension of the resource-bounded tree
logics [Bulling and Farwer, 2010a] under the restricted temporal setting of
multiple-step strategies (‘sometime in the future‘). Only recently, in [Alechina
et al., 2010] a multi-agent version (RBATL) following the same ideas is pre-
sented. For both logics the authors allow only the consumption of resources
which is computationally much easier and has a decidable model checking
property (cf. Theorem 11.15). In [Bulling and Farwer, 2010b] we show that
these logics can essentially be embedded in RALR (the perfect recall version).

RBCL is used in [Alechina et al., 2009a] to specify and verify properties
about coalitional resource games [Wooldridge and Dunne, 2006]. These are
games in which agents can cooperate and combine their available resources in
order to bring about desired goals.
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8.4.1 The Language LRAL∗

In this section we introduce the language RAL∗ (resource-bounded agent logic),
resource-bounded models (RBAMs), and restricted variants of the logic. In
the following we once more assume that Res = {R1, . . . , Ru} is a finite set of
resource types or just resources.

We use an endowment function η : Agt×Res → N∞0 to model the amount
of resources an agent is equipped with2: η(a, r) is the amount of resource r
agent a possesses.

Definition 8.34 (Endowment η, En). An endowment is a function η :
Agt × Res → N∞0 to model the amount of resources an agent is equipped
with. The set of all endowments is denoted by En. We also write ηa for η(a).

The quantity “∞” is used to equip an agent with an infinite amount of
resources. This allows us to ignore specific resource types for that agent. We
define the endowment η∞ as the constant function that maps every resource
for every agent to ∞. Finally, we use a resource-quantity mapping (RQM)
ρ : Res → Z∞ to model the currently available resources (in the system); that
is, ρ(r) denotes to availability or lack of resource r.

Definition 8.35 (Language LRAL∗). The language LRAL∗(Π,Agt,En) is
defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Bγ | 〈〈A〉〉ηBγ

where
γ ::= ϕ | ¬γ | γ ∧ γ | ϕUϕ | ©ϕ,

A,B ⊆ Agt, p ∈ Π, and3 η ∈ En. Formula ϕ (resp. γ) is called state formula
(resp. path formula). Moreover, we use 〈〈A〉〉η (resp. 〈〈A〉〉) as an abbreviation
for 〈〈A〉〉ηA (resp. 〈〈A〉〉A).

The temporal operators© and U have their standard meaning ‘in the next
moment’ and ‘until’, respectively. As usual, one defines ♦γ ≡ >Uγ (eventu-
ally) and �γ = ¬♦¬γ (always from now on).

8.4.2 The Semantics

As models for our logic we take CGSs and extend them by resources and a
mapping t indicating how many resources each action requires or produces
when executed.
2 N∞0 (resp. Z∞) is defined as N0 ∪ {∞} (resp. Z ∪ {∞}).
3 As we are mainly interested in decidability results about this logic the concrete

representation of η is irrelevant.
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Fig. 8.4. A simple RBAM.

Definition 8.36 (RBAM). A resource-bounded (agent) model (RBAM) is
given by

M = (Agt,Q , Π, π,Act, d, o,Res, t)

where (Agt,Q , Π, π,Act, d, o) is a CGS and the function

t : Act×Res → Z

models the resources consumed and produced by actions. We define prod(α, r) :=
max{0, t(α, r)} (resp. cons(α, r) := −min{0, t(α, r)}) as the amount of re-
source r produced (resp. consumed) by action α.

For α = 〈α1, . . . , αk〉, we use α|A to denote the sub-tuple consisting of the
actions of agents A ⊆ Agt and we use XM to refer to an element X contained
in M.

Example 8.37. In Figure 8.4 a simple RBAM M with Agt = {1, 2}, d1(q0) =
d1(q1) = d2(q1) = {α1}, d1(q2) = d2(q2) = {α2}, d2(q0) = {α1, α2} and one
resource R is shown. Action α1 costs one unit of R and action α2 is cost-free;
i.e. t(α1, R) = −1 and t(α2, R) = 0.

Definition 8.38 (Q≤ω, (resource-extended) path, λ|Q , λ|Res). We define
Q≤ω := Qω ∪ Q+ (i.e. all infinite and finite sequences over Q). A path λ ∈
Q≤ω is a finite or infinite sequence of states such that there is a transition
between two adjacent states.

We define a resource extended path λ as a finite or infinite sequence over
Q × En such that the restriction of λ to states (the first component), denoted
by λ|Q, is a path in the underlying model. Similarly, we use λ|Res to refer to
the projection of λ to the second component of each element in the sequence.

We would like to note that we do also allow finite paths! Intuitively, not
all paths are possible given limited resources.

We also use the following notations already introduced for the “standard”
notion of paths.

Definition 8.39 (Length, subpath). The length of λ (where λ is a path or
resource extended path), denoted l(λ), is the number of states in the sequence;
if λ ∈ Qω then l(λ) = ∞. For i ∈ N0, we define λ[i] to be the (i + 1)-th sate
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on λ or the last one if i ≥ l(λ). Moreover, λ[i,∞] refers to the infinite subpath
λ[i]λ[i+1] . . . of λ if l(λ) =∞; or to the finite subpath λ[i]λ[i+1] . . . λ[l(λ)−1]
if l(λ) <∞. The set of all paths in M starting in a state q is defined as ΛM(q).

Ultimately, we would like to analyse the ability of groups of agents. We
are interested in the existence of a winning strategy for a group of agents. As
before a strategy is a function that fixes the behaviour of an agent; that is,
it determines an action for each ‘situation’ where we will consider two types
of situations. Agents can base their decisions on the current state only; or
they can base their decision on the whole history. Strategies are defined as in
Definition 2.17; however, we simply use R-strategy (resp. r-strategy) to refer
to an IR-strategy (resp. Ir -strategy) since we are only interested in the perfect
information case. Moreover, we define both strategies over histories of states.

Definition 8.40 (R/r-strategy). A perfect recall strategy for agent a (or
R-strategy) is a function sa : Q+ → Act such that sa(q1 . . . qn) ∈ da(qn).
A strategy sa is called memoryless (or r-strategy) if sA(hq) = sA(h′q) for
all h, h′ ∈ Q∗ and q ∈ Q (as before strategies can be defined as functions
Q → Act).

Actions require or produce certain amounts of resources (modelled by t)
that have to be present for an action to be executed. Agents in a group A
can cooperate and share their resources, as well can the opponents Agt\A.
In the following, we formalise such ‘shares’ sh with respect to an available
endowment η for some RQM ρ.

Definition 8.41 ((A, η)-share for ρ). Let η be an endowment and let ρ be
an RQM. An (A, η)-share for ρ is a function sh : A×Res → N0 such that:

1. ∀r ∈ Res : ρ(r) > 0 ⇒ ∑
a∈A sh(a, r) = ρ(r) (the share equals the de-

mand); and
2. ∀a ∈ A, r ∈ Res : ηa(r) ≥ sh(a, r) (each agent’s share must be available).

A strategy sA restricts the possible paths in an RBAM; moreover, con-
sidering resource-extended paths, only those in which agents have sufficient
resources available in each state are feasible. We use the resource component
to keep track of the available resources.

We define which extended paths λ are possible under a given endowment
η and strategy sA assuming agents A ∪B require resources.

Definition 8.42 ((η, sA, B)-path, out(q, η, sA, B)). An (η, sA, B)-path is a
maximal resource-extended path λ ∈ (Q × En)≤ω such that for all i =
0, . . . , l(λ) − 2 with λ[i] := (qi, ηi) there is an action profile α ∈ d(λ|Q [i])
such that

1. λ|Res [0] ≤ η (initially at most η resources are available),
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2. sA(λ|Q [0, i]) = α|A (A’s actions in α are the ones prescribed by strategy
sA),

3. λ|Q[i+ 1] = o(λ|Q[i],α) (transitions are taken according to the action
profile α),

4. ∀ a ∈ A∀r ∈ Res : (ηi+1
a (r) = ηia(r) + prod(α|a, r) − sh(a, r)) where

sh : A×Res → N0 is an (A, η)-share for r 7→∑
a∈A cons(α|a, r) (A’s

resources change according to some appropriate share),
5. ∀b ∈ B\A ∀r ∈ Res : (ηi+1

b (r) = ηib(r) + prod(α|b, r) − sh(b, r)) where
sh : B\A×Res → N0 is an (B\A, η)-share for r 7→∑

b∈B\A cons(α|b, r))
(B\A’s resources change according to some appropriate share),

6. ∀a ∈ Agt\(A ∪B) ∀r ∈ Res : (ηi+1
a (r) = ηia(r)) (available resources

remain unchanged for all agents not in A ∪B),
7. ∀a ∈ Agt : ((λ|Res [i])a ≥ 0 ⇒ (λ|Res [i + 1])a ≥ 0) and ((λ|Res [i])a < 0 ⇒

(λ|Res [i+ 1])a ≥ (λ|Res [i])a) (for each step the required resources are
available).

We also require condition 1. if l(λ) = 1. The η-outcome of a strategy sA
against B in q, out(q, η, sA, B), is defined as the set of all (η, sA, B)-paths
starting in q.

Remark 8.43. (1) We require that a path is maximal, i.e., if a given path
can be extended (this is the case if sufficient resources are available) then it
must be extended. (2) After an action has been executed the production of
resources is added to the endowment of the action-executing agent. (3) There
are several (η, sA, B)-paths due to the choices of the opponents and due to
different shares in items 4 and 5.

Proposition 8.44. The outcome out(q, η, sA, B) is never empty.

Proof. Suppose the outcome is empty. Consider the resource-extended path
λ = (q, η). Due to maximality and emptiness of the outcome there is no move
vector that can be executed from q given the resources η. But then, λ is
maximal, satisfies condition 1. and trivially all the other conditions. Hence, it
would be in the outcome. Contradiction! �

Finally, we define four semantics for LRAL∗ over triples consisting of an
RBAM together with a state and a given endowment for the agents.

Definition 8.45 (|=R,|=r, |=∞R , |=∞r , RAL∗R, RAL∗r). Consider an RBAM
M, a state q ∈ QM, and an endowment η. The R-semantics is given by the
satisfaction relation |=R defined as follows.

M, q, η |=R p iff p ∈ π(q),
M, q, η |=R ¬ϕ iff M, q, η 6|=R ϕ,
M, q, η |=R ϕ ∧ ψ iff M, q, η |=R ϕ and M, q, η |=R ψ,
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M, q, η |=R 〈〈A〉〉Cγ iff there is an R-strategy sA for A such that M, λ, η |=R γ
for all λ ∈ out(q, η, sA, C),

M, q, η |=R 〈〈A〉〉ζCγ iff there is an R-strategy sA for A such that M, λ, ζ |=R γ
for all λ ∈ out(q, ζ, sA, C),

M, λ, η |=R ϕ iff M, λ[0], η |=R ϕ,

and for path formulae

M, λ, η |=R ¬γ iff not M, λ, η |=R γ,
M, λ, η |=R γ ∧ χ iff M, λ, η |=R γ and M, λ, η |=R χ,
M, λ, η |=R ©γ iff M, λ[1,∞], λ|Res [1] |=R γ and l(λ) > 1,
M, λ, η |=R γUχ iff there is i ≤ l(λ) such that M, λ[i,∞], λ|Res [i] |=R χ and

for all j with 0 ≤ j < i we have M, λ[j,∞], λ|Res [j] |=R γ.

The r-semantics (memoryless semantics) |=r is defined similarly to the
R-semantics but r-strategies are used instead of R-strategies. Moreover, we
introduce a variant that focuses on infinite paths. Therefore, in the semantic
clauses of the cooperation modalities, we replace “λ ∈ out(q, η, sA, C)” with
“infinite λ ∈ out(q, η, sA, C)”. The resulting semantic relations are denoted
|=∞R and |=∞r .

The logic RAL∗R (resp. RAL∗r) is defined as the language LRAL∗ together
with R-semantics |=R (resp. r-semantics |=r).

The ‘infinite semantics’ is needed for some extended expressiveness and
complexity results. The language LRAL∗ , however, is sufficiently expressive to
describe infinite paths by “�©>→ . . . ” (cf. Proposition 8.54).

Example 8.46. Recall the RBAM from Example 8.37 and consider the fol-
lowing endowment η: η(1)(R) = 2 and η(2)(R) = ∞. Then, we have
M, q0, η 6|=r 〈〈1〉〉♦p and M, q0, η |=r 〈〈2〉〉♦p; there are two paths λ and λ′

in the outcome: λ|Q = q0(q2)ω and λ′|Q = q0q1q1. But note, that we have
M, q0, η |=∞r 〈〈1〉〉♦p as the finite path λ′ is disregarded.

8.4.3 Syntactically Restricted Variants.

Following [Clarke and Emerson, 1981; Alur et al., 2002], we define (temporal)
restrictions of LRAL∗ .

Definition 8.47 (Languages L
RAL+ and LRAL). The language

L
RAL+(Π,Agt,En) restricts LRAL∗(Π,Agt,En) in such a way that path for-

mulae are given by γ ::= ¬γ | γ ∧ γ | ϕUϕ | ©ϕ.
The language LRAL(Π,Agt,En) is given by

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉B © ϕ | 〈〈A〉〉B�ϕ | 〈〈A〉〉BϕUϕ | 〈〈A〉〉BϕRϕ |
〈〈A〉〉ηB © ϕ | 〈〈A〉〉ηB�ϕ | 〈〈A〉〉ηBϕUϕ | 〈〈A〉〉ηBϕRϕ.
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For the semantic interpretation we consider the ‘release’ operator as the fol-
lowing macro: ϕRψ ≡ ¬((¬ψ)U(¬ϕ)). Differently, to LCTL and LATL we do
also allow the ‘release’ operator R in LRAL. Note that LRAL with the re-
lease operator is strictly more expressive than without it [Laroussinie et al.,
2008]. Let LRAL

′ denote the sublanguage of LRAL without the release oper-
ator. Then, we have the following result which is obvious from [Laroussinie
et al., 2008].

Proposition 8.48. There is no formula ϕ ∈ LRAL
′ such that ϕ↔ 〈〈A〉〉η∞rR s

is valid where η∞ maps every agent and resource type to ∞.

In the following we define variants of all languages that restrict the use
of resources. Operators 〈〈A〉〉B assume that the proponents A and opponents
B\A act under limited resources whereas 〈〈A〉〉 only restricts the choices of the
proponents A. In Section 11.3 we show that this affects the model checking
proofs.

Another aspect of complexity is reflected by the two cooperation modalities
〈〈A〉〉C and 〈〈A〉〉ηC . The former operator is intuitively harder to handle than the
latter as one has to keep track of resources. We note that the expressiveness of
the logic justifies operators of the first kind. For example, consider the formula
〈〈A〉〉♦(p ∧ 〈〈B〉〉γ): Agents A have to reach a state in which p holds and in
which B can ensure γ with the then remaining resources for agents A ∩B.

Both restrictions have interesting effects on the model checking complexity
wrt the number of agents needed to show undecidability.

Definition 8.49 (Proponent restrictedness; resource flatness). Let L
be any of the languages introduced above.

(a) The language pr-L, proponent-restricted L, is the sublanguage of L al-
lowing only operators 〈〈A〉〉 and 〈〈A〉〉η.

(b) The language rf -L, resource-flat L, is the sublanguage obtained from L if
only cooperation modalities 〈〈A〉〉ηB are allowed (and not 〈〈A〉〉B).

Analogously to Definition 8.45, we define the logics RALR, RALr, RAL+
r , and

RAL+
R and their proponent-restricted and/or resource-flat variants.

8.4.4 Restricted RBAMs.

In Section 11.3.1 we show that the model checking problem is often undecid-
able over general RBAMs. Exceptions are the bounded settings presented in
the following.

Definition 8.50 (k-bounded for η, bounded). For k ∈ N, an RBAM
M is said to be k-bounded for endowment η if for each element (q, ζ) on
any (η, sA, B)-path for any strategy sA and B ⊆ Agt either ζ(a)(r) ≤ k or
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ζ(a)(r) =∞ holds for all resources r ∈ ResM and agents a ∈ Agt. An RBAM
is called bounded for η if it is k-bounded for η for some k ∈ N.

At first glance such models may seem quite artificial but in fact there
are several natural settings resulting in bounded models. We call a model
production-free if actions can only consume and not produce resources.
Clearly, every production-free model is bounded.

There is another way to enforce a bounded setting. The definition above is
purely structural and obviously not every RBAM is bounded. However, often
agents themselves have limited capabilities such that it does not necessarily
make sense to allow them to carry arbitrary amounts of resources. Depending
on the resource type only a limited number of units may be permitted in any
endowment. In this setting one imposes the requirement of boundedness to
the semantics and simply discards any resources that exceed a given bound.
The latter is a semantic restriction and has to be inserted into the definition
of paths.

Definition 8.51 (k-bounded (η, sA, B)-path). We define a k-bounded
(η, sA, B)-path as in Definition 8.42 but we set

λ|Res [0] ≤ η0
a(r) := min{k, ηia(r)}

and replace conditions 4 and 5 by the following:

ηi+1
a (r) = min{k, ηia(r) + prod(α|a, r)− sh(a, r))}.

The k-bounded η-outcome of a strategy sA in q with respect to B,
outk (q, η, sA, B), is defined as the set of all k-bounded (η, sA,
B)-paths starting in q.

Finally, we define the k-bounded R-semantics |=k
R (resp. r-semantics |=k

r )
as in Definition 8.45 but replace the outcome by the k-outcome.

8.5 Properties and Expressiveness

For LATL (the plain strategic case without resources) it is well-known that
if agents have a perfect recall winning strategy they also have a memoryless
winning strategy (cf. Theorem 2.24). The temporal dimension is sufficiently
restricted such that the truth of each formula does only depend on the initial
non-looping segment of a path. The next result shows that this is not the case
in the presence of resources. The reason for this is that agents may need to
perform an action several times until sufficient resources are produced.

Proposition 8.52. There is an RBAM M, q ∈ QM, η ∈ En, and ϕ ∈ LRAL

such that: M, η, q |=R ϕ and M, η, q 6|=r ϕ
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q1 q2
p

α

β

α

Fig. 8.5. Model used in the proof of Proposition 8.52.

Proof. Consider a simple model M shown in Figure 8.5 with two states q1 and
q2 where p holds in state q2. In order to reach state q2 the agent has to perform
an action α resulting in a loop in q1 that produces one unit of a resource
needed to execute action β that leads to q2. However, such a strategy cannot
be achieved with a memoryless strategy, as the agent has to execute first α
and then β in the very same state q1. Hence, we have M, q1, η0 |=R 〈〈1〉〉♦p
but M, q1, η0 6|=r 〈〈1〉〉♦p. �

Clearly, due to the semantic definition we have that |=R 〈〈A〉〉Cγ ↔
〈〈A〉〉A∪Cγ for any A,C ⊆ Agt and γ ∈ LRAL∗ . The same holds for 〈〈A〉〉ηC .

One easily observes that if actions are cost-free, then each path in the out-
come is infinite (due to maximality) and both types of cooperation modalities
coincide. Therefore, we obtain the following result.

Proposition 8.53. LRAL∗ (resp. LRAL, L
RAL+) subsumes LATL∗ (resp.

LATL, L
ATL+) over the R-semantics and r-semantics, respectively.

As mentioned earlier, the language LRAL∗ is sufficiently expressive to de-
scribe infinite paths by “�©> → . . . ”. Hence, we can state as a fact that
the semantics focusing on infinite paths can be simulated by LRAL∗ .

Proposition 8.54. Logic (LRAL∗ , |=x) subsumes (LRAL∗ , |=∞x ) for x ∈ {r,R}.
This also holds for the proponent restrictive (pr) and resource flat (rf ) vari-
ants of Definition 8.49.

Proof. First, we show that M, λ, η |=x � © > iff λ is infinite. Assume
M, λ, η |=x �©> and l(λ) = n < ω. Then; M, λ[n−1,∞], η 6|=©>. Now, let λ
be infinite. Since each π(λ[i]) is consistent, we have that M, λ[i,∞], η |=x ©>
for all i ∈ N0; hence, M, λ, η |=x �©>.

Replace each “〈〈A〉〉ηBγ” by “〈〈A〉〉ηB(� © > → γ)” and analogously for
〈〈A〉〉B . Then, we have the following:

M, q, η |=∞x 〈〈A〉〉ηBγ iff there is an x-strategy sA for A s.t. M, λ, η |=∞x γ

for all infinite λ ∈ out(q, η, sA, B)
iff there is an x-strategy sA for A s.t.

for all λ ∈ out(q, η, sA, B) M, λ, η |=x �©>→ γ

iff M, q, η |=x 〈〈A〉〉ηB(�©>→ γ)

�
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8.5.1 Single-Agent Logics

In this section we show that the resource-bounded tree logics introduced above
and the logic from [Alechina et al., 2009b], which also deal with resources
but in a single agent setting, can be embedded in the resource agent logics
presented here. The logic RTL∗ can be seen as the single agent version of
RAL∗. The operator 〈ρ〉γ (“there is an infinite path feasible with resources ρ”)
is translated to 〈〈Agt〉〉ηρ(�©>∧γ). We define rf -RALR∞ as rf -(LRAL, |=∞R ).
Where ηρ equips some agent with the resources in ρ. Similarly, rf -RALr∞ is
defined as rf -(LRAL, |=∞r ) and likewise for the proponent-restrictive logics.

For the resource-bounded tree logics resources are modelled by a resource-
quantity mapping ρ. Models are extensions of Kripke structures. These models
are slightly different to the single agent setting of RBAMs, as they allow to
consume and produce from a resource in a single step. However, such models
can also be modified such that transitions are split into two. The formulae have
to be translated as well. Here we give the semantics of the resource-bounded
tree logics directly over RBAMs.

Definition 8.55 (ρ-feasible path wrt. RBAMs). A path λ is called ρ-
feasible if there is a strategy sAgt of the grand coalition Agt such that λ is the
(unique (with respect to the projection to Q)) path λ ∈ out(q, sAgt, η

ρ,Agt)
and if λ is infinite.

So, the clause for the path quantifier is given as follows:

M, q, η |= 〈ρ〉γ iff there is a ρ-feasible path starting in q such that
M, λ, ηρ |= γ.

Next, we can show that the resource-bounded tree logics can be embedded
in the resource agent logics. The main difference between both logics are the
path quantifiers. In the resource-bounded tree logics, the operator 〈ρ〉γ says
that there is an infinite ρ-feasible path along which γ holds. Hence, we have to
characterise infinite paths, this is either possible with the infinity semantics
or with LRAL∗ .

Theorem 8.56. The single agent fragments of rf -pr-RAL∗R and rf -RAL∗r
(resp. rf -RALr∞) embed RTL∗ (resp. RTL) over RBAMs.

Proof. In the following we consider all four cases and show how 〈ρ〉 can be ex-
pressed in the resource agent logics. For this purpose, we define a translation
function tr(·) mapping formulae of LRTL? to LRAL∗ . The cases for proposi-
tions, negation, conjunction, etc. are as usual and are not repeated here.

Given a RQM ρ of RTL∗, we define ηρ as the resource endowment (for
RAL∗) such that for some agent a ∈ Agt we have that ηρ(a, r) = ρ(r) and for
all other agents b ∈ Agt\{a}, ηρ(b, r) = 0 for all resource types r ∈ Res. That
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is, we equip one agent (viz. a) with the resources given by ρ. The agent can
transfer the resources to other agents in the coalition choosing an appropriate
share. In the following we concretise tr(·) for the appropriate languages.

rf -pr -RAL∗R embeds RTL∗. We set tr(〈ρ〉γ) = 〈〈Agt〉〉ηρ(�©> ∧ tr(γ)) and
can show the following embedding:

M, q, η |=R 〈〈Agt〉〉ηρ(�©>∧ tr(γ))
⇔ ∃sAgt∀λ ∈ out(q, ηρ, sAgt,Agt) : M, λ, η |=R �©>∧ tr(γ)
⇔ ∃sAgt∃λ ∈ out(q, ηρ, sAgt,Agt) : M, λ, η |=R �©>∧ tr(γ)
⇔ ∃sAgt∃ infinite λ ∈ out(q, ηρ, sAgt,Agt) : M, λ, η |=R tr(γ)
⇔ ∃ρ-feasible q−path λ: M, λ, ηρ |=R tr(γ)
⇔ M, q, η |=R 〈ρ〉γ.

rf -RAL∗r embeds RTL∗. We set tr(〈ρ〉γ) = ¬〈〈∅〉〉ηρAgt¬(�©>∧ tr(γ)). Then,
we have that M, q, η |=r ¬〈〈∅〉〉ηρAgt¬(�©>∧tr(γ)) iff ∃λ ∈ out(q, s∅, ηρ,Agt)
such that M, λ, ηρ |=r �©> ∧ tr(γ) iff there is a ρ-feasible path λ such
that M, λ, ηρ |=r tr(γ).

rf -RALr∞ embeds RTL. We set tr(〈ρ〉γ) = ¬〈〈∅〉〉ηρAgt¬tr(γ). We have
M, q, η |=∞r ¬〈〈∅〉〉ηρAgt¬tr(γ) iff there is an infinite path λ ∈
out(q, s∅, ηρ,Agt) such that M, λ, ηρ |=∞r tr(γ) iff there is a ρ-feasible
path λ such that M, λ, ηρ |=r tr(γ).

�

rf -pr -RALR∞ does not subsume RTL; at least not in an obvious way. The
reason is that 〈〈Agt〉〉ηρ is not expressive enough to enforce the existence of
an infinite path. It only universally quantifies over this set; hence, if there are
only finite paths every formula will trivially be true.

8.5.2 Multi-Agent Logics

RBCL [Alechina et al., 2009b] introduces resources to an extension of coalition
logic (cf. Section 2.2.4). Actions are not allowed to produce resources. The
main operator [Ab]ϕ is read as follows: Coalition A can enforce ϕ in a finite
number of steps given the resources b; formally,

M, q |=RBCL [Ab]ϕ for A 6= ∅ iff there is a strategy (R-strategy in our
notation) such that for all λ ∈ out(q, sA) there is an m > 0 such that

cost(λ[0,m], sA) ≤ b and M, λ[m] |=RBCL ϕ).

Intuitively, cost sums up the transition cost of each step. Resources, how-
ever, can be combined in various ways (not only additive); hence, we restrict
ourselves to a variant of RBCL that will only allow to sum up resource costs,
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denoted by RBCL+. Then, the operator [Ab] can be encoded as 〈〈A〉〉ηb©〈〈A〉〉♦
for A 6= ∅. The empty coalition is treated as a special case:

M, q |=RBCL [∅b]ϕ iff for all strategies sAgt (R-strategy in our notation) and
all λ ∈ out(q, sAgt) and all m > 0 such that cost(λ[0,m], sAgt) ≤ b it holds

that M, λ[m] |=RBCL ϕ).

such we can define [∅b] as 〈〈∅〉〉η
b

Agt© 〈〈∅〉〉Agt�.

Theorem 8.57. RALR subsumes RBCL+.

Proof. Let M be an RBCL-model. This model can directly be translated to
an RBAM M′. We recursively replace [Ab] with 〈〈A〉〉ηb © 〈〈A〉〉♦ for A 6= ∅
and [∅b] to 〈〈∅〉〉η

b

Agt© 〈〈∅〉〉Agt�. We prove the case for M, q |=RBCL [Ab]p.

M, q |=RBCL [Ab]p
iff ∃sA∀λ ∈ out(q, sA)∃m > 0 : (cost(λ[0,m], sA) ≤ b ∧M, λ[m] |=RBCL p)

iff ∃sA∀λ ∈ out(q, ηb, sA, A)∃m > 0 : λ[m] |=RBCL p)

iff ∃sA∀λ ∈ out(q, ηb, sA, A)(M, λ[1], λ|Res [1] |=RALR 〈〈A〉〉♦p)

iff M, q, η |=RALR 〈〈A〉〉η
b © 〈〈A〉〉♦p.

Negation, conjunction, and the case for the empty coalition are treated anal-
ogously. �

The logic resource-bounded ATL (RB-ATL) introduced in [Alechina et al.,
2010] is another proposal for an extension of ATL with resources. RB-ATL
has a decidable model checking property due to the fact that it only allows
for the consumption of resources and hence making all models bounded by
default. There seems to be a similar encoding of RB-ATL formulae into RAL
formulae.

8.6 Summary

In this chapter we have introduced resources into CTL?, which is arguably
among the most important logics in computer science, and ATL∗, which is
among the most influential multi-agent logics.

The resource-bounded tree logics RTL? and RTL allow to model reactive
systems in the presence of resources. We have also considered bounded settings
which we show to have a decidable model checking problem in Chapter 11.

We have presented various strategic logics for reasoning about abilities
of multiple agents under limited resources. The different settings were based
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on classical restrictions (cf. [Clarke and Emerson, 1981; Alur et al., 2002])
imposed on the underlying temporal language (LRAL∗ vs. L

RAL+ vs. LRAL)
and strategic dimension (perfect vs. imperfect recall). Additionally, we have
imposed restrictions on the resource dimension by focussing on specific groups
acting under limited resources (proponent-restrictiveness) and on the nesting
of cooperation operators (resource-flatness).

Moreover, we have shown that the resource-bounded tree logics can be
considered as the single agent fragment of the resource agent logics and how
the latter relates to other logics dealing with resources.
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In this chapter we analyse the effect of memory on the model checking
complexity of L

ATL+ . We correct results from the literature and show that the
language can be extended without increasing the model checking complexity.

9.1 ATL+
IR, EATL+

IR and The Matter of Recall

In an excellent study [Schobbens, 2004], Schobbens claims that model check-
ing L

ATL+ is ∆P
3 -complete wrt the number of transitions in the model and

the length of the formula, for both perfect recall and memoryless seman-
tics. For memoryless agents, we recall that the upper bound can be shown
by the following algorithm (cf. Theorem 5.14). Given a formula 〈〈A〉〉γ with
no nested cooperation modalities, we can guess a memoryless strategy of
A, “trim” the model accordingly, model check the CTL+ formula E¬γ in
the resulting model, and revert the result. Note that a memoryless strat-
egy can be guessed in polynomially many steps, and the trimming process
requires only polynomially many steps too. For nested cooperation modal-
ities, we repeat the procedure recursively (bottom-up). Since model check-
ing of the CTL+ formula E¬γ can be done in nondeterministic polynomial
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time [Laroussinie et al., 2001], we get that the overall procedure runs in time(
PNP

)NP = P(NPNP) = ∆P
3 [Schobbens, 2004].

For agents with perfect recall, a similar argument seems to be correct.
Each formula of ATL+

IR can be translated to an equivalent formula of ATLIR

with weak until [Harding et al., 2002], and for ATL (also with weak until) it
does not make a difference whether the perfect recall or memoryless semantics
is used, so memoryless strategies can be used instead. Hence, it is enough to
guess a memoryless strategy, to trim the model etc. Unfortunately, this line of
reasoning is wrong because the result of the translation (the ATLIR formula)
may include exponentially many cooperation modalities (instead of one in the
original ATL+

IR formula). For example, formula 〈〈A〉〉(♦p1 ∧ ♦p2) is translated
to 〈〈A〉〉♦

(
(p1 ∧ 〈〈A〉〉♦p2) ∨ (p2 ∧ 〈〈A〉〉♦p1)

)
; for a longer list of achievement

goals (♦p1∧· · ·∧♦pn), each permutation must be explicitly enumerated. Thus,
we may need to guess exponentially many polynomial-size strategies, which
clearly cannot be done in polynomial time.

There seems to be an intuitive way of recovering from the problem. We
note that in an actual execution, only a polynomial number of these strategies
will be used. So, we can try to first guess a sequence of goals (in the right
order) for which strategies will be needed, then the strategies themselves, fix
those strategies in the model (cloning the model into as many copies as we
need) and check the corresponding CTL+ formula in it. Unfortunately, this is
also wrong: For different execution paths, we may need different ordering of
the goals (and hence strategies). And we have to consider exponentially many
paths in the worst case.

So, what is the complexity of model checking ATL+
IR in the end? The

problem turns out to be (apparently) harder than ∆P
3 , namely PSPACE-

complete (unless the polynomial hierarchy collapses).

9.2 Model Checking ATL+
IR

9.2.1 Lower Bound

We prove the PSPACE-hardness by a reduction of Quantified Boolean
Satisfiability (QSAT), a canonical PSPACE-complete problem (cf. Defini-
tion 4.13). We assume that a QSAT instance is given in negation normal
form (i.e., negations occur only at literals).
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Fig. 9.1. Construction of the concurrent game structure for QSAT: value choice
section.
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Fig. 9.2. CGS for QSAT: formula structure section.
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Fig. 9.3. CGS for QSAT: sections of literals.

Given an instance of QSAT we construct a turn-based1 concurrent game
structure M with two players: the verifier v and the refuter r. The structure
consists of the following sections:

• Value choice section: A sequence of states qi, one per variable xi, where
the values of xi’s will be “declared”, see Figure 9.1. States qi with odd i
are controlled by v, states with even i are controlled by r. The owner of a

1 A model is turn-based if for each state there is a single agent that controls the
subsequent transition, and the other agents have no real choice there (which can
be modelled by assuming dq(a) = {wait} for every agent a except the “owner” of
q).
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state can choose between two possible valuations (>,⊥). Choosing > leads
to a state where proposition xi holds; choosing ⊥ leads to a state labeled
by proposition notxi.

• Formula structure section: Corresponds to the parse tree of Φ, see Fig-
ure 9.2. For each subformula Ψ of Φ, there is a state qΨ with two choices:
L leading to state qL(Ψ) and R leading to qR(Ψ), where L(Ψ) is the left hand
side subformula of Ψ and R(Ψ) is the right hand side subformula of Ψ . The
verifier controls qΨ if the outermost connective in Ψ is a disjunction; the
refuter controls the state if it is a conjunction. Note that each leaf state
in the tree is named according to a literal li from Φ, that is, either with a
variable xi or its negation ¬xi.

• Sections of literals: For each literal l in Φ, we have a single state ql, con-
trolled by the owner of the Boolean variable xi in l. Like in the value
choice section, the agent chooses a value (> or ⊥) for the variable (not for
the literal!) which leads to a new state labeled with the proposition xi (for
action >) or notxi (for ⊥). Finally, the system proceeds to the winning
state q> (labeled with the proposition yes) if the valuation of xi makes
the literal l true, and to the losing state q⊥ otherwise – see Figure 9.3 for
details, and Figure 9.4 for an example of the whole construction.
Note that, if the values of variables xi are assigned uniformly at states ql
(that is, the actions executed at ql form a valuation of x1, . . . , xn), then the
formula structure section together with the sections of literals implement
the game theoretical semantics [Hintikka, 1973] of formula Φ given the
valuation.

Note that the value of variable xi can be declared twice during an execution
of the model (first in the value choice section, and then in the section of
literals). The following “consistency” macro: Consi ≡ �¬xi∨�¬notxi expresses
that the value of xi cannot be declared both> and⊥ during a single execution.
Now, for the IR-semantics, we have that:

Lemma 9.1. ∃x1∀x2 . . . Qnxn Φ iff

M, q1 |= 〈〈v〉〉
( ∧

i∈Odd
Consi ∧ (

∧

i∈Even
Consi → ♦yes)

)
.

Proof. The informal idea is as follows. The ATL+ formula specifies that v can
consistently assign values to “its” variables, so that if r consistently assigns
values to “its” variables (in any way), formula Φ will always evaluate to >,
which is exactly the meaning of QSAT. The way a player assigns a value to
variable xi may depend on what has been assigned to x1, . . . , xi−1. We note
that this is the reason why perfect recall is necessary to obtain the reduction.

The statement can be formally proved in the following way. We consider
wlog only QSAT instances with even alternations of quantifiers (the case
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Fig. 9.4. Concurrent game structure for the QSAT instance ∃x1∀x2(x1 ∧ x2) ∨
(x2 ∧ ¬x1). The following shorthands are used in the formula structure section:
ϕ1 ≡ (x1 ∧ x2)∨ (x2 ∧¬x1), ϕ2 ≡ x1 ∧ x2, ϕ3 ≡ x2 ∧¬x1. “White” states are owned
by the verifier; “grey” states are owned by the refuter.

for odd n is done analogously). Firstly, we note that a QSAT instance ϕ =
∃x1∀x2 . . . ∀xnΦ(x1, . . . , xn) evaluates to true iff there is a (partial) function
f : {>,⊥}∗ → {>,⊥} such that for all valuations vi of all xi with i ≤ n and
i even the following formula is valid:

Φ(f(ε), v2, f(v1v2), v3, . . . , f(v1 . . . vn−1), vn)

where v1 := f(ε), v3 := f(v1v2),. . . , vn−1 := f(v1 . . . vn−2). It is easy to
see that if such a function exists then it provides a satisfying valuation for
the existential quantifiers in the QSAT instance. Conversely, non-existence
of such a function contradicts the existence of such a valuation. We say that
f witnesses ϕ. Given a word w = w1 . . . wm ∈ {>,⊥}m of length m ≥ 2i,
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we use f2i+1(w) to denote the value f(w1 . . . w2i) and f2i(w) to denote w2i.
Intuitively, fi(w) returns the assignment vi of xi given the choices made before.

“⇒“: Let f be a witness for ϕ. We define the following strategy sv for v
for histories h of the form q1q

1q2q
2 . . . of length at most 2n and each qi ∈

{qi>, qi⊥}. For states in which only one action is applicable we suppose that it
is chosen by default. That is, h is a finite path through the value choice section
of length at most 2n. Moreover, we define mapping δ : Q∗ → {>,⊥}∗ to map
each sequence of states to a word over {>,⊥} as follows: δ(ε) = ε, δ(qi>) = >,
δ(qi⊥) = ⊥, and δ(q) = ε for all other states; finally, δ(qh) = δ(q)δ(h). Then,
we define

sv(hq) :=

{
f(δ(h)) for q = q2i+1,

nop for q ∈ {q2i+1>, q2i+1⊥}.
In each subformula state qψ “owned” by v, the verifier chooses action L (resp.
R) if L(ψ) (resp. R(ψ)) evaluates to true given f and h (we write ψ(f, h) = >
for ψ(f1(δ(h)), . . . , fn(δ(h))) is true):

sv(hqψ) :=

{
L if L(ψ)(f, h) = >,
R else.

Analogously, the action for literal states is chosen

sv(hql) :=





> if l = xi, fi(δ(h)) = >)∨
(l = ¬xi, fi(δ(h)) = ⊥)),

⊥ else.

It remains to show that sv is a winning strategy of v. Firstly, it is easily seen
that

∧
i∈Odd Consi holds for any path of the outcome out(q1, sv); assuming

the contrary contradicts the definition of f . Finally, assuming that there is a
counter strategy of the refuter such that state q⊥ is reached and

∧
i∈Even Consi

also contradicts that f witnesses ϕ (this can be shown by structural induction
on Φ).

“⇐”: Let sv be a winning strategy for v. We define function f in the ob-
vious way, i.e., f(ε) := sv(q1), f(f(ε)>) := sv(q1q(1f(ε))q2q2>q3), f(f(ε)⊥) :=
sv(q1q(1f(ε))q2q2⊥q3), etc. We prove that f is a witness for ϕ.

First, let us observe that for each path in out(q1, sv), it must hold
that �¬xi ∨ �¬notxi. As a consequence, sv(q1 . . . qxi) = sv(q1 . . . q¬xi) =
sv(q1 . . . qi) for all histories leading to a literal state ql ∈ {qxi , q¬xi}.2 That is,
the formula structure section and the sections of literals define the game se-
mantics of Φ with the valuation of x1, . . . , xn given uniformly by the f above.
2 Technically, that is true only for the literal states reachable in out(q1, sv), but

since the unreachable states are irrelevant, we can fix sv(q1 . . . ql) := sv(q1 . . . qi)
for unreachable ql’s too.
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Moreover, each path in out(q1, sv) must lead to a state where yes holds (i.e.,
to q>), which means that Φ evaluates to > given f , and thus f is a witness
for ϕ. �

We observe that the construction results in a model with O(|Φ|) states and
transitions, and it can be constructed in O(|Φ|) steps, so we get the following
result where the size of a CGS is defined as the number of its transitions (m)
plus the number of states (n). Note, that O(n+m) = O(m).

Theorem 9.2. Model checking ATL+ with the perfect recall semantics is
PSPACE-hard with respect to the size of the model and the length of the
formula. It is PSPACE-hard even for turn-based models with two agents and
“flat” ATL+ formulae, i.e., ones that include no nested cooperation modali-
ties.

9.2.2 Upper Bound

In this section we show that model checking ATL+
IR can be done in polynomial

space. Our proof has been inspired by the construction in [Laroussinie et al.,
2001], proposed for CTL+. We begin by introducing some notation.

We say that sA is a strategy for (M, q, γ) if for all λ ∈ outM(q, sA) it
holds that M, λ |= γ. An ATL+-path formula γ is called atomic if it has the
form ©ϕ1 or ϕ1Uϕ2 where ϕ1, ϕ2 ∈ ATL+. For ϕ ∈ ATL+ we denote the
set of all atomic path subformulae of ϕ by APF(ϕ). And, as before, we call
an ATL+-path formula γ flat if it does not contain any more cooperation
modalities.

Now we can define the notion of witness position which is a specific position
on a path that “makes” a path formula true or false.

Definition 9.3 (Witness position). Let γ be a flat atomic path formula,
and let λ be a path. The witness position witpos(λ, γ) of γ wrt λ is defined as
follows:
(1) if γ =©ϕ then witpos(λ, γ) = 1;
(2) if γ = ϕ1Uϕ2 and

• λ |= γ then witpos(λ, γ) = min{i ≥ 0 | λ[i] |= ϕ2}
• λ 6|= γ and λ |= ♦ϕ2 then witpos(λ, γ) = min{i ≥ 0 | λ[i] |= ¬ϕ1}
• λ 6|= γ and λ 6|= ♦ϕ2 then witpos(λ, γ) = −1.

Moreover, for a flat (not necessarily atomic) ATL+ path formula γ, we define
the set of witness positions of γ wrt λ as

wit(λ, γ) = (
⋃

γ′∈APF(γ)

{witpos(λ, γ′)}) ∩ N0.
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For instance, if formula �¬p is true on λ then witpos(λ,�¬p) = −1 since
the formula is an abbreviation for ¬(>Up), and for this formula we have that
witpos(λ,�¬p) = −1 and consequently, wit(λ,�¬p) = ∅. In the following we
assume that γ is flat.

In the next lemma we show that if there is a strategy that enforces a (flat)
path formula γ then the witnesses of all atomic subformulae of γ can be found
in a bounded initial fragment of each resulting path. Firstly, we introduce the
notion of a segment which can be seen as a “minimal loop”.

Definition 9.4 (Segment). A segment of path λ is a tuple (i, j) ∈ N2
0 with

i < j such that λ[i] = λ[j] and there are no indices k, k′ with i ≤ k < k′ ≤ j
such that λ[k] = λ[k′] except for k = i, k′ = j. The set of segments of λ is
denoted by seg(λ).

Lemma 9.5. Let M, q |= 〈〈A〉〉γ. Then, there is a strategy sA for (M, q, γ)
such that for all paths λ ∈ outM(q, sA) the following property holds: For each
segment (i, j) ∈ seg(λ) with j ≤ max wit(λ, γ) there is a witness position
k ∈ wit(λ, γ) with i ≤ k ≤ j.

Proof. Suppose such a strategy does not exist; then, for any strategy sA for
(M, q, γ), there is a path λ ∈ out(q, sA) and a segment (i, j) ∈ seg(λ) with
j ≤ max wit(λ, γ) s.t. there is no k ∈ wit(λ, γ) with i ≤ k ≤ j.

We now define s′A as the strategy that is equal to sA except that it cuts
out the “idle” segment (i, j) from λ, i.e., s′A(λ[0, i]h) := sA(λ[0, j]h) for all
h ∈ Q+, and s′A(h) := sA(h) otherwise. Note that out(q, s′A) = out(q, sA)
except for paths that begin with λ[0, j]: These are replaced with paths that
achieve the remaining witness positions in j − i less steps. Let [h]q,sA denote
the set of all paths λ′ such that hλ′ ∈ out(q, sA) where h ∈ Q+. Now it is easy
to see that for all λ′ ∈ [λ[0, j]]q,sA we have that the path λ[0, j]λ′ satisfies γ if,
and only if, the path λ[0, i]λ′ does. Hence, we have that all paths in out(q, s′A)
satisfy γ. Moreover, the latter set of outcomes is non-empty iff out(q, sA) is
non-empty. By following this procedure recursively, we obtain a strategy that
reaches a witness in every segment of each λ up to max wit(λ, γ). �

Given, for instance, an ATL+ formula 〈〈A〉〉(♦p ∧ ♦r) the previous lemma
says that if A has any winning strategy than it also has one such that only
the first two segments on each path in the outcome are important to witness
the truth of ♦p∧♦r. In the next definition we make this intuition formal and
define the truth of ATL+ path formulae on finite initial sequences of states.

Definition 9.6 (|=k). Let M be a CGS, λ be path in M, and k ∈ N. The
semantics |=k is defined as follows:

M, λ |=k ¬γ iff M, λ 6|=k γ;
M, λ |=k γ ∧ δ iff M, λ |=k γ and M, λ |=k δ;
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M, λ |=k ©ϕ iff M, λ[1] |= ϕ and k > 1; and
M, λ |=k ϕUψ iff there is an i < k such that M, λ[i] |= ψ and M, λ[j] |= ϕ

for all 0 ≤ j < i;

Essentially, we consider the first k states on a path in order to see whether a
formula is made true on it.

We define the notion k-witness positions on a finite segment of length k in
an obvious way: if the witness of γ on the full path λ is > k then the k-witness
is −1; otherwise, it is equal to wit(λ, γ).

Definition 9.7 (k-witness strategy). We say that a strategy sA is a k-
witness strategy for (M, q, γ) if for all λ ∈ out(q, sA) we have that M, λ |=k γ.

The following theorem is essential for our model checking algorithm. The
result ensures that the existence of a winning strategy can be decided by only
guessing the first k-steps of a k-witness strategy.

Theorem 9.8. M, q |= 〈〈A〉〉γ iff there is a |QM| · |APF(γ)|-witness strategy
for (M, q, γ).

Proof. ”⇒:” Let sA be a strategy for (M, q, γ). By Lemma 9.5 and the fact
that |wit(λ, γ)| ≤ |APF(γ)| for any path λ there is a strategy s′A for (M, q, γ)
such that max wit(λ, γ) ≤ |QM| · |APF(γ)| for all λ ∈ out(q, sA). This shows
that s′A is a |QM| · |APF(γ)|-witness strategy for (M, q, γ).

“⇐”: Suppose there is a k := |QM| · |APF(γ)| witness strategy then there
also is a k-witness strategy such that on no path in the outcome there is an
“idle” segment (i, j) (a segment containing no witness) with j ≤ v, where v
is the maximal witness on the path smaller than k (cf. Lemma 9.5). We call
such strategies efficient. Now suppose there is an efficient k-witness strategy
sA but no strategy for (M, q, γ); i.e. for all efficient k-witness strategies there
is a path λ ∈ out(q, sA) such that M, λ 6|= γ. Note, that this can only happen
if there is some γ′ ∈ APF(γ) with (minimal) w := witpos(λ, γ′) ≥ k that
cannot be prevented by A (cf. Figure 9.5). Due to efficiency all subformulae
that have a witness ≤ k actually have a witness ≤ k − |QM|. But then, the
opponents can ensure that there is some other path λ′ ∈ out(q, sA) on which
γ′ is witnessed within the first k steps on λ′ and after all the other formulae
with a witness ≤ v (i.e. within steps v and k). This contradicts that sA is a
k-witness strategy.

To see that the opponents can ensure that γ′ is witnessed within the first k
steps, consider a segment (i, j) such that j ≤ w and j maximal. In particular,
the proponents cannot prevent the sequence λ[j, w]. But then, the opponents
are able to execute there moves played from λ[j] onwards already from λ[i].
This results in a path λ′′ also belonging to the outcome which equals λ but
segment (i, j) being cut out. Following this procedure recursively shows that
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λ

w = wit(λ, γ�)
kv

|APF(γ)\{γ�}| − subformulae

kv

λ�

wit(λ�, γ�)

(i, j)− segment

Fig. 9.5. Proof of Theorem 9.8.

there is a path λ′ such that γ′ is witnessed within the first k steps as stated
above.

�

In the next theorem we construct an alternating Turing machine that
solves the model checking problem.

Theorem 9.9. Let ϕ ≡ 〈〈A〉〉γ be a flat ATL+
IR formula, M a CGS, and q a

state. Then, there is a polynomial time alternating Turing machine with O(nl)
alternations (wrt the size of the model and length of the formula) that returns
“yes” if M, q |= ϕ, and “no” otherwise (where l is the length of ϕ, k is the
number of agents, and n the number of states in M).

Proof. The idea behind the algorithm can be summarised as follows: Coalition
A acts as a collective “verifier”, and the rest of the agents plays the role of
a collective “refuter” of the formula. We first transform γ to its negation
normal form.3 Next, we allow the verifier to nondeterministically construct
A’s strategy step by step for the first |QM| · |APF(γ)| rounds (|Agt| steps
each), while the refuter guesses the most damaging responses of Agt \A. This
gives us a finite path h (of length |QM| · |APF(γ)|) that is the outcome of the
best strategy of A against the worst course of events. Then, we implement the
game-theoretical semantics of propositional logic [Hintikka, 1973] as a game
between the verifier (who controls disjunction) and the refuter (controlling
conjunction). The game reduces the truth value of γ to a (possibly negated)
atomic subformula γ0. Finally, we check if h |=|QM|·|APF(γ)| γ0, and return
the answer. The correctness of the construction follows from Theorem 9.8. �

For model checking arbitrary ATL+
IR formulae, we observe that nested coop-

eration modalities can be model checked recursively (bottom-up) in the same
way as e.g. in the standard model checking algorithm for ATL [Alur et al.,
2002]. Since PPSPACE = PSPACE, we obtain the following as immediate
corollary.

3 I.e., so that negation occurs only in front of atomic path subformulae.
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Theorem 9.10. Model checking ATL+
IR over CGSs is PSPACE-complete

wrt the size of the model and the length of the formula. It is PSPACE-
complete even for turn-based models with two agents and “flat” ATL+

IR formu-
lae.

9.3 Correcting Related Results

Concurrent game structures specify transitions through a function that defines
state transformations for each combination of simultaneous actions from Agt.
In other words, transitions are given through an array that defines the outcome
state for each combination of a state with k actions available at that state.
This is clearly a disadvantage from the computational point of view, since the
array is in general exponential with respect to the number of agents: More
precisely, we have that m = O(ndk), where m is the number of (labeled)
transitions in the model, n is the number of states, d is the maximal number
of choices per state, and k is the number of agents.

Two variants of game structures overcome this problem. In alternating
transition systems (ATS), used as models in the initial semantics of ATL [Alur
et al., 1997, 1998b], agents’ choices are state transformations themselves rather
than abstract labels. In implicit concurrent game structures [Laroussinie et al.,
2008], the transition array is defined by Boolean expressions. ATS and implicit
CGS do not hide exponential blowup in a parameter of the model checking
problem (m), and hence the complexity of model checking for these represen-
tations is perhaps more meaningful than the results obtained for “standard”
CGS. In [Laroussinie et al., 2008], Laroussinie et al. claim that model checking
ATL+

IR against ATS as well as implicit CGS is ∆P
3 -complete. Since the proofs

are actually based on the flawed result from [Schobbens, 2004], both claims
are worth a closer look. We will briefly summarise both kinds of structures
and give correct complexity results in this section.
Alternating Transition Systems. An ATS is a tuple M = 〈Agt,Q , Π, π, δ〉,
where Agt,Q , Π, π are like in a CGS, and δ : Q ×Agt→ P(P(Q)) is a func-
tion that maps each pair (state, agent) to a non-empty family of choices with
respect to possible next states. The idea is that, at state q, agent a chooses
a set Qa ∈ δ(q, a) thus forcing the outcome state to be from Qa. The re-
sulting transition leads to a state which is in the intersection of all Qa for
a ∈ Agt. Since the system is required to be deterministic (given the state and
the agents’ decisions), Qa1 ∩ ... ∩Qak must always be a singleton.
Implicit CGS. We recall from Section 5.4.1, that an implicit CGS is a con-
current game structure where, in each state q, the outgoing transitions are
defined by a finite sequence

((ϕ1, q1), ..., (ϕn, qn)).
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In the sequence, each qi is a state, and each ϕi is a Boolean combination of
propositions α̂a, where α ∈ d(a, q); α̂a stands for “agent a chooses action α”.
The transition function is now defined as: o(q, α1, ..., αk) = qi iff i is the lowest
index such that {α̂1

1, ..., α̂k
k} |= ϕi. It is required that ϕn ≡ >, so that no

deadlock can occur. The size of an implicit model is given by the number of
states, agents, and the length of the sum of the sizes of the Boolean formulae.
Model Checking ATL+ Is PSPACE-Complete Again. Contrary
to [Laroussinie et al., 2008, Section 3.4.1], where model checking ATL+

IR with
respect to both ATS and implicit CGS is claimed to be ∆P

3 -complete, we
establish the complexity as PSPACE.

Theorem 9.11. Model checking ATL+
IR for ATS and implicit CGS is

PSPACE-complete wrt the size of the model and the length of the formula
(even for turn-based models with two agents and “flat” ATL+

IR formulae).

Proof. [sketch] Lower bound. We observe that the number of transitions in a
turn-based CGS is linear in the number of states (n), agents (k), and actions
(d). Moreover, each turn-based CGS has an isomorphic ATS, and an isomor-
phic implicit CGS; the transformation takes O(nd) steps. This, together with
the reduction from Section 9.2.1, gives us PSPACE-hardness wrt n, k, d and
the length of the formula (l) and the encoded transition function for model
checking ATL+

IR against ATS as well as implicit CGS.
Upper bound. A close inspection of the algorithm from Section 9.2.2 reveals

that it can easily applied to ATS and implicit CGS. In each step when a
transition is taken one has to evaluate a sequence of Boolean formulae. This
can be done in polynomial time wrt to a, k, and the length of the encoding.�

9.4 Model Checking EATL+
IR

In this section we extend the construction from Section 9.2.2 to obtain an
algorithm for L

EATL+ under the perfect recall semantics. Firstly, we define

the set of witnesses wit∞(λ, γ) for a flat atomic formula γ ≡ ∞
♦ϕ. If λ 6|= ∞

♦ϕ

then wit∞(λ, γ) = ∅; and if λ |= ∞
♦ϕ then wit∞(λ, γ) = {i | λ[i] |= ϕ}. The set

is either infinite or empty.
Moreover, an L

EATL+ path formula γ is called
∞
♦-atomic if it has the form

∞
♦ϕ1. For ϕ ∈ L

EATL+ we denote the set of all
∞
♦-atomic flat path subformulae

of ϕ by APF∞(ϕ).
In the following we generalise the definition of a segment.

Definition 9.12 (γ-segment, strict). A γ-segment on a path λ is a tuple
(i, j) ∈ N2

0 with i < j such that λ[i] = λ[j] and for each γ′ ∈ APF∞(γ) with
wit∞(λ, γ′) 6= ∅ there is a witness w ∈ wit∞(λ, γ′) such that i ≤ w ≤ j.
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We call a γ-segment (i, j) strict if there is no other γ-segment (k, l) in it.

The next proposition shows that such γ-segments always exist on paths
on which some

∞
♦-atomic flat formula is true. The following proofs are done

similarly to the ones given in Section 9.2.2.

Proposition 9.13. Let sA be a strategy for (M, q, γ). Then, for all paths λ ∈
out(q, sA) and t ∈ N there is a strict γ-segment (i, j) on λ with i ≥ t.

Proof. Suppose there is a path in the outcome that does not contain such a
γ-segment. Then, as the set of states is finite there must be some position l ≥ t
on λ such that λ[l,∞] does not contain a witness for some γ′ ∈ APF∞(γ) with
wit(λ, γ′) 6= ∅. But this contradicts wit(λ, γ′) 6= ∅. If there is no

∞
♦-formula

true on a path the condition is trivially true. �

Lemma 9.14. Let M, q |= 〈〈A〉〉γ. Then, there is a strategy sA for (M, q, γ)
such that any strict γ-segment (i, j) that contains no more witnesses for any
formula from APF(γ) contains at most |QM| · |APF∞(γ)| states.

Proof. We proceed similar to Lemma 9.5 to make all eventualities from
APF(γ) true. Then, we modify the strategy to a strategy s′A such that any
segment (il, jl) contained in any strict γ-segment (i, j) contains some witness
of wit∞(λ, γ′) for each γ′ ∈ APF∞(γ) for that the witness set is non-empty
on λ (and which does not contain any more witnesses from formulae from
APF(γ)). Now, we consider the last segment, say (il, jl), contained in (i, j)
(i.e. jl = j). If all formulae γ′ ∈ APF∞(γ) with wit∞(λ, γ′) 6= ∅ that have a
witness in (il, jl) do also have a witness inside (i, j) but outside (il, jl) then
we modify s′A such that (il, jl) is “removed” from the γ-segment (i, j) by ap-
plying the reduction of Lemma 9.5. If not, we chose the segment next to the
last one and so on. The resulting γ-segment (i, j′) is jl − il + 1 states shorter
than (i, j). Applied recursively, this procedure results in a γ-segment that
contains at most |APF∞(γ)| necessary segments which are interconnected by
a minimal number of states that do not contain unnecessary segments. The
number of states of each segment plus the number of intermediate states be-
tween two segments is at most |QM|. Hence, the γ-segment contains at most
|QM|(|APF∞(γ)|) states. �

In the following we extend the finite path semantics such that it can deal
with

∞
♦-atomic flat formulae.

Definition 9.15 (|=k for L
EATL+). The semantics from Definition 9.6 is

extended to L
EATL+-formulae by adding the following clause: M, λ |=k ∞♦γ iff

there is some i < k such that M, λ[i,∞] |=k γ.
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Fig. 9.6. Proof idea of Theorem 9.16.

The notion of a k-witness strategy is given analogously to Definition 9.7:
sA is a k-witness strategy for (M, q, γ) if for all λ ∈ out(q, sA) we have that
M, λ |=k γ.

The analog of Theorem 9.8 for EATL+
IR is given next.

Theorem 9.16. We have that M, q |= 〈〈A〉〉γ iff there is a |QM| · (1 +
|APF(γ)|+ |APF∞(γ)|)-witness strategy for (M, q, γ).

Proof. “⇒”: Let sA be a strategy for (M, q, γ). Then, we modify sA according
to Lemma 9.5 and obtain a strategy s′A such that on all paths λ of the outcome
of s′A and for all formulae γ′ ∈ APF(γ) with a witness on λ we have that
wit(λ, γ′) ≤ |Q | · |APF(γ)| =: t. We modify s′A to a strategy s′′A according to
Proposition 9.13 and Lemma 9.14. Finally, the states between t and the start
of the strict γ-segment can be shrunk up to at most |Q | many, again according
to Lemma 9.5 (cf. Figure 9.6) resulting in a |QM|·(1+|APF(γ)|+|APF∞(γ)|)-
witness strategy for (M, q, γ).

“⇐”: Now assume there is a k := |QM| · (1 + |APF(γ)| + |APF∞(γ)|)-
witness strategy for (M, q, γ) and no strategy for (M, q, γ). If this is caused
by a formula from APF(γ), or γ′ from APF∞(γ) with a minimal witness
position ≥ k the reasoning is as in the proof of Theorem 9.8. We now consider
the case if it is caused by a formula from APF∞(γ) with a minimal witness
position < k. Then, for any k-strategy sA there must be a γ′ ∈ APF∞(γ) such
that for some path λ1 ∈ out(q, sA) it holds that M, λ1 |=k γ′ but M, λ2 6|= γ′

where λ2 equals λ1 up to position k. We show that this cannot be the case.
M, λ1 |=k γ′ implies that γ′ has a witness in the initial γ-segment on λ1

(cf. the initial γ-segment on λ1 with start and end state q1 in Figure 9.6).
So, there must be a state q and an outgoing path λ2 containing no more γ-
segments. However, this state and outgoing path must also be present in the
initial γ-segment on the path λ1 and on λ3 (see Fig. 9.6) there must also be a
γ-segment. If it starts within q1 and q on λ3 it must also be present on λ2. So,
suppose the initial γ-segment on λ3 with start and end state q2 begins before
q1. But this gives us a (non-strict) γ-segment on λ2 (shown by the dotted
line) and of course, this segment can also be reached on the outgoing path λ2

going through state q on λ1. Applying this reasoning recursively proves that
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each of these paths contains infinitely many γ-segments. This contradicts the
assumption that M, λ2 6|= γ′. �

The previous result allows to construct an alternating Turing machine with
a fixed number of alternations to solve the model checking problem (cf. the
proof of Theorem 9.9).

Theorem 9.17. Let ϕ be a flat L
EATL+-formula, M be a CGS, and q a state

in M. There is a polynomial time alternating Turing machine that returns
“yes” if M, q |=IR ϕ and “no“ otherwise.

Proof. The proof is done analogously to the one of Theorem 9.9. Now, the
verifiers strategy and the first outcome of the opponents is constructed for the
first k := |QM| · (1 + |APF(γ)|+ |APF∞(γ)|) steps. Then, the game between
the verifier and refuter to determine a flat atomic subformula is implemented.
Finally, this subformula is tested against the guessed path regarding the se-
mantics |=k. Note, that also also the clause for

∞
♦-atomic formulae has to be

considered. The correctness follows from Theorem 9.16. �

Finally, we get the following result as a combination of Theorem 9.17 and
Theorem 9.2. The reasoning is exactly the same as for Theorem 9.10.

Theorem 9.18. Model checking EATL+
IR over CGSs is PSPACE-complete

wrt the size of the model and the length of the formula (even for turn-based
models with two agents and flat ATL+

IR formulae).

9.5 Significance of the Corrected Results

Why are the results presented here significant? First of all, we have corrected
a widely believed “result” about model checking ATL+

IR, and that is impor-
tant on its own. Several other existing claims concerning variants of the model
checking problem has been based on the “∆P

3 -completeness” for ATL+
IR, and

thus needed to be rectified as well. Moreover, the ATL+
IR verification complex-

ity is important because ATL+
IR can be seen as the minimal language discerning

strategic abilities with and without memory of past actions. Our results show
that the more compact models of agents (which we usually get when perfect
memory is assumed) come with a computational price already in the case of
ATL+

IR, and not only for ATL∗IR as it was believed before.
ATL+

IR deserves attention from the conceptual point of view, too. We have
argued in Section 2.2.5 that it enables neat and succinct specifications of
sophisticated properties regarding e.g. the outcome of agents’ play under be-
havioural constraints. This is especially clear for EATL+

IR where the constraints
can take the form of fairness conditions. Constraints of this kind are extremely
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important when specifying and/or verifying agents in an asynchronous envi-
ronment, cf. [Dastani and Jamroga, 2010]. Since ATL+

IR was believed to have
the same model checking complexity as ATL+

Ir , the former seemed a sensible
tradeoff between expressivity and complexity. In this context, our new com-
plexity results are rather pessimistic and shift the balance markedly in favour
of verification of memoryless agents. As a consequence, for agents with mem-
ory one has to fall back to the less expressive logic ATLIR, or accept the less
desirable computational properties of ATL+

IR. On the positive side, we have
also shown that fairness properties incur no extra costs in either case and that
model checking ATL+

IR/EATL+
IR is still much cheaper than for ATL∗IR.
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In Chapters 6 and 7 we have introduced several logics to reason about
rational behaviour of agents under perfect and imperfect information. In this
section we analyse the complexity needed to “solve” the model checking prob-
lems for these logics. Parts of these results are based on the standard results
presented in Chapter 5. We recall that the model checking problem refers to
the question whether a given formula holds in a given model and state. We
will measure the size of the input in the number of transitions in the model
(m) and the length of the formula (l).
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10.1 Rational Play under Perfect Information: ATLP

We begin with analysing the the model checking problem of ATLP. We show
that, for different subclasses of the new logic, the complexity of model check-
ing ranges from ∆P

3 -completeness to PSPACE-completeness. We also argue
that, when the number of plausible strategy profiles is reasonably small, the
model checking can be done in polynomial time. Note that the problem of
checking ATLP with respect to the size of the whole CGSP (including the
plausibility set Υ ), is trivially linear in the size of the model: The model size is
exponential with respect to the number of states and transitions. Hence, model
checking CGSPs does not make sense if the set of plausible strategies is stored
explicitly. The set should be stored implicitly; for instance, by means of some
decision procedure. We will assume throughout this section that the plausibil-
ity set Υ does not discriminate any strategy profiles (i.e., all strategy profiles
are initially plausible), and actual plausibility assumptions must be specified
in the object language through (simple or complex) plausibility terms.

The same remark applies to the denotations of primitive (“hard-wired”)
plausibility terms. In this respect, we will consider two subclasses of CGSPs
in which the representation of plausibility assumptions of plausibility assump-
tions does not overwhelm the complexity of the rest of the input – namely,
pure concurrent game structures and “well-behaved” CGSPs. In pure CGSs,
plausibility terms and their denotations are simply absent. In well-behaved
CGSs, we put a limit on the complexity of the plausibility check, i.e., the com-
putational resources needed to determine whether a given strategy is plausible
according to a given plausibility term and plausibility mapping.

Definition 10.1 (CGS as CGSP, CGS-based). We call an CGSP, CGS-
based if it is implicitly represented by an CGS in which all strategy profiles
are initially plausible (i.e. Υ = Σ) and there are no “hardwired” plausibility
terms (i.e. Ω = ∅).

Definition 10.2 (Well-behaved CGSP). A CGSP M is called well-behaved
if, and only if,

1. ΥM = Σ: all strategy profiles are plausible in M;
2. There is a non-deterministic Turing machine which decides whether s ∈

[[ω]]qM for each state q ∈ QM, strategy profile s ∈ Σ, and plausibility term
ω ∈ Ω in polynomial time with respect to l and m.

Remark 10.3. We note that, if a list (or several alternative lists) of plausible
strategy profiles is given explicitly in the model (via the plausibility set Υ
and/or the denotations of abstract plausibility terms ω from Section 6.1),
then the problem of guessing an appropriate strategy from such a list is in
NP (memoryless strategies have polynomial size with respect to m). As a
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consequence, we assume that, if such a list is given explicitly, that it is stored
outside the model.

We begin our study with the complexity of model checking the basic lan-
guage Lbase

ATLP in Section 10.1.1. Then, we consider the complexity for the inter-
mediate language L ATLP ATLI (Section 10.1.3). It turns out that the problem
is in both cases ∆P

3 -complete in general, which seems in line with existing
results on the complexity of solving games. In particular, it is known that if
both players in a 2-player imperfect information game have imperfect recall,
and chance moves are allowed, then the problem of finding a max-min pure
strategy is ΣP

2 -complete [Koller and Megiddo, 1992].1 That is, there are es-
tablished results within game theory which show that reasoning about the
outcome of a game where the strategies of both parties are restricted cannot
be easier than ΣP

2 (resp. ∆P
3 when nesting of game specifications is allowed).

In the light of this, our complexity results are not as pessimistic as they seem,
especially as ATLP allows specification of much more diverse restrictions than
those imposed by imperfect information in 2-player turn-based games.2

Moreover, we show in Sections 10.1.1 and 10.1.3 that model checking
Lbase

ATLP and LATLI
ATLP is ∆P

2 -complete if only the proponents’ strategies are re-
stricted. This, again, corresponds to some well-known NP-hardness results
for solving extensive games with imperfect information and recall [Chu and
Halpern, 2001; Garey and Johnson, 1979; Koller and Megiddo, 1992].

Finally, in Section 10.1.4 we study the model checking complexity of LkATLP

and LATLP. We summarise the results in Section 10.1.6.

10.1.1 ATLPbase: Upper Bounds

In this section we show that model checking Lbase
ATLP is ∆P

3 -complete in gen-
eral, and ∆P

2 -complete when only the proponents’ strategies are restricted.
Moreover, model checking Lbase

ATLP over rectangular models and models with
bounded plausibility sets can be done in polynomial time.

Well-behaved CGSPs.

A detailed algorithm for model checking Lbase
ATLP formulae in well-behaved con-

current game structures with plausibility is presented in Figure 10.1. Apart

1 Note that strategic operators can be nested in an ATLP formula, thus specifying
a sequence of games, with the outcome of each game depending on the previous
ones—and solving such games requires adaptive calls to a ΣP

2 oracle.
2 In particular, imperfect information strategies (sometimes called uniform strate-

gies) can be characterised in ATLP for a relevant subclass of models, cf. Sec-
tion 10.1.2.
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function mcheckATLP(M, q, ϕ);
Model checking ATLP: the main function.

� Return mcheck(M, q, ϕ, ∅, ∅);

function mcheck(M, q, ϕ,−→ω ,B);
Returns “true” iff ϕ plausibly holds in M, q. The current plausibility assumptions are specified

by a sequence −→ω = [〈ω1, q1〉, . . . , 〈ωn, qn〉] of plausibility terms with interpretation points. The

set of agents which are assumed to play rational are denoted by B.

cases ϕ ≡ p, ϕ ≡ ¬ψ, ϕ ≡ ψ1 ∧ ψ2 : proceed as usual;
case ϕ ≡ (set-pl ω′)ψ : return( mcheck(M, q, ψ, [〈ω′, q〉], B));
case ϕ ≡ (refn-pl ω′)ψ : return( mcheck(M, q, ψ,−→ω ⊕ 〈ω′, q〉, B));
case ϕ ≡ PlAψ : return( mcheck(M, q, ψ,−→ω ,A));
case ϕ ≡ 〈〈A〉〉 © ψ, where ψ includes some 〈〈B〉〉 : Label all q′ ∈ Q , in which

mcheck(M, q, ψ,−→ω ,B) returns “true”, with a new proposition yes. Return
mcheck(M, q, 〈〈A〉〉 © yes,−→ω ,B);

case ϕ ≡ 〈〈A〉〉 © ψ, where ψ includes no 〈〈C〉〉 : Remove all operators Pl , Ph ,
(set-pl ·) from ψ (they are irrelevant, as no cooperation modality comes fur-
ther), yielding ψ′. Return solve(M, q, 〈〈A〉〉 © ψ′,−→ω ,B);

cases 〈〈A〉〉�ψ and 〈〈A〉〉ψ1Uψ2 : analogously ;
end case

function solve(M, q, ϕ,−→ω ,B);
Returns “true” iff ϕ holds in M, q under plausibility assumptions specified by −→ω and applied

to B. We assume that ϕ ≡ 〈〈A〉〉�ψ, where ψ is a propositional formula, i.e., it includes no

〈〈B〉〉,Pl ,Ph , (set-pl ·).

� Label all q′ ∈ Q , in which ψ holds, with a new proposition yes;
� Guess a strategy profile s;
� if plausiblestrat(s,M,−→ω ,B) then return( not

beatable(s[A],M, q, 〈〈A〉〉�yes,−→ω ,B));
else return( false);

Fig. 10.1. Model checking ATLP (1)
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function beatable(sA,M, q, 〈〈A〉〉γ,−→ω ,B);
Returns “true” iff the opponents can beat sA so that it does not enforce γ in M, q under plau-

sibility assumptions specified by −→ω and imposed on B. The path formula γ is of the form

©ψ,�ψ,ψUψ′ with propositional ψ,ψ′.

� Guess a strategy profile t;
� if plausiblestrat(t,M,−→ω ,B) and t|A = sA then
− M′ := “trim” M, removing all transitions that cannot occur when t|B is

executed;
− return( mcheckCTL(M′, q,¬Aγ));
else return( false);

function plausiblestrat(s,M,−→ω ,B);
Checks whether B’s part of strategy profile s is part of some profile in

T
〈ω,q〉∈−→ω [[ω]]qM.

� return true if s|B ∈
T
〈ω,q〉∈−→ω [[ω]]qM|B ; and false otherwise.

Fig. 10.2. Model checking ATLP (2)

from model M, state q, and formula ϕ to be checked, the input includes a plau-
sibility specification vector −→ω and a set B of agents which are assumed to play
rationally. The plausibility vector −→ω = [〈ω1, q1〉, . . . , 〈ωn, qn〉] is a sequence of
plausibility terms together with states at which the terms are evaluated; this
is, because we need to keep track of applications of the refinement operators
(refn-pl ·). The intuition is that the vector represents the incremental plau-
sibility updates. Moreover, by [〈ω1, q1〉, . . . , 〈ωn, qn〉] ⊕ 〈ω, q〉 we denote the
vector [〈ω1, q1〉, . . . , 〈ωn, qn〉, 〈ω, q〉].

Since CTL model checking is linear in the number of transitions in the
model and the length of the formula [Clarke et al., 1986] and as long as
plausiblestrat(s,M, q, ω,B) can be computed in polynomial time, we get that
mcheckATLP runs in time ∆P

3 , i.e., the algorithm can be implemented as a
deterministic Turing machine making adaptive calls to an oracle of range
ΣP

2 = NPNP. In fact, it suffices to require that plausiblestrat(s,M, q, ω,B)
can be computed in nondeterministic polynomial time, as the witness for
plausiblestrat can be guessed together with the strategy profile s in function
solve, and with the strategy profile t in function beatable, respectively. The
intersection of plausibility terms can also be neglected as the vector of plausi-
bility terms can contain at most l terms (length of the formula). Schematically,
we can describe the main part of the algorithm by ∃s¬(∃t): s is guessed first,
then t is guessed (and its answer is negated, so we have ∃s∀t). This schematic
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view will be useful in Section 10.1.4 to provide an intuition about the com-
plexity of nested formulae together with quantification over strategic terms.

Proposition 10.4. Let M be a well-behaved CGSP, q a state in M, and ϕ
a formula of Lbase

ATLP(Agt, Π,Ω). Then, M, q |= ϕ iff mcheckATLP(M, q, ϕ).
The algorithm runs in time ∆P

3 with respect to the number of transitions in
the model and the length of the formula.

The proof is given on page 308.
We note that the requirement that the set of plausible strategies is given

by Σ is not a real restriction. Specific plausibility specification can always be
set using operator (set-pl ·), by adding a new plausibility term that denotes
the desired set of strategy profiles. The only restriction is that inclusion in
the set must be verifiable in nondeterministic polynomial time.

Finally, we observe that the complexity can be improved if only the strate-
gies of the proponents are restricted.

Proposition 10.5. Let γ be an Lbase
ATLP-path formula without cooperation

modalities. Then the model checking problem for formulae of the form PlA〈〈A〉〉γ
is in ∆P

2 (instead of ∆P
3 ).

Proof. We consider the case ϕ ≡ 〈〈A〉〉 © ψ, where ψ includes no 〈〈C〉〉. In
solve a plausible strategy sA for A is guessed (NP-call). Then, in function
beatable the model is directly trimmed according to sA (without guessing
another profile t) and the CTL model checking algorithm is executed. In this
case, function beatable can be executed in polynomial time. �

Corollary 10.6. Let ϕ ∈ Lbase
ATLP. If for each cooperation modality 〈〈A〉〉 oc-

curring in ϕ it is specified that only agents A′ where A′ ⊆ A play plausibly
then model checking is in ∆P

2 .

Proof. For each cooperation modality one applies the procedure described in
the proof of Proposition 10.5. �

Pure CGSs and ATLPbase without plausibility terms.

This is a somewhat degenerate case because in Lbase
ATLP only primitive plausibil-

ity terms can be used. With no such terms, (set-pl ·) and (refn-pl ·) operators
cannot be used, so all strategy profiles will be considered plausible in the eval-
uation of every subformula. In consequence, model checking Lbase

ATLP(Agt, Π, ∅)
can be done in the same way as for ATL. Since model checking ATL lies in
P [Alur et al., 2002] we get the following result.
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Proposition 10.7. Let M be a CGSP, q a state in M, and ϕ ∈
Lbase

ATLP(Agt, Π, ∅). Model checking ϕ in M, q is in P with respect to the number
of transitions in the model and the length of the formula.

Proof. Remove all PlA operators from ϕ and check whether M′, q |=ATL ϕ
where M′ is the CGS obtained from M by leaving out Υ ,Ω, and [[·]]. �

Special Classes of Models.

We will now consider the special case in which each plausibility term refers
to at most polynomially many strategies.

Definition 10.8 (Bounded models Mc). Given a fixed constant c ∈ N
we consider the class Mc ⊆ CGSP (Agt, Π,Ω) of models such that for all
M ∈Mc, ω ∈ ΩM, and q ∈ QM it holds that |[[ω]]qM| ≤ lc ·mc where l (resp.
m) denotes the length of the input formula (resp. number of transitions of M).

Proposition 10.9. Let c ∈ N be a constant. Model checking Lbase
ATLP formulae

with respect to the class of well-behaved bounded models Mc can be done in
polynomial time with respect to the number of transitions in the model and
the length of the formula.

Proof. [Idea] The idea is to apply ATL model checking for any of the polyno-
mially many plausible strategies. The complete proof is given on page 309.�

Even with arbitrarily many strategies the complexity can be improved if
the set of plausible profiles has a specific structure, namely if the set can be
(and is) represented in a rectangular way. Intuitively, such a set of profiles
can be represented by behavioural constraints [van der Hoek et al., 2005b].
That is, we restrict the actions that can be performed independently for each
state and agent, and then consider all strategy profiles generated from the
constrained repertoire of actions.

Definition 10.10 (Rectangularity, Mrect). Let Sa ⊆ Σa be a set of strate-
gies of agent a. We say that Sa is rectangular if it is represented by a function
d′a : QM → P(Act)\{∅} such that for all states q ∈ QM it holds that d′a(q) ⊆
da(q); then, Sa is taken to be the set {sa ∈ Σa | ∀q ∈ QM (sa(q) ∈ d′a(q))}.

A set of collective strategies (resp. strategy profiles) SA ⊆ ΣA is rectangular
if it represented as a collection of rectangular sets of individual strategies.
Then, SA is to the Cartesian product of the individual sets, i.e., SA = ×a∈ASa.

A set of plausibility terms Ω is rectangular in a model M if all terms in
ω ∈ Ω have rectangular denotations [[ω]]qM. Finally, we say that a CGSP M
is rectangular if the set ΥM is rectangular and terms Ω are rectangular in M.
We denote the class of such models by Mrect.



228 10 Verification of Rational Play

Note, for example, that each ΣA is rectangular.

Proposition 10.11. Model checking Lbase
ATLP formulae in the class Mrect can

be done in P with respect to the number of transitions in the model and the
length of the formula.

Proof. The algorithm is very simple; we present the procedure for ϕ ≡ 〈〈A〉〉�ψ
being in the scope of (set-pl ω) and PlB . Other cases are analogous.

First, we model-check (set-pl ω)PlBψ recursively and label the states
where the answer was “true” with a new proposition yes. Then, we take
[[ω]]qM (recall that it is represented in a rectangular way, i.e., by function
d′ : Agt × Q → P(Act)), and replace function d in M by d′′ such that
d′′(a, q) = d′(a, q) for a ∈ B and d′′(a, q) = d(a, q) for a /∈ B. Finally, we
use any ATL model checker to model-check 〈〈A〉〉�yes in the resulting model,
and return the answer. �

We observe that strategic combinations of rectangular plausibility terms
are also rectangular. AS a consequence, the results extends to L0

ATLP in a
straightforward way, which proves to be useful in Section 10.1.4.3

Lemma 10.12. If S ⊆ Σa (resp. S ⊆ ΣA) contains only a single strategy
(resp. strategy profile) then it is rectangular.

Proof. We just take d′a(q) as {sa(q) | sa ∈ S} for all q ∈ Q . �

Lemma 10.13. Let Ω be a rectangular set of plausibility terms, then T (Ω)
is rectangular as well.

Proof. Let Ω = {ω1, . . . , ωw}. Each plausibility term is rectangular; let it be
represented by ωi = Si1 × . . . Sik. Then, we have that

[[(ωi1 , . . . , ωik)]] = {s | ∃tij ∈ [[ωij ]] : (tij |ij = s|ij} =

= S1
i1 × S2

i2 × · · · × Skik
and

[[ωi[A]]] = {s | ∃t ∈ [[ωi]] : (t|A = s|A)} =
= {s | ∀a ∈ A∃ta ∈ [[ωi]] : (ta|a = s|a)} =

= {s | ∀a ∈ A : (s|a ∈ Sia) ∧ ∀a ∈ Agt\A : (sa ∈ Σa)}.
Both sets are rectangular. �

The following corollary is immediate from Proposition 10.11 and the pre-
vious lemmata since the set of plausibility terms in L0

ATLP are described by
the T -operator.
3 Recall, that L0

ATLP consists of all base formulae in which plausibility terms form
T (Ω) can be used (instead of plain terms from Ω only).
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Corollary 10.14. Model checking L0
ATLP formulae in the class Mrect can be

done in P with respect to the number of transitions in the model and the length
of the formula.

10.1.2 ATLPbase: Hardness and Completeness

Well-behaved CGSPs.

We prove ∆P
3 -hardness through a reduction of SNSAT2 from Definition 4.15,

a typical ∆P
3 -complete variant of the Boolean satisfiability problem. The re-

duction is done in two steps.

1. Firstly, we define a modification of ATLir [Schobbens, 2004] which we
recall in Section A.3, in which all agents are required to play only uniform
strategies. We call it “uniform ATLir” (ATLuir in short), and show that
model checking ATLuir is ∆P

3 -complete by means of a polynomial reduction
of SNSAT2 to ATLuir model checking.

2. Then, we point out that each relevant formula and model of ATLuir can be
equivalently translated (in polynomial time) to a CGSP and an Lbase

ATLP-
formula, thus yielding a polynomial reduction of SNSAT2 to model check-
ing ATLPbase.

Parts of our construction reuse techniques presented in [Goranko and Jam-
roga, 2004; Jamroga and Dix, 2006; Jamroga, 2007; Jamroga and Dix, 2008].

In “uniform ATLir” (ATLuir) (cf. Section A.3) we assume that all the play-
ers have limited information about the current state, and each agent can only
use uniform strategies (i.e., ones that assign same choices in indistinguishable
states). The syntax of ATLuir is the same as that of ATL. The semantics of
ATLuir is defined over ICGS (cf. Definition 2.27), i.e. CGS extended with epis-
temic relations that represent indistinguishability of states for agents. Again,
details of the semantics and more thorough presentation can be found in Ap-
pendix A.3. The following proposition summarises the complexity results from
Appendix B.3.

Theorem 10.15. Model checking ATLuir is ∆P
3 -complete with respect to the

number of transitions in the model and the length of the formula.

The complete proof is given on page 307 and Section B.3.

Remark 10.16. We have thus proven that checking strategic abilities when
all players are required to play uniformly is ∆P

3 -complete. We believe it is
an interesting result with respect to verification of various kinds of agents’
abilities under incomplete information. We note that the result from [Koller
and Megiddo, 1992] for extensive games with incomplete information can be
seen as a specific case of our result, at least in the class of games with binary
payoffs.
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Now we show how ATLuir model checking can be reduced to model checking
ATLPbase. We are given an ICGS M, a state q in M, and an ATLuir formula
ϕ. Let Σu be the set of all uniform strategy profiles in M. We take CGSP
M′ as M (without epistemic relations) extended with plausibility mapping [[·]]
such that [[ω]]q = Σu. Then, we would like to have that M, q |=

ATLuir
〈〈A〉〉ϕ

if, and only if, M′, q |=
ATLP

(set-pl ω)Pl 〈〈A〉〉ϕ which would complete the
reduction. Unfortunately, in general this is not the case as ATLuir requires a
winning strategy that is successful in all states indistinguishable from the
current one (cf. Section A.3). However, we can show the following result.

Theorem 10.17. Let M be a ICGS, q a state in M that is only indistin-
guishable from itself, and 〈〈A〉〉γ be an ATLuir formula such that γ is flat (i.e.
does not contain any more cooperation modalities). Let Σu be the set of all
uniform strategy profiles in M. We take CGSP M′ as M (without epistemic
relations) extended with plausibility mapping [[·]] such that [[ω]]q = Σu. Then,
we have that

M, q |=
ATLuir

〈〈A〉〉γ if, and only if, M′, q |=
ATLP

(set-pl ω)Pl 〈〈A〉〉γ.

Proof.

M, q |=
ATLuir

〈〈A〉〉γ
iff there is a uniform strategy sA that that for each uniform

counterstrategy tAgt\A and λ ∈ out([q]A, (sA, tAgt\A) we
have that M, λ |=

ATLuir
γ

iff there is a uniform strategy sA that that for each uniform
counterstrategy tAgt\A and λ ∈ out(q, (sA, tAgt\A) we
have that M, λ |=

ATLuir
γ

iff there is a plausible strategy sA ∈ [[ω]]q that that for every
λ ∈ outM′′(q, sA,Agt) we have that M′′, λ |=

ATLP
γ

iff M′, q |=
ATLP

(set-pl ω)Pl 〈〈A〉〉γ

where M′′ equals M′ but the set of plausible strategy profiles in the model is
given by Σu. �

Remark 10.18. We note in passing that, technically, the size of the resulting
model M′ is not entirely polynomial. M′ includes the plausibility set Υ , which
is exponential in the number of states in M (since it is equal to the the set
of all uniform strategy profiles in M). This is of course the case when we
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want to store Υ explicitly. However, checking if a strategy profile is uniform
can be done in time linear wrt the number of states in M, so an implicit
representation of Υ (e.g., the checking procedure itself) requires only linear
space.

A closer analysis of the models which are obtained from the SNSAT2

reduction to ATLuir shows that the resulting ICGSs have a very specific struc-
ture.

Let MSNSAT2 contain the models that are obtained by the construction
shown in Section B.3 for any SNSAT2 instance. Then, we have the following
result.

Proposition 10.19. For each M ∈MSNSAT2 only literal states are connected
via indistinguishability relations.

Moreover, given an SNSAT2 instance with r = 1, . . . , p let M and Φr,
r = 1, . . . , p be the model and formulae constructed according to Section B.3
and Proposition B.2, respectively. Then, formulae Φr are only evaluated in
states q where q is the only state indistinguishable from q.

Proof. The first point is immediate from the construction. The latter result
is proven by induction on r.

Let r = 1. According to Definition we have that

z1 ≡ ∃X1
1∀X2

1∃X3
1 . . . QX

i
1.ϕ1(X1

1 , . . . , X
i
1).

The quantifiers do not affect the structure of the ICGS. If ϕ1 = l for some
literal l the claim is trivially true. For all other cases the formula Φ1 is eval-
uated in the initial state which represents the outermost (wrt infix notation)
Boolean connective of the formula ϕ1. Such states are only indistinguishable
to themselves by construction.

For r = p the outermost (i.e. the one on the left evaluated next) coop-
eration modality of Φp is evaluated in the initial state; the claim follows as
for r = 1. Nested cooperation modalities are only evaluated in states labelled
neg and only states corresponding to ¬zi for some i = 1, . . . , p− 1 have such
labels. The result follows from the construction as these states are only indis-
tinguishable to themselves. �

Finally, we obtain the following theorem.

Theorem 10.20. Model checking Lbase
ATLP for well-behaved CGSPs is ∆P

3 -
complete with respect to the number of transitions in the model and the length
of the formula.

Proof. Membership in ∆P
3 follows from Proposition 10.4. For the hardness

we reduce SNSAT2 (resp. ATLuir over the restricted class of models discussed
above) to ATLP by means of Proposition 10.19, Theorem 10.17 and Theo-
rem 10.15. In particular, we get the following reduction by Proposition B.2:
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zp iff Mp, q
p
0 |=ATLuir

Φp iff M′, qp0 |=ATLP
(set-pl ω)PlΦp

where M′ is the CGSP defined as Mp (without epistemic relations) in which
the set of plausible strategies is given by all uniform strategies in Mp. �

For the special case when only the proponents have to follow plausible
strategies, a reduction from model checking ATLir (instead of ATLuir) is suffi-
cient. Since model checking ATLir is ∆P

2 -complete [Schobbens, 2004; Jamroga
and Dix, 2008], we get the following result.

Corollary 10.21. Let L the subset of Lbase
ATLP in which each cooperation

modality 〈〈A〉〉 occurs in the scope of PlB with B ⊆ A. Then, model checking
L in the class of well-behaved CGSPs is ∆P

2 -complete.

Proof. The inclusion in ∆P
2 has been already shown in Section 10.1.1.

We prove the lower bound by a reduction of model checking Schobbens’
ATLir [Schobbens, 2004] (cf. Theorem 5.8) to model checking of our sublan-
guage L. More precisely, we consider ATLir over a restricted class of models:
The class which is obtained by encoding SNSAT1 as ICGSs. Technically, the
reduction is similar to the one given in Section B.3. We obtain an analogous
result of Proposition 10.19. Also a similar theorem to Theorem 10.17 holds
we only have to use Pl v instead of Pl (i.e. only the verifier is forced to use
uniform strategies). This gives us a reduction of SNSAT1 to model checking
L following the same reasoning as in the proof of Theorem 10.20:

zp iff Mp, q
p
0 |=ATLuir

Φp iff M′, qp0 |=ATLP
(set-pl ω)Pl vΦp.

�

Pure CGS and Special Classes of Models.

In order to show lower bounds for model checking Lbase
ATLP for pure concurrent

game structures, well-behaved bounded models, and rectangular models, we
observe that ATL is a subset of Lbase

ATLP even if the latter does not use plausi-
bility terms at all–and model checking ATL is P-complete [Alur et al., 2002].
Thus, we conclude with the following thanks to Proposition 10.11.

Theorem 10.22. Let c ∈ N be a constant. Model checking Lbase
ATLP with respect

to well-behaved bounded models Mc, rectangular models Mrect, and pure CGSs
is P-complete.

10.1.3 ATLPATLI

Here, we show that model checking ATLPATLI is also ∆P
3 -complete. Note

that the only primitive terms occurring in LATLI
ATLP-formulae are used to simu-

late strategic terms of ATLI (which denote individual strategies of particular
agents).
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Upper Bound

The algorithm in Figure 10.6 uses abstract plausibility terms but it can also be
used for LATLI-based plausibility terms presented in Section 6.2.1. In [Jam-
roga et al., 2005] it was shown that the model checking problem for ATLI
is polynomial with respect to the number of transitions and length of the
formula. Thus, we get another immediate corollary of Proposition 10.4.

Proposition 10.23. Model checking LATLI
ATLP in well-behaved CGSPs is in ∆P

3

with respect to the number of transitions in the model and the length of the
formula.

In Section 6.2.2 we have used L1
ATLP formulae to characterise game the-

oretic solution concepts. For this purpose it was not necessary to have hard-
wired plausibility terms in the language. Indeed, the absence of such terms
positively influences the model checking complexity of higher levels of ATLP.

Hardness and Completeness

As in Section 10.1.2, we show the lower bound by a reduction from model
checking ATLuir . That is, we demonstrate how uniformity of strategy profiles
can be characterised by LATLI-formulae for a relevant class of concurrent
game structures. The actual reduction is quite technical and can be found in
Appendix B.4.3. The following result is an immediate consequence of Propo-
sition B.6, presented in Appendix B.4.3.

Theorem 10.24. Model checking ATLPATLI in well-behaved CGSPs is ∆P
3 -

complete with respect to the number of transitions in the model and the length
of the formula.

Moreover, if plausibility restrictions apply only to proponents, then the
complexity improves (the proof is done analogously to Corollary 10.21).

Theorem 10.25. Let L the subset of LATLI
ATLP in which every cooperation

modality 〈〈A〉〉 occurs in the scope of PlB with B ⊆ A. Then, model checking
L in the class of well-behaved rectangular CGSPs is ∆P

2 -complete.

Proof. [sketch] We prove the lower bound (again) by a reduction of model
checking ATLir to model checking L. The reduction is very similar to the one
shown in Appendix B.4.3 except that only the “verifier” decides upon the
values of the propositions (cf. [Jamroga and Dix, 2006]). �
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10.1.4 ATLP: Upper Bounds

In this section we present our results regarding the model checking complexity
of the full logic ATLP. The complexity depends on both the nesting level of
LATLP-formulae and on the structure and alternations of strategic quantifiers.
Before we state our results we introduce some additional definitions needed
to classify such complex formulae.

Classifying LATLP-Formulae: Some Definitions

The complexity of model checking LATLP-formulae does not only depend on
the actual nesting depth of plausibility terms but also on the structure of
strategic quantifiers used inside (set-pl ·) and (refn-pl ·) operators. The
latter structure is quite complex and cannot solely be described by the number
of quantifiers. Often, a specific position of quantifiers can be used to combine
two “guessing” phases, improving complexity.

Firstly, not the number of quantifiers is important but rather the num-
ber of alternations. We introduce function Alt : {∃,∀}+ → {∃,∀}+ which
modifies a word over {∃,∀} such that each quantifier following a quantifier
of the same type is removed; for example, Alt(∃∀∀∀∃∀) = ∃∀∃∀. Moreover,
existential quantifiers at the beginning of a quantifier series can, under some
conditions, be ignored without changing the model checking complexity. If the
first quantifier is existential it follows the guess of the proponents (resp. oppo-
nents) strategy and both guesses can be combined. To take this into account,
we define function RAlt : {∃,∀}+ → Z that counts the number of relevant
alternations of quantifiers in a sequence:

RAlt(
−→
Q) =

{
n if Alt(

−→
Q) = Q1 . . . Qn and Q1 6= ∃;

n− 1 if Alt(
−→
Q) = Q1 . . . Qn and Q1 = ∃;

Function RAlt characterises the “hardness” of the outermost level in a
given term. The next two functions take into account the recursive structure
of terms, due to possibly nested (set-pl ·) or (refn-pl ·) operators. First,
UO(ϕ) returns the set of all the update operations (set-pl ω) and (refn-pl ω)
within formula ϕ. Second, ql takes a set of update operations and returns the
quantifier level in these operations as follows:

ql(S) =



maxs∈S ql({s}) if |S| > 1,
ql(UO(ϕ′)) if S = {(Op σ.ϕ′)},
RAlt(Q1 . . . Qn) + ql(UO(ϕ′)) if S = {(Op σ.Q1σ1 . . . Qnσnϕ

′)},
0 if S = ∅ or

(S = {(Op ω)} with ω ∈ T (Ω ∪ Var)),



10.1 Rational Play under Perfect Information: ATLP 235

where (Op ·) is either (set-pl ·) or (refn-pl ·).
Remark 10.26. The ql and RAlt operators in [Bulling et al., 2009b] were
flawed and have been corrected.

The intuition behind ql is that it determines the maximal sum of relevant
alternations in each sequence of nested update operators (set-pl ·), (refn-pl ·).
Intuitively, the nested operators represent a tree. Given an LkATLP-formula
we add arcs from the root of the tree to nodes representing update opera-
tors on the kth level. Then, from such a new node representing (set-pl ω) or
(refn-pl ω), we add arcs to nodes representing update operators inside ω (i.e.,
on the k−1th level) and so on. Leaves of the tree consist of nodes representing
operators whose terms contain no further update operators. Now, each node
represented by e.g. (set-pl σ.Q1σ1 . . . Qnσnϕ

′) is labeled by RAlt(Q1 . . . Qn).
Function ql returns the maximal sum of such numbers along all paths from
the root to some leaf.

Definition 10.27 (Level i formula). We say that ϕ is a level i formula iff
ql(UO(ϕ)) = i.

Example 10.28. Consider the following L2
ATLP-formula:

ϕ ≡ (set-pl σ.∀σ1∃σ2∃σ3(set-pl σ.∀σ′1∃σ′2∃σ′3∀σ′4ϕ′′))Pl 〈〈A〉〉 © p.

This formula is a level-5 formula. We have that

UO(ϕ) = {(set-pl σ.∀σ1∃σ2∃σ3(set-pl σ.∀σ′1∃σ′2∃σ′3∀σ′4)ϕ′′)}
and ql(UO(ϕ)) = RAlt(∀∃∃) + ql(UO(S)) = 2 + 3 = 5 where S =
{(set-pl σ.∀σ′1∃σ′2∃σ′3∀σ′4)ϕ′′} and ql(UO(S)) = RAlt(∀∃∃∀)+ql(UO(ϕ′′)) =
3 + 0 where ql(UO(ϕ′′)) = 0 as ϕ is a L2

ATLP-formula.

Upper Bounds

Plausibility terms are quite important for the base language Lbase
ATLP; it does

not make much sense to consider the logic without them. In fact, when Lbase
ATLP-

formulae are considered in the context of pure CGSs, the whole logic degen-
erates to pure ATL. This observation does not apply to higher levels of ATLP
any more. Indeed, all characterisations of game theoretic solutions concepts
that we have presented are expressed as L1

ATLP-formulae without hard-wired
terms. Moreover – as we shall see – not using hard-wired terms yields an
improved model checking complexity.

Below we state the main results of this section. The intuition is the fol-
lowing. For each level i formula we have i quantifier alternations; in addition
to that, in each level there can be two more implicit quantifiers due to the
cooperation modalities (there is a plausible strategy of the proponents such
that for all plausible strategies of the opponents . . . ).
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Theorem 10.29 (Model checking LkATLP in pure CGSs). Let ϕ be a level-
i formula of LkATLP(Agt, Π, ∅), k ≥ 1, i ≥ 0. Moreover, let M be a CGS, and
q a state in M. Then, model checking M, q |= ϕ can be done in time ∆P

i+2k+1.

The complete proof is given on page 310.
Note, that the restriction to pure CGSs is essential because defining a

given set of strategies Υ might require checking whether a strategy is plausible
in the final nesting stage. In this case the advantage of not having hard-
wired plausibility terms would vanish and the complexity would increase. So,
if plausibility terms are available the last level of an LATLP-formula cannot
be verified in polynomial time anymore (according to Corollary 10.14). The
complexity can increase as shown in the following result.

Theorem 10.30 (Model checking LkATLP in well-behaved CGSPs). Let
ϕ be a level-i formula of LkATLP(Agt, Π,Ω), M a well-behaved CGSP, and q
a state in M. Model checking M, q |= ϕ can be done in ∆P

i+2(k+1)+1.

The complete proof is given on page 312.

Remark 10.31. As a consequence of Remark 10.26 we have corrected the pre-
vious two theorem stated in [Bulling et al., 2009b].

10.1.5 ATLP: Hardness and Completeness

As it turns out, model checking ATLP, and even each ATLPk for k ≥ 1 is
in general PSPACE-complete. To show the lower bounds for ATLPk (with
arbitrary k ≥ 1) we show that ATLP1 is PSPACE-hard, implying that all
logics LkATLP (for k ≥ 1) are PSPACE-hard too. That the general model
checking problem for ATLP formulae is in PSPACE follows directly from
the algorithm shown in Figure 10.6.

The hardness proof, similar to the one for ATLPATLI. We use quantified sat-
isfiability (QSAT) to show PSPACE-completeness of model checking LkATLP

and LATLP.
Given an instance ϕ of QSAT we construct an L1

ATLP formula θϕ and a
CGSP Mϕ (both are constructible in polynomial space regarding the length
of ϕ) such that ϕ is satisfiable if, and only if, Mϕ, q0 |= θϕ. In the following
we sketch the constructions which are based on the reduction of SNSAT2 to
model checking ATLuir proposed in Appendix B.3, and the translation of ATLuir
to L ATLP ATLI proposed in Appendix B.4.3.

Let ϕ ≡ ∃x1∀x2 . . . Qnxn ψ be an instance of QSAT. Firstly, we sketch the
construction of the ICGS M′ϕ which will then be transformed into a CGSP
Mϕ. In comparison to the construction in Appendix B.3, we consider n agents
one for each quantifier (in fact, we consider max{2, n} agents; however, for the
rest of this section we assume that n ≥ 2). The agent belonging to quantifier
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q0
z1

q1

q2

q11

q̄12

¬x3

q21

¬x1

q̄22
x3

q111

x1

q112
x2

q>
yes

q⊥

a2
:1

a2 :2

a1 :1

a1 :2

a1 :1

a1 :2

a2 :1

a2 :2
a
1 :>

a2 :>

a1 :⊥
a3

:>

a3 :⊥
a
1 :⊥

a
2 :⊥

a1 :>

a3 :⊥

a3 :>

∼a3

∼a1

Fig. 10.3. Construction of the intermediate model M′ϕ for ϕ ≡ ∃x1∀x2∃x3((x1 ∧
x2) ∨ ¬x3) ∧ (¬x1 ∨ x3).

i is named ai. Except for the proposition states the procedure is completely
analogous to the construction given in Appendix B.3 where agent a2 acts
as refuter and a1 as verifier. (Alternatively, two additional agents could be
added.) The procedure at the proposition states changes as follows: In such
a state, say q, referring to a literal l, say l = xi, agent ai can decide on the
value of xi. Note again that the agent is required to make the same choice
in indistinguishable states. In Figure 10.3 the construction is shown for the
formula ϕ ≡ ∃x1∀x2∃x3((x1∧x2)∨¬x3)∧(¬x1∨x3). Finally, the model Mϕ is
obtained from M′ϕ by following the same steps as described in Appendix B.3.

Secondly, we construct formula θϕ from ϕ as follows:

θϕ ≡ (set-pl σ1.∀σ2∃σ3 . . . Qnσnχ)Pl 〈〈Agt〉〉 © >

where

χ ≡


 ∧

i=1,...,n

uniformi
ATLP(σi)


 ∧ (set-pl 〈σ1[1], . . . , σn[n]〉)Pl 〈〈∅〉〉♦yes.

Next, we will give the intuition behind θϕ. Firstly, it is easy to see that
Pl 〈〈Agt〉〉 © > is true whenever the set of plausible strategy profiles is not
empty. Hence, the actual set of strategies described by the preceding (set-pl ·)
operator is not particularly important, rather if some strategy is plausible or
not.

Secondly, note that (set-pl 〈σ1[1], . . . , σn[n]〉) in χ describes a single strat-
egy profile and that all individual strategies can be considered independently
(the set is rectangular, cf. Definition 10.10 and Lemma 10.12). Furthermore,
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an individual strategy is mainly used to assign > or ⊥ to propositional vari-
ables in the proposition states. (Except for agents a1 and a2 which also take on
the refuter and verifier role; they can also perform actions in non-proposition
states.) Hence, a given strategy profile can be seen as a valuation of the propo-
sitional variables.

Thirdly, we analyse χ with respect to a given profile σ := 〈σ1[1], . . . , σn[n]〉
taking into account the previous points. By formula uniformi

ATLP(σi) it is en-
sured that agent i assigns the same valuation to propositions in indistinguish-
able states. Now, χ is true if the “winning state” q> is reached by following
the strategy described by σ (it describes a unique path in the model). In other
words, χ is true if, and only if, the valuation described by σ satisfies ϕ.

Finally, due to the previous observations, if ̂[[σ1.∀σ2∃σ3 . . . Qnσnχ]] is non-
empty it can be interpreted as follows: There is a valuation of x1 such that
for all valuations of x2 there is a valuation of x3, and so forth such that ϕ is
satisfied.

The following proposition states that the construction is correct.

Proposition 10.32. Let ϕ be a QSAT instance. Then it holds that ϕ is sat-
isfiable if, and only if, Mϕ, q0 |= θϕ where Mϕ and θϕ are effectively con-
structible from ϕ in polynomial time with respect to the length of the formula
ϕ.

The complete proof is given on page 312. We get the following theorem.

Theorem 10.33 (LkATLP is PSPACE-complete). The model checking prob-
lems for ATLP and for ATLPk (for each k ≥ 1) are PSPACE-complete.

Proof. Easiness is immediate since the model checking algorithm presented in
Figure 10.6 can be executed in polynomial space with respect to the input (cf.
Theorem 10.29 and Proposition 10.7). Hardness is shown by the polynomial
space reduction from QSAT (Proposition 10.32). �

Finally, we turn to classes in which the number of alternations is restricted
by a fixed upper bound, and we conjecture that the model checking problem
for i-level formulae of LkATLP is in fact complete in its complexity classes
determined in Theorems 10.29 and 10.30.

Conjecture 10.34. Let ϕ be a level-i formula of LkATLP(Agt, Π, ∅), k ≥ 1, i ≥
0. Moreover, let M be a CGS, and q a state in M. Then, model checking
M, q |= ϕ is ∆P

i+2k+1-complete.

Conjecture 10.35. Let ϕ be a level-i formula of LkATLP(Agt, Π,Ω), M a
well-behaved CGSP, and q a state in M. Model checking M, q |= ϕ is
∆P

i+2(k+1)+1-complete.
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0 1 2 . . . i . . . unbounded

Lbasic
ATLP P - - - - . . . -

L0
ATLP P - - . . . - . . . -

L1
ATLP ∆P

3 ∆P
4 ∆P

5 . . . ∆P
i+3 . . . PSPACE

L2
ATLP ∆P

5 ∆P
6 ∆P

7 . . . ∆P
i+5 . . . PSPACE

...
. . .

...

LkATLP

i > k + 1
∆P

2k+1 ∆P
2k+2 ∆P

2k+3 . . . ∆P
i+2k+1 . . . PSPACE

Fig. 10.4. Summary of the model checking results for pure concurrent game struc-
tures (i.e., without hard-wired plausibility terms). All P, ∆P

3 , and PSPACE results
are completeness results.

10.1.6 Summary of these results

Throughout Section 10.1, we have analysed the model checking complexity
of ATLP. The base language was shown to lie in ∆P

3 with both abstract and
LATLI-based plausibility terms. We also proved that model checking both log-
ics is complete regarding this class. The complexity of model checking ATLPk

was shown to depend on three factors:

1. The nesting level k of plausibility terms;
2. the quantifier level ; and
3. whether abstract plausibility terms were present or not.

The quantifier level is influenced by the number of alternations and with
which quantifiers – existential or universal – sequences start and end. In gen-
eral, an i-level LkATLP-formula without plausibility terms was shown to be
in

∆P
i+2k+1

where its counterpart with hard-wired terms was marginally more difficult to
check:

∆P
i+2(k+1)+1.

The results for formulae without (resp. with) primitive plausibility terms are
summarised in Figure 10.4 (resp. Figure 10.5).

Note that all our game theoretic characterisations could already be ex-
pressed by L1

ATLP-formulae without hard-wired terms.
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0 1 2 . . . i . . . unbounded

Lbasic
ATLP ∆P

3 - - . . . - . . . -

L0
ATLP ∆P

3 - - . . . - . . . -

L1
ATLP ∆P

5 ∆P
6 ∆P

7 . . . ∆P
i+5 . . . PSPACE

L2
ATLP ∆P

7 ∆P
8 ∆P

9 . . . ∆P
i+7 . . . PSPACE

...

...

LkATLP

i > k

∆P
2k+3 ∆P

2k+4 ∆P
2k+5 . . . ∆P

i+2(k+1)+1 . . . PSPACE

Fig. 10.5. Summary of the model checking results in well-behaved CGSPs. All ∆P
3

and PSPACE results are completeness results.

10.2 Abilities of Rational Coalition: CoalATL

In this section we present an algorithm for model checking CoalATL.

10.2.1 Easiness

For CoalATL we also have to treat the new coalitional modalities in addition
to the normal ATL constructs. Let us consider the formula 〈|A|〉ψ. According to
the semantics of 〈|A|〉, given in Definition 6.50, we must check whether there is
a coalition B such that (i) if A 6= ∅ then A∩B 6= ∅, (ii) B is acceptable by the
argumentation semantics, and (iii) 〈〈B〉〉ψ. The number of possible candidate
coalitions B which satisfy (i) and (ii) is bounded by |P(Agt)|. Thus, in the
worst case there might be exponentially many calls to a procedure checking
whether 〈〈B〉〉ψ. Another source of complexity is the time needed to compute
the argumentation semantics.

Both considerations together suggest that the model checking complexity
has two computationally hard parts: exponentially many calls to 〈〈B〉〉ψ and
the computation of the argumentation semantics. Indeed, Theorem 10.37 will
support this intuition. However, we show that it is possible to “combine” both
computationally hard parts to obtain an algorithm which is in ∆P

2 = PNP,
if the computational complexity to determine whether a given coalition is
acceptable is in NP.

For the rest of this section, we will denote by VERsem(CF , A) the verifica-
tion problem (cf. [Dunne and Caminada, 2008]) which represents the problem
whether for a given argumentation semantics sem, a coalitional framework
CF , and coalition A ⊆ Agt we have that A ∈ sem(CF). Given some complex-
ity class C, we use the notation “VERsem ∈ C” to state that the verification
problem with respect to the semantics sem is in C.
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function mcheck(M, q, ϕ);
Given a CGM M = 〈Agt,Q, Π, π,Act, d, o, ζ, sem〉, a state q ∈ Q, and ϕ ∈ L[ATLc](Agt, Π) the

algorithm returns > if, and only if, M, q |=sem ϕ.

case ϕ contains no 〈|B|〉: if q ∈ mcheckATL(M, ϕ) return > else ⊥
case ϕ contains some 〈|B|〉:

case ϕ ≡ ¬ψ: return ¬(M, q, ψ)
case ϕ ≡ ψ ∨ ψ′: return mcheck(M, q, ψ) ∨mcheck(M, q, ψ′)
case ϕ ≡ 〈〈A〉〉Tψ: Label all states q′ where mcheck(M, q′, ψ) == > with a new

proposition yes and return mcheck(M, q, 〈〈A〉〉T yes); T stands for � or ©.
case ϕ ≡ 〈〈A〉〉ψUψ′: Label all states q′ where mcheck(M, q′, ψ) == > with a

new proposition yes1, all states q′ where mcheck(M, q′, ψ′) == > with a
new proposition yes2 and return mcheck(M, q, 〈|A|〉yes1Uyes2)

case ϕ ≡ 〈|A|〉Tψ, ψ contains some 〈|C|〉: Label all states q′ where
mcheck(M, q′, ψ) == > with a new proposition yes and return
mcheck(M, q, 〈|A|〉T yes); T stands for � or ©.

case ϕ ≡ 〈|A|〉ψUψ′, ψ or ψ′ contain some 〈|C|〉: Label all states q′ where
mcheck(M, q′, ψ) == > with a new proposition yes1, all states q′

where mcheck(M, q′, ψ′) == > with a new proposition yes2 and return
mcheck(M, q, 〈|A|〉yes1Uyes2)

case ϕ ≡ 〈|A|〉ψ and ψ contains no 〈|C|〉: Non-deterministically choose B ∈
P(Agt)
if
(1) B ∈ (sem(ζ(A)(q))),
(2) if A 6= ∅ then A ∩B 6= ∅, and (?)
(3) q ∈ mcheckATL(M, 〈〈B〉〉ψ)
then return > else ⊥

function mcheckATL(M, ϕ);
Given a CGS M = 〈Agt,Q, Π, π,Act, d, o〉 and ϕ ∈ LATL(Agt, Π), the standard ATL model

checking algorithm (cf. [Alur et al., 2002]) returns all states q with M, q |=ATL ϕ.

� return {q ∈ Q |M, q |=ATL ϕ}

Fig. 10.6. A model checking algorithm for CoalATL.

In [Bulling et al., 2008] it is stated that VERsem ∈ P for all semantics
introduced in Definition 4.50. Unfortunately, this result is incorrect for the
preferred semantics. There is a flaw in the way maximal sets of coalitions
are treated. Actually, from [Dung, 1995] it follows that VERsem ∈ P for
sem ∈ {semadmissible, semgrounded, semstable} and in [Dimopoulos and Torres,
1996] it was shown that VERsempreferred ∈ coNP-complete. In the following



242 10 Verification of Rational Play

proposition, we summarise these results and also treat the complete semantics.
For an overview we refer to [Dunne and Caminada, 2008].

Proposition 10.36 ([Dung, 1995; Dimopoulos and Torres, 1996]). We
have that VERsem ∈ P for all semantics sem ∈ {semadmissible, semgrounded,
semstable, semcomplete} and VERsempreferred

∈ coNP-complete.

Proof. It remains to show the case for VERsemcomplete . Note that computing
FCF (S) for a given S can be done in polynomial time. Therefore, to check
whether a set of coalitions S is complete, we can check that it is admissible
and that all elements of FCF (S) are already contained in S. Both checks can
be done in polynomial time. Thus VERsemcomplete ∈ P. �

In Figure 10.6 we propose a model checking algorithm for CoalATL. The
complexity result given in the next theorem is modulo the complexity needed
to solve the verification problem VERsem.

Theorem 10.37 (Model checking CoalATL). Let a CGM

M = 〈Agt,Q , Π, π,Act, d, o, ζ, sem〉

be given, q ∈ Q, ϕ ∈ LCoalATL(Agt, Π), and VERsem ∈ C. Model checking
CoalATL with respect to the argumentation semantics sem4 is in PNPC .

Proof. The algorithm mcheckATL is P-complete [Alur et al., 2002]. The num-
ber of modalities 〈| · |〉 is bounded by |ϕ|. Thus, the last case can only be
performed a polynomial number of times (wrt. the length of ϕ). The com-
plexity of the last case is as follows. Firstly, B is guessed and then verified.
The verification is performed by an oracle call (with complexity C) to check
whether B ∈ sem(ζ(A)(q)) and two additional steps which can be performed
by a deterministic Turing machine in polynomial time. �

The last theorem gives an upper bound for model checking CoalATL with
respect to an arbitrary but fixed semantics sem. A finer grained classification of
the computational complexity of VERsem allows to improve the upper bound
given in Theorem 10.37. Assume that VERsem ∈ NP; then, a witness can
be non-deterministically guessed together with the coalition B ∈ P(Agt) and
then, it is checked whether B satisfies the three conditions (1-3) in (?). Each
of the three cases can be done in deterministic polynomial time. Hence, the
verification of M, q |= 〈|A|〉ψ, in the last case, meets the “guess and verify”
principle which is characteristic for problems in NP. This brings the overall
complexity of the algorithm to ∆P

2 .

4 That is, whether M, q |=sem ϕ.
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Corollary 10.38 ([Bulling et al., 2008]). If VERsem ∈ NP then model
checking CoalATL is in ∆P

2 with respect to sem.

Proof. Since VERsem is in NP there is a deterministic Turing machine M
that runs in polynomial time p(n) (where n is the length of the input (A, CF))
that accepts ((A, CF), w) for some witness w of length less or equal p(n) iff
A ∈ sem(CF) (otherwise it does not accept ((A, CF), w) for all witnesses w
with |w| ≤ p(n)). Now, in the model checking algorithm, we extend the non-
deterministic guess of the coalition B in (?) by also guessing a witness w for the
input of machine M. This can be implemented by a single non-deterministic
machine (e.g., using the deterministic machine M as oracle or implementing
it directly). Then, the whole algorithm is in PNPP

= PNP = ∆P
2 . �

In the line with Proposition 10.36 we modify the result from [Bulling et al.,
2008] as follows.

Corollary 10.39. Model checking CoalATL is in ∆P
2 for semadmissible,

semcomplete and semstable.

The following result is immediate as VERsempreferred is coNP-complete.

Corollary 10.40. Model checking CoalATL is in ∆P
3 for sempreferred.

As the next proposition shows, the model checking algorithm can also be
improved in the cases that only polynomially many coalitions are acceptable
wrt the semantics and that all these coalitions can be computed in polynomial
time.

Proposition 10.41. Model checking CoalATL is P-complete for semantics
sem that only accept polynomially many coalitions and for which it is possible
to enumerate all theses coalitions in polynomial time with respect to the size
of the model and the length of the formula.

Proof. For a formula 〈|A|〉γ we verify whether 〈〈B〉〉γ for all the polynomially
many coalitions B acceptable by sem. Completeness follows from the com-
pleteness of model checking pure ATL [Alur et al., 2002]. �

Since the grounded semantics is characterised by the smallest fixed point
there only is a unique coalition. Moreover, the fixed point can be calculated
on polynomial time. So, the following result is immediate.

Corollary 10.42. Model checking CoalATL is P-complete for semgrounded

(and thus also for semcs) .
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10.2.2 Definitions and NP/coNP-hardness

In the next section we show that model checking CoalATL is ∆P
2 -hard even

for the very simple argumentation semantics that can essentially characterise
all truth assignments of Boolean formulae. In this section, we firstly show that
the model checking problem is NP-hard and coNP-hard by reducing SAT
[Papadimitriou, 1994] (satisfiability of Boolean formulae (in positive normal
form)) to model checking CoalATL and introduce the basic definitions needed
for the ∆P

2 -hardness proof presented in the following section.
Let ϕ = ϕ(X) be a Boolean formula in positive normal form5 over the

Boolean variables X := {x1, . . . , xn}. A truth assignment of a Boolean formula
ϕ(X) is a mapping X → {0, 1}. We identify a truth assignment with the set
X ′ ⊆ X of variables that are assigned 1 (true). We define a necessary condition
on the expressiveness of argumentation semantics which forces the problem
to become complete.

Definition 10.43 (Reduction-suitable semantics, sem-witness). Let X1

and X2 be two non-empty and disjoint sets of the same size and f : X1 → X2

a bijective mapping between these sets and let x be an element not in X1∪X2.
Moreover, let X1 ∪X2 ∪ {x} ⊆ Y for some set Y .

We call a semantics sem over Y reduction-suitable if for any sets X1, X2,
{x} satisfying the properties given above there is a coalitional framework whose
size is polynomial in Y such that E ∈ sem(CF) iff (1) E = X ∪ {x}, (2)
X ⊆ X1 ∪X2 and (3) ∀x ∈ X1 ∪X2 (x ∈ X iff f(x) 6∈ X).

Moreover, we call a coalitional framework that witnesses that a semantics
is reduction-suitable a sem-witness coalitional framework.

A reduction-suitable semantics allows to describe all truth assignments of
a formula in a compact way. The intuition is that X1 and X2 represent the
variables and their negations, respectively. The set X with X∪{x} ∈ sem(CF)
encodes a truth assignment; i.e. the literals assigned 1. The variable x is a
technicality needed in the reduction. In the following proposition we make
the observation that reduction-suitable semantics allow to represent exactly
all truth assignments.

Proposition 10.44. Let ϕ = ϕ(X) be a Boolean formula and let X̄ := {x̄ |
x ∈ X} and let sem be a reduction-suitable semantics over Y where X ∪ X̄ ∪
{x} ⊆ Y and x 6∈ X. Then, there is a coalitional framework CF such that
for each T ∈ sem(CF), T ∩X is a truth assignment of ϕ and for each truth
assignment T of ϕ there is a Z ∈ sem(CF) such that Z ∩X = T .

5 That is, negation symbols do only occur at variables. Note that the positive
normal form can be established in polynomial time.
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Proof. Let CF be a sem-witness. Firstly, let T ∈ sem(CF), clearly T ∩X does
only contain elements of X and thus is a truth assignment. Now let, T be a
truth assignment of ϕ. We show that Z ∪ {x} ∈ sem(CF) with Z := T ∪X ′,
X ′ := {x̄ | x 6∈ T} and (Z ∪ {x}) ∩X = T . Clearly, we have that Z ⊆ X ∪ X̄
and also that (x ∈ Z iff x̄ 6∈ Z) for all ∀x ∈ X ∪ X̄. This shows that both
conditions of reduction-suitable semantics are satisfied. �

In the following we introduce some notation to refer to subformulae of a
formula and to the outermost logical Boolean connector ∨ or ∧.

Definition 10.45 (Notation for subformulae of ϕ, relevance). Let ϕ be
a Boolean formula in positive normalform. We define lc(ϕ) as the outermost
logical connector in ϕ; that is,

lc(ϕ) :=





∧ if ϕ = ψ1 ∧ ψ2,

∨ if ϕ = ψ1 ∨ ψ2,

ε if ϕ is a literal.

Moreover, we define ls(ϕ) (resp. rs(ϕ)) as the subformula on the left hand side
(resp. right hand side) of lc(ϕ) provided that lc(ϕ) 6= ε. In the case of lc(ϕ) =
ε we set ls(ϕ) = rs(ϕ) = ϕ. Note that we have that ϕ = ls(ϕ)lc(ϕ)rs(ϕ)
whenever lc(ϕ) 6= ε.

Now, we can assign a string over {1, 2} to refer to a subformula of ϕ, where
1 (resp. 2) stands for the left (resp. right) subformula wrt to the outermost
logical connector. Formally, we define a function χϕ from {1, 2}+∪{0} into the
subformulae of ϕ as follows (we write χϕw for χϕ(w) where w ∈ {1, 2}+∪{0}):

χϕw :=





ϕ if w = 0,
ls(ϕ) if w = 1,
rs(ϕ) if w = 2,
ls(χϕx ) if w = x1, x ∈ {1, 2}+,
rs(χϕx ) if w = x2, x ∈ {1, 2}+.

Finally, we call a string w ∈ {1, 2}+ relevant for ϕ iff lc(χϕx ) 6= ε for x ∈
{1, 2}∗ and w = xi with i ∈ {1, 2}; or if w = 0. We will also just write χw if
the formula ϕ is clear from context.

Given the formula ϕ = ((x1∧x2)∨¬x3)∧ (¬x1∨x3), for instance, we have
that χϕ2 = ¬x1 ∨ x3, χϕ112 = x2, and χϕ21 = ¬x1,

We proceed with our reduction. Inspired by [Bulling et al., 2009b; Jamroga
and Dix, 2008] we construct a CGM corresponding to ϕ(X) which essentially
corresponds to the parse tree of ϕ(X) and implements the game semantics of
Boolean formulae (cf. [Hintikka and Sandu, 1997]).
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That is, we construct the CGM M(ϕ) corresponding to ϕ(X) with 2+2|X|
players: verifier v, refuter r, and agents ai and āi for each variable xi ∈
X. The CGM is turn-based, that is, every state is “governed” by a single
player who determines the next transition. Each subformula χi1...il of ϕ has
a corresponding state qi1...il in M(ϕ) for ik ∈ {1, 2}, and χ0 the state q0. If
the outermost logical connective of ϕ is ∧, i.e. lc(ϕ) = ∧ , the refuter decides
at q0 which subformula χi of ϕ is to be satisfied (i.e. whether χ1 or χ2), by
proceeding to the “subformula” state qi corresponding to χi. If the outermost
connective is ∨, the verifier decides which subformula χi of ϕ will be attempted
at q0. This procedure is repeated until all subformulae are single literals. In
the following we refer to the states corresponding to literals as literal states.

The difference from the construction from [Jamroga and Dix, 2008] is that
formulae are in positive normal form (rather than CNF) and from [Jamroga
and Dix, 2008; Bulling et al., 2009b] in the way in which literal states are
treated: Literal states are governed by agents ai or āi. The values of the
underlying propositional variables x, y are declared at the literal states, and
the outcome is computed. That is, if aj executes > for a positive literal, i.e.
χi1...il = xj , at qi1...il , then the system proceeds to the “winning” state q>;
otherwise, the system goes to the “sink” state q⊥. Analogously, if āj executes
⊥ for a negative literal, i.e. χi1...il = ¬xj , at qi1...il , then the system proceeds
to the “winning” state q>; otherwise, the system goes to the “sink” state q⊥.

Finally, the idea is to use sem-witness coalitional frameworks (for some
reduction-suitable semantics) to represent all valuations of ϕ(X) such that
there is a “successful coalition” among these coalitions (representing the val-
uations of ϕ) iff ϕ(X) is satisfiable. An example of the construction is shown
in Figure 10.7. Formally, the model is defined as follows.

Definition 10.46 (M(ϕ)). Let ϕ(X) be given. The model

M(ϕ) = 〈Agt,Q , Π, π,Act, d, o, ζ, sem〉

is defined as follows:

• Agt := {v, r} ∪ {ai, āi | xi ∈ X}
• Q := {q0, q>, q⊥} ∪ {qw | w ∈ {1, 2}+ relevant for ϕ}
• Π := {sat}
• π(q>) = {sat}
• Act := {1, 2,>,⊥}
• dr(qw) = {1, 2} for each w relevant for ϕ with lc(χϕw) = ∧; dv(qw) = {1, 2}

for each w relevant for ϕ with lc(χϕw) = ∨; dai(qw) = {>,⊥} for each w
relevant for ϕ with χϕw = xi; dāi(qw) = {>,⊥} for each w relevant for ϕ
with χϕw = ¬xi; dx(q) = {>} for q ∈ {q>, q⊥} and x ∈ Agt.

• We note that the model is turn-based (except for the states q> and q⊥);
that is, in each state only one agent can execute actions. Hence, transitions
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Fig. 10.7. The construction of M(ϕ) for ϕ = ((x1 ∧ x2) ∨ ¬x3) ∧ (¬x1 ∨ x3).
Transitions labeled with an agent indicate that this agent can force the transition
disregarding the behaviour of the other agents.

do only depend on single actions and not on action profiles: o(q0)(1) = q1,
o(q0)(2) = q2, o(qw)(1) = qw1 if w1 is relevant for ϕ, o(qw)(2) = qw2 if
w2 is relevant for ϕ; o(qw)(>) = q> (resp. o(qw)(⊥) = q⊥) if χϕw ∈ X;
o(qw)(>) = q⊥ (resp. o(qw)(⊥) = q>) if ¬χϕw ∈ X (we identify x with
¬¬x); and o(q)(>) = q for q ∈ {q>, q⊥}.

• sem is a reduction-suitable semantics over Agt. Finally, we set ζ(A)(q) =
CF where CF is some sem-witness coalitional framework for the sets X1 :=
{ai | xi ∈ X}, X2 := {āi | xi ∈ X}, and x := {v} for all A ⊆ Agt and
q ∈ Q.

We define a v-choice of M(ϕ) as “the graph” that occurs if from states
controlled by the verifier v all transitions but one are removed (i.e. at each
state controlled by the verifier it does only have one action to execute). In
other words, we fix a strategy of v. The following lemma is essential for our
reduction.

Lemma 10.47. Let ϕ(X) be a Boolean formula in positive normal form.
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(a) If T is a satisfying truth assignment of ϕ, then there is a v-choice of M(ϕ)
such that for the set L of all literal states reachable from q0 it holds that
{x ∈ X | qw ∈ L and χw = x} ⊆ T and {x ∈ X | qw ∈ L and χw =
¬x} ∩ T = ∅.

(b) If there is a v-choice of M(ϕ) such that for the set L of all literal states
reachable from q0 we have that for any qw, qv ∈ L the formula χw ∧ χv is
satisfiable (i.e. there are no complementary literals) then the set {x ∈ X |
qw ∈ L and χw = x} is a satisfying truth assignment of ϕ.

The complete proof is given on page 316.
Similar to [Bulling et al., 2009b; Jamroga and Dix, 2008], we have the

following result which shows that the construction above is a polynomial time
reduction of SAT to model checking CoalATL.

Proposition 10.48. The model M(ϕ) is constructible in polynomial-time wrt
the size of ϕ and we have that

ϕ(X) is satisfiable if, and only if, M(ϕ), q0 |= 〈|v|〉♦sat.

The complete proof is given on page 318.
The following result is obvious, we can reduce SAT and UNSAT to model

checking M(ϕ), q0 |= 〈|v|〉♦sat and M(ϕ), q0 |= ¬〈|v|〉♦sat, respectively.

Theorem 10.49. Model checking CoalATL is NP-hard and coNP-hard for
any reduction-suitable semantics.

10.2.3 ∆P
2 -hardness

Finally, we show our main result, the ∆P
2 -hardness of model checking CoalATL

for reduction-suitable semantics. We do so by reducing SNSAT1, a typical
∆P

2 -complete problem stated in Definition 4.15.
For this section, we also use the following notation for an SNSAT1-

instance:
zr ≡ ∃Yr(ϕr(z1, ..., zr−1, Xr))

where Yr ⊆ Xr. The notation is understood as follows: There is a truth
assignment assigning 1 (resp. 0) to the variables in Yr (resp. Xr\Yr) such that
ϕr(z1, ..., zr−1, Xr) is true under this assignment. We use I = (ϕ1(X1), . . . ,
ϕp(Xp)) or just I = (ϕ1, . . . , ϕp) to denote an instance of SNSAT1 and set
Z = {z1, . . . , zp}.

We often need to analyse a solution of an SNSAT1-instance. In the fol-
lowing we show how a solution can formally be stated.

Definition 10.50 (Witness and solution of an SNSAT1-instance). Let
I = (ϕ1, . . . , ϕp) be an SNSAT1-instance. A tuple (T1, . . . , Tp) is an I-witness
if it satisfies the following properties:
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1. Ti ⊆ {z1, . . . , zi} ∪Xi;
2. If ϕi is satisfiable under the partial assignment {zj ∈ Tj | j < i} then
Ti is a satisfying truth assignment of ϕi and zi ∈ Ti; else zi 6∈ Ti and
Ti ∩Xi = ∅;

3. zi ∈ Ti implies zi ∈ Tj for all j ≥ i,
An I-witness T is a solution of I iff zp ∈ Tp.

In the next proposition we state some properties about solutions and wit-
nesses.

Proposition 10.51. Let I = (ϕ1, . . . , ϕp) be an SNSAT1 instance and let
T = (T1, . . . , Tp) be an I-witness.

(a) Let T ′ = (T ′1, . . . , T
′
p) be another I-witness; then, T ′i ∩ Z = Ti ∩ Z for

all i = 1, . . . , p. (That is, among all witnesses the values for the zi’s are
uniquely determined.)

(b) If Ii = (ϕ1, . . . , ϕi) with i < p has a solution, then T = (T1, . . . , Ti) is a
solution of Ii.

(c) Let I ′ = (ϕ1, . . . , ϕp, ϕp+1) be such that I ′ has no solution; then, T ′ =
(T1, . . . , Tp, {z ∈ Tp}) is an I ′-witness.

Proof.

(a) Suppose that i is the minimal index for which both sets Ti ∩Z and T ′i ∩Z
differ; that is, wlog, zi ∈ Ti and zi 6∈ T ′i . This is a contradiction to property
(2) of the definition of a witness; as the satisfiability of ϕi under z1, . . . zi−1

is uniquely determined.
(b) Follows from (a).



250 10 Verification of Rational Play

(c) We show that R := {z ∈ Tp} satisfies the conditions (1-3) in the Definition
of a witness. Clearly, R ⊆ {z1, . . . , zp+1}. Since I ′ has no solution, there is
no way to make zp+1 true. Clearly, zp+1 6∈ R and R ∩Xp+1 = ∅. Finally,
condition (3) is satisfied by definition of R.

�

Our reduction of SNSAT1 is a modification of the reduction of SNSAT2

presented in [Bulling et al., 2009b; Jamroga and Dix, 2008] and extends
the NP/coNP-hardness construction of the previous section. Consider an
SNSAT1 instance I = (ϕ1, . . . , ϕp). Essentially, we construct models M(ϕr)
for r = 1, . . . , p as shown above but we label each state of M(ϕr) and each
agent name by an additional superindex r (that is, states are denoted by qrw
and agents by ari and āri ). The main difference is how the literal states corre-
sponding to literals zi and ¬zi are treated. We connect such states of model
M(ϕr) with r > 1 with the initial state qr−1

0 of model M(ϕr−1). Addition-
ally, states referring to negated variables zi are labeled with a proposition
neg. Finally, the full model M(I) wrt an SNSAT1 instance I is given by the
combination of these model as just explained. In particular, the set of agents
is given by {v, r} ∪ {ari , āri | xri ∈

⋃p
j=1X

j}. An example of the construction
is shown in Figure 10.8. Given the model M(I) we use M(ϕi) to refer the
restriction of M(I) to the states with superindex i. In Figure 10.8 the two
submodels M(ϕ1) and M(ϕ2) are framed.

The formulae used in this reduction are more sophisticated as they have
to account for the nested structure of an SNSAT1 instance. We define

ϕ0 ≡ >

and
ϕr ≡ 〈|v|〉(¬negU(sat ∨ (neg ∧ 〈〈∅〉〉 © ¬ϕr−1))

for r = 1, . . . , p.
Before we come to the theorem proving the reduction we state a funda-

mental lemma which can be seen as a counterpart of Lemma 10.47.

Lemma 10.52. Let I = (ϕ1, . . . , ϕp) be an SNSAT1 instance.

(a) Let T = (T1, . . . , Tp) be a solution for I. For all r = 1, . . . , p, if zr ∈ Tr
then there is a v-choice of M(ϕr) such that for the set L of all literal
states reachable from qr0 and which belong to M(ϕr) it holds that {x ∈
Xr ∪Z | qw ∈ L and χϕrw = x} ⊆ Tr and {x ∈ Xr ∪Z | qw ∈ L and χϕrw =
¬x} ∩ Tr = ∅.

(b) Let Ip−1 = (ϕ1, . . . , ϕp−1) and let T p−1 = (T p−1
1 , . . . , T p−1

p−1 ) be an Ip−1-
witness. Then, if there is a v-choice of M(ϕp) such that for the set L of
all literal states reachable from qp0 that belong to M(ϕp) we have that
(i) for any qw, qv ∈ L the literals χϕpw and χ

ϕp
v are non-complementary;

and
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Fig. 10.8. The construction of M(I) for ϕ1 = ((x1 ∧ x2) ∨ ¬x3) ∧ (¬x1 ∨ x3) and
ϕ2 = z1 ∧ (¬z1 ∨ x4). Transitions labeled with an agent indicate that this agent can
force the transition disregarding the behaviour of the other agents.

(ii) if qv ∈ L with χϕpv = zi (resp. χϕpv = ¬zi) then zi ∈ Ti (resp. zi 6∈ Ti);
then, T = (T p−1

1 , . . . , T p−1
p−1 , Tp) is a solution for I where

Tp = {x ∈ Xr | qw ∈ L and χw = x} ∪ {zi | zi ∈ T p−1
i , i < p} ∪ {zp}.

(c) M(I), qi0 |= ϕi if, and only if, M(I), qi0 |= ϕj; and M(I), qi0 |= ¬ϕi if, and
only if, M(I), qi0 |= ¬ϕj for all j ≥ i.

The complete proof is given on page 319.
Similar to [Bulling et al., 2009b; Jamroga and Dix, 2008], we have the

following result which shows that the construction above is a polynomial-time
reduction of SNSAT1 to model checking CoalATL.

Theorem 10.53. The size of M(I) and of the formulae ϕp is polynomially in
the size of the SNSAT1 instance I = (ϕ1, . . . , ϕp) and we have the following:

There is a solution T = (T1, . . . , Tr) of Ir = (ϕ1, . . . , ϕr) if, and only if,
M(Ir), qr0 |= ϕl
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Fig. 10.9. Proof of Corollary 10.56.

for l ≥ r and r ≤ p.

The complete proof is given on page 320.
The reduction gives us the following hardness result.

Theorem 10.54. Model checking CoalATL is ∆P
2 -hard for any reduction-

suitable semantics.

With Corollary 10.38 we obtain the following completeness result.

Theorem 10.55. Model checking CoalATL is ∆P
2 -complete for any reduction-

suitable semantics sem with VERsem ∈ NP.

Finally, we show completeness for the stable semantics.

Corollary 10.56. Model checking CoalATL is ∆P
2 -complete for the semstable

semantics.

Proof. We have to show that the semantics is reduction-suitable; that is, we
have to construct a sem-witness over Agt.

Consider the coalitional framework shown in Figure 10.9. We show that
this is a witness for the reduction suitableness of the stable semantics. Let
X = {x1, . . . xn} and X̄ = {x̄1, . . . , x̄n} be given and f(xi) := x̄i. We show
that the conditions from Definition 10.43 are met.

“⇒”: Let E ∈ semstable. Clearly, r 6∈ E because {r} is not conflict-free.
Moreover, {v} ∈ E; as {v} cannot be attacked by E. We also have that
E ⊆ X ∪ X̄. Suppose there is an i such that {ai, āi} ∩ E = ∅. Then, {ai, āi}
is not attacked by E. Contradiction. Now suppose that {ai, āi} ⊆ E. This is
a contradiction since {ai, āi} is not conflict-free.

“⇐”: Suppose E∪{v} satisfies condition (1), (2), and (3). Clearly, E∪{v}
is conflict-free. Because for each i either ai or āi is in E ∪ {v} every element
outside is attacked by some element from E ∪ {v}.

�
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Fig. 10.10. Overview of the model checking results modulo the complexity of the
used argumentation semantics.

10.3 CSLP

In this section we discuss the model checking complexity of CSLP and CSLP1.
The model checking algorithm is derived from combining the results for CSL
and ATLP. We will just consider the case for CSLPbase and CSLP1; all the
other cases that do not rely one the classical polynomial time algorithm of
ATL model checking are obtained similarly to the results for ATLP from
Section 10.1.

As before, in the following we use l to refer to the length of ϕ and m to
denote the number of transitions in M. We only consider a restricted class of
models in which the check for plausibility of a strategy profile can be done in
polynomial time (wrt l and m) by a non-deterministic Turing machine. In or-
der to conduct a sensible analysis such an assumption is necessary. To this end,
we adapt the important notion of well-behaved CGSP from Definition 10.2

Definition 10.57 (Well-behaved ICGSP). A ICGSP M is called well-
behaved if, and only if, (1) ΥM = Σ: all the strategy profiles are plausible
in M; and (2) there is a non-deterministic Turing machine which determines
whether s ∈ [[ω]]Q

′

M for every set Q′ ⊆ QM, strategy profile s ∈ Σ, and plausi-
bility term ω ∈ Ω in polynomial time wrt the length of ω and the number of
transitions in M.

The results for ATLP are given in Section 10.1. We begin by reviewing the
existing results for CSL. The complexity results for CSLP follow in a natural
way. In [Jamroga and Ågotnes, 2007] it was shown that CSL model checking
is ∆P

2 -complete, the hard cases being formulae 〈〈A〉〉�ϕ and 〈〈A〉〉ϕ1Uϕ2. The
formulae require the existence of a single uniform strategy which is successful
in all states of Q′. In the algorithm from [Jamroga and Ågotnes, 2007], the
strategy is guessed by the oracle and then verified in polynomial time. Nested
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cooperation modalities are model-checked recursively (bottom-up) which puts
the algorithm indeed in ∆P

2 .
We also recall from Section 10.1 that ATLPbase model checking is ∆P

3 =
PNPNP

-complete. The algorithm for checking the hard cases (〈〈A〉〉�ϕ and
〈〈A〉〉ϕ1Uϕ2) is similar: Firstly, a plausible strategy of A is guessed (first NP-
oracle call) and verified against all plausible strategies of the opponents (sec-
ond NP-oracle call, the “worst” response of the opponents is guessed). Note
that, as soon as the relevant strategy (or strategy profile) s is fixed, the re-
maining verification can be done in deterministic polynomial time: it is enough
to “trim” the model by deleting all transitions which cannot occur when the
agents follow s, and to model check a CTL formula in the trimmed model
(which can be done in polynomial time [Emerson, 1990][Clarke et al., 1986]).

For CSLPbase, we essentially use the ATLPbase model checking algorithm
with an additional check for uniformity of strategies. This does not influence
the complexity. We obtain the following result (we refer to Section 10.1 and
to [Jamroga and Ågotnes, 2007] for details).

Theorem 10.58. Model checking CSLPbase in the class of well-behaved ICGSP
is ∆P

3 -complete with respect to l and m.

Proof. [Sketch] The hardness follows from the fact that ATLPbase is ∆P
3 -

complete and can be embedded in CSLP (cf. Proposition 7.28). For the inclu-
sion in ∆P

3 , we sketch the algorithm for M, Q′ |= 〈〈A〉〉�ϕ: (1) Model-check
ϕ recursively for each q ∈ QM, and label the states for which M, q |= ϕ with
a new proposition p; (2) Guess a “good” plausible uniform strategy sA; (3)
Guess a “bad” uniform plausible strategy profile t such that t|A = sA; and
(4) Return true if Q′ ⊆ mcheckCTL(M′,A© p) and false otherwise, where M′

is the trimmed model of M wrt profile t. �

In Section 7.3 we showed how CSLP1 can be used to characterise incom-
plete information solution concepts. However, for this reason we had to use
the extended language of CSLP1. An obvious question arises: How much does
the complexity increase? The answer is quite appealing: The increase in com-
plexity depends on how much extra-expressiveness we actually use; and in any
case, we get some expressiveness for free! This can be shown analogously to
ATLP1. Similarly, the model checking complexity can be completely charac-
terised in the number of quantifier alternations used in the extended plausibil-
ity terms. If we have no quantifiers at all, the resulting sublanguage is no more
costly to verify than the base version. Note that the quantifier-free sublan-
guage of CSLP1 is already sufficient to “plug in” important solution concepts
(e.g., Nash equilibria). For each additional quantifier alternation (starting with
a universal quantifier) the complexity is pushed one level up in the polynomial
hierarchy. The following result is shown analogously to Theorem 10.30. We
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use the same notation as in Section 10.1; in particular, the notion of level-i
formulae from Definition 10.27

Theorem 10.59. Let ϕ be an level-i formula of L1
CSLP(Agt, Π,Ω), M be a

well-behaved ICGS, and Q′ a set of states. Then, model checking M, Q′ |= ϕ
can be done in time ∆P

i+5 with respect to l and m.

Remark 10.60.

(a) We would like to remark once more that all the other results from Sec-
tion 10.1 that do not rely one the classical polynomial time algorithm
of ATL model checking do also hold mutatis mutantis. But, the poly-
nomial time results over pure CGSs and rectangular CGSPs, given in
Section 10.1, do for example not hold for CSLP.

(b) In particular, we would like to note that the model checking algorithm
for L1

CSLP(Agt, Π, ∅) over pure ICGS (i.e without hard-wired plausibility
terms) can also only be shown to be in ∆P

i+5. That is, Theorem 10.29
cannot be applied.

(c) Due to the flaw in the calculation of the nesting level pointed out in Re-
mark 10.26 also the model checking result from [Bulling and Jamroga,
2009b] are affected. We can only prove the upper bound ∆P

i+5 instead of
∆P

i+3.

10.4 ATL with Probabilistic Success

In this section, we discuss the complexity of model checking the logics
pATLMMS and pATLBS .

We have presented two alternative semantics for the logic, underpinned by
two different ways of assuming the opponents’ behaviour. The semantics based
on mixed strategies seems to be the simpler of the two, as the success measure
is based on a finite probability distribution, and hence can be computed as
a finite sum of elements. In contrast, the semantics based on behavioural
strategies refers to an integral of a continuous probability distribution – so
one might expect that checking formulae LpATL in the latter case is much
harder. Surprisingly, it turns out that the reality is completely opposite.

10.4.1 pATLMMS

We study the model checking problem with respect to the number of tran-
sitions in the model (m) and the length of the formula (l). As the number
of memoryless strategies is usually exponential in the number of transitions,
we need a compact way of representing mixed strategies (representing them
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Fig. 10.11. The concurrent epistemic game structure for formula F ≡ (x1 ∨ ¬x3 ∨
x4) ∧ (x1 ∨ x2 ∨ x3). States q11, q21 and q12, q23 are indistinguishable for the agent:
the same action (valuation) must be specified in both within a uniform strategy.

explicitly as arrays of probability values would yield structures of exponen-
tial size). For the rest of this section, we assume that a mixed strategy is
represented as a sequence of pairs [〈C1, p1〉, . . . , 〈Cn, pn〉], where the length of
the sequence is polynomial in m, and l, every Ci is a condition on strategies
that can be checked in polynomial time wrt m, l, and every pi ∈ [0, 1] is a
probability value with a polynomial representation wrt m, l. For simplicity,
we assume that conditions Ci are mutually exclusive. The idea is that the
probability of strategy s is determined as p(s) = pi by the condition Ci which
holds for s; if no Ci holds for s then the probability of s is 0. We also assume
that the distribution is normalised, i.e.,

∑
s∈Σ p(s) = 1 where p(s) denotes

the probability of s determined by the representation given above.
In this setting, model checking LpATL with mixed memoryless strategies

turns out to be at least PP-hard, where PP (“Probabilistic Polynomial time”)
is the class of decision problems solvable by a probabilistic Turing machine
in polynomial time, with an error probability of less than 1/2 for all in-
stances [Gill, 1977] (cf. Definition 4.4). We prove it by a polynomial-time
reduction of “Majority SAT” (see Definition 4.17), a typical PP-complete
problem. Since PP contains both NP and co-NP [Beigel et al., 1995] (cf.
Theorem 4.6), we obtain NP-hardness and co-NP-hardness as an immediate
corollary.

Proposition 10.61. Model checking pATLMMS is PP-hard.

Proof. We prove hardness by a reduction of MAJSAT. First, we take the
Boolean formula F and construct a single agent concurrent epistemic game
structure M in a way similar to [Schobbens, 2004]. The model includes 2
special states: q> (the winning state) and q⊥ (the losing state), plus one state
for each literal instance in F . The “literal” states are organised in levels,
according to the clause they appear in: qij refers to the jth literal of clause i.
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At each “literal” state, the agent can declare the underlying proposition true
or false. If the declaration validates the literal, then the system proceeds to
the next clause; otherwise it proceeds to the next literal in the same clause.
For example, if q12 refers to literal ¬x3, then action “true” makes the system
proceed to q13 (in search of another literal that would validate clause 1), while
action “false” changes the state to q21 (to validate the next clause). In case
the last literal in a clause has been invalidated, the system proceeds to q⊥;
when a literal in the last clause is validated, a transition to q> follows. There
is a single atomic proposition win in the model, which holds only in state q>.
An example of the construction is shown in Figure 10.11.

Two nodes with the same underlying proposition are connected by an
indistinguishability link to ensure that strategies consistently assign variables
x1, . . . , xn with Boolean values. To achieve this, it is enough to require that
only uniform strategies are used by the agent; a strategy is uniform iff it
specifies the same choices in indistinguishable states. Now we observe the
following facts:

• There is a 1-to-1 correspondence between assignments of x1, . . . , xn and
uniform strategies of the validating agent. Also, each uniform strategy s
determines exactly one path λ(s) starting from q11;

• By the above, the number of uniform strategies is equal to the number
of different assignments of x1, . . . , xn. Thus, there are D = 2n uniform
strategies in total;

• A uniform strategy successfully validates F iff it enforces path λ(s) that
achieves q>, i.e., one for which λ(s) |= ♦win;

• Uniformity of a strategy can be checked in time polynomial wrt m (the
number of transitions in the model). Let C be an encoding of the unifor-
mity condition; then, mixed strategy [〈C, 1

D 〉] assigns the same importance
to every uniform strategy and discards all non-uniform ones. We define
symbol ω to denote that strategy.

Finally, we have the following reduction:
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MAJSAT(F)=YES

iff
# assignments V of x1, . . . , xn such that V |= F

# all assignments of x1, . . . , xn
> 0.5

iff
# uniform strategies s such that λ(s) |= ♦win

# all uniform strategies
> 0.5

iff
# uniform strategies s such that λ(s) 6|= ♦win

# all uniform strategies
< 0.5

iff not
# uniform strategies s such that λ(s) 6|= ♦win

# all uniform strategies
≥ 0.5

iff not
# uniform strategies s such that λ(s) |= �¬win

# all uniform strategies
≥ 0.5

iff not success(s∅, [[ω]]1, q11,�¬win) ≥ 0.5

iff M, q11 |= ¬〈〈∅〉〉0.5ω �¬win.

�

Corollary 10.62. Model checking pATLMMS is NP-hard and co-NP-hard.

For the upper bound, we present a PSPACE algorithm for model check-
ing pATLMMSs. The algorithm uses an NP#P procedure, i.e., one which
runs in nondeterministic polynomial time with calls to an oracle that counts
the number of accepting paths of a nondeterministic polynomial time Tur-
ing machine [Valiant, 1979]. The class NP#P is known to lie between PH
and PSPACE [Toda, 1989; Angluin, 1980]. That PH ⊆ NP#P follows
from Theorem 4.7 and Theorem 4.9. That NP#P ⊆ PSPACE follows
from P#P ⊆ PSPACE and the observation that NP#P ⊆ NPP#P ⊆
NPPSPACE = PSPACE.

Theorem 10.63. Model checking pATLMMS is in PSPACE for the class of
pCGSs which allows a presentation of the predicted behaviour as introduced
above.

Proof. Let γ be a path formula that does not include cooperation modalities.
The following procedure checks if M, q |= 〈〈A〉〉pσγ:
1. Nondeterministically choose a strategy sA of agents A; /requires at most m

steps/
2. For each 〈Ci, pi〉 ∈ [[σ]], execute Ti := oracle(sA, Ci); /polynomially many calls/
3. Answer YES if

∑
i piTi ≥ p and NO otherwise. /computation polynomial in the

representation of pi and Ti/
The oracle computes the number of Agt\A’s strategies tAgt\A such that tAgt\A
obeys Ci and 〈sA, tAgt\A〉 generate a path that satisfies γ. That is, the oracle
counts the accepting paths of the following nondeterministic Turing machine:
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1. Nondet. choose a strategy tAgt\A of agents Agt \A; /requires at most m steps/
2. Check whether tAgt\A satisfies Ci; /polynomially many steps/
3. If so, “trim” model M by removing choices that are not in 〈sA, tAgt\A〉,

then model-check the CTL formula Aγ in the resulting model and return
the answer of that algorithm; otherwise return NO. /m steps + CTL model

checking which is polynomial in m, l [Clarke and Emerson, 1981]/

The main procedure runs in time NP#P, and hence the task can be done
in polynomial space. For the case when γ includes nested strategic modalities,
the procedure is applied recursively (bottom-up). That is, we get a determin-
istic Turing machine with adaptive calls to the PSPACE procedure. Since
PPSPACE = PSPACE, we obtain the upper bound. �

10.4.2 Model Checking pATLBS

The semantics of pATLBS with opponents’ behaviour modelled by behavioural
strategies is mathematically more advanced than for mixed strategies. So, one
may expect the corresponding model checking problem to be even harder than
the one we studied in Section 10.4.1. Surprisingly, it turns out that checking
pATLBS can be done in polynomial time wrt the number of transitions in the
model (m) and the length of the formula (l). Below, we sketch the procedure
mcheck(M, q, ϕ) that checks whether M, q |= ϕ:

• ϕ ≡ p, ¬ψ, or ψ1 ∧ ψ2: proceed as usual;
• ϕ ≡ 〈〈A〉〉pσ�ψ: (for ϕ ≡ 〈〈A〉〉pσ© ψ and ϕ ≡ 〈〈A〉〉pσψ1Uψ2 analogously)

1. Model check ψ in M recursively. Replace ψ with a new proposition yes
holding in exactly those states st ∈ Q for which mcheck(M, st, ψ) =
YES;

2. Reconstruct M as a 2-player CGSP M′ with agent 1 representing
team A and 2 representing Agt \ A. That is, d′1(st) =

∏
a∈A da(st),

d′2(st) =
∏
a∈Agt\A da(st) for each st ∈ Q , and the transition function

o′ is updated accordingly.
3. Fix the behaviour of agent 2 in M′ according to [[ω]]Agt\A. That is,

construct the probabilistic transition function o′′ so that, for each
st, st′ ∈ Q , α1 ∈ d′1(st): o′′(st, α1, st

′) =
∑
{α2∈d′2(st)|o′(st,α1,α2)=st′}

[[ω]]Agt\A(st, α2). Also, reconstruct proposition yes as a reward function
that assigns 1 at state st if yes ∈ π′(st) and 0 otherwise. Note that the
resulting structure M′′ is a Markov Decision Process [Bellman, 1957];

4. Model check the formula ∃�yes of “Discounted CTL” [de Alfaro et al.,
2004] in M′′, q and return the answer. This can be done in time polyno-
mial in the number of transitions in M′′ and exponential in the length
of the formula [de Alfaro et al., 2004]. Note, however, that the length
of ∃�yes is constant.
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As parts 2-4 require O(m) steps, and they are repeated at most l times (once
per subformula of ϕ), we get that the procedure runs in time O(ml).

For the lower bound, we observe that reachability in And-Or-Graphs [Im-
merman, 1981] can be reduced (in constant time) to model checking of the
fixed LATL formula 〈〈a〉〉♦p over acyclic CGSs (cf. [Alur et al., 2002]). Alter-
natively, one can reduce the Circuit Value Problem [Vollmer, 1999] to ATL
model checking over acyclic CGSs in a similar way. By Proposition 7.58, this
reduces (again in constant time) to model checking of pATLBS . Therefore, we
get the following result.

Theorem 10.64. Model checking pATLBS is P-complete with respect to the
number of transitions in the model and the length of the formula.

Thus, it turns out that the model checking problem associated with the
more sophisticated semantics can be done in linear time wrt the input size,
while model checking the seemingly simpler semantics is much harder (NP-
and co-NP-hard).
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In this chapter we consider the complexity of the model checking problem
of the resource-bounded logics introduced in Chapter 8. We show that the
single-agent case is decidable for the least expressive version of the resource-
bounded tree logics and that the multi-agent settings are undecidable in gen-
eral.

11.1 Model Checking RTL? in Restricted Settings

We are mainly interested in the verification of systems. Model checking refers
to the problem whether a formula ϕ is true in an RBM M and a state q in
M. For CTL? this problem is PSPACE-complete and for CTL, the fragment
of CTL? in which each temporal operator is directly preceded by a path
quantifier, it is P-complete [Clarke et al., 1986]. So, we cannot hope for our
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problem to be computationally any better than PSPACE in the general
setting; actually, it is still open whether it is decidable at all.

In the following, we consider the decidability of fragments of the full logic
over special classes of RBMs (which of course, implies decidability of the
restricted version over the same class of models).

Proposition 11.1 (Decidability: Production -, zero free). The model
checking problem for RTL?Res± over production- and zero-free RBMs is de-
cidable.

Proof. Let 〈ρ〉γ be given where γ does not contain any more path quanti-
fiers. According to Prop. 8.23(a) all ρ-feasible paths have the form λ′ ◦ (q)ω.
Lemma 8.33 allows us to restrict to a finite set of such paths for a given γ: For
any path λ we consider λ[|γ|]. Therefore, there are only finitely many ρ-feasible
paths of interest for ρ ∈ Res± and γ.

This set can be computed step by step. In order to verify whether M, q |=
〈ρ〉γ it is necessary to check whether γ holds on any of the finitely many ρ-
feasible relevant paths starting in q. The model checking algorithm proceeds
bottom-up. �

From Corollary 8.32 we know that we can use a CTL? model checker over
k-bounded models.

Proposition 11.2 (Decidability: k-bounded). The model checking prob-
lem for RTL?Res± over k-bounded RBMs is decidable and PSPACE-hard.

By Prop. 8.25 and the observation that resources with an infinite quantity
can be neglected in a production-free RBM we have the following theorem.

Theorem 11.3 (Decidability: production free). The model checking prob-
lem for RTL? over production-free RBMs is decidable and PSPACE-hard.

11.2 Model Checking RTL is Decidable

The following result shows that model checking RTL is decidable.

11.2.1 RBMs and Petri Nets

The main idea is to encode an RBM as a Petri net and then to use decision
procedures for Petri nets to solve the model checking problem.

We can encode an RBM M with respect to a given set Q′ ⊆ QM, and
a feasible resource set ρ as a Petri net NQ′,ρ(M) = (S, T,W,mI). The main
idea of encoding transitions is sketched in Figure 11.1. States q are encoded
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Fig. 11.1. Petri-net encoding N{qi},ρ(M) of an RBM M. Tokens inside the places rk
represent the amount of that resource (i.e., ρ(r1) = 3 and ρ(r2) = 1). Outgoing paths
consume tokens and incoming paths produce tokens, labeled edges produce/consume
the amount the edge is annotated with. E.g., if there is a token in place pqi and ck
tokens in place rk then the token can be moved to pqj and pk tokens can be moved
to rk for k = 1, 2.
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Fig. 11.2. Example of a complete encoding of an RBM M where ρ(r1) = 3.

as places pq and transitions between states as transitions between places. For
each resource type a new place is created. For the initial marking function
mI we have that mI(pq) = 1 for all q ∈ Q ′, mI(r) = ρ(r) for r ∈ Res, and
0 otherwise. A complete encoding of an RBM is shown in Figure 11.2. We
denote (the unique) transition between place pqi and pqj by tqiqj . (We are
economical with our notation and reuse t already known from RBMs.)

Lemma 11.4. Let ρ be a feasible resource set, M an RBM, and q ∈ QM.
Then, the following holds:

q0q1 . . . is a ρ-feasible path in (M, q) iff σ = tq0q1tq1q2 . . . is a run in
N{q0},ρ(M).

Proof. The proof is done by induction on the length i of the path and run,
respectively. Consider the case i = 2. Suppose the transition (q0, q1) is ρ-
feasible and η1 resources are available in q1. By construction each resource
state ri contains ρ(ri) tokens and there is a token in pq0 ; thus, transition tq0q1
can fire. Clearly, the tokens in the resource places (i.e. m1) match with the
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pq1pq0
t

t̂

pϕpS

ϕM

N{q0},ρ(M, {q0}, ϕ)

q0 q1

Fig. 11.3. The encoding N{q0},ρ(M, {q0}, ϕ) of an RBM M. The resource require-
ments are left out here.

resources available in q1. Now suppose the claim is correct up to position j.
Then, it is easily seen that a transition qj → qj+1 is feasible iff the transition
tqjqj+1 can fire. �

In order to model check specific formulae, we need to extend our encoding.
For example, consider the formula 〈ρ〉♦ϕ where ϕ is a propositional formula
and ρ a feasible resource set. We can decompose the model checking problem
into two parts:

1. Find a (finite) sequence of states feasible given ρ to a state in which ϕ
holds; and

2. then arbitrarily extend this (finite) sequence to an infinite ρ-feasible path.

To achieve this, we introduce a new place that indicates (by marking it
with a token) that ϕ has been made true. This place remains marked through-
out the subsequent executions of the net and hence serves as an indicator of
item 1 having been satisfied. To achieve this, given a propositional formula
ϕ we extend the encoding N{q0},ρ(M) of M to an encoding N{q0},ρ(M, Q′, ϕ)
where Q′ ⊆ Q as explained in the following. The new Petri net is equal to
N{q0},ρ(M) apart from the following modifications (Figure 11.3 illustrates the
construction):

1. N ′ has two new places pS and pϕ.
2. For each transition t in N(M) that corresponds to a transition q → q′ in

M such that q ∈ Q′ and q′ |=prop ϕ we construct a duplicate with the fresh
name t̂ and include the following arcs: pS is connected to t; t and t̂ are
connected to pϕ; and pϕ is also connected to t̂; i.e. W (pS , t) = W (t, pϕ) =
W (pϕ, t̂) = W (t̂, pϕ) = 1.

3. pS is initially marked.

The following proposition is clear from the construction of the net
N{q0},ρ(M, {q0}, ϕ).
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Fig. 11.4. The encoding N©{q0},ρ(M, {q0}, ϕ) of an RBM M. The resource require-
ments are left out here.

Proposition 11.5. The constructed Petri net N{q0},ρ(M, {q0}, ϕ) has the fol-
lowing properties:

1. A transition t can only be enabled if there is a token in pS.
2. Once such a transition t has fired it can never be enabled again and there

is a token in pϕ
3. A transitions t̂ can only be enabled if there is a token in pϕ.
4. Once there is a token in pϕ it remains there forever.
5. pS and pϕ contain at most one token and there is a token in pS iff there

is no token in pϕ.

Additionally, for the next-operator we extend the construction and disable,
in the first step, transitions that do not result in a state satisfying ϕ. These
transitions are only enabled if there is a token in pϕ. The net is shown in
Figure 11.4.

The next lemma provides the essential step to use decision procedures for
Petri nets in order to solve the model checking problem.

Lemma 11.6.

(a) M, q0 |= 〈ρ〉♦ϕ iff there is a run in N♦ on which there is a token in pϕ
at some moment where N♦ is the Petri net that equals N{q0},ρ(M, QM, ϕ)
with the exception that the initial token in pS is in pϕ instead iff q0 |=prop

ϕ.
(b) M, q0 |= 〈ρ〉©ϕ iff there is a run in N©{q0},ρ(M, {q0}, ϕ) on which there is

a token in pϕ at some moment.
(c) M, q0 |= 〈ρ〉�ϕ iff there is a run in N� on which there never is a token

in p¬ϕ where N� is the Petri net that equals N{q0},ρ(M, QM,¬ϕ) with the
exception that the initial token in pS is in p¬ϕ instead iff q0 6|=prop ϕ.
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Fig. 11.5. Extending the RBM M to MU for ϕUψ.

Proof. (a) Let λ be a ρ-feasible path satisfying ♦ϕ and let i be the minimal
index on λ with λ[i] |= ϕ. By Lemma 11.4 there is a corresponding run in the
PN. Particularly, there is a token in pS before the transition ti = tλ[i]λ[i+1]

fires and no token in pϕ (apart from the case q0 |=prop ϕ). Thus, once ti has
fired there is a token in pϕ. The other direction is proven analogously.

(b) The left to right direction is handled as in (a). For the other direction
we observe that only transitions to ϕ-states are enabled at the beginning. If
such a transition has fired all other transitions are enabled as well. Then, the
claim follows with Lemma 11.4.

(c) Let λ be a ρ-feasible path satisfying �ϕ. In the net a token can only
be in p¬ϕ if a transition yielding to a state satisfying ¬ϕ is executed. As such
a transition does never fire on the run corresponding to λ there never is a
transition in p¬ϕ on this very run. Analogously, if there is a run such that
there never is a token in p¬ϕ this corresponds to a path containing no states
not satisfying ϕ.

�

It remains to link the “until” case to Petri nets. For this, we consider the
problem whether M, q0 |= 〈ρ〉ϕUψ. Let Mϕ be the restriction of M to states
in which ϕ holds. Now, MU is the model that glues together Mϕ with M as
follows: Each state q in Mϕ is connected to a state q′ ∈M if q →M q′ and q′

satisfies ψ. The construction is illustrated in Figure 11.5. States are relabelled
if necessary.

Lemma 11.7. Suppose q0 |=prop ϕ (the other cases are trivially decidable).
M, q0 |= 〈ρ〉ϕUψ iff there is a run in NU on which there is a token in pψ
at some moment where NU is the Petri net that equals N{q0},ρ(M

U , QMU , ψ)
with the exception that the initial token in pS is in pψ instead iff q0 |=prop ψ.

Proof. The construction ensures that only states satisfying ϕ are visited until
a state ψ is visited. The rest follows from Lemma 11.6(a). �
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11.2.2 Decidability result

Finally, we show that the questions about Petri nets which were introduced
in the previous two lemmata can be decided. Therefore, we reduce model
checking to the extended reachability problem [Jančar, 1990] introduced in
Definition 4.59; the latter was shown to be decidable (cf. Theorem 4.60). We
have the following reductions.

Lemma 11.8. Assume the same notation as in Lemma 11.6 and 11.7.

(a) There is a run in N© on which there is a token in pϕ at some moment iff
(N©, ({pϕ}, f1)) is in ExtReach where f1 is the constant function 1.

(b) There is a run in N♦ on which there is a token in pϕ at some moment iff
(N♦, ({pϕ}, f1)) is in ExtReach where f1 is the constant function 1.

(c) There is a run in N� on which there never is a token in p¬ϕ iff
(N�, ({p¬ϕ}, f0)) is in ExtReach where f0 is the constant function 0.

(d) There is a run in NU on which there is a token in pψ at some moment iff
(NU , ({pψ}, f1)) is in ExtReach where f1 is the constant function 1.

Proof. (a) From Proposition 11.5 we observe the following. There is a run on
which there is a token in pϕ at some moment iff there is a run on which there
is a token in pϕ infinitely often iff there is a run on which there is exactly one
token in pϕ infinitely often iff (N©, ({pϕ}, f1)) is in ExtReach.

(b-d) These cases are handled analogously. �

Thanks to Lemma 11.8 we obtain the following decidability result.

Theorem 11.9. The model checking problem for RTLRes⊕ over RBMs is
decidable.

Proof. Let 〈ρ〉γ be a formula such that γ does not contain any more path quan-
tifiers. According to Lemma 11.6 we can reduce the model checking problem
M, q |= 〈ρ〉γ to a reachability problem over Petri nets. In turn, this problem
can be reduced to the ExtReach problem (cf. Definition 4.59) by Lemma 11.8.
The decidability of the model checking problem follows from the decidability
of ExtReach (cf. Theorem 4.60). �

Remark 11.10. We note that if a marking is reachable an appropriate sequence
of transitions is constructed; this sequence can also be used to construct an
appropriate κ for the κ-model cover graph (cf. Section 8.2.1). One simply
takes the maximum of all markings of all resource types along this sequence.
If the state is not reachable, κ is chosen arbitrarily (cf. Remark 8.30 and
Example 8.18).
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Fig. 11.6. Example of a PN construction for non-feasible resource sets: The left-
hand RBM with a single resource r with ρ(r) = −d is converted to the right-hand
PN.

We extend the previous construction to be able to deal with non-feasible
resource sets and get the main result.

For non-feasible initial resource sets, we can still have a feasible path, in
case no resources with negative amount are ever required in the run (resources
can still be produced!).

We encode a non-feasible resource set by splitting each resource place r of
the Petri net into a place for a positive number of resources, r, and a place
for a negative number of resources, r−.

Further, we need to ensure in our net, that whenever resources are pro-
duced a positive number of tokens is placed on the positive resource place
(only if no tokens are present in the negative resource place) or a number of
tokens is removed from the negative resource place. Combinations are possi-
ble, if the number of resources produced is larger than the negative number
of resources currently available. In the latter case all resources are removed
from the negative resource place and the remaining difference is placed into
the positive place. Therefore, we introduce a special resource control state,
rctrl, that “deactivates” the new part of the construction once a non-negative
amount of resources is available.

In the following we will describe the construction in detail. Consider the
transition of an RBM at the left-hand side of Figure 11.6. For simplicity,
we only consider a single resource-type r. The transition consumes zero units
of r and produces u units (note, that if the transition does also consume of
this resource type we take the standard construction from Theorem 11.9).
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Suppose, we would like to model check a formula 〈ρ〉γ with ρ(r) = −d, that
is, there is an initial debt of d units of resource r. Firstly, we add a transition
tqiqj from pqi to qqj which is only enabled if there are d units in the resource
control state rctrl and a token on pqi . We add u transitions t1, . . . , tu; u − 1
places p1, . . . , pu−1; and u − 1 intermediate transitions tp

1
, . . . , tp

u−1
. Their

connections are shown in the right-hand part of Figure 11.6. Each transition
ti can only be enabled if there is a debt of resources (i.e. tokens in r−). Such
a transition takes one token from r− and moves it to the control state rctrl.
Once, there are d tokens in the control state the transitions tp

i

can be enabled
(while ti can no longer be enabled) and the remaining produced resources are
added to the resource place r. The net has the following properties.

Proposition 11.11.

1. There are x tokens in r− iff there are d−x token in rctrl for x ∈ {0, . . . , d}.
(That is, r− and rctrl are complementary places.)

2. Transitions tqiqj and tp
1
, . . . , tp

u−1
can only fire if there are d tokens in

rctrl.
3. The number of tokens in rctrl is bounded by d and it is monotonically

increasing.
4. The number of tokens in r− is monotonically decreasing.
5. If there is a token in place pqi and there are d tokens in rctrl only the

transition tqiqj is enabled.
6. There can only be tokens in r if there are no tokens in r−.

Proof.

1. Firstly, observe that for any transition ti a token is removed from r− and
added to rctrl and there is no other way how resources can be consumed
form r− and all other transition producing/consuming from rctrl in turn
consume/produce the same amount.

2. Obvious.
3. Obvious as only the transitions ti can add resources; for all other transi-

tions the number of tokens remains constant.
4. Obvious.
5. In this case, the firing of tqiqj only depends on whether there is a token

in pqi . Moreover, there are no tokens in r−; hence, all transitions ti are
disabled.
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6. Tokens can only be added to r if transitions tp
i

or transition tqiqj fire.
These transitions are only enabled if there are d tokens in rctrl but then
there are no tokens in r−.

�

The next lemma shows that the net works as intended. The result follows
from the previous proposition.

Lemma 11.12.

1. Let there be a token in pqi , d
′ ≤ d tokens in r−, d−d′ tokens in rctrl, and

no tokens in r. Let σ be the minimal length firing sequence such that there
is a token in pqj . Then, after executing σ there are max{0, d′ − u} tokens
in r−, min{d, d− d′ + u} tokens in rctrl, and max{0, u− d′} tokens in r.

2. On the other hand, if there is a token in pqi , d tokens in rctrl, zero tokens
in r− and k tokens in r then, after executing σ there are k + u tokens in
r, d tokens in rctrl, and zero tokens in r−.

Proof. Assume the conditions of the lemma are satisfied.

1. We consider the possible cases for d′.
d′ = d. Firstly, let us assume that d′ = d. Then, there are no tokens in

rctrl. Only transition t1 can fir, a token is added to rctrl and removed
from r−. The transitions t1, . . . , tm fire for the next m := min{d, u}
steps. Suppose d < u. Once place pd is reached, there are d tokens in
rctrl and 0 tokens in r−. Transition tp

d

fires and u− d = u− d′ tokens
are added to r, one token to pqj , 0 = max{0, d′ − u} tokens are in r−

and d = min{d, u} tokens are in rctrl.
Now suppose d ≥ u. Then t1, . . . tu fire and there is a token in pqj ,
d − u = max{0, d′ − u} tokens in r−, u = min{d, u} tokens in rctrl,
and 0 = max{0, u− d′} tokens in r.

d′ = 0. In this case there are d tokens in rctrl. Transition tqiqj fires and
there are u tokens in r and one token in pqj as stated in the lemma.

0 < d′ < d. There are d − d′ tokens in rctrl. Then, transitions t1, . . . tm

with m = min{d′, u} fire. Let d′ < u. Once place pd
′

is reached, there
are d = d−d′+d′ tokens in rctrl and 0 tokens in r−. Transition tp

d′
fires

and u−d′ tokens are added to r, one token to pqj , 0 = max{0, d′−u}
tokens are in r− and d = min{d, d− d′ + u} tokens are in rctrl.
Now suppose d′ ≥ u. Then t1, . . . tu fire and there is a token in pqj ,
d′ − u = max{0, d′ − u} tokens in r−, d− d′ + u = min{d, d− d′ + u}
tokens in rctrl, and 0 = max{0, u− d′} tokens in r.

2. Let there be a token in pqi , d tokens in rctrl, zero tokens in r− and k
tokens in r. Then, tqiqj fires and there are k + u tokens in r and a token
in pqj . The number of tokens in r− and rctrl remains the same.
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�

We combine the construction of Section 11.2.1 with the extended construc-
tion sketched above. If there is an initial debt of a resource type r and the net
consumes from this resource, the encoding of a transition shown in Figure 11.1
is replaced by the one given in Figure 11.6. Hence, the setting of non-feasible
resource sets reduces to the feasible one. Thanks to Theorem 11.9 we obtain
the following result:

Theorem 11.13 (Model Checking RTL: Decidability). The model check-
ing problem for RTL over RBMs is decidable.

11.3 Resource-Bounded Agent Logic

In this section we analyse the model checking problem and consider how the
variously restricted settings influence its complexity. It is well known that
the model checking problems for ATLIR, ATL∗IR, and ATL∗IR are P-complete,
PSPACE-, and 2EXPTIME-complete, respectively (cf. Section 5.3). Model
checking RTL has been shown decidable in [Bulling and Farwer, 2010a] (cf.
Section 11.2), and the same holds for RBCL [Alechina et al., 2009b]. Here,
we show that the latter two cases form an exception; the general resource-
bounded settings turn out to be undecidable due to the possibility of producing
resources.

11.3.1 Decidability Results

For both bounded settings introduced in Section 8.4.4 we have that along each
resource extended path there are only finitely many reachable states from
Q × En. Hence, given an endowment, we can ‘unravel’ a given RBAM and
apply standard ATL∗ model checking [Alur et al., 2002] which is proven to be
decidable. The unraveling however may yield finite paths (i.e. states with no
successor) and requires an (straightforward) extension of existing algorithms.

Proposition 11.14. It is decidable to determine whether a given RBAM is
k-bounded for η.

Proof. We apply the cover graph construction for RBMs presented in Defi-
nition 8.13. That is, we build a new model with states drawn from Q × En.
Let qI ∈ Q . Then, we “unravel” the model M from each qI on keeping track
of the resources in the states (q, η′). Once we encounter a new state (q′, η2)
and did already create a state (q, η1) with q′ = q and η2(a, r) ≥ η1(a, r) for all
agents and resources we do not add (q′, η2) but rather add the state (q′, ηω)
with ηω(a, r) = ω for which η2(a, r) > η1(a, r) . We use ω to denote that
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we can create any bounded amount of resources. This construction eventually
converges to a finite structure (also cf. the proof of Theorem 8.20 for details).

Finally, the model is k bounded if in each unraveling for each state q ∈ Q
there is no state (q′, η′) such that there is an agent a and a resource type r
with η(a, r) > k or η(a, r) = ω. �

Theorem 11.15. Model checking RAL∗R (and all other variants discussed
here) is decidable over the class of bounded RBAMs.

Proof. For a given endowment we ‘unravel’ the RBAM such that the states are
given by (q, η) where q is a state of the original model and η an endowment
(cf. the proof of Proposition 11.14). As in a k-bounded model only finitely
many resource-quantities can occur (and the set Q is finite), there are only
finitely many such state/ endowment combinations. Hence, the unraveling
converges at some moment (in comparison to the proof of Proposition 11.14 no
ω-resource quantities have to be introduced). Then, we interpret the LRAL∗ -
formula as LATL∗ -formula and model check it in the resulting CGS. Formulae
are evaluated bottom-up. Since each state is coupled with an endowment also
non-resource-flat formulae can be treated in such a way. We would like to
mention that this procedure is extremely costly. �

Following the same line of reasoning we can prove the next result which
is of practical importance as it allows to obtain a decidable model checking
result for all logics and all RBAMs.

Theorem 11.16. The model checking problem for RAL∗R (and all other vari-
ants discussed here) over the k-bounded semantics is decidable for any k ∈ N.

11.3.2 Two Counter Automata.

The undecidability proofs are done by simulating a two counter automaton
(TCA) A (cf. [Hopcroft and Ullman, 1979]) and a reduction to the halting
problem on empty input (we write A↓ for ‘A halts on empty input’). A TCA
is essentially a (nondeterministic) push-down automaton with two stacks and
exactly two stack symbols (one of them is the initial stack symbol). This kind
of machine has the same computation power as a Turing machine.

Definition 11.17 (Two-counter automaton (cf. [Hopcroft and Ull-
man, 1979])). A TCA A is given by

(S, Γ, sinit, Sf , ∆)

where S is a finite set of states, Γ is the finite input alphabet, sinit ∈ S is the
initial state, Sf ⊆ S is the set of final states, and ∆ ⊆ (S×Γ ×{0, 1}2)×(S×
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{−1, 1}2) is the transition relation such that if ((s, a, E1, E2), (s′, C1, C2)) ∈ ∆
and Ei = 0 then Ci 6= −1 for i = 1, 2 (to ensure that an empty counter cannot
further be decremented). In the case of an empty input, we ignore the alphabet
and assume ∆ ⊆ (S × {0, 1}2)× (S × {−1, 1}2).

A TCA can be considered as a transition system equipped with two coun-
ters that influence the transitions. Each transition step of the automaton may
rely on any of the counters being zero or non-zero and in each step the coun-
ters can be incremented or decremented. It is important to stress that a TCA
can only distinguish between a counter being zero or non-zero. Consider the
transition ((s, E1, E2), (s′, C1, C2)) ∈ ∆. Here, Ei = 1 (resp. = 0) represents
that counter i is non-empty (resp. empty) and Ck = 1 (resp. = −1) denotes
that counter i is incremented (resp. decremented) by 1. The transition encodes
that in state s the automaton can change its state to s′ provided that the first
(resp. second) counter meets condition E1 (resp. E2). The value of counter k
changes according to Ck for k = 1, 2. The transition ((s, 1, 0), (s′,−1, 1) ∈ ∆,
for example, is enabled if the current sate is s, counter 1 is non-empty, and
counter 2 is empty. If the transition is selected the state changes to s′, counter
1 is decremented and counter 2 is incremented by 1.

The general mode of operation is as for pushdown automata. In particular,
a configuration is a triple (s, v1, v2) ∈ S ×N2

0 describing the current state (s),
the value of counter 1 (v1) and of counter 2 (v2). A computation δ is a se-
quence of subsequent configurations that can emerge by transitions according
to ∆ such that the first state is sinit. An accepting configuration is a finite
computation δ = (si, vi1, v

i
2)i=1,...,k where the last state sk ∈ Sf , i.e., it is a

final state. We use δi = ((si, Ei1, E
i
2), (si+1, C

i
1, C

i
2)) ∈ ∆ to denote the tuple

that leads from the ith configuration (si, vi1, v
i
2) to the i + 1st configuration

(si+1, v
i+1
1 , vi+1

2 ) for i < k. In particular, we have that vi+1
j = vij + Cij for

j = 1, 2.

11.3.3 Idea of the Reductions

In order to show that model checking of resource-bounded agent logics is
undecidable, we reduce the halting problem to these logics. The specific con-
struction varies for each logic. In the following we present the general idea.
Detailed proofs can be found in Appendix B.7. Let A = (S, Γ, sinit, Sf , ∆) be
a TCA. We represent the value of the two counters as resource types R1 and
R2, respectively. For each state of the automaton, we add a state to the model
and we label the accepting states in Sf by a proposition halt. The increment
and decrement of counter values are modelled by actions producing and con-
suming from the corresponding resource type. The general idea underlying all
the reductions is as follows (the path formula depends on the specific logic L
considered):
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(?) A↓ iff there is a path in the RBAM along which a path formula γL is
true.

The satisfying path in the RBAM corresponds to an accepting compu-
tation of the automaton. The general mode of operation is straightforward
and only the following difficulty remains: It is not possible to test whether a
counter (i.e. a resource type) is empty in any of the resource-bounded agent
logics. This causes difficulties in the reductions. For example, consider a tuple
((s, 1, 0), (s′,−1, 1)) ∈ ∆. It can only be chosen if the second counter is actually
empty. But, because we cannot directly test whether a resource type is empty,
we need to introduce a workaround. This is the sophisticated part in the reduc-
tions (sometimes easier sometimes harder, depending on the expressiveness of
the used logic). The encoding of a transition r := ((s, E1, E2), (s′, C1, C2))
is a three-step process (cf. Figure 11.7). In a state s of the RBAM (we are
economic and use the same notation for elements of the model and the au-
tomaton) an agent performs an action 〈E1, E2〉 in order to ‘select’ r. This
results in a ‘test’ state sE1E2 . In this state, an action 〈s′, C1, C2〉 with resource-
costs corresponding to the values of Ci can be executed (i.e. the action pro-
duces/consumes Ci resources of Ri). Clearly, such an action is only successful
if sufficient resources are available. The check whether a counter/resource type
is empty or not, takes place at the intermediate state sE1E2 . In these states,
a non-cost-free action tk1k2 for ki ∈ {0,−1, 1} leading to an ‘error state’ qe is
available. Thus, if a counter should be zero according to the transition t; then,
such a test action must not be performable. Hence, (?) can be refined to the
following:

(??) A↓ iff there is a path in the RBAM such that eventually halt and
along which there is no way to reach the error state qe.

Intuitively, if the error state cannot be reached along a path the selection
of transitions is valid in the sense described above (i.e. it corresponds to an
accepting computation of the automaton).
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11.3.4 Undecidability: Non-Flat Languages.

We begin with specialised settings for non-flat languages. In the case of RALr
we test whether there is a path such that eventually halt and in no state a
transition to err is possible. In order to test whether the error state can be
reached we make use of the non-resource-flatness of the logic. Formally, we
show:

A↓ iff MA, sinit, η0 |=r ¬〈〈∅〉〉η0Agt¬((¬〈〈∅〉〉 © ¬err)Uhalt).

The endowment η0 equips agents with no resources.

Theorem 11.18. Model checking RALr is undecidable, even in the single
agent case; hence also, RAL+

r and RAL∗r are undecidable.

The complete proof is given on page 325.
In the previous case it was essential to keep track of the resources of

the opponent. Here, we show that also the proponent-restricted setting is
undecidable if we allow perfect recall strategies. A perfect recall strategy of
the proponent is used to encode the computation of the automaton. Similar
to Theorem 11.18, we obtain the following reduction:

A↓ iff MA, sinit, η0 |=R 〈〈1〉〉η0((¬〈〈1〉〉 © err)Uhalt).

Theorem 11.19. Model checking pr-RALR (even without the release op-
erator) is undecidable in the single-agent case; hence, also pr-RAL+

R, pr-
RAL∗R,RALR, RAL+

R, and RAL∗R are undecidable.

The complete proof is given on page 326.
For the next setting, the proponent has once again no memory available.

In turn, an additional agent (opponent agent 2) is used to model the compu-
tation (as in Theorem 11.18) and the proponent (agent 1) keeps track of the
resources (as in Theorem 11.19). It is important to note that the language is
not resource-flat. The idea of the construction is shown in Figure 11.8. Then,
we have that

A↓ iff MA, sinit, η0 |=r ¬〈〈1〉〉η0¬((¬〈〈2〉〉 © 〈〈1〉〉 © err)Uhalt).

Theorem 11.20. Model checking pr-RALr is undecidable for models with at
least two agents; hence, also pr-RAL+

r and pr-RAL∗r are undecidable.

The complete proof is given on page 327.
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11.3.5 Undecidability: Resource-Flat Languages
Resource-flat logics seem less difficult to verify. In the reduction it is not
possible to have nested operators in order to verify whether the resources in
a state are actually zero (compare the techniques introduced in the above);
more precisely, in the formula 〈〈1〉〉η0((¬〈〈1〉〉© err)Uhalt) the test whether the
error state is reachable modelled by the second cooperation modality used the
resources available at that very moment. Such scenarios cannot be modelled
with resource-flat languages.

We show that the perfect recall scenario and two agents can be used to
‘overcome this limitation’. The proponent (agent 1) is used to simulate the
computation of the automaton where the opponent (agent 2) tries to enter
the error state in each test state; hence, no nested cooperation modality is
needed. The setting is similar to the one shown in Figure 11.7 extended with
a second agent. We show:

A↓ iff MA, sinit, η0 |=R 〈〈1〉〉η0Agt♦halt.

Theorem 11.21. Model Checking rf -RALR is undecidable for models with at
least two agents; thus, also rf -RAL+

R and rf -RAL∗r are undecidable.

The complete proof is given on page 328.
At present, the decidability of the resource-flat and proponent-restricted

versions of L
RAL+ and LRAL with the standard semantics are open. However,

by using the apparently stronger infinity-semantics (|=∞R ) we can prove the un-
decidability of rf -pr -LRAL and thus also of rf -pr -RAL∗R by Proposition 8.54.
We do this by showing

A↓ iff MA, sinit, η0 |=∞R 〈〈1〉〉η0(¬err)Uhalt.

The construction is sketched in Figure 11.9. Essentially, the opponent (agent
2) may decide to enter the ‘test loop’ in sE1E2 . This ‘bad’ loop can only be
avoided if agent 1 chooses good transitions of the automaton. Finite dead-end
paths are disregarded thanks to the infinity-semantics.

Theorem 11.22. Model Checking rf -pr-RAL∗R, rf -pr-(LRAL,|=∞R ), and rf -
pr-(LRAL,|=∞R ) is undecidable for models with at least two agents.

The complete proof is given on page 329.
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LRAL∗ LRAL+ LRAL pr -LRAL∗ pr -L
RAL+ pr -LRAL

|=R U1 U1 U1 U1 U1 U1

|=r U1 U1 U1 U2 U2 U2

rf +|=R / |=∞R U2 U2 U2 U2/ U2
∞ ? / U2

∞ ? / U2
∞

rf +|=r ? ? ? ? ? ?

|=k
R, |=k

r D D D D D D

Table 11.1. Overview of model checking decidability results. Each cell represents
the logic over the language given in the column using the semantics given in the row.
The content of each cell indicates whether the model checking problem is decidable
(D) or undecidable (Ux). x indicates the number of required agents. U2

∞ refers to
the semantics |=∞R .

11.3.6 Overview of the Results

Our analysis, summarised in Table 11.1, shows that the combination of various
settings and languages influences the difficulty of the model checking prob-
lem. Although we do not claim that our results with respect to the number of
agents are optimal they show an interesting pattern. One can often compen-
sate a lack of expressiveness caused by various restrictions on the language or
semantics by taking more agents into account. The most difficult cases seem
to be the ones using the perfect recall semantics. Resource-flatness suggests
to be important for decidable fragments, particularly in combination with
memoryless strategies.

The question for the resource-flat proponent-restricted languages L
RAL+

and LRAL under the R-semantics is still open, while the case is proven undecid-
able if only infinite paths are considered. Also open is the case of resource-flat
languages over the r-semantics. The two bounded settings are shown to be
decidable.

Finally, we would like to mention that the result from Section 11.2 on the
decidability of RTL matches the results presented here, since it corresponds
to the single-agent case of rf -pr -RALR.
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11.4 Summary

Our main objective of this chapter has been the analysis whether it is possible
to verify resource-bounded agents in diverse settings. We have shown that
the single-agent case is decidable for RTL and also for RTL? under various
restrictions. We are particularly interested in finding constraints that would
make the extended logic’s model checking problem efficiently decidable for a
relevant class of MASs.

Moreover, we have also addressed the multi-agent case and have shown
undecidability for many fragments and identified the number of agents needed.
We believe that these results are important and interesting for future work on
strategic abilities under limited resources. Our results have shown that small
changes in the language and semantics may influence whether model checking
becomes decidable or undecidable (cf. for instance, the |=∞r and |=r semantics
over rf -pr -LRAL). We have also considered bounded settings with decidable
model checking problems.
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In this final chapter we summarise related work, present a summary, and
give a brief outlook on directions for future work.

12.1 Related Work: A Summary

We summarise the discussion of related work that has been given throughout
the thesis.

12.1.1 Strategic Ability and Knowledge

In this thesis we have proposed several extensions based on the linear time
logic LTL [Pnueli, 1977], the computation-tree logics CTL and CTL? [Emerson
and Halpern, 1986], and various variants of the alternating time temporal
logics ATL and ATL∗ [Alur et al., 2002, 1997, 1998b] to which we also count
coalition logic [Pauly, 2002]. The focus has been on the latter class of strategic
logics.
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In the last years, ATLs have also attracted a lot of attention by other
researcher. In [Goranko and Jamroga, 2004] it was shown that CGSs and
alternating transition systems provide an equivalent semantics, and that CL
can be seen as the next-time fragment of ATL. Also the expressivity of various
fragments have been considered, it was shown that if the “release” or “weak
until” operator is added to the language of LATL it has the same expressive
power as the syntactically more general logic ATL+ [Bulling and Jamroga,
2010a; Laroussinie et al., 2008; Harding et al., 2002]) but the latter enables a
more succinct encoding of properties (this follows from the results in [Wilke,
1999]). In addition to that, standard issues about logics have been addressed.
In [Goranko and van Drimmelen, 2003] a complete axiomatisation for ATLIR

was presented. The satisfiability problems of ATLIR and ATL∗IR have also been
considered by researchers: The problem was proven EXPTIME-complete
for ATLIR [van Drimmelen, 2003; Walther et al., 2006] and 2EXPTIME-
complete for ATL∗IR [Schewe, 2008]. Axiomatisation and satisfiability of other
variants of alternating time temporal logics still remain open, to the best of
our knowledge.

On top of strategic ability, which is the focal point of ATLs, several exten-
sions capable of dealing with imperfect information have been proposed. A first
variant for incomplete information has been presented in [Alur et al., 2002]. In-
complete information has directly been included in the cooperation modalities
similar to [Schobbens, 2004]; no explicit knowledge operators were introduced.
In the presence of knowledge operators the interplay between strategic ability
and knowledge has turned out very interesting and non trivial. The alternat-
ing time temporal epistemic logic ATEL from [van der Hoek and Wooldridge,
2003] extends ATL by standard epistemic concepts. The logics feasible ATEL
[Jonker, 2003], uniform ATEL [Jamroga, 2003] and alternating time temporal
observational logic [Jamroga and van der Hoek, 2004] are of the same kind
and overcome some problems encountered with ATEL. Similarly, epistemic
temporal strategic logic [van Otterloo and Jonker, 2004] restricts to undomi-
nated strategies. Finally, the logic CSL (constructive strategic logic) has been
proposed in [Jamroga and Ågotnes, 2006, 2007], a very expressive logic that
combines strategic ability and epistemic concepts in a neat way. The latter
comes for the cost of a non-standard semantics.

Related to the interplay of strategic ability and knowledge is also the work
presented in [Broersen et al., 2006]; there, it was shown how cooperation
modalities can be decomposed into two parts in the context of STIT logic.
A similar decomposition is considered in [Jamroga, 2008b] for the analysis of
stochastic multi-agent systems.
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12.1.2 Strategic Ability, Game Theory, and Rationality

ATLs do have a close relationship to basic game-theoretic concepts due to
their semantics which is given in terms of winning strategies. It has been shown
that the semantical models of ATLs, concurrent game structures (CGSs),
have a close relationship to strategic and extensive form games known from
game theory. The correspondence between extensive form games and the se-
mantical models of ATL has been examined in [Jamroga et al., 2005] and was
inspired by [Baltag, 2002; van der Hoek et al., 2005a]. It seems reasonable to
refine ATL in such a way that it takes into account only “sensible” behaviour
of agents. Two logics that can be used to implement these ideas from game
theory directly are game logic with preferences GLP [van der Hoek et al., 2004]
ATLI (“ATL with Intentions”) [Jamroga et al., 2005]. The latter has served
as a motivation for our logic ATLP defined in Section 6.1.

More generally, there seem to be two focal points in this context. Research
within game theory understandably favours work on the characterisation of
various types of rationality (and defining most appropriate solution concepts).
Applications of game theory, also understandably, tend toward using the solu-
tion concepts in order to predict the outcome in a given game (in other words,
to “solve” the game).

The first issue has been studied in the framework of logic, for exam-
ple in [Bacharach, 1987; Bonanno, 1991; Stalnaker, 1994, 1996]; more re-
cently, game-theoretical solution concepts have been characterised in dynamic
logic [Harrenstein et al., 2002, 2003], dynamic epistemic logic [Baltag, 2002;
van Benthem, 2003], and extensions of ATL [van der Hoek et al., 2005a; Jam-
roga et al., 2005].

The second thread seems to have been neglected in logic-based research:
The work [van Otterloo et al., 2004; van der Hoek et al., 2004; van Otterloo and
Roy, 2005; van Otterloo and Jonker, 2004] are the only exceptions we know of.
Moreover, every proposal from [van Otterloo et al., 2004; van der Hoek et al.,
2004; van Otterloo and Roy, 2005; van Otterloo and Jonker, 2004] commits
to a particular view of rationality (Nash equilibria, undominated strategies
etc.).

Game logic from [Parikh, 1985] is another logic about games. It builds
upon propositional dynamic logic (PDL) [Fischer and Ladner, 1979]. The
logic can be used to reason about determined two player games [Blackburn
et al., 2006]. The idea is to interpret PDL operators in a game theoretic
context and to add some new constructs. Several other logic-related methods
have been proposed; e.g., in [van Benthem, 2003] and [Bonanno, 2002].

Another way to incorporate more sophisticated game-theoretic concepts is
to modify the strong semantics of ATLs that share the “all-or-nothing” atti-
tude of many logical approaches to computation, justified by von Neumann’s
maximin evaluation of strategies in classical game theory [von Neumann and
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Morgenstern, 1944]. The logic ATL with probabilistic success which has been
proposed in Section 7.4 softens this rigorous approach to success. Related
work in this context is presented in [Jamroga, 2008a] and [de Alfaro et al.,
2004].

12.1.3 Adding Rationality Concepts to Strategic Logics

In this thesis we have introduced ATLP, a logic which can be used to rea-
son about temporal properties of rational play. The logic has been shown to
be quite expressive. We have proposed embeddings of some related logics,
e.g. of game logic with preferences [van Otterloo et al., 2004; van der Hoek
et al., 2004] (Section 3.2.4) which allows to reason about what can happen un-
der particular game-theoretical rationality assumptions. We observe that our
framework is semantically similar to the approach of social laws [Shoham and
Tennenholz, 1992; Moses and Tennenholz, 1995; van der Hoek et al., 2005b].
However, we refer to strategy profiles as rational or not, while social laws de-
fine constraints on agents’ individual actions. Also, our motivation is different:
In our framework, agents are expected to behave in a specified way because it
is rational in some sense; social laws prescribe behaviour sanctioned by social
norms and legal regulations.

In contrast to [Friedman and Halpern, 1994; Su et al., 2005; Bulling and
Jamroga, 2006], the concept of plausibility presented in this article is objective,
i.e. it does not vary from agent to agent. This is very much in the spirit of game
theory, where rationality criteria are used in an analogous way. Moreover, it
is global, because plausibility sets do not depend on the state of the system.
We note, however, that the denotation of plausibility terms depends on the
actual state.

The imperfect information variant of ATLP, Constructive Strategic Logic
with Plausibility (CSLP), allows us to neatly define the relationship be-
tween epistemic and doxastic concepts, in a similar way as the logic CTLKP
from [Bulling and Jamroga, 2007a]. This logic is a result of extending CTLK
[Penczek and Lomuscio, 2003] by plausibility operators. In CTLKP plausi-
bility assumptions were defined in terms of paths in the underlying system.
Then, an agent’s belief is given by its knowledge if only plausible paths were
considered. The idea to build beliefs on top of plausibility has been inspired
by [Su et al., 2005; Friedman and Halpern, 1994]. Another source of inspira-
tion is [van der Hoek et al., 2004; van Otterloo and Jonker, 2004], where the
semantics of ability was influenced by particular notions of rationality.

We have also considered how rational coalitions may form. For this pur-
pose, we have proposed the logic CoalATL. We have followed an approach
based on [Amgoud, 2005a,b], where an argumentation framework for gener-
ating coalition structures is defined. The approach is a generalisation of the
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framework of Dung for argumentation [Dung, 1995], extended with a prefer-
ence relation. Previous research by Hattori et al. [Hattori et al., 2001] has also
addressed the problem of argument-based coalition formation, but from a dif-
ferent perspective than ours. In [Hattori et al., 2001] the authors propose an
argumentation-based negotiation method for coalition formation which com-
bines a logical framework and an argument evaluation mechanism. The re-
sulting system involves several user agents and a mediator agent. During the
negotiation, the mediator agent encourages appropriate user agents to join
a coalition in order to facilitate reaching an agreement. User agents advance
proposals using a part of the user’s valuations in order to reflect the user’s
preferences in an agreement. This approach differs greatly from our proposal,
as we are not concerned with the negotiation process among agents, and our
focus is on modelling coalitions within an extension of a highly expressive
strategic logic, where coalition formation is part of the logical language.

Modelling argument-based reasoning with bounded rationality has also
been the focus of previous research. In [Rovatsos et al., 2005] the authors pro-
pose the use of a framework for argument-based negotiation, which allows for
a strategic and adaptive communication to achieve private goals within the
limits of bounded rationality in open argumentation communities. In contrast
with our approach, the focus here is not on extending a particular logic for
reasoning about coalitions. Recent research on formalising coalition forma-
tion has been oriented towards adding more expressivity to Pauly’s coalition
logic [Pauly, 2002]. E.g. in [Ågotnes et al., 2007b], the authors define quan-
tified coalition logic, extending coalition logic with a limited but useful form
of quantification to express properties such as “there exists a coalition C sat-
isfying property P such that C can achieve ϕ”. In [Borgo, 2007], a semantic
translation from coalition logic to a fragment of an action logic is defined, con-
necting the notions of coalition power and the actions of the agents. However,
in none of these cases argumentation is used to model the notion of coalition
formation as done in this thesis.

Also related is the work [Prakken and Vreeswijk, 2002; Chesñevar et al.,
2000] in which argumentation frameworks have evolved as a successful ap-
proach to formalise common sense reasoning and decision making in multia-
gent systems (MASs). Application areas include issues such as joint deliber-
ation, persuasion, negotiation, knowledge distribution and conflict resolution
(e.g. [Tang and Parsons, 2005; Rahwan and Amgoud, 2006; Rahwan et al.,
2007; Brena et al., 2007; Karunatillake et al., 2006]), among many others.
Finally, we have extended CoalATL with a goal-based approach as means
for forming coalitions. Goals seem important for widely accepted character-
istics of intelligent agents like pro-activeness and social ability [Wooldridge,
2002]. In BDI frameworks, goals (or desires) and beliefs play an important
role [Bratman, 1987; Rao and Georgeff, 1991] as well. Finally, it has also been
shown that temporal logics like LTL and CTL can be used as goal specification
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languages [Bacchus and Kabanza, 1998; Baral and Zhao, 2007; Baral et al.,
2001].

12.1.4 Resource-Bounded Agents

We pointed out that the modelling and verification of multi-agent systems,
in particular the model checking problem (i.e. whether a given property holds
in a given model), has attracted much attention in recent years. However,
resources are usually not taken into account. The only work we are aware
of in this direction is [Bulling and Farwer, 2010c,a; Alechina et al., 2009b,a,
2010]. Resource-bounded coalition logic (RBCL), an extension of coalition logic
with resources, is introduced in [Alechina et al., 2009b]. This logic can be seen
as a first step towards a multi-agent extension of the resource-bounded tree
logics from [Bulling and Farwer, 2010a] under a restricted temporal setting of
multiple-step strategies (‘sometime in the future‘). Only recently, in [Alechina
et al., 2010] a multi-agent version (RBATL) following the same ideas has been
presented. For both logics the authors allow only the consumption of resources
which is computationally easier and has a decidable model checking property
(cf. Theorem 11.15). The authors of [Alechina et al., 2010] do also propose a
sound and complete axiomatisation of their resource-based extension of ATL
(the logic is called resource-bounded alternating time temporal logic).

RBCL is used in [Alechina et al., 2009a] to specify and to verify properties
about coalitional resource games [Wooldridge and Dunne, 2006]. These are
games in which agents can cooperate and combine their available resources in
order to bring about desired goals.

While most other agent models do not come with an explicit notion
of resources, there is some more recent work that takes resources into ac-
count. In [Shaw et al., 2008] resources in conjunction with reasoning about
an agent’s goal-plan tree have been considered. Time, memory, and commu-
nication bounds have been studied as resources in [Alechina et al., 2008].
In [Ågotnes and Walther, 2009] the abilities of agents under bounded mem-
ory have been analysed. Instead of asking for an arbitrary winning strategy a
winning strategy in their setting has to obey given memory limitations.

In order to show decidability of RTL we have used ideas of cover graphs
[Karp and Miller, 1969] and Petri nets. To show the undecidability of the
multi-agent variants ideas from automata theory, more precisely counter au-
tomata [Hopcroft and Ullman, 1979], have been employed.
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12.2 Summary and Discussion

12.2.1 Summary

In this thesis we have considered formal approaches to model and to reason
about rational agents. In Part I we have presented background material which
has influenced our work or which has been needed for later sections. The
alternating time temporal logics (ATLs) [Alur et al., 2002] have served as the
basic logics underlying most of our proposals.

In Section 3.1 we have discussed the close relation between games and log-
ics and have shown how basic extensions of the ATLs can be used to describe
game-theoretic solution concepts. We have taken this work as a starting point
for our first proposal to reason about rational agents under perfect informa-
tion. Therefore, we have introduced a logic, alternating time temporal logic
with plausibility (ATLP), generalising several of the existing strategic logics
which are related to this game-theoretic context. ATLP allows to reason about
agents assuming that they act rationally according to a criterion specified as
a formula within the object language.

We see the value of this new logic in its expressivity, flexibility, and con-
ceptual simplicity. The logic has been shown to embed several related logics
and to be able to express more sophisticated solution concepts due to the pos-
sibility to quantify over strategies. Differently to other attempts our notion
of rationality has not been hard-coded into the semantics. We have rather
allowed to “plug-in“ any desirable characterisation one considers rational.
Moreover, we have tried to argue that our concept of plausibility should be
understood in a more general context than just rationality (from the game
theoretic point of view). We have also analysed the model checking problems
for various fragments of ATLP. The general problem has been shown to be
PSPACE-complete. However, we have also identified interesting fragments
that reside between P and PSPACE. Hence, the difficulty is a tradeoff be-
tween the logics expressivity and its complexity.

The logic ATLP has been invented to reason about rational agents hav-
ing perfect information about the world. The logic lacks the ability to model
agents which are not completely aware of the current state of the world. How-
ever, incomplete information and knowledge are very present and important
aspects within MASs. To address these issues we have extended ATLP accord-
ingly. The resulting logic constructive strategic logic with plausibility (CSLP)
has been shown to be more than the pure fusion of ATLP with the incomplete
information strategic logic CSL from [Jamroga and Ågotnes, 2007]. We have
shown that CSLP is capable of reasoning about rational agents having incom-
plete information about the world. Moreover, on top of knowledge and the
concept of plausibility / rationality we have defined a neat and non-standard
notion of belief.
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The interplay between knowledge, time and belief has been motivated by
CTLKP from [Bulling and Jamroga, 2007a]. CSLP can be understood as its
multi-agent extension. From a game-theoretical perspective ATLP and CSLP
can be seen as flexible tools to analyse and to reason about extensive form
games with perfect and imperfect information, respectively.

In both classes of logics the focal point has been on the power of a prede-
fined group of agents. The aspect of coalition formation has been neglected;
still, it is possible to compare the power of predefined coalitions. Coalitional
alternating time temporal logic (CoalATL) is yet another extension of ATL
with the motivation to reason about the abilities of rational coalitions. Logics
provide means for modelling and reasoning. Hence, the main conceptual con-
tribution of CoalATL has been the merging of ATL with an argumentative
approach to coalition formation.

We have also analysed the model checking complexity modulo the com-
plexity needed for the procedural part given by the argumentation semantics.
The way in which time and the dynamics of coalition formation have been
combined has resulted in a minimalistic interplay between these concepts.
More sophisticated settings taking into account the temporal dynamics of
coalition formation provide interesting directions for future research.

The logic CSLP captures incomplete information in a specific way namely
how agents perceive facts of the world. Different worlds may provide the same
information to agents and thus appear indistinguishable. However, ATL sug-
gests another interesting possibility to integrate incomplete information. The
semantics underlies the “all-or-nothing“ principle. Agents must be successful
against all opponents’ behaviours, including the most destructive ones. Ra-
tional agents however may be aware that it often is not rational to assume
that the opponents will be able to identify their worst response (from the
opponents’ point of view). This is the idea of alternating time temporal logic
with probabilistic success (pATL).

Often, agents have some prediction of the opponents behaviour and can
act rationally based on a probabilistic notion of success. This allows to model
scenarios in which a plan will most probably be successful nevertheless winning
cannot be guaranteed. We have examined the logics’ relationship to ATL and
have presented two concrete instantiations in terms of mixed memoryless and
behavioural strategies. Finally, the analysis of the model checking complexity
has shown that this kind of reasoning does not have to be more difficult
than for plain ATL, albeit it often is. Although the mathematical theory
underlying behavioural strategies is much more sophisticated than for mixed
strategies the picture is upside down when it comes to the complexity of model
checking. We have proven that the former logic can be verified in P and that
the problem for pATL with mixed strategies is PP-hard (thus, in particular
NP and coNP-hard).
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Finally, we have considered yet another setting important for rational de-
cisions. In all the considered logics actions did not have any costs assigned
to them. However, in practical applications this assumption is often unrealis-
tic. The costs of actions significantly influence the selection of them. Rational
agents should take this into account. Moreover, agents may not even have
enough resources for some actions in some point in time. The resource-bounded
tree logic (RTL∗) and the resource agent logic (RAL∗) addresses these ideas.

The focus has been on the question whether it is possible to verify agents
which act rationally in this sense. We have shown that these modification es-
sentially change the picture when it comes to the complexity of model check-
ing. We have identified several variants and have shown that the interplay
between specific properties (e.g. perfect recall vs memoryless strategies) may
yield an undecidable model checking problem in general.

12.2.2 Are These Logics Useful?

The work presented in this thesis is mainly focussed on theoretical aspects
of modelling and verifying abilities of rational agents. However, we have also
presented model checking results which demonstrate that there is hope to
apply specific settings in practise.

In addition to the classical polynomial-time model checking algorithm of
ATL we have identified a few other settings of our logics with tractable model
checking algorithms. For example, we have shown that the verification of ratio-
nal play can be done in polynomial time over rectangular (Proposition 10.11)
or bounded models (Proposition 10.9). Even an extension to probabilistic sce-
narios resides within P (Theorem 10.64).

The results on verifying resource-bounded agents which have been pre-
sented here are rather pessimistic. Most cases of the multi-agent logics have
been shown undecidable. On the other hand, we were interested in exactly
those cases to find out where the boundary of decidability is. Other re-
searchers have shown that there are restricted fragments which are tractable
(cf. [Alechina et al., 2010, 2009b]).

We believe that there will be a need to verify properties which go beyond
purely temporal specifications (e.g. in security protocols, games, incomplete
information scenarios) and which may require concepts (closely) related to
settings presented here; although this may not be the case in the near future.
It seems also clear that most of the logics proposed in this thesis cannot
directly be used due to computational complexity reasons; on the other hand,
the few bounded and tractable settings make hope that additional fragments
with better computational properties can be identified. But this kind of work
is non-trivial and is left for the future.
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12.3 Outlook

Research on theoretic foundations of MASs provides interesting and manifold
opportunities for future work. The more interaction of humans with software
programs is required the more an adequate prediction of their behaviours and
desires seems to be relevant. The interaction of groups of entities and their
ability is crucial for many applications. Logics provide formal tools to model,
to design, to reason, and to verify such systems. Hence, we consider them
fundamental for the analysis of MASs.

In the following we list possible and more concrete points for future re-
search based on the work presented in this thesis.

• The decidability / undecidability of open fragments of the resource-
bounded agent logics is still open.

• The computational complexity of the decidable fragments of the resource-
bounded agent logics are still open. It would be interesting to identify
tractable fragments.

• A detailed analysis of the model checking complexity and the decidability
question for RTL∗ is still open. It would be particularly interesting to iden-
tify constraints that make the logics’ model checking problems efficiently
decidable for a relevant class of MASs.

• From a practical perspective the theoretical model checking results can be
used to develop efficient model checkers in order to actually reason about
and to verify behaviours of rational agents. Less expressive fragments of
the logics presented here can be identified and analysed with respect to
their model checking complexity.

• The logic CoalATL provides a first attempt to combine strategic reasoning
with coalition formation. The dynamic aspect resulting from the temporal
dimension of coalition formation has been neglected. We consider this point
interesting for future research.

• Other theoretical results for the logics presented here are interesting as
well; for example, axiomatisations or the complexity of the satisfiability
problem.

• Apart from the resource-bounded cases our analysis has been focussed on
extensions of LATL with memoryless strategies. An interesting direction
for future research is to extend these settings to a richer language and
perfect recall.
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A.1 CTLKP

Logics of knowledge and belief are often too static and inflexible to be applied
to real world problems. In particular, they usually offer no concept for ex-
pressing that some course of events is more likely to happen than another. We
address this problem and extend CTLK (computation tree logic with knowl-
edge) with a notion of plausibility, which allows for practical and counterfac-
tual reasoning. The new logic CTLKP (CTLK with plausibility) includes also
a particular notion of belief. A plausibility update operator is added to this
logic in order to change plausibility assumptions dynamically. Furthermore,
we examine some important properties of these concepts. In particular, we
show that, for a natural class of models, belief is a KD45 modality. We also
show that model checking CTLKP is P-complete and can be done in time
linear with respect to the size of models and formulae.
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A.1.1 Syntax and Semantics

Formally, the language of CTLKP is defined as:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eγ | Pl aϕ | Phϕ | Kaϕ | Baϕ
γ ::=©ϕ | �ϕ | ϕUϕ.

For instance, we may claim it is plausible to assume that a shop is closed
after the opening hours, though the manager may be physically able to open it
at any time: Pl aA�(late→ ¬open)∧Ph E♦(late∧open). Another example: It
is plausible to expect that an agent will not commit suicide; on the other hand,
an agent is (always) physically able to commit that, and it is also plausible
to expect that it has this physical ability:

Pl aA�¬suicide ∧ A�Ph E♦suicide ∧Pl aA�Ph E♦suicide.

The semantics of CTLKP extends that of CTLK as follows. Firstly, we
augment the models with sets of plausible paths. A model with plausibility is
given as

M = 〈Q , R,∼1, ...,∼k, Υ1, ..., Υk, π〉,
where 〈Q , R,∼1, ...,∼k, π〉 is a CTLK model, and Υa ⊆ ΛM is the set of paths
in M that are plausible according to agent a. If we want to make clear that Υa
is taken from model M, we will write ΥM

a . It seems worth emphasising that
this notion of plausibility is subjective and holistic. It is subjective because Υa
represents agent a’s subjective view on what is plausible – and indeed, different
agents may have different ideas on plausibility (i.e., Υa may differ from Υb).
It is holistic because Υa represents agent a’s idea of the plausible behavior of
the whole system (including the behavior of other agents).

Remark A.1. In our models, plausibility is also global, i.e., plausibility sets do
not depend on the state of the system. Investigating systems, in which plau-
sibility is relativised with respect to states (like in [Friedman and Halpern,
1994]), might be an interesting avenue of future work. However, such an ap-
proach – while obviously more flexible – allows for potentially counterintuitive
system descriptions. For example, it might be the case that path λ is plausible
in q = λ[0], but the set of plausible paths in q′ = λ[1] is empty. That is, by
following plausible path λ we are bound to get to an implausible situation.
But then, does it make sense to consider λ as plausible?

Secondly, we use a non-standard satisfaction relation |=P , which we call
plausible satisfaction. Let M be a CTLKP model and P ⊆ ΛM be an arbitrary
subset of paths in M (not necessarily any ΥM

a ). |=P restricts the evaluation of
temporal formulae to the paths given in P only. The “absolute” satisfaction
relation |= is defined as |=ΛM

.
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Let on(P ) be the set of all states that lie on at least one path in P , i.e.
on(P ) = {q ∈ Q | ∃λ ∈ P∃i (λ[i] = q)}. Now, the semantics of CTLKP can
be given through the following clauses:

M, q |=P p iff q ∈ π(p);
M, q |=P ¬ϕ iff M, q 6|=P ϕ;
M, q |=P ϕ ∧ ψ iff M, q |=P ϕ and M, q |=P ψ;
M, q |=P E© ϕ iff there is a q-subpath λ ∈ P such that M, λ[1] |=P ϕ;
M, q |=P E�ϕ iff there is a q-subpath λ ∈ P such that M, λ[i] |=P ϕ for every

i ≥ 0;
M, q |=P EϕUψ iff there is a q-subpath λ ∈ P and i ≥ 0 such that M, λ[i] |=P

ψ, and M, λ[j] |=P ϕ for every 0 ≤ j < i;
M, q |=P Pl aϕ iff M, q |=Υa

ϕ;
M, q |=P Phϕ iff M, q |= ϕ;
M, q |=P Kaϕ iff M, q |= ϕ for every q′ such that q ∼a q′;
M, q |=P Baϕ iff for all q′ ∈ on(Υa) with qKaq′, we have that M, q′ |=Υa

ϕ.

One of the main reasons for using the concept of plausibility is that we
want to define agents’ beliefs out of more primitive concepts–in our case, these
are plausibility and indistinguishability–in a way analogous to [Su et al., 2005;
Friedman and Halpern, 1994]. If an agent knows ϕ, it must be “sure” about it.
However, beliefs of an agent are not necessarily about reliable facts. Still, they
should make sense to the agent; if it believes ϕ, then the formula should at
least hold in all futures that he envisages plausible. Thus, beliefs of an agent
may be seen as things known to it if it disregards all non-plausible possibilities.

We say that ϕ is M-true (M |= ϕ) if M, q |= ϕ for all q ∈ QM. ϕ is valid
(|= ϕ) if M |= ϕ for all models M. ϕ is M-strongly true (M |≡ ϕ) if M, q |=P ϕ
for all q ∈ QM and all P ⊆ ΛM. ϕ is strongly valid ( |≡ ϕ) if M |≡ ϕ for all
models M.

Proposition A.2. Strong truth and strong validity imply truth and validity,
respectively. The reverse does not hold.

Ultimately, we are going to be interested in normal (not strong) validity, as
parameterising the satisfaction relation with a set P is just a technical tool for
propagating sets of plausible paths Υa into the semantics of nested formulae.
The importance of strong validity, however, lies in the fact that |≡ ϕ ↔ ψ
makes ϕ and ψ completely interchangeable, while the same is not true for
normal validity.

Proposition A.3. Let Φ[ϕ/ψ] denote formula Φ in which every occurrence of
ψ was replaced by ϕ. Also, let |≡ ϕ↔ ψ. Then for all M, q, P : M, q |=P Φ iff
M, q |=P Φ[ϕ/ψ] (in particular, M, q |= Φ iff M, q |= Φ[ϕ/ψ]).

Note that |= ϕ↔ ψ does not even imply that M, q |= Φ iff M, q |= Φ[ϕ/ψ].
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Fig. A.1. Guessing Robots game.

Example A.4 (Guessing robots). Consider a simple game with two agents a
and b, shown in Figure A.1. First, a chooses a real number r ∈ [0, 1] (without
revealing the number to b); then, b chooses a real number r′ ∈ [0, 1]. The
agents win the game (and collect EUR 1, 000, 000) if both chose 1, otherwise
they lose. Formally, we model the game with a CTLKP model M, in which
the set of states Q includes qs for the initial situation, states qr, r ∈ [0, 1],
for the situations after a has chosen number r, and “final” states qw, ql for
the winning and the losing situation, respectively. The transition relation is as
follows: qsRqr and qrRql for all r ∈ [0, 1]; q1Rqw, qwRqw, and qlRql. Moreover,
π(one) = {q1} and π(win) = {qw}. Player a has perfect information in the
game (i.e., q ∼a q′ iff q = q′), but player b does not distinguish between states
qr (i.e., qr ∼b q′r for all r, r′ ∈ [0, 1]). Obviously, the only sensible thing to
do for both agents is to choose 1 (using game-theoretical vocabulary, these
strategies are strongly dominant for the respective players). Thus, there is
only one plausible course of events if we assume that our players are rational,
and hence Υa = Υb = {qsq1qwqw . . .}.

Note that, in principle, the outcome of the game is uncertain: M, qs |=
¬A♦win ∧ ¬A�¬win. However, assuming rationality of the players makes it
only plausible that the game must end up with a win: M, qs |= Pl aA♦win ∧
Pl bA♦win, and the agents believe that this will be the case: M, qs |=
BaA♦win ∧ BbA♦win. In any of the states qr, agent b believes that a (be-
ing rational) has played 1: M, qr |= Bbone for all r ∈ [0, 1].

A.1.2 Defining Plausibility with Path Formulae

So far, we have assumed that sets of plausible paths are somehow given within
models. In this section we present a dynamic approach where an actual notion
of plausibility can be specified in the object language. We want to specify
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(usually infinite) sets of infinite paths, and we need a finite representation of
these structures. A logical solution is given by using path formulae γ. These
formulae describe properties of paths; therefore, a specific formula can be used
to characterise a set of paths. For instance, think about a country in Africa
where it has never snowed. Then, plausible paths might be defined as ones
in which it never snows, i.e., all paths that satisfy �¬snows. Formally, let γ
be a CTLK path formula. We define |γ|

M
to be the set of paths that satisfy

γ in model M (when the model is clear from context, the subscript will be
omitted):

| © ϕ|
M

= {λ |M, λ[1] |= ϕ},
|�ϕ|

M
= {λ | ∀i (M, λ[i] |= ϕ)},

|ϕ1Uϕ2|M = {λ | ∃i
(
M, λ[i] |= ϕ2 ∧ ∀j(0 ≤ j < i⇒M, λ[j] |= ϕ1)

)
}.

Moreover, we define the plausible paths model update as follows. Let M =
〈Q , R,∼1, ...,∼k, Υ1, ..., Υk, π〉 be a CTLKP model, and let P ⊆ ΛM be a set of
paths. Then Ma,P = 〈Q , R,∼1, ...,∼k, Υ1, ..., Υa−1, P, Υa+1, ..., Υk, π〉 denotes
model M with a’s set of plausible paths reset to P . Note that the set of all
paths remains the same in both models because the transition relation does
not change, i.e., ΛM = ΛMa,P .

Now we can extend the language of CTLKP with formulae (set-pla γ)ϕ
with the intuitive reading: Suppose that γ exactly characterises the set of
plausible paths, then ϕ holds. The formal semantics is given below:

M, q |=P (set-pla γ)ϕ iff Ma,|γ|
M , q |=P ϕ.

We observe that this update scheme is similar to the one proposed in [Jam-
roga et al., 2005].

Remark A.5. Note, that the set of paths with which the satisfaction relation is
annotated does not change after a plausible path update. Consider a CTLKP
model M = 〈Q , R,K1, . . . ,Kk, Υ1, . . . , Υk, π〉 and statement

M, q |=P (set-pla γ)ϕ.

The semantic rules transform the formula into the equivalent notation

Ma,|γ|, q |=P ϕ.

But the set of paths P , with which the satisfaction relation is indexed, is still
the same as before. If we want set ΥMa,|γ|

a to be referred to, plausible operator
Pl a must occur within formula ϕ.
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A.1.3 Verification of Plausibility, Time and Beliefs

Clearly, verifying CTLKP properties directly against models with plausibility
does not make much sense, since these models are inherently infinite; what
we need is a finite representation of plausibility sets. Plausibility sets can be
defined by path formulae and the update operator (set-pla γ).

We follow this idea here, studying the complexity of model checking
CTLKP formulae against CTLK models (which can be seen as a compact
representation of CTLKP models in which all the paths are assumed plau-
sible), with the underlying idea that plausibility sets, when needed, must be
defined explicitly in the object language. Below we sketch an algorithm that
model checks CTLKP formulae in time linear wrt the size of the model and
the length of the formula. This means that we have extended CTLK to a more
expressive language with no computational price to pay.

First of all, we remove the belief operators by replacing every occurrence
of Baϕ with KaPl a(E© > → ϕ). Now, let −→γ = 〈γ1, ..., γk〉 be a vector of
“vanilla” path formulae (one per agent), with the initial vector −→γ0 = 〈>, ...,>〉,
and −→γ [γ′/a] denoting vector −→γ , in which −→γ [a] is replaced with γ′. Addition-
ally, we define −→γ [0] = >. We translate the resulting CTLKP formulae to ones
without plausibility via function tr(ϕ) = tr−→γ0,0(ϕ), defined as follows:

tr−→γ ,i(p) = p,
tr−→γ ,i(ϕ1 ∧ ϕ2) = tr−→γ ,i(ϕ1) ∧ tr−→γ ,i(ϕ2),
tr−→γ ,i(¬ϕ) = ¬tr−→γ ,i(ϕ),
tr−→γ ,i(Kaϕ) = Ka tr−→γ ,0(ϕ),
tr−→γ ,i(Pla ϕ) = tr−→γ ,a(ϕ),
tr−→γ ,i((set-pla γ

′)ϕ) = tr−→γ [γ′/a],i(ϕ),
tr−→γ ,i(Phϕ) = tr−→γ ,0(ϕ),
tr−→γ ,i(©ϕ) =©tr−→γ ,i(ϕ),
tr−→γ ,i(�ϕ) = �tr−→γ ,i(ϕ),
tr−→γ ,i(ϕ1Uϕ2) = tr−→γ ,i(ϕ1)Utr−→γ ,i(ϕ2),
tr−→γ ,i(Eγ′) = E(−→γ [i] ∧ tr−→γ ,i(γ′)).

Note that the resulting sentences belong to the logic of CTLK+, that is
CTL+ (where each path quantifier can be followed by a Boolean combination
of “vanilla” path formulae) with epistemic modalities. The following proposi-
tion justifies the translation.

Proposition A.6. For any CTLKP formula ϕ without Ba, we have that
M, q |=CTLKP ϕ iff M, q |=CTLK+ tr(ϕ).

In general, model checking CTL+ (and also CTLK+) is∆P
2 -complete. How-

ever, in our case, the Boolean combinations of path subformulae are always
conjunctions of at most two non-negated elements, which allows us to propose
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the following model checking algorithm. First, subformulae are evaluated re-
cursively: For each subformula ψ of ϕ, the set of states in M that satisfy ψ is
computed and labeled with a new proposition pψ. Now, it is enough to define
checking M, q |= ϕ for ϕ in which all (state) subformulae are propositions,
with the following cases:

Case M, q |= E(�p ∧ γ): If M, q 6|= p, then return no. Otherwise, remove from
M all the states that do not satisfy p (yielding a sparser model M′), and
check the CTL formula Eγ in M′, q with any CTL model checker.

Case M, q |= E(©p ∧ γ): Create M′ by adding a copy q′ of state q, in which
only the transitions to states satisfying p are kept (i.e., M, q′ |= r iff
M, q |= r; and q′RM′q

′′ iff qRMq′′ and M, q′′ |= p). Then, check Eγ in
M′, q′.

Case M, q |= E(p1Up2 ∧ p3Up4): Note that this is equivalent to checking E(p1∧
p3)U(p2 ∧ Ep3Up4) ∨ E(p1 ∧ p3)U(p4 ∧ Ep1Up2), which is a CTL formula.

Other cases: The above cases cover all possible formulas that begin with a
path quantifier. For other cases, standard CTLK model checking can be
used.

Theorem A.7. Model checking CTLKP against CTLK models is P-complete,
and can be done in time O(ml), where m is the number of transitions in the
model, and l is the length of the formula to be checked. That is, the complexity
is no worse than for CTLK itself.

A.2 Discounted CTL

In [de Alfaro et al., 2004] Discounted CTL (DCTL) is proposed. The logic
DCTL extends CTL with a quantitative notion of truth and with the pos-
sibility to “discount” the value of truth along a path. The first is addressed
by assigning values from [0, 1] to proposition instead of Boolean values. The
language of DCTL is given by

ϕ ::= p | > | ⊥ | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ϕ⊕c ϕ | E♦cϕ | E�cϕ | E∆cϕ

where p ∈ Π is a proposition and c (the discount factor) is rational number
from [0, 1] (its size is measured in binary). It is shown that the universal path
quantifier A can be defined as macro. We will skip details here. The intuition
of ♦c, �c, and ∆c is that they returns the supremum, infimum, and average
values along a path, respectively. The path quantifiers E and A return the
supremum and infimum values over all possible paths, respectively.

The authors propose three kinds of models (labeled transition systems,
Markov chains and Markov processes) and two semantics (path and fixedpoint
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semantics). For this thesis we only present the path semantics over Markov
decision processes (MDPs). For MDPs we refer to Section 4.3.

Let M = (Q , δ, Σ, [·]) be a Markov decision process. The semantics of
formulae is given by [[·]]. For a state formulae ϕ we define

[[ϕ]] : Q → [0, 1]

as follows:

[[p]] = [p],
[[>]] = 1,

[[⊥]] = 0,

[[¬ϕ]] = 1− [[ϕ]],
[[ϕ1 ∨ ϕ2]] = max{[[ϕ1]], [[ϕ2]]},
[[ϕ1 ∧ ϕ2]] = min{[[ϕ1]], [[ϕ2]]},

[[ϕ1 ⊕c ϕ2]] = (1− c)[[ϕ1]] + c[[ϕ2]],

[[Eγ]](q) = sup{Epol
q ([[γ]]) | pol ∈ PolM}

and for path formulae γ by

[[γ]] : Qω → [0, 1]

where:

[[♦cϕ]](q0q1 . . . ) = sup{ci[[ϕ]](qi) | i ≥ 0}
[[�cϕ]](q0q1 . . . ) = inf{1− ci(1− [[ϕ]](qi)) | i ≥ 0}

[[∆cϕ]](q0q1 . . . ) =

{
(1− c)∑i≥0 c

i[[ϕ]](qi) if c < 1,
limi≥0( 1

1+1

∑
0≤j≤i[[ϕ]](qj)) if c = 1.

In the definition we have used 1 and 0 as the functions Q 3 q 7→ 1 ∈ [0, 1]
and Q 3 q 7→ 0 ∈ [0, 1], respectively.

The expected value Epol
q ([[γ]]) of the random variable [[γ]] over the (M, pol, q)-

trajectory space is understood in terms of Definition 4.55 . Finally, we recall
the following complexity result.

Theorem A.8 ([de Alfaro et al., 2004]). Given a DCTL formula ϕ and
a MDP M the problem of model checking ϕ over M is in P with respect to
the size of M and the size of the binary representation of numbers occurring
in ϕ. (The size of the model is given by the number of states and the binary
encoding of

∑
p∈Π,q∈Q [p](q)).
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A.3 Uniform ATLir

In this section, we introduce and analyse the logic “uniform ATLir” (ATLuir).
We use the logic only for technical reasons, namely it provides the intermediate
step in the completeness proof of model checking ATLP. Still, we believe that
the logic is interesting in itself. Moreover, the technique we use for proving
completeness is interesting too (and gives insight into the complexity as well
as the relationship between the problem we study and known complexity from
game theory).

The idea is based on Schobbens’ ATLir [Schobbens, 2004], i.e., ATL for
agents with imperfect information and imperfect recall. There, it was assumed
that the coalition A in formula 〈〈A〉〉ϕ can only use strategies that assign same
choices in indistinguishable states (uniform strategies). Then, the outcome of
every strategy of A was evaluated in every possible behaviour of the remaining
agents Agt\A (with no additional assumption with respect to that behaviour).
In ATLuir, we assume that the opponents (Agt\A) are also required to respond
with a uniform memoryless strategy. The syntax of ATLuir is the same as that
of ATL.

The semantics of ATLuir can be defined as follows. Firstly, as models we
use imperfect information concurrent game structures (ICGSs) from Defini-
tion 2.27. Recall that a memoryless strategy sA is uniform if q ∼a q′ implies
sA|a(q) = sA|a(q′) for all q, q′ ∈ Q , a ∈ A. To simplify the notation, we define
[q]a = {q′ | q ∼a q′} to be the class of states indistinguishable from q for a;
[q]A =

⋃
a∈A[q]a collects all the states that are indistinguishable from q for

some member of the group A; finally, out(Q′, sA) =
⋃
q∈Q′ out(q, sA) collects

all the execution paths of strategy sA from states in set Q′.
Now, the semantics is given by the clauses below:

M, q |=ATLuir
p iff p ∈ π(q),

M, q |=ATLuir
¬ϕ iff M, q 6|=ATLuir

ϕ,
M, q |=ATLuir

ϕ ∧ ψ iff M, q |=ATLuir
ϕ and M, q |=ATLuir

ψ,
M, q |=ATLuir

〈〈A〉〉 © ϕ iff there is a uniform strategy sA such that, for each
uniform counterstrategy tAgt\A, and λ ∈ out([q]A, 〈sA, tAgt\A〉),1 we have
M, λ[1] |=ATLuir

ϕ,
M, q |=ATLuir

〈〈A〉〉�ϕ iff there is a uniform strategy sA such that, for each
uniform counterstrategy tAgt\A, and λ ∈ out([q]A, 〈sA, tAgt\A〉), we have
M, λ[i] |=ATLuir

ϕ for all i = 0, 1, ...,
M, q |=ATLuir

〈〈A〉〉ϕUψ iff there is a uniform strategy sA such that, for each
uniform counterstrategy tAgt\A, and λ ∈ out([q]A, 〈sA, tAgt\A〉), there is
i ∈ N0 with M, λ[i] |=ATLuir

ψ, and M, λ[j] |=ATLuir
ϕ for all 0 ≤ j < i.

1 Note that the definition of concurrent game structures, that we use after [Alur
et al., 2002], implies that CGS are deterministic, so there is in fact exactly one
such path λ.
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As before the logic ATLuir is formally defined by (LATL, |=ATLuir
).

A.4 Bargaining with Discount

In Example 3.12 we presented bargaining with discount. After each round the
worth of the goods is reduced by δi. In round t the goods have a value of
r(δti). Because we use a rounding function r, there is a minimal round T such
that r(δT+1

i ) = 0 for i = 1 or i = 2. We can treat this case as finite horizon
bargaining game [St̊ahl, 1972; Mas-Colell et al., 1995].

Now, consider the case that ai’s opponent, denoted by a−i, is the offerer
in T . It can offer 0 and ai should accept, because in the next round the goods
are worthless for ai.

On the other hand, if ai is offerer in T we have to distinguish two cases.
If r(δT+1

−i ) = 0 then following the same reasoning as before ai can offer 0 to
a−i. In the other case, namely r(δT+1

−i ) 6= 0, we consider the subsequent round
T + 1 in which a−i takes the role as offerer and can successfully offer 0 to i.

Now, it is possible to solve the game starting from the end. Solutions for
δ1 = δ2 can be found in the literature [Mas-Colell et al., 1995]. Here, we recall
the idea for different discount rates.

At first, let a1 be the last offerer and r(δT+1
2 ) = 0. This implies, that T

is even (the initial round is 0). In T , a1 offers 〈1, 0〉 and a2 accepts. Knowing
this, in T − 1 agent a2 can offer 〈δ1, 1− δ1〉, since in the next round the value
of the good for a1 would become reduced by δ1. Following the same reasoning,
in T −2 a1 could successfully offer 〈1−δ2(1−δ1), δ2(1−δ1)〉. Finally, in round
t = 0 a1 can offer 〈ζ, 1− ζ〉 where

ζ := (1− δ2)

T
2 −1∑

i=0

(δ1δ2)i + (δ1δ2)
T
2 = (1− δ2)

1− (δ1δ2)
T
2

1− δ1δ2
+ (δ1δ2)

T
2 .

Secondly, consider the case in which a2 is the last offerer in T and
r(δT+1

1 ) = 0. This time T is odd but the reasoning stays the same. In round
0 a1 can offer 〈ζ ′, 1− ζ ′〉 where

ζ ′ := (1− δ2)
1− (δ1δ2)

T+1
2

1− δ1δ2
.
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In this section we give some detailed proofs which are too lengthy or
technical for putting them into the main matter.

B.1 Rational Play: ATLP

Proposition 6.32 ( page 113). ATLP embeds ATLI.

Proof. For an ATLI-model M = 〈Agt,Q , Π, π,Act, d, o, I,Str, [·]〉, we con-
struct the corresponding concurrent game structure with plausibility TR(M) =
〈Agt,Q , Π, π,Act, d, o, Υ ,Ω, [[·]]〉 with the set of plausible strategy profiles
Υ = {s ∈ Σ | s is consistent with I}, plausibility terms Ω = {ωσ | σ ∈ Str}∪
{ω>}, and their denotation [[ω>]]q = Σ and [[ωσ]]q = {s ∈ Σ | s|a = [σ]} for
each σ ∈ Stra and a ∈ Agt.
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For an LATLI-formula ϕ, we construct its LATLP translation by transform-
ing strategic assumptions (about agents’ intentions) imposed by (straσ) to
plausibility assumptions (about strategy profiles that can be plausibly played)
defined by (set-pl ωσ) and applying them to the appropriate set of agents
(i.e., those for whom strategic assumptions have been defined). Formally, the
translation is defined as tr(ϕ) = Pl tr〈ω>,...,ω>〉(ϕ), where tr〈ω1,...,ωk〉 is de-
fined as follows:

tr〈ω1,...,ωk〉(p) = p,

tr〈ω1,...,ωk〉(¬ϕ) = ¬tr〈ω1,...,ωk〉(ϕ),
tr〈ω1,...,ωk〉(ϕ1 ∧ ϕ2) = tr〈ω1,...,ωk〉(ϕ1) ∧ tr〈ω1,...,ωk〉(ϕ2),

tr〈ω1,...,ωk〉(〈〈A〉〉 © ϕ) = 〈〈A〉〉 © tr〈ω1,...,ωk〉(ϕ),
(for 〈〈A〉〉�ϕ and 〈〈A〉〉ϕ1Uϕ2 analogously)

tr〈ω1,...,ωk〉((straσ
′
a)ϕ) = (set-pl −→ω )tr−→ω (ϕ),

where −→ω = 〈ω1, . . . , ωσ′a , . . . , ωk〉.

For ATLI, 〈〈A〉〉γ holds iff γ can be enforced against each response strat-
egy from Agt \ A. Thus, e.g., M, q |=ATLI (straσa)〈〈A〉〉�p iff TR(M), q |=ATLP

Pl (set-pl 〈ω>, . . . , ωσa , . . . , ω>〉)〈〈A〉〉�p.
The proof is done by structural induction on ϕ. The basic cases for propo-

sitions, conjunction, and negation are straightforward. Let M be an ATLI
model and N := TR(M) the constructed CGSP where the plausibility term
〈ω1, . . . , ωk〉 describes the intention relation from M in the obvious way.

ϕ ≡ 〈〈A〉〉 © ψ. N, q |=Agt tr〈ω1,...,ωk〉(〈〈A〉〉 © ψ) iff
N, q |=Agt 〈〈A〉〉©tr〈ω1,...,ωk〉(ψ) iff there is a Agt-plausible strategy sA such
that for all λ ∈ out(q, sA,Agt) we have that N, λ[1] |=Agt tr〈ω1,...,ωk〉(ψ) iff
there is a strategy sA consistent with I such that for all λ ∈ out(q, sA,Agt)
we have that N, λ[1] |=Agt tr〈ω1,...,ωk〉(ψ) iff there is a strategy sA consis-
tent with I such that for all λ ∈ outI(q, sA) we have that M, λ[1] |=Agt ψ
iff M, q |=ATLI 〈〈A〉〉 © ψ.

ϕ ≡ 〈〈A〉〉�ψ and 〈〈A〉〉ψUχ. Analogously.
ϕ ≡ (straσ′a)ψ. N, q |=Agt tr〈ω1,...,ωk〉((straσ

′
a)ψ) iff

N, q |=Agt (set-pl −→ω )tr−→ω (ψ) where −→ω = 〈ω1, . . . , ωσ′a , . . . , ωk〉 iff
N
−→ω , q |=Agt tr−→ω (ψ) where N

−→ω is the new model that equals N but
the set of plausible strategies is set to −→ω = 〈ω1, . . . , ωσ′a , . . . , ωk〉 iff
M′, q |=ATLI ψ where the intention relation in M′ is described by −→ω =
〈ω1, . . . , ωσ′a , . . . , ωk〉 iff M, q |=ATLI (straσ′a)ψ where the intention rela-
tion in M is described by −→ω = 〈ω1, . . . , ωk〉.

�

Proposition 6.36 ( page 115). GLP can be embedded in ATLP.
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Proof. For the translation of models, we transform game trees of GLP to
concurrent game structures using the construction from Section 3.2.2 (partic-
ularly cf. Def. 3.11), and transform the CGSs to CGSPs by taking Υ = Σ
and Ω = ∅. Then, we use the following translation of LGLP-formulae:

tr(ϕ) = Pl tr(set-pl σ.>)(ϕ),
trω(p) = p, trω(¬ϕ) = ¬trω(ϕ), trω(ϕ ∨ ψ) = trω(ϕ) ∨ trω(ψ),

trω(�ϕ0) = 〈〈∅〉〉♦ϕ0,

trω([A : ϕ0]ψ) = (set-pl ωA,ϕ0)trωA,ϕ0
(ψ),

where ωA,ϕ0 = σ.Pl (set-pl ω)〈〈∅〉〉�
(
plausible(σ) ∧ prefers(A, σ, ϕ0)

)
,

plausible(σ) ≡ (refn-pl σ)〈〈Agt〉〉 © >,
prefers(A, σ, ϕ0) ≡ 〈〈A〉〉♦ϕ0 → (refn-pl σ[A])〈〈∅〉〉♦ϕ0.

That is, with each subsequent preference operator [A : ϕ0], only those from the
(currently) plausible strategy profiles are selected that are preferred by A. The
preference is based on the (subgame perfect) enforceability of the outcome ϕ0

at the end of the game: If ϕ0 can be enforced at all, then A prefers strategies
that do enforce it.

Lemma B.1. Let Γ be a GLP-model, M = TR(Γ ) its corresponding CGSP
and let M′ be equal to M but the set of plausible strategies given by [[ωA,ϕ0 ]].
Moreover, let M′′ be the restriction of M′ obtained if each state not reachable
from ∅ by any plausible strategy from [[ωA,ϕ0 ]]M′ is removed and in which
ΥM′′ = Σ and ΩM′′ = ∅. Then, we have that

TR(Up(Γ,A, ϕ0)) = M′′.

Proof. Suppose there is no subgame perfect strategy of A enforcing ϕ0. Then,
Up(Γ,A, ϕ0) = Γ and [[ωA,ϕ0 ]] = Σ. Each state in M′ is reachable by some
strategy from Σ and hence TR(Up(Γ,A, ϕ0)) = M′′.

We now consider the case where there is a most general subgame perfect
strategy. Suppose N := TR(Up(Γ,A, ϕ0)) 6= M′′. Let h be a state reachable in
N from ∅ that is not reachable in M′′. Then, h is reachable in Γ from ∅ by the
most general subgame perfect strategy and there is no strategy sA ∈ [[ωA,ϕ0 ]]
such that h is reachable in M′′. Let s′A be some Ir-strategy obtained from sA
by chosing specific choices such that h is still reachable if s′A is executed in ∅.
(Note that the most general subgame perfect strategy can be seen as a set of
ir-strategies). Then, we have that s′A ∈ [[ωA,ϕ0 ]]. Contradiction.

For the other direction, suppose h is reachable from ∅ in M′′ but not in
N. Then, let sA ∈ [[ωA,ϕ0 ]] be some strategy such that h is reachable. As sA
guarantees ♦ϕ0 all the states reachable by sA are also reachable by the most
general subgame perfect strategy; otherwise, it would contradict the most
general character of such a strategy. �
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Now, we have that Γ |=GLP ϕ iff TR(Γ ), ∅ |=ATLP tr(ϕ).1 The proof is done
by structural induction. The cases for the Boolean connectives are done as
usual and are omitted here.

Case �ϕ0: Γ |= �ϕ0 iff ∀h ∈ Z(H) : π, h |= ϕ0 iff all reachable leaf nodes of
TR(Γ ) satisfy ϕ0 iff TR(Γ ), ∅ |=ATLP 〈〈∅〉〉♦ϕ0.

Case [A : ϕ0]ψ: Γ |= [A : ϕ0]ψ iff Up(Γ,A, ϕ0) |= ψ iff TR(Up(Γ,A, ϕ0)), ∅ |=Agt

trωA,ϕ0
(ψ) (Lemma B.1) iff TR(Γ ), ∅ |=Agt (set-pl ωA,ϕ0)trωA,ϕ0

(ψ).
�

B.2 ATL with Probabilistic Success

Proposition 7.52 ( page 168). Function holdsγ is S(q)-measurable and
µsAβAgt\A

-integrable for LpATL-path formulae γ.

Proof. In particular, we have to show that holds−1
γ (A) := {λ ∈ Λ(q) |

holdsγ(λ) ∈ A} is measurable for each A ⊆ {0, 1} (i.e. holds−1
γ (A) ∈ S(q)).

The cases ∅ and {0, 1} are trivial. The case for {0} is clear if we have shown
it for A = {1} (cf. property (ii) of σ-algebras, Section 4.3). Therefore, let
fγ := holds−1

γ ({1}). The proof proceeds by structural induction on γ.
I. Case “�”: (i) Let γ = �p where p is a propositional logic formula (e.g. p =
r ∧ ¬s). We define L�p

n := {λ ∈ Λ(q) | ∀i ∈ N0(0 ≤ i < n→M, λ[i] |= p}. We
have that each L�p

n ∈ Fn(q) ⊆ S(q) and that
⋂
n∈N L

�p
n = fγ ; hence, also that

fγ ∈ S(q) because of property (ii) and (iv) of σ-algebras (cf. Section 4.3). That
fγ is integrable follows from Lebesgue’s Dominated Convergence Theorem: fγ
is measurable and |fγ | is bounded by the µsAβAgt\A

-integrable (constant) function

1. (ii) Let γ = �〈〈B〉〉pω′γ′ and suppose fγ′ is already proven to be integrable.

Then, L�〈〈B〉〉p
ω′γ
′

n can be defined in the same way as above. (iii) Suppose that
for each sub path formula γ′ contained in ϕ1 and ϕ2 we have proven that fγ′
is integrable, then Lγn can be defined in the same way as above for γ = �¬ϕ1

and γ = �(ϕ1 ∧ ϕ2).
II. Case “©”: Similar to I(i) we define L©pn := {λ ∈ Λ(q) | M, λ[1] |= p}.
Then, we have that

⋃
n∈N L

©p
n = f©p ∈ S(q). The rest of the proof is done

analogously to I.
III. Case “U”: Here, we also just consider the part corresponding to I(i).
We set LpUqn := {λ ∈ Λ(q) | ∃j(0 ≤ j < n → (M, λ[j] |= q ∧ ∀i ∈ N0(0 ≤ i <
j →M, λ[i] |= p))}; then, we have that

⋃
n∈N0

LpUqn = fpUq ∈ S(q). �

1 Again, ∅ denotes the position with empty history, i.e., the initial state of the
game.
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Fig. B.1. CEGS M2 for ϕ1 ≡ ((x1 ∧ x2) ∨ ¬y1) ∧ (¬x1 ∨ y1), ϕ2 ≡ z1 ∧ (¬z1 ∨ y2).

B.3 Model Checking Uniform ATLir

We show the lower bound by a reduction of SNSAT2, a typical ∆P
3 -complete

problem (cf. Definition 4.15). In this section we focus on SNSAT2 where we
set X1

r = Xr = {x1,r, ..., xk,r} and X2
r = Yr = {y1,r, ..., yk,r}.

Our reduction of SNSAT2 is an extension of the reduction of SNSAT
presented in [Jamroga and Dix, 2006, 2008]. That is, we construct the ICGS
Mr corresponding to zr with two players: verifier v and refuter r. The ICGS
is turn-based, that is, every state is “governed” by a single player who deter-
mines the next transition. Each subformula χi1...il of ϕr has a corresponding
state qi1...il in Mr. If the outermost logical connective of ϕr is ∧, the refuter
decides at q0 which subformula χi of ϕr is to be satisfied, by proceeding to
the “subformula” state qi corresponding to χi. If the outermost connective
is ∨, the verifier decides which subformula χi of ϕr will be attempted at q0.
This procedure is repeated until all subformulae are single literals. The states
corresponding to literals are called “proposition” states.

The difference from the construction from [Jamroga and Dix, 2006, 2008]
is that formulae are in positive normal form (rather than CNF) and that we
have two kinds of “proposition” states now: qi1...il refers to a literal consisting
of some x ∈ Xr and is governed by v; q̄i1...il refers to some y ∈ Yr and will be
governed by r. Now, the values of the underlying propositional variables x, y
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are declared at the “proposition” states, and the outcome is computed. That
is, if v executes > for a positive literal, i.e. χi1...il = x, (or ⊥ for χi1...il = ¬x)
at qi1...il , then the system proceeds to the “winning” state q>; otherwise, the
system goes to the “sink” state q⊥. For states q̄i1...il the procedure is analo-
gous. Models corresponding to subsequent zr are nested like in Figure B.1.2

“Proposition” states referring to the same variable x are indistinguishable for
v (so that he has to declare the same value of x in all of them), and the states
referring to the same y are indistinguishable for r. A sole ATLuir proposition
yes holds only in the “winning” state q>. As in [Jamroga and Dix, 2006, 2008],
we have the following result which concludes the reduction.

Proposition B.2. The above construction shows a polynomial reduction of
SNSAT2 to model checking ATLuir in the following sense. Let

Φ1 ≡ 〈〈v〉〉(¬neg)Uyes, and
Φr ≡ 〈〈v〉〉(¬neg)U(yes ∨ (neg ∧ 〈〈∅〉〉 © ¬Φr−1)) for r = 2, . . . , p.

Then, we have zp iff Mp, q
p
0 |=ATLuir

Φp.

As for the upper bound, we note that there is a straightforward ∆P
3 algo-

rithm that model checks formulae of ATLuir : when checking 〈〈A〉〉Tϕ in M, q,
it first recursively checks ϕ (bottom-up), and labels the states where ϕ held
with a special proposition yes. Then, the algorithm guesses a uniform strategy
sA and calls an oracle that guesses a uniform counterstrategy tAgt\A. Finally,
it trims M according to 〈sA, tAgt\A〉, and calls a CTL model checker to check
formula AT yes in state q of the resulting model. This gives us the following
result.
Theorem 10.15 ( page 229). Model checking ATLuir is ∆P

3 -complete with
respect to the number of transitions in the model and the length of the formula.
It is ∆P

3 -complete even for turn based ICGS with at most two agents.

B.4 Model Checking ATLP

B.4.1 Results in Section 10.1.1

Proposition 10.4 ( page 226). Let M be a well-behaved CGSP, q a
state in M, and ϕ a formula of Lbase

ATLP(Agt, Π,Ω). Then M, q |= ϕ iff
mcheckATLP(M, q, ϕ). The algorithm runs in time ∆P

3 with respect to the
number of transitions in the model and the length of the formula.

2 All states in the model for zr are additionally indexed by r.
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Proof. Function mcheck is called recursively, at most l times. All cases apart
from ϕ ≡ 〈〈A〉〉 ©ψ where ψ includes no 〈〈C〉〉 (analogously for the other tem-
poral operators) can be performed in polynomial time. Now, there is a nonde-
terministic Turing machine AB which implements function beatable: Firstly,
it guesses a strategy t possibly together with another witness necessary for
plausiblestrat (by assumption the latter is in NP) and verifies if t is plausible,
the verification can be done in polynomial time (by the same assumption).
Finally, if t is plausible AB has to perform CTL model checking which lies in
P.

It remains to show that there is a nondeterministic oracle Turing machine
AS with oracle AB implementing solve. (Formally, the machine requires two
oracles, one answering the question whether s is plausible, and the other is
given by AB . However, the former is computationally less expensive than the
latter and can be ignored since we are interested in the oracle with the highest
complexity.) AS works as follows: Firstly, it guesses a profile s (again possibly
together with a witness for plausiblestrat); secondly, it verifies whether s is
plausible and then calls oracle AB and inverts its answer. Altogether, there are
polynomial many calls to machine AABS ∈ NPNP. This renders the algorithm
to be in ∆P

3 . �

Proposition 10.9 ( page 227). Let c ∈ N be a constant. Model checking
Lbase

ATLP formulae with respect to the class of well-behaved bounded models Mc

can be done in polynomial time with respect to the number of transitions in
the model and the length of the formula.

Proof. We modify the original ATL model checking procedure as follows.
Consider the formula ϕ ≡ 〈〈A〉〉γ where γ is a pure ATL path formula. Let
B be the set of agents assumed to play plausibly and let Υ 6= Σ be the
current set of plausible strategies described by some term and state. For each
sB ∈ Υ |B we remove from M all transitions which cannot occur according to
sB , yielding model MsB , and check whether MsB , q |=ATL 〈〈A〉〉γ. We proceed
like this for all s ∈ Υ |B (there are only polynomially many). This procedure
is incorporated into our ATLP model checking algorithm and applied bottom
up. �

B.4.2 Results in Section 10.1.4

Upper Bounds

First, we recall a basic complexity result that will be used in the rest of this
section. Then, we present proofs of upper bounds for model checking LkATLP

for pure CGSs and well-behaved CGSPs.
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Remark B.3. A relation R ⊆ ×k+1
i=1Σ

∗ (k ≥ 1) is called polynomially decid-
able whenever there is a deterministic Turing machine (DTM) which de-
cides {(x, y1 . . . , yk) : (x, y1 . . . , yk) ∈ R} in polynomial time; furthermore,
R is called polynomially balanced if there is a k ∈ N such that for all
(x, y1 . . . , yk) ∈ R: |yi| ≤ |x|k for all i = 1, . . . k.

For a language L and k ≥ 1 the following holds: L ∈ ΣP
k if, and only if,

there is a polynomially decidable and balanced (k+1)-ary relation R such that
L = {x | ∃y1∀y2∃y3 . . . Qyk ((x, y1 . . . , yk) ∈ R)} where Q = ∀ (resp. Q = ∃)
if k is odd (resp. k even) [Papadimitriou, 1994, Corollary 2 of Theorem 17.8].

Theorem 10.29 ( page 236). Let ϕ be a level-i formula of LkATLP(Agt, Π, ∅),
k ≥ 1, i ≥ 0. Moreover, let M be a CGS, and q a state in M. Then, model
checking M, q |= ϕ can be done in time ∆P

i+2k+1.

Proof. By induction over k. In the following we restrict ourselves to (set-pl ·)
without loss of generality.

Case k = 1. Let ϕ be a level-i L1
ATLP formula, (set-pl ω) an operator occur-

ring in ϕ such that l({(set-pl ω)}) = i and ω = σ.Q1σ1Q2σ2 . . . Qnσnϕ
′

where
ϕ′ ∈ Lbase

ATLP(Agt, Π, T ({σ, σ1, . . . , σn})).
Note that Ms,s1,...,sn , q |= ϕ′ can be checked in polynomial time since all
constructible plausibility terms are rectangular and the representation is
directly given (see Corollary 10.14). Moreover, let q′ denote the state in
which ω is evaluated. W.l.o.g. we can assume that ϕ has the following
structure:

ϕ ≡ (set-pl ω)Pl 〈〈A〉〉�yes.

Now, ϕ is true in M and q if and only if there is a plausible strategy sA for
A and no plausible strategy t with t|A = s such that M′, q |=CTL ¬A�yes
where M′ is the trimmed model of M wrt t. In the following we neglect
the complexity needed to verify whether sA is plausible since the method
beatable also verifies this property and its complexity is at least as high
(cf. proof of Proposition 10.4). Thus, ϕ is true if, and only if

∃sA¬
(
∃t (t ∈ [̂[ω]]

q′

and R|=(M, q, sA, t,�yes))
)

iff ∃sA¬
(
∃tQ1s1Q2s2 . . . Qnsn (Mt,s1,...,sn , q′ |= ϕ′

and R|=(M, q, sA, t,�yes))
)

iff ∃sA∀tQ̄1s1Q̄2s2 . . . Q̄nsn (Mt,s1,...,sn , q′ 6|= ϕ′ or ¬R|=(M, q, sA, t,�yes))

where R|=(M, q, sA, t,�yes) = true iff t|A = sA and M′, q |=CTL ¬A�yes
where M′ is the “trimmed” model of M wrt t, and Q̄ is the dual quantifier
to Q.
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The latter conditions can be verified in polynomial time. We consider
the number of quantifier alternations. Subsequent strategies which are
quantified by quantifiers of the same type can be treated together. The
same holds if the sequence starts with existential quantifiers. These
strategies can be guessed together with strategy t. A quantifier level of
l({(set-pl ω)}) = i denotes that it is sufficient to alternatingly guess i
witnesses. We obtain the following structure:

∃sA∀xt∃x1∀x2 . . . Qxi

where Q = ∃ (resp. Q = ∀) if i is even (resp. odd). Where xi denotes a
witness for a strategy or several strategies if guessing can be combined.
Thus, according to Remark B.3 checking whether ϕ is satisfied can be
determined in time Σi+2 and the complete model checking algorithm for
level-i L1

ATLP formula can be performed in time ∆P
i+3 (there can be poly-

nomially many such constructs).
Induction step: k 7→ k + 1 (k > 1). Let ϕ be a level-i Lk+1

ATLP formula and
let ω be a term in ϕ of the form ω = σ1.Q1σ1Q2σ2 . . . Qnσnϕ

′ such
that l((set-pl ω)) = i. Furthermore, let RAlt(Q1 . . . Qn) = j; then,
lϕ′ := ql(UO(ϕ′)) = i− j and ϕ′ is an LkATLP formula. Thus, by induction
hypothesis we have that ϕ′ can be model checked in time

∆P
r+1 where r := lϕ′ + 2k.

Again, w.l.o.g. we can assume that ϕ has the following structure:

ϕ ≡ (set-pl ω)Pl 〈〈A〉〉�yes.

We proceed as in case k = 1. Firstly, a profile s is guessed, then a profile
t and it is checked whether t is plausible and coincides with s wrt A
and whether the trimmed model (wrt t) satisfies ¬A�yes. We obtain the
following structure:

∃sA¬
(
∃t (t ∈ [̂[ω]]

q′

and R|=(M, q, sA, t,�yes))
)

iff ∃sA¬
(
∃tQ1s1Q2s2 . . . Qnsn (Mt,s1,...,sn , q′ |= ϕ′︸ ︷︷ ︸

∈∆P
r+1

and R|=(M, q, sA, t,�yes)
︸ ︷︷ ︸

∈P

)
)
.

Since Mt,s1,...,sn , q′ |= ϕ′ is invoked by a nondeterministic polynomial Tur-
ing machine we can assume that its model checking problem can be solved



312 B Proofs

in ΣP
r or ΠP

r instead of ∆P
r+1; the polynomial effort of the deterministic

machine can also be done by the invoking nondeterministic machine. Be-
cause RAlt(Q1Q2 . . . Qn) = j analogously to the case k = 1 we obtain
that we can solve the problem in

PΣP
j+2

ΣP
r

= ∆P
i+2(k+1)+1

as j + 2 + r = j + 2 + (i− j) + 2k = i+ 2(k + 1).
�

Theorem 10.30 ( page 236). Let ϕ be a level-i formula of LkATLP(Agt, Π,Ω),
M a well-behaved CGSP, and q a state in M. Model checking M, q |= ϕ can
be done in ∆P

i+2(k+1)+1.

Proof. The proof is similar to the one of Theorem 10.29. In comparison to
the claim of Theorem 10.29, 2k has changed to 2(k+1). The reason for this is
that the final nesting (i.e. formulae in Lbase

ATLP) might contain hard-wired terms
and it can not be verified in polynomial time anymore. This causes the change
from k to k+ 1 (it requires to guess sA and verify it against all responses t).�

Proposition 10.32 ( page 238). Let ϕ be a QSAT instance. Then it
holds that ϕ is satisfiable if, and only if, Mϕ, q0 |= θϕ where Mϕ and θϕ are
effectively constructible from ϕ in polynomial time with respect to the length
of the formula ϕ.

Proof. Let ϕ be a QSAT instance. We use the construction above (cf.
page 238) to obtain M′ϕ and θϕ where uniformi

ATLP(σ) is obtained as fol-
lows: Firstly, we take the ATLP+K formula uniform(σ|i) (where σ|i refers
to agent i’s strategy in σ) as described in Appendix B.4.3; then, we use the
polynomial translation to change knowledge to ability, yielding a pure ATLI
formula. Finally, we use the polynomial translation from ATLI to ATLP given
in Section 6.3 (Proof of Proposition 6.32) to obtain a pure ATLP formula
uniformi

ATLP(σ). Hence, the latter formula is true if agent i’s strategy con-
tained in the complete profile σ is a uniform strategy. This shows that θϕ can
be constructed in polynomial time.

Model Mϕ is obtained from M′ϕ by the same scheme. Firstly, the construc-
tion from [Jamroga, 2007] referred to in Appendix B.4.3 is applied. Secondly,
the resulting CGS with intentions is transformed to a CGSP using the con-
struction from Section 6.3 (Proposition 6.32) again. The constructed model
Mϕ is also polynomial with respect to ϕ.

We get that ϕ is satisfiable if, and only if, Mϕ, q0 |= θϕ. �
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Fig. B.2. Memorising the last action profile in a simple 2-agent system.

B.4.3 From ATLuir to ATLP with ATLI-Based Plausibility Terms

The reduction of ATLuir model checking to model checking of ATLPATLI in
“pure” CGSs is rather sophisticated. We do not present a reduction for full
model checking of ATLuir ; it is enough to show the reduction for the kind of
models that we obtain in Appendix B.3 (i.e., turn-based models with two
agents, two “final” states q>, q⊥, no cycles except for the loops at final states,
and uncertainty appearing only in states one step before the end of the game,
cf. Figure B.1).

Firstly, we reconstruct the concurrent epistemic game structure Mp from
Section B.3 so that the last action profile is always “remembered” in the final
states. Then, we show how uniformity of strategies can be characterised with
a formula of ATLI extended with epistemic operators. Thirdly, we show how
the model and the formula can be transformed to remove epistemic links and
operators (yielding a “pure” CGS and a formula of “pure” ATLI). Finally, we
show how the resulting characterisation of uniformity can be “plugged” into
an ATLP formula to require that only uniform strategy profiles are taken into
account.

Adding More Final States to the Model.

We recall that the input of ATLuir model checking consists in our case of a
concurrent epistemic game structure Mp (like the one in Figure B.1) and an
ATLuir formula Φp (cf. Proposition B.2). We begin the reduction by recon-
structing Mp to M′p in which the last action profile is “remembered” in the
final states. The idea is based on the construction from [Goranko and Jam-
roga, 2004, Proposition 16] where it is applied to all states of the system, cf.
Figure B.2.

In our case, we first create copies of states q>, q⊥, one per incoming transi-
tion. That is, the construction yields states of the form 〈q, α1, . . . , αk〉, where
q ∈ {q>, q⊥} is a final state of the original model Mp, and 〈α1, . . . , αk〉
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is the action profile executed just before the system proceeded to q. Each
copy has the same valuation of propositions as the original state q, i.e.,
π′(〈q, α1, . . . , αk〉) = π(q). Then, for each action α ∈ Act and agent i ∈ Agt,
we add a new proposition i : α. Moreover, we fix the valuation of i : α in M′p
so that it holds exactly in the final states which can be achieved by an action
profile in which i executes α (i.e., states 〈q, α1, ..., αi, ..., αk〉). We note that
the number of both states and transitions in M′p is linear in the transitions
of Mp. The transformation produces model M′p which is equivalent to Mp in
the following sense. Let ϕ be a formula of ATLuir that does not involve special
propositions i : α. Then, for all q ∈ Q : Mp, q |=ATLuir

ϕ iff M′p, q |=ATLuir
ϕ.

In M′p, agents can “recall” their actions executed at states that involved
some uncertainty (i.e., states in which the image of some indistinguishability
relation ∼i was not a singleton). Now we can use ATLI (with additional help
of knowledge operators, see below) to characterise uniformity of strategies.

Characterising Uniformity in ATLI+K.

We will now show that uniformity of a strategy can be characterised in ATLI
extended with epistemic operators Ka (that we call ATLI+K). Kaϕ reads as
“agent a knows that ϕ”. The semantics of ATLI+K extends that of ATLI by
adding the standard semantic clause from epistemic logic:

M, q |= Kaϕ iff M, q′ |= ϕ for every q′ such that q ∼a q′.
We note that ATLI+K can be also seen as ATEL [van der Hoek and
Wooldridge, 2002] extended with intentions.

Let us now consider the following formula of ATLI+K:

uniform(σ) ≡ (strσ)〈〈∅〉〉�
∧

i∈Agt

∨

α∈d(i,q)

Ki〈〈∅〉〉 © i : α.

The reading of uniform(σ) is: suppose that profile σ is played (strσ); then, for
all reachable states (〈〈∅〉〉�), every agent has an action (

∧
i∈Agt

∨
α∈d(i,q)) that

is determined for execution (〈〈∅〉〉© i : α) in every state indistinguishable from
the current state (Ki). Thus, formula uniform(σ) characterises the uniformity
of strategy profile σ. Formally, for every concurrent epistemic game structure
M, we have that M, q |=

ATLI+K
uniform(σ) iff [σ[a]] is uniform for each

agent a ∈ Agt (for all states reachable from q). Of course, only reachable
states matter when we look for strategies that should enforce a temporal goal.

Note that the epistemic operator Ka refers to incomplete information,
but σ is now an arbitrary (i.e., not necessarily uniform) strategy profile. We
observe that the length of the formula is linear in the number of agents and
actions in the model.
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Fig. B.3. Getting rid of knowledge and epistemic links.

Translating Knowledge to Ability.

To remove the epistemic operators from formula uniform(σ) and epistemic
relations from model M′p, we use the construction from [Jamroga, 2007]
(which refines that from [Goranko and Jamroga, 2004, Section 4.4]). The con-
struction yields a concurrent game structure tr(M′p) and an ATLI formula
tr(uniform(σ)) with the following characteristics. The idea can be sketched
as follows. The set of agents is extended with epistemic agents ei (one per
ai ∈ Agt), yielding Agt′′ = Agt ∪ Agte. Similarly, the set of states is aug-
mented with epistemic states qe for every q ∈ Q ′ and e ∈ Agte; the states
“governed” by the epistemic agent ea are labeled with a special proposition ea.
The “real” states q from the original model are called “action” states, and are
labeled with another special proposition act. Epistemic agent ea can enforce
transitions to states that are indistinguishable for agent a (see Figure B.3 for
an example).3 Then, “a knows ϕ” can be rephrased as “ea can only affect
transitions to epistemic states where ϕ holds”. With some additional tricks
to ensure the right interplay between actions of epistemic agents, we get the
following translation of formulae:

3 The interested reader is referred to [Jamroga, 2007] for the technical details of
the construction.
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tr(p) = p, for p ∈ Π
tr(¬ϕ) = ¬tr(ϕ),

tr(ϕ ∨ ψ) = tr(ϕ) ∨ tr(ψ),
tr(〈〈A〉〉 © ϕ) = 〈〈A ∪ Agte〉〉 © (act ∧ tr(ϕ)),
tr(〈〈A〉〉�ϕ) = 〈〈A ∪ Agte〉〉�(act ∧ tr(ϕ)),
tr(〈〈A〉〉ϕUψ) = 〈〈A ∪ Agte〉〉(act ∧ tr(ϕ))U(act ∧ tr(ψ)),

tr(Kiϕ) = ¬〈〈e1, ..., ei〉〉 ©
(
ei ∧ 〈〈e1, ..., ek〉〉 © (act ∧ ¬tr(ϕ))

)
.

Note that the length of tr(ϕ) is linear in the length of ϕ and the number
of agents k. Two important facts follow from [Jamroga, 2007, Theorem 8]:

Lemma B.4. For every ICGS M and formula of ATLuir that does not include
the special propositions act, e1, . . . , ek, we have

M, q |=
ATLuir

ϕ iff tr(M), q |=
ATLuir

tr(ϕ).

Lemma B.5. For every ICGS M, we have

M, q |=
ATLI+K

uniform(σ) iff tr(M), q |=
ATLI+K

tr(uniform(σ)).

Putting the Pieces Together: The Reduction.

We observe that ATLuir can be seen as ATL where only uniform strategy pro-
files are allowed. An ATLI formula that characterises uniformity has been
defined in the previous paragraphs. It can be now plugged into our “ATL
with Plausibility” to restrict agents’ behaviour in the way the semantics of
ATLuir does. This way, we obtain a reduction of SNSAT2 to model checking
of ATLPATLI.

Proposition B.6.
zp iff tr(M′p), q

p
0 |=ATLPATLI

(set-pl σ.tr(uniform(σ)))Pl tr(Φp).

Proof. We have zp iff M′p, q
p
0 |=ATLuir

Φp iff tr(M′p), q
p
0 |=ATLuir

tr(Φp)

iff tr(M′p), q
p
0 |=ATLPATLI

(set-pl σ.tr(uniform(σ)))Pl tr(Φp). The details
follow similarly to Theorems 10.20 and 10.17 and Proposition 10.19. �

B.5 Model Checking CoalATL

Lemma 10.47 ( page 247). Let ϕ(X) be a Boolean formula in positive
normal form.
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(a) If T is a satisfying truth assignment of ϕ, then there is a v-choice of M(ϕ)
such that for the set L of all literal states reachable from q0 it holds that
{x ∈ X | qw ∈ L and χw = x} ⊆ T and {x ∈ X | qw ∈ L and χw =
¬x} ∩ T = ∅.

(b) If there is a v-choice of M(ϕ) such that for the set L of all literal states
reachable from q0 we have that for any qw, qv ∈ L the formula χw ∧ χv is
satisfiable (i.e. there are no complementary literals) then the set {x ∈ X |
qw ∈ L and χw = x} is a satisfying truth assignment of ϕ.

Proof.

(a) Let T be a satisfying truth assignment of ϕ. We construct a v-choice with
the stated property. Firstly, we call a state qw a v-state (resp. r-state)
if qw is controlled by v (resp. r). Next, we consider a state qw such that
qw1 and qw2 are literal states. Firstly, let us consider the case that qw is a
v-state. Then, we label it with > if for some i we have that x ∈ T (resp.
x 6∈ T ) if χwi = x (resp. χwi = ¬x) for x ∈ X; otherwise we label the
state with ⊥. Secondly, if qw is an r-state we label it with > if the above
condition holds for both i; otherwise with ⊥.
In the second step, we label each v-state with two labelled successor states
with > if at least one of its successors has label >; otherwise we assign to
it the label ⊥. On the other hand, if it is an r-state, if both successors have
the label > we label it >; otherwise we assign to it label ⊥. We proceed
like this until all states qw with a relevant w are labelled.
Now, in lexicographical order we go through all w relevant for ϕ and per-
form the following steps. If qw is a v-state reachable from q0, we remove
the transition to the successor which is labelled ⊥ and if both transitions
are labeled > we remove any of its transitions. Else, if qw is a v-state and
not reachable from q0 we remove any of its transitions. Following this pro-
cedure, we have to show that there is no reachable v-state such that both
successors are labelled ⊥. Suppose such a state qw is reachable. Since the
verifier has no strategy to avoid this state (note that w is lexicographically
minimal) the disjunction χw1∨χw2 must be true under T in order to make
ϕ true. However, since both states qw1 and qw2 are labelled ⊥ the truth
assignment T falsifies χw1 and χw2 (that can easily be seen by induction).
Contradiction!
Hence, the construction yields a v-choice. We need to show that there is
a v-choice such that S := {x ∈ X | qw ∈ L and χw = x} is a subset of T .
Firstly, assume there is some x ∈ S not in T . Let qwi be some reachable
literal state with χwi = x. By construction of the v-choice, this implies
that the state qw is an r-state. (Otherwise, the other alternative would have
been selected (according to the labelling algorithm); or, both successors
of qw would be labelled ⊥ what is not possible as shown above.) But this
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means, that the formula χw1 ∧ χw2 needs to be satisfied and hence x ∈ T .
Secondly, assume that x ∈ {x ∈ X | qw ∈ L and χw = ¬x} ∩ T and let
qwi be the state reachable with χwi = ¬x. Following the same reasoning
as above the state qw must be an r-state and this contradicts the fact that
the formula χw1 ∧ χw2 must be true under T .

(b) Let us consider a v-choice v of M(ϕ) with the stated property and sup-
pose that T := {x ∈ X | qw ∈ L and χw = x} is not a satisfying truth
assignment of ϕ. Note that the v-choice corresponds to the selection of the
left (resp. right) hand subformula of any subformula χw with lc(χw) = ∨.
We say that a subformula χw is reachable if the state qw is reachable in
the very v-choice v. Since T is not a satisfying truth assignment there is
some reachable subformula (possibly ϕ itself) not satisfied by T . Let χw
be such a reachable subformula with lexicographically maximal w (so, it
is a relative “small” subformula). We consider two cases. Firstly, suppose
that χw is not satisfiable. Then, due to the maximality of w, χw must
be a conjunction of literals among that are two complementary ones, we
denote them by χv and χv′ (otherwise it would be satisfiable); hence, we
have that qv, qv′ ∈ L. Contradiction!
So, suppose χw is satisfiable but false under T . Then, due to the maximal-
ity of w, χw can either be xi for some xi 6∈ T or be ¬xj for some xj ∈ T .
Suppose χw = xi; then qw is reachable and thus xi ∈ T . Contradiction! On
the other hand, if χw = ¬xj then qw ∈ L and since xj ∈ T there is some
other state qv ∈ L with χv = xj and χw∧χv not satisfiable. Contradiction!

�

Proposition 10.48 ( page 248). The model M(ϕ) is constructible in
polynomial-time wrt the size of ϕ and we have that

ϕ(X) is satisfiable if, and only if, M(ϕ), q0 |= 〈|v|〉♦sat.

Proof. Firstly, we analyse the construction to show that its length is poly-
nomial wrt the input. The number of agents is polynomial in X; the number
of states is polynomial in the number of subformulae of ϕ and for each state
there are at most two transitions (apart form the states q⊥ and q>).

“⇒”: Let ϕ(X) be satisfiable and let T ⊆ X be a satisfying truth assign-
ment. By construction of M(ϕ) we have that C := {v, ai, āj | xi ∈ T, xj 6∈
T} ∈ sem(ζ({v})(q0)); hence, it suffices to show that M(ϕ), q0 |= 〈〈C〉〉♦sat.
Now by Lemma 10.47(a) there is a strategy sv of v such that for the set L of
all literal states reachable from q0 we have that S := {x | qw ∈ L and χw =
x} ⊆ T and {x | qw ∈ L and χw = ¬x} ∩ T = ∅. Hence, for any xi ∈ S the
agent ai is in C and for any xi ∈ {x | qw ∈ L and χw = ¬x} the agent āi is
in C. Finally, the strategy sa of a ∈ C\{v} is to execute > if a = ai and ⊥ if
a = āi in the states controlled by a. The complete strategy profile consisting
of sb for b ∈ C ensures ♦sat.
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“⇐”: Suppose that M(ϕ), q0 |= 〈|v|〉♦sat. Then there is a coalition C ∈
sem(ζ({v})(q0)) such that M(ϕ), q0 |= 〈〈C〉〉♦sat. By Lemma 10.47(b) it re-
mains to show that for the set L of all literal states reachable from q0 we
have that for any qw, qv ∈ L the formula χw ∧ χv is satisfiable. Suppose the
contrary; that is, there are qw, qv ∈ L such that χw∧χv ≡ ⊥; say χw = xi. By
Proposition 10.44, C\{v} does correspond to a truth assignment of ϕ; hence,
either ai ∈ C or āi ∈ C. Hence, if āi ∈ C then ai 6∈ C and the opponents (to
whom ai belongs) have a strategy to reach q⊥ from qw. But this contradicts
M(ϕ), q0 |= 〈〈C〉〉♦sat. The same reasoning is applied if ai ∈ C and āi 6∈ C. �

Lemma 10.52 ( page 250). Let I = (ϕ1, . . . , ϕp) be an SNSAT1 instance.

(a) Let T = (T1, . . . , Tp) be a solution for I. For all r = 1, . . . , p, if zr ∈ Tr
then there is a v-choice of M(ϕr) such that for the set L of all literal
states reachable from qr0 and which belong to M(ϕr) it holds that {x ∈
Xr ∪Z | qw ∈ L and χϕrw = x} ⊆ Tr and {x ∈ Xr ∪Z | qw ∈ L and χϕrw =
¬x} ∩ Tr = ∅.

(b) Let Ip−1 = (ϕ1, . . . , ϕp−1) and let T p−1 = (T p−1
1 , . . . , T p−1

p−1 ) be an Ip−1-
witness. Then, if there is a v-choice of M(ϕp) such that for the set L of
all literal states reachable from qp0 that belong to M(ϕp) we have that
(i) for any qw, qv ∈ L the literals χϕpw and χ

ϕp
v are non-complementary;

and
(ii) if qv ∈ L with χϕpv = zi (resp. χϕpv = ¬zi) then zi ∈ Ti (resp. zi 6∈ Ti);
then, T = (T p−1

1 , . . . , T p−1
p−1 , Tp) is a solution for I where

Tp = {x ∈ Xr | qw ∈ L and χw = x} ∪ {zi | zi ∈ T p−1
i , i < p} ∪ {zp}.

(c) M(I), qi0 |= ϕi if, and only if, M(I), qi0 |= ϕj; and M(I), qi0 |= ¬ϕi if, and
only if, M(I), qi0 |= ¬ϕj for all j ≥ i.

Proof.

(a) Let zr ∈ Tr. As in the proof of Lemma 10.47(a) we proceed with the
following labelling: We consider a state qw such that qw1 and qw2 are
literal states in M(ϕp). Firstly, let us consider the case that qw is a v-
state. Then, we label it with > if for some i with χwi = x ∈ Xr ∪Z (resp.
χwi = ¬x, x ∈ Xr ∪ Z) we have that x ∈ Tr (resp. x 6∈ Tr); otherwise we
label the state with ⊥. Secondly, if qw is a r-state we label it with > if
the above condition holds for both i; otherwise by ⊥. In the second step,
(labelling non-literal states) we proceed exactly as before.
In the second step, we label each v-state with two labelled successor states
with > if at least one of its successors has the label >; otherwise we assign
to it the label ⊥. On the other hand, if it is a r-state, if both successors
have the label > we label it >; otherwise we assign to it the label ⊥. We
proceed like that until all states qw with a relevant w are labelled.
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The v-choice is constructed in the very same way as in Lemma 10.47(a)
and also the verification that the v-choice has the same properties is done
in the very same way.

(b) Let us consider a v-choice with the stated properties (i) and (ii). We adopt
the notation from the proof of Lemma 10.47(b). By definition of Tp it is
obvious that it satisfies conditions 1 and 3 of Definition 10.50.
Suppose that T is not a solution of I; that is, condition 2 of Definition 10.50
is violated. Since T p−1 is a witness of Ip−1 there is a reachable subformula
χw of ϕp with lexicographically minimal w that is not satisfiable given
the valuation of the zi’according to T p−1 (note that the zi’s are uniquely
determined in T p−1). Note, that the condition (ii) guarantees that the
“right” value is chosen for zi ∈ Ti and zi 6∈ Ti. The rest of the proof is
done analogously to the one given in Lemma 10.47(b) by considering the
literal states corresponding to variables Xp ∪ Z. This proves that T is a
solution.

(c) Along each path from qi0 to a state labelled sat there are at most i−1 states
labelled neg. Hence, the truth of a formula ϕj with j ≥ i is equivalent to
the truth of ϕi.

�

Theorem 10.53 ( page 251). The size of M(I) and of the formulae ϕp
is polynomially in the size of the SNSAT1 instance I = (ϕ1, . . . , ϕp) and we
have the following:

There is a solution T = (T1, . . . , Tr) of Ir = (ϕ1, . . . , ϕr) if, and only if,
M(Ir), qr0 |= ϕl

for l ≥ r and r ≤ p.

Proof. That M(I) is polynomially wrt ϕ follows from Proposition 10.48 and
by the way it is constructed. The size of ϕp also is polynomially in ϕ(X).

The proof is done by induction on r.
Induction start. The induction starts with r = 1. An SNSAT1-instance with
r = 1 is given by ∃Y1ϕ(X1). This corresponds to the satisfiability problem.
So, this case is proven in Proposition 10.48 and Lemma 10.52(c).

Induction step. Suppose the claim holds up to r < p.We show that there is a
solution T = (T1, . . . , Tr+1) of Ir+1 iff M(Ir+1), qr+1

0 |= ϕl+1.
“⇒”: Let T = (T1, . . . , Tr+1) be a solution for Ir+1.
From the reduction-suitableness we have that there is a coalition C ∈

sem(ζ({v})(qp0)) with

C = {v} ∪
⋃

i=1,...,r+1

{aij | aij ∈ Ti} ∪
⋃

i=1,...,r+1

{āij | xij 6∈ Ti}.
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Note that, if zi ∈ Ti then Ti = {xij | aji ∈ C, j = 1, . . . , s} ∪ {zj |
M(Ir+1), qj0 |= ϕj , j = 1, . . . , i}.

We show that M(Ir+1), qr+1
0 |= 〈〈C〉〉(¬negU(sat∨(neg∧〈〈∅〉〉©¬ϕi+1)). Let

sr+1
v be the partial strategy corresponding to the v-choice according to Lemma

10.52(a). The set of reachable literal states Lr+1 in M(ϕr+1) corresponds to
finite sequences of states starting in qr+1

0 . In the following, we call such literal
states referring to some zi (resp. ¬zi), z (resp. ¬z)-literal states and the others
x (resp. ¬x)-literal states. Let λ be a finite sequence of states starting in qr+1

0

and ending in one of the states in Lr+1. Then this sequence has one of the
following properties: (1) The last state is an x, z, ¬x-literal state and there
is no ¬z-literal state on it; or (2) the last state is a ¬z-literal state and there
is no other ¬z-literal state on it. Note, that due to Lemma 10.52(a) it is not
possible to reach two complementary literal states. We show, that we can
extend sv to a strategy sC that witnesses the truth of ϕi+1.

Case 1. For a path ending with an x-literal state χw = xr+1
i we have that

xr+1
i ∈ Tr+1 and thus ar+1

i ∈ C. If this agent executes > the next state is
q>.

Case 2. For a path ending with an ¬x-literal state χw = ¬xr+1
i we have that

xr+1
i 6∈ Tr+1 and thus ār+1

i ∈ C. If this agent executes ⊥ the next state is
q>.

Case 3. For a path ending with an z-literal state qw, χw = zi, we have that
zi ∈ Tr+1 hence also zi ∈ Ti. By induction hypothesis we have that
M(I), qi0 |= ϕr. Now, it is easily seen by a further induction that the very
same coalition C has a winning strategy s′C witnessing ϕr. We combine
the strategy sv with s′C .

Case 4. For a path ending with an ¬z-literal state qw, χw = ¬zi, we have
that zi 6∈ Tr+1 hence also zi 6∈ Ti. By induction hypothesis we have that
M(I), qi0 6|= ϕr; hence, M(Ir+1), qw |= neg ∧ 〈〈∅〉〉 © ¬ϕl.

These cases provide us with the desired strategy sC witnessing ϕl+1 for
the chosen coalition C.
“⇐”: Suppose that M(Ir+1), qr+1

0 |= ϕl+1.
Let zi with i < r+1 and with maximal index i be such that M(Ii), qi0 |= ϕi.

Then, there is a solution T i = (T1, . . . , Ti) of Ii by induction hypothesis.
According to Proposition 10.51(b) and (c) we can extend this solution to an
Ir witness T r = (T1, . . . , Tr) of Ir.

Now, since M(Ir+1), qr+1
0 |= ϕl+1, there is a coalition C ∈ sem(ζ(v)(qr+1

0 ))
and a strategy sC that witnesses the truth of the formula. Let L be the set
of all reachable literal states in M(ϕr+1) under sC (a v-choice is contained
implicitly). We show that the preconditions (i) and (ii) of Lemma 10.52(b)
are satisfied by this v-choice.
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Condition (i). Firstly, for each reachable x/¬x-literal state qr+1
w ∈ L with

χ
ϕr+1
w = x we must have that ar+1

i (resp. ār+1
i ) is in C if x = xr+1

i (resp.
x = ¬xr+1

i ) (otherwise the formula ¬negUsat would not be true). Hence,
there cannot be any complementary x-literal states contained in L due to
the reduction-suitable semantics (again, otherwise ¬negUsat would not be
true).
Secondly, observe that for any positive z-literal state qr+1

w ∈ L with
χ
ϕr+1
w = zi we have that M(Ir+1), qr+1

w |= ϕl+1 and by Lemma 10.52(c)
also M(Ir+1), qi0 |= ϕi; hence, by induction hypothesis, zi ∈ Ti.
For each negative z-literal state qr+1

w ∈ L with χ
ϕr+1
w = ¬zi we have that

M(Ir+1), qi0 |= ¬ϕl and thus, by Lemma 10.52(c) M(Ir+1), qi0 |= ¬ϕi. By
induction hypothesis, we have that for any Ii-witness (T ′1, . . . , T

′
i ) it holds

that zi 6∈ T ′i . Contradiction to zi ∈ Ti.
Condition (ii). Let qv ∈ Lp with χ

ϕp
v = zi. We show that zi ∈ Ti. Sup-

pose the contrary. Then, M(Ir+1), qi0 |= ¬ϕi and by Lemma 10.52(c) also
M(Ir+1), qi0 |= ¬ϕl+1. However, since along the path from qr+1

0 to qi0 we
always have ¬neg the coalition C performing strategy sC witnesses the
formula ϕl+1 in qi0. Contradiction!
Secondly, assume qv ∈ L with χ

ϕr+1
v = ¬zi and again, by the sake

of contradiction, that zi ∈ Ti. Then M(Ir+1), qi0 |= ϕi and thus also
M(Ir+1), qi0 |= ϕl by Lemma 10.52(c). However, on the path to qv ∈ L we
have visited a state labeled neg; hence, we must have M(Ir+1), qi0 |= ¬ϕl.
Contradiction!

Now by Lemma 10.52(b), we can construct a solution for Ir+1 form T r.
�

B.6 Model Checking CL on Implicit Models

Theorem 5.24 ( page 89). Model checking CLIR, CLIr, CLir, and CLiR

over implicit CGSs is ∆P
3 -complete with respect to the size of the model and

the length of the formula. Moreover, it is ΣP
2 -complete for the “simple” vari-

ants of CL.

Proof. The upper bound follows from the result that model checking ATL is
in ∆P

3 .
We extend the proof from [Laroussinie et al., 2008] such that only the

next time operator is used. The proof is done by reducing the ∆P
3 -complete

problem SNSAT2. A SNSAT2 instance I consists of formulae

(?) zi = ∃Xi∀Yiψi(z1, . . . , zi−1, Xi, Yi)
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where Xi = {x1
i , . . . , x

s
i} and Yi = {y1

i , . . . , y
s
i } are sets of variables and s ∈ N

for i = 1, . . . ,m. Accordingly to the truth of the formulae ψi the value of each
zi is uniquely defined. A valuation of I is a mapping vI assigning these unique
values to each variable zi. Moreover, if vI(zi) = > we define vziI : Xi → {>,⊥}
to be some valuation of the variables Xi that witnesses the truth of zi. Note,
that each zi recursively depends on zi−1, . . . , z1. In the following we will often
omit the subscript I.

We construct the following implicit CGS MI for a given SNSAT2 instance
I. Firstly, we introduce agents, each controlling one variable. There are agents
aji (one agent per variable xji ) with actions {>,⊥}, bji (one agent per variable
yji ) with actions {>,⊥}, ci (one agent per zi) with actions {>,⊥}, and d (the
“selector”) with actions {1, . . . ,m} for i = 1, . . . ,m and j = 1, . . . , s. We use
A (resp. C and B) to denote the set of all agents aji (resp. ci and bji ).

The states of the model are given by states qi and q̄i (one per zi) and the
two states q>, q⊥. States q̄i are labelled with proposition neg and state q> is
labelled with sat.

Before giving the formal definition of the encoded transition function, we
explain the role of the agents. Agents aji (resp. bji and ci) determine the value
of the variables xji (resp. yji and zi). Action > (resp. ⊥) sets them true (resp.
false). Agent d has a more elaborated function. Once, all moves of the other
agents are fixed, the agent can decide to “check” whether formula ψi holds
regarding the actions of the other agents by executing action i. If the check is
successful, the system goes to the winning state q>. If not, it goes to the losing
state q⊥. However, there are some exceptions to that which will be presented
in the formal definition of the encoded transition function.

The part (ϕi0, q
i
0), . . . , (ϕiti , q

i
ti) in the encoded transition function associ-

ated with state qi is defined as follows (where ψ′i denotes the formula ψi in (?)

in which each occurrence of xji (resp. yji and zi) is replaced by exec
aj

i

> (resp.

exec
bj

i

> and execci

>) (recall, that execa
α means that agent a executes action α)):

(execd
k ∧ (∧j=i−1,...,kexec

cj

>) ∧ ψ′k, q>)k=i,...,1, (B.1)

(execd
k ∧ (∧j=i−1,...,kexec

cj

>), q⊥)k=i,...,1, (B.2)

(execd
k ∧ ¬execck

>, q̄k)k=i−1,...,1, (B.3)
(>, q>) (B.4)

Moreover, there are loops at states q> and q⊥ and transitions from q̄i to
qi for i = 1, . . . ,m. The following lemma is fundamental to our reduction.

Lemma B.7. Let χ0 = > and

χr+1 = [A ∪ C](sat ∨ (neg ∧ [∅]¬χr))
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for r = 0, . . . ,m − 1 where sat and neg are propositional symbols. Then, for
all i ≤ m and r ≥ i it holds that

MI , qi |= χr iff vI(zi) = >.

Proof. We proceed by induction on i. Firstly, we consider the base case i = 1.
“⇒”: Suppose that M, q1 |= χr for r ≥ 1. Due to the definition of the

transition function only rules (1,2,4) are present; hence, only q> and q⊥ are
reachable. That is, the formula M, q1 |= [A ∪ C]sat must be satisfied (as the
label neg cannot become true). But then, there must be a valuation of the xj1’s
such that for all valuations of the yj1’s, ψ1 evaluates true; hence, v(z1) = >.

“⇐”: Suppose v(z1) = >. Then, there is a valuation of the variables xj1
such that for all valuations of yj1 the formula ψ1 evaluates true. It is easily seen
that the strategy in which each agent in A plays according to the valuation
given by vz1 and c1 plays > witnesses that q1 |= [A ∪C]© sat (and thus also
M, q1 |= χr for r ≥ 1).

For the inductive step suppose the assumption holds up to index i ≥ 1.
“⇒”: Suppose M, qi+1 |= χr+1 for r ≥ i. Firstly, we prove the following

claim.

Claim: Suppose M, qi+1 |= χr+1, then each cl with l ≤ i plays according to
the valuation v(zl).

Proof. Suppose cl plays ⊥ and d plays l. Then, the next state of the system is
q̄l and as a consequence, M, ql |= ¬χr and by induction hypothesis v(zl) = ⊥.

The other case is proven by induction. Suppose i = 1, M, q2 |= χr+1, and
c1 plays >. We have to show that v(z1) = >. Suppose the contrary. Then,
for any strategy of A ∪ C there is a strategy of B such that ψ′1 evaluates
false. Hence, if d plays 1 rule (2) is firing and the next state is q⊥ and thus
M, q2 6|= χr+1. Contradiction!

For the induction step, suppose that all agents cl for l < i play according
to v(zl), that M, qi+1 |= χr+1, and ci = >. We show that v(zi) = >. For the
sake of contradiction, suppose that v(zi) = ⊥. Again, for any strategy of A∪C
witnessing χr+1 we have that there is a strategy of B that falsifies ψ′i (note,
that by assumption c1, . . . , ci−1 play according to v(z1), . . . , v(zi−1)). So, if d
plays i rule (2) is firing and the next state is q⊥ which implies M, qi+1 6|= χr+1.
Contradiction! �

Now let sAC be the strategy of agents A ∪ C that witnesses χr+1 in qi+1.
Suppose player d plays i+1. Irrelevant of the move of ci+1 either rule (1) or rule
(2) is firing. This does only depend on the valuation of ψ′i+1. By assumption,
we must have that ψ′i+1 is true for all strategies of B otherwise M, qi+1 6|=
χr+1. Because of the previous claim, we must also have that v(zi+1) = >.

“⇐”: Suppose v(zi+1) = >. Let sAC be the strategy in which players cj
play according to v(zj) and players aoj play according to vzj if v(zj) = > and
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′
2) .

arbitrarily if v(zj) = ⊥ for o = 1, . . . , s. Suppose player d plays l ≤ i+1. Now,
if each cj for j = i, . . . , l plays > we have that ψ′l is true as there is no valuation
of variables Yl that makes ψl false given the choices of A∪C; hence, the next
state is q>. Secondly, if d plays l and there is some agent cj , j > l, that plays
⊥; then rule (4) fires and the next state is also q>; the same holds if d plays
l > i + 1. Finally, suppose d plays l and cl = ⊥. Then, by the definition of
the actions of agents C, v(zl) = ⊥ and by induction hypothesis M, ql |= ¬χr;
thus, M, q̄l |= neg ∧ [∅]¬χr is true. Taking all theses cases together we have
M, qi+1 |= χr+1. �

This gives us the following polynomial reduction:

zm = > iff MI , qm |= χm.
�

B.7 Model Checking RAL∗

B.7.1 Non-Resource-Flat Languages

Theorem 11.18 ( page 275). Model checking RALr is undecidable, even
in the single agent case; hence also, RAL+

r and RAL∗r are undecidable.

Proof. Given a tca A = (S, Γ, sinit, Sf , ∆) we construct an RBAM MA with
two resources R1 and R2 (one per counter). We set QMA = S ∪ {sE1E2 | s ∈
S,E1, E2 ∈ {0, 1}}∪{qe, qa}. State qe (resp. qa) is labelled err (resp. halt) and
represents the ‘error’ (resp. ‘halting’) state. The states sE1E2 are temporary
states encoding that counter k is zero (Ek = 0) or non-zero (Ek = 1) for
k = 1, 2.

For each transition (s, E1, E2)∆(s′, C1, C2) of the automaton we introduce
actions 〈E1, E2〉 and 〈s′, C1, C2〉 (cf. Figure B.4). The first action leads from
s to sE1E2 and the second action from sE1E2 to s′. Action 〈s′, C1, C2〉 con-
sumes/produces Ci units of resource Ri, i = 1, 2. The other kinds of actions
are cost-free. Clearly, actions can only be performed if sufficient resources are
available. We need to ensure that actions 〈E1, E2〉 with some Ei = 0 can only
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be performed if the counter i is actually 0; that is, if no resources of type Ri
are available. Therefore, special ‘test’ actions tk1k2 that cost ki units of resource
Ri are introduced, ki ∈ {0,−1, 1}. Such actions can only be performed in
states sE1E2 with some Ei = 0 and they always lead to state qe. Now, in a
state sE1E2 with some element equal 0, say E1 = 0, E2 = 1, (representing that
counter 1 should be zero and 2 be non-zero) action t−1

0 can be used to verify
whether the currently available resources model the counter correctly: If qe is
reachable resources of type R1 are available although this should not be the
case according to E1. Moreover, we add an action αe to state qe, leading back
to qe and an action αa that leads from any state s ∈ Sf to qa and from qa to
itself. We assume that these are the only actions in states qe and qa and that
they will be executed by default.
We show: A↓ iff MA, sinit, η0 |=r ¬〈〈∅〉〉η0Agt¬((¬〈〈∅〉〉 © ¬err)Uhalt).
The formula states that there is an (η0, s∅,Agt)-path such that eventually halt
and the error state can never be reached along the way to qa.
“⇒”: Let δ = (si, vi1, v

i
2)i=1,...k be an accepting configuration. Clearly, if agent

1 executes 〈Ei1, Ei2〉 in state si 6∈ Sf , action 〈si+1, C
i
1, C

i
2〉 in state sE

i
1E

i
2

i (ac-
cording to δi as introduced above), and αa in sk ∈ Sf the resulting path is

given by λ with λ|Q = (sjs
Ej1E

j
2

j sj+1)j=1,...,k−1(qa)ω. It remains to show that

for any state sE
i
1E

i
2

i with Eil = 0 we have that λ|Res [2i− 1](1, Rl) = 0 (i.e. in
this state agent 1 has no resources of type Rl). By induction one can easily
prove that the actions keep track of the resources correctly and thus action

t−1
0 cannot be executed in any sE

j
1E

j
2

j along the path.
Claim: For each 3j < k with j ≥ 0 and λ[3j] = (sj+1, ηj+1) we have that
ηj+1(1, Ri) = vj+1

i for i = 1, 2.
Proof. [of Claim] Proof by induction. Clearly, η0(1, Ri) = η1(1, Ri) = v1

i = 0,
for i = 1, 2. Suppose the claim is correct for 3(j − 1) + 1. Then, agent 1 can

perform action (sj , C
j
1C

j
2) in s

Ej1E
j
2

j . This action costs Cji of resource Ri for
i = 1, 2. In the automaton the transition δj = ((sj , E

j
1E

j
2), (sj+1, C

j
1 , C

j
2)) is

taken. Hence, we have ηj+1(1, Ri) = ηj(1, Ri) + Cji = vji + Cji = vj+1
i for

i = 1, 2. �

“⇐”: Clearly, if such a satisfying path exists it must have the structure as
shown above and we can directly construct an accepting computation of the
automaton. Each triple sis

Ei1E
i
2

i si+1 uniquely determines a transition δi. That
only valid transitions are chosen is shown in the same way as for the left-to-
right direction. �

Theorem 11.19 ( page 275). Model checking pr-RALR (even without the
release operator) is undecidable in the single-agent case; hence, also pr-RAL+

R,
pr-RAL∗R,RALR, RAL+

R, and RAL∗R are undecidable.
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Fig. B.5. Construction used in the proof of Theorem 11.20 for
(s, E1, E2)∆(si, C1, C2) and (s, E1, E2)∆(sj , C

′
1, C

′
2).

Proof. We use the very same construction and notation as in the proof of
Theorem 11.18. We show A↓ iff MA, sinit, η0 |=R 〈〈1〉〉η0((¬〈〈1〉〉 © err)Uhalt).
“⇒”: Agent 1’s strategy is given by the same strategy as constructed before.
That it correctly keeps track of the resources is also shown analogously. Now,
in each state sE

i
1E

i
2

i the agent tries to execute an appropriate test action to
reach the error state. However, this action will never be activated in a valid
computation of the automaton.
“⇐” Such a winning strategy of 1 does also directly imply an accepting com-
putation of the automaton. �

Theorem 11.20 ( page 275). Model checking pr-RALr is undecidable
for models with at least two agents; hence, also pr-RAL+

r and pr-RAL∗r are
undecidable.

Proof. The model MA considered here is more sophisticated than the ones
before and shown in Figure B.5. The error state qe is not reachable directly
from the test state sE1E2 ; we rather add an intermediate state E1E2 with
Ei ∈ {0, 1}; that is, the model contains 4 additional states. From these new
states the error state is reached. The new model is turn-based; transitions are
labelled with the agent who can make the choices. In each state in which it
is agent 1’s turn, there is only a single action available. The actions have the
same costs as before. Agent 2’s actions are cost-free. The idea is that agent
2 makes the choices. In the resulting state in which it is agent 1’s turn agent
1 does only has a unique choice which is used to keep track of the resources.
Due to the unique choice a memoryless strategy for 1 suffices.

We show A↓ iff MA, sinit, η0 |=r ¬〈〈1〉〉η0¬((¬〈〈2〉〉 © 〈〈1〉〉 © err)Uhalt). We
have to show that for all strategies of 1 (where 1 never has a choice which
allows to use r-strategies) there is a path λ (that completely depends on agent
2) such that state qa is reached and on the way to this state whenever 2 could
decide to enter the new state (E1E2) agent 1 has not enough resources to
enter the error state.
“⇒”: Let δ = (si, vi1, v

i
2)i=1,...k be an accepting configuration. Then, in each

state si 6∈ Sf corresponding to a state of the automaton, agent 2 performs
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action 〈Ei1, Ei2〉 and in state sE
i
1,E

i
2

i the action leading to sC
i
1C

i
2

i+1 . This results
in path λ with:

λ|Q = (sis
Ei1E

i
2

i s
Ci1C

i
2

i+1 si+1)i=1,...,k−1(qa)ω. (?)

Analogously to the claim in the proof of Theorem B.5 we get the following
result.
Claim: For each 4j < k, j ≥ 0 with λ[4j] = (sj+1, ηj+1) we have that
ηj(1, Ri) = vj+1

i for i = 1, 2.
Proof. [of Claim] Proof by induction. Clearly, η0(1, Ri) = η1(1, Ri) = v1

i = 0,
for i = 1, 2. Suppose the claim is correct for 4(j−1) and let λ[4j] = (sj+1, ηj+1)
be the next state. Then, agent 1 has performed action (sj+1, C

j
1C

j
2) in

s
Cj1C

j
2

j+1 . This action costs Cji of resource Ri for i = 1, 2. In the automa-
ton the transition δj = ((sj , E

j
1E

j
2), (sj+1, C

j
1 , C

j
2)) is taken. Hence, we have

ηj+1(1, Ri) = ηj(1, Ri) +Cji = ηj(1, Ri) +Cji = vji +Cji = vj+1
i for i = 1, 2.�

According to the claim, we have that ¬〈〈2〉〉 © 〈〈1〉〉 © err whenever a state

s
Ei1E

i
2

i is visited along the path with Ej = 0 for some j ∈ {1, 2}.
“⇐”: Suppose the formula holds. Then, the path leading to state qa must
have the structure given in (?). Again, we can identify each quadruple of

states sis
Ei1E

i
2

i s
Ci1C

i
2

i+1 si+1 with a transition δi. Analogously to the claim proven
above, we obtain an accepting configuration of A in which each transition is
chosen correctly. �

B.7.2 Undecidability: Resource-Flat Languages

Theorem 11.21 ( page 276). Model checking rf -RALR is undecidable
for models with at least two agents; thus, also rf -RAL+

R and rf -RAL∗r are
undecidable.

Proof. The idea is similar to the proof of Theorem 11.19 but the test whether
the error state is reachable is performed by the opponent (agent 2). That is,
we add a second agent to the model shown in Figure B.4 that can execute
the test action in states sE1E2 . The task of agent 1 is to prevent agent 2 to
perform such actions. Analogously to the proof of Theorem 11.19 we show
that the transitions in the model correctly keep track of resources. We have:
A↓ iff MA, sinit, η0 |=R 〈〈1〉〉η0Agt♦halt. The only way to avoid halt is if there is
path corresponding to a run of the automaton that does not halt or if the
opponent can move to state qe, the latter can be prevented by 1 choosing the
right transitions. �
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′
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′
2).

Theorem 11.22 ( page 276). Model Checking rf -pr-RAL∗R,
rf -pr-(LRAL,|=∞R ), and rf -pr-(LRAL,|=∞R ) is undecidable for models with at
least two agents.

Proof. For the reduction we construct a model as shown in Figure B.6; we will
avoid formal details and just sketch the main idea. Analogously to the proof of
Theorem 11.21 we use agent 1 to simulate the transitions in the automaton.
As before, in the test states sE1E2 agent 2 tries to falsify the computation
by entering the “test loop”; but, because of proponent-restrictiveness agent
2 may always be successful with this very action. Hence, if agent 2 performs
the test action tk1k2 and the intermediate state stE1E2 is reached in which it is
up to agent one to reach the error state. Since agent 1 does only have a single
action available it has to take it if enough resources are available due to the
maximality conditions on paths. Once the error state is reached agent 1 has
to perform an action which adds the consumed resources of the test action (it
can be seen as the reverse function).

It is important to note, that if agent 2 performs the test action and there
are not sufficient resource of 1 to enter the error state the path is deemed
to be finite and thus is disregarded from the outcome. Hence, the error state
labelled err does only occur in the outcome if it is part of an infinite path
which in turn can only happen if agent 1 has no strategy that corresponds to
an accepting configuration of the automaton. �
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