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Abstract

This thesis deals with problems arising in dynamic geometry and numerical integration,
where complex detours play an important role. In the first part, fundamental questions
in continuous dynamic geometry are studied. We develop a formal model and investigate,
among others, problems of existence. In the second part, complexity theoretic issues from
continuous dynamic geometry are addressed. By doing so, new bounds for the so-called
Reachability Problem are proved. In the third part, we apply complex detours in the
context of numerical integration. It is studied, how this increases the order of convergence
of a method.






Zusammenfassung

Die Arbeit besteht aus drei Teilen, welche alle im Zusammenhang mit ebener dynamischen
Geometrie stehen und fiir die komplexe Umwege von zentraler Bedeutung sind. Nachdem
wir einleitend auf grundlegende Eigenschaften dynamischer Geometrie und dynamischer
Geometrie Systeme eingegangen sind, behandelt der erste Teil stetige dynamische Geome-
trie. Insbesondere wird ein Model fiir stetige dynamische Geometrie entwickelt. In einem
zweiten Teil beschéftigten wir uns mit einem komplexitidtstheoretischen Problem, welches
in diesem Kontext entsteht. Der dritte Teil konzentriert sich auf einen geometrischen Effekt,
der einen Konvergenzgewinn bei numerischer Integration zur Folge hat.

Stetige dynamische Geometrie entspricht in den meisten Féllen der natiirlichen Erwar-
tung, die ein Nutzer einer dynamischen Geometrie Software an das System stellt. Um jedoch
mit stetiger dynamischer Geometrie formal arbeiten zu kénnen, miissen wir zuerst einmal
statische Geometrie mathematisch fassen. Wir beginnen mit geometrischen Objekten wie
z.B. Punkten, Geraden oder Kegelschnitten. Sie werden mittels geeigneter homogener Ko-
ordinaten dargestellt, d.h. dass jedes Objekt mit einem Punkt eines speziellen projektiven
Raumes identifiziert wird. Der gewéhlte projektive Rahmen erméglicht es uns die Interaktion
zwischen geometrischen Objekten, so genannter geometrischer Operationen, mittels homo-
gener Polynomgleichungssysteme zu beschreiben. Der Schnittpunkt zweier Geraden ergibt
sich z.B. als die Losung der beiden zugehérigen linearen Geradengleichungen. Geometrische
Konstruktionen formalisieren wir anschliefend, indem wir ihre Konstruktionsvorschrift mit
den eingefiihrten formalen Objekten und Operationen nachbilden. Ein konkretes Bild, d.h.
eine Spezifikation der beteiligten Objekte, einer Konstruktion nennen wir eine Instanz.

Darauf aufbauend wird dynamische Geometrie modelliert. Im Unterschied zu einer ge-
wohnlichen Konstruktion wie man sie auf einem Blatt Papier schon mal gezeichnet hat,
konnen sich die freien Objekte einer dynamischen Konstruktion bewegen. Hierbei lassen
wir aber nicht alle Moglichkeiten an Bewegung zu, sondern beschréinken uns auf solche, die
letztlich von holomorphen Funktionen herriihren. Das bringt u.a. mit sich, dass die freien
Objekte sich stetig bewegen. Eine Abbildung, die nun zu einer gegebenen Konstruktion
und einer zugehorigen Startinstanz als Argument die Bewegungen der freien Objekte erhélt
und daraufhin die Bewegungen der restlichen Objekte zuriickgibt, bezeichnen wir als ein
dynamisches Geometrie System. Liefert es insbesondere nur stetige Bewegungen, so nennen
wir es ferner ein stetiges dynamisches Geometrie System.

Im weiteren Verlauf des Kapitels gelingt es mit Hilfe einiger Hilfsaussagen zu zeigen, dass,
wenn man die Bewegungen der freien Objekte fixiert, sich die Koordinaten der restlichen Ele-
mente einer Konstruktion zu Beginn der Bewegungen mittels holomorpher Funktionen lokal
beschreiben lassen. Unter Verwendung des Kontinuitétsprinzips folgt, dass die analytischen
Fortsetzungen der Koordinatenfunktionen ebenso Instanzen der Konstruktion ergeben, die
dariiber hinaus ein stetiges dynamisches Geometrie System induzieren. Probleme ergeben
sich nur, wenn die Fortsetzung nicht existiert oder der Représentant eines Objektes zum
Nullvektor wird. Diese Liicken lassen sich jedoch mit Hilfsmitteln der Funktionentheorie
schlieBen.

Mit den eben erwdhnten Ideen konstruieren wir fiir jede zuldssige Bewegung der freien
Objekte einen stetigen Verlauf von zugehorigen Instanzen. Ferner gelingt es uns zu zeigen,
dass die so induzierten stetigen dynamischen Geometrie Systeme die Menge aller méglichen



Systeme tatséichlich auch ausschopft. Ebenso greifen wir den Punkt auf, dass der eingefiihrte
algebraische Rahmen nicht méchtig genug ist, um transzendente Funktionen darzustellen.
Gegen Ende des Kapitels gehen wir dann darauf ein, dass die Forderung nach holomorphen
Bewegungen der freien Objekte in gewisser Weise sinnvoll ist. Denn es zeigt sich, dass nur
k-fach differenzierbare Bewegungen i.A. nicht zu stetigem Verhalten aller Objekte einer
Konstruktion fiihren.

Im dritten Kapitel dieser Arbeit interessiert uns die intrinsische Komplexitéit des so ge-
nannten Erreichbarkeitsproblems der dynamischen Geometrie. Gefragt wird, ob man zwei
gegebene Instanzen einer Konstruktion stetig ineinander iiberfithren kann. Um untere Kom-
plexitétsschranken zu erhalten, ziehen wir uns auf das verwandte Konzept der straight-line
Programme und deren Erreichbarkeitsproblem zuriick. Im Unterschied zu straight-line Pro-
grammen im herkémmlichen Sinn lassen wir hier nicht nur arithmetische, sondern auch
andere Operationen zu, welche den algebraischen Aquivalenten gewisser einfacher geometri-
scher Operationen wie z.B. Schnitt von einer Geraden und eines Kegelschnitts entsprechen.
Dies werden komplexe Wurzeln und Logarithmen sein und sind von essentieller Bedeutung
fiir die Komplexitdtsschranken. Fiir die straight-line Programme fithren wir ebenso einen
Formalismus ein, der ein stetiges Verhalten dieser unter einer stetigen Bewegung der Ein-
gabedaten beschreibt.

In analoger Weise zum vorhergehenden Kapitel stellt sich heraus, dass analytische Fort-
setzungen der einzeln verbauten Operationen ein stetiges Verhalten des gesamten Pro-
gramms induzieren. Somit bewegen wir uns auch hier auf zugrunde liegenden RIEMANN-
SCHEN Flichen dieser Funktionen.

Wir kodieren klassische Entscheidungsprobleme der Komplexititstheorie wie 3SAT oder
die Losbarkeit diophantscher Gleichungen in die globale Gestalt RIEMANNSCHER Fliachen
und komplexer Mannigfaltigkeiten. Dabei ist die Kodierung so gew#hlt, dass das Ausgangs-
problem genau dann mit ja beantwortet werden kann, wenn zwei vermeintliche Punkte der
Fldche in der gleichen Zusammenhangskomponente liegen. Abhingig vom urspriinglichen
Problem und dessen Losung kann es passieren, dass die konstruierten Mannigfaltigkeiten in
mehrere Zusammenhangskomponenten zerfallen und die Punkte in unterschiedlichen Kom-
ponenten liegen oder, dass einer der vorgegebenen Punkte gar nicht auf der Mannigfaltigkeit
existiert. In diesen Fillen ist das Ausgangsproblem mit nein zu beantworten.

Im weiteren Verlauf des Kapitels wird die eben beschriebene Konstruktion verwendet,
um untere Komplexititsschranken fiir verschiedene abgeschwiichte Varianten des Erreich-
barkeitsproblems fiir straight-line Programme herzuleiten. Diese implizieren dann eine ent-
sprechende Schranke an die verwandten geometrischen Probleme.

Bevor wir zwei unterschiedliche Einschriankungen des Problems studieren, schranken wir
zuerst einmal den Informationsgehalt der Zielinstanz ein, indem wir nur einen Teil dieser
vorgeben. Die restlichen Teile behandeln wir als Black Boxes. Von diesen Problemen kénnen
wir zeigen, dass sie abhéngig von den zugelassenen Operationen NP-schwer, coNP-schwer
oder unentscheidbar sind. Die anderen Einschrankung, die wir machen, beziehen sich auf
die Bewegungen der Eingabedaten. Hier werden wir einmal die topologische Form dieser
vorgeben, indem wir nur JORDAN-Kurven zulassen. Ferner beschrinken wir die Lénge der
Bewegungen in einer zweiten Variante. In beiden Fillen ergibt sich, dass die zugehorigen
Entscheidungsprobleme NP-schwer sind.

In Kern des vierten Kapitels stehen ein Superkonvergenzeffekt, der bei der numerischen
Integration entlang komplexer Integrationswege gewohnlicher Differentialgleichungen auf-
tritt, und dessen Interpretation. Sie resultieren aus einem komplex-geometrischen Zugang.



Bevor wir jedoch diese Thematik aufgreifen, wird kurz auf den Zusammenhang zwischen
stetiger dynamischer Geometrie und numerischer Integration gewdhnlicher Differentialglei-
chungen eingegangen.

Anschlielend motivieren wir den angesprochen Superkonvergenzeffekt anhand des einfa-
chen Beispiels © = z. Dieses Beispiel wird uns als Leitfaden fiir die folgenden Untersuchun-
gen dienen.

Nachdem die nétige Notation eingefithrt wurde, werden wir eine auf linearen Differen-
tialgleichungen und RUNGE-KUTTA Verfahren basierende Theorie entwickeln, mit der der
zu Beginn entdeckte Effekt erkliart wird. Es stellt sich heraus, dass man durch Wahl einer
speziellen komplexen Diskretisierung die Konvergenzordnung am Endpunkt des Integrati-
onsweges steigern kann. Der Schliissel wird dabei eine geometrische Uberlegung sein.

Im folgenden Abschnitt wird die entwickelte Theorie auf nicht lineare Differentialgleichun-
gen verallgemeinert. In diesem Zuge wird es uns gelingen, eine Klasse so genannter com-
position methods mit komplexen Koeffizienten herzuleiten und einige der bisher bekannten
Verfahren dort einzugliedern. Es stellt sich ndmlich heraus, dass diese sich als Iteration ei-
nes gewissen Basisverfahrens wie z.B. ein RUNGE-KUTTA Verfahren entlang einer geeigneten
Diskretisierung eines komplexen Integrationsweges ergeben.

Diese Methoden koénnen wiederum mittels geschickter Iteration dazu genutzt werden, um
Verfahren héherer Ordnung zu konstruieren. Interpretiert man diese dann wieder auf Basis
einer komplexen Integration, so ergeben sich interessanterweise Integrationswege mit einer
fraktalen Struktur.
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Introduction

“Es bedarf nur eines Anfangs, dann erledigt sich dass Ubrige.”

Gaius Sallustius Crispus

150 years ago, there was a great tradition in building mathematical models. At many
universities, a student of that time could even attend special seminars, in which building such
models was taught and studied. As one may not expect today, the reason for this tradition
was not only to produce nice sculptures to look at and put them into a showcase. Indeed, the
purpose of building models was to improve the understanding of the mathematical theory
behind them. The famous mathematician FELIX KLEIN wrote on this subject in [28, p. 78]
once:

“Wie heute [1926], so war auch damals der Zweck des Modells, nicht etwa die
Schwiche der Anschauung auszugleichen, sondern eine lebendige, deutliche An-
schauung zu entwickeln, ein Ziel, das vor allem durch das Selbstanfertigen von
Modellen am besten erreicht wird.”

In his opinion, building mathematical models is not only a tool for visualization, but also
a method in order to enhance one’s mathematical skills and knowledge. It is the deeper
insight in mathematics that follows a construction process.

Nowadays, mathematicians are still building mathematical models. Most of them, how-
ever, are produced on a computer, but the fact that they improve the understanding of
mathematics has not changed over the years.

1.1 Dynamic Geometry and Dynamic Geometry Systems

Imagine a construction of three angular bisectors of a triangle that meet in a point. This
is an example of a well-known and elementary geometric construction, where the positions
of the three vertices of the triangle do not play any role for the concurrence of the corre-
sponding angular bisectors. Due to this fact we can regard the vertices as free points and
the other objects as dependent elements of this construction. For each choice of the free
points, one gets an associated drawing, for which the underlying angular bisectors will still
meet in a point. All these drawings are static instances of the same elementary geometric
construction. Starting from an instance, we can move the free points continuously in the
plane. It is possible to move the dependent elements also in a continuous way so that the
dependent elements complete them to an instance of this construction at each position of
the free points during their movement.

The picture just sketched is an example of a dynamic construction'. Dynamic geometry is
the field that deals with dynamic constructions. In contrast to usual elementary geometry,
where a construction is static, dynamic geometry is equipped with an additional parameter,

!This and another one are illustrated in Figure 1.1.
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Figure 1.1: Examples of dynamic constructions.

which enables us to deform instances as time goes by. Nowadays, there are several software
packages such as Cinderella [47] providing dynamic geometry on a computer. They are
implementations of a formal model that we call a dynamic geometry system. The idea of a
dynamic geometry system is as follows: Starting from a construction and a corresponding
starting instance, a dynamic geometry system gets the movements of the free elements as
input and outputs the associated movements of the dependent objects.

Since a dynamic geometry system should provide a reasonable behavior of the dependent
elements, it has to tackle several problems arising in dynamic geometry. In the first place,
we would like to have consistency, this is, preserving that the geometric objects form an
instance of an underlying construction during a moving process. To accomplish consistency,
each dependent element has to satisfy two conditions. On the one hand, the objects have
to keep their object identities. For instance, a point should be a point during the entire
movement and not become a line. On the other hand, the objects have to satisfy several
relations given by an underlying construction during the movement. For example, if a point
is the intersection of a line and a circle, then, in fact, it has to be one of the two possible
points of intersection, but not a point somewhere else in the plane.

This leads us directly to another problematic issue that is already inherited from static
geometry — ambiguity. Therefore, we recall the geometric situation of a circle and a line
that intersect. At it, we can understand the occurring problem easily. There are obviously
constellations so that two points of intersection exist. They are consistently equivalent. Due
to this fact it is natural to ask, which of them to choose, if we have to choose only one of
them. This may become difficult in the presence of continuity requirements for a dynamic
geometry system, when the line passes through a tangent situation. As a result, resolving
ambiguity is crucial for a dynamic geometry system.

Apart from consistency and the problem of ambiguity, another desirable and intuitive
feature, which has not yet been mentioned, is determinism. This concept ensures that
performing the same movements from the same starting instance yields always the same
motion of the dependent elements.

Based on determinism, there are two more useful features, which one can claim as well, this
is, conservatism and continuity. Conservatism means roughly that same terminal points of
the free elements result in same terminal positions of the dependent objects independent of
the path they have taken. This concept simplifies the implementation of a dynamic geometry
system a lot, since the results only depend on the terminal positions of the free elements,
but not on the movements themselves. Continuity, however, means that the motions of
the dependent objects should also be continuous during a continuous movement of the free
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Figure 1.2: Variations of an “incircle” of a triangle.

elements. Like determinism, continuity is not automatically implied by consistency. This
can be understood at the example mentioned before of a triangle and its angular bisectors.
As a first step, we observe that, similar to the case of an intersecting circle and a line,
there are two consistent choices of an angular bisector — an inner one that proceeds through
the interior of the triangle and an outer one, which does not. The reason for this is that
two intersecting lines always form an inner and an outer angle. So at each corner of the
triangle, we can choose between an inner and an outer angular bisector. Now starting from
an instance, where all three bisectors are inner ones (compare Fig. 1.2 (left)), we assume
to perform an infinitesimally small movement with one of the vertices. By doing so, the
associated dynamic geometry system could output two of the outer angular bisectors that
do not proceed through the inside of the triangle at the end of the movement. Hence we end
up with a drawing as illustrated in Figure 1.2 (right). The three angular bisectors still meet
in a point implying the consistency of the instance, but their behavior cannot have been
continuous, since a continuous change from an inner bisector to an outer one or vice versa
is only possible, if they coincide during the movement. Otherwise, the transition cannot
have been continuous. However, this is impossible, since an inner and a corresponding outer
angular bisector are always orthogonal.? As a result, the behavior of the angular bisectors
cannot have been continuous during the movement of the free point.

Furthermore, it is worthwhile to mention that conservatism and continuity are mutually
exclusive. We would like to exemplify this point, now. Therefore, we claim continuity and
assume that we have got two intersecting lines, one of their angular bisectors and a point
on this bisector different from the point of intersection of the lines. The first two lines
serve as free elements and the remaining objects are dependent. Rotating one of the free
lines around their point of intersection by an integer multiple of 27 results in a rotation
of the angular bisector around the same center, but with half of the angular velocity of
the rotating line. At the end of the rotation, the two lines and the angular bisector are
again in their initial positions, though the point on the angular bisector is not. Like the
bisector, it moves with half of the angular velocity of the free line. Hence the point is at the
position that one gets by mirroring the point in its initial position at the rotation center.
It is clear that performing this movement once more yields the initial configuration of all
objects. So essentially, there are two different movements of the free line, when it is rotated

2A corresponding proof can be found in [46]
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/

Figure 1.3: Intersecting lines in motion.

by an integer multiple k of 27, this is, k is either odd or even. Both rotations have the same
terminal point, but the dependent elements, particularly the point on the angular bisector,
do not end up under a continuous motion at the same positions for both movements. This
is in contradiction to conservatism.

The last investigation shows another characteristic of a continuous dynamic geometry
system. Roughly speaking, the terminal positions of the dependent elements depend on
the movements we have chosen. Such an effect is called monodromy and occurs naturally
in complex function theory as well. It is related to analytic continuations and RIEMANN
surfaces.

1.2 A Complex and Projective Setup

The last paragraph already indicates that a complex framework is appropriate to deal
with continuous dynamic geometry. In addition, we will exemplify below that a projective
point of view is also reasonable. It is well-known that projective geometry, particularly
complex projective geometry, is excellently suited for working with geometry, in general.
Nevertheless, we would like to exemplify briefly the benefit of this point of view. For further
readings on this topic, we refer to [46, 51]

A great advantage of projective geometry is its generality. It is projective geometry that
removes many special cases that arise in affine geometry. A standard example deals with
two intersecting lines in the plane that become parallel. Imagine these two intersecting lines.
Now, we choose a point on one of the lines that is not their point of intersection and start
rotating this line around this chosen point. By doing so, the point of intersection of these
two lines slides along the other resting line until the lines become parallel. In this position,
the point vanishes and does not exist in affine geometry causing a special case. However, if
one keeps on rotating, the point of intersection will occur again and return from the other
end of the resting line. Contrary to the just drawn picture, there is always a well-defined
point of intersection in projective geometry. Even when the two lines are parallel. Loosely
speaking, one can think of the point of intersection in case of parallelism as a point that
lies infinitely far away in an associated direction. Moreover, it is not hard to show that the
motion of this point completed by a point at infinity is continuous, even in the situation of
parallelism, in a properly chosen projective space equipped with a suitable metric.

A further point, which we should address, is that compler numbers embed our studies
in more general framework. Their use is also exemplified easily. This time, we consider
two intersecting circles. Their two points of intersection define a unique line. If the circles
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Figure 1.4: An illustration that theorems also holds over the complex numbers.

are moved sufficient far away from each other, the two points of intersection will vanish.
A convenient way to describe these points is by the solutions of a system of polynomial
equations. In other words, the points of intersection and the solutions of the polynomial
system are in one-to-one correspondence. Over the complex numbers C, the solutions of
this system still exist, even when two circles do not intersect anymore. As a result, they
still provide a reasonable geometric meaning in a proper complex space. The reason for
their disappearing is that their coordinates have become complex. A surprising fact is that,
though the points have complex coordinates, the line joining them can be, in turn, identified
as a real line and is therefore visible and well-defined in the affine plane again.

1.3 Outline and Summary

This thesis consists of three parts concerning dynamic geometry, to which complex detours
are central. After we have introductory dealt with basic features of dynamic geometry and
associated systems, the first part is about continuous dynamic geometry. Particularly, we
will develop a model for continuous dynamic geometry (compare [32, 48]). In a second part,
we are going to study a complexity theoretic issue emerging in this field, this is, the so-called
Reachability Problem in dynamic geometry. The third part is a joint work with JURGEN
RICHTER-GEBERT and MICHAEL SCHMID (compare [39]). It concentrates on a geometric
effect that occurs at numerical integration along certain complex paths of integration and
improves the order of convergence of the used method.

1.3.1 Continuity and Dynamic Geometry

In the majority of cases, continuous dynamic geometry meets the expectations that a user
demands from a dynamic geometry software package. A very important question that
arises in this context is the following: Given a construction and an instance, is there always
a possibility to adjust the dependent elements continuously under continuous movements
of the free objects? Or in other words, does there always exist a continuous dynamic
geometry system to a given construction and a corresponding starting instance? In [32],
KORTENKAMP and RICHTER-GEBERT showed that, in a precise sense, the answer to this
question is yes, if the movements of the free objects are linear and the construction steps
of the underlying construction are of algebraic nature. Some further works that also deal
with fundamentals in continuous dynamic geometry are [30, 50]. We use them as a basis
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for the second chapter, in which we extend the results presented in [32]. The outline of this
chapter is as follows:

To work with continuous dynamic geometry formally, we are going to develop a proper
mathematical model of static geometry in Subsection 2.2.1. Introducing homogenous coor-
dinates will yield an appropriate representation of geometric objects such as points, lines or
conics. The interaction between them can be described by suitable homogenous polynomial
systems due to the chosen projective viewpoint. For example, the point of intersection of
two lines is obtained by solving two linear equations simultaneously. Next, we are going
to formalize geometric constructions by stating a sequence of construction steps and asso-
ciated references. Our formal concept of a construction will not correspond to a concrete
drawing, but to an instruction how to produce it. The notion of a concrete drawing is, in
turn, captured by our concept of instances of a construction.

The next step is going to be modeling dynamic geometry. This will be done in Subsection
2.2.2. In contrast to usual constructions as one has already drawn them on a sheet of paper,
the free objects of a dynamic construction can move. Hereby, we will not admit all possible
movements, but we allow those that are restrictions of holomorphic functions. This implies,
among others, certain continuous movements of the free elements. After that, we are going
to define (continuous) dynamic geometry systems formally.

In Section 2.3, we are going to provide some lemmata that are required to show the main
results of this chapter. Based on fixed movements of the free elements, we are going to
constitute holomorphic functions that will describe the coordinates of the involved objects
(Subsection 2.3.1). Analytic continuations of these coordinate functions will induce further
instances of the underlying construction, which, in turn, will induce a continuous dynamic
geometry system. Problems can only occur when either an analytic continuation does not
exit or a representative becomes the all-zero vector, but they can be solved by techniques
from function theory.

The just mentioned idea will always enable us to find continuously behaving instances
along continuously moving free objects (Subsection 2.4.1). Moreover, we will be able to
prove that all possible continuos dynamic geometry systems are captured by our approach.
At the end of this chapter, i.e. in Subsection 2.4.2, we are going to demonstrate that
transcendental functions are not constructible by dynamic algebraic constructions. Finally,
we will close this chapter with Subsection 2.4.3, in which it will be proved that only k-
times differentiable movements of the free objects do not imply a continuous behavior of all
objects, in general.

1.3.2 Complexity and Dynamic Geometry

Apart from the fundamental questions on continuous dynamic geometry systems discussed
in the previous chapter, complexity theoretic questions arise in dynamic geometry as well,
particularly the so-called Reachability Problem. Roughly speaking, the problem is to de-
cide, whether a given instance of a construction can be deformed continuously into another
specific one. An early formulation can be found in [30], whereas a more common one is
stated in [48]. The complexity of this problem depends closely on the power of the allowed
geometric operations to form a construction and the restrictions that are imposed on the
movements of the free objects. In [11], it is basically shown that the Reachability Problem
is decidable, if construction steps are used that are at most algebraically equivalent to solv-
ing quadratic polynomials. What is more, RICHTER-GEBERT and KORTENKAMP proved
in [48] that the problem is at least NP-hard in R for a similar setup and even PSPACE-
hard or undecidable for a more powerful setup, which also includes construction steps of
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transcendental power. Besides, they showed in [31] that the Reachability Problem in this
setup in C is at least as hard as testing, whether a corresponding straight-line program built
of arithmetic operations and square roots vanishes identically. However, lower complexity
bounds in C concerning these set of operations have not been established for at least ten
years. Several results concerning the complexity of variants of the Reachability Problem in
C will be derived in the third chapter of this thesis.

Thereby, we are going to rely on the related concept of straight-line programs and its
corresponding reachability problem implying lower complexity bounds for the geometric
problem as well (Section 3.2). In contrast to usual straight-line programs only consisting
of arithmetic operations, we are going to admit operations that are induced by certain
geometric operations such as the intersection of a conic and a line. They will be complex
roots and logarithms.

In Section 3.3, a formal concept is going to be introduced, which will formalize a continu-
ous behavior of a straight-line program under a continuous change of the input data. Similar
to the previous chapter, it will turn out that analytic continuations of the used operations
will induce a continuous behavior of the entire program. Roughly speaking, walking on
RIEMANN surfaces induced by the operations of a program is continuous.

The main idea will be to encode classical problems from complexity theory such as 3SAT
or HILBERT’s 10th in global shapes of RIEMANN surfaces and complex manifolds. Thereby,
the encoding will be chosen so that an original problem from complexity theory will have
the answer yes, if and only if two supposed points of the constructed manifold lie in the same
path component. Dependent on the chosen instance of the original decision problem, it can
either be that the manifold decomposes into several components and the two points lie in
different components or one of the supposed points does not even exist on the manifold. In
this cases, the instance of the original problem will have the answer no.

In the subsequent paragraphs, we are going to study related problems and several weak-
ened variants of the reachability problem concerning straight-line programs. On the one
hand, we are going to reduce the information content of the terminal instance by specifying
only a part of it (Section 3.4). The remaining parts are going to be treated as black boxes.
These problems are going to be proved NP-hard, coNP-hard or even undecidable depending
on the admitted operations. On the other hand, we are going to restrict the movements of
the input data in Section 3.5. In this way, we are going to derive two further lower bounds.
If we only admit JORDAN curves or bound the length of the movements of the input data,
then the problems will be NP-hard.

1.3.3 Geometry and Numerical Integration

On the first sight, there may seem to be no connection between dynamic geometry and
numerical integration, but there is, in fact. On the one hand, the motion of a continuous
dynamic construction under certain movements of the free elements can be modeled as an
initial value problem, which must be integrated numerically, in general.

As already mentioned, it will turn out in the second chapter that the used complex
approach is reasonable, since it provides continuous dynamic geometry. It is against this
background that one can ask, whether this philosophy also offers some benefits concerning
numerical integration of initial value problems.

Basically, one possible benefit is that we additionally have the opportunity to make a
detour that avoids occurring singularities. For instance, imagine a two-body problem with
one fixed and one moving body, whose initial velocity points directly towards the other
body. Then they are going to collide at some point in time. Detour strategies concerning
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this situation motivated my research in this field initially and were studied in [38]. In
addition, other examples of detouring singularities were discussed in [9]. It is this additional
freedom that enables one to gain a computational benefit as well. Obviously it holds: The
farer a path of integration stays away from singular situations the lower the resolution
of an adaptive integrator will be (see [9]). However, there can also be achieved a second
computational benefit, i.e. a superconvergence effect?. It can be obtained in the presence
of certain complex time grids. Mainly, this effect will be the subject of the 4th chapter.
Furthermore, it will turn out that this will be the key to gain a geometric access to an
entire class of composition methods with complex coefficients apart from the usual way of
solving a suitable set of order conditions over the reals or complex numbers such as done in
[23, 24, 58]. In detail, the chapter is organized as follows:

In Section 4.1, we are going to present a simplest possible scenario, in which the super-
convergence effect is studied. This example, namely complex detours for & = z, will serve
as a motivating paradigm for our further considerations.

Section 4.2 will introduce the necessary setup of complex time grids in relation to RUNGE-
KuTTA methods.

The main technical part of this chapter is going to be developed in Section 4.3. Hereby,
we are going to rely on linear systems of ordinary differential equations with constant
coefficients. At first, we are going to deal with the problem, when a RUNGE-KUTTA method
applied to a complex path of integration yields a real terminal point (Subsection 4.3.1).
Thereafter, we are going to prove that one can achieve a superconvergence effect concerning
a RUNGE-KUTTA method applied to a linear ODE by choosing a suitable complex path
of integration (Subsection 4.3.2). By doing so, we will gain a lot of geometrical insight in
the structure of possible paths and can derive explicit criteria that have to be satisfied in
order to obtain superconvergence. These criteria will be closely related to the multiplicative
structure of roots of unity in the complex plane.

Section 4.4 is going to link complex detours with composition methods. This connection
will enable us to extend our method to the case of a nonlinear right-hand side of an ordi-
nary differential equation. A composition method is obtained by applying an integration
method, say e.g. a RUNGE-KUTTA method, consecutively in a controlled way. The se-
quence of these applications can again be considered as a single step of a more complicated
integration method. If this sequence is chosen properly, one can increase the order of the
original method by at least one. It will turn out that this is closely related to the condition
derived in the previous section achieving superconvergence in the linear case. A geometric
approach will allow us to solve these conditions canonically and to interpret some already
known composition methods entirely on the level of an integration along a complex path of
integration. In other words, these composition methods will correspond to an application
of a basic method along a suitably chosen complex detour. We can even iterate* this pro-
cess and by doing so, we are going to obtain methods of arbitrary high order (Subsection
4.4.2). Surprisingly, the corresponding paths that encode the iterative methods will exhibit
a fractal structure. At the end of this section, we are going to illustrate our approach by
the sophisticated problem of computing the ARENSTORF orbit.

3means that the method converges faster than expected at the terminal point.

“This iteration is also known as the “YOSHIDA trick” [61].
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Continuity and Dynamic Geometry

“Es [das Prinzip der Kontinuitdt] sagt aus, daff eine an
einer Figur mit hinreichender Allgemeinheit erkannte Be-
ziehung auch fiir alle anderen Figuren gilt, die sich aus ihr
durch kontinuierliche Lagenverdnderung ableiten lassen.”

Found in Klein’s book [28]

The quote stated at the beginning is a description of PONCELET’s famous principle of
continuity published in his work [44] on projective geometry. Although, his formulation was
vague and he did not provide any proof of his principle (compare [22, 28]), it is well-known
today and there are other areas in mathematics such as analysis that make use of it (see
[29, 52]). A more modern formulation is given by:

If an analytic identity in a finite number of variables holds on an infinite set with
accumulation point, then it also holds by all possible analytic continuations.

It is this principle that is going to build the foundation of the results in this chapter, since we
are going to encounter that geometric objects and their continuous motions are described by
analytic functions and their analytic continuations. But prior to this, we discuss similarities
and distinctions between the present chapter and other works.

2.1 Comparison to Other Works

The comparison focuses on [30, 32]. In there, a model for continuous dynamic geometry
was already developed and many of our definitions and ideas follow those presented in these
works.

Similarities and Differences Between the Models

Basically, projective geometry is used in all three writings to describe geometric objects. In
addition, corresponding geometric operations are formalized by suitable relations.
However in contrast to [30, 32], we additionally allow complex homogenous coordinates
in our model. For this reason, we can always perform a geometric operation and thus we
always obtain a well-defined geometric object as output of a geometric operation. That
this is not the case, if one only allows real coordinates, can be seen at the following simple
consideration: For instance, consider an intersection of a line and a circle such as in Example
2.1. Depending on their positions, there are two real points of intersection or not. The
restriction to real coordinates causes an empty output set of a corresponding geometric
operation in situations, where only points of intersection with complex coordinates exist.
To cover cases like these, the model introduced in [32] is adapted in several ways. Fach
set of geometric elements of equal type is extended by another object *. It is defined to be
the output of a geometric operation, where either the geometric situation is degenerated or
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1 1

Figure 2.5: Hllustrating Example 2.1. Real (o) and complex (o) points of intersection in our
model are shown on the left, while their pendants from [32] can be seen on the
right.

at least one output object with complex coordinates exists (compare Fig. 2.5). Similarly,
geometric operations are also extended by additional relations capturing the cases, in which
* is involved. Moreover, we should mention that the other definitions in [32] also rely on
this way of dealing with degenerate cases and complex objects. Such a concept is obsolete
in our model. To illustrate this, we consider a simple example at the end of this paragraph.

Apart from the differences arising from the fact that we admit complex instead of real
numbers, our subsequent definitions of algebraic operations®, geometric constructions, in-
stances of a geometric construction® and continuous dynamic geometry systems basically
follow again those in [30, 32].

The last considerable difference between the models concerns the movements of the free
elements of a construction. While in [32] the movements of free elements are restricted to
linear functions, we allow holomorphic functions in our model.

Ezxample 2.1. At this point, we point out the difference between the underlying model in
[32] and our ones used in this thesis. We consider the following geometric situation: Given
the unit circle defined by 2% + y* = 1 and a line x = ¢, where t € [0,2]. The coordinates of
their two points of intersection are determined by

(vime) =0 (e ).

Obviously, there are two distinguished real points for ¢ € [0, 1], exactly one real point for
t = 1 and two distinguished complex points for ¢ €]1,2] (compare Fig. 2.5). Now, we
compare the output of a geometric operation that yields one of these points of intersection
in the different models. In [32], such an operation outputs one of the points for ¢ € [0, 1]
and = for ¢ € [1,2]. This also implies that the object * can occur over an entire interval or
movement. In contrast, we obtain always a point for all ¢ € [0, 2] in our model.

Comparing the Results

As a first step, we shall remark that we use, to some extent, the same ideas and techniques
as in [32]. Examples are resultants, series expansions or the idea used in the proof of Lemma
2.9. In doing so, our model enables us to confirm several results presented in [30, 32] in
greater detail and to extend them.

5The formulation in [32] is somewhat imprecise. We present an exact definition.
5They are also found as geometric straight-line programs in [12, 48].
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As in [32], it basically turns out in this chapter that the coordinates of geometric objects
and their motions are described by holomorphic functions and their analytic continuations.
However in contrast to [32], we can prove the existence of continuous dynamic geometry
systems not only for linear movements, but also for movements that are induced by general
holomorphic functions. Furthermore, the results are extended by showing that all possible
continuous dynamic geometry systems are indeed captured by our model. Moreover, we
provide a proof for a remark in [32] that a continuous dynamic geometry systems cannot be
based on movements induced by only finitely differentiable functions. Last but not least, we
take up the concept of constructible functions from [30]. In this way, we can additionally
show that some fundamental transcendental functions like the exponential function or the
logarithm are not constructible in the underlying algebraic setting.

2.2 Modeling Dynamic Geometry

In the following section, we will develop a reasonable framework that model geometric
constructions as well as the dynamics of them. Thereby, our point of view will be a projective
one inducing that all geometric objects are represented in homogeneous coordinates and
their interactions are described by relations that can mainly be represented by zero sets of
multi-homogeneous polynomial systems. As mentioned in the introduction, we would like
to avoid case distinctions and to derive a uniform theory, so we are going to admit complex
numbers as well. Starting from modeling a static geometric construction, we are going to
continue with capturing the notion of dynamic constructions.

2.2.1 Objects, Operations and Constructions

A geometric construction consists of several parts, namely objects and relations describing
their interplay. Examples of geometric objects are points, lines or circles. In our model,
they are given formally by their homogeneous coordinates.

Definition 2.1 (geometric objects). Let

g CHIN{(0,...,007}
o C\ {0}

An element of CP? is an equivalence class [p] with representative p € C1\ {(O, - ,O)T}.
To simplify the notation, we also denote [p] by p. Furthermore, we define the set of points
P and lines L as two disjoint copies of CP?, the set of conics C as a copy of CP° and the
set KC of algebraic curves of degree 3 as a copy of CPY. We denote T := {P, L,C,K} as the

set of geometric types.

CP

On the basis of the introduced geometric objects, the (static) interaction between them
will be encapsulated by adequate relations, which are most often described by special multi-
homogeneous polynomial systems. The use of relations in this context is necessary to capture
the introductory mentioned ambiguity, which occurs naturally in geometry.

Definition 2.2 (geometric operations). We call a relation w C Iy x ... x I;; x O, k € N, an
operation, if I,...,I;,O € T. Throughout this article, we set in(w) := k. If O is a copy
of CP?, we call w algebraic, if

w = {([Zl], s [Zk], [O]) S Il X ... X Ik x O | Pw(il,ly--- ,ik7dk+1,01,... >0d+1) = 0},



26 2 Continuity and Dynamic Geometry

where P, C C[X11,..., Xkd+1, X1, .., Xqy1] is a system of d multi-homogeneous polyno-
mials. Furthermore we define

w(iy,..., i) = {06 @) ‘ (i1,...,1ix,0) Ew}.
As extension, we call w € T a free operation. In this case, we set in(w) := 0.

Remark 2.1. Since we admit complex numbers, it holds: If w is an algebraic operation,
BEZOUT’s theorem yields w(iy,...,i;) # () guaranteeing that an algebraic operation can
always be performed, since it always provides an adequate geometric object as output.
Observe that there is no need to stop at curves of degree 3, since all plane algebraic curves
of a fixed degree can be represented by a complex projective space of adequate dimension
and BEZOUT’s theorem is also applicable to them. In addition, the results presented in this
chapter generalize straight forward to algebraic curves of a higher degree as well. However
in order not to complicate the following considerations and since we will only need the
objects from the set 7 in the second chapter, we focus on them.

In the following, we introduce some fundamental algebraic operations, which will be used
later on in this article. A derivation of the describing polynomial systems for each operation
is mostly self-explanatory, but one can find most of them in [46].

Ezample 2.2. (MEET & JOIN) Two of the most fundamental (and self-explanatory) alge-
braic operations are given by the intersection of two lines

MEET := {([g], B, [p)) € Lx LxP | g"p=0and hTp= o}
and by the join of two points
JOIN := {([p], [, [)) €PxPxL|I"p=0andiTqg= o}.

An issue that we should also address here are degenerate cases. Since they are not problem-
atic at all, even for the subsequent examples, we discuss them exemplarily at the operation
MEET. For that, denote the all-zero vector (O,O,O)T € R3? by o. Although, o satisfies
gYo=0and hfo =0 for all g,h € R*\ {(0,0,0)"}, it holds ([g], [h],[0]) ¢ MEET, since o
does not represent a point from P. Lastly, we have to consider the intersection of two lines
[g], [h] € £ with [g] = [h]. But in this case, it is easy to observe that each point p € P on
the line [g] satisfies the relation MEET, i.e. ([g],[h],p) € MEET.

Ezample 2.3 (constants). Also constant objects can be represented by a suitable chosen
algebraic operation. For example, let p € P and [g], [h] € £ two distinct lines through p.
Then

CONSTy, := {([q]) epP | g'q=0and h'q = 0}
represents the constant point p.

Ezample 2.4 (intersection of two conics). A more sophisticated algebraic operation is given
by the intersection of two conics. Let ¢ = [¢] € C be a conic. Then c is determined by the
zero set of a polynomial

Po=c1 X2+ Y%+ 0322+ s XY + s XZ +csY Z.

Furthermore, we denote the entries of a vector p by p1, p2 and p3. By using this conventions,
we define the algebraic operation

MEETCC := {(cl,CQ, [p])) eCxCxP ‘ P, (p1,p2,p3) =0 for k = 1,2}.

Thereby, MEETCC(cy, c2) is the set of intersection points of ¢; and ca.
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Ezample 2.5 (intersection of a conic & a line). The intersection of a conic and a line is
represented by

MEETCL := {(c, 1, [p]) €C x £ x P | Pe(p1,pa,ps) = 0 and (Tp = 0}.

Ezample 2.6 (intersection of an algebraic curve of degree 3 & a line). Similar to a conic, an
algebraic curve k of degree 3 can be described by a homogeneous polynomial

Bo= Y cijeX'YIZR
i,5,keN
i+j+k=3

Analogously, we define the algebraic operation
MEETKL := {(k, 1,[p])) € K x £ x P | Pe(pr,pa,ps) = 0 and 17p = o}.

The operation MEETKL outputs the points of intersection [p] of an algebraic curve k of
degree 3 and a line [I].

Ezample 2.7 (circle through three points). Let py := (—4,1,0)T and ps := (4,1,0)T. The
corresponding algebraic operation that provides a circle through three given points is de-
scribed by the relation

CIRCLE := {([pl], [pa], [ps], €) € P* % C | Pe(pj1, pjas pjs) = 0 for all j € {1,...,5}},

where p; j, denotes the k-th component of the vector p; for j € {1,...,5} and k € {1,2,3}.
The points [p4] and [p5] are essential for circles, since one can show that a conic is a circle,
if and only if the points [p4] and [ps] lie on this conic. So we denote them by I := p4 and
J = ps.

However, there is a question left: What happens, if at least three of the five points are
collinear? We start with three collinear points, say p1,p2,ps. Since CIRCLE provides a
conic ¢ through the five points pq,...,ps, the conic ¢ splits up into the two lines joining
p1,P2,p3 and pg,ps. In case of four collinear points, say po,...,ps5, ¢ splits up into two
lines again. One of them is the line joining po, ..., ps and the other one is an arbitrary line
through p1. The last case to be considered depends to five collinear points. Here, ¢ becomes
the line through all five points.

Until now, we have only stated geometric operations that are algebraic. However, an
example of a non-algebraic operation is the following one.

Ezample 2.8 (WHEEL). Let [p], [¢] € P be two points with representatives p = (py, p2,p3)’
and ¢ = (q1,g2,¢3)". Then we define the relation WHEEL to be

WHEEL := {([p], [q]) P XxP|pr=e,p1#0,q20=0,p3=q3= 1}-

First of all, we notice that the relation WHEEL is well-defined, since the equation p; = e®
has a solution, if and only if p; # 0. More precisely, ¢; is a complex logarithm of p;. Hence
the operation WHEEL cannot be described by polynomials. The geometric purpose of this
operation is the following one: Given a complex number z = r-e*? in polar coordinates, this
is, a real number r > 0 and an angle ¢ €] — 7, 7], then the imaginary part of the logarithm
of z equals ¢ - (¢ + 2km) for some k € Z. We can consider the imaginary part as a wheel
of radius 1 that rolls along the imaginary axis in the complex plane. When the wheel is
rotated by ¢ or ¢ 4 2k, it trivially covers a distance of ¢ or ¢ + 2k7, respectively. So in a
way, the operation WHEEL transfers angles to distances.
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Up to here, we have formalized certain geometric objects and a possibility to represent
their interactions. The next step is to establish a concept of a (static) geometric construc-
tion. This will be done by

Definition 2.3 (geometric constructions). Let m € N and n € Ng. A geometric construc-
tion € consists of

(i) a sequence O1_p,,...,00,01,...,0, € T of geometric types,

(i) a sequence wi—m, . ..,wn of operations with wy, C I X ... X Liy(y,) X Ok and in(wg) =0
forallk € {1 —m,...,0} (free operations),
(ii) input assignments ny, = (s¥,...,sF Y€ Z@R) (k€ {1,...,n}) such that sf < k

in(wg)

and Osf =1, forl € {1,... ,in(wg)}.
A construction is called algebraic, if wy,...,w, are algebraic operations.

Condition (i) and (i) specify the types of geometric objects that are used for the con-
struction ¢ and their already mentioned interplay, respectively; condition (iii) ensures two
things: Firstly, the required types of the input objects and the output object of each opera-
tion have to be appropriate and secondly, only free or already constructed objects are used
as input for an operation.

Remark 2.2. We observe that our concept of algebraic construction is reasonable, since it
captures compass and ruler constructions in the sense of [36]. There, compass and ruler
constructions are formalized. Roughly speaking, they consist of a finite sequence of con-
struction steps that start from the two fixed points (0,0)7 and (1,0)”. In addition, each
construction steps has to be one of the following: The join of two points, the intersection
of two lines, the intersection of a circle and a line, the intersection of two circles and a step
that provides a circle to a given center and a further point on the circle.

We can recreate all of these steps in our model. Obviously, there are points representing
(0,0) and (1,0)”. Furthermore, we have already introduced the algebraic operations JOIN
and MEET that cover the join of two points and the intersection of two lines. As mentioned,
circles are conics through the points I and J. For this reason, the intersection of a circle and
a line and the intersection of two circles is modeled by MEETCL and MEETCC. Lastly, we
have to recreate the step that provides a circle to a given center and a further point on the
circle. An algebraic construction providing this is stated in Example 2.12.

Now, we would like to exemplify the last definition. For this reason, we introduce a short
example of a construction. It yields a point of intersection of two given conics.

Ezxample 2.9. We are not going to state a sequence of geometric types and so on. Instead,
we write a construction % in the following informal way, which should be self-explanatory:

c_1€C
coelC
pP1 € MEETCC(C_l,Co)

The notion of a concrete geometric construction that one has usually in mind is not equiv-
alent to a construction in terms of Definition 2.3. Normally, one imagines a construction as
a specific picture, where e.g. concrete points and lines have special positions. But this is
not our notion of a construction. Our definition is more like an instruction of a construction
process rather than a concrete geometric picture. However, the idea of concrete situations
is captured by the next definition of geometric instances. Ultimately, this definition ensures
the consistency of a dynamic geometry system.



2.2 Modeling Dynamic Geometry 29

Definition 2.4 (geometric instances). Let € be a construction as defined in Definition 2.3.

Then a geometric instance of € is an element 6 = (01—, ...,0p) € O1_y X ... X Oy, such
that
(Osk,...,OSk ,ok)Ewk
1 in(wg)
for all k € {1,...,n}. By definition, 01—, ...,0¢ are called free and o1,...,0, are called

dependent. Furthermore, we denote the set of all instances of € by Iyy. We call 6 a regular
instance of €, if for each k € {1,...,n}

‘wk(os;f,...,osgc )‘ :Bk,

in(wg)
where By, is the product of degrees of the polynomials of the underlying polynomial system
associated to wy.

Remark 2.3. Note that defining the regularity of an instance by the use of the number
B € N is well-defined according to BEZOUT’s theorem. It does not only state that the
set of possible output objects of an operation is not empty, but also the number of these
objects, counted with multiplicities, is equal Bj in generic cases.

Ezample 2.10. Let ¥ be the construction from Example 2.9. A regular and two non-regular
instances of € are shown in Figure 2.6. There are two qualitatively different types of non-
regular instances. On the one hand, the number of output objects of an operation can
be less than By (shown in the lower left drawing). Or on the other hand, there can be
infinitely many output objects. For instance, when objects coincide as shown in the lower
right drawing. Last but not least, we would like to state the corresponding formal objects
6 = (0_1,00,01)T for the instance shown in Fig. 2.6. The regular instance is given by
13 )T
72!

o_1:=[(1,1,-1,0,0,0)"], op:=[(1,1,0,0,—-2,0)"], o;:= <

and the two non-regular instances by
o_y:=[(1,1,-1,0,0,0)7], o0p:=[(1,1,3,0,—4,0)"], o1 :=[(1,0,1)7]

and

o_1:=[(1,1,-1,0,0,0)"], op:=[(1,1,-1,0,0,0)"], o := (

2.2.2 Movements and Dynamic Geometry Systems

So far, we have just modeled geometric constructions that are static. Dynamics has not
yet been included. However, we have to extend our formal model, since we are interested
in dynamic geometry. As a first step, continuous motions of the free objects have to be
formalized. As to do so, we need a topology on CP?. Since CP? is a complex manifold of
dimension d € N, we have got a natural topology on it. Furthermore, if X is a topological
space, one can speak of continuous mappings from X to CP? in a natural way. Holomorphic
maps can be studied as well.
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Figure 2.6: A regular (upper row) and two non-regular (lower row) instances of %

Remark 2.4. Let X be an open subset of C. By definition, a mapping ¢ : X — CP? is
called holomorphic at a point z € X, if ko : X — C%! is holomorphic (component-wise)
at x, where k is an adequate chart of CP.

After we have clarified the meaning of continuity and holomorphy with respect to CP?,
we are ready to introduce our concept of a continuously moving element.

Definition 2.5 (h-movements). Given a continuous mapping p : [0,1] — M, where M €
{P,L,C,K}. Then, we call u an h-movement, if there exists a holomorphic map ¢ : U — M,
where U C C is an open neighborhood of [0,1] such that 90‘[0’1] = u holds.

Furthermore, let O(U) be the set of all holomorphic functions defined on an open set
U C C and we define for every e > 0 the sets [0,1]. :={z € C ‘ Jwel0,1]: [[z—w| <e}.
Then if the supremum

sup {z—: eR ‘ 3 e 0([0,1]:) : 90‘[0,1} = ,u}
ezists, we denote it by €* and set U, := [0,1]«. If it does not exist, we define U, to be C.

Remark 2.5. We emphasize that an h-movement always corresponds to a holomorphic func-
tion. For this reason, an h-movement induces a continuous motion of a free object in the
underlying space M.

An illustration of the sets [0,1]. are given in Fig. 2.7. They are tubes in the complex
plane that contain the interval [0, 1]. We should also mention the sets [0, 1], are well-defined
for all € > 0, since they are not empty. As every non-empty subset of the real numbers
with an upper bound has a supremum, the set U, is well-defined as well. We can think of
U, as the maximal e-tube that admits a holomorphic function that describes p. Besides, it
holds that if there exists an h-movement p and two holomorphic functions ¢y : Uy — M so
that ‘pkho,l] = 1 on adequate neighborhoods Uy, of [0,1] (k € {1,2}), then it follows by the
identity theorem for holomorphic functions that ¢ = 9 on Uy N Us.
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Figure 2.7: An e-tube [0, 1] of the interval [0, 1].

Now, all things are developed to define the last part of our formal model. The next
definition captures both dynamic geometry and continuous dynamic geometry.

Definition 2.6 (dynamic geometry systems). Given a construction € with m € N free
objects and an instance 6 € Ly. Let @ be the set of all functions p : [0,1] — O1—pm X ... x O
with 1j(0) = o; and pj is an h-movement for all j € {1 —m,...,0}. Then a function D :
& — W, where W is the set of all functions v : [0,1] — O1x...x0O,, with (,u(t)T, V(t)T)T €Iy
for allt € [0,1], is called a dynamic geometry system (DGS).

In addition, if for all j € {1,...,n}, the j-th component vj(u) of D(n) is a continuous
mapping for every p € ®, we call D a continuous dynamic geometry system (CDGS).

At first, we observe that the motion of a free object must be described by a holomorphic
function, since we only admit h-movements. Starting from a construction % and a given
instance 0 € Z¢, a DGS maps h-movements of the free objects that are encapsulated in y to
a non-constant vector v of geometric objects in general. The several functions in v describe
the motion of the dependent objects during the motions of the free objects. Thereby, it is
claimed that the free as well as the dependent objects form an instance of the underlying
construction ¢ at each point in time. Although the motion of the free objects is continuous,
the motion of the dependent objects has not to be automatically continuous. This feature
must be claimed in addition.

Remark 2.6. A CDGS in our sense has to be continuous, consistent and deterministic.
Continuity is obvious; consistency follows because of the fact that only functions forming
an instance are output by a DGS; determinism is obtained, since v only consists of functions.

Remark 2.7. We have not yet mentioned semi-free objects like a point on a line. However,
they are also included in our framework. We have to realize them by a sub-CDGS. For
instance, a semi-free point on a line can be implemented by two intersecting lines, where
one of them is the line, on which the semi-free point shall move and the other one is needed
to generate the movement. While the line, on which the point moves stays constant, the
movement of the additional line is chosen properly to generate the desired movement.

From Definition 2.6, we can derive a first proposition stating that a DGS does always
exist in our algebraic setting.

Proposition 2.1. Given an algebraic construction € and an instance 6 € Tg. Then there
exists a DGS.

Proof. Follows directly from Remark 2.1. O
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2.3 Required Tools

In the present section, we will derive the necessary technical lemmata in order to prove
among others the existence CDGSs. To do so, we divide this section into two parts. In the
first one, we will deal with the starting situation. In this case, we can show that in the generic
case, the initial behavior of all objects of an algebraic construction corresponding to a set of
given h-movements of the corresponding free objects can be locally described by holomorphic
coordinate functions. The second subsection studies the properties of these coordinate
functions. Thereby, it will turn out that analytic continuations of the derived holomorphic
coordinate functions are the key to construct an associated CDGS. For this reason, we are
going to study the corresponding RIEMANN surfaces. Moreover, a continuation theorem
will be proved. It deals with singularities of coordinate functions and the case, when a
representative becomes the all-zero vector.

2.3.1 Local Holomorphic Coordinates

The goal of this subsection is to prove a lemma, which informally states that the initial
behavior of all objects of a regular instance of a corresponding algebraic construction can
be locally described by holomorphic coordinate functions. To prove this, we have to tackle
some technical issues, which is done by the next three lemmata.

The first one of the three lemmata shows that a finite number of elements of CP? can
always be transformed so that the underlying representatives of these elements do not lie
in a coordinate plane of the vector space C4t1.

Lemma 2.1. Let n,d € N and o1, ...,0, € CPY. Then there exists a projective transfor-
mation M € CHUXE+Y) s that no representative vy := M - o), of the transformed object
Moy, has a vanishing coordinate. In symbols, this means that vy # 0 for allk € {1,...,n}
andl € {1,...,d+ 1}, where vy denotes the l-th coordinate of the representative vy,.

Proof. Let us assume that the I-th entry of the vector oy equals zero, this is, o ; = 0. Since
o; € CP?, there is a non-vanishing coordinate of oy, say oy ;. Now, we set M := I + ¢ ;,
where I is the identity matrix and g; ; € C(4TD*(@+1) ig the zero matrix besides the (I, j)-th
entry that equals € € R. It follows that vi; # 0, if and only if € # 0. For continuity reasons,
the entry € can be chosen so that vy ; # 0 and v; j # 0, if 0, ; # 0 for all i € {1,...,n} and
je{l,...,d+1}. As a result, the claims follow inductively. O

The next lemma states that we can always choose an affine plane for dehomogenizing
these elements so that none of them lies at infinity according to this dehomogenization. In
addition, the dehomogenization can be chosen so that all k-th coordinates of all underlying
objects are pairwise different. More precisely, we get

Lemma 2.2. Let n,d € N and o1, ...,0, € CP? pairwise different, and no representative
has a vanishing coordinate, i.e. oy ; # 0 for all k € {1,...,n} and all j € {1,...,d + 1}.
Then there exist a,...,aq+1 € C and b € C\ {0}, inducing an affine plane

H = {(ml,...,de) € Cétl | a1r1+ ...+ agr1xgi1 = b},

so that there exist representatives o, € H for k € {1,...,n}. Furthermore, H can be chosen
so that oy ; # o1j holds for all k,1 € {1,...,n} and all j € {1,...,d+ 1}.
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Proof. For continuity reasons, it holds that H can be chosen in such a way, that H Noy # 0
forall k € {1,...,n}. Now, we prove the rest of the statement. Therefore, let us assume that
there exist two representatives with equal coordinates, i.e. there are k,l € {1,...,n} and an
re{l,...,d+1} with oy, = 0;,. Since o, # oy, there exists an index j € {1,...,d+1}\{r}
with oy ; # 0;;. We now construct another plane H’, which has the desired property.
Therefore, we replace the coefficient a; of H by a; + ¢ to define a plane H'. Hereby, we
can choose ¢ > 0 small enough so that H’ still contains representatives of,..., o), of the
objects 01,...,0, and no further coordinates of them coincide. In other words, it holds
that H Noy # 0 for all k € {1,...,n} and that 0278 # 0275, if ops # 015. As o and o},
are representatives of the element o, € CP?, there is a non-vanishing factor A. so that
0}, = Ac - 0. This factor depends continuously on ¢ and is given by

b
CL1-Ok,l—|—...+(aj—|—<€)-Ok,j—i-...—l-ad_;_l'Ok,d_i_l'

A =

Analogously, there is a factor

b
)
ai-op1+...+(aj+e)- o0+ ...+ adp1 - 0441

He =

that satisfies 0] = . - 0. It holds that A\. # p. for all € in an adequate neighborhood
of 0 € R and therefore o) . # o],. Finally, the continuity of A. and . ensures that the
previous construction decreases the finite number of equal coordinates. O

Each representative of a dependent object of a regular instance has to satisfy a correspond-
ing multi-homogeneous polynomial system that is specified by the associated construction.
Using some basic resultant techniques enables us to reduce each such polynomial system to
a set of univariate polynomials that describes the same solutions. Formally, we get

Lemma 2.3 (resultants). Let fi,...,fn € C[X1,...,X,]. Then for each X;, there exists
a polynomial p; € C[X;], whose roots are the x;-coordinates of the solutions of f1 = ... =

Proof. Follows by [10, p. 116, Proposition (5.15)]. O

We are not so much interested in the result of the previous lemma as in the derivation of
the mentioned univariate polynomials, since we are going to refer to the same construction
in the next proof.

With these three lemmata in mind, we are now able to prove that the initial behavior
of all objects corresponding to a given algebraic construction and an associated regular
instance can be locally described by holomorphic coordinate functions.

Lemma 2.4 (local holomorphic coordinates). Given an algebraic construction € and a

reqular instance 6 = (01—, ... ,on)T € Zy. Furthermore, let for all k € {1 —m,...,0},
i - [0,1] — CP%* be an h-movement so that uy(0) = oy. Then, for each object o, € CP%
ke {l—m,...,n}, there exist holomorphic coordinate functions

Ck71(t), ... ,Ck,dk-i-l(t) :V—=C

defined on an appropriate open neighborhood V- C (\yci—pm, oy Uny of 0 € C with 0y(0) =
oy and (ol_m(t), e ,on(t))T € Iy for allt € V, where ok (t) := [(Ck,l(t)a e ,Ck7dk+1(t))T].
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Proof. We prove the lemma by induction over the length k = m + n of the construction .
For k = 1, € only consists of one free operation wy. Then the h-movement o induces the
claimed holomorphic coordinate functions by definition.

Now, let & > 1. If the last operation w, of ¥ is a free operation, there is nothing
to show (only free operations, analogous argument as for & = 1). Otherwise, w, is an
algebraic operation and for each operation wj, | € {1 —m,...,n — 1}, there exist the
claimed holomorphic coordinate functions defined on an appropriate open neighborhood U
of 0 € C. By substituting every formal unknown

Xl,la cee 7Xin(w")’dsﬁ,(w )-‘,—1

associated to the input signature of w, in its describing polynomial system P, , we get a
polynomial system P(t) C O(U)[X1,...,Xq4,+1] with holomorphic coefficients dependent
on t. Since 0 is a regular instance, BEZOUT’s theorem states that the number of one-
dimensional solution spaces of P(t() is B,, and each of them has multiplicity one. Due to the
fact that the solutions of P(t) depend continuously on ¢, there is an open neighborhood W C
U of 0 € C, on which P(t) still has B,, simple solution space. From Lemma 2.1, we conclude
that there exists a projective transformation T' of CP% so that none of the transformed
solutions of the system P(t) lies in a coordinate plane of C%*!. This transformation also
indues a transformed multi-homogenous polynomial system ]5(15), whose solutions are the
transformed solutions of P(t). Thereby, we can choose one fixed projective transformation
T for all t € W. For this reason the coefficients of P(t) are holomorphic functions on W as
well.

Now, an affine equation is added to the polynomial system f’(t) Then the solutions
x1(t),...,xp, (t) of this extended affine polynomial system are special representatives of
the former one-dimensional solution spaces, which also depends continuously on ¢t € W.
Lemma 2.2 guarantees the existence of an affine equation so that any two of the solutions
x1(0),...,xp,(0) do not have an equal coordinate. In addition, we can also claim that
z1(t),...,xp,(t) do not have an equal coordinate for all ¢ € V' due to their continuity.

Since the number of variables and equations of the extended polynomial system are equal’,
we can construct polynomials pi(t, X),...,pa,+1(t, X) € O(V)[X] with holomorphic coef-
ficients defined on W for each unknown Xi,..., Xy, 4+1 (resultants according to Lemma
2.3). For I € {1,...d, + 1}, the roots of p;(t, X) are the [-th coordinates of the solutions
x1(t),...,xp, (t). Since the degree of p;(t, X) is equal to By, it follows that p;(¢, X) only
has roots of multiplicity one. By using [34, p. 9, 1.2.4], there exist holomorphic coordinate
functions ¢1,...,¢4,+1 : V — C, where V C W is an adequate neighborhood of 0 € C. Ap-
plying the inverse transformation 7! on (61(75), . ,édm_l(t))T yields holomorphic functions
c1,...,¢d,+1:V — C so that

[on(0)] =0, and (01(t),... ,on(t))T €Iy forallteV,

i 0, (£) = (c1(8),- - capir(£) O

For further use, let us fix an adapted notation that reflects the situation motivated by
Lemma 2.4 throughout the rest of this chapter. In detail, the mentioned lemma guarantees
the existence of holomorphic (coordinate) functions ¢i_pz,...co,c1,...,cn, defined on an

"due to wn, is algebraic.
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appropriate neighborhood V of 0 € C, where

0 n
M= > (d+1) and N=>) (dy+1).
k=1-m k=1

According to the proof of this lemma, it holds that for each [ € {1,..., N}, there exists a
polynomial
P eClCi-m,...,C1, X]

so that P(ci—ar(t),...,c-1(t),c(t)) = 0 for all ¢ € V. We will see that the analytic
continuation of the coordinate functions ¢;_yy,...co,c1,...,cy will be a main ingredient to
construct a CDGS related to an algebraic construction and a corresponding regular starting
instance. In order to deal with the field of analytic continuation, we therefore introduce
some helpful apparatus at the beginning of the next subsection.

2.3.2 Global Viewpoint on Local Coordinates

Until now, we have shown that the initial behavior of all objects of an algebraic construction
corresponding to a set of given h-movements of the corresponding free objects can be locally
described by holomorphic coordinate functions c1_yy, ..., cy. Starting from this situation,
it will turn out that we can construct a corresponding CDGS by continuing the coordinate
functions ¢1_py, ..., cn of the objects analytically. This construction works as long as all
analytic continuations of ¢1_yy,...,cy along a path exist. For this reason, we are going to
study their analytic continuations in this subsection.

Problems occur only in two cases — either one of the analytic continuations may not
exist or all coordinate functions of an object become the all-zero vector. To deal with the
problem concerning analytic continuations, we are going to characterize critical paths and
points first (see Definition 2.8). Along a non-critical path, we can show that the analytic
continuations of ¢1_pz,...,cn exist and thus we can use them to construct a CDGS (see
Lemma 2.6 and 2.7). In cases, where the analytic continuations may not exist, i.e. at isolated
critical points like singularities or branch points, we can prove that LAURENT series and
so-called uniformizing variables describe the behavior of ¢i_py,...,cy in a neighborhood
of such points (see Lemma 2.8). This will enable us to construct a CDGS except for a
finite number of such critical points. Lastly, we are going to prove a continuation lemma
that closes the remaining gaps at the critical points (see Lemma 2.9). This lemma will also
captures the cases, when all coordinate functions of an object become the all-zero vector.
But prior to this, we fix the necessary function theory.

Excursion to Riemann Surfaces

A standard approach to deal with local properties of holomorphic functions is done by
studying their power series expansions. A formal way of doing this is given by

Definition 2.7 (germs). Let z9,a; € C, where j € Ng. We denote

g := (20; 0,1, ..)

as a germ with base g := zg and top g := «y, if

o0
> an(z — 2
k=0
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is a complex power series with positive radius of convergence. In this case let

o
= Zak(z — )k,
k=0
for all z sufficiently close to g. Furthermore let O, be the set of all germs with base zy € C

and
= U ©27

zeU

for every open set U C C.

Remark 2.8. Let U C C be an open set. A germ g € Oy can also be identified with a unique
determined holomorphic function g : D — C defined on an appropriate open disc D C U.
Since it should become clear by the context, whether the function or the germ is meant, we
will denote both variants, the germ as well as the function, by the same symbol g.

In the following, let U C C be a fixed open set. In this situation, one has got the canonical
projection
w0 —U g—g

that maps a germ to its base. If f € O(V'), where V' C U is open, there exists for every z € V/
a corresponding germ denoted by p,(f). In addition, each holomorphic map f € O(V),
where V' C U is open, induces the set of germs

o(f,V):= {Pz(f) ‘ z € V} C Oyp.
All these sets induce, in turn, a special topology on Q.8

Lemma 2.5. There is exactly one topology on Qy such that wy is local topological. More-
over, Qy becomes a HAUSDORFF space.

Proof. We regard the topology ¥ induced by the basis
B :={o(f,V) |V CU open and f € O(V)}.

Due to this fact T consists of all sets M C O, where M is obtained as a union of sets
from the basis 9. The only fact we have to prove in order to show that ¥ is a topology
on Op is that the intersection of two sets o(f,V),o(h,W) € B is in T. To do so, let
g € o(f,V)no(h,W).2 Then there is a zp € V N W and a neighborhood N C V NnW
of zp so that f(z) = g[z] = h(z) for all z € N. As a result, g € O’(f‘N,N) implying that
o(f,V)Nno(h,W) is open. That the map 7y is a local topological map is a consequence
of the definition of the basis 8. To complete the proof, we have to show that Qpy is a
HAUSDORFF space. For this reason, let f,g € Oy. The case of f # g is trivial. If f =g,
there exists an open disc D C U centered at f so that f and g induce holomorphlc functions

f.ge O(D). In the case of

we are done, since this is the definition of the HAUSDORFF axiom. And otherwise, f = ¢
follows by the identity theorem. O

8The reader, who is not familiar with the required topological theory is referred to [26].
9If this intersection is empty, we have nothing to show, as € .
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In addition, one can even prove that Oy is not only a HAUSDORFF space, but also a
RIEMANN surface.

Theorem 2.1. There exists exactly one holomorphic structure on Qy so that Oy becomes
a RIEMANN surface. Furthermore, wy is a local biholomorphic map according to this holo-
morphic structure.

Proof. Follows by [34, p. 7, 1.2.1]. O

The following theorem links the concept of analytic continuation to the abstract HAUS-
DORFF space Qp. Informally, an analytic continuation of a holomorphic function corre-
sponds to a path in Oy and vice versa.

Theorem 2.2. Let7 : [0,1] — Oy be a path. Then 4(1) is obtained by analytic continuation
of 7(0) along the path
v:[0,1] = U; t — 7y (3(t)).

Conversely, let v : [0,1] — U be a path, f : G — U a holomorphic map defined on a region
G C U containing v(0) and f¥ : R — U the analytic continuation of f along -y, where
R C U is a region that contains y(1). Then it holds that the germs corresponding to f and
f7, this is, Py(o)(f) and p(1 (fV), are in the same path-component of Q.

Proof. For each t € [0, 1], the germ 4(t) is defined on an associated open disc Dy C U. The
collection
{0 ), Dy) C@U|t601]}

is an open cover of ([0, 1]). As ¥ is a continuous map, 5([0, 1]) is compact in Q. Therefore,
there is a finite cover of open sets

a(3(to), Do), ..., (5(t), D;) C Oy

still covering ([0, 1]). These sets induce a decomposition 0 = tg < ... < t, = 1 of [0,1]
and associated open discs Dy, ..., D, C U covering [0,1]. In addition, D; is centered at t;
and the germ 7(t;) is defined on D for all j € {0,...,r}. Moreover, it holds o ((t;), D;) N
o(J(tj41), Djs1) # 0 for all j € {O ;7 — 1}, Now, the identity theorem provides that
(1) is yielded by analytic continuation of 7(0) along the path ~.

Conversely, regard a finite chain of open discs Dy, ..., D, C U induced by the analytic
continuation of f along ~. It is obvious that they cover [0, 1]. The corresponding holomor-
phic functions f‘Do = fo,..., fr = f“/|Dr induce open sets o(fo, Do), ...o(fr, Dy) C Op so
that o(f;, Dj)No(fj+1, Djy1) # 0 forall j € {0,...,r—1}. As these sets are path-connected,
there exists a path 7 : [0,1] — Oy connecting p,(o)(f) and p (f'y) O

As an immediate consequence, one obtains

Corollary 2.1. The path-components of Oy are RIEMANN surfaces. Furthermore, if f :
G — C is a holomorphic function, defined on a region G C U and zg € G. Then the
path-component Xy (f) containing ps,(f) consists of all possible analytic continuations of f
along paths in U.
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Back to Local Coordinates

At this point, we come back to the local holomorphic coordinate functions and continue
our observations concerning them. As a first step, we are going to transfer the function
theoretic concepts of the last paragraph. They have been constituted in Lemma 2.4 and they
correspond to fixed h-movements of the free objects of an underlying algebraic construction
€. For k € {1 —m,...,0}, we have an h-movement pj and an associated open set Uy, .
Roughly speaking, the set U, is the maximal'® e-tube, on which a holomorphic function ¢
can be defined that describes uy, i.e. @’[0,1] = ug. Throughout the rest of this chapter, we
denote their intersection by
U:= m Ui -

ke{l-m,...,0}

It is clear that U is open, again. In Lemma 2.4, we have proved the existence of coordinate
functions ¢1_py, ..., cn. Soforeachl € {1—M,..., N}, we have a corresponding germ g; :=
po(cr), which also induces a RIEMANN surface X; := Xy(¢;) and a projection m; := WU‘XI,
where the image m;(X;) € U will be denoted by II;. If ¢; can be continued analytically
along a path « : [0,1] — U, the analytic continuation of ¢; induces a germ g;’ € X;. We
are going to use - as index only, if the corresponding continuation is possible implying that
~([0,1]) C II;. However, if g; is not continuable analytically along a path ~, let t* €]0, 1] be
the supremum of all ¢ € [0, 1] so that g; can be continued analytically along the path

Yex [Oat* [_> C? t— fY(t)

In this case, we call v(t*) a singular point of g;. Our following studies are based on the set
U. For this reason, we will only consider paths 7 : [0, 1] — C with v([0,1]) € U throughout
the rest of this chapter.

For each [ € {1,..., N}, the polynomial P, € C[Ci_yy,...,C;—1, X] induces a polynomial
P, € Op[X] by replacing C; by g; for all j € {1 — M,...,l —1}. Then it holds that
P(g1—-pms---,91-1,91) is the zero polynomial. Furthermore, let 4 be a path so that the
analytic continuations g; ,,,..., g/ exist. The identity theorem yields trivially

Pi(g]_ppr--191:9]) =0 (2.1)

for all paths v, for which the associated analytic continuations exist.

Remark 2.9. At this point, we would like to emphasize the importance of identity (2.1),
since it is the key to construct CDGSs and the reason, why we are studying the analytic
continuations of the functions ¢y_jy,...,cy derived in Lemma 2.4.

As we are interested in constructing CDGSs for an underlying algebraic construction %,
we are looking for instances that vary continuously along a family of h-movements. In or-
der to derive an instance, we have to solve several multi-homogenous polynomial systems,
namely one for each dependent object. In the proof of Lemma 2.4, we have reduced each of
these systems to an adequate set of univariate polynomials. We have denoted these polyno-
mials by P;_ps, ..., Py. Instead of solving the multi-homogenous polynomials system, we
can solve them to obtain an instance of the construction %. By doing so, we have proved
that there exist holomorphic functions on an appropriate open neighborhood V of 0 € C
solving these polynomials. As a result, we can use them as coordinate functions of the
objects to form instances of ¥ for all t € V.

19We also admit the case U, = C, if it is possible.
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Identity (2.1) tells us that the analytic continuations of theses coordinate functions still
satisfy the continued polynomials. By taking this into account, we are enabled to generate
continuously varying instance of % by analytic continuation of these coordinate functions.
This works as long as all analytic continuations along a path + exist and the coordinate
functions of one object do not vanish simultaneously. In these cases or when a singular point
occurs, we do not get an instance by this concept. But these situations will be captured by
Lemma 2.9 and Theorem 2.3, in which we prove that there also exist reasonable instances
in this situations.

As already mentioned, there may also be points z € U, for which the analytic continuation
of one of the germs g1_/,...,gn may not exist. They will play an important role for the
ambiguity of a CDGS. However, we can characterize them easily.

Definition 2.8. Let Pi(g1_ary -+, g1-1, X) = . XF 4+ +ag € Qp[X] and v be a path with
starting point 0 € U and terminal point z € U. Furthermore, we define the sub-path

e [07t] - [Ua s = ’Y(S)

Then we call v a critical path of P(g1-pr,--.,91—-1,X), if one of the following conditions
hold:

(i) There exists t €]0,1] so that y(t) is a singular point of g; for some j € {1-M,... 1 —

1},

(ii) there is t €]0,1] so that the analytic continuation o of the leading coefficient oy, of

P, along the sub-path v vanishes at the terminal point t, i.e. aZt =0,

—

(iii) there exists t €]0,1] so that B(g?t_M, . ,g/fl,X) € C[X] has a zero of multiplicity
at least 2.

We call such a point y(t) € U a critical point of P(gi—n,---,g1-1,X ). Conversely, we call
v a non-critical path of Pi(g1—p,---,91-1,X ), if none of these three conditions hold.

Roughly speaking, the critical points are those, in which a polynomial P, or more precisely
its continuations, is either not defined or has not its maximal number of simple zeros.
Condition (i) covers the cases, where one of the coefficients of P, is not defined; (ii) deals
with the cases, where the degree of P, degenerates; and the cases, where two zeros coincide,
are captured by (7).

The next goal is to show that the analytic continuation of a germ g; along a non-critical
path of P(g1-p,-..,91-1,X) exist. For this reason, we prove the following two lemmata.
Let v be a non-critical path of P)(g1_ar,...,g1-1,X) = axX* 4+ -+ ag € Qp[X]. Then the
polynomial

Pl(QI/_Ma"' ag;/_laX) € (C[X]

has k distinct, single zeros z1,...,z; € C. Under these assumptions, we can prove that all
zeros of the underlying polynomial are described by holomorphic functions on an appropriate
neighborhood of v(1) € U.

Lemma 2.6. There exists an open neighborhood V- C U of the terminal point (1) of v and
k germs fi,..., fx € Q) with the properties:

(i) Pi(g]_pr---291,f;) =0 forall j € {1,... k},
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(1) f] =uxj forallj € {1,... k},
(iii) if P(g9]_pl2),- -5 9] 1[2].2) =0 for z € V, then x = f;[2] for some j € {1,... k}.

Remark 2.10. First of all, the lemma ensures the existence of germs fi,..., fi that satisfy
the continued polynomial Pl(giy_ More o 97—17 X ) Conversely, it states that all zeros are, in
turn, described by f1,..., fk.

Proof. Let us denote y(1) by zp. Since z1,. ..,z are simple zeros, there exist non overlap-
ping discs Dy, ..., Dy, where D; is centered at x; (j € {1,...,k}). Furthermore, we denote
the boundary of a disc D; by d; and the partial derivative of P, (9]_,,[z0], ., 9] 1[20], X)
w.r.t. X by

oP, (gz_M[zo], . ,g;’_l[zo],X) )

Then P, (g]_s[20), -, 9;1[20], z) # 0 on §; and it holds

1 0P, <9¥_M[2’0], 9, [%0), a;)

2mi Js, B(gz_M[zo],...,g;’_l[zo],:lt>

dr =1,

where this integral is the winding number of the image of §; under P, (g, _,,[20], - -, 9] ;[20], %)
w.r.t. 0. Replacing zg by z yields a continuous function in a neighborhood of zy. Since they
can only take integer values, there exists a neighborhood V' C U such that

1 8})1(91/_1\4[’2]7"'797_1[2;]733)

— de =1
27TZ 5j PI(QY_M[ZL e 797_1[2]7‘T)

for all z € V implying that P(g]_,[z],-.., 9 1[2], X) has exactly one zero in D;. We
denote this zero by f;(2). By the residue calculus, its value is given by

(2) = L . aPl(gz—M[Z]v""97_1['2]7517)
f]( ) - 2m /5 B(QY—M[Z]7"' 797_1[2]7x)

Obviously, f;(z) is analytic on V, thus f;(z) induces a germ f; € O, with f] = xj. The last
thing is to conclude that there cannot be more zeros. But this follows from the fact that
we exhibited & zeros and P;(g]_,,[2],..., 9/ ;[2], X) cannot have more than k zeros. O

With this preparatory work, we are able to derive a lemma stating that, along a non-
critical path, a corresponding germ can always be continued analytically.

Lemma 2.7. Letl € {1,...,N}. If v is a non-critical path of P/(g1—my---,91-1,X), then
5
g, exists.

Proof. We define the restricted path v, : [0,1] — U, s+ ~(s-t) for all ¢t € [0,1]. By the
prerequisites, all analytic continuations gz_ Mo 97—1 exist. As a result, all analytic contin-
uations g;* ,,,..., g, exist as well. Since v is a non-critical path of P/(gi—as, ..., g1-1,X),
the polynomial

—

P(g1aps- 291 X) € CIX]

only has simple zeros for all ¢ € [0, 1]. Due to this fact, Lemma 2.6 states that for each ¢ €
[0, 1], there exists an open neighborhood D! C U of v(¢) and germs f7,... ’fctleg(Pl) € 0,
These germs are roots of the polynomial P, this is,

Pl(.g;yt_Maagl’yilv,ﬁt) =0
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Figure 2.8: Illustrating Example 2.11 for t = 1 (o), t =1 (o) and t = 3 (¢).

on D' for all j € {1,...,deg(P)}. The collection {D'},cjg 1) is an open cover of ([0, 1]).
As ([0, 1]) is compact, there is a finite subcover {D% ... D'} still covering ¥([0, 1]). This
cover induces a finite decomposition t1,...,t, of the interval [0, 1], where w.l.o.g. t; = 0,
t, = 1. By using Lemma 2.6, it follows that g; = f;l1 for some j; € {1,...,deg(P,)}. Again,
Lemma 2.6 in combination with the identity theorem yields that f;l1 = fjj on Dy, N Dy, for
some jo € {1,...,deg(P)} and so on. Inductively, it follows that the analytic continuation
of g; along 7 exists and that g = f;}L for some j, € {1,...,deg(F))}. O

So far, we have shown that we are done as long as the coordinate functions are continued
analytically along a non-critical path, since their analytic continuations induce continuous
movements of the underlying geometric objects.

However, what happens along a critical path? Along a critical path, there usually exists a
pole or branch point of a germ. Fortunately, we can resolve the problem at these points by
using so-called local uniformizing coordinates and corresponding LAURENT series, as we can
use them to describe the behavior of the coordinate functions around these critical points.
But before we prove that we can use this approach in general, we first have a look at a
simple example.

Ezxample 2.11. Similar to previous examples, the notation below will be informal to capture
the essence. Then an easy example for our consideration is the intersection of the unit circle
given by 22 4+ y? — 22 = 0 and a moving line that is, in turn, induced by = = 2tz, where
t € [0,1]. The line stays parallel to the y-axis during its motion and moves horizontally
form the origin [(0,0,1)7] towards the point [(2,0,1)7] (see Fig. 2.8). Three polynomials
P, P, and P3 that determine the coordinates x,y and z of a point of intersection of the
circle and the line, respectively, are

Py(t,z) =x — 2t, Py(t,y) = 9> + 4% — 1, Ps(t,z) =z — 1.

For a fixed t € [0, 1], the coordinates are given by the zeros of these polynomials. P» already
indicates that there basically are two points of intersection. Appropriate representatives for

them are given by
T
<2t, /a2 11, 1) .

As illustrated in Fig. 2.8, there are two distinct real points of intersection for ¢ € [0, %[ and
two distinct complex ones for ¢ e]%, 1], while these two points coincide and result in one
real point for tg := %

This ambiguity also shows up at the algebraic representation of these points. Let g; € Op

and g5 € Qg be the germs that are induced by +v —4t? — 1 and —v/—4t% — 1, respectively.
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Figure 2.9: The left picture shows the path ~, for various values of b, while the right picture
illustrates the motion of the points of intersection under ~;.

Their corresponding RIEMANN surface Xs has two sheets and a branch point at ¢3. To
obtain a visualization of Xs, we fix the starting and terminal point of the z-coordinate
of the points of intersection and additionally consider complex paths connecting them. In

particular, they are given by
Y :[0,1] = C; t — 1+ cos ((1 —t)w) — ibsin ((1 — t)7),

where b € [—1,1]. Using the parameter b enables us to vary these paths in a continuous
manner from a half circle above the real axis to its pendant below (compare Fig. 2.9 (left)).
An illustration of X5 is then obtained by plotting the real part of the x- and y-coordinate
as well as the imaginary part of the y-coordinate as seen in Fig. 2.9 (right). Each path in
this figure shows a path of one of the points of intersection under =, for a fixed b € [—1,1].
The real situation, i.e. b = 0, corresponds to the thick lines in the picture. It can be
seen that both points are real until their coinciding and complex afterwards. Furthermore,
we observe that the structure of Xo reflects accurately the geometric situation. Roughly
speaking, the two sheets represent the two distinct points of intersection, while the branch
point corresponds to the coinciding of the points.

We now come back to our original goal, this is, the construction of a continuous motion
of the points of intersection under the movement of the vertical line. Therefore, let g €
{95, 95 }, denote the open disc with center o and radius 1 by Dy, and set Dto = Dy, \ {to}-
Moreover, 0 shall be a path within Dto, ie. 6([0,1]) C Dto, which starts at 0.

The point tg is a branch point, thus we cannot continue g analytically along a path
induced by the segment [0,1]. However, the analytic continuation g° of g along ¢ exists,

since tp is an isolated critical point with to ¢ ([0, 1]).
Defining a continuous motion of the points of intersection is an easy task for each segment
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Figure 2.10: Hlustration of local uniformizing variables.

[0,%[ and ]tg, 1], since we can use analytic continuations of g5 and g, in these cases. The
only problem left is to define a reasonable point of intersection at ty that merges the two
separated motions for [0,tg[ and |tp, 1] continuously. Fig. 2.8 as well as the algebraic
representation already indicate an appropriate choice in our specific case, i.e. the point
[(1,0,1)7].

However, to resolve this problem in general, this means to prove that critical points
are removable singularities in the underlying object space!!. For that, we rely on local
uniformizing coordinates and LAURENT series to prove that the coordinate functions do
behave, in a certain sense, well'? around a critical point. According to [1, sec. 8.1 & 8.2,
there exist a LAURENT series expansion

o
Z Apth
k=—m

with finite principal part'® and a local uniformizing variable ((t) := to + t? that describe
the analytic continuation ¢°. More precisely, it holds

> At =g [¢(t)]

k=—m

Mthis is a suitable projective space.
2pot like around an essential singularity, for instance.
Bie. m e Ng.
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on an appropriate (sub-)disc D? C ¢~! (Dto). The ambiguity arising from the two distinct
points of intersection is encapsulated in the map (, since ( is a double cover of Dto. Formally,
there is an open disc Dy with its center 0 removed, which ¢ maps surjectively onto Dy, and
the set (~!(t) exactly consists of two distinct points for ¢ € Dy. For instance, regardless
whether g = g;' or g = g, , there exists an open neighborhood U of 0 € Dto, on which g is
well-defined. This neighborhood is illustrated by the gray disc around 0 in the upper circle
Dy, of Fig. 2.10. That there are two possible choices for g is reflected by the fact that
there are two open neighborhoods D that are mapped onto U under (. They are visualized
by the gray neighborhoods in the two lower circles of Fig. 2.10. Choosing one of the two
points of intersection in a starting instance also fixes one of the two neighborhoods D. After
that, the motion of this point of intersection is determined for ¢ € [0, %[ In Fig. 2.10, this
corresponds to a unique solid line segment in each of the three circles. Similarly, there
exist two possible continuous motions for ¢ G]%, 1] independent of the choice in the starting
instance. They are represented by the dashed line segments in Fig. 2.10.

The last step is to complete the construction of a continuous motion by proving that there
always exists an appropriate object that removes the singularity in the object space and
merges the different motions continuously. This will be done in Lemma 2.9 and in Theorem
2.3.

That we can generally use local uniformizing coordinates and corresponding Laurent series
in the same way as presented in the previous example is the goal of the next lemma. But
before we prove it, we introduce some further useful notations and recall the abbreviations
used in the previous example. We denote an open disc with center z € C by D,, its
punctured pendant D, \ {z} by D. and the set of meromorphic function on an open set
U C C is denoted by M(U).

Lemma 2.8. X is a finitely sheeted RIEMANN surface and the set of all critical points of g
is discrete for alll € {1-M, ..., N}. Furthermore, for every zyg € U, there exists a punctured
disc DZO C U centered at zy so that for every non-critical path v of Pi(gi—ary- -, 91—1,X)
(I e{1,...,N}) that starts at 0 € U and ends in D.,, there are a local uniformizing variable

Gy(2) =20 + 2°,
where s € N and N LAURENT series
o
Yk
Z A g?
k:—ml

with finite principal part, i.e. m; € Ng, and the following property: For every path § that
starts at the terminal point of v and satisfies 6([0,1]) C D, it holds that

Y. AL =76, (2.2)

k:—ml
for all z in an appropriate (sub-)disc D7 C {,Y_l <D20>

Remark 2.11. At this point, we shall point out a few things. The situation around a point
zp may be path-dependent. For this reason, we have the partition into v and . In addition,
LAURENT series and local uniformizing variables are actually only needed when a branch
point or a pole occurs, since then they are capturing the ambiguity around a branch point or



2.3 Required Tools 45

the behavior around a pole. However in the majority of cases, the LAURENT series becomes
a usual power series and the local uniformizing variable a simple translation for all non-
critical points zp € U. We will observe that there can only exist a finite number of critical
points in the interval [0, 1].

Proof. We prove the statement by induction over N € Ny, the number of dependent local co-
ordinate functions. Let zy € U. For N = 0, the definition of the h-movements 1, ..., to
induce'* that there exists a punctured disc D,, and one local uniformizing variable

C(2) = 20 + 2,

Al,kzk independent of the detailed

choice of  connecting 0 and (1) € DZO in U. Moreover, the other parts of the claim are
an immediate consequence of the definition of an h-movement.

Now, let N > 0. By induction hypothesis, there exists a punctured disc DZO so that
property (2.2) holds for all I € {1 — M,...,N — 1} and for every non-critical path ~ of
Pn(g1-ary---ygn—1,X). Therefore, let v be such a path. As a result, we can represent the
continuation of the polynomial Py(g1—az,-..,9n-1,X) € Qg[X] in terms of the LAURENT
series given by the induction hypothesis. We just have to replace the coefficients in the
continued polynomial by proper LAURENT series according to Equation (2.2). Let ¢(z) =
zo + 2° be the local uniformizing variable given by the induction hypothesis. Then there
exists a polynomial P, (z, X) € M(Do)[X] so that for every path ¢ with 6(0) = (1) and
5([0,1]) C D, the identity

a disc D and a corresponding LAURENT series > ;2

Py (6706 () 826 (2)), X ) = P (2. X)

holds for all z in an appropriate disc D% C Dy. The coefficients of I:’y only have a finite
principal part, since they are polynomials of LAURENT series with finite principal parts.
Thus the zeros of each coefficient of 154, as well as of the discriminant of 154, are lying discrete
in Dy. By induction hypothesis, the set of critical points of P(gi-my- -y 91-1,X) for all
le{l—M,...,N — 1} is discrete. So there exists a punctured disc Bg C Dy centered at
0 € C, on which all coefficients of ﬁ’y are well-defined and the discriminant as well as the
leading coefficient of ﬁ,y do not vanish.

Since X is a finitely sheeted RIEMANN surface for all [ € {1 —M,..., N — 1}, there exist
only finitely many different of these polynomials P (2, X) € M(Do)[ | and discs B'Y For
this reason, there exists a path-independent punctured disc By C Dy centered at 0 € C, on
which neither the leading coefficients of all P nor the discriminants of all P vanish and
all coefficients of P are well-defined. This, in turn, induces a punctured disc Bz0 centered

at zg € U that does not contain any critical point of Py(g1-ar,--.,91-1,X). So it follows
that: If v is a non-critical path of P(g1-ar,...,91-1,X) for all I € {1 — M,..., N}, which
starts at 0 and ends in B,,, then the analytic continuations of ¢y,...,cy along 6 oy exist

according to Lemma 2.7 for all paths ¢ with §(0) = v(1) and ([0, 1]) C B,

To show that X is finitely sheeted, we study the set 7T;71(21) for every z1 € BZO. Let
g € 71&1(21). In the trivial case, g can be obtained by analytic continuation of gy along a
non-critical path v of Py(g1-ar,---,91-1, X ). Due to this fact g has to be one of the finitely
many satisfying germs of Py (g{_,,-.., 9/ 1, X). Since X1_yz,..., Xny—1 is finitely sheeted,
only a finite number of such polynomials Pn(g{_,,-- -, g;’_l,X ) exists. Apart from this

MEvery h-movement is the restriction of a holomorphic function on U.
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case, we now assume that ¢ can only be obtained by analytic continuation along a critical
path v of Py(g1-a,---,91-1,X). But then one of the following three cases must be true:
The leading coefficient of Py vanishes on a non-discrete set, the discriminant vanishes on a
non-discrete set or the set of critical points of ¢g1_a7,...,gn_1 is not discrete. All of them
result in contradiction. As a result, g can always be obtained by an analytic continuation
along a non-critical path implying that X only has a finite number of sheets.

According to the construction in [1, sec. 8.1 & 8.2], there exists the claimed LAURENT

series expansion corresponding to Xy and a local uniformizing variable (,(z) := zy + Pl

so that property (2.2) holds for g%w on the appropriate (sub-)disc D% C Dy. This also

implies the set of singular points of gx has to be discrete.

To complete the proof, we have to merge ¢, and ffy. Therefore, let K be the least common
multiple of s and § and 2z’ € C so that 2’ is an arbitrary K-th roots of §(1)—zp. Furthermore,
let ¥, ¢ be the two K-th root of unity so that (792’)% is the center of the disc D%*7 and (LZ/)%
is the center of the disc D%. By doing so, we get from equation (2.2)

i Al ((vﬁ‘z)%)k =g [zo - ((02)%>8] = g0 [ 20 + 25, (2.3)
k=—my =:¢y(2)

for all z in an appropriate disc D centered at 2’ and [ € {1 — M,..., N — 1}. Analogously,
we have

> Ay (02%) = [0 (195) ] = 060 (2.4
k=—mpn

for all z in D. By the use of the identity theorem, one gets that for every proper § o ~,

there exists an appropriate subdisc D%7, on which equation (2.3) respectively equation
(2.4) holds. O

An immediate consequence of the previous lemma is the fact that the number of critical
points in [0, 1] has to be finite.

Corollary 2.2. The set of all critical points of g1—nr,- .., gnN s finite in [0, 1].

Proof. According to Lemma 2.8, there are punctured discs D, forall z € [0,1]. These discs
including their centers form an open cover of [0,1]. Since this interval is compact, even a
finite number of these discs cover already [0, 1]. As a result, there is only a finite number
of critical points. O

As already mentioned, we prove a continuation lemma. It provides two features: On the
one hand, it enables us to remove singularities, which occur at branch points and poles, in
the object space. On the other hand, it shows that the cases, where the representing vector
becomes the all-zero vector, can be removed continuously in the object space as well.

Lemma 2.9 (continuation lemma). Let U C C be open and c1,...,cqr1 € M(U) be mero-
morphic functions without essential singularities and where at least one of them does not
vanish identically. In addition, let S be the discrete set of all singularities and N the discrete
set of all common zeros of c1,...,cqr1 in U. Then the induced object function

0:U\ (SUN)— CP*, t [(cl(t),...,cdﬂ(t)ﬂ ,

is continuous and o can be extended continuously for allt’' € SUN.
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Proof. First of all, we show that o is continuous. For ¢’ € U \ (S U N), there exists a
neighborhood W of ', on which at least one function, say c;, does not vanish. In this
situation,
T
z z
ki V — CHIL [(zl,...,de)T} — <1, _27...,ﬁ>

21 21
where V is a neighborhood of o(t'), is a valid chart of the complex manifold CP?. By
definition, o is continuous at ¢, if koo : U\ (S UN) — C¥! is continuous at . But it is
obvious that

T
koo:W — CH ¢ <1, Cz(t),...,Ll(t)>
Cl(t) Cl(t)

is continuous at t'. Now let ' € N and k,l € {1,...,d + 1}. Then we define the relation

k<l < lim a(t)
t—t' cy(t)

¢ C.

Since there is at least one coordinate function, which does not vanish identically, there has
to exist a k' € {1,...,d+ 1} with ¥’ A k. As a result,

lim c(t) eC
t—t" cr(t)

for ke {1,...,d+ 1} \ {K'} and

() Cd+1(t)>T

KV = CHL (e, . carn ()] — <ck/(t)"”’ cp(t)

where V' is a neighborhood of

T
Cfal®)  en®
im e,
t—t' \ cpr (1) e (t)
is a valid chart of CP?. In conclusion, s’ o o : W/ — C%1, where W' is an appropriate

neighborhood of ¢/, can be extended continuously at ¢/, which also implies that there exists a
continuous extension of o at . For ¢’ € S, one can apply an analogous argumentation. [

2.4 Results Concerning Continuous Dynamic Geometry Systems

We will derive the main results of this chapter in the present section. As a first step, we are
going to show constructively that there always exists a CDGS associated to an algebraic
construction and a regular starting instance. Conversely, it will also turn out that every
possible CDGS corresponding to an algebraic construction and a regular instance can be
described by a CDGS that has already been derived in the constructive proof of the just
mentioned existence theorem. The second subsection focuses on the limitations of the
concept of algebraic constructions. For instance, we are going to observe that at least some
transcendental functions cannot be rebuild by algebraic constructions. So far, all results
rely essentially on the fact that h-movements are restrictions of holomorphic functions.
However, we are going to prove that this assumption is necessary to obtain continuity in a
third subsection. In other words, a CDGS cannot be based only on k-times differentiable
functions describing the motion of the free objects, in general.
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2.4.1 Possible Continuous Dynamic Geometry Systems and Their Existence

Now, we are able to prove constructively that there always exists a CDGS'® in the sense of
Definition 2.6 associated to a given algebraic construction and a regular starting instance.
The proof bases on the idea presented in Example 2.11: Since the set of critical points is
discrete in [0, 1], we can use analytic continuations of the coordinate functions to construct
continuous motions along the segments that do not contain a critical point. Furthermore,
we show that these motions can be merged continuously at the critical points yielding finally
one continuous motion in the object space.

Theorem 2.3 (existence of CDGSs). Let € be an algebraic construction according to Def-
inition 2.8 and 0 € Ty a regular instance. Then there exists a corresponding CDGS D.

Proof. Let ® be the set of all functions p : [0,1] — Oy, X ... X Op with £1;(0) = 0; and p;
is an h-movement for all j € {1 —m,...,0}. Furthermore, let ¥ be the set of all functions
v:[0,1] = O1 x ... x O, with (u(t)T,v(t)T) € Iy for all t € [0,1]. For pu € ®, we have to
show that v; : [0,1] — O; may be chosen as a continuous mapping for all j € {1,...,n}.
To simplify the notation, we fix j € {1,...,n} and omit the index j below.

From Lemma 2.4, it follows that there exist germs gi,...,9411 € Qg representing the
initial behavior of the dependent object 0. According to Lemma 2.8, there exists a punctured
disc DZO centered at zy associated to property (2.2) for every zg € U. The corresponding
discs D,, = D., U {2} C U induce an open cover of [0,1]. Since [0,1] is compact, we can
find a finite subcover {Dy,,..., Dy} of [0,1] with ¢y < ... < t, € [0,1]. Thereby, we may
assume w.l.o.g. that tg =0, t, =1 and

—

—~ T
{te [0,1] ‘ 3 7 such that <g¥,...,gg+1) :(0,...,0)6Cd+1} C {to,...,tr}

Let the radius of Dy, be denoted by ;. Below, we are going to define functions f; : [0,¢; +

&1[— CP? by an inductive construction over I € {0,...,r} that are going to form a CDGS.
Thereby, there should exist a path « connecting 0 and ¢ so that
& A
fl(t) = |:<gl7"'7.gd+1) :| (25)

for every t € [0,t; + ;[ \{t0,-..,tr}. In order to start the induction, we mention that the
claim follows immediately by Lemma 2.4 for [ = 0. Now, let 0 < I < r. By induction
hypothesis, we have a continuous mapping f;_1 : [0,¢;—1 + g-1[— CP? so that for all
te[0,t-1 +¢e1-1) \ {to,.-.,t.}, there exists a path v connecting 0 and ¢ and

fiaa(t) = [(E@)T]

Next, let t € ([0, ¢—1+&-1[NDy,) \{to, ..., t,} and v be such a path. Moreover, let (,(z) :=
t; + 2°(t) be the s(t;)-fold cover of Dy, according to Lemma 2.8 and o1 (t;; 2), . .., 0a+1(t; 2)
the corresponding Laurent series. In addition, let D7 be the disc of ¢/ Y(Dy,)\ {0}, on which
oj(ti;2) = gj[¢y(2)] for all j € {1,...,d + 1}. Since [t,t; + &[C Dy, there exists a path
6 :[0,1[— ¢;1(Dy,) so that ¢, maps 4([0,1)) homeomorphically on [t,#; 4 &[. Besides, 6(0)
is the center of D7. We denote this homeomorphism Cﬂ 5 ([071[) by 7.

5 At that, we shall remark once more that the motion of the free objects has to be induced by holomorphic
functions.
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According to Lemma 2.9, there exists a continuous extension h of
z = [(01(?51;2)7---,0d+1(tl;2))T} € CP?

defined on ¢ Y(Dy,). So we now can define a map

, d fiea(z), itz €0,
fi: 10t +e[— CP z e { h(n~'(x)), ifx €lt,t;+¢]
The next step is to show that f; is continuous at ¢. Since h(n~'(x)) is continuous on
[t,t; + & [, this would follow from f;_1(t) = h(n~1(t)). But it holds that

bl 0) = W60) = [ (72055000 o 2:500)) |

As a result, the definition of § implies f;_1(t) = h(5(0)). Finally, it is obvious that fi(¢)
satisfies the claimed continuation property given by (2.5). To complete the proof, we set

v = fr‘[O,l}' ]

Remark 2.12. We observe that the CDGS D in the previous proof may not be unique. At
each critical point t € {tg,...,t,}, we may have several opportunities to proceed continu-
ously. The number of choice is encoded by the exponent of the local uniformizing variables.

This also matches our observations in Example 2.11, where we consider the intersection of
a circle and a moving line. After choosing a starting instance, the motion of a corresponding
point of intersection is uniquely determined until the tangent situation. However, there are
two opportunities to move on continuously after the tangent situation.

Remark 2.13 (geometric theorems). At this point, we would like to address another worth-
while point that actually follows by the developed theory. Lots of geometric theorems base
on a certain construction, which then admits a conclusion that is encoded by a homogenous
polynomial'® in the coordinates of the construction elements. Examples are three points
that are collinear or three lines which are concurrent. The theorem holds, if a polyno-
mial vanishes identically. Analogous to the preceding argumentation, the polynomial stays
the zero polynomial along all possible analytic continuations implying that the geometric
theorem remains valid under these continuations.

After we have shown that there exists a CDGS corresponding to a given algebraic con-
struction and an associated regular starting instance, our next goal is to show that every
possible CDGS has to be one of the CDGSs constructed in the previous proof. This also
implies that there exists only a finite number of CDGSs. To do so, we first show the fol-
lowing lemma, in which we prove that whenever a CDGS outputs a regular instance of an
algebraic construction, which can be described by a set of germs, then these germs describe
also the CDGS on an entire segment.

Lemma 2.10. Let D be a CDGS associated to a given algebraic construction € with n € Ny
dependent objects and a reqular starting instance. Moreover, let 6 € Ty be a further regular

instance, i—m, ..., o h-movements of € so that p;(ty) = o; for some ty € [0,1] and for
allje{l—m,...,0} and set u := (,ul_m, e ,,uo)T. If, for every k € {1,...,n}, there exist
germs g1, - - - 9k.d+1 € Oy, that represent the object oy at ty, i.e.
_ T
|:(gk2717 e 7gk‘,dk+l) :| = O,

161 general, an identity that is analytic in the coordinates of the construction elements would yield the
same result.
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then there is € > 0 so that the motion of the object o under p, i.e. the k-th component vy
of D(p), is given by

vi(t) = [(Qk,l[t]a e ,gk,dkﬂ[t])T]
fort € | max{0,ty — e}, min{1,to + e} and k € {1,...,n}.

Proof. We show the claim by induction over n € Ny, the number of dependent objects of
%. For n = 0, there is nothing to show. Now, let n > 0. If one removes the last operation
of &, the induction hypothesis guarantees that vq,...,v,_1 satisfy the claimed equation.
Since

Vn(tO) = Op = [(gn,l[tO]v ce agn,dn+l[t0])T:| )

we can add to the homogeneous polynomial system F,, an affine equation so that one of
the possible solutions of this extended system representing vy, (tg) is

T
(gnaltols- - - gn.dn+1[to])

Obviously, the coefficients as well as the solutions of the extended system depend contin-
uously on t. As every possible solution is simple, the claim follows immediately by the
continuity of v,. O

We are going to use the previous lemma to show the mentioned goal, namely that the
construction of a CDGS in the proof of Theorem 2.3 captures all possible CDGS.

Theorem 2.4 (possible CDGSs). Let € be an algebraic construction, 6 € Ly a regular
starting instance, 1—m, - ., o h-movements of € and D an associated CDGS. For each
Jj €{1,...,n}, denote the j-th component of D(n) by v;, where pn = (Ui—m, ..., o) and let
9j1s- -5 9j.d;+1 € Qo be germs with

(G5, G 1)"] = w5(0).
Then, there exists a path v connecting 0 € C and t € C so that
5 =5 \T
)= (o))

for almost every t € [0,1].
Remark 2.14. Tt is clear according to Lemma 2.4 that such germs always exist.

Proof. As usual, we are going to show the claim by induction over n € Ny, the number of
dependent objects of €. Since there is nothing to show for n = 0, let n > 0. The previous
lemma guarantees that the claim holds for all ¢ € [0,¢[ for some € > 0. Assuming that
the analytic continuations of all germs exist at least along a segment [0, 1] for t; > ¢, the
claimed identity holds at least on [0, ¢;], since otherwise it would follow: There has to exist
at' €[0,t1] so that (pu1—m(t'),...,vn(t')) is a regular instance of ¢, the continuations of
all germs along [0, '] exist and the desired identity does not hold. So we can generate the

objects .
(0000240 1)']

for all k € {1,...,n}. But they must be equal v(t') according to continuity. Applying the
previous Lemma again yields a contradiction to the existence of t'.
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For this reason we assume that there is a minimal'” and isolated critical point ¢; €]0, 1] of
one of the germs. Then, the claim holds for all ¢ € [0,¢1]. By using the induction hypothesis,
it follows that there exists an open neighborhood U of ¢; so that for all ¢ € U N[0, 1] with
t > t1, there exists a path v connecting 0 and ¢ so that

— —_ T
l/j(t) = |:<g;.y71,. .. ’g;'y,dj—i-l) ]

for all j € {1,...,n — 1}. This implies that coefficients of the polynomial system F,,,
associated to w, are given by analytic continuations of the initial germs for all t € U N[0, 1]
with ¢ > t1. Since v, has to satisfy this system, it must hold

—_— _— T
vn(t) = ng,lw--’gz,dﬁl) ]=

for t € UN[0,1] with ¢ > ¢;. The number of such critical points ¢; is finite in [0, 1], thus
the claim follows inductively. O

2.4.2 The Power of Algebraic Constructions

Although, the concept of algebraic constructions captures lots of concrete geometric con-
structions, limitations in their power are given. A formal framework capturing this is the
notion of constructible functions (compare [30]). Roughly speaking, we say a function is
constructible, if we can construct a point with a coordinate that equals the function on an
interval, while one free object moves straight.

Definition 2.9 (constructible function). Given pg : [0,1] — P; ¢+ [(¢,0,1)7]. Then we
call a function f :[0,1] — C constructible, if there are an algebraic construction € with
one free point, i.e. wy = P, a reqular instance 6 € Ty with 0y = [(0,07 1)T] and a CDGS
D with Dy (o) = vn so that

vp :[0,1] = P; t— [(f(t),O, 1)T}.

That this definition does not only admit trivial functions is shown by the following ex-
ample. For the sake of brevity, we omit some of the building blocks like the so-called vON
STAUDT-constructions providing a geometric addition and multiplication and a construc-
tion that extracts the coordinates of a point. But all of them can be built of the operations
JOIN and MEET and one can find them in [48].

Ezample 2.12. In order to show that f: [0,1] — C; t — /1 — t is a constructible function,
we need to introduce a further geometric gadget. The algebraic operation

SAMEDIST := {([a], 8], [0, [p]) € P2 x £ x P | ITp =0 and

det(b, a, I)det(p, a, I)det(b, p, J)* = det(b, a, J) det(p, a, J) det (b, p, I)2},

provides a point [p] lying on [I], whose euclidian distance to [a] equals the euclidian distance
from [a] to [b]. Using the algebraic operations introduced on page 26, we state a subcon-
struction that provides the circle ¢ to given center M and a further point R on the circle.

"This works, since the number of critical points is finite in [0, 1] (see Lemma 2.2).
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Figure 2.11: A construction for /z.

The construction steps are as follows:

MeP
Re?P
P, € CONSTp,
P, € CONSTp,
1; € JOIN(M, Py)
1, € JOIN(M, P3)
R; € SAMEDIST(M, R, 1;)
Ry € SAMEDIST(M, R, 1,)
c € CIRCLE(R, R4, R»)

This construction works, if P; # R and Py # R. Additionally, it must hold that M, Py
and Ps are not collinear. Such points, however, can always be found.

The next building block is a construction that yields a point [(v/z,0,1)T] for a given point
[(x,0,1)T] with = # 0. Figure 2.11 illustrates such a construction (compare [15, p. 376]).
The correctness of it is easily verified, namely the product of the distance from 0 to 1 and
—x to 0 equals the square of the altitude seen in the triangle of this figure.

Finally, the term /1 — t induces a constructible function, since one can compose a de-
sired algebraic construction by using the introduced algebraic operations together with the
previous subconstruction.

After we have exemplified the notion of constructible functions, we confine our attention
to the limitations of our formal model. Since we have started from an algebraic setting,
it is not surprising that transcendental functions are essentially not constructible. This is
shown in the next theorem and the directly following corollary.

Theorem 2.5. The function exp : [0,1] — C; t s €' is not constructible.

Before this theorem can be proved, we require that e! is transcendental over Q for ¢t € Q.
This can be followed from the famous Theorem of LINDEMANN and WEIERSTRASS.

Theorem 2.6. Given n € N pairwise distinctive algebraic numbers aq,...,a,. Further-
more, let by, ...,b, also be algebraic numbers not all of them zero. Then it holds that

by e + -+ by e #£N0.

We refer to [35] for a proof of this theorem. We now use it to prove that e’ and logt are
transcendental over Q for ¢ € Q.
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Lemma 2.11. Let t € Q. Then €' and logt are transcendental over Q.

Proof. For the first statement of lemma, we again refer to [35, pp. 223|. In order to show the
second one, we assume that logt¢ is an algebraic number. Obviously, ¢! is also algebraic.
Applying Theorem 2.6 to logt and ¢! would yield

t7loelost — 0 =1_1=+£0.
As a result, log t must be transcendental. O

So we are able to prove Theorem 2.5, in which we have stated that the exponential
function is not constructible.

Proof. Let us assume that exp is constructible. For this reason, there exist an algebraic
construction €, a CDGS D and a corresponding regular starting instance 6 in the sense of
definition 2.9. The number of points t € [0, 1] so that

[(uo(t),ul(t),...,un(t))} €Ty

forms a non-regular instance is finite in [0,1]. As a result, there exists a ¢’ € [0,1] N Q so
that

[(Mo(t/), n(t),... ,yn(t/))] €Ty

is a regular instance. Since we have assumed that exp is constructible, there must occur the
point p := [(exp(#'),0,1)7] in the instance associated to ¢’ € [0,1]. When the representative
of this point is the vector (exp(t’ ), 0, 1)T, it follows inductively that each component of this
representative is algebraic over Q[t'] = Q contradicting exp(#') transcendental over Q. This
argumentation applies to all representatives with a transcendental component. Due to this
fact we assume that the point is given by a representative a - (exp(t’ ), 0, 1)T that only has
algebraic entries. For this reason, a # 0 has to be algebraic as well as a - exp(t'). Now,
we add the point [(exp(#'),1,1)7] to the existing construction 4 and join it with p. The
resulting line is represented by [(1,0, —#')7]. Since p lies on this line, it follows that

/

a-(exp(t)—t)=0 < exp(t') =t
contradicting again exp(t') transcendental over Q. O
Corollary 2.3. The functions sin(t), cos(t),log(1 + t) are not constructible.
Proof. Analogous proof as above. O

The next theorem may be a little bit more surprising. Informally, it states that no other
functions than holomorphic ones can be constructed.

Theorem 2.7. Let f : [0,1] — C be a constructible function. Then, for almost every
t € [0,1], there exists an open disc Dy such that f‘Dtﬂ[O 1 1s the restriction of a holomorphic

function in O(Dy)

Proof. Immediate consequence of Theorem 2.4. O
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2.4.3 The Necessity of Holomorphic Movements

Maybe one would expect that a continuous behavior of the dependent elements of an al-
gebraic construction is already achieved by continuous motions of the free elements. That
this is not the case is proved by

Theorem 2.8. There exists an algebraic construction €, a reqular instance 6 € Ly and
continuous paths uy : [0,1] — Oy for k € {1 —m,...,0} with uk(0) = oy so that there is no
sequence of continuous maps vy : [0,1] — Oy, 1 € {1,...,n}, with (ul_m(t), . ,un(t))T €1y
for all t € [0,1].

Proof. 1t is sufficient to give a counterexample. Therefore, we have a look at the construction
% in example 2.9. It yields a point of intersection of two given conics and is defined by

o_1€C
ogeC
0] € MEETCC(C_l,Co).

Furthermore, we choose the regular instance 6 = (0_1,0¢,01)7 given by
272"

1 v3 )
0-1:= [(1’ 1’_1’070’0)T] y 00 = [(17 170707_270)T] y  01:= ( 1)

The free objects o_1 and og are two circles of radius 1 centered at (0,0)” and (1,0)7,
respectively. The last things that we have to specify are the paths. They are defined to be

p—1:[0,1] = C, t— [(1,1,-1,0,0,0)7]

and

[(1,1,4¢(t — 1),0,4t — 2,0)7], ift < 3,
wo = [0,1] = C, t—
[(1, 1,4t(t — 1),0,0,2 — 4t)T] , otherwise.

The path pg is constant and therefore the circle o_; remains at its position. The other path,
however, causes a motion of oy, namely the circle does not change its form, but its position.
It moves horizontally towards the origin, first. When the circle arrives the origin, it changes
its direction and moves vertically from then on until its center has position [(0,1,1)T] € P.
The entire dynamic construction is illustrated in Figure 2.6.

To prove that there are no continuous movements for o1, we show that its behavior at
t = % has to be discontinuous. It is obvious that the point of intersection o; can only
move continuously, when it moves along the arc of o_; towards the point [(0,1,1)T] € P
during the first part of the movement of og. However, if we consider the two possible points
of intersection that can be obtained by running the second part of the movement of og
with reverse orientation'®, we will get [(1,0,1)7] or [(—1,0,1)”] as possible and continuous
alternatives for o;. This finally proves the claim. O

Remark 2.15. We observe that for ¢t = %, the two circles o_; and og coincide and thus each
point on them would be a consistent choice for o7.

¥ Eormally, we have to consider the limits for ¢ 2 0.5, but this is not a problem at all, since we are interested
in continuous movements.
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Figure 2.13: Geometric division.

Up to here, we have shown that only continuous input does not work, but it might be
enough to rely on k-times differentiable movements in order to achieve continuity concerning
the dependent objects. To realize that this does not work as well, we investigate another
example.

Ezxzample 2.13. As a first step, we introduce three functions, which will be used to build an
only k-times differentiable movement. For k& € N, they are given by

1 k+1
fi : [0,1] = R; t'—><t—§> ,

fo o [0,1] = R; t'—><t—§> ,

fi(t), ift <
f o [0,1] -R; tw
fa(t), otherwise.

It is not hard to see that the function f is only k-times differentiable at t = % Using f, we
can build an only k-times differentiable movement. The construction that we would like to
study has two free points 0_1; € P and og € P with corresponding movements

po1:[0,1] =P, t e [(£(2),0,1)7]
and

Lo - [07 1] - Pv t— [(fl(t)’ov 1)T] :

Furthermore, we use the VON STAUDT-constructions!® to get a dependent point p that
first coordinate is the quotient of the first coordinates of o_1 and og. Fig 2.13 shows a
construction that provides this feature. As a result, the motion of p is described by the

map
0,1] = P; t— [(%,0,1)1 .

These constructions also provides a geometric division as shown in [12].
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At this point, we remark that this construction and the chosen movements define implicitly
a regular starting instance. The quotient

f(t)
f1(t)

equals 1 for t € [0, 3] and is equal (t — 3) for ¢ €]3,1]. Due to this fact this quotient cannot

be continuous at t = %, since it holds

lim <t — 1) =0.
t—>% 2

However, this in turn implies that the motion of the point p cannot be continuous, either.

According to the previous example, we can conclude that only k-times differentiable
movements are not sufficient to achieve continuity concerning the dependent objects of an
algebraic construction in general. This is formalized in

Theorem 2.9. There exists an algebraic construction €, a reqular instance 6 € Ly and
k-times differentiable paths p; : [0,1] — Oj for j € {1 —m,...,0} with pu;j(0) = o;
so that there is no sequence of continuous maps vy : [0,1] — Oy, | € {1,...,n}, with
(1—m(2), ... ,yn(t))T € Iy for allt € [0,1].

Remark 2.16. This theorem states not only that a CDGS cannot be based on k-times dif-
ferentiable movements, but also restricts the set of possible geometric operations. Basically,
the output of a general operation under an h-movement must not be an only k-times dif-
ferentiable map, since this would cause a discontinuous behavior according to Theorem
2.9.
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Complexity and Dynamic Geometry

“Zu jeder w-widerspruchsfreien rekursiven Klasse k
von Formeln gibt es rekursive Klassenzeichen r, so
dafl weder v Gen r noch Neg(v Gen r) zu Flg(k) ge-
hért (wobei v die freie Variable aus r ist).”

Found in Godel’s article [21]

The quote of KURT GODEL is actually the 6-th Theorem from his famous article [21],
in which he proved the existence of undecidable theorems in a self-consistent recursive ax-
iomatic system that has got the power to describe the arithmetics of the natural numbers. So
that, he opened the door to many undecidability results that have affected almost all fields
in mathematics and computer sciences. A well-known example of such a result is the un-
decidability of HILBERT’s 10th problem, which was proved by DAvis, PUTNAM, ROBINSON
and MATIYASEVICH [37, 45]. The problem is to decide, whether a DIOPHANTINE equation
with integer coefficients is solvable over the integers or not. Apart from undecidability,
decidable problems have taken increasingly center stage. Many of them have been classified
according to their intrinsic complexity as well. Thereby, the complexity is measured by
the effort depending on the input length one needs to solve the problem. The common
complexity classes that we are going to use in this thesis are NP and coNP. NP is the class
of decision problems, for which the instances that have the answer YES can be verified
efficiently, this means by a deterministic TURING machine in polynomial time in terms of
the input length. An example for such a problem is the Boolean Satisfiability Problem.
The problem is to determine, whether a boolean formula is satisfiable. Whereas coNP is
the class of decision problems, for which the instances that have the answer NO can be
verified efficiently. Deciding, whether a boolean formula is unsatisfiable, is a problem from
coNP, for example. For a detailed introduction and extensive discuss of this classical part
of complexity theory, we refer to [20, 40]. Although, the classes NP and coNP cover many
important problems, many other interesting problems have arisen in the last decades. For
instance, the classical theory has been transfered to more general number fields as the reals
or complex numbers to provide a more adequate framework for problems from numerical
analysis (see [4]). Similarly, complexity theory has also found its way into geometry. An
effective way to prove complexity theoretic results in geometry is to transfer the arithmetic
operations of the reals or complex numbers to geometry by special constructions and use
them to encode polynomials. This approach enabled RICHTER-GEBERT and KORTENKAMP
to prove the first complexity results concerning continuous dynamic geometry in [48] .

3.1 Introduction

We now concentrate on a complexity theoretic question arising in dynamic geometry. Start-
ing from a given geometric construction and a corresponding starting instance, one can ask,
whether the free elements and the dependent elements can be moved continuously so that
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the given instance is deformed in another specific instance of the construction. Thereby,
we require that only regular instances occur during this motion. This additional require-
ment is reasonable, since then the ambiguity that can occur during a motion is eliminated.
Informally, we call this the Reachability Problem in Dynamic Geometry. A more formal
definition of this problem is given below.

Reachability Problem in Dynamic Geometry. Given a construction % as in Definition 2.3
and a regular instance 6 = (01—, ...,0,) € Iy of €. Additionally, there is a second given
regular instance 4 = (q1—m,-..,dn) € Zy of €. The problem of deciding, whether there
exist a corresponding CDGS D and an associated function p € @ so that (u(t)”,v(6)T) is
a regular instance of ¢ for all ¢ € [0,1] and (u(1)",v(1)7) = q is called the Reachability
Problem in Dynamic Geometry, short GEO-REACH.

In our studies concerning geometric complexity theory, we will only allow three quite
simple sets of operations besides free ones in order to define constructions. These three sets
are given by

QUAD := {CONST,, MEET, JOIN, MEETCL},
KUBI := {CONSTp, MEET, JOIN, MEETCL, MEETKL},
TRAN := {CONST,, MEET,JOIN, WHEEL}.

When a construction % is only built of operations from a specific set S, we will emphasize
that by adding the words over S. We have seen in the previous chapter that knowing the
coordinates of the geometric objects under a family of h-movements is sufficient to determine
the behavior of a CDGS. So providing operations that can be used to derive coordinates
enables us to set up an equivalent model focused on coordinates.

In [12, 30, 48], it is discussed that points and lines together with MEET and JOIN can
be used to imitate addition, subtraction, multiplication and division and vice versa. These
results are based on the so-called VON-STAUDT constructions (see [59, 60]). Moreover, the
transition from constructions consisting of MEET, JOIN and free objects to straight-line
programs is stated explicitly in [30]. The operations MEETCL, however, enable us to rebuild
the square root. A proof of this and more on the power of geometric constructions can be
found in [36]. So, loosely speaking, the first set QUAD is as powerful as solving quadratic
polynomials. In contrast to QUAD, the set KUBI contains a further operation MEETKL,
which describes the intersection of an algebraic curve of degree 3 and a line. This operation
can be used to construct 3-rd roots as shown in Fig. 3.14. Moreover, it is sufficient to
use the 3-rd root in order to compute the corresponding points of intersection, since the
greatest degree that occurs in the corresponding polynomial system is 3. As a result, this
operation is as powerful as solving polynomials of degree 3 and therefore the set KUBI is
as powerful as solving polynomials of degree 3. The last set TRAN has a transcendental
aspect caused by the operation WHEEL. It is obvious that one needs the complex logarithm
to determine the output set of the relation WHEEL. For this reason, the power of the set
TRAN is equivalent to the arithmetic operations and the complex logarithm.

Below we will, additionally, focus on the problem in C, since non-trivial lower complex-
ity bounds for GEO-REACH have already been established in R. RICHTER-GEBERT and
KORTENKAMP proved in their article [48] that GEO-REACH over a set similar to QUAD
is NP-hard in R. However, there are just few results concerning C. In [11], it was shown
that the problem is basically decidable for constructions over QUAD. And in [31], it was
proved that GEO-REACH over QUAD is at least as hard as testing, whether a generalized
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Figure 3.14: Constructing a 3-rd root of x can be achieved by JOIN, MEET and intersecting
the curve y = 2 with lines.
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version of a straight-line program, more precisely, a straight-line program built of addition,
subtraction, multiplication, division and square roots, vanishes identically.

As mentioned previously, our observations will focus on constructions that are built of
operations from QUAD, KUBI or TRAN. We have pointed out that constructions over
QUAD , KUBI or TRAN are equivalent to algebraic pendants, thus we are going to deal
with them instead of the geometric ones as done in [11, 48]. So our first step will be
converting the problem GEO-REACH into a problem that is based on a generalization of
straight-line programs. The idea of generalizing straight-line programs is not new in this
context. Similar to several other works [11, 12, 31], the setup used in this chapter relies
on the model presented in [48]. Following the approach in [48], the continuous dynamics
of a construction are captured by so-called continuous evaluations of the just mentioned
generalized straight-line programs. We will observe that continuous evaluations can be
identified with analytic continuations of associated complex functions. Based on this setting,
we are going to study the reachability concerning instances of straight-line programs. By
doing so, several lower complexity bounds on weakened variants of this problem are going
to be proved. Thereby, it turns out that the set of admitted operations of the underlying
straight-line program is crucial for the complexity of a rechability problem where only parts
of a terminal instance are specified, namely roots will enable us to prove results concerning
NP and coNP, while logarithms will yield undecidability. The main idea in our reductions is
to encode the problem, which shall be reduced, into a set of germs and associated RIEMANN
surfaces. Then the sheets of these surfaces serve as counters and switches that are operated
by analytic continuations.

In contrast to [48], we either restrict the movements of the free elements or do only
prescribe parts of the terminal instance to prove complexity bounds. The second problem
can be understood as a reduction of the information content of the terminal instance.
Roughly speaking, we treat parts of straight-line programs as black boxes.
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3.2 Straight-Line Programs, Continuous Evaluations and the Reach-
ability Problem

The notion of a construction introduced in the previous chapter is closely related to the
common concept of straight-line programs. The reason behind this is that they have an
analogous structure. A construction is mainly defined by a sequence of construction steps,
while a straight-line program is determined by a sequence of elementary computations.

Usually, straight-line programs are used to encode polynomials by stating a sequence of
arithmetic operations on input variables and intermediate results. This encoding offers sev-
eral useful features. For example, one does not have to refer to coefficients of a polynomial.
Another amazing fact is that many polynomials of exponential degree can be described by
a straight-line program of just linear length. In algebraic complexity theory, straight-line
programs are one of the most fundamental and important models of evaluation. They have
turned out to be useful as complexity measure for geometric questions related to polynomial
systems (see [33]). Moreover, they play an essential role in SMALE’s 4th problem in [56]. A
good source for more results on straight-line programs is the book [6].

In the following, we will define our notion of straight-line programs (SLPs) over the
complex numbers and over a fixed set of operations. In this way, we bridge the gap from
geometric constructions using MEET, JOIN, CONST,, MEETCL, MEETKL and WHEEL
to a pure algebraic and equivalent model over the complex numbers.

As a first step, we have to transfer the idea of geometric objects and operations. Instead
of several different types of geometric objects, we will only deal with one object type,
namely the complex numbers C. They play the role of the geometric objects introduced
in Definition 2.1. Thereafter, we require operations that act on the complex numbers. A
general SLP-operation is defined as follows:

Definition 3.10 (SLP-operation). Let k € N. Then we call a relation

wCCx...xCxC
|

k—times

an SLP-operation. Thereby, we set again in(w) := k. Furthermore, we define the output
set

w(zly. ., 2k) = {wG(C ‘ (z1y. -y 2k, W) Ew}

of w. As extension, we call w = C an input or free operation. We set in(w) := 0 in this
case.

Remark 3.17. Moreover, we assume that both SLP-operations and geometric operations are
performed at unit costs.

Since we are basically interested in operations that are equivalent to MEET, JOIN,
CONSTp, MEETCL, MEETKL and WHEEL, we restrict ourselves to the following SLP-
operations: First of all, we need the basic arithmetic operations

+ = {(21,22,w) € C? | 21 + 20 = w},

— = {(z1,22,w) € C? | 21 — 20 = w},

x = {(z1,20,w) €C | 21+ 20 = w},

/ = {(z1,22,w) € C3 | 21 = z - w A z # 0}.
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As already mentioned, the arithmetic operations are enough to govern MEET and JOIN.
Apart from them, we will need complex constants. A constant number z € C is captured
by

const, := {z}.

Last but not least, we introduce the relational pendants that are equivalent to MEETCL,
MEETKL and WHEEL. They are the complex square root, 3rd root and the complex
logarithm that are given by

v = {(z,w) € C? | z = w?},
Y = {(z,w) € C?| z = w3}

and
Z = {(z,w) €C? | z=e" Az #0}.

Remark 3.18. It is obvious that the ambiguity of the square root and the logarithm is
encapsulated in the relation encoding them. For instance, it holds /(1) = {£1}, (1) =

2mi

{1,e7 ,e%} as well as £ (1) = {27k € C|k € Z}. The output set of the other operations,
however, consists only of one element. Hence we call these operations determined and the
square root, 3rd root and logarithm not determined. In addition, we shall remark that we
only allow well-defined situations in the definitions of our SLP-operations. More precisely,
divisions by zero and logarithms of zero are excluded in the definitions of / and .Z.

Mainly, we will refer to different sets of operations throughout this chapter, thus we
introduce besides the free ones the following sets of SLP-operations:

quad = {const, | 2 € CYU{+,—, %/, /},
kubi = {const, | 2 € CYU{+,—,*,/,\/, ¥}
tran := {const, | z€ CYU{+,—,%,/,Z}.

Furthermore, we set N := {quad, kubi, tran} in order to simplify the notation and proceed
with defining our notion of straight-line programs.

Definition 3.11 (straight-line programs). Let p € N and g € Ny. A straight-line program,
short SLP, & over O € N consists of

(1) a sequence wi_p,...,wq of SLP-operations with wy, € O for all k € {1,...,q} and
wp=C forallk € {1 —p,...,0} (free operations),

(i) input assignments 7 = (s'f,...,sfn(wk)) € Z"wr) (k€ {1,...,q}) such that s} < k
forle{l,...,in(wg)}.

The previous definition is analogous to the introduced definition of constructions in the
previous chapter. It is obvious that the first p operations of an SLP are free and therefore
they represent the input variables of it. For k € {1,...,q}, each wy encodes a single
computation, which input, in turn, is determined by the input assignments 7. They serve
as a pointer that refers to the appropriate outputs of other operations. The additional
relation the input assignments are satisfying ensures that only values are used that are
either input data or intermediates that have already been computed.

In order to become familiar with the definition above, we will have a look at a simple
example of an SLP.
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FEzxzample 3.14. To increase readability, we skip the formal notion and use instead an analo-
gous notation to that introduced in Example 2.9.

zp € C

z1 € /(20)

29 € Wy

23 € +(20, 22)
24 € [(21,23)

The example illustrates the similarities and differences of original straight-line programs
and SLPs in our sense. Just as original straight-line programs, the SLP in the example can
be interpreted as an encoding of a special function. In this particular case, it is the function
induced by

Vz

z+1

So we can always associate to each SLP a special function. Apart form this similarity,
there are essential differences as well. Maybe the most important difference comes from the
different sets of operations, which are used to build them. Originally, only the arithmetic
operations have been permitted, while we also allow roots and logarithms. They bring up
some non-determinism. For instance, if zg is set equal 1, one can derive % as well as —%
for z4. This depends on the output of the not determined operation Vo which occurs in the
numerator of the encoded function. Another point we should also mention is the fact that
an SLP might not be defined for all z € C. There can be divisions by zero or the argument
of a logarithm can be zero as well. For instance, if zg = —1 then a division by zero occur in
the example. Last but not least, we address another similarity, this is, not all assignments
of complex numbers satisfy the relations established by an SLP. For instance, if one sets
2o = 1 then the only two choices for z; that satisfy the corresponding relation zy = 22, are
+1. Such assignments are of particular interest for us. An assignment of complex numbers
so that all relations are satisfied is called an SLP-instance. More precisely, we get

Z

Definition 3.12 (SLP-instances). Let & be an SLP over O € R as in Definition 3.11.
Then an assignment of complex numbers Z = (Z1_yp, ..., Z,) € CPTT with

(stf, R Zsikn(%),Zk> € Wk
forall k € {1,...,q} is called an SLP-instance of &. In addition, we call Z regular, if it
holds that Zs;f #0 forallk € {1,...,q} with wy € {\/, \3/}

Let us go a little bit more into detail and explain, what regularity achieves at SLP-
instances. Basically, regularity ensures that the arguments of roots, i.e. v and Y, are
unequal zero. This is, in turn, crucial to eliminate the ambiguity that can occur during
a movement of the input objects of an SLP. For this reason, we will claim later on that
only regular instances are run through during such a movement. In a certain sense, this
is analogous to the requirement that we have also claimed at GEO-REACH, where regular
instances are also only admitted. Moreover, it is also worthwhile to mention that divisions
by zero as well as logarithms of zero are excluded at SLP-instances. This follows directly
from the definitions of an instance and the operations /, .

Our next goal is to model a continuous behavior of an SLP under a continuous movement
of the input objects. Therefore, we introduce
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Definition 3.13 (SLP-movements). Let &2 be an SLP over O € X as in Definition 3.11.
For k€ {1 —p,...,0}, let ug : [0,1] — C be continuous mappings. Then we call

i 0,1] = €5t (oplt), o olt))

an SLP-movement of &2, if all SLP-instances that are induced by p(t) for all t € [0,1] are
reqular.

The last definition ensures two things that hold during an SLP-movement. Firstly, all
computations are well-defined, and secondly, no branch point occurs in the computations.
This is important to eliminate the choices, one has to leave a branch point continuously
again. We have observed that such ambiguity occurs, when a CDGS passes through a
degenerate situation. Based on this, we can define the concept of continuous evaluations of
an SLP, which enables us to model continuous behavior of an SLP under a movement of
the input elements.

Definition 3.14 (continuous evaluations of an SLP). Let &2 be an SLP over O € X as in
Definition 3.11 and p an SLP-movement of &?. A continuous evaluation of & under p is
an assignment of continuous mappings ci,...,cq, where ¢ : [0,1] — C for k € {1,...,q},
so that

<N1—p(t)a s po(t),a(t), . 7Cq(t))
forms an SLP-instance of & for all t € [0,1].

Remark 3.19. We point out that only regular instance can occur during a continuous eval-
uation of an SLP.

Now, we have developed everything we need in order to state formally the Reachability
Problem for SLPs.

Reachability Problem for SLPs. Let & be an SLP over O € X. Moreover, Z, W € CP™4
are regular instances of &2. Then the problem of deciding, whether there exist a movement
w1 and an associated continuous evaluation of &2 with corresponding functions cy, ..., ¢, so
that

(,“_p(()), oo p10(0), ¢1(0), ... ,cq(O)) — 7 and (m_pu), o), e (1), . ,cq(1)) —W

hold, is called the Reachability Problem for SLPs over O, short SLP-REACH over O.

Remark 3.20. We often omit the prefix SLP at SLP-operations and SLP-instances in the
following, since we only deal with SLP-operations and SLP-instances rather than geometric
operations and geometric instances.

3.3 Continuous Evaluations, Holomorphic Functions and Their An-
alytic Continuations

Throughout the rest of this chapter, we introduce another restriction, namely we only study
SLPs with one input variable. So let &2 be such an SLP over O € R and Z := (Zo, ce Zq) €
C*! be an associated regular instance of &. Furthermore, we denote the set of complex
numbers, which induce a non-regular instance of & by S C C. Since we will only be
interested in SLPs, for which this set is discrete, we additionally assume that S is a discrete
subset of C. Starting from this setting, we can prove that an SLP can be described locally
by holomorphic functions.
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Lemma 3.12. There is an open neighborhood U C ((C \ S) of Zy € C and holomorphic
functions fo,..., fq on U that satisfy

fr: U — C; ZHwka(zs;f,...,zsgc( ))
1nu.)k

forke{0,...,q}.

Proof. We prove the claim by induction over k € {0,...,q}. For k = 0, we set fj equal
the identity on C\ S. Now, let £ > 0. The easy case is wy = const,. In this case, we
set fr = w, which is an entire function. If w; is one of the arithmetic operations, then
fr is an addition, subtraction, multiplication or division of two preceding functions. By
induction hypothesis, these two functions are holomorphic on an open neighborhood U of
Zy. The regularity of the instance Z together with the discreteness of the set S ensures
that there is an open neighborhood U C U, on which fj is holomorphic. The last cases
left are wy € {\/, > Z}. In all three cases, we have a composition of a preceding function,

which is holomorphic on an open neighborhood U of Zy € C, and the square root, 3rd root
or logarithm. The regularity of Z and the discreteness of S guarantees again that fi is
holomorphic on a proper open neighborhood U € U of Zy. Finally, the claim follows by the
fact that the intersection of finitely many open sets is open again. O

We now assume that there is a continuous evaluation under a movement p : [0,1] — C.
By definition, there are associated continuous functions ¢y, ..., ¢, : [0,1] — C completing
to an instance of a corresponding SLP. In addition, there occur only regular instances along
a movement. Moreover, we have shown in the last lemma that there are open neighborhoods
U* and holomorphic functions f§,..., fZ for each z € u([0,1]) € (C\ S) that described the
associated instances locally, i.e.

er(t) = £ (u())

for k € {1,...,q9}. As p([0,1]) is compact, there is a finite subcover {U*',... U*"} of
{U?} 2eu(0,1) still covering ([0, 1]). Due to this fact we can conclude that the intersections
U#% N U+t are not empty for ¢ € {1,...,n — 1}. For k € {1,...,q}, the continuity of ¢
and the holomorphy of f;* and f,"*" imply f7* = f,'*" on U% N U%+!, which shows that

,’; 1) is the analytic continuation of f,’: © along p.

Remark 3.21. Like at geometric constructions, we have discovered that continuous evalu-
ations can be described by appropriate holomorphic functions and their analytic contin-
uations. As a result, we can identify continuous evaluations with appropriate analytic
continuations and vice versa. That we actually encounter the same tool to describe contin-
uous evaluations shall not be surprising, since our aim was to develop an equivalent concept
to geometric constructions and CDGSs.

3.4 Reducing the Information Content of the Terminal Instance

Our next goal is to prove several complexity theoretic results for the reachabilty problem,
where only parts of the terminal instance are prescribed. In order to derive results con-
cerning NP and coNP, we are going to transfer 3SAT formulas and truth assignments into
functional pendants that can be encoded by SLPs over quad. In a second step, we will
tackle some technical lemmata concerning the analytic continuations of these functions.
Furthermore, a truth assignment is identified with a special analytic continuation along a
closed path starting and ending at 0 € C. In the end, we are able to show that a 3SAT
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satisfiable
valid ! but not
valid

unsatis-

fiable

3SAT

formulas

Figure 3.15: The geography of 3SAT formulas.

formula is satisfiable, if and only if the mentioned analytic continuation has a zero at 0 € C.
These are the parts of a terminal instance that we are going to prescribe in advance, since
stating the rest of the instance would amount to solving the underlying 3SAT. To obtain
undecidability results, we are going to perform an analogous construction using logarithms
instead of square roots. Similarly, we ask here, whether there is a path so that the associated
analytic continuation ends up with a zero at 0 € C.

3.4.1 Results Concerning NP and coNP

As the title of this subsection already indicates, the first part of our lower bounds concerns
NP and coNP. For this reason, we introduce the NP-complete problem 3SAT and its coNP-
complete pendant co3SAT, before we develop the required tools to prove the bounds.

3SAT and co3SAT. Let B = {b1,...,b,} be a set of boolean variables and define the
literals over B to be B = {b1,...,by, 7b1,...,=b,}. Now, let C1,...,Cp, be clauses formed
by disjunction of three literals from B, that is,

Cj=1irVijs Vi,

for each j =1,...,m, where [, € {bg, ~br}. A 3SAT formula C' is then the conjunction of
clauses (', ..., Cy,. In symbols, we get

C=CiN...NCp,,.

Moreover, a truth assignment y for B is an n-tuple (by,...,b,) € {TRUE, FALSE}". The
problem of deciding, whether there is a truth assignment y that satisfies C' is called 3SAT.
The complexity of 3SAT is proved in [20, 40] and stated below.

Theorem 3.10. 3SAT is NP-complete.

Let C be again a 3SAT formula and y a corresponding truth assignment. The problem of
deciding, whether C is unsatisfiable is called co3SAT. To illustrate the connection between
3SAT and co3SAT, the set of 3SAT formulas is represented as shown in Fig. 3.15. Then in
terms of this illustration, the problem 3SAT is to decide, whether a formula belongs to the
areas labeled with satisfiable but not valid or valid. A formula that is unsatisfiable lies in
the complement labeled with unsatisfiable. So the problem co3SAT is to decide, whether a



68 3 Complexity and Dynamic Geometry

formula belongs to this complement labeled with unsatisfiable. In [40], it is shown that the
complexity of the complement of an NP-complete problem is, in turn, coNP-complete. As
a result, we get

Theorem 3.11. co3SAT is coNP-complete.

From 3SAT Formulas to Germs

In the following, we present the construction of a function that encodes a 3SAT formula.
Thereby, each symbol of a clause is converted to a multiplication or one of two terms
involving square roots. The conversions are listed below explicitly:

V. o —
b VEk—Vk+z
2Vk
b VE+VE+ 2

2Vk

Obviously, there exists a sufficiently small open neighborhood of 0 € C, on which these
functions are holomorphic. Thus we can regard these terms as well-defined holomorphic
functions around 0 € C, i.e. they are germs with base 0 € C. We should also point out that
the definitions of the germs just introduced refer to the principal branch of a square root.
Due to this fact a clause C; = [; . V [ 5V 14 finally becomes a germ

Xj = H zjk € Oo, (3.6)
ke{r,s,t}
where z ;. is either induced by
VE—Vk+z o VE+VE+ 2
2Vk 2k

depending on [; ;, € {by, ~bi}. Consequently, a whole 3SAT formula C is represented by

Xelz] == (Xalz], ..., Xm[2]).

Remark 3.22. We emphasize that throughout this chapter, definitions involving roots and
logarithms basically refer to principal branches.

Zeros and Branch Points

We have a closer look at the previously introduced germs in this subsection. It is not hard
to see that the germ z; € Qg induces a germ for all z € C\ {—k}. As there is only one
non-constant root in its definition, its associated RIEMANN surface has two sheets and its
only branch point in C lies at z = —k.%0

Apart from the global structure, the zeros of these functions are of particular interest for
us, since we are aiming for them. Hence let z;; € Qg be defined as previously, i.e. either
induced by

VE—vk+e o VE+vVEte
2k XV

20A presentation of the theory, with which these observations can be verified, can be found in [34].

(3.7)
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It is not hard to observe that both terms can only vanish, if two conditions hold simulta-
neously. On the one hand, z must equal 0 € C and on the other hand, both the sign in the
numerator connecting the roots and the sign associated to the branch of the non-constant
second square root in the numerator must differ, since we have chosen the principal branch
in (3.7) by definition. As a result, it holds z; ;[0] = 0 for the left definition and x;;[0] =1
for the other one in (3.7). Next, we study the zeros that occur by continuing these two
germs analytically in a second step. There might be other ones on their RIEMANN sur-
faces. According to the fact that the underlying RIEMANN surface has two sheets, there
are only two essentially different groups of paths that we must take into account, this is,
paths that have an odd winding number and paths that have an even winding number w.r.t.
the branch point of z;; € Qg. An analytic continuation of x;; along a path with an odd
winding number changes the branch, while a path with an even winding number does not.
Consequently, the analytic continuation a:;k € Qg of ;; along a closed path vy starting and
ending at z = 0 with an odd winding number w.r.t. —k yields 3:; x[0] = 1 in the first case
((3.7) left) and x?k[O] = 0 otherwise ((3.7) right). For this reason, we have encountered a
zero for the germ induced by the right term in (3.7).

The last paragraphs have shown that the interplay of the sign in the numerator and the
branch of the non-constant square root are crucial for zeros. In order to capture this, we
introduce a new notation that reflects the branch a germ lies on. Therefore, we additionally
use two upper indices. The first one denotes the sign between the roots in the numerator
and a second index indicates the branch a germ lies on. For both indices, we use the symbols
+ and —. Hereby, the first index is self-explanatory, while a + in the second index stands
for the principal branch of the square root. For instance, the germ a:j_’]j refers to the germ
that is induced by the left term in (3.7). By definition, it refers to the principal branch of
the second square root in the numerator. We can summarize the previous insights in the
following lemma.

Lemma 3.13. Let r,s € {+,—} and x;Z € Qg be a corresponding germ in the previous
sense. Then the top of the germ x;Z at z = 0 satisfies

r 0] :{ 0, ifr#s

J:k 1, ifr=s
An immediate consequence of the last lemma is

Corollary 3.4. Given j € {1,...,m} and a path -y starting at 0 and ending at z. Moreover,
there exists the analytic continuation X;-Y € 0, of X; € Qg along . Then X;-Y [2] = 0 implies
z=0.

Proof. Since X;-Y is the product :17;-’77, . 3:; <" :E;—it, it follows that X;-Y vanishes, if and only if one
of its factors vanishes. According to Lemma 3.13, this can only be for z = 0. O

From Truth Assignments to Closed Paths and Analytic Continuations

As mentioned, we identify a truth assignment with analytic continuations of Xi,..., X, €
Og along a closed path starting and ending at z = 0. Basically, the idea is to encode a value
of a boolean variable by in the winding number of the path w.r.t. to the branch point —k.
Therefore, let x = (b1,...,b,) € {TRUE, FALSE}" be a truth assignment for B. Starting
from x, we construct a closed path 7 starting and ending at z = 0 that satisfies the following
condition: The winding number 7(y, —k) of v w.r.t —k should be even, if b; is TRUE and
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odd, if by is FALSE. It is clear that such a path and the associated analytic continuations
of X1,...,X,, exist, since the set {—n, ..., —1} of branch points is a finite subset of C. It is
the parity of the winding number 7(v, —k) that is crucial for the determination of a branch
an analytic continuation along ~ ends up.

After we have transferred a truth assignment into a closed path v, we look, whether the
analytic continuations X7, ..., X, of the germs X1,...,X,, along  vanish at z = 0 or not.
For this reason, let X; = x;, -z xj+ € Oy be defined as in (3.6). According to the proof
of Corollary 3.4, we can conclude that X;-Y [0] = 0, if one of the analytic continuations of the
factors of X; vanishes at z = 0. Lemma 3.13 has shown that this is the case, if and only if

Y +7_ _7+
Tk € {xj,k Tk }
holds for some k € {r, s,t}. By taking this into account, we can prove the lemma below.

Lemma 3.14. Let j € {1,...,m} and k € {r,s,t}. Then it holds that x;k[O] =0, if and
only if one of the following two conditions hold:

(i) ik = :L';:]’:_ and n(vy, —k) is odd or
(it) zjp = acj_’,’;r and n(vy,—k) is even.

Proof. Let xj ) = xj,’:r € Qg and denote the analytic continuation of x;; along a closed path
~ starting and ending at z = 0 by x; ;- Since the branch point —£ is simple, it follows that
x;yk = x;:,;_ € Qy, if and only if n(y, —k) is odd. Then Lemma 3.13 shows that :L";’k[O] = 0.

For point (ii), we can apply an analogous argumentation. O

And Back to 3SAT Formulas

What we still have to do is to retransfer the findings of the last subsections into terms of
boolean variables and 3SAT formulas. Retranslating Lemma 3.14 in terms of literals yields
immediately

Lemma 3.15. The analytic continuation of xjj along v vanishes at z = 0, in symbols
3:; x0] = 0, if and only if x makes the corresponding literal l;;, TRUE.

A truth assignment x makes a clause C; of a 3SAT formula TRUE, when at least one
of its literals is made TRUE by x. In addition, y makes an entire formula C' TRUE, if all
clause are satisfied.

Theorem 3.12. The truth assignment x makes C; TRUE, if and only if X;Y [0] = 0. More-
over, x makes C ' TRUE, if and only if

X0 = (x7[0],...,X,[0]) = (0,...,0) € C™.

Proof. The first claim follows easily from Lemma 3.15 and the second claim is an immediate
consequence of the first part of this theorem. O

A First Lower Bound

So far, we have shown that y makes C TRUE, if and only if the constructed analytic
continuations result in X},[0] = (0,...,0) € C™. Now, we are going to reduce 3SAT to the
reachability problem, where we only specify parts of a target instance.
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Reachability for Partly Defined Target Instances. Let & be an SLP over O € N and
Z € CP1 g regular instance of &2. Moreover, let S € CP, I C {1,...,q} and w; € C for
j € I. Then the problem of deciding, whether there exist a movement p and an associated
continuous evaluation of & with corresponding functions ci,..., ¢, so that

7 = (p0),- - 10(0),c1(0), -, 4(0))
$ = (mp(),. . mo(D)),

c¢j(1) = w; forjel

hold, is called the Reachability Problem for Partly Defined Target Instance over O or short
PARTLY-REACH over O.

Remark 3.23. The first condition ensures that the continuous evaluation matches a given
starting instance Z, the vector S corresponds to predefined terminal points of the movement
p and the last condition guarantees that predefined values w; (j € I) are reached by a
terminal instance.

In oder to complete the reduction, we have to ensure that X can be encoded by an SLP
over quad polynomial in the coding length of C, this is, polynomial in mn.

Lemma 3.16. Let C and X¢ be defined as previously. Then there is an SLP &2 over quad
that encodes Xc and the length g+ 1 of &2 is polynomial in the coding length of C.

Proof. We have to show that the length of &2 is polynomial in mn. It is easy to observe
that one can encode each factor x;; € Qp by an SLP of length 9. Since each X; € Qg is a
product of three of such factors, X; can be realized by an SLP of length 29. Finally, X¢
can be encoded by an SLP of length 29 - m. O

Let C' be a 3SAT formula and X¢o € Qg the corresponding germ with base 0 € C.
According to Lemma 3.16, we can construct an SLP & that encodes X in an appropriate
way. In Lemma 3.13, we have proved that Xc[0] € {0,1}"™, so we can determine easily
an associated regular starting instance Z of &?. For it, we use the principal branches of
the involved roots, since our definitions refer to them. Now, we are asking, whether there
exists a closed path v starting and ending at z = 0 so that the analytic continuations of
X1,..., Xy, along v yields X[0] = (0,...,0) € C™.

If there exists such a path v so that X[0] = (0,...,0) € C™, the previous subsections
have shown that there is also a truth assignment x that makes C' TRUE. For each k €
{1,...,n}, we set

b — TRUE, if n(y, —k) even
7\ FALSE, ifn(y,—k)odd -

Applying Theorem 3.12 yields that x = (b1,...,b,) € {TRUE, FALSE}" is a truth assign-
ment, which makes C TRUE. On the other hand, if x = (b1,...,b,) € {TRUE, FALSE}"
is a truth assignment that makes C' TRUE, we can find a closed path v starting and ending
at z = 0 with

S if b, = TRUE
TR = 1, if by, = FALSE

so that the analytic continuations of X1,..., X,, along ~ exist. Again, Theorem 3.12 pro-
vides that X/[0] = (0,...,0) € C™. This finally shows
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Theorem 3.13. There is an analytic continuation Xg of X¢ along a closed path ~ starting
and ending at z =0 so that X,[0] = (0,...,0) € C™, if and only if C is satisfiable.

Assuming that we have got an efficient algorithm that solves the decision problem PARTLY-
REACH for SLPs over quad implies

Theorem 3.14. PARTLY-REACH over quad is NP-hard.

Remark 3.24. At this point, we shall go a little bit more into details, on why we only
prescribed parts of the terminal instance. So what do we actually specify in advance in
the terminal instance? We prescribed the value of the free element, this is, z = 0, and the
outcome of the continued germs, this is, X g [0] = 0, but we do not prescribe the remaining
intermediates. If we also want to prescribe the remaining intermediates, we must know
explicitly a truth assignment that makes the corresponding 3SAT formula TRUE, since the
branches of the germs x; ;. indicate exactly this assignment.

A Further Lower Bound

The equivalence in Theorem 3.12 enables us to show that the problem PARTLY-REACH over
quad is also coNP-hard in this subsection. For this purpose, we reduce the coNP-complete
problem co3SAT to it proving this result. The required lemmata have already been proved
previously.

In order to solve co3SAT, one has to decide, whether a 3SAT formula C' is unsatisfiable
meaning all possible truth assignments make C' FALSE. From Theorem 3.12, it follows that
a formula C' is satisfiable, if and only if there is a closed path « starting at z = 0 so that the
analytic continuations of Xi,..., X, yield X/.[0] = (0,...,0) € C™. In other words, C' is
unsatisfiable, if and only if there do not exist analytic continuations of X1, ..., X,, yielding
X20] =(0,...,0) € C™. As a result, deciding the problem PARTLY-REACH over quad for
a terminal instance that encodes X/[0] = (0,...,0) € C™ also solves co3SAT.

Since we have used the same germs as for 3SAT, it is clear that they can be encoded by
an appropriate SLP. This proves

Theorem 3.15. PARTLY-REACH over quad is coNP-hard.

Remark 3.25. The Theorems 3.14 and 3.15 suggest that PARTLY-REACH over quad is neither
in NP nor in coNP. Otherwise, it would follow that NP = coNP, which seems to be unlikely
(see [40]).

Related Problems

We can derive a related complexity result easily by reinterpreting continuous evaluations
in terms of analytic continuations and another one is received by reformulating analytic
continuation in terms of complex integration. As a first step, we change our point of view
in order to get a function which maps to C. Let Xi,...,X,, € Qg be the germs that
have been constructed to encode a 3SAT formula. Then we introduce a germ Y, which is
induced by the sum of Xy,..., X,;,, i.e.

Yo := ZXk € Q.
k=1

We have proved in Lemma 3.13 that any analytic continuation Y/ of Yo satisfies Y/ [0] €
{0,...,m}. Furthermore, a direct consequence of Theorem 3.12 is that there exists an
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analytic continuation Y7 so that YJ[0] = 0 € C, if and only if the corresponding 3SAT
formula is satisfiable. This motivates the following decision problem concerning analytic
continuations.

Reachability Problem for Analytic Continuations. Given an SLP over O € X that encodes
a corresponding germ g € O, with g[zo] = wp € C and let 21, w; € C be two further complex
numbers. Then the problem of deciding, whether there exist a path v connecting 2y and z;
and an analytic continuation g7 of g so that ¢g7[z1] = w; is called Reachability Problem for
Analytic Continuations over O, short ANALYTIC-REACH over O.

It has been shown that continuous evaluations are associated with analytic continuations
in Section 3.3. So ANALYTIC-REACH can be interpreted as a special case of the problem
PArRTLY-REACH. This implies that the Theorems 3.14 and 3.15 transfer directly to the
problem ANALYTIC-REACH.

Corollary 3.5. The problem ANALYTIC-REACH over quad is both NP-hard and coNP-hard.

We can derive another result by simply reformulating analytic continuation in terms of
integration. Let the analytic continuation of g along a certain path v from zy to z; be
denoted by g7, then the complex extension of the fundamental theorem of calculus provides

/ ¢ (Q)d¢ = g(21) — g(20). (3.8)
Y

where ¢ denotes the derivative of g. Connecting the construction that encodes 3SAT
formulas and the corresponding truth assignments with identity (3.8) leads to

/ YA(C) d¢ = Y2(0) — Yo(0),

where 7 is a closed path starting and ending at z = 0. By applying the same argumentation
as previously, we observe

Lemma 3.17. There is a path v with
[ ¥e(©) de = Yoo,
gl

if and only if C is satisfiable.

Similarly, the just stated Lemma gives also rise to another decision problem concerning
complex integration.

Reachability Problem for Contour Integrals. Given three complex numbers zg, z;,w € C
and an SLP over O € XN that encodes a corresponding germ g € O,,. Then the problem of
deciding, whether there exists a path + connecting zp and z; so that

/ﬂc) dc = w

is called Reachability Problem for Contour Integrals over O, short CONTOUR-REACH over
0.
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Remark 3.26. Another complexity result concerning contour integrals is presented in [42].
There it is shown that deciding, whether a contour integral of rational functions is not
zero, is NP-hard. In [37], there can be found an undecidability result concerning integrals
of functions of one real variable that can be constructed using the constant 1, addtion,
subtraction, multiplication, division and the sine. Let f be such a function, then it is shown
that deciding, whether definite integrals of the form fix;o f(t) dt converges, in undecidable.

There is only one step left that we have to prove in order to obtain a lower complexity
bound concerning CONTOUR-REACH over quad. We must ensure that Y/, can also be coded
by an SLP over quad polynomial in the coding length of a corresponding 3SAT formula.
Since

m
Yo = ZX]' € O
j=1

it follows that

m

YC/' = ZXJ/ € Op.
=1

As a result, we have to study the germs X7 of the sum. Since X; = x;, - x5 x;; € Qo is
induced by the product

(VT8 VT2 (V50 V5T (Ve ViTR)

2\/7 2V/s 24/t ’

where @y € {+, —} depending on li € {x, ~x,} for k € {r, s, t}, a short computation shows
that X} € Qg is, in turn, induced by

® (Vr@drvr+2)-(Vs®sVs+2)
t 16+/7 sttt 2

o (V7Dr VT F2) (VEDeV/TF2)
R TV oy

o (V3DsV/5+2) (VD VE+2)
O T T ==

As previously, it is not hard to observe that Y/, can be coded by an SLP polynomial in
the length of the 3SAT formula as well. Consequently, the argumentation of the previous
subsections yields

Corollary 3.6. The decision problem CONTOUR-REACH over quad is NP-hard and coNP-
hard.

Remark 3.27. Actually, we can even strengthen the results in this subsection a bit by not
using arbitrary constants in the set of admitted SLP-operations, but 0 and 1. This works,
since all required constants can be generated by a sub-SLP of appropriate polynomial length
that only uses the constants 0 and 1.

3.4.2 Results Concerning Undecidability

After we have proved several NP-hard and coNP-hard results, we focus on undecidability
in the following. For this reason, we introduce an undecidable problem, which is used in
the reductions. It is HILBERT’s famous 10-th problem.
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Hilbert’s 10-th Problem. Let p € Z[X3,...,X,] be a polynomial with integer coefficients
in the variables Xi,...,X,. Then the problem of deciding, whether there is an integer
vector y € Z™ with p(y) = 0 is called HILBERT’s 10-th problem, short H10. The complexity
of this problem is stated in the theorem below. We refer to [37] for a corresponding proof.

Theorem 3.16. The problem H10 is undecidable.

Remark 3.28. Actually, it is sufficient to set n = 11, since H10 is even undecidable, if
polynomials in 11 variables are only considered (see [45]).

From Polynomials to Germs

Let p € Z[ X, ..., X,] be a polynomial with integer coefficients in the unknowns X7, ..., X,,.
Similar to the approach at 3SAT formulas, we are going to construct germs that represent
the variables X1,...,X,. These germs, or more precisely, their analytic continuations, will
have the feature that they will evaluate to an integer at z = 0. In fact, the specific integer
will be dependent on a certain winding number of a path taken. For this reason, we can
reproduce every vector x € Z™ of integers by analytic continuations that are evaluated at
z = 0. By doing so, we can imitate the evaluation of p for an arbitrary vector of integers
by evaluating analytic continuations.

For each k € {1,...,n}, we define a germ x; € Qg by the use of the principal branch of
the complex logarithm. The germ z is induced by

1 z
Lo (2 41).
omi B \E T
It is clear that the germs x1,...,x, € Qg are well-defined, since they are all holomorphic

on an appropriate open neighborhood of 0 € C. The next step is to encode the polynomial
p. This is done by

xp =p(1,...,2y) € Op.

The germ z, € Qg is also well-defined, since z, is holomorphic on an appropriate open
neighborhood of 0 € C. The set {—n,...,—1} C C is the set of branch points of x, and
an element —k € {—n,...,—1} is the only branch point of zj. In addition, these branch
points are all simple.

Analytic Continuations as Counter

Let —k € {—n,...,—1} and r € Z. Then there are closed paths v starting and ending at
z = 0 with n(y,—k) = r and ¥([0,1]) N {-n,...,—1} = 0, since {—n,...,—1} is a finite
subset of C. The winding number of % + 1 w.r.t. 0 is crucial for the branch the analytic

continuation :EZ of x; along v ends up, finally. An easy consequence of the well-know
argument principle gives us

n(L+1 0) = Zn 0

where a are the zeros of 7 + 1 counted with their multiplicities. As a result, it follows that
the analytic continuation z; of zj along ~ lies on the r-th branch of the corresponding
logarithm, since —k is a simple branch point of z; € Qp. This implies x[0] = r. For this
reason, we can use the germs x1,...,x, € Qg and their analytic continuations like counters
that run through the integers. By definition, we observe directly
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Lemma 3.18. Given a closed path v with v([0,1]))N{—n,...,—1} = ( that starts and ends
at z = 0. Then it holds (0] = r € Z, if and only if (v, —k) =r.

So far, we have constructed counters for the variables Xi,..., X, that evaluate to an
arbitrary integer at z = 0. This is all we need to prove the next crucial theorem, in which
we connect analytic continuations of z1,...,z, with the polynomial p € Z[X1,..., X,].

Theorem 3.17. There is a closed path v starting and ending at z = 0 with ~v([0,1]) N
{=n,...,=1} = 0 so that 2}[0] = 0, if and only if there is a vector y € Z"™ so that p(y) = 0.

Proof. At first, let v be a closed path starting and ending at z = 0 so that z,[0] = 0. By
definition, this is equivalent to p(z][0],...,24[0]) = 0. Since 2] [0] € Z for all k € {1,...,n}
(see lemma 3.18), there is a y € Z™ such that p(y) = 0.

Now we prove the converse. There is a y = (y1,...,yn) € Z" such that p(y) = 0. Then
there exists a closed path « starting and ending at z = 0 with n(vy, —k) = yx and ([0, 1]) N

{-n,...,—1} = 0. From Lemma 3.18, we get that the analytic continuation of a:z of xy,
along ~ evaluates to the integer y, at z = 0, i.e. :L"Z[O] = yi. As a result, it holds that
(0] = p(0) = 0. =

Final Reduction and Related Problems

There is actually one thing left, namely we have to ensure that x, can be encoded by an
SLP with finite length. Therefore, we prove

Lemma 3.19. There is an SLP of finite length that encodes x, € Q.

Proof. We have to encode the germs z1,...,z, € Qy. Each of them can be encoded by an
SLP of length bounded by 8 and thus all of them can be encoded by an SLP, which length
is bounded by 8n. The polynomial p has a total degree, say d € N. Due to this fact each
monomial can be encoded by an SLP of length bounded by d. In addition, the number of
monomials is bounded by (d + 1)". So the length of a corresponding SLP is bounded by
8nd(d + 1)", which is finite. O

Now, denote the constant term of p by ¢ € Z, i.e. p(0) = zp[0] = ¢. Again, we ask,
whether there exists a closed path 7 starting and ending at z = 0 so that the associated
analytic continuation of z,, along 7 yields x[0] = 0. From Theorem 3.17, we know that this
is the case, if and only if p has an integral zero. In other words, we decide H10, if we can
decide PARTLY-REACH over tran. So we have proved

Theorem 3.18. The problem PARTLY-REACH over tran is undecidable.

Just as previously, we can derive two direct corollaries concerning analytic continuation
and complex integration. The first result is stated in the corollary below.

Corollary 3.7. ANALYTIC-REACH over tran is undecidable.

Moreover, we apply again the fundamental theorem of calculus to connect analytic con-
tinuation and integration in the same way as before. This leads to

Corollary 3.8. CONTOUR-REACH ower tran is undecidable.
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Proof. The only thing we have to prove is that the derivative of x,, w.r.t. z can be encoded
by an SLP of finite length. It holds

d 1
’ e _
74(2) 1= () 2 - (2 + k)

and

d g 8p(X17>Xn)

—ap(z) = p(zi(2),...,2a(2)) = Y 2h(2)- -

dz ; X, X1=x1(2),....Xn=xn(2)
The partial derivative %ﬁ is again a polynomial from Z[Xy,..., X,], which can

be encoded by a sub-SLP of finite length. Moreover, it can be seen easily that there are
sub-SLPs of finite length that encode 2),...,2},. That z1,...,2, can be encoded by an
appropriate SLP has already been proved in Lemma 3.19. Lastly, the claim follows from
the fact that there are only n multiplications and n additions left in order to encode the

entire derivative. O

3.5 Restricting Movements

Another way to derive lower complexity bounds is to restrict the movement of a free element.
We are going to deal with two different types of such restrictions in the following. Firstly,
we are only going to admit paths that are JORDAN curves. A JORDAN curve is a plane
curve, which is topologically equivalent to the unit circle. In other words, it is closed and
simple. The other restriction that we are going to use is to bound the length of a movement
of a free element.

3.5.1 Only Jordan Curves

The crucial thing that we gain, when we only admit JORDAN curves, is that we can control
winding numbers. This is due to the fact that the winding number 7(v, z) w.r.t. a complex
number z € C of a JORDAN curve + is either 0 or 1.2 This enables us to construct germs
that can be used to count the number of branch points that are circled around by a JORDAN
curve. We are going to use the mentioned counting mechanism to reduce an NP-complete
problem in coding theory to SLP-REACH over quad.

Subspace Weights Problem. Given a binary matrix A € {0,1}"™*" and a nonnegative
integer k € NU {0}. Furthermore, we call the number of 1’s in a binary vector = € {0,1}™
the HAMMING weight of x. Then the problem of deciding, whether there exists a binary
vector z € {0,1}" of HAMMING weight x so that A -z modulo 2 equals the all-zero vector is
called Subspace Weights Problem, short SUB-WEICGHTS. Its intrinsic complexity was proved
in [3].

Theorem 3.19. The decision problem SUB-WEIGHTS is NP-complete.

2! Actually, that is only half the story. Depending on the orientation of the JORDAN curve, there is also the
case that a winding number is either 0 or —1. However, this is not a restriction, since we can simply
replace 1 and —1 and get an analogous argumentation.
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From Coding Theory to Germs

As a first step, we transfer the problem SUB-WEIGHTS to a function theoretic setting
consisting of operations from the set quad. We begin with the binary matrix A € {0, 1}"*".
Thereby, we denote the entries of A by a; ; € {0,1}. For each row (ay1,...,ax,) € {0,1}"
of A, we introduce a polynomial pg, which is defined as follows:

Hakj )ez[X]  (ke{l,...,m}). (3.9)

Basically, the common zeros of the polynomials p1, ..., p,, € Z[X] capture the combinatorial
structure that is contained in the binary matrix A. Based on this, we use square roots to
imitate the modular arithmetic. For this reason, we construct germs that are induced by
the square root of each polynomial p; € Z[X]. More precisely, we get a germ g € Oy for
each k € {1,...,m} that satisfies gx[z] = \/pr(z) on an appropriate open neighborhood of
0 € C. Again, this definition refers to principal branches of the square roots.

Each germ g € Qg induces a RIEMANN surface. This surface has two sheets, since only
one square root is involved. The corresponding branch points are the zeros of the polynomial
pr € Z[X]. They are all contained in the finite set {1,...,n} C C and they are all simple.
Starting from this setting, the germs ¢1,...,9m € Oy can be used to imitate the matrix
vector product A - x modulo 2 in the problem SUB-WEIGHTS as follows:

Let gr € Qg be one of the previously introduced germs and « be a closed path starting
and ending at z = 0 with 7([0,1]) N {1,...,n} = 0. Then it is clear that the analytic
continuation gg € Qg of g along ~ exists and the branch gz, on which gg lies, depends on
the parity of the winding number 7n(p o 7, 0) of the composition p oy w.r.t. 0. Using again
the well-known argument principle gives us

n(po 7,0 Zn 7,7), (3.10)

where r are the zeros of p counted with their multiplicities. As a result, we obtain immedi-
ately the lemma below.

Lemma 3.20. Let k € {1,...,m}, px € Z[X] defined as in (3.9) and vy be a JORDAN curve
starting and ending at z = 0. Then n(p o~,0) is odd, if and only if the cardinality of

{zE(C‘pk( ) =0AN(7,2) —1}
s odd.

In a way, we can think of the zeros of a polynomial p, € Z[X] as switches for a light.
Thereby, the switches are operated by the analytic continuation g; € @p. The branch g, lies
on tells us, whether the light is on or off. For this reason, we can prove the theorem below,
in which we show that the product A - z modulo 2 form SUB-WEIGHTS can be identified
with a constellation of branches the analytic continuations g7, ..., g € Oy lie on.

Theorem 3.20. Let A € {0,1}"™*", g1,...,9m € Qg be defined as previously. Then the
following two statements are equivalent:

(i) There exists a vector x € {0,1}" so that A -z modulo 2 is the all-zero vector.

(1) There is a JORDAN curve v starting and ending at z = 0 with v([0,1]) N {1,...,n} so
that each of the germs gi,...,gm lie on the principal branches of their corresponding
square roots.
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Proof. First of all, we do some preparatory work. Let (ay1,...,ax,) € {0,1}" be a row of
A. Then the scalar product of this row and a vector x = (x1,...,x,) € {0,1}" is given by
the sum

> an - xj. (3.11)
j=1

An addend ay ; - x; of this sum is 1, if and only if a;; = 1 and xz; = 1 hold. Now, we
transfer this observation into terms of the germ g € Qg and its analytic continuation.
The condition ay ; = 1 is encoded in the zeros of the polynomials, namely the polynomial
Pk € Z[X] has the simple zero j, if and only if the entry ay ; of A equals 1. Furthermore,
x; = 1 is reflected by an analytic continuation of the associated germ g € Qg along a closed
path . The continuation induces a change of the branch of the underlying square root in
gr € Qg, if and only if n(v,7) is odd. As a result, we have rebuilt the addend in terms of
gr and its analytic continuation. The next step is to consider the entire sum (3.11), but
this works straight forward. We simply consider an analytic continuation of g € Qg w.r.t.
all zeros of pi. Lemma 3.20 guarantees us that the modulo 2 arithmetic is reflected by the
terminal branch g] € Qy lies on. All in all, we have observed that the product A -z modulo
2 and the constellations of the terminal branches ¢y, ..., gmn € Qg lie on are equivalent.
With this spadework in mind, it is not hard to prove the equivalence of the two statements
in the theorem. We prove that the first statement implies the second one. Let x € {0,1}"
so that A - x modulo 2 is the all-zero vector. From x, we construct an appropriate JORDAN
curve v that starts at z = 0. If the component xj, of x is 1, the winding number 7n(y, k) of
~ w.r.t. k shall also be 1 and otherwise 0. It is clear that such a path exists, since the set
{1,...,n} is a finite subset of C. The preliminary considerations complete the claim.
Now, we prove the reverse direction. Therefore, let v be a JORDAN curve with wind-
ing numbers 7(v,1),...,n(y,n) and v([0,1]) N {1,...,n}. In this case, we define a vector
x € {0,1}". The component zj of = shall equal the winding number 7(~, k). Again, the
preliminary considerations of this proof complete the claim. O

A Counter

We require another ingredient before we can prove a lower complexity bound. As mentioned
in the headline of this subsection, we are going to build a counter, which is used to count
the number of points from the set {1,...,n} C C that are circled around by a JORDAN
curve. The idea is again to use the zeros of a polynomial in combination with square roots.
In order to count more than just the parity as done in the last subsection, we use nested
square roots to count the numbers between 0 and 2" — 1. We will observe that the germ
BC' € Qg, which is induced by

n
[IG-4 (3.12)
j=1
has the desired feature. It is clear that BC' € Qy is well-defined and that it can be continued
analytically along all paths v with v([0,1]) N {1,...,n} = 0. In (3.12), it is again referred
to the principal branch of the 2"-th root. By doing so, BC[0] = Vnlis a positive real
number. Moreover, the associated RIEMANN surface has 2" different sheets, since a 2"-th
root occurs in the definition. Now, let v be JORDDAN curve starting and ending at z = 0
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with v([0,1]) N {1,...,n} = 0. Moreover, we define ¢ to be the sum

> n(v.4).
j=1

As n(v,j) € {0,1} for j € {1,...,n}, it follows ¢ < 2". Applying identity (3.10) together
with the fact that all branch points 1,...,n of BC are simple imply that the analytic
continuation BC7 € Qg of BC' along v ends up on the ¢-th branch of the 2"-th root, i.e.

27 ¥

BC7[0] = BC[0] - e2™ (3.13)
Since ¢ < 2™, it is impossible to get BC[0] = BC7[0] for ¢ # 0. So we have built a well-
defined counter for the numbers 0, ..., 2" —1 by simply reading off the number of the branch
¢. This can be done by checking equation (3.13) for a fixed given ¢.

Until now, we have just developed the basic idea. The next step is to show that this
counter can be encoded by an SLP over quad. The trivial part is the encoding of the
product under the root in BC. The encoding of the root, however, is done by n nested
square roots. Basically, it is clear that n nested roots are actually building a 2"-th root.
So we only have to translate equation (3.13) into terms of nested square roots. At first, we
will have a look at two nested square roots. The function

f:U—=C; ZH\/E

is holomorphic on a proper open neighborhood U of 1 € C. Furthermore, we can continue
f analytically along a closed circular path + that starts at z = 1 and circles around 0 € C.
Since the RIEMANN surface of the square root covers the complex plane twice, it follows that
the image of the inner square root concerning the path ~ has half the angular velocity of the
path ~ itself. This implies, in turn, that v must have a winding number of 2 w.r.t. 0 € C
in order to change the branch of the outer square root. Due to this fact the constellation
of branches of the square roots reflects the winding number of v w.r.t. 0 € C. Thereby,
we have to read this constellation as a binary representation of the winding number. If we
assume that the principal branch is always initially chosen by the definition of f and if we
identify the principal branch with 0 and the other one with 1, we will get the following
branch constellations depending on the winding number of ~:

n(7,0) ‘ outer root inner root
0 0

0

1 0 1
2 1 0
3 1 1

It is obvious that the two columns on the right side are the binary representation of the
corresponding winding numbers seen in the left column. It is easy to observe that this
concept generalizes straight forward to n nested square roots, which provides the desired
counter.

From Germs back to Coding Theory

It is still left to verify that the germs ¢1,..., gm, BC' € Qg can be encoded by an SLP over
quad that is polynomial in the coding length of SUB-WEIGHTS.
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Lemma 3.21. The germs g1,...,9m,BC € Qg can be encoded by an SLP over quad that
length is polynomial in mn.

Proof. The counter BC can be realized by 1 free operation, n constants, n subtractions,
n — 1 multiplications and n square roots. Totally, an encoding SLP has a length that is
bounded by 4n. We just need one additional square root to encode gx € Qg. Thus we can
encode all germs g1, ..., gm € Qg by m further operations. Consequently, all germs can be
encoded by an SLP, which length is bounded by m + 4n. O

Finally, we reduce SUB-WEIGHTS to the weaker version of SLP-REACH, where only
JORDAN curves are admitted for the movement of a sole free object. Let & be a proper
SLP that encodes the germs g¢i,...,9m, BC € Qy. Furthermore, we have to introduce
a starting instance Z and a terminal instance W. For this reason, denote the constant
terms of the polynomials p1,...,pm by c1,...,cn € N. Now, we can define the instances Z
and W implicitly by fixing the free elements and the corresponding outputs of the germs
i, ---,9m, BC € Qp, since the remaining operations are uniquely determined by these
settings. The starting instance Z is determined by

ge[0] = Ve (ke{l,...,m}) and BC0] = V!,

where it is referred to the principal branches of the underlying roots. Then the terminal
instance W is determined by

gil0] = g0] (ke{l,...,m}) and BCY[0] = BC[0] -7 *,

where k € N U {0} is the nonnegative integer from SUB-WEIGHTS. The index v shall
visualize that these conditions refer to the terminal instance W. We have already shown in
Theorem 3.20 that the part in W belonging to the conditions

g, [0] = gx[0] (k‘ € {1,...,m})

can be reached by analytic continuations of gi,...,gm € Qg, if and only if there is a vector
x so that the product A - z modulo 2 is the zero vector. Besides, we have discussed in the
subsection about the counter that the parts of the instances concerning the counter BC
make sure that the vector z additionally has HAMMING weight k. So we have proved

Theorem 3.21. The problem SLP-REACH over quad, where JORDAN curves are only
admitted for the movements of the free objects, is NP-hard.

3.5.2 Bounding the Length of Movements

In this part of the chapter, we concentrate on SLP-REACH over kubi with one free object.
In contrast to the last subsection, we require that the length of the admitted movement is
bounded. Similarly, the bounded length of a movement enables us to control the way and
thus the winding numbers of the movement, again. In order to prove a lower complexity
bound on this version of the problem, we are going to reduce the following variant of 3SAT
to it.

Exact 3SAT. Given a 3SAT formula C. Then the problem of deciding, whether there
exists a truth assignment y of C so that x makes exactly one literal TRUE in each clause
of C is called Ezact 3SAT, short X-3SAT. The complexity of this problem was proved in
[53].

Theorem 3.22. The problem X-3SAT is NP-complete.
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Outline of the Reduction

Before we start with the reduction itself, we point out briefly the four steps that are used
in it. They are as follows:

1. We make the same transition as in Section 3.4.1. There a literal /; , of a 3SAT formula
C has been transferred into a germ x; ;, involving square roots. Basically, /; ; can either
be b, or —b,. These two states are represented by the fact that x;; either vanishes
at z = 0 or not. By doing so, a clause becomes a product X; of three such germs in
this setup. As presented in Section 3.4.1, a truth assignment y of C' is encoded by
a closed path « that is used for continuing z;; analytically. Thereby, x;; and v are
chosen so that the analytic continuation of z;; along « vanishes at z = 0, if and only
if x makes the literal [, true.

2. We must check the number of literals in a clause that have been made true by a truth
assignment, since we reduce X-3SAT. This is achieved by 3-rd roots of X;. In doing
so, we can use the three branches of a 3-rd root as a counter for counting the number
of vanishing factors in the analytic continuation of X; along .

3. The bounded length enables us to control the way of . The idea is that if the length
of v is bounded by 2s and  should pass two points that have a distance s, it follows
that the way of 4 has to be the segment joining these two points.

4. We assemble the previous points to prove the desired lower complexity bound.

Once More from 3SAT Formulas and Truth Assignments to Germs and Analytic Con-
tinuations

The entire reduction is based on the setup, which has been developed in Section 3.4.1. For
this reason, we recall the construction briefly. Let

C=CiN...NC,y,

be 3SAT formula built of literals from {b1,...,by,, =b1,...,7b,}. For each j € {1,...,m},
a clause Cj equals [;, V ;s V lj; where lj, € {by,~bi}. Each literal [;; of C; has been
transferred to a germ x;; € Qg induced by

VE®p VE+ 2
20k ’

where @, = —, if [;; = by, and + otherwise. Furthermore, a clause C; has become a
product X; = z;,-2;-2; € Qg and the entire formula has been represented by the vector
of germs

Xo= (X1, . Xm).

A truth assignment has been transferred to a closed path. Let x = (by,...,b,) be a truth
assignment for B. Corresponding to x, we have construct a closed path « starting and
ending at z = 0 that satisfies the following condition: The winding number n(y, —k) of ~
w.r.t —k should be even, if b is TRUE and odd, if b, is FALSE. It has been clear that

such a path and the associated analytic continuations of Xi,...,X,, exist, since the set
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{—n,...,—1} is a finite subset of C. According to Lemma 3.15 and Theorem 3.12, this
construction has yielded that a truth assignment xy makes TRUE:

ik <= x],[0]=
C; = XJ[0]

0,
C <« XA0]=(0,...,0)eC™

Counting Multiplicities

We must check the number of literals in a clause C; that have been made TRUE by a truth
assignment x. If 7 is a path corresponding to x, the number of true literals in C; equals
the number of vanishing factors in X;Y [0]. This number of vanishing factors, however, can
be checked by a 3-rd root. The idea is in essence the same as for the counter in Section
3.5.1. There, a 2™-th root counted the number of points that had been circled around by a
JORDAN curve.

As a first step, we choose another base for Xi,..., X,, € Qg. It can be seen easily that
their basic definitions also induce germs at Z := —n — 1. Due to this fact we can also think
of X1,...,X;m € 0. Next, we introduce new germs Yi,...,Y,, € Qs by

Ym Y% (e {Lm)),

whereby these definitions refer to the principal branches of the underlying roots. It is clear
that the modified germs Yi,...,Y,, € Q; are well-defined, since they are all holomorphic
on an open neighborhood of Z € C.

A germ Y; € O; has the same zero as X; € O3, i.e. 2z = 0, since it is just the 3-rd root
of Xj. So z = 0 is also a branch point of Y¥; € @;. The crucial fact now is that Y; can
be used as a counter that counts modulo 3. To observe this, let v be a closed path with
7(7,0) = 2 and let us identify the three branches of a 3-rd root with 0,1 and 2, where 0
denotes the principal branch and the others are matched accordingly. Then the argument
principle (3.10) gives us the number of vanishing factors in X;f. More precisely, the analytic
continuation ij lies on branch 0, if the number of vanishing factors equals 0 or 3; it lies on
branch 1, if it is 1; and it lies on branch 2, if this number is 2. In general, we assume that
n(7,0) is even. Then Yj” lies on branch

0
M - 77(72’ ) (mod 3),
where M is the number of of vanishing factors in X?. In summary, the branches of
Y/, ...,Y,) count the number of vanishing factors in X7 ,..., X, if the winding number
n(7,0) is even and known.

Remark 3.29. We will see that it is not necessary to know exactly the winding number
n(7,0), but that it is even. This, however, is not a further restriction on the path, since we
can use an additional germ to guarantee this.

Using the Bounded Length

Apart from the encoding of a truth assignment, we extend the definition of ~ a bit, since
we would like to use the constraint on its length. We bound the length of v by 2(n+3) +¢
with 0 < € <1 and claim that v should circle around the two further points —n — 2 and 1
in C. Furthermore, it is necessary to require that - is also rectifiable. However, this is not
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5

Figure 3.16: Illustration of v = 3 05 0 ~1.

a restriction at all, since the set {—n — 2, —n,...,1} is a finite subset of C and v can, for
instance, be realized by a finite family of line segments. In doing so, we can observe three
obvious facts concerning ~:

(i) In essence, the way of v is the line segment joining —n — 2 and 1.

(ii) The constraint on the length of v admits arbitrary winding numbers n(vy, k) for k €
{-n—2,—n,...,1}.

(iii) Since 7 is closed and starts at Z, it passes —n — 2 and 1 once and passes each point
from the set {—n,..., —1} twice, namely once on the way to 1 and a second time on
the way back to Z or vice versa.

Taking these observations into account, we can assume w.l.o.g. that the way of v is essen-
tially as follows: It starts at Z, passes —n — 2 first, then passes 1 and returns finally to 2. To
simplify the notation throughout the rest of this chapter, we divide v in three parts vy, ¥o
and 73 (see Fig. 3.16). =1 is the part of 4 that starts from Z and proceeds to 0. Thereby,
we require that v should not circle around 0. s is the part of v that starts at the terminal
point of 41 and contains all circles around 0 and 1. 3 is the remaining part of ~.

Assembling the Parts

In this paragraph, we put things together and complete the reduction. Taking the partition
v = 3 072 071 into account, the first and most important goal is to prove the equivalence
of the following two statements:

(i) There is a closed path ~ with length smaller than 2(n+3)+¢ (0 < e < 1) so that the
analytic continuations Y, ,..., Yy lie on branch 1 of the 3-rd roots.

(ii) C has a truth assignment that makes exactly one literal true in each clause.

As a first step, we focus on one clause. The crucial parts of + are «; and -, since the
continuation along 73 does not affect the branch of ij at all. According to Lemma 3.15, it
holds that there is a truth assignment that makes a literal /;; TRUE in a clause Cj, if and
only if there also exists a first part y; of v so that the corresponding continued factor :L";Ylk
vanishes at z = 0 in X]l. Furthermore, we have pointed out previously that the analytic

continuation Y;**”" of Y; along 7 0 91 lies on branch

M - 77(’}; 0 (mod 3),
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where M is the number of vanishing factors in X;-”. As a result, branch 1 can only be
reached, if M € {1,2} and 7(v,0) is appropriate.
Regarding now all clauses C1, .. ., Cy,, we can assume that M is equal for all X}, ..., X%,
since
1-k=2-k (mod3) < k=0 (mod 3).

In the case M = 1, we are done, since this immediately implies the existence of a desired
truth assignment. In the case M = 2, there exists a truth assignment that makes exactly
two literals TRUE in each clause. This, however, implies the existence of a truth assignment
that makes exactly one literal TRUE in each clause as well. To obtain this assignment, one
just has to switch TRUE to FALSE and vice versa. This shows the equivalence of statement
(7) and (ii).

Remark 3.30. At this point, we should illuminate the connection between 7 and truth
assignments. According to the last observations, a truth assignment y = (by,...,b,) is

reflected by the first part 41, namely the number of circles around —k of 7; should be even,
if by, is TRUE and odd, if by is FALSE. So it adjusts the number of vanishing factors in

X', ..., X7 corresponding to x. The part s is just used to operate the counters Y7, ..., Y,
to count the numbers of vanishing factors in X', ..., X;%'. The last part 3 has not played

any role so far. Its only use is to reverse the adjustments of «;. This enables us to specify
a simple terminal instance later on. For this reason, the number of circles around k of 73
should equal v for k € {—n,...,—1}.

An illustration of such a path v is given in Fig. 3.16. There, the part 7, is drawn
in black, o is the red part and the last part 3 is the blue one. Obviously, it holds
n(v,—n —2) = n(y,1) = 1. Moreover, it satisfies n(vy,j) =1 for j € {—n,...,—1} \ {—k}
and n(y, —k) =n(y,0) = 2.

There are just few things left to do in order to prove the lower complexity bound. One
the one hand, we must introduce three further functions that are required to control the
path . They are induced by

Zpo(2):=Vn+2+4+2, Zyz):=+z and Zi(z):=+vV—-1+z.

Obviously, they are all holomorphic on an open neighborhood of Z € C, so Z_,,_s, Zy, Z1 €
0;. Z_,,—o and Z; are needed to check, whether « circles around —n — 2 and 1, while Zj is
used to ensure that 7(v,0) is even.

On the other hand, we must guarantee that all involved functions can be encoded by
an SLP with a length polynomial in the coding length of a 3SAT formula C, this is, mn.
However, this can be verified easily, since we have already proved that Xi,..., X, can be
encoded by an adequate SLP.

Last but not least, we specify regular instances Z and W of an encoding SLP that can
only be reached by a continuous evaluation, if and only if C' has a truth assignment that
makes exactly one literal true in each clause. For this reason, we set X;[2] = a; € R and
Yj[2] =b; € Rfor j € {1,...,m}. Then the starting instance Z is implicitly defined by

1S3

X;[2] a;
Yi[Z] = b;
Zol2) = Vz
Z—p_alZ] Vn+2+2
[£]

N
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and the terminal instance W by

XJE = Xl
Y] = Yi[2] €5
Zam = Z[2]
woalfl = —Z_nolf]
Ziy[] = —Z1[%]

Remark 3.31. Let us again go a little bit more into detail on the relevance of the conditions
imposed by these two instances. In the previous reduction, where 3SAT was reduced to
PARTLY-REACH over quad, we did not specify the entire terminal instance. This was due
to the fact that a solution of an underlying 3SAT problem can be read off the branches of
the terminal instance. The difference here is that we avoid this problem, since the values
of the germs X1,...,X,, at Z are the same in both instances Z and W. As a result, we
need not to know an appropriate truth assignment that makes the underlying 3SAT formula
C TRUE in advance. Instead, we have proved that the conditions for Y7,...,Y,, tell us,
whether there is an appropriate truth assignment that makes exactly one literal TRUE in
each clause of C or not. The rest of the instances concerns the path and its constraint. The
same values at the parts concerning Z; ensure the even winding number w.r.t. 0 € C, while
the different values for the parts concerning Z_,,_» and Z; force the corresponding path to
circle around —n — 2 and 1.

Now, assuming that we have got an efficient algorithm that solves the Reachability Prob-
lem, where only movements of bounded length are allowed, implies

Theorem 3.23. The problem SLP-REACH over kubi, where only movements of a bounded
length are allowed, is NP-hard.

Remark 3.32. Similarly, we can strengthen this result in this subsection by not using ar-
bitrary constants in the set of admitted SLP-operations, but 0 and 1. This works, since
all required constants in the encoding SLP can be generated by a sub-SLP of appropriate
polynomial length that only uses the constants 0 and 1.
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Geometry and Numerical Integration

“%2 has a nasty singularity at r = 0, but it did not
bother Newton — the moon is far enough.”

Edward Witten (AMS Gibbs Lecture, Baltimore, Jan. 7, 1998)

“The shortest route between two truths in the real
domain passes through the complex domain.”

Jacques Salomon Hadamard (1865-1963)

At first sight, one might ask what dynamic geometry has to do with numerical integration.
A possible answer is that we can use such methods to compute the motion of an algebraic
construction under a set of movements of the free objects. One just has to formulate an
initial value problem (IVP), which describes this motion:

Let € be an algebraic construction according to Definition 2.3, 6 € Z¢ a regular starting
instance and (1, ..., to corresponding explicitly given movements. Since the movements
are restrictions of holomorphic functions, there are germs ci_ps,...,c0 € Qg describing
their coordinates on an appropriate neighborhood of 0 € C. From Subsection 2.3, it can be
concluded that the coordinates of the dependent objects are determined by polynomials

P eClCi-m,---,C11, X],

where [ € {1,...,N}. Starting from this setting, an IVP can be inductively formulated,
which governs the evolution of each coordinate during the movement and thus the motion
of the construction % is described by it.

The ordinary differential equations (ODEs) capturing the coordinates ci_ps,...,co € Qg
of the movements are simply given by their derivatives. We now concentrate on P; to
constitute an ODE for ¢;. The coordinate function c¢; satisfies

P (Cl_M(t), - ,C()(t),cl(t)) =0

on an appropriate neighborhood of 0 € C. As a result, deriving this equation yields an
identity for the derivative ¢;. By an abuse of notation, we are going to omit the argument
t to increase the readability. Then one obtains

~ . OP(Cim,....C1)

d
— Pi(ci—m,...,co,c1) = ¢
dt j:ZI_M ac;

Il
o

Ci—m=ci-m,--,Ci1=c1

:5P1,Cj
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We now observe that the derivative P, # 0. Otherwise this would mean that P, €
Cl[Ci-py ..., Co, X] is constant w.r.t. X implying the non-existence of ¢;. As a result, we
can rearrange the equation and get

0

. 1 .
Clzp . Z Cj'Pl,cJ-'

Lev joimm

The last step to obtain a first-order ODE for ¢ is to express the occurring derivatives
¢1—_M,---,C in terms of the variable t and c¢1_py,...,co. This is possible due to the fact
that the coordinates of the movements p1_m,, ..., o are given explicitly.

Inductively, this procedure applies straight-forward for each [ € {1,..., N} yielding a sys-
tem of first-order ODEs that describes the dynamics of the construction % under the move-
ments [1_m,- .., Mo- If we additionally claim that the coordinate functions c¢i_py,...,cn
form the instance G for ¢ = 0, an initial value problem will be defined.

Simulating them has to be done by an adequate numerical solver that usually works over
the real numbers. Against the background of the successful complex strategy achieving
continuity in dynamic geometry, it arises the question, whether a complex approach is also
useful in the context of integrating ODEs. In order to answer this question, we imagine a
restricted two-body problem, where a planet moves around a fixed star under NEWTON’s
law of gravity. If the initial velocity of the planet points directly towards the sun, the system
will necessarily run into a singular situation. In addition, scenarios nearby this situation will
cause numerically difficulties. A setup that also allows complex time, leaves the possibility
to circumvent the singular situation by introducing a time flow that makes a detour through
complex values. An example, where this strategy has been applied successfully is studied
in [5]. Resolving singularities by applying complex detours at the numerical integration of
the two-body problem mentioned was the initial motivation in [38].

The study of complex detours for ODEs entails several interesting issues. Assuming that
a holomorphic function solves locally an ODE, the principle of continuity states that each
analytic continuation of this function will solve the also analytically continued??> ODE. For
this reason, monodromic behavior can be caused by the right side of the ODE. If this is
the case and one would like to integrate this ODE numerically, it must be ensured that the
solver mimics the analyticity of the underlying equation. This requires the implementation
of so-called tracing strategies for the right side of an ODE (see again [38]). However,
there can be another source of monodromy, namely the solution itself. It even may induce
monodromic behavior, though the right side does not. Although, such problems may provide
an interesting mathematical structure over the complex numbers, they have been rarely
studied in literature (for instance see [7]).

Besides the structural and implementation-related issues already mentioned, there is an-
other worthwhile point to address. The complex approach also allows one to gain compu-
tational benefits. There are at least two different effects.

At first, recall the constellation, which causes an almost singular situation at the two-body
problem. A numerical solver with adaptive step size control requires a quite high resolution,
when the planet swings closely around the star caused by a nearby lying singularity. If we
are just interested in a position of the planet, which lies afterwards the star is passed, we
can reach this point in time by a complex detour that stays far away from this singularity.
As a result, the step size control does not have to use such a high resolution (see [9]).

22This continuation concerns the ODE’s right side.
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A completely different effect that we are going to study throughout the rest of this chapter
concerns superconvergence in the presence of certain complex time grids. We are going to
exemplify this effect at the probably simplest possible scenario, this is, the ODE & = x.
Hereby, we just have one branch and can neglect the problems concerning monodromy. In
this case, carefully chosen complex time grids can help to reduce the global integration error
by at least one order. Motivated by this, we are going to develop a theory that explains
these superconvergence effects. Based on the derived theory, a generalization to a non-
linear setup is provided thereafter. By doing so, it will turn out that the complex geometric
approach enables us to interpret the class of composition methods with complex coefficients
as the application of basic methods along complex time grid. This is a different derivation
of these methods apart from the usual way of solving some suitable set of order conditions
over the reals or the complex numbers such as done in [23, 24, 58].

4.1 An Introductory Example

In this section, we would like to make the reader familiar with the subject of numerical inte-
gration along complex paths (and its benefits) in an informal, but hopefully self-explanatory
way. In order to concentrate on the fundamental ideas, this and the following section is
written in a very easy and self-containing manner.

We choose the simplest possible initial value problem

i(t) = f(t.z(t)), x(to) = o, (4.14)

where f : R? — R, (z,t) — = and (to,70) := (0,1). The corresponding analytic solution
curve o : R — R, t +— (t) is given by the well-known exponential function ¢(t) := e’ for
all t € R.

In order to compute ¢(1), a standard approach is given by using an explicit RUNGE-
KuTTA method (eRKM) along an equidistant decomposition of the interval [0, 1]. Here, we
refer to [13] for an extensive introduction to the topic of numerical integration of ODEs.

In contrast to the real interval [0, 1], we now study the use of complex paths connecting
0 and 1. As (4.14) is a well-defined?? initial value problem given by an autonomous linear
first order differential equation with constant coefficients, ¢ € R seems to be an unnecessary
restriction. To be more precisely, we observe that our IVP (4.14) can be written equivalently
as the integral equation

:E(t)::E0+/ttw(s)ds:wo+/x(C)dC,

0 v

where 7 : [to,t] — C, s — s is a path. As the solution ¢ has to be an entire function,
CAUCHY’s well-known integral formula states that ¢() is independent of the detailed choice
of v, i.e. every path ~ with starting point ¢y and terminal point ¢ yields the same result for
o(t).

With this “analytic” picture in mind, we investigate the behavior of the explicit EULER
method?? along the equidistant complex time grid

- 1 . j
tj = 5 <6Z7r(1_%) + 1) R

ZFor existence and uniqueness of a complex solution curve have a look at [54].
241t can be found in [13, p. 135].
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where j € {0,...,n}. This is a discretization of the upper complex half circle from 0 to 1.
Starting at the initial value xg = 1, the explicit EULER method generates n, not necessary
real-valued, approximations

i~ p(f) =i,
where again j € {0,...,n}. In the following, we compare the explicit EULER method along
the mentioned complex time grid and the equidistant composition of the interval [0, 1] given

by

where j € {0,...,n}. Figure 4.17 illustrates the results of the explicit EULER along both
the real and the complex time grid. On the one hand, one can see the exact values at the
different grid points. The values corresponding to the complex and the real gird points are
denoted by + and X, respectively, while their approximations are given by o and ¢. The
figure already indicates the observations that are finally proved by the numerical results
show in Table 4.1. We point out the following observations:

1. As expected, both terminal points seem to be an approximation of e &~ 2.718281828.
2. The imaginary part of the complex terminal point seems to be zero.

3. The complex construction yields more correct digits. To be more precise, the complex
terminal point Z1g is more than 16 times closer to e than the real terminal point.

Particularly, the last observation seems a worthwhile phenomenon. Below, we are going to
develop a theory that explains this effect in the more general context of numerical integration
of linear IVPs with constant coefficients by the use of eRKMs along complex paths of
integration.

4.2 Complex Flows, Time Grids and Errors

Before we can concentrate on the discovered observations, we have to introduce the required
notation in this section. As a first step, we define complex initial value problems.

Definition 4.15 (complex initial value problems). Let d € N, Qy C C x C% and f - Qp —
CY (t,x) — f(t,x) be a continuous function. Then

i(t) = f(t,z(t)) (4.15)

is called an explicit first order differential equation. A solution curve of (4.15) is a complex
differentiable function ¢ : U — C% t s o(t) with

1. Ty :={(t,o(t)) |t U} CQf and
2. ¢(t) = f(t,o(t) forallt € U,

where U C C is an open set. (4.15) together with a point (to,zo) € €2y, the initial conditions,
is called a complex initial value problem (CIVP). A solution to a CIVP is a solution curve
@0 :U — C? of (4.15), where to € U and

¢(to) = mo.
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Figure 4.17: Results of the explicit EULER method applied to & = = with the initial value
2(0) = 1. Thereby, the two previously introduced time grids [fo, e ,510] and
[to, . ,tlo] are used. The symbols o and ¢ represent the computed approx-
imations of the solution () = €' along the upper complex half circle and
the real interval from 0 to 1, respectively. The symbols + and x mark the
corresponding exact values of the solution.

step j | real grid (o)

complex grid (o)

0 1

1 1.100000000
1.210000000
1.331000000
1.464100000
1.610510000
1.771561000
1.948717100
2.143588810
2.357947691
2.593742460

© 00 N O Ot ke W N

—_
[an}

1
1.024471742 + 0.1545084969 - 1
1.075693448 + 0.3082767551 - ¢
1.160581914 + 0.4613658247 - ¢
1.289582523 + 0.6080971485 - &
1.473952784 + 0.7336116556 - ¢
1.719643769 + 0.8108906981 - ¢
2.016924082 + 0.8017873023 - ¢
2.328718297 + 0.6673738888 - ¢
2.587124642 + 0.3901842509 - ¢
2.710722870 — 0.0000000006 - %

Table 4.1: The corresponding numeric results to computations illustrated in Fig. 4.17.
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Remark 4.33. When the right side f is complex differentiable on an appropriate closed
subset of C x C% and it is additionally LIPSCHITZ continuous and bounded on this set, then
it can be shown that there exists a local and unique solution to an associated CIVP. The
corresponding theory can be found in [25].

Now, let v be a given path with v(0) = t9 € C and (1) = ¢; € C. Furthermore, we
assume that for every y € N, where N is a neighborhood of zy € C?, there exists a local
solution ¢z, ) to the CIVP

i(t) = f(t,x(t), =x(to) =yo € C~

For every such solution ¢4, ,.), let us additionally assume that the analytic continuation of
D(to,yo) dlong v exists and denote it by gp?to o) Due to this fact we have a map

N — Ch oy Yo = @y 4o (t1)-

Remark 4.34. Since <I>} maps the initial value yy at ¢ty to the corresponding state <I>}y0 at
t1, we call this map the complez flow (or the evolution induced by f). The complex flow
can be interpreted as the path-dependent function mapping an initial value yg to the value

of the analytic continuation cpzto o) evaluated at t;.

In the introductory example, both of our computed approximations made use of a certain
discretization of a given complex path v : [0,1] — U C C. Since C is not equipped
with an order relation, we adapt the real-valued concept of consecutive points in time
to < ... <ty € R by the use of indexed sets

A= [th,... 8] cC.

7nA

We call them time grids with na € N time steps

A LA A
where j € {0,...,na — 1}. In addition, we denote the mazimum step size of a time grid A
by
TA = max |TjA‘.

j€{0,....na—1}
Whenever it helps, we will omit the symbol A to increase readability throughout the rest

of this chapter. In the example of the previous Section, our attempt was to construct a
corresponding grid function

za: A = CL ot za(t),
which approximates a solution of a CIVP, i.e.

za(t) ~ ¢(t)

for all t € A C U, where ¢ : U — C% is a solution of (4.14). At first, we set za(ty) := o
and then we used EULER’s idea of small “tangential” update steps to compute the missing
xA(tj)’s. To generalize this idea, we just have to replace the method for computing a
new value za(t;j41) from a point za(t;) already derived. For this purpose, we introduce a
function

vV —CY (t,s,) — Uz,
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where V C C x C x C% is an adequate set. The variables s, t and z play the role of current
point in time, next point in time and current state or wvalue, respectively. At this point,
one naturally assumes that ¥»*z is defined for every choice of (¢,s,z) € C x C x C? with
(s,z) € Q5 and |t — s| being sufficiently small. Under these assumptions, V¥ is often denoted
as the discrete evolution in analogy to the complex flow. It enables us to define

aa(tjsr) = Wtvliza(t))

for all j € {0,...,na — 1}. Whenever a grid function z is given by a such a process, we
are going to say that xza is generated by a one-step method. Moreover, we introduce the
notation

Uiz = xa(ty)

in analogy to ®Yxg. This is the terminal point, which is reached, when the discrete evolution
¥ is developed along the time grid A.

The last issue we address in this section concerns approximations errors. Given a time
grid A := [to,...,t,,] C C and let za be a grid function generated by a one-step method
applied to (4.15). As we have already seen by the example in the previous section, the
approximation process is expected to cause grid errors € := ea(t;), where j € {0,...,na}
and

EA A — (Cd; tj — (I)tj’tollt(] — l’A(tj).
At this point, we define for all 0 <7 < j < na,
Pliti = IR

where ’ygi represents the traverse sequentially visiting ¢;,...,¢;. The grid errors are gener-
ated by the local inaccuracy of the discrete evolution W — the so-called consistence error. It
is denoted by?®

e(t,m,7) i= @y — YTy,
These local errors interact with the sensitivity of ®%%© to perturbations of x. In general,

they can be damped, amplified or fortunately be extinguished throughout the one-step
recursion. A special variant of the latter case will be analyzed in what follows.

4.3 Theory Concerning Linear ODEs

In this section, we are going to disclose the secrets of the introductory example in the more
general context that is given by a CIVP of the form

z(t) = Az, x(ty) = w0, (4.16)

where A € C™? d € N and (ty,r9) € C x C% Although, there is not a dependence
of the complex flow ®“x; on the path of integration from the analytic point of view,
several numerical case studies have indicated that the order of convergence of a numerical
approximation obtained by a RUNGE-KUTTA method (RKM) seems to depend heavily on
the detailed choice of the path of integration.

Let us denote the path of integration by ~. It shall connect a starting point ¢ty and a
terminal point t. For every n € N, we define the corresponding time grid

A = [7(0)77 (%) v <n; 1> 77(1)] :

*Since VU is a discrete evolution, (¢, z,7) is defined for all (¢,2) € Q, if 7 becomes sufficiently small.
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Now, an RKM of order p € N can be applied along this grid A}, inducing a grid function
zpy. In the context of (4.16), the convergence theory of one-step methods assures that the
family of grid functions

(‘TA;YL)TLGN

obtained by the used RKM converges to the solution ¢(t) := ®%%0zq with order p for an
arbitrary choice of . Surprisingly, we are going to show in the following that for every
RKM of order p, there exists a path of integration +* so that the order of convergence at
the terminal point is at least p 4 1, i.e.

. 1
€n = €A;Yz* (t) = O (W) .

This is a superconvergence effect, which only affects the terminal point. In contrast to the
terminal point, the maximum grid error has not to be of order p + 1. Furthermore, v* can
be chosen so that the length |v*| of v* satisfies

I |t —to| -7
- 2

implying its practical interest.

4.3.1 Effects of Complex Conjugation

However, before the mentioned superconvergence is dealt with, we study, when the computed
terminal point is indeed real. This seemed to be case at the introductory example.

Let us therefore have a look at the detailed structure of the discrete evolution W7ty of
an arbitrary s-stage eRKM applied to problem (4.16). For 4,5 € {1,...,s}, the coefficients
of the eRKM are denoted by ,; ;, b; € C. Then the discrete evolution is given by

S
\IJH—T’tl’ =z+ Z b; k’i,
i=1

where

i—1

ki = Ax +TZQ[i,jAkj

j=1
is the i-th stage of the used eRKM. Our first lemma that we are going to show is a structural
result concerning the discrete evolution. More precisely, applying an eRKM to (4.16) yields
that the evolution of one time step 7 € C from an initial point z € C? can be expressed as a
simple matrix multiplication Mx. In addition, the matrix M can be expressed as a matrix
polynomial in 7A. The formal statement is captured by the lemma below.

Lemma 4.22. Let s € N and Utz be the discrete evolution induced by an arbitrary
s-stage eRKM with coefficients A € C*** and b,c € C*. If this method is applied to problem
(4.16), then for all x € C%, it holds

Uity = P(1A)x,
where P is a polynomial of degree s with coefficients from

Q[Q[QJ,Q(&LQ(&Q, o ,le,l, ce 7le,s—17 bl, ceey bs].
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Proof. Let us first have a look at the stages k;. By induction over i € {1,...,s}, we are
going to show that
k,’i == PZ(TA) A:E,

where P; is a polynomial of degree i — 1 with coefficients in Q[ 1,...,A;1,..., % i—1].
Considering the first stage of the eRKM yields

k1 = Az = Pi(TA) Az,

where Py := 1. Let now i € {2,...,s}. It follows from the induction hypothesis that

i—1
k; :AJL'—i—TZQlZ’JAk‘j
j=1
i—1
=Az+7)y U AP(TA) Ax
j=1
i—1
= I—FZQ{Z'JTAP)'(TA) Azx.
j=1

As one can easily see, the expression in the bracket is induced by a polynomial P; satisfying
the desired conditions. In conclusion,

Pitnty — ¢ +TZ b; k; = <I + ZbiPi(TA) TA> x

i=1 =1

yields the desired claim. At this point, we observe that there is not a problem of commu-
tativity in the matrix polynomials, because of A" A™ = A™ A" for all n,m € Ny. O

Remark 4.35. The polynomial P of the previous lemma is also known as the stability function
of the underlying eRKM.

A further ingredient that was crucial in the introductory example concerns the used
complex time grid. It was of a special form, which is formalized in the next lemma.
Definition 4.16 (symmetric time grids). Let A := [t§,... ,tﬁA] be a time grid. We call
A a symmetric time grid, if there exists an involutory permutation ™ € Sy, i.e. T = id,
so that

A

_ A
Ti = Tr(i+1)-1

forall j € {0,...,na —1}.

Based on the structural result concerning eRKMs and symmetric time grids, we are able
to prove the desired theorem, in which we link terminal points and coefficient of eRKMs.

Theorem 4.24. Given a linear CIVP (4.16) with real coefficients, i.e. A € R™? and real
initial values, i.e. tg € R and o € R Furthermore, let n := na € N, A := A} be a
symmetric time grid with tOA =ty € R and t5 € R and za be a corresponding grid function
constructed by an s-stage eRKM with real coefficients, i.e. A € R*S and b,c € R5. Then
the terminal point of the grid function xa is real as well, i.e.

TA (tﬁ) e R%.
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73

Figure 4.18: Two symmetric time grids A7) = [tOA, e ,t?] and A) = [fOA, . ,fﬁA] along v
(dotted) and 4 (dashed), respectively.

Proof. We denote 7; := TjA for j € {0,...,n — 1}. From Lemma 4.22, it can be concluded
that

n—1
Ty = H P (1;A) | - zo,
=0

where P is a polynomial of degree s with real-valued coefficients. Due to this fact it is
sufficient to show that the product of polynomials is in R***. As a first step, we observe
that

P(TA) = P(tA) and P(tA)P(cA)= P(cA)P(TA)
hold for all o, 7 € C. Taking these identities into account, we separate the product as follows
and use the symmetry of the time grid:

n_l GRSXS
——

[[rmHa= I P@HA- JI  PEHAP(Tgiy-14)
j=0 j€{0,....,n—1} j€{0,....,n—1}

j+1=m(j+1) JH+1<m(j+1)

= I P#H4a- I PEHAPHA,

; — —

7€{0,...,n—1} cRsXs 7€{0,...,n—1} ERsxs

JH1=n(j+1) jH1<n(j+1)

where ™ € S,, is the permutation corresponding to the symmetric time grid A. Pay attention
to the fact that for every M € C%*% it holds that MM = MM = MM & R5*5. O

Theorem 4.24 justifies the second observation of the introductory example in the more
general context of a CIVP given by an explicit linear autonomous system of first order
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differential equations. There the used complex time grid was chosen to be symmetric along
a half circle in the complex plane.

4.3.2 The Terminal Error

This section is dedicated to the third observation of the introductory example, this is,
accuracy gain at the terminal point. The main idea is to represent the leading term of the
error at the terminal point in terms of the step sizes. Then an appropriate choice of the step
sizes can cancel the leading error term and therefore the order of convergence increases. In
order to derive the desired representation, we are going to expand the error at the terminal
point, this is, the difference of the complex flow and the discrete evolution.

Theorem 4.25 (terminal error). Let v be a rectifiable curve with starting point v(0) = tg €
C and terminal point y(1) =t € C. For every n € N, we denote the time grid Aj, by A,

abbreviate the step sizes by

A
TJ( ) tj+1 )

where j € {0,...,n—1} and define 6, to be the mazimum step size, i.e. 0, := Ta. Further-
more, let L(vy) be the length of 7, i.e.
1
- [ e
0

and C > 0 a positive constant so that

Then the grid error €, at the ending point t € C corresponding to a p-stage eRKM of order
p € N applied to problem (4.16) along A satisfies

. 1 +1
hm — = lim — p .
Z (p+1)!

0. (4.17)

Proof. To increase readability, we divide the exponential series for all n € N into the two
terms

p k 0o k
7i(n)A Ti(n)A
it = Y AL gy =y A
k=0 ) k=p+1 ’
where j € {0,...,n — 1}. Moreover, we set E := eCLOIAI and denote the terminal ap-

proximation of the discrete evolution by z, := U2z,. As a first step, we have a look at the
quotient

En (I)t’toiﬂo—l’n 1
1 _n—l n—1
=5 [TL™" = TL st | o

J=0

] =0
1 —
= g H +w] HT,Z)J xQ-
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Expanding the first product yields

n—1
En 1
F > wiln H Yi(n . (4.18)

lsﬁj

Hereby, the remaining term p(n) satisfies

p)| _ BN (n\ [ & (CLM) 4l)"
S F 2() D

T

r= p+1
k) T
Enn—1)...(n—r+1) > (C’L(y) ||A||)
S5 onr ny k- nk
" or=2 - k=p+1 ’
<1
.np r .nP 2
< E-n Z £ < E-n o 1 £ _ E ' E ,
= |t —tol” —\n?) ~ t—tof” \1- £ np [t —to|’ nP—E
which, in turn, implies
lim p(n)wo =0

As a result, we can neglect p(n) in our further considerations. In the next steps, we are
going to simplify (4.18), namely we show that the missing 1;(n) (products) and the higher
order terms of the w;(n)’s in (4.18) can be omitted as n tends to infinity. Using

n—1 n—1 n—1
D wiln) wn =Y win) [ taln) -«
' =0 1=0

I#]

oh
n =0

i
L

ol

HM

<.
Il
o

n—1

Tn — H Zf)l(”) *Zo
=0
I#]

n—1 (A"
Zk p+l kl nk—p

=t ol

2. (r;(n)A)" ‘

H Yi(n
2

n—1
E E E3 |zl 1
< - . E T — -,
_jzz:on|t—t0|p n ol [t —tol’ n

. 1 n—1
Jim 7 = lim = ZO wj(n) -
]:
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Finally, the estimate

— k n—1 oo
1 > np CL ||A||)
gy b Aas Y
7=0 k=p 7=0 k= p+2
1
750|p 7122 |t—t0|p n
and
lim z, = <I>t’t°3:0 = e(t_tO)A:L"o
n—oo
show the desired claim. O

Remark 4.36 (s-stage eRKMs & implicit RKMs). The proof of the previous theorem bases
on an eRKM of order p € N with p stages. However, what does happen, if the number of
stages of the eRKM is larger than its order of convergence or the underlying method is an
implicit RKM?

In the case of an s-stage eRKM of order p € N with p < s, one can derive an analogous
statement to Theorem 4.25. We have omitted this case for a better readability of the
preceding proof. The only difference to the results above is given by a constant C' € C*,
the p 4+ 1 coefficient of the polynomial P(7A)) associated to the RKM so that

En 1 ;n+1 e(t—to)A At
5 = 552 S ey R

The corresponding proof is achieved by some additional estimations of higher order terms
of g—g analogously to the ones seen previously.

Similarly, one can show that the structure of the error expansion (4.17) for an s-stage
implicit RKM is also of the form

1
lim 7 Z p—l—l (t tQ,A)xo,

n—o00 5n

where C(t,tg, A) € C**%.

The structure of the error expansion in Theorem 4.25 provides us a condition to increase
the order p € N of an RKM applied to (4.16). If the used step sizes are chosen so that

|
—

n

(r(m)"™ =0

<.
Il
o

for all n > N € Ny, then the order of convergence increases from p to p+ 1 at the terminal
point, i.e.

En . (I)t’tox() — \I/Ax()
lim — = lim =0.

n—00 5p n—00 52
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4.3.3 Superconvergent Time Grids

Motivated by the previous observations, our next goal is obvious: We would like to construct
complex time grids that provide us superconvergence for linear ODEs. We consider an s-
stage RKM with convergence order p € N and use it to compute an approximation of the
complex flow ®%%x( corresponding to problem (4.16). Thereby, we admit ¢ € C. Basically,
we are interested in time grid families

(A= [tOA,...,tﬁA])neN

with three features:

1. First and foremost, the time grid shall connect the desired starting and terminal point,
ie. tg= t@ and t = tﬁA. In other words, it shall hold

na—1

Z TjA:t—t(].
=0

2. According to the prerequisite of Theorem 4.25, the maximal step size 7a of the time
grid must decrease at least like ngl as naA — 00, i.e.

D
TA S —
na

for some D > 0.

3. Last but not least, the time grid shall provide superconvergence. Due to this fact the

step sizes shall satisfy
na—1

> ) =0

J=0

Fortunately, the superconvergence criterion can be interpreted geometrically which enables
us to derive a canonical family of time grids for every convergence order p € N of an
RKM. We use the fact that all n-th roots of unity sum up to zero. More precisely, we set

Cn(j) = e2™i5 for j € Z. Then it holds for every « € C that

n—1
> a-Gulj) =0.
j=0

Now, we choose the time grid A so that the corresponding exponentiated step sizes (7'jA)pJrl
(7 €{0,...,na—1}) become such a collection of roots of unity. As illustrated by Figure 4.19,
n consecutive n(p + 1)-th roots of unity C,11)(k), -, Cupr1)(k + (n— 1)), are transformed
by complex exponentiation z — zPT! to the set of n-th roots of unity. Formally, one obtains
the following lemma.

Lemma 4.23. Letn,p e N, k€ Z and o € C. Then it holds

k+(n—1

)
(@ Cugprny ()" =0,
=k
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415(4) <15(3) (C C5(1)

¢15(6) ¢5(2)

s(7) m ¢5(0)

L 4

C5(4)

Figure 4.19: Transformation for n =5, p =2 and k = 3.

Proof. The claim is proved by the equations below:

k+(n—1) k+(n—1) k+(n—1)

Z (a- Cn(p+1)(j))p+1 = Pt Z (e%imyﬂ = oPt! Z 2mis
Jj=k Jj=k Jj=k
n—1 ) k+(n—1) )
— O41!7-1-1 Z e27rz% + O41!7-1-1 Z e27rz%
j=k j=n

n—1 ] k—1 .
- s
— ap-l—l § :627rzn + ap-l—l 2 :627” =
j=k =0

n—1 )
— ap-i—l Z 627”;% — 0
j=0
O
In conclusion, one way to build a superconvergent time grid A = [tOA, . ,tﬁA] is to take
time steps 72, ... ,TnAA represented by n consecutive n(p + 1)-th roots of unity which have

been suitable scaled and rotated by a factor & € C so that they connect the starting and

the terminal point, i.e.
na—1

Yo =t—t
j=0

Figure 4.20 illustrates this situation for n = 5, p = 2 and k = 3. In general, an appropriate
choice for this factor is

B t—to
- k+(n—1) N
Zj:k Cn(p—i—l)(])
Up to here, it has been easier to focus on the time steps TlA, e ,7',?A in order to derive a

superconvergent family of time grids, but now we change our point of view from the time
steps to the time grid elements £, ..., t5 . As exemplified in Figure 4.20, a superconvergent

) nA‘
choice of the time steps TlA, .. TnAA induces special positions of the associated time grid
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Cis(4)

asE - ep Yo tol C
€15(6) : t3
to

¢15(7) N :.. ™t

1 to

Figure 4.20: Counterparts for n =5, p = 2 and k = 3 (no global scaling and rotation).

elements tlA, . ,tﬁA. They are located on a circle segment that depends on the order p € N
of the underlying method and the starting and terminal point tg,t € C. Figure 4.20 shows
the situation for p = 2. There, the corresponding time grid elements lie on a third segment
of a circle. In the introductory example, the explicit EULER method has been used, i.e.
p = 1, and the time grid elements have been lain on a half circle segment. This indicates
that if the order of the underlying method is p € N, locating the time grid elements tjA
equidistantly on a 1/(p + 1)-th circle segment connecting tg,t € C provides the desired
superconvergence effect. The theorem below formalizes this idea.

Theorem 4.26. Let v* := v, ,, where

to— 1t i (=22 to+t
’Yg),t:[&l] — C; g —0 [el (P“) — Cos <L>] + o+t . (4.19)
2-i-sin(ﬁ) p+1 2

Furthermore, let n € N and z ,,~ be the grid function generated by an s-stage RKM of order
p € N applied to (4.16). Then

to=7"(0) and t=~"(1).

and
. (I)t,toxo _ wa* (t)
nh_)ngo 5 =0.

Proof. We just must show that A} satisfies the three criterions on page 100. By the use
of EULER’s formula, a simple calculation shows that ¢y = v*(0) and ¢t = v*(1). Moreover,

Jt1 J

AT to—t in i il 2n

T, " = ————— e p+1  — e ptl
J 2.4 -8in X

p+1

for all j € {0,...,n — 1}, so it is not hard to see that

*
e
J

_ 2w
= consty, ¢.p - ‘e nlp+l) — 1‘
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for all j € {0,...,n — 1}, which implies 6, € ©(n~!) and additionally the equidistance of
the time steps

It holds that

e
ml
S |ro
+3
L=

—
|
[
N——
hS]
J’_
[
[
3
S
3k
|

Since (%) is the sum of the n-th roots of unity, the desired claim follows from Theorem
4.25. O

The last theorem yields immediately the following corollary, in which the superconver-
gence effect is stated.

Corollary 4.9 (superconvergence of RKMs). Given a RUNGE-KUTTA method of order
p € N applied to (4.16) along v*. The approzimation at the terminal point is of order p+ 1.

Remark 4.37. As complex conjugation does not affect the argumentation so far, the previous
corollary holds also for v* := v*, where v*(t) := v*(¢) for all ¢ € [0, 1].

4.4 Nonlinear Case

As we have seen in the last section, RKMs are superconvergent along certain complex time
grids, if the right-hand side of the corresponding CIVP is linear. Consequently, it is natural
to ask, whether this feature transfers to the case of an arbitrary right-hand side. Our study
was again triggered by several numerical experiments. These experiments suggested an
adapted version of the previous superconvergence statement, namely it still holds locally in
the nonlinear case.

The main idea is to study the order of convergence not for infinitely many time steps,
i.e. nao — 00, as in the linear case, but for an infinitely small macro step size, i.e. t — tg.
Therefore, let now na = k € N be a fixed number of time steps and set h := t —tg. Roughly
speaking, the superconvergence effect is independent of |t — ¢y| in the linear case, this is,

1
En€O<F)
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I
|
g’ t
Figure 4.21: Scaled path segment from toA to t2A forp=1and k = 2.

In contrast, we will observe in the nonlinear case that
%eonﬁﬁ

holds, if the integration is performed along an equidistant time grid induced by an appro-
priate chosen path ~} ; according to (4.19).

But to start with, we should exemplify the idea at the probably simplest case, this is, two
micro time steps (k = 2) along a half circle (p = 1). Figure 4.21 illustrates this situation, in
which a numerical integration along a discretization A is done by two RUNGE-KUTTA itera-
tions. If we regard this path as a scaled and rotated copy of a normalized?® superconvergent
circle segment, we can express the two time steps of A as

tD —t8 =o1h and t5 —t = o9h,

where o1 = % + % -1 and o9 = % — % -4 are the two time steps of the grid

) 1 1
A;/OJ: |:O,§+§Z,1:| cC.

The general case k > 2 generalizes straight forward. For [ € {1,...,k}, let o; be the I-th
time step of the normalized superconvergent time grid
'Yg,l
A
Due to this fact the corresponding scaled time steps can be expressed by o;h, where h :=
t —to.
4.4.1 Composition Methods

We now are able to draw a connection between composition methods and our idea of nu-
merical integration along complex paths. Since it is not a restriction at all, we assume an
autonomous problem to simplify the notation. Let W7 := W0+70 he the underlying discrete
evolution of a basic RKM of order p € N and set

™o
A= Ako’ .

26This means a 1/(p + 1)-th circle segment 761 connecting 0 and 1, p € N.
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If we introduce the k-term composition method
Th = ol .. o gt (4.20)

the process of constructing xy := xa (tkA) from zg := za (tOA) is given by

T = ThlEo.
According to the conditions of Section 4.3.3 achieving superconvergence, our oy,..., 0k
satisfy the two equations
o1+...+0,=1 and Ufﬂ—l—...—l—azH:O. (4.21)

However, these are exactly the criteria for a classical theorem on composition methods.
From [23, p. 39, Theorem 4.1], it follows that T is again a one-step method of convergence
order at least p + 1.

Remark 4.38. The order conditions (4.21) can be found in [23]. There, some specific com-
position methods have been introduced by explicitly solving these order conditions over the
reals. [24] and [58] also stated methods, but they solved these equations over the com-
plex numbers. In contrast to them, our starting point has not been the equations (4.21).
The adaption of superconvergent paths ’yg)’t developed for linear ODEs solves implicitly
the sufficient order conditions (4.21) and thus it provides an entire class of composition
methods.

4.4.2 lterations

The method given by (4.20) is called a k-term composition method. If the underlying
discrete evolution W has order p € N, it follows that T is a one-step method of order at
least p+ 1. Since concatenation of RKMs is again an RKM, we can regard T as a new basic
RKM. Hence T can again be used in the same manner to construct a composition method,
but this time, the obtained order is at least p + 2. Applying this process iteratively, it is
possible to generate methods of arbitrary order of convergence.

We start with a basic RKM W of order p. Iterating ¥ leads to methods Y” that are
recursively defined by

Tg =0l
Th | =18,
p(r)
where A, := AZO’h and r > 0. Then Y is a method of order p(r). Hereby,
p(0) :==p,

plr+1) = p(r) +9.

where g € N is the gain of order of convergence depending on ¥. For instance, if ¥ is the
discrete evolution corresponding to an eRKM, then g = 1. If ¥ is, however, the discrete
evolution of a symmetric method, then it follows g = 2.

Our geometric approach enables us now to interpret the method Y, with respect to a
basic method W. The previous recursion for Y, implies that Y/zq = ¥z, where I' is a
recursively defined complex time grid depending on the parameters r (depth of recursion),
k (number of time steps), p (order of ¥) and h (global step size). To get an impression of
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T T

Figure 4.22: Time grid I for r =1,2,3,4,5 and 11 (9 =h =1 and p = k = 2).
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the recursive time grids, we exemplify I" for several choices of r in Figure 4.22. As one can
see, I' becomes more and more a fractal-like structure. Furthermore, we remark that the
time steps of I' comply with the coefficients o ; (j € {1,2}) of the composition methods
derived in [24, p. 5, “two term composition”] (k > 2 analogously).

Remark 4.39. As mentioned previously, our approach leads to the same sets of coefficients,
which have already been discovered in [24] and [58]. In contrast to the construction of k-term
composition methods by solving the system of order conditions (4.21), we explicitly get these
methods by applying a basic RKM along special complex time grids. From our geometric
point of view, the iteration done in [24] and [58] to construct higher order methods based
on a certain RKM transfers to an application of this RKM along the recursively defined
time grid T'.

4.4.3 A Complex Orbit

As a benchmark and illustration of the ideas that we have just introduced, a classical
example of celestial mechanics, this is, the restricted three body problem, is considered.
The corresponding system of differential equations

.. . . 1+ 1 — [
L1 =21+ 222 — [ LT 3—,“ LA 3
V@ +m2+23)® (@ - w2 +23)

)

(4.22)
) Z2

—p
V@ +w?+23)* /(@1 - @2 +23)°

is motivated by the motion of a satellite with respect to the gravitational potential induced
by the moon and the earth. Thereby, it holds i := 1 — u, while p := 0.012277471 is the
ratio of the mass of the moon to the mass of the total system. Furthermore, the mass of the

~

1’22:%2—2(/&1—”

)

satellite can be neglected. Since the motion stays in a plane, (xl(t), T2 (t))T represents the
vector of the satellite’s coordinates with respect to a “rotating” coordinate system whose
origin represents the gravitational center of the moon and the earth and in which both
celestial bodies stay on predefined points on the xi-axis.

Due to the american mathematician R. ARENSTORF?7, we know that there exists a pe-
riodic solution to the corresponding initial value problem given by the system (4.22) and a
suitable chosen initial value. As illustrated by Figure 4.23, the error at the terminal point?®
by the use of the explicit EULER method (discrete evolution denoted by ¥) is more than
55 times larger than of the associated composition method Y1 with k& = 2. Hereby, both
approaches have been calculated by using equidistant time grids with the same number of
time steps.

2TCompare [2]. At this point, we want to mention that ARENSTORF showed the existence of such orbits by
analytic continuation of parameterized two-body problems for which the exact solutions (conic sections)
are explicitly known.

ZIntegration from to = 0 to T := 17.065216560157960, where T is the period of the corresponding exact
orbit.
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Figure 4.23: The “exact” ARENSTORF  orbit (corresponding  initial  value
(a:l(O), x2(0), 41(0), ig(O))T = (0.9940, 0.0,0.0, —2.001585106379080) T,
period T' = 17.065216560157960) given by 100000 real-valued equidistant steps
of DopPri5 (5-th order eRKM, solid), approximation by 100000 equidistant
real-valued steps of the explicit EULER method ¥ (dotted) and real part of
the approximation by 50000 (2 “micro” steps for each “macro” time step, this
is, kK = 2) time steps of the complex explicit EULER method (dashed) induced
by Tl-
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Outlook

“Thinking outside the boxr.”

English idiom

In the present chapter, we would like to conclude briefly the various ideas and results
derived in the previous parts, point out some possible next steps to extend them and
mention some further worthwhile topics we have not dealt with.

Continuity and Dynamic Geometry

After we modeled continuous dynamic geometry, we proved the existence as well as some
kind of uniqueness of CDGSs corresponding to an algebraic construction and an associ-
ated given regular starting instance. By doing so, it has become apparent that continuous
dynamic geometry and complex analysis are closely related. For instance, the entire ar-
gumentation relied on the fact that the movements of the free elements of an underlying
construction are restrictions of appropriate holomorphic functions. In addition, we showed
that only finitely many differentiable maps are not sufficient to achieve continuity in general.

Up to here, we have not studied movements that are induced by meromorphic functions.
What is about them? In Lemma 2.9, we showed that even coordinates from a certain class of
meromorphic functions, this is, functions without essential singularities, induce a continuous
behavior in a suitable projective space. This observation gives rise to the assumption that
also movements that are induced by this class could admit the construction of CDGSs.

Another interesting question concerns geometric operations. We concentrated on alge-
braic operations and proved that the output of a geometric operation under an h-movement
must not be finite differentiable. So, there might be a larger class of such operations allowing
the construction of CDGSs.

Apart from this, a topic that we have not yet mentioned, but is worthwhile to mention,
is the measurement of distances and angles. On the first sight, it may seem that metric
properties and projective geometry are two completely incompatible concepts. Although,
appearances are often deceiving and first impressions are anything, but accurate, many
mathematicians are still convinced by this deception, which is best described by a popular
quote from [27, p. 138]:

“Es [die Formel von LAGUERRE]| blieb aber lange unbeachtet, vermutlich weil
sich die Geometer an den Gedanken gewohnt hatten, dafi Metrik und projektive
Geometrie in keiner Beziehung zueinander sténden.”

The stated quote traces back to FELIX KLEIN, who is one of the persons CAYLEY-KLEIN
geometries?® are named after. These geometries are the mathematical theory that embeds
among others Euclidian, hyperbolic or elliptic metric in projective geometry in a natural
way.

2The interested reader is referred to [46].
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Complexity and Dynamic Geometry

As a first step, we transferred continuous dynamic geometry, and thus also the Reachabilty
Problem in Dynamic Geometry, to a setup that was based on a generalization of straight-
line programs. Consequently, we did not only admit the arithmetic operations in SLPs,
but also roots and logarithms. It turned out that analytic continuations along a fixed path
of holomorphic functions that described the behavior of an SLP around a regular starting
instance induce a continuous evaluation of this SLP along the path used for the analytic
continuation. Throughout the rest of the chapter, we proved several lower complexity
bounds on weakened variants of the Reachabilty Problem concerning SLPs. Thereby, we
either bounded the length of the underlying path or specified its topological shape.

Due to this fact the Reachabilty Problem over the complex numbers C in Dynamic Ge-
ometry as well as for SLPs is still open. This is even true, if one only allows operations
from the sets QU AD or quad, respectively.

Apart from lower complexity bounds, upper bounds might be interesting as well. Al-
though, there have been proved some of them in [12], they are still far away of existing
lower bounds even over R.

This also holds for the second decision problem that arises in dynamic geometry, this is,
the so-called Tracing Problem. In addition, lower complexity bounds of this problem have
only been established for relatively easy sets of allowed operations (see [48]).

Geometry and Numerical Integration

Applying geometric ideas to numerical integration of ordinary differential equations enabled
us to increase the order of convergence of an underlying method due to a superconvergence
effect, which occurred in the presence of certain complex time grids. In addition, this
approach provided a geometric access to an entire class of composition methods.

Our studies in this field were originally triggered by detouring singularities in this con-
text, while the gain of convergence appeared as a side effect. However, staying away from
singularities also reduces the resolution of an adaptive step size controlled method and thus
the computational effort as well. For this reason, the detection of singularities could be
used to adapt the remaining path of integration in a beneficial way. On the one hand,
singularities lying on the path can be detoured, while on the other hand, the path can be
chosen so that the distance of it to nearby lying singularities is optimized in a certain sense.
Several approaches in order to detect nearby lying singularities have already been discussed
in [8, 9].

Besides the computational effort that one can gain by using complex detours, there is
at least one interesting implementation-related issue as well, i.e. the problem of tracing.
During a computation, one has to ensure that the used method reflects the analytic char-
acter of the function it approximates. As a result, the correct branch must be chosen in
each computation step in each iteration. So it would be nice to have a software package
that provides this feature automatically, in other words, a package containing primitive
operations that have got a history to choose self-controlled the correct branch with respect
to the previous computations. A corresponding java library has already been developed by
MICHAEL SCHMID and the author.
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