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Abstract

The precise adjustment of the structural and, thus, mechanical properties of living
cells is essential for their functionality. These properties are mainly attributed to the
cytoskeleton, a complex polymer network spanning the cytosol. Main constituents are
the semiflexible actin filaments and numerous actin binding proteins (ABPs) which
organize the filaments into a variety of higher order structures, ranging from networks
of homogeneously crosslinked filaments to networks of small bundles of well-defined size
or even very thick bundles and clusters build of hundreds of filaments.

The present work explores some remarkable mechanical and structural features of
the actin network using in vitro actin model systems. The first series of experiments
addresses the question of size control in actin bundles. In vivo, the functionality of cells
relies on a tight control of cytoskeletal structures which is obtained by a fine tuning of
the ABPs. Each cellular process features its individual set of ABPs resulting in a well-
defined bundle width, optimized for this process. The size limiting mechanism remains
elusive. In wvitro, microscopy experiments revealed a finite size of reconstituted actin
bundles formed by the ABP fascin. Motivated by these findings, small angle X-ray
scattering experiments (SAXS) are performed on actin/fascin and actin/espin bundles
to explore the microscopic structure of the bundles. It is shown that the filaments are
arranged on a hexagonal lattice. Moreover, the SAXS data reveals an overtwist of the
individual filaments in the bundle to adapt the helical symmetry of the filaments to the
hexagonal arrangement in the bundle. The mismatch between the native actin helix and
the hexagonal packing is discussed as a possible size limiting mechanism. Furthermore,
a combination of different ABPs is shown to build larger bundle structures as observed
1 VIvo.

The dynamic properties of the actin cytoskeleton are in the focus of the second part
of the thesis. The tight control of assembly and disintegration of actin structures is
an essential feature of cellular processes as e.g. cell migration. While various pro-
teins are known to accelerate the polymerization or disintegration of actin filaments,
the insight in the mechanisms guaranteeing the kinetic stability of the cytoskeletal
structures remains relatively scarce. Multiple depolymerization methods demonstrate
that crosslinking and bundling proteins effectively suppress actin depolymerization in
a concentration dependent manner. Even the actin depolymerizing factor cofilin is not
sufficient to facilitate a fast disintegration of highly crosslinked actin networks unless
aided by molecular motors. This is postulated to be a generic effect for all ABPs which
bind at least to two actin subunits. The presented results indicate that crosslinking
ABPs do not only guarantee for the mechanical stability of a cell but also provide a
powerful tool to stabilize distinct actin structures.

A third series of experiments addresses the mechanical properties of actin networks
subjected to large external forces. It has been proposed that cells harness the nonlinear



response of the semiflexible actin network to rapidly adapt their local properties. The
underlying physical mechanisms of the nonlinear response is still elusive. The simplest
model system with yet challenging complexity is a purely entangled actin solution.
Using a variety of different macro-rheological techniques, this work characterizes the
nonlinear response of such systems. In contrast to previous publications, the nonlin-
ear response is not found to be described by a universal power law determined by the
entropic stretching of the filaments. Rather, a continuous transition from a regime of
stress hardening to stress weakening is reported, dependent on various network parame-
ters like temperature, salt concentration or filament length. These results are discussed
and qualitatively explained by the recently introduced glassy worm-like chain model.

Cytoskeletal networks exhibit an enormous wealth of features in structure and dy-
namics. The combination of the different experimental approaches covering all the
relevant length and time scales presented in this thesis allows the investigation of the
underlying principles governing cytoskeletal processes. Further, reconstituted actin
networks can not only help to unravel the complexity of cellular organization but may
also serve as a model system for self-organizing systems.
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Chapter 1
Introduction

The cytoskeleton of eukaryotic cells is a complex polymer network which maintains the
shape of the cell like a scaffold. Beyond the simple determination of the cell morphol-
ogy, it provides mechanical stability and integrity when an external force is exerted.
Furthermore, it plays an important role in dynamical processes as cell motility, cell
division or even intracellular transport, to state just a few of its most prominent tasks.
The basic modules of the cytoskeleton are three major classes of biopolymers: inter-
mediate filaments, microtubuli and actin. The actin network governs the mechanical
properties of the cell to a large extent. This present work is centered on its experimental
characterization.

Besides these basic polymers, there exists a myriad of accessory proteins which or-
ganize the filaments into higher order structure. The broad range of requirements to
the cytoskeleton is matched by the diversity of these "helper molecules": they can
crosslink, bundle, sever, cap, branch or stabilize the filaments and also anchor them to
other cellular structures as the plasma membrane. Dependent on the combination of
the attached actin binding proteins (ABPs), the network assumes very different shapes
as depicted in fig. 1.1: stress fibers are embedded in the actin cortex spanning through
the cell, the lamellipodium forms a two-dimensional dense network at the leading edge
of the cell while spike-like structures as microvilli, stereocilia or filopodia protrude the
cellular membrane.

The variety of actin structures relies on a fine tuning of the ABPs; each cellular
process features its individually adjusted set of proteins [1]. The mechanical properties
of actin bundles are modulated by a change of crosslinker type or concentration. How-
ever, the question remains how the cell develops the morphology of these structures
in vivo. What mechanism does control the well-defined lengths or thicknesses of these
bundle structures? Loss of one of the ABPs usually affects either the organization or
the thickness of the bundles [2, 3|; mutations often result in diseases [4, 5].

Actin structures are not stable over time. Opposing to the term "skeleton" the
cytoskeleton is not a fixed scaffold but highly dynamic. This corresponds to the need
of the cytoskeleton not only to guarantee for mechanical stability but also to allow for
a morphological reorganization during cell movement or division. In this, the dynamic
properties of the cytoskeletal filaments are of particular importance. Assembly and
decomposition of cytoskeletal structures are ever on-going, while stress bearing elements
stay intact.

These conflicting demands reflect the complexity of the cytoskeleton: The network
must not be a rigid frame to fulfill the dynamic needs of the cell but it has to be able to
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Figure 1.1: Schematic representation of different cellular actin structures: Stress fibres are an-
tiparallel bundles spanning the cell. They are embedded in the actin cortex, a homogenously
crosslinked network which provides mechanical support for the plasma membrane. At the lead-
ing edge of the cell, the lamellipodium forms a dense, two-dimensional network. Filopodia are
parallel actin bundles which extend beyond the lamellipodium, protruding the cell membrane.

withstand external forces without disrupting it. This cushioning of sudden mechanical
impacts is assured by a combination of elastic stiffening and viscoplastic kinematic
hardening [6]. Former investigations have shown that prestressed actin networks reflect
these mechanical properties [7|. However, the precise molecular mechanism underlying
this stiffening could not be identified.

A common strategy for tracing back the diverse features of the cytoskeleton to the
properties of its elementary constituents is to reassemble the system step by step from
simpler subunits [8]. This in vitro reconstitution of the actin cytoskeleton is an impor-
tant step towards systematic and quantitative studies of cell organization. The type
and concentrations of the ABPs and the filament density can be tuned independently
from each other. The approach allows to investigate one by one how biochemical or
physical parameters like the salt concentration or ambient temperature influence the
biophysical properties of cytoskeletal networks. Hence, functional modules of increasing
complexity are adequate model systems promoting the understanding of living matter.

This work explores some remarkable features of the actin network using in wvitro
actin model systems. First, the actin and the related proteins used in this work are
introduced briefly (chapter 2). Chapter3 gives a short theoretical introduction to the
diffraction on helical molecules. This technique is used in chapter 4 to analyze the mi-
croscopic structure of actin bundles to address the question of size limiting mechanisms
in actin bundles. In chapter 5, the influence of ABPs on the depolymerization kinetics
of actin filaments is investigated. The mechanical properties in the nonlinear regime
of entangled actin solutions are in the focus of chapter6. Using a variety of different
rheological approaches, it is shown that the nonlinear response is very sensitive to ex-
perimental conditions including temperature, actin and salt concentration, and even
filament length. The outlook in chapter 7 demonstrates that in vitro actin networks are
not only a powerful tool to gain insights in cellular mechanisms but are a well-suited
model system for other physical objectives, e.g. self-organizing processes.



Chapter 2
Materials

Actin is the key component in the cell cortex and the cytoskeleton and therefore an
essential element for structural and mechanical processes in eukaryotic cells. A large
number of actin binding proteins effect the structural organization as well as the poly-
merization kinetics of actin filaments. This chapter gives a short overview of the most
important properties and functions of actin (sec.2.1) and the actin binding proteins
(sec.2.2) used in this work. Furhermore, a section on preparation and storage of the
individual molecules completes the chapter (sec.2.3).

2.1 Actin

Actin, one of the principal components of the cytoskeleton, is the most abundant in-
tracellular protein in eukaryotic cells. Monomeric actin is a globular protein (G-actin)
with a molecular weight of 42kDa (Fig.2.1(a)). In the presence of adequate salt con-
ditions actin can polymerize above the critical concentration c.i; into helical filaments
(F-actin). The polymerized actin filament has a linear charge density of Ay ~ —4¢/nm
[9].

The structure of the F-actin helix could so far not be resolved on an atomic level.
However, it was possible to crystalize monomeric actin and its atomic structure could
be determined [10]. In fiber diffraction experiments it was possible to derive a model
of the F-actin helix based on the monomeric crystal structure [11]. The F-actin fila-
ment was modeled as a helical arrangement of unperturbed G-actin monomers. The
model was fitted to fiber-diffraction data by varying the helical symmetry, monomer
spacing, three-dimensional monomer orientation and monomer radial position. The
native F-actin helix was thus determined to have a monomer distance of 27.6 nm and
a helical symmetry of -13/6 , i.e. the structure repeats exactly after 6 turns and 13
monomers [11]. The negative sign indicates a left-handed helix. As the offset angle is
approximately 166°, the filament appears as two right-handed steep helices which twine
slowly around each other (Fig.2.1(b)). Recently, it was possible to derive a high res-
olution structure of an actin filament using X-ray fiber diffraction intensities obtained
from highly oriented F-actin solutions [12]. It revealed that the monomer flattens in
the transition to the filamentous state due to a rotation of two subdomains. Thus,
the filament diameter is smaller than in the original Holmes model, but quite close to
recently revised models [13]. The determined symmetry of -331/153 is in very good
agreement with the former model.
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Figure 2.1: (a) Crystal structure of the G-actin monomer [14]. The four domains are labeled,
the bound ADP is colored black. (b) Simple model of the actin filament (c) 4-bead model
of the actin filament. The four different spheres correspond to the four domains in the actin
monomer as indicated in (a).

actin  radius of gyration helical radius offset angle pitch along helical axis

domain a[nm] r[nm] »[°] z[nm)]

I 1.681 2.833 56.92 0.879

II 1.053 2.142 69.85 3.252
I11 1.492 1.380 0 0

v 1.426 1.510 -34.41 2.358

Table 2.1: Coordinates of the 4-bead model according to [15]

Certainly, it would be very complex to model the diffraction pattern of a 42kDa
protein on the level of individual atoms. A widely-used simplification is the 4-bead
model of Al-Khayat et al. [15], where each subdomain of the actin monomer is modeled
by a solid sphere (Fig.2.1(a) and (c)). The size of each sphere is determined by the
radius of gyration, and the position corresponds to the center of mass calculated from
the Holmes atomic model. The coordinates and radii are listed in table 2.1.

Due to the orientation of the monomers in the filament, actin filaments are polar.
Hence, the assembly kinetics are different at the two ends; the faster growing end is
called barbed or plus end, while the other one is called pointed or minus end. The
critical concentration under ATP conditions is lower at the plus end than at the minus
end; the exact value is highly dependent on the buffer salt concentration and is in the
range of cerip = 0.1 — 3 pM for the plus end [16]. At intermediate monomer concentra-
tions between the critical concentration of the two ends, the plus end grows while the
minus end shrinks. The steady-state at which the speed of growth at the plus end is
the same as the shrinkage at the minus end is termed treadmilling, a process driven
by a continuous ATP hydrolysis. This dynamic behavior of actin filaments (and the
whole cytoskeleton respectively) is essential for the motility of cells, their ability for
morphological reorganizations and cell division [17, 18|.

2.2 Actin Binding Proteins

Depending on the exact definition, there are between 60 and 200 types of actin bind-
ing proteins (ABPs) which have different effects on polymerization kinetics, structural
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organization of the filaments or anchoring of the network to the membrane to name
just a few (see [19] for a review). For instance, actin binding proteins can sever, cap,
crosslink or bundle actin filaments. By the local activation of such ABPs, cells have a
powerful tool to manipulate their microstructure and their micromechanical properties
and thus to adapt their local properties to the diverse tasks in a cell.

An important control parameter in the investigation of reconstituted actin networks
is the molar ratio R between the ABP and actin concentration, R = cap/Cactin- In
some cases, it is even necessary to consider the relative concentration of actually bound
ABPs, R*, regarding the equilibrium dissociation constant Ky:

1 K, Ky \2
R*== <1+R+ d)—\/(1+R+ d) — 4R (2.1)
2 Cactin Cactin

Deviations of R* from R become apparent at high R values or low actin concentra-
tions, thus for comparing results at different actin concentration or for different values
of Kq it is import to transfer R into R*. A derivation of expression (2.1) can be found
in appendix A.

2.2.1 Crosslinking Proteins

There is a myriad of actin binding proteins which can crosslink adjacent filaments and
thus organize them into a variety of different structures ranging from a homogeneously
crosslinked network of single filaments over a network of small bundles of well defined
size to very thick bundles and clusters. Fig. 2.2 provides an overview of the crosslinker
used in this work and the resulting actin network structure.

Fascin is a relatively small actin crosslinking protein with a molecular weight of about
55 kDa. It is mainly found in dynamic, cortical cell protrusions like spikes, filopodia or
oocyte microvilli and, thus, it plays a major role in cell migration [20]. In vitro, fascin
organizes (above a critical concentration) actin in a network of very straight, parallel
bundles where no single filament can be observed (fig. 2.2(a)) [21, 22].

The addition of espin (MW ~ 30kDa) results in a similar network architecture as
that caused by fascin (fig.2.2(b)): Espin, too, forms long, straight and parallel actin
bundles. In vivo, espin is located in parallel actin bundle structures such as brush border
microvilli and hair cell stereocilia [1]. Although the structure is not yet resolved, espin
is thought to be an asymmetric molecule with a Stoke’s radius of about 3.4nm |23].

Monomeric vertebrate filamin has a high molecular mass of about 260 kDa and can
associate at its C-termini to large, flexible dimers (fig. 2.2(d)). Filamin is omnipresent
in cells: It is found in stress bearing structures like the contractile ring and stress fibers,
but is also reported to be involved in signaling processes [24]. Below a certain threshold
concentration, filamin crosslinks actin filaments into an orthogonal network, above this
concentration filamin builds actin bundles [25]. In contrast to fascin and espin, these
bundles are curved and branched. The filaments are no longer parallel (fig.2.2(d)).
Bundle network formation results in a kinetically trapped structure where internal
stresses in the bundles are present. The local network structure depends on distinct
connection events during polymerization and is thus dependent on the polymerization
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Figure 2.2: Overview of the used crosslinking proteins and the resulting network structure:
(a) Fascin is a small crosslinking protein which forms long and straight actin bundles. (b)
Similar to fascin, espin is a rather small crosslinking molecule and also results in straight
and parallel actin bundles. (c) x-actinin consist of two antiparallel strands with a calponin
homologue actin binding domain and spectrin-like spacers. It builds complicated branching
bundle structures which depend sensitively on protein concentrations and preparation history.
(d) Filamin is a large dimeric molecule with a binding domain similar to «-actinin and 24 ig-
domains interrupted by one or two hinges. The bundles are highly curved and form branches.
(e) HMM, a fragment of myosin II, contains the head domains and the coiled coil region where
the two heavy chains dimerize. In the rigor state (without ATP), HMM can form interfilamental
crosslinks but does not bundle. (f) Tropomyosin is a coiled coil dimer which binds end to end to
actin filaments. Both, HMM and tropomyosin, result in a homogenous single-filament network
— crosslinked or entangled, respectively. The networks are polymerized at ca = 3uM and in
the presence of the respective crosslinker at R = 1. For the single filament network ((e) and
(f)), only 1% of the filaments is labelled. The scalebars denote 20 pm.
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velocity [26]. As a consequence, filamin bundle networks cannot be pipetted without
destroying the network morphology.

x-actinin is the most prominent actin bundling protein in stress fibers. The o-
actinin molecule is composed of two identical anti-parallel peptides with a molecular
mass of about 120kDa (fig.2.2(c)). Caused by the EF-motifs, the binding activity is
calcium and temperature dependent. Similar to filamin, a-actinin builds an orthogo-
nally crosslinked actin network at low concentrations; increasing R leads to bundling
of actin. These bundle networks are — as in the case of filamin — not equilibrated and
the local structure depends on the preparation history [27].

Heavy meromyosin (HMM) is the larger subfragment obtained by chymotrypsin di-
gestion of the molecular motor myosin II [28]. HMM contains the ATPase region and
the actin binding center of the motor while the light chains responsible for myosin II
assembly are removed, thus inhibiting the formation of filamentous structures as found
in vivo (fig.2.2(e)). In the absence of ATP, HMM molecules bind to actin filaments
in the rigor state and thus can act as a crosslinking molecule by forming interfilamen-
tal crosslinks beside decorating single filaments. These networks were shown to be
homogeneously and isotropically crosslinked without any embedded bundle structures
[29].

Tropomyosin is not an actin crosslinker in the basic sense. Tropomyosin is an alpha-
helical coiled coil dimer which binds to the side of actin filaments spanning over six
to seven actin subunits along the filament (fig. 2.2(f)) [30] . In wivo, it regulates the
interaction of the filaments with myosin in dependence of the Ca?* concentration. Due
to its disability to form interfilamental crosslinks, actin/tropomyosin networks consist
of single, entangled actin filaments.

2.2.2 Filament Length Influencing Factors

Beside the actin crosslinking proteins, there are various ABPs that influence the fila-
ment length or polymerization properties.

Latrunculin is an actin binding toxin produced by various sponges. It binds to G-actin
monomers near the nucleotide binding cleft between subdomain IT and IV and thus
prevents conformational changes in the actin monomer necessary for polymerization
[31]. This results in depolymerization of actin filaments without interactions with the
actin filaments and accompanied changes in the polymerization /depolymerization rates.

Gelsolin (MW = 82 — 86kDa) consists of six homologous subdomains and is one
of the most potent actin filament severing proteins [32]. It severs pre-existing actin
filaments and caps them, thus preventing polymerization at the plus end. Beside this
F-actin interaction, there are two G-actin binding sites. Paradoxically, this leads to a
nucleating activity of gelsolin under polymerizing conditions stimulating actin filament
formation. The relation between gelsolin concentration and actin filament length in
vitro is given by [33]:

1
L) = S70ReA "

Another actin disassembling protein is cofilin (MW = 15kDa). The precise mecha-
nism by which cofilin interacts with actin filaments is diverse and still under discussion

m (2.2)
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[34]. It has not only been reported to sequester actin monomers preventing polymer-
ization but also to increase depolymerization kinetics by two mechanisms: increasing
the depolymerization rates [35] and severing actin filaments [36-38].

2.3 Protein Purification

Actin Preparation

G-actin is obtained from rabbit skeletal muscle by a modified protocol of [39], where
an additional gel filtration (Sephacryl S-300 HR) as well as an additional polymeriza-
tion-depolymerization step is carried out. The actin is stored in lyophilized form at
—20°C [39]. For measurements, the actin is dissolved in water, dialysed against G-
buffer (2mM TRIS, 0.2mM CaCly, 0.2mM DTT, 0.005%NaNs, pH8) , stored at 4°C
and used within ten days after preparation. Polymerisation was induced by adding 10-
fold F-buffer (20 mM TRIS, 20 mM MgCly, 2mM CaClg, 2mM DTT, 5mM ATP, 1M
KCl, pH7.5). For fluorescence microscopy and stabilization against depolymerisation,
the filaments were labelled with TRITC- and Alexad488-phalloidin, respectively. If
the filament dynamics were in the center of interest, the individual monomers were
labelled with the amine-reactive dye Alexa Fluor 555 carboxylic acid succinimidyl ester
(Invitrogen A20009). Therefor, G-actin is dialyzed against Borat-buffer (50 mM boric
acid, 0.2mM CaCly, 0.2mM ATP, pHS8). After polymerization induced by addition
of 10-fold polymerization buffer (100 mM Imidazol, 10 mM ATP, 30 mM MgCls, 2mM
CaCly, 0.05% NaNg, pH7.2) the dye (dissolved in DMSO) is added in 1-2 fold molar
excess. After centrifugation the pellet is resuspended in G-buffer and dialyzed against
G-buffer. The sample is clarified by centrifugation and the supernatant is stored in
lyophilized form at —20°C. A degree of labelling of about 20 % is achieved and used for
all microscopy experiments. For pyrene assay experiments, the actin is labelled with
pyrene by a modification of the method of [40] as described in [41].

Preparation of Actin Binding Proteins

Recombinant human fascin is expressed in E. coli BL21-codon™ bacteria by a modi-
fication of the method of as [42] described before [21]. Human espin 3A is expressed
in bacteria and purified as described in [43]. Muscle filamin is isolated from chicken
gizzard and further purified as reported in [44]|. o-actinin is isolated from turkey giz-
zard smooth muscle following [45|, dialyzed against G-buffer and stored at 4°C for
several weeks. HMM is prepared from myosin II by chymotrypsin digestion and tested
using motility assays as in [46]. Tropomyosin troponin is prepared from the residue
of rabbit muscle acetone powder left after the actin extraction [39] and separated into
tropomyosin and troponin by hydroxyl apatite column chromatography [47].
Latrunculin B (Sigma-Aldrich) dissolved in DMSO (5 mM) is stored at —20 °C. Prior
to use, it is diluted to 500 M in G-buffer without ATP. Gelsolin is obtained from
bovine plasma serum as reported in [48|. Dictyostelium discoideum cofilin is expressed
as a GST fusion protein in E.Coli DHb5alpha cells. The GST tag is removed by cleavage
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with the factor Xa and cofilin is stored in 10 mM Tris, 0.2 mM CaClsy, 0.2mM DTT,
pHS.






Chapter 3

Diffraction on Arrays of Helical
Molecules

X-Ray diffraction is the most powerful technique currently available for studying the
structure of large molecules or assemblies of molecules. If it is possible to crystallize the
protein, X-ray structure analysis yields the complete secondary and tertiary structure
at a level of a few A. Even if no crystal is available, Small Angle X-ray Scattering
(SAXS) still provides a wealth of structural information. Though it is insufficient to
determine the structure uniquely, this information can provide in many cases decisive
tests of structural models. Concentrated gels of helical molecules, for example, can
be analyzed in so-called fiber diffraction experiments to obtain information about the
mutual arrangement of monomers in the bundle and the alignment of the fibers.

In this chapter, a short theoretical description of the diffraction on solutions of helical
molecules is given. The first section provides a brief introduction to the basics of a SAXS
experiment and a definition of the variables used in the theoretical description. Section
3.2 describes the scattering by an isolated helical molecule, starting from a continuous
helical line extending to a "real" helix, including discontinuity along the helix and
the structure of an individual monomer. Section 3.3 presents how different types of
assembly of the filaments and their diffraction pattern are modeled. A discussion how
continuous twisting and stretching of the helix will change the diffraction pattern is
given in section 3.4.

The present chapter is limited to the theoretical description necessary for the evalua-
tion of the scattering pattern by F-actin bundles in section 4. An easily understandable
introduction is provided in [49], a quite detailed derivation can be found in [50].

3.1 Basics of SAXS Diffraction

In order to understand X-ray diffraction experiments one must understand how X-
rays interact with the electrons in the atomic shells in a sample. There are a lot
of different approaches to the theory of diffraction in nearly all solid state physics
textbooks. This brief introduction omits several second-order complications to focus
on the essential features of the method: Atoms are treated as motionless, X-rays are
treated as monochromatic, even though a distribution of wavelengths is always used
in practice, the polymers (or crystals) are treated as perfectly ordered (at least in the
beginning), even though they may be ordered only in local domains, and so on.

11
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(a)
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(b)
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Figure 3.1: Basic geometry of a X-ray scattering experiment: (a) X-ray scattering on a single
electron at the origin and (b) an electron located at position r relative to the origin with the
same angle of deflection 26. The path length difference is indicated by the green lines. (c)
Geometrical representation of the scattering vector q . (d) Arrangements of kg and k which
lead to minimal and maximal values of |q|.

Like all other photons, X-rays can be treated by electromagnetic waves described
A = Ageltkr=et) (3.1)

where k is the vector of propagation direction with length |k| = 27” The geometry of a
scattering experiment can be described by placing the sample (or rather the scattering
electrons) at the origin (Fig. 3.1(a)). In a classical picture, the incoming plane wave
accelerates the charge, which emits its own radiation at the same wavelength (elastic
scattering, |ko|=|k|) in the form of a spherical wave. If the distance to the detector
is much larger than the wavelength, the spherical wave arrives as a plane wave at
the detector position. The absolute radiation intensity can be computed by proper
consideration of the quantum mechanics of photons interacting with matter.

However, X-ray scattering relies on the interference patterns that are created by a
regular array of scattering centers. The relative phase difference in the spherical waves
arriving at the detector can be obtained by moving the electron by a vector r away
from the origin (Fig. 3.1(b)). For large sample-detector distances, the scattering angle,
20, can be regarded as identical as for the electron at the origin. The difference arises
in the path length which can simply be calculated to be kr — kor = (k — ko)r. It is
convenient to define the momentum transfer from the X-ray radiation to the electron,
the so-called scattering vector, q = k—kg, which plays a great role in diffraction theory
(see Fig. 3.1(c) and (d)). The length of of the scattering vector is

q = 4m|sinf|/A (3.2)

and varies from 0 to 47 /\. Thus, the vector q is described in a finite coordinate system
in which each axis has the dimensions of a reciprocal distance. This coordinate system
is called the reciprocal space.

As one is interested in the effect of relative electron position, the structure factor,
F(q), is defined by the phase shift obtained relative to the scattering on an electron
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3.1 Basics of SAXS Diffraction

at the origin. Moving the electron to a position r causes a phase shift of qr; thus, the
structure factor is given by F(q) = !9,

A sample with many heterogenous scattering sites has a structure factor which is
simply the sum over many individual structure factors, each weighted with an atomic
scattering factor f;, which is a measure of the scattering amplitude of a wave by the

isolated atom:
Fla)=)_ fe'™ (33)
J
In the limit of a continuous electron distribution p(r), this sum becomes the integral

= /drp(r)eiq” (3.4)

which is exactly the Fourier transform of the electron density p(r). Thus, the observed
diffraction pattern of a sample is the Fourier transform of the electron density of the
sample.

The Structure Factor of an One-Dimensional Array

Before calculation of the structure factor for a helical molecule, let us first consider the
more basic example of a row of 2N + 1 identical atoms, in which the central atom is
located at the origin and the atoms are separated by the distance c¢. Thus, the position
of the n'® atom in the array is nc. The structure factor of this array is according to
(3.3):

Fiot(q Z enae (3.5)

where f(q) is the form factor of the atoms. This geometric series can be rewritten into

e—iNq-c(l _ ei(2N+1)q-c)

Fot(a) = f(a) 1 _ cia<c (3.6)
sin (N +3)q-c) 57
sin (%q'c) (3.7)

As N becomes large, the intensity tends to zero everywhere except where q-c is integral
which is called the Laue condition.

Assuming now — without loss of generality — ¢ || z, it follows in the limit of large
numbers of atoms N (see [50]) and neglecting constant prefactors

sin (N +3) CQz Z 5(%_%) (3.8)

N—oo sin ( cqz

n=—oo

The scattering amplitude of an one-dimensional array with spacing c is thus finite only
in planes perpendicular to ¢ with spacing 2“ in the reciprocal space. This feature of
the so-called layer lines persists in the pattern by any assembly of chain molecules in
which the periodicity is preserved.
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Chapter 3 Diffraction on Arrays of Helical Molecules

3.2 Diffraction on a Helical Molecule

Helical molecules are ubiquitous in biological systems: DNA, a-helical proteins, colla-
gen or F-actin, to mention just a few of the most prominent examples. The diffraction
pattern of a solution of such polymers reflects several contributions: firstly, the scat-
tering from each individual molecule of the polymer, secondly the intermolecular scat-
tering governed by their helical arrangement, and finally the influence of the packing
of polymers: common types of assemblies include crystalline packing, alignment along
the axial direction or an amorphous solution. To obtain structural information of self
assemblies containing helical molecules, it is first of all necessary to understand the
expected diffraction pattern caused by the helical nature of the molecules themselves.
This section deals with the scattering on an ideal isolated helical molecule which has a
certain symmetry and consists of a very large number of residues, which may be taken
as infinite. As one is interested rather in relative intensities than the absolute values,
constant prefactors are often neglected.

3.2.1 The Fourier Transformation in Cylindrical Coordinates

Due to their circular symmetry it is most convenient to describe the structure factor
of helical molecules using the cylindrical coordinate system instead of the cartesian
coordinates. The Fourier transform is then given by:

o) 2 0o
—/ dz/ dl/)/ rdrp(r)ei(’”qrCos(w*‘lj)“qz) (3.9)
—00 0 0

The following relations between cartesian and cylindrical coordinates in real and recip-
rocal space are used:

r=rcosyy y=rsiny z=z (3.10)
@z =qrcosV gy =¢qrsin¥ ¢, =gq, (3.11)
Assuming a periodicity in z with length ¢, the electron density distribution p(r)

can be described as convolution of a one-dimensional array along z and the density
distribution of the unit cell:

p(r) = puc(r) 25 (z —nc) (3.12)

The scattering amplitude can be calculated using equation (3.8) and the convolution
theorem, which states that the Fourier transform of a convolution is the pointwise
product of Fourier transforms

F(q) = FT[puc(r)] - FT[6(x)é(y) Z 6(z = nc)]

= FT[puc(r Z 5 <Qz —~ m) (3.13)
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3.2 Diffraction on a Helical Molecule

Combining equation (3.9) and equation (3.13) reveals
92 c 2 o) ) o
F(qr,qb,ﬂ) :/ dz/ d\Il/ Tdrpuc(r)ez(rqrCOSW_\I’HZ%) (3.14)
¢ 0 0 0

3.2.2 The Structure Factor of a Continuous Helical Line

Let us consider first the Fourier transform for a continuous helix of radius g and pitch
c. The z coordinate in the helical unit cell is proportional to ¥: z = 1c/27. Assuming
the electron density to be unity along the helix, the distribution is given by the product
of two é-functions:

peh, = 0(r —10)0 (z - g;) (3.15)

A continuous helix is periodic along the helical axis, the structure repeats exactly
after the pitch c¢. Thus, its structure factor can be calculated using equation (3.14)

2 C 27 oo . ™
Fo(gr ¥, 720) = / dz / dy / rdré(r — r0)5 <z—”‘”c> erar cos(U—)+2252)
c 0 0 0 2
2w
N / diprei(roar cos(B—0)+n) (3.16)
0

This integral resembles the Bessel function of the first kind. The Bessel function of
n order is defined as

2
Jn(z) = (1/27i™) / lrcosyting gy, (3.17)
0

Substitution by = r9q, and y = ¥ — ¥ in equation (3.16) leads to (using the relation

;T 7i7/2 and neglecting constant prefactors)

17" =e€

2) )
Fun(gr, ¥, =) = 10"/ 1, (rog, ) (3.18)

The structure factor of a continuous helical line with radius r¢ and pitch ¢ is therefore
a set of Bessel functions, where the function of order n is positioned on a layer line at
g- = % (Fig. 3.2(a)). The first maximum of the Bessel function is shifted to higher
values of ¢, with increasing order. This results in the characteristic X-shaped scattering
pattern for a helical line as it is known for DNA (Fig. 3.2(b)).

3.2.3 The Structure Factor of a Discontinuous Helix

A discontinuous helical polymer consists of one type of molecule repeated (in first
approximation) infinitely by a screw axis of symmetry. Thus, the structure factor will
be given by

Fiot(q) = f(a)Fan(q) (3.19)
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Chapter 3 Diffraction on Arrays of Helical Molecules

1/ve

(a) (b) (c)

Figure 3.2: (a) Bessel functions which contribute to the scattering of helices. Shown are
J2(roqy) for n = 0 to n = 3. Note the continuous shift and decrease in intensity of the first
maximum with increasing order n. (b) This progressive shift results in the typical X-shaped
diffraction pattern of DNA, as can be seen in the famous Photo 51 of Rosalind Franklin [51].
(c) Distribution of the main peaks in the Bessel functions over the layer lines for an -13/6 helix
as it is expected for F-actin.

where f(q) is the monomeric form factor and Fy,(q) is the sampling function of the
helical lattice, i.e. a system of points arranged along a helical line with distance h along
the z axis . This can be described mathematically by forming the product (intersection)
of a helical line with a set of parallel planes (cf. Fig. 3.3)

pdh(rawvz) = pch(ra¢72)ppp(r7¢vz) (320)

According to the convolution theorem, the structure factor of a discontinuous helix
can be calculated by convolution of the transforms of the two functions in recipro-
cal space. The transform for a continuous helix is already derived (equation (3.18)).
Furthermore, we have deduced a system of planes as the Fourier transform of an one-
dimensional array of points (cf. equation (3.8)). Following the reversibility of the
Fourier transformation, the structure factor of a set of parallel planes perpendicular to
z with spacing h is a set of points in reciprocal space with spacing 27 /h.

> 2mm o(W
FPP(QT?‘IJ>QZ) = Z 5(Qz - T)d((b‘ - QTO);())vm €L (3~21)

m=—0oQ

Using this result and equation (3.18), the structure factor of a discontinuous helix
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3.2 Diffraction on a Helical Molecule
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Figure 3.3: The discontinuous helix can be generated mathematically by forming the product
(intersection) of (a) a continuous helical line with pitch ¢ with (b) a set of planes with distance
h, corresponding to the distance of residues along the helical axis. (¢) The points of intersection
represent the position of single residue units. (d) Considering the complex structure of each
residue, the structure of the helical polymer can be described as convolution of the point lattice
as derived in (c) with the structure of one residue.

can be calculated

Fdh(QMIII7QZ):Fch*Fp =

= > o~ 2mn
=Y Y [ [ [ adadaver o mn, ogs: -

nN=—o0 m=—00

2mm 6T — g/
6(qz — ¢ — 7)5(% —q. - QTO)Q
4dro

_ i i YA/ 1 (rog, )0 (QZ — 27 (% + %))

nN=—0o0 Mm=—00

Fy, (qr, v, 27 (% + %)) = i ei”(w+”/2)Jn(roqr) (3.22)

n,m=—00

The sum is done over all values of m,n € Z which satisfy the constraint:

n - m
¢ =21 (E + ﬁ) (3.23)

Thus, several Bessel functions contribute for each layer line, instead of only one for
a continuous helix. Due to the decrease in amplitude, it is often sufficient to take into
account only the Bessel function terms up to a certain order depending on the radius
of the molecule and the distance to the meridian [52]. In the case of actin, this is in
first approximation often the lowest-order term.

Many of the helical proteins do not have an integral number of residues per turn.
However, most of them can be described as a helix with & residues in v turns. The
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Chapter 3 Diffraction on Arrays of Helical Molecules

overall structure repeats in this case after the length d = ve (cf. Fig. 3.3(c)), the spacing
between adjacent residues along the helical axis is given by h = ve/k. Substituting these
assumptions in equation (3.23) directly reveals for the layer lines a spacing of 27 /vc:

(n km> vn + km
¢ =2 -4+ — ) =2r——
c ve
27l

= —, withl=km+ovn (3.24)
ve

As k,v,m and n € Z, [ also has to be an integer.
F-actin can be described in its native state by a helical symmetry of —13/6 (see 2.1).
The selection rule results in
l=13m —6n (3.25)

In this case of a non-integral number of residues per turn, the diffraction pattern is
more finely spaced, the layer lines appearing every 1/ve. The diffraction pattern repeats
every k'™ layer line and the distribution of Bessel functions is no longer characterized
by the X-shape, but by a complex pattern described by the selection rule given in
equation (3.24). An example is shown in Fig. 3.2(c).

3.2.4 The Structure Factor of a Real Helical Molecule

The residues of a helical polymer are not sufficiently well described by a §-function
or just a single sphere. In fact, they consist of many atoms, which each form their
own helical polymers with the corresponding atoms in the other residues along the
polymer. Thus, the whole molecule can be described as a sum of many helices, which
have the same pitch ¢, but different radii r; and which are shifted by the relative
position (7,1;,2;) of each atom in the monomer. Since the structure factor is the
Fourier transform of the electron density distribution and the Fourier transform of a
sum is just the sum of the Fourier transforms of each summand, equation (3.22) is
generalized to:

27l

Fi(qr,U) = ZZ fjJn(rqu)ei(n(‘I’—wﬁﬂ/?Hsz) (3.26)
noj

where r;, ¥; and z; are the coordinates and f; the form factor of the 7™ atom.

As described in section 2.1, the actin monomer is described sufficiently by the 4-bead
model. Hence, it is not necessary to sum over all atoms in the monomer but only over
the four beads corresponding to the four domains of the monomer. The atomic form
factor f; is replaced by the form factor of a solid sphere of radius a:

4 ;3sin(ajq) — ajqcos(ajq)
fsphere,j (Q) = 77“1?’ J ( ] ]3 J (327)
GJQ)

3

3.3 Scattering on Assemblies of Filaments

Since an assembly of filaments will not generally form regular crystals, the often pow-
erful methods of conventional crystallographic analysis is in this case not applicable.

18



3.3 Scattering on Assemblies of Filaments

Figure 3.4: Crosssections of a (a) non-crsytalline, (b) polycrystalline and (c) polycrystalline
specimen with significant disorder. The small circles represent the fiber, the angular orientation
is indicated by the line.

However, in some samples, the filaments are oriented approximately in parallel along
their long axis, but randomly rotated about and shifted along this axis (Fig. 3.4(a),
e.g. the B-form of DNA). There is only a slight correlation between the positions of
neighboring filaments so that each filament scatters independently. Due to the absent
azimuthal correlation between the fibers, the cylindrically averaged diffraction pattern
of a single fiber is observed. As shown above, the diffraction patterns of such non-
crystalline specimens contain diffracted intensity distributed continuously along the
layer lines.

In some cases, the fibers organize laterally into small regions of three-dimensional
crystallinity, where the rotational orientation of the crystallites about their long axis
is random (Fig. 3.4(b), e.g. the A-form of DNA). The resulting diffraction pattern of
such polycrystalline specimens is equivalent to the pattern of one crystal cylindrically
averaged, and the scattered intensity is restricted to discrete points (Bragg points) on
the layer lines in reciprocal space.

Non-crystalline and polycrystalline ordering are the limiting cases usually observed
in fiber diffraction. A diffraction pattern which contains both, Bragg peaks and con-
tinuous intensity, indicates a more complex assembly of the molecules. Possible config-
urations are a two-phase system where quite perfect crystalline domains are embedded
in amorphous regions, or a substitutional disorder in the packing of the polymers in
the polycrystalline ordering (Fig. 3.4(c)) [53].

The diffraction pattern of such an assembly of helices includes the scattering effects
for the isolated molecule together with effects caused by deviation from the ideal molec-
ular structure due to variations in orientation, in their packing, in the size and their
mutual disposition. These effects complicate the derivation of the real structure from
the observed diffraction pattern for a solution or array of helices. The most fruitful
approach uses the comparison of calculated intensity patterns of trial models with the
measured data. Clearly then, an accurate calculation of the diffraction pattern from
the model is essential, including all effects of assembly and disorder.

3.3.1 Diffraction by Non-Crystalline Specimens

In a non-crystalline specimen, the molecules are approximately aligned in parallel,
but randomly oriented in the sample, meaning that all orientations of he real space
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Chapter 3 Diffraction on Arrays of Helical Molecules

angle ¢ appear at random. Given the typical fiber diameter of some nanometers and
the typical beam size of several hundred micrometers, the recorded intensity is the
cylindrical average of the scattering pattern of a single molecule. This is computed by
averaging the scattering intensity for an isolated fiber over the corresponding angle ¥
in reciprocal space.

Until now we have dealt with the structure factors, whereas one can measure only
the scattering intensity. For an isolated helix this is — according to equation (3.22) —

given by
Li(¢, V) = FE (3.28)
_ Z (/2 I () Z o= (WT/2) I (o)
n=—oo =—00

— ZZ‘] rOQr T Toq ) 1(n n)7'r/2 i(n—n')¥

where each sum is carried out over the values of n and n’ allowed by the selection rule
(3.24). By azimuthally averaging this equation over ¥, one derives

2
(Ii(gr)) ZZJ r0qr) I (Togr)e l("_"/)”/Q/ Aein—n)¥ (3.29)
0
The integral over V¥ is zero unless n = n’/. Thus, it follows

Il QT ZJ TOQT (330)

This is what was actually plotted in Fig. 3.2 and is shown in Fig. 3.5(a) for the polynu-
cleotide duplex poly(dA)-poly(rU), which has 11/1 helical symmetry and a trigonal unit
cell packing.

Equation (3.30) can be generalized for helices with several atoms per unit cell:

2

L oml
<Il QT’ —Z Zf] T]Qr 2(7nwj+2c 7) (331)

3.3.2 Diffraction by Bundles

A major part of this work focuses on the characterization of F-actin bundles. This
section describes how bundling effects the diffraction pattern of helical filaments. First
an ideal infinitely large array of molecules is regarded before the effects of finite size
and inaccuracy are included.

Diffraction by a Perfect Crystal

In the following, we consider helical filaments which are arranged in an ideal two-
dimensional array without any rotation or inclination. The electron density of this
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Figure 3.5: Calculated layer line amplitudes of the polynucleotide duplex poly(dA)-poly(rU),
which has 11/1 helical symmetry and a trigonal unit cell, in a (a) non-crystalline, (b) polycrys-
talline and (c)-(e) polycrystalline specimen with distinct disorder (from [54] and [53]). While
the scattering of a perfect non-crystalline sample shows the continuous layer line pattern of
the single fiber, bundling results in a splitting up in different sharp Bragg peaks. Disorder
leads to a mixed diffraction pattern with Bragg peaks superimposed on a continuous pattern:
Lattice distortion suppresses Bragg reflections at high ¢, and ¢, values (c), rotational disorder
decreases Bragg reflections in higher-order Bessel functions (d), and random screw disorder
suppresses the peaks in higher order layer lines (e).
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Chapter 3 Diffraction on Arrays of Helical Molecules

arrangement can be calculated by a convolution of the density of an individual filament
pal with the one of the two-dimensional array piattice, Which we call the disposition
function:

P = PAl * Plattice (332)

According to the convolution theorem, the structure factor is simply the product of
Fﬁl(q) and B(q) = ]:T[plattice]

F(q) = Fa(q)B(aq) (3.33)
The measured intensity is the absolute square of the structure factor:
I(a) = [Fa(a)B(a)][Fu(a)B(a)]" = Fs(a)B(a)Fu(a) B(a)"
= [F(a)Fa(a")][B(@)B(a)"] = [Fa(a)*|B(a)[ (3.34)

The simple rearrangement of the factors shows that the scattering intensity of a set
of filaments can be found by multiplication of the intensity for an isolated molecule
and the scattering intensity for a set of points specified by the disposition function.
Remember that this is deduced only on the assumption of parallel transfer of molecules
with no lateral or rotational change.

The structure factor of the filaments were calculated in the previous section; the
three-dimensional Fourier transform of a two-dimensional lattice is an array of infinite
lines arranged on the corresponding two-dimensional lattice. These transforms are in
general well known [55].

The most usual packing for helices is hexagonal, more rare is the quadratic array.
The periodicity in these packings will produce diffraction spots lined up on the equator
(I = 0). The characteristic distances between the spots are determined by the distances
appearing in the corresponding reciprocal lattice (see Fig. 3.6). The reciprocal lattice of
a hexagonal array (with lattice constant d) is again hexagonal with the lattice constant

%. In the case of a quadratic array, the reciprocal lattice is quadratic with the lattice

constant 27”. As indicated in fig. 3.6, the sequence of relative distances between the
peaks will be 1,/3,2,V/7,... and 1, v/2, 2, v/5,... for a hexagonal and a quadratic array,
respectively.

However, the bundling does not only effect the scattering on the equator. Due to
the convolution, also the layer line pattern is visible only as spots aligned along ¢, in
columns located at ¢, values which correspond to the hexagonal lattice vectors. This
results in a splitting up in several sharp peaks (see Fig. 3.5(b)).

Diffraction by a Polycrystalline Sample

In a polycrystalline specimen, several smaller crystallites are randomly oriented but
aligned parallel to the long axis of the fibers (Fig. 3.4). The shape of these objects is
not infinitely large but can be described by the shape functions ®(r) which is equal to
unity within the object and zero outside. Analogous to equation (3.32), the electron
density of such a crystallite is:

p(I‘) = pﬁl(r) * [plattice(r)q)(r)] (335)
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3.3 Scattering on Assemblies of Filaments

1 2 3413
3 47 2/34 J2 /5 3 4

Figure 3.6: Comparison of the expected pattern for (a) a hexagonal and (b) a quadratic array.
The sequence of relative distances between peaks is characteristic for each two-dimensional
lattice and is determined by the distances appearing in the corresponding reciprocal lattice.

Similar to non-crystalline specimens, averages over many crystallites with random
orientation will be regarded in a scattering experiment. As a result, the recorded
intensity is the cylindrical average of the intensity pattern of a single crystallite. Thus,
the Bragg peaks become rings in the g,gy,-plane centered on the ¢, axis. [50]

Effects of Finite Size and Coherence Length

The theory discussed so far assumed a perfect polycrystalline sample in which the
constituent crystallites are composed of structurally regular molecules of infinite length.
Furthermore, the shape of the crystallites was not included in the calculation so far.
The most important of the shape effects is the finite size of the object. It is possible
to estimate the domain size d of a bundle by fitting the peak width Aq (FWHM) of
the diffraction peak using the Scherrer-equation [56|:
0.9\

d= cos O A(26) (3:36)

Using the relation A(26) = %Aq (following from (3.2) small-angle-approximation),
this can be rewritten to

0927
CoS (%) Agq

T
1.8— .
83 (3.37)

Q

where A = 0.995 A and ¢y = 0.057 ATt (see experimental section) and thus cos (%) =

1 is used.
In very rigid bundles, where the inter-filamental correlation holds over large scales,
this domain size is a good approximation of the bundle size. In quite loose bundles, it is
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Chapter 3 Diffraction on Arrays of Helical Molecules

a measure of disorder in the lateral rod-rod positions. Note, that the width in equation
(3.37) has to be corrected for the limited resolution of the system. The measured
width has two contributions: First the contribution of finite bundle or domain size
and secondly, the resolution limitation, which are connected by convolution. For a
discussion of the resolution limit see 4.1.

The same effect of finite correlation length influences the pattern along ¢,. A real
helical molecule is not a perfect crystal, and so the measured intensity will not consist

of d-shaped layer lines. This results in a finite width of these layer lines along ¢,. It is

. . 2 .
common, to model them with Gaussian profiles exp (—7rp2 (qz — 2@—7;[) ) where p is the

coherence length of the helix along ¢, [57].

Disorder in the Bundle

The effect of disorder on the diffraction pattern is quite complicated and depends on the
kind and degree of disorder. It is convenient to classify the different types into lattice
disorders, which describes deviations in the fiber positions from the ideal lattice, and
substitutional disorders, which consists of shifts along the helical axis, orientational,
directional or screw disorder. All these types can appear as small random disorders
about a mean value, completely random displacements, switching between distinct
states or continuous shifts.

There is a huge amount of literature on the various models and their effect on the
diffracted intensity. A general expression of the intensity can be found in [50], in
[54] a detailed analysis for different types of disorder in finite crystallites cylindrically
averaged is presented. The special case of a two-dimensional raft is discussed in [58].
Here, a short overview of the most important effects is given.

As stated above, the diffraction pattern of a disordered polycrystalline sample can
be written as the sum of Bragg and continuous components,

I=1%4+1¢ (3.38)

with
P = PPz (3.39)
I = N(FP) = [(F)? (3.40)

where N is the number of fibers in the crystal. The interference function % is the square
of the Fourier transform of the infinite crystal lattice times the shape function, ®(r) (cf.
equation (3.35)), and describes the position and amplitude of the Bragg peaks. The
peak amplitudes are proportional to N2, so that the Bragg component is approximately
N times the intensity of the continuous contribution. Thus, the continuous component
contributes significantly only for small crystallite sizes.

The particular diffraction pattern will depend on the type of disorder. Fig. 3.5
exemplifies the layer line amplitudes for three different models of disorder. Lattice
distortions, which include a small normally distributed lateral and axial disorder, sup-
press the Bragg intensities with increasing ¢, and ¢., accompanied by an increase of
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the continuous intensity (Fig. 3.5(c)). Rotational and screw disorder affect the pattern
rather differently (Fig. 3.5(d) and (e)): Bragg reflections in higher-order Bessel terms
are suppressed, while peaks close to the meridian are unaffected for rotational disorder.
In contrast, random screw disorder decreases the Bragg intensities in higher-order layer
lines, but Bragg reflections persist further from the meridian [54]. In a "real" sample,
these different forms of disorder do not appear separately, but rather a combination of
them will occur. This leads to a further decrease of the Bragg intensities, dependent
on the particular degree and combination of the disorder types. This unavoidably leads
to an uncertainty in their analysis, as due to the cylindrical average, different types of
disorder can lead to the similar diffraction pattern.

It is important to note, that, while these disorders change the relative amplitudes of
the Bragg reflections and increase the continuous pattern, the peak positions remain
unaffected. As soon as the Bragg peaks are discernible contributions to the diffrac-
tion pattern, they can be used to extract information on the layer line positions, and
therefore the symmetry of the fibers.

3.3.3 The Effect of Disorientation — The Powder Average

The description so far assumed a perfectly parallel array of molecules. If the molecu-
lar axes are oriented about a texture axis in accordance with a distribution function
D(«), the Bragg reflections of a polycrystalline sample become arcs or — in the case of
completely random distribution, where D(«) = const. — rings centered on the origin of
the reciprocal space (fig. 3.7).

As simple as this problem is in general, as complicated is the correct calculation of
the scattering pattern of such a disoriented sample. Some limiting or simple cases have
been considered in literature [59-61], but a general solution is not available.

In the case of a polycrystalline sample, where the bundles are straightened but ran-
domly oriented, the diffraction pattern is affected in the same way as it is by a powder
average in classical crystal diffraction: The spots become rings with a radius which is the
same as the distance to the origin for the single spot. To calculate the one-dimensional
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Chapter 3 Diffraction on Arrays of Helical Molecules

diffraction intensity, one has to angularly average the cylindrically averaged diffraction
pattern of the polycrystalline sample by substituting g, = ¢ cos x and ¢, = ¢sin y and
integrating over Y.

The opposing case is the most highly disordered of chain molecules, which is called
the amorphous phase. In contrast to the bundled specimen, the chains in an amorphous
phase are not straightened but coiled up depending on the persistence length of the
molecule. Such unoriented specimens give a few diffuse rings with a strong background.
There is no model how to calculate the diffraction pattern, except for some crude
simplifications and assumptions about the flexibility (and thus mutual interference) or
arrangement of the filaments.

Partial Alignment

As discussed above, the success of a SAXS experiment will depend on the quality of
sample preparation, in particular in reducing the disorder and disorientation as best
as possible. A perfectly parallel alignment of filaments or bundles is experimentally
challenging. Due to the diamagnetic anisotropy of the o-helical regions of the actin
monomer, it is possible to produce highly well-oriented crystalline sols of F-actin in high
magnetic fields with a strength of >10T [62]. However, actin filaments or their bundles
spontaneously align with one another when concentrated above a certain threshold
concentration. This effect is amplified by the spatial confinement in the capillary and
the increase in persistence length for bundled networks.

This partial alignment has one important advantage over a randomly oriented sample:
It opens up the possibility to distinguish between intra-filament and inter-filament
correlation peaks. As illustrated in fig. 3.7, the inter-filament correlation peaks are
located symmetrically around the equator, while the peaks on the off-equator layer lines
do not touch the equator as soon as the partial alignment is good enough. Integrating
in the diffraction pattern wedges along ¢, will therefor contain almost exclusively inter-
filament correlation peaks.

3.4 Continuous Twisting and Stretching of the Helix

The selection rule (3.24) directly reveals that even a small change in the helical sym-
metry will drastically effect the diffraction pattern. Since the description of the twist
by k residues in v turns is "discrete", even small changes in the symmetry lead to
enormous changes in the characteristic parameters. The layer line distance d = vc for
example changes while overtwisting the actin filament by only 1° per monomer ending
up in a symmetry of -28/13 by a factor of 6/13 (= v1/v2). The redefinition of the
selection rule practically doubles the layer line density in reciprocal space (Fig. 3.8).
This discontinuity in the diffraction pattern as response to a continuous twist of the
helix complicates the analysis.

A way out of this dilemma is provided by the fact that Bessel functions of higher
order contribute only weakly to the diffraction pattern. Fortunately, it turns out that
the Bessel functions contributing the most are the same for all helical symmetries.
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3.4 Continuous Twisting and Stretching of the Helix

Moreover, also the parameter m has a corresponding conserved pattern. This is ex-
emplarily shown in table 3.1 and illustrated in Fig. 3.8 for two different symmetries.
The only layer lines which will contribute significantly to the scattered pattern in fiber
diffraction experiments will be the layer line with n = 0 positioned at the equator and
the n = %1 layer lines located at around ¢, ~ 1.2nm™!.

The continuous twisting and stretching turns [ into an inappropriate parameter. It
is more convenient to re-express [, which appears only in the calculation of the layer
line position along ¢, (see (3.24)), by using the conserved parameters n and m and the
monomer spacing h.
m+ nv/k

h

Based on this, modeled diffraction patterns can be calculated by continuously chang-

ing the helical symmetry v/k and the monomer spacing h.

q. =27 (3.41)
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y -13/6 I -28/13 \
l m n l m n
0 0 0 0 0 0
1 [-6/7]-13/15
1 1 2 2 1 2
3] -5 -11
2 2 4 4 2 4
5 | -4 -9
3 [13/-316/-7] 6 3 6
71 -3 -7
8 4 8
4| -2 -5 9 [ -2 -5
10 5 10
5 | -1 31| -1 -3
12| 6 12
6 0 -1 131 0 -1
14 [ 7/-6 | 14/-14
7 1 1 15 ] 1 1
16 | -5 -12
8 2 3 17 2 3
18] 4 -10
9 3 5 19| 3 5
20 | -3 -8
21| 4 7
10 [ -2/4]-6/7]22] -2 -6
23] 5 9
11 -1 4 24 -1 4
25| 6 11
2] 0 2 1261 0 -2
27 | 7/-6 | 13/-15
13] 1 0 28 1 0

Table 3.1: Comparison of the layer line con-
tributions for two different helical symme-
tries. Small changes in the symmetry (here
only 1° per monomer) drastically alter the
layer line density. While the pattern in n and
m is conserved.
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Figure 3.8: Comparison of the layer line con-
tributions for two different symmetries, gen-
erated using the 4-sphere model of the actin
monomer (3.2.4). The layer line number is
labeled on the left [, the order of the corre-
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ble 3.1. The most intense contributions (high-
lighted in color) are found in layer lines 0, 6
and 7 corresponding to n = 0, 1, —1 in the
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Chapter 4
Finite Size of F-actin Bundles

Bundles of filamentous actin are key components of the eukaryotic cytoskeleton and
are generally used for mechanical support. In filopodia, microvilli and stereocilia, F-
actin bundles fortify cellular protrusions, in stress-fibers they help to maintain cellular
integrity. The appearance of parallel F-actin bundles is tightly controlled by a myr-
iad of actin binding proteins (ABPs). Moreover, cytoskeletal processes that involve
F-actin bundles typically all employ their own complements of multiple ABPs [1]. Al-
though this is probably at least partly related to the specific mechanical requirements
of the different structures [63], the well-defined length, thickness and organization of
the various cytoskeletal F-actin bundles might necessitate the use of a combination of
different ABPs. Loss of one of the ABPs usually affects either the organization or the
thickness of the bundles [3, 64], mutations often result in diseases [4, 5]. This finely
matched interplay of actin and ABPs is a fascinating example for the morphological
self-organization in living cells [65].

However, the finite size effect of bundle structures is not restricted to living organ-
isms. In witro, charged biopolymers such as F-actin, microtubules, or DNA generally
form a phase of bundles of well-defined thickness in the presence of non-adsorbing
polymer and/or multivalent counter-ions [9, 66-69]. Several concurring mechanism
have been discussed to define bundle length and thickness: The stabilization mecha-
nism of counter-ion induced bundles has been proposed to be similar to that of colloidal
clusters [70, 71]; steric and short range electrostatic interactions or frustration within
the bundles prevent charge neutralization and limit the bundle size [72]. Alternatively,
the finite size of chiral biopolymers might be due to a build up of in-plane shear elastic
stresses [73] which sometimes result in braided structures [74].

In this chapter, the experimental results on an wn wvitro actin model system are re-
ported. They suggest an altogether novel mechanism limiting the bundle size: The
frustration is caused by a mismatch between the helical structure of individual actin
filaments and the geometric packing constraints within bundles. The first section gives
some experimental details about SAXS experiments on actin bundle networks (sec. 4.1).
In section 4.2, the results of preceding microscope experiments performed by M.M.A.E
Claessens are presented. TEM micrographs and fluorescence experiments in confined
volume show that actin/fascin bundles feature a well-defined size in dependence of the
fascin concentration and are limited to a maximal thickness of about 20 filaments. Mo-
tivated by these findings, the assembly of filaments in the bundle has been studied by
Small Angle X-ray Scattering (SAXS) in the course of this thesis. For fascin (sec.4.3)
and espin (sec. 4.4), the filaments build a hexagonally organized bundle where the single
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Chapter 4 Finite Size of F-actin Bundles

filaments are overtwisted to overcome the mismatch between the chirality of the single
filaments and the hexagonal packing in the bundle. In sec. 4.5, the energetic trade-off
between filament twisting and crosslinker binding within a bundle is discussed as a
possible mechanism to precisely control the bundle size. A combination of different
ABPs allows building the thicker bundles that are observed in living cells (sec.4.6).

4.1 SAXS Experiments

Sample preparation For Small Angle X-Ray Scattering (SAXS) experiments, the
actin networks were polymerized in 1.5 mm quartz capillaries’ and sealed with vacuum
grease or using a Bunsen burner to prevent evaporation. For the second beam time
(s¢2386), the sample polymerized for 1h before they were centrifuged for 2h at 5000 g.
This sediments the F-actin into a dense pellet in order to enhance the scattering signal.
Only networks in the bundle regime formed pellets. Control experiments revealed that
there were no structural differences between pelleted and non-pelleted samples (cf.
fig. 4.6).

Data acquisiton The SAXS experiments were performed at the ID-02 beamline at the
ESRF in Grenoble. The scattering was done with X-rays of 0.995 A(=12.47keV) and
a sample-to-detector distance of 1 m and 7m. Scans were performed with an exposure
time of 0.5-6s, always checking if radiation damage or saturation occurred. The scat-
tered radiation was detected by a FReLoN Kodak CCD camera. The beam center and
exact detector distance were calibrated using a silver behenate (AgBE) sample and fit-
ting circles to the diffraction pattern. For the second beam time at the ESRF (sc2386),
this calibration failed due to a small drift in the detector position. In this case, the
beam center was fitted individually for each sample, where rings of scattered intensity
appeared in the 2D pattern, based on the tilt function in Fit2d2. The diffraction data
was analyzed and integrated wedges along the radial direction ¢, and axial direction g,
were obtained using the matlab based EDFplot and datatools in SAXSutilities®. For
samples featuring shifted beam centers, the customized script ccd_ recenter.bat written
by the ESRF beamline scientist M. Sztucki was used for angular integration. The mul-
tiple exposures of the same sample were averaged, using the corresponding exposure
times as weight factors.

Limitations on resolution The typical diffraction patterns of biomolecular self-assemblies
are usually quite broad if compared to the resolution-limited Bragg peaks of perfect
crystals. However, the calculation of domain sizes in scattering crystallites requires to
correct for the instrumental resolution limit. This depends on various factors: the di-
vergence of the X-ray source, the relative cross-sections of beam and sample, the finite
pixel size on the detector, and non-monochromaticity of the X-ray beam.

! Glas-Technik & Konstruktion, Miiller & Miiller OHG, Germany
Zhttp://www.esrf.eu/computing /scientific/ FIT2D/
3http://www.sztucki.de/SAXSutilities/
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Thus, the measured peak width results from two contributions: the finite domain
size of the sample itself (or effects of lateral disorder) and the resolution limitation of
the measuring system, which are connected by convolution (sec.3.3.2).

(AQ)measured = \/(AQ)gample + (AQ)gystem (4'1)

An approximation of the systematic limitation can be derived from the peak width
of an silver behenate sample which is used for detector calibration issues. Due to the
rather small crystallite sizes of around 90 nm, AgBE is not ideally suited to calibrate
the instrumental broadening, but it provides a rough estimate of (Aq)system [75]. Af-
ter subtraction of backgrounds, the remaining intensity profile is fitted by the sum of
several Gaussians (fig. 4.1). Based on their average width of (Ag)pwny ~ 0.032nm ™1,
the instrumental broadening can be calculated to (Ag)system ~ 0.006 nm~! using the
Scherrer equation (3.37). Compared to the typical peak widths in the diffraction pat-
terns of actin bundles that are at least 0.04nm™"', the instrumental resolution can be
neglected.

4.2 Finite Size in Microscopy Experiments

Although there are indications that, in vitro, the diameter of F-actin/ABP bundles is
well defined, reconstructed actin/ABP bundles are usually embedded in a continuous
isotropic background network. This prevents a clear description or quantitative analysis
[8]. In contrast, the ABP fascin organizes actin filaments into a crosslinked network of
bundles in which no single filaments can be observed [22]. This makes the reconstituted
F-actin/fascin system ideally suited to resolve the mechanism underlying the finite size
of F-actin bundles. Fascin bundles display a uniform thickness and are straight over
long distances reflecting their high bending rigidity [63].

Fluorescence micrographs indicate that the bundle thickness is independent of the
actin concentration and depends exclusively on the molar ratio between bound fascin
and G-actin, R* (cf. sec.2.2): If the actin concentration is increased while R = 1 is kept
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Figure 4.2: Finite and limited thickness of F-actin/fascin bundles. (a)-(b) Fluorescence mi-
crographs of TRITC phalloidin-labeled actin/fascin bundles (R = 1). Increasing the actin
concentration from ¢4 = 0.04 mg/ml (a) to ¢4 = 0.1 mg/ml (b) merely increases the number of
actin bundles per unit volume and seems to have no effect on the bundle thickness. (Scale bars:
10 pm.) (c) Bundle diameters D obtained from TEM micrographs (Inset, scale bar: 0.2 pm)
as a function of the relative fascin concentration R* (ca = 0.1 mg/ml).

constant, the bundle thickness remains unchanged while the number of actin bundles
per unit volume rises (fig.4.2(a),(b)). The absolute values of the bundle diameter D
as a function of R are extracted by Gaussian fits to the intensity profiles in electron
micrographs (fig. 4.2 (c) Inset). For this, the fascin concentration R is varied while
the actin concentration is kept constant. The bundle width distributions obtained in
this way are very uniform and show a slight increase of D with the relative fascin
concentration D ~ R%3 (fig.4.2(c)). Interestingly, D reaches a plateau at R = 0.25;
a further increase of the fascin concentration has no influence on the bundle diameter.
The observed thickness of F-actin/fascin bundles is independent of the preparation
procedure. Whether long or shortened filaments are incubated with fascin, or fascin is
already present during the polymerization process does not affect the bundle thickness.

To precisely quantify the finite and limited thickness of actin bundles, a mesoscopic
system is advantageous. A system of emulsion droplets is extremely well suited for
this purpose due to the confined volume [76]. At small droplet diameters, Dy, F-actin
filaments bundle into a single ring in the presence of fascin (fig.4.3(a)) [63]. With
increasing droplet diameter this ring splits up and side branches arise (fig.4.3(b)). In
the largest droplets, complicated structures built of several rings are found (fig. 4.3(c)).
The total mass of F-actin within a drop is equivalent to its total length L. This can be
computed very precisely from the actin concentration ca and the droplet diameter Dy.
The bundle radius can be measured and — for the case of a single ring — the number
of filaments ns aligned parallel in the bundle can be deduced assuming a homogenous
bundle with along the actin ring. In this way, in dependence of cp and Dy, a transition
from single rings to more complicated structures can be observed (fig.4.3(e)): The
maximal number of filaments in a single bundle does not exceed ~20 filaments. Instead
of growing thicker rings, filaments rather organize into more bundles if the droplet
diameter or the actin concentration increases.
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Figure 4.3: F-actin/fascin bundles in confinement. (a—c) Fluorescent micrographs of TRITC
phalloidin-labeled F-actin/fascin bundles (R* = 1). For small-droplet diameters filaments
organize into a single ring (a), in larger droplets a second bundle appears (b), and in very large
droplets more complicated structures are found (c). (Scale bars: 10 pm.) (d) TEM micrograph
of a detail of an actin bundle obtained from the confined rings showing the typical bundle
diameter of 5 filaments. (Scale bar: 20 nm.) (e) The organization of actin bundles as a
function of the actin concentration ¢y and emulsion droplet diameter Dgy. The colors depicted
in the diagram represent the different structures presented in (a)-(c). A single bundle does not
grow thicker than 20 filaments, and the dotted line represents ng = 20.

TEM micrographs of actin rings extracted from emulsion droplets show closely packed
F-actin/fascin bundles with a typical diameter of five to six filaments (fig.4.3(d)).
Considering the expected hexagonal packing ([77] and sec. 4.3), this is in excellent
agreement with the maximum of ~20 filaments per bundle derived from fig.4.3(e).
This leads to the conclusion that the plateau in D(R) for R > 0.25 is reached when
the bundle contains ~20 filaments (fig. 4.2(c)).

Based on the observed maximum bundle thickness of ~20 filaments and the scaling
of D ~ RY%3 (fig.4.2(c)) it is possible to derive that, for bundles with ny < 20, not
all possible crosslinker binding sites are occupied, while the maximum size observed
experimentally corresponds to a full occupation of all possible binding sites. This is
shown by a geometrical argument: The amount of ABPs that can bind to a filament is
limited, fascin binding saturates at a ratio of 1 fascin molecule to ~4.5 actins [78]. At
saturation, an actin filament with 6 fascin binding sites therefore consists of ~13-14
actin monomers. Assuming that all bundle have the same thickness, one can calculate
the number of binding sites nagp and, thus, the maximal ratio R* of bound ABPs to
actin monomers n, in dependence of the number of filaments in the bundle, ng:

napp/na = R* = 1/u(3 + 3.5n; /%), (4.2)

where u is the number of actin monomers necessary to build one hexagonal unit.
The + sign refers to whether surface occupation is included or not. For building less
but thicker bundles that are fully saturated with crosslinking molecules, decreasing
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amounts of crosslinkers are needed. To compare the R* values corresponding to fully
saturated bundles of n¢ filaments to the experimentally observed values, the D(R*)
curve depicted in fig. 4.2(c) has to be transformed into R*(n¢). Therefore, it is assumed
that the maximal bundle thickness in TEM experiments corresponds to ns ~ 20 ob-
served in confinement. The experimental results for R*(n¢) lie below the theoretical
curves (fig.4.4); for bundles with n¢ < 20, not all possible crosslinker binding sites
between the filaments of the bundle are occupied. With increasing n¢, the degree of
binding site occupation increases until full occupation is reached at ng ~ 20 (fig. 4.4).

It is not clear a priori why bundles of such well-defined diameters are observed, or
what causes the bundle thickness to be limited. The bundle diameter could be con-
strained in principle either kinetically [79-81] or thermodynamically [72, 73]. However,
the independence of the bundle diameter on the preparation method and the system
used, strongly suggests an equilibrium mechanism. While charge accumulation has
been suggested to prevent clusters of charged colloidal particles and counter-ion in-
duced F-actin bundles to grow beyond a certain size |72, 82|, this can not be the case
for ABP /F-actin bundles. The surface separation between F-actin filaments bundled
with fascin is approximately 5nm (sec. 4.3), much larger than the Debye length at the
ionic strength used. Decreasing the salt concentration to the minimum necessary for
actin polymerization (2mM MgCly, no KCI or CaCly) has therefore no influence on the
maximum F-actin/fascin bundle thickness. As electrostatic repulsion between actin
filaments is too short ranged to affect bundle assembly, other mechanisms have to be
responsible for preventing bundles from growing thicker.

4.3 Microscopic Structure of Fascin Bundles Using SAXS

The growth of the bundles is not prevented by a lack of ABP but instead seems to be
physically limited to two hexagonal shells of actin filaments, comparable to those found
in filopodia [83]. To investigate the microscopic bundle geometry and the underlying
size limiting mechanism in more detail, the bundle structure is analyzed in SAXS
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Figure 4.5: Scattering pattern of actin/fascin bundles (R* = 1): (a) Circularly averaged
scattering intensity of a partially aligned 2D diffraction pattern (inset). (b) The azimuthal
dependence of the peaks at ¢ = 0.58nm ™! and ¢ = 1.2nm ™! reveals that they are positioned
at axes perpendicular to each other. (¢) Angularly averaged wedges along the radial (g,) and
the axial (¢q,) directions of the diffraction pattern allows separation of the peak contributions.
(d) Background subtracted intensity profile in g, direction. The background was subtracted
by a pseudo-Voigt fit to the data (blue curve, inset). Two Gaussian are needed to fit the peak
profile due to improper background subtraction. (e) Gaussian fits to the higher order peaks in
the background subtracted intensity profile reveal the hexagonal packing of the filaments in the
bundle. (f) The higher order peak positions are plotted versus the theoretically expected factor
to the g19 position in a hexagonal lattice. The slope returns a more precise determination of
q10-

experiments.

4.3.1 Hexagonal Packing of Fascin Bundles

Fig.4.5(a) depicts a typical circularly averaged intensity profile of partially aligned
F-actin/fascin bundles at R = 1. The inset shows the corresponding 2D diffraction
pattern. The multitude of sharp peaks indicates that fascin forms well organized actin
bundles. Due to the partial alignment, the peaks do not form homogenous rings but
are centered around different directions. This allows distinguishing between inter- and
intrafilamental correlations (cf. sec.3.3.3). Comparison of the azimuthal dependence
of the intensity of the peaks located at ¢ = 0.58 nm~! and ¢ = 1.2nm™!, respectively,
shows that they are positioned at perpendicular orientations in the g.q,-plane, the first
peak close to the ¢, axis, the second close to the ¢, axis (fig.4.5(b)). This second
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peak at ¢ = 1.2nm™"! is not exactly centered at this axis but features two maxima in
azimuthal dependence. This corresponds to the expectation for intrafilamental peaks
around ¢, (cf. sec.3.3.3).

For a further analysis, the scattering intensity is averaged over wedges along ¢, and
¢- to minimize the crosstalk between the two directions (fig. 4.5(c)). This angular sep-
aration allows distinct allocation of the peaks to the ¢, and ¢, directions, respectively.
To get the precise peak positions and widths, the continuous background is subtracted
by fitting a pseudo-Voigt function to the continuous intensity profile without peaks
(fig. 4.5(d) inset). The residual intensity profile is fitted by Gaussian functions. How-
ever, the first peak, ¢19, is only insufficiently described by a single Gaussian (fig. 4.5(d)),
probably due to improper background subtraction. Beyond the dependence on the form
factors of filament and bundle, the continuous intensity profile accounts also for the
Bessel function Jy of the O layer line. Beside modulating the intensity, the Bessel
function may also distort the peak shape and influence the peak g9 = 0.589nm™!
position as reported before [84].

Besides the (1,0)-peak, several peaks of higher order can be identified by a sum fit of
several Gaussians. The peak positions found at ¢11 =~ \/§q10, G20 ~ 2q10, G21 ~ \ﬁfho,
@0 ~ 3q10, 922 ~ 2V3qu0, q31 ~ V13qio indicate the hexagonal packing of fascin
bundles (sec.3.3.2). This has been shown before for actin needles in vivo [77|. The
higher order peak positions can be used to render the position of the (1,0)-peak more
precisely, which is mandatory for an exact analysis of the intrafilamental symmetry
(sec.4.3.3). The curve progression of the form factor and the 0" order Bessel function
are more flat in this g-regime; therefore peak positions are less sensitive to changes
in the background subtraction and the multiplication with Jy. In fig. 4.5(f) the peak
positions are plotted versus the theoretically expected factor in the hexagonal lattice.
The resulting ¢1o ~ 0.597nm™! is slightly larger than the original value. Due to the
robustness against changes in the bundle form factor and in the background subtraction,
the fit through the higher order peaks is more reliable.

The result for ¢¢ corresponds to a center-to-center distance between the individual

actin filaments of the hexagonal lattice of a = é;’ oA 12.2nm. It is in good agreement
1

with a filament diameter of about 7nm [11], the size of the fascin molecule of 5nm,
and with measurements on actin needles extracted from sea urchin oocytes [77].

4.3.2 Concentration Dependence of the Bundle Domain Size

SAXS measurements also show the dependence of bundle thickness and fascin concen-
tration. Decreasing R leads to distinct changes in the scattering pattern (fig.4.6(a)):
The peak amplitudes decrease and the peaks broaden until they nearly vanish around
R < 0.02. This value is in good agreement with the bundling threshold (Rt =~ 0.01)
observed in fluorescence microscopy and macrorheology [22].

An analysis of the higher order peak positions shows that the bundles are still hexag-
onally packed. The 19 position does not change with changing fascin concentration
and is perfectly reproducable (fig. 4.6(b)). Changes in the salt conditions (e.g. replac-
ing NaCl by KCI or omitting this additional monovalent salt) also have no effect on
bundle size and geometry.
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Figure 4.6: R dependence of actin/fascin bundles: (a) Angularly averaged intensity over
wedges along the ¢, direction. The peak amplitudes increase and the widths decrease with the
fascin concentration R and completely vanish around R =~ 0.02. (b) The higher order peak
positions are in good agreement with the theoretical values expected for hexagonal packing.
The slope and thus the position of the g19 peak remains unaffected by changes in R or the salt
conditions. (c) The bundle domain size d increases with increasing fascin concentration R*
until it saturates around 65nm. Data of different beam times (sc2301 and sc2386) and thus
different protein preparations and sample preparations collapse. The inset shows the same
data in linear scale.

The width of the Gaussian ¢, peaks does not correspond to the exact diameter of the
bundle. Instead, it allows conclusions on the domain size in the bundle which reflects
the finite size as well as the lateral disorder in the bundle (sec. 3.3.2). The multiplication
with the 0" order Bessel function and the insufficient background subtraction slightly
disturbs the shape of the Gaussian (1,0)-peaks. This prevents a precise Gaussian fit
and determination of the peak width. Less sensitive is the full width at half maximum
or — even better — the dexter half width at half maximum (HWHM). According to the
Scherrer equation, the bundle domain size can be derived from the resolution corrected

(Ag)pwrnm (cf. equation (3.37)):

7r

d=~ 0.9(AQ)HWHM (4.3)
The resulting d in dependence of the fascin concentration is displayed in fig. 4.6(c).
Independently of the actin concentration and the preparation method (centrifuged or
solution), the domain size d increases with R* according to d ~ R*%-23 until saturation
occurs at R* = 0.4. The qualitative behavior, the power-law exponent and the bundle
saturation are in good agreement with the bundle thicknesses D measured by electron
microcopy (fig. 4.2(c)).

Assuming the maximum of 20 filaments per bundle (fig.4.3(e)), a hexagonal packing
of the filaments in the bundle and an interfilamental distance of ¢ = 12.2nm, a bundle
diameter of D ~ 4a =~ 50nm is expected. However, the bundle thickness determined
by electron microscopy is D ~ 30nm (sec.4.2). This slight mismatch to the SAXS
data might be owed to several approximations in the data evaluation. In the case of
the SAXS data, inaccuracies in background subtraction distort the Gaussian shape and
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Figure 4.7: Helical twist of the actin filament in dependence of R: (a) Angularly averaged
intensity over wedges along the ¢, direction (cx = 2mg/ml). The scattering profile changes
from a continuous pattern to single peaks. (b) Background subtracted ¢, data. The peak
positions shift slightly with R. The continuous lines are fits to the data. (c) The overtwist
angle per monomer obtained from fits to the diffraction pattern for various actin concentrations.
It increases with R* until it saturates at ~1° for R* 2 0.5.

tend to overestimate of d. Opposed to this, the measured value has to be corrected
for the staining layer thickness in order to derive the actual bundle size from electron
micrographs. An overestimated correction factor will lead to too small values for the
bundle thickness.

4.3.3 Correlation of Filament Twist and Bundle Thickness

So far, only the intensity profile along ¢, that corresponds to inter-filamental correla-
tions has been regarded is analyzed. An evaluation of the scattering profile along ¢,
is presented in this section. It reveals information about the intra-filamental distances
and thus about the helical symmetry of the actin filaments (sec. 3.3.3). Fig. 4.7(a) shows
the intensity profile for actin fascin/bundles at various R values. The most remarkable
change with increasing fascin concentration is the conversion from a broad diffraction
pattern at low R to quite narrow Gaussian-like peaks for R 2 0.01. In the absence of
fascin or at concentrations not sufficient for bundling, the scattered intensity reflects
the continuous pattern of the 6™ and 7*" layer line (n = 1 and n = —1 Bessel functions)
of the native -13/6 actin helix. Due to the decrease in amplitude with increasing order
of the Bessel function, these layer lines dominate the diffraction pattern of partially
aligned F-actin solutions (sec.3.2.3).

As the filaments form bundles, the native layer line pattern is convoluted with the
hexagonal bundle structure. The layer line pattern appears only at spots along gq.
in columns located at ¢, values which correspond to the hexagonal lattice vectors
(sec.3.3.2). This results in a splitting up into several sharp peaks.

At intermediate fascin concentration (R = 0.05), the pattern is a mixture of the
continuous pattern and these Bragg reflections. This could either indicate a two-phase
system where quite perfect bundles are embedded in an amorphous network or alterna-
tively a substitutional disorder in the packing of the filaments in the hexagonal lattice
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(sec.3.3.2). Fluorescence and electron microscopy experiments show a sharp transition
between crosslinked and bundled phase; no composite phase or microdomains can be
observed [22]. This supports the disorder inside the bundle as the more likely expla-
nation. As the amplitude of the Bragg peaks is approximately n; times larger than
the continuous contribution, where ns denotes the number of filaments in the bun-
dle, the continuous pattern is only discernible at small bundle sizes. Moreover, larger
fascin concentration corresponds to a rising number of crosslinks per filament and will
decrease the substitutional disorder.

Besides the drastic transition from the continuous to the peak-shaped pattern, an
increase of fascin concentration slightly shifts the positions of the Bragg peaks. This
indicates a change in the helical symmetry of the actin filament in the bundled phase.
This is bets visible in the background subtracted data shown in fig.4.7(b). In the
analysis, the extracted helical symmetry is obtained by comparing the experimental
data with theoretically modeled intensity patterns: The layer lines of the model are
calculated starting from the Fourier transforms of the Holmes coordinates for the actin
filament, combined with the standard four-sphere model. Substitutional disorder in
the filament is incorporated by a Gaussian-shaped layer line thickness. For bundled
networks, this is multiplied with the reciprocal hexagonal lattice. To account for pow-
der averaging, the one-dimensional diffraction pattern is calculated by substituting
qr = qcosx and ¢, = gsiny with ¢ = 47|sind|/X in equation (3.31) and numerically
integrating over y. Starting from the Holmes model with the native -13/6 symmetry,
theoretical patterns are calculated for different values of monomer spacing, twist angle
and peak width.

Minimizing the chi-square between the measured diffraction pattern and the calcu-
lated curves reveals an overtwisted state of the actin filament. The measured peak
positions of 1.20, 1.35 and 1.46 nm~! for high R values are in good agreement with
the 13% and 15" layer line of a -28/13 symmetry. This corresponds to an overtwist
of Ay =~ 1° per actin monomer. This overtwist angle develops with increasing fascin
concentration (fig.4.7(c)): starting from the native -13/6 symmetry, the overtwist sat-
urates at the maximum overtwist of -28/13 for R* 2 0.5. This resembles the curve
progression of the bundle thickness: Both, the bundle diameter measured by electron
microscopy and the domain size obtained from the peak widths, saturate for similar
R* values. This indicates that the finite size of the fascin bundles correlates with the
distortion of the actin filament in the bundle. A further discussion is given in sec. 4.5.

4.4 Microscopic Structure of Espin Bundles Using SAXS

The addition of the actin crosslinking protein espin results in a bundled network with an
architecture resembling that of fascin networks. Both form long, straight and parallel
actin bundles (sec. 2.2). The scattering pattern of espin bundles also shows very similar
features as the fascin diffraction. Fig. 4.8(a) shows the 2D diffraction pattern of partially
aligned actin/espin bundles at R = 1. Due to their distinct alignment, the numerous
spots in the 2D pattern can be clearly assigned to the axial and radial contributions.
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Figure 4.8: Diffraction on actin/espin bundles: (a) 2D diffraction pattern of partially aligned
actin/espin bundles for R = 1. (b) Angularly averaged intensity over wedges along ¢, for
various R values. (c) Gaussian fits to the higher order peaks in the background subtracted
radial data at R = 1. (d) The higher order peak positions obtained by the Gaussian fits in (c)
are plotted versus the theoretically expected ratios to the (1,0) peak in a hexagonal lattice. (e)
The bundle domain size d as a function of the espin concentration R. (f) Angularly averaged
intensity over wedges along ¢.. In the case of espin, the peak positions do not shift with R.

Following the analysis described in sec. 4.3, the intensity profile is averaged over angular
wedges in ¢. and ¢, direction. As shown in fig. 4.8(b) for ¢., a peak at ~0.57nm™!
and several higher orders appear for R 2 0.05 and increase in amplitude with R.
Fitting several Gaussians to the higher order peaks reveal again hexagonal packing
of the filaments (fig.4.8(c)): the peak positions are in excellent agreement with the
theoretically expected ratios to the position of the (1,0)-peak in a hexagonal lattice
(fig. 4.8(d)). The slope of the linear fit allows a precise determination of the peak
position g1g. The value of g19 = 0.575 nm ™! corresponds to an inter-filamental distance
of aesp = 12.6 nm in the hexagonal bundle, in good agreement with published data [43].
This value is slightly larger than ags = 12.2nm observed for fascin.

The domain size d, that measures the bundle thickness convoluted with the substitu-
tional disorder of the filaments in the bundle, can be derived by the Scherrer equation
(3.37). The dependence of d on the espin concentration R is shown in fig.4.8(e). The
domain size increases with R and saturates for R > 0.5 around 55 nm. The qualitative
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behavior as well as the quantitative values correspond to the fascin results.

A distinct difference to the fascin bundles is observed in the intensity profile along
q-. As discussed before, the ¢, pattern reveals information about the intra-filamental
symmetry and thus about the helical structure of the actin filament. Fig.4.8(f) shows
the intensity profile of the ¢.,-wedges as a function of R. The Gaussian peaks result
from the convolution of the continuous intensity of the layer lines and the Bragg peaks
of the hexagonal lattice. In contrast to the fascin measurements, the positions of these
q. peaks do not change with increasing espin concentration. As before, theoretical
diffraction pattern for various helix parameters are calculated to obtain quantitative
information about the helical symmetry. The helical lattice vectors had to be adapted
to the larger inter-filamental distance. A comparison of these simulated patterns with
the background subtracted intensity profiles returns a -28/13 symmetry as best fit.
This corresponds to the results published in [43]. The measured overtwist of the actin
helix is identical to the final state in the fascin bundles. However, it is the same for all
espin concentrations and thus it does not correlate with the domain size or the bundle
thickness.

4.5 Discussion

The SAXS experiments presented in the previous sections show that both ABPs, fascin
and espin, form very similar bundle structures as already suggested by fluorescence
micrographs. The intensity pattern along the radial direction ¢, reveals the hexagonal
packing of the filaments in the bundle. The characteristic inter-filamental distance
a is very similar for both crosslinkers (ags = 12.2nm, aesp, = 12.6nm) and in good
agreement with in vivo measurements of bundles where these ABPs dominate |77,
85]. For high R values, the Gaussian-shaped pattern without discernible continuous
contributions found along ¢, suggests quite rigid bundling; the domain size can be
interpreted as a measure of the bundle thickness. This parameter also provides very
similar results for both ABPs and reproduces the qualitative behavior of the bundle
width measured by TEM: the domain size d increases with the crosslinker concentration
until it saturates around 60 nm at R* > 0.5.

Both crosslinkers drive a systematic overtwist in the actin filaments from their native
-13/6 state. While fascin bundles feature a continuous spectrum of intermediate twist
states, which seem to correlate with the bundle thickness, espin only allows one distinct
twist state. The final -28/13 state of the fascin bundles is the same as the constant
espin twist state. This value is in good agreement with the helical symmetry found in
bundles from the acrosomal process in Limulus sperm [86], and it is slightly larger than
the results obtained from stereocilia hair cells or extracts of F-actin needles from Sea
Urchin ooyctes [77, 85].

Energetic estimate There is an ongoing discussion about disorder in the native actin
helix and the width of the twist probability distribution observed by TEM for single
actin filaments is quite broad |87, 88|. However, fixing the filaments in a new overtwisted
position costs energy. The energetic cost involved in overtwisting F-actin is provided
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by the binding energy released by the ABP. A rough estimate of the twist energy per
actin residue as a function of R* can be obtained from the torsional stiffness of a single
actin filament, 7 = 8- 10726 Nm? [89], the residue spacing d, and the observed increase
in the overtwist Ap:

T(Ap)?
Frot — (d@) (4.4)

The energy Eapp, which each crosslinking molecule has to incorporate, ca be calcu-
lated by normalizing Fiyist to the number of actually bound ABP: Expp = Elwist/ R
In the case of fascin, Eapp is approximately constant. Independent of the fascin and
actin concentrations, the energy required for twisting is found to be Fapp ~ 10kpT.
Comparing this value to the binding energy of fascin, AG = kT In(Kp) ~ 15kgT [42],
it turns out that the gain in binding energy is slightly larger than the loss in torsional
energy.

Assuming that all binding energy is spent on filament twisting, the accessible over-
twist can be calculated for each value of R* or equivalently for its corresponding number
of filaments in the bundle, n¢. A¢(ng) is shown in fig. 4.9: The calculations are in good
agreement with the SAXS results for fascin bundles at different actin concentrations.

Finite Size The question remains what leads to the overtwist of the actin filaments
and what is responsible for the different overtwist mechanisms for fascin and espin,
despite of all the similarities of their bundles. In the native -13/6 helical symmetry
of individual actin filaments, possible binding sites are not separated by exactly 60°,
the optimum angle for hexagonal packing (fig. 4.10(a)). F-actin is therefore not ideally
suited for this bundle geometry [67, 90]. To fit the filaments on a hexagonal lattice,
ABPs have to twist and locally stretch the F-actin. The difference in angle between
the hexagonal symmetry and the actual actin subunit position can provide a first
measure for the geometric tension. A comparison of these values for the native -13/6
and the overtwisted -28/13 symmetry is shown in fig.4.10. Here, the orientation of
the hexagonal symmetry is chosen to minimize the maximal deviation. The maximal
value as well as the mean deviation per binding site (which would not be affected by a
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Figure 4.10: Projection of the actin filament in (a) -13/6 and (b) -28/13 symmetry. The grey
lines represent the ideal positions for hexagonal packing. The next neighbours and hence the
possible binding sites are marked in green. The red numbers indicate the difference in angle
between the ideal and actual residue position. The lattice orientation is chosen to minimize
the maximal deviation angle.

rotation of the filament relative to the hexagonal lattice) are reduced for the overtwisted
-28/13 symmetry:

symmetry max. deviation mean deviation
-6/13 11.5° 6.9°
-28/13 10.7° 6.4°

The fully overtwisted state of -28/13 symmetry observed for espin and saturated
fascin bundles is still suboptimal for hexagonal packing: a considerable mismatch
between the actual and the "ideal" subunit position remains. However, for optimal
packing on a hexagonal lattice, the filaments in the bundle would have to twist even
more. This is impossible as all ABP binding sites are occupied at the bundle saturation
(sec.4.2). Thus, no additional binding energy can be converted into filament distortion.
The suboptimal symmetry of the filaments results in build-up of stress in the bundle
and can be considered as the primary reason for the limit on the bundle thickness. The
described mechanism provides a molecular explanation for the finite sizes of F-actin
bundles in the presence of ABPs or condensing agents that have been observed in vitro
[66, 91, 92].

Theoretical models Although this simple model based on the estimate energetic con-
tributions gives a basic explanation of the filament overtwist, it does not capture the
complex interplay between the optimum geometry required for crosslinking in hexago-
nally organized bundles and the energetic cost for twisting the actin filaments. It does
also not implement the role of the crosslinking protein, which will presumably cause
the difference between the bundling mechanism of fascin and espin. A more detailed
description by a coarse-grained model of parallel actin bundles is presented in [93, 94]:
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The transition from the native state to the fully bundled geometry is discussed on a lat-
tice model, which maximizes the number of perfectly aligned crosslinkers in the bundle,
while the required distortion of the intrinsic twist of the filament is minimized. The
abrupt and the continuous nature of these transitions for espin and fascin bundles, re-
spectively, are not attributed to differences in linker affinity, but to differences in linker
flexibility. While flexible crosslinkers smoothly distort the twist state of the filaments,
allowing for intermediate configurations, rigidly crosslinked bundles are characterized
by a phase transition. At a critical value of crosslinker concentration, the ABPs induce
a highly cooperative switchlike transition from the native to the fully overtwisted geom-
etry in the actin filaments. However, the bundles in this model are essentially unlimited
in length and — especially — width. The properties of the modeled crosslinkers allow
balancing the mismatch between the helical and the hexagonal symmetry. Therefore,
no stress is built up with increasing bundle diameter allowing for bundles of any sizes.

In principle, the mechanical strain involved in bundling chiral polymers might also re-
sult in a supertwist of the bundle. Theoretical studies demonstrate that a global twist
of chiral filaments around the central bundle axis can lead to thermodynamic frus-
tration of the bundle diameter [95, 96]. Experimentally, this supertwist of the whole
bundle has been observed in TEM micrographs for actin/fimbrin bundles and is sug-
gested to limit their bundle thickness [97]. The supercoiling observed for filamin/actin
bundle rings in vesicles might be another indication that there are some ABPs which
supertwist the whole bundle rather than overtwist the individual filaments [98]. How-
ever, the experimental results for the fascin bundles described in this section do not
give any indication that fascin-coupled filaments follow such a superhelical path: The
SAXS data indicate that the filaments themselves are overtwisted. Moreover, the TEM
micrographs show the fascin bundled filaments running in parallel over large distances
and appearing straight over hundreds of micrometers.

Conclusion As shown in microscopy experiments, actin/fascin bundles feature a fi-
nite bundle thickness of about 20 filaments. The insensitivity of this bundle size on
experimental conditions, like the precise preparation method, the salt concentration, or
the filament length, indicates that this frustration is rather an equilibrium mechansim
than a kinetically trapped state as discussed before [72, 80, 81]. The electrostatic charge
accumulation suggested for charged colloidal particles and counterion induced F-actin
bundles |72, 82| can not account for the limited bundle thickness in actin/fascin bundles:
the separation between F-actin filaments bundled with fascin is approximately 5nm,
much larger than the Debye length at the ionic strength used. In addition, changing the
salt conditions does not have any effect on the resulting network or bundle structure.

The SAXS experiments performed in the course of this thesis identify the mismatch
between the chirality of the actin filament and the hexagonal symmetry of the bundle
packing as a mechanism to tightly control the bundle thickness. The balance between
costs of mechanical twisting energy and gains in binding energy can regulate the actin
bundle formation and growth. The precise process might depend on the crosslinker
properties as its affinity, flexibility and length. While a supertwist of the bundles is
observed for fimbrin and indicated for filamin, espin and fascin overtwist the individual
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filaments. However, beside all their similarities, fascin and espin seem to take different
thermodynamic pathways to the same finale state of overtwisting.

The helical structure of actin filaments is affected by several ABPs [43, 86, 90], sug-
gesting that this conformational variability of F-actin is exploited in many cytoskeletal
processes. Thus, it seems that nature utilizes the mismatch between the pitch of in-
dividual helical polymers and the optimum value required for hexagonal packing to
implement an intrinsic limit to bundle growth corresponding to the above-mentioned
observations in microvilli, filopodia, and stereocilia.

4.6 Combination of Different ABPs

In contrast to the observations of the in vitro experiments presented above, much bigger
bundles consisting of hundreds of filaments are found in several cytoskeletal processes.
Interestingly, it has been shown that these thick F-actin bundles are typically linked by
more than one ABP species [64]. Each cellular process has a characteristic set of two
or more crosslinking proteins: in microvilli, villin and fimbrin are found; in Drosophila
bristles, fascin and the forked proteins are used, and in stereocilia, fimbrin and espin
cooperate in the bundle [1]. Genetic mutations suggest that one crosslinker may be
used in early bundle formation to tie the filaments together in small bundles so that
they can be subsequently zippered tightly into the precise hexagonal packing by the
second ABP [64].

Combining espin and fascin Indeed, the use of multiple ABPs leads also in in vitro
experiments to larger bundle structures. While TEM micrographs reveal approximately
the same maximal bundle thickness for pure espin as observed for fascin, much thicker
bundles are formed, if a combination of both ABPs is present (fig.4.11(a),(b)). In the
frame of this thesis, actin/fascin/espin bundles have been analyzed in SAXS experi-
ments investigating the organization of the bundles and the question how a mixture of
ABPs overcomes the geometric constraints limiting the bundle size for individual ABPs.
Fig.4.11(c) and (d) show the resulting ¢, and ¢, intensity patterns: The diffraction pat-
terns for bundles polymerized in the presence of the same concentration of espin and
fascin, Rt = Respin = Rfascin, show very similar features as the bundles formed by a
single crosslinker type. An array of sharp peaks arises for Re¢ > 0.015 at approximately
the same positions as for espin or fascin (fig. 4.11(c),(d)).

An analysis of the higher-order peak positions in the diffraction pattern along the
radial g, direction confirms hexagonal packing of the filaments. The relative ratios of
the peak positions (obtained by Gaussian fits to the background-subtracted data) are in
excellent agreement with the theoretically expected values (fig.4.11(e)). Interestingly,
the slope of the relation is in-between the values found for fascin and espin alone.
Consequently, the corresponding hexagonal lattice distance aqf = 12.4nm is also an
intermediate state between af,g = 12.2nm and aesp, = 12.6 nm. Although this difference
in a is quite small, it can be regarded as reliable. The uncertainty in determining the
slope for each crosslinker type is much smaller than the measured difference between
fascin, espin and a combination of those. This is shown in the inset of fig.4.11(e) in
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Figure 4.11: Combining fascin and espin: (a)+(b) TEM micrographs of (a) espin (Resp = 4,
ca = 0.95M) and (b) espin/fascin bundles (Rgs = 1, Resp = 4, ca = 0.95M). While espin
alone forms bundles comparable with those formed by fascin, the combination of both leads
to formation of much thicker bundles. (c)+(d) Angularly averaged diffraction intensity over
wedges along (c) ¢ and (d) q. for various values of Rejf = Respin = Rfascin- (e) The higher
order peak positions reveal hexagonal packing of the filaments. The slope and thus the lattice
distance @ has an intermediate value between the single-crosslinker bundles. (f) The domain
size d in dependence of R = 2R,s is the same for the espin/fascin bundle as for espin or fascin
exclusively.
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which the data for different values of R for one bundle type nicely collapse.

The domain size d extracted from the HWHM of the (1,0)-peak is a measure of the
crystallite size convoluted with the substitutional disorder in the lattice. Only if the
filaments are perfectly arranged, the domain size d is the same as the bundle thickness.
Interestingly, the domain size for the espin/fascin bundles shows the same dependence
on R = 2R,s as the single-crosslink-bundles, including the absolute values (fig. 4.11(f)).
This is in contrast to the large bundle diameter observed in TEM experiments.

The diffraction pattern along ¢, reflects information about the intra-filamental sym-
metry. As can be seen in fig.4.11(d), the peak position do not change with the
crosslinker concentration. Fitting the peaks with the theoretically calculated diffrac-
tion patterns of sec. 4.3.3 reveals a overtwisted symmetry of -28/13, the same as found
for espin and saturated fascin bundles.

It yet remains unclear how the combination of espin and fascin, which build very
similar bundle structures and use the same mechanism to overcome the discrepancy
between chirality and hexagonal lattice packing are able to form bundles of larger
widths, and how the filaments are arranged in these structures. In principle, one
could think either of a cooperative bundling where both crosslinkers are homogeneously
incorporated in the bundle or of a mechanism suggested by the in vivo experiments
where bundles of bundles are formed [64]. The recorded hexagonal lattice distance a|¢
which is in-between the values found for espin and fascin supports the first hypothesis.
As fascin and espin form very similar bundles, it seems likely that both can compensate
the small difference in a and can cooporate in bundling the actin filaments. In contrast,
the discrepancy between the domain size d obtained by SAXS and the bundle width
obtained by TEM contradicts the hypothesis of homogenous bundles. It seems unlikely
that the combination of both ABPs leads to an increase in substitutional disorder and
that this disorder exactly compensates for the enhanced bundle thickness ending up in
the same domain size d as the bundle formed by either fascin or espin. This suggests
that the maximum crystallite size within the bundle is smaller than the overall bundle
width.

A model of espin bundles which are subsequently bundled by fascin (or vice versa)
would explain this discrepancy between the observed small domain size and larger
bundle width. However, it is not in accordance with the found intermediate value
for the lattice distance. Moreover, the comparison of d for the espin/fascin bundles
and the bundles formed by only one of those ABPs contradicts this model: only one
half of the crosslinker concentration would contribute to the first bundle formation
(Resp = Rpas = 1/2R); the curve in fig. 4.11(f) would shift by a factor of 1/2 to the
left. The domain size would be significantly larger at comparable R values than for the
single-crosslinker systems.

A third conceivable model is that both crosslinkers form bundles separately and these
small crystallites are, however, subsequently crosslinked by the mixture of the ABPs.
This would accomodate an intermediate lattice distance: the sum of two Gaussians
peaks can be interpreted as a single peak at intermediate g, position. Thereby, the
width of the peak is overestimated, and the domain size would reflect too small values.
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Figure 4.12: Combining a-actinin and fascin: (a) Fluorescence micrographs of o-actinin/fascin
bundles. The intensity profile along the bundle indicated with the red arrow shows several
steps, indicating that the final bundle consists of approximately seven equally sized bundles.
The scale bar indicate 5 pm. (b) The circulary averaged diffraction pattern of a-actinin/fascin
bundles for different crosslinker concentrations exhibits fascin-like properties. (¢) Gaussian
fits to the higher order peaks exhibit the same hexagonal packing as measured for pure fascin
networks.

However, this contradicts the measured values for d which are — analogously to the
second model — too large.

Obviously, this first series of experiments combining espin and fascin does not eluci-
date the organization of these bundles. A conceivable complication is the fact that espin
and fascin have similar dimensions and form very similar bundle structures. Therefore,
an approach using a combination of more different ABPs as filamin or o-actinin might
facilitate the investigation of wide bundle formation.

Combining «-actinin and fascin Fluorescence microscopy shows that a replacement
of espin by a-actinin leads to the formation of large bundle structures: The micro-
graph of fig. 4.12(a) shows bundles featuring frayed ends. This indicates that the bun-
dle consists of many smaller bundles (fig.4.12(a)). The smaller bundles are straight
over long-length scales, reflecting their large bending rigidity compared to single-actin
filaments. The hypothesis of a hierarchic organization is supported by analyzing the
fluorescence intensity along the bundle axis: it increases stepwise indicating that the
small bundles are of well-defined size. The corresponding SAXS experiments reveal a
fascin-like nature of the bundle organization (fig.4.12(c),(d)). Dependent on the salt
concentrations, a-actinin is reported to form hexagonal or quadratic bundles with a
typical lattice distance of a &~ 40nm [99, 100]. In contrast to this, the diffraction pat-
tern of an actin network bundled by a combination of x-actinin and fascin shows the
first peak around qi9 = 0.59nm~! similar to fascin. No indication for any a-actinin
characteristics is found. Indeed, fitting the higher order peaks by several Gaussians
exhibits q1p = 0.593nm ™", which is exactly the same value as found for fascin bundles.

The SAXS data combined with the fluorescence micrographs support the assumption
that fascin bundles are crosslinked via o-actinin to larger structures. However, the
fascin bundling is suppressed when the x-actinin concentration is increased to R, = 0.5:

48



4.6 Combination of Different ABPs

In this case x-actinin dominates the network structure. Similar effects are reported for
a combination of filamin and fascin by macrorheological measurements [101].

Although the presented data on the combination of different ABPs is insufficent to
give insight in the precise organization of such bundles, it shows that it is possible to
build also in wvitro larger structures, even though the bundle size of each crosslinker is
limited to smaller values. Different ABPs with different binding affinity, flexibility and
length might have different mechanism to overcome the mismatch between the helical
symmetry and the bundle packing, e.g. overtwisting single filaments or supertwisting
the whole bundle. The limited number of binding sites and the specific interplay
between the ABPs will again limit the thickness of these bundles.
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Chapter 5

Depolymerization Kinetics of
Crosslinked Actin Networks

The requirements on the eukaryotic cytoskeleton are of high complexity and include
even conflicting demands: While a dynamic character of cytoskeletal structures is es-
sential for the motility of cells, their ability for morphological reorganizations and cell
division, also stability is needed to guarantee the integrity of cells. For the former,
the dynamic properties of microtubules [102-105] and actin filaments [106, 107] are of
particular importance. The polymerization and depolymerization properties of actin
filaments both in vivo [107, 108] and in vitro [16, 109-115] have been studied exten-
sively.

It is well known that cells make use of actin-binding proteins (ABPs) in order to
accelerate the intrinsic dynamics of actin filaments. While nucleation factors like the
ARP2/3 complex [116] induce the formation of new filaments, capping proteins and
actin-depolymerizing factors like cofilin result in a significant increase of depolymer-
ization dynamics [37, 117]. On the other hand, some crosslinking proteins have been
reported to excert a stabilizing effect on individual filaments [118-121]. This seems to
be harnessed by cells for the regulation of bundle size in vivo: a lack of espin results
in inhibition of stereociliary growth, followed by progressive degeneration of the hair
bundle [122]. Moreover, varying expression levels of fascin in drosophila bristle cells
resulted in changes of filament turnover accounting for distinct phenotypes [123]. An
overexpression of o-actinin has been shown to cause accumulation of actin filaments
and inhibition of actin dynamics [124].

As such a stabilization of filamentous structures could be an important aspect for
cells, it is crucial that filaments are protected against depolymerization factors such as
cofilin, which is omnipresent in a cell. Yet, it is still necessary to enable a controlled
depolymerization of bundles and filaments, which suggests that additional mechanisms
are needed to enable a disintegration of these actin structures. Despite the impor-
tance of the regulation of actin dynamics for many cytoskeletal processes, quantitative
investigations of their mediation by crosslinking molecules remain scarce.

The following chapter provides a quantitative analysis of the effect of ABPs on the
depolymerization kinetics of actin networks. Section5.1 describes the methods used
for analyzing the time course of depolymerization. The results presented in section 5.2
demonstrate that crosslinking proteins suppress actin depolymerization in a concen-
tration dependent manner. Pyrene and microscopy experiments show a distinct slow-
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down in depolymerization induced by latrunculin or dilution of the actin filaments
(sec.5.2.1-5.2.3). Moreover, ABPs even protect actin filaments from disintegration by
cofilin (sec.5.2.4). However, the addition of molecular motors can overcome the stabi-
lization effect: even extremely stable actin bundle structures can be disintegrated by
the concerted action of cofilin and myosin II (sec. 5.2.5). The results are discussed and
qualitatively explained by a simple but generic model in section 5.3.

5.1 Methods

The choice of experimental methods to analyze the depolymerization behavior of differ-
ent actin networks is quite challenging: The aim has been to investigate the dynamics
of completely different structures of actin networks, made up of different crosslinking
proteins in varying concentration. The corresponding geometries range from an entan-
gled actin solution without any crosslinkers and a homogeneously crosslinked network
of single filaments (e.g. for HMM) to thick, kinetically trapped bundles in the case of
filamin (see section 2.2). In order to assure the comparability of the results, it is desir-
able to have one method applicable to all network structures. Besides the challenge of
capturing single-filament and bundle networks at the same time, the out-of-equilibrium
nature and the internal prestress of filamin and «-actinin bundles makes the handling
very difficult. Experimental caution is mandatory to avoid the collapse of such net-
works.

Depolymerization can be induced in several ways: The depolymerization factor la-
trunculin B (LatB) sequesters monomeric actin and thus reduces the effective monomer
concentration in the solution. Its addition causes a depolymerization at both, barbed
and pointed ends of the filaments. Similarly, dilution of the actin below the critical
concentration cqit 2 0.1 nM [16] will induce depolymerization. While these methods
cause depolymerization simply by lowering the monomer concentration in the solution
without changing the rate constants of the filament, different effects can be expected
for the addition of cofilin. Cofilin has not only been reported to cause an increase of
depolymerization rates [35], but also to sever actin filaments [38, 125] (section 2.2).

There are different methods to follow the degree of polymerization over time: The
first straight-forward approach is fluorescence microscopy. In order to evaluate the mi-
crographs at different time steps, quantitative image analysis can be applied (sec. 5.1.1).
Another standard technique to investigate the time course of polymerization or depoly-
merization is the pyrene assay. It provides a quantitative measure of the amount of
polymerized actin in the sample (sec.5.1.2). A detailed description of these meth-
ods and the diffusion chamber which allows the addition of reagents to a polymerized
network (sec. 5.1.3) is given below.

Unfortunately, the widely pull-down assay does not seem effective for bundled net-
works. Centrifuging! a polymerized network should pellet all protein aggregates and
thus all filamentous actin with bound crosslinking protein. In case of entangled actin
solutions, only monomeric actin stays in the supernatant. This makes the centrifuga-
tion assay an adequate method to measure the critical actin concentration c.. For

!centrifugation was performed for 1.5h at 100000 g and 435400 g, respectively
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5.1 Methods

crosslinked networks, the actin concentration in the supernatant is greater than for
pure actin solutions (see appendix B for details). In the case of filamin bundles, this
supernatant can polymerize after the centrifugation step into a homogenous bundle
network indicating that the increase in monomer concentration cannot be explained by
a change of association/dissociation rates and thus of the critical concentration by the
crosslinking molecules.

Sample preparation All samples in this section were polymerized at an actin con-
centration of ¢4 = 3pM in F-buffer. In the case of crosslinked networks, the actin is
usually polymerized in the presence of the crosslinking molecules. For actin/rigor-HMM
networks, F-buffer without ATP is used. For the actin/filamin networks polymerized
in the presence of myosin II, a different 10x polymerization buffer (100 mM Imidazol,
30 mM MgCly, 2 mM CaCly, 0.05 % NaNg, pH 7.2) is used.

5.1.1 Fluorescence Microscopy and Quantitative Image Analysis

For microscopy experiments, the individual monomers were labeled with a fluorescent
dye (sec.2.3). If LatB and cofilin depolymerization assays are applied to filamentous
networks, a 1% fraction of labeled reporter filaments is mixed with unlabeled F-actin
after full polymerization. This is necessary as at a concentration of 3 1M labeled actin,
individual actin filaments are hardly detectable.

Fluorescence microscopy data are acquired on a Zeiss Axiovert 200M inverted mi-
croscope, using a 100x oil immersion objective with a numerical aperture of 1.4. For
of a-actinin networks, a 40x oil immersion objective (NA 1.3), and, for filamin bundle
networks, a 25x oil immersion objective (NA 0.8) is used. Time lap videos were taken
for each time step in order to allow for a distinction between filaments and bundles.
To correct for the insufficiency of Kohler illumination in the fluorescence path way, the
inhomogeneous illumination is corrected by a gliding square average filter.

In order to measure the amount of polymerized actin over time, the fluorescence
micrographs recorded at individual time steps are analyzed quantitatively. The images
are edited to allow for the identification of filamentous structures (fig. 5.1). The first
steps of this image processing are a gaussian blur and a background subtraction using
the algorithms implemented in ImageJ. In order to identify the filamentous structures,
a threshold which is adjusted manually for each time step is used to create a binary
image. A minimal cluster size for filamentous structures suppresses diffuse fluctuations
of the background intensity.

For filamentous networks the number of pixels which are part of filaments is counted
and averaged over at minimum 30 images for each time step. For bundle networks, the
fluorescence intensities of the bundle structures determined by the described binariza-
tion are measured to account for bundle thickness. Again, it is averaged over at least
30 images. The time courses of depolymerization are normalized by the initial values.
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Figure 5.1: Image processing for quantitative image
analysis using the example of an entangled actin solu-
tion: The series shows the same image after different
processing steps using ImageJ and Matlab: (a) Orig-
inal fluorescent micrograph. (b) Gaussian blur and
background subtraction. (¢) Binary image by apply-
ing a threshold in ImageJ. (d) A minimal cluster size
defines the filamentous structures shown in red.

5.1.2 Pyrene Assay

The fluorescence of pyrene-labeled actin is drastically enhanced after polymerization.
Thus, the fluorescence signal is proportional to the polymer weight concentration. Con-
sequently, the pyrene assay has been established as a powerful tool for polymeriza-
tion/depolymerization studies [41]. Note that the signal is insensitive to the polymer
length distribution; the assay can only capture the overall amount of polymers in the
sample.

For pyrene assay experiments, a total actin concentration cpx = 31uM and a degree
of labeling of about 11% are used. The fluorescence intensity is determined by a
spectrofluorometer of type FP-65002. Upon full polymerization, 50 pM LatB is added
and thoroughly mixed using a pipette. The normalized fluorescence intensity I, (t) =
Il(f)f_[? is calculated, where Iy is the fluorescence intensity prior to polymerization and
I; is the fluorescence intensity directly after addition of LatB.

This assay is not applicable for out-of-equilibrium networks. The method is based
on the assumption that the addition of a depolymerization reagent neither changes
the network morphology nor the filament length distribution. This is not the case for
actin/filamin and actin/a-actinin networks where pipetting the sample will destroy the

network architecture.

5.1.3 Diffusion Chamber

In order to investigate the depolymerization kinetics of crosslinked actin networks, the
ability to add a reagent after the full polymerisation of the network is essential. Due
to the high non-equilibrium nature of filamin and o-actinin networks, simply pipetting
will mechanically disrupt the network and irreversibly change the network morphology
[26]. This is overcome in a setup where the reagent can slowly diffuse into the sample.
Such, mechanical damage to the network is avoided.

Therefore, a diffusion chamber has been designed (fig.5.2), in which the actin net-
work polymerizes between a cover slip and a 0.1 pm pore size Durapore PVDF filter

2JASCO Labor- und Datentechnik GmbH, GroR-Umstadt, Germany
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Figure 5.2: Schematic representation of the diffusion chamber used in depolymerization ex-
periments which allows for addition of depolymerization reagent after polymerization of the
network via the PVDF membrane.

cover slip glass slide

membrane®. Four layers of Parafilm are used as a spacer and a glass slide with a hole
is used to fix the membrane. In order to prevent the sample from evaporation over the
extended experimental period of several days, the chamber is sealed with a sufficient
amount of vacuum grease. An additional cover slip is used to close the chamber at the
top. Upon polymerization, a highly concentrated solution of the reagent (LatB, cofilin
or ATP) is added on top of the membrane.

5.2 Results

There are indications in literature that some ABPs influence the depolymerization
kinetics of actin filaments. Often a specific effect of the crosslinking molecules has been
assumed. However, a more general investigation relying on a quantitative analysis of
the effects of different crosslinking molecules has been missing.

In the following section, such a study of various ABPs, namely fascin, filamin, o-
actinin, rigor heavy meromyosin (HMM) and tropomyosin is investigated. Different
techniques of depolymerization and quantitative analysis are used. At the same time, it
addresses the question, how the network geometry influences the dynamics, i.e. whether
bundling is necessary for a slow-down in depolymerization dynamics.

5.2.1 Latrunculin Induced Depolymerization in Pyrene Assays

In a first series of experiments, depolymerization is induced by addition of latrunculin B
(LatB). This causes depolymerization at both the barbed and the pointed end by an
effective decrease of available actin monomers in the solution. A standard pyrene
assay, in which the normalized fluorescence intensity I(t) is a measure for the degree of
polymerization, allows monitoring the time course of actin depolymerization (sec. 5.1.2).
In case of an entangled actin solution, the intensity and thus the amount of polymerized
actin continuously decreases within 20 hours after the addition of LatB to ~ 20% of
the initial value (fig.5.3(a)). It has been suggested that the depolymerization kinetics
for such a pure actin solution follow a double exponential decay [109, 113|. Assuming a
constant depolymerization rate, the curve shape reflects the filament length distribution
in the sample.

Interestingly, the depolymerization kinetics are drastically modified in the presence
of the ABP fascin, which bundles actin into individual polar bundles (sec.2.2). As de-

3Sigma-Aldrich Corporation, St. Louis , USA
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Figure 5.3: Pyrene assay monitoring actin depolymerization induced by addition of LatB:
(a) Crosslinking molecules slow down the depolymerization of actin filaments. Fluorescence
intensity upon addition of 50 pM LatB is shown for actin/fascin (R = 1) (black) and actin/rigor-
HMM networks (R = 1) (blue) as well as the pure actin solutions in the corresponding buffers
(F-buffer with ATP (black) and F-buffer without ATP (blue)). The depolymerization of an
entangled actin solution is fitted with a double exponential decay (red). Please note, that the
enhanced noise in case of HMM is due to quenching effects by the binding of HMM and the
normalization with respect to the initial value. (b): The inhibition of actin depolymerization
by fascin is concentration dependent. For actin/fascin networks ¢, /5 is shown as a function of
the molar ratio of fascin to actin, R. The network architectures emerging at the respective
fascin concentrations are illustrated.

picted in fig. 5.3(b), fascin is slowing down the depolymerization process in dependence
of its concentration: At a molar ratio of R = ¢fas/ca = 0.01 fascin and actin no effect
is resolvable. In contrast, the time ¢; /5 at which the normalized fluorescence is halved,
I(ty5) = 11(0), increases about a factor of ten for R, = 1.

In order to test whether bundling accounts for this stabilization, the effect of the
ideal crosslinker HMM in the rigor state is investigated . Rigor-HMM can both form
crosslinks between actin filaments and decorate individual filaments (sec.2.2). As
shown in fig. 5.3(a), rigor-HMM completely inhibits actin depolymerization at Ryn =
1, even though it does not cause any bundling at all.

5.2.2 Latrunculin Induced Depolymerization in Microscopy Based
Experiments

A pyrene assay is inadequate in case of some ABPs as it is sensitive to quenching
effects and as it requires pipetting the polymerized solution. This is problematic for
networks — such as actin/filamin bundle networks — which are kinetically trapped and
show syneresis effects [26]. Using a diffusion chamber allows the addition LatB to all
actin network without disrupting the network mechanically (sec.5.1.3). Fluorescence
microscopy experiments confirm the effect of 50 uM LatB on the network architecture.
Entangled actin solutions depolymerize almost completely within 48 hours (fig. 5.4(a)).
Quantitative image analysis (sec. 5.1.1) allows monitoring the degree of depolymeriza-
tion over time (fig. 5.4(c)).

Comparison ofthe time courses of depolymerization in the pyrene assay and the quan-
titative image analysis demonstrates, that the time scale observed in the microscopy
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Figure 5.4: Fluorescence micrographs with quantitative image analysis showing the effective
inhibition of depolymerization: actin networks (¢, = 3 pM) in the presence of various crosslink-
ers are shown before and 48 hours after the initiation of depolymerization by the addition of
50 pM LatB via a diffusion chamber. In the case of filamentous networks, only 1% of the actin
is fluorescently labeled.(a) At R = 1, all crosslinking proteins effectively inhibit depolymer-
ization. As shown for filamin in (b), the slowdown of actin depolymerization is concentration
dependent. Scale bars denote 50 pum. (c)+(d) Quantitative image analysis allows extracting
time courses of depolymerization corresponding to (a) and (b), respectively. (¢) It can be seen
that all crosslinking proteins observed in this assay slow down the depolymerization at R =1
compared to entangled actin solutions. (d) The slowdown caused by filamin is concentration
dependent. While no effect is observed at Rg = 0.001 compared to pure actin (squares), the
depolymerization clearly is slowed down at Rg; = 0.1 and is completely inhibited at Rg = 1.
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experiments is of the same order of magnitude as the slow time scale observed in the
pyrene experiment. An initial fast decay is visible in the pyrene assay, but not in the
analysis based on fluorescence microscopy. This difference could be due to changes in
association/dissociation rates induced by the covalently labeling of the actin monomers
with the pyrene or alexa dye (sec.2.3). However, performing the microscopy experi-
ment with the fraction of pyrene labeled actin used in the fluorimeter does not influ-
ence the depolymerization kinetics; this follows the same time course of the standard
alexa-experiment. Likewise, the alexa labeling does not seem to have an influence: If
unlabeled actin is mixed with LatB and fluorescently labeled phalloidin is added at
certain time steps after initiation of depolymerization, the quantitative image analysis
roughly follows the alexa-experiment.

The difference in the time courses can be explained by the fact that filaments shorter
than a certain cut-off length, which is given by the resolution limit and the minimal
cluster size in image processing, do not contribute to the decay measured in fluorescence
microscopy. In contrast, the pyrene assay is sensitive to all lengths of filaments. If the
fraction of filaments shorter than the cut-off length is large enough, this will cause such
a difference in the time course of both experiments (see appendix C).

However, addition of crosslinking proteins to the sample drastically changes the de-
polymerization kinetics. While the pure actin filaments almost completely vanish within
48 h, only partial depolymerization is observed for actin/fascin networks at R = 1,
where even bundles are still present after 48 hours (fig. 5.4(a) and (c)). In the case
of actin networks crosslinked by rigor-HMM at R = 1, no depolymerization is observ-
able over a time duration of 117 hours. Although fascin and rigor-HMM arrange actin
filaments in significantly different network architectures, both crosslinking proteins sup-
press the depolymerization of actin filaments quite effectively. This suggests that the
stabilization is a generic effect. Indeed, also the ABPs filamin and «-actinin, which in-
duce the formation of highly curved and branched actin bundle networks, inhibit actin
depolymerization (fig.5.4). Similarly to actin networks crosslinked with rigor-HMM,
actin/filamin networks of R = 1 are completely stable over 117 hours. In the case
of filamin, where a pyrene assay cannot be used, this diffusion assay even allows the
observation of a concentration dependency similar to that observed for fascin before.
Again, an increase of the crosslinker concentration results in a gradual slowdown of
the depolymerization dynamics. The stabilizing effect is not restricted to crosslinking
ABPs: tropomyosin, which binds to six actin subunits along one filament has been
shown to inhibit depolymerization at the pointed end of Villin-capped actin filaments
[126]. As shown in fig. 5.4(a) and (c), tropomyosin even prevents depolymerization of
uncapped filaments. An altered length distribution of filaments can not account for
the drastic effects observed.

5.2.3 Dilution Induced Depolymerization

Diluting actin solutions below the critical concentration c.i; provides an additional
way to induce depolymerization. This might give a deeper insight into the principle
underlying the stabilization effect of crosslinking proteins. Upon 300-fold dilution in
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Figure 5.5: Depolymerization induced by dilution: Actin networks (polymerized at ¢, = 3 pM)
in the presence of various crosslinking proteins are shown directly and 20 hours after 300-fold
dilution to ¢, = 0.01uM in F-buffer. While pure actin solutions and actin/fascin bundle
networks almost completely depolymerize, no depolymerization is observable within 20 hours
for actin networks crosslinked by rigor-HMM. Tropomyosin decorated filaments depolymerize
but the stabilizing effect can be recovered by addition of 3 pM tropomyosin to the dilution
buffer. Scale bar is the same for all images and denotes 20 pm.

F-buffer, actin solutions (¢, = 3pM) almost completely depolymerize within 20 hours
(fig. 5.5). Actin/fascin bundles decompose within a few minutes upon dilution, fol-
lowed by a complete depolymerization within the experimental period comparable to
pure actin solutions. Rigor-HMM at Rpyiv = 0.1 or Rgyv = 1 inhibits depolymer-
ization on relevant timescales. While rigor-HMM suppresses depolymerization without
bundling filaments, bundling is essential for a slowdown of depolymerization induced
by fascin. Both, fascin and rigor-HMM, form inter-filamental crosslinks but only rigor-
HMM can form a high number of intra-filamental crosslinks decorating single filaments.
This suggests that in the case of rigor-HMM rather intra-filamental crosslinks than
the comparable small number of inter-filamental crosslinks account for the observed
stabilization of actin filaments. 300-fold dilution of tropomyosin decorated filaments
results in depolymerization (fig.5.5). However, this might result from the fact that
due to its lower binding affinity dilution causes a decrease of the molar ratio of bound
tropomyosin. While fascin bundles still decompose if 3 puM fascin is added to the di-
lution buffer, the stabilizing effect of tropomyosin can be indeed recovered by adding
3pM tropomyosin to the dilution buffer. This again demonstrates the concentration
dependency of the stabilizing effect of ABPs.

5.2.4 Cofilin Induced Depolymerization

The mechanism by which crosslinking proteins affect the depolymerization kinetics of
actin filaments is similar for both depolymerization methods independently if this is
induced by addition of LatB or by dilution in F-buffer. Different effects can be expected
for the addition of cofilin, which has not only been reported to cause an increase of
depolymerization rates [35], but also to sever actin filaments [38, 125]. Tropomyosin has
been shown to be a physiological inhibitor of cofilin dependent actin dynamics [127].
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Figure 5.6: Crosslinking molecules inhibit depolymerization induced by cofilin: Actin networks
(ca = 31M; for filamentous networks, only 1% of the actin filaments is labeled) in the presence
of various ABPs are shown directly and ~ 20 hours after addition of 3pM cofilin. (a) While
pure actin solutions completely depolymerize within 2 hours (inset), depolymerization is dras-
tically slowed down for actin networks crosslinked by rigor-HMM, decorated by tropomyosin
or bundled by fascin or filamin (R = 1). (b) At lower crosslinker concentrations (R = 0.1),
the slowdown of depolymerization is less pronounced than at high concentrations in the case
of rigor-HMM and tropomyosin. Only for filamin, the stabilizing effect is even stronger at
R = 0.1. Scale bars denote 50 um. (c)+(d) Quantitative image analysis allows extracting
time courses of depolymerization induced by cofilin from fluorescence micrographs shown in
(a) and (b), respectively. (c) All observed ABPs decelerate the depolymerization at R = 1
compared to pure actin. While depolymerization is still observed for filamin, no significant
depolymerization can be detected for HMM, fascin and tropomyosin. (d): At R = 0.1, a slow
depolymerization is observed for HMM and tropomyosin. No depolymerization is observed for
actin/filamin networks.
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As shown in fig. 5.6, not only tropomyosin but also all the crosslinking molecules tested
here prevent disintegration of actin networks by cofilin, provided that they are present
at high concentrations (R = 1). In the case of tropomyosin, HMM and fascin, no
depolymerization is detected in the quantitative image analysis (fig. 5.6(c)). Although
bundles are still visible after more than 20 hours (fig.5.6(a)), a slow disintegration
is observed for actin/filamin bundle networks at R = 1 (fig.5.6(c)). In the case of
a-actinin networks, no reproducible could be obtained.

Addition of 3uM cofilin to an actin network crosslinked by rigor-HMM or dec-
orated by tropomyosin at lower concentrations (R = 0.1) results in disintegration
(fig. 5.6(b)) — however still significantly slower than for pure actin (fig. 5.6(d)). Supris-
ingly, actin/filamin bundle networks at Rg; = 0.1 are completely stable over 23 hours.
The complete stabilization at the low concentration of Rg) = 0.1 might be explained by
an interaction of several actin subunits with a single filamin molecule. The fact that a
slow disintegration is observed at the higher crosslinker value Rg = 1 might indicate a
specific effect that cannot be explained by our simple model presented in sec. 5.3.

5.2.5 Active Disintegration of Actin Bundles by Molecular Motors

The insensitivity of actin bundle networks with respect to the depolymerization assays
investigated so far suggests that cells need additional mechanisms to disintegrate such
highly stabilized actin structures. Molecular motors are known to influence the de-
composition of bundles associated with the filopodium in vivo [128] and to disintegrate
actin bundles in vitro [129, 130].

Using a standard motility assay [131], HMM molecules are able to disrupt fascin bun-
dles. The ABP fascin arranges actin filaments into polar bundles which are transported
by the motor molecules. Due to this polarity the bundles can slide as fast as single
actin filaments on the myosin II surface (fig. 5.7(a)). Dependent on various parameters
like the ATP, fascin or motor concentration, the bundles disintegrate during this move-
ment. There are different modes of disintegration where also a combination of them
can appear: at high ATP and low fascin concentrations, the bundle unzips right after
ATP addition. The diverging filaments have the same length as the original bundle
(fig. 5.7(b)). Without ATP and, thus, without activity of the motor molecules, the
bundles are stable over minutes on the surface indicating that not only a dissociation
of fascin molecules is responsible for the disintegration process. If fascin is present in
the supernatant buffer, the bundles are more stable. Only short pieces of actin fila-
ments smaller than 5pm are pulled out. This process can take up to a few minutes
until the whole bundle is disrupted (fig. 5.7(c)). Increasing the amount of inactive mo-
tor molecules presents a third mechanism: While sliding on the surface, the bundle
repeatedly stalls, buckles, and finally breaks (fig.5.7(d)). The underlying mechanism
responsible for the different modes of disintegration is still unknown and subject of
current research.

Based on the described disintegration ability of HMM in the two-dimensional setup
it seems reasonable to assume that molecular motors might help to disrupt even
three-dimensional actin networks bundled by filamin. To test this hypothesis, an
actin/filamin network (¢, = 3pM, Rg = 1) is polymerized in the presence of full-
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Figure 5.7: Motility assay with actin/fascin bundles: (a) Due to the polarity of the fascin
bundles, their gliding velocity is the same as for single filaments. The data was recorded
at catp ~ 50puM and R = 1. (b)-(d) Depending on various parameters, different modes of
disintegration are observed: (b) Within a few seconds after ATP addition, the fascin bundles
unzip completely. (c¢) If fascin is present in the buffer, only short fragments of actin filaments
are pulled out. (d) Increasing the amount of inactive motors, the bundles repeatedly stall,

buckle, and finally break. The color gradient from the leading edge (pointed end, in brown) to
the rear part (barbed end, in white) indicates the direction of movement.
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Figure 5.8: Actin/filamin bundle networks can be disintegrated using molecular motors: (a)
Actin/filamin networks (¢, = 3uM, R = 1) are polymerized in the presence of myosin II
(myosin = 0.035 pM), which has been saturated with with a 16-fold excess of AMP-PNP and
is therefore unable to bind to actin. (b) Addition of 3 pM cofilin does not result in complete
depolymerization within 20 hours. (c¢) Activation of myosin IT by addition of 5.4mM ATP
causes drastic structural reorganization but actin structures are still present after 20 hours.
(d) By addition of both, cofilin and ATP, the networks can be completely disintegrated (d).
Scale bar is the same for all images and denotes 20 pm.

length myosin II (¢myosin = 0.035 1M) which forms — dependent on the salt concentra-
tion — mini-filaments (sec.2.2). The myosin has been saturated with a 16-fold excess
of the non-hydrolyzable ATP analog AMP-PNP and is therefore not able to bind actin
(fig. 5.8). Active myosin during polymerization would cause drastic changes in the net-
work morphology. As expected, 20 hours after addition of 3uM cofilin bundles are
still present (fig. 5.8(b)). Also activation of the molecular motors by addition of 5.4 pM
ATP in the absence of cofilin causes only a drastic reorganization (fig.5.8(c)), but no
disintegration of the actin structures. Only if both agents are added simultaneously,
the network is completely disintegrated within 20 hours (fig. 5.8(d)). Thus, cofilin and
the presence of motor activity is needed to depolymerize actin/filamin bundle networks
effectively.

5.3 Discussion

The effect of crosslinking proteins on the depolymerization behavior of F-actin has been
rather unknown. Although an inhibition of actin depolymerization has been reported
previously for dictyostelium 30 kDa actin-bundling protein [118], a-actinin [119], espin
[120] and plastin [121] and has been postulated for bundles from in vivo experiments
[122, 123, it has so far not been systematically investigated. The multiple depolymer-
ization assays used in this work should reveal insights into the effect of crosslinking
molecules on the kinetics of actin filaments: Depolymerization has been induced by
dilution or by addition of latrunculin B and followed by quantitative fluorescence mi-
croscopy as well as a pyrene actin assay. Different crosslinking proteins result in the
formation of actin networks with strongly varying network architectures and properties
[8]. Yet, all studied crosslinking molecules inhibit depolymerization of F-actin provided
that they form a high number of crosslinks. This can be achieved either in the case of
bundling, where inter-filamental crosslinks are formed (fig. 5.9(a)), or if ABPs decorate
actin filaments with intra-filamental crosslinks (fig. 5.9(b)). The latter is the mecha-
nism by which the well studied toxin phalloidin stabilizes F-actin [109, 132]. Both cases
result in an increase of the total binding energy of the crosslinked actin subunits in the
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Figure 5.9: Simple model for depolymerization of actin in the presence of crosslinking
molecules. (a): Crosslinking molecules which bundle actin filaments prevent potential depoly-
merization events. (b): A similar effect occurs if crosslinking molecules decorate an individual
actin filament. (c): At high concentrations crosslinking molecules can prevent disintegration
of actin filaments induced by cofilin. (d): At lower crosslinker concentrations disintegration
induced by cofilin is possible.

filament — which is set by the actin-actin as well as the actin-ABP interaction — due to
the additional bonds to the crosslinking molecules. As solely simultaneous unbinding of
the actin-actin as well as the actin-crosslinker bond allows for a complete depolymeriza-
tion event, depolymerization is shifted to slower timescales. Moreover, a concentration
dependence of the slowdown is reasonable: At low molar ratios of the crosslinker, such
an improbable depolymerization event may be followed by several actin subunits which
can freely depolymerize until the next crosslinking molecule is reached.

This simple model (fig. 5.9) captures the major effects of crosslinking proteins, but
does not account for their specific properties, such as the binding propensity to actin.
The fact that no specific effects are needed to rationalize a stabilization effect of
crosslinking proteins suggests that a similar behavior can be expected also for other
dynamic polymers. In order to test this hypothesis, the depolymerization of micro-
tubules upon dilution is investigated.* In analogy to rigor-HMM in the case of actin,
kinesins in the rigor state can be used to decorate microtubules with intra-filamental
crosslinks. Indeed, an obvious slowdown of the depolymerization process upon dilution
is observed in the presence of kinesins (fig. 5.10).

Crosslinking proteins not only inhibit the intrinsic dynamics of actin filaments but
all crosslinking proteins tested here also inhibit disintegration of actin filaments by
cofilin. Presumably, the crosslinking proteins sterically hinder the access of cofilin
to the actin filament (fig.5.9(c)), inside bundles this access is additionally hampered.
As expected from our model, disintegration induced by cofilin is possible at lower
crosslinker concentrations (fig. 5.9(d)). Such an interpretation agrees with the previous

4Microtubules and kinesin is kindly provided by M. Brunnbauer.
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(a) microtubules  (b) +kinesin Figure 5.10: Depolymerization of mi-
i i crotubules induced by dilution is
slowed down by kinesin: Microtubules
(~100pM) are shown directly after
100-fold dilution. Within 3 minutes, a
complete depolymerization is observed.
If the microtubules have been decorated
with kinesin (KIF5A) in the rigor state
previous to dilution, some microtubules
are still present even after 30 minutes.
Scale bar is the same for all images and
denotes 20 pm.

Ominr

findings that bundling by villinl [133] or nonspecific interactions [134] can prevent
depolymerization induced by cofilin. In addition, actin bundles induced by dynamin2
and cortactin are remodeled to a more loosely packed conformation if GTP is added,
which in turn causes a higher sensitivity to cofilin [135]. The considerable effect of
filamin at intermediate concentration can be attributed to the supposition that filamin
acts with several subunits along the actin filaments.

The drastic modification of actin kinetics by crosslinking molecules can be expected to
have wide-ranging implications for living cells, where crosslinking proteins or ABPs such
as tropomyosin, which bind at least two actin subunits simultaneously are omnipresent.
Crosslinking ABPs may not only guarantee a mechanical stability and integrity of
cytoskeletal actin structures but can also provide a powerful tool for cells to stabilize
distinct actin structures against the intrinsic actin dynamics and can therefore fulfill
regulatory functions. On the other hand, additional concepts which enable cells to
disintegrate crosslinked actin structures or facilitate a continuous turn-over of actin
filaments are indispensable. In addition to severing ABPs such as cofilin — which
accomplishes a disintegration of moderately crosslinked networks but is not able to
destroy most networks crosslinked with a one-to-one stoichiometry — cells may need to
deal with the crosslinker induced stabilization of actin filaments using active molecular
motors [128-130]. Asshown above the combination of active myosin II and cofilin is able
to completely disintegrate actin/filamin networks at the high crosslinking concentration
R = 1. Myosin II activity might partially disrupt actin/filamin bundles by tearing
them apart and thereby create free binding sites along the filaments or at the ends of
the filaments, where cofilin can have access to. While this study demonstrates that
crosslinkers drastically alter the actin dynamics, it is a formidable challenge to address
their role on the actin kinetics in wvivo, where multiple molecules are involved and
compete for their effect on the filaments. Future studies on the interplay between the
numerous cytoskeletal constituents will eventually enable the reconstitution of in wvitro
modules with controlled properties akin to those of the highly dynamic and complex
living cell.
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Chapter 6

Nonlinear Rheology of Entangled Actin
Solutions

Many processes of living cells require a tight control of cytoskeletal mechanics. While
the puzzling complexity of the linear response and the observed general response be-
haviors are already posing a major challenge to experiments and theory alike [8], it
has been proposed that cells harness the nonlinear response of the semiflexible poly-
mer networks to rapidly adapt their local properties already at small strains [7]. As
the strain increases, a crossover has been observed to a linear inelastic flow regime,
most likely due to crosslink slippage [136]. The observed generic form of the nonlinear
response of living cells can be explained by bending deformations of the cytoskeletal
network [137], however only in vitro systems will be able to unambiguously determine
the underlying physical mechanisms.

The simplest model system with still daunting complexity are entangled F-actin
solutions. While the linear response can be quantitatively understood by tube defor-
mations [76, 138], an understanding of the nonlinear response is still elusive. This is
partly attributable to the fact that all kinds of stress weakening or stiffening responses
have been reported for such networks [139, 140]. The contradictory results need to be
addressed, before further progress can be achieved or any conclusions can be drawn
on the deformation modes dominating such networks. Achieving consistent results re-
quires that several difficulties are overcome, including clean sample preparation and the
development of experimental techniques that can accurately characterize nonlinear de-
formation. Reproducible measurements of nonlinear deformation are often difficult to
obtain because nonlinearity is associated with large deformations that alter or yield ma-
terial structures. A major challenge is to separate the elastic, viscous and plastic stress
contributions for soft samples with pronounced viscous properties. Thus, great care
has to be taken in choosing a measurement protocol to obtain a method-independent
description of the nonlinear response [140].

The first section in this chapter includes a short abstract of the theory of poly-
mer physics and the phenomenological description of viscoelasticity. Furthermore it
presents a variety of macrorheological measuring techniques in the nonlinear regime.
In section 6.2, these protocols are used to characterize the nonlinear shear response of
highly purified in vitro F-actin solutions. By careful analysis of the rheological data, it
is possible to resolve all contradictions found literature so far. As shown in section 6.3
this nonlinear response of entangled F-actin is very sensitive to experimental condi-
tions including temperature, actin and salt concentration, and even filament length.
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It is shown that each of these parameters can be tuned to produce a dramatic transi-
tion between softening and hardening of the network. These results are discussed in
the context of the existing literature and are qualitatively explained by the recently
introduced glassy worm like chain model [141] in section 6.4.

6.1 Rheological Basics

If a body is subjected to an external force, the body can either be moved as a whole or
it can be deformed by moving various particles of the body with respect to each other.
Elastic materials strain instantaneously according to Hooke’s Law — independent of
the applied strain rate. In contrast, for viscous liquids the stress is always directly
proportional to the rate of strain in accordance to Newton’s Law — independent of the
strain itself. Viscoelastic materials have elements of both of these limiting cases. The
study of the deformation and flow of matter is called rheology, while the experimental
characterization of the viscoelastic properties of a material is known as rheometry.

This chapter provides a short introduction to the theory of polymer networks, in-
cluding a brief description of the tube model and of the basic concepts of linear vis-
coelasticity. Section 6.1.3 describes the macrorheological methods for measuring the
viscoelastic properties of polymer solutions. Experimental protocols how to analyze
the mechanical properties in the nonlinear regime and their interpretation are intro-
duced in section 6.1.4.

6.1.1 Theory of Polymer Networks

Many biological polymers are semiflexible, i.e. their shape and behavior is not only
dominated by entropic effects but else by internal energetic contributions that arise
from their flexural rigidity x. A measure for the competition between internal bending
and entropy is the persistence length [, = x/kpT. It defines the typical length scale
over which directional correlations along the polymer are lost. Actin filaments have
a persistence length of 18 pm and (in wvitro) a typical contour length of several mi-
crometers [142, 143], making them textbook representatives of the class of semiflexible
polymers.

Worm-Like-Chain Model A theoretical description of semiflexible polymers has to
incorporate bending rigidity as well as the conformational entropy of the strand. This
is done by the common worm-like chain model (WLC) first introduced in [144]. This
model describes the polymer as a continuous space curve r(s) = (r1(s),s—7|(s)) where
r(s) and r(s) denote the transverse and longitudinal displacements at arclength s. The
WLC model has been subject to extensive studies; for more details about the WLC
dynamics, the reader may be referred to [145]. Longitudinal fluctuations are of higher
order. Thus, the dynamics of a weakly bending WLC can be described in leading order
by the linear Langevin equation:

CLory = —rr'l" + fr' + &, (6.1)
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Figure 6.1: Tube model by Doi and Ed-
wards [146]: The effect of the surrounding
polymers is modeled by a hypothetical tube
wherein the polymer of interest can fluctu-
ate. The tube is characterized by the tube
diameter D, and the entanglement length
L.

where ¢ and &£, denote the solvent friction per length and the Gaussian thermal
noise, respectively. Equation (6.1) can be solved by introducing eigenmodes. The
eigenfunctions can be chosen to be simple sine functions.

ri(s,t) = > an(t)Wa(s) (6.2)
n=1

Wn(s) = \/zsin(kns) (6.3)

Independent from each other, these eigenmodes relax exponentially with a charac-
teristic relaxation time 7, for each mode,

TL
Th = —F/—5——, 6.4
" oA 1 n2f/f (64)
where 7, = (L*/rkn* is the relaxation time and f; = xn?/L? is the Euler force of
the longest mode. Based on these results, various time-dependent parameters can be
calculated, for instance the transverse mean-square displacement or the relaxation after
application of an external forces [145].

Tube Model The WLC model presented above describes the dynamics of an isolated
fibre. If the concentration of polymers in the solution exceeds a critical value, the
movement of a chain is highly constrained by the entanglements with the surrounding
polymers. The fibers can slide past each other but cannot cross the adjacent fibers.
Caused by the enormous number in degrees of freedom, such a solution of semiflexible
polymers is extremely complex if all polymers are considered explicitly. An important
step is the simplification to a single-polymer description. The tube model of Doi and
Edwards [146] has proven to be a very useful tool in combination with the reptation
model of de Gennes [147]. Here, the topological constraints of the entangled polymer
solution are modeled assuming that the motion of an individual chain is confined in
a tube-like region formed by the surrounding polymers (fig.6.1). Inside this tube,
the filament can freely fluctuate and is able to move laterally along the tube axis.
The entanglement length L, is defined as the mean distance between collisions of the
polymer with its tube. Transversal undulations of the filament with wavelengths larger
than the entanglement length are highly overdamped. The tube will change either
by reptation of the central fibre along the tube or by fluctuations of the surrounding
polymers. External forces lead to an affine deformation of the tube [148|.
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Figure 6.2: (a) Scheme of the geometry in a simple shear experiment. The stress o is defined
as the applied force normalized by the area F/A, the strain 7 as the ration between deflection
and sample height 2/h. (b) Time profiles in a stress relaxation experiment following a sudden
step deformation. (¢) Time profiles in a creep experiment following a sudden stress step.

Although originally proposed for flexible polymers, the tube model is perfectly ap-
plicable to semiflexible polymers. Beyond the qualitative benefits, also quantitative
predictions for the plateau modulus or the tube diameter have been achieved [138, 149].

6.1.2 Basic Concepts in Linear Viscoelasticity

In general, solutions of semiflexible polymers exhibit viscoelastic behavior. In this case,
the relation between stress o, strain -, and their time dependencies can be described
by a constitutive equation. In a typical rheometric experiment, the deformation — a
dimensionless quantity which is defined as the ratio between deflection and sample
height — is uniform and corresponds to a simple shear of the sample (cf. fig.6.2(a)). In
this case, the constitutive equation is based on the Boltzmann Superposition principle:
It states that — in the linear regime — the stress response to successive changes in strain
are additive which is called the Boltzmann Superposition principle:

o(t) = /t G(t —t’)agg,)dt’ (6.5)

A detailed description can be found in [150]. In an alternative constitutive equation,
the strain is expressed as a function of the changes in stress:

t a t/
y(t) = / J(t— t’)L(, )dt’ (6.6)
o ot

Beside this mathematical definition, a demonstrative, physical meaning is attached to
the memory functions G(t—t') and J(t—t'), which manifests in their terms of relaxation
modulus and of creep compliance, respectively: Consider a step deformation where the
strain is suddenly increased to v = 7o (fig.6.2(b)). According to equation (6.5), the
time dependence of the stress is given by

o(t) = 70G(1) (6.7)
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Thus, the relaxation modulus G(t) describes the time course of the stress o(t), normal-
ized by the applied strain g after a stepwise deformation. A typical viscoelastic profile
is shown in fig. 6.2(b). Note that in the case of an elastic material (where G(t) = const.)
equation (6.7) reduces to Hooke’s Law.

Analogously, a constant shear stress oy may be applied to the sample in a so-called
creep experiment (fig. 6.2(c)). The dependence of the deformation on time, (t), can
be derived from equation (6.6):

V() = 00 (¢) (6.8)

Thus, the physical meaning of the creep compliance J(t) is the time course of the
creeping strain y(t), normalized by the applied stress oy in a step-stressing experiment.
It has dimensions of a reciprocal modulus. In the limit of an elastic material, J = 1/G.

Complementary information is provided by an oscillatory shear experiment in which

a sinusoidal strain ~yg sin(wt) at constant frequency f = w/27 is applied to the sample.

If the material behaves linearly, the stress response will also change sinusoidally. In

general, there is a phase shift § between strain and stress response, ranging from 0° to
90°.

o(t) = opsin(wt + §) = op(cos d sin(wt) + sin d cos(wt)) (6.9)

Placing the sinusoidal strain in the constitutive equation (6.6) yields:

o(t) =7 <w /000 G(s) sin(ws)ds) sin(wt) + 7o <w /OOO G(s) cos(ws)ds) cos(wt)
=70 (G'(w) sin(wt) + G" (w) cos(wt)) (6.10)
=7G"

Comparison of equations (6.9) and (6.10) shows that

G'(w) = a9/v0cosd (6.11)

G"(w) = 00/v0sind (6.12)

Equation (6.10) demonstrates that the stress response is composed of two contribu-
tions: an in-phase part proportional to G’ and an out-of-phase part proportional to G”.
Thus, G'(w) describes the elastic contribution is called storage modulus; in contrast,

G"(w) is a measure for the viscous contribution and is called loss modulus. Generally,
the moduli G’ and G” depend on the applied frequency w.

In principle, the transient and oscillatory measures G(t) and G(w) report the same
viscoelastic properties. They are connected via a Laplace-Transformation:

o0
G (w) = / G(t)e—tat (6.13)
0
Therefore, a conversion of the time in the frequency space is possible but experimen-

tally hardly to realize.
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Figure 6.3: Scheme of the measuring setup in
macrorheology. The sample is loaded between a
temperature controlled plate at the bottom and a
rotatable plate-plate geometry. Water surround-
ing the sample and the metallic shell prevents
evaporation.

metal shell rotatable plate

water N sample

temperature control

6.1.3 Methods in Macrorheology

In this work, the viscoelastic properties of actin networks are determined using macrorhe-
ological methods. For this purpose, all dimensions of the measuring setup have to
exceed the length-scales of the network to ensure the measurement of the macroscopic
character of the sample rather than of the local properties of single constituents. The
measurements have been done on two commercial, stress-controlled rheometers. For
most experiments, the Physica MCR301! has been used. The LAOS measurements
have been performed at the AR-G22? which allows recording the oscillation raw data
via a small auxiliary program. The setup of both rheometers is very similar (fig6.3):
The sample is loaded between a stationary, temperature controlled plate at the bottom
and a rotatable plate above. In case of the Physica MCR301, a plate-plate geometry
with a diameter of 50 mm and a plate separation of 160 pm has been used; at the AR-
G2, the plate-plate geometry has a diameter of 40 mm and the gap has been chosen to
300 pm to obtain approximately the same sample volume of 450 ul. To avoid evapora-
tion, water is added in a reservoir surrounding the sample and the measuring unit is
covered with a metallic shell.

After instrument calibration, the actin solution is added within a few minutes af-
ter the initiation of polymerization. To ensure complete polymerization, the complex
modulus is monitored by stress-controlled oscillations at a frequency f = 0.5Hz and
a torque M = 0.5 nNm, which is near the minimal torque both rheometers can apply.
The quality of the actin was tested by measuring the frequency spectrum of the moduli
G'(f) and G"(f) in the linear regime.

For some methods, it is necessary to monitor not only the complex modulus G*(f)
that is provided by the rheometer software but to track also the values of stress o(t) and
strain y(t) during the oscillations. A small auxiliary program at the AR-G2 provides
raw data of angular displacement and torque with a resolution of 1 ms. These values
are converted to strain v and stress o,; by multiplication with the standard geometric

! Anton Paar, Graz, Austria
2TA Instruments, New Castle, USA
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Figure 6.4: Schematic of the phase relations in a single head rheometer. Pure elastic stress is
in phase with the applied strain, pure viscous stress is shifted by 90°. The measured stress is
the sum of the viscoelastic sample stress and the inertia contribution of the instrument which
is shifted by 180°.

conversion factors for parallel-plates rheometers, C,, and C,, respectively. To obtain
the stress acting on the sample og the applied stress, oy, has to be corrected for
the instrument inertia I according to og = oy — a¥, where a = IC,/C,, (fig. 6.4).
The second derivative of the strain,y, was calculated by a numerical differentiation of
the shear rate 4(¢), that was first smoothed using a cubic spline method available in
MATLAB. Note that this inertial contribution a% depends on w? and is responsible
for the upper frequency limit of the experimentally accessible range. Above a critical
frequency, the signal is dominated by the inertial contribution and it is no longer
possible to separate the inertia correction.

The accuracy of this sample stress calculation has been demonstrated to milli-second
timescale by measuring the expected Newtonian response with calibration oils. It
has also been verified that the rheometers strain-control feedback loop is sufficiently
accurate to produce roughly sinusoidal strain and strain rate waveforms, even in the
nonlinear regime, as expected for strain-controlled oscillations. This has been achieved
in the "medium motor mode" of the rheometer control software.

6.1.4 Experimental Methods for Analyzing the Nonlinear Regime

The most challenging task in investigating the nonlinear regime of soft materials is the
choice of an appropriate experimental protocol. The difficulty is to distinguish between
the different stress contributions, namely elastic, viscous, and plastic contributions.
Purely or predominantly elastic networks are independent of the applied loading rates.
Thus, their nonlinear response can be successfully probed by various techniques. For
more viscous networks or for entangled solutions, the viscous flow cannot be neglected.
In this case, the network response strongly depends on both the loading rate and the
detailed measurement protocol. Even more complications occur if the network yields
and is irreversibly deformed. In the following, a short overview of the used methods
and their limitations is given.
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Figure 6.5: Scheme of the different measuring protocols in the nonlinear regime: (a) Prestress
(b) Stress Pulse Series (c) Constant Shear Rate (d) LAOS.

Prestress

A common method for the investigation of the nonlinear regime in viscoelastic samples
is the prestress protocol. To measure the dependence of the viscoelastic parameters on
an external force, increasing amounts of a constant prestress oy are applied, each for
a time period At. The network parameters are determined by a small superimposed
oscillatory stress (fig. 6.5(a)).

This method is applicable only for highly crosslinked samples with a marginal viscous
contribution. Artifacts occur if viscous flow is introduced and the sample rearranges
during the time At, changing the network geometry during the measurement. Hence,
the time dependence is in this method hardly accessible: the mechanical response is
not only dependent on the applied frequency, but is also dominated by the duration
At of the applied prestress and by the overall measuring time.

Stress Pulse Series

The step stressing protocol avoids the deficiency of the prestress method: A series of
short increasing stress pulses is applied to the sample, and the deformation is recorded
over time (fig. 6.5(b)). The time in-between two pulses is chosen to be that long that
the network relaxes to at most 2% of the deformation of the foregoing stress pulls, but
at least 50's to ensure that all relaxations have decayed. A measure for the viscoelastic
properties is the creep compliance J = /0 (section 6.1.2) in dependence of the applied
stress evaluated at a certain delay time ¢y. The inverse of the creep compliance, 1/J, is
considered as a modulus of the network. As a modulus of the network, the inverse of
the creep compliance 1/J is considered. Due to the long relaxation times after pulses

74



6.1 Rheological Basics

with larger amplitude, the procedure can take up to several hours, which calls for a
good protection from evaporation.

Constant Shear Rate

A complementary, strain controlled measuring method is a simple shear experiment in
which a constant shear rate 4 is applied to the sample. The differential modulus K (7)
is determined by numerically differentiating the stress-strain-relation (), which has
firstly been smoothed by the Smoothing Spline algorithm of IGOR. Alteration of the
shear rate provides the opportunity to investigate the time dependence of the response.

In a purely elastic sample, the stress would increase linearly with the strain according
to Hooke’s Law (fig. 6.5(c)). The response of an ideal viscoelastic sample converges at
short times to the elastic limit before viscous contributions become significant. Thus,
this apparent weakening cannot be interpreted as strain weakening. Only if the stress-
strain-relation steepens above the elastic limit, evidence for a strain hardening is given.

LAQOS, Fourier Transform Rheology and Lissajous Figures

If a material behaves nonlinearly, the response in an oscillatory shear experiment is
no longer sinusoidal. This nonlinearity appears usually above a critical oscillation
amplitude depending on the frequency. The LAOS (Large Amplitude Oscillating Shear)
measurements investigate this behavior in dependence of the strain amplitude ~q (fig.
6.5(d)). Oscillations in the nonlinear regime will produce higher harmonic contributions
in the stress response. Thus, the storage and loss modulus, G’ and G” respectively
(section 6.1.2), are no longer well defined. Information about the sample parameters
can be obtained by the shape of the non-sinusoidal response. Therefore, the raw data
of the oscillations has to be collected and processed to obtain the sample stress and
strain. These are not provided by default by the software of commercial rheometers
(section6.1.3).

Fourier Transform Rheology (FTR) One method to analyze the inertia-corrected raw
data, and thus to evaluate the nonlinearity in the LAOS experiments, is the Fourier
analysis of the response. It allows the quantification of the degree of nonlinearity by
means of the intensity ratios of higher harmonics in the response function [151]. If a
simple sinusoidal strain is applied, the response can be written as a Fourier series

o(t) =10 Y _ Gp(w, ) sin(nwt) + G (w, o) cos(nwt) (6.14)
n,odd

Based on non-negativity of stored energy it has been argued that — in the case of the
simple shear deformation — only odd terms contribute to the stress response [152]. The
dissipated energy per unit volume during one period of sinusoidal strain is given by:
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27 [w
By = /0 ()5 (1)dt

27 Jw
= 7§w/ Z (G, (w, o) sin(nwt) + G} (w,70) cos(nwt)) cos(wt)dt
0 n,odd

= 1561 (w,0) (6.15)

where all other summands in the Fourier series vanish due to the orthogonality of the

trigonometric functions. The result is the same as for a linear viscoelastic material,
where G (w,v0) is replaced by G”(w). Thus, G} governs the dissipated energy dur-
ing sinusoidal deformation. All other harmonic moduli in equation (6.14) govern the
reversible storage of energy [153].

A Fourier transformation of the response signal yields a frequency spectrum which
features the first harmonic at the excitation frequency w/27 and the higher harmonics
at the odd multiples. A measure for the nonlinearity is the intensity ratio of the higher
harmonics to the first [151].

Although it is difficult to understand the physical meaning of the harmonic moduli,
the Fourier transform rheology provides a sensitive technique to detect nonlinearities in
the sample and to separate between elastic and viscous contributions. Crucial for the
delicate detection is a reduced signal-to-noise-ratio and an increased spectral resolution
Av = 1/t,.. Both can be achieved by a longer acquisition time . [151]. Therefore,
typically 5-50 cycles of the excitation wave are acquired. At large amplitudes, this
can lead to plastic softening of the sample as in the case of entangled actin solutions
(section 6.2).

Quantitative Analysis of Lissajous Curves A more demonstrative way of analyzing
the LAOS data is plotting it in the form of a Lissajous curve. This is a parametric
plot of the stress o(t) versus the strain y(¢). In the limit of an ideal elastic sample
following Hooke’s law, this is a straight line with a slope equal to the spring constant
(fig. 6.6(a)); in the limit of a purely viscous sample, the Lissajous curve is an ellipse
with the axes along the coordinate axes (fig. 6.6(b)). For a viscoelastic material, the
curve appears as a tilted ellipse (fig. 6.6(c)). The enclosed area in the Lissajous plot
is equal to the energy dissipated per unit volume during one cycle and thus a measure
for G”, as calculated above.

Nonlinearity in the sample response will distort the ellipse. Thus, the Lissajous fig-
ures clearly depict deviations from the linear viscoelastic behavior. Distorted Lissajous
curves can take many different forms: In fig. 6.6(a), typical shapes of strain-stiffening
and strain-weakening of a purely elastic material are shown. Analogously, fig. 6.6(b)
depicts curves of nonlinear fluids in the shear-thicking and shear-thinning regime. In
the viscoelastic regime, where a combination of these effects can occur, a large vari-
ety of Lissajous curves exists. Fig. 6.6(d) and (e) exemplarily show a scheme in the
strain-stiffening and strain-weakening regime, respectively.

Beyond the purely graphic description, a framework of different moduli has been
proposed to analyze the Lissajous curves in a more quantitative manner [154]. As
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Figure 6.6: Schematic representation of the Lissajous curve for (a) a purely elastic solid (b)
a purely viscous fluid (c) a linear, (d) a strain-stiffening and (e) a strain-softening viscoelastic
material. (c)-(e) show schematically the definitions of the small strain elastic modulus G and
the large strain elastic modulus Gy,.

discussed above, the dissipative contribution is completely captured by the loss modulus
GY. The elasticity is well described by two material parameters, the tangent modulus
G and the secant modulus G, (fig. 6.6(c)).

The former is defined as the slope of the stress-strain-relation at zero strain, and thus
can be interpreted as a small strain elastic modulus:

do B do dt

= - 6.16
dy 4=0 dt dvy ( )

GM((U, ’70) =

v=0
Using the Fourier series (6.14) for the stress response and substituting ¢ = 0 and
t = m/w, one obtains

Gu = |£y0w Y nG(w, ) | [Fyow]
n,odd

= 3" nGlw,0) (617)
n,odd
In the linear regime, the only contributing modulus is the first harmonic. The tangent

modulus reduces to Gy (w) = G'(w).
The secant modulus G, is defined as the ratio of stress and strain at maximum strain
70, und thus serves as a measure of the elasticity at large strain:
o

Gr(w, = — 6.18
L(w,7) 7 et ( )
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Figure 6.7: A schematic pipkin diagram
maps the linear and nonlinear regime in
dependence of the applied strain amplitude
7o and frequency w.

nonlinear viscoelasticity

elastic limit

strain amplitude v,
viscous limit

linear viscoelasticity

frequency w

Expressing the stress in terms of the Fourier series and substituting ¢ = 7/2w and
t = 37 /2w yields

Gr(w,70) = Y Gn(w,%) (6.19)
n,odd

As for the tangent modulus, the secant modulus reduces to G'(w) in the linear regime.

Comparing the moduli Gas(v9) and G1(7) gives a relation of the elastic properties
at small and at large strains. Thus, the elastic stiffening index S(7p) is defined as the
ratio of G, and G-

Gr(w,70)
Sw,v) = =——"—"—"% 6.20

(@:70) Gum(w,%) (6:20)
A viscoelastic material in the linear regime, where Gy, = Gy = G, features S = 1.
S > 1 describes a strain stiffening of the network (fig. 6.6(d)), while, for S < 1
the network strain softens (fig. 6.6(e)). In the case of a purely elastic material, this
framework of elastic moduli also serves to characterize the nonlinearity. In the case of
a purely viscous fluid, Gy = G, = 0, so S is no longer defined.

The Pipkin Diagram The Lissajous figures and their quantitative analysis provide
a sensitive tool for the detection of nonlinearity. The transition between linear and
nonlinear behavior will depend not only on the shear amplitude but also on the applied
shear rate and thus the frequency of the imposed sinusoidal strain. It is useful to
map the regimes of linear and nonlinear shear response in dependence of the strain
amplitude g and the applied frequency w. These two parameters span an experimental
phase space which is compactly represented in a Pipkin diagram, where the frequency is
plotted on the abscissa and the strain amplitude on the ordinate (fig. 6.7) [155]. At very
small frequencies, where the relaxation times of the sample are small compared to the
characteristic flow time, the sample behaves like a Newtonian fluid. In the opposing
limiting regime, where the relaxation times are much longer than the experimental
time, the sample behaves like a Hookean solid. In-between, where the two characteristic
timescales are of the same order, the sample exhibits viscoelastic behavior. An increase
in strain amplitude induces a transition into the nonlinear regime, which will, in general,
depend on the applied frequency.
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6.2 Stress Stiffening of Entangled Actin Solutions

In this section, the rheological characterization methods described in the previous sec-
tion are applied to probe the nonlinear behavior of entangled F-actin solutions. So far,
a stress weakening as well as a stiffening response has been published for such filamen-
tous solutions: While Xu et al. report that F-actin solutions exhibit stress hardening
when subjected to step-stress deformations [140], Gardel et al. proclaim a transition
from a weakening to a stiffening regime with increasing crosslinker concentration. For
entangled solutions, they could not determine a hardening response using oscillatory
methods. Before new insights in the molecular mechanism and the underlying deforma-
tion mode of the network can be gained, this contradictory results have to be explained
and an appropriate measuring method has to be established.

First, the results of the LAOS experiments are presented, including the quantitative
analysis of the Lissajous figures, the pipkin diagram as a compact mapping of the
nonlinear phase-space and the Fourier transform analysis. The step-stressing protocol
and the constant shear rate experiment are used as complementary methods to examine
the nonlinear regime. All methods used in this section provide consistent results as long
as the oscillatory stress and strain data of the LAOS measurements are regarded instead
of G* which is well defined only in the linear regime.

For all samples described in this section, the network parameters are the same: the
actin concentration is cy = 9.5 nM, the average length L = 21 pm (adjusted by gelsolin),
the temperature T = 21°C, and standard F-buffer salt conditions are maintained.

LAQOS experiment

The first step in characterizing the properties of an entangled actin solution is a LAOS
experiment. Strain-controlled oscillations at an intermediate frequency w = 0.5 Hz are
applied increasing the amplitude vy over the measurement (sec.6.1.4). The moduli G’
and G” provided by the rheometer decrease as 7y increases, indicating an apparent
softening of the network (Fig. 6.8(a)). This can be attributed to two effects: firstly,
the software assumes a linear response. Thus, it returns only the first harmonic of the
elastic response leading to an incomplete analysis of the data. Secondly, the solution
is too soft to withstand the large deformations, and a permanent plastic deformation
is introduced to the filament solution [25].

Lissajous curves of the raw oscillation data visualize these points. As described in
section 6.1.4, this parametric plot of the stress o versus the strain ~ represents a perfect
ellipse in the linear regime, where the stress response is sinusoidal. As illustrated in
fig. 6.8(b), this is valid for strains up to ~15%. For larger oscillation amplitudes, the
Lissajous figures become more and more distorted. The stress rate increases at large
strains, indicating a hardening of the entangled actin solution.

This contradiction to the behavior of G’ is caused by the approximation performed
by the software. The algorithm considers only the first harmonic of the elastic response.
Fig. 6.8(c) shows the Lissajous curve for the intermediate strain amplitude of 40% and
an ideal ellipse fitted to the data, which corresponds to the first-order harmonic assumed
by the rheometer software. Clearly, the fitted data hardly approximates the raw data
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Figure 6.8: LAOS method: (a) Storage modulus G’ as a function of the strain amplitude 7
at a frequency of f = 0.5 Hz calculated by the commercial rheometer software. After a linear
regime the network apparently softens at strains larger than 15%.(b) Lissajous curves of the raw
data corrected for instrument inertia. At small amplitudes, the stress—strain relation displays
a perfect ellipse with constant slope. For v = 15% the Lissajous figures become distorted,
indicating a hardening of the network. (c) Lissajous figure of the raw data for an oscillation
amplitude of 40%. The ellipse fitted to the data demonstrates the insufficiency of first harmonic
approximation. (d) Lissajous figure of the raw data for an oscillation amplitude of 40% over
time showing the continuous change of the network response due to the large amplitude strains.
(e) The elastic strain stiffening index S as a function of the oscillation amplitude . After a
linear regime (S = 1), the stiffening index S increases until the network ruptures at strains
~v =~ 150%.
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recorded by the instrument. Therefore, the software shows a softening of the network
(fig. 6.8(a)), although the individual raw data curves indicate a hardening behavior.

To demonstrate the second point of the permanent plastic deformation, several oscil-
lations at 40% strain amplitude are applied and the corresponding Lissajous figures are
regarded over this extended measurement time. As illustrated in fig. 6.8(d), the peak
stress of the Lissajous figure decreases with each oscillation, i.e. the sample softens
during repetitive oscillation with large strain amplitudes. This softening is irreversible;
even after a long waiting period the network never recovers completely. To minimize
this plastic deformation in the further analysis, two oscillation cycles are applied to the
sample, which is the minimal number the software can handle.

As shown above, the common moduli G’ and G” are insufficient to describe the
nonlinear regime. For a more detailed analysis of the Lissajous figures, the small
strain elastic modulus Gy(70), the large strain elastic modulus Gp,(y0) and the strain
stiffening index S(7p) (inset in fig.6.8(e)) have to be included as described in the
previous section. Fig.6.8(e) displays the latter as a function of the applied oscillation
amplitude. After the first linear regime, where S = 1, this analysis shows a stiffening
for strains larger than . ~ 20%, indicated by a sharp increase in the strain stiffening
index. At large strain values, the network ruptures and the modulus decays rapidly.

A compact visualisation of the nonlinear behavior is provided by the pipkin diagram.
It maps the phase-space of the nonlinearity in dependence of the applied frequency f
and oscillation amplitude vy (sec.6.1.4). For each point in the pipkin space exists a
Lissajous figure corresponding to the oscillation at this specific frequency and ampli-
tude. Fig.6.9(a) shows the pipkin diagram for an entangled actin solution. Linear
viscoelasticity is observed at small g, resulting in an elliptic shape of the Lissajous
figures. The increasing enclosed area for higher frequencies corresponds to a rise of
the loss modulus G” above the entanglement frequency; the nearly constant slope and
thus constant storage modulus G’ is characteristic for the plateau regime [156]. With
increasing amplitude, the ellipses become progressively distorted; the onset of this non-
linearity shifts with decreasing frequency. The calculated strain stiffening index S is
reflected by the color code: the brighter the Lissajous figure, the larger the correspond-
ing S value. When the oscillation amplitude is increased beyond 50 %, the short range
elastic modulus Gy decreases, corresponding to a decreasing slope at v = 0%. This is
interpreted as a yielding of short-range elastic network components. On large scales,
the stiffening on large scales is even more pronounced.

A more quantitative representation of the pipkin plot is the strain stiffening index
as function of the applied amplitude 7y (fig. 6.9(b)). Nonlinear contributions become
significant at strains around 20 %. The higher the frequency, the steeper is the increase
in S. Complete yielding occurs at strains of ~100 %.

Another sensitive method for the detection of nonlinearities in the LAOS experiment
is the Fourier analysis of the raw data. It allows quantitative insights into the higher
order composition of the response function (cf sec.6.1.4). Fig.6.10 shows the Fourier
spectra of the stress response of an entangled actin solution. In the linear regime (at
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Figure 6.9: Pipkin diagram showing the evolution of nonlinearity in an entangled actin solution
as a function of the oscillation frequency f and amplitude 7. (a) Each point in the phase space
shows the corresponding Lissajous figure. The x-axis scale is chosen to fit the maximal strain,
the axes ratio is kept constant. The color code is given by the corresponding S value. (b)
The strain stiffening index S as a function of the oscillation amplitude g gives a quantitative
representation of the pipkin plot.
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Figure 6.10: FTR analysis of the LAOS experiment: (a)-(d) Fourier transform of the stress
response at different strains. The inset shows the inertia corrected stress response. (a) In the
linear regime, the Fourier signal exhibits a single peak corresponding to the complex modulus
G*. (b) In the transition regime at v &~ 25%, a second peak appears at three times the
excitation frequency. (c) Further increase in the oscillation amplitude leads to an increase in
the contribution of higher harmonics until at strains just before rupturing of the network at
Yo ~ 125 % the stress response is highly distorted (d). (e) The amplitudes of higher harmonics
normalized by the first show the development of nonlinearity in dependence of the oscillation
amplitude ~g. The strain at which harmonics significantly contribute to the stress response is
shifted with increasing order. (f) The sum of all odd harmonics normalized by the first is a
measure for the overall nonlinearity in the sample.

small strains), the Fourier transform exhibits a single sharp peak at the excitation
frequency f = 0.5Hz (fig.6.10(a)). An increase in the strain amplitude leads to the
appearance of higher order contributions at frequencies which are odd multiples of
the excitation frequency fy (fig.6.10(b)-(d)). Fig.6.10(e) shows the development of
the higher harmonics in dependence of the strain amplitude 7. At small strains, the
normalized intensities of higher harmonics tend to zero. Significant contributions begin
to appear at approximately 20 %: The higher the order of the harmonic, the larger is
the strain at which this contributes significantly. A measure of the nonlinearity of the
sample repsonse is the sum of the amplitudes of all odd harmonics normalized by the
amplitude of the first (fig. 6.10(f)).

The Fourier analysis offers a precise quantitative method for investigating the non-
linear regime. In general, it is possible to distinguish between elastic and viscous
contributions. The downside is the danger plastic deformation caused by the oscilla-
tions at larger strains. For the FTR analysis shown, ten oscillation cycles repeated at
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Figure 6.11: Step stressing protocol. (a) The creep compliance J as a function of time ¢ during
a stress pulse of o9 = 0.05Pa. (b) The creep compliance J(t) for different stress values oy.
Above a critical stress, the network stiffens and J;, decreases. (c) The inverse creep compliance
1/J as a function of the applied stress o in a step-stressing experiment evaluated at a certain
time ¢o. Inset: Jy, collapse for different #.

each strain amplitude gy are necessary to obtain a satisfying resolution in frequency
(sec.6.1.4). During repeated oscillations at strains in the nonlinear regime, the investi-
gated sample softens. This corresponds to a gradual decrease in the peak amplitude of
the stress response (fig. 6.10(c)-(d)). For two oscillation cycles which is the experimen-
tally minimal number, the frequency resolution is Arv = 0.5f which is quite imprecise
and may hide occuring artefacts.

Step stressing protocol The step stressing protocol measures the viscoelastic proper-
ties of the sample by monitoring the strain response while a constant prestress is applied
(section6.1.4). The creep compliance of an entangled actin network, J,,(t) = () /oo,
shows three distinct regimes: a fast elastic response, a viscoelastic transition regime,
and a viscous flow regime (fig.6.11(a)). The stress pulse duration is set to 5s. It is
chosen to prevent entering the the viscous regime occurring after 10*s [157], where all
the energy dissipates.

The nonlinear behavior is tested by increasing the stress amplitude. In the linear
regime, the creep response is independent of the stress input. Above a critical stress
amplitude, the network stiffens, indicated by a smaller increase in the creep compliance
over time (fig. 6.11(b)).

The inverse of the creep compliance 1/J at a given time ¢y is a measure for the vis-
coelasticity of the network. Fig.6.11(c) shows 1/J;, as a function of the applied stress o.
There are three different regimes distinguishable: After a linear stress-strain-relation at
low forces, where the creep compliance is approximately constant, the network stiffens
above a stress of 0. &~ 0.07 Pa with 1/J oc 0% until the network ruptures irreversibly
at approximately 1Pa. Within the 5s stress pulse, the time development is indepen-
dent of the stress applied and all curves can be rescaled onto a single master curve
(fig. 6.11(c) inset). The stiffening is completely reversible; as long as no rupture has
occurred, the series of stress pulses can be repeated with excellent agreement of the
results, indicating that no permanent reorganization occurs. This is in contrast to the
behavior observed by the LAOS experiment, where the repeatedly applied large strains

84



6.2 Stress Stiffening of Entangled Actin Solutions

(a) 16F (c)
14F — 1° shear g
1.2} I = 2" shear x
£ 1.0F | — 3"shear E
N 08k 4th shear .§
2 E
S o6t e
0 =l
0.4F c
o
0.2F . ‘.‘3'1—)

0.0 1 1 1 T 0.0 . L L . 12 R A I BRI |

0 50 100 150 200 0 20 40 60 80 100 681 2 4089 2 *o¥QQ 2

strain y [%)] strain v [%)] strain y [%)]

Figure 6.12: 4-protocol: (a) Stress-strain-relation o(y) for a shear rate of 4 = 20%. After
a linear regime (I) the network stiffens (II) until it ruptures at ymax and the actin solution
softens (IIT). Note that due to the viscoelastic nature of the network 7..;+ is overestimated in
this technique. (b) The hardening is reversible, the stress-strain relation can be reproduced
perfectly as long as v < Ymax. (¢) The differential modulus K as a function of strain ~y reflects
again the three different regimes.

presumably result in an irreversible deformation. In the step-stresses protocol, only a
single short pulse is required for each stress level.

Constant shear rate experiment The time dependence of the nonlinear response of
the network is investigated by the complementary shear experiment described in the
previous section. After a first regime in which an approximately linear stress-strain
relation holds, the network hardens above a critical strain of it ~ 20 — 30% which
is indicated by the increase in the stress-strain-relation (fig. 6.12(a)). Note, that this
method captures the overall viscoelastic response, including the viscous contributions.
Therefore, a possible variation downward from the elastic limit can not be interpreted
as softening of the network. It could just reflect the viscous contributions in the stress
response. Furthermore, this is responsible for an overestimation of v.it by a compen-
sation of nonlinear elasticity and viscous contributions.

Apparent softening of the actin solution starts at a maximal strain of V4, &~ 100%,
discernible in a turning point in the stress-strain-relation. The hardening is completely
reversible as long as v < Ymae (fig. 6.12(b)). Thus, no permanent plastic deformations
are induced. Once the strain exceeds Va2, the network softens irreversibly. To facili-
tate the comparison with results of the step stressing protocol, the differential modulus
K (7) is calculated. This shows qualitatively the same behavior as 1/J (o) (fig. 6.12(c)):
After a constant linear regime, the network hardens until irreversible rupturing occurs.

Summary/Discussion Contradictory results for the behavior of entangled actin so-
lutions have been described in the literature so far {139, 140] . These analysis were
partially based on the evaluation of the moduli G’ and G” provided by the rheometer
software. As shown in this section, this discrepancy is resolved by an analysis of the
oscillatory response function over repeated oscillation cycles. Based on the more ac-
curate analysis of the LAOS experiments (Lissajous evaluation or FTR analysis), all
the methods described in this section show qualitatively the same nonlinear behavior
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for entangled actin solutions. However, as the described methods measure different
moduli with different viscous and elastic contributions and, moreover, in a strain- and
stress-controlled manner, a direct comparison between them is not possible. However,
the values of eyt and vpax measured by LAOS and by the constant shear experiment
are in excellent agreement.

Although the more accurate analysis of the LAOS experiment captures the strain
stiffening of entangled actin solutions, there still remains the problem of the occurrence
of plastic deformations during oscillations at large amplitudes (fig. 6.8(d)). This makes
this method to be less adequate for such soft samples as entangled actin solutions. In
the step-stressing protocol and the constant shear rate experiment, the effects of plastic
deformations are reduced, which is discernible by the complete reversibility of the hard-
ening up to Ymax. In the first, the network is deformed on a short time scale, followed
by a long relaxation time. Unlike in LAOS experiments, the network can completely
recover after large deformations, resulting in a clearly enhanced reproducibility. The
drawback of these methods is the fact that the differentiation between elastic and vis-
cous contributions is not possible. One can minimize the viscous effects by evaluating
the step stressing protocol within the first seconds or by increasing the shear rate in
the constant shear experiment.

The question remains what happens at ympax when the network yields. Though the
elasticity recovers slightly, the modulus does not reach its original value — even after
some hours of waiting period. One can imagine different scenarios: The drop-down in
elasticity could be due to breakage or shear alignment of the actin filaments. Another
possibility could be slippage or uncoupling from the rheometer plates. Measurements
using a shearing tool combined with a confocal microscope have shown that in the case
of actin/filamin networks the bundles detach from the surface and the network collapses
[158]. Similar experiments® indicate that also entangled actin solutions detach from the
rheometer plates and collapse. This collapse can be explained by the negative normal
stress reported for stiffening filamentous gels [159].

3performed by K. Schmoller
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6.3 Dependence of the Nonlinear Behavior on Various
Network Parameters

To further understand the nature of the nonlinear rheology, an extensive study of
the nonlinear behavior of entangled actin solutions is performed, based on the precise
experimental techniques presented in the preceding section. It is found that the ex-
perimental conditions remarkably influences the occurrence and characteristics of the
stiffening behavior. The nonlinearity can be finely tuned by the ambient temperature,
buffer salt concentrations or the filament length and concentration, while the linear
response is not affected by these parameters.

Ambient temperature The ambient temperature, which can be precisely adjusted
by the Pelletier element in the bottom plate of the rheometer, has a significant effect
on the degree of stiffening. This dependence is demonstrated by the results of the
step stressing protocol performed at different 7" values shown in fig. 6.13(a). Starting
from the standard temperature of 21 °C, a decrease leads to a significantly enhanced
hardening. With increasing temperature, the slope in the nonlinear regime gradually
diminishes. The displayed inverse creep compliances measured at temperatures between
18°C and 27 °C show a decrease of the power-law exponent x in the nonlinear regime
with temperature. The hardening vanishes completely above T' =~ 25°C. Overall, =
features a roughly linear dependence on 7' ( fig.6.13(b)), considering that the short
nonlinear regime makes a precise analysis difficult.

Surprisingly, neither the linear regime in fig. 6.13(a) (not shown) nor the frequency-
dependent linear shear moduli G’ and G” in the range of 0.01-10 Hz show a significant
change with temperature (fig. 6.13(c)). The strong dependence of the network response
on temperature is only observable in the nonlinear regime.

Salt concentration Completely analogous observations were made for changes in the
electrostatic screening of the solution. Reducing the monovalent salt concentration
from 100 mM to 10mM has a very similar effect on the nonlinear response as a raise
in temperature. (fig.6.13(d)). Neither the linear moduli nor the polymerization speed
is influenced by the low-salt conditions (fig.6.13(e)). At this low salt concentration,
a stiffening can be induced by lowering the temperature to 13°C (fig.6.13(d)). The
characteristic strains ~ei¢ and ymax are shifted to smaller values.

This dependence on the buffer salt concentration could be either an ion-specific effect
related to the Hofmeister series or given by pure electrostatics. To test this further,
the concentration of 90 mM KCI is replaced by a kosmotropic and a chaotropic salt,
NaCl and CsCl, respectively. No differences can be detected in the nonlinear response
of the network. This is a strong indication that a shift of the transition temperature
by changing the salt concentration is a purely electrostatic effect. The linear response
is not influenced by the type of monovalent salt.

Time dependence The time dependence of the nonlinear response is investigated by
the constant shear rate experiment. To assure the equivalence of the step stressing pro-
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Figure 6.13: Step stressing protocol: (a) Temperature dependence of the nonlinear behavior:
The inverse creep compliance 1/J normalized by 1/J(0.01 Pa) as a function of the applied stress
o for various temperatures between 18°C and 27 °C at standard salt conditions. (b) Apparent
power law exponent x of 1/J(0) ox 0% versus the temperature 7. (c) Frequency dependence of
the moduli G’ and G” in the linear regime for two different temperatures, each averaged over
five different samples. (d) Salt dependence of the nonlinear behavior: The inverse of the creep
compliance 1/J normalized by 1/J(0.01Pa) as a function of the applied stress o for various
buffer salt conditions. (e) Storage modulus Gj 5y, as a function of time ¢ recorded during
polymerization for high and low salt conditions.
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6.3 Dependence of the Nonlinear Behavior on Various Network Parameters
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Figure 6.14: The transition as a function of various network parameters (¥-protocol): The
stress o versus the strain 7 in a shear experiment at (a) various temperatures between 18°C
and 27°C and (b) various shear rates between 1%/s and 40 %/s. (c) Differential modulus K
normalized by the modulus in the linear regime Kj;, versus the strain 4. (d) The normalized
differential modulus K (70 %)/Ky, as a function of the shear rate at 21 °C. The modulus in-
creases approximately linearly with the applied shear rate. (e)-(h): The normalized differential
modulus K/K), versus the strain v for (e) different filament lengths L and (f) different actin
concentrations ca. The hardening can be re-induced for (g) L ~ 7pm and (h) ¢y = 0.2mg/ml
by lowering the temperature to T' = 16 °C.
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tocol to this method, the temperature dependence of the stress response is investigated
with the shear experiment (fig.6.14(a)): the same quantitative transition is found in
the shear rate experiment and the compliances described above

A change in the shear rate 4 induces a similar transition between hardening and soft-
ening as the ambient temperature. The lower the pulling velocity the less pronounced is
the stiffening of the network(fig. 6.14(b)). To facilitate the comparison with the results
of the step stressing protocol, the differential modulus K () is calculated (fig. 6.14(c)).
It shows the same qualitative behavior as 1/J(c): After a constant linear regime, the
network hardens until rupturing occurs.

To quantify the dependence of the nonlinear modulus on the applied shear rate, it
is evaluated at a certain strain in the nonlinear regime, K(70%), and normalized by
the linear modulus Kjy,. This measure of nonlinearity increases approximately linearly
with 4 (Fig. 6.14(d)).

Filament length and concentration In a next series of experiments, the lengths of
the filaments are varied by the use of gelsolin. A transition from hardening to softening
is observed as the average filament length decreases (fig.6.14(e)): For solutions with
filaments shorter than approximately 7pm, a softening is observed, while for longer
filament solutions a hardening is reported. Surprisingly, the transition length can be
shifted by lowering the temperature: while solutions of approximately 7pm filament
show a softening at 21°C, a hardening is observed for the same network at 16°C
(fig.6.14(g)). Again, the linear response is not affected.

A similar behavior is observed by changing the actin concentration. Varying the
filament density influences the degree of hardening. The higher the actin concentration
the more pronounced is the increase in the modulus K (fig. 6.14(f)). Also in this case,
networks that show a softening response at 21 °C feature a hardening response if the
temperature is at 18 °C or 16 °C (fig. 6.14(h)).

Master curve The data collected on entangled actin solutions demonstrate not only
a remarkable sensitivity of the nonlinear regime on various network and ambient pa-
rameters but also suggests an interchangeability of these parameters. For instance, a
decrease in the salt concentration can be compensated by an appropriate decrease of the
ambient temperature (fig. 6.13(d)), while increasing temperature is compensated by an
increase in shear rate. This nicely demonstrates the rheological redundancy principle.
Indeed, this is shown in fig. 6.15 with 25 curves for different T', L, ca, and % values.
A single master curve can be found on which all stress-strain relations neatly collapse
provided they are rescaled by their characteristic strain and stress values, v* and o*,
respectively.

This remarkable finding is a hint that the changes in temperatures, salt concentration,
filament length and density affect the nonlinear response in the same way and can be
interpreted as a rescaling in time. This leads to the glassy worm-like chain model which
is presented in the following section.
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Figure 6.15: Rheological redundancy in the §-protocol: (a) 25 stress-strain curves for differ-
ent T, L, ca, and ¥ collapse onto a single master relation upon rescaling each curve by its
characteristic strain and stress values. The spread of the data at low-strain values is due to
instrument limitations causing measurement uncertainties. Inset: linear representation of the
data. (b) The characteristic rescaling factors v* versus ¢* for the data shown in (a).

6.4 Discussion of the Mechanical Redundancy with the
Inclusion of the Glassy Worm-Like Chain Theory

The mechanical response of reconstituted biopolymer networks, particularly in the
nonlinear regime, is attracting a lot of attention |7, 139, 160|. Former studies explored
the viscoelastic moduli in dependence of the deformation amplitude in an oscillatory
manner, regardless of the non-sinusoidal stress response in the nonlinear regime [140,
160]. Recent investigations consider the differential elastic modulus K’(7) measured in
a prestress experiment where small stress oscillations are imposed onto the sample in
addition to some (possibly) large prestress 7. A typical K'(7) measured for biopolymer
networks as well as for whole cells, in which the prestress may be self-generated, exhibits
a continuous but sharp transition at a critical prestress 7. from a linear response regime,
where K’ is independent of 7, to a (reversible) strain hardening elastic regime, where
K'(7) increases according to a power law K’ oc 7% |7, 137, 139]. The exponent = and
the critical prestress 7. or the corresponding critical prestrain v, ~ 7./ K/, respectively,
vary somewhat with composition and polymer concentration but are generally found
to lie in the range x =1 — 1.5 and 7. = 1 — 200 % [7, 139, 161].

Competing interpretations have been proposed for the characteristic dimensionless
numbers x and 7., either in terms of affine stretching [139, 160| or non-affine bend-
ing [137] of individual polymer strands. While both interpretations seem successful in
rationalizing the experimental observations, they rest on incompatible — and so far
not directly assessable — assumptions about how the macroscopic sample deformation
is transmitted to the individual stress-bearing elements, predominantly the single actin
filaments. For semidilute solutions of stiff polymers, on the other hand, in which the
polymers form merely physically entangled networks, shear-thinning was theoretically
predicted [162] and experimentally observed, even in the presence of small amounts of
crosslinkers [139].
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The strong dependence of x on experimental conditions presented in this chapter
implies that the nonlinear response itself is a very sensitive indicator for molecular
interactions present in the network — with probably only limited predictiveness on the
deformation behavior dominating the network response. To determine the latter com-
bined detailed structural insights and concentration dependencies of the mechanical
response are mandatory [22, 163, 164|. While the overall functional form of curve
1/J(o) in fig. 6.11 resembles very much that measured in crosslinked (and prestressed)
in vitro samples or even whole cells, one notices some distinctive differences: In con-
trast to the latter case [137, 139], the power law exponent x apparently does not reflect
a characteristic material property of the individual stress bearing elements, as it can
be varied over a broad range by varying the shear rate, the temperature or the ionic
strength. Although clearly the semiflexible nature of the filaments gives rise to the
network response, the nonlinear response is not only dependent on the single filament
stretching behavior, as suggested by [160], but rather sensitively dependent on struc-
tural details and molecular interactions [22].

Changes in the mechanical response with changing network or ambient parameters
could only been observed in the nonlinear regime. This can be explained by a simple
model of non-permanent shear induced interactions between individual filaments. The
different exponents can then be attributed to differences in their density. This model
rests on two hypothesis: First, on the general notion that F-actin solutions are stabi-
lized by electrostatic repulsions that are, however, somewhat indented by an attractive
contact force. The expected qualitative distance dependence of the direct pair interac-
tion potential between two (non-parallel) actin filaments is schematically sketched in
fig. 6.16. Secondly, one assumes that upon shearing the sample beyond a critical shear
strain 7., adjacent actin filaments are pushed together such that their mutual electro-
static repulsion is overcome and a relative minimum in their pair interaction potential
becomes accessible, which acts as a transient bond causing stress hardening. The differ-
ential modulus K increases in proportion to the number of these non-permanent bonds.
The apparent power-law exponent z is found to shift continuously upon varying the
ambient conditions (temperature, salt) and the shear rate, which presumably reflects
the variable rate of transient bond formation. The critical shear strain -, is found to be
about 25 %. This value is well accounted for by a speculative but straightforward non-
affine version of the tube model of semidilute solutions of stiff polymers, introduced as
the “dilatancy model” [165].

The interchangeability of temperature and time (fig.6.14(b)) suggests that the ef-
fect of temperature (or filament length and concentration) on the nonlinear behavior
amounts essentially to a rescaling in time. The changes in the regarded (or possible
further) parameters, all seem to affect the rheological response chiefly by a stretching
of the relaxation spectrum. This dependence on microscopic interactions can easily be
incorporated by the recently introduced glassy worm like chain model [141, 166].

The Glassy Worm-Like Chain Model The glassy worm-like chain (GWLC) is a min-
imalistic model for solutions of polymers interacting via small adhesive patches. It
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Figure 6.16: Schematic sketch of the hypothet-
ical pair potential U(r) as suggested in [141].
Long range electrostatic repulsion is combined
with a short range attractive contact force.
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is obtained from the ordinary, weakly bending WLC (sec.6.1.1) by an exponential
stretching of the relaxation spectrum. The relaxation times 7, of eigenmodes with a
wavelength A\, = L/n longer than a characteristic interaction length A are multiplied
by an exponential stretching factor:

- ™ i A\, <A
Tn — Tn = { TneN"g oA, > A (6.21)

where N, is the number of interactions per wavelength A,
Ny, =X /A -1 (6.22)

This modification is reminiscent of the generic nonequilibrium trap models of soft glassy
rheology [167, 168], but concerns equilibrium dynamics here.

In a semidilute solution of polymers (as the entangled actin samples in this work),
the characteristic lengthscale A corresponds to the entanglement length known from
the tube model (sec.6.1.1) and N,, corresponds to the number of entanglements an
undulation of wavelength A, has to overcome to relax. The stretching parameter £
controls the degree of slowing down caused by the interactions. In view of the sensitiv-
ity of the rheology to temperature and ionic strength reported above, it seems natural
to think of £ as the characteristic scale (in units of thermal energy) for energetic bar-
riers. While protein interactions remain poorly understood, many observations hint at
temperature-sensitive (unspecific) adhesive contact interactions incompletely screened
by electrostatic repulsion [169], which would match well with this interpretation and
with our observations. In the spirit of generic free-volume theories [170], the parameter
€ might moreover accommodate free energy contributions from caging and entangle-
ment. In any case, simple exponential scaling of the relaxation times in the wavelength
A seems plausible. The GWLC model does only affect the relaxation times but not the
amplitudes a,, (cf. eq. (6.2)). In principle, one could imagine that also the amplitudes of
the eigenmodes are changed by the interaction with the disordered environment. How-
ever, already the slowing-down of the relaxation spectrum captures the most important
mechanisms in the observed glass transition.

Appealing to the intuition of the stretching parameter as a (free) energy barrier,
externally or internally generated stresses may arguably be expected to contribute ad-
ditively to £. The force therefore tilts the energy landscape in the spirit of a Kramers
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escape model and thus, it can either "help" the polymer to overcome the energy bar-
rier, or trap the polymer deeper, dependent on the sign of the force. The stretching
parameter & is then replaced by € — f/fr where fr = kT /A represents some charac-
teristic scale of the thermal equilibrium tension present in an unstressed sample so that
A may be interpreted as a characteristic (effective) width of the energetic traps and
barriers. It is important to note that the parameters £ and A are to be understood as
effective parameters. They cannot generally be interpreted as some distinct features in
the interactio potential as sketched in fig. 6.16.

Analogously to the standard WLC model, various time dependent parameters can
be calculated. Pertinent predictions suitable for a qualitative comparison with the
rheology data in the nonlinear regime can be derived by subjecting the glassy worm-like
chain to a prestress and calculating the complex frequency dependent shear modulus.
Fig. 6.17 shows its absolute value | K}(w)|, evaluated at a fixed frequency w = 7, ! in the
"slant-plateau" regime, as a function of the prestressing tension f, which is expressed
as an equivalent prestress o. The parameters were chosen to mimic the experimental
conditions. Although the increase in the modulus is due to the stiffening of the polymers
caused by the prestress, its sharp downturn signals the breakdown of the stretching of
the relaxation spectrum when f ~ &€ fr and the sticky contacts yield to the stress.

To support this theory of an exponentially stretched relaxation spectrum it would be
desirable to measure the equilibrium long-time dynamics of the samples on microscopic
and macroscopic scales. Because of the technical difficulty of low-frequency linear
rheometry for such soft samples as entangled actin solutions, the linear response can
better be probed by high-precision Dynamic Light-Scattering (DLS) over several orders
of magnitude in time. The DLS data presented in [171] show that the scattering
function acquires a pronounced logarithmic tail at low temperature 1" and large filament
length L, in stark contrast to more fluid samples at higher temperature [172]. The slopes
of these logarithmic tails determine the apparent power-law exponent characterizing
the corresponding frequency-dependent microrheological moduli. These tails of curves
measured at varying actin concentrations collapse on rescaling the time axis providing
a further illustration of the superposition principle, here for the parameter cs. Beyond
an unambiguous demonstration of the stretching of the relaxation spectrum in form
of the logarithmic decay, the DLS data represent strong independent evidence for the
rheological redundancy inferred from the nonlinear rheological measurements shown
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above.

It is an intriguing question as to what extent the results for pure actin solutions
shown above are representative also for the mechanics of crosslinked networks and live
cells. The here observed mechanical redundancy, where all system parameters can be
interchanged and similar mechanical behavior can be obtained is far reaching: also for
crosslinked networks such a multi-dimensional redundancy is present. For «-actinin the
linear mechanical response was tunable not only by the crosslinker concentration but
also by temperature variations [173]. The nonlinear behavior of bundled networks can
be tuned either by strain rates or crosslinker concentration [174] — and it is conceivable,
that different mesoscopic structures result in comparable linear and nonlinear responses.
This variability is possibly an important prerequisite for the often observed genetically
redundancy in living cells [175]. In the theoretical model of the GWLC, too, reversibly
(or irreversibly) crosslinked networks are effectively contained (as the limiting case
€ — o0). Actually, a comparison of computed linear rheology moduli with published
microrheology data for live cells shows quite satisfactory agreement. This might be
interpreted as further evidence that cells and multicellular organisms do indeed live at
the edge of a glass transition [176, 177].
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Chapter 7
Outlook

The present work has demonstrated that experiments on in witro reconstituted actin
networks are ideally suited to gain insights in intriguing cellular processes. The SAXS
experiments on actin bundles described in section 4 suggest the discrepancy between
the helical structure of the actin filament and the hexagonal packing inside the bundle
to be the size limiting mechanism in bundle formation. This provides an explanation for
the well-defined size of bundle structures observed in vivo. The ABPs fascin and espin,
both, induce an overtwist of about 1° per actin residue in the filament to overcome the
geometrical mismatch. While bundles formed by fascin or espin have approximately
the same maximal width of about 20 filaments, a combination of both ABPs leads to
thicker bundles.

The experiments on the depolymerization kinetics of crosslinked actin networks that
have been presented in section 5 reveal a generic stabilizing effect of actin binding
proteins. All proteins examined in this work decrease the depolymerization rate of actin
filaments. Even the actin depolymerizing factor cofilin is not sufficient to facilitate a
fast disintegration of highly crosslinked actin networks. This effect provides a powerful
tool in stabilizing distinct stress bearing actin structures. Furthermore, it implies that
cells need additive processes to disintegrate the bundle structures.

The last sections addressed the nonlinear mechanics of purely entangled actin so-
lutions. First, the characterization of different measuring techniques has shown that
the choice of the measuring protocol and the appropriate analysis are crucial to de-
tect stress stiffening in such low-viscous systems. Instead of the universal power law
reported earlier, a continuous transition from a regime of stress hardening to stress
weakening is found, depending on various network parameters like temperature, salt
concentration or filament length. Beyond the relevance for describing the mechanical
behavior of living cells, this is particularly interesting if regarded in the framework of
polymer physics.

More relevant for in vivo cytoskeletal networks is the investigation of crosslinked or
bundled polymer systems. Concurrent studies have shown that the nonlinear response
of ideally crosslinked networks can be understood in terms of entropic stretching of
the filaments. On the other hand, a network of bundles can be described by enthalpic
bending undulations.

While the mechanical response of actin networks is by now well understood, the un-
derlying principles of the self-organization in actin bundles are still elusive. Different
mechanisms seem to exist that can overcome the geometrical constraint on bundle di-
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ameters. While the present measurements have shown that some ABPs overtwist the
actin helix, others like filamin are thought to supertwist the entire bundle to adjust
filament and bundle symmetries. Analogously to espin and fascin, a combination of
TEM and SAXS measurements will corroborate (or disprove) this hypothesis. Deter-
mining the structure might also explain the tendency of filamin bundles to aggregate
to larger structures virtually unlimited in size.

The first experiments performed in th framework of this thesis on composite net-
works featuring more than one ABP show an enlarged maximum diameter. However,
the molecular assembly inside the bundle is still an open issue. In vivo experiments
suggest that sub-bundles formed by one ABP are consecutively linked by the second
one. In wvitro, this spatial partition can be realized by a subsequent addition of the
ABPs. Comparing the bundle structures polymerized in the presence of both ABPs
and formed by a successive addition of the crosslinkers might shed some light on the
bundle construction. Is there a difference in the mechanical properties of homoge-
neously or hierarchically formed bundles? This might also have a significant influence
on the disintegration of the bundles.

As shown in this work, cells need additional processes to disintegrate highly cross-
linked actin structures. The activity of the depolymerization factor cofilin on its own
is not sufficient. A possibe mechanism is provided by the auxiliary addition of active
molecular motors. The molecular basis of this disintegration is not yet understood.
A possible approach is the measurement of the forces needed to pull out single actin
filaments by an optical tweezer. If the process of bundling is highly cooperative as it
is suggested for espin by the switch-like change in the twist-state, this might influence
the integrity of the overall bundle.

Another factor influencing the bundle stability might be the impact of externsl forces.
When filopodia are pushed by the retrograde flow into the lamellipodium, not only the
action of myosin will disintegrate the bundles. Rather, the mechanical resistance of
the dense actin network will influence the binding potential of the crosslinking pro-
teins, which will in turn influence the depolymerization kinetics of the actin filaments.
Furthermore, there is an ongoing discussion whether a distortion in the actin helix
facilitates the binding of cofilin and thus accelerates disintegration [36, 37]. Certainly,
it would be of adverse effect for a living organism if the application of external forces
accelerates the disintegration of stress bearing elements in the cell. Indeed, an increase
in tensile strength is reported to evoke a fortification of stress fibres and their focal
adhesion points. This raises the question if the impact of forces depends on the direc-
tion of its application. Does pushing or stretching have different effects on the bundle
stability or the mechano-sensing signaling cascades?

A detailed analysis of the properties of bundles subjected to an external force is
mandatory. A first step could be performing depolymerization experiments under force
combining shear and diffusion chamber. This will allow for a controlled deformation
and simultaneous addition of depolymerization agents. The downside of this macrorhe-
ological approach is the averaging over several deformation modes in the sample. In a
complex bundle network, some bundles will be stretched while others are compressed
or twisted. Inevitably, this will require experimental techniques which enable manipu-
lating a single bundle. First steps in combining multiple optical traps look promising.
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Figure 7.1: High density motility assay: (a) Schematic of the setup: HMM molecules are
immobilized on a coverslip. The motion of the gliding filaments is visualized by a small fraction
of fluorescently labeled reporter filaments. (b) For low actin concentrations, a disordered
phase is found. The individual filaments perform persistent random walks without any specific
directional preferences. At high filament density, patterns of collective motion emerge: (c)
Above a critical filament density, small polar nematic clusters start to form. (d) Persistent
density fluctuations lead to the formation of wave-like structures. (e) Collisions of different
patterns lead to the formation of spirals. The swirling motion is visualized in a time overlay
of ten consecutive images over 1.17 s, starting from the image depicted in the inset. Scale bars
denote 50 pm.

Reconstituted actin networks are not only well-suited to study cellular processes but
can furthermore act as an interesting model system for other physical objectives, for
instance self-organizing processes. A remarkable example is the spontaneous emergence
of collective motion from a disordered phase in active systems, like flocks of animals
or self-propelled microorganisms [179, 180|. Similarities between these systems, such
as the inherent polarity of the constituents, a density-dependent transition to ordered
phases or the existence of very large density fluctuations suggest universal principles
that underly the pattern formation. However, the complexity of interactions or the
limited experimental control of the system parameters are often major obstacles in the
understanding of the basic self-organization principles.

Actin networks provide a model system depending on only a few key parameters
that can be adjusted independently (the filament length, density or the ambient salt
concentration). The addition of molecular motors provides an active component to the
system. Moreover, the molecular nature of this approach permits large system sizes.
An interesting experiment for studying self-organization principles is the motility assay
described in the following. Here, collective phenomena emerge at high densities of
filament. To perform this experiment, HMM molecules are immobilized on a cover slip
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(fig. 7.1(a)). Under consumption of ATP, actin filaments are driven over the surface
by the power strokes of the motors. Their motion is visualized by a small fraction
of fluorescently labeled filaments. For low actin concentration, a disordered phase is
found, where the individual filaments perform persistent random walks without any
specific preferences (fig. 7.1(b)). However, domains of collective motion appear above
a critical concentration of about 5 filaments per square micrometer. Several different
patterns occur, as illustrated in fig. 7.1(c)-(e): in an intermediate regime, small polar
nematic clusters of coherently moving filaments start to form. The cluster size of
these structures ranges from 20 to 500 pm in diameter. They exhibit an erratic motion
with frequent directional reorientation. A further increase in filament density leads to
wave-like structures where the filaments move predominantly in bands that are stable
throughout the observation time. Filaments outside these bands perform persistent
random walks. Beside the small clusters and wave-band structures, spirals of actin
filaments can be observed which form spontaneously by collision of different patterns.
A detailed theoretical description of such phenomena in active fluids is still miss-
ing. The questions how order can emerge spontaneously from a disordered phase or
what kind of interactions determine the pattern formation have been addressed by sev-
eral theoretical approaches [181-183]. However, up to now, the common underlying
principles could not be identified, arguably because an adequate model system is still
missing. The high density motility assay described above provides at the first time a
model system allowing for a direct comparison of theory and experiment [184, 185].
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Appendix A

Calculation of R*

An important control parameter for in wvitro actin networks is the molar ration R be-
tween crosslinking molecules and actin subunits. Sometimes, it is more meaningful to
consider the relative concentration of actually bound ABPs, R*, regarding the equilib-
rium dissociation constant K4. This can be derived by a simple model of bimolecular
reaction between the actin molecule A and the ABP B:

A+B= AB (A1)

With the dissociation constant K p this results in the law of mass action

Kp = S4B (A.2)
CAB

where ¢ denotes the respective concentration. The total actin concentration cffft and

the total ABP concentration c'$' are given by
Cffft = cA+caB (A.3)

and
tot

¢y’ = cp+cap (A.4)

The actin and ABP concentrations in (A.2) can be substituted with the expressions
obtained by (A.3) and (A.4). In combination with the molar ratio of the ABP to actin,
t

R = Z%ZZ, and the number of bound ABPs per G-actin molecule, R* = i?j;”, this
A A
leads to
*2 * K
R +R(_1_R_tot>+R:O (A5)
€A

Solving (A.5) and choosing the physical meaningful solution results in an expression
for the molar ratio R* of bound ABPs to actin:

1 K K \?
2 9 cy
A A

This is plotted for various actin concentrations in fig. A.1. Deviations become most
pronounced for low actin concentration and high R values. Therefore, the calculation of
R* is necessary if comparing measurements at different ca or Kp values. Unfortunately,
Kp is not known for all proteins used in this thesis. In this case, a description in R is
used.
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1.4+
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Figure A.1: The relative crosslink- 4 ______~Z______
erconcentration R* corrected by
K43 in dependence of the rela- R+ o8]
tive crosslinker concnetration R for
. . . 0.6
different actin concentrations c't.
K, is chosen to be 0.3uM as it is 04
for fascin [42].
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Appendix B

Pull Down Assay with Actin Bundles

The pull-down assay is a centrifugation method to elucidate in wvitro interactions be-
tween macromolecules. They cannot only confirm the existence of a protein-protein
interaction but also can give insights into the kinetics of this process. In the case of
actin networks, one can get informations about the dissociation constant Kp of ABPs
analyzing the concentrations of the protein in the pellet and the supernatant. Moreover,
it offers an opportunity to measure the critical actin concentration c.x in the presence
of various crosslinking proteins which remains unpolymerized and thus suspended in
the supernatant. If the ABPs change the effective polymerization/depolymerization
rates of actin, this is also expected to influence cerit = koft /Kkon-

For this purpose, actin networks in the presence of various bundling proteins are
prepared in a centrifugation tube. After full polymerization, they are centrifuged at
435400¢g for 1.5h. Fig.B.1 (a) shows a silver stained SDS-gel from the supernatants
for various crosslinkers at R = 1 and R = 0.1 respectively. As can easily be seen,
filamin and o-actinin increase the actin concentration in the supernatant; fascin and
HMM do not seem to have any effect, or at least considerably less pronounced and not
detectable with this method.

The increase of actin in the supernatant could be caused by the binding of filamin
to G-actin monomers. At such a high molar ratio of R = 1 not every filamin molecule
can bind to the actin network. The unsaturated filamin might bind actin monomers
and thus increase the actin concentration in the solution. To test this hypothesis,
the assay was done with varying amount of filamin and with actin and filamin in G-
buffer (fig. B.1(b) and (c)). Surprisingly, the actin concentration is drastically increased
even at very low filamin concentration. In contrast, filamin has only slight effect on
unpolymerized actin. Therefore, it seems improbable that the increase is caused by
unsaturated filamin catching actin monomers. This is supported by the fact that after
centrifugation the supernatant polymerizes again into a homogenous filamin bundle
network (fig. B.1(d)). If the bundles had existed already right after centrifugation,
they would have form clusters rather than a homogenous network due to their non-
equilibrium nature.
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= c
o - 0 —
P — — — O 0O W v s
Wegd s533 Psgoscss =35
Facll &1 Froooaoa @ o ¥
z & @ @ c c
£E££c EcScs £eEcecccsc £ £ 5
O -5 S O O
5558 8595 RE5555 5 559 ()
LE 3L LELT LEFEFEEEF =
a e I __;‘9 -
e = =
-
-
| —
- — - — — —

L

Figure B.1: Centrifugation assay with actin bundles. (a)-(c): Silver-stained SDS-Gels of the
supernatants after centrifugation at 435400¢g for 1.5h. (a) At high crosslinker ratio (R = 1),
filamin and «-actinin significantly increase the actin concentration in the supernatant while
fascin seems to have no effect. Similarly, at R = 0.1 filamin increases the actin concentration
while fascin and also HMM does not change it considerably. (b) The concentration series of
filamin reveals that even minimal amounts of filamin change the actin concentration signif-
icantly. (c) This increase does not seem to be caused by filamin catching actin monomers
and thus increasing the critical concentration. Approximately the same actin concentration
is measured in G-buffer with or without filamin. (d) Confocal micrograph of the supernatant
approximatley 1h after centrifugation at 100000 g for 1.5h. A homogenous network of filamin
bundles originates indicating that the actin was in monomeric form after the centrifugation.
Furthermore it supports the assumption that the actin in the supernatant is not equal to ceis.
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Appendix C
Model of Depolymerization

The model assumes a given distribution of filament lengths V' (z) where each filament
depolymerizes with a constant rate k. Breaking of filaments is neglected. The important
variables can be found in the following table:

T ... filament length at time t =0

V(x) ... distribution of filament lengths

G(z) = [V(z)dz ... antiderivatice of V(z)

k ... rate of depolymerization

x(t) = kt ... depolymerization length at time t = 0, independent of x
L(z,t) =x —x(t) ... filament length at time ¢

T ... cut-off length in microscope analysis

P(t) ... measured signal in pyrene assay

M (t) ... measured quantity in microscopy based analysis

Pyrene assay

In the pyrene assay, one measures the total length of actin polymerized in the sample,
i.e. the signal in the pyrene assay P(t) resembles the time course of total length of
actin in the sample. This can be calculated as the integral over the length distribution
times the actual length at time t:

P = - r—x(t))V(x)de
W = [ Eoeove
= BCE ~ [ G -G,
Assuming lim, .~ xG(x) = 0, this can be simplified to:
P(t) = —z(t)G(z(1)) —/OO G(z)dz — (—x(t)G(x(1)))
z(t)
= —/ G(z)dx (C.1)
z(t)

Microscopy based analysis

This model assumes that the analysis based on fluorescence images of the filaments
also counts the total length of polymerized actin, but disregards filaments/oligomers
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Appendix C' Model of Depolymerization

below a critical cut-off length .. Thus, the integration starts at z(t)+z., the integrand
remains the same. The influence of the 2d-projection of the filaments which will change
the length distribution is neglected.

M(t) = /OO (x —2(t))V(z)dx

(t)+zc
) / 1, Gz G
= —(x(t) + z.)G(x(t) + z¢) — / G(x)dz — [—z(t)G(z(t) + z¢)]
z(t)+xe
— e G te) - [ G (C2)
z(t)+xc

Example 1: Exponential length distribution
- 1 1,
V(iz)=e% = Gx) = —.¢ W= /G(x)dx =3¢ v

The pyrene signal can then be calculated using (C.1):

po = - [Le]”

The microscopy-based signal M (t) results from equation (C.2):

M) = %ea(ac(t)m)_{leaxr

2
a a z(t)+zc

_ Te—ala(t)tae) _ 1 —a@®+ao)
a a?

1

= (am+ 1)e ¥ e~
a

= (ax.+ 1)e”*P(t)

Thus, the microscopy signal follows the same exponential decay as the pyrene assay;
the different prefactor would drop out by normalizing the signal by the initial value.

Example 2: Double-exponential length distribution

A B A B
V(z) = Ae™® 4+ Be ™ = G(x) = ——e—ax — ze_bf” = /G(;p) = e " 4 Z b
a a

106



5 10 15 20 25 30 10 15 20 25 30 5 10 15 20 25 30
X X

100 100 200
80 —ho — P — P
— M(t) 80 — M) 150 — M(t)
60
60 100
40 40
20 20 50
0 0l 0
10 20 30 40 50
t

15 —V(x) B=10 —V(x) 80 B=100 __ y(x)
5
X

10 20 30 40 50
t

Figure C.1: Length distribution V(x) and pyrene and microcopy signal P(¢) and M (t) for the
numeric example with different values for B. (a) B =1, (b) B = 10, (c) B = 100.

A B o
P(t) = —[Qe‘“”+2e—’“]
a b (1)
A —akt B —bkt
- ? +b78
A —a(x(t)+xc B —b(x(t)+xc A —a(x(t)+xc B —b(x(t)+xc
M) = _$C<_ae ) Bttty )y (A gmatatend 4 Bosttotirens

o A e B _
= (azc.+ 1)e ‘”C?e 4 (bxe +1)e bzcb—Qe bit
Due to the prefactor A/a? (and B/b? respectively), the length distribution with
shorter decay length and thus larger a (or b respectively) is weighted less than the
other distribution. In order to produce a significant effect in the pyrene signal, the
prefactor A (or B) of this distribution has to be significantly larger.

Numeric example: Given the following values for the model parameters:

= 1

= 0.1

1

= 1 and 10 and 100
= 1

T, = O

W=
I

The calculated time courses of P(t) and M (t) for three different double-exponential
length distributions are shown in Fig. C.1.

This illustrates that only for B > A, the mass fraction of the shorter filament
distribution carries significant weight in such a way that the double-exponential length
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Appendix C' Model of Depolymerization

distribution appears in the pyrene signal. In this case, there is a significant difference
between P(t) and M (t): While the pyrene assay is sensitive to the large fraction of
short filaments, the microscopy based analysis neglects them at all and thus follows
only the long distribution.
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