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Abstract

The level of pervasiveness and complexity of software and computing sys-
tems has been growing continuously since their introduction, a few decades
ago. New technologies emerge at regular base, covering ever more aspects of
our daily life and leading to shorter product delivery cycles. These ongoing
trends are posing new challenges to traditional software testing approaches,
because in addition to those constraints, software products are required to
meet a certain level of quality prior to their deployment. Otherwise, confi-
dence in those new technologies and products could be harmed, potentially
leading to their commercial failure. Therefore, effective test solutions need
to be developed within tighter time constraints for systems that are increa-
singly large and complex.

This thesis introduces a new approach of test development for reactive
software systems that combines model-driven engineering of testcases and
test design patterns to address the previously mentioned challenges. The ap-
proach is called Pattern-Oriented Model-Driven Testing and provides a high
potential for automation, through which the development of tests for soft-
ware systems can be significantly improved, both quantitatively and quali-
tatively.

The thesis presents a catalogue of test design patterns, that was put
together by analysing testing and test design good practices in numerous
projects. Furthermore, a methodology for the proposed approach is des-
cribed, based on the newly developed notation called Unified Test Modeling
Language (UTML). UTML is a domain-specific modeling language specif-
ically designed in this thesis to support pattern-oriented model-driven tes-
ting. It allows a high-level design of abstract test models including test
objectives, test architectures, test data and test behaviour, along a series of
predefined test design patterns. Those abstract test models can be created
at early stage in the development process and put in relation with system
model artifacts (requirements, architecture, etc.) to make the testing pro-
cess more transparent, understandable and efficient. Furthermore, UTML
abstract test models remain independent of any technical testing infrastruc-
ture and can then be subsequently refined (semi-)automatically through a
series of iterative transformation steps into executable test sequences, scripts
or documentation artifacts.

To illustrate the approach and to evaluate its positive impact on the
testing process, several case studies from various application domains were
conducted that clearly demonstrate how it improves the test process.






Abstrakt

Softwaresysteme werden heutzutage in immer mehr Bereichen eingesetzt
und betreffen mittlerweile fast jeden Aspekt des téglichen Lebens in moder-
nen Gesellschaften. Um den Anforderungen dieser verschiedenen Einsatzge-
biete zu geniigen, ist die Komplexitit von solchen Systemen in den letzten
Jahren rasant gestiegen. Auflerdem werden kontinuierlich neue Technologien
entwickelt, um den Verbrauchern bessere Dienste zu giinstigeren Preisen an-
bieten zu konnen. Dabei steht die Software-Industrie unter erheblichem
Druck, denn es sollen in immer kiirzeren Entwicklungszyklen hochkomplexe
Produkte entwickelt werden. Selbstverstédndlich wird von diesen Produkten
ein Mindestmafl an Qualitat erwartet, um die Sicherheit der neuen Technolo-
gien zu gewéhrleisten und um ihre Akzeptanz nicht zu gefdhrden. Das heisst,
neue und bessere Software-Produkte miissen unter erschwerten zeitlichen
und finanziellen Bedingungen entwickelt werden. Diese Trends stellen die
Testentwicklung vor neue Herausforderungen, die mit bisherigen Anséitzen
noch nicht zufriedenstellend gel6st werden konnten.

Diese Arbeit stellt einen neuen Ansatz der Testentwicklung fiir reaktive
Softwaresysteme vor, der eine modellgetriebene Entwicklung von Testfallen
mit den Konzepten der sogenannten Entwurfsmustern (Design Patterns) an-
reichert. Dieser Ansatz wird als Musterorientiertes modellgetriebenes Testen
(Pattern-Oriented Model-Driven Testing) bezeichnet und dient dazu, die
Testentwicklung fiir Softwaresysteme einfacher, transparenter und effizienter
zu gestalten. Gleichzeitig werden dabei die Moglichkeiten zur Automatisie-
rung im Testprozess gesteigert, was diesen als ganzen sowohl qualitativ als
auch quantitativ verbessert.

Dazu wurde ein Entwurfsmuster-Katalog fiir die Testentwicklung zusam-
mengestellt, der aus praktischer Erfahrung in zahlreichen Test-Projekten er-
mittelt wurde. Zudem beschreibt die Arbeit eine Methodik fiir den vorgeschla-
genen Ansatz, die auf der Unified Test Modeling Language (UTML) beruht.
Die UTML ist eine neuartige domain-spezifische Modellierungssprache die
in dieser Arbeit entwickelt wurde, um ein abstraktes, aber prézises Ent-
werfen von Test-Losungen zu ermoglichen. Dafiir definiert die Notation
konzeptuelle Test-Entwurfsmuster und ermdoglicht es, auf ihrer Basis neue
Testartefakte als Modellelemente effizient zu entwerfen. Solche abstrakte
Testmodelle kénnen frith im Software-Entwicklungsprozess entworfen wer-
den und in Beziehung zu bestehenden Systemmodellartefakten (z.B. Syste-
manforderungen, Architektur, Daten usw.) gesetzt werden. Wodurch der
Testprozess nicht nur an Transparenz sondern auch an Nachvollziebarkeit
gewinnt.

Diese positive Wirkung des entwickelten Ansatzes auf den Testprozess
wird anhand von mehreren konkreten Fallstudien aus unterschiedlichen Ein-
satzgebieten demonstriert, die wiahrend der Arbeit durchgefiithrt wurden und
die einen deutlichen Gewinn an Effizienz bei erhohter Qualitét belegen.
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Chapter 1

Introduction

1.1 Introduction

The importance of testing as a mean for evaluating quality factors of software and
to reveal errors in software products before they are deployed or commercialised
has been growing continuously in recent years. It is currently estimated that 30
to 60 percents of the overall resource consumption in software development is
done on testing [157]. This has underlined the need for approaches to keep test
development costs under control by ensuring the efficiency of the efforts being
invested. Those approaches aim at introducing a high level of automation and
reuse in each phase of testing where applicable. Thus, the term Test Automation
has been used to denote them.

Now, test automation can be understood in many different ways, depending
on the intended goal. Automation of test execution has been the subject of a
large amount of research in recent years, leading to the emergence of a plethora
of notations, tools and frameworks to support automatic execution of test scripts,
including features such as automatic scenario capturing and replay, automated
evaluation of verdicts, tracing and reporting of test results, etc. Those might also
include facilities for managing test suites, controlling distributed test infrastruc-
tures and beyond.

Another field of testing on which automation has been applied successfully,
is that of test generation. Test generation is the process aiming at allowing tests
to be automatically generated from system models or any other kind of formal
representation of the System Under Test’s behaviour or structure.

While those test automation approaches have significantly improved the test-
ing process, a lot remains to be done to address the challenges of testing software
systems that are becoming increasingly sophisticated and heterogeneous. Nowa-
days tests have to be developed within shorter time and using less resources for

7



8 CHAPTER 1. INTRODUCTION

systems that present a much higher level of complexity. Testing has evolved
into a full development discipline of its own, with a dedicated process running
in parallel to software system development. As stated by Utting and Legeard
in [157]:

Writing tests is now a programming task, which requires different
skills from test design or test execution.

Interestingly, the evolution of testing is quite similar to that of product software
development in recent years. To address the challenges of ever shorter time to
deliver software products of higher complexity mentioned above, the level of reuse
and maintainability of test artifacts must be improved significantly. For example,
Conrad [34] states that:

The test notations which are often used when developing auto-
motive control software, such as the direct description of the test
scenarios in the form of time-dependent value courses or the use of
test scripts, lead to a description of test scenarios on a very low level
of abstraction, making maintainability and reuse difficult.

Although the above statement explicitly refers to the automotive application do-
main, it holds true for almost any domain in which software testing is performed.

Model-driven software engineering (MDE) approaches, e.g. the Model Driven
Architecture (MDA)! proposed by the Object Management Group (OMG), were
introduced to address exactly that kind of challenges for software system devel-
opment. MDA is defined by the Object Management Group as:

a way to organise and manage enterprise architectures supported
by automated tools and services for both defining the models and
facilitating transformations between different model types. [117]

The MDA approach of software system development which consists of transfor-
mations from a platform-indepent model (PIM) through platform-specific models
(PSM)into lower-level source code.

Compared to “traditional” software development techniques, MDE has a lot
of benefits including the following [96, 111]:

e Improved understandability, maintainability and reuse through higher ab-
straction and visualisation of concepts.

e High level of automation, leading to more consistent source code obtained
through automated model transformations.

MDA is a trademark of the Object Management Group (OMG)
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e Round trip engineering (RTE): RTE is the ability to move from a sys-
tem’s highest level of abstraction into its lowest (i.e. implementing source
code) and backward through model transformation. That means conceptual
changes at the Platform Independent Model (PIM) level can automatically
be propagated into the system’s implementation, thus facilitating fixes on
the product as well as development of new products or product lines.

e Early identification of design flaws through automated model validation e.g.
based on constraints defined using formal notations e.g. the OMG’s Object
Constraint Language (OCL).

e Improved communication between stakeholders involved in the development
process, leading to higher productivity for the whole business process.

Thanks to those benefits, the productivity gain resulting from the introduc-
tion of model-driven development is estimated somewhere between 25% [110],
35% [33], 69% [109] and even up to 500% [24].

Patterns are well-documented abstractions of solutions to recurrent problems
that can be reused to resolve similar problems in any new context in which they
might occur. Back in 1979, an approach for capturing patterns in a systematical
manner was introduced by Alexander [3] to catalogue sound solutions in designing
the architecture of buildings and cities. The adoption of that approach for Object-
Oriented (OO) software development introduced by the Gang of Four [62] led
to so-called software design patterns aimed at documenting proved solutions to
recurrent problems in that field and to speed up the design and implementation
of such solutions, through automated model or source code generation.

Patterns are a way of abstracting from the complexity of systems by focusing
on the main aspects of the solution they provide. Because they address problems
by defining concepts at a high level of abstraction (i.e. at a meta-level), inte-
grating patterns in the MDE process has always appeared as a tempting idea,
potentially improving the software development process both quantitatively and
qualitatively. The aim is to allow new software engineering solutions to be de-
signed, based on patterns and expressed in a formal modelling notation, so that
they could be transformed automatically into complete source code or customis-
able stubs and skeletons. Examples of mechanisms for achieving that goal have
been proposed in the existing literature by authors, such as Sunyé et al [152],
Blazy et al [17], France et al [59], along with numerous others. Some of those
approaches have even been successfully implemented in existing software design
tools and frameworks available on the market and have contributed in maximising
the benefits yielded with MDE.

With the hope of achieving similar kind of benefits for the test development
process and following one of the trends predicted by Buschman et al [27], patterns
in testing have been gaining more popularity as a research field. However, one
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of the difficulties faced with in that context is the fact that despite the large
amount of works and approaches combining modelling and testing activities, few
of those have managed to become popular among testers and developers alike.
Those approaches can be classified under two main categories under terms such
as model-based testing (MBT) and model-driven testing (MDT).

Model-based testing is defined in many different ways in the existing litera-
ture, but certainly, the most popular definition of MBT is that of an approach
whereby test sequences are generated automatically from models of the system
under test, using different kinds of computing algorithms to optimise that process.
Therefore, model-based Automated Test Generation (ATG) is the key feature of
MBT. In this thesis, whenever the term MBT will be used, that definition will
apply. MBT is used in different flavors by several tools and projects. For exam-
ple, the AGEDIS tool [77], the TOTEM method [21], the MODEST method [142]
and numerous others [4, 15] use system models expressed in the Unified Modelling
Language (UML) to automatically generate test sequences. A more detailed list
of applications of that approach using various notations is presented by Utting
et al in their Taxonomy of Model-Based Testing [156].

However, despite the huge progress in model-based automated test generation,
a large amount of test cases are still developed manually or semi-automatically.
That process is very repetitive, technically challenging and highly error-prone.
Moreover, just as software systems have continuously been growing in complex-
ity, so have the tests aiming at validating those systems with regard to their
requirements also become highly complex pieces of software. This has under-
lined the need for approaches to optimise that process by integrating all phases
of the test development process and by facilitating reuse of test artifacts. One
such approach - labelled Model-Driven Testing (MDT) - consists in following the
same model-driven engineering (MDE) approach that is already widely applied
for generic software system development, in test development as well. Rather
than attempting to generate tests automatically, the main feature of that ap-
proach is to address the growing complexity of test suites by raising the level of
abstraction in the design phase and by supporting manual or semi-automatic test
development with automatic model transformations. The UML Testing Profile
(UTP) [70] is one such attempt to introduce MDE into the test development
process. Figure 1.1 illustrates how the classical V-model of software development
is transformed with the MDT process. As illustrated in that figure, MDT intro-
duces a parallel thread dedicated to test activities into the classical MDA process,
through which test development is performed as sequence of model transforma-
tions from a platform-independent test model (PIT) through platform-specific
test models (PST) into executable test code.

The MDT is another illustration of the evolution of test automation into a full

discipline of its own, confronted with the same type of issues already identified -
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Figure 1.1: The model-driven test development process in the classical V-model

and possibly solved - for generic software development. In fact, as several authors
pointed out [93, 7], test automation is indeed software development and requires
the same level of discipline and methodology to be successful. Therefore, in the
same manner as patterns in software engineering were catalogued and applied
successfully to improve the development process, the concept of test design pat-
terns has emerged and is gaining more popularity [158, 115, 108, 162]. Patterns in
developing test automation aim at capturing knowledge gathered in those activi-
ties and at achieving more optimisation, to face the growing challenges of testing
increasingly complex reactive software systems.

This thesis is based on the assumption that the identification and the exploita-
tion of those patterns would be beneficial, not just for test development, but for
the software development process as a whole. Given the fact that such an ex-
ploitation of test patterns would have a greater impact, if it tackles the issue from
a high level of abstraction, a review of existing model-driven test development
approaches was viewed as a necessary preliminary work to assess how that vision
could be transformed into reality. Therefore, the thesis introduces concepts for
a pattern-oriented model-driven testing approach, which enables test systems to
be developed following an MDE process and along previously identified patterns
in testing. Beyond the fact that it covers all phases of test development, the
specificity of the approach lies in the fact that the abstract platform independent
test models (PITs) are designed, taking into account a set of rules and templates
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based on identified test design patterns.

1.2 Scope and Purpose of this Thesis
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Figure 1.2: Classification of test approaches

Figure 1.2 depicts a usual method for classifying test approaches as a 3-

dimensional plot, with each of the axis representing an aspect of testing used

as classification criterion. As depicted in that figure, test approaches can be

classified along the following criteria:

e Test goal: The test goal criterion distinguishes between possible intents of

the testing activities. This leads to a division in three main categories:

Structural testing aims at verifying a System under Test (SUT) us-
ing knowledge of the internal structure of its source code. Because
of that heavy reliance on the SUT’s source code, structural testing is
also referred to as white-box testing. Techniques for structural testing
include control flow testing and data flow testing. In control flow test-
ing, the tester attempts to exercise as many of the execution paths of
the source code as possible and verifies that they produce the expected
output. Given that the cost of testing rises with the number of exe-
cuted paths, the approach for selecting a relevant subset of execution
paths is critical for this category. Data-flow testing is a control-flow
testing technique which besides examining the flow of control between
the various components, also examines the lifecycle of data variables
to select test cases [8, 76].
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— Functional testing aims at verifying that the SUT’s behaviour meets its
specified requirements. Functional test can be performed on a single
entity to verify that its behaviour is compliant to a given standard or
specification (conformance testing), or it can be performed by combin-
ing SUTSs from different vendors to verify that they can work smoothly
with each other, based on the same specification (interoperability test-
ing).

— Non-functional testing deals with quality aspects of SUTs that go
beyond basic functionality, e.g. performance, stress-resistance, load-
handling, robustness, etc.

e Test scope: The test scope denotes the SUT’s level of granularity for which
a test approach is applied. The finest level of granularity in object-oriented
software systems is a class or its associated instantiating object. This finest
level of granularity is also referred to as a “unit”. Hence the term “unit
testing” to denote that type of testing. Software modules (sub-systems)
and whole software systems are other levels of granularity at which testing
can also be applied. In which case, terms such as “integration testing” and
“system testing” are used.

e Test phase: The test phase criterion refers to phases of the test develop-
ment process in which a given approach is applicable. On this axis, the test
development process is depicted as a process that starts with an analysis
of the SUT’s requirements with regard to testability, through various iter-
ative steps to test reports describing the test results and thus reflecting the
quality of the SUT.

Load
Non-Functional T £
Performance |.-"

H

Functional —

Conformance

TestGoals

s Ri“":wsis TestObjectives Test! T Tests & Te Tests Tests
pec. Definition Design Design lidati i porting

Phase in Test Development

Figure 1.3: Scope of this work

Figure 1.3 illustrates the scope of this thesis, which can be described as follows:
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e Test goal: This thesis discusses essentially conformance and interoperabil-
ity (integration), i.e. functional testing of software systems. However, some
of the findings might be applicable to non-functional testing (e.g. perfor-
mance, load testing). Structural testing is out of scope, as it is best ad-
dressed with white box testing techniques (e.g. control flow or data flow
analysis).

e Test scope: This thesis covers testing at the component (module, sub-
system) and at the system level of granularity. An application to class-
level unit-testing, though possible, appears to be less appropriate, because,
existing testing approaches at the coding level are more effective for that
purpose and the incentive for raising the abstraction level is not present.

e Test phase: This thesis covers the whole test engineering process, once
the requirements on the SUT and the associated system specification have
been analysed from the testing perspective. However, test execution and
test reporting are covered to a lesser extend than the other phases of test
engineering, as those areas have already been the object of numerous works
to improve efficiency through automated test execution and result analysis.
Therefore, the approach used in this thesis will consist in taking advantage
of existing test execution and reporting platforms rather than proposing
yet another new architecture for that purpose.

The purpose of this work is to propose a methodology for pattern-oriented
model-driven testing, covering the whole test development process and to assess
its potential impact on that process in particular and on the software engineering
process as a whole.

1.3 Structure of this Thesis

The rest of this thesis is structured as follows:

e Chapter 2 provides the software testing background that serves as a basis
for the remaining chapters, introducing the terminology used and describing
how it is understood in the context of this work.

e Chapter 3 presents the current state of the art by describing existing work
on model-driven testing, which is a pre-requisite for the approach proposed
in this work.

e Chapter 4 provides an overview of the pattern-oriented model-driven testing
approach and the principles it is based upon.
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e Chapter 5 describes the Unified Test Modelling Language (UTML) nota-
tion both in terms of syntax and semantics, through its meta-model which
embodies the concepts of pattern-oriented test modelling.

e Chapter 6 describes the design and implementation of a prototype tool
chain that will be used to evaluate the approach. That evaluation was
achieved through an example usage of the approach to design a solution for
test automation of a small web application, followed by a qualitative and
quantitative evaluation through the application to a case study conducted
with the prototype UTML tool chain.

e Chapter 7 summarises the main results of the thesis, then concludes the
work and draws an outlook for further research in the field.






Chapter 2

Basics

2.1 Introduction

A reader trying to find out the difference between model-driven, model-based

“model” and “testing”

testing and any other combination containing the terms
may get quite confused from the large amount of literature dealing with those two
topics individually or in combination. A similar picture emerges if the term “pat-
terns” is considered. In this section some of the key testing and modelling-related
terms commonly used in this thesis will be introduced, including an explanation
of how each of those terms is understood in this context. This chapter is organ-
ised as follows: The next section (2.2) introduces some basic principles of software
testing, focusing on the terminology used in that context in general and in this
thesis in particular. Then, section 2.3 discusses various approaches of combining
testing and modelling, each time describing the potential benefits and pitfalls of
the approach. Finally, section 2.4 introduces the background knowledge relative
to patterns and their usage in software engineering as well as in testing, before

section 2.5 summarises the chapter.

2.2 Principles of Software Testing

2.2.1 Terminology

To avoid misinterpretations and misunderstandings a clear and precise terminol-
ogy is essential for any domain. This is particularly important for an activity like
testing that plays a central role in the software development process. Therefore,
testing terminology has been the object of many efforts from standardisation
organisations and other groups. The International Organisation for Standardiza-
tion’s (ISO) Conformance Testing Methodology Framework (CTMF) standard,

17
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published as ISO/IEC 9646, is just one example of such an effort. ISO’s CTMF
defines a framework for conformance testing of communication protocols based
on the Open Systems Interconnection (OSI). Although the testing concepts de-
fined in ISO/IEC 9646 originally had OSI communication protocols in mind, they
have been adopted for conformance testing in other application domains. This
is illustrated by the fact that the TTCN-3 [58] notation has adopted those con-
cepts, although its scope now extends widely beyond testing of communication
protocols.

Similar efforts from other institutions include the Institute of Electrical and
Electronics Engineers (IEEE)’s IEEE-829 standard [83] and the International
Software Testing Qualification Board’s (ISTQB) glossary [86, 67], which both
define a series of terms related to software testing. Many of the terms used in
this thesis are understood consistently along the definitions provided in those
standard documents. However, some of them needed to be redefined to align
with the proposed approach and its underlying concepts.

The next sections enumerate those terms and describe how they are under-
stood in this thesis.

Component

A component is an abstract entity that is part of the architectural context in
which a test case can be executed. A component can be a representation of a part
of the SUT - in which case it is called a system component - or a representation
of an entity required to stimulate the SUT or to observe its behaviour to assess
its correctness. In that case the component is called a test component. It is
worth noting that a test component is understood all through this thesis as an
abstract concept, which does not necessarily map to a piece of software running
on a computing system. Rather, a test component can be mapped to any element
of the testing environment which can cause an impulse on the SUT or through
which the SUT’s behaviour could be observed. For example, in the case of a
coffee machine as SUT), a test component could be the representation of a person
who interacts with the machine (SUT) through a set of buttons (input ports)
and can observe the responses to her impulses.

(Abstract) Test Case

A test case is a complete and executable! specification of the set of actions re-
quired to achieve a specific test objective or a set thereof. A test case is considered
to be abstract, if it cannot be executed automatically on a computing system,
either because it has been specified using a language that does not allow such

!Please note that the term ezecutable here does not necessarily mean automatically or
entirely programmatically executable, because test execution may still include some steps to
be performed manually by a physical person.
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automated processing via a test execution platform (e.g. natural prose language)
or because the notation used is an intermediary one that requires further trans-
formations to obtain automatically executable test scripts.

(Abstract) Test Suite (ATS)

A complete set of (abstract) test cases, possibly combined into nested test groups
that is needed to perform testing for one SUT or a family thereof implementing
the same specification.

Conformance testing

Conformance testing aims at verifying the extent to which an SUT reflects its base
specification. The base specification may be a document published by a standard-
isation body, a collection of requirements on the system, a prose description of
the system or any document of that kind. Requirements-based testing, acceptance
testing, customer testing [64] specification-based testing [133] are other terms
used for conformance testing.

Executable Test case

A concrete realization of an abstract test case that can be executed to test an
SUT. An executable test case is generally either a test script written in a notation
that can be transformed directly into binary code for execution on a given com-
puting platform or a series of clear and precise instructions to be followed by a
person (test operator) to assess if the SUT’s behaviour matches its specification.
Another possibility consists of a combination of both manual and automated test
execution into a form of semi-automated test execution.

Test Data

Test data is any form of data that can be used to stimulate a system under test or
that can be observed as output from it. In this thesis the term test data defines
an abstract concept, which can be mapped to anything that represents an input
or an output on a given SUT. Examples of test data could be a communication
protocol message, a method call on an Application Programming Interface (API),
a physical control button on a machine that may be pushed to create a stimulus,
a pop-up window on a graphical user interface, etc.

Test Action

A test action denotes any action that must be undertaken to execute a test case.
An example of test action is the sending of test data to another component from
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a source test component, either to stimulate it (SUT component) or to achieve
some other test-related purpose (e.g. reaching a certain pre- or post condition).

Test Event

An indivisible unit of test behaviour that is observable at the SUT’s interfaces
and can be evaluated to verify that the SUT’s behaviour is correct, e.g. when it
reacts to a given impulse.

Test Group

A named set of related test cases in a test suite. More generally, a group is merely
a way of organising items in a test specification.

Test step

A named subdivision of a test procedure, constructed from test events and/or

other test steps.

Test Architecture

A test architecture is a composition of test component(s) and SUT component(s)
that are interconnected via ports through which they can exchange data (mes-
sages, signals, function calls, etc.) to execute a test case. A static test archi-
tecture is a predefined test architecture that can be reused for more than one
test case. It is assumed that the interconnection of components within a static
test architecture does not change during the whole test execution. In a way,
a test architecture describes the topological context in which a test behaviour
will occur. Dynamic test architectures are those that may be modified while the
test case is still running. Example of such modifications include the instanciation
new test components, the termination of existing one or the addition/suppression
of connections between components. While such situations are rather scarce in
conformance testing, they may be quite attractive for other kinds of testing, e.g.
load and performance testing.

Test Architecture Model

A test architecture model is a model containing elements of architecture required
for testing a particular SUT. Beside a collection of predefined static test architec-
tures, the model includes type definitions required for designing static or dynamic
test architectures, depending on the addressed test scenario.
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Test System

A test system is the collection of test components within a test architecture ,i.e.
excluding all SUT components.

Test Objective

A test objective is a prose description of a well defined goal of testing, focusing on
a single requirement or a set of related requirements as specified in the associated
SUT’s specification (e.g. Verify that the SUT’s operation anOperation supports
a value of -Xmaz for its parameter p_IntParam). It should be noted that the test
objective merely specifies what needs to be tested, without any indication as to
how that objective will be achieved.

Test Design Specification

A document specifying the test conditions (coverage items) for a test item, the
detailed test approach and identifying the associated high level test cases [83, 86].

Test Case Specification

A document specifying a set of test cases (objective, inputs, test actions, expected
results, and execution preconditions) for a test item [83, 86].

Test Specification

A test specification is defined as a document that consists of a test design speci-
fication (see 2.2.1), test case specification (see 2.2.1) and/or test procedure spec-
ification [86]. A test specification can be viewed as the equivalent to a software
or system specification for generic software engineering.

Test Procedure

A test procedure - also labelled test procedure specification [86] - is defined as a
prose description of a sequence of actions and events to follow for the execution of
a test case. A test procedure describes how a test objective will be assessed. For
example, the test procedure for the test objective mentioned above (“Verify that
the SUT’s operation anOperation supports a value of -Xmaz for its parameter
p-IntParam”) might read as follows:

e Step 1: (Preamble) Initialise SUT
e Step 2: Instantiate a variable v for p_IntParam of the same type as p_IntParam

e Step 3: Assign -Xmaz to variable v
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e Step 4: Use variable v as a parameter to call the SUT’s anOperation oper-
ation.

e Step 5: Check that the SUT returns normally to the call
e Step 6: (Post-amble) Cleanup test set (free memory, destroy objects etc.)

it should be noted that there is a 1:n relationship between a test procedure and
the test objectives it addresses. l.e. a test procedure may cover 1 or many test
objectives.

2.3 Testing and Models

The introduction of formal description techniques (FDTs) to specify software
intensive systems created new perspectives for more efficient testing approaches of
such systems. The hope was that the standardisation of FDTs (e.g. SDL, Estelle,
LOTOS) and their usage for specifying software systems would provide a better
basis for automated test derivation than with natural language specifications.
With the emergence of semi-formal description techniques through model-driven
engineering supported with notations such as UML, SysML etc. and their growing
popularity, that hope has remained quite strong. This is illustrated by the large
amount of research activities on automated test derivation based on such formal
or semi-formal system specifications or models.

This section presents an overview of existing approaches in that area and
describes how they relate to this thesis. Because of its popularity and the various
different contexts in which it has been used, the term model might be one of
the most difficult to define in computer science. This section will address the
various aspects of the relationship between testing and modelling. It is organised
as follows: The next section will review the terminology around the concept of
models as it is used in this thesis. In particular, the question what is a model?
will be the main point of interest for that section. Then, the next sections (2.3.2
and 2.3.3) discuss the most frequent associations of models and testing, namely
model-based testing, model-driven testing and high level test design.

2.3.1 What is a model?

Because models have always been used in a wide variety of human activities,
defining exactly what a model is, always appears like a sheer impossible task, in-
evitably leading to a controversial result. Therefore, instead of trying to provide
a generic definition of that term, like a dictionary would do it, a more domain-
specific definition appears to be a more realistic attempt. This thesis is concerned
with models in software engineering. But even considering that area of computer
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science alone, the number of existing definitions of the term remains quite im-
portant. Nevertheless, a key characteristic of models (as they are understood in
this thesis) is the fact that they are based on the idea of abstraction [103]. A
model can be viewed as a description of the structural and behavioural design of
a piece of software. It is similar to the set of plans used by engineers to build a
house, with the difference that instead of a house, the result will be a piece of
software. It is important to note the difference made here between a (miniature)
representation of the object itself, for example to illustrate its usage and a repre-
sentation of its design. In fact, the term model is also used in software engineering
to denote simulations of various kinds of processes on infrastructures that would
be otherwise too costly to build and to test in real-life (e.g. embedded software,
telecommunication networks, large or high-value mechanical system etc.)

In the context of this thesis, a model is understood from a Model-Driven
Engineering (MDE) perspective, i.e. as a partial and abstract, but yet exact rep-
resentation of a system’s design, out of which more concrete representations of
that system can be derived (automatically /manually) following an iterative pro-
cess. Such models are generally expressed graphically in the form of diagrams.
A key characteristic of a model is that each of the associated diagrams allows
the object to be analysed from a different view point, each time revealing (i.e.
displaying and allowing access to) a particular aspect of the object or a combi-
nation of several aspects. The classification of possible views could be driven by
the type of information (e.g. architectural view, data view and the behavioural
view), the level of abstraction (e.g. logical view, technical view, physical view),
or any other criteria of the data made accessible through those views.

However, in some parts of this thesis definition 4 above will be used, especially
to clarify other concepts of model-related testing. But whenever that will be the
case, it will be clearly indicated as such to avoid any possible confusion.

In the rest of this thesis a distinction will also be made between a system
model and a test model. The term system model will be used to denote a model
(according to the definition above) of the SUT. Whereas the term test model will
be used for a model of the elements required for testing the SUT.

Other definitions of a model (e.g. as mathematical representations of physical
processes) and the associated testing activities in those areas are considered out-
of-scope for this thesis and will not be discussed further.

For a more detailed discussion on the definition of a model, please refer to
Kiihne [97], Utting et al [157] and Binder [16].

2.3.2 Model-Based Testing

With the growing popularity of models and MDE in software development, model-
based testing, which was already successfully applied in hardware testing has
become one of the main topics of research in software engineering in the last
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decades. One can identify two main flavours of model-based testing in the existing
literature:

e Model-Based Testing as a generic term for any testing activity in which
models are used in one way or another: Jorgensen [91], El-far et al [48]
define MBT as

a general term that signifies an approach that bases common test-
ing tasks such as test case generation and test result evaluation
on a model of the application under test

e Model-Based Testing as Automated Test Generation (ATG) based on mod-
els of the SUT (also called system models): This flavour is the most com-
mon in the literature and in the tool landscape [156, 157], especially with
the growing popularity of MDE and Object-Oriented Analysis and Design
(OOA/D). It consists in using a model of the SUT - potentially enriched
with some additional test-relevant information - to automatically generate
tests. Those additional information are sometimes called (test) require-
ments or constraints, annotations etc. This form of Model-Based Testing
relies heavily on algorithms aiming at achieving a possibly high level of
coverage relative to the base model(e.g. coverage of all possible transitions,
if the SUT’s behaviour has been modelled as a labelled transition system
(LTS) or as a Finite State Machine(FSM)). The generated tests range from
structured plain-language descriptions of the test sequences (i.e. the set of
actions to be performed to achieve the test goals), to directly executable
test scripts, in the form of binary code or expressed in an intermediary no-
tation, out of which automatically executable tests can be derived through
compilation or interpretation.

e Model-Based Testing as the application of MDE to test development: This
usage of the term MBT is rather seldom and appears mostly in works related
to the UTP [121].

Models in MBT

Most of the models used in model-based automated test generation are represen-
tations of the SUT’s usage from a black-box perspective and therefore correspond
to definition 4 of the term model provided in section 2.3.1. Finite state ma-
chines (FSM) and their various extensions such as extended finite state machines
(EFSM), state charts and markov chains are undoubtedly the most popular types
of models used in MBT. The usage of FSMs in computer science can be dated
back to the 1950s with the work of Mealy [107], Moore [112], Kleene [95] et al.
FSMs are based on the principle that every software is always in a specific state
and that the output it generates from any input will be determined by the state it
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currently finds itself in. Furthermore, FSMs are based on the assumption that the
number of possible states for the SUT is finite. This is particularly the case for
software running on computer hardware components, which additionally benefit
from the fact that the number of states there is usually rather small.

While first experiences of using FSMs to test software date back to 1978 with
the work of Chow [31], the large number of works on that field [61, 6, 32, 102]
in the last decades clearly indicate the growing interest in industry and academia
for it.

2.3.3 Model Driven Testing
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Figure 2.1: Model-Driven Testing Process

Model Driven Testing (MDT) is an approach of software testing whereby a
model is used to model an abstract representation, not just of the SUT’s struc-
tural design, but also of the SUT’s testing context. In this thesis, MDT is defined
as the application of MDE methodology, e.g. as proposed by the OMG’s Model
Driven Architecture (MDA), to the testing domain. As depicted in Figure 2.1
(from [161]), while the MDA features the (automated) transformation from plat-
form independent system model (PIM) into source code via successive platform
specific models (PSM), MDT introduces a parallel thread for the test develop-
ment process. In that process, a platform independent test design model (PIT)
is transformed automatically into platform specific test models (PST) and even-
tually into test script code that can be executed to assess the SUT. Optionally,
an automated transformation of the system model into the test model could be
achieved as well, both at platform independent level and at platform specific level.

*For a more exhaustive list, please refer to [48]
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Rather than the automated generation of test cases, the main goal of MDT is to
automate the manual test development process and facilitate its integration in
the overall software development process to ensure requirements traceability and

Models in MDT

The models used and designed in MDT are mainly of two types:

e A system model, which is either a design model of the SUT (e.g. a UML
model of the SUT) or a model describing the usage of the SUT from a
black-box perspective (usage model).

e A test model, i.e. design of the testing context in which the SUT will be
tested (e.g. a UTP model describing the testing context and potentially
including the SUT’s model as a whole or referring to it).

The testing context consists of three main elements, namely test architectures,
test data and test behaviour. The technique used for modelling those elements
will depend on the tooling environment and especially on the technique used for
modelling the SUT. The tendency is to use the same technique for both elements
to facilitate data exchange between them and a better understanding among
stakeholders.

However, it is quite common in software development that no design of the
SUT is available for reuse. In those cases, the test model directly incorporates the
SUT’s design elements required to design sensible tests, while ignoring aspects of
the SUT that are irrelevant for the testing activities.

2.3.4 High Level Test Design

Test modelling is the activity of designing a test model and as such, it is performed
in both MBT and MDT processes. However, there is a significant difference
between the test design activities in those two processes. In MBT the focus will
be laid on providing a compact model of the SUT’s behaviour and in particular
of how it should behave when it is being used, while at the same time neglecting
the impact of the testing context. Whereas in MDT, the testing context plays a
central role and the high level test design activity essentially consists of describing
the SUT’s expected behaviour within that testing context.

2.3.5 A few Words on Model-Based and Model-Driven Testing

Despite the undeniable benefits it brings into the test development process, MBT
also raises a couple of challenges and open issues that need to be addressed for
its successful application in a broader community. The next sections discuss each
of those challenges.
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Model granularity

Very often in integration testing, sub-system level testing or interoperability test-
ing deriving meaningful tests from system models is a pointless task, because such
testing implies taking into account functionalities that go beyond what could be
represented as a single state machine, sequence or interactivity diagram. In fact,
test scenarios in such situations involve several types of diagram at the same
time, with the additional information on how to combine them being provided as
natural language descriptions, which are inappropriate for automated processing.

Model testability

According to Binder [16], a testable model is one that contains sufficient infor-
mation to allow automatic generation of test cases. Therefore, the model has to
meet the following criteria:

e Completeness and accuracy: The model must represent all features that
need to be tested. Also it should reflect the SUT’s design as well as its
specified behaviour.

e Balanced level of detail abstraction: the model should not contain too many
explicit details of the SUT to keep design and maintenance cost at an
acceptable level, but at the same time, it should preserve details that are
essential for revealing faults and demonstrating conformance.

e Clearly defined concepts: The model must define the concepts on which it
relies to describe structure and behaviour (e.g. state, events, actions) in a
clear and precise manner so that they can be verified accordingly.

As one can easily imagine, providing models that effectively meet those criteria
is a by no means trivial task that requires not just appropriate tools, but also a
fairly good level of expertise. Moreover, as Briand et al [22, 20] pointed out, the
usage of the UML notation - which is the de facto standard for modelling and is
quite popular in MBT - does not help very much in that instance. They argue
that

”since the use of the UML notation is not constrained by any partic-
ular, precise method, one can find a great variability in terms of the
content and form of UML artifacts.”

Furthermore, it is worth noting that SUT models provide a user’s or developer’s
perspective on the system. This might be explained by the fact that SUT mod-
els are provided by designers (and sometimes even developers) with the aim of
implementing functionalities that fulfil the requirements on the software. Such
requirements being generally user-driven, tend not to cover test-related aspects
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by focusing mainly on the expected behaviour in the system. Testing on the other
hand has to go beyond the expected behaviour to uncover errors that might oc-
cur in case the SUT is confronted with unexpected inputs or unspecified user
behaviour. Otherwise, instead of testing the system itself, the tests merely vali-
date the SUT’s model. Although it is commonly agreed that this type of model
validation is an important step towards software quality, it is also widely ac-
knowledged that it cannot be a substitute for “real” tests of the implemented
system.

Model correctness and self-consistency

It should also be kept in mind that MBT cannot be viewed as the one solution to
all testing problems, based on the mere fact that tests are automatically generated
from models. Just as software will always contain failures, independently of their
level of abstraction, models can also be faulty. Therefore, the quality of the
formal model used as the base for MBT is fundamental for the whole process. As
Heimdahl [79] put it,

If the models are wrong, the testing effort will be inefficient or possibly
outright deceiving (if we blindly accept the results of testing using
poorly validated models).

However, according to Heimdahl, robust techniques for validating those models
have been lacking ever since Dalal et al pointed out that challenge, back in
1999 [38]. Although domain expertise from project developers can be used to
check the quality of MBT models as suggested by Dalal, it is obvious that those
activities should be automated for more efficiency.

The human factor

Current MBT approaches and their associated commercially available tools ex-
pect the tester to be 1/3 developer, 1/3 system engineer, and 1/3 test engi-
neer [38]. Such a combination of skills is hard to find in most test teams. Besides
such skillful testers would hardly be affordable for many organisations. Therefore,
the methods and tools for MBT should adjust to that fact.

Difficulty of creating and maintaining a SUT model

Creating and maintaining a model for a complex software system is less trivial,
than it is sometimes suggested in many publications on MBT. In fact, the SUT
model for test generation is generally more complex than the one used by develop-
ers, because it needs to combine several views on the system and correlate them
as single model. That means difficult decisions have to be taken by the tester
regarding for example which details to include in that model or to leave out, the
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algorithm to use for test generation, the appropriate level of abstraction [125] etc.
The size and the manageability of the resulting model will ultimately depend on
the complexity of the SUT’s behaviour and the model coverage level targeted by
the tester. These difficulties can partly be addressed by reusing elements of the
SUT’s design model already used by system developers in the MDE process. A
way of achieving is by annotating the initial SUT model with additional testing-
related information that will be exploited for automated test case generation.

Lower understandability of automatically generated test cases

The usage of MBT tends to make it difficult to identify reasons why a test case
fails and to address the cause [38]. As Brinksma et al [23] rightfully stated:

Not only detecting errors is important, but also locating and diagnos-
ing errors.

This leads to the “loss of collateral validation and verification” [79], i.e. the
ability to combine automatically generated tests with those developed in a manual
process by experienced testers. Moreover, if it is not clear what functionalities of
the SUT the tests actually assess, then confidence in the quality of the software
will hardly be increased.

Model scalability

Another important challenge faced with MBT is that of scalability. Scalability
refers here to the ability to handle SUT models of increasing size and complexity
in a stable and satisfactory manner. MBT relies on algorithms originating from
graph theory for traversing the various paths of a finite state model representing
the SUT’s behaviour [100]. Depending on the possible input /output combinations
at each state, test cases can then be generated automatically to assess the SUT.
While this works pretty well for simple SUTs consisting of only a few states, the
number of generated test cases grows exponentially with increasing complexity of
the SUT’s state model, eventually leading to the well-known state space explosion
problem [77, 77, 23, 48]. A consequence of this is the fact that the number of
generated test cases may grow into unmanageable proportions, thus making the
approach lose its intended efficiency.

Dealing with the real (imperfect) world

MBT heavily relies on the availability of complete and correct requirements speci-
fication and SUT models. However, besides the fact that formal requirements are
rare [134], a machine processable model (MPM) of the SUT is not always avail-
able. This situation might occur, either because it was simply not planned or
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because the cost for providing a system model solely for the purpose of test genera-
tion would outweigh the potential benefits of automated test generation. In many
cases, only parts of the system model are expressed in a machine-processable no-
tation, with the biggest part of the system specification being provided as natural
language description documents. For example the type system and the applica-
tion programming interfaces (APIs), i.e. the static aspects of the system, might
be specified in the Unified Modelling Language (UML), the Interface Definition
Language (IDL), the Web Service Definition Language (WSDL) or any other
similar notation, while the dynamic parts would be provided as a combination of
sequence charts, state diagrams and natural language descriptions. This empha-
sizes the need for MBT to integrate with the whole software engineering process
as noted by numerous authors [23, 77, 41, 134].

Taking the testing context into account

For the sake of abstraction, MBT approaches tend not to take the testing context
into account. The term testing context denotes the architectural environment in
which the SUT needs to be put for test execution, the communication points
it provides for input or output, and the constraints to be considered for ensur-
ing a proper operation (e.g. required components and functionalities). As a
conscequence of this, the generated test cases may remain at too high level of
abstraction and thus unsuitable for test execution. Moreover, if the additional
effort for transforming those abstract test cases into executable ones is too high,
the benefits expected from applying MBT may be lost in the process.

2.3.6 Conclusions

As a technique that has already been advocated and put into practice in several
works [161, 15, 18, 66, 65, 89], MBT appears to be a promising approach, poten-
tially yielding the same type of benefits obtained with MDE for generic software
products. However, its adoption by the testing community and the software in-
dustry as a whole has remained extremely low. As early as in 1995, Lai [101]
raised that issue for testing of communication protocols. In later works [99, 100]
he continued, stating that

There is not muchprogress in the use of test sequence generation tech-
niques for practical testing of communication networks. Test design
is still largely performed by testers by interpreting the specifications
written in a natural language.

The figures collected and analysed by Neto et Al in their recent survey of MBT
approaches [41] and reports by other researchers [134] seem to indicate that this
issue continues to affect testing, even beyond the communication domain. In an
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associated article [114], Neto et al go as far as questioning the existing amount of
practical evidence brought up by researchers to prove their assumptions in that
domain, despite many seemingly promising and conclusive case studies [38, 36,
127, 154, 30, 6, 126] describing its successful application in the research and the
industrial context.

Lai explains this big gap between academic and industrial testing practices
with the fact that academia has not been addressing the real-life testing issues and
problems [99] One reason that is often mentioned to explain the low acceptance
of MBT/MDT is the fact that the proposed methodologies are difficult to use
and sometimes unnatural in their application.

While many of the challenges mentioned above have a lower impact for sys-
tems displaying a lower level of complexity in terms of their behaviour, approaches
are yet to be developed to address them for more complex software systems.

For all those reasons mentioned above, “manual” test development is still a
common practice and is even likely to remain so for a few more years to come,
given the fact that it will undoubtedly require some more time until MBT reaches
the level of maturity required to evolve from an academical discipline into a
broadly established practice. Besides, independently of automation a certain level
of manual intervention in test development will always be required for deriving
meaningful tests from system specifications and requirements. MBT simply raises
the level of abstraction at which that manual intervention occurs and facilitates
automated test case generation based on those high-level models. Nevertheless,
designing test cases requires a good knowledge of the SUT, as well as testing
expertise, both of which are hard to find and costly assets. Amazingly, while a
large amount of tests are developed following that manual process, the level of
automation currently available to support those activities is still disappointingly
low. This is where MDT comes into play, by providing a model-driven approach
including automated validation and iterative transformations of test models to-
wards executable test scripts. A detailed discussion on MDT is provided later on
in the next chapter of this thesis.

2.4 (Design) Patterns

The concept of design patterns as it is currently known in the software develop-
ment domain originates from the work of Alexander [3], an urban architect who
had the basic idea of recording design wisdom in a canonical form. He defines a
pattern as

both a description of a thing which is alive, and a description of
the process which will generate that thing.

As Buschmann et al [26] pointed out:
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A pattern is the result of abstracting from a given (set of) problem-
solution pair(s) and distilling common factors, which can be reused
to solve other problems.

This process of analysing existing solutions and extracting the essence of a set
of problem-solution-benefit combinations is called pattern-mining, whereas the
reverse process of producing a solution for a similar problem-benefit pair by
applying the previously identified pattern is called pattern instantiation.

It soon became obvious that the concept of patterns introduced by Alexan-
der for urban architecture could also apply to nearly any design and engineering
field. In analogy to the design patterns for urban architecture, software designers
acknowledged the existence of patterns in software design and the need for iden-
tifying and documenting them, in such a way that they would possibly be reused
wherever the context might require it to generate new solutions. A key event in
the history of software design patterns was the publication of the book ”Design
Patterns: Elements of Reusable Object-Oriented Software” by E. Gamma, R.
Helm, R. Johnson and J. Vlissides, also called the Gang-Of-Four (GoF) [62].

Jacobson et al. [88] define a software architecture pattern as both a part of
a software system and a description of how to build that part. The purpose of
software architecture patterns is to identify and specify abstractions above level
of single instances or components in a software system, as well as to document ex-
isting well proved design experiences, software architectures and guidelines. Also
software patterns provide a common vocabulary and understanding for design
principles and well-proven experiences.

There has been some amount of controversy around the concept of patterns in
software engineering and how they relate to existing software methodologies. As
described in [26], emphasis must be put on the fact that patterns can and should
not be viewed as solution for all possible software engineering problems and one
should not attempt to force patterns reuse in situations where they simply would
not fit. Patterns should rather be viewed as a complementary approach to existing
methodologies.

Also, patterns should harmonize with the fundamental principles of software
construction commonly known as enabling techniques [26], which are indepen-
dent of a specific software development method such as Abstraction, Encapsu-
lation, Information Hiding, Modularization, Separation of Concerns, Coupling
and Cohesion, Sufficiency, Completeness and Primitiveness, Separation of Policy
and Implementation, Separation of Interface and Implementation, Single Point
of Reference, and Divide-and-conquer [26]. While some patterns address some of
those concepts explicitly, it is important to make sure that patterns do not affect
those principles negatively.

This also holds true for the usual non-functional requirements on software
systems, i.e. changeability, interoperability, efficiency, reliability, testability and
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re-usability [85]. It should be kept in mind that while some patterns will aim
at enhancing some of those requirements and help in achieving them, it is also
possible that a given pattern affects some of the non-functional requirements
negatively. For example, the broker pattern, which is the base of many mid-
dleware architectures such as the Common Object Request Broker Architecture
(CORBA), eases testing of individual client or server components in a distributed
system. However it decreases the testability of client-server systems by introduc-
ing additional elements between the client and the server.

2.5 Summary

Testing has been the object of a significant amount of research activity in the
last decades and has evolved from something performed “en passant” by soft-
ware developers into a complete discipline of its own, following the same process
as generic software development. Test development is just another way of ap-
proaching software development from the quality insurance perspective, but to
be successful, testing also has to be done in a rigorous and systematic way. Oth-
erwise that would ultimately lead to a lower quality for the resulting products
or cause more costs. However, with testing evolving into a discipline of its own,
methodologies are required to fasten test development to avoid an explosion of
costs stemming from the growing complexity of both the systems to be tested
and the test systems themselves.

With the growing popularity of models in software engineering, model-based
testing has been the source of (too) high expectations as a means for addressing
the challenges of ever complex software systems and shorter test delivery time
spans. However, MBT has not yet reached a high level of popularity among
testers and developers. Therefore, test engineering has remained a highly manual,
repetitive and error-prone process in many domains. Automating those manual
tasks and enhancing reuse both of artifacts and concepts through patterns is
a promising approach for addressing those issues. Although this could also be
achieved through patterns at the test scripting level (e.g. using some dedicated
libraries or specific macro-like scripting language idioma), the introduction of a
model-driven approach to test development will undoubtedly facilitate that task
and increase both efficiency and usability, by allowing tests to be designed at the
appropriate abstraction level for those activities. In the next section the current
state of the art of such model-driven testing approaches is discussed.






Chapter 3

State of the Art in Model-Driven
Test Automation

3.1 Introduction

Patterns are the result of an abstraction process, in which the common essence
shared by a set of existing solutions to a recurrent problem is extracted, so that
new solutions future occurrences of the same (or similar) problems would be in-
stantiated more easily. Since they address issues at different levels of abstraction,
patterns are described in many different ways, ranging from natural language
through object model diagrams to source code snippets or templates. The choice
of one method or the other is driven essentially by the targetted domain and the
usability of the resulting solution.

As a mean for raising the abstraction level in software development, MDE
can facilitate the exploitation of patterns in test automation. In Chapter 2,
Model-Driven Testing was defined as an approach consisting in applying the
MDE method to design solutions for test automation. Furthermore, the potential
benefits of combining MDT and test design patterns were highlighted.

In this chapter, the current state of the art of existing MDT approaches
is reviewed. As described in Chapter 2, the MDT process consists of successive
transformations from a platform-independent test model (PIT) through platform-
specific test models (PSTs) into executable test scripts. That process basically
remains unchanged, independently of the technology used for achieving it. There-
fore, the main differentiating factor between MDT approaches is the notation(s)
used to express testing concepts as PIT at a high level of abstraction and the
methodology they carry.

There is a wide variety of existing notations for test design available both in
academia and in the industry [64]. Therefore, selecting one that is appropriate

35



36CHAPTER 3. STATE OF THE ART IN MODEL-DRIVEN TEST AUTOMATION

for one’s needs is by no mean a trivial task. Basically, two main categories
of approaches can be identified for model-driven testing, depending on whether
a Generic Modelling Language (GML) or a (Test) Domain-Specific Modelling
Language (DSML is used to model the tests.

Significant differences exist between the requirements for generic software
design notations and those targeting test design. While the former tend to focus
on expressive power with generic concepts that match the complexity of today’s
software and information systems, the latter rather aim at providing a simplified
view on those systems to enhance their understandability and to help uncovering
errors they may contain. Additionally, test development involves a process that
includes its specificities, despite the many similarities it shares with software
system development. Those specificities include [11]:

e The ability to model assertions and expectations.
e The ability to model test-related roles for entities.

e The ability to model means for verifying constraints: while constraints can
be considered sufficient for modelling generic software systems, test models
also require a description of how those constraints will be verified and which
impact their violation would have on test results.

e The need to provide traceability to other aspects of the development process

(e.g. requirements management, fault management).

Even though workarounds could be found for fulfilling those requirements on test
development using GMLs, those are in many cases too inconvenient to be used
efficiently in an MDT process.

Taking those specificities of test design into account while modelling tests
would be highly beneficial for the process, because it would automate manual
test development where it is needed most, while at the same time ensuring that
the test models remain concise and precise.

3.2 Using GMLs for MDT

GMLs are notations primarily defined to model a wide range of software and
computer system types. UML is probably the most popular GML in software
development at the moment.

The UML is the industry standard notation for high level software design and
has continuously been gaining popularity since its introduction. It provides a wide
variety of diagramming possibilities to model software at any level of abstraction
and benefits from solid tool support and a well-proven standardization process.
Therefore, it appears to be a natural choice to consider UML for also designing
tests in the same manner as other aspects of software engineering. Beyond the
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user-friendliness resulting from the familiarity of the UML and the usage of well-
established CASE tools, it is also assumed that using the same language both for
test and system design would make it easier to understand the links between both
types of artifacts and facilitate automated transformations between them [120].

Proponents to the usage of UML as-is for test design argue that, it already
provides all concepts required for that purpose and that using the same nota-
tion for modelling both the SUT and the test system will be beneficial for the
whole development process. Baker et al [11] describe a case study conducted at
Motorola, featuring a concrete example of such usage. Although no figures are
put forward to support their statement, the authors claim that the approach has
proven be very successful through automated test generation and reuse of test
models in reducing the effort for developing tests, improving test coverage and
increasing the failure detection capability of the test suites. However, as they
also rightfully pointed, the usage of the same notation does not spare the test
designer the challenges that are inherent to any application of MDE to testing.
Namely [11]:

e insufficient tool support for

— exchanging model artifacts between system architects, testers and de-
velopers,

— migrating from legacy notations (e.g. SDL, MSCs),

integrating the various aspects of MDE as a comprehensive process,

— handling large models (scalability),

e inadequacy of system models (Level of abstraction, incompleteness, plat-
form specifics),

e lack of well-defined semantics originating from known semantical variation
points of UML,

e difficulty of coupling data and behaviour in a reusable manner,
e team inexperience.

The authors describe how those various issues were addressed using some propri-
etary notations and tools besides standards such as TTCN-3, UML and UTP.

3.2.1 The UML Testing Profile (UTP)

The UML Testing Profile [70, 10, 161] (UTP) is an extension of UML standard-
ised by the OMG for expressing test design concepts at higher level of abstraction.
UTP adds test design concepts to the UML superstructure to define a language
suitable to be used as stand-alone meta-model for test design or integrated with
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UML for combined test and generic system design. UTP groups those concepts
in four main categories: test architecture, test data, test behaviour and time. As
a UML profile, UTP inherits the positive characteristics of UML, such as its ex-
tensibility (through the profiling mechanism), its included support of partitioning
(through packages) and separation of concerns (layered metamodel architecture).
While, this facilitates the dual usage of UTP, i.e. both for combining the design
of test artifacts with that of generic systems, it also comes with some important
drawbacks to be taken into account.

The UML Testing Profile defines a language for designing, visualising, spec-
ifying, analysing, constructing and documenting the artifacts of test systems.
Apart from the numerous advantages of UML, this approach aims at facilitating
the understandability of test models and their adoption by other stakeholders in
the software development process. Furthermore, it is assumed that test design
activities would benefit from the large variety of tooling facilities already available
for UML, if that same language (or an extension thereof) were used.

However, the usage of UML and extensions thereof for test design requires
that some of the issues regarding the semantics of that notation are addressed.
Henderson-Seller [80] provides an overview of the pros and cons of UML, pointing
at issues raised by experts regarding the impreciseness of that notation for mod-
elling the behaviour and the structure of software systems. While SUT models
may afford such impreciseness, test models must clearly specify what function-
ality of the SUT they assess and indicate precisely how that assessment will be
performed. The impact of those issues on a potential usage of UML for high level
test design has been analysed by authors such as Brinksma et al. [23] and Pickin
et al. [120]. Moreover, the UML might be too complex, too difficult and too
generic for the sole purpose of high level test design. In fact, many of the existing
implementations of UTP are actually provided as plug-ins for UML modelling
tools, which in most cases do not provide a specific process for test modelling,
but rather for modelling generic object-oriented systems. This makes the process
of modelling tests with those tools inefficient as they do not address the concerns
of testing directly, but through some workarounds. Because of all these factors,
the adoption of UML for test design appears to be coupled with high costs and
risks with no guarantee of a beneficial impact at the end of the effort.

Also, it is very important that other non-functional aspects of the test de-
velopment process (e.g. test planning, test analysis) are taken into account in
the test modelling process, for it to be successful. Clearly, some of those aspects
are considered only marginally, while others are not considered at all by GMLs.
For example, while it extends the UML with concepts specific to testing such as
test architecture, test behaviour and test data, the UTP covers many of those
concepts by only defining their abstract syntax, with vague description of their
semantics, if any. This is nevertheless not surprising and aligned to the UML,
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knowing that a standard is per se a compromise which rather than going too
much in the details of things, aims at providing a common framework for a given
methodology.

Furthermore, the GMLs neglect the visualisation of test artifacts, assuming
that the means provided for generic software design would be sufficient. This
is somewhat unrealistic, because if a diagram is used to represent test artifacts
graphically, then the test-specific concepts contained in those artifacts should
also be visible on the diagram. Otherwise the benefit of visualisation would be
lost altogether.

3.3 Using DSMLs for MDT

DSMLs are notations especially tailored to allow the modelling of concepts specific
to a particular domain. A domain in this context can be understood both as
application domain (e.g. automotive, telecommunications, finance, etc.) or as
problem domain (e.g. application deployment, testing, packaging, etc.). DSMLs
are often extensions or restrictions of GMLs. For example, the SysML notation,
which defines a DSML for systems engineering beyond the OO-paradigm, extends
the UML notation.

Proponents to the usage of DSMLs for test design emphasise the need for
notations that clearly address the purpose of modelling test concepts, without
the burden of inheriting a large catalogue of concepts that are irrelevant in that
specific context. A justified concern that arises in that scenario is that of the
additional effort (and costs) in designing, maintaining and implementing yet an-
other notation to the plethora of existing ones, both in terms of human resources
and technical capabilities. However, the fact that the scope of DSMLs is narrower
than that of UML may contribute in reducing the efforts required for learning
and using them. Furthermore, with recent progress in MDE, a large set of tools
and platforms exist that have made the effort of designing a new DSML and
implementing an associated toolset a less daring adventure.

The UML standard [74] lists several potential motivations for designing a
DSML by customising UML:

e To give a terminology that is adapted to a particular domain.

e To give a syntax for constructs that do not have a notation.

To give a different notation for already existing symbols

To add semantics that is left unspecified in the meta-model.

To add semantics that do not exist in the meta-model.

To add constraints that restrict the way you use the meta-model.
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e To add information that can be used when transforming a model to another
model or code.

Each of those motivations apply in the case of a DSML for test design.

3.3.1 Approaches for Designing a DSML

The choice of an appropriate approach for designing a DSML for MDT requires
several factors to be taken in consideration. Firstly, to reduce the costs of de-
signing and implementing a DSML, it would be more efficient to do so, based
on a well-established existing GML, provided it offers the required customisation
mechanisms.

Since UML provides such customisation mechanisms and has established itself
as the standard notation for modelling in computer science,it was decided to take
it a the base for any test design DSML.

One of the most interesting features of UML is the fact that it provides several
possible customisation mechanisms. In their article on customisation approaches
for UML [25], Bruck et Al. provide a detailed list of those possibilities that can
be grouped in two main categories:

e The Meta-Object Facility (MOF) based approach: MOF is a standard [72]
defined by the OMG as a 4-layers meta-modelling architecture to allow
the definition of DSMLs in a way similar to Extended Backus-Naur Form
(EBNF) for defining language grammars. Two variants of MOF are defined
by the OMG, i.e. Essential MOF (eMOF) and Complete MOF (cMOF).

e UML “built-in” extension approaches (e.g UML profiling and Reuse through
specialisation or copy/merge of UML meta-types): The usage of UML pro-
files is one of the most popular approaches in this category, thanks to the
many advantages it provides [25]:

— Easy to create such extensions

— Well described with documentation in Superstructure Specification
— Standard means to define icons

— Well defined display options.

— Application of profiles and how to use them is well defined.

— Can add structure

Low development cost
— Leverage existing UML editors

— Ease of deployment.
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Those advantages might have played an important role in motivating the
definition of the UML Testing Profile, which is currently the best known
notation for MDT. However, UML profiles also come with some disadvan-
tages [25]:

— Inability to specify behaviour
— Impossibility to remove existing constraints.
— Clumsy programmatic usage

— Impossibility to modify existing structures

Alternatively to using a notation based on UML customisation, a test modelling
language may follow a different approach, e.g. by using a generic format to ex-
press test specific concepts. The XML-based notation TML [56] (Test Modelling
Language) is an example application of that approach, whereby instead of using
a meta-model to define the abstract syntax of the notation, an XML schema de-
scriptor is used. While this might appear as an attractive alternative, based on
the assumption that the XML format is widely used, platform-independent and
generic, it has some disadvantages that are likely to emerge in the long term:

e Editing interface: The process of editing XML files can be very tedious and
error-prone, if an appropriate GUI is not provided for that purpose. The
effort for designing, implementing and maintaining that infrastructure will
have to be taken into account while considering going along that path.

e Customisation difficulties: Using an XML-based DSML makes it more dif-
ficult to use a whole set of facilities provided by MDA-infrastructures for
semantically validating the test model (e.g. using OCL-constraints) and for
model transformation into other notations. Although facilities provided by
XML tools might be helpful in facing those issues, the effort required for
integrating them into existing development infrastructures should not be
underestimated.

3.4 Related Works

Most of the existing works on model-based and model-driven testing address
automated test case generation from models of the SUT. Besides the work on the
UTP, the following works were found, addressing the same issue as this thesis:
The approach proposed here is based on the same motivations as the work
of Pickin et al. [119, 118, 120] towards a formal and yet user-friendly mean for
describing tests at a higher level than notations such as TTCN-3. After assessing
the suitability of UML 1.4/1.5 and UML 2 for that purpose, the authors come to
the conclusion that there is a need for a new notation to address the shortcom-
ings of existing languages. Their new notation - called TeLa - is based on UML
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sequence diagrams, but introduces specific semantics to address the issues identi-
fied with UML and MSCs. However the authors focus mainly on the behavioural
aspects of high-level test design and although other aspects such as test data
design and test architecture design are also briefly discussed, they are obviously
not covered with the same level of detail. Furthermore, in this thesis, the focus
was laid more on usability and and reuse based on patterns than on formalism.

Another work in the same area is that of Baerisch [9], who proposes an ap-
proach labelled Model-driven Test Case Construction (MTCC) which aims at
decoupling SUT implementation details from system tests. The author argues
that this would improve reuse of those tests, especially for product lines consisting
of many variants of systems that share a certain amount of features.

Al Saad et al [140] present a visual model-driven testing framework for wire-
less sensor networks applications. Their approach consists in using a visual
domain-specific language (DSL) to create a model of the test cases, that is then
refined through a series of transformation steps into executable test case code
(Java/C++) that can be run on an engine called ScatterUnit, developed specifi-
cally for that purpose. A limitation of their approach resides in the fact that it
addresses a particular kind of applications exclusively, i.e. wireless sensor net-
works applications. Possibilities for applying the method beyond that domain,
though not discussed explicitly in the paper, appear to be feasible.

Grossmann et al [69] propose to use a DSML called TestML to address the
challenges faced with the testing of embedded software in the automotive in-
dustry. The authors describe TestML as an interchange format between the
technologically heterogeneous test infrastructures present in that domain. One
of the main characteristics of those infrastructures is the fact that they oper-
ate at different phases of the development process such as Model-in-the-Loop
(MIL), Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL). TestML is
thus defined as an XML-based format for facilitating the reuse of test artifacts
among those different phases and the heterogeneous tool landscape they imply.
Although they do not mention an MDT process explicitly, a transformation of
the abstract concepts expressed with TestML into more concrete representations
for the respective test infrastructure appears to be a logical following step.

The potential benefits of cataloguing best practices and patterns in test design
has been advocated by several authors before. Binder [16] discusses a test pat-
tern template, based on a pattern language of object oriented testing (PLOOT)
proposed by Firesmith [54] and introduces a collection of test patterns from the
object-oriented software design domain. Meszaros [108] presents a collection of
test patterns for unit testing. Howden [81] presents a collection of patterns in
selecting tests for maximum error detection. It appears that existing work on
test patterns tend to focus on interactions at the object level and are hardly
applicable for higher level (i.e. integration, system, and acceptance-level) test-
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ing whereby the applied programming paradigm are less relevant. Delano et
al [39] present a collection of patterns focussing more on the organisational as-
pects of test development as a process, rather than on test design itself. On the
other hand, Dustin [47] covers all aspects of test development, with one chapter
dedicated to test design and documentation. in 2005, the European Telecom-
munications Standards Institute (ETSI) started an initiative on patterns in test
development (PTD) in which some of the patterns defined in this work were intro-
duced and discussed. However, other attempts to formalise test design patterns,
so that they could be instrumented to support the test development process in
an automated manner, as proposed in this thesis, could not be found.

3.5 Conclusions and Summary

The MDT approach clearly appears to be more appropriate for allowing the
formalisation and the exploitation of patterns in test engineering, because it
provides the ability to work at the right level of abstraction, while at the same
time keeping the amount of flexibility required to design a process that would
support the usage of those patterns. Therefore, MDT plays a more important
role in this thesis, while MBT is considered to a lesser extent.

However, it should also be kept in mind that MBT and MDT are not nec-
essarily mutually exclusive alternatives. When transforming models into test
sequences, most of the currently existing approaches tend to do so directly into a
lower level test implementation language (e.g TTCN-3) or into source code for the
target environment on which test will be executed (Java, C++, C etc.). As ar-
gued by [9], this coupling of the test cases with lower level implementation details
make those difficult to maintain. Similar results were obtained in first experiences
of applying MBT with test patterns to TTCN-3 test development [158]. MDT
can be the mean for decoupling the test cases from lower-level implementation
details. Instead of generating test cases directly into the target test environment’s
lower-level notation from a model of the SUT, the model-based automated test
generation(ATG) tool would generate a platform independent test design model
that can then be refined for each respective target environment using MDT tech-
niques.

Furthermore, a DSML-based approach was chosen to express the test design
concepts suitable for MDT, rather than an approach based on a GML. This deci-
sion was taken based on the discussion presented in Section 3.2 and Section 3.3.

The need for MDT and MBT has now widely been acknowledged in the test-
ing community, but the methodologies proposed still hardly find their way into
the test development process. Although it bears a high potential for enhancing
reuse in test development and in optimising manual test development, MDT has
not benefited from the same level of interest as model-based automated test case
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generation. This is partly explained by the fact that the existing proposed so-
lutions have mostly tried to force the usage of generic modelling notations into
something they were primarily not designed for. That has made those approaches
inappropriate to take patterns in black-box test engineering into account and to
reflect the specificities of the black-box test engineering process for reactive sys-
tems. As a result, existing solutions are often viewed as clumsy and inadequate
by testers, which ultimately lead to their inefficiency. By combining MDT tech-
niques with test design patterns using a dedicated high-level DSML for black-box
test design, the pattern-oriented model-driven testing approach presented in the
next chapter provides a solution to address those issues.



Chapter 4

Pattern Oriented Model Driven
Testing

4.1 Introduction

Test patterns represent a form of reuse in test development, whereby the essences
of solutions and experiences gathered in testing are extracted and documented to
enable their application in similar contexts that might arise in the future. The
idea is to capture test engineering knowledge from past projects in a canonical
form, so that future projects would benefit from it.

Essentially, the following benefits can be expected from the exploitation of
patterns in any software development process:

e Patterns facilitate and improve communication by providing a common
vocabulary for computer scientists across domain barriers [62].

Patterns help managing software complexity [26].

e Patterns support the construction of software with defined properties [26].

Patterns provide a documentation and learning aid [62].
e Patterns facilitate refactoring of source code [62].
e Patterns capture (design) knowledge and experience [26, 1].

Although most of those benefits are hardly quantifiable, their potential quanti-
tative and qualitative impact on the software development process is undeniable.

Test systems are a special type of software systems and with their growing
complexity, the need for cataloguing good practices with regard to design, ar-
chitecture, implementation and execution is becoming more and more urgent.

45
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Just as for any other software product, well-proven experiences gathered while

developing test systems need to be documented to ease their reuse.

A test pattern can be defined as a special kind of software pattern that ap-
plies specifically to the testing domain. Similarly to general software system
engineering, the benefits expected from patterns in testing are both quantitative
and qualitative.

The ISO/IEC 9126 standard [85] defines a model for internal and external
quality of software, including quality characteristics and associated metrics. Ap-
plying that model to test development, Zeiss et al [164] identified the following
characteristics of quality for test specifications!:

o Test effectiveness: Test effectiveness describes the capability of tests to
fulfil their given test objective(s), including characteristics such as coverage,
correctness and fault-revealing capability. However for the type of testing
addressed in this thesis, emphasis is laid more on correctness than on other
characteristics.

e Reliability: Reliability describes the capability of a system to maintain
a specific level of performance under different conditions. When applied
to tests, reliability includes test repeatability and security additionally to
maturity, fault-tolerance, and recoverability mentioned in ISO/IEC 9126.
Of all those sub-characteristics, test repeatability is the one that plays a
more important role for black-box conformance testing as they are discussed
in this thesis.

o Usability: In the context of testing, usability denotes the ease to actually
manage, instantiate or execute a test suite. Although the management
aspect is not explicitely mentioned by Zeiss et al, it is a key characteristic
in this thesis, because focus is laid less on test execution and more on the
process of achieving executable tests. Usability will therefore denote the
ease of manageing test artifacts in such a way that the process would be
facilitated.

o FEfficiency:Efficiency is defined as the capability of tests to provide accept-
able performance in terms of speed and resource usage, when executed [164].
Obviously, this characteristic is more applicable to executable test suites
than for abstract test suites(ATS). In this thesis, efficiency will be un-
derstood in a similar manner to usability, i.e. more relatively to the test
development process than to the executable test suite it produces as out-
come.

o Maintainability:Maintainability denotes the capability of a test suite to be
modified for error correction, improvement, or adaptation to changes in

'The term test specification is used here to denote an executable test suite
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related artifacts (e.g. requirements, system specification). It includes char-
acteristics such as analyzability, changeability, and stability. Obviously,
maintainability will play an important role in assessing the quality of test
suites in this thesis, because it is one of the characteristics claimed to ben-
efit most from MDE in generic software system development. Therefore
it will be interesting to assess whether similar benefits are possible with

MDT.

e Portability: Portability include sub-characteristics such as installability
(ease of installation in a specified environment), co-existence (with other
test products in a common environment), replaceability (capability to be re-
placed by another item for the same purpose) and adaptability (capability
to be adapted to different environments).

e Reusability: Although it is addressed separately by Zeiss et al as a charac-
teristic of its own, reusability can actually be viewed as a sub-characteristic
of maintainability discussed above. Therefore, a similar impact of MDT on
this characteristic can be expected and will be measured in this thesis.

Although it can be assumed that test patterns will have a positive impact on
each of the characteristics mentioned above, that impact is expected to be more
important for usability, efficiency and maintainability (i.e. including reusability).

Additionally to those qualitative improvements, a quantitative improvement
through a reduction of time-to-market and costs can also be counted among the
benefits expected from pattern-oriented test engineering.?

In the next sections, different views on the concept of test patterns will be
described and methodological aspects such as notation, test pattern mining and
test pattern application will be discussed.

4.2 Classification of Test Design Patterns

4.2.1 Introduction

The issue of patterns in general and especially that of test patterns has very
often been a source of some misunderstandings among experts. This stems from
the generality of the concept, which leads to the fact that, depending on the
abstraction level under consideration, different definitions and classifications will
be obtained as a result. That abstraction level ranges from higher level generic
discussions on the do’s and dont’s in organising and managing testing projects,
to a more technical approach to the issue, aiming at optimising the engineering
aspects of the testing process. For example, Delano and Rising [40] discuss the

2A measure of those improvements is provided in Chapter 6.
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issue of patterns in test development at a high level of abstraction, which in-
volves aspects such as the management of test projects and test organisations,
the strategies for achieving higher efficiency in testing, etc.

On the other hand, whenever test patterns are addressed from an engineering
perspective, their nature and results are also influenced by the three character-
istics used to classify tests and illustrated in figure 1.2. Namely, test scope, test
goal and testing phase. For example, the techniques for specifying, designing, im-
plementing, executing and evaluating the tests will differ, depending on whether
unit testing, integration testing or system testing is being performed. Examples
of patterns for unit testing have been provided by Meszaros [108] whereas some
for component testing of object-oriented software as described by McGregor et
al [106] and Binder [16].

Test patterns are developed in this thesis according to the scope defined in
Section 1.2 and illustrated on figure 1.3. As the engineering aspects in testing and
test development are at the centre of this thesis, emphasis is laid on these aspects
of the testing process rather than on the high-level test project management
related ones.

l Test Requirements Analysis ‘

[ Test Objectives Design J
&t O

Test Procedures Design J

Test Design ‘N\‘

| Test Data Design |

£ = =0
E%[ Test Architecture Design ]
g < =0

l Test Behaviour Design ]

sSuUT

Figure 4.1: Overview of Model-Driven Test Engineering Process

Figure 4.1 illustrates the model-driven test engineering process and the various
phases it comprises. As depicted in that figure, the process starts with an analysis
of the test requirements for the system under test. Those requirements are then
the base for designing a test model which can be transformed into executable
test scripts to assess that the SUT’s behaviour meets the specified requirements.
The test modelling part of that process (i.e. the dashed grey-coloured box in
the figure) is the main topic of this work. Therefore, the test patterns that are
developed cover each of the phases of that part of the process. Accordingly, the
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approach for classifying test patterns is aligned to those different phases.

In the next sections, the different phases of that process are discussed, along
with an analysis of which type of test patterns could be identified and possibly
exploited, to facilitate the activities and to improve efficiency in that phase of
the process.

4.2.2 Generic Test Design Patterns

Generic test design patterns are those that can be found and applied to all ac-
tivities of test system design. They address concepts that spawn over the whole
test modelling process and thus cannot be confined to a single activity.

4.2.3 Patterns in the Test Analysis and Planing Phase

As depicted in Figure 4.1, the test analysis and planing phase comprises two
activities:

e An analysis of the SUT’s requirements from a testing perspective to derive
test objectives

e A design of test procedures to assess the defined test objectives on imple-
mentations.

Test Objectives Design Patterns

Test objectives definition is the first step in building a test system. It consists
of extracting test objectives from the SUT’s specification, depending on what
the test goals are going to be. Test objectives can be viewed as the equivalent to
system requirements in system development and are sometimes also referred to as
test purposes or test directives in the literature. Test objectives design patterns
are applicable when modelling which functionalities of the SUT the tests will
have to assess.

When performed manually and without a clear systematic approach, the pro-
cess of deriving test cases from test objectives can be quite costly and error-
prone. Hence, the need for formalising how test objectives are described has
arisen. In the Pattern for Test Development (PTD) group initiated by the Euro-
pean Telecommunications Standards Institute (ETSI) some patterns have been
proposed for that purpose [51]. The initial intent of that work was to enable
automatic derivation of test cases from such formalised and machine processable
test objectives. However, one had to acknowledge that there was some level of
contradiction that made that goal difficult to achieve: an automated transforma-
tion of test objectives (i.e. a description of WHAT needs to be tested) can by no
means provide enough information for a test case, which is an implementation of
HOW the test needs to be conducted. Therefore, a couple of additional steps are



50 CHAPTER 4. PATTERN ORIENTED MODEL DRIVEN TESTING

required to describe in the same systematic and potentially formalised manner,
how each test objective will be checked.

Test Procedure Design Patterns

After the test objectives have been identified, comes the step of designing the
test procedures for the SUT, i.e. to specify, how the test objectives identified in
the previous step will be checked. Those descriptions of how test objectives will
be checked are called test procedures®.

Test procedures design patterns are those that are applicable when designing
how each of the test objectives is going to be checked. While they need to follow
a clear structure and provide as much information as possible, test procedures
do not need to describe the technical means required for performing the tests.
Therefore, as they are supposed to be understood by various stakeholders in
the software system development process (e.g. system designers, test designers,
test developers, quality management and product support personnel, etc.), they
should (as much as possible) be expressed in natural language, however within
clearly defined template structures.

4.2.4 Patterns in the Test System Design Phase

The lower part of figure 4.1 depicts the test system design phase in the test de-
velopment process, whereby the composing elements the test system and their
relations with the SUT are modelled. Those composing elements are used to pro-
vide the three main aspects of any test model, i.e. topology, data and behaviour.

In the process of designing each of those test system model elements, different
types of test patterns can be identified and re-used. The next sections discuss
those test patterns.

Test Architecture Design Patterns

The test architecture describes the topology of the test system, i.e. its compo-
sition as a set of (parallel) test components and the points of communication
between those and elements belonging to the SUT. Depending on the goal of
test(e.g. conformance, performance, functional, robustness, etc.), different test
architectures might be more or less suitable. Test architecture design patterns
define good practices and established recommendations in designing or selecting
appropriate test architectures.

Architectural patterns address solutions as to how test architectures can be
designed to solve or avoid specific recurring problems in producing high quality

3In previous works the term test strategy was used in this context, but it was rather changed
to align to the IEEE-829 standard [83]
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test solutions efficiently. This also includes patterns for the coordination and
synchronisation of test components in a test system.

Test Data Design Patterns

Data patterns are test patterns describing reusable concepts and approaches for
designing test data, i.e. data to be exchanged between entities in test architec-
tures. Test data does not only mean concrete values or message objects, but
also abstract values based on constraints defining properties, potentially used for
evaluating data received from the SUT to assign a verdict to the test case.

Test Behaviour Design Patterns

Test Behaviour design patterns document approaches and principles for designing
the behaviour of test systems, i.e. the interactions between entities within a test
architecture.

Behaviour patterns might apply for a single entity of a test architecture (e.g.
a test component) or for the interaction of test components with each other or
with elements of a given SUT.

4.3 A Methodology of Pattern Oriented Model-Driven
Test Engineering

A methodology for test patterns should not only address the various kinds of
test patterns for the different approaches of test reuse, but also define how a test
pattern is to be identified, specified, selected and applied. The following sections
discuss those aspects of test pattern engineering.

4.3.1 Test Design Pattern Mining

Pattern mining is the process of abstracting from existing software design to iden-
tify patterns suitable for potential reuse in future contexts. Test design pattern
mining is the application of pattern mining techniques to the testing domain.
Several techniques are described in the existing literature for design pattern min-
ing in generic software engineering [46, 45]. Those techniques aim at analyzing
existing software artifacts (e.g. source code or high-level design models) automat-
ically or semi-automatically (i.e. by involving human user interaction) to identify
known design patterns or commonalities that may be elligible as candidates for
new patterns. Those pattern mining techniques can be classified in three main
categories, based on the aspects of software design they analyse to discover pat-
terns. While some techniques analyse structural aspects of the artifacts, others
analyse behavioural aspects and finally a last category of techniques cover both
structural and behavioural aspects. A common point among all techniques is
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that they use an intermediary representation of the base artifacts to perform
their pattern discovery algorithms, rather than the artifact in its original form
itself.

The problem of test pattern mining does not differ much from that of pattern
mining in generic software engineering, beyond the fact that here, the artifacts to
be analysed are source code of abstract or executable test scripts , models of test
systems or combinations thereof. Therefore, the pattern mining techniques for
generic software engineering can also be applied for test pattern mining. How-
ever those techniques will have to be customized in such a way that instead of
trying to identify generic design patterns, they would rather search for specific
patterns that are relevant in their usage for testing. An example application of
those techniques for test pattern mining in TTCN-3 test suites is reported by
Neukirchen et al [116] who use an abstract syntax tree (AST) as intermediary
representation of TTCN-3 source code to identify so-called code smells. Code
smells are defined as patterns of inappropriate language usage that is error-prone
or may lead to quality problems for the overall test suite. Besides facilitating
reuse at the conceptual level and uncovering potential errors in existing arti-
facts, another motivation for pattern mining is to facilitate the understanding of
existing artifacts so that they could be reegineered to address changed require-
ments. However, while the task of identifying the patterns and displaying their
occurence in the artifacts can be done (semi-)automatically using the techniques
described above, the task of making sense of the results generated by those tech-
niques still needs to be performed by human beings based on their expertise.
Visualisation can contribute in facilitating that human analysis by putting the
collected pieces of information gathered through pattern mining in relationship
to each other [45]. These findings can also be applied for test pattern mining.
However, just as reverse engineering, design patterns are a rather recent topic in
the testing domain. Obviously, as demonstrated in a case study in Chapter 6, the
type of pattern-oriented test engineering described in this thesis can contribute
in addressing those issues. Overall, although the process of going through ex-
isting test artifacts and trying to identify patterns for later reuse might appear
costly and unrewarding at the first sight, in long term, it could effectively help
in shortening the test development life cycle and hence reduce costs.

4.3.2 Test Design Pattern Template

Binder [16] defines a pattern template as a list of subjects (sections) that comprise
a pattern. To unify the pattern definition process and to avoid misunderstandings
between stakeholders involved in test development, such a template is required
to serve as a guideline. Taking Binder’s test pattern template as basis, a more
refined test pattern template is proposed that is better adapted to the testing
domain covered by this work. The content of the test pattern template depends
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on which of the benefits listed in section 4.1 are the main driving forces for pattern
mining. While Binder’s test pattern template is driven by the test effectiveness
qualitative characteristic mentioned in Section 4.1, the pattern mining activities
in this work are mainly motivated by other benefits such as usability, (process)
efficiency and maintainability. For example, because it is more relevant for white-
box testing and less for black-box testing, which is the main concern of this thesis,
the test effectiveness criterium plays a less central role in this thesis than in
Binder’s work, although it is considered as well. Therefore the original template
has been modified to reflect the fact that the focus is more on enhancing the
test engineering process rather than on increasing the effectiveness of the tests.
Another important difference between the test pattern template proposed in this
thesis and the ones proposed in other publications is that, sections which play a
less important role in the context of this thesis have been removed. For example,
while the subjects fault model, entry criteria and exit criteria sections proposed
by Binder [16] play a role for code-oriented, white-box testing, they are far less
relevant for function-oriented, black-box testing, which are the main concern of
this work. Therefore, the applicable test scope section was added instead, to
capture the preconditions for applying test model patterns. This thesis’ test
modelling pattern template consists of the following subjects:

e Pattern name: A meaningful name for the test pattern.

e (Context: To which specific context does it apply? This includes the kind of
test pattern (organisational vs. design, generic, architectural, behavioural
or test data etc.) as well as the test scope in which the pattern may be
applied.

e Problem: What is the problem, this pattern addresses and which are the
forces that come into play for that problem?

e Solution: A full description of the test pattern including examples of ap-
plications. Where applicable, UTML and TTCN-3 [58] will be used as
notations for the examples.

o Known uses: Known applications of the test pattern in existing test so-
lutions or existing concepts enabling the application of the test pattern in
existing test specification or test modelling languages. Although this def-
inition of the known uses section is slightly different from the one used in
the patterns literature, it can still be considered a valid one, because test
suites are not always publicly available to be referenced as known uses of a
given pattern. However it can be assumed that the fact that a concept is
provided in a test design notation indicates that there was a need for such
a concept and subsequently that there are eventually existing usages of the
concept, even if those have not been published.
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e Discussion: A short discussion on the pitfalls of applying the pattern and
the potential impact it has on test design in general and on other patterns
applicable to that same context in particular.

e Related patterns (optional): Test design pattern related to this one or sys-
tem design patterns in which faults addressed by this test pattern might
occur. This section is optional and will be omitted, if no related pattern

can be named.

e References (optional): Bibliographic references to the pattern. This section
is also optional and will be omitted, if no reference can be provided.

4.3.3 Specification of Test Design Patterns

One of the key challenges to address with regard to pattern-oriented test engi-
neering is that of selecting a suitable approach for specifying test patterns in
such a way that their exploitation would be facilitated to automatically gener-
ate new test solutions. In the case of generic product software design patterns,
J. Bosch [19] has identified the following three approaches for specifying design
patterns:

o Design environment support: The design environment support approach
consists in providing via the software design environment the capability
to model new software designs along defined patterns and to annotate the
corresponding source code accordingly.

e Programming Language Extensions: Design patterns come originally from
Object-oriented (OO) software design. Therefore, the usage of OO pro-
gramming languages or extensions thereof appears to be a natural choice
for describing those patterns in a systematic manner. This approach is
advocated by J. Bosch [19] and Hedin [78].

e Generative approach: The generative approach consists in using ontologies
and meta-Modelling to describe design Patterns. For example, Fontoura et
al [55] propose an extension to the UML notation to represent architecture
design patterns. Kim et al [98] propose a UML-based meta-modelling lan-
guage to specify design patterns. A similar approach is also advocated by
Rauf et al [131], S.-K. Kim et al [94], Mak et al [104] and Le Guennec et
al [75]

Although test design patterns have already been discussed in the literature in
many instances, literature references on attempts to specify test design patterns
are much harder to be found. Just as for software system development, one of
the following three alternatives discussed above is applicable.
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Specification of Test Design Patterns via Design Environment Support

One possibility for enabling the specification of test patterns consists in providing
appropriate technical support through the test design environment. This can be
achieved through so-called wizards, i.e. applications or applets that guide the
test engineer stepwise through the process of specifying test patterns. While such
wizards are already very common for generic software design and development
tools, they are yet to gain the same level of popularity in test design environments.

An advantage of that approach lies in the fact that the test designer is not
required to learn any new modelling notation, because he/she is only presented
a template-like interface, through whichthe required information can be filled-
out for specifying a new test pattern or instantiation thereof, while the test
design environment takes care of verifying that those information are complete
and translating them into any notation in the background, if required.

Specification of Test Patterns with Test Script Notations and Extensions

Test scripting notations are the equivalent to programming languages in test
engineering. Therefore, in the same way that programming languages can be
extended to support the specification of design patterns, it has been suggested
that test scripting notations could also be extended to specify test design patterns.
The TTCN-3 notation has been chosen as a candidate for that purpose, illustrated
through idioms added to that language to specify test patterns.

TTCN-3 provides some concepts for test patterns such as the import mech-
anism, value parameterization and modifiable templates. Object-based concepts
providing further means for the specification and application of test patterns do
not exist, but are currently discussed with regard to their inclusion into TTCN-3.
It is expected that with the new features of the language, support for test pat-
tern specification should be improved. In the meantime specific annotations to
TTCN-3 are used, in order differentiate the generic parts and specific parts of a
test pattern. The generic parts are annotated with <> and are to be replaced
when applying the test pattern. The specific parts are not annotated. They
constitute the essence of the test pattern and should remain untouched when
applying that pattern. These annotations are used to illustrate some of the test
patterns in this work.

The specification of test patterns in TTCN-3 (and extensions thereof) pro-
vides several benefits. TTCN-3 test patterns

e are expressed formally.

e provide means for patterns in all phases of test system development and for
the different approaches of test reuse.

e are defined already in the language of the target test suite.
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However, using TTCN-3 or extensions thereof to specify test patterns also
comes with some drawbacks that need to be seriously considered:

e Inability to express test patterns for certain aspects of test engineering (e.g.
test objectives, test procedures)

e Difficulty to express concepts at higher level of abstraction.

e Tool support for new extensions. Validation of test patterns might be dif-
ficult to achieve, because patterns are generic, whereas syntax/semantics
checkers require complete code.

e No visualisation, which leads to lower understandability of the specified test
patterns.

e Difficulty to translate the test patterns into other test scripting notations
and vice-versa.

Specification of Test Design Patterns with a Generative Approach by using
Meta-Modelling

Alternatively to scripting extensions and design environment support, test pat-
terns can also be specified using meta-modelling facilities, based on modelling
languages such as UML and its extensions e.g. UTP, SysML, etc. The approach
consists in defining an ontology of test patterns, i.e. a formal description of con-
cepts embodying those patterns and of the relationships between them. Using a
meta-model to specify that ontology defines a domain-specific modelling language
(DSML) especially tailored for designing new test solutions as models instanti-
ating the test patterns supported by the meta-model. This approach has several
benefits:

e High level of abstraction: The test patterns concepts can be expressed at
a high level of abstraction. This makes the approach independent of any
lower-level test scripting notation. By that, its expressiveness and potential
integration in existing test infrastructures remain unrestricted.

e Integration to existing MDE infrastructures: This enables access to ele-
ments of the SUT’s model, if those have been specified in the same environ-
ment or using the same notation (e.g. UML). Additionally, the facilities
provided by those environments can be used to generate tools for the DSML
and enhance their functionalities towards improved usability. Such facilities
include

— better visualisation possibilities.

— improved transformation capabilities.
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— built-in model checking and validation facilities.

However, despite the numerous benefits it bears, this approach also comes with
some drawbacks that need to considered. Those include:

e Additional costs and risks of designing, implementing and disseminating
a new notation: Although current existing MDE infrastructures (e.g. the
Eclipse [147] IDE’s Modelling Framework EMF [146]) have contributed to
significantly reduce the risk and efforts associated with the introduction of
a DSML, organisations should be well aware of those and analyse carefully,
before opting for or against that approach. However it should be pointed
out that the effort of introducing such a meta-model based DSML might be
lower than that of introducing a new programming language, because the
concepts defined by the meta-model play a more critical role than the syntax
of the representation format used for the notation. This is a totally different
situation from notations specified using (E)BNF, for which, additionally to
the semantical concepts, the syntax of the language also needs to be learned.

e Difficulty in translating abstract concepts into concrete executable test
scripts: patterns and high-level models are generic per se. Therefore so-
lutions based on them require a certain amount of customisation to be
completed, in such a way that automation towards generation of executable
test scripts or valid code snippets thereof would be possible.

e Difficulty in ensuring bi-directional traceability between abstract test mod-
els and generated test scripting source resulting from model-transformation:
If an appropriate solution for this issueis not found , then there is a risk
of the code added manually to complete the generated source code, being
overwritten whenever new source code is generated from the test model.

4.4 The Pattern Oriented Model Driven Test Engineering
Process

Pattern-oriented model driven test engineering is a process whereby test patterns
are used to design a test model that is then transformed and refined into ex-
ecutable test cases, following a model-driven engineering approach. Figure 4.2
depicts a representation of that process in the form of a Business Process Mod-
elling Notation (BPMN) diagram. The usage of test patterns may be explicit
or implicit in pattern-oriented MDTE, depending on whether the person per-
forming the test modelling activity is made aware of the patterns being applied
(explicit) or not (implicit). Explicit usage of patterns is achieved through model
design templates, based on which new model elements or skeletons thereof can
be created automatically, before they are completed manually. For convenience,
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the process of providing the missing elements to fill out the design template
may be accompanied with tool support in the form of so-called wizards. On the
other hand, implicit usage of patterns is achieved through the enforcement of
constraints and policies that guide the test modelling process. In which case, the
test designer may not even be aware of the fact that he or she would be applying
a given test pattern in the process. The top-most pools of the BPMN diagram
in Figure 4.2 display the other processes that are related to the test engineering
process, namely requirements engineering and system engineering, while the pool
at the bottom displays the test engineering process. That process is subdivided
in three lanes, each of which contains a sub-process dedicated to a phase of test
engineering:

4.4.1 Test Analysis

The test analysis sub-process is triggered by requirements engineering or by high-
level system design. It takes user requirements, use cases or a complete system
specification as input and combines those with test objective patterns to produce
a test objectives model. After the test objectives model is designed, the process
continues either with the design of a test procedures model or moves to the next
sub-process, i.e. test design.

4.4.2 Test Design

The test design sub-process starts with test data or test architecture design, both
of which may run in parallel. Test data design takes the SUT’s data model as
input and combines it with test data patterns to produce a test data model. In a
similar manner, the test architecture design process takes the SUT’s architecture
model and the test data model as inputs, combining them with test architectural
patterns to produce the test architecture model. Then, the process continues
with test behaviour design which, based on the others test models (objectives,
procedures, data and architecture), uses test behaviour patterns to produce a
test behaviour model.

4.4.3 Test Implementation

The test implementation sub-process takes the test design model resulting from
the previous phases as input and transforms it into executable test scripts in
a notation suitable for the target test environment. Depending on the level of
details provided in the test design model, the generated test scripts will require
more or less manual refinement to be complete. After those refinements, they
can then be executed against the implemented SUT resulting from the system
engineering process to produce the test reports.
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4.5 A Collection of Test Design Patterns

A collection of test design patterns identified in various testing projects dur-

ing this work is provided in Appendix A. The patterns are organised along the

classification described in Section 4.2.

Table 4.1 presents an overview of those test design patterns and the page in

which their description is located.

Category Test Design Pattern Page
Separation of Test Design Concerns 245
Generic Grouping of Test Design Concerns 247
Prioritization of Test Objectives 248
.. Traceability of Requirements to Test Artifacts | 250
Test Objectives Selection CB;iteria for Test Objectives 251
Traceability of Test Objectives to Fault Man- | 252
agement
Extensibility /Restriction of Test Architecture 253
One-on-One Test Architecture 250
. Flexibility of the Test Architecture Model 256
Test Architecture Proxy Test Component 257
Monitoring Test Component 259
Central Test Coordinator 260
Purpose-Driven Test Data Design 262
Test Data Basic Static Test Data Pool 263
Reusable Test Data Definitions 264
Dynamic Test Data Pool 265
Assertion-Driven Test Behaviour Design 266
Context-Aware Test Behaviour Design 267
) . Test Component Factory 269
Test Behaviour Central Coordination of Test Components 270
Distributed Coordination of Test Components 270
Time Constraints on Test Behaviour 271

Table 4.1: Overview of Test Design Patterns Described in this Work

4.6 Summary

This chapter has described the concept of pattern oriented MDT, which combines

a model-driven engineering approach with test design patterns for more efficiency

in test automation. After defining the key concepts of the approach at the be-

ginning of this chapter, a classification of test design patternshas been provided.

Then, finally the methodology for applying the approach has been presented,

together with the process it implies.
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Obviously the pattern oriented MDT approach can help addressing some of
the key issues currently faced with in test automation; Especially if the con-
cepts contained in those patterns are expressed in such a way, that they can be
processed automatically to optimize the test development process through auto-
mated code generation, model validation, etc. However, two additional elements
are required for that to be possible: A suitable test design approach supporting
the expression of test pattern instantiations and a mean for cataloguing identified
test patterns.

In section 4.3.3, the existing possibilities for specifying test patterns have
been described, including a discussion on the pros and cons of each approach.
Eventually, a DSML based approach has been chosen to facilitate the usage of
design patterns in test automation. In the next section, the concepts of that
DSML - called UTML - are described, along with the relationships between them.






Chapter 5

UTML: A Notation for Pattern
Oriented Model Driven Test
Design

5.1 The Need to Formalise Test Patterns

One of the most important benefits expected when applying patterns in any do-
main is a facilitated instantiation of new solutions to recurrent problems through
reuse of concepts. Such reuse at the conceptual level does not only have a positive
impact on the key software quality factors of the resulting products, but also on
the overall development process within the organisation. This leasds logically to
higher productivity, shortened development cycles and last but not least, reduced
costs.

As an activity in which expert knowledge plays an important role, test au-
tomation could benefit a lot from cataloguing that knowledge as patterns and pro-
viding tool support to facilitate reuse. This, however demands that the concepts
described by the patterns are expressed in a formal and unambiguous manner to
avoid confusion and facilitate automated processing. Furthermore, appropriate
tool support is required to guide test designers in the process of applying pat-
terns efficiently, because manual application of patterns is known to be tedious
and error-prone [124].

Several efforts to formalise patterns have already been undertaken in the
past, with the same motivations as mentioned above. Baroni et al [12] present
an overview of approaches in formalising design patterns. A wide range of pro-
posals are described, ranging from extensions to the classical object model [19]
to new formalisms, extending existing object-oriented programming languages

63
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(OOPLSs) [78] or expressed as new text-based notations or as UML-based DSMLs [2] [105].
Test design aims at addressing the specific purpose of modelling test artifacts.

Therefore it has a narrower scope than generic software design. Hence, the choice

of an approach for formalising test patterns appears to be less difficult than in

the case of generic software patterns. The main criteria in selecting an approach

for describing test design patterns in this thesis were as follows:

1. Non-Dependency of any particular testing infrastructure.

2. Reuse or extension of existing notations and well-established concepts.
3. Support of graphical representation.

4. Integrability in the overall software model-driven engineering process.

Given the above criteria, a DSML-based approach was chosen, as it allows to de-
fine concepts at a level of abstraction that is high enough to be kept independent
of any specific testing infrastructure, while at the same time providing all the
mechanisms for defining the concepts precisely and unambiguously.

As discussed in Section 3.3.1, the approach for designing that DSML also
needed to be selected. Considering criteria 2 from the list above, taking the
UML notation, which is the lingua franca of software design as a basis appeared
to be inevitable. Therefore it was essentially a matter of which of the standard-
conformant extension mechanisms provided by that notation would be suitable.
The choice was between a UML profile-based approach (light-weight UML exten-
sion) e.g. reusing the UTP, a (heavy-weight) extension to the UML Metamodel
itself, and a new stand-alone metamodel with a specifically dedicated to the pur-
pose of pattern-oriented test design.

Weisemoller et al. [160] provide a comparison of UML standard compliant
ways of defining DSMLs and came up with the result displayed in Table 5.1
which clearly indicates that an approach based on a domain-specific metamodel
for test design is an interesting option to consider. Despite the additional effort
it implied with regard to tool support and the definition of the metamodel itself,
the metamodel approach was chosen, based on the analysis made in this work,
which confirmed the results displayed in Table 5.1. The metamodel was designed
in such a way that it embodies concepts of test design patterns while reusing as
much as possible the test design concepts introduced by the UTP. The defined
DSML was called Unified Test Modelling Language (UTML).

5.2 Overview of UTML

As mentioned previously, the UTML notation reuses and extends concepts of the
UTP into a stand-alone DSML specifically dedicated to model-driven test design.
Table 5.2 presents an overview of UTP concepts and their equivalent in UTML
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UML pro- | UML New
file MM- Meta-
extension | model
Expressive power | - + +
Flexibility - o T
Clarity of seman- | - + T
tics
Simplicity of con- | - o} +
straints
Model notation - - i
Tool support + - -

Table 5.1: Overview of approaches to specify DSMLs [160]

where applicable. Additionally, some comments on the motivations for adopting
or leaving out the element are also provided.

Table 5.2: A Comparison of UTML and UTP

UTP Concept UTML Equivalent ‘ Comments
Test Architecture Concepts
Test behaviour in UTML is designed

following the Assertion-Driven Test

Arbiter -

Design design pattern defined in Sec-
tion A.5.1. Therefore, the test verdict
is either implicitly or explicitly spec-
ified through the test behaviour and
the StopAction(see Table 5.29) respec-
tively. This makes the usage of an extra
arbiter obsolete.

Scheduler - Test execution and the mechanisms for
instantiating test components and con-
trolling their lifecycle is out of scope
for the UTML language, as those as-
pects can hardly be expressed at such
a high level of abstraction. If a sce-
nario for controlling the way test cases
will be executed is required, this can
be designed using UTML test activity
diagrams.

see Table 5.24

SUT ComponentKind
property
component instances
TestArchitecture

ComponentInstance

used for

see Table 5.31.

TestContext 5.3
see Table 5.29.

TestComponent

with kind property
set to TEST-_-
COMPONENT.

Test Behaviour Concepts
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Verdict Verdict see Table 5.68.

Default Default Behaviour- See Table 5.82.

Def

FinishAction StopAction See Table 5.88.

TestLog - Logging is considered to be a func-
tionality of the test execution environ-
ment that is inherently platform spe-
cific. Therefore, it is not viewed as es-
sential for test design at this level of
abstraction.

TestLogApplication - See comments for TestLog element.

LogAction - See comments for TestLog element.

DefaultApplication ActivateDefault- See Table 5.115

Action

determAlt AltBehaviourAction See Table 5.113.

TestCase Testcase See Table 5.74.

TestObjective TestObjective The UTML extends the syntax and
the semantics of the TestObjective ele-
ment, as defined by the UTP.

ValidationAction CheckAction and ex- | See Table 5.106 and Table 5.105

tensions thereof (e.g.
Value CheckAction,
ExternalCheck-
Action).
Test Data Concepts
Wildcards Constraints on test | See Table 5.54

data instances

Data partition

Abstract test data in-
stances

See Table 5.54

Data pool

Rather than defining data pools, the
UTML defines abstract data instances
that may be mapped to data genera-
tors or data pools specific to a given
test platform.

Data selector

The data selector concept is associ-
ated with the UTP’s data pool concept.
Given that the approach for designing
test data with UTML follows a different
strategy, this concept is also not sup-
ported.

Coding rules

In UTML coding rules are defined via
the coding_rules property of a Test-
DataType element (see Section 5.7.13).

LiteralAny - See comments on Wilcards elements

Literal AnyOrNull - See comments on Wilcards elements
Time Concepts

TimeZone - Timezone are considered to be a

platform-specific feature in UTML.
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GetTimeZoneAction

Timezone and associated actions are
considered to be a platform-specific fea-
ture in UTML.

SetTimeZoneAction

Timezone and associated actions are
considered to be a platform-specific fea-
ture in UTML

Duration

UTML defines no specific concept for
designing duration. Timing constraints
can be defined on test actions and
events to specify that those should be
taken in account.

Time

In UTP Time is a predefined primitive
type used to specify concrete time val-
ues. Although UTML does not define
any such concept, an equivalent type
can be created through the BasicTest-
DataType element as part of a library of
primitive type definitions, if required.

TimeOut

TimerExpiration-
Event

see Table 5.81

TimeOutMessage

As previously mentioned, in UTML,
timers are simple declarative elements
without any semantics.  Therefore,
they may not send messages to other

entities as part of test behaviour.

TimeOutAction

In UTP the TimeOQOutAction element
models an action to occur, after a given
timer has expired. Given that, any test
action is a potential TimeOutAction,
this class cannot be instantiated mean-
ingfully. Therefore, the UTML pro-
poses the WaitAction(see Table 5.87)
through which the timer’s expiration
could be awaited, before the following
actions in the test sequence are exe-
cuted.

Timer

Timer

Timers in UTML are purely declarative
and do not bear any semantics in them-
selves, but only in combination with
behaviour elements.

StartTimerAction

StartTimer-
Action(see
ble 5.85)

Ta-

Timers are started implicitly in UTML,
depending on the context in which they
are referenced. However in certain sit-
uations the StartTimerAction may be
used to start a timer explicitly.

StopTimerAction

Stop Timer-
Action(see
ble 5.86)

Ta-

The semantics of the StopTimerAction
element is the same in UTML as de-
fined in UTP.
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ReadTimerAction - The action of reading a timer is always

implicitly associated to a specific test
behaviour in UTML and is generally
not required to be invoked explicitly.
At least, at the time being, the need for
explicitly reading a timer’s value has
not yet been identified.

TimerRunning- - The same comments made for the
Action ReadTimerAction element also apply

for the TimerRunningAction element.

Beyond concepts adopted from the UTP, design of test automation in UTML

is based on a series of principles of abstraction which guide the whole process to

ensure that the resulting model remains concise while at the same time, being as

complete as possible.

Prenninger et al. [125] identify four categories of such principles of abstraction,

namely functional, data, communication, and temporal. The same categories have

been used for UTML. However, the abstraction approach used in each of those

categories shows some differences with those described in that work and will be

described further in the next section.

Taking into account those principles of abstraction, the concepts of the UTML

notation follows can be grouped in six main categories:

Generic UTML concepts application field span over all phases of the test
development process.

Test planing modelling concepts specify the means for organising test plans
in such a way that they can be integrated to the other phases of test devel-
opment.

Test procedures modelling concepts help in documenting test procedures
and ensuring that those documentations follow specific patterns and guide-
lines.

Test data design concepts define the means for specifying data used in test
scenarios.

Test architecture design concepts

Test behaviour design concepts build on test data and test architecture for
system, i.e. test data, test architecture and test behaviour.

Figure 5.1 depicts a UML class diagram displaying the hierarchy of UTML

test models and illustrating the structure of the language. As depicted in that

figure, the UTML metamodel defines five different views on the test model, each

of them dealing with a specific aspect of test design and extending the abstract
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«<EClass>>
Basicl estModel

V\ <<EClass>>

TestDataModel | *
(from test data)

<<EClass>>
TestProceduresModel
(from test procedures) | *

1 *

<<EClass>>
TestModel

<<EClass>>
TestArchitectureModel | ~
(from test architecture

* +

b 1

<<EClass>>
TestObjectivesModel
from test objectives)
<<EAftribute=>version : EString[0..1] { ordered }

«<<EClass>>
TestBehaviourModel |
(from test behaviour)

1

1

Figure 5.1: Overview of UTML Test Models

BasicTestModel element. Also depicted in that figure are the relationships
between the categories of test models, which participate in defining a clear process
for test design.

5.2.1 Visualisation

Test models are essential instruments of communication between all stakeholders
involved in the software business process. Therefore, they need to be understood
by technical (testers, designers, developers) and less technical staff (sales, support,
managers) in their interactions before, during and after the development phase.
At the same time, test models must meet certain requirements, so that they can
be exploited for automatic transformation in a model-driven testing approach to
reduce the test development lifecycle.

It is well-known that graphics are the most appropriate way of sharing tech-
nical information. As Tufte states in his book The Visual Display of Quantitative
Information [155]:

At their best, graphics are instruments for reasoning about quanti-
tative information. Often the most effective way to describe, explore,
and summarise a set of numbers even a very large set is to look at
pictures of those numbers. Furthermore, of all methods for analysing
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and communicating statistical information, well designed data graph-
ics are usually the simplest and at the same time the most powerful.

Although Tufte is referring here to statistical information, this statement also
holds true for nearly any type of information. This might explain why visualisa-
tion is such a key aspect of every modelling approach.

The need for visual notations has long been acknowledged in the testing
community. This is illustrated by the important amount of research in that
area, starting with works on the usage of Message Sequence Charts (MSCs) (in-
cluding variants thereof) [66, 139, 65] and of the Specification and Description
Language (SDL), via the graphical presentation format of the TTCN-3 nota-
tion [143](GFT), through to the UML and extensions thereof e.g. the UML Test-
ing profile or notations based on the same concepts [119]. However, most of those
approaches either try to use a generic modelling language (UML, SDL, MSCs) for
test modelling or they provide a graphical representation of concepts originating
from a textual test notation without raising the abstraction level(GFT). In the
first case, the notation used was designed with product design as its main pur-
pose and does not address specific testing concerns, while in the second case the
one-to-one mapping of concepts from the textual to the graphical format makes
the modelling process less efficient.

Besides being specifically design for modelling test solutions, the UTML no-
tation defines testing concepts at a higher level of abstraction to facilitate their
mapping to graphical elements. In fact the concepts of the UTML notation were
tailored so as to facilitate the definition of visual elements to illustrate them and
to allow a more natural process of test design.

Diagrams

UTML models are expressed in the form of diagrams in which elements of the
test model can be added and modified graphically. For each of the seven types
of UTML test models, a UTML diagram type is defined to visually represent the
concepts supported by that model. Those seven diagram types are:

e Test model diagrams: Test model diagrams visualise instances of the UTML
TestDataModel (Cf. Table 5.37). Their main purpose is to provide an
overview of the structure of test model by displaying other models contained
in the TestDataModel instance.

e Test objectives diagrams: Test objectives diagrams define visual elements
for test objectives model instances, as defined by the TestObjectivesModel
(Cf. Table 5.11) element of the UTML metamodel.



5.2. OVERVIEW OF UTML 71

Test procedures diagrams: Test procedures diagrams provide a graphical
view on the content of a test procedures model, as defined by the Test-
ProceduresModel (Cf. Table 5.17) element of the UTML metamodel.

Test architecture types diagrams: Test architecture types diagrams visualise
elements of a TestArchitectureTypesModel, i.e. type definitions to be used
in a test architecture.

Test architecture diagrams: Test architecture diagrams allow the graphical
representation of test architecture models (Cf. Table 5.25). They provide
a structural view on the topology of the test system, depicting groups,
architectures, components, ports, etc.

Test data diagrams: Test data diagrams can be used to visualise elements
of a UTML test data model(Cf. Table 5.37). Therefore, they provide a
view on the structure and content of the test data model.

Test behaviour diagrams: The UTML notation defines two types of dia-
grams for designing test behaviour: test sequence diagrams and test ac-
tivity diagrams. Test sequence diagrams are based on UML 1.4 sequence
diagrams, which they modify with some specific semantics to allow the de-
sign of test scenarios. On the other hand, test activity diagrams are similar
to UML activity diagrams and can be used to design composition of test be-
haviours involving several test scenarios modelled as test sequence diagrams.
This approach was already chosen for the TeLa notation [119, 118, 120]
which follows similar goals as UTML, to address the shortcomings of UML
with regard to test design. However, the UTML approach is less formal
and primarily based on well-established patterns and good practices in test
automation design. Therefore the modifications proposed in this thesis are
different from those proposed by the authors of TeLa. This was motivated
by the fact the main concern here was to provide means for supporting
model-driven test engineering by test designers and test developers, rather
than to generate test sequences automatically from existing system design
models.

Generic Visualisation Concepts

While designing the graphical elements for the UTML notation, special care was

taken to reuse visual elements from existing well-known notations such as the

UML and the SysML. Figure 5.2 illustrates the picture that emerges as a result
of that effort. As depicted in that figure, the UTML notation uses as much as
possible visual concepts introduced by SysML, while at the same time inheriting

some of the concepts SysML adopted from the UML. However, as also visible

from that figure, some additional visual elements had to be provided to express
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Figure 5.2: The UTML notation and its relation to UML and SysML

concepts specific to UTML for which satisfactory symbols were not available in
the two other notations.

Some of the visualisation concepts defined for graphical test modelling apply
to all types of UTML test models. The next sections list those concepts and the
elements for which they have been used.

behaviourDefs

Figure 5.3: The Package Visual Element

The Package Visual Element The Package visual element, depicted on figure 5.3,
is adopted from UML class diagrams and is used to display instances of the UTML
metamodel that are containers for other elements. Examples of such containing
UTML model elements include:

e Test Models (e.g. elements of meta-classes TestArchitectureModel, Test-
DataModel, TestObjectivesModel, etc.

e Group definitions (e.g. elements of meta-classes TestArchitectureGroupDef,
TestDataGroupDef, TestObjectivesGroupDef, etc.)



5.2. OVERVIEW OF UTML 73

<<MessageTestDataType > >
MesgageTestDataTypel
DataTypeFieldl
DataTypeFieldz

| __ DataTypeFields

Figure 5.4: The Class Visual Element

The Class Visual Element The Class visual element, depicted on figure 5.4, is
adopted from UML class diagrams and is used to display instances of the UTML
metamodel that can be assimilated to classes or objects in the OO-programming
sense (i.e. instances of leaves in the UTML metamodel). Examples of such UTML
model elements include:

e Type definitions (e.g. elements of meta-classes MessageTestDataType),
OperationTestDataType, SignalTestDataType, etc.

e Instances definitions (e.g. elements of meta-classes TestDatalnstance, Test-
Objective, TestProcedure, etc.)

>

Figure 5.5: The Generalisation Visual Element

The Generalisation Visual Element The Generalisation visual element, depicted
on figure 5.5, is adopted from UML class diagrams and is used to display gener-
alisation relationships between model elements.

_____________________ >

Figure 5.6: The Dependency Visual Element

The Dependency Visual Element The Dependency visual element, depicted on
figure 5.6, is adopted from UML class diagrams and is used to display dependency
links between model elements.
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5.3 Generic UTML Metamodel concepts

Generic concepts of the UTML metamodel are those that provide a common
base for other elements of the metamodel and therefore cannot be classified as
belonging to any particular type of test model.

5.3.1 UtmlElement
Description

The UtmlElement element is an abstract classifier defined as the base classifier
for all other classifiers in the UTML metamodel. It carries no particular semantic

information.

5.3.2 BasicTestModel
Description

The BasticTestModel element is the abstract base classifier for all UTML test
models.

Semantics

The BasicTestModel element is no specific semantics, besides being an abstract
container for UTML model elements at the highest level.

Syntax

The BasicTestModel element extends the following elements of the metamodel:
e UniqueNamedElement (Cf. Table 5.7)
o UtmlElement (Cf. Section 5.3.1)

e DescribedElement (Cf. Table 5.4)

5.3.3 TestModel
Description

The TestModel UTML element defines a root test model. Root test models
describe the static structure of a composite test model consisting of a number of
test models of various kinds (e.g. test objective models, tests data models, test
behaviour models, etc.). Figure 5.1 illustrates the relationship of the TestModel
element with those other kinds of test models.
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Semantics

Beyond their role as containers for the various other types of test models, Test-
Model elements have no specific semantics.

Syntax

As described in Section 5.2.1, just like other UTML models, TestModel elements
are represented graphically with the Package visual element. Each of the con-
tained Package elements in a root test model diagram can be linked to another
diagram visualising the content of the associated UTML test model.

Additionally, import relationships between UTML test models can be ex-
pressed using the Dependency visual element known from UML class diagrams.

The TestModel element extends the BasicTestModel element described in
Table 5.3.2.

Table 5.3: Properties of the TestModel UTML element

Property Description Type Occu-
rence

test- Test objectives models contained in this | Test- 0..n
Objectives- composite test model. Objectives-
Model Model  (Cf.

Table 5.11)
imported- References to other composite test models | TestModel 0..n
Model linked to this test model. (Ct. Ta-

ble 5.3)
testArchi- Test architecture models contained in this | TestArchi- 0..n
tecture- composite test model. tectureModel
Model (Ct. Ta-

ble 5.25)
test- Test behaviour models contained in this | Test- 0..n
Behaviour- composite test model. Behaviour-
Model Model (Ct.

Table 5.66)
testData- Test data models contained in this com- | TestData- 0..n
Model posite test model. Model (Ct.

Table 5.37)
testArchi- Test architecture type models contained in | testArchi- 0..n
tecture- this composite test model. tecture Types-
TypesModel Model  (Cf.

Table 5.20)

5.3.4 DescribedElement
Description

The UTML DescribedElement element is an abstract classifier used in all cate-
gories of test models to introduce textual documentation for the extending UTML
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meta-class.

Constraints

For certain UTML model elements, depending on the defined modelling policies,
the description associated with the Described Element element may be made
compulsory by activating the following OCL constraint:

self.description.ocllsTypeOf(OclVoid) = false
and self.description <> ’TODO:_Add_description’

Syntax
Table 5.4: Properties of the DescribedElement UTML element
Property Description Type Occu-
rence
description A free textual description of the UTML el- | xsd:string 0..1
ement.

5.3.5 Groupltem
Description

The GrouplItem UTML element is an abstract classifier used to design the
grouping mechanism for elements of the test model. UTML elements extending
Groupltem can be added as children to a group definition. The Groupltem
UTML element has no fields and no attributes.

Semantics

A Groupltem element can be contained in a group definition.

5.3.6 GroupDef
Description

The GroupDef UTML element represents a group definition within a generic
test model. Table 5.5 lists the properties of each GroupDef.

Semantics

The GroupDef element defines a structural container for other model elements.
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Syntax

The GroupDef element extends the following elements of the metamodel:
o Element WithUniqueID (Cf. Table 5.9)
e DescribedElement (Cf. Table 5.4)

e Groupltem (Cf. Section 5.3.5)

Table 5.5: Properties of the GroupDef UTML element

Property Description Type Occu-
rence
groupltem children elements contained in the group | Groupltem 0..n
definition. (Ct. Sec-
tion 5.3.5)

5.3.7 NamedElement
Description

The NamedFElement element is an abstract classifier used as the base for named
UTML elements.

Syntax
Table 5.6: Properties of the NamedElement UTML element
Property Description Type Occu-
rence
name Name of the element. xsd:string 1.1

5.3.8 UniqueNamedElement

Description

The UniqueNamedElement element is also an abstract classifier and provides
the same functionality as the NamedFElement element, with the difference that
the name used in this case must be unique for the whole test model.
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Syntax

Table 5.7: Fields and attributes of the UniqueNamedElement UTML

element
Property Description Type Occu-
rence
name Name of the element. xsd:string 1.1

5.3.9 ElementWithID
Description

The FElement WithID eclement is an abstract classifier used as the base for
UTML elements for which an identifier is required.

Syntax
Table 5.8: Properties of the ElementWithID UTML element
Property Description Type Occu-
rence
id The identifier for the element. xsd:string 1.1

5.3.10 ElementWithUniquelD
Description

The Element WithUniquelD element is also an abstract classifier and provides
the same functionality as the Element WithID element, with the difference that
the identifier used in this case must be unique for the whole test model.

Syntax
Table 5.9: Properties of the ElementWithUniqueID UTML element
Property Description Type Occu-
rence
id The unique identifier for the element. xsd:string 1..1

5.3.11 TestPatternKind
Description

The TestPatternKind UTML element is an enumeration defining a classifier
for the various types of test modelling patterns.
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Table 5.10: The TestPatternKind UTML element

Literal Description

ARCHITECTURE Indicates a test architectural pattern.

BEHAVIOUR Indicates a test behavioural pattern.

DATA Indicates a test data pattern.
Syntax

5.4 Test Objectives Design Concepts

The UTML metamodel’s test objectives design concepts define the toolset re-
quired for modelling test plans in a rigourous and systematical manner. In this
section the elements of the metamodel dealing with test planing are described,
along with their relationships with other elements of the UTML metamodel.

<<EClass»> . ]
TestObjectiveF lement = <<EClass>> .
TestOhjectivesModel

[’) 1
<<EClass > < <interfaces= .
ObjectiveGroupltem

«<<EClass>>
TestObjective

«<EClass>>
1\ Objective GroupDef
<<EClass>>»
TestObjectiveDescription
Element

Figure 5.7: Class Diagram: UTML Metamodel for Test Objectives

Figure 5.7 displays a class diagram of the UTML metamodel for test objectives
design.

5.4.1 TestObjectivesModel
Description

Contained TestObjectivesModel elements and TestObjectivesGroupDef elements
(defining groups of test objectives) are modelled using the aforementioned Pack-
age visual symbol, while leaves of the test objectives model (i.e. test objectives)
are modelled using the Class visual element.

Figure 5.8 displays an example UTML test objectives diagram containing one
group of test objectives and two test objectives.
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<=TestObjectives>
TestObjectivel

title: TODO, please provide a title

elerment2: description of the objectivesGroupl
elerment
<=TestObjectives>
TestOhjectivez

Requirement_ID: RQ_12345
targetted Feature: Feature 1.1.2

description: Description Tesxt for
the test ..

Figure 5.8: Example UTML Test Objectives Diagram

Syntax
The TestObjectivesModel element extends BasicTestModel (See Table 5.3.2)

Table 5.11: Properties of the TestObjectivesModel UTML element

Property Description Type Occu-
rence

test- Test objective elements contained | testObjective- | 0..n

Objective- in the test specification. Element (See

Element Section 5.4.6)

test- References to other test objectives | Test- 0..n

Objectives- models linked to this test objective | Objectives-

Model model. Model

5.4.2 ObjectiveGroupDef
Description

The ObjectiveGroupDef element defines a group of objectives in a test speci-
fication model.



5.4. TEST OBJECTIVES DESIGN CONCEPTS 81

Syntax
The ObjectiveGroupDef element extends DescribedElement (See Table 5.4)

Table 5.12: Properties of the ObjectiveGroupDef UTML element

Property Description Type Occu-
rence
objective- Test objectives or test objectives | Objective- 0.n
Groupltem groups contained in this group. Groupltem
(See Sec-
tion 5.4.3)
id An identifier for the group. xsd:string
priority The priority level assigned to the | Priority (See
group. Table 5.13)
implemen- The current implementation status | Implementa- 1.1
tationStatus | of the test objectives group. tionStatus
(See Ta-
ble 5.14)

5.4.3 ObjectiveGroupltem
Description

The Objective GroupItem UTML element is an abstract class used to define a
grouping mechanism for test objectives in a test specification model.

5.4.4 Priority
Description

The Priority element is an enumeration used for classifying the various priority
levels for test objectives in a UTML test model. Based on those values, each test
objective in the test plan is assigned a priority, which can guide decision taking in
critical phases of the test project. The priority level of test objectives can be used
as criterium to select which test objectives to implement first, if deadlines are
approaching or resources scarce. Table 5.13 lists the pre-defined priority levels in
the UTML metamodel.

Syntax

Table 5.13: The Priority UTML element

Priority Level
LOWEST
LOWER

LOW
NORMAL
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Table 5.13: The Priority UTML element

Priority Level
HIGH

HIGHER
HIGHEST

5.4.5 ImplementationStatus
Description

The ImplementationStatus UTML element is an enumeration listing possible
values for the implementation status of test objectives. Keeping track of the
implementation status of test objectives can contribute significantly to improving
productivity within a test project. In fact all other aspects of test modelling can
benefit from those information, which can be used to filter test model elements for
selection, edition or exporting (documentation, test script code, etc.). Table 5.14
lists the pre-defined implementation status values in the UTML metamodel, along

with their meaning.

Semantics
Yes: Design Test Procedure PROCEDURE_DESIGNED
[ DROPPED j ANALYZED "
Test Procedures Required? Design Test Case
Check with Requirdment Source No
Mo Design Test Case IMPLEMENTED 1 poyiew Yes REVIEWED
Test Objeclive Valid?
OK?
Analyze Ted! Objective
[ ] No

System R Reatly

CREATED

Yes; Create Thst Ohjective

Relepse

NEEDS_FI

Refine and Validate WALIDATED

Analyze Test|Requirement

System R’Eq‘ Testable? o Evecute RELEASED

Figure 5.9: State Diagram: The Test Objective Lifecycle

Figure 5.9 displays a state diagram illustrating the usage of the Implemen-
tationStatus to document the lifecycle of a test case from requirements analysis
through to test execution. Each of the possible implementation status is repre-
sented as state in the diagram and the actions leading to state transition underline
the semantics of this element.

Syntax

Table 5.14 describes the syntax of ImplementationStatus element.
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Table 5.14: The ImplementationStatus UTML element

Implementation Description
Status
ANALYZED Indicates that the test objective has been

analyzed and found valid based on the sys-
tem specification (default).

PROCEDURE_DE-
SIGNED

Indicates that a test procedure has been
designed for the test objective.

REVIEWED A test case covering the test objective has
been designed and reviewed.

IMPLEMENTED Indicates that a test case has been designed
covering the test objective.

REVIEWED A test case covering the test objective has
been designed and reviewed.

RELEASED Indicates that a test case covering the test
objective has been released.

NEEDS_FIX Indicates that a bug has been discovered in
the test case for this test objective. There-
fore, the test case needs to be fixed.

DROPPED Indicates the test objective has been

dropped, e.g. because it has been found as
not applicable or testable upon analysis.

5.4.6 TestObjectiveElement

Description

83

The TestObjectiveFElement is an abstract class, modelling an element that can
be added as child to a UTML test objectives model.

Syntax

The TestObjectiveElement element extends UtmliElement (See Section 5.3.1)

5.4.7 TestObjective

Description

TestObjective elements are the building entities of test objectives models (or

test specifications). Their purpose is to document precisely and in a systematic

manner what a test case will try to check on the SUT.

Semantics

The purpose of TestObjective elements is to enable a systematic approach to the

test automation process by providing a common base for all parties, on which test

cases will be designed and implemented. A TestObjective element represents a
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traceability link to phases in the software development process that preceded test
design. A test objective element can be linked to one or several requirements.

Syntax

The TestObjective element extends the following elements of the metamodel:
e ElementWithUniquelD (See Table 5.9)
e DescribedElement (See Table 5.4)

o TestObjectiveElement (See Table 5.4.6)

Table 5.15: Fields and attributes of the TestObjective UTML element

Property Description Type Occu-
rence
objective- Description elements for the test | TestObjective- | 1..n
DescEle- objective. Description-
ment Element (See
Table 5.16)
test Proce- A reference to test procedures that | TestProce- 0..n
dure cover this test objective. dure (See
Table 5.19)
priority The priority level assigned to the | Priority (See | 1..1
test objective. Table 5.13)
implemen- The current implementation status | Implemen- 1.1
tationStatus | of the test objective. tationStatus
(See Ta-
ble 5.14)
notes Any additional notes to the test ob- | xsd:string 0.1
jective’s description.

5.4.8 TestObjectiveDescriptionElement
Description

The TestObjectiveDescriptionElement element is an entity used to provide
description of test objectives in a systematic manner. Each test objective de-
scription element is a name-value pair of free text. The name element provides
the name of a description field for the test objective, while the value element
provides the content of that description field.

Syntax

Table 5.16 describes the syntax of TestObjectiveDescriptionElement ele-
ment.
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Table 5.16: Fields and attributes of the TestObjectiveDescriptionEle-
ment UTML element

Property Description Type Occu-
rence

name Name of the description element. xsd:string 1.1

value Value of the description element. xsd:string 1.1

5.5 Test Procedures Design Concepts

The UTML metamodel’s test procedures concepts define the means for modelling
test procedures for test objectives modelled in a test specification. A test proce-
dure describes the sequence of steps that will have to be performed on the test
system and the SUT to verify that a test objective is met satisfactorily. In this
section the elements of the UTML metamodel’s for test procedures are described,
together with the relationships between them and other UTML elements.

«<<EClass>> .

= 1| TestProceduresModel

<<EClass>> .é_.--.

TestProcedurest lament

=

<«EClass>>=<<interface>>
TestProceduresGroupItem

- /V =
L
<<EClass>> . 1
TestProcedure

<<EClass>>
TestProceduresGroupDef

1.7

<<EClass=»
TestStep

Figure 5.10: Class Diagram: UTML Metamodel for Test Procedures

Figure 5.10 provides an overview of the UTML metamodel for test procedures
which illustrates the relationships between its components.

5.5.1 TestProceduresModel
Description

The TestProceduresModel UTML element is the root element for a test pro-
cedures model. Conceptually a test procedures model consists in a collection of
test procedures, each of those covering at least one test objective.
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Table 5.17: Properties of the TestProceduresModel UTML element

Property Description Type Occu-
rence

testProce- Test procedures or groups contained in the | Test- 0..n
dures- test procedures model. Procedures-
Element Element (See

Section 5.5.3)
testObjec- References to test objectives models linked | TestObjec- 0..n
tivesModel to this test procedures model. tivesModel

(See Ta-

ble 5.11)
testProce- References to test procedures models | TestPro- 0..n
duresModel linked to this test procedures model. ceduresModel

(See Ta-

ble 5.17)

Syntax

The TestProceduresModel element extends BasicTestModel (See Table 5.3.2)

5.5.2 TestProceduresGroupltem

Description

The TestProceduresGroupltem UTML element is an abstract class used to
provide a grouping mechanism for test procedures in a test procedures model.
Syntax

The TestProceduresGroupltem element extends Groupltem (See Table 5.3.5)

5.56.3 TestProceduresElement

Description

The TestProceduresElement is an abstract class that is the base for all other
elements of the UTML test procedures model.

Syntax

The TestProceduresElement element extends TestProceduresGroupltem (See Sec-
tion 5.5.2)

5.5.4 TestProceduresGroupDef

Description

The TestProceduresGroupDef UTML element defines a group within a test
procedures model. A TestProceduresGroupDef can contain other TestPro-
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ceduresGroupDef as subgroups or single test procedures.

Syntax

The TestProceduresGroupDef element extends the following elements of the meta-
model:

e DescribedElement (See Table 5.4)
o Element WithUniqueID (See Table 5.9)
o TestProceduresGroupltem (See Section 5.5.2)

o TestProceduresElement (See Section 5.5.3)

Table 5.18: Properties of the TestProceduresGroupDef UTML element

Property Description Type Occu-
rence
test- children elements of the test procedures | Test- 1.n
Procedures- group. Procedures-
Groupltem Groupltem
(See Sec-
tion 5.5.2)

5.5.5 TestProcedure
Description

The TestProcedure element models a test procedure in the UTML metamodel.

Syntax

The TestProcedure element extends the following elements of the metamodel:
e DescribedElement (See Table 5.4)
o UniqueNamedElement (See Table 5.7)
o TestProceduresGroupltem (See Section 5.5.2)

o TestProceduresElement (See Section 5.5.3)

Table 5.19: Properties of the TestProcedure UTML element

Property Description Type Occu-
rence
testSteps The test steps for this test procedure. xsd:string 0..n
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Table 5.19: Properties of the TestProcedure UTML element

Property Description Type Occu-
rence
testcase A reference to a testcase modelling the the | Testcase (See | 0..1
test behaviour for this test procedure. Table 5.74)
testObjec- References to the test objectives covered | TestObjec- 0..n
tive by this test procedure. tive (See
Table 5.15)
sub- References to other already defined test | TestProce- 0.n
Procedure procedures which are parts of this test pro- | dure (See
cedure. Table 5.19)
remarks Additional remarks concerning this test | xsd:string 0..1
procedure.

5.6 Test Architecture Design Concepts

UTML test architecture concepts provide the means for designing test architec-
tures following a pattern driven approach. Those concepts are based on the same
principles of communication abstraction ( [125]) used for the UML testing profile
and the TTCN-3 notation.

UTML test architecture design concepts can be grouped in two main cate-
gories. The first group of concepts aims at defining type classifiers or descriptors
for elements of test architectures, while the second group define concepts for
designing instances based on the aforementioned descriptors.

«<EClass>>
TestArchitectureTypesE lement

Ty
<<EClass>»

TestArchitectureTypesModel

< <EClass > » < <interfaces=
TestArchTypesGroupltem

1

y S
1 v v 7~ <<EClass»»
- 1

«<EClass>> «<EClass>> PortType
TestArchTypesGroupDef ComponentType

1

Figure 5.11: Class Diagram: UTML Metamodel for Type Definitions in Test
Architectures

Figure 5.11 displays the UML class diagram for the first group of UTML test
architecture concepts.
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<<EClass>> . <<EClass>> <<EClass>>
TestArchitectureModel TestArchitectureE fement P2PArchitecture
R4 1 I
\’- <<EClass>>
«<EClass == <<interface»= <<ECHss>> Connecllon
TestArchGroupItem k- - +
] TestAfchitecture

P
/ "
| Y
/ o ﬁ
' N
«<<EClass>> / ] <« EClass>>
! ' Componentlnstange <<EClass>>

1 estArcharouplert |
TestArchGroupDef ; _ SandwichArchitecture |

¥
; ! 1/1 0.1

/
’ <<EClass>» .
4 ComponentType

<<EClass>> «<<EClass>»>
A M | MeshArchitecture |
1
<<EClass>> . a 1 /
ProxyArchitecture

«<<EClass>> | 1 1 «<EClass>>
PortType Portnstance

Figure 5.12: Class Diagram: UTML Metamodel for Test Architectures

Figure 5.12 depicts the UTML metamodel for the second group of test archi-
tecture concepts and illustrates the relationships between its composing elements.

5.6.1 TestArchitectureTypesModel
Description

A TestArchitecture TypesModel provides type definitions for instances in a
test architecture model. Therefore, it is the basis for a test architecture model,
which can be extended and reused in other test architecture models without
affecting the existing test model artifacts.

The graphical modelling of test architecture type elements follows the same
principles as those of other UTML models for which structure is the sole motivat-
ing factor. Accordingly, similar to those other diagram types, the Package and
the Class graphical elements are used to model groups of test architecture type
elements and instances of single elements (e.g. test component type definitions,

port type definitions) respectively.

Syntax
The TestArchitecture TypesModel element extends BasicTestModel (See Table 5.3.2).
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Table 5.20: Properties of the TestArchitectureTypesModel UTML ele-

ment
Property Description Type Occu-
rence
testArchi- References to other existing testArchi- | TestArchi- 0..n
tecture- tectureTypesModel elements. tecture Types-
TypesModel Model
testData- References to data model documents from | TestData-
Model which test data definitions are used in this | Model  (See
test architecture basic model. Table 5.37)
testArchi- Test architecture elements contained in the | TestArchi-
tecture- model. tecture Types-
TypesEle- Element (See
ment Section 5.6.2)

5.6.2 TestArchitectureTypesElement
Description

The TestArchitecture TypesElement is an abstract class used as the base for
UTML test architecture concepts that can be shared among several test archi-
tecture models.

Syntax

b

The TestArchitecture TypesElement element extends UtmlElement (See Section 5.3.1)

5.6.3 TestArchTypesGroupltem
Description

The TestArchTypesGroupltem element is an abstract class used to model the
grouping mechanism in UTML test architectural basic models. Any object of a
class extending Test ArchTypesGroupItem can be added as a child to a group
in a test architecture basic model.

Syntax

The TestArchTypesGroupltem element extends the following elements of the
metamodel:

o DescribedElement (See Table 5.4)

o TestArchitecture TypesElement (See Section 5.6.2)
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5.6.4 TestArchTypesGroupDef
Description

The TestArchTypesGroupDef element represents a group definition within a
UTML model for test architecture type definitions.

Syntax

TestarchTypesGroupDefl

Figure 5.13: Example UTML Test Architecture Types Group

The TestArchTypesGroupDef element extends the following elements of the
metamodel:

o DescribedElement (See Table 5.4)
o Element WithUniqueID (See Table 5.9)

o TestArchTypesGroupltem (See Section 5.6.3)

Table 5.21: Properties of the TestArchTypesGroupDef UTML element

Property Description Type Occu-
rence
testArch- Basic test architecture model elements | TestArch- 0..n
Types- contained in the group. Groupltem
Groupltem (See Sec-
tion 5.6.9)

5.6.5 PortType
Description

The PortType provides a descriptor for a type of port.

Semantics

The main purpose of PortType is to define a classifier for modelling port in-
stances. If a PortInstance element (see Section 5.6.12) is associated to a given
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PortType element through its type property, then the automatically inherits all
the properties defined in the PortType element.

Syntax

<<PortType=>
WeblnterfaceType

Figure 5.14: Example UTML Port Type

The PortType element extends the following elements of the metamodel:

e DescribedElement (See Table 5.4)

NamedElement (See Table 5.6)

TestArchGroupltem (See Section 5.6.9)

TestArchitecture TypesElement (See Section 5.6.2)

TestArchitectureElement (See Section 5.6.11)

Table 5.22: Properties of the PortType UTML element

Property Description Type Occu-
rence
supported- A list of test data types supported by the | TestData- 0..n
Types port type. If no type is indicated, it is | Type (See
assumed that port instances of this port | Table 5.46)
type support all types of test data.

5.6.6 ComponentType

Description

The ComponentType element provides a descriptor for a type of test component
to be used in test scenarios.

Semantics

The ComponentType element defines a mean for enabling the instantiation of
components with a predefined set of properties. Component instances associated
to a given ComponentType element through their type property automatically
inherit all properties defined in that ComponentType element.
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Syntax

<=iComponentType=>
WebiClientType

<<Portinstance= =
clientPort

<<Timer=>
T_MaxDelay

<<Tirmner =
T_MaxDelayBig

Figure 5.15: Example UTML Component Type

The ComponentType element extends the following elements of the meta-
model:

e DescribedElement (See Table 5.4)

o UniqueNamedElement (See Table 5.7)

o TestArchGroupltem (See Section 5.6.9)

o TestArchitectureElement (See Section 5.6.11)

Table 5.23: Properties of the ComponentType UTML element

Property Description Type Occu-
rence
portType A list of port types supported by compo- | PortType (See | 0..n
nents of this type. Table 5.22)
port- Concrete port instances provided by the | PortInstance 0..n
Instance test component type. Every component | (See Ta-
instance having this component type as | ble 5.28)
its type property implicitely inherits these
port instances and may used them at any
time for sending or receiving data in test
actions.
var- Local variable declarations. These vari- | Variable- 0..n
Declaration ables may be used by any test component | Declaration
instance having this ComponentType as | (See Sec-
type for storing and retrieving data while | tion 5.8.25)
performing test behaviour.
timer Local timers associated to the test compo- | Timer (See | 0..n

nent type. These timers must be contained
in the component type element itself and
not simply referenced.

Table 5.83)
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Table 5.23: Properties of the ComponentType UTML element

Property Description Type Occu-
rence
baseCom- Reference to component types that are ex- | Component- 0..n

ponentType tended by this component type. This field | Type (See
allows the specification of inheritance rela- | Table 5.23)
tionships between component types to fa-
cilitate reuse of existing elements in the
test architecture model. If a component
type B extends a component type A, then
component type B inherits all ports, vari-
ables and timers declared in component
type A

5.6.7 ComponentKind
Description

The ComponentKind element is an enumeration listing the kinds of compo-
nents possible in a UTML test architecture.

Syntax

Table 5.24: The ComponentKind UTML element

Component Kind Description

TEST_COMPO- Used to indicate that the component is

NENT part of the test system

SUT Used to indicate that the component is
part of the System Under Test

5.6.8 TestArchitectureModel

Description

The TestArchitectureModel element is the root element for every UTML test
architecture model document.

Syntax

The TestArchitectureModel element extends the BasicTestModel (See Table 5.3.2)
element defined previously
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Table 5.25: Properties of the Test ArchitectureModel UTML element

Property Description Type Occu-
rence

testArchi- Links to other related test architec- | TestArchi- 0..n
tecture- ture model documents. tectureModel
Model
testData- Links to test data models. TestData- 0..n
Model Model  (See

Table 5.37)
testArch- Groups contained in this test archi- | TestArch- 0..n
GroupDef tecture model. GroupDef

(See Ta-

ble 5.26)
testArchi- Contained test architectures. TestArchi- 0..n
tecture tecture  (See

Table 5.31)

5.6.9 TestArchGroupltem

Description

The TestArchGroupltem element is an abstract class defining an element for
a group in a test architecture model.

Syntax

The TestArchGroupltem element extends Groupltem (See Section 5.3.5)

5.6.10 TestArchGroupDef

Description

The TestArchGroupDef element represents a group definition within a UTML
test architecture.

Syntax

The TestArchGroupDef element extends the following elements of the metamodel:
e DescribedElement (See Table 5.4)
o Element WithUniqueID (See Table 5.9)

o TestArchGroupltem (See Section 5.6.9)
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Table 5.26: Properties of the Test ArchGroupDef UTML element

Property Description Type Occu-
rence
testArch- test architecture model elements contained | TestArch- 0..n
Groupltem in the group. Groupltem
(See Sec-
tion 5.6.9)

5.6.11 TestArchitectureElement
Description

The TestArchitectureElement element is an abstract class representing the
base type for all other elements in the UT ML test architecture meta-model.

Syntax

The TestArchitectureElement element extends UtmlElement (See Section 5.3.1)

5.6.12 PortlInstance
Description

A PortInstance element represents a communication point through which test
components can exchange data with other test components or with SUT compo-
nents.

Semantics

PortInstance elements are instantiations of PortType elements and can be used
to model points of communication for components in a test architecture. A com-
ponent instance may own one or more port instances. The type of data that can
be exchanged via a given port instance is determined by the associated Port-
Type’s supportedTypes property. This means, the communication paradigm(s)
supported by the port instances depend(s) on the kinds of data types that can be
exchanged through it. As described in Section 5.7.5, UTML defines three kinds
of data types, namely Operation, Message and Signal.

The direction in which the port may be used to exchange data is defined by
its direction property. It must also be ensured that the value of that property
is also used to check if a connection can be created between two port instances or
not. Table 5.27 provides a matrix for allowing/disallowing connections between
port instances based on their directions.
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Target Port
INOUT | IN ouT
Source Port INOUT | Yes Yes Yes
IN Yes No Yes
ouT Yes Yes No
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Table 5.27: Direction of Port Instances and Connection Support

Constraints

Constraint  Port instances may only refer to model elements contained in the
same test architecture.

(self.theConnection —> isEmpty() = false and self.theConnection —>
forAll(architecture.ocllsTypeOf(OclVoid)=false) and
self.theConnection —>

forAll(architecture.componentInstance —> notEmpty ()))

implies

(self.theConnection. architecture.componentInstance —> exists(id =
self .theComponent.id))

Constraint A port instance’s port type must be among the port types declared
to be supported by the owning component’s type definition element.

(self.theComponent.ocllIsTypeOf(OclVoid) = false)
implies
(self.theComponent.type.portType —> exists (name = self.type.name))

Constraint  Each port instances must have an associated port type.

self.type.ocllsTypeOf(OclVoid) = false

Syntax

The PortInstance element extends the following elements of the metamodel:
e DescribedElement (See Table 5.4)

e NamedElement (See Table 5.6)
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Table 5.28: Properties of the PortInstance UTML element

Property Description Type Occu-
rence
type The port type for the port instance. PortType (See | 1..1
Table 5.22)
theConnec- Connections in which the port is involved, | Connection 0..n
tion either as source or as target. (See Ta-
ble 5.30)
theConnec- Connection actions in which the port in- | Connec- 0..n
tionAction stance is involved. tionAction
(See Sec-
tion 5.8.16)
direction Direction in which communication through | DataDirec- 0..n
the port instance will occur. tion (See
Table 5.39)
theCom- The test component owning the port in- | Component- 1..1
ponent stance. Instance (See
Table 5.29)

5.6.13 Componentinstance
Description

The ComponentInstance element represents an instance of a test component
in a UTML test model. ComponentInstance elements are instantiations of
ComponentType elements defined in Section 5.6.6.

Semantics

For more details on the semantics of component instances, see Section 5.8.1.

Constraints

Constraint Components belonging to the SUT must not be cloned.

(self.kind = utml:: test_architecture :: ComponentKind ::SUT)
implies (self.clones = 0)

Constraint  If a number of clones is provided for a component, then that number
must be greater than or equal to zero. I.e. negative values are not allowed.

(self.kind = utml:: test_architecture :: ComponentKind : : TEST.COMPONENT)
implies (self.clones >= 0)
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Syntax

testComponent

testPortl| | bestPortz

testComponent E_)testport

| |
| |
| |
<< Componentinstance=> | |
| |
| |
| |
| |

Figure 5.16: Component and Port Instances in UTML Diagrams

As depicted in Figure 5.6.13 components are visualised in UTML architecture
diagrams through Class graphical elements similar to block elements in SysML.
Each component carries the component’s identifier as label. Components marked
as being part of the SUT are colored in black color to underline the fact that
they are considered black-boxes.

figure 5.6.13 also illustrates the visualisation of port instances belonging to
components, as well as connections between those. For example, the solid line
between testPort and sutPort in that figure indicates that those two ports are
connected with each other in the containing architecture. The visualisation of
ports owned by components is achieved using flowport symbols defined by the
SysML notation. A flowport is represented graphically as a little box attached to
the border of the owning component and containing an arrow that indicates in
which direction the port may send or receive data. In the case of an IN-port or an
OUT-port, the contained arrow will be directed inwards or outwards respectively,
while for an INOUT-port a bidirectional arrow will be displayed.

Also, test behaviour naturally involves elements of the test architecture de-
fined previously in the test architecture model. Therefore, the test behaviour
sequence diagram defines graphical representation elements for those test archi-
tecture elements that might be used to model test behaviour. Those elements
are component instances and port instances.

Figure 5.6.13 shows the graphical element for a component within a UTML
test behaviour sequence diagram. As shown in that figure, test components are
designed as a box potentially containing instance of port instances, represented
by a life line graphical element.

The ComponentInstance element extends the following elements of the meta-
model:
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e ElementWithID (See Table 5.8)

o TestArchitectureElement (See Section 5.6.11)

o TestArchGroupltem (See Section 5.6.9)

Table 5.29: Properties of the ComponentInstance UTML element

Property Description Type Occu-
rence
type A reference to the test component type | Component- 1.1
which is instanciated by this component. Type (See
Table 5.23)
architecture The parent architecture to which this com- | TestArchi- 1..1
ponent instance belongs. tecture  (See
Table 5.31)
port Port instances owned by this component. PortInstance 0..n
(See Ta-
ble 5.28)
kind Indicate whether the component is marked | Component- 1.1
as part of the SUT or as part of the test | Kind (See
system (Default) Table 5.24)
clones Defines the number of clones to be created | Integer 0..1
with this component. If the clones prop-
erty is set to a value Neiones, then Nejones
instances of type will be instantiated and
started whenever this component instance
element will be involved in test behaviour.

5.6.14 Connection
Description

The Connection element represents a connection, i.e. a data exchange channel
between two ports in UTML.

Semantics

As described in Section 5.6.12, connections may only be created between ports if
their direction allow it (See Table 5.27) and if they share supported data types
as defined in the supported Types property or the port type referred to by their
type property.

Constraints

Constraint Connections may only be created between port instances belonging

to components within the same test architecture.
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(self.sourcePort.ocllsTypeOf(OclVoid) = false and
self.destPort.ocllIsTypeOf(OclVoid)) implies
(self.architecture.componentInstance —> exists (id =
self .sourcePort.theComponent.id) and
self.architecture.componentInstance —> exists (id =
self . destPort.theComponent.id))

Constraint A port instance must not be connected to itself.

self.sourcePort <> self.destPort

Constraint (Optional) A port instance should not be connected to another port
instance belonging to the same component instance.

(self.sourcePort.ocllsTypeOf(OclVoid) = false

and self.destPort.ocllsTypeOf(OclVoid) = false)

implies

(self.sourcePort.theComponent <> self.destPort.theComponent)

Syntax

The Connection element extends the following elements of the metamodel:
o ElementWithID (See Table 5.8)

o TestArchitectureElement (See Section 5.6.11)

Table 5.30: Properties of the Connection UTML element

Property Description Type Occu-
rence
sourcePort The source port for the connection. PortInstance 1..1
(See Ta-
ble 5.28)
destPort The destination port for the connection. PortInstance 1..1
(See Ta-
ble 5.28)
architecture The test architecture in which the connec- | TestArchi- 1..1
tion has been created. tecture  (See
Table 5.31)
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5.6.15 TestArchitecture
Description

The TestArchitecture element represents a test architecture in UTML. Le. a
collection of component instances that are connected via ports to build a setup
on which test behaviour will be executed to assess the system under test.

Semantics

TestArchitecture elements define the architectural context in which test be-
haviour will take place. Therefore, test architectures will be associated to UTML
behaviour elements so that test behaviour design will take into account the con-
straints defined by the test architecture.

Constraints

Constraint (Optional) Every test architecture should contain at least one com-
ponent belonging to the SUT.

self.componentInstance
—> exists (kind = utml:: test_architecture :: ComponentKind ::SUT)

Syntax

<< Testarchitecture == <<Testirchitectures=
Testarchitecturel Testarchitecturez
TestirchGroupDefl

Figure 5.17: Example UTML Test Architecture Diagram with contained Archi-
tectures and Group Definitions

Figure 5.17 displays an example test architecture diagram for a test model
containing a group of test architecture elements and two test architectures. As
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depicted in that figure, each test architecture is visualised as a Class-type graph-
ical element, with the test architecture’s identifier as label. The usage of Package
graphical element to visualise groups in test architecture diagrams is also illus-
trated on that picture.

The TestArchitecture element extends the following elements of the meta-
model:

e DescribedElement (See Table 5.4)

o Element WithUniqueID (See Table 5.9)

o TestArchGroupltem (See Section 5.6.9)

o TestArchitectureElement (See Section 5.6.11)

Table 5.31: Properties of the TestArchitecture UTML element

Property Description Type Occu-
rence
component- Component instances contained in the test | Component- 0..n
Instance architecture. Instance (See
Table 5.29)

connections Connections between the component in- | Connection 0..n

stances through ports. (See Ta-

ble 5.30)

setup- A list of references to behaviour function | TestBeha- 0..n
Function definitions that initialize the test architec- | wviourAction-

ture. The behaviour functions listed are | Def (See

called sequentially to initialize the test ar- | Table 5.72)

chitecture, in the same order in which they

have been added.
teardown- A list of reference to behaviour function | TestBeha- 0..n
Function definitions that terminates the test archi- | wviourAction-

tecture (e.g. performing some cleanup op- | Def (See

erations after test execution). The be- | Table 5.72)

haviour functions listed are called sequen-

tially to teardown the test architecture, in

the same order in which they have been

added.
associated- References to default behaviour definitions | DefaultBeha- 0..n
Default to which the test architecture is associated. | viourDef (See

A default behaviour being associated to a | Table 5.82)

test architecture means that, when the ar-

chitecture is setup the default is activated

and when the architecture is teared down

(e.g. at the end of a testcase), the default

is deactivated.
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Table 5.31: Properties of the TestArchitecture UTML element

Property Description Type Occu-

rence
execution- The execution mode defines how the com- | Ezecution- 1..1
Mode ponent instances defined in the test archi- | Mode (See

tecture will be started when test behaviour | Table 5.32)
designed to be run on that architecture is
executed. Possible values are SEQUEN-
TIAL(Default), indicating that the com-
ponents will be instanciated and started
sequentially in the same order of their cre-
ation in the UTML model or PARALLEL,
indicating that all will be started in par-
allel according to an appropriate synchro-

nization scheme.

5.6.16 ExecutionMode
Description

The ExecutionMode UTML element is a classifier defining possible modes of
execution for elements of a test architecture, when test behaviour designed on
that architecture is executed.

Semantics

The only usage of the ExecutionMode element is as an attribute of a TestAr-
chitecture element. Therefore, the ExecutionMode element has no semantics
as such, but its value has an impact on the syntax of the test architecture to
which it is associated.

Syntax

Table 5.32: The ExecutionMode UTML element

Literal Description

SEQUENTIAL Indicates that test component instances in the test
architecture will be started sequentially, according
to their order of creation in the UTML model.
PARALLEL Indicates that test component instances in the test
architecture will be started in a synchronised man-

ner, according to a given synchronisation scheme.
Currently, the definition of the synchronisation
scheme is out of UTML’s scope, but could be
added at a later stage, if required as an extension
to the metamodel.
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5.6.17 TestArchPatternKind

Description
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The TestArchPatternKind UTML element is an enumeration defining a clas-

sifier for the various types of architectural patterns identified so far.

Syntax

Table 5.33: Fields and attributes of the TestArchPatternKind UTML

element

Pattern Kind

Description

P2pP

Indicates a Point-to-Point(P2P) kind of ar-
chitecture, involving two component in-
stances as endpoints with each of their
ports connected at most once to the other
one’s. This corresponds to the One-on-
One Test Architecture design pattern de-
scribed in Section A.3.2.

PROXY

Indicates a proxy kind of architecture in-
volving a test component placed as a proxy
to intercept and monitor the data exchange
between two components belonging to the
SUT. This corresponds to the Prozy Test
Component test architecture design pat-
tern described in Section A.3.5.

SANDWICH

Indicates a sandwich kind of test architec-
ture involving two test components, each
of which is placed exchange data with an
SUT component that is virtually placed in
the middle between those two test compo-
nents. This corresponds to the Sandwich
Test Architecture pattern described in Sec-
tion A.3.6.

PMP

Indicates a Point-to-Multi-Point(PMP),
i.e. one whereby the connections between
the ports involved provide multiple paths
from a single location to multiple loca-
tions [35] kind of architecture. This cor-
responds to the Point-to-Multi Point Test
Architecture design pattern described in
Section A.3.3.

MESH

Indicates a mesh kind of architecture. IL.e.
one whereby, each of the components in-
volved is connected to a port of the other
component instances.

CUSTOM

Reserved for user customisation. This lit-
eral indicates a user-defined architecture
scheme.
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5.6.18 P2PArchitecture
Description

The P2PArchitecture element is a realization of the One-on-One (or Peer-To-
Peer) test architecture pattern, which consists of a test system composed of a
single component, that is connected to the SUT, also represented as a single
component. The One-on-One test architecture is described with further details
in section A.3.2.

Semantics
The P2PArchitecture element extends the TestArchitecture element (See Ta-
ble 5.31). Therefore, it inherits the basic semantics defined for that element.

Constraints

Constraints The P2PArchitecture element inherits all the constraints defined
for the TestArchitecture element as defined in Section 5.6.15

Syntax
Table 5.34: Properties of the P2PArchitecture UTML element
Property Description Type Occu-
rence
firstCompo- | First component instance involved in the | Component- 1..1
nent P2P test architecture. Instance (See
Table 5.29)
system- Other component instance involved in the | Component- 1..1
Component P2P test architecture. Instance (See
Table 5.29)
patternKind | Test architecture pattern kind: | TestArch- 1.1
P2P(See 5.33) PatternKind
(See Ta-
ble 5.33)

5.6.19 PMPArchitecture
Description

The PMPArchitecture element is a descriptor for a Point-to-Multi Point(PMP)
test architecture, which consists of a component connected via a single port to
a set of other components. This architecture is an instantiation of the PMP
architecture pattern, which is described in section A.3.3.
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Semantics

The PMPArchitecture element extends the TestArchitecture element (See Ta-
ble 5.31). Therefore, it inherits the basic semantics defined for that element.

Constraints

The PMPArchitecture element inherits all the constraints defined for the TestAr-
chitecture element as defined in Section 5.6.15

Syntax
Table 5.35: Properties of the PMPArchitecture UTML element
Property Description Type Occu-
rence
firstCompo- | First component instance involved in the | Component- 1..1
nent PMP test architecture. Instance (See
Table 5.29)
otherCom- Other component instances involved in the | Component- l.n
ponents PMP test architecture. Instance (See
Table 5.29)
patternKind | Test architecture pattern kind: PMP | TestArch- 1..1
(See 5.33) PatternKind
(See Ta-
ble 5.33)

5.6.20 MeshArchitecture
Description

A fully connected mesh network is a network in which all nodes are intercon-
nected. Such networks are used in wireless networks and other application fields
for which self-healing capacity is required. Self-healing is the ability for nodes
in the network to reconnect themselves to overcome the failure of a part of the
network.

The UTML MeshArchitecture element models a test architecture following
the mesh networking pattern. However, only the topological aspects of mesh net-
works are expressed with a MeshArchitecture element, while the behavioural
aspects (e.g. the self-healing) are not implied. Therefore, a test architecture
created with the mesh architecture architectural pattern has all its associated
component instances connected to each other wherever their owned ports allow
it.
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Semantics

The MeshArchitecture element extends the TestArchitecture element (See Ta-
ble 5.31). Therefore, it inherits the basic semantics defined for that element.
Constraints

The MeshArchitecture element inherits all the constraints defined for the TestAr-
chitecture element as defined in Section 5.6.15

Syntax

The MeshArchitecture element extends TestArchitecture (See Table 5.31)

Table 5.36: Properties of the MeshArchitecture UTML element

Property Description Type Occu-
rence
components Component instances building the mesh | Component- 0.n
test architecture. Instance (See
Table 5.29)
patternKind | Test architecture pattern kind: MESH cf. | TestArch- 1..1
Table 5.33 PatternKind
(See Ta-
ble 5.33)

5.7 Test Data Design Concepts

<<EClass>» .
TestDataModel

+estDatphodel

*

<<EClass>»
____ TestDataFlement | <<EClass>>
TestDataGroupDef

+

«=EClass»»<<interfaces=
TestDataGroupltem

Figure 5.18: Class Diagram: Hierarchy of UTML Metamodel for Test Data Mod-
elling

The UTML metamodel’s test data concepts provide the means for modelling
data types and data instances to be used for testing. Data abstraction [125]
is an essential aspect of UTML test modelling. The idea is to find the right
balance between the need for abstraction and the necessity of providing enough



5.7. TEST DATA DESIGN CONCEPTS 109

information to allow the design of sensible test cases. Therefore, constraints play
a central role in the specification of test data in UTML, as they enable to define
the requirements that need to be met by data to be suitable as input (i.e. as
stimuli) or as output (response) in test sequences. Based on those requirements,
concrete instances of data may be generated dynamically for testing purpose or
validated to check if they meet the requirements.

To facilitate exchange with other notations, UTML’s test data concepts reuse
a lot of the concepts of the XML Schema Definition (XSD) language, adding
elements specific to the testing domain. In this section, the elements of the
UTML test data metamodel are described, along with the relationships between
themselves and other aspects of the UTML metamodel.

5.7.1 TestDataModel
Description

The TestDataModel element is the root container for UTML test data design.
It contains model elements for designing the structure of data to be exchanged
in testing and the mechanisms for generating concrete test data.

Constraints

Constraint (Optional) The same field definition should not be duplicated in more
than one message type definition. If so, then the usage of inheritance should be
considered.

utml:: test_data :: MessageTestDataType. alllnstances () —>
isUnique (dataTypeField)

Syntax

The TestDataModel element extends the BasicTestModel (See Table 5.3.2)
element defined previously

Table 5.37: Properties of the TestDataModel UTML element

Property Description Type Occu-
rence

testData- References to other related test data mod- | TestData- 0..n
Model els. Model  (See

Table 5.37)
testData- Contained test data model elements. TestData- 0..n
Element Element (See

Section 5.7.2)
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5.7.2 TestDataElement

Description

The TestDataFElement is an abstract classifier that is the base for all elements
in the UTML test data metamodel

Syntax

The TestDataElement element extends UtmlElement (See Section 5.3.1)

5.7.3 DataTypelndicator
Description

The DataTypelndicator element is an enumeration listing the different cate-
gories of type indicators in the UTML test data metamodel.

Semantics

The DataTypelndicator element’s purpose is to be used as a property for data
type model elements to define their structure in a more precise manner.

Syntax

Table 5.38: The DataTypelndicator UTML element

Literal Description

SEQUENCE Used for a data structure containing ordered
fields.

CHOICE Used for a data structure in which only one of the
listed fields may be present.

ALL Used for a data structure containing unordered
fields.

ENUMERATION Used for an enumeration kind of data structure.

5.7.4 DataDirection
Description

The DataDirection element is an enumeration for indicating the direction in
which a test data instance may be used in test scenarios. It should be kept in
mind that in UTML test modelling, according to the black-box paradigm, all
definitions are expressed from the test system’s perspective.The details provided
for DataD1irection follow that same rule. For example, whenever direction IN
is mentioned, it refers to data moving into the test component.
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Semantics

The DataDirection element has no specific semantics, beyond being used as
a property for data instances (see Section 5.7.23) and port instances (see Sec-
tion 5.6.12). It should be noted that the direction of data and port instances
is always relative to the component hosting the port instance or using the data
instance for test behaviour.

Syntax

Table 5.39: The DataDirection UTML element

Literal Description
INOUT Used for a data instance that may be used both for
sending data with other components (Test-, SUT-

) or for verifying data received from it. When used
in association with port instances, this indicates
that the port instance may be used both for re-
ceiving data INto the owning test component or
for sending data OUT to other entities.

IN Used for test data modelled for verifying data re-

ceived from the SUT or from other test compo-
nents. When, used in association with port in-
stances, it indicates that data can be received via
the referencing port instance into the owner test
component.

ouT Used for test data modelled for sending data out
to other components in a test architecture. When

used in association with port instances, this indi-
cates that the port can be used to send data out

of the owning test component to other entities.

5.7.5 DataKind

Description

The DataKind element is an enumeration listing the different kinds of data
currently supported by the UTML metamodel for designing test data.
Semantics

The DataKind element has no specific semantics, beyond being used as a prop-
erty for data types.

Syntax

Table 5.40 describes the syntax of DataKind element.
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Table 5.40: The DataKind UTML element

Literal Description

MESSAGE Indicates a test data kind used for asynchronous
communication.

OPERATION Indicates a test data kind used for modelling

synchronous communication schemes, i.e. those
whereby entities invoke operations or methods
provided by others to exchange data.

EXCEPTION Test data of this kind can be used to refine OPER-
ATION kind data types by specifying potentially

exceptional behaviour that could occur when the
operation is called.

CONTINUOUS Indicate a test data kind exchanged through con-
tinuous signals.

5.7.6 DataPatternKind
Description

The DataPatternKind UTML element is an enumeration defining a classifier
for types of test data patterns.

Semantics

The main purpose of the DataPatternKind element is to serve as a property
of test data instance to model data that will be generated during test execution
based on the selected test data pattern. The implementation of the mechanism for
generating concrete data instances based on the UTML test data model element
is left to the implementing body and is therefore out-of-scope for this thesis.

Syntax
Table 5.41: The DataPatternKind UTML element
Pattern Kind Description
DOMAIN_PARTI- Indicates data obtained through domain parti-
TION tion. [132]
DEFAULT_VALUE Default value used as test data.
BOUNDARY _VA- Indicates a scheme whereby boundary values are
LUE used as test data.
RANDOM_VALUE For values obtained by selecting randomly within
a range.
CUSTOM This literal is for user-defined data pattern.
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5.7.7 ConstraintKind
Description

The ConstraintKind element is an enumeration listing mechanisms for defining
constraints for test data in UTML. Most UTML constraint kinds are inherited
from the XSD language and follow the same semantics defined in the XSD spec-
ification [63] and described in table 5.42.

Semantics

The main purpose of the ConstraintKind element is to be used as a property
for constraints, e.g generic constraints (see Section 5.7.27) or field constraints (see
Section 5.7.27).

Syntax
Table 5.42: The ConstraintKind UTML element
Constraint kind Description
ENUMERATION Indicates a constraint reducing acceptable choices
to those present in an enumeration of values.
FRACTION - Defines a constraint indicating that a test data
DIGITS instances total number of decimal places should

be equal to a given value. Obviously constraints of
this kind are only applicable to types of test data
where they make sense, namely those representing
rational values (e.g. float).

LENGTH Defines a constraint on the length of a test data
value or that a contained field.
MAX_EXCLUSIVE Defines a constraint indicating that a test data in-
stance’s value should be lower than a given value.
MAX_INCLUSIVE Defines a constraint indicating that a test data
instance’s value should be lower than or equal to

a given value.

MAX_LENGTH Defines a constraint indicating that a test data in-
stance’s length should be not exceed a given value.
MIN_EXCLUSIVE Defines a constraint indicating that a test data
instance’s value should be greater than a given

value.
MIN_INCLUSIVE Defines a constraint indicating that a test data
instance’s value should be lower than or equal to

a given value.
MIN_LENGTH Defines a constraint indicating that a test data in-
stance’s length should be lower than a given value.
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Table 5.42: The ConstraintKind UTML element

Constraint kind Description
PATTERN Defines a constraint indicating that a test data
instance’s value should match a given pattern.

The pattern matching mechanism used is out
of UTML’s scope and is to be handled by the
lower level test infrastructures. Obviously, (Perl/-
Posix)regular expressions are good candidates for
that purpose, but other similar approaches could
be used instead.

TOTAL_DIGITS Defines a constraint indicating that a test data in-
stance’s total number of digits should be equal to

a given value. Obviously constraints of this kind
are only applicable to types of test data where
they make sense (e.g. integer values).

HAS_ELEMENT Defines a constraint indicating that a test data

instance is a list containing a given value as ele-

ment.

IS_.PRESENT Defines a constraint indicating that a given field is
present in a test data instance of a complex data
type.

EQUALS Defines a constraint indicating that a given test

data instance equals a given value.
IS.NOT_PRESENT Defines a constraint indicating that a given field
is not present in a test data instance of a complex

data type.

5.7.8 TestDataGroupltem
Description

The TestDataGroupltem is an abstract classifier providing the base for the
grouping mechanism in UTML test data models. Each classifier extending Test-
DataGrouplItem can be added as a child of a group in a test data model.

Syntax

The TestDataGroupltem element extends Groupltem (See Section 5.3.5)

5.7.9 TestDataGroupDef
Description

The TestDataGroupDef element models a group in a test data model.

Syntax

The TestDataGroupDef element extends the following elements of the meta-
model:
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e DescribedElement (See Table 5.4)
o Element WithUniqueID (See Table 5.9)

o TestDataGroupltem (See Section 5.7.8)

Table 5.43: Properties of the TestDataGroupDef UTML element

Property Description Type Occu-
rence
testData- test data elements contained in the group. | TestData- 0..n
Groupltem Groupltem
(See Sec-
tion 5.7.8)

5.7.10 RelationKind

Description

The RelationKind element is an enumeration of the kinds of relationship be-
tween test data types.

Semantics

A test data type may extend or restrict another existing test data type element
to provide a mechanism similar to object inheritance for data types. The details
of that mechanism are described in Section 5.7.11.

Syntax

Table 5.44: The RelationKind UTML element

Literal Description

EXTENSION Indicates that a test data type extends another
existing one.

RESTRICTION Indicates that a test data type restricts an existing
test data type.

5.7.11 DataTypeRelationship
Description

The DataTypeRelationship element is used to model a relationship between a
new test data type and an already existing one in UTML.
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Semantics

The UTML notation defines two kinds of relationship between data types: ex-
tension and restriction. If test data type B extends test data type A(referred
to by its baseDataType property), then B may modify fields defined in A (e.g.
through redefinition, or by adding new constraints) and at the same time add
new fields to those defined in A. On the other hand, if test data type B restricts
test data type A, then B may only add new constraints or redefine fields defined
in B without being able to add any new field.

Syntax
Table 5.45: Properties of the DataTypeRelationship UTML element
Property Description Type Occu-
rence
baseData- The base data type this relationship refers | TestData- 1..1
Type to. Type (See
Table 5.46)
dataCons- Data constraints being added to the base | DataCons- 0.n
traint data type. traint (See
Table 5.57)
relation- Kind of relationship. One of the following | Relation- 1..1
Kind val ues: Kind (See
o EXTENSION (Default) Table 5.44)
¢ RESTRICTION

5.7.12 BasicTestDataType
Description

The BasicTestDataType element models a basic simple test data type in
UTML. A basic test data type has no fields.

Syntax

The BasicTestDataType element extends test_data: TestDataType (See Table 5.46)

5.7.13 TestDataType
Description

The TestDataType is an abstract classifier that is the base for test data type
definitions in UTML.
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Figure 5.19: Class Diagram: UTML Metamodel for Modelling Test Data Types

Syntax
The TestDataType element extends UniqueNamedElement (See Table 5.7)

Table 5.46: Properties of the TestDataType UTML element

Property Description Type Occu-
rence
dataType- Defines a relationship with another test | DataType- 0..1
Relationship | data type. Relationship
(See Ta-
ble 5.45)
kind Kind of test data. DataKind 1..1
(See Ta-
ble 5.40)
name Unique identifier of the test data type. xsd:string 1..1
coding_rule Encoding rule of the test data type. The | xsd:string 0..1
mechanism for evaluating the character
string used for expressing encoding rules
is out of UTML’s scope.

5.7.14 MessageTestDataType
Description

The MessageTestDataType element models a structured MESSAGE kind of
test data type, suitable for useage in asynchronous exchange of data in a UTML
test model.

Semantics
The MessageTestDataType is a descriptor which can be used at a later stage to
design test data instances for systems supporting asynchronous communication.

Syntax

A Class visual element is used to represent test data types.
Figure 5.20 shows an example UTML test data diagram, featuring a Message-
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<<MessageTestDataType = >

MessageTestDataTypel
DataTypeFieldl
| DataTypeField2 | <<MessageTestDataType> =
| DataTypeField3 MesgageTestDataType2

| DataTypeFisld3 |

Figure 5.20: Example UTML Test Data Diagram

Additionally, the Dependency graphical element is used to represent import-
type relationships between elements contained in test data diagrams, while the
Generalisation graphical element is used to represent inheritance-type relation-
ships (extension/restriction) between test data type definitions and test data

instances.
The MessageTestDataType element extends BasicTestDataType (See Sec-
tion 5.7.12)

Table 5.47: Properties of the MessageTestDataType UTML element

Property Description Type Occu-
rence

dataType- Fields of the message data type. DataType- 0..n
Field Field (See

Table 5.48)
dataType- Selector for indicating the kind of struc- | DataType- 1..1
Indicator tured data type. Indicator (See

Table 5.38)
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5.7.15 DataTypeField

Description

The DataTypeField element models a field in a structured test data type.

Syntax

119

The DataTypeField element extends the following elements of the metamodel:

e NamedElement (See Table 5.6)

o DescribedElement (See Table 5.4)

Table 5.48: Properties of the DataTypeField UTML element

Property Description Type Occu-
rence
fieldData- Reference to type definition for the field. BasicTest- 1..1
Type DataType
(See Sec-
tion 5.7.12)
optional Indicates whether the field is optional (De- | xsd:boolean 1..1
fault is false)
minOccurs If message kind is a list, then this indi- | xsd:string 0.1
cates, the minimal number of occurences
of elements of the list. The provided string
is one that can be evaluated to an integer
value in the lower level test infrastructure.
mazOccurs If message kind is a list, then this indi- | xsd:string 0.1
cates, the maximal number of occurences
of elements of the list. The provided string
is one that can be evaluated to an integer
value in the lower level test infrastructure.
dataType- A selector for indicating the type of struc- | DataType- 1..1
Indicator tured data type. Indicator (See
Table 5.38)
defaultValue | A reference to a previously defined Value- | Valuelnstance | 0..1
Instance element, serving as default value | (See Ta-
for insta nces of this field. ble 5.53)
default- A string literal representing the de fault | xsd:string 0..1
ValueLiteral | value for the field. This is an alternative to
providing a reference for the default value
via the defaultValue child element men-
tioned above.
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5.7.16 ParameterDeclaration
Description

The ParameterDeclaration element models a parameter declaration for a test
data type, a test data instance or a behaviour definition (i.e. a function) in the
UTML metamodel.

Semantics

The ParameterDeclaration element provides the mean for modelling the dec-
laration of a parameter for any other UTML elements for which parameterization
is to be supported. Therefore, this element can only be used in combination with
those other UTML elements.

Syntax

The ParameterDeclaration element extends the following elements of the

metamodel:
e NamedElement (See Table 5.6)

o AbstractDatalnstance (See Section 5.7.21)

Table 5.49: Properties of the ParameterDeclaration UTML element

Property Description Type Occu-
rence
type Type of the parameter. BasicTest- 1..1
DataType
(See Sec-
tion 5.7.12)
direction Direction of the parameter: one of IN, IN- | DataDirec- 1..1
OUT or OUT. The direction of parame- | tion (See
ter declarations follows the same semantic | Table 5.39)
as defined in the Interface Definition Lan-
guage (IDL) or in the TTCN-3language.

5.7.17 OperationTestDataType
Description

The OperationTestDataType element models an OPERATION kind of test
data type in the UTML metamodel.



5.7. TEST DATA DESIGN CONCEPTS 121

Semantics

The OperationTestDataType element is a descriptor which can be used to
design test data instances for systems supporting synchronous communication
using a semantics of operation calls that block until the called party returns a
result.

Syntax

The OperationTestDataType element extends TestDataType (See Table 5.46)

Table 5.50: Properties of the OperationTestDataType UTML element

Property Description Type Occu-
rence

operation- Response declaration for the operation test | Operation- 1..1
Response- data type. ResponseDef
Def (See Ta-

ble 5.51)
parameter- Parameters declarations for the operation | Parameter- 0..n
Declaration data type. Declaration

(See Ta-

ble 5.49)
operation- Exceptions declarations for the operation | Operation- 0..n
Exception- data type. EzceptionDef
Def (See Ta-

ble 5.52)

5.7.18 OperationResponseDef
Description

The OperationResponseDef element models a response definition in a UTML
test operation specification.

Semantics

The OperationResponseDef element is only used in combination with the
OperationTestDataType element. It represents the modelling of the response
part of an operation.

Syntax

The OperationResponseDef element extends the DescribedElement element
of the metamodel(See Table 5.4).
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Table 5.51: Properties of the OperationResponseDef UTML element

Property Description Type Occu-
rence
type Data type of the operation response. TestData- 1..1
Type (See
Table 5.46)

5.7.19 OperationExceptionDef

Description

The OperationExceptionDef element models an exception definition in a UTML
test operation specification.

Semantics

In a similar manner as the OperationResponseDef element, the Operation-
EzxceptionDef is also only used in combination with the OperationTestDataType
element. It can be used to model exceptional responses potentially returned by
an operation.

Syntax

The OperationExceptionDef element extends the DescribedElement element
of the metamodel(See Table 5.4).

Table 5.52: Properties of the OperationExceptionDef UTML element

Property Description Type Occu-
rence
type Data type of the operation exception. TestData- 1..1
Type (See
Table 5.46)

5.7.20 SignalTestDataType
Description

The SignalTestDataType element models a test data type descriptor for con-
tinuous signals in UTML.

Syntax

The SignalTestDataType element extends Message TestDataType (See Table 5.47)
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5.7.21 AbstractDatalnstance

Description
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Figure 5.21: Class Diagram: UTML Metamodel for Test Data Instances

The AbstractDatalnstance element is an abstract classifier providing the
base for modelling data instances in UTML.

Syntax

The AbstractDatalnstance element extends DescribedElement (See Table 5.4)

5.7.22 Valuelnstance

Description

The Valuelnstance element models a value of a given data type in UTML.
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Syntax

The Valuelnstance element extends the following elements of the metamodel:
o UniqueNamedElement (See Table 5.7)

o AbstractDatalnstance (See Section 5.7.21)

Table 5.53: Properties of the Valuelnstance UTML element

Property Description Type Occu-
rence
type Reference to the type definition for this | TestData- 1..1
value instance. Type (See
Table 5.46)

5.7.23 TestDatalnstance
Description

The TestDatalnstance is an abstract classifier used as base for all test data
instances in UTML. Test data instances represent concrete data resulting from
instantiating previously defined TestDataType elements (See Section 5.7.13) or
extensions thereof, e.g. MessageTestDataType (See Section 5.7.14), Opera-
tionTestDataType (See Section 5.7.17) and SignalTestDataType (See Sec-
tion 5.7.17)

Syntax

The TestDatalnstance element extends the following elements of the meta-
model:

e TestDataGroupltem (See Section 5.7.8)
o Valuelnstance (See Table 5.53)

The TestDatalnstance clement is an abstract classifier that is the base for
all data instance definitions in UTML.

Table 5.54: Properties of the TestDatalnstance UTML element

Property Description Type Occu-
rence
mirrorData- | A test data instance that is suitable as re- | TestData- 0..1
Instance sponse to this test data instance. Instance (See
Table 5.54)
direction Direction in which the test data might be | DataDirec- 1..1
used. tion (See
Table 5.39)
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5.7.24 MessageTestDatalnstance
Description

The MessageTestDatalnstance element models a message that can be ex-
changed between components in a test architecture.

Semantics

MessageTestDatalInstance elements represent instantiations of MessageTest-
DataType elements.

Constraints

Constraint  If a MessageTestDatalnstance element extends another one and that
MessageTestDatalnstance (base data instance) was designed for incoming data
(i.e. with its direction property set to IN), then the extending data instance
may not be used for outgoing test data. The motivation for this constraint is the
fact that test data designed for checking incoming data may include constraints

expressed using wildcards, which may not be enough to create concrete data to
be sent to other entities.

(self.baseDatalnstance.oclIsTypeOf(OclVoid) = false
and

self.baseDatalnstance. direction
= utml:: test_data :: DataDirection :: IN

)
implies
(self.direction=utml:: test_data :: DataDirection ::IN)

Constraint  The type property of a MessageTestDatalnstance element must
be a MessageTestDataType or a BasicTestDataType.

self.oclAsType(utml:: test_data:: Valuelnstance)
.type.ocllsTypeOf(OclVoid) = false

implies

(self.oclAsType(utml:: test_data:: Valuelnstance). type
.oclIsTypeOf(utml:: test_data :: MessageTestDataType) = true
or

self.oclAsType(utml:: test_-data:: Valuelnstance). type
.oclIsTypeOf(utml:: test_data :: BasicTestDataType) = true)

Syntax

The MessageTestDatalnstance element extends the TestDatalnstance el-
ement (See Table 5.54) of the metamodel.



CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

126 DRIVEN TEST DESIGN
Table 5.55: Properties of the MessageTestDatalnstance UTML element
Property Description Type Occu-

rence
dataCons- Constraints associated to this message | DataCons- 0..n
traint data instance. traint (See
Table 5.57)

data- Test data pattern this message data in- | DataPattern- 0..1
Pattern- stance is based on. This property can | Kind (Ct.
Kind be used to design dynamic generation of | Table 5.41)

test data based on the selected pattern.

The implementation of the mechanism for

generating test data dynamically is tool-

specific and therefore out of the scope of

the UTML notation.
baseData- Test data instance which this data instance | TestData- 0..1
Instance extends or restricts. Instance (See

Table 5.54)

parameter- Describes a parameter declaration for a | Parameter- 0..n
Declaration message data instance. This functional- | Declaration

ity imported from the TTCN-3notation is | (See Ta-

very convenient for defining reusable test | ble 5.49)

data for which the values or the constraints

can be customized for a specific test case.

It should be noted that concrete values

must be provided for parameterized test

data instances, whenever those are used to

design test behaviour. Otherwise, the re-

sulting test model is considered invalid.

5.7.25 SignalTestDatalnstance
Description

The SignalTestDatalnstance element models a test data instance for commu-
nication based on continuous signals.

Constraint  The type property of a SignalTestDatalnstance element must be
a SignalTestDataType or a BasicTestData Type.

self.oclAsType(utml:: test_data :: Valuelnstance)
.type.ocllsTypeOf(OclVoid) = false

implies

(self.oclAsType(utml:: test_data :: Valuelnstance ). type
.ocllsTypeOf(utml:: test_data :: SignalTestDataType) = true
or

self.oclAsType(utml:: test_data :: Valuelnstance).type
.oclIsTypeOf(utml:: test_data :: BasicTestDataType) = true)
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Syntax

The SignalTestDatalnstance element extends TestDatalnstance (See Table 5.54)

5.7.26 OperationTestDatalnstance
Description

The OperationTestDatalnstance element models a test data instance for syn-
chronous communication between components in a test model. It is equivalent
to the invocation of a method or a function on an interface.

Semantics

OperationTestDatalnstance elements represent instantiations of Operation-
TestDataType elements. This includes the specification of parameters, if any
were defined in the associated OperationTestData Type.

Constraints

Constraint  The type property of an OperationTestDatalnstance element must
be an OperationTestDataType.

self.oclAsType(utml:: test_-data:: Valuelnstance)
.type.ocllsTypeOf(OclVoid) = false

implies

self.oclAsType(utml:: test_data:: Valuelnstance).type
.oclIsTypeOf(utml:: test_data :: OperationTestDataType) = true

Syntax

The OperationTestDatalnstance element extends TestDatalnstance (See Ta-
ble 5.54)

Table 5.56: Properties of the OperationTestDatalnstance UTML ele-

ment
Property Description Type Occu-
rence
operation- Parameter values for the operation data in- | Parameter- 0..n
Parameter stance. Def (See
Table 5.60)
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5.7.27 DataConstraint
Description

The DataConstraint element provides a means for specifying constraints that
have to be fullfiled by a given value instance to meet specific test requirements.
Based on such constraints, instances of data can be generated automatically for
sending stimuli to the SUT or responses from other (e.g. SUT) components can
be validated against those constraints to assess correct behaviour.

Semantics

The DataConstraint element is used as a property of test data instances to
indicate which constraints must be met by those data instances to serve a par-
ticular test purpose. Data constraints may be defined both for data designed to
be sent to other components (e.g. to the SUT as stimulus) or to express require-
ments on incoming responses from the SUT. Based on those data constraints
concrete values may be generated automatically in the target test environment
to be used as stimuli. In the same manner oracles for checking SUT responses
may be generated automatically as well for test execution.

Constraints

Constraint  For constraints checking the value of a data instance or a field thereof,
a reference value must be provided, either as string literal to be evaluated by the
test environment or as a reference to another defined value instance of compatible
type. The targetted element (i.e. the one for which the constraint is defined)
is then compared with the reference value to assess whether the constraint is
fullfiled or not. This constraint does not apply to UTML data constraints used
for checking whether a value is present or not. If a reference value is provided in
those cases, it will simply be ignored.

(self.constraintKind
<> utml:: test_data:: ConstraintKind :: ISSPRESENT
and
self.constraintKind
<> utml:: test_data :: ConstraintKind :: IS NOT_PRESENT
)
implies
(
((self.referenceValueLiteral.ocllsTypeOf(OclVoid) = true
or
self .referenceValueLiteral = )
implies
self .referenceData.ocllsTypeOf(OclVoid) = false)
or
(self.referenceData.ocllIsTypeOf(OclVoid) = true
implies
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(self.referenceValueLiteral.ocllsTypeOf(OclVoid) = false
and
self .referenceValueLiteral <>

)))

)

Syntax

The DataConstraint element extends DescribedElement (See Table 5.4)

Table 5.57: Properties of the DataConstraint UTML element

Property Description Type Occu-
rence
constraint- Kind of constraint. Constraint- 1.1
Kind Kind (See
Table 5.42)
reference- A defined test data instance which this | TestData- 0..1
Data constraint refers to. This means, data in- | Instance (See

stances required to meet this constraint | Table 5.54)
will be compared against the value pointed
to by this property.

reference- a character string representing the value | xsd:string 0..1
ValueLiteral | which this constraint refers to. This field
is to give the test designer a more flexible
mean for defining the value of the reference
for the constraint. It is then left to the
lower-level test infrastructure to handle the
mechanism for verifying that a test data
instance fullfils the constraint or not. If the
ReferenceData field has been provided,
then this field can be omitted.

5.7.28 FieldConstraint

Description

The FieldConstraint element provides a mean for modelling a constraint on a
field in a UTML structured test data type.

Constraints

Constraint  The field property of a FieldConstraint element must refer to a field
effectively supported by the type definition for the associated message data in-
stance. The field may also be inherited from an extended data type.

(self.field.ocllsTypeOf(OclVoid)=false
and
self.field.fieldDataType.ocllsTypeOf(OclVoid)=false
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and
self.theContainerMessageDatalnstance
.ocllsTypeOf(OclVoid)=false

)

implies

(self.theContainerMessageDatalnstance

.oclAsType(utml:: test_data:: Valuelnstance ). type

.oclAsType(utml:: test_data :: MessageTestDataType)

.dataTypeField —> exists

(fieldDataType .name self. field . fieldDataType .name)

or (self.theContainerMessageDatalnstance.

oclAsType(utml:: test_data :: Valuelnstance)

.type.oclAsType(utml:: test_data :: MessageTestDataType)

.dataTypeRelationship —> forAll (ocllsTypeOf(OclVoid) = false)

and

self.theContainerMessageDatalnstance
.oclAsType(utml:: test_data :: Valuelnstance ). type
.oclAsType(utml:: test_data :: MessageTestDataType)
.dataTypeRelationship —> forAll(baseDataType
.ocllsTypeOf(OclVoid) = false)
and

self.theContainerMessageDatalnstance
.oclAsType(utml:: test_data :: Valuelnstance ). type
.oclAsType(utml:: test_data :: MessageTestDataType)
.dataTypeRelationship —> exists (baseDataType
.oclAsType(utml:: test_data :: MessageTestDataType)
.dataTypeField —> exists (fieldDataType.name

= self.field.fieldDataType.name))

)
)

Syntax
The FieldConstraint element extends DataConstraint (See Table 5.57)

Table 5.58: Properties of the FieldConstraint UTML element

Property Description Type Occu-
rence
field Reference to the field to which the con- | DataType- 1..1
straint applies. Field (See
Table 5.48)

5.7.29 ParameterConstraint
Description
The ParameterConstraint element provides a mean for modelling a constraint

on a declared parameter in a UTML operation test data type.

Syntax

The ParameterConstraint element extends DataConstraint (See Table 5.57)
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Table 5.59: Properties of the ParameterConstraint UTML element

Property Description Type Occu-
rence
param Reference to the parameter declaration to | Parameter- 1..1
which the constraint applies. Declaration
(See Ta-
ble 5.49)

5.7.30 ParameterDef
Description

The ParameterDef element models a parameter definition in UTML. Param-
eter definitions can be used to set the values of parameters to a any parameter-
izable UTML element. Parameterizable UTML elements include execution and
thus can be used to customized a test suite to a given platform, a specific SUT
or ensure that certain preconditions are fullfiled for a test case.

Semantics

The ParameterDef elements are used in combination with parameterizable
elements to model the values to be used for the parameters declared by those
elements when they are instantiated or used in test actions and test events.

Constraints

Constraint The value for the parameter must be provided either as a character
string literal to be evaluated by the target test environment or as a reference to
a previously defined value instance.

(self.paramValue.ocllsTypeOf(OclVoid) = true

implies

(self.paramValueLiteral.ocllIsTypeOf(OclVoid) = false)
and

self.paramValueLiteral <> )

or

((self.paramValueLiteral.ocllsTypeOf(OclVoid) = true
or

self.paramValueLiteral = )

implies

self.paramValue.ocllIsTypeOf(OclVoid) = false)

Constraint The value instance provided as parameter for a ParameterDef el-
ement may also be parameterizable. If so, the parameters required must be
provided to match the definition of the value instance.
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(self.paramValue.
oclIsTypeOf (utml:: test_data :: MessageTestDatalnstance) = true)
implies
(self.parameterDef —> size ()
= self.paramValue
.oclAsType(utml:: test_data :: MessageTestDatalnstance)
.parameterDeclaration —> size ())

Syntax
The ParameterDef element extends AbstractDatalnstance (See Section 5.7.21)

Table 5.60: Properties of the ParameterDef UTML element

Property Description Type Occu-
rence
parameter- The parameter declaration for which a | Parameter- 1..1
Declaration value is being set. Declaration
(See Ta-
ble 5.49)
param Value A reference to a previously defined value | Valuelnstance | 0..1
instance that will be attributed to the pa- | (See Ta-
rameter. ble 5.53)
param- Alternatively to providing a reference to a | xsd:string 0..1

ValueLiteral | defined value instance, a character string
representing the value to be attributed to
the parameter. At least one of those two
alternatives must be provided for any pa-
rameter definition. If both the param Value
and param ValueLiteral are provided, then
the param Value field has priority.

5.7.31 TestParameter
Description

The TestParameter element models a test parameter definition in UTML. Test
parameters are constant values that can be set prior to test execution and thus
can be used to customize a test suite for a given platform, a specific SUT or to
ensure that certain preconditions are fullfiled for a given test case.

Semantics

Syntax

The TestParameter element extends Valuelnstance (See Table 5.53)
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Table 5.61: Properties of the TestParameter UTML element
Property Description Type Occu-
rence

value A reference to a previously defined Value- | Valuelnstance | 0..1
Instance with which the test paramater is | (See Ta-
initialized. ble 5.53)

valueLiteral A character string literal describing a value | xsd:string 0..1

to be assigned to the parameter. This is an
alternative to providing a Valuelnstance as
described above. If both the value and the
valueLiteral fields are provided, than the
ValueInstance field has priority.

5.7.32 TestParameterSet

Description

The TestParameterSet element models a set of parameters, which can be at-

tached to a test case.

Semantics

Syntax

The TestParameterSet element extends the following elements of the meta-

model:

o UniqueNamedElement (See Table 5.7)

e DescribedElement (See Table 5.4)

Table 5.62: Fields and attributes of the TestParameterSet UTML ele-

ment
Property Description Type Occu-
rence
testPara- A list of references to previously defined | TestPara- 1l.n
meter test parameters. meter  (See
Table 5.61)

5.8 Test Behaviour Design Concepts

As described in the overview to this chapter, test behaviour is designed with

UTML through test sequence diagrams and test activity diagrams. Test sequence

diagrams are used to describe test interactions between test components and SUT

components via ports. To design more complex test behaviours, those interactions
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can be combined with each other in test activity diagrams.

5.8.1 Basic Principles of UTMLTest Behaviour Design

Action- and Event-based Semantics
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Figure 5.22: Class Diagram: UTML Atomic Actions

Test behaviour modelling in UTML is based on the same functional abstrac-
tion principles as those of the Action-Based or Action-Driven Testing (ABT)
methodology introduced by Buwalda et al. [28] [29] and Li Feng et al. [52], re-
spectively. The ABT methodology aims at optimizing the process of defining test
cases by enabling test engineers to create executable test scripts from reusable
actions. Those reusable actions encapsulate complex test scripting elements, so
that the production of new test scripts is made easier and faster. The main
difference between the ABT methodology and the one proposed in this work is
that, instead of stating those actions informally using natural language, a clearly
defined pattern-oriented test metamodel is used. This has the advantage that,
the test models can remain as intuitive and concise as ’actions’, while at the same
time benefiting from the validation and transformation facilities that come with
a model-driven engineering process.

Additionally to actions, UTML introduces the concept of events to design
reactions expected to be observed on the SUT to assess that its behaviour is
inline with the requirements of the test case.

Actions and Events are owned by test components on which they are run or
to which they are attached. For interactive actions, the reference to the owning
component can be derived automatically from the port instances involved in

the interactive action. For local test actions, structured test actions and action
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blocks, the owning component is either set manually by selecting a reference to

the owning test component from the action’s/event’s theComponent property’s

dialog or graphically by positioning the action’s/event’s figure on the hosting

component’s figure.

UTML Ele- | Owning Test Component

ment

SendDataAction | Test component containing the source port.
ReceiveDataEvent | Test component containing the reception port.

Table 5.63: Rules for Test Action Ownership
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Figure 5.23: Class Diagram: UTML Observation Elements
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Figure 5.24: Class Diagram: UTML Declarative Behaviour Elements
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Declarative Elements Declarative UTML behaviour elements are used to declare
items that will be referenced by other elements in a test behaviour model. Declar-
ative elements do not have any semantics in themselves, but their semantics will
depend on the context in which they are refered to. The UTML notation defines
the following declarative elements for test behaviour:

e VariableDeclaration (see Section 5.8.25).
e Timer(see Section 5.8.26).

e State(see Section 5.8.27).

Interactive actions Interactive actions are those in which more than one com-
ponent are involved. Examples of interactive actions include UTML SendData-
Action, SendReceiveSequence, SetupConnectionAction, etc. Those actions are
represented graphically by different forms of lines connecting the port instances
involved.

Local Test Actions Local UTML test behaviour actions are those that are asso-
ciated to a single (owning) test component in the test architecture. Examples of
local test actions include:

o WaitAction

e CheckAction and elements extending it (e.g. ValueCheckAction, Exter-
nalCheckAction, etc.)

o TestBehaviourActionInvocation

Structured Test Actions and Action Blocks

Structured test actions are those that combine several other test actions, e.g. to
model more complex test behaviour or a sequence of testing actions.

Architecture-Aware Test Design

The test architecture plays a central role for every UTML test design, as it does
not only define the framework in which test behaviour is designed, but is also
taken into account for determining which data types and values are relevant or
not for certain test actions or events. For example, depending on the way a
SUT is connected to other entities in the architecture and on the accessibility
of those connection points with the SUT taken as black-box, the test designer
would have to model certain data in the data model (e.g. those exchanged with
the SUT via those points and those referenced as fields or values by them), while
ignoring other data types and values (e.g. those exclusively used for internal
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Figure 5.25: Class Diagram: UTML Structured Actions

communication between sub-entities of the SUT). Furthermore, while designing
test behaviour, the constrained defined by the test architecture will have to be
taken into account, to avoid that invalid test behaviour is designed. Examples of
invalid test behaviour include:

e Establishing a connection between incompatible ports.

e Sending data via a port designed in the architecture as supporting only
incoming communication (IN-Direction).

e Exchanging data over a port that does not support that type of communi-
cation.

e Designing an action to be hosted on a component that is inaccessible, given
the selected test architecture.

Test Components Behaviour

Each test component is assumed to be a parallel test component in the same
sense as in TTCN-3[58]. Therefore, concurrent behaviour can be designed by us-
ing more than one test component. First assessments indicate that this principle,
combined with the possibility of describing synchronisation/coordination schemes
among the test components is sufficient for expressing most test behaviour sce-
narios, including the more complex ones involving concurrency.
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Verdicts Assignment

Following the Assertion-Based Test Behaviour design pattern described in Sec-
tion A.5.1, test behaviour design with UTML focusses on correct test behaviour,
while using assertions for checking SUT failures. Therefore the test behaviour
model will not attempt to describe all possible branches of an SUT’s behaviour
tree, but rather describe the correct test behaviour between the test system and
the SUT for the implemented test objective. The term “correct” here is used
relative to requirements on the SUT and the resulting specification. Thus, it is
sufficient for the UTML test behaviour model to describe the branch leading to
the PASS verdict according to the designed test procedure.

The reasons for this principle are twofold:

Firstly, because with the purpose of testing being to uncover failures of the
SUT, any test case terminating with a verdict different from PASS is an indica-
tion of a potential failure either on the side of the SUT or that of the test system
and therefore, requires further analysis. Based on the selected predefined policy
(Cf. Table 5.71), any deviation from the test behaviour specified in a UTML test
model would lead to a FAIL or INCONCLUSIVE verdict. This means, there
should be no such thing as a “positive” FAIL or INCONCLUSIVE verdict.
Secondly, this principle enables UTML test behaviour models to remain concise,
thus increasing their readability, understandability and maintainability. Obvi-
ously, this means that the test designer will have to analyse each requirement
from the testing perspective rather than simply trying to emulate the SUT’s
behaviour.

For example, given the following requirement on an SUT:

“The system must respond to invalid input for parameter p of its operation
f by throwing an exception e of type ExceptionType”

A possible test procedure would consist of the following test steps:

e Instanciate a value suitable v as invalid input for parameter p of operation

I
e (Call operation f using v for parameter p.
e Check that an exception of type ExceptionType is thrown.

As displayed in the test procedure above, the SUT’s exceptional behaviour,
though unwished for, is considered to be “correct” with regard to the stated
requirement.

Temporal abstraction

UTML defines concepts for supporting various forms of temporal abstraction [125].
The main temporal abstraction is that only the ordering of actions and events



5.8. TEST BEHAVIOUR DESIGN CONCEPTS 139

matters for test behaviour. Therefore, the notion of time used in UTML is an
abstraction from physical time and its mapping to concrete values and associated
clocks is left to the target test execution environment.

5.8.2 UTML Test Sequence Diagrams

webClient wiehServer

clientPort serverPort

httpRequest thitpRequest_GET_url {p_hosk = "htkpfwww, Fokus, Fisunhofet, de")

httpResponse httpResponse_walid - = v_inResp_7
e S
[T_MaxDelay]

<<If Else == if [v inResp 7.code ==302)|
< <IFz |

httpRequest:httpRequest_GET_redirection {p_resp = v_inResp_7)

httpResponse;:httpResponse_200_OF
e
[T_MaxDelay]

Figure 5.26: Example UTML Test Behaviour Sequence Diagram

Figure 5.26 depicts an example UTML test sequence diagram which illustrates
the similarities and the main differences to UML 1.4 sequence diagrams:

Lifelines

In basic UML sequence diagrams (as defined in version 1.4 of the notation), a
lifeline is a representation of the lifecycle of an object involved in the interaction
modelled in the diagram. Therefore, no distinction is made between the com-
munication points actually used by the object to exchange messages with other
entities. This limitation was found to be unsatisfactory for pattern-oriented test
design, because the resulting sequence does not visually reflects the test architec-
ture in which it is to occur. Therefore, UTML defines a lifeline as a combination
of the lifecycle of a component involved in a test scenario and the port instances
owned by that component and used for exchanging messages with other entities
in the test architecture. While the port instances (represented in the same way
as object lifelines in UML) can be used to attach the starting and end points of
messages between the components, the components themselves can be used to
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attach actions and events that are internal to the test component and thus are
not necessarily related to a particular port instance.

Another difference between lifelines in UTML and those in UML sequence
diagrams is that the concept of activation boxes does not exist for UTML ports
and components. A component is considered to be active over the whole duration
of the test scenario, as long as it is not explicitly terminated.

Supported elements and operations

Table 5.64 lists the elements of UML sequence diagrams supported by UTML
test sequences and their corresponding equivalents, where applicable.

Messages

Overview of messages supported by UTML test sequences

The first difference between UTML test sequence diagrams and UML sequence
diagrams is the lifeline behaviour is designed with UTML along a series of prin-
ciples that are based on the test design patterns described in Chapter 4. Those
principles are presented in the next sections, before the elements of the UTML
metamodel dedicated to test behaviour design are described in details.

5.8.3 UTML Test Activity Diagrams

Figure 5.27 displays an example UTML test activity diagram equivalent to the
test sequence diagram displayed in Figure 5.26. As depicted in that figure, test
activity diagrams are similar to UML activity diagrams, both syntactically and
semantically. As one would have expected, the UML signal elements are used
to represent interaction events such as SendDataAction and ReceiveDataEvent.
Meanwhile, UML activity elements are used for all local test behaviour actions.
Additionally, UTML test activity diagrams may be used to design complex test
execution scenarios, with activity elements used to represent test cases or invo-
cations of structured test behaviour elements. Finally, given the fact that con-
current behaviour is designed in UTML through parallel components, the UML
activity diagrams’ fork and join elements are not supported.

5.8.4 TestBehaviourModel
Description

The TestBehaviourModel element models a UTML test behaviour model. A
TestBehaviourModel instance is equivalent to the behavioural part of a test
suite.
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Figure 5.27: Example UTML Test Behaviour Activity Diagram
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UML se- | UTML equiva- | Syntax
quence di- | lent
agram ele-
ment
Lifelines Component  in- | see Figure 5.26
stances and
contained  port
instances
Messages See Table 5.65
Self- none N/A
Messages
Lost mes- | none N/A
sages
ProxyiConm;
Found Mes- | ReceiveDataFEvent e et EReauE GET -5 v e
sages or  ReceiveSync- D meod] | ;i
DataFEvent from ' '
unspecified source
Life line | none N/A
start  and
end
Duration Duration and | N/A
and  time | time constraints
constraints | are expressed
in UTML for
expected events
only through the
association with
timers.
Alternative | IfElseAction(see See Figure 5.37
fragment Section 5.8.57)
Loop frag- | RepeatTest- See Figure 5.36
ment Action (see
Section 5.8.56)
Option AltBehaviour- See Figure 5.38
fragment Action (see
Section 5.8.60)
Gate none N/A

Table 5.64: Overview of UML sequence diagram elements supported by UTML

test sequences

Constraints

Constraint (Optional)

A test behaviour model should define a default timer to

be used for actions and events to which no timer is explicitly associated.
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Message Concrete Syntax Effect
SendData- Send asyn-
Action chronous data
(message or
signal).
SendSync- > | Send synchronous
DataAction data (operation).
Receive- SmTmmoTTooToTo T Expect asyn-
DataEvent chronous data
(message or
signal).
Receive- B Bttt Expect Syn-
SyncData- chronous data
Event (operation).

Table 5.65: Overview of Messages supported by UTML Test Sequences

self . defaultTimer.oclIsTypeOf(OclVoid) = false

Syntax

The TestBehaviourModel element extends the BasicTestModel (See Table 5.3.2)
element defined previously

Table 5.66: Properties of the TestBehaviourModel UTML element

Property Description Type Occu-

rence
testArchi- References to test models contain- | TestArchi- 0..n
tecture- ing basic test architecture elements. | tectureTypes-
TypesModel Model  (See

Table 5.20)

testData- References to related test data | TestData- 0..n
Model models. Model  (See

Table  5.37)
from package

test_data
test- References to related test behaviour | Test- 0..n
Behaviour- models. Behaviour-
Model Model  (See

Table 5.66)
testBeha- Contained test behaviour model el- | Test- 0..n
viour- ements. Behaviour-
Element Element

(See Sec-

tion 5.8.49)
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Table 5.66: Properties of the TestBehaviourModel UTML element

Property Description Type Occu-
rence
test- Reference to related test procedures | Test- 0..n
Procedures- models. Procedures-
Model Model  (See
Table 5.17)
timer Reference to a timer to serve as | Timer  (See | 0..1

default timer for all elements con- | Table 5.83)
tained in the test behaviour model,
for which though a timer is recom-
mended, none was explicitly spec-
ified. For example, if a Receive-
DataFEvent element is designed in a
test behaviour model and the timer
property of that element is left un-
specified, then, if provided, the con-
taining TestBehaviourModel ele-

ment’s default timer applies.

5.8.5 TestBehaviourGroupltem
Description

The TestBehaviourGroupltem element is an abstract classifier that serves as
base for members of groups in a UTML test behaviour model. Therefore, it
provides the base for the partitioning mechanism in test behaviour models.

5.8.6 TestBehaviourGroupDef
Description

The TestBehaviourGroupDef element models a group in a UTML test be-
haviour model. A TestBehaviourGroupDef element is a mean for partitioning
a test model in a manner similar to UML packages. It may contain other Test-
BehaviourGroupDef elements as sub-groups, as well as other test behaviour
model elements extending the TestBehaviourGroupltem abstract classifier as chil-
dren.

Semantics

The TestBehaviourGroupDef element has no associated semantic and is just
a container for organising elements contained in a test behaviour model
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Syntax

The TestBehaviourGroupDef element extends the following elements of the meta-
model:

o DescribedElement (See Table 5.4)
o Element WithUniquelD (See Section 5.9)

e TestBehaviourGroupltem (See Section 5.8.5)

Table 5.67: Properties of the TestBehaviourGroupDef UTML element

Property Description Type Occu-
rence
test- Test behaviour elements contained | Test- 0..n
Behaviour- in the group. Behaviour-
Groupltem Groupltem
(See Sec-
tion 5.8.5)
5.8.7 Verdict
Description

The Verdict UTML element is a classifier for the possible kinds of verdict
assignable in a test model.

Semantics

Following the Assertion-Driven Test Behaviour Design pattern described in Sec-
tion A.5.1, the Verdict has no semantics in itself, but simply defines a value
that can be used as an attribute for other elements. In fact, at the moment, the
only UTML element requiring a verdict as attribute is the StopAction element
described in Table 5.88. For all other behaviour elements the resulting verdict is
derived from the assertions made on the SUT’s responses.

The verdict assignment mechanism in UTML follows the same principles as
defined for the TTCN-3 notation. It is therefore assumed that each component
instance maintains a local verdict that will be influenced by the actions and events
defined for that component. The overall verdict for a test case will be calculated
by applying the verdict overwriting rule defined in the TTCN-3 standard speci-
fication [58], which stipulates that once a verdict different from PASS has been
set in a test case, then that verdict cannot be overwritten back to PASS again.
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Syntax

Table 5.68: The Verdict UTML element

Literal Description

ERROR An ERROR verdict.

NONE The NONE verdict is the default value for in-
stances of the Verdict UTML element.

INCONC Indicates that no clear verdict could be assigned.

FAIL Indicates that the SUT did not meet the require-
ments implemented by the test case.

PASS Indicates that the SUT completed the test suc-
cessfully and thus meets the assessed test objec-
tive.

5.8.8 BehaviourPatternKind
Description

The BehaviourPatternKind UTML element is an enumeration used to classify
test behaviour patterns.

Syntax
Table 5.69: Properties of the BehaviourPatternKind UTML element

Property Description

SEND_RECEIVE Indicates a send-receive test sequence.

TRIGGER_RE- Indicates a trigger-receive test sequence, i.e. one

CEIVE whereby the SUT is triggered to send data which
the test system then evaluates.

SEND_DISCARD Indicates a send-discard test sequence. A send-
discard test sequence is one whereby the test sys-
tem sends some data to the SUT and expects
those data to be discarded. I.e. the SUT is ex-
pected to ignore the data and not to respond to
it.

CUSTOM This literal is for user-defined test behaviour pat-
terns.

5.8.9 BehaviourActionKind
Description

The BehaviourActionKind element is an enumeration used to classify test
behaviour actions in categories, so that the main purpose of each action would be
easily recognizable, without having to look at the details of the code. Table 5.70
lists the literals of that enumeration representing categories currently defined in
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UTML and describes each of them.

Syntax
Table 5.70: Properties of the BehaviourActionKind UTML element
Property Description
GENERIC The GENERIC literal is the default value for the
BehaviourActionKind element. It should be
used for any test behaviour action that cannot
be classified as belonging to any of the other cat-
egories.
VALUE_COMPU- Should be used for a test action whose main pur-
TATION pose is to compute a value required for testing.
For example, a function for calculating a Cyclic
Redundancy Check (CRC) for a given message in
protocol testing.
STATE_CHANGE Used for a test action whose purpose is to trigger
a state transition at the SUT.
STATE_CHECK Used for an action whose purpose is to check that
an SUT is in a given state.
ARCHITECTURE- For a test action used to setup a test architecture.
SETUP
ARCHITECTURE- For a test action used to tear down an existing (or
_-TEARDOWN running) test architecture.
EXPECT- For an action used to expect a message from an
_MESSAGE SUT.
SEND_MESSAGE For an action used to send data to an SUT.
EXTERNAL For an action which is executed beyond the bor-
ders of the test system, but which has an impact
on it or on the SUT.
MONITOR Used to monitor a certain state on the SUT.
5.8.10 PolicyKind
Description

147

The PolicyKind element is an enumeration used to classify the kinds of policy to

follow for assigning a test verdict following assertions and observation of expected

events from the SUT. Therefore the PolicyKind element is used as property
of UTML event elements such as the ReceiveDataFEvent (See Table 5.99), the
TimerEzpirationEvent elements .
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Syntax
Table 5.71 describes the syntax of PolicyKind element.

Table 5.71: Properties of the PolicyKind UTML element

Property Description

STRICT STRICT policy means any deviation from the ex-
pected behaviour from the SUT would lead to a
fail verdict.

RELAX In case of RELAX policy, whenever the SUT’s be-
haviour does not match the described behaviour,

then a verdict of inconclusive is applied.

5.8.11 TestBehaviourActionDef

Description

The TestBehaviourActionDef element is a key element of the UTML meta-
model. It is equivalent to a function definition in a functional programming
language. Therefore it might contain several types of other elements to represent
a complete test behaviour.

Semantics

The TestBehaviourActionDef models test behaviour that can be reused in
different context by invocation with the TestBehaviourInvocationAction element.
For a TestBehaviourActionDef to be invoked in another one or in a test case,
the test architectures associated to both elements must be equal or compati-
ble with each other. The rule for test architecture compatibility for behaviour
invocation is as follows:

If a behaviour f is defined on an architecture Ay and another behaviour g is
defined on a test architecture A4, then an invocation of g may only contain an
invocation of f if Ay equals Ay or Ay is a subset A;. With A; being a subset of
Ay if it contains the same component instances and features the same connections
as A,. TestBehaviourActionDef element may be associated to a component
type definition. This implies that all elements contained in the component’s type
definition (e.g. port instance, declared variables, timers, etc.) are accessible from
the behaviour definition.

Constraints

Constraint (Optional) A TestBehaviourActionDef should be associated to
static test architecture.
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self.testArchitecture.ocllsTypeOf(OclVoid) = false

Constraint (Optional)
component belonging to the SUT.

A TestBehaviourActionDef should contain at least one

self.componentlnstance

—> exists (kind = utml:: test_architecture :: ComponentKind ::SUT)

Syntax

The TestBehaviourActionDef element extends the following elements of the meta-
model:

e DescribedElement (See Table 5.4)
o TestBehaviourGroupltem (See Section 5.8.5)
Table 5.4)

Table 5.72 list the various elements possibly contained in a TestBehaviour-
ActionDef element.

Table 5.72: Properties of the TestBehaviourActionDef UTML element

Property Description Type Occu-
rence
testArchi- A reference to the test architecture | TestArchi- 0..1
tecture required for this function definition. | tecture (See
Table 5.31)
component- A test component instance on | TestCom- 1..1
Instance which the TestBehaviourAction- | ponentlns-
Def will be running. This concept | tance (See
of attaching a behaviour to a test | Table 5.29)
component has been borrowed from
the TTCN-3 language [58].
connections Connections between test compo- | Connection 1..1
nent instances involved in this | (See Ta-
TestBehaviourActionDef ble 5.30)
component- Type of component on which this | Component- 1..1
Type TestBehaviourActionDef might be | Type (See
run (See TTCN-3 [58]) Table  5.23)
from package
test_architec-
ture
beginState If a given SUT state is required as | State (See Ta- | 0..1
precondition for the TestBehaviour- | ble 5.84)
ActionDef to be executed, it should
be selected here.
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Table 5.72: Properties of the TestBehaviourActionDef UTML element

Property Description Type Occu-
rence
testAction Test actions contained in the be- | TestAction 0..n
haviour action definition. (See Ta-
ble 5.75)
from package
test_behaviour
endState Final state of the SUT after the ex- | State (See Ta- | 0..1
ecution. ble 5.84) test-
_behaviour
variable- Contained local variable declara- | Variable- 0..n
Declaration tions. Declaration
(See Sec-
tion 5.8.25)
parameter- A list of parameters for the | Parameter- 0.n
Declaration TestBehaviourActionDef. This | Declaration
is equivalent to function parame- | (See Ta-
ters in generic purpose program- | ble 5.49)
ming languages.
name An identifier for the TestBehaviour- | xsd:string 1.1
ActionDef.
actionKind Classifier representing the main | Behaviour- 0..1
purpose of this TestBehaviour- | ActionKind
ActionDef (See Ta-
ble 5.70)
responseDef | A definition of the response re- | Operation- 0..1
turned when this TestBehaviou- | ResponseDef
ActionDef is invoked. (See Ta-
ble 5.51)

5.8.12 TestBehaviourActionlnvocation
Description

The TestBehaviourActionInvocation element models the invocation of a pre-
viously defined test behaviour action element. It can be viewed as the equivalent
to the invocation of a function in a classical programming language.

Constraints

Constraint A test behaviour definition may only be invoked on a test component
if the component’s type is compatible to the component type for which the test
behaviour was designed.

(self.testBehaviourActionDef.oclIsTypeOf(OclVoid) =
and

false

self.testBehaviourActionDef.componentType
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.0clIsTypeOf(OclVoid) = false)
implies
((self.theComponent.ocllsTypeOf(OclVoid) = false
and self.theComponent.type.name
= self.testBehaviourActionDef.componentType.name)
or
(self.theComponent.ocllIsTypeOf(OclVoid) = false
and self.theComponent.type.baseComponentType —> isEmpty () = false
and self.theComponent.type.baseComponentType —>
exists (name=self.testBehaviourActionDef.componentType.name) ))

Syntax

The TestBehaviourActionInvocation element extends AtomicTestAction (See Sec-
tion 5.8.15)

Table 5.73: Properties of the TestBehaviourActionInvocation UTML

element
Property Description Type Occu-
rence

testBeha- A reference to the testBehaviourActionDef | TestBeha- 1..1
viour- element to be invoked. viourAction-
ActionDef Def (See

Table 5.72)
parameter- A set of values to be passed as parameters | Parameter- 0..n
Def for the invocation. Def (See

Table 5.60)

5.8.13 Testcase
Description

The Testcase element models a test case in the UTML metamodel.

Semantics

The Testcase element extends the test_behaviour: TestBehaviourActionDef ele-
ment(See Table 5.72) and just like that element, the Testcase clement defines a
scope, in the sense that it may contain declarative elements reachable only within
the testcase.

There is no requirement for a Testcase element to explicitly assign a verdict.

Constraints

Constraint (Optional) A test case should define a component type as main com-
ponent type. This constraint is adopted from the TTCN-3 notation.
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self.componentType.ocllsTypeOf(OclVoid) = false

Constraint (Optional) A test case should define a component type as system
component type to label which of the components in a test architecture represent
the SUT.

self .systemComponentType. ocllIsTypeOf(OclVoid) = false

Constraint (Optional) The main test component type and the system component
type should be different from each other.

self.componentType <> self.systemComponentType

Constraint (Optional) A description should be provided for every test case.

self.description.ocllsTypeOf(OclVoid) = false and self.description <>
"TODO: _Add._description’

Constraint (Optional) Each test case should contain at least one test component
instance belonging to the SUT.

self.oclAsType(utml:: test_behaviour :: TestBehaviourActionDef)
.componentInstance —>
exists (kind = utml:: test_architecture :: ComponentKind ::SUT)

Constraint (Optional) Each test case should be associated to at least one test
objective or test procedure.

self . testObjective —> size() > 0
or self.testProcedure.ocllsTypeOf(OclVoid) = false

Constraint (Optional) A test case should not be directly associated to a test
procedure and test objectives at the same time. Otherwise, that may lead to
conflicts with regard to traceability, because the test objectives referred to by the
test procedure may be different from the ones directly associated to the test case.
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(self.testObjective —> size() > 0
implies (self.testProcedure.ocllsTypeOf(OclVoid) = true))
and

(self.testProcedure.ocllsTypeOf(OclVoid)

= false
implies ( self.testObjective —> size () = 0))

Constraint (Optional) Each test case should contain at least one test action with

the passCriterium property set to true.

self . testAction —> exists(
(oclIsTypeOf(utml:: test_behaviour :: SendDataAction)
and
oclAsType(utml:: test_behaviour :: SendDataAction)
.passCriterium = true
)
or
(oclIsTypeOf(utml:: test_behaviour :: CheckAction)
and
oclAsType(utml:: test_behaviour :: CheckAction)
.passCriterium = true
)
or
(ocllsTypeOf(utml:: test_behaviour :: ValueCheckAction)
and
oclAsType(utml:: test_behaviour :: ValueCheckAction)
.passCriterium = true
)
or
(oclIsTypeOf(utml:: test_behaviour :: ExternalCheckAction)
and
oclAsType(utml:: test_behaviour :: ExternalCheckAction)
.passCriterium = true
)
or
(oclIsTypeOf(utml:: test_behaviour :: GenericCheckAction)
and
oclAsType(utml:: test_behaviour :: GenericCheckAction)
.passCriterium = true
)
or
(oclIsTypeOf(utml:: test_behaviour :: ReceiveDataEvent)
and
oclAsType(utml:: test_behaviour :: ReceiveDataEvent)
.passCriterium = true
)
or
(oclIsTypeOf(utml:: test_behaviour :: TestEvent)
and
oclAsType(utml:: test_behaviour :: TestEvent)
.passCriterium = true
)
)
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Syntax

Table 5.74: Properties of the Testcase UTML element

Property Description Type Occu-
rence
systemCom- | The type of system component for | Component- 0..1
ponentType which this test case is applicable. Type (See
Table 5.23)

testProce- A reference to a test procedure | TestProce- 0.11
dure describing the testcase’s scenario. | dure (See

This field is a mean for ensuring | Table 5.19)

traceability of test cases to test ob- | from package

jectives through the reference to | test_proce-

those in the test procedure. dures
testObjec- A reference to a test objective or | TestObjec- 0..12
tive a collection thereof covered by this | tive (See

test case. This is an alternative to | Table 5.15)

the TestProcedure field for ensuring

traceability between test cases and

requirements.
testPara- A reference to a set of parameters | TestPara- 0..1
meterSet which is associated to this test case. | meterSet (See

A parameter set defines a series of | Table 5.62)

static preconditions that must be

fullfiled for the test case to be ex-

ecuted.
notes Free textual notes. xsd:string 0..1

5.8.14 TestAction

Description

The TestAction element is an abstract classifier providing the base for the test
action concept of UTML. UTML test behaviour models consist of test actions
being executed on test component instances interconnected within a given test ar-
chitecture. Therefore, the UTML meta-model defines TestAction as an abstract
classifier from which all test actions will inherit.

Syntax
The TestAction element extends TestBehaviourElement type(See Section 5.8.49).

"Mandatory if no reference to covered test objectives was provided.
2Mandatory if no reference to test procedure was provided.
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Property Description Type Occu-
rence
parent- If the test action is part of a test | TestBeha- 0..1
ActionDef action definition element, then this | wviourAction-
field contains a reference to the | Def (See
owning test action definition. Table 5.72)
theTest- A reference to the owning test | Component- 1.1
Component component. As described in Sec- | Instance (See
tion 5.8.1, each test action is owned | Table 5.29)
by a test component.
parent- If the test action is a sub-action, | Structured- 0..1
Action then this field contains a reference | TestAction
to the parent test action. (See Sec-
tion 5.8.55)

5.8.15 AtomicTestAction

A AtomicTestAction element is an abstract classifier modelling an atomic test
action in UTML, i.e. one that cannot be decomposed into many sub actions.

Constraints

(self.theComponent.ocllIsTypeOf(OclVoid) = false and
self.theComponent.type.ocllsTypeOf(OclVoid) = false and
self.parentAction.ocllsTypeOf(OclVoid) = false

and self.parentAction.theComponent.type.ocllsTypeOf(OclVoid))
self.theComponent.type.name = self.parentAction

.theComponent . type.name

5.8.16 ConnectionAction
Description

The ConnectionAction is an abstract classifier providing the base for modelling
actions that have an impact on connections in a test architecture.

Syntax

The ConnectionAction element extends test_behaviour:AtomicTestAction (See
Section 5.8.15)
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5.8.17 SetupConnectionAction

Description

The SetupConnectionAction element models an action for setting up a con-
nection between two ports.

Semantics

A SetupConnectionAction element may only be created between two ports, if
the directions and data types supported by those ports allow them to be connected
with each other.

Syntax

Figure 5.29: SetupConnectionAction in UTML Test Behaviour Sequence Dia-
gram

UTML SetupConnectionAction elements are represented graphically by the
symbol displayed on figure 5.29 and drawn as a link between the source port
instance and the target port instance of the connection being setup.

The SetupConnectionAction element extends the following elements of the

metamodel:
e ConnectionAction (See Section 5.8.16)

e Connection (See Section 5.30)

Table 5.76: Fields and attributes of the SetupConnectionAction UTML

element
Property Description Type Occu-
rence
sourcePort A reference to the source port in- | PortInstance 1.1
stance. (See Ta-
ble 5.28)
destPort A reference to the destination port | PortInstance 1..1
instance. (See Ta-
ble 5.28)
from package
test_architec-
ture
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Table 5.76: Fields and attributes of the SetupConnectionAction UTML

element
Property Description Type Occu-
rence
architecture A reference to the test architecture | TestArchi- 1.1°3

in which the connection is created. | tecture (See
Table 5.31)

5.8.18 CloseConnectionAction
Description
The CloseConnectionAction element models an action for closing a connection

between two ports.

Syntax

The CloseConnectionAction element extends the ConnectionAction (See Sec-
tion 5.8.16) element of the metamodel.

Table 5.77: Fields and attributes of the CloseConnectionAction UTML

element
Property Description Type Occu-
rence
connection A reference to the connection to be | Connection 1..1
closed. (See Ta-
ble 5.30)

5.8.19 DefaultBehaviourAction

The DefaultBehaviourAction element extends test_behaviour: TestAction (See Ta-
ble 5.75)

A DefaultBehaviourAction element models an alternative branch in a de-
fault test behaviour in UTML. The default test behaviour mechanism used in
UTML is a translation of the altstep-default behaviour concept introduced in
TTCN-3.

3Implicit (Implicit properties like this one can be derived implicitly from other related prop-
erties of the same element and thus will not have to be explicitly specified by the test designer.
For example, in this particular case, the reference to the containing test architecture can be
retrieved automatically while creating the connection between two ports.)
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Table 5.79: Fields and attributes of the Observation UTML element

Property

Description

Type

Occu-
rence

passCrite-
rium

A boolean value indicating whether
or not this event should be con-

PortInstance
Ta-

1..1

(See
sidered as a criterium for assign- | ble 5.28)
ing a PASS verdict or not. The
motivation for this property stems
from the fact that it is sometimes
required to label some test steps
in a test procedure as critical for
the overall test case verdict. The
concrete interpretation of this prop-
erty will depend on the target test-
ing infrastructure and on the cho-
sen test strategy. A possible in-
terpretation would consist in set-
ting the test case verdit to PASS,
if this property was set to true and
the event’s assertions were success-
ful. Otherwise, test execution will
simply proceed without any verdict
being set. However the successful
assertion should be documented for
traceability, e.g. in the form of cor-
responding log traces.

Policy for setting the verdict after
this event’s assertions are checked.

PolicyKind 1..1
(See Ta-
ble 5.71)

policyKind

Table 5.78: Properties of the DefaultBehaviourAction UTML element

Property Description Type Occu-
rence
triggering- The event triggering the alternative | TestEvent 1.1
FEvent branch to be chosen. (See Sec-
tion 5.8.21)
subAction A set of test actions to be per- | Atomic- 0..n
formed if the branch is selected. TestAction
(See Sec-
tion 5.8.15)

5.8.20 Observation
Description

An Observation element is an abstract classifier defined in the UTML meta-
model as base classifier for observable test behaviour elements.
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Syntax

5.8.21 TestEvent

Description

A TestEvent element is an abstract classifier defined in the UTML metamodel
as base classifier for observable test events.

Syntax

The TestEvent element extends test_behaviour:Observation (See Section 5.8.20)

5.8.22 DataReceptionEvent

Description

The DataReceptionEvent element models the reception of asynchronous data
at a component from another (Test-/SUT-) component.

Syntax

The DataReceptionEvent element extends test_behaviour: TestEvent (See Section 5.8.21)

Table 5.80: Properties of the DataReceptionEvent UTML element

Property Description Type Occu-
rence

portIns- A reference to the reception port in- | PortInstance 1..1
tance stance. (See Ta-

ble 5.28)
incoming- A reference to a test data instance | TestData- 1..1
Data as expected incoming data. Instance (See

Table 5.54)

5.8.23 TimerExpirationEvent

Description

The TimerExpirationEvent element models an event indicating the expiration
of a timer in a UTML test behaviour model.

Syntax

The TimerExpirationEvent element extends test_behaviour: TestEvent (See Sec-
tion 5.8.21)
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Table 5.82: Properties of the DefaultBehaviourDef UTML element

Property Description Type Occu-
rence
default- The default actions represent- | Default-
Action ing the test behaviour alterna- | Behaviour-
tives. Action (See
Table 5.78)
com- A reference to the type of test | Com- 1.1
ponent- component for which the de- | ponentType
Type fault behaviour is applicable. | (See Ta-
ble 5.23)
id An identifier for the default | xsd:string 1.1
behaviour definition.

Table 5.81: Fields and attributes of the TimerExpirationEvent UTML

element
Property Description Type Occu-
rence
timer A reference to the timer to expire. Timer  (See | 1..1
Table 5.83)

5.8.24 DefaultBehaviourDef
Description

The DefaultBehaviourDef element has been borrowed from the TTCN-3 no-
tation, in which it is used to define a behaviour that may be checked implicitly
on the SUT if the explicitly defined behaviour does not match expectations.

Syntax
The DefaultBehaviourDef element extends DescribedElement (See Table 5.4)

5.8.25 VariableDeclaration

Description

The VariableDeclaration element models the declaration of a variable in a UTML test be-
haviour model.

Semantics

VariableDeclaration elements can be used to store data received through ReceiveDataFEvent or
resulting from a TestBehaviourInvocation element. The value stored in a VariableDeclaration
can be used for any test behaviour in which a value may be required.
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Syntax

The VariableDeclaration element extends the following elements of the metamodel:
o TestBehaviourElement (See Section 5.8.49)

o Valuelnstance (See Section 5.53)

5.8.26 Timer

Description

The Timer element models a timer declaration in the UTML metamodel

Semantics

Timers may be declared as default global timers for a whole test behaviour model, as local timers
inside a component type or instance thereof or as local timers for a given TestBehaviourActionDef
or Testcase element.

Constraints

((self.delay.ocllsTypeOf(OclVoid) = true or self.delay <= 0)
and self.delayValue.ocllsTypeOf(OclVoid) = true) = false

Syntax

The Constraints element extends DescribedElement (See Table 5.4)

Table 5.83: Properties of the Timer UTML element

Property Description Type Occu-
rence
delay A value for the timer’s duration. xsd:float. For | 1..1

more flexibil-
ity, the unit
for the timer
delay  values
is left open
and can be
decided at the
later stage.

name An identifier for the timer. xsd:string 1.1

5.8.27 State
Description

A State in UTML is a declarative element describing a state in which the SUT
may find itself at a given point in time of its behaviour. Based on those infor-
mation, preambles can be executed to put the SUT in the required state, if that
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was defined as a precondition for the test case.

Syntax

The State element extends the following elements of the metamodel:

e DescribedElement (See Table 5.4)

e UniqueNamedElement (See Table 5.7)

Table 5.84: Properties of the State UTML element

Property Description Type Occu-
rence
test Archi- A reference to a test architecture for which | TestArchi- 0..1
tecture this state is applicable. tecture  (See
Table 5.31)
component- A reference to the type of component for | Component- 1.1
Type which this state is applicable. Type (See
Table 5.23)
triggering- A sequence of actions that trigger the com- | TestBeha- 0.n
Actions ponent to enter the state. The actions | wviourAction-
listed here are to be provided in their | Invocation
chronological order of occurence. (See Ta-
ble 5.73)
precondition | A list of references to other state defini- | State (See Ta- | 0..n
tions that are preconditions to this state. | ble 5.84)
validity- A character string representation of an ex- | xsd:string 0..1
Ezxpression pression that can be used to verify that a
given component is in this state.

5.8.28 StartTimerAction

Description

The StartTimerAction element models an action for starting a timer.

Syntax

The StartTimerAction element extends test_behaviour: Atomic TestAction (See Sec-

tion 5.8.15)

Table 5.85: Fields and attributes of the StartTimerAction UTML ele-

ment
Property Description Type Occu-
rence
timer A reference to the timer to be | Timer (See | 1..1
started. Table 5.83)
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5.8.29 StopTimerAction
Description

The Stop TimerAction element models an action for stopping a timer.

Syntax

The Stop TimerAction element extends test_behaviour:AtomicTestAction (See Sec-
tion 5.8.15)

Table 5.86: Properties of the StopTimerAction UTML element

Property Description Type Occu-
rence
timer A reference to the timer to be | Timer (See | 1..1
stopped. Table 5.83)

5.8.30 WaitAction
Description

The WaitAction element models a behaviour action whereby the associated
test component is requested to suspend its behaviour for a certain delay before
resuming to its other actions.

Semantics

The suspension mechanism for the WaitAction element is based either on a
delay provided by the user or on a timer referrence. At the moment the UTML
provides no notion of absolute time, however that could be added at a later
stage, if required. Then, a corresponding property would be added to the current
structure and the constraints will be extended accordingly.

Constraints

((self.delay.ocllsTypeOf(OclVoid) = true or self.delay <= 0)
and self.timer.ocllsTypeOf(OclVoid) = true) = false

Syntax

The WaitAction element extends test_behaviour:Atomic TestAction (See Section 5.8.15)
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Figure 5.30: WaitAction in UTML Test Behaviour Sequence Diagram

Table 5.87: Properties of the WaitAction UTML element

Property Description Type Occu-
rence
delay A value indicating the duration of | xsd:float 0..1
the delay.
timer A reference to a declared Timer. If | Timer (See | 0..1

the delay property has not been | Table 5.83)
set, then the associated test com-
ponent will suspend its behaviour

until the referred timer expires.

5.8.31 StopAction
Description

The StopAction element models an action for terminating test execution im-
mediately.

Semantics

The StopAction element terminates test execution immediately, assigning it the
selected verdict. Therefore, the StopAction element provides the only mecha-
nism for setting a test verdict explicitly. However, the overall test verdict is
calculated according to the rule defined in TTCN-3 for verdict assignment.

Syntax

The StopAction element extends test_behaviour: Atomic TestAction (See Section 5.8.15)

Table 5.88: Properties of the StopAction UTML element

Property Description Type Occu-
rence
verdict The verdict to assign. Verdict (See | 1..1
Table 5.68)

5.8.32 ExternalAction

Description

The ExternalAction element models an external test action. I.e. one that is to
happen outside of the test system.

Syntax

The EzternalAction element extends test_behaviour:AtomicTestAction (See Sec-
tion 5.8.15)
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Table 5.89: Fields and attributes of the ExternalAction UTML element

Property Description Type Occu-
rence
instructions | A message describing instructions | xsd:string 1.1

to be transmitted to the entity run-
ning the tests.

5.8.33 MonitoringAction
Description
The MonitoringAction element models an action for monitoring a given com-

ponent until a certain state is reached.

Syntax

The MonitoringAction element extends test_behaviour: Atomic TestAction (See Sec-
tion 5.8.15)

Table 5.90: Fields and attributes of the MonitoringAction UTML ele-

ment
Property Description Type Occu-
rence
breaking- A reference to this state that, if en- | State (See Ta- | 1..1
State tered, will cause the monitoring to | ble 5.84)
stop.

5.8.34 SendDiscardAction
Description

The SendDiscardAction element models an action whereby the a component
sends data to another one and expects those data to be discarded without notice.

Semantics

The SendDiscardAction element inherits all the constraints defined for the
SendDataAction element.

Syntax

UTML SendDiscardAction elements are represented graphically by a crossed ar-
row linking the source port instance to the target port instance.

Figure 5.31 shows an example SendDiscardAction in its graphical represen-
tation. As displayed on that figure, the label associated to a SendDiscardAction
follows the same format as for a SendDataAction discussed previously.
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Figure 5.31: SendDiscardAction in UTML Test Behaviour Sequence Diagram

The SendDiscardAction element extends test_behaviour:SendDataAction (See
Table 5.96)

Table 5.91: Properties of the SendDiscardAction UTML element

Property Description Type Occu-
rence

timer A reference to the timer, which if | Timer (See | 1..1

it expires, implies that the message | Table 5.83)

has been discarded.
allowedRes- References to test responses that | Response (See | 0..n
ponse might be allowed from the other | Table 5.92)

party, with the message still being

considered discarded.

5.8.35 Response

Description

The Response element is a helper classifier modelling a potential response from
an SUT after a stimulus.

Semantics

The Response element has no semantics in itself and is only used in combination
with structured test behaviour actions to design a response from an SUT, e.g.
following a stimulus by a test component.

Syntax
Table 5.92: Properties of the Response UTML element
Property Description Type Occu-
rence
port A reference to a port instance via | PortInstance 1..1
which the response is expected. (See Ta-
ble 5.28)
expected- A reference to a test data instance | MessageTest- 1..1
Data designing the expected data. Datalnstance
(See Ta-
ble 5.55)
unexpected- Reference to data instances that are | MessageTest- | 0..n
Data disallowed as response. Datalnstance
(See Ta-
ble 5.55)
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The OperationOutput element is a helper element used to design the expected

output for an operation call.

Syntax
Table 5.93: Properties of the OperationOutput UTML element
Property Description Type Occu-
rence
value A reference to a previously de- | Valuelnstance | 0..1
fined Valuelnstance representing | (See Ta-
the value against which the oper- | ble 5.53)
ation’s output will be compared to
assess its validity.
valueLiteral A character string literal describing | xsd:string 0..1
a value which the operation output
will be compared against. This is
an alternative to providing a Val-
uelnstance as described above. If
both the value and the valueLit-
eral fields are provided, than the
ValuelInstance field has priority.
dataCons- A collection of constraints that have | DataCons- 0..n
traint to be met by the operation output | traint (See
to be valid. Table 5.57)

5.8.37 TriggerAction

Description

A TriggerAction element models an action for triggering an action on an SUT

component.

Syntax

The TriggerAction element extends test_behaviour:AtomicTestAction (See Sec-

tion 5.8.15)

Table 5.94: Properties of the TriggerAction UTML element

Property Description Type Occu-

rence
trigger- A notification textual message to | xsd:string 1..1
Notification | describe the triggering action.
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5.8.38 BaseSendDataAction
Description

A BaseSendDataAction element is an abstract classifier that models an action
for sending data from one component to another one through a test port instance.

Semantics

BaseSendDataAction elements may only be created between ports that are
connected with each other. The connection between ports may have been de-
fined in a static test architecture associated to the contained test behaviour or
may result from a precedent dynamic connection using the SetupConnection-
Action element. It should be noted that the dynamic connection may occur
in a separate TestBehaviourActionDef element invoked earlier using the Test-
BehaviourInvocationAction.

The data to be sent by the BaseSendDataAction element may be defined
either by providing a reference to a previously designed test data instance (see
the transmittedDatalnstance property) or by a combination of a data type and a
collection of constraints based on which a concrete value would be generated by
the target test environment (see the transmittedDatalnstance).

Constraints

Constraint  Data must not be sent from one port to the same port.

self.sourcePort <> self.destPort

Constraint Data designed as incoming data (i.e. with their direction property
set to IN) must not be sent out through a BaseSendDataAction element.

(self.transmittedDatalnstance
.oclIsTypeOf(utml:: test_data :: TestDatalnstance) = true
or self.transmittedDatalnstance
.oclIsTypeOf(utml:: test_data :: MessageTestDatalnstance) = true
or self.transmittedDatalnstance
.oclIsTypeOf(utml:: test_data :: OperationTestDatalnstance) = true
or self.transmittedDatalnstance
.oclIsTypeOf(utml:: test_data :: SignalTestDatalnstance) = true)
implies
(self.transmittedDatalnstance
.oclAsType(utml:: test_data :: TestDatalnstance ). direction
<> utml:: test_data:: DataDirection ::IN)
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Constraint  According to the black-box testing paradigm, data must be sent out
only from components belonging to the test system and not from those belonging

to the SUT.

(self.theComponent.ocllIsTypeOf(OclVoid) = false)
implies
(self.theComponent. kind
= utml:: test_architecture :: ComponentKind : : TEST.COMPONENT)

Constraint  Data must not be sent from a port, if that port was assigned the
direction IN. Only ports defined as INOUT or OUT may be used for that purpose.

(self.sourcePort.ocllsTypeOf(OclVoid) = false)
implies

(self.sourcePort.direction

<> utml:: test_data:: DataDirection ::IN)

Constraint If a paramaterizable test data instance is used in a SendDataAction
element, then the required parameters must be provided to complete the test

data instance.

(self.transmittedDatalnstance.ocllIsTypeOf

(utml:: test_data :: MessageTestDatalnstance) = true)
implies

(self.transmittedDatalnstanceParameter —> size () =
self .transmittedDatalnstance.oclAsType

(utml:: test_data :: MessageTestDatalnstance)
.parameterDeclaration —> size ())

((self.transmittedDatalnstance
.oclIsTypeOf(OclVoid) = true)

implies

(self.transmittedDataType
.ocllsTypeOf(OclVoid) = false

and

self.dataConstraint — isEmpty () = false))
and

(

(self.transmittedDataType
.oclIsTypeOf(OclVoid) = true

or

self.dataConstraint —> isEmpty() = true)
implies

(self.transmittedDatalnstance
.oclIsTypeOf(OclVoid) = false)

)
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Constraint

Syntax

The BaseSendDataAction element extends test_behaviour:AtomicTestAction (See
Section 5.8.15)

Table 5.95: Fields and attributes of the BaseSendDataAction UTML

element
Property Description Type Occu-
rence
connection A reference to the connection to use | Connection 1..1
for sending the data. (See Ta-
ble 5.30)
sourcePort A reference to the source port in- | PortInstance 1..1
stance for transmitting the data. (See Ta-
ble 5.28)
expected- A reference to a data instance ex- | MessageTest- | 0..1
Operation- pected to be sent as response for | Datalnstance
Output this SendDataAction. (See Ta-
ble 5.55)
transmitted- | A reference to the test data instance | Abstract- 0..1
Datalns- to be transmitted. Datalnstance
tance (See Sec-
tion 5.7.21)
transmitted- | Optional parameter values for the | Parameter- 0..n
Data- transmitted test data instance. Def (See
Instance- Table 5.60)
Parameter
transmitted- | For asynchronous communication, | TestData- 0.1
DataType this property is a reference to a test | Type (See
data type based on which a concrete | Table 5.46)
value will be generated for trans-
mission. For synchronous commu-
nication, the parameters required
for the referred OperationTestData-
Type will have to be provided.
destPort Reference to the destination port. Portinstance 1.114
(See Ta-
ble 5.28)

5.8.39 SendDataAction
Description

A SendDataAction element models an action for sending asynchronous data
from one component to another one through a test port instance.

4Tmplicit
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Semantics

The SendDataAction element extends the test_behaviour:BaseSendDataAction el-
ement (See Section 5.8.38). Therefore it shares the same semantics as defined in
that section, with the only difference being that it is used for sending data in an
asynchronous communication scheme.

Constraints

The SendDataAction element inherits all the constraints defined for the BaseSend-
DataAction.

Syntax

SIP_AckRequestTypevalidACK

Figure 5.32: SendDataAction in UTML Test Behaviour Sequence Diagram

UTML SendDataAction elements are represented graphically by an arrow
linking the source port instance to the target port instance.

As displayed in Figure 5.32, the label associated to a SendDataAction follows
the format < Data Typeld> :< Datalnstanceld>, whereby < DataType> denotes the
identifier for the type of be transmitted and <Datalnstanceld> the identifier of
the data instance itself.

Table 5.96: Fields and attributes of the SendDataAction UTML element

Property Description Type Occu-
rence

transmitted- | A reference to the test data instance | Valuelns- 0..1
Datalns- to be transmitted. tance (See
tance Table 5.53)
data- A collection of constraints which in | Data- 1.1
Constraint combination with the transmitted- | Constraint

DataType property will be used | (See Ta-

generate a concrete value for trans- | ble 5.57)

mission.

5.8.40 SendSyncDataAction
Description

A SendSyncDataAction element models an action for sending synchronous
data from one component to another one through a test port instance.
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Semantics

The SendSyncDataAction element extends the test_behaviour: BaseSendDataAction
element (See Section 5.8.38). Therefore it shares the same semantics as defined
in that section, with the only difference being that it is used for sending data in
a synchronous communication scheme.

Constraints

The SendSyncDataAction element inherits all the constraints defined for the
BaseSendDataAction.

Syntax

>

Figure 5.33: SendSyncDataAction in UTML Test Behaviour Sequence Diagram

SendSyncDataAction elements are represented graphically by an arrow sim-
ilar to the one used for SendDataAction elements with the difference that the
decorator at the end of the arrow is a filled triangle similar to those used for
synchronous messages in UML sequence interaction diagrams.

Table 5.97: Fields and attributes of the SendSyncDataAction UTML

element
Property Description Type Occu-
rence

expected- A reference to a data instance | Operation- 0..1
Operation- expected to be sent as response | Output (See
Output for this SendSyncDataAction. It | Table 5.93)

should be noted that exceptions

supported by the called operation

are included among possible re-

sponses for this property.
transmitted- | A reference to the test data instance | Operation- 0..1
Datalns- to be transmitted. TestDatalns-
tance tance (See

Table 5.56)

transmitted- | For asynchronous communication, | TestData- 0..1
DataType this property is a reference to a test | Type (See

data type based on which a concrete | Table 5.46)

value will be generated for trans-

mission. For synchronous commu-

nication, the parameters required

for the referred OperationTestData-

FElement will have to be provided.
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element
Property Description Type Occu-
rence
output- A collection of constraints which | Parameter- 0..n
Parameter- the INOUT and OUT parameters | Constraint
Constraint provided by the SendDataAction | (See Ta-
must fullfil after the called opera- | ble 5.59)
tion returns.
destPort Reference to the destination port. PortInstance 1.1°
(See Ta-
ble 5.28)
return- This property is for synchronous | Timer  (See
Timer communication and indicates the | Table 5.83)
maximum delay for expecting the
operation call modeled by this
SendSyncDataAction to return.

5.8.41 BaseReceiveDataEvent
Description

A BaseReceiveDataFEvent element defines an abstract classifier modelling the
expection of incoming data from another source.

Semantics

In accordance to the black-box testing paradigm, the receiving port i.e. the port
instance at which the data is expected must not belong to an SUT component
but to a test component. Also in a similar manner than for actions for sending
data, a BaseReceiveDataFvent element can only be created between ports that
are connected.

Constraints

Constraint (Optional) A guard timer should be provided for every ReceiveDataFEvent
element to ensure that if the expected data is not received, then the timer’s ex-
piration would be used to stop waiting for the data and thus avoid a livelock
situation. If no timer is provided, then the default timer defined for the whole
test behaviour model (see Table 5.66) will be used instead.

self.timer.oclIsTypeOf(OclVoid) = false

SImplicit
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Constraint Data may only be received from components belonging to the test

system and not to the SUT.

(self.theComponent.ocllsTypeOf(OclVoid) = false)
implies

(self.theComponent. kind
= utml:: test_architecture :: ComponentKind : : TEST.COMPONENT)

Constraint Data reception must not be defined through ports designed to be

used exclusively for outwards communication, i.e. ports having their direction

property set to OUT.

(self.receptionPort.ocllIsTypeOf(OclVoid) = false)
implies
(self.receptionPort.direction

<> utml:: test_data:: DataDirection ::OUT)

Constraint The port from which the expected data is expected to originate from

must be different from the port at which it is expected.

self .receptionPort <> self.sourcePort

Constraint If a parameterized value is used to model the expected data, then
the parameter values for those parameters must be provided to complete the

definition.

(self.expectedDatalnstance.ocllsTypeOf
: MessageTestDatalnstance) = true) implies

(utml:: test_data:
size () =

(self.expectedDatalnstanceParameter —>
self.expectedDatalnstance.oclAsType
(utml:: test_data :: MessageTestDatalnstance)

.parameterDeclaration —> size())

Constraint The expected data must be specified either using a combination of
the data type and a series of constraints (for checking) or through a predefined
reusable value instance in which the required constraints would have been stated.

((self.expectedDatalnstance.ocllsTypeOf(OclVoid) = true)

implies
(self.expectedDataType.ocllsTypeOf(OclVoid) = false

and
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self.dataConstraint —>

and

(

isEmpty () = false))

(self.expectedDataType.ocllsTypeOf(OclVoid) = true

or

self.dataConstraint —>

implies

isEmpty () = true)

(self.expectedDatalnstance.ocllsTypeOf(OclVoid)

)

= false)

Syntax

The BaseReceiveDataEvent element extends test_behaviour: Atomic TestAction (See

Section 5.8.15)

Table 5.98: Properties of the BaseReceiveDataEvent UTML element

Property Description Type Occu-
rence
timer A reference to a timer to use for | Timer (See | 0..1
avoiding deadlock while expecting | Table 5.83)
the incoming data instance.
reception- The reception port at which the | Portlns- 1..1
Port component will listen to check for | tance (See
the incoming data. Table  5.28)
from package
test_architec-
ture
connection Connection via which data will be | Connec- 1.1
transmitted. tion (See
Table 5.30)
expected- Optional Reference to parameter | Parameter- 0..n
Datalns- values for the expected test data in- | Def (See
tancePara- stance. Table 5.60)
meter
storage A reference to a variable declaration | Variable- 0..1
in which the received data instance | Declaration
will be storaged for possible later | (See Sec-
usage. tion 5.8.25)
sourcePort A reference to a port instance from | PortInstance 1.1°
which the data is expected. (See Ta-
ble 5.28)

STmplicit
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5.8.42 ReceiveDataEvent
Description

A ReceiveDataFvent element models an action for expressing that a test com-
ponent is expecting another component to send some data.

Semantics

The ReceiveDataFEvent element extends the test_behaviour:BaseReceiveDataEvent
element(See Section 5.8.41). Therefore it shares the same basic semantics, with
the specificity that the data is being expected in a synchronous communication

scheme.

Constraints

(self.expectedDatalnstance
.oclIsTypeOf(utml:: test_data :: TestDatalnstance) = true
or self.expectedDatalnstance
.ocllsTypeOf(utml:: test_data :: MessageTestDatalnstance) = true
or self.expectedDatalnstance
.oclIsTypeOf(utml:: test_data :: OperationTestDatalnstance) = true
or self.expectedDatalnstance
.oclIsTypeOf(utml:: test_data :: SignalTestDatalnstance) = true)
implies
(self.expectedDatalnstance
.oclAsType(utml:: test_data:: TestDatalnstance)
.direction <> utml::test_data :: DataDirection ::0UT)

Syntax

SIPResponseType:a_200_OK_response[ 0.3 s ]

| !
| |
L= !
! !

Figure 5.34: ReceiveDataEvent in UTML Test Behaviour Sequence Diagram

UTML ReceiveDataFEvent elements are represented graphically by an arrow
linking the port instance at which data is expected to the originating port in-

stance.

As depicted on figure 5.35, the label associated to a ReceiveDataFvent follows
the format < DataTypeld>:< Datalnstanceld> [< TimerDelay> ], whereby < Datatype>
denotes the identifier for the type of test data expected, <Datalnstanceld> the
identifier of the data instance expected and <TimerDelay> the maximal delay
of the timer associated to the ReceiveDataFvent.
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Table 5.99: Properties of the ReceiveDataEvent UTML element

Property Description Type Occu-
rence
expected- A reference to the test data instance | Abstract- 1.1
Datalns- expected. Datalnstance
tance (See Sec-
tion 5.7.21)
storage A reference to a variable declaration | Variable- 0.1
in which the received data instance | Declaration
will be storaged for possible later | (See Sec-
usage. tion 5.8.25)
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5.8.43 ReceiveSyncDataEvent

Description

A ReceiveSyncDataFEvent element models an action for expressing that a test
component is expecting another component to send some data.

Semantics

In accordance to the black-box testing paradigm, the receiving port i.e. the port
instance at which the data is expected must not belong to an SUT component
but to a test component.

Constraints

self.expectedDatalnstance
.oclIsTypeOf(utml:: test_data
implies
(self.expectedDatalnstance
.direction <> utml:: test_data:: DataDirection ::OUT)

:: OperationTestDatalnstance) = true

((self.expectedDatalnstance.oclIsTypeOf(OclVoid) = true)

implies
(self.expectedDataType.ocllsTypeOf(OclVoid) = false
and

self.dataConstraint —> isEmpty() = false))

and

(

(self.expectedDataType.ocllsTypeOf(OclVoid) = true
or

self.dataConstraint —> isEmpty() = true)

implies

(self.expectedDatalnstance.ocllsTypeOf(OclVoid) = false)

)
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Syntax

- |

Figure 5.35: ReceiveSyncDataEvent in UTML Test Behaviour Sequence Diagram

UTML ReceiveSyncDataFvent elements are represented graphically by the
same kind of arrows as ReceiveDataFvent with the difference that the decorator
at the end of the arrow is a filled triangle similar to the one used for synchronous
messages in UML sequence interaction diagrams.

The ReceiveSyncDataFEvent element extends test_behaviour: AtomicTestAction
(See Section 5.8.15)

Table 5.100: Properties of the ReceiveSyncDataEvent UTML element

Property Description Type Occu-
rence
expected- A reference to the test data instance | Operation- 1..1
Datalns- expected. TestData-
tance Instance (See
Table 5.56)
operation- A reference to a test data instance | Operation- 0..1
Output expected to be returned by the test | Output (See
component receiving the data. Table 5.93)

5.8.44 MultipleReceiveDataEvent
Description

The MultipleReceiveDataFEvent element models the awaiting of successive
messages from another component. The associated test component instance
starts a loop, checking everytime that the incoming message is received. If the
indicated break-expression evaluates to true or the maximal number of expected

data instances is reached, then the component stops looping.

Semantics

The Multiple ReceiveDataEvent element extends the test_behaviour: ReceiveDataFvent
element (See Table 5.99). Therefore, it inherits the same basic semantics and as-

sociated constraints.

Syntax
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Table 5.101: Fields and attributes of the MultipleReceiveDataEvent
UTML element

Property Description Type Occu-
rence

break- A character string representing an | xsd:string 0.17

Expression expression which evaluates as a

boolean value.

mazx- A character string representing an | xsd:string 0.18

Instances- expression which evaluates as the

Ezxpression maximal number of expected in-

coming data instances.

5.8.45 TestArchitectureActionKind
Description

The TestConfigActionKind element is an enumeration used to classify possible
kinds of test behaviour actions on test architectures elements. Table 5.102 lists
the literals of that enumeration and their meaning.

Syntax

Table 5.102: Properties of the TestArchitectureActionKind UTML ele-

ment
Property Description
ARCHITECTURE- For a test action used to setup a test ar-
SETUP chitecture.
ARCHITECTURE- For a test action used to tear down an ex-
_-TEARDOWN isting (or running) test architecture.

5.8.46 TestSequence
Description

The TestSequence element is an abstract classifier modelling a sequence of test
actions in the UTML metamodel.

Syntax

The TestSequence element extends test_behaviour:TestAction (See Table 5.75)

"Mandatory, if mazInstancesExpression omitted.
8Mandatory, if breakExpression omitted.
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5.8.47 SendReceiveSequence
Description

The SendReceiveSequence element models a test sequence whereby the owner
test component sends some data to another one and immediately expects the
other component to respond by sending data.

Syntax

The SendReceiveSequence element extends test_behaviour: TestSequence (See Sec-
tion 5.8.46)

Table 5.103: Fields and attributes of the SendReceiveSequence UTML

element
Property Description Type Occu-
rence

sendData- The description of the action for | SendDataAction 1..1
Action sending out data. (See Ta-

ble 5.96)
receiveData- | A description of the action for re- | ReceiweData- 1..1
FEvent ceiving incoming response data. Event (See

Table 5.99)

5.8.48 TriggerReceiveSequence
Description

The TriggerReceiveSequence element models a test sequence whereby the
owner testcomponent expects another component to send some data, after it
has been triggered through some external means for doing so.

Syntax

The TriggerReceiveSequence element extends test_behaviour: TestSequence (See
Section 5.8.46)

Table 5.104: Properties of the TriggerReceiveSequence UTML element

Property Description Type Occu-
rence

trigger- Details on the action for triggering | Trigger- 1.1
Action the other component. Action  (See

Table 5.94)
receiveData- | Details on the action for receiving | ReceiveData- 1..1
FEvent incoming data. Event (See

Table 5.99)




5.8. TEST BEHAVIOUR DESIGN CONCEPTS 181

5.8.49 TestBehaviourElement

Description

The TestBehaviourElement element is an abstract classifier that serves as base
classifier for all other elements in a UTML test behaviour model.

Syntax

The TestBehaviourElement element extends UtmlElement (See Section 5.3.1)

5.8.50 CheckAction

Description

The CheckAction is an abstract classifier that serves as base for test behaviour
actions designed to perform some verifications in the test behaviour.

Syntax

The CheckAction element extends test_behaviour: Observation (See Section 5.8.20)

5.8.51 ExternalCheckAction
Description

The ExternalCheckAction element models an action whereby a manual check is
performed externally during test execution. In the lower-level test infrastructure,
the execution of an ExternalCheckAction should return an OK or NOK value
indicating whether the check was successful or not.

Syntax

The ExternalCheckAction element extends test_behaviour:CheckAction (See Sec-
tion 5.8.50)

Table 5.105: Fields and attributes of the ExternalCheckAction UTML

element
Property Description Type Occu-
rence
condition A textual description of a condition | xsd:string 1..1
to check on the component.
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5.8.52 ValueCheckAction

Description

The ValueCheckAction element models an action for verifying that the value
of a given variable meets certain constraints.

Semantics

The ValueCheckAction may be associated to a variable declaration designed
using the VariableDeclaration element or contain a behaviour invocation designed
using the BehaviourActionInvocation element. In the later case, the value re-
turned by the behaviour invocation will be checked against the provided con-

straints.

Constraints

Constraint If a reference to a defined variable is omitted in the ValueCheckAction
element, then a test behaviour invocation must be provided instead and vice-

versa.

(self.variable.ocllIsTypeOf(OclVoid) = true
and self.testBehaviourActionInvocation
.ocllIsTypeOf(OclVoid) = true) = false

Constraint  The invoked test behaviour type definition must define a return value
to be used in a ValueCheckAction element.

self . testBehaviourActionInvocation.ocllsTypeOf(OclVoid) = false
implies
(self.testBehaviourActionInvocation.testBehaviourActionDef
.ocllsTypeOf(OclVoid) = false

and

self .testBehaviourActionInvocation.testBehaviourActionDef
.responseDef.oclIsTypeOf(OclVoid)

= false

)

Syntax

The ValueCheckAction element extends test_behaviour: CheckAction (See Section 5.8.50)
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Table 5.106: Fields and attributes of the ValueCheckAction UTML ele-

ment
Property Description Type Occu-
rence
variable The variable whose value will be | Variable- 0..1
checked. Declaration
(See Sec-
tion 5.8.25)
test- A definition of a behaviour invo- | Variable- 0..1
Behaviour- cation whose return value will be | Declaration
Action- checked against the provided con- | (See Sec-
Invocation straints. tion 5.8.25)
dataCons- The set of constraints the data will | DataCons- 1.n
traint be checked against. traint (See
Table 5.57)

5.8.53 ActionBlock
Description

The ActionBlock element is an abstract classifier used for designing blocks of
complex behaviours in a UTML test model. Therefore, as it defines a container for
other kinds of test behaviour actions, all other elements of the UTML metamodel
requiring that functionality extend this classifier.

Syntax
Table 5.107: Properties of the SubActionBlock UTML element
Property Description Type Occu-
rence
testAction The sub-actions composing the ac- | TestAction 0.n
tion block. (See Ta-
ble 5.75)

5.8.54 SubActionBlock

Description

A SubActionBlock element models an action block that may be contained in
another action block.

Syntax

The SubActionBlock element extends test_behaviour: ActionBlock (See Section 5.8.53)
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Table 5.108: Properties of the SubActionBlock UTML element

Property Description Type Occu-
rence
the Compo- A reference to the owning test com- | Component- 1..1
nent ponent. Instance (See
Table 5.29)

5.8.55 StructuredTestAction
Description

The StructuredTestAction element is an abstract classifier modelling a struc-
tured test action in UTML, i.e. an action that can be decomposed in several
other actions called sub-actions.

Semantics

The StructuredTestAction element extends the test_behaviour: TestAction (See Ta-
ble 5.75) and the test_behaviour:ActionBlock (See Table 5.107) elements. There-
fore, it models an action that may not only contain other actions refered to as
sub-actions, but also be contained itself in other action blocks.

5.8.56 RepeatTestAction

Description

The RepeatTestAction element models a loop in a UTML test model. Fig-
ure 5.36 depicts an example UTML RepeatAction in its graphical representation.
Semantics

The RepeatTestAction element defines a test behaviour block used to model a loop
in UTML. All sub-actions contained in the RepeatTestAction will be repeated
sequentially following one of the following schemes:

o If the breakExpression property is provided, then repeat the contained ac-
tions until the defined breaking expression is evaluated to true.

o If the continueConditionExpression property is provided, then repeat the
contained actions as long as the provided expression evaluates to true.

o If the maxNumberOfTimes property is provided, then repeat the contained
actions for the specified number of times.

e If the timer property is provided, then repeat the contained actions until
the referenced timer expires.
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Syntax

<<Repeatf-> while (coufter < Max)|

<<External Action=:=
Switch on the SUT

| MeszageType:impulselata

L: MeszageType responsebatal 0.0 5 ] |

<<Behaviour Invocation =
TestBehaviour ActionDef1()

Figure 5.36: RepeatAction in UTML Test Behaviour Sequence Diagram

The RepeatTestAction element extends test_behaviour:StructuredTestAction
(See Section 5.8.55)

Table 5.109: Properties of the RepeatTestAction UTML element

Property Description Type Occu-
rence
break- A character string describing the | xsd:string 0..1°
Ezxpression expression, which if true would stop
the loop.
mazRepeat- | A String literal which evaluates to | xsd:string 0.11°
Times- the maximal number of times to go
Expression through the loop.
continue- A String literal which expresses the | xsd:string 0.1
Condition- condition required by the loop to
Ezxpression continue execution.
timer Reference to a timer whose expira- | Timer  (See | 0..1'2
tion will stop the loop Table 5.83)

5.8.57 IfElseAction
Description

The IfElseAction element models an If-Else block in a UTML behaviour model.

9Mandatory, if maxRepeatTimesExpression and continueConditionExpression are
omitted.

10Nandatory, if breakExpression and timer are omitted.

"'\ andatory, if breakExpression and timer are omitted.

12Mandatory, if breakExpression and continueConditionExpression are omitted.
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Constraints

Constraint  The condition for an IfElseAction element must be provided, either
as a character string literal or as a reference to a previously defined value instance
of type boolean or extension thereof.

((self.conditionLiteral.ocllsTypeOf(OclVoid) = true
or self.conditionLiteral="")

and self.conditionReference

.oclIsTypeOf(OclVoid) = true) = false

Syntax

< <If Ebe=> if (FIC_REDIRECTION_SUPPORTED]]
= <If o> |

httpResponse:httpResponse_302 -= v_inResp_2

e (S
[T_MaxDelay]

httpRequest:httpRequest_GET_redirection {p_resp = v_inFesp_9)

httpResponse:httpResponse_200_OF

[T_MaxDelay]

<2 <Else Ackion s

httpResponse: httpResponse_200_0kK
e T T T I ]
[T_MaxDelay]

Figure 5.37: IfElseAction in UTML Test Behaviour Sequence Diagram

Figure 5.37 depicts an example IfElseAction element in a UTML test sequence
diagram, which illustrate the associated concrete syntax. The graphical element
consists of a mandatory If-block and an optional Else-Block. In each of those
blocks test-actions can be designed using the same toolset as for other UTML
elements. Table 5.110 displays the structure of the IfElse element.

Table 5.110: Properties of the IfElseAction UTML element

Property Description Type Occu-
rence
condition- A character string describing the | xsd:string 0.1%
Literal expression to be used as condition
for the if-statement.

3Mandatory, if conditionReference is omitted.
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Table 5.110: Properties of the IfElseAction UTML element

Property Description Type Occu-
rence
condition- A reference to value instance to be | Abstract- 0.1
Reference used as condition Datalnstance
(See Sec-
tion 5.7.21)
ifAction A block containing actions to be ex- | IfAction (See | 1..1
ecuted if the condition is evaluated | Table 5.111)
to true
elseAction A block containing actions to be ex- | ElseAction 0..1
ecuted if the condition is evaluated | (See Ta-
to false ble 5.112)

5.8.58 IfAction

Description

The IfAction element models the part of an If-Else block that applies if the
condition specified is evaluated to true.

Syntax

The IfAction element extends test_behaviour:SubActionBlock (See Section 5.8.54)

Table 5.111: Properties of the IfAction UTML element

Property Description Type Occu-
rence
parent- The parent action in which this ac- | TestAction 1..1
Action tion is contained. (See Ta-
ble 5.75)

5.8.59 ElseAction

Description

The ElseAction element models the part of an If-Else block that applies if the
condition specified is evaluated to false.

Syntax

The ElseAction element extends test_behaviour:SubActionBlock (See Section 5.8.54)

YMandatory, if conditionLiteral is absent.
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Table 5.112: Properties of the ElseAction UTML element

Property Description Type Occu-
rence
parent- The parent action in which this ac- | TestAction 1..1
Action tion is contained. (See Ta-
ble 5.75)

5.8.60 AltBehaviourAction
Description

The AltBehaviourAction element models a block of alternative behaviours in a
UTML model.

Constraints

((self.conditionLiteral.oclIsTypeOf(OclVoid) = true
or self.conditionLiteral="")

and self.conditionReference

.oclIsTypeOf(OclVoid) = true) = false

Constraint
Syntax

|

<<l Behaviour = TO0C: A4dd description] |

< <hlt =3 | I

| |

| httpResponse: httpResponse_200_OkK |

Sl e el Il 1

| [T_MaxDelay] |

| |

| |

| |

I I

<<alb=F | | |

i httpResponse: httpResponse_302 - v_inResp_& I
F__"""____"_ET:ﬁaED_eE\,T] ________________ 1|

| httgRequesk:httpRequest_GET_redirection (p_resp = v_inFesp|8) =]

I |

lo___ | ____HtpResponse:hitpResponse 200 OK | |

r [T_MaxDelay] ]l

Figure 5.38: AltBehaviourAction in UTML Test Behaviour Sequence Diagram

Figure 5.38 depicts an example AltBehaviourAction element as represented
in a test sequence diagram. As shown in that figure, the concrete syntax of the
AltBehaviourAction element is the same as for UML sequence diagrams’ option
elements. Table 5.113 describes the element’s abstract syntax via the properties
it includes.
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Table 5.113: Properties of the AltBehaviourAction UTML element

Property Description Type Occu-
rence
condition- A character string describing the | xsd:string 0.1%
Literal expression to be used as condition
for evaluating the alternative be-
haviour action.
condition- A reference to value instance to be | Abstract- 0.1 16
Reference used as condition Datalnstance
(See Sec-
tion 5.7.21)
altAction Blocks containing alternative ac- | AltAction 0..n
tions to be executed if their asso- | (See Ta-
ciated triggering event is observed ble 5.114)
interleave A flag indicating whether interleave | Boolean 0.1
operation should apply for the al-
ternatives or not. If this property
is set to true, interleave behaviour
will apply.
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5.8.61 AltAction

Description

The AltAction element models an alternative sub-block within an AltBehaviourAc-
tion element block.

Syntax

The AltAction element extends test_behaviour:SubActionBlock (See Section 5.8.54)

Table 5.114: Properties of the AltAction UTML element

Property Description Type Occu-
rence

parent- The parent action in which this ac- | TestAction 1..1
Action tion is contained. (See Ta-

ble 5.75)
triggering- TestEvent 1..1
Event (See Sec-

tion 5.8.21)

15Mandatory, if conditionReference is omitted.
6Mandatory, if conditionLiteral is absent.
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5.8.62 ActivateDefaultAction
Description

The ActivateDefaultAction element models the activation of a default be-
haviour to be checked implicitly, if explicitly specified test behaviour options do
not apply.

Syntax

The ActivateDefaultAction element extends test_behaviour:Atomic TestAction (See
Section 5.8.15)

Table 5.115: Properties of the ActivateDefaultAction UTML element

Property Description Type Occu-
rence
default- A reference to the default behaviour | Default- 1..1
Behaviour- definition, that needs do be acti- | BehaviourDef
Def vated. (See Ta-
ble 5.82)

5.8.63 DeactivateDefaultAction
Description

The DeactivateDefaultAction element models the activation of a default be-
haviour to be checked implicitly, if explicitly specified test behaviour options do
not apply.

Syntax

The DeactivateDefaultAction element extends test_behaviour:AtomicTestAction
(See Section 5.8.15)

Table 5.116: Properties of the DeactivateDefaultAction UTML element

Property Description Type Occu-
rence
activate- A reference to the default activation | Activate- 1.1
Default- to which this deactivation will ap- | DefaultAction
Action ply. (See Ta-
ble 5.115)
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5.9 Mapping UTML Concepts to Existing (Test Scripting)
Languages

Model transformation is an essential aspect of MDE. The transformation from
PIM to PSM is a model-to-model (M2M) transformation, but eventually models
will mostly be transformed into lower level textual notations through a model-
to-text (M2T) transformation. As a language defining concepts at a higher level
of abstraction, UTML can be mapped to any lower-level notation used for im-
plementing executable test scripts. This transformation can be performed in-
dependently of whether the notation is an intermediary scripting notation (e.g.
TTCN-3) to be executed in a particular test execution environment, or a generic
purpose programming language instrumented for test automation (e.g. JAVA,
Python, C, etc.).

Given the importance of model-transformation to the MDE-process, the Ob-
ject Management Group (OMG) has introduced a collection of standard notations
for specifying such transformations in a tool-independent manner. While the
MOF Model-to-Text(MOFM2T) Transformation Language (MTL) [73] can be
used for transforming MOF metamodel instantiations into textual notations, the
QueryViewsTransformation (QVT) [71] language is more appropriate for speci-
fying transformations from one metamodel into another one. Alternatively, the
ATLAS Transformation Language (ATL) [92] may be used for that purpose, al-
though it is not an OMG standard.

In the next sections, possible mapping approaches from UTML into selected
notations are described. It is worth noting that for the sake of conciseness,
these are just proposals for mapping covering a selection of elements from the
UTML notation, because introducting a complete mapping would have widely
exceeded the scope of this thesis. Also, the proposed mapping cannot be viewed
as normative, because depending on the intended purpose, different mapping
schemes can be developed and applied to fit the constraints of existing testing
infrastructure or test equipments.

5.9.1 Mapping to TTCN-3

The mapping to TTCN-3 proposed in this section is based on a M2T transfor-
mation. That approach was chosen, mainly because the TTCN-3 metamodel is
not part of the standard for that language. Moreover, a transformation via that
metamodel would have just unnecessarily introduced an additional step in the
process, because the end target notation for TTCN-3 is its textual form and not
its metamodel form. In fact, no tool support for working directly with instances
of the TTCN-3 metamodel was known to the author as those lines were written.

The mapping defines a transformation rule for each of the selected UTML
elements it addresses. The transformation rules are expressed using the OMG’s
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MTL standard language, which allows the specification of complex transformation

rules through a syntax adopted from the OCL langage.

Table 5.117: Example UTML to TTCN-3 Mapping

UTML Element

TTCN-3 Mapping

TestModel, TestArchitecture- | module

TypesModel, TestDataModel,

TestArchitectureModel, Test-

BehaviourModel

MessageTestDataType record, union, enumerated (depending on type selector in
UTML)

MessageTestDatalnstance template

OperationTestDataType operation

OperationTestDatalnstance template

TestBehaviourActionDef function

Testcase

See Section B.1.1 for details.

SendDataAction See Section B.1.2 for details.
ReceiveDataFEvent See Section B.1.3 for details.
SendDiscardAction See Section B.1.4 for details.
WaitAction See Section B.1.5 for details.

SetupConnectionAction

See Section B.1.6 for details.

CloseConnectionAction

See Section B.1.7 for details.

Timer timer

State N/A

DefaultBehaviourDef See Section B.1.8 for details.
Stop TimerAction See Section B.1.9 for details.
StartTimerAction See Section B.1.10 for details.

ValueCheckAction

See Section B.1.11 for details.
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5.9.2 Mapping to JUnit

The mapping for JUnit is provided using the same approach as for TTCN-3.
Again, the mapping rules are specified as MTL transformation rules, taking as
input the UTML metamodel element to be transformed and generating JAVA
code suitable for execution via the JUnit testing engine.

Table 5.118: Example UTML to JUnit Mapping

UTML Element JUnit Mapping

TestModel, TestArchitecture- | Testsuite class

TypesModel, TestDataModel,

TestArchitectureModel, Test-

BehaviourModel

MessageTestDataType context-specific (e.g. Class definition)

MessageTestDatalnstance context-specific (e.g. Object Instantiation)

OperationTestDataType method declaration

OperationTestDatalnstance method invocation (in connection with a SendDataAction)

TestBehaviourActionDef function

Testcase JAVA class extending JUnit’s Testcase class (See Section B.2.1
for details)

SendDataAction context-specific (e.g. method invocation, Remote Procedure
Call (RPC), etc.)

ReceiveDataFEvent context-specific

SendDiscardAction context-specific

WaitAction See Section B.2.2

Setup ConnectionAction context-specific, depending on the SUT

CloseConnectionAction Context-specific (SUT-dependent)

Timer JAVA Object emulating a timer

State N/A

DefaultBehaviourActionDef N/A

Stop TimerAction Timer object stop

StartTimerAction Timer object start

ValueCheckAction assertTrue statement

5.10 Summary

This chapter has presented the concepts of the UTML notation and their graph-
ical representation in various forms of diagrams. A metamodel approach was
chosen to express those concepts to ensure that they are completely defined and
thus applicable in a practical sense. The work presented in this chapter is closely
related to the UML Testing Profile proposed by the OMG. However most of the
concepts defined by that profile remain vague and hardly applicable for solv-
ing real-life test engineering problems. Therefore, conciseness, preciseness and
practicability were the main driving forces in defining the UTML notation.
Section 5.2.1 has presented graphical visualisation elements for UTML. How-
ever, it is worth noting that some technical constraints had to be taken into
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account while selecting the graphical elements. The decision on which figure to
use for each of the visual UTML elements had to ensure that the selected fig-
ure can also be implemented and used in the framework used for prototyping.
Therefore, those figures leave room for further improvements at a later stage.

Section 5.9 has described how UTML concepts map to existing notations used
for implementing executable test scripts. Example mappings were provided for
TTCN-3 and JUnit, clearly demonstrating that similar mappings could be added
for any other language, depending on the targetted test environment.

However, defining a notation for pattern-oriented test engineering also implies
providing an appropriate tool set for using that notation in real-life case studies.
In that process, new ideas emerge on potential improvements to the notation itself
and the associated tool set towards higher usability, robustness and expressivity.
In the next section, an extensible architecture for such a tool chain is described,
including a prototype implementation aimed at supporting the evaluation of the
proposed methodology through the case studies.



Chapter 6

Evaluation: Implementation and
Case Studies

6.1 Introduction

This work started with the intuitive assumption that model-driven development
techniques bear the potential of significantly improving the test development
process, both quantitatively and qualitatively. That assumption originates from
claims of similar gains from applying MDE to software system development.
However, although it may sound plausible and even obvious, providing scientific
evidence to support it is less trivial than it might appear. This has lead some
authors to even question the real benefits of MDE as a whole. E.g. Mohagheghi
et al [111] ask a bit provocatively:

Where is The Proof?

The task of verifying that assumption appears to be even more difficult in the
context of model-driven test development, as it is advocated in this work. One
of the reasons for that difficulty is the quasi non-existence of published practical
experiences of applying the methodology described in this work. This might find
its explanation in the scarcity of software available on the market for support-
ing such a methodology [134], combined with the reticence from the industry
to publish results related to product quality assessment. In fact, compared to
the large number of MBT tools featuring automated generation of tests from
system models [14, 156], the number of existing tools to support MDT is in-
significantly low. The only list of available MDT tools similar to those provided
by [14, 156] that could be found for this thesis is the one provided by Torres
et al [153]. Although some of the tools described in that work claim to provide
support for model-based manual test case construction, the methodology they

195
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use was found to be inappropriate for the type of experimentation required to
verify the hypothesis of this thesis. Therefore a collection of prototype tools
were developed during this work to assess our methodology and the process it
supports. Although this required a significant effort, those software design and
implementation activities were also beneficial for the work, because they helped
identify several requirements and issues through practical experimentation, that
would have been difficult to anticipate otherwise.

Therefore, an important part of the work in this thesis consisted in designing
and implementing an appropriate toolset to support the pattern-oriented model-
driven test development methodology, so that it could then be evaluated in some
real-life case studies.

This chapter describes the architecture designed for that tool set, the im-
plementation approach and the prototype implementation resulting from that
process.

After the prototype tool has been presented, a small scale example is presented
to illustrate how pattern-oriented test engineering can be applied in a real-life
test development project. Also, four case studies conducted during this work to
evaluate the proposed methodology are presented. The first case study features a
conformance test suite for the IP Multimedia Subsystem (IMS) and was used to
measure the impact of the approach on the test development process in terms of
productivity gain, to verify the assumption made intuitively at the beginning of
the work. Additionally, three further case studies targeting a variety of systems
and domains are described.

6.2 Implementation: The UTML Eclipse Plug-in Tool chain

6.2.1 Requirements on The Model-Driven Test Engineering Toolset

As in any software development project, the first development phase for the
UTML MDT toolset consisted in gathering user requirements.

Jennitra [5] lists a selection of requirements on functional tests to address the
growing challenges faced with in testing todays, in particular in the context of
extreme programming and agile methods. Those requirements are:

e Ease to write: Writing functional tests should be an activity that remains
accessible to staff with little technical background and that can produce
results quickly to ensure that it does not become a bottleneck for other
activities of the software system development process.

e Readability: Functional tests are shared artifacts between stakeholders in
the software product’s business process. Therefore, they must remain read-
able, so that all parties can easily understand what each test case verifies.
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e Correctness: Despite being readable, functional tests must be correct to
ensure that products are not deployed with failures that are generally more
costly and difficult to identify and to correct, once the software is deployed.

e Maintainability: Tests are essential to ensure the quality of software prod-
ucts. However, it cannot be assigned too much resources. Therefore the
effort in maintaining tests should not be main cost factor in the development
process and afterwards.

e Locatability: The tests should be organised in such a way that finding a
given test should be possible quickly and without too much effort.

For these requirements to be fulfilled by tests scripts and the test models out of
which they are generated, the test modelling toolset must also take them into
account.

6.2.2 The Proposed Architecture

Legacy Test System
Artifacts Model
| [
Frontend
TTCN-3, XML,WSDL, Python, UML ... J Plugins

N AV
-

N
UTML Model
Editor
\_ J
1 | N
[ TTCN-3, XML, XUnit, Python ... Bpalﬁgﬁ";d

A4 4

Documen- Integrated
tation Test
Scripts

Figure 6.1: Architecture of the UTML Prototype Toolchain
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Figure 6.1 displays an architecture designed for building a prototype applica-
tion to meet the requirements listed in section 6.2.1. As depicted in that figure,
the prototype application is built around a UTML model editor that forms the
core of the architecture. The UTML model editor provides a graphical user in-
terface, through which users are able to perform all types of operations on test
models (e.g. creating, modifying, transforming, analysing, etc.). To ensure that
those test models can be shared among distributed users, they are stored in a
common repository, as depicted on the right-hand side of the figure.

The need to incorporate legacy tests in any new testing approach has al-
ready been highlighted and is viewed as an important issue by the industry [122].
Therefore, additionally, to support the reuse of legacy test artifacts designed
using other notations, the tool provides a flexible application programming inter-
face (API) through which transformators from those notations into UTML can
be plugged-in at runtime. Those user-defined transformators will add to a de-
fault set of standard transformators or front-end plugins that are provided by the
application to support automatic transformation from established test notations
(e.g. TTCN-3) to UTML.

Following the same principle, another API is provided to support the integra-
tion of so-called back-ends, i.e. transformators from UTML abstract test models
to concrete executable test scripts source code.

The presence of front-ends and back-ends enables the usage of the tool to
perform round trip engineering. Using the front-ends, legacy test artifacts can be
imported into UTML so that they can visualised and analysed more easily to be
used as a base for new test model elements. Then, using the back-ends the new
test model will be transformed back to the lower-level test notation for further
processing, leading eventually to test execution.

6.2.3 Prototype Implementation
Implementation Approach

Interestingly, an MDE approach was chosen for the prototype toolset itself.
Therefore, this work provided a unique opportunity for not just evaluating the ap-
plication of the MDE approach to test development, but also to product software
development in general.

The implementation approach is based on a specification of the UTML meta-
model as an EMF (Eclipse Modelling Framework) ECore model. EMF is one of
the most popular MDE frameworks available on the market. It is integrated in the
Eclipse framework and provide a series of tools to support modelling and model
transformation into numerous programming languages (JAVA, C++, PHP, etc.)
and modelling notations (UML, SysML, etc.). ECore is an implementation of
the OMG’s Meta-Object-Facility (MOF') concept for the Eclipse framework. Us-
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Figure 6.2: UTML Prototype Toolchain’s Implementation Approach

ing the facilities provided by EMF an automatic generation of a toolset from the
metamodel can be performed, producing an editor for the notation represented by
the metamodel. However the automatically generated editor is exclusively based
on the information provided in the metamodel. Therefore, it lacks some essen-
tial context information required to improve the usability of the resulting tools.
Those context information can be added manually to the generated JAVA code.
Using appropriate annotations in Javadoc comments, it can be ensured that the
manually modified code is not destroyed by following generation processes.

To provide a graphical editor implementing the visualisation of UTML ele-
ments discussed in Chapter 5 an MDE approach was applied again. The Open-
Source Toolkit for Critical Systems (TOPCASED) [148] is a framework based on
EMF and allowing the definition of graphical representation for elements of an
ECore metamodel. The mapping between elements of the ECore metamodel and
their graphical representation is described in so-called diagram configurator files.
For each of the diagram types defined in Section 5.2.1, a diagram configurator file
was specified in XML, based on which source code was generated automatically,
using the facilities of TOPCASED.
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Implementation of Test Patterns As discussed in Section 4.3.3 an approach com-
bining the generative approach with the tool environment support approach was
chosen to specify test patterns in this thesis. To implement that approach, three
groups of features are provided with the prototype tool, additionally to the con-
straints already embodied in the UTML metamodel.

Policies on actions One way of implementing patterns in a modelling tool
consists in defining policies, based on which operations on graphical elements of
the notation would be allowed or disallowed, depending on the current context.
The prototype tool implemented in this thesis provides the possibility for acti-
vating or deactivating the enforcement of those policies, depending on the main
purpose of the test modelling activity. If the test modelling activity is performed,
just to provide a visual documentation to a test suite and it is not intended to
generate any test scripts out of the test model, then the policies should be de-
activated, with the logical consequence of a higher probability that the resulting
test models may be syntactically and semantically faulty. On the other hand, if
emphasis is laid on the correctness of the test model with the aim of transforming
it into executable test scripts for a target test execution environment, then the
policies should be activated and will make it impossible to perform disallowed
actions on graphical elements of the test model.

OCL-Constraints OCL-constraints enable an online or offline validation of
the test model or elements thereof to ensure that the semantical requirements with
regard to the underlying patterns are met. Online validation refers to the fact
that the test models are validated automatically every time a modification has
occurred, whereas offline validation refers to on-demand validation triggered by
a corresponding request. The prototype tool implements all the OCL constraints
defined for the UTML notation in Section 5. Thus a total of 54 OCL-constraints
are used to semantically check the test models. Listing 6.1 shows an example
OCL-constraint used to ensure that connections between ports belonging to the
same component are identified and disallowed.

inv different_components_for_port_connection:
(self.sourcePort.ocllsTypeOf(OclVoid) = false

and self.destPort.ocllsTypeOf(OclVoid) = false)

implies

(self.sourcePort.theComponent <> self.destPort.theComponent)

Listing 6.1: Example OCL-Constraint

Wizards Wizards provide support to test modelling activities by guiding
the process and ensuring that the test expert is provided the right set of available
tools and possible choices at each step of that process. As a proof of concept,
the prototype tool implemented in this thesis provides two main categories of
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wizards: creation wizards and transformation wizards. While creation wizards
provide guidance for the instantiation of new elements to existing or newly created
test models, transformation wizards guide the test designer through the process
of creating another view to a test model from an existing view. An example of
transformation wizard allows the creation of a test behaviour diagram (i.e. the
behaviour view on a test model) from an existing test architecture diagram (i.e.
the architectural view). Also, to illustrate the potential of wizards for pattern-
oriented test modelling, the prototype tool implements a wizard for creating new
test architectures based on the architectural test patterns described in Section A.3
of Appendix A.

Technical Challenges

Several technical challenges were faced while developing the prototype tools. One
of the main difficulties originated from poor documentation of the many features
present in the TOPCASED platform. However, once this hurdle was crossed
and the mechanisms of the platform were understood, it proved a very efficient
tool for implementing a visual DSML like UTML. Customisation of the source
code generated with TOPCASED also worked smoothly. Even whenever the
code needed to be newly generated (e.g. after a modification to the meta-model
or to the graphical editor’s model), the manually modified code would be left
untouched, provided it was annotated properly beforehand.

The MDTester Prototype Tool

Figure 6.3 displays a screenshot of the MDTester (Model Driven Test EngineeR-
ing) application developed as a proof of concept for this thesis. MDTester is
provided either as a stand-alone Eclipse Rich-Client Platform (RCP) applica-
tion or as a set of Eclipse plugins, which can installed on applications based on
the Eclipse platform to provide an Integrated Development Environment (IDE)
for modelling test systems, transforming the latter into executable test scripts,
execute them and analyse the results.

For that purpose, MDTester provides the following features:

e Graphical Editor for all types of test diagrams defined by the UTML meta-
model

e Tabular editor for all types of UTML test models.

e Test modelling policies based on black-box test patterns (e.g. filtering of
selection choices, allowance/proscription of actions on test model elements)

e Automatic validation of test models against the UTML metamodel
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Automatic validation of test models against test patterns constraints ex-
pressed in the OMG’s OCL notation

e Integration of externally defined OCL constraints for automatic validation
of test models

e Automatic transformation of UTML test models into test scripting nota-
tions to obtain executable test scripts. Currently supported: TTCN-3,
JUnit, XML.

e Plug-in API to support the seamless integration of additional external trans-
formators

Please refer to MDTester’s complete installation and user guide [159] for de-
tails on how to install and to use the prototype tools.

6.3 Evaluation: Example and Case Studies

6.3.1 An Example: Pattern Oriented MDT for a Web Application
Introduction

This section describes an example usage of MDTester, the prototype implemen-
tation developed in this work, to design functional tests for a web application,
following the pattern-oriented test engineering approach. Firstly, the UTML test
model designed for the test suite is described, then the process of transforming
that test model into executable tests is explained.

The Test Model

Figure 6.4 displays an overview of the UTML test model for the web application
example. As depicted in that figure, the test model comprises three submodels,
with the test behaviour model in a central role. The test behaviour model refers
to the test architecture types model and the test data model for accessing test
architecture type definitions and test data model elements respectively. Also
visible in that figure is the fact that the test objectives and the test procedures
model have been omitted from the root test model. Furthermore, a separate test
architecture model (e.g. to define static test architectures) was omitted as well.
This is an illustration of how optional test models might be skipped in the process
towards executable test cases. For example, in case of harsh time constraints for
the test project under development or for small-scale projects where no benefits
are expected from such formalism in gathering test requirements and describing
test procedures.
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Figure 6.4: Overview of UTML Test Model for HT'TP example
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Figure 6.5: Test Data Type Definitions for HT'TP example

Modelling Test Data Figure 6.5 shows a view on the test data model, displaying
the test data type definition for a HTTP request message. As depicted in that
figure, the HT'TP request message type is modeled as MessageTestDataType
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UTML element containing three fields. The figure also displays the type defini-
tions associated to that data type, as well as the links between type fields and
their associated type definitions (dashed lines between fields and type definitions).
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htpRequest POST

requestLine ==

requestling ==
requestline_FOKUS_GET
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ELET - requestLine_GET_host
requestLine ==
requestLine_GET_host
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requestiine ==
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Figure 6.6: Elements of UTML Test Data Model for HI'TP example: Impulses

After the types have been defined, modelling data instances, i.e. more or less
concrete values to be used for sending impulses to the SUT or verify its response,
is the next step. Figure 6.6 and figure 6.7 show examples of test data instances
designed for this example. The model elements displayed on Figure 6.6 represent
data instances suitable to be used to describe impulses on the SUT, while those
on Figure 6.7 represent data instances for modelling expectations on the SUT’s

responses.
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Figure 6.7: Elements of UTML Test Data Model for HT'TP example: Responses
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Figure 6.8: Structure of Test Behaviour Model for HT'TP example

Modelling Test Behaviour Figure 6.8 displays an overview of the test behaviour
model’s tree structure for the web testing example. The behaviour model con-
sists of a single group of testcases containing two testcases. The first test case
(Testcase_GET _redirect) checks that the SUT (Web server) performs HTTP redi-
rection correctly, when submitted with a given URL as input, while the second
test case (Testcase_.GET_-OK) verifies that the SUT responds with a normal 200
OK HTTP response, if provided a valid URL as input. Figure 6.9 displays the



6.3. EVALUATION: EXAMPLE AND CASE STUDIES 207

UTML test sequence diagram for the Testcase. GET _redirect test case, which re-
flects the behaviour expected from a web server performing HTTP redirection.

webClient webServer

clientPort serverPort

I T

! |

| !

| |

l ttpRequest:httpRE quest_GET_url {p_host = "htkp: /e, F Jkus.Frau@PFer.de"}
. ]

|< _______ httpResponse:htkpResponse_302[ 2.5 (] _|

httpllequest:h tpRequest_GET_redirection (p_resp = v_lastRequdse]l

hifpResponse:httpResponse_200_Ck[ 2.5|s ]

Figure 6.9: Test Behaviour Diagram for HTTP redirecting scenario

Test Execution

To execute the tests modeled for this case study, it was chosen to use the JUnit
test framework. That choice was mainly motivated by the existence and avail-
ability of the HT'TPUnit framework that relies on JUnit to provide a convenient
API for performing all types test operations using the HT'TP protocol. The aim
was to avoid the additional burden of designing and implementing yet another
test execution environment or of implementing the complex adaptation layer for
one of the existing test execution environments.

However, a prerequisite to test execution is the transformation of the test
model into a notation that can be handled by the target test framework (JAVA-
JUnit in this case). The transformation was achieved automatically, using the
MDTester tool’s JUnit export-plugin. Listing 6.2 and listing 6.3 display excerpts
from the source code automatically generated from the UTML test model. While
listing 6.2 displays the JUnit test suite mapping the WebTestExample_BehaviourModel
test behaviour model, listing 6.3 displays the source code mapping the Test-
case_GET redirect test case modeled on figure 6.9

import de.fraunhofer.fokus.testing.web. http.x;
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import junit.framework. Test;
import junit.framework. TestSuite;

EL

* This JUnit test suite has been automatically generated from a UIML test
*+ model. Modifications on this source code will not

* be taken into account by the generator in subsequent

*+ operations Please make sure you keep a copy of

* the file , before re—starting the transformation process.

*/

public class WebTestExample_BehaviourModel {

public static Test suite() {

TestSuite suite = new TestSuite (” WebTestExample_BehaviourModel”);
suite.addTestSuite (Testcase_GET _redirect.class );
suite.addTestSuite (Testcase . GET_OK. class );

suite.addTestSuite (MyTestcase. class);

return suite;

}
}

Listing 6.2: Generated JUnit Code for the HTTP example

/%

% @purpose TP version:

*+ @Qdesc: A testcase featuring the HTTP GET command and its wusage
* to retrieve a web page content

* Test procedures:

*

*/

public class Testcase_GET_redirect extends HttpTestcase {

public Testcase_.GET_redirect () {
super (” Testcase_GET _redirect”, ”Automatically generated test case”);

}

public void testTestcase.GET_redirect () throws Exception {
// Setup architecture

// Preamble

// Test body

createHttpRequest (" http://www. fokus . fraunhofer.de”);
setURL (” http://www. fokus . fraunhofer.de”);

setMethod (MethodKind .GET() ) ;

sendHttpRequest (5);

HTTP_Response v_lastResponse = getHttpResponse ();
checkHttpResponseDelay (5);

checkHttpResponse_code ("EQUALS” , 7302”);

createHttpRequest (v_-lastResponse . getHeader (” location”));
setURL(v_lastResponse.getHeader (” location”));

setMethod (MethodKind .GET() );
sendHttpRequest (5);
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checkHttpResponseDelay (5);
checkHttpResponse_code ("EQUALS” , 7200”);
// Postamble

}

}// end Testcase.GET _redirect

Listing 6.3: Generated JUnit source code for the Testcase_GET _redirect test case
displayed in figure 6.9

One of the biggest benefits of generating JUnit tests in combination with Eclipse-
based (test) development environments, is their ease of use, additionally to the
fact that they can be executed without any further implementation effort re-
quired. Figure 6.10 shows a screen capture of the test execution window, which
is integrated in the development environment. However, it is worth noting that
in case of a JUnit assertion failing, thus leading to a FAIL verdict for the test
case, an analysis of the reasons for failure appears to be less convenient.

[# package Explorer | 'E: Hierarchy [HTU nit &3 I =0
Finished after 0,344 seconds =
gt | @ © i -
Runs: 3/3 B Errors: 0 H Failures: 0

|- Eit] Testcase_GET_redirect (0,281 53
f’j Testcase_GET_redirect (0,251 =)
=-Hii Testcase_GET_OK (0,016 5)

- ] Testease_GET_OK (0,016 )
E-"T_;I My Teskcase (0,000 53

L f’j MyTestcase (0,000 )

= Failure Trace

Figure 6.10: Screenshot of JUnit test execution for HT'TP example
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6.3.2 The IMS Case Study
Introduction

This section describes a case study featuring the usage of pattern-oriented test
engineering to design and implement an IMS conformance test system.

The Test Model

ETS1IMS_TestObjectivestode! P [MSNetworkingTestarchitecture, &

imparts fpﬂ( impPrts

MShetworkingTestStrategy| & [Shetwork ingData I > IMSMetworking Testarchitecture |¢5>
imparts
[lygfalgs impprts imparts

MSHatworkingTestBehavior| &

Figure 6.11: Overview of UTML Test Model for IMS case study

The aim of the test model for the IMS case study was to cover all aspects
of the test development process, starting from designing a test plan based on
conformance requirements specified in the various IMS standards, through to ex-
ecutable test cases in the form of TTCN-3 scripts. Figure 6.11 depicts a graphical
view on the test model’s root element and illustrates that process, reflected in the
structure of the test model. As depicted in that figure, the test model consists of
six sub-models, each of them covering a specific aspect of test design, according to
the separation-of-concerns pattern described in section A.1.1. The next sections
provide a detailed description of each of those sub-models.
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<=<TestObjective =
TP_IMSTZ GMW_GEM_01

Clause: 4.24 paragraph 1 fi... 'InitialRequesU’rDceduresI ks

References: RQ_003_4002
IUT Rale: M5
Config Ref: CF_2GM
Selection Expression: PIC A.2/1
Summary: All IMS ...

RegrlstratloancedureI @ SubsequentRequestProcedures |+

Figure 6.12: Overview of Test Objectives Diagram for IMS case study

Designing the Test Plan Following the process illustrated in Figure 4.1 and de-
scribed in Section 4.2, the test engineering process starts with the design of a test
plan in the form of a test objectives model. Figure 6.12 displays a view on the
ETSI IMS_TestObjectivesModel test model, which contains three groups of test
objectives. The structure of the test objectives model corresponds to that of the
original test suite structure (TSS) document defined by the European Telecom-
munication Standardization Institue (ETSI). The TSS document was provided
as a set of text format files (MS-Word), containg test purposes written in the
TPLan notation. Figure 6.13 shows a sample test purpose for IMS conformance
testing specified with TPLan. Each TPLan test purpose consists of two parts:

e The declaration part comprises the first five upper rows of the table. It
contains an identifier, a summary description of the test purpose and several
other information on the test purpose.

e The behavioural part comprises the lower part of the table and describes a
sequence of actions and observations to be performed for the test case.

In accordance to the methodology proposed in this thesis, the declaration part of
the TPLan test purposes maps to UTML test objectives. Therefore, the essential
part of the test objectives modelling activity consisted in transforming those
TPLan test purposes into UTML test objectives model elements, following that
mapping. Figure 6.12 also displays the visualisation of a test objective element
resulting from that transformation, while Figure 6.14 shows a tree view on the
whole test objectives model with the associated diagrams and the other related
test models.

Designing the Test Procedures The test procedures model for the case study was
also obtained by transforming the TPLan test purposes into UTML test proce-



212 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Test Purpose
Identifier: |TP IMST2 GM REG 02
Summary: |WhenaP-CSCF receives a protected REGISTER request from the UE and the
Security-Verify headeris not present, then the P-CSCF shall return a suitable SIP4xx
response.
Clause: 5.2.2 first numbered list 6)
References: |RQ 003 5011 Config Ref: CF_1Gm
IUT Role: IMS Selection Expression: PICSA.2/1
UE1 IUT
% % UE1 not registered in IUT
v IUT configured for establishing security
association
v UE1 has sent unprotected REGISTER and has
received 401 response
v UEl has initiated security association
establishment
UE1L T
protected REGISTER
1 Q{) = * Security-Verify header
4xx response
2 o &

Figure 6.13: Example of TPLan Test Purpose for IMS Conformance Testing

dures. However, to obtain the test procedure, the behavioural part of the test
purpose (cf. figure 6.13) was taken as input. Figure 6.15 displays an overview
of the test procedures model for the IMS case study in its tree representation.
As depicted in that figure, the test procedures model has the same structure
as the test objectives model, since both are derived from the same TSS docu-
ment. Further, figure 6.16 displays a graphical representation of two selected test
procedures resulting from the manual transformation process.

Designing Test Data After the test procedures have been defined, the test de-
sign process moved to the next phase of design the test data required for the IP
Multimedia Subsystem (IMS) conformance test suite. Figure 6.17 displays the
root test data diagram for the IMS case study and at the same time illustrates
the structure of that model, which comprises eight groups of test data modelling
elements. As depicted in that figure, some of the groups contain data type def-
initions for a given protocol used in the IMS context, while others contain data
instances (i.e. concrete values) to be used for modelling test behaviour. E.g. the
SipDataTypes group contains data type definitions for the Session Initiation Pro-
tocol (SIP) protocol [136], while the SipDatalnstances group contains concrete
test values for those data types. Additionally, more groups might be created for
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[l UTML Test Madel IMSMebworkingMain
El 4 Test Objectives Model ETSI_IMS_TestObjectivesModel
El{‘* Cbijectives Group validBehavior
E| 4+ Ohjectives Group ETSI-DMIMT-Conformig
=<4 Test Objective TP_IMSTZ_GM_&EM_O1
----- <+ Clause; 4,24 paragraph 1 first numbere, ..
4 References: RQ_003_4002
----- 4 IUT Role: M5
i e Config Ref: CF_2GM
e Selection Expression: PIC 4.2/1
“ede Summary: All IMS CM components shall su. ..
-4 Objectives Group RegristrationProcedure
< Ohbjectives Group SubsequentRequestProcedures
4+ Ohbjectives Group InitialRequestProcedures
- @ UTML Test Objectives Diagram unnamed
[+ 4= Objectives Group MwlkerfaceProcedures
b @ UTML Test Objectives Diagram unnamed
----- & UTML Test Objectives Diagram unnamed
- UTML Test Architecture Model IMSHNetworkingTestarchitecture
4 UTML Test Behaviour Madel IM3MetwarkingTestBehaviar
-4 UTML Test Data Model IMSMetworkingData
-4 IUTML Test Strategy Maodel IMSMetwarkingTestStrategy

=

Figure 6.14: Overview of Test Objectives Model for IMS case study

El 4= UTML Test Strategy Model IMSMebwarkingTeskSkrategy

------ Test Strategy Group Def Reqgistration_procedure

Test Strateqy Group Def ETST_DMIMT _Conformig

-« Test Strategy Group Def RegristrationProcedure
<+ Test Strategy Group Def SubsequentRequestProcedures_TS
<= Test Strategy Group Def a_MwlIterfaceTestStrategies

~ 4 Test Strategy Group Def gmTestStrateqies
4
=

<

Test Strategy Group Def InitialRequestStrateqgies
- 4x Test Procedure TS_IMSTZ_GM_IMI_0O1
""" < Test Step Preamble check that UE1 and UEZ reqgistered in IUT
‘o Test Step UEL sends INVITE For UE2
-+ Test Step Check that UE1 receives 100 from IJT

: i e Test Step Check that UEZ receives INVITE
%+ Test Procedure TS_IMSTZ_GM_IMI_DE

b @ UTML Test Strategy Diagranm unnamed
----- @ UTML Test Strategy Diagram unnamed

----- @ UTML Test Strategy Diagram unnamed

Figure 6.15: Overview of Test Procedures Diagram for IMS case study

generic data types or data instances, e.g. for global test parameters. Figure 6.18
shows a view on the test data model displaying sample test data type defini-
tions for the SIP protocol. As depicted in that figure, most SIP request types
are based on a generic type definition (SIPRequestType), which they extend or
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UTML Test Procedures Diagrarm @ IMSNetworkingMain: :IMSHetworkingTestProcedures | ETSI_DMINT _Confor mig: :SubsequentReq

<<TestProcedure=>=
T5_IMST2_GM_SUB_07

<<TestProcedure=>
TS_IMST2_GM_SUB_0S

<<TestProcedure>>
TS5 _IMST2_GM_SUB_06

Preamble check that UE1 and UEZ|
bre registered in IUT

Prearmble the components
erulating UEL and UEZ2 ...

Prearnble check that an Invite
dialog is etablished from UEL..

Prearrble U2 sends BYE request
o Ul

UE1 sends 200 responge fo U2

Preamble the component
emulating U2 sends an Invite
Reqguest to the component...

Preamble check that a dialog is
etablisched between the bot...

Preamble check that UEL and ...

Prearmble check that an Invite
dialog is etablished from UEL...

Prearmble check that UEL sen...

Preamble check that UE2 reciv...

check that UEZ receives 2...

The cormponent emultating U...

<= TestProcedures:
TS_IMST2_GM_SUB_08b

Check that the cormponent
ernulating UEL recives a BYE
request without P-Chargi...

Check that UE2 sends 2 2...

Check that UEL receives 200
response from UEL commi...

Preamble chedk that UE1 and UEZ]
are reqgistered in IUT

<<TestProcedure=>=
TS _IMST2 GM_SUB_09a

Prearrnble check that an INVITE
dialog is etablished from UEL o
UEZ

Preamble check that UE1 and LEZ]
egistered in IUT

<<TestProcedure >
TS_IMST2_GM_SUB_09b

Prearmble check that UEL sent
BYE for UE2

Prearrble check that an INVITE
dialog is etablished from UEL o
LEZ

Prearmble check that UEL and UEZ]
bre registered in 1T

Preamble check that UE2
received BYE from IUT

Preamble check that UEZ sent
BYE request to LEL

Preamble check that an Invite
dialog is etablished from UEL to
UEZ

UEZ sends 200 response to UEL
with Via header not matching
stored Via header

Check that UE1 receives 200

Preamble check that UEL
received BYE from IUT

Preamble check that UE2 sent
BYE request to UE1

responge from IUT

LE1 sends 200 response o UE2
with Wiz header not matching...

Check that UE2 do nor recieve

LE1 sents 200 response to UE2
with %ia header not matching
stored Wia header

Check that UE2 receives a 200
response from IUT

200 response originating fr...

Figure 6.16: Example Test Procedures for IMS case study

restrict using additional constraints on the contained fields.

Finally, figure 6.19 displays sample test data instances from the test model,
illustrating the extension mechanism allowing the reuse of previously defined test
data instances to define new ones.

Designing the Test Architecture The design of the test architecture is divided
in two phases. The first phase consists in defining types for the architectural
elements that are required for building test architectures. Then, in a second
phase, the test architectures are modeled, based on instances of the types defined
in the first step.

Defining Types for the Test Architecture Figure 6.20 displays an
overview of the test architecture types diagram for the IMS case study, which
contains a series of test component types and a group containing port type def-
initions. A more detailed view on the test architecture types model is displayed
on figure 6.21 in a tree representation of that model. The definition of port types
and component types require access to test data information (e.g. data type
definitions). Therefore, as already depicted on figure 6.11, the test architecture
types model refers to the test data model to achieve that purpose.
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lDiameterDataTypesI w lMapDataTypesI IH24SDataTypesI w

DnsDataT},ﬂpesl il DnsDataInstancesl w

- o .
S|pDataTypesI SipDataInstancesl ad

lIUT_F'aramsl o

Figure 6.17: Root Test Data Diagram for IMS case study

Designing Static Test Architectures Based on the type definitions for
test architecture elements modeled in the previous step the static test architec-
tures could be modeled as well. Figure 6.22 displays the root test architecture
diagram for the IMS case study. As depicted in that figure, the test architecture
model contains four different static test architecture, each of which is represented
as a cloud in its graphical form. Those test architectures were selected among the
11 defined in the T'SS document mentioned previously, because the test cases se-
lected for the case study required them. A test architecture diagram for a sample
test architecture used in the case study is shown in Figure 6.23.

Modelling Test Behaviour The test behaviour model has the most dependencies
to other elements of the test model. Therefore it can only be designed, once
those test models are finished and ready to be refered to. Figure 6.24 displays an
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Figure 6.18: Test Data Type Definitions for IMS case study

UTHL Test Data Diagram . IMSNetworkingMaTin::IMSNetworkingData: :SipDataInStances.‘.-
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Figure 6.19: Test Data Instances for IMS case study

overview of the test behaviour model for the IMS case study. The test behaviour
models consists of five groups represented each as package symbol:
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UTML Test Architecture Types Diagram @ IMSNetworkingain: :IMSNetworkingTestarchitectureTypes / unnarmed
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==<CamponentType=> <<ComponentType>> <=ComponentType=:> <=<ComponentType>>
IMShetwiork UEType DNSType ASType
<<Portinstance x> <<Portlnstance = <<Portinstance > <<Portlnstance>»
InSipPort gml dnsPart sipPort
<<FortInstance::> <=Portinstance>>
outSipPort gmaz
<-<Portlnstance>> <<Timer=»
Ll 1505 <= tType s> <= ETypes
= omponentType ormponentType
<<Portlnstance>> <<Timer=> DnsledsType DnslUeType
g t_ims_receive
==Timer>>
IMETimer
<<CamponentType = <<ComponentTypes <=<ComponentTypes:= <<ComponentTypes
PcscfScscfType ObserverType IscfScscfType ComponentType
<<Timer>>
T_Guard

IMSPortTypes I @

Figure 6.20: Overview of Test Architecture Types Diagram for IMS case study

El <+ Test Architecture Types Model IMShetwarkingTestArchiteckureTvpes
<+ Test Component Type IM3Metwork,
EI “» Test Component Type UEType

----- < Paort Instance gml

< Part Instance gmz

; 4= Timer T_Guard

“e e TimEr E_ims_receive

[#- <= Test Component Type DM3Type

“ Test Component Type ASType

----- < Test Component Type DnsUedsType
----- “» Test Component Type DnsUeType

----- 4+ Test Component Tvpe PoscfScscfType
ElEI--- <+ Test Component Type ObserverTyvpe

----- <+ Test Component Type IscfScscfType

: Test Arch Types Group Def IMSPartTypes

< Pork Type sipPortType

“ Port Type DiameterPortType

: <+ Port Type DnsPortType

g '@ UTML Test Architecture Types Diagram unnamed
----- @ UTML Test Architecture Types Diagram unnamed

Figure 6.21: Overview of Test Architecture Types Model for IMS case study

e The timers group contains timer declarations.
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UTML Test Architecture Diagram : IMSNetworkingiain: :IMShetworkingTestarchitecture / unnamed

<<Testirchitecture == <<Testarchitecture:s = <<Testirchitecture ==
CF_1GM CF_2GM CF_1Ma
<=<Testirchitechures ==
CF_1MwlGm

Figure 6.22: Root Test Architecture Diagram for IMS
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=

Figure 6.23: Test Architecture Diagram for a static IMS test architecture

timersl IStatesI @ behaviourDest i

MwTestcasesI il 1
ngestcasesl s

Figure 6.24: Overview of Test Behaviour diagram for IMS case study

e The behaviourDefs group contains reusable behaviour definition elements
similar to functions in functional programming languages that can be in-
voked in test cases or other behaviour definitions.

e The States group contains elements modelling the possible state in which
components of the test architecture can find themselves in. Those states can
then be used as pre-/post conditions for test cases and other test behaviours.
Figure 6.25 shows the structure of the States group with further details on
some of the state definitions it contains. As displayed in that figure, each
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state contains a series of triggering function invocations that it requires to
be entered.

e Finally, the MwTestcases and the gmTestcases groups contain the test cases.
An example of one test sequence diagram for a test case is displayed at
figure 6.26.

EI <+ Test Behaviour Group Skates

-4 State UE1_Registered

- 4 Test Behaviour Ackion Invocation F_Reqgistration )

[=l-- 4+ State UEZ_Registered

- 4 Test Behaviour Ackion Invocation F_Reqgistration O
=< State INVITE_Dialog_established_UE1_LEZ

----- 4 Test Behaviour Ackion Invocation F_Invite_Dialog_StartResponse ()
too 4y Test Behaviour Action Invocation f_Invite Dialog_start ()
[+ 4 Skake UE1 sentUnprotectedReq rxd401Resp

-4 State UEL_sendBye

- 4 Test Behaviour Ackion Invocation F_JE1 Send_Bwe ()
[+ 4 State UEZ_receivedBye

-4 Stake UEZ_sendBve

- 4 Test Behaviour Action Invocation f_JEZ_Send_Bye ()
[+ 4 State UE1_receivedBye

------ & UTML Test Behaviour Diagram unnamed

Figure 6.25: Modelling of states for the IMS test model

Test Execution

Listing 6.4 displays an extract from the TTCN-3 source code resulting from
the automated transformation of the UTML test model into TTCN-3, using
the TTCN-3 backend developed with the prototype tool. The transformation
is performed according to the mapping rules defined in Section B and illustrates
how parallel test components are designed with UTML and how they may be
translated into a test specification language such as TTCN-3. As displayed in
the listing, the behaviour of each test component is translated into a TTCN-3
function, which is then invoked in the test case when the component instance is
started. Logically, passive test components (i.e. those for which the first action
consists of waiting for an incoming message or for user interaction) are started
first, before active components are started in their turn.
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UTML Test Behaviour Diagran : IMSMebwarkingiain: :IMSHetworkingTestBehavior: igmTestcases: TC_IMSTZ GM _INI 08 [ unnaned
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Figure 6.26: Test Behaviour diagram for a sample IMS test case

It is worth noting that the TTCN-3 code displayed in Listing 6.4 was auto-
matically generated in its entirety and was compilable right away, without any
additional manual editing.

* Functions for test component behaviours
*/
group TC_IMST2_GM_INI_08_functions {
function { - TC_.IMST2_GM_INI_08_UE2_behaviour() runs on UEType {
T_Guard . start ;
alt {
[] gm2.receive(validINVITE acceptable_expiration) {
T_Guard . stop;
setverdict (
pass,
Pk F_TCIMST2_.GM_INI_08_.UE2_.BEHAVIOUR(): ”
&”SIP_InviteRequestType message ”
&’received as expected xxx" );
}
[] T-Guard.timeout {
setverdict (
fail ,
Vxxx  F_TCIMST2.GM_INI_08_.UE2_.BEHAVIOUR (): 7
&”Time out while expecting ”
&”SIP_InviteRequestType message %7 );

}

}
Y // end f-TC_IMST2_-GM_INI_08_-UE2_behaviour

function f.TC_.IMST2_GM_INI_08_UE1l_behaviour () runs on UEType {
gml.send(validINVITE _acceptable_expiration );
T_Guard . start;
alt {
[] gml.receive(a_100_response) {
T_Guard . stop;
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setverdict (

pass,

Vsxx  F_TCIMST2_.GM_INI.08_.UE1_.BEHAVIOUR(): ”
&”SIPResponseType message "&

&’ received as expected *xxx” );

[] T-Guard.timeout {

setverdict (

fail ,

Vakx  F_TCIMST2_.GM_INI.0O8_.UE1_.BEHAVIOUR(): ”
&”Time out while expecting 7
&”SIPResponseType message **x” );

}

}
Y // end fSTC_IMST2_-GM_INI_08_-UE1_behaviour

Y // end TC_.IMST2_-GM_INI_08_functions

VAT

* @purpose

* TP version: Clause : 5.2.7.2, 5.2.8.3, RFC/028

x References

* RQ-003-5064, RQ-003_-5068, RQ-003_5065

x IUT Role : IMS

x Config Ref :

* CF_2GM

x Selection Expression : PICS A.2/1, A.8/12.1.1

* Summary :

x  When a

* P-CSCF requires periodic refreshment of a session established after
* receiving a SIP INVITE request from a UE and the Session—Ezpires

* header of the INVITE request indicates acceptable refresh frequency
* then it forwards the request to the destination UE and returns a 100
* (Trying) to the originating UE.

x@desc: TODO: Add description
* Test procedure:
x* 1: Preamble check that UE! and UE2 registered in IUT

x 2: UEl sends INVITE for UE2

* 3: Check that UEl receives 100 response from IUT

x 4: Check that UE2 receives INVITE with a wvalid Session—FEzpires
* header

*/

testcase TC_.IMST2_.GM_INI_08() runs on ComponentType system IMSNetwork {
// Test execution

// Setup configuration: CF2GM

// Instanciate test components

var UEType UE2 := UEType. create;

var UEType UEl := UEType.create;

map(UEl:gml, system:gml);

map(UE2:gm2, system:gm2);

// Preamble

// Test body

// First start passive components

UE2.start (. TC_.IMST2_GM_INI_08_UE2_behaviour ());
// Then, start active components

UEl.start (. TC_.IMST2_GM_INI_08_UE1l_behaviour ());
// Wait until components complete their job
UE2.done;

UEl.done;
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// Postamble

// Teardown configuration: CF.2GM
unmap (UE1l:gml, system:gml);

unmap (UE2:gm2, system:gm2);

} // end TC.IMST2.GM_.INI.08

Listing 6.4: Generated TTCN-3 Code for the IMS case study

Evaluation

Quantitative Analysis A key metric for quantitative analysis of any development
process is productivity gain. Evaluating the productivity of pattern oriented test
development is a relatively straightforward task. For that purpose, the output
(e.g. number of implemented test cases) would simply have to be correlated with
the invested effort (e.g. number of person-days/person-months involved) for a
project or a series of projects. However, to measure the impact of introducing a
new approach on that productivity is a less trivial task, because productivity data
before and after the introduction of the new approach need to be compared with
each other. Ideally, to ensure a fair comparison, at least the following conditions
need to be fulfilled:

e Both methodologies should be applied on the same case study: The starting
point for both test development approaches should be the same system
specification or test plan, targeting the same SUT

e Separate teams should apply the methodology, each on its side in a separate
project.

e The same time frame will apply to both projects and results will be collected
at the end for evaluation.

e Both teams should have comparable level of expertise in their respective
field.

However, such an ideal setup could not be provided for this IMS case study.
Therefore the quantitative comparison in this work had to be based on assump-
tions resulting from statistical analysis of past TTCN-3 test development projects.
Table 6.1 summarizes the results obtained, after applying the pattern-oriented
test development methodology on the case study. Taking into account that the
project duration was set to 5 person-days and that a total result of 19 test cases
were implemented at its end, productivity factor is 19/5 = 3.8 test cases/day. It
should be pointed that, this result was obtained with team of designers with a
rather low level of testing and modelling expertise. Therefore, it can be assumed
that slightly higher results would be obtained with experienced test designers.
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Project Dura- | Produced | Producti-

tion(Days) Test cases | vity (Test
cases/-
Day)

) 19 3.8

Table 6.1: Results of Applying Pattern-Oriented Test Engineering to IMS Case
Study

To measure the productivity gain generated by this work’s approach, the re-
sults obtained with pattern-oriented test modelling are compared with those gen-
erally obtained through “traditional” test development approaches. Figure 6.27

Froductivity Gain with Pattern-Oriented Test Developnent {Unexperienced Test Engineer
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Figure 6.27: Productivity Gain From Pattern-Oriented Test Development, with-
out taking into account the impact of Test Objectives and Test Procedures

depicts the evolution of productivity gain, depending on the productivity ob-
tained without pattern-oriented test development. Generally, for TTCN-3 test
development, realistic estimations of productivity range between 2 and 5 test cas-
es/day. Therefore,the plot in Figure 6.27 indicates that, if the existing process
allows a production rate of more than 4 test cases/day (including test objec-
tives definition, test procedure design and documentation), then applying the
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methodology proposed in this thesis would rather cause a productivity loss. On
the other hand, the productivity could be significantly improved (30 to 90%),
when the production rate of the existing methodology is between 2 and 4 test
cases/day. Moreover, if it is assumed that, the specification of a test plan (test

Froductivity Gain with Pattern-Oriented Test Developnent {Experienced Test Engineer}
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Figure 6.28: Productivity Gain From Pattern-Oriented Test Development Based
on Pure Test System Design

objectives) and of test procedures consumes 20% of the effort in pattern-oriented
test development and are generally not taken into account, when estimating the
productivity of the test development process, then the productivity gain is even
higher, as depicted on Figure 6.28.

Qualitative Analysis Using model-driven approach to test development offers a
wide range of qualitative benefits, compared to traditional development approach.
Test models offer a higher level of readability, maintainability, documentation and
flexibility that plain test scripts and non-formal notations. Furthermore, existing
MDE frameworks (e.g. Eclipse EMF, TOPCASED) provide a wide range of
functionalities for creating, managing, validating and transforming models that
can be used to provide powerful tool chains to support the process. However, a
source of general concern is the quality of the test scripts generated automatically
from the process. For this IMS case study, the TRex [163] tool was used measure
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the quality of the generated TTCN-3 test scripts. The authors of TRex define
a metric called Template coupling (ranging between 1 and 3) to measure the
maintainability of TTCN-3 scripts. The automatically generated IMS test scripts
scored 1.015 on that metrics, indicating the high level of maintainability of those
scripts (1.0 is best).

6.3.3 The OMA SUPL Case Study

Introduction

The Open Mobile Alliance! (OMA) is an international body which defines open
standards for the application layer in fixed and mobile communications networks.
Location Based Services (LBS) are one of the categories of services addressed by
OMA through various protocols such as MLP (Mobile Location Protocol), RLP
(Roaming Location Protocol) and SUPL (Secure User Plane Location Protocol).
With the release of its version 2.0, new functionalities were added to the initial
SUPL v1.0 specification. Therefore, the existing conformance tests developed for
version 1.0 with TTCN-3 needed to be upgraded to cover version 2.0.

This case study describes how the methodology proposed in this thesis was
used to perform round-trip engineering, firstly to visualize and analyze the ex-
isting test scripts, then to reuse elements thereof to design new test cases at a
higher level of abstraction, before finally transforming those back into executable
TTCN-3 test cases.

The Test Model

Although reuse is known to be a potentially highly rewarding task, putting it in
practice is by no means trivial. In fact, a pre-condition for reusing legacy source
code or any sort, is to figure out how it is structured and how its composing
elements are related to each other. Given that a (good) picture is said to be
worth thousand words, visualizing the source code can be a good starting point
in analysing it for potential reuse.

Therefore the first step in this case study consisted in using the TTCN-3 fron-
tend developed with the prototype tool to transform the TTCN-3 source code
for SUPL v1.0 into UTML models. The TTCN-3 frontend for UTML transforms
elements defined in TTCN-3 into their UTML equivalents according to the map-
ping described in Section B.1 of Appendix B. However, it worth mentioning that
to limit the size of the resulting test model, the transformation does not cover the
whole depth of the TTCN-3 abstract syntax tree(AST). For example, for func-
tions defined in TTCN-3, only their signature is transformed to allow their reuse,
while the behaviour they contain is left out. In a similar manner, for TTCN-
3 templates, only their key caracteristics are extracted (e.g. name, direction,

"ttp://www.openmobilealliance.org
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parameters etc.), while other details are simply ignored by the transformation
process.

type record ULPPDU {
_OULP_PDU length_,
Version version ,
SessionID sessionID ,
UlpMessage message_

}

type integer OULPPDU (0 .. 65535);

type union UlpMessage {
SUPLINIT msSUPLINIT,
SUPLSTART msSUPLSTART,
SUPLRESPONSE msSUPLRESPONSE,
SUPLPOSINIT msSUPLPOSINIT,
SUPLPOS msSUPLPOS,
SUPLEND msSUPLEND,

SUPLAUTHREQ msSUPLAUTHREQ,
SUPLAUTHRESP msSUPLAUTHRESP,

Ver2 SUPLTRIGGEREDSTART msSUPLTRIGGEREDSTART,

Ver2 SUPLTRIGGEREDRESPONSE msSUPLTRIGGEREDRESPONSE,
Ver2 SUPLTRIGGEREDSTOP msSUPLTRIGGEREDSTOP,
Ver2_.SUPLNOTIFY msSUPLNOTIFY,
Ver2_.SUPLNOTIFYRESPONSE msSUPLNOTIFYRESPONSE,
Ver2_SUPLSETINIT msSUPLSETINIT,

Ver2_.SUPLREPORT msSUPLREPORT

}
Listing 6.5: Example TTCN-3 Source Code for OMA SUPL Test Data Type

Listing 6.5 shows a code snippet from the legacy TTCN-3 test specification for
the OMA SUPL protocol, while Figure 6.29 depicts the UTML test data diagram
resulting from the transformation of that test specification into UTML.

Figure 6.29 provides a good illustration of the power of visualisation for un-
derstanding and reusing existing TTCN-3 test automation scripts. An example
of such reuse is displayed in Figure 6.30, which features an existing SUPL v.1.0
test data instance (s_ulpPdu), initially defined in as a TTCN-3 template, beeing
extended to design a new test data instance for SUPL v2.0 (m_ulpPduVersion).
Finally, Figure 6.31 displays the test sequence diagram for one of the new OMA
SUPL v2.0 test cases designed in the case study.

Test Execution

Using the TTCN-3 backend for UTML, the test models were transformed auto-
matically into TTCN-3 test skeletons which were then completed manually into
fully executable test cases. The manual effort for completing the test cases could
be estimated to approximately 10% of the total effort. A sample TTCN-3 code
generated from the testcase depicted in Figure 6.31 can be found in Appendix C.
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Figure 6.29: Examples of UTML Test Data Diagram resulting from automated
Transformation from TTCN-3 OMA SUPL v1.0

Evaluation

Some tooling issues needed to be addressed during this case study. Those issues
were mostly related to the ability of the EMF tools to handle large size models
resulting from reverse engineering of the existing TTCN-3 code. The consequence
of this was that the delay for loading the test model was too long and thus was
affecting productivity.

This case study also underlined the need for supporting functionalities that
are essential for any development or modelling activity, such as tools for searching
for certain elements in the artefacts or for tracking modifications between different
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Figure 6.30: Reuse of Legacy Test Data in UTML Test Data Model for OMA
SUPL Testing

versions. The latter is even more important if several designers/developers work
on the same model. Eventually, those functionalities were implemented in the
prototype tool using mechanisms provided by the EMF tool chain. However,
it was later discovered that those functionalities would fail because of the large
size of the model. Therefore, after all test cases had been designed completely
in the test model, an algorithm was developed and applied to reduce the size of
the test model, by deleting all elements that were not actually referred to by the
test cases. This lead to a reduction of the test model’s size by 1/3, namely from
approximately 40kLOC to 12kLOC.

Eventually at the end of this case study, a total of 29 test cases were developed
using the approach proposed in this thesis, while at the same time 35 test cases
were developed in parallel using a more traditional TTCN-3 test development
approach. This means that, despite the efforts that were required to fix the
previously mentioned tooling issues, neearly the same level of productivity was
achieved with model-driven test engineering as with traditional test engineering.
This indicates that, if the prototype tool had reached a higher level of maturity
at the beginning of the case study, the MDTE approach would have lead to even
better results.

Furthermore, the fact that the documentation for the test cases could be gen-
erated automatically from the UTML model helped not only for internal com-
munication within the project, but also for providing the final project report
including a graphical description of the behaviour in each test case. Which can
undoubtedly be considered an enhancement to the overall quality of the resulting
test suite.



229

{ {cewaugpoayenAbojouy:

EVALUATION: EXAMPLE AND CASE STUDIES

6.3.

ase)) 1897, TdNS VINO ue I10j ureider @ousnbag 1891, TININ

S04SSND 2 = AD

(anuy = asea@ylodyen d pluoissas 14 = pluoissas d) eegsodqimpulidnopuas
< UONEI0AUT ANOIARLET =
T
|

(pIuoissas™ 24 = pluoissas d npgu 24 = npgdn” d) uoissagsogagadwonpuyelsy
< UDIIEI0AUT INOIAEYIT >

ang == {npgui" s = Ngdud) L35isuebe weegsa)
£ £ UOIPY HISLD SNjRAR

qedesogyaau )

[paeno)]

4 dn

1€'9 231

‘cepfi I Uy pauepap pue

135 =y AQ payioddns Abojougpa] agy

un BUpuadsp SSYNGTD 40 03)IES J0 SUD S0 USI PAsT SSNYD aUL
‘pasn ag [Rys pR3sisse 135 SoMYD-g (T @5ED 21 3541

*2582 359] AU AQ paujap  poyisly Buonisod augy Gusn Ajnjssaions
a3a|duna [|Bys pue 20E|d SyE] [[2US UDISsas SOd 1dns B 9 dads 19 e
15 158] pUR b 35a] Jdenxs 53587 ¢
A0
Duisn Duisay 4 3517 s3NsaY paansealy ‘lWso Duisn bugsay iy Jo/pue
Hllh $5423aweaed Burmooy Sy foul |90 gL uoReI0T AU ¢ 3sa)
521 813 U pauR|Iap sB

135 @43 Aq paydoddns saibojouysay

BLuaisng U3 giim Juajsisuod sajameled saygeden 135
U LINE GOd TdMS pUSs [2Us 135 811 7 das 1 2
s eyl
palepap se 135 AUy Aq paquoddns saifojouyaay
01504 B Y3k JUSISISU0D Jajaesed s eded |35
YR LY LS 1dnS puss leys 135 syl Z deis 3y
15358 |

Djouyaa L5

uodd|rsAs

W03 5208 e UE05saAg

doehe d ‘pajsisse] 3essube” zaaa = dpoyiapysad) Abojouyos | sod”asupdsaydnsTw = abessapdns—d ‘prucissas™

ﬁ JpJuoissecd)sd ‘plunissas aa = plunissas d) pJuoissacpajadunjageseual = Eca_mmmmlu@

A = prucissas d) npgdin™s:nad” dn

<< U0RI0AUL ANOIABLST5 =

andy == [Npdu™ a4 = NAdUTd) 1 I5ISUEDETWEIESE0)
<< UDIY HIaYD enjEs =

qEdETSOSISYI)

[paenoy]

Mpgui 2 - (ueygdns™) = abessapydin™d) npgdin™ nad 410

135 813 18 UDISS3S MaU B B35 958ad
<< U0y [BUlaETs =

J0ddjn

S RN T

=l

531 81y U pasEpap
se |35 2y Ag pajioddns saibojouyaag Buuaysog e oy eeday oy
*UDIPELUOD 4] SUnJas SU) saseajad |35 SU7 51580 1Y 6

M3 1dNS Puss i] 8580 Z1 JsaL pue [ @se] 1358l ‘2358 ‘9358l ‘11588

*SEMET 3= u pauepap pue

135 a3 A pandnddns ABojouuyasg

iy uo Buipuadap SSgpo1D 10 0ANED J0 U0 B0 UED PESN SSHED S1L

‘PSn S| pajsIssE |35 SEMYD-y 2527 127 388

*ESED 158] AU AQ PALER poLal) BULogIsod 2103 Buisn

AInyssa0ons sagaduod

pue ae|d saye] UDISsas S04 NS Y 'S 151 pUe 4 35a) jdadxa sysa] g 'g

521 8L} Ul pauUEpap se

135 243 AqQ pagsoddns

salbiojouyye) BUNoRSed 91 Yiie JUS1SIS002 Jaaweled saqedea 135

A LTNT S0 TS SPU=s 135 34L 'y
pagsisse 135 SEMYD-Y 03 325 ABojouyaa ] Builogsod S

tojaqg Qe a3

0d Y3 3TMOASTH TdNS PUSS 'E
S S Ll PSIEIED SE 3C Af) A

padioddns
saifiojouyney BULoRSnd U3 ik JuE3sisunn segaweded sangedes |35

I L LS 1drs Spuss 135 2yl 7

UDISSSS  UOEI0T [ B 115 (535a0 Y ]

*APNIS JaLNY A0y 5| SSoho snoaueynus Sjdiynw o) poddns jo Gunsa )

"SIl A0 32 SEND ABUIS B 358] AJUD S350 1587 5a1J3 1] 2900

[saunyeay [eunido sapnjaul] SpoUlEL pauaald SSHYS-Y (2T 15a)

u Dads anjEs U 03 385 Poygal,] Gl

T2l 0IF 2177 2f OfF 218017 =

WNOIAYHIESIEAL QaLWILINT 135 24 1dnStsisal daLwILING 135 2h 1dns | Wedbelq noaeyag 352 Tln




230 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

6.3.4 The Parlay-X Case Study
Introduction

This section describes a case study featuring the usage of pattern-oriented test
engineering to design and implement a test automation solution for web services
specified through the Parlay-XAPIs. The purpose of the Parlay APIs? is to facil-
itate access to services provided by telecommunication networks, so that new I'T
and telephony applications using those services can be developed more rapidly,
even by I'T-developers who are not necessarily experts in telecommunication sys-
tems. With the growing importance of web services, the Parlay APIs have been
specified since 2004 as a collection of web services gathered under the Parlay-X
label.

The idea of applying the method proposed in this thesis for test automation in
the context of Parlay-X was found attractive, because it provided the opportunity
for assessing the application of the approach to a new domain, namely that of web
services, while at the same time for checking whether the approach is suitable for
systems using synchronous (Request-Response) communication scheme.

The Parlay-X web service APIs are specified with the Web Service Definition
Language (WSDL) and cover several categories of services such as Call Control,
User Interaction, Messaging, Mobility etc. For the case study, the Send SMS
interface that belongs to the Messaging category and provides a gateway to Short
Messaging System usually available in mobile GSM networks.

The Test Model

The test model for this case study was designed by transforming the system
model (provided as a set of WSDL/XSD files) into UTML and to extend the
automatically generated test model manually to obtain a complete test model.
This manual step was required because the WSDL system model does not contain
a description of the system’s behaviour, but only its structure and the associated
data types.

The Test Data Model Listing 6.6 displays an extract from WSDL specification
for the Parlay-X SendSMS interface, containing definitions of data types used by
that web service.

type="parlayx_sms_send_local_xsd:sendSms”/> <xsd:complexType name="sendSms”>
<xsd:sequence>
<xsd:element name="addresses” type="xsd:anyURI” minOccurs="1"
maxQOccurs="unbounded”/> <xsd:element name="senderName” type="xsd:string”
minOccurs="0" maxOccurs="1"/> <xsd:element name="charging”
type="parlayx_common_xsd: ChargingInformation”
minOccurs="0" maxOccurs="1"/>
<xsd:element name="message” type="xsd:string”/> <xsd:element

2The Parlay APIs are defined by the Parlay Group (http:\www.parlay.org)
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name="receiptRequest” type="parlayx_common_xsd:SimpleReference”
minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="sendSmsResponse”
type="parlayx_sms_send_local_xsd :sendSmsResponse” />
<xsd :complexType name="sendSmsResponse”>
<xsd:sequence>
<xsd:element name="result” type="xsd:string”/>
</xsd:sequence>
</xsd:complexType>
<wsdl: message name="SendSms_sendSmsRequest”>
<wsdl: part name="parameters”
element="parlayx_sms_send_local_xsd :sendSms” />
</wsdl: message>

<wsdl: message name="SendSms_sendSmsResponse”>
<wsdl: part name="result”
element="parlayx_sms_send_local_xsd :sendSmsResponse” />
</wsdl: message>

Listing 6.6: Extract from the Parlay-X SendSMS WSDL Service Specification of
Data Types

Figure 6.32 displays an extract of the UTML test data diagram for the test data
model resulting from transforming the WSDL elements displayed in Listing 6.6
to UTML, using the WSDL frontend provided by the prototype tool.

< «<MessageTestDataType== < «<MessageTestDataType==
SendSms_sendSmsRequest SendSms_scheduleSmsResponse
[ pararneters It = [ result ==

< <MessageTestDataType ==
sendSms [mm——————

[ addresses | W
T T TdanderMame ! < <MessageTestDataType >
BmmmEmISEESm ooy e scheduleSmsResponse

____tharging ____, i ot ]
[ rmessage |
Lo TeceipiRequest

Figure 6.32: Extract of UTML Test Data Diagram displaying Elements imported
from Parlay-X System Model (WSDL)

The Test Architecture Model As displayed in Listing 6.7, besides the system’s
data object model, the SUT’s WSDL file also contains a specification of ports
through which the SendSMS service can be accessed and the operations supported
by those ports. Those information can be transformed automatically into UTML,
so that they can be reused to design the test architecture model.
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<wsdl: portType name="SendSms”>

<wsdl:operation name="sendSms”>
<wsdl:input message="parlayx_sms_send:SendSms_sendSmsRequest” />
<wsdl:output message="parlayx_-sms_send:SendSms_sendSmsResponse” />
<wsdl: fault name="ServiceException”
message="parlayx_common_faults: ServiceException”/>
<wsdl: fault name="PolicyException”
message="parlayx_common_faults: PolicyException”/>

</wsdl:operation>

</wsdl:portType>

Listing 6.7: Extract from the Parlay-X SendSMS WSDL Service Specification
Operation Types

Figure 6.33 displays the test architecture resulting from that transformation. As
displayed in that figure, a simple P2P test architecture following the One-on-One
architectural test design pattern (see Section A.3.2) has been applied to derive
the test architecture, which consists of one test components connected to the
SUT via the sendSMSPort.

<< ComponentInstance >
client TestComponent

sendSmsPort sendSmsPort

Figure 6.33: Automatically Generated Test Architecture for the Parlay-X
SendSMS Web Service

The Test Behaviour Model The behaviour of the client and the application server
involved in a Parlay-X scenario is specified by the Parlay-X standard in the form
of natural language, sometimes illustrated with UML sequence diagrams showing
the expected interactions between those parties. An example of one such UML
sequence diagram is displayed in Figure 6.34, which depicts how a client may
invoke the Parlay-X SendSMS web service to send a short message, then after
a short while, query the web service to get the delivery status of the sent short
message. Based on the Parlay-X specification and on UML sequence diagrams
such as the one displayed in Figure 6.34, test sequence diagrams were designed
for the SendSMS service, taking into account and referring to the test data and
the test architecture models described in Paragraph 6.3.4 and Paragraph 6.3.4
respectively.

Figure 6.35 displays a UTML test sequence diagram for a test case targetting
the Parlay-X SendSMS web service. The objective of the test case is to check
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Figure 6.34: UML Sequence Diagram for Parlay-X SendSMS Web Service

that the web service meets the requirements on the delivery delays for SMSs sent
through it. The depicted test behaviour goes as follows:

1. The test system starts two different timers for checking network and termi-
nal delivery respectively.

2. The test component calls the SUT’s SendSmsOperation method to send
an SMS to a pre-defined destination address. The value returned by that
method call is stored in the v_inResp variable.

3. The test system waits until the network delivery timer expires.

4. The test component calls the SUT’s getSmsDeliveryStatusOperation to re-
quest the status of the previously sent SMS and checks that the SUT re-
turned a status indicating that the SMS was successfully delivered to the
network (DeliveredToNetwork).

5. The test component waits again until the terminal delivery timer expires.

6. The test component calls the SUT’s getSmsDeliveryStatusOperation again
and checks that the SUT returns a status indicating that the SMS has been
successfully delivered to the destination address(Delivered To Terminal).
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Figure 6.35: UTML Test Sequence Diagram of Test Case for Parlay-X SendSMS
Web Service

Test Execution

To illustrate the transformation of the UTML test model designed in this case
study towards executable test cases, the TTCN-3 backend was used again, leading
to the source code displayed in Listing 6.8.

testcase TC_SmsDeliveryDelay ()
runs on SendSmsComponentType
system SendSmsComponentType {
//Local wvariables and timers
var string v_requestld;
var SendSms_sendSmsResponse v_inResp;
timer T_networkDelivery := MAXNETWORKDELIVERY DELAY;
timer T_terminalDelivery := MAXTERMINALDELIVERY DELAY;
//Test execution
//Setup configuration: MyP2PTestArchitecture
map ( self:sendSmsPort, system:sendSmsPort );
//Preamble
//Test body
T_networkDelivery .start;
T _terminalDelivery .start;
sendSmsPort. call ( sendSmsOperation:
{m_SendSms_Request ( DEFAULT_SMS.MESSAGE, DEST_-TERMINAL_ADDRESS )} ) {
[] sendSmsPort.getreply
( sendSmsOperation:? value mw_sendSms_SendSmsResponse )
—> value v_inResp {
log ( 7**x%x Got reply mw_sendSms_SendSmsResponse
for sendSmsOperation
call sxx” );

[] sendSmsPort.getreply {
setverdict ( fail );

[] sendSmsPort.catch {
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setverdict ( fail );

}
}

log ( 7#*%% TCSMSDELIVERYDELAY: start waiting
until T_networkDelivery expires. s**x” );
wait ( MAXNETWORKDELIVERY DELAY );
sendSmsPort. call ( getSmsDeliveryStatusOperation:
{m_sendSms_getSmsDeliveryStatus ( v_inResp.result.result )} ) {
[] sendSmsPort.getreply ( getSmsDeliveryStatusOperation:?
value mw_sendSms_getSmsDeliveryStatusResp ) {
log ( 7**x Got reply mw_sendSms_getSmsDeliveryStatusResp
for getSmsDeliveryStatusOperation call #xx” );

}

[] sendSmsPort.getreply {
setverdict ( fail );

}

[] sendSmsPort.catch {
setverdict ( fail );

}

}

log ( 7#** TCSMSDELIVERYDELAY: start waiting until
T_terminalDelivery expires. %7 );
wait ( MAX.TERMINAL DELIVERY DELAY );
sendSmsPort. call ( getSmsDeliveryStatusOperation:
{m_sendSms_getSmsDeliveryStatus ( v_-inResp.status.status )} ) {
[] sendSmsPort.getreply ( getSmsDeliveryStatusOperation:?
value mw_sendSms_getSmsDeliveryStatusResp ) {
setverdict (pass,
?x%% Got reply mw_sendSms_getSmsDeliveryStatusResp
for getSmsDeliveryStatusOperation call sxx” ); }
[] sendSmsPort.getreply {
setverdict ( fail );

}
[] sendSmsPort.catch {
setverdict ( fail );
}
}
//Postamble

unmap ( self:sendSmsPort, system:sendSmsPort );
} //end TC_SmsDeliveryDelay

Listing 6.8: TTCN-3 Source Code generated from the UTML test behaviour
model for the Parlay-X SendSMS Testcase displayed in Figure 6.35

Although the generated TTCN-3 source code was not effectively executed against
an application server providing the Parlay-X services, the fact that it was suc-
cessfully validated with a TTCN-3 compiler is a clear indication, that its quality
can at least be considered as acceptable.

Evaluation

This case study has demonstrated how the approach proposed in this thesis can be
used to develop test automation for systems and services that use a synchronous
communication scheme following a request-response scenario. The case study
also provided the opportunity to evaluate the WSDL-frontend developed with



236 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

the prototype tool. The WSDL frontend transforms system models specified with
WSDL automatically into UTML test model , using the mapping rules described
in Section B.2 of Appendix B. The combined usage of that frontend together
with the TTCN-3 backend made reduced the test development effort for such
systems drastically, while at same time ensuring a higher quality of the resulting
test cases.

6.3.5 The Digital Watch Case Study
Introduction

The digital watch case study is an interesting application of the methodology
proposed in this thesis for combining MBT and MDT techniques to facilitate test
automation. Also, this study demonstrate how the proposed approach can be
used in the embedded systems domain, besides the services and communication
domains covered by the other case studies.

The Test Model

The system model used for this case study is an example SysML model for a dig-
ital watch, provided by the TOPCASED modelling tool to demonstrate SysML
support®. The test model for the digital watch results from a combination of
automated generation from the SUT’s model (SysML). Firstly, the requirements
on the SUT are transformed into UTML test objectives, using a model-to-model
transformation implemented via the MDTester SysML frontend. The transforma-
tion of SysML requirements into UTML test objectives can either be performed
on individual requirements or on packages containing several requirements or
subpackages. Figure 6.36 depicts an example requirements package that was
added to the original example model for demonstration purpose. As depicted
in that figure, the designed requirements are not more than illustrating exam-
ples without any real semantical relationship to the digital watch model itself.
To ensure traceability between system and test model, there’s a need to create
references between the test model and the requirements specified in the system
model. Therefore, those requirements had to be transformed from SysML to
UTML, using the SysML frontend developed with the prototype tool in this the-
sis. The SysML to UTML transformation was performed based on the mapping
rules defined in Table B.1 of Appendix B. Figure 6.37 displays the result of that
transformation process. As depicted in that figure, the transformation not only
creates a structure in the test objectives model that is equivalent to the original
structure of the SysML, but also keeps track of the dependency relationships
existing between elements of the system model.

3The complete model is available for download at http://www.topcased.org
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Then, the SUT’s logical architecture (including associated data model) is
transformed in a similar manner into a test architecture using one of the archi-
tectural test design patterns described in Section A.3 of Appendix A. Figure 6.38
displays the logical architecture of the digital watch, represented as a SysML
internal block diagram. As depicted in that figure, the digital watch consists of a
processor block and of a series of blocks building together the watch’s display. For
this case study, the processor (watchProcessor) block was taken as the SUT for
which test cases were to be developed. The transformation of the watchProces-
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Figure 6.38: SysML Block Diagram Displaying the Logical Architecture of the
digital watch

sor block from SysML to UTML consisted, not just of generating the equivalent
SUT component in UTML, but also a test architecture on which test cases could
be designed in a following step. The generation of a test architecture is done
based on the test architecture pattern selected by the user through the wizard
provided by the prototype tool. Figure 6.39 displays the result of the transfor-
mation operation, in case the One-on-One test architecture pattern described in
Section A.3.2 was selected. As expected, the resulting test architecture features
one test component providing the same ports as the SUT, but with inverted
directions (mirror ports). Alternatively, the Sandwich test architecture pattern
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Figure 6.39: Test Architecture derived from the SysML Block Diagram for the
watchProcessor Block (One-on-One Test Architecture Pattern)

described in Section A.3.6 could have been chosen instead, leading to the test ar-
chitecture displayed in Figure 6.40. As expected, the resulting test architecture
splits test behaviour between two parallel test components, whereby one of those
components (Stimulating-TC') will be used for send stimuli to the SUT, while the
other one (Observing-T'C') will be used to assess that the SUT reacts as expected
to those stimuli.
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Figure 6.40: Test Architecture derived from the SysML Block Diagram for the
watchProcessor System Component (Sandwich Test Architecture Pattern)

Test Execution

For this case study, no test behaviour was designed, because the SysML sys-
tem model only contains architectural elements and does not address behaviour.
Furthermore, adding such behaviour elements to the system model from scratch
required significantly more resources and deeper domain-specific knowledge, both
of which were unavailable at that moment.
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Evaluation

This case study has demonstrated how model-to-model transformation can be
used to implement traceability between system and test model. Additionally, the
usage of the SysML notation in the case study demonstrates that the approach
proposed in this thesis can also be applied to domains in which that notation is
used for system design (e.g. Embedded systems, Automotive, Avionics).

6.4 Summary

This chapter has proposed an application’s architecture for pattern-oriented model-
driven testing. As a proof-of-concept, a prototype application based on the pro-
posed architecture has been implemented. Then, that prototype tool chain was
used to apply the pattern-oriented test development approach on a selection of
case studies to evaluate it and identify future potential improvements. A total
of five case studies have been presented, describing how the approach proposed
in this thesis was applied successfully to improve the test automation process for
various kinds of SUTs from different application domains. A comparison of the
output obtained with pattern-oriented MDT with current state of the art indi-
cates improvements, both in terms of the productivity and of the quality of the
resulting test suites. The evaluation done in this thesis has mainly been of tech-
nical nature based on collected case study data and statistical figures. However,
further analysis will be required to evaluate to which extends the approach meets
its potential end user requirements, e.g. with regard to usability. Furthermore,
as already indicated in a publication of first results of this work [53], it should be
interesting to evaluate the impact of the method for test development in other
domains beyond the communication domain that has been the focus of the de-
scribed case studies. However, the results obtained in the case studies presented
in this chapter clearly demonstrate that the proposed approach can truely be
considered as a promising way ahead for further research. Possible domains to
be considered include automotive, railway and transformation systems, as well
as service-based systems.
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Conclusions And Outlook

7.1 Summary and Conclusion

Combining models and software testing has always been a tempting idea. With
the increasing popularity of models and model-driven software engineering, that
idea has been gaining even more momentum expressed in various forms of model-
based or model-driven testing.

This thesis has analyzed the model driven testing problem from the test au-
tomation perspective and after identifying the strengths and weaknesses of ex-
isting approaches, has proposed a new methodology for a more efficient use of
design pattern in test automation. Firstly a collection of design patterns in test
automation has been presented, resulting from experience gathered by test engi-
neers in past successful test automation projects. Then the concepts identified
by those patterns provided the base for the UTML notation, a DSML dedicated
to test design following a MDT process with the aim of facilitating test design
through usage of patterns. The definition of the UTML notation presented in
Chapter 6 of this thesis has addressed not just both the abstract and the concrete
syntax of that new language, but also its semantics and the constraints associated
to each of its elements.

However, the fact that patterns come from practical experience implies that
any methodology related to patterns must be checked against real case studies.
Therefore a prototype test design tool was developed to validate the initial as-
sumption made at the beginning of the work. Using that prototype tool, two case
studies were conducted as part of this thesis and could demonstrate the positive
impact of applying pattern-oriented model-driven testing. The result is a test
development process that takes full advantage of the benefits that come with
MDE and were introduced in Section 1.1 of this thesis. Those benefits include
higher quality test artifacts (e.g. with regard to readability, understandability,
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reusability) obtained through automated model transformations and round-trip
engineering.

Although the concepts presented in this thesis, both for pattern-oriented
model-driven testing and the supporting UTML notation clearly aim at a broader
application spectrum, the selected case studies are located in the domain of com-
munication protocols and reactive software systems. This has undeniably in-
fluenced some of the design decisions with regard to the notation and can be
explained by the fact that practical experiences gathered during the thesis were
mainly located in that domain. Nevertheless, the definition of the UTML nota-
tion provided in this thesis offers a good base for further improvements to support
other communication paradigms more common in other application domains (e.g.
embedded systems, continuous signals etc.).

7.2 Outlook

The topics discussed in this thesis obviously cover a too broad spectrum to be
covered with the same level of detail in a single thesis. Therefore, some issues were
left for further research in future work, because they required a deeper analysis
and resource beyond the scope a thesis like this one. Some of those issues include:

7.2.1 Usage of state machines for test behaviour modelling

Integration of state machines for test behaviour modelling to generate the se-
quences automatically from those: Using a state machine to describe behaviour,
though less intuitive and more difficult than with sequence diagrams, undoubt-
edly has some advantages, such as a higher level of conciseness and the possibility
of generating the sequence diagrams automatically from the state machine. In
this thesis the possibility of using state machines to describe test behaviour has
not been analysed further in detail, although it represents an interesting way of
combining different approaches of model-based testing to achieve more efficiency.

7.2.2 Implementation of further templates for test patterns instanti-
ation

The test patterns described in this thesis from an analysis of a large number
of test suites mostly specified with the TTCN-3 notation. Therefore, although
the identified test patterns can rightfully be considered to reflect accurately the
practical experiences in that area, a further analysis with other black-box testing
techniques and notations may reveal new patterns that have not been considered
in this thesis.
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7.2.3 Better modelling support for continuous signals and case studies
thereof

Because of the lack of practical case studies dealing with continuous signals, out
of which testing patterns specific for that domain could be gathered, this thesis
focused mainly on an application to the testing of asynchronous and synchronous
communication protocols. Further works and case studies are required to evaluate
to what extend the approach, at its current stage, is applicable for that domain
as well and potentially to provide the modifications necessary for it to better
address requirements specific to that domain or beyond.

7.2.4 Automated Analysis of Test Script Code based on Patterns

Another interesting work area for the future is the instrumentation of patterns
to facilitate the analysis of legacy test scripts through automated recognition of
patterns they may contain. The method consists of walking through an abstract
syntax tree (AST) of the test script code to be analysed, searching for code
snippets that meet the definition of the patterns. Once identified, a visualisation
of the patterns found can quickly provide a more abstract and clearer picture of
the test script code, thus facilitating further operations such as reuse, refactoring
ete.

During the work of this thesis, that approach has been applied on some ex-
isting TTCN-3 test suites to visualise the test data defined in those test suites
with very satisfying results. Doing the same for test behaviour appears to be a
tempting and promising idea that is certainly worth exploring further.

7.2.5 Empirical evaluation of the approach based on feedback from
test experts

The evaluation of the approach proposed in this thesis, as described in Chapter 7
has been essentially of technical nature, based on statistics and using quantifiable
metrics. However, some key factors for a successful adoption of a new technology
as the one proposed in this thesis are more difficult to quantify, because they are
determined by the way the new technology is perceived by the domain experts
supposed to use it. In its book Diffusion of Innovations [135], Rogers lists the
following five key characteristics for the adoption of innovations:

e Relative advantage: is your innovation better than the existing method?
e Compatibility: does your innovation integrate with the existing method?
e Complexity: is your innovation difficult to understand?

e Trialability: is it easy for people to experiment with your innovation?
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e Observability: are the benefits of your innovation easily visible?

Although those characteristics have been carefully taken into account with the
approach presented in this thesis, only a series of case studies including a usage
of the associated tools by test experts and a survey of their feedback will provide
an accurate picture, as to what extent those goals have effectively been met.



Appendix A

A Collection of Test Design
Patterns

This appendix describes a collection of patterns identified in various test automa-
tion projects during this work. Each pattern is described based on the template
provided in Section 4.3.2.

A.1 Generic Test Design Patterns

A.1.1 Pattern: Separation of Test Design Concerns
Context

This pattern is a generic organisational test design pattern and is applicable at
any test scope for large size test projects. It is assumed that test development
is process running in parallel to the development of the SUT or integrated to it,
with both of them having the requirements as a common starting point.

Problem

How to organise the file structure of test artifacts. Test artifacts are resources
used for storing the design and implementation of a test automation solution.
They include high level design models, documentation artifacts through to source
code of executable test scripts. The size and the complexity of those test artifacts
can grow considerably, raising questions as to how to organise properly to keep
a good overview and facilitate collaborative work.

Forces
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e To avoid test design activity becoming a bottleneck to the development
process, having different teams working in collaboration on the will speed
up that process.

e Synchronisation and version control conflicts between the actors involved

in test design may cause resources being wasted to address them.

e Large compilation units increase the risk of potential version control con-
flicts among parallel developers/designers.

Solution

Divide the various tasks over several test designers, by organising modules accord-
ingly. Each task is addressed separately to allow parallel processing. Applying
this pattern requires that the technologies involved (e.g. the notation used for
designing the tests) provide such mechanisms. Modules may be organised based
on the aspect they cover(e.g. Test data, test architecture) or based on the SUT
feature they target.

Known Uses

Instantiations of this test pattern can be observed in numerous test automation
solutions. The code snippet below from the IPv6 conformance test suite [144]
displays an example in TTCN-3 of a test script importing elements of other test
modules to design test behaviour.

module AtsIpv6_Common_Functions {

// Importing Generic Libraries

//LibCommon

import from LibCommon_BasicTypesAndValues all;
import from LibCommon_DataStrings all;

// Importing test data modules

//LibIpv6

import from LibIpv6_Interface_Templates all;
import from LibIpv6_CommonRfcs_TypesAndValues all ;

// Importing test architecture modules

//AtsIpv6

import from Atslpv6_TestSystem all;

import from Atslpv6_TestConfiguration_.TypesAndValues all ;

} //end module AtsIpv6_Common_Functions

Discussion

A difficulty in applying this pattern consists in ensuring that the number of sep-
arate modules remains within sensible limits. Otherwise, the effort of managing
all parallel activities can reduce the positive impact of the pattern and even lead
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to less productivity. However a small number of modules will inevitably lead
to more version controlling conflicts, with several people potentially working in
parallel on the same modules. In such cases the usage of an appropriate version
controlling system, along with clearly defined policies is highly recommended.

Related Patterns

This pattern is an application of the Separation of Concern, a.k.a Divide and
Conquer design pattern known both in generic software engineering, as well as
in test design [47].

A.1.2 Pattern: Grouping of Test Design Concerns
Context

This pattern is a generic organisational test design pattern and is applicable at
any test scope for test projects of any size.

Problem

The size of test models can grow considerably in the development process. How to
organise tests within a module to enhance reuse, maintainability and readability?
To be able to manage the test model conveniently, elements added to it should
be easy to localize to check their definition, modify them or even refer to them.

Solution

Just as each test model should be divided in several different modules which can
be concatenated using an import mechanism, each of those modules should have
a clear structure using a grouping mechanism to organise tests artifacts. The
grouping mechanism allows for elements of the test model to be organised in
groups which can be used to keep a clear overview of the elements contained in
a test model file or module. The criteria for grouping can be defined based on:

e SUT Features: e.g. in a test behaviour model different groups of test cases
can be defined, each of them covering a feature of the SUT targeted by the
contained test cases. This will facilitate selecting or disabling that group of
test cases, depending on whether the feature is effectively provided in the
end product or not.

e Category of elements: e.g. in a test data model, a group can be defined to
contain data type definitions, while another one can be defined containing
data instance definitions. In a similar manner, a test behaviour model may
be organised in separate groups, e.g. containing respectively test cases,
function definitions or any other elements of test behaviour.
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For more expressiveness, the grouping mechanism should allow groups to contain
subgroups

Known Uses

e The UTML notation introduced in this work provides a grouping mecha-
nism for all kinds of test model elements it supports

e The TTCN-3 language [58] also provides a grouping mechanism using its
group keyword.

e The TPLan [57, 145] also defines a group keyword in its syntax for the
same purpose.

e Although, xUnit [108] (junit, HTTPUnit, XML-Unit, etc.) do not explicitly
define a grouping mechanism for organising tests, test cases can be grouped
together, using an xUnit TestSuite class, which can contain several test
cases, but can be executed at once.

Discussion

While this pattern may not be very useful for small size test models, it is nearly
indispensable for any bigger ones. There is practically no alternative to grouping
as such. One potential pitfall to be avoided is, when the tree structure created
by the groups and their contained subgroups is too deep, to the extent that the
contained model elements become too difficult to access.

Related Patterns

This pattern is an extension to the Aspect Driven Test Design pattern defined in
Section A.1.1

References

67, 47]

A.2 Patterns in Test Objectives Design

A.2.1 Pattern: Prioritization of test objectives
Context

This pattern is an organisational test design pattern that aims at optimizing the
planning of testing activities and is applicable to any test scope.
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Problem

Due to resource limitations, it is often the case in testing projects that not all
test cases can be developed and/or executed at a time. How to design tests, so
that key decisions can be taken confidently in the testing process. Key decisions
include:

e When can test activities be considered sufficient to provide a level of con-
fidence in the SUT that is high enough to allow its release?

e Which test cases need to be implemented and executed first and which ones
can be left aside for later stage in the testing process?

Solution

As recommended by IEEE 829 [83], introduce a prioritization scheme for test
objectives in the test model. Prioritization can be provided for a test objective
taken individually or for a group of test objectives. Test implementation and test
execution can then be planned based on the priority level of the test objectives, to
ensure that test cases with highest priority are available on time before product
delivery.

Test case prioritization aims at ordering test cases according to some criterion
to schedule their implementation and/or execution. The choice of a test case
prioritization among the numerous ones described in the literature [50] depends
not only on the applied test design strategy, but also on the objectives of that
prioritization. Possible objectives include a higher fault detection rate and costs
reduction in system and regression testing. Rothermel et al. [138] define the test
case prioritization problem as follows:

Given: T, a test suite; PT, the set of possible orderings (prioritizations) of T;
and f, a function from PT to the set of real numbers.

Problem: Find 7" € PT such that (VI")(T" € PT)(T" # T")[f(T") > f(T")]
The test objectives are ordered based on the real number value (award) returned
by the function f. Obviously that value depends on the prioritization objective
and thus on the factors taken into account by function f.

Discussion

Again, similar to other organisational patterns mentioned before, the size of the
testing project and the resource constraints it faces shall be taken into account,
whenever the application of this pattern is considered.

Known Uses

Besides code-coverage based approaches such as the one proposed by Rothermel
et al. for regression testing [137, 138, 49, 50, 44], Srikanth et al. [149, 150] propose
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an approach consisting in prioritizing requirements for tests, based on a series of
factors, e.g. customer-assigned priority, requirements volatility or implementation
complexity. Other uses include Srivatsva et al. [151] who propose a prioritization
technique that adds risk factors to the equation and Qu et al. [129] who propose
a test case prioritization technique suitable for black-box testing. Finally, as
suggested by many authors [150, 165], economic factors may also be considered
as prioritization factors for test cases.

As shown by the numerous examples mentioned above, prioritization of test
cases is used implicitly in several instances, even though it may not always be
explicitely supported by the test design notation itself. Generally a separate tool
is used to manage that aspect of the test process. However, it would be highly
beneficial to integrate it into the test design process, so that appropriate tool
support can be used to calculate the priority value for each test case automatically,
based on the predefined factors.

A.2.2 Pattern: Traceability of Requirements to Test Artifacts
Context

This pattern is an organisational test design pattern that aims at facilitating the
coupling of testing activities to the rest of the software development process. It

is mainly applicable to integration and system tests.

Problem

How to achieve (bi-directional) traceability between test design artifacts and sys-
tem artifacts to enable automatic coverage analysis, monitor progress of testing
activities and assess overall quality?

Solution

Each test objective should be linked to a (set of) requirements or features of
the SUT. Those requirements could be functional or non-functional. The test
objectives could represent a risk in relation to the feature or a mean for verifying
that the SUT meets the requirements

Known Uses

Known uses of this pattern include:

e The UTML meta-model’s TestObjective element defines a reference to a
series of requirements the specified test objective covers

e The TPLan [57, 145] notation also provides a similar concept in its syntax
definition
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e Some model-based testing tools generate test objective descriptions from
state diagrams of the system under the test (e.g Conformiq’s QTronic
tool [82]). Since, the test objectives are a result of a transformation pro-
cess from the system model, a link to system requirements is also possible,
provided those requirements can be mapped to certain paths in the state

automaton.

Discussion

One key difficulty in applying this pattern is to ensure that changes to the test
model are propagated in both directions of the link to avoid dead links and
keep the test model consistent. The test design tool should take care of that
and update a test objective element accordingly, if one of the covered system
requirements is altered (e.g. deleted, moved to another location, renamed, etc.).
Such a propagation of changes could be facilitated by the usage of the same
notation or of the same design technology (e.g. EMF, MOF) for those aspects
being linked with each other. Otherwise, some serious maintainability issues will

emerge.

A.2.3 Pattern: Selection criteria for test objectives
Context

This test design pattern aims at optimizing testing activities by making testing
more efficient and is applicable to any test scope.

Problem

Shorter test development life cycle to address more complex SUTs means not all
tests can always be developed and executed in time. How to allow a selection of
which tests should be treated with higher priority, while ensuring that a minimum
number of failures are still present in the delivered product?

Solution

Let each test objectives model define selection criteria for the applicability of test
objectives at individual or at group level. Such selection criteria will be used to
make decisions on planing test design, test implementation and test execution.
Also, according to whether a given feature is supported by a product line test
cases applying to that product line could be selected automatically and prioritized
accordingly for development and execution.
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Known Uses

The ISO 9646 Conformance Test Methodology Framework (CTMF) [87] defines
the concept of an Implementation Conformance Statement (ICS) as

A statement made by the supplier of an implementation or system
claimed to conform to a given specification, stating which capabilities
have been implemented.The ICS can take several forms: protocol ICS,
profile ICS, profile specific ICS, and information object 1CS.

ICSs are commonly used in conformance testing to define selection criteria for
test objectives and the test cases (or groups thereof) implementing them. That
approach is implemented in several TTCN-3 test suites, in which, test execution
is controlled using the values set for the ICS in the control part.

Related Patterns

This pattern can be combined with the Prioritization of Test Objectives pattern
described in Section A.2.1.

A.2.4 Pattern: Traceability of Test Objectives to Fault Management
Context

This organisational test design pattern aims at facilitating the coupling of testing
activities to other activities in the software development process. Although it may
also be used for unit-level testing, it mainly targets system and integration tests.

Problem

In spite of all testing efforts, errors in software are inevitable and will eventually
occur. How can it be ensured that the information gathered in analysing and
fixing those errors can be exploited for the benefit of future testing activities and
for improving the overall quality of the software product under test?

Solution

Every time a failure is (inadvertently or deliberately) discovered on a version
of the SUT, a test objective should be created in the test objectives model to
cover that defect and ensure that it will be checked in subsequent regression tests

automatically

Known Uses

e Testopia [113] is a test case management extension to the well-known bug
management tool Bugzilla. However, due to time constraints, we have not
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used Testopia yet, to analyse to what extent it applies this pattern. It is
likely that similar other tools exist on the market, but we have not got the
opportunity to look into those for further analysis yet.

Discussion

The same type of potential issues identified for the linkage of test objectives to
system requirements pattern (section A.2.2) also apply for this pattern.

A.3 Test Architecture Design Patterns

A.3.1 Pattern: Extensibility/Restriction of Test Architecture Elements
Context

This test design pattern aims at enhancing reuse of test design artifacts and is
applicable for (sub-)system level and integration testing. The potential benefits
are lower for unit-testing at the class level, because those rarely require complex
test architectures.

Problem

Reuse in test development can help in avoiding redundancy and save time, as well
as costly resources. Therefore, wherever applicable, means should be provided
to reuse already defined test elements to create new ones. Test architecture is
one area, where this can be done, with potential high benefits. How to enhance
reusability of test architecture artifacts?

Solution
Provide the ability to extend or restrict existing test architecture artifacts. Mod-
ifiable test artifacts include. Test architecture artifacts

Known Uses

e The TTCN-3 language provides a concept of component type reuse through
the extends keyword

e UTML notation implements this pattern by providing the capability to
specify a base component type for any new component type being defined,
thus, introducing a mechanism similar to inheritance in OO-programming.

Related Patterns

A similar pattern for test data elements is described in section A.4.3
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A.3.2 Pattern: One-on-One Test Architecture
Context

This pattern is applicable for system testing. For integration testing, it has
limited impact, because more than one component might need to be emulated
by the test system. While this might be feasible in some cases, it would be more
difficult to achieve if the behaviour of the components to be emulated are required
to follow parallel and concurrent threads.

Problem

How to model a test architecture for a system providing a limited set of entry
points and interacting with its environment following a sequential non-concurrent

behaviour?

Solution

<=Campanentnstanc... <<Camponentlnstances >
MTC SUT_Comp

te s%ort

<=<ComponentInstance > > ?t“to utort

MTC
ftestinPort sysOutPort

L|_‘testInOutF'0rt sysInOutPort

Figure A.1: Test architecture Diagram for One-on-One Pattern

This pattern is applicable to all those SUTs where the SUT interfaces are
directly controllable and observable. Benefits: Having a single test component
implies that synchronisation mechanisms based on message exchange or other
RPC-like mechanism do not have to be implemented at the testing side. Variables
defined in the test component can be used to describe states based on which
decisions can be made on the test verdict. Shortcomings: The test component has
to emulate the complete behaviour of system component it replaces. Depending
on the level of complexity of that behaviour, this might be more or less difficult
to achieve. Furthermore, having a single component makes it difficult to deal
with concurrency at the testing side, if required.
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Known Uses

This pattern is applied in numerous conformance test suites. E.g.:
e the collection of IPv6 test suites [144] used e.g. for the IPv6 logo brand

e the IP Multimedia Subsystem (IMS) benchmark test suite [43] used for
performance testing IMS server equipment

e the CORBA component test suite [13] used for integration testing of CORBA
components

Discussion

Potential difficulties in handling concurrent behaviour from the SUT and to em-
ulate similar behaviour to stimulate the SUT.

Related Patterns

This pattern is the logical opposite to the Central Test Coordinator test design
pattern described in Section A.3.8. It is also referred to as the Central tester test
design pattern [51].

A.3.3 Pattern: Point-to-Multi Point(PMP) Test Architecture
Context

This test design pattern is applicable to system or integration-level testing of
distributed systems exchanging data through communication protocols.

Problem

How to design a test architecture suitable for an SUT under the following re-

quirements/constraints:

e The test system shall not be distributed, i.e. all its components will be
running on a single host.

e The SUT will be exchanging data through several different ports and may
consist of several distributed SUT components.

Solution

A PMP test architecture consists of one test component hosting a single port,
which is connected to each of the ports provided or required by the SUT compo-
nents to send impulses and check responses.
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Discussion

The advantage of the PMP test architecture design pattern is that it helps the
test system in avoiding concurrency issues, because a single port is used in the
same test component. However, there are also some drawbacks to be taken into
account. For example, given the fact that the test component’s port must sup-
port communication with more than one SUT component at the same time, the
state of each of those communication will have to be handled by the test compo-
nent. Furthermore, if the SUT ports support different communication protocols,
then the test component ports will have to support all of those communication
protocols at the same time and provide multiplexing capability to handle each of
the communication channels separately.

A.3.4 Pattern: Flexibility of the test architecture model
Context

This pattern is applicable to integration- and system testing.

Problem

How to facilitate transformation of SUT architecture into test architecture?

Solution

The test architecture model should allow any component within a test architec-
ture to be marked either as parallel test component (PTC) i.e. as part of the test
system or as SUT component.

Known Uses

e The TTCN-3 system keyword can be used to mark a selected test compo-
nent in a test case as a representation of the SUT’s interfaces.

e The UTP standard defines a concept of SUT as
a part, the system, subsystem, or component being tested [70].
Further, [70] states that

A SUT can consist of several objects.The SUT is exercised via its
public interface operations and signals by the test components.
No further information can be obtained from the SUT as it is a
black-box.
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e UTML has adopted the SUT concept defined by UTP in the form of the
ComponentKind attribute of each ComponentInstance element of its meta-
model, which allows to specify the nature of an entity in a test architecture
either as part of the test system or of the SUT. Figure A.2 depicts the

<=EEnum >z “=EClass>>
<<enumeratlon>.> TestComponentInstance
TestCompaonentKind = ZEAttribuke ==+ jd ¢ EStting { ordered T
TEST_COMPONENT <<EAttribute = >+ king ¢ TestComponentkind[0..1] { ordered }
SUT

Figure A.2: UML Class Diagram for UTML ComponentInstance Element

UML class diagram for the UTML ComponentInstance element, along with
its ComponentKind attribute.

A.3.5 Pattern: Proxy Test Component
Context

This test architecture is applicable to (sub-)system- and integration testing

Problem

How to verify that two SUT components behave correctly without interfering in
their logic and without having to emulate their behaviour in the test system? How
to observe (and evaluate) the communication exchange between SUT components
or to observe (and evaluate) the communication exchange at an SUT interface.

Solution

<=ComponentInstance> = ’L‘
proxyPTC fePort2

Figure A.3: Test architecture Diagram for Proxy Test Component Pattern

A proxy test component is connected between two SUT components. Each
message that is received by the proxy test component is evaluated, then forwarded
to its actual recipient, i.e. the other SUT component. A proxy test component
can operate in duplex mode and forward messages in both directions if required
by the SUT components’ design.
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Known Uses

Known uses of this pattern include

e Conformance testing of CORBA Components Model (CCM) entities [13]

Discussion

Performance issues: Delay created by the proxy test component might alter the
communication between SUT components. If time constraints for that communi-
cation are too tight, it might be impossible to apply the pattern, because of the
SUT components’ inability to deal with such unexpected behaviour. Additionally
no online evaluation should be performed by the proxy test component to avoid
additional flaws.

Related Patterns

The Monitoring Test Component test design pattern described in Section A.3.7
is an extension of this pattern [51]

A.3.6 Pattern: Sandwich Test Architecture
Context

The sandwich test architecture design pattern is applicable to subsystem, system-
and integration testing.

Problem

How to design a test architecture for an SUT that uses more than one communi-
cation channel to exchange data with its environment?

Solution
< <ComponentInskances = << ComponentInstance > < <CompanentInstance >
Companentl Portinstancel sUT Campanent2

PorInstance?

Figure A.4: Test architecture Diagram for Sandwich Test Architecture Pattern

As depicted in figure A.4, the sandwich test architecture design pattern fea-
tures two parallel test components, each of which emulate an entity that interact
with the SUT and each of which is connected to the SUT via one or several of

its ports.
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Known Uses

The sandwich test architecture design pattern defines an architecture that is
similar to the one defined by ISO 9646 [87] for conformance testing and featuring
an upper tester and a lower tester, with the IUT between the two. That kind of
architecture is widely used in conformance testing of communication protocols.

Discussion

A sandwich test architecture makes more sense, if the behaviour of both test
components involved is required to run concurrently in parallel, with no relation
to each other. Otherwise the one-on-one test architecture may be more appro-
priate to provide the same functionality, while avoiding the computational and
implementation costs of parallel test components.

A.3.7 Pattern: Monitoring Test Component

Context

The monitoring test component test architecture design pattern is applicable to
subsystem-, system- and integration testing.

Problem

How to observe (and evaluate) the communication exchange between SUT com-
ponents or to observe (and evaluate) the communication exchange at an SUT
interface.

Solution

=<Componentinstance=>
observerPTC

’—F‘obsSinkPm’t

obsSrcPort

L -
<<CompaonentInstance > <<Componentlnstances > ptePart? el < -<Componentlnstance s>
sutCompl proxyPTC H sutComp2

Figure A.5: Test architecture Diagram for Monitor Pattern

One test component per monitored connection or one test component per

monitored port is involved in this pattern. It observes at a special monitoring
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port being attached to a connection between SUT components or the communi-
cation at the port to which it is attached to. The monitoring component is in
a passive role and is simply a data sink for messages being sent from the SUT
component. By defining constraints (time, data) on the incoming data, the mon-
itoring component can check that the SUT component behaves according to the
system’s requirements.

Known Uses

CCM-Testing [13]

Related Patterns

This pattern is a specialization of the Prozy Test Component test design pattern
described in Section A.3.5.

References

[51]

A.3.8 Pattern: Central Test Coordinator
Context

This pattern is more applicable to integration and system testing. It is less the
case for unit testing at the class level. However, it can be applied for system
testing, whereby a unit testing framework is instrumented for that purpose.

Problem

How to model a test architecture that is suitable for load- , performance- or
conformance testing on an SUT requiring parallel and possibly distributed pro-
cessing.

Solution

As depicted in Figure A.6, this pattern features a test component acting as test
coordinator and thus controlling the life cycle other components it controls. Each
of the controlled test components is connected to the controlling component via a
connection through which coordination messages can be exchanged to control the
components’ behaviour. To keep the overhead of processing those coordination
messages as low as possible, to not affect the proper test behaviour, coordination
messages should be kept as simple as possible in their structure. The real testing
activities are performed by the controlled test components, which are directly
connected to the SUT.
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<<Componentlnstances >
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Figure A.6: Test architecture Diagram for Central Test Coordinator Pattern

Known Uses

Several TTCN-3 projects such as [123] involving UTML protocol testing (Siemens)
and [42] involving BCMP protocol performance testing.

Discussion

An intelligent coordination pattern is required between the main test compo-
nent and the parallel test components. The additional load and delays created
by that communication should be taken into account while evaluating the SUT
component’s test results.

Related Patterns

This pattern is the opposite of the One on One test architecture pattern defined
in Section A.3.2

References

[51]

A.4 Test Data Design Patterns

In this section patterns for designing test data are presented, as well as patterns

for automatically generating test data



262 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

A.4.1 Pattern: Purpose-Driven Test Data Design
Context

This pattern is more applicable to integration and system testing. For unit test-
ing, the efforts implied would outweigh the potential benefits of applying the
pattern.

Problem

How to ensure that all the test data model elements required for a test suite have
been defined ? In large test development projects involving more than one test
engineer working on the same test model, there is a need to ensure that redundant
data is not defined at many instances in the same test suite, thus negatively
affecting readability and maintainability. For example, in TTCN-3 test suites,
too many templates might be defined under different identifiers, although they
represent the same test data instances, in terms of functionality. Such redundancy
in a test system can affect its understandability and maintainability.

Solution

Assign each defined test data a rule specifying what makes the test data unique
and what purpose it fulfills in the test suite. Additional benefit might be obtained
by using a machine processable notation for specifying the rule associated to the
data instance. For that purpose, an assertion language such as OCL can be used.
Based on that rule, before a new test data would be added to the test model, it
can be checked automatically, if another test data meeting the associated criteria
does not exist yet in the test model and a warning issued accordingly.

Known Uses
e The UTML associates each test data instance with a set of constraints it

meets

e The Classification Tree Method (CTM) and similar class partitioning ap-
proaches for data generation are applications of this pattern.

Discussion

A post-analysis of the test model [116] can also help identifying and addressing
this problem.
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A.4.2 Pattern: Basic Static Test Data Pool
Context

This test design pattern is applicable for any test scope.

Problem

Defining test data from scratch is time costly and inefficient. How to reduce the
effort for that activity and save costly time and resources?

Solution

Providing a basic data pool from which further data instances can be specified,
using extension/restriction schemes can help in reducing the test data specifi-
cation efforts. The initial set of static test data definitions can be specified or
automatically generated, using one the following techniques:

e Boundary Value Analysis(BVA) [141, 130]
e Random Value Analysis(RVA)

e Default Values Analysis(DVA)

e (Domain) Equivalence Partitioning(EP)

Detailed descriptions of each of these techniques can be found in various pub-
lications on testing (e.g. The British Computing Society’s (BCS) Standard for
Software Component Testing [84]).

Once the basic set of static test data has been specified or generated, new
instances of test data can be created by changing some of the properties of the
appropriate basic test data, or by adding further rules, based on which the in-
stances of the test data can be created at test execution or be used to validate
the EUT’s responses.

Known Uses

The UTML notation allows the application of this pattern by providing the ca-
pability to link a specified data instance with a data pattern kind describing a
mechanism through which a concrete instance of the specified test data can be
created. Data pattern kinds correspond to the testing techniques listed above.
The implementation of the mechanism is left to the test environment.

Related Patterns

This test design pattern can be combined with the Reusable test data definitions
pattern described in Section A.4.3.
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References
A.4.3 Pattern: Reusable Test Data Definitions
Context

This test design pattern is applicable to unit, integration and system testing

Problem

How to facilitate reuse of already defined test data artifacts?

Solution

To facilitate reuse of already defined test data artifacts (i.e. both types and
instances) the test design notation should provide a mean for referring to existing
test data elements in the test model. The relationship between the original test
data artifact and the new one can be based on extension or restriction. An
extension means, all the rules of the original remain valid, but are extended with
new additional rules. For example, for a data type definition an extension may
consist in adding an additional field to the existing structure of the type. On
the other hand, a restriction maintains the structure of the original data artifact
as-is, but adds new constraints to it. An example of constraint would consist in
making mandatory a field that was previously defined as optional in a data type
definition.

Known Uses

Mechanisms for extending/restricting existing test data artifacts are provided
by several test notations (e.g. the XML Schema Descriptor language (XSD),
TTCN-3, UTML). Classical object inheritance, as supported by several object-
oriented programming languages can also be instrumented to implement a similar
result, in situations whereby they are used for test scripting.

Discussion

If the test notation supports a form of inheritance, it will facilitate the application
of this pattern.

Related Patterns

This test design pattern can use the Default values, the Boundary values and the
Domain partitioning techniques described in section A.4.2, which provide a base
for the Basic static test data pool pattern.
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A.4.4 Pattern: Dynamic Test Data Pool
Context

This Pattern is applicable to any test scope

Problem

Statically defined test data restrict the coverage of the tests, because they increase
the risk of ignoring certain areas of the testing domain. Certain tests require for
test-data to be generated dynamically, at test execution time, on an “on-demand”
basis. This can be very useful in situations whereby it would be too costly to
define all test data statically. Furthermore that enhances the quality of the tests,
as each set of test will be created very specifically for the objective to be addressed
by that test case.

Solution

A dynamic test data pool is an entity which can be called via a predefined API
to generate test data dynamically, i.e. during test execution. For that purpose,
the data pool is provided a set of criteria, which the generated data is supposed
to fulfill, and based on which an appropriate test data instance will be selected
or generated to be returned to the calling entity. For expressing the criteria on
the test data, a constraint notation such as the OMG Object Constraint Lan-
guage (OCL) or any other similar notation is recommended to allow automated
processing.

Known Uses

e This pattern is applied by IBM’s Rational Functional Tester to generate
test data based on equivalence class partitioning.

e The Classification Tree Method (CTM) [68] follows a strategy similar to this
pattern, with each branch of the classification tree representing a constraint
fulfilled by the associated data.

e This pattern is also applied in OO-Programming (e.g. C# [128]) as a mean
to provide test data on an on-demand base. The approach proposed there
consists in using the Builder design pattern [60] and to create a builder class
for every class to be tested. The builder class provides a set of methods,
each creating a different flavor of an instance of the class, matching certain
requirements for the purpose of testing.
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Discussion

The mean for defining the selection criteria of test data instances is a critical
aspect of this pattern. The chosen notation should base on a clearly defined
syntax to allow the criteria to be processed automatically while selecting matching
data instances. Using natural language instead would significantly reduce the
impact of the pattern.

Related Patterns

This pattern is sometime combined with the class partitioning pattern, whereby
equivalent classes are defined and test data are dynamically generated for each
class, based on its defining criteria.

To instantiate this test design pattern, the Builder design pattern, which is
similar to the Factory pattern [60], can be used. In particular in the case of
unit-level testing.

A.5 Test Behaviour Design Patterns

Patterns in test behaviour modelling

A.5.1 Pattern: Assertion-Driven Test Behaviour Design
Context

This pattern can be applied to unit, integration and system testing

Problem

How to ensure that the intent of each test case can be quickly understood, without
having to navigate too deeply into the test script’s source code?

Solution

While modelling each test case, the focus should always be laid on what behaviour
is expected from the SUT for that particular test case. Even if an erroneous
behaviour is expected, then the positive path for the test case is the one to be
visible from the test case’s design and implementation. Here, the positive path in
a test script for a test case is defined as the one leading to a PASS verdict. That
means, there should be no “positive” FAIL verdict. Furthermore, unexpected
behaviour in testing should not be modeled explicitly in test behaviour model,
but should rather be handled implicitly by some exception handling or similar
mechanism, based on the expected behaviour’s model. Otherwise the test model
loses in readability and maintainability.
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Known Uses

e The concept of

e Several TTCN-3 test suites define functions for key actions in the test sce-
narios and invoke those functions in the test cases, instead of putting all the
details of those actions at the highest level of the source code, i.e. the test
case level. Key actions include sending an impulse to the SUT, receiving
a given response from the SUT, checking that SUT’s response meets some
defined constraints and assertions, etc.

e The TTCN-3 altstep-default mechanism can also be viewed as an applica-
tion of this pattern. A TTCN-3 default behaviour is one that is used as
alternative whenever an explicitly specified behaviour does not occur. Acti-
vating/deactivating a TTCN-3 altstep-default switches it on/off as possible
alternative behaviour.

e xUnit (JUnit, HTTP-Unit ...) use this test design pattern. In JUnit and
frameworks based on JUnit, the test cases mainly consist of assertions to
be verified on objects and values from returning methods. If any exception
is thrown in the process a FAIL or an FRROR verdict is set for the test
case.

Discussion
Related Test Patterns

This pattern provide the base for all xUnit Test Patterns [108]. Also it is widely
used as Assertion-Based Verification for various software domains ranging from
UML to embedded systems.

References

xUnit Test Patterns [108]

A.5.2 Pattern: Context-Aware Test Behaviour Design
Context

This pattern is applicable to any test scope

Problem

While designing a test model, there is always a risk for conceptual flaws finding
their way into the model, thus making it inconsistent and more difficult to ex-
ploit for automatic processing. Such conceptual flaws include for instance, the
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specification of actions that are effectively impossible to implement in black-box
testing scenarios. For example, specifying a test impulse from an entity marked
as being part of the SUT or selecting an abstract data instance to be used as test
impulse. How could such errors be avoided right away to ensure high quality of
the resulting test models and save costs?

Solution

While modelling test behaviour, the current test context should constantly be
taken into account. For example, it should be ensured that the test modeler
designs the test behaviour from the tester’s perspective in a black-box testing
approach. Therefore, the test design tool should use those context information
to filter the choices presented to the user for selection in a pro-active approach, to
avoid that, conceptual flaws are introduced in the test model. Furthermore, the
test design tool should provide facilities to verify a test model partly or entirely,
to identify such flaws and provide guidance for their correction.

Known Uses

e The TTCN-3 applies this pattern in the semantics of its port concept, by
providing the possibility of specifying a test component for a given test case
as the system component. TTCN-3 compilers then check that the seman-
tics match the defined rules. However, a pro-active approach, consisting in
appropriate type completion and wizards, while writing TTCN-3 code is
not yet supported by most of the existing tools.

e Model-driven test engineering approaches like the one proposed in this work
with the UTML notation offer better opportunities to implement this test
pattern, since model-driven development environments provide the tech-
nical means for attaching rules to a metamodel in form OCL constraints,
which can be evaluated on-line (i.e. as the test model is being designed) or
offline (after the test model has completely been designed).

Discussion

The application of this pattern requires a good documentation and technical
support on the part of the test design tools, as it might not always be clear to
users why certain operations, they try to perform would be disallowed. Also, the
error and warning messages resulting from validation should be clear enough to
inform the person doing the test design on the issue identified and potentially on

ways to address them.
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A.5.3 Pattern: Test Component Factory
Context

Integration-, System Testing

Problem

How to model dynamically scalable, but yet maintainable tests?

Solution

One test component, generally called main test component (MTC) serves as the
generator without any further test functionality. The actual testing of the SUT is
performed by the generated parallel test components (PTCs). The behaviour of
all PTCs is specified only once and linked to the type definition of the component

type.

Known Uses

This pattern is used in several test suites. In particular to measure the latency of
servers e.g. IMS serving entities [43], web services. The test component factory
can generate parallel test components at runtime, with each of those emulating a
client. The ability to instantiate test components dynamically makes it possible
to generate load on the server under test according to any predefined scenario or
to reflect a given distribution (Poisson, Normal, Exponential, etc.).

Discussion

The architecture of the PTCs, i.e. the connections among themselves and between
them and the EUTSs is not considered by this pattern and should be addressed by
the use of the appropriate architectural patterns. It should be taken into account
that a mechanism for controlling the lifecycle of the test components will also be
required, along with a mean to coordinate the behaviour of the created PTCs.

Related Patterns

This pattern is the testing pendant to the abstract factory design pattern known
in generic software design [90, 62]. It has also been referred to as the generator
pattern [51] or the Give me an army pattern [51]

References

[51]
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A.5.4 Pattern: Central Coordination of Test Components
Context

Integration- and System Testing

Problem

How to coordinate multiple parallel test components to perform a given test
behaviour?

Solution

Let one of test components play a central role as main coordination points for
the remaining test components in the test architecture.

Known Uses

In TTCN-3, the Main Test Component (MTC) can be used as central coordi-
nation point for the parallel test components. For that purpose, it must be
connected to each of them and exchange coordination messages over those con-
nections to control the behaviour of the PTCs to achieve the required behaviour
for the whole test system.

Related Patterns

This pattern is related to the centralized test coordinator architectural test design
pattern mentioned in section A.3.8 above. Furthermore, this pattern extends the
test component factory pattern mentioned previously. Finally, this pattern is the
logical opposite to the distributed coordination of test design patterns pattern.

References

[51]

A.5.5 Pattern: Distributed Coordination of Test Components
Context
Problem

How to coordinate multiple parallel test components to perform a given test
behaviour?
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Solution

Define and implement a coordination scheme, whereby the behaviour of each test
components depends of the behaviour of the other test components involved in
the test scenario.

APartioning of Test Artifacts

Known Uses

This test design pattern is applied in several TTCN-3 test suites, using a combi-
nation of that notation’s stop and stop all keywords.

Discussion

Related Patterns

This pattern is the logical opposite of the Central Coordination of Test Compo-
nents test design pattern described in Section A.5.4. The Follow the Leader test
behaviour pattern described in the ETSI’s collection of test design patterns is an
extension of this test design pattern, which defines how test components should
terminate their life cycle, depending on the termination of one of the others test
components involved in the test architecture. The initially terminating test com-
ponent is referred to as the “leader”, which other test components follow, by
stopping their test execution and terminating as well.

References

[51]

A.5.6 Pattern: Time Constraints in Test Behaviour
Context

This pattern is applicable to any test scope

Problem

How to handle exceptional situations in test scenarios involving interactions be-
tween test components among themselves or with SUT components

Solution

Define timing constraints on test actions involving more than one component.
E.g. for each action representing an impulse to an SUT component or an expected
response, provide a timing constraint to allow the test system to recover, if the
action does not complete smoothly. The timing constraint can be defined via a
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timer which is started shortly before the action is started and which would trigger
an event, if it expires before the action has completed as expected.

Known Uses

e In TTCN-3 a so-called guard-timer can be used to define a timing constraint
for an expected signal on a test component. The guard timer’s expiration,
while waiting for a reaction from the SUT, triggers an event that can be
handled to set the test verdict accordingly.

e Real-Time TTCN-3 [37] proposes to extend the TTCN-3 notation with the
concept of this pattern.

e The UTML notation applies this pattern by attaching a timer specification
to every specification of an event expected as response from an EUT.

Related Patterns

This pattern is equivalent to the latency test design pattern mentioned in [37]
and used in performance testing of various kinds of servers (e.g. web, application,
etc.).



Appendix B

UTML Mapping Examples

This appendix provides some details on the mapping of UTML elements to
TTCN-3 and JUnit.

B.1 UTML to TTCN-3 Mapping Rules

B.1.1 Testcase

[template public processTestcase (testcase_p:Testcase)]

/xx

[if (testcase_p.description.ocllIsTypeOf(OclVoid))]
* @desc:

[printAsComment (testcase_p.description)/]

[/ if]

* @purpose [if (testcase_p.testObjective.ocllsTypeOf(OclVoid))]
[for (t-obj:TestObjective | testcase_p.testObjective)] [t_obj.id/][/for]
[/if]

* TP version:

[if (testcase_p.testProcedure.ocllIsTypeOf(OclVoid))]

[if (testcase_p.testProcedure.testObjective.ocllIsTypeOf(OclVoid))]
[for (t-obj: TestObjective | testcase_p.testProcedure.testObjective)]
[for (descElt: DescriptionElement | t-obj.objectiveDescElement )]

[if (descElt.value<>"")]

*

* [mapKeyword(descElt .name) /]

[printAsComment (descElt . value)/]

1/ if]
[/ for]

[/ for]

/it

[/ if]

[for (t-obj: TestObjective | testcase_p.testObjective)]
[for (descElt: DescriptionElement | t_obj.objectiveDescElement )]
[if (descElt.value<>"")]

*

+ [mapKeyword (descElt .name) /]

273
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[printAsComment (descElt . value)/][/if][/ for]

[/ for]
[if (testcase_p.testProcedure.ocllIsTypeOf(OclVoid))]

* Test procedure:

[let cnter:Integer = 1]

[for (t-step: TestStep | testcase_p.testProcedure.testStep)]
[printAsComment (cnter.toString (). concat (”: ”).concat(t-step.content))/]
[let cnter:Integer = cnter+1]

[/ for]

[/if]

*

*/

[let inrOfComps:Integer = testcase_p.componentInstance—>size ()]
[let testCompType:String = ”ComponentType” /]

[let sysCompType: String = ”SystemComponentType” /]

[

if (i-nrOfComps > 2)]
[if (testcase_p.componentType.ocllsTypeOf(OclVoid))]
[let testCompType:String = testcase_p.componentType.name/]
[/ if]
[if (testcase_p.systemComponentType.oclIsTypeOf(OclVoid))]
[let sysCompType: String = testcase_p .systemComponentType.name/]
[/ if]
[else]
[if (testcase_p.localTestComponent.ocllIsTypeOf(OclVoid))]
(

[if (testcase_p.localTestComponent.type.ocllsTypeOf(OclVoid))]
[let testCompType:String = testcase_p.localTestComponent.type.name/]
[/if]
[/if]
[/if]

testcase [testcase_p.name/]()

runs on [testCompType/]

system [if (testcase_p.systemComponentType.ocllsTypeOf(OclVoid))]
[testcase_p .systemComponentType.name/] [else] SystemComponentType [/if]

{

[if (testcase_p.variableDeclaration—>size() > 0
|| testcase_p.timerDeclaration—>size () > 0)]
//Local variables and timers

timer T_WAIT;

[for (vd:VariableDeclaration | testcase_p.variableDeclaration)]
[processVariableDeclaration (vd) /]

[/ for]

[for (td:Timer | testcase_p.timerDeclaration)]
[processTimerDeclaration (td)/]

[/ for]

[/if]

[if (testcase_p.testProcedure.ocllsTypeOf(OclVoid))]

[if (testcase_p.testProcedure.testObjective.ocllsTypeOf(OclVoid))]

//Test execution

[processPreconditions (testcase_p.testProcedure.testObjective, testcase_p.name)/]
[/ if]

[elseif (testcase_p.testObjective.ocllsTypeOf(OclVoid))]

//Test execution

[processPreconditions (testcase_p.testObjective , testcase_p .name)/]

[/if]

//Setup configuration
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[if (testcase_p.testArchitecture.ocllsTypeOf(OclVoid))]:
[testcase_p.testArchitecture.id /][/ if]

[if (inrOfComps > 2)]

//Instanciate test components

[for (comp:Componentlnstance | testcase_p.componentlnstance)]
[if (comp.kind.literal <> ”SUT”)]

var [comp.type.name/] [comp.id /] := [comp.type.name/].create;
[/if]
[/ for]

[/if]
[if (testcase_p.testArchitecture.ocllsTypeOf(OclVoid))]
[if (testcase_p.testArchitecture.setupFunction—>size ()>0)]
[for (setupFunction:TestBehaviourActionDef |
testcase_p.testArchitecture.setupFunction)]
[processTestAction (setupFunction, testcase_p.name)/]
[/ for]
[else]
[for (connection:Connection | testcase_p.testArchitecture.connections)]
[if (inrOfComps > 2)]
[processConnection (connection) /]
[else]
[processSingleComponentConnection (connection)/]
1/ if]
[/ for]
[/if]
[if (testcase_p.testArchitecture.associatedDefault.ocllsTypeOf(OclVoid))]

[for (default: DefaultBehaviourDef | testcase_p.testArchitecture.associatedDefault)]
activate ([default.id /]());

[/ for]

[else]

//WARNING: No configuration for testcase
[/if]

[/if]

//Preamble
[if (testcase_p.beginState.ocllsTypeOf(OclVoid))]
[for (st:State | testcase_p.beginState)]
[for (t-act:TestAction | st.triggeringActions)]
[if (t-act.theComponent.oclIsTypeOf(OclVoid))]
[if (i-nrOfComps > 2)]|[t_act.theComponent.id /].start ([/if]
[if (t-act.ocllsTypeOf(TestBehaviourActionInvocation))]
[if (t-act.testBehaviourActionDef.oclIsTypeOf(OclVoid))]
[if (t-act.storage.ocllsTypeOf(OclVoid))][t-act.storage.name/]
= [/if] [t-act.testBehaviourActionDef.name/]([processParams(t_act)/])
[else]
// Warning: Missing TestBehaviourActionDef in test behaviour action invocation.
// No code generated
1/ if]
[/ if]
[if (inrOfComps > 2)])[/if];
[if (i-nrOfComps > 2)][t_act.theComponent.id /].done;[/if]
[else]
//WARNING: No test component for invocation. No code generated
1/if]
[/ for]
[/ for]
[/if]

//Test body
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[if (i-nrOfComps <= 2)]
[for (ta: TestAction | testcase_p.testAction)]
[processTestAction (ta, testcase_p.name)/]

[/ for]

[else]

//First start passive components

[for (comp:Componentlnstance | testcase_p.passiveComponentInstance)]

[if (comp.kind.literal <> ”SUT”)]
[comp.id /].start( f_[testcase_p.name/]_[comp.id/]_behaviour ());

[/ if]

[/ for]
//Then, start active components
[for (comp:ComponentInstance | testcase_p.activeComponentInstance)]

[if (comp.kind.literal <> ”SUT”)]
[comp.id /].start( f_[testcase_p.name/]_-[comp.id/]_-behaviour ());

[/if]

[/ for]
//Wait until components complete their job
[for (comp:ComponentInstance | testcase_p.componentlnstance)]

[if (comp.kind.literal <> ”SUT”)]
[comp.id /].done;

[/if]

[/ for]

[/if]

//Postamble
[if (testcase_p.endState.ocllsTypeOf(OclVoid))]
[for (st:State | testcase_p.endState)]
[for (t-act:TestAction | st.triggeringActions)]
[if (t_act.theComponent.ocllsTypeOf(OclVoid))]
[if (i-nrOfComps > 2)][t.act.theComponent.id /].start ([/if]
[if (t-act.ocllsTypeOf(TestBehaviourActionInvocation))]
[if (t_-act.testBehaviourActionDef.ocllIsTypeOf(OclVoid))]
[if (t-act.storage.ocllsTypeOf(OclVoid))][t-act.storage.name/]
:= [/if][t-act.testBehaviourActionDef.name /] ([processParams(t_act)/])
[else]
// Warning: Missing TestBehaviourActionDef in test behaviour
// action invocation. No code generated
[/ if)
[/ if]
[if (inrOfComps > 2)

IDAVASSE
[if (i-nrOfComps > 2)]

)[[t,act .theComponent.id /].done;[/ if]
[else]
//WARNING: No test component for invocation. No code generated
[/if]

[/ for]

[/ for]

[/if]

[if (testcase_p.testArchitecture.oclIsTypeOf(OclVoid))]

[if (testcase_p.testArchitecture.teardownFunction—>size () > 0)]

//Teardown configuration: [testcase_p.testArchitecture.id/]

[for (teardownFunction: TestBehaviourActionDef

| testcase_p.testArchitecture.teardownFunction)]
[processTestAction (teardownFunction, testcase_p.name)/]

[/ for]

[else]
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[for (connection:Connection | testcase_p.testArchitecture.connections)]
[if (inrOfComps > 2)]
[processDisconnection (connection) /]
[else]
[processSingleComponentDisconnection (connection)/]
[/ if]
[/ for ]
[/ if]
[/ it]
}//end [testcase_p .name/]
[if (testcase_p.testObjective.ocllsTypeOf(OclVoid))]
[for (t-obj: TestObjective | testcase_p.testObjective.)]
[for (descElt:DescriptionElement | t_obj.objectiveDescElement )]
[if (descElt.name.toLower ().contains(” description”))]
with {extension ”Description: [descElt.value/]”}
[/ if]
[/ for ]
[/ for]
[/if]

[/ template]

B.1.2 SendDataAction

[template public processSendDataAction (action_p:SendDataAction, mirror_p:Boolean)]
[if (action_p.connection.ocllsTypeOf(OclVoid)
&& action_p.sourcePort.ocllsTypeOf(OclVoid)
&& action_p.transmittedDatalnstance.ocllsTypeOf(OclVoid))]
[if (!mirror_p)]
[action_p.sourcePort.name/].send ([action_p.transmittedDatalnstance .name/]
[if (action_p.transmittedDatalnstanceParameter—>size ()>0)]
([ processParamsList (action_p.transmittedDatalnstanceParameter)/])[/if]);

[else]

[if (action_p.destPort.ocllIsTypeOf(OclVoid))]
timer t_default := 100.0;

alt{

[][action_p.destPort.name/].receive ([action_p.transmittedDatalnstance.type.name/]:?)
{
[if (action_p.passCriterium)]
setverdict (pass,”**x received expected
[action_p.transmittedDatalnstance.type.name/] message **%”);
[else]
log ("**+ received expected
[action_p.transmittedDatalnstance.type.name/] message **%”);
[/if]
}
[][action_p.destPort.name/].receive{
setverdict (fail ,”**%% received unexpected message *#*%”);
stop;
}
[]t-default.timeout{
setverdict (fail ,”*%x timer t_default timed out =>
message [action_p.transmittedDatalnstance.name/] not received x%x”);
stop;

}
}

[else]
// Warning: Test model incomplete:
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// Unspecified Destination Port for Send Data Action. No code generated
[/if]
[/if]
[else]
// Warning: Test model was incomplete. No code generated for send data action
[/if]

[/ template]

B.1.3 ReceiveDataEvent

[template public processReceiveDataEvent
(action_p:ReceiveDataEvent , context_p:String, mirror_p:Boolean)]
[if (action_p.connection.ocllsTypeOf(OclVoid)
&& (action_p.timer.ocllsTypeOf(OclVoid) || action_-p.defaultTimer.ocllsTypeOf(OclVoid))
&& action_p.receptionPort.ocllIsTypeOf(OclVoid)
&& action_p.expectedDatalnstance.oclIsTypeOf(OclVoid))]
[if (action_p.timer.ocllsTypeOf(OclVoid))]
[let timer:Timer = action_-p.timer]
[elseif (action_p.defaultTimer.oclIsTypeOf(OclVoid))]
[let timer:Timer = action_-p.defaultTimer ][/ if]
[if (!mirror_p)]
[let b_storage:Boolean = false /]
[if (action_p.storage.ocllsTypeOf(OclVoid))]
[let b_storage:Boolean = true /]
//@processVariableDeclaration varDecl_-p = action_p.storage/
[/ if]
[if (action_p.timerRestart)]
[timer .name/].start ;
[/ if]
alt {
[][action_p.receptionPort.name/]
.receive ([action_p.expectedDatalnstance .name/]
[if (action_p.expectedDatalnstanceParameter—>size ()>0)]
([ processParamsList (action_p.expectedDatalnstanceParameter)/])
[/if])[if (b_storage)] —> value [action_p.storage.name/][/if]{
[timer .name /].stop;
[if (action_p.passCriterium)]
setverdict (pass,”x** [context_p.toUpper ()/]:
[action_p.expectedDatalnstance.type.name/] message received as expected *xx”);
[else]
log ("**+ [context_p.toUpper()/]:
[action_p.expectedDatalnstance.type.name/] message received as expected #%x”);
[/ if]
}
[if (wrapper.properties.generate_timeout_branches)]
[if (timer.ocllIsTypeOf(OclVoid))]
[][timer .name/].timeout {
setverdict (fail ,”x** [context_p.toUpper ()/]:
Time out while expecting [action_p.expectedDatalnstance.type.name/] message sxx*”);
stop;
}
[else]
//Warning: Code generation skipped for ReceiveDataEvent: timer missing
[/ if]
[/ it]
}
[else]
[if (action_p.sourcePort.ocllIsTypeOf(OclVoid))]
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[if (action.p.expectedDatalnstance.mirrorDatalnstance.ocllsTypeOf(OclVoid))]
[action_p.sourcePort.name/]

.send ([action_p.expectedDatalnstance. mirrorDatalnstance.name/]);

[else]

[action_p.sourcePort.name/].send ([action_p.expectedDatalnstance.name/]);

[/ if]

[else]

//Warning: Code generation skipped for ReceiveDataEvent: source port missing
[/ it]

[/it]

[else]

// Warning: Test model was incomplete. No code generated for receive data action
[/ it]

[/ template]

B.1.4 SendDiscardAction

[template public processSendDiscardAction (action_p: SendDiscardAction,
context_p:String, mirror_p:Boolean)]
[if (action_p.connection.ocllsTypeOf(OclVoid)
&& action_p.sourcePort.oclIsTypeOf(OclVoid)
&& action_p.transmittedDatalnstance.ocllIsTypeOf(OclVoid)
&& action_p.timer.ocllIsTypeOf(OclVoid)
&& action_p.allowedResponse.ocllsTypeOf(OclVoid))]
[processSendDataAction (action_p, mirror_p)/]
[if (action_p.timerRestart)]
[action_p.timer .name/].start;
[/ it]
alt{
[for (resp: Response | action_p.allowedResponse)]
[for (data: MessageTestDatalnstance | resp.expectedData)]
[][resp.port.name/].receive ([data.name/]){
log ("++% [context_p.toUpper()/]: received allowed [data.type.name/] message x*x");

repeat;

for (data: MessageTestDatalnstance | resp.unexpectedData)]
][resp.port.name/]. receive ([data.name/]){
[action_p.timer.name/].stop;

setverdict (fail ,”**x [context_p.toUpper()/]:

received unexpected [data.type.name/] message *%x”);
stop;

}
[/ for]
[
[

¥
[/ for]
[][resp.port.name/].receive{
setverdict (fail ,”*x+ [context_p.toUpper()/]:
received disallowed message for a message to be discarded xx*x");
stop;
¥
[/ for]

[][action_p.timer.name/].timeout {

[if (action_p.passCriterium)]

setverdict (pass,”**x [context_p.toUpper()/]:

timer [action_p.timer.name/| timed out => message
[action_p.transmittedDatalnstance.name/] discarded as expected *xx”);

[else]

log ("**% [context_p.toUpper()/]: timer [action_p.timer.name/] timed out

=> message [action_p.transmittedDatalnstance.name/] discarded as expected **%”);
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[/if]
}
}

[else]
// Warning: Test model was incomplete. No code generated for send—discard sequence
[/if]

[/ template]

B.1.5 WaitAction

[template public processWaitAction (action_p: WaitAction, context_p:String)]
[let bTimer:Boolean = false /]

[let bDelay:Boolean = false /]

[if (action_p.delay > 0)]

log ("**+ [context_p.toUpper()/]:

start waiting for [action_p.delay_formatted /] seconds. *xx”);

[let timerName:String = "T_-WAIT” /]

[let bDelay:Boolean = true/]

[elseif (action_-p.timer.oclIsTypeOf(OclVoid))]

[let timerName:String = action_p.timer.name/]

[let bTimer:Boolean = true/]

log ("*** [context_p.toUpper()/]: start waiting until [action_p.timer.name/] expires. x%x7);
[/if]

[if (wrapper.properties. mapping__wait_action = 7")]

[if (bTimer || bDelay)]
[if (bDelay)]
[timerName /].start ([action_-p.delay_formatted /]);
[/if]
alt {
[][timerName /] . timeout {
[if (bTimer)]
log ("#++ [context_p.toUpper()/]:
finished waiting for timer [timerName/] to expire. *xx”);
[else]
log ("**% [context_p.toUpper()/]:
finished waiting for [action_p.delay_formatted /] seconds. *xx*”);
[/if]
}
}
[else]
//WARNING: Timer and delay missing for WaitAction model element. No code will be generated
[/ if]
[else]// Customized Mapping
[if (bTimer || bDelay)]
[if (bDelay)]
[wrapper. properties. mapping__wait_action /]([action_p.delay_formatted /]);
[elseif (bTimer)]
[wrapper. properties. mapping__wait_action /]([action_p.timer.delay_formatted /]);
[/if]
[else]
//WARNING: Timer and delay missing for WaitAction model element. No code will be generated
[/ if]
[/ if]

[/ template]

B.1.6 SetupConnectionAction

[template public processSetupConnectionAction (action_p: SetupConnectionAction)]
[if (action_p.sourcePort.
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oclIsTypeOf(OclVoid) && action_p.destPort.oclIsTypeOf(OclVoid))]
[if (action_p.destPort.theComponent.oclIsTypeOf(OclVoid))]
[if (action_p.destPort.theComponent.kind.literal=="SUT”)]
map(self:[action_p.sourcePort.name/]
,system :[ action_p.destPort.name/]);
[else]
connect ([action_p.connection.destPort.theComponent.id /]:[action_p.sourcePort.name/]
,system :[ action_p.destPort.name/]);
[/ if]

[else]

// Warning: Test model was incomplete. No code generated for SetupConnection action
[/it]
[elseif (action_p.connection.ocllsTypeOf(OclVoid))]
[if (action_p.connection.destPort.theComponent.ocllsTypeOf(OclVoid))]
[if (action_p.connection.destPort.theComponent.kind.literal=="SUT”)]
map(self:[action_p.connection.sourcePort.name/]
,system :[ action_p.connection.destPort.name/]);
[else]
connect (self:[action_p.connection.sourcePort.name/]
,[action_p.connection.destPort.theComponent.id /]
:[action_p.connection.destPort.name/]);
1/ if]

[else]

// Warning: Test model was incomplete. No code generated for SetupConnection action
[/if]
[else]

// Warning: Test model was incomplete. No code generated for SetupConnection action
[/if]

[/template]
B.1.7 CloseConnectionAction

[template public processCloseConnectionAction
(action_p: CloseConnectionAction, context_p:String)]
[if (action_p.connection.ocllsTypeOf(OclVoid))]
[if (action_p.connection.destPort.theComponent.kind.literal=="SUT”)]
unmap (self :[action_p.connection.sourcePort.name/]
,system : [ action_p.connection.destPort.name/]);
[else]
disconnect (self :[action_p.connection.sourcePort.name/]
,[action_p.connection.destPort.theComponent.id /]
:[action_p.connection.destPort.name/]);
[/ it]
[else]
// Warning: Test model was incomplete. No code generated for CloseConnection action
[/ it]
[/ template]

B.1.8 DefaultBehaviourDef

[template public processDefaultBehaviourDef (defaultDef_p: DefaultBehaviourDef)]
altstep [defaultDef_p.id /]()

[if (defaultDef_p.componentType.ocllsTypeOf(OclVoid))]

runs on [defaultDef_p.componentType.name/][/if]

{

[for (act: TestAction | defaultDef_p.defaultAction)]

[if (act.triggeringEvent.oclIsTypeOf(OclVoid))]

[][ processTriggeringEvent (act.triggeringEvent)/]{

[for (subAct: TestAction | act.testAction)]
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[processTestAction (subAct, defaultDef_p.id)/]
[/ for]
}

[else]

//WARNING: Triggering event missing for default action
[/if]

[/ for]

}

[/ template]

B.1.9 StopTimerAction

[template public processStopTimerAction (action_p: StopTimerAction, context_-p:String)]
[if (action_p.timer.ocllIsTypeOf(OclVoid))]

[action_p.timer.name/].stop;

[else]

//WARNING: Timer missing for StopTimerAction model element. No code will be generated
[/if]

[/ template]

B.1.10 StartTimerAction

[template public processStartTimerAction (action_p: StartTimerAction, context_p:String)]
[if (action_p.timer.ocllsTypeOf(OclVoid))]

[action_p.timer.name/].start [if (action_p.delay.ocllIsTypeOf(OclVoid)

&& action_p.delay > 0)]([action_p.delay_formatted /])[/if];

[else]

//WARNING: Timer missing for StartTimerAction model element. No code will be generated
[/ if]

[/ template]

B.1.11 ValueCheckAction

[template public processValueCheckAction (action_p:ValueCheckAction, context_p: String]
[if (action_p.dataConstraint—>size () > 0
&& (action_p.variable.ocllIsTypeOf(OclVoid)
|| action_p.testBehaviourInvocationAction.ocllIsTypeOf(OclVoid)))]
[if (action_p.variable.ocllIsTypeOf(OclVoid)
&& action_p.variable.name.oclIsTypeOf(OclVoid)
[let variable:String = action_p.variable.name
[else]
[if (action_p.testBehaviourActionInvocation
.testBehaviourActionDef.oclIsTypeOf(OclVoid)
&& action_p.testBehaviourActionInvocation
.testBehaviourActionDef.name. oclIsTypeOf(OclVoid))]
[let variable:String]
[action_p.testBehaviourActionInvocation.testBehaviourActionDef.name/]
([processParams (action_p.testBehaviourActionInvocation)/])[/ let]
[else]
[let variable:String = "UNSPECIFIED FUNCTION” /]
[/ if]
[/i£]
[for (constr:DataConstraint | action_p.dataConstraint)]
[processConstraint (constr , variable, action_p, context_p)/]
[/ for ]
[else]
// Warning: Test model was incomplete. No code generated for value check action.
[if (action_p.dataConstraint—>size () <= 0)]

)]
/]
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//No constraint specified
/it
[if (laction_p.variable.ocllIsTypeOf(OclVoid))]
//NO variable specified
1/ if]
[if (!action_p.testBehaviourActionInvocation.ocllIsTypeOf(OclVoid))]
//NO behaviour invocation specified
1/ if]
[/it]
[/template]

B.2 UTML to JUnit Mapping Rules

B.2.1 Testcase

[template public processTestcase (testcase_p: Testcase)]
[if (selectedObjects —>size ()==1)]

import de.fraunhofer.fokus.testing.web.http.x*;

import de.fraunhofer.fokus.utml.generated .x;

[/if]

/%%

* @purpose [if (testcase_p.testObjective.ocllsTypeOf(OclVoid))]

[for (t-obj:TestObjective | testcase_p.testObjective)] [t_obj.id/][/for]

[/if]

* TP version: [if (testspec.ocllIsTypeOf(OclVoid))]

[if (testspec.version.ocllsTypeOf(OclVoid))][testspec.version /|[/if][/if]

[if (testcase_p.testProcedure.ocllIsTypeOf(OclVoid))]

[if (testcase_p.testProcedure.testObjective.oclIsTypeOf(OclVoid))]
[for (t-obj:TestObjective | testcase_p.testProcedure.testObjective)]
[for (descElt:DescriptionElement| t_obj.objectiveDescElement )]

[if (descElt.value<>"")]

*

* [mapKeyword(descElt .name) /]

[printAsComment (descElt . value) /]

1/ if]
[/ for]

[/ for]

1/if]

[/if]

* @desc:

[if (testcase_p.description.ocllsTypeOf(OclVoid))]

[printAsComment (testcase_p . description)/]

[/ if]

* Test procedure:

[if (testcase_p.testProcedure.ocllsTypeOf(OclVoid))]

[let cnter:Integer = 1]

[for (t_step:TestStep | testcase_p.testProcedure.testStep )]

[printAsComment text_p=cnter+”: "+t_step.content /]

[let cnter:Integer = cnter+1]

[/ for]
[/ if]

*/

public class [testcase_p.name/]| extends HttpTestcase {

public [testcase_p .name/](){
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super (” [testcase_p .name/]”
,” This test case has been automatically generated from a UIML test model.
[testcase_p.description?js_string /]”);

}

public void test|[testcase_p.name/]() throws Exception{

[if (testcase_p.testProcedure.ocllsTypeOf(OclVoid))]

[if (testcase_p.testProcedure.testObjective.ocllsTypeOf(OclVoid))]

[let t_obj_list:Set(TestObjective) = testcase_p.testProcedure.testObjective]
[/ if]

[elseif (testcase_p.testObjective.ocllIsTypeOf(OclVoid))]

[let t_obj_list:Set(TestObjective) = testcase_p.testObjective]

[/if]

//Test execution
[if (t-obj-list.oclIsTypeOf(OclVoid))]
[for (t_obj:TestObjective | t_obj_list)]
[for (descElt:DescriptionElement| t_obj.objectiveDescElement )]
[if (descElt.name.toLower()=="pics item”)]
[if (descElt.value.contains (PICSSSEPARATOR)) ]
[let sep:String = PICS.SEPARATOR)]
[else]
[let sep:String =7 7]
[/ if]
[for (pic:String | descElt.value?split(sep))]
[if (!(pic==""))]
{if (*([pic/]))

printOut (" *%%+ [testcase_p.name/]: Info
TC needs [pic.replace(”=", ”_7)/] +to be supported sx*xx”);
stop () ;

}
[/if]
[/ for]
[/if]
[/ for]
[/ for]
[/if]

//Setup configuration [if (testcase_p.testArchitecture.ocllsTypeOf(OclVoid))]
[testcase_p.testArchitecture.id /][/ if]

[if (testcase_p.testArchitecture.ocllsTypeOf(OclVoid))]

[if (testcase_p.testArchitecture.setupFunction—>size ()>0)]

[for (setupFunction:TestBehaviourActionDef |
testcase_p.testArchitecture.setupFunction)]

[processTestAction (setupFunction, testcase_p .name)/]

[/ for]

[else]

[for (connection:Connection | testcase_p.testArchitecture.connections)]
[processConnection (connection)/]

[/ for]

[/ if]

[if (testcase_p.testArchitecture.associatedDefault.oclIsTypeOf(OclVoid))]

[for (default: DefaultBehaviourDef | testcase_p.testArchitecture.associatedDefault)]
activate ([default.id /]());

[/ for]

[else]

//WARNING: No configuration for testcase
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[/if]
[/if]

//Preamble

[for (bs:State | testcase_p.beginState)]
[for (t-act:Action | bs.triggeringActions)]
[t-act .name /] ([processDefaultParams(t_act)/]);

[/ for]
[/ for]

//Test body

[for (var:VariableDeclaration | testcase_p.variableDeclaration)]
[processVariableDeclaration (var)/]

[/ for]

[if (i-nrOfComps <= 2)]
[for (ta:TestAction | testcase_p.testAction)]
[processTestAction(ta, testcase_p.name)/]

[/ for]

[else]

//First start passive components

[for (comp:ComponentInstance | testcase_p

.passiveComponentInstance)]
[if (comp.kind.literal <> ”"SUT”)]

f_[testcase_p.name/]_[comp.id /] -behaviour ();
[/if]
[/ for]
//Then, start active components
[for (comp:ComponentInstance | testcase_p.activeComponentInstance)]
[if (comp.kind.literal <> ”SUT”)]
f_[testcase_p.name/]|_[comp.id /] _-behaviour ());
[/ if]
[/ for]
/it

[if (testcase_p.testArchitecture.ocllsTypeOf(OclVoid))]

[if (testcase_p.testArchitecture.teardownFunction—>size () > 0)]
//Teardown configuration: [testcase_p.testArchitecture.id/]

[for (teardownFunction:TestBehaviourActionDef |
testcase_p.testArchitecture.teardownFunction)]

[processTestAction (teardownFunction, testcase_p.name)/]

[/ for ]

[else]

[for (connection:Connection | testcase_p.testArchitecture.connections)]
[processDisconnection (connection)/]

[/ for]
[/ it]

[/ it]

//Postamble

[for (es:State | testcase_p.endState)]

[for (t-act:TestAction | es.triggeringActions)]
[t-act.name /]| ([ processDefaultParams(t-act)/]);
[/ for]

[/ for]

}

}//end [testcase_p .name/]
[/template]
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B.2.2 WaitAction

[template public processWaitAction (action_p:WaitAction, context_p:String)]
printOut (" *%* [context_p.toUpper()/]:

start waiting for [action_p.delay_formatted /] ms. **x”);

sleep ([action_p.delay_formatted /]);

[/ template]

B.3 SysML to UTML Mapping

Table B.1: SysML to UTML Mapping

SysML Element

UTML Equivalent

Requirements Concepts

Package in require-
ments diagram

Test objectives group definition (TestOb-
jectivesGroupDef )

Requirement

TestObjective

Dependency  Rela-
tionship

Requirement relationship

Verify Relationship

Requirement relationship

Testcase

TestObjective

Architecture Concepts

Package in block dia-

Test architecture group definition ( TestAr-

gram chitectureGroupDef)

Block Component  instance  (Componentin-
stance)

Flowport Port Instance (PortInstance)

B.4 WSDL to UTML Mapping

Table B.2: WSDL to UTML Mapping

WSDL Element

UTML Equivalent

Data Concepts

definitions- TestDataModel
/wsdl:definitions

complexType- MessageTestDataType
/wsdl:complexType

simpleType- MessageTestDataType

/wsdl:simpleType

part/wsdl:part

ParameterDeclaration, if parent XML
node is of type operation or DataTypeField
otherwise

fault /wsdl:fault

OperationEzxceptionDef

operation

OperationTestData Type

output/wsdl:output

OperationResponseDef

input/wsdl:input

ParameterDeclaration

Architecture Concepts
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Table B.2: WSDL to UTML Mapping

WSDL Element

UTML Equivalent

/wsdl:port Type

definitions- TestArchitecture TypesModel
/wsdl:definitions
portType- PortType
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Appendix C

UTML Model Transformation
Examples

C.1 Example of Model Transformation: UTML to TTCN-
3

ez

@desc:

@purpose SUPL—2.0—con—110—12—1
TP version:

Test Case Id :

SUPL—2.0—con—110

Test Object :

Client

Test Case Description :

To test SET correctly actions single session Positioning method
Specification Reference :

ULP TS 5.2.1, 8, 9

SCR Reference :

ULP-PRO-C-009—0, ULP-PRO-C—-011—M, ULP-PRO-C-012-0,
ULP-PRO-C-015—0, ULP-PRO-C-014—0O, ULP-PRO-C-015—-0, ULP-PRO-C-016—-0,
ULP-PRO-C-018—-0 x*

Tool :

¥ X X X X X X X X X X K X X X X K X ¥ X ¥ X ¥ ¥ X ¥ * * ¥
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SUPL Client Conformance Test Tool
Test code

Validated test code for this test case
Preconditions

( (ics-AGANSSSETassisted-Galileo_.SET _initiated

AND ics_.AGANSSSETbased_Galileo_.SET_initiated) OR

(ics_AGANSSSETassisted_GLONASS_SET _initiated AND
i1cs_ AGANSSSETbased-GLONASS_SET_initiated)) AND

(izit_gANSS . galileo or

1xit_.gANSS . gloneass)

Test Procedure

Test 12: A-GANSS Preferred methods [Includes optional features]
Note that these test cases only test a single GNSS at one time.
Testing of support for multiple simultaneous GNSSs is for further study.

1. All tests: start a SI Location Session
2. The SET sends SUPL START with :

SET capabilities parameter consistent with the Positioning technologies
supported

by the SET as declared in the ics
8. Send SUPL RESPONSE with: Positioning Method set to the wvalue
specified in the table below

GNSS Positioning Technology set to the wvalue specified in the table below

4. The SET sends SUPL POS INIT with:
SET capabilities parameter consistent with the Positioning
technologies supported by the SET

as declared in the ics
6. All tests except Test 4 and Test 5: A SUPL POS session
takes place and completes successfully

using the Positioning Method defined by the test case.

Test 12, Case 1: A-GANSS SET assisted is wused.

The GANSS used can be one of Galileo or GLONASS depending on
the technology supported by the SET

and declared in izit_gANSS.
8. Test 1, Test 6, Test 7, Test 11 Case 1 and Test 12 Case 1:
send SUPL END with: Position set to

a realistic position for the SET.

9. All tests: the SET releases the secure IP comnection.
Note: Repeat for all Positioning technologies supported
by the SET as declared in the ics

Pass—Criteria
All tests:

1. At step 2 the SET shall send SUPL START with :
SET capabilities parameter consistent with the Positioning

* X K X X X X X X X X X X X X X X ¥ X X X X X X ¥ X ¥ X X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ % ¥ X ¥ ¥ % * ¥ % ¥ *
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technologies supported by the SET as declared

in the ics

2. At step 2 the SET shall send SUPL POS INIT with :

SET capabilities parameter consistent with the Positioning
technologies supported by the SET

as declared in the ics

All tests except Test 4 and Test 5:
8. At step 6 a SUPL POS session shall take place and shall complete
successfully wusing the Positioning Method defined by the test case.

Test 12, Case 1: A-GANSS SET assisted shall be used.
The GANSS used can be one of Galileo or GLONASS depending
on the technology supported by the SET

and declared in ixit_gANSS.

@desc To test SET correctly actions single session Positioning method —
Test 12: A-GANSS SET Preferred methods

* X X X K X X X X X K X X ¥ ¥ X X ¥ * ¥ * %

*/
testcase TC_110.12_1()
runs on SUPLComponent system SystemlInterfaces {

// Local wvariables and timers

var

GNSSPosTechnology

v_posTechnology := ¢_.GNSSPosTechnologyGalileoGloneASS;
// Test execution

// check preconditions

if (not

(((ics_ AGANSSSETassisted_Galileo_.SET_initiated and
icsc AGANSSSETbased-Galileo.SET _initiated) or
(ics_, AGANSSSETassisted_GLONASS_SET _initiated and
icsc AGANSSSETbased_.GLONASS_SET _initiated)) and

(ixit_gANSS . galileo or ixit_gANSS.gloneass))) {

log (

Vsxxx TC_.110.12_1: Info : TC needs

( (ics.AGANSSSETassisted_Galileo_SET _initiated

AND ics_AGANSSSETbased_Galileo_.SET _initiated) OR

(ics_ AGANSSSETassisted . GLONASS_SET _initiated AND

ics_, AGANSSSETbased_GLONASS_SET _initiated)) AND

(ixit-gANSS . galileo or ixit_-gANSS.gloneass) to be supported s*%x”

)i

stop;

}

if (ixit-gANSS.galileo) {

v_posTechnology := c.GNSSPosTechnologyGalileo;

} else if (ixit_gANSS.gloneass) {
v_posTechnology := ¢_.GNSSPosTechnologyGloneASS;

}

// Setup configuration: simpleTestArchitecture_-no_sim
activate (ts_DefaultDef ());
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// Preamble
f_init (staticdefaultGPS);
f_start_.SCC ();

// Test body

// STEP 1: Start a SI Location Session
showMessage (” Please start a new session at the SET”);
TGuard . start ;

alt {

// STEP 2: SET send SUPL START

[] ulpPort.receive(r_ulpPdu(r_suplStart)) —> value vc_inPdu
{

TGuard . stop;

log (

Vsxx TC_110-12_1: ULPPDU ( SUPL START )
message received as expected xxx”

)i

}

}
// STEP 2: check the consistents of SET capabilities with
// the Positioning technology supported

if (f_checkPosCapabilitiesParam_againstSET (vc_inPdu)) {
setverdict (
pass,
7xxx TC_110.12_1 Received positioning capabilities
are consistent with SET capabilities sxx”
)i
} else {
setverdict (
fail ,
"xxx TC_110.12_1 Received positioning capabilities
are NOT consistent with SET capabilities x%xx”
E
stop;
}
v_sessionld :=
valueof(generateCompletedSessionld (v_sessionld ,
slpSessionIdIPv6));
// STEP 3: send SUPL RESPONSE
ulpPort
.send (m_ulpPdu(m_Version, v_sessionld,
m_ulpMessageSuplResponse_posTechnology
(ver2_agnssSETassisted , v_posTechnology)));
TGuard . start ;
alt {
// STEP 4: SET sends SUPL POS INIT
[] ulpPort.receive(r_ulpPdu(r_suplPoslInit)) —>
value vc_inPdu {
TGuard . stop;
log (
sx% TC_110-12_1: ULPPDU ( SUPL POS INIT )
message received as expected xxx”
)i
}
}

// STEP 4: check the consistents of SET capabilities with
// the Positioning technology supported
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if (f_checkPosCapabilitiesParam_againstSET (vc.inPdu)) {
setverdict (
pass,
Pxxx TC_110-12_1 Received positioning capabilities
are consistent with SET capabilities sxxx”
)i
} else {
setverdict (
fail ,
Pxx% TC_110.12_1 Received positioning capabilities
are NOT consistent with SET capabilities #xx”

)i

stop;

}

// STEP 6: A SUPL POS session takes place and completes
// successfully

f_startAndCompletePosSession (vc_inPdu, v_sessionld,
m_methodType_-msAssisted
(m_accuracyOpt_omitted));

// STEP 8: send SUPL END with Position set to a realistic
// position for SET
sendSuplEndWithPosData(v_sessionld , true);

// Postamble
f_Postamble ();

y /) end TC_110-12_1
with {

extension

?Description: To test SET correctly actions single session Positioning

}
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AltBehaviourAction, 188

analyzability, 47

API, see aplication programming interfacel9,
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AST see abstract syntax tree, 243

ATG, 10, 24
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AtomicTestAction, 155

BaseReceiveDataEvent, 173
BaseSendDataAction, 168
BasicTestDataType, 116
BehaviourActionKind, 146
BehaviourPatternKind, 146
BNF, 57

Boundary value analysis, 263
BPMN, 57

Builder design pattern, 266
BVA, 263

changeability, 47
CheckAction, 181
CloseConnectionAction, 157
cMOF, see complete MOF
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ComponentInstance, 98
ComponentKind, 94
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conformance testing, 19
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ConnectionAction, 155
ConstraintKind, 113
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DataPatternKind, 112

DataReceptionEvent, 159

DataTypeField, 119
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DeactivateDefault Action, 190
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DSL, see domain specific language
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guage, 39-43, 56, 64, 201

DVA, 263

Dynamic test data pool, 265

EBNF, see extended Backus-Naur form, 57
eclipse, 224
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Eclipse modelling framework, 198

ECore, 198

Efficiency, 46

EFSM see extended finite state machine, 24
ElseAction, 187
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ExternalAction, 164

ExternalCheckAction, 181

Factory design pattern, 266
fault-revealing capability, 46
fault-tolerance, 46

FDT, see formal description techniques
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finite state machine, 24

formal description techniques, 22

FSM, 24

FSM see finite state machine, 24

Gang of four, 9

generic modelling language, 36

GFT, 70

GML, see generic modelling language
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hardware-in-the-loop, 42
high level test design, 26
HIL, see hardware-in-the-loop42

1CS, 252

IDE, 201

IDL, see interface definition language, 120

IEEE, 18

IEEE-829, 18

IfAction, 187

IfElseAction, 185

ImplementationStatus, 82
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I multimedia subsystem212, 224,
see I multimedia subsystem255
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IP multimedia subsystem, 196, 212, 255

ISO 9646, 18, 252

ISO-IEC 9126, 46
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LBS, see Location Based Services225
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M2T, see model-to-text
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MDT, 10, see model-driven testing, 35, 40—
42, see model-driven testing, 195,
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MDTester, 201
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MessageTestDataType, 117

meta-object facility, 40

MIL, see model-in-the-loop42

MLP, see Mobile Location Protocol225

model based testing, 23, 24

model driven test case construction, 42

model-driven testing, 25

model-in-the-loop, 42

model-to-model, 191

model-to-text transformation language, 191

MOF, see meta-object facility, 198

MOFM2T, seeMOF model-to-text191

MonitoringAction, 165

MPM, 29

MSC, 42, 70
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MTCC, see model driven test case construc-
tion

MTL, see model-to-text transformation lan-
guage
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ObjectiveGroupDef, 80
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OMA | see Open Mobile Alliance225
OMG, 8

OOAD, 24
OperationExceptionDef, 122
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OperationResponseDef, 121
OperationTestDatalnstance, 127
OperationTestDataType, 120

P2PArchitecture, 106
ParameterConstraint, 130
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Parlay-X, 230

PIM, 8, 9, see platform independent model
PIT, 10, see platform independent test model
platform independent model, 25

platform independent test design model, 43
platform independent test model, 25

PMP, 255

PMP | see point-to-multi point106
PMPArchitecture, 106

point-to-multi point, 106

PolicyKind, 147

Portability, 47

PortInstance, 96

PortType, 91

prioritization, 249

Priority, 81

PSM, 8

PST, 10

query/views/transformations, 191
QVT, see queryviewstransformations

Random value analysis, 263
RCP, see rich client platform
ReceiveDataEvent, 176
ReceiveSyncDataEvent, 177
recoverability, 46

RelationKind, 115

Reliability, 46
RepeatTestAction, 184
replaceability, 47
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Reusability, 47

rich client platform, 201

RLP, see Roaming Location Protocol225
round trip engineering, 9, 198
RTE, see round trip engineering
RVA, 263

scalability, 29

SDL, 70

security, 46
SendDataAction, 170
SendDiscardAction, 165
SendReceiveSequence, 180
SendSyncDataAction, 171
session initiation protocol, 212
SetupConnectionAction, 156
SignalTestDatalnstance, 126
SignalTestDataType, 122
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SIL, see software-in-the-loop42

SIP, see session initiation protocol

software-in-the-loop, 42

specification-based testing, 19

stability, 47

StartTimerAction, 162

State, 161

state space explosion, 29

StopAction, 164

StopTimerAction, 163

StructuredTest Action, 184

SubActionBlock, 183

SUPL, see Secure User Plane Location Pro-
tocol225

SysML, 22, 56, 198

system component, 18

system model, 26

TeLa, 41, 71

test architecture model, 20

test case prioritization, 249

test component, 18

test data, 19
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test event, 20

test model, 26

test modelling language, 41

test objective, 21

test procedure, 21

test repeatability, 46

test specification, 21

test step, 20

test system, 21
TestPatternKind, 78

testability, 27

TestAction, 154

Test ArchGroupDef, 95

Test ArchGroupltem, 95

Test Architecture, 102
TestArchitectureActionKind, 179
Test ArchitectureElement, 96
Test ArchitectureModel, 94

Test ArchitectureTypesElement, 90
Test ArchitectureTypesModel, 89
TestArchPatternKind, 105
TestArchTypesGroupDef, 91
TestArchTypesGroupltem, 90
TestBehaviourActionDef, 148
TestBehaviourActionInvocation, 150
TestBehaviourElement, 181
TestBehaviourGroupDef, 144
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TestDataElement, 110
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TestDataType, 116
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TestML, 42

TestObjective, 83

TestObjectiveDescriptionElement, 84

TestObjectiveElement, 83
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TestParameter, 132
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TestProcedure, 87

TestProceduresElement, 86

TestProceduresGroupDef, 86

TestProceduresGroupltem, 86

TestProceduresModel, 85

TestSequence, 179

Timer, 161

TimerExpirationEvent, 159

TML, see test modelling language

TOPCASED, 199, 201, 224

TRex, 224

TriggerAction, 167

TriggerReceiveSequence, 180

TTCN-3, 18, 37, 43, 52, 53, 55, 56, 70, 120,
126, 137, 149, 151, 157, 160, 164,
191, 192, 194, 198, 203, 210, 222,
223, 225, 226, 242, 243, 246, 248,
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268, 270272

UML, 10, 22, see unified modelling language,
36-41, 54, 56, 71, 72, 198

UML testing profile, 37

unified modelling language, 30

Usability, 46

usage model, 26

UTML, 53, 64, 70-73, 75, 79, 80, 89, 91-93,
99, 102, 117, 118, 134, 136, 139-
141, 156, 164-166, 171, 172, 176,
178, 184—186, 188, 191-194, 196,
198-201, 203, 207, 211, 242, 248,
250, 253, 261-264, 268, 272

UTP, 10, 24, 26, 37, 38, 41, 64

ValueCheckAction, 182
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VariableDeclaration, 160

WaitAction, 163

web service definition language, 30

WSDL, see web service definition language,
see web service definition language

XML, 199
XSD, 109, 264
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