
A Methodology For

Pattern-Oriented Model-Driven

Testing of Reactive Software

Systems

vorgelegt von

Dipl.Ing.

Alain-Georges Vouffo Feudjio
aus Douala

von der Fakultät IV - Elektrotechnik und Informatik

der Technischen Universität Berlin

Zur Erlangung des Doktorgrades der Ingenieurwissenschaften

- Dr. Ing. -

genehmigte Dissertation

Promotionsauschuss:

Vorsitzender: Prof. Dr. Peter Pepper

Berichter: Prof. Dr. Ing. Ina Schieferdecker

Co-Berichter: Prof. Cesar Viho

Tag der wissenschaftlichen Aussprache: 18. Februar 2011

Berlin, 2011

D 83

Technical University of Berlin

Faculty of Electrical Engineering and Computer Science

Chair for Design and Testing of Communication Systems

A Methodology For

Pattern-Oriented Model-Driven

Testing of Reactive Software

Systems

by

Alain-Georges Vouffo Feudjio

Doctor of Engineering Dissertation

Promotionsauschuss:

Chairman: Prof. Dr. Peter Pepper

Supervisor: Prof. Dr. Ing. Ina Schieferdecker

Co-Supervisor: Prof. Cesar Viho

Date of defence: Februar 18th 2011

Berlin, 2011

D 83

v

To Vouffo Prosper and Vouffo Mbotezo Aimé-G. ...

Contents

Contents i

List of Symbols and Abbreviations ix

List of Figures xi

List of Tables xiv

1 Introduction 7

1.1 Introduction . 7

1.2 Scope and Purpose of this Thesis 12

1.3 Structure of this Thesis . 14

2 Basics 17

2.1 Introduction . 17

2.2 Principles of Software Testing . 17

2.2.1 Terminology . 17

2.3 Testing and Models . 22

2.3.1 What is a model? . 22

2.3.2 Model-Based Testing . 23

2.3.3 Model Driven Testing . 25

2.3.4 High Level Test Design . 26

2.3.5 A few Words on Model-Based and Model-Driven Testing . . 26

2.3.6 Conclusions . 30

2.4 (Design) Patterns . 31

2.5 Summary . 33

3 State of the Art in Model-Driven Test Automation 35

3.1 Introduction . 35

3.2 Using GMLs for MDT . 36

3.2.1 The UML Testing Profile (UTP) 37

i

ii CONTENTS

3.3 Using DSMLs for MDT . 39

3.3.1 Approaches for Designing a DSML 40

3.4 Related Works . 41

3.5 Conclusions and Summary . 43

4 Pattern Oriented Model Driven Testing 45

4.1 Introduction . 45

4.2 Classification of Test Design Patterns 47

4.2.1 Introduction . 47

4.2.2 Generic Test Design Patterns 49

4.2.3 Patterns in the Test Analysis and Planing Phase 49

4.2.4 Patterns in the Test System Design Phase 50

4.3 A Methodology of Pattern Oriented Model-Driven Test Engineering 51

4.3.1 Test Design Pattern Mining 51

4.3.2 Test Design Pattern Template 52

4.3.3 Specification of Test Design Patterns 54

4.4 The Pattern Oriented Model Driven Test Engineering Process . . . 57

4.4.1 Test Analysis . 59

4.4.2 Test Design . 59

4.4.3 Test Implementation . 59

4.5 A Collection of Test Design Patterns 60

4.6 Summary . 60

5 UTML: A Notation for Pattern Oriented Model Driven Test

Design 63

5.1 The Need to Formalise Test Patterns 63

5.2 Overview of UTML . 64

5.2.1 Visualisation . 69

5.3 Generic UTML Metamodel concepts 74

5.3.1 UtmlElement . 74

5.3.2 BasicTestModel . 74

5.3.3 TestModel . 74

5.3.4 DescribedElement . 75

5.3.5 GroupItem . 76

5.3.6 GroupDef . 76

5.3.7 NamedElement . 77

5.3.8 UniqueNamedElement . 77

5.3.9 ElementWithID . 78

5.3.10 ElementWithUniqueID . 78

5.3.11 TestPatternKind . 78

5.4 Test Objectives Design Concepts 79

5.4.1 TestObjectivesModel . 79

CONTENTS iii

5.4.2 ObjectiveGroupDef . 80

5.4.3 ObjectiveGroupItem . 81

5.4.4 Priority . 81

5.4.5 ImplementationStatus . 82

5.4.6 TestObjectiveElement . 83

5.4.7 TestObjective . 83

5.4.8 TestObjectiveDescriptionElement 84

5.5 Test Procedures Design Concepts 85

5.5.1 TestProceduresModel . 85

5.5.2 TestProceduresGroupItem 86

5.5.3 TestProceduresElement . 86

5.5.4 TestProceduresGroupDef 86

5.5.5 TestProcedure . 87

5.6 Test Architecture Design Concepts 88

5.6.1 TestArchitectureTypesModel 89

5.6.2 TestArchitectureTypesElement 90

5.6.3 TestArchTypesGroupItem 90

5.6.4 TestArchTypesGroupDef 91

5.6.5 PortType . 91

5.6.6 ComponentType . 92

5.6.7 ComponentKind . 94

5.6.8 TestArchitectureModel . 94

5.6.9 TestArchGroupItem . 95

5.6.10 TestArchGroupDef . 95

5.6.11 TestArchitectureElement 96

5.6.12 PortInstance . 96

5.6.13 ComponentInstance . 98

5.6.14 Connection . 100

5.6.15 TestArchitecture . 102

5.6.16 ExecutionMode . 104

5.6.17 TestArchPatternKind . 105

5.6.18 P2PArchitecture . 106

5.6.19 PMPArchitecture . 106

5.6.20 MeshArchitecture . 107

5.7 Test Data Design Concepts . 108

5.7.1 TestDataModel . 109

5.7.2 TestDataElement . 110

5.7.3 DataTypeIndicator . 110

5.7.4 DataDirection . 110

5.7.5 DataKind . 111

5.7.6 DataPatternKind . 112

iv CONTENTS

5.7.7 ConstraintKind . 113

5.7.8 TestDataGroupItem . 114

5.7.9 TestDataGroupDef . 114

5.7.10 RelationKind . 115

5.7.11 DataTypeRelationship . 115

5.7.12 BasicTestDataType . 116

5.7.13 TestDataType . 116

5.7.14 MessageTestDataType . 117

5.7.15 DataTypeField . 119

5.7.16 ParameterDeclaration . 120

5.7.17 OperationTestDataType . 120

5.7.18 OperationResponseDef . 121

5.7.19 OperationExceptionDef . 122

5.7.20 SignalTestDataType . 122

5.7.21 AbstractDataInstance . 123

5.7.22 ValueInstance . 123

5.7.23 TestDataInstance . 124

5.7.24 MessageTestDataInstance 125

5.7.25 SignalTestDataInstance . 126

5.7.26 OperationTestDataInstance 127

5.7.27 DataConstraint . 128

5.7.28 FieldConstraint . 129

5.7.29 ParameterConstraint . 130

5.7.30 ParameterDef . 131

5.7.31 TestParameter . 132

5.7.32 TestParameterSet . 133

5.8 Test Behaviour Design Concepts 133

5.8.1 Basic Principles of UTMLTest Behaviour Design 134

5.8.2 UTML Test Sequence Diagrams 139

5.8.3 UTML Test Activity Diagrams 140

5.8.4 TestBehaviourModel . 140

5.8.5 TestBehaviourGroupItem 144

5.8.6 TestBehaviourGroupDef . 144

5.8.7 Verdict . 145

5.8.8 BehaviourPatternKind . 146

5.8.9 BehaviourActionKind . 146

5.8.10 PolicyKind . 147

5.8.11 TestBehaviourActionDef . 148

5.8.12 TestBehaviourActionInvocation 150

5.8.13 Testcase . 151

5.8.14 TestAction . 154

CONTENTS v

5.8.15 AtomicTestAction . 155

5.8.16 ConnectionAction . 155

5.8.17 SetupConnectionAction . 156

5.8.18 CloseConnectionAction . 157

5.8.19 DefaultBehaviourAction . 157

5.8.20 Observation . 158

5.8.21 TestEvent . 159

5.8.22 DataReceptionEvent . 159

5.8.23 TimerExpirationEvent . 159

5.8.24 DefaultBehaviourDef . 160

5.8.25 VariableDeclaration . 160

5.8.26 Timer . 161

5.8.27 State . 161

5.8.28 StartTimerAction . 162

5.8.29 StopTimerAction . 163

5.8.30 WaitAction . 163

5.8.31 StopAction . 164

5.8.32 ExternalAction . 164

5.8.33 MonitoringAction . 165

5.8.34 SendDiscardAction . 165

5.8.35 Response . 166

5.8.36 OperationOutput . 167

5.8.37 TriggerAction . 167

5.8.38 BaseSendDataAction . 168

5.8.39 SendDataAction . 170

5.8.40 SendSyncDataAction . 171

5.8.41 BaseReceiveDataEvent . 173

5.8.42 ReceiveDataEvent . 176

5.8.43 ReceiveSyncDataEvent . 177

5.8.44 MultipleReceiveDataEvent 178

5.8.45 TestArchitectureActionKind 179

5.8.46 TestSequence . 179

5.8.47 SendReceiveSequence . 180

5.8.48 TriggerReceiveSequence . 180

5.8.49 TestBehaviourElement . 181

5.8.50 CheckAction . 181

5.8.51 ExternalCheckAction . 181

5.8.52 ValueCheckAction . 182

5.8.53 ActionBlock . 183

5.8.54 SubActionBlock . 183

5.8.55 StructuredTestAction . 184

vi CONTENTS

5.8.56 RepeatTestAction . 184

5.8.57 IfElseAction . 185

5.8.58 IfAction . 187

5.8.59 ElseAction . 187

5.8.60 AltBehaviourAction . 188

5.8.61 AltAction . 189

5.8.62 ActivateDefaultAction . 190

5.8.63 DeactivateDefaultAction . 190

5.9 Mapping UTML Concepts to Existing (Test Scripting) Languages 191

5.9.1 Mapping to TTCN-3 . 191

5.9.2 Mapping to JUnit . 193

5.10 Summary . 193

6 Evaluation: Implementation and Case Studies 195

6.1 Introduction . 195

6.2 Implementation: The UTML Eclipse Plug-in Tool chain 196

6.2.1 Requirements on The Model-Driven Test Engineering Toolset196

6.2.2 The Proposed Architecture 197

6.2.3 Prototype Implementation 198

6.3 Evaluation: Example and Case Studies 203

6.3.1 An Example: Pattern Oriented MDT for a Web Application203

6.3.2 The IMS Case Study . 210

6.3.3 The OMA SUPL Case Study 225

6.3.4 The Parlay-X Case Study 230

6.3.5 The Digital Watch Case Study 236

6.4 Summary . 240

7 Conclusions And Outlook 241

7.1 Summary and Conclusion . 241

7.2 Outlook . 242

7.2.1 Usage of state machines for test behaviour modelling 242

7.2.2 Implementation of further templates for test patterns in-

stantiation . 242

7.2.3 Better modelling support for continuous signals and case

studies thereof . 243

7.2.4 Automated Analysis of Test Script Code based on Patterns 243

7.2.5 Empirical evaluation of the approach based on feedback

from test experts . 243

A A Collection of Test Design Patterns 245

A.1 Generic Test Design Patterns . 245

A.1.1 Pattern: Separation of Test Design Concerns 245

CONTENTS vii

A.1.2 Pattern: Grouping of Test Design Concerns 247

A.2 Patterns in Test Objectives Design 248

A.2.1 Pattern: Prioritization of test objectives 248

A.2.2 Pattern: Traceability of Requirements to Test Artifacts . . 250

A.2.3 Pattern: Selection criteria for test objectives 251

A.2.4 Pattern: Traceability of Test Objectives to Fault Manage-

ment . 252

A.3 Test Architecture Design Patterns 253

A.3.1 Pattern: Extensibility/Restriction of Test Architecture El-

ements . 253

A.3.2 Pattern: One-on-One Test Architecture 254

A.3.3 Pattern: Point-to-Multi Point(PMP) Test Architecture . . . 255

A.3.4 Pattern: Flexibility of the test architecture model 256

A.3.5 Pattern: Proxy Test Component 257

A.3.6 Pattern: Sandwich Test Architecture 258

A.3.7 Pattern: Monitoring Test Component 259

A.3.8 Pattern: Central Test Coordinator 260

A.4 Test Data Design Patterns . 261

A.4.1 Pattern: Purpose-Driven Test Data Design 262

A.4.2 Pattern: Basic Static Test Data Pool 263

A.4.3 Pattern: Reusable Test Data Definitions 264

A.4.4 Pattern: Dynamic Test Data Pool 265

A.5 Test Behaviour Design Patterns . 266

A.5.1 Pattern: Assertion-Driven Test Behaviour Design 266

A.5.2 Pattern: Context-Aware Test Behaviour Design 267

A.5.3 Pattern: Test Component Factory 269

A.5.4 Pattern: Central Coordination of Test Components 270

A.5.5 Pattern: Distributed Coordination of Test Components . . 270

A.5.6 Pattern: Time Constraints in Test Behaviour 271

B UTML Mapping Examples 273

B.1 UTML to TTCN-3 Mapping Rules 273

B.1.1 Testcase . 273

B.1.2 SendDataAction . 277

B.1.3 ReceiveDataEvent . 278

B.1.4 SendDiscardAction . 279

B.1.5 WaitAction . 280

B.1.6 SetupConnectionAction . 280

B.1.7 CloseConnectionAction . 281

B.1.8 DefaultBehaviourDef . 281

B.1.9 StopTimerAction . 282

B.1.10 StartTimerAction . 282

viii CONTENTS

B.1.11 ValueCheckAction . 282

B.2 UTML to JUnit Mapping Rules . 283

B.2.1 Testcase . 283

B.2.2 WaitAction . 286

B.3 SysML to UTML Mapping . 286

B.4 WSDL to UTML Mapping . 286

C UTML Model Transformation Examples 289

C.1 Example of Model Transformation: UTML to TTCN-3 289

Bibliography 295

Index 309

List of Symbols

and Abbreviations

Abbreviation Description Definition

ABT Action Based Testing page 134

ATG Automated Test Generation page 10

ATL Atlas Transformation Language page 191

ATS Abstract Test Suite page 46

BVA Boundary Value Analysis page 263

cMOF Complete MOF page 40

CORBA Common Object Request Broker Architecture page 33

DS(M)L Domain Specific (Modelling) Language page 36

DVA Default Value Analysis page 263

EFSM Extended Finite State Machine page 24

eMOF Essential MOF page 40

EP Equivalence Partitioning page 263

ETSI European Telecommunications Standards Organisa-

tion

page 49

FDT Formal Description Techniques page 22

FSM Finite State Machine page 24

GML Generic Purpose Modelling Language page 36

HIL Hardware-In-the-Loop page 42

ICS Implementation Conformance Statement page 252

IMS IP Multimedia Subsystem page 255

ISO International Organization for Standardization page 17

ISTQB International Software Testing Qualification Board page 18

LBS Location Based Services page 225

M2T Model-to-Text (Transformation) page 191

MBT Model Based Testing page 10

MDA Model Driven Architecture page 8

MDE Model Driven Engineering page 8

MDT Model Driven Testing page 10

MIL Model-In-the-Loop page 42

MLP Mobile Location Protocol page 225

MOF Meta Object Facility page 40

MPM Machine Processable Model page 29

ix

x LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation Description Definition

OCL Object Constraint Language page 9

OMA Open Mobile Alliance page 225

OOA/D Object Oriented Analysis and Design page 24

OSI Open System Interconnection page 18

PIM Platform Independent Model page 25

PIT Platform Independent Test model page 25

PSM Platform Specific Model page 25

PST Platform Specific Test model page 25

QVT Query/Views/Transformations page 191

RLP Roaming Location Protocol page 225

RTE Round Trip Engineering page 9

RVA Random Value Analysis page 263

SIL Software-In-the-Loop page 42

SIP Session Initiation Protocol page 212

SUPL Secure User Plane Location Protocol page 225

SUT System Under Test page 12

SysML System Modelling Language page 39

TTCN-3 Testing and Test Control Notation Version 3 page 55

UML Unified Modelling Language page 10

UTML Unified Test Modelling Language page 15

UTP UML Testing Profile page 10

XSD XML Schema Definition language page 264

List of Figures

1.1 The model-driven test development process in the classical V-model . 11

1.2 Classification of test approaches . 12

1.3 Scope of this work . 13

2.1 Model-Driven Testing Process . 25

4.1 Overview of Model-Driven Test Engineering Process 48

4.2 BPMN Diagram of the Pattern-Oriented MDTE Process 58

5.1 Overview of UTML Test Models . 69

5.2 The UTML notation and its relation to UML and SysML 72

5.3 The Package Visual Element . 72

5.4 The Class Visual Element . 73

5.5 The Generalisation Visual Element . 73

5.6 The Dependency Visual Element . 73

5.7 Class Diagram: UTML Metamodel for Test Objectives 79

5.8 Example UTML Test Objectives Diagram 80

5.9 State Diagram: The Test Objective Lifecycle 82

5.10 Class Diagram: UTML Metamodel for Test Procedures 85

5.11 Class Diagram: UTML Metamodel for Type Definitions in Test Ar-

chitectures . 88

5.12 Class Diagram: UTML Metamodel for Test Architectures 89

5.13 Example UTML Test Architecture Types Group 91

5.14 Example UTML Port Type . 92

5.15 Example UTML Component Type . 93

5.16 Component and Port Instances in UTML Diagrams 99

5.17 Example UTML Test Architecture Diagram with contained Architec-

tures and Group Definitions . 102

5.18 Class Diagram: Hierarchy of UTML Metamodel for Test Data Modelling108

5.19 Class Diagram: UTML Metamodel for Modelling Test Data Types . . 117

xi

xii List of Figures

5.20 Example UTML Test Data Diagram 118

5.21 Class Diagram: UTML Metamodel for Test Data Instances 123

5.22 Class Diagram: UTML Atomic Actions 134

5.23 Class Diagram: UTML Observation Elements 135

5.24 Class Diagram: UTML Declarative Behaviour Elements 135

5.25 Class Diagram: UTML Structured Actions 137

5.26 Example UTML Test Behaviour Sequence Diagram 139

5.27 Example UTML Test Behaviour Activity Diagram 141

5.28 Class Diagram: UTML Main Containers for Test Behaviour 141

5.29 SetupConnectionAction in UTML Test Behaviour Sequence Diagram . 156

5.30 WaitAction in UTML Test Behaviour Sequence Diagram 164

5.31 SendDiscardAction in UTML Test Behaviour Sequence Diagram . . . 166

5.32 SendDataAction in UTML Test Behaviour Sequence Diagram 171

5.33 SendSyncDataAction in UTML Test Behaviour Sequence Diagram . . 172

5.34 ReceiveDataEvent in UTML Test Behaviour Sequence Diagram 176

5.35 ReceiveSyncDataEvent in UTML Test Behaviour Sequence Diagram . 178

5.36 RepeatAction in UTML Test Behaviour Sequence Diagram 185

5.37 IfElseAction in UTML Test Behaviour Sequence Diagram 186

5.38 AltBehaviourAction in UTML Test Behaviour Sequence Diagram . . . 188

6.1 Architecture of the UTML Prototype Toolchain 197

6.2 UTML Prototype Toolchain’s Implementation Approach 199

6.3 Screenshot of UTML Prototype Tool 202

6.4 Overview of UTML Test Model for HTTP example 204

6.5 Test Data Type Definitions for HTTP example 204

6.6 Elements of UTML Test Data Model for HTTP example: Impulses . . 205

6.7 Elements of UTML Test Data Model for HTTP example: Responses . 206

6.8 Structure of Test Behaviour Model for HTTP example 206

6.9 Test Behaviour Diagram for HTTP redirecting scenario 207

6.10 Screenshot of JUnit test execution for HTTP example 209

6.11 Overview of UTML Test Model for IMS case study 210

6.12 Overview of Test Objectives Diagram for IMS case study 211

6.13 Example of TPLan Test Purpose for IMS Conformance Testing 212

6.14 Overview of Test Objectives Model for IMS case study 213

6.15 Overview of Test Procedures Diagram for IMS case study 213

6.16 Example Test Procedures for IMS case study 214

6.17 Root Test Data Diagram for IMS case study 215

6.18 Test Data Type Definitions for IMS case study 216

6.19 Test Data Instances for IMS case study 216

6.20 Overview of Test Architecture Types Diagram for IMS case study . . 217

6.21 Overview of Test Architecture Types Model for IMS case study 217

6.22 Root Test Architecture Diagram for IMS 218

List of Figures xiii

6.23 Test Architecture Diagram for a static IMS test architecture 218

6.24 Overview of Test Behaviour diagram for IMS case study 218

6.25 Modelling of states for the IMS test model 219

6.26 Test Behaviour diagram for a sample IMS test case 220

6.27 Productivity Gain From Pattern-Oriented Test Development, without

taking into account the impact of Test Objectives and Test Procedures 223

6.28 Productivity Gain From Pattern-Oriented Test Development Based

on Pure Test System Design . 224

6.29 Examples of UTML Test Data Diagram resulting from automated

Transformation from TTCN-3 OMA SUPL v1.0 227

6.30 Reuse of Legacy Test Data in UTML Test Data Model for OMA SUPL

Testing . 228

6.31 UTML Test Sequence Diagram for an OMA SUPL Test Case 229

6.32 Extract of UTML Test Data Diagram displaying Elements imported

from Parlay-X System Model (WSDL) 231

6.33 Automatically Generated Test Architecture for the Parlay-X SendSMS

Web Service . 232

6.34 UML Sequence Diagram for Parlay-X SendSMS Web Service 233

6.35 UTML Test Sequence Diagram of Test Case for Parlay-X SendSMS

Web Service . 234

6.36 SysML Requirements Diagram for the digital watch 237

6.37 UTML Test Objectives Diagram resulting from transformation of SysML

Requirements . 237

6.38 SysML Block Diagram Displaying the Logical Architecture of the dig-

ital watch . 238

6.39 Test Architecture derived from the SysML Block Diagram for the

watchProcessor Block (One-on-One Test Architecture Pattern) 239

6.40 Test Architecture derived from the SysML Block Diagram for the

watchProcessor System Component (Sandwich Test Architecture Pat-

tern) . 239

A.1 Test architecture Diagram for One-on-One Pattern 254

A.2 UML Class Diagram for UTML ComponentInstance Element 257

A.3 Test architecture Diagram for Proxy Test Component Pattern 257

A.4 Test architecture Diagram for Sandwich Test Architecture Pattern . . 258

A.5 Test architecture Diagram for Monitor Pattern 259

A.6 Test architecture Diagram for Central Test Coordinator Pattern . . . 261

List of Tables

4.1 Overview of Test Design Patterns Described in this Work 60

5.1 Overview of approaches to specify DSMLs [160] 65

5.2 A Comparison of UTML and UTP . 65

5.3 Properties of the TestModel UTML element 75

5.4 Properties of the DescribedElement UTML element 76

5.5 Properties of the GroupDef UTML element 77

5.6 Properties of the NamedElement UTML element 77

5.7 Fields and attributes of the UniqueNamedElement UTML element . . 78

5.8 Properties of the ElementWithID UTML element 78

5.9 Properties of the ElementWithUniqueID UTML element 78

5.10 The TestPatternKind UTML element 79

5.11 Properties of the TestObjectivesModel UTML element 80

5.12 Properties of the ObjectiveGroupDef UTML element 81

5.13 The Priority UTML element . 81

5.13 The Priority UTML element . 82

5.14 The ImplementationStatus UTML element 83

5.15 Fields and attributes of the TestObjective UTML element 84

5.16 Fields and attributes of the TestObjectiveDescriptionElement UTML

element . 85

5.17 Properties of the TestProceduresModel UTML element 86

5.18 Properties of the TestProceduresGroupDef UTML element 87

5.19 Properties of the TestProcedure UTML element 87

5.19 Properties of the TestProcedure UTML element 88

5.20 Properties of the TestArchitectureTypesModel UTML element 90

5.21 Properties of the TestArchTypesGroupDef UTML element 91

5.22 Properties of the PortType UTML element 92

5.23 Properties of the ComponentType UTML element 93

5.23 Properties of the ComponentType UTML element 94

5.24 The ComponentKind UTML element 94

xiv

List of Tables xv

5.25 Properties of the TestArchitectureModel UTML element 95

5.26 Properties of the TestArchGroupDef UTML element 96

5.27 Direction of Port Instances and Connection Support 97

5.28 Properties of the PortInstance UTML element 98

5.29 Properties of the ComponentInstance UTML element 100

5.30 Properties of the Connection UTML element 101

5.31 Properties of the TestArchitecture UTML element 103

5.31 Properties of the TestArchitecture UTML element 104

5.32 The ExecutionMode UTML element 104

5.33 Fields and attributes of the TestArchPatternKind UTML element . . 105

5.34 Properties of the P2PArchitecture UTML element 106

5.35 Properties of the PMPArchitecture UTML element 107

5.36 Properties of the MeshArchitecture UTML element 108

5.37 Properties of the TestDataModel UTML element 109

5.38 The DataTypeIndicator UTML element 110

5.39 The DataDirection UTML element . 111

5.40 The DataKind UTML element . 112

5.41 The DataPatternKind UTML element 112

5.42 The ConstraintKind UTML element 113

5.42 The ConstraintKind UTML element 114

5.43 Properties of the TestDataGroupDef UTML element 115

5.44 The RelationKind UTML element . 115

5.45 Properties of the DataTypeRelationship UTML element 116

5.46 Properties of the TestDataType UTML element 117

5.47 Properties of the MessageTestDataType UTML element 118

5.48 Properties of the DataTypeField UTML element 119

5.49 Properties of the ParameterDeclaration UTML element 120

5.50 Properties of the OperationTestDataType UTML element 121

5.51 Properties of the OperationResponseDef UTML element 122

5.52 Properties of the OperationExceptionDef UTML element 122

5.53 Properties of the ValueInstance UTML element 124

5.54 Properties of the TestDataInstance UTML element 124

5.55 Properties of the MessageTestDataInstance UTML element 126

5.56 Properties of the OperationTestDataInstance UTML element 127

5.57 Properties of the DataConstraint UTML element 129

5.58 Properties of the FieldConstraint UTML element 130

5.59 Properties of the ParameterConstraint UTML element 131

5.60 Properties of the ParameterDef UTML element 132

5.61 Properties of the TestParameter UTML element 133

5.62 Fields and attributes of the TestParameterSet UTML element 133

5.63 Rules for Test Action Ownership . 135

xvi List of Tables

5.64 Overview of UML sequence diagram elements supported by UTML

test sequences . 142

5.65 Overview of Messages supported by UTML Test Sequences 143

5.66 Properties of the TestBehaviourModel UTML element 143

5.66 Properties of the TestBehaviourModel UTML element 144

5.67 Properties of the TestBehaviourGroupDef UTML element 145

5.68 The Verdict UTML element . 146

5.69 Properties of the BehaviourPatternKind UTML element 146

5.70 Properties of the BehaviourActionKind UTML element 147

5.71 Properties of the PolicyKind UTML element 148

5.72 Properties of the TestBehaviourActionDef UTML element 149

5.72 Properties of the TestBehaviourActionDef UTML element 150

5.73 Properties of the TestBehaviourActionInvocation UTML element . . . 151

5.74 Properties of the Testcase UTML element 154

5.75 Properties of the TestAction UTML element 155

5.76 Fields and attributes of the SetupConnectionAction UTML element . 156

5.76 Fields and attributes of the SetupConnectionAction UTML element . 157

5.77 Fields and attributes of the CloseConnectionAction UTML element . 157

5.79 Fields and attributes of the Observation UTML element 158

5.78 Properties of the DefaultBehaviourAction UTML element 158

5.80 Properties of the DataReceptionEvent UTML element 159

5.82 Properties of the DefaultBehaviourDef UTML element 160

5.81 Fields and attributes of the TimerExpirationEvent UTML element . . 160

5.83 Properties of the Timer UTML element 161

5.84 Properties of the State UTML element 162

5.85 Fields and attributes of the StartTimerAction UTML element 162

5.86 Properties of the StopTimerAction UTML element 163

5.87 Properties of the WaitAction UTML element 164

5.88 Properties of the StopAction UTML element 164

5.89 Fields and attributes of the ExternalAction UTML element 165

5.90 Fields and attributes of the MonitoringAction UTML element 165

5.91 Properties of the SendDiscardAction UTML element 166

5.92 Properties of the Response UTML element 166

5.93 Properties of the OperationOutput UTML element 167

5.94 Properties of the TriggerAction UTML element 167

5.95 Fields and attributes of the BaseSendDataAction UTML element . . . 170

5.96 Fields and attributes of the SendDataAction UTML element 171

5.97 Fields and attributes of the SendSyncDataAction UTML element . . . 172

5.97 Fields and attributes of the SendSyncDataAction UTML element . . . 173

5.98 Properties of the BaseReceiveDataEvent UTML element 175

5.99 Properties of the ReceiveDataEvent UTML element 177

List of Tables xvii

5.100Properties of the ReceiveSyncDataEvent UTML element 178

5.101Fields and attributes of the MultipleReceiveDataEvent UTML element 179

5.102Properties of the TestArchitectureActionKind UTML element 179

5.103Fields and attributes of the SendReceiveSequence UTML element . . . 180

5.104Properties of the TriggerReceiveSequence UTML element 180

5.105Fields and attributes of the ExternalCheckAction UTML element . . . 181

5.106Fields and attributes of the ValueCheckAction UTML element 183

5.107Properties of the SubActionBlock UTML element 183

5.108Properties of the SubActionBlock UTML element 184

5.109Properties of the RepeatTestAction UTML element 185

5.110Properties of the IfElseAction UTML element 186

5.110Properties of the IfElseAction UTML element 187

5.111Properties of the IfAction UTML element 187

5.112Properties of the ElseAction UTML element 188

5.113Properties of the AltBehaviourAction UTML element 189

5.114Properties of the AltAction UTML element 189

5.115Properties of the ActivateDefaultAction UTML element 190

5.116Properties of the DeactivateDefaultAction UTML element 190

5.117Example UTML to TTCN-3 Mapping 192

5.118Example UTML to JUnit Mapping . 193

6.1 Results of Applying Pattern-Oriented Test Engineering to IMS Case

Study . 223

B.1 SysML to UTML Mapping . 286

B.2 WSDL to UTML Mapping . 286

B.2 WSDL to UTML Mapping . 287

Abstract

The level of pervasiveness and complexity of software and computing sys-

tems has been growing continuously since their introduction, a few decades

ago. New technologies emerge at regular base, covering ever more aspects of

our daily life and leading to shorter product delivery cycles. These ongoing

trends are posing new challenges to traditional software testing approaches,

because in addition to those constraints, software products are required to

meet a certain level of quality prior to their deployment. Otherwise, confi-

dence in those new technologies and products could be harmed, potentially

leading to their commercial failure. Therefore, effective test solutions need

to be developed within tighter time constraints for systems that are increa-

singly large and complex.

This thesis introduces a new approach of test development for reactive

software systems that combines model-driven engineering of testcases and

test design patterns to address the previously mentioned challenges. The ap-

proach is called Pattern-Oriented Model-Driven Testing and provides a high

potential for automation, through which the development of tests for soft-

ware systems can be significantly improved, both quantitatively and quali-

tatively.

The thesis presents a catalogue of test design patterns, that was put

together by analysing testing and test design good practices in numerous

projects. Furthermore, a methodology for the proposed approach is des-

cribed, based on the newly developed notation called Unified Test Modeling

Language (UTML). UTML is a domain-specific modeling language specif-

ically designed in this thesis to support pattern-oriented model-driven tes-

ting. It allows a high-level design of abstract test models including test

objectives, test architectures, test data and test behaviour, along a series of

predefined test design patterns. Those abstract test models can be created

at early stage in the development process and put in relation with system

model artifacts (requirements, architecture, etc.) to make the testing pro-

cess more transparent, understandable and efficient. Furthermore, UTML

abstract test models remain independent of any technical testing infrastruc-

ture and can then be subsequently refined (semi-)automatically through a

series of iterative transformation steps into executable test sequences, scripts

or documentation artifacts.

To illustrate the approach and to evaluate its positive impact on the

testing process, several case studies from various application domains were

conducted that clearly demonstrate how it improves the test process.

Abstrakt

Softwaresysteme werden heutzutage in immer mehr Bereichen eingesetzt

und betreffen mittlerweile fast jeden Aspekt des täglichen Lebens in moder-

nen Gesellschaften. Um den Anforderungen dieser verschiedenen Einsatzge-

biete zu genügen, ist die Komplexität von solchen Systemen in den letzten

Jahren rasant gestiegen. Außerdem werden kontinuierlich neue Technologien

entwickelt, um den Verbrauchern bessere Dienste zu günstigeren Preisen an-

bieten zu können. Dabei steht die Software-Industrie unter erheblichem

Druck, denn es sollen in immer kürzeren Entwicklungszyklen hochkomplexe

Produkte entwickelt werden. Selbstverständlich wird von diesen Produkten

ein Mindestmaß an Qualität erwartet, um die Sicherheit der neuen Technolo-

gien zu gewährleisten und um ihre Akzeptanz nicht zu gefährden. Das heisst,

neue und bessere Software-Produkte müssen unter erschwerten zeitlichen

und finanziellen Bedingungen entwickelt werden. Diese Trends stellen die

Testentwicklung vor neue Herausforderungen, die mit bisherigen Ansätzen

noch nicht zufriedenstellend gelöst werden konnten.

Diese Arbeit stellt einen neuen Ansatz der Testentwicklung für reaktive

Softwaresysteme vor, der eine modellgetriebene Entwicklung von Testfällen

mit den Konzepten der sogenannten Entwurfsmustern (Design Patterns) an-

reichert. Dieser Ansatz wird als Musterorientiertes modellgetriebenes Testen

(Pattern-Oriented Model-Driven Testing) bezeichnet und dient dazu, die

Testentwicklung für Softwaresysteme einfacher, transparenter und effizienter

zu gestalten. Gleichzeitig werden dabei die Möglichkeiten zur Automatisie-

rung im Testprozess gesteigert, was diesen als ganzen sowohl qualitativ als

auch quantitativ verbessert.

Dazu wurde ein Entwurfsmuster-Katalog für die Testentwicklung zusam-

mengestellt, der aus praktischer Erfahrung in zahlreichen Test-Projekten er-

mittelt wurde. Zudem beschreibt die Arbeit eine Methodik für den vorgeschla-

genen Ansatz, die auf der Unified Test Modeling Language (UTML) beruht.

Die UTML ist eine neuartige domain-spezifische Modellierungssprache die

in dieser Arbeit entwickelt wurde, um ein abstraktes, aber präzises Ent-

werfen von Test-Lösungen zu ermöglichen. Dafür definiert die Notation

konzeptuelle Test-Entwurfsmuster und ermöglicht es, auf ihrer Basis neue

Testartefakte als Modellelemente effizient zu entwerfen. Solche abstrakte

Testmodelle können früh im Software-Entwicklungsprozess entworfen wer-

den und in Beziehung zu bestehenden Systemmodellartefakten (z.B. Syste-

manforderungen, Architektur, Daten usw.) gesetzt werden. Wodurch der

Testprozess nicht nur an Transparenz sondern auch an Nachvollziebarkeit

gewinnt.

Diese positive Wirkung des entwickelten Ansatzes auf den Testprozess

wird anhand von mehreren konkreten Fallstudien aus unterschiedlichen Ein-

satzgebieten demonstriert, die während der Arbeit durchgeführt wurden und

die einen deutlichen Gewinn an Effizienz bei erhöhter Qualität belegen.

Acknowledgements

This work would not have been possible without the continuous and decisive

support of numerous people whom I would like to thank wholeheartedly1.

• Prof. Dr. Schieferdecker for keeping the faith and pushing me with new

ideas to complete this work.

• Prof. Viho for the support and inspiration.

• My parents, Papa Vouffo Prosper and Maman Colette for their patience,

their love and for teaching me the most important values in life.

• My wife Sandy and my daughters for their love and their patience.

• The whole Vouffo family for their continuously provided encouragement.

• My colleagues at Fraunhofer FOKUS and beyond for their helpful comments

and challenging ideas.

1The list below is by no means exhaustive and I apologize for any inadvertent omission.

5

Chapter 1

Introduction

1.1 Introduction

The importance of testing as a mean for evaluating quality factors of software and

to reveal errors in software products before they are deployed or commercialised

has been growing continuously in recent years. It is currently estimated that 30

to 60 percents of the overall resource consumption in software development is

done on testing [157]. This has underlined the need for approaches to keep test

development costs under control by ensuring the efficiency of the efforts being

invested. Those approaches aim at introducing a high level of automation and

reuse in each phase of testing where applicable. Thus, the term Test Automation

has been used to denote them.

Now, test automation can be understood in many different ways, depending

on the intended goal. Automation of test execution has been the subject of a

large amount of research in recent years, leading to the emergence of a plethora

of notations, tools and frameworks to support automatic execution of test scripts,

including features such as automatic scenario capturing and replay, automated

evaluation of verdicts, tracing and reporting of test results, etc. Those might also

include facilities for managing test suites, controlling distributed test infrastruc-

tures and beyond.

Another field of testing on which automation has been applied successfully,

is that of test generation. Test generation is the process aiming at allowing tests

to be automatically generated from system models or any other kind of formal

representation of the System Under Test’s behaviour or structure.

While those test automation approaches have significantly improved the test-

ing process, a lot remains to be done to address the challenges of testing software

systems that are becoming increasingly sophisticated and heterogeneous. Nowa-

days tests have to be developed within shorter time and using less resources for

7

8 CHAPTER 1. INTRODUCTION

systems that present a much higher level of complexity. Testing has evolved

into a full development discipline of its own, with a dedicated process running

in parallel to software system development. As stated by Utting and Legeard

in [157]:

Writing tests is now a programming task, which requires different

skills from test design or test execution.

Interestingly, the evolution of testing is quite similar to that of product software

development in recent years. To address the challenges of ever shorter time to

deliver software products of higher complexity mentioned above, the level of reuse

and maintainability of test artifacts must be improved significantly. For example,

Conrad [34] states that:

The test notations which are often used when developing auto-

motive control software, such as the direct description of the test

scenarios in the form of time-dependent value courses or the use of

test scripts, lead to a description of test scenarios on a very low level

of abstraction, making maintainability and reuse difficult.

Although the above statement explicitly refers to the automotive application do-

main, it holds true for almost any domain in which software testing is performed.

Model-driven software engineering (MDE) approaches, e.g. the Model Driven

Architecture (MDA)1 proposed by the Object Management Group (OMG), were

introduced to address exactly that kind of challenges for software system devel-

opment. MDA is defined by the Object Management Group as:

a way to organise and manage enterprise architectures supported

by automated tools and services for both defining the models and

facilitating transformations between different model types. [117]

The MDA approach of software system development which consists of transfor-

mations from a platform-indepent model (PIM) through platform-specific models

(PSM)into lower-level source code.

Compared to “traditional” software development techniques, MDE has a lot

of benefits including the following [96, 111]:

• Improved understandability, maintainability and reuse through higher ab-

straction and visualisation of concepts.

• High level of automation, leading to more consistent source code obtained

through automated model transformations.

1MDA is a trademark of the Object Management Group (OMG)

1.1. INTRODUCTION 9

• Round trip engineering (RTE): RTE is the ability to move from a sys-

tem’s highest level of abstraction into its lowest (i.e. implementing source

code) and backward through model transformation. That means conceptual

changes at the Platform Independent Model (PIM) level can automatically

be propagated into the system’s implementation, thus facilitating fixes on

the product as well as development of new products or product lines.

• Early identification of design flaws through automated model validation e.g.

based on constraints defined using formal notations e.g. the OMG’s Object

Constraint Language (OCL).

• Improved communication between stakeholders involved in the development

process, leading to higher productivity for the whole business process.

Thanks to those benefits, the productivity gain resulting from the introduc-

tion of model-driven development is estimated somewhere between 25% [110],

35% [33], 69% [109] and even up to 500% [24].

Patterns are well-documented abstractions of solutions to recurrent problems

that can be reused to resolve similar problems in any new context in which they

might occur. Back in 1979, an approach for capturing patterns in a systematical

manner was introduced by Alexander [3] to catalogue sound solutions in designing

the architecture of buildings and cities. The adoption of that approach for Object-

Oriented (OO) software development introduced by the Gang of Four [62] led

to so-called software design patterns aimed at documenting proved solutions to

recurrent problems in that field and to speed up the design and implementation

of such solutions, through automated model or source code generation.

Patterns are a way of abstracting from the complexity of systems by focusing

on the main aspects of the solution they provide. Because they address problems

by defining concepts at a high level of abstraction (i.e. at a meta-level), inte-

grating patterns in the MDE process has always appeared as a tempting idea,

potentially improving the software development process both quantitatively and

qualitatively. The aim is to allow new software engineering solutions to be de-

signed, based on patterns and expressed in a formal modelling notation, so that

they could be transformed automatically into complete source code or customis-

able stubs and skeletons. Examples of mechanisms for achieving that goal have

been proposed in the existing literature by authors, such as Sunyé et al [152],

Blazy et al [17], France et al [59], along with numerous others. Some of those

approaches have even been successfully implemented in existing software design

tools and frameworks available on the market and have contributed in maximising

the benefits yielded with MDE.

With the hope of achieving similar kind of benefits for the test development

process and following one of the trends predicted by Buschman et al [27], patterns

in testing have been gaining more popularity as a research field. However, one

10 CHAPTER 1. INTRODUCTION

of the difficulties faced with in that context is the fact that despite the large

amount of works and approaches combining modelling and testing activities, few

of those have managed to become popular among testers and developers alike.

Those approaches can be classified under two main categories under terms such

as model-based testing (MBT) and model-driven testing (MDT).

Model-based testing is defined in many different ways in the existing litera-

ture, but certainly, the most popular definition of MBT is that of an approach

whereby test sequences are generated automatically from models of the system

under test, using different kinds of computing algorithms to optimise that process.

Therefore, model-based Automated Test Generation (ATG) is the key feature of

MBT. In this thesis, whenever the term MBT will be used, that definition will

apply. MBT is used in different flavors by several tools and projects. For exam-

ple, the AGEDIS tool [77], the TOTEM method [21], the MODEST method [142]

and numerous others [4, 15] use system models expressed in the Unified Modelling

Language (UML) to automatically generate test sequences. A more detailed list

of applications of that approach using various notations is presented by Utting

et al in their Taxonomy of Model-Based Testing [156].

However, despite the huge progress in model-based automated test generation,

a large amount of test cases are still developed manually or semi-automatically.

That process is very repetitive, technically challenging and highly error-prone.

Moreover, just as software systems have continuously been growing in complex-

ity, so have the tests aiming at validating those systems with regard to their

requirements also become highly complex pieces of software. This has under-

lined the need for approaches to optimise that process by integrating all phases

of the test development process and by facilitating reuse of test artifacts. One

such approach - labelled Model-Driven Testing (MDT) - consists in following the

same model-driven engineering (MDE) approach that is already widely applied

for generic software system development, in test development as well. Rather

than attempting to generate tests automatically, the main feature of that ap-

proach is to address the growing complexity of test suites by raising the level of

abstraction in the design phase and by supporting manual or semi-automatic test

development with automatic model transformations. The UML Testing Profile

(UTP) [70] is one such attempt to introduce MDE into the test development

process. Figure 1.1 illustrates how the classical V-model of software development

is transformed with the MDT process. As illustrated in that figure, MDT intro-

duces a parallel thread dedicated to test activities into the classical MDA process,

through which test development is performed as sequence of model transforma-

tions from a platform-independent test model (PIT) through platform-specific

test models (PST) into executable test code.

The MDT is another illustration of the evolution of test automation into a full

discipline of its own, confronted with the same type of issues already identified -

1.1. INTRODUCTION 11

Figure 1.1: The model-driven test development process in the classical V-model

and possibly solved - for generic software development. In fact, as several authors

pointed out [93, 7], test automation is indeed software development and requires

the same level of discipline and methodology to be successful. Therefore, in the

same manner as patterns in software engineering were catalogued and applied

successfully to improve the development process, the concept of test design pat-

terns has emerged and is gaining more popularity [158, 115, 108, 162]. Patterns in

developing test automation aim at capturing knowledge gathered in those activi-

ties and at achieving more optimisation, to face the growing challenges of testing

increasingly complex reactive software systems.

This thesis is based on the assumption that the identification and the exploita-

tion of those patterns would be beneficial, not just for test development, but for

the software development process as a whole. Given the fact that such an ex-

ploitation of test patterns would have a greater impact, if it tackles the issue from

a high level of abstraction, a review of existing model-driven test development

approaches was viewed as a necessary preliminary work to assess how that vision

could be transformed into reality. Therefore, the thesis introduces concepts for

a pattern-oriented model-driven testing approach, which enables test systems to

be developed following an MDE process and along previously identified patterns

in testing. Beyond the fact that it covers all phases of test development, the

specificity of the approach lies in the fact that the abstract platform independent

test models (PITs) are designed, taking into account a set of rules and templates

12 CHAPTER 1. INTRODUCTION

based on identified test design patterns.

1.2 Scope and Purpose of this Thesis

Figure 1.2: Classification of test approaches

Figure 1.2 depicts a usual method for classifying test approaches as a 3-

dimensional plot, with each of the axis representing an aspect of testing used

as classification criterion. As depicted in that figure, test approaches can be

classified along the following criteria:

• Test goal: The test goal criterion distinguishes between possible intents of

the testing activities. This leads to a division in three main categories:

– Structural testing aims at verifying a System under Test (SUT) us-

ing knowledge of the internal structure of its source code. Because

of that heavy reliance on the SUT’s source code, structural testing is

also referred to as white-box testing. Techniques for structural testing

include control flow testing and data flow testing. In control flow test-

ing, the tester attempts to exercise as many of the execution paths of

the source code as possible and verifies that they produce the expected

output. Given that the cost of testing rises with the number of exe-

cuted paths, the approach for selecting a relevant subset of execution

paths is critical for this category. Data-flow testing is a control-flow

testing technique which besides examining the flow of control between

the various components, also examines the lifecycle of data variables

to select test cases [8, 76].

1.2. SCOPE AND PURPOSE OF THIS THESIS 13

– Functional testing aims at verifying that the SUT’s behaviour meets its

specified requirements. Functional test can be performed on a single

entity to verify that its behaviour is compliant to a given standard or

specification (conformance testing), or it can be performed by combin-

ing SUTs from different vendors to verify that they can work smoothly

with each other, based on the same specification (interoperability test-

ing).

– Non-functional testing deals with quality aspects of SUTs that go

beyond basic functionality, e.g. performance, stress-resistance, load-

handling, robustness, etc.

• Test scope: The test scope denotes the SUT’s level of granularity for which

a test approach is applied. The finest level of granularity in object-oriented

software systems is a class or its associated instantiating object. This finest

level of granularity is also referred to as a “unit”. Hence the term “unit

testing” to denote that type of testing. Software modules (sub-systems)

and whole software systems are other levels of granularity at which testing

can also be applied. In which case, terms such as “integration testing” and

“system testing” are used.

• Test phase: The test phase criterion refers to phases of the test develop-

ment process in which a given approach is applicable. On this axis, the test

development process is depicted as a process that starts with an analysis

of the SUT’s requirements with regard to testability, through various iter-

ative steps to test reports describing the test results and thus reflecting the

quality of the SUT.

Figure 1.3: Scope of this work

Figure 1.3 illustrates the scope of this thesis, which can be described as follows:

14 CHAPTER 1. INTRODUCTION

• Test goal: This thesis discusses essentially conformance and interoperabil-

ity (integration), i.e. functional testing of software systems. However, some

of the findings might be applicable to non-functional testing (e.g. perfor-

mance, load testing). Structural testing is out of scope, as it is best ad-

dressed with white box testing techniques (e.g. control flow or data flow

analysis).

• Test scope: This thesis covers testing at the component (module, sub-

system) and at the system level of granularity. An application to class-

level unit-testing, though possible, appears to be less appropriate, because,

existing testing approaches at the coding level are more effective for that

purpose and the incentive for raising the abstraction level is not present.

• Test phase: This thesis covers the whole test engineering process, once

the requirements on the SUT and the associated system specification have

been analysed from the testing perspective. However, test execution and

test reporting are covered to a lesser extend than the other phases of test

engineering, as those areas have already been the object of numerous works

to improve efficiency through automated test execution and result analysis.

Therefore, the approach used in this thesis will consist in taking advantage

of existing test execution and reporting platforms rather than proposing

yet another new architecture for that purpose.

The purpose of this work is to propose a methodology for pattern-oriented

model-driven testing, covering the whole test development process and to assess

its potential impact on that process in particular and on the software engineering

process as a whole.

1.3 Structure of this Thesis

The rest of this thesis is structured as follows:

• Chapter 2 provides the software testing background that serves as a basis

for the remaining chapters, introducing the terminology used and describing

how it is understood in the context of this work.

• Chapter 3 presents the current state of the art by describing existing work

on model-driven testing, which is a pre-requisite for the approach proposed

in this work.

• Chapter 4 provides an overview of the pattern-oriented model-driven testing

approach and the principles it is based upon.

1.3. STRUCTURE OF THIS THESIS 15

• Chapter 5 describes the Unified Test Modelling Language (UTML) nota-

tion both in terms of syntax and semantics, through its meta-model which

embodies the concepts of pattern-oriented test modelling.

• Chapter 6 describes the design and implementation of a prototype tool

chain that will be used to evaluate the approach. That evaluation was

achieved through an example usage of the approach to design a solution for

test automation of a small web application, followed by a qualitative and

quantitative evaluation through the application to a case study conducted

with the prototype UTML tool chain.

• Chapter 7 summarises the main results of the thesis, then concludes the

work and draws an outlook for further research in the field.

Chapter 2

Basics

2.1 Introduction

A reader trying to find out the difference between model-driven, model-based

testing and any other combination containing the terms “model” and “testing”

may get quite confused from the large amount of literature dealing with those two

topics individually or in combination. A similar picture emerges if the term “pat-

terns” is considered. In this section some of the key testing and modelling-related

terms commonly used in this thesis will be introduced, including an explanation

of how each of those terms is understood in this context. This chapter is organ-

ised as follows: The next section (2.2) introduces some basic principles of software

testing, focusing on the terminology used in that context in general and in this

thesis in particular. Then, section 2.3 discusses various approaches of combining

testing and modelling, each time describing the potential benefits and pitfalls of

the approach. Finally, section 2.4 introduces the background knowledge relative

to patterns and their usage in software engineering as well as in testing, before

section 2.5 summarises the chapter.

2.2 Principles of Software Testing

2.2.1 Terminology

To avoid misinterpretations and misunderstandings a clear and precise terminol-

ogy is essential for any domain. This is particularly important for an activity like

testing that plays a central role in the software development process. Therefore,

testing terminology has been the object of many efforts from standardisation

organisations and other groups. The International Organisation for Standardiza-

tion’s (ISO) Conformance Testing Methodology Framework (CTMF) standard,

17

18 CHAPTER 2. BASICS

published as ISO/IEC 9646, is just one example of such an effort. ISO’s CTMF

defines a framework for conformance testing of communication protocols based

on the Open Systems Interconnection (OSI). Although the testing concepts de-

fined in ISO/IEC 9646 originally had OSI communication protocols in mind, they

have been adopted for conformance testing in other application domains. This

is illustrated by the fact that the TTCN-3 [58] notation has adopted those con-

cepts, although its scope now extends widely beyond testing of communication

protocols.

Similar efforts from other institutions include the Institute of Electrical and

Electronics Engineers (IEEE)’s IEEE-829 standard [83] and the International

Software Testing Qualification Board’s (ISTQB) glossary [86, 67], which both

define a series of terms related to software testing. Many of the terms used in

this thesis are understood consistently along the definitions provided in those

standard documents. However, some of them needed to be redefined to align

with the proposed approach and its underlying concepts.

The next sections enumerate those terms and describe how they are under-

stood in this thesis.

Component

A component is an abstract entity that is part of the architectural context in

which a test case can be executed. A component can be a representation of a part

of the SUT - in which case it is called a system component - or a representation

of an entity required to stimulate the SUT or to observe its behaviour to assess

its correctness. In that case the component is called a test component . It is

worth noting that a test component is understood all through this thesis as an

abstract concept, which does not necessarily map to a piece of software running

on a computing system. Rather, a test component can be mapped to any element

of the testing environment which can cause an impulse on the SUT or through

which the SUT’s behaviour could be observed. For example, in the case of a

coffee machine as SUT, a test component could be the representation of a person

who interacts with the machine (SUT) through a set of buttons (input ports)

and can observe the responses to her impulses.

(Abstract) Test Case

A test case is a complete and executable1 specification of the set of actions re-

quired to achieve a specific test objective or a set thereof. A test case is considered

to be abstract, if it cannot be executed automatically on a computing system,

either because it has been specified using a language that does not allow such

1Please note that the term executable here does not necessarily mean automatically or
entirely programmatically executable, because test execution may still include some steps to
be performed manually by a physical person.

2.2. PRINCIPLES OF SOFTWARE TESTING 19

automated processing via a test execution platform (e.g. natural prose language)

or because the notation used is an intermediary one that requires further trans-

formations to obtain automatically executable test scripts.

(Abstract) Test Suite (ATS)

A complete set of (abstract) test cases, possibly combined into nested test groups

that is needed to perform testing for one SUT or a family thereof implementing

the same specification.

Conformance testing

Conformance testing aims at verifying the extent to which an SUT reflects its base

specification. The base specification may be a document published by a standard-

isation body, a collection of requirements on the system, a prose description of

the system or any document of that kind. Requirements-based testing, acceptance

testing, customer testing [64] specification-based testing [133] are other terms

used for conformance testing.

Executable Test case

A concrete realization of an abstract test case that can be executed to test an

SUT. An executable test case is generally either a test script written in a notation

that can be transformed directly into binary code for execution on a given com-

puting platform or a series of clear and precise instructions to be followed by a

person (test operator) to assess if the SUT’s behaviour matches its specification.

Another possibility consists of a combination of both manual and automated test

execution into a form of semi-automated test execution.

Test Data

Test data is any form of data that can be used to stimulate a system under test or

that can be observed as output from it. In this thesis the term test data defines

an abstract concept, which can be mapped to anything that represents an input

or an output on a given SUT. Examples of test data could be a communication

protocol message, a method call on an Application Programming Interface (API),

a physical control button on a machine that may be pushed to create a stimulus,

a pop-up window on a graphical user interface, etc.

Test Action

A test action denotes any action that must be undertaken to execute a test case.

An example of test action is the sending of test data to another component from

20 CHAPTER 2. BASICS

a source test component, either to stimulate it (SUT component) or to achieve

some other test-related purpose (e.g. reaching a certain pre- or post condition).

Test Event

An indivisible unit of test behaviour that is observable at the SUT’s interfaces

and can be evaluated to verify that the SUT’s behaviour is correct, e.g. when it

reacts to a given impulse.

Test Group

A named set of related test cases in a test suite. More generally, a group is merely

a way of organising items in a test specification.

Test step

A named subdivision of a test procedure, constructed from test events and/or

other test steps.

Test Architecture

A test architecture is a composition of test component(s) and SUT component(s)

that are interconnected via ports through which they can exchange data (mes-

sages, signals, function calls, etc.) to execute a test case. A static test archi-

tecture is a predefined test architecture that can be reused for more than one

test case. It is assumed that the interconnection of components within a static

test architecture does not change during the whole test execution. In a way,

a test architecture describes the topological context in which a test behaviour

will occur. Dynamic test architectures are those that may be modified while the

test case is still running. Example of such modifications include the instanciation

new test components, the termination of existing one or the addition/suppression

of connections between components. While such situations are rather scarce in

conformance testing, they may be quite attractive for other kinds of testing, e.g.

load and performance testing.

Test Architecture Model

A test architecture model is a model containing elements of architecture required

for testing a particular SUT. Beside a collection of predefined static test architec-

tures, the model includes type definitions required for designing static or dynamic

test architectures, depending on the addressed test scenario.

2.2. PRINCIPLES OF SOFTWARE TESTING 21

Test System

A test system is the collection of test components within a test architecture ,i.e.

excluding all SUT components.

Test Objective

A test objective is a prose description of a well defined goal of testing, focusing on

a single requirement or a set of related requirements as specified in the associated

SUT’s specification (e.g. Verify that the SUT’s operation anOperation supports

a value of -Xmax for its parameter p IntParam). It should be noted that the test

objective merely specifies what needs to be tested, without any indication as to

how that objective will be achieved.

Test Design Specification

A document specifying the test conditions (coverage items) for a test item, the

detailed test approach and identifying the associated high level test cases [83, 86].

Test Case Specification

A document specifying a set of test cases (objective, inputs, test actions, expected

results, and execution preconditions) for a test item [83, 86].

Test Specification

A test specification is defined as a document that consists of a test design speci-

fication (see 2.2.1), test case specification (see 2.2.1) and/or test procedure spec-

ification [86]. A test specification can be viewed as the equivalent to a software

or system specification for generic software engineering.

Test Procedure

A test procedure - also labelled test procedure specification [86] - is defined as a

prose description of a sequence of actions and events to follow for the execution of

a test case. A test procedure describes how a test objective will be assessed. For

example, the test procedure for the test objective mentioned above (“Verify that

the SUT’s operation anOperation supports a value of -Xmax for its parameter

p IntParam”) might read as follows:

• Step 1: (Preamble) Initialise SUT

• Step 2: Instantiate a variable v for p IntParam of the same type as p IntParam

• Step 3: Assign -Xmax to variable v

22 CHAPTER 2. BASICS

• Step 4: Use variable v as a parameter to call the SUT’s anOperation oper-

ation.

• Step 5: Check that the SUT returns normally to the call

• Step 6: (Post-amble) Cleanup test set (free memory, destroy objects etc.)

it should be noted that there is a 1:n relationship between a test procedure and

the test objectives it addresses. I.e. a test procedure may cover 1 or many test

objectives.

2.3 Testing and Models

The introduction of formal description techniques (FDTs) to specify software

intensive systems created new perspectives for more efficient testing approaches of

such systems. The hope was that the standardisation of FDTs (e.g. SDL, Estelle,

LOTOS) and their usage for specifying software systems would provide a better

basis for automated test derivation than with natural language specifications.

With the emergence of semi-formal description techniques through model-driven

engineering supported with notations such as UML, SysML etc. and their growing

popularity, that hope has remained quite strong. This is illustrated by the large

amount of research activities on automated test derivation based on such formal

or semi-formal system specifications or models.

This section presents an overview of existing approaches in that area and

describes how they relate to this thesis. Because of its popularity and the various

different contexts in which it has been used, the term model might be one of

the most difficult to define in computer science. This section will address the

various aspects of the relationship between testing and modelling. It is organised

as follows: The next section will review the terminology around the concept of

models as it is used in this thesis. In particular, the question what is a model?

will be the main point of interest for that section. Then, the next sections (2.3.2

and 2.3.3) discuss the most frequent associations of models and testing, namely

model-based testing, model-driven testing and high level test design.

2.3.1 What is a model?

Because models have always been used in a wide variety of human activities,

defining exactly what a model is, always appears like a sheer impossible task, in-

evitably leading to a controversial result. Therefore, instead of trying to provide

a generic definition of that term, like a dictionary would do it, a more domain-

specific definition appears to be a more realistic attempt. This thesis is concerned

with models in software engineering. But even considering that area of computer

2.3. TESTING AND MODELS 23

science alone, the number of existing definitions of the term remains quite im-

portant. Nevertheless, a key characteristic of models (as they are understood in

this thesis) is the fact that they are based on the idea of abstraction [103]. A

model can be viewed as a description of the structural and behavioural design of

a piece of software. It is similar to the set of plans used by engineers to build a

house, with the difference that instead of a house, the result will be a piece of

software. It is important to note the difference made here between a (miniature)

representation of the object itself, for example to illustrate its usage and a repre-

sentation of its design. In fact, the term model is also used in software engineering

to denote simulations of various kinds of processes on infrastructures that would

be otherwise too costly to build and to test in real-life (e.g. embedded software,

telecommunication networks, large or high-value mechanical system etc.)

In the context of this thesis, a model is understood from a Model-Driven

Engineering (MDE) perspective, i.e. as a partial and abstract, but yet exact rep-

resentation of a system’s design, out of which more concrete representations of

that system can be derived (automatically/manually) following an iterative pro-

cess. Such models are generally expressed graphically in the form of diagrams.

A key characteristic of a model is that each of the associated diagrams allows

the object to be analysed from a different view point, each time revealing (i.e.

displaying and allowing access to) a particular aspect of the object or a combi-

nation of several aspects. The classification of possible views could be driven by

the type of information (e.g. architectural view, data view and the behavioural

view), the level of abstraction (e.g. logical view, technical view, physical view),

or any other criteria of the data made accessible through those views.

However, in some parts of this thesis definition 4 above will be used, especially

to clarify other concepts of model-related testing. But whenever that will be the

case, it will be clearly indicated as such to avoid any possible confusion.

In the rest of this thesis a distinction will also be made between a system

model and a test model. The term system model will be used to denote a model

(according to the definition above) of the SUT. Whereas the term test model will

be used for a model of the elements required for testing the SUT.

Other definitions of a model (e.g. as mathematical representations of physical

processes) and the associated testing activities in those areas are considered out-

of-scope for this thesis and will not be discussed further.

For a more detailed discussion on the definition of a model, please refer to

Kühne [97], Utting et al [157] and Binder [16].

2.3.2 Model-Based Testing

With the growing popularity of models and MDE in software development, model-

based testing, which was already successfully applied in hardware testing has

become one of the main topics of research in software engineering in the last

24 CHAPTER 2. BASICS

decades. One can identify two main flavours of model-based testing in the existing

literature:

• Model-Based Testing as a generic term for any testing activity in which

models are used in one way or another: Jorgensen [91], El-far et al [48]

define MBT as

a general term that signifies an approach that bases common test-

ing tasks such as test case generation and test result evaluation

on a model of the application under test

• Model-Based Testing as Automated Test Generation (ATG) based on mod-

els of the SUT (also called system models): This flavour is the most com-

mon in the literature and in the tool landscape [156, 157], especially with

the growing popularity of MDE and Object-Oriented Analysis and Design

(OOA/D). It consists in using a model of the SUT - potentially enriched

with some additional test-relevant information - to automatically generate

tests. Those additional information are sometimes called (test) require-

ments or constraints, annotations etc. This form of Model-Based Testing

relies heavily on algorithms aiming at achieving a possibly high level of

coverage relative to the base model(e.g. coverage of all possible transitions,

if the SUT’s behaviour has been modelled as a labelled transition system

(LTS) or as a Finite State Machine(FSM)). The generated tests range from

structured plain-language descriptions of the test sequences (i.e. the set of

actions to be performed to achieve the test goals), to directly executable

test scripts, in the form of binary code or expressed in an intermediary no-

tation, out of which automatically executable tests can be derived through

compilation or interpretation.

• Model-Based Testing as the application of MDE to test development: This

usage of the term MBT is rather seldom and appears mostly in works related

to the UTP [121].

Models in MBT

Most of the models used in model-based automated test generation are represen-

tations of the SUT’s usage from a black-box perspective and therefore correspond

to definition 4 of the term model provided in section 2.3.1. Finite state ma-

chines (FSM) and their various extensions such as extended finite state machines

(EFSM), state charts and markov chains are undoubtedly the most popular types

of models used in MBT. The usage of FSMs in computer science can be dated

back to the 1950s with the work of Mealy [107], Moore [112], Kleene [95] et al.

FSMs are based on the principle that every software is always in a specific state

and that the output it generates from any input will be determined by the state it

2.3. TESTING AND MODELS 25

currently finds itself in. Furthermore, FSMs are based on the assumption that the

number of possible states for the SUT is finite. This is particularly the case for

software running on computer hardware components, which additionally benefit

from the fact that the number of states there is usually rather small.

While first experiences of using FSMs to test software date back to 1978 with

the work of Chow [31], the large number of works on that field [61, 6, 32, 102]2

in the last decades clearly indicate the growing interest in industry and academia

for it.

2.3.3 Model Driven Testing

Figure 2.1: Model-Driven Testing Process

Model Driven Testing (MDT) is an approach of software testing whereby a

model is used to model an abstract representation, not just of the SUT’s struc-

tural design, but also of the SUT’s testing context. In this thesis, MDT is defined

as the application of MDE methodology, e.g. as proposed by the OMG’s Model

Driven Architecture (MDA), to the testing domain. As depicted in Figure 2.1

(from [161]), while the MDA features the (automated) transformation from plat-

form independent system model (PIM) into source code via successive platform

specific models (PSM), MDT introduces a parallel thread for the test develop-

ment process. In that process, a platform independent test design model (PIT)

is transformed automatically into platform specific test models (PST) and even-

tually into test script code that can be executed to assess the SUT. Optionally,

an automated transformation of the system model into the test model could be

achieved as well, both at platform independent level and at platform specific level.

2For a more exhaustive list, please refer to [48]

26 CHAPTER 2. BASICS

Rather than the automated generation of test cases, the main goal of MDT is to

automate the manual test development process and facilitate its integration in

the overall software development process to ensure requirements traceability and

Models in MDT

The models used and designed in MDT are mainly of two types:

• A system model, which is either a design model of the SUT (e.g. a UML

model of the SUT) or a model describing the usage of the SUT from a

black-box perspective (usage model).

• A test model, i.e. design of the testing context in which the SUT will be

tested (e.g. a UTP model describing the testing context and potentially

including the SUT’s model as a whole or referring to it).

The testing context consists of three main elements, namely test architectures,

test data and test behaviour. The technique used for modelling those elements

will depend on the tooling environment and especially on the technique used for

modelling the SUT. The tendency is to use the same technique for both elements

to facilitate data exchange between them and a better understanding among

stakeholders.

However, it is quite common in software development that no design of the

SUT is available for reuse. In those cases, the test model directly incorporates the

SUT’s design elements required to design sensible tests, while ignoring aspects of

the SUT that are irrelevant for the testing activities.

2.3.4 High Level Test Design

Test modelling is the activity of designing a test model and as such, it is performed

in both MBT and MDT processes. However, there is a significant difference

between the test design activities in those two processes. In MBT the focus will

be laid on providing a compact model of the SUT’s behaviour and in particular

of how it should behave when it is being used, while at the same time neglecting

the impact of the testing context. Whereas in MDT, the testing context plays a

central role and the high level test design activity essentially consists of describing

the SUT’s expected behaviour within that testing context.

2.3.5 A few Words on Model-Based and Model-Driven Testing

Despite the undeniable benefits it brings into the test development process, MBT

also raises a couple of challenges and open issues that need to be addressed for

its successful application in a broader community. The next sections discuss each

of those challenges.

2.3. TESTING AND MODELS 27

Model granularity

Very often in integration testing, sub-system level testing or interoperability test-

ing deriving meaningful tests from system models is a pointless task, because such

testing implies taking into account functionalities that go beyond what could be

represented as a single state machine, sequence or interactivity diagram. In fact,

test scenarios in such situations involve several types of diagram at the same

time, with the additional information on how to combine them being provided as

natural language descriptions, which are inappropriate for automated processing.

Model testability

According to Binder [16], a testable model is one that contains sufficient infor-

mation to allow automatic generation of test cases. Therefore, the model has to

meet the following criteria:

• Completeness and accuracy: The model must represent all features that

need to be tested. Also it should reflect the SUT’s design as well as its

specified behaviour.

• Balanced level of detail abstraction: the model should not contain too many

explicit details of the SUT to keep design and maintenance cost at an

acceptable level, but at the same time, it should preserve details that are

essential for revealing faults and demonstrating conformance.

• Clearly defined concepts: The model must define the concepts on which it

relies to describe structure and behaviour (e.g. state, events, actions) in a

clear and precise manner so that they can be verified accordingly.

As one can easily imagine, providing models that effectively meet those criteria

is a by no means trivial task that requires not just appropriate tools, but also a

fairly good level of expertise. Moreover, as Briand et al [22, 20] pointed out, the

usage of the UML notation - which is the de facto standard for modelling and is

quite popular in MBT - does not help very much in that instance. They argue

that

”since the use of the UML notation is not constrained by any partic-

ular, precise method, one can find a great variability in terms of the

content and form of UML artifacts.”

Furthermore, it is worth noting that SUT models provide a user’s or developer’s

perspective on the system. This might be explained by the fact that SUT mod-

els are provided by designers (and sometimes even developers) with the aim of

implementing functionalities that fulfil the requirements on the software. Such

requirements being generally user-driven, tend not to cover test-related aspects

28 CHAPTER 2. BASICS

by focusing mainly on the expected behaviour in the system. Testing on the other

hand has to go beyond the expected behaviour to uncover errors that might oc-

cur in case the SUT is confronted with unexpected inputs or unspecified user

behaviour. Otherwise, instead of testing the system itself, the tests merely vali-

date the SUT’s model. Although it is commonly agreed that this type of model

validation is an important step towards software quality, it is also widely ac-

knowledged that it cannot be a substitute for “real” tests of the implemented

system.

Model correctness and self-consistency

It should also be kept in mind that MBT cannot be viewed as the one solution to

all testing problems, based on the mere fact that tests are automatically generated

from models. Just as software will always contain failures, independently of their

level of abstraction, models can also be faulty. Therefore, the quality of the

formal model used as the base for MBT is fundamental for the whole process. As

Heimdahl [79] put it,

If the models are wrong, the testing effort will be inefficient or possibly

outright deceiving (if we blindly accept the results of testing using

poorly validated models).

However, according to Heimdahl, robust techniques for validating those models

have been lacking ever since Dalal et al pointed out that challenge, back in

1999 [38]. Although domain expertise from project developers can be used to

check the quality of MBT models as suggested by Dalal, it is obvious that those

activities should be automated for more efficiency.

The human factor

Current MBT approaches and their associated commercially available tools ex-

pect the tester to be 1/3 developer, 1/3 system engineer, and 1/3 test engi-

neer [38]. Such a combination of skills is hard to find in most test teams. Besides

such skillful testers would hardly be affordable for many organisations. Therefore,

the methods and tools for MBT should adjust to that fact.

Difficulty of creating and maintaining a SUT model

Creating and maintaining a model for a complex software system is less trivial,

than it is sometimes suggested in many publications on MBT. In fact, the SUT

model for test generation is generally more complex than the one used by develop-

ers, because it needs to combine several views on the system and correlate them

as single model. That means difficult decisions have to be taken by the tester

regarding for example which details to include in that model or to leave out, the

2.3. TESTING AND MODELS 29

algorithm to use for test generation, the appropriate level of abstraction [125] etc.

The size and the manageability of the resulting model will ultimately depend on

the complexity of the SUT’s behaviour and the model coverage level targeted by

the tester. These difficulties can partly be addressed by reusing elements of the

SUT’s design model already used by system developers in the MDE process. A

way of achieving is by annotating the initial SUT model with additional testing-

related information that will be exploited for automated test case generation.

Lower understandability of automatically generated test cases

The usage of MBT tends to make it difficult to identify reasons why a test case

fails and to address the cause [38]. As Brinksma et al [23] rightfully stated:

Not only detecting errors is important, but also locating and diagnos-

ing errors.

This leads to the “loss of collateral validation and verification” [79], i.e. the

ability to combine automatically generated tests with those developed in a manual

process by experienced testers. Moreover, if it is not clear what functionalities of

the SUT the tests actually assess, then confidence in the quality of the software

will hardly be increased.

Model scalability

Another important challenge faced with MBT is that of scalability. Scalability

refers here to the ability to handle SUT models of increasing size and complexity

in a stable and satisfactory manner. MBT relies on algorithms originating from

graph theory for traversing the various paths of a finite state model representing

the SUT’s behaviour [100]. Depending on the possible input/output combinations

at each state, test cases can then be generated automatically to assess the SUT.

While this works pretty well for simple SUTs consisting of only a few states, the

number of generated test cases grows exponentially with increasing complexity of

the SUT’s state model, eventually leading to the well-known state space explosion

problem [77, 77, 23, 48]. A consequence of this is the fact that the number of

generated test cases may grow into unmanageable proportions, thus making the

approach lose its intended efficiency.

Dealing with the real (imperfect) world

MBT heavily relies on the availability of complete and correct requirements speci-

fication and SUT models. However, besides the fact that formal requirements are

rare [134], a machine processable model (MPM) of the SUT is not always avail-

able. This situation might occur, either because it was simply not planned or

30 CHAPTER 2. BASICS

because the cost for providing a system model solely for the purpose of test genera-

tion would outweigh the potential benefits of automated test generation. In many

cases, only parts of the system model are expressed in a machine-processable no-

tation, with the biggest part of the system specification being provided as natural

language description documents. For example the type system and the applica-

tion programming interfaces (APIs), i.e. the static aspects of the system, might

be specified in the Unified Modelling Language (UML), the Interface Definition

Language (IDL), the Web Service Definition Language (WSDL) or any other

similar notation, while the dynamic parts would be provided as a combination of

sequence charts, state diagrams and natural language descriptions. This empha-

sizes the need for MBT to integrate with the whole software engineering process

as noted by numerous authors [23, 77, 41, 134].

Taking the testing context into account

For the sake of abstraction, MBT approaches tend not to take the testing context

into account. The term testing context denotes the architectural environment in

which the SUT needs to be put for test execution, the communication points

it provides for input or output, and the constraints to be considered for ensur-

ing a proper operation (e.g. required components and functionalities). As a

conscequence of this, the generated test cases may remain at too high level of

abstraction and thus unsuitable for test execution. Moreover, if the additional

effort for transforming those abstract test cases into executable ones is too high,

the benefits expected from applying MBT may be lost in the process.

2.3.6 Conclusions

As a technique that has already been advocated and put into practice in several

works [161, 15, 18, 66, 65, 89], MBT appears to be a promising approach, poten-

tially yielding the same type of benefits obtained with MDE for generic software

products. However, its adoption by the testing community and the software in-

dustry as a whole has remained extremely low. As early as in 1995, Lai [101]

raised that issue for testing of communication protocols. In later works [99, 100]

he continued, stating that

There is not muchprogress in the use of test sequence generation tech-

niques for practical testing of communication networks. Test design

is still largely performed by testers by interpreting the specifications

written in a natural language.

The figures collected and analysed by Neto et Al in their recent survey of MBT

approaches [41] and reports by other researchers [134] seem to indicate that this

issue continues to affect testing, even beyond the communication domain. In an

2.4. (DESIGN) PATTERNS 31

associated article [114], Neto et al go as far as questioning the existing amount of

practical evidence brought up by researchers to prove their assumptions in that

domain, despite many seemingly promising and conclusive case studies [38, 36,

127, 154, 30, 6, 126] describing its successful application in the research and the

industrial context.

Lai explains this big gap between academic and industrial testing practices

with the fact that academia has not been addressing the real-life testing issues and

problems [99] One reason that is often mentioned to explain the low acceptance

of MBT/MDT is the fact that the proposed methodologies are difficult to use

and sometimes unnatural in their application.

While many of the challenges mentioned above have a lower impact for sys-

tems displaying a lower level of complexity in terms of their behaviour, approaches

are yet to be developed to address them for more complex software systems.

For all those reasons mentioned above, “manual” test development is still a

common practice and is even likely to remain so for a few more years to come,

given the fact that it will undoubtedly require some more time until MBT reaches

the level of maturity required to evolve from an academical discipline into a

broadly established practice. Besides, independently of automation a certain level

of manual intervention in test development will always be required for deriving

meaningful tests from system specifications and requirements. MBT simply raises

the level of abstraction at which that manual intervention occurs and facilitates

automated test case generation based on those high-level models. Nevertheless,

designing test cases requires a good knowledge of the SUT, as well as testing

expertise, both of which are hard to find and costly assets. Amazingly, while a

large amount of tests are developed following that manual process, the level of

automation currently available to support those activities is still disappointingly

low. This is where MDT comes into play, by providing a model-driven approach

including automated validation and iterative transformations of test models to-

wards executable test scripts. A detailed discussion on MDT is provided later on

in the next chapter of this thesis.

2.4 (Design) Patterns

The concept of design patterns as it is currently known in the software develop-

ment domain originates from the work of Alexander [3], an urban architect who

had the basic idea of recording design wisdom in a canonical form. He defines a

pattern as

both a description of a thing which is alive, and a description of

the process which will generate that thing.

As Buschmann et al [26] pointed out:

32 CHAPTER 2. BASICS

A pattern is the result of abstracting from a given (set of) problem-

solution pair(s) and distilling common factors, which can be reused

to solve other problems.

This process of analysing existing solutions and extracting the essence of a set

of problem-solution-benefit combinations is called pattern-mining, whereas the

reverse process of producing a solution for a similar problem-benefit pair by

applying the previously identified pattern is called pattern instantiation.

It soon became obvious that the concept of patterns introduced by Alexan-

der for urban architecture could also apply to nearly any design and engineering

field. In analogy to the design patterns for urban architecture, software designers

acknowledged the existence of patterns in software design and the need for iden-

tifying and documenting them, in such a way that they would possibly be reused

wherever the context might require it to generate new solutions. A key event in

the history of software design patterns was the publication of the book ”Design

Patterns: Elements of Reusable Object-Oriented Software” by E. Gamma, R.

Helm, R. Johnson and J. Vlissides, also called the Gang-Of-Four (GoF) [62].

Jacobson et al. [88] define a software architecture pattern as both a part of

a software system and a description of how to build that part. The purpose of

software architecture patterns is to identify and specify abstractions above level

of single instances or components in a software system, as well as to document ex-

isting well proved design experiences, software architectures and guidelines. Also

software patterns provide a common vocabulary and understanding for design

principles and well-proven experiences.

There has been some amount of controversy around the concept of patterns in

software engineering and how they relate to existing software methodologies. As

described in [26], emphasis must be put on the fact that patterns can and should

not be viewed as solution for all possible software engineering problems and one

should not attempt to force patterns reuse in situations where they simply would

not fit. Patterns should rather be viewed as a complementary approach to existing

methodologies.

Also, patterns should harmonize with the fundamental principles of software

construction commonly known as enabling techniques [26], which are indepen-

dent of a specific software development method such as Abstraction, Encapsu-

lation, Information Hiding, Modularization, Separation of Concerns, Coupling

and Cohesion, Sufficiency, Completeness and Primitiveness, Separation of Policy

and Implementation, Separation of Interface and Implementation, Single Point

of Reference, and Divide-and-conquer [26]. While some patterns address some of

those concepts explicitly, it is important to make sure that patterns do not affect

those principles negatively.

This also holds true for the usual non-functional requirements on software

systems, i.e. changeability, interoperability, efficiency, reliability, testability and

2.5. SUMMARY 33

re-usability [85]. It should be kept in mind that while some patterns will aim

at enhancing some of those requirements and help in achieving them, it is also

possible that a given pattern affects some of the non-functional requirements

negatively. For example, the broker pattern, which is the base of many mid-

dleware architectures such as the Common Object Request Broker Architecture

(CORBA), eases testing of individual client or server components in a distributed

system. However it decreases the testability of client-server systems by introduc-

ing additional elements between the client and the server.

2.5 Summary

Testing has been the object of a significant amount of research activity in the

last decades and has evolved from something performed “en passant” by soft-

ware developers into a complete discipline of its own, following the same process

as generic software development. Test development is just another way of ap-

proaching software development from the quality insurance perspective, but to

be successful, testing also has to be done in a rigorous and systematic way. Oth-

erwise that would ultimately lead to a lower quality for the resulting products

or cause more costs. However, with testing evolving into a discipline of its own,

methodologies are required to fasten test development to avoid an explosion of

costs stemming from the growing complexity of both the systems to be tested

and the test systems themselves.

With the growing popularity of models in software engineering, model-based

testing has been the source of (too) high expectations as a means for addressing

the challenges of ever complex software systems and shorter test delivery time

spans. However, MBT has not yet reached a high level of popularity among

testers and developers. Therefore, test engineering has remained a highly manual,

repetitive and error-prone process in many domains. Automating those manual

tasks and enhancing reuse both of artifacts and concepts through patterns is

a promising approach for addressing those issues. Although this could also be

achieved through patterns at the test scripting level (e.g. using some dedicated

libraries or specific macro-like scripting language idioma), the introduction of a

model-driven approach to test development will undoubtedly facilitate that task

and increase both efficiency and usability, by allowing tests to be designed at the

appropriate abstraction level for those activities. In the next section the current

state of the art of such model-driven testing approaches is discussed.

Chapter 3

State of the Art in Model-Driven

Test Automation

3.1 Introduction

Patterns are the result of an abstraction process, in which the common essence

shared by a set of existing solutions to a recurrent problem is extracted, so that

new solutions future occurrences of the same (or similar) problems would be in-

stantiated more easily. Since they address issues at different levels of abstraction,

patterns are described in many different ways, ranging from natural language

through object model diagrams to source code snippets or templates. The choice

of one method or the other is driven essentially by the targetted domain and the

usability of the resulting solution.

As a mean for raising the abstraction level in software development, MDE

can facilitate the exploitation of patterns in test automation. In Chapter 2,

Model-Driven Testing was defined as an approach consisting in applying the

MDE method to design solutions for test automation. Furthermore, the potential

benefits of combining MDT and test design patterns were highlighted.

In this chapter, the current state of the art of existing MDT approaches

is reviewed. As described in Chapter 2, the MDT process consists of successive

transformations from a platform-independent test model (PIT) through platform-

specific test models (PSTs) into executable test scripts. That process basically

remains unchanged, independently of the technology used for achieving it. There-

fore, the main differentiating factor between MDT approaches is the notation(s)

used to express testing concepts as PIT at a high level of abstraction and the

methodology they carry.

There is a wide variety of existing notations for test design available both in

academia and in the industry [64]. Therefore, selecting one that is appropriate

35

36CHAPTER 3. STATE OF THE ART IN MODEL-DRIVEN TEST AUTOMATION

for one’s needs is by no mean a trivial task. Basically, two main categories

of approaches can be identified for model-driven testing, depending on whether

a Generic Modelling Language (GML) or a (Test) Domain-Specific Modelling

Language (DSML is used to model the tests.

Significant differences exist between the requirements for generic software

design notations and those targeting test design. While the former tend to focus

on expressive power with generic concepts that match the complexity of today’s

software and information systems, the latter rather aim at providing a simplified

view on those systems to enhance their understandability and to help uncovering

errors they may contain. Additionally, test development involves a process that

includes its specificities, despite the many similarities it shares with software

system development. Those specificities include [11]:

• The ability to model assertions and expectations.

• The ability to model test-related roles for entities.

• The ability to model means for verifying constraints: while constraints can

be considered sufficient for modelling generic software systems, test models

also require a description of how those constraints will be verified and which

impact their violation would have on test results.

• The need to provide traceability to other aspects of the development process

(e.g. requirements management, fault management).

Even though workarounds could be found for fulfilling those requirements on test

development using GMLs, those are in many cases too inconvenient to be used

efficiently in an MDT process.

Taking those specificities of test design into account while modelling tests

would be highly beneficial for the process, because it would automate manual

test development where it is needed most, while at the same time ensuring that

the test models remain concise and precise.

3.2 Using GMLs for MDT

GMLs are notations primarily defined to model a wide range of software and

computer system types. UML is probably the most popular GML in software

development at the moment.

The UML is the industry standard notation for high level software design and

has continuously been gaining popularity since its introduction. It provides a wide

variety of diagramming possibilities to model software at any level of abstraction

and benefits from solid tool support and a well-proven standardization process.

Therefore, it appears to be a natural choice to consider UML for also designing

tests in the same manner as other aspects of software engineering. Beyond the

3.2. USING GMLS FOR MDT 37

user-friendliness resulting from the familiarity of the UML and the usage of well-

established CASE tools, it is also assumed that using the same language both for

test and system design would make it easier to understand the links between both

types of artifacts and facilitate automated transformations between them [120].

Proponents to the usage of UML as-is for test design argue that, it already

provides all concepts required for that purpose and that using the same nota-

tion for modelling both the SUT and the test system will be beneficial for the

whole development process. Baker et al [11] describe a case study conducted at

Motorola, featuring a concrete example of such usage. Although no figures are

put forward to support their statement, the authors claim that the approach has

proven be very successful through automated test generation and reuse of test

models in reducing the effort for developing tests, improving test coverage and

increasing the failure detection capability of the test suites. However, as they

also rightfully pointed, the usage of the same notation does not spare the test

designer the challenges that are inherent to any application of MDE to testing.

Namely [11]:

• insufficient tool support for

– exchanging model artifacts between system architects, testers and de-

velopers,

– migrating from legacy notations (e.g. SDL, MSCs),

– integrating the various aspects of MDE as a comprehensive process,

– handling large models (scalability),

• inadequacy of system models (Level of abstraction, incompleteness, plat-

form specifics),

• lack of well-defined semantics originating from known semantical variation

points of UML,

• difficulty of coupling data and behaviour in a reusable manner,

• team inexperience.

The authors describe how those various issues were addressed using some propri-

etary notations and tools besides standards such as TTCN-3, UML and UTP.

3.2.1 The UML Testing Profile (UTP)

The UML Testing Profile [70, 10, 161] (UTP) is an extension of UML standard-

ised by the OMG for expressing test design concepts at higher level of abstraction.

UTP adds test design concepts to the UML superstructure to define a language

suitable to be used as stand-alone meta-model for test design or integrated with

38CHAPTER 3. STATE OF THE ART IN MODEL-DRIVEN TEST AUTOMATION

UML for combined test and generic system design. UTP groups those concepts

in four main categories: test architecture, test data, test behaviour and time. As

a UML profile, UTP inherits the positive characteristics of UML, such as its ex-

tensibility (through the profiling mechanism), its included support of partitioning

(through packages) and separation of concerns (layered metamodel architecture).

While, this facilitates the dual usage of UTP, i.e. both for combining the design

of test artifacts with that of generic systems, it also comes with some important

drawbacks to be taken into account.

The UML Testing Profile defines a language for designing, visualising, spec-

ifying, analysing, constructing and documenting the artifacts of test systems.

Apart from the numerous advantages of UML, this approach aims at facilitating

the understandability of test models and their adoption by other stakeholders in

the software development process. Furthermore, it is assumed that test design

activities would benefit from the large variety of tooling facilities already available

for UML, if that same language (or an extension thereof) were used.

However, the usage of UML and extensions thereof for test design requires

that some of the issues regarding the semantics of that notation are addressed.

Henderson-Seller [80] provides an overview of the pros and cons of UML, pointing

at issues raised by experts regarding the impreciseness of that notation for mod-

elling the behaviour and the structure of software systems. While SUT models

may afford such impreciseness, test models must clearly specify what function-

ality of the SUT they assess and indicate precisely how that assessment will be

performed. The impact of those issues on a potential usage of UML for high level

test design has been analysed by authors such as Brinksma et al. [23] and Pickin

et al. [120]. Moreover, the UML might be too complex, too difficult and too

generic for the sole purpose of high level test design. In fact, many of the existing

implementations of UTP are actually provided as plug-ins for UML modelling

tools, which in most cases do not provide a specific process for test modelling,

but rather for modelling generic object-oriented systems. This makes the process

of modelling tests with those tools inefficient as they do not address the concerns

of testing directly, but through some workarounds. Because of all these factors,

the adoption of UML for test design appears to be coupled with high costs and

risks with no guarantee of a beneficial impact at the end of the effort.

Also, it is very important that other non-functional aspects of the test de-

velopment process (e.g. test planning, test analysis) are taken into account in

the test modelling process, for it to be successful. Clearly, some of those aspects

are considered only marginally, while others are not considered at all by GMLs.

For example, while it extends the UML with concepts specific to testing such as

test architecture, test behaviour and test data, the UTP covers many of those

concepts by only defining their abstract syntax, with vague description of their

semantics, if any. This is nevertheless not surprising and aligned to the UML,

3.3. USING DSMLS FOR MDT 39

knowing that a standard is per se a compromise which rather than going too

much in the details of things, aims at providing a common framework for a given

methodology.

Furthermore, the GMLs neglect the visualisation of test artifacts, assuming

that the means provided for generic software design would be sufficient. This

is somewhat unrealistic, because if a diagram is used to represent test artifacts

graphically, then the test-specific concepts contained in those artifacts should

also be visible on the diagram. Otherwise the benefit of visualisation would be

lost altogether.

3.3 Using DSMLs for MDT

DSMLs are notations especially tailored to allow the modelling of concepts specific

to a particular domain. A domain in this context can be understood both as

application domain (e.g. automotive, telecommunications, finance, etc.) or as

problem domain (e.g. application deployment, testing, packaging, etc.). DSMLs

are often extensions or restrictions of GMLs. For example, the SysML notation,

which defines a DSML for systems engineering beyond the OO-paradigm, extends

the UML notation.

Proponents to the usage of DSMLs for test design emphasise the need for

notations that clearly address the purpose of modelling test concepts, without

the burden of inheriting a large catalogue of concepts that are irrelevant in that

specific context. A justified concern that arises in that scenario is that of the

additional effort (and costs) in designing, maintaining and implementing yet an-

other notation to the plethora of existing ones, both in terms of human resources

and technical capabilities. However, the fact that the scope of DSMLs is narrower

than that of UML may contribute in reducing the efforts required for learning

and using them. Furthermore, with recent progress in MDE, a large set of tools

and platforms exist that have made the effort of designing a new DSML and

implementing an associated toolset a less daring adventure.

The UML standard [74] lists several potential motivations for designing a

DSML by customising UML:

• To give a terminology that is adapted to a particular domain.

• To give a syntax for constructs that do not have a notation.

• To give a different notation for already existing symbols

• To add semantics that is left unspecified in the meta-model.

• To add semantics that do not exist in the meta-model.

• To add constraints that restrict the way you use the meta-model.

40CHAPTER 3. STATE OF THE ART IN MODEL-DRIVEN TEST AUTOMATION

• To add information that can be used when transforming a model to another

model or code.

Each of those motivations apply in the case of a DSML for test design.

3.3.1 Approaches for Designing a DSML

The choice of an appropriate approach for designing a DSML for MDT requires

several factors to be taken in consideration. Firstly, to reduce the costs of de-

signing and implementing a DSML, it would be more efficient to do so, based

on a well-established existing GML, provided it offers the required customisation

mechanisms.

Since UML provides such customisation mechanisms and has established itself

as the standard notation for modelling in computer science,it was decided to take

it a the base for any test design DSML.

One of the most interesting features of UML is the fact that it provides several

possible customisation mechanisms. In their article on customisation approaches

for UML [25], Bruck et Al. provide a detailed list of those possibilities that can

be grouped in two main categories:

• The Meta-Object Facility (MOF) based approach: MOF is a standard [72]

defined by the OMG as a 4-layers meta-modelling architecture to allow

the definition of DSMLs in a way similar to Extended Backus-Naur Form

(EBNF) for defining language grammars. Two variants of MOF are defined

by the OMG, i.e. Essential MOF (eMOF) and Complete MOF (cMOF).

• UML “built-in” extension approaches (e.g UML profiling and Reuse through

specialisation or copy/merge of UML meta-types): The usage of UML pro-

files is one of the most popular approaches in this category, thanks to the

many advantages it provides [25]:

– Easy to create such extensions

– Well described with documentation in Superstructure Specification

– Standard means to define icons

– Well defined display options.

– Application of profiles and how to use them is well defined.

– Can add structure

– Low development cost

– Leverage existing UML editors

– Ease of deployment.

3.4. RELATED WORKS 41

Those advantages might have played an important role in motivating the

definition of the UML Testing Profile, which is currently the best known

notation for MDT. However, UML profiles also come with some disadvan-

tages [25]:

– Inability to specify behaviour

– Impossibility to remove existing constraints.

– Clumsy programmatic usage

– Impossibility to modify existing structures

Alternatively to using a notation based on UML customisation, a test modelling

language may follow a different approach, e.g. by using a generic format to ex-

press test specific concepts. The XML-based notation TML [56] (Test Modelling

Language) is an example application of that approach, whereby instead of using

a meta-model to define the abstract syntax of the notation, an XML schema de-

scriptor is used. While this might appear as an attractive alternative, based on

the assumption that the XML format is widely used, platform-independent and

generic, it has some disadvantages that are likely to emerge in the long term:

• Editing interface: The process of editing XML files can be very tedious and

error-prone, if an appropriate GUI is not provided for that purpose. The

effort for designing, implementing and maintaining that infrastructure will

have to be taken into account while considering going along that path.

• Customisation difficulties: Using an XML-based DSML makes it more dif-

ficult to use a whole set of facilities provided by MDA-infrastructures for

semantically validating the test model (e.g. using OCL-constraints) and for

model transformation into other notations. Although facilities provided by

XML tools might be helpful in facing those issues, the effort required for

integrating them into existing development infrastructures should not be

underestimated.

3.4 Related Works

Most of the existing works on model-based and model-driven testing address

automated test case generation from models of the SUT. Besides the work on the

UTP, the following works were found, addressing the same issue as this thesis:

The approach proposed here is based on the same motivations as the work

of Pickin et al. [119, 118, 120] towards a formal and yet user-friendly mean for

describing tests at a higher level than notations such as TTCN-3. After assessing

the suitability of UML 1.4/1.5 and UML 2 for that purpose, the authors come to

the conclusion that there is a need for a new notation to address the shortcom-

ings of existing languages. Their new notation - called TeLa - is based on UML

42CHAPTER 3. STATE OF THE ART IN MODEL-DRIVEN TEST AUTOMATION

sequence diagrams, but introduces specific semantics to address the issues identi-

fied with UML and MSCs. However the authors focus mainly on the behavioural

aspects of high-level test design and although other aspects such as test data

design and test architecture design are also briefly discussed, they are obviously

not covered with the same level of detail. Furthermore, in this thesis, the focus

was laid more on usability and and reuse based on patterns than on formalism.

Another work in the same area is that of Baerisch [9], who proposes an ap-

proach labelled Model-driven Test Case Construction (MTCC) which aims at

decoupling SUT implementation details from system tests. The author argues

that this would improve reuse of those tests, especially for product lines consisting

of many variants of systems that share a certain amount of features.

Al Saad et al [140] present a visual model-driven testing framework for wire-

less sensor networks applications. Their approach consists in using a visual

domain-specific language (DSL) to create a model of the test cases, that is then

refined through a series of transformation steps into executable test case code

(Java/C++) that can be run on an engine called ScatterUnit, developed specifi-

cally for that purpose. A limitation of their approach resides in the fact that it

addresses a particular kind of applications exclusively, i.e. wireless sensor net-

works applications. Possibilities for applying the method beyond that domain,

though not discussed explicitly in the paper, appear to be feasible.

Grossmann et al [69] propose to use a DSML called TestML to address the

challenges faced with the testing of embedded software in the automotive in-

dustry. The authors describe TestML as an interchange format between the

technologically heterogeneous test infrastructures present in that domain. One

of the main characteristics of those infrastructures is the fact that they oper-

ate at different phases of the development process such as Model-in-the-Loop

(MIL), Software-in-the-Loop (SIL) and Hardware-in-the-Loop (HIL). TestML is

thus defined as an XML-based format for facilitating the reuse of test artifacts

among those different phases and the heterogeneous tool landscape they imply.

Although they do not mention an MDT process explicitly, a transformation of

the abstract concepts expressed with TestML into more concrete representations

for the respective test infrastructure appears to be a logical following step.

The potential benefits of cataloguing best practices and patterns in test design

has been advocated by several authors before. Binder [16] discusses a test pat-

tern template, based on a pattern language of object oriented testing (PLOOT)

proposed by Firesmith [54] and introduces a collection of test patterns from the

object-oriented software design domain. Meszaros [108] presents a collection of

test patterns for unit testing. Howden [81] presents a collection of patterns in

selecting tests for maximum error detection. It appears that existing work on

test patterns tend to focus on interactions at the object level and are hardly

applicable for higher level (i.e. integration, system, and acceptance-level) test-

3.5. CONCLUSIONS AND SUMMARY 43

ing whereby the applied programming paradigm are less relevant. Delano et

al [39] present a collection of patterns focussing more on the organisational as-

pects of test development as a process, rather than on test design itself. On the

other hand, Dustin [47] covers all aspects of test development, with one chapter

dedicated to test design and documentation. in 2005, the European Telecom-

munications Standards Institute (ETSI) started an initiative on patterns in test

development (PTD) in which some of the patterns defined in this work were intro-

duced and discussed. However, other attempts to formalise test design patterns,

so that they could be instrumented to support the test development process in

an automated manner, as proposed in this thesis, could not be found.

3.5 Conclusions and Summary

The MDT approach clearly appears to be more appropriate for allowing the

formalisation and the exploitation of patterns in test engineering, because it

provides the ability to work at the right level of abstraction, while at the same

time keeping the amount of flexibility required to design a process that would

support the usage of those patterns. Therefore, MDT plays a more important

role in this thesis, while MBT is considered to a lesser extent.

However, it should also be kept in mind that MBT and MDT are not nec-

essarily mutually exclusive alternatives. When transforming models into test

sequences, most of the currently existing approaches tend to do so directly into a

lower level test implementation language (e.g TTCN-3) or into source code for the

target environment on which test will be executed (Java, C++, C etc.). As ar-

gued by [9], this coupling of the test cases with lower level implementation details

make those difficult to maintain. Similar results were obtained in first experiences

of applying MBT with test patterns to TTCN-3 test development [158]. MDT

can be the mean for decoupling the test cases from lower-level implementation

details. Instead of generating test cases directly into the target test environment’s

lower-level notation from a model of the SUT, the model-based automated test

generation(ATG) tool would generate a platform independent test design model

that can then be refined for each respective target environment using MDT tech-

niques.

Furthermore, a DSML-based approach was chosen to express the test design

concepts suitable for MDT, rather than an approach based on a GML. This deci-

sion was taken based on the discussion presented in Section 3.2 and Section 3.3.

The need for MDT and MBT has now widely been acknowledged in the test-

ing community, but the methodologies proposed still hardly find their way into

the test development process. Although it bears a high potential for enhancing

reuse in test development and in optimising manual test development, MDT has

not benefited from the same level of interest as model-based automated test case

44CHAPTER 3. STATE OF THE ART IN MODEL-DRIVEN TEST AUTOMATION

generation. This is partly explained by the fact that the existing proposed so-

lutions have mostly tried to force the usage of generic modelling notations into

something they were primarily not designed for. That has made those approaches

inappropriate to take patterns in black-box test engineering into account and to

reflect the specificities of the black-box test engineering process for reactive sys-

tems. As a result, existing solutions are often viewed as clumsy and inadequate

by testers, which ultimately lead to their inefficiency. By combining MDT tech-

niques with test design patterns using a dedicated high-level DSML for black-box

test design, the pattern-oriented model-driven testing approach presented in the

next chapter provides a solution to address those issues.

Chapter 4

Pattern Oriented Model Driven

Testing

4.1 Introduction

Test patterns represent a form of reuse in test development, whereby the essences

of solutions and experiences gathered in testing are extracted and documented to

enable their application in similar contexts that might arise in the future. The

idea is to capture test engineering knowledge from past projects in a canonical

form, so that future projects would benefit from it.

Essentially, the following benefits can be expected from the exploitation of

patterns in any software development process:

• Patterns facilitate and improve communication by providing a common

vocabulary for computer scientists across domain barriers [62].

• Patterns help managing software complexity [26].

• Patterns support the construction of software with defined properties [26].

• Patterns provide a documentation and learning aid [62].

• Patterns facilitate refactoring of source code [62].

• Patterns capture (design) knowledge and experience [26, 1].

Although most of those benefits are hardly quantifiable, their potential quanti-

tative and qualitative impact on the software development process is undeniable.

Test systems are a special type of software systems and with their growing

complexity, the need for cataloguing good practices with regard to design, ar-

chitecture, implementation and execution is becoming more and more urgent.

45

46 CHAPTER 4. PATTERN ORIENTED MODEL DRIVEN TESTING

Just as for any other software product, well-proven experiences gathered while

developing test systems need to be documented to ease their reuse.

A test pattern can be defined as a special kind of software pattern that ap-

plies specifically to the testing domain. Similarly to general software system

engineering, the benefits expected from patterns in testing are both quantitative

and qualitative.

The ISO/IEC 9126 standard [85] defines a model for internal and external

quality of software, including quality characteristics and associated metrics. Ap-

plying that model to test development, Zeiss et al [164] identified the following

characteristics of quality for test specifications1:

• Test effectiveness: Test effectiveness describes the capability of tests to

fulfil their given test objective(s), including characteristics such as coverage,

correctness and fault-revealing capability . However for the type of testing

addressed in this thesis, emphasis is laid more on correctness than on other

characteristics.

• Reliability : Reliability describes the capability of a system to maintain

a specific level of performance under different conditions. When applied

to tests, reliability includes test repeatability and security additionally to

maturity , fault-tolerance, and recoverability mentioned in ISO/IEC 9126.

Of all those sub-characteristics, test repeatability is the one that plays a

more important role for black-box conformance testing as they are discussed

in this thesis.

• Usability : In the context of testing, usability denotes the ease to actually

manage, instantiate or execute a test suite. Although the management

aspect is not explicitely mentioned by Zeiss et al, it is a key characteristic

in this thesis, because focus is laid less on test execution and more on the

process of achieving executable tests. Usability will therefore denote the

ease of manageing test artifacts in such a way that the process would be

facilitated.

• Efficiency :Efficiency is defined as the capability of tests to provide accept-

able performance in terms of speed and resource usage, when executed [164].

Obviously, this characteristic is more applicable to executable test suites

than for abstract test suites(ATS). In this thesis, efficiency will be un-

derstood in a similar manner to usability, i.e. more relatively to the test

development process than to the executable test suite it produces as out-

come.

• Maintainability :Maintainability denotes the capability of a test suite to be

modified for error correction, improvement, or adaptation to changes in

1The term test specification is used here to denote an executable test suite

4.2. CLASSIFICATION OF TEST DESIGN PATTERNS 47

related artifacts (e.g. requirements, system specification). It includes char-

acteristics such as analyzability , changeability , and stability . Obviously,

maintainability will play an important role in assessing the quality of test

suites in this thesis, because it is one of the characteristics claimed to ben-

efit most from MDE in generic software system development. Therefore

it will be interesting to assess whether similar benefits are possible with

MDT.

• Portability : Portability include sub-characteristics such as installability

(ease of installation in a specified environment), co-existence (with other

test products in a common environment), replaceability (capability to be re-

placed by another item for the same purpose) and adaptability (capability

to be adapted to different environments).

• Reusability : Although it is addressed separately by Zeiss et al as a charac-

teristic of its own, reusability can actually be viewed as a sub-characteristic

of maintainability discussed above. Therefore, a similar impact of MDT on

this characteristic can be expected and will be measured in this thesis.

Although it can be assumed that test patterns will have a positive impact on

each of the characteristics mentioned above, that impact is expected to be more

important for usability, efficiency and maintainability (i.e. including reusability).

Additionally to those qualitative improvements, a quantitative improvement

through a reduction of time-to-market and costs can also be counted among the

benefits expected from pattern-oriented test engineering.2

In the next sections, different views on the concept of test patterns will be

described and methodological aspects such as notation, test pattern mining and

test pattern application will be discussed.

4.2 Classification of Test Design Patterns

4.2.1 Introduction

The issue of patterns in general and especially that of test patterns has very

often been a source of some misunderstandings among experts. This stems from

the generality of the concept, which leads to the fact that, depending on the

abstraction level under consideration, different definitions and classifications will

be obtained as a result. That abstraction level ranges from higher level generic

discussions on the do’s and dont’s in organising and managing testing projects,

to a more technical approach to the issue, aiming at optimising the engineering

aspects of the testing process. For example, Delano and Rising [40] discuss the

2A measure of those improvements is provided in Chapter 6.

48 CHAPTER 4. PATTERN ORIENTED MODEL DRIVEN TESTING

issue of patterns in test development at a high level of abstraction, which in-

volves aspects such as the management of test projects and test organisations,

the strategies for achieving higher efficiency in testing, etc.

On the other hand, whenever test patterns are addressed from an engineering

perspective, their nature and results are also influenced by the three character-

istics used to classify tests and illustrated in figure 1.2. Namely, test scope, test

goal and testing phase. For example, the techniques for specifying, designing, im-

plementing, executing and evaluating the tests will differ, depending on whether

unit testing, integration testing or system testing is being performed. Examples

of patterns for unit testing have been provided by Meszaros [108] whereas some

for component testing of object-oriented software as described by McGregor et

al [106] and Binder [16].

Test patterns are developed in this thesis according to the scope defined in

Section 1.2 and illustrated on figure 1.3. As the engineering aspects in testing and

test development are at the centre of this thesis, emphasis is laid on these aspects

of the testing process rather than on the high-level test project management

related ones.

Figure 4.1: Overview of Model-Driven Test Engineering Process

Figure 4.1 illustrates the model-driven test engineering process and the various

phases it comprises. As depicted in that figure, the process starts with an analysis

of the test requirements for the system under test. Those requirements are then

the base for designing a test model which can be transformed into executable

test scripts to assess that the SUT’s behaviour meets the specified requirements.

The test modelling part of that process (i.e. the dashed grey-coloured box in

the figure) is the main topic of this work. Therefore, the test patterns that are

developed cover each of the phases of that part of the process. Accordingly, the

4.2. CLASSIFICATION OF TEST DESIGN PATTERNS 49

approach for classifying test patterns is aligned to those different phases.

In the next sections, the different phases of that process are discussed, along

with an analysis of which type of test patterns could be identified and possibly

exploited, to facilitate the activities and to improve efficiency in that phase of

the process.

4.2.2 Generic Test Design Patterns

Generic test design patterns are those that can be found and applied to all ac-

tivities of test system design. They address concepts that spawn over the whole

test modelling process and thus cannot be confined to a single activity.

4.2.3 Patterns in the Test Analysis and Planing Phase

As depicted in Figure 4.1, the test analysis and planing phase comprises two

activities:

• An analysis of the SUT’s requirements from a testing perspective to derive

test objectives

• A design of test procedures to assess the defined test objectives on imple-

mentations.

Test Objectives Design Patterns

Test objectives definition is the first step in building a test system. It consists

of extracting test objectives from the SUT’s specification, depending on what

the test goals are going to be. Test objectives can be viewed as the equivalent to

system requirements in system development and are sometimes also referred to as

test purposes or test directives in the literature. Test objectives design patterns

are applicable when modelling which functionalities of the SUT the tests will

have to assess.

When performed manually and without a clear systematic approach, the pro-

cess of deriving test cases from test objectives can be quite costly and error-

prone. Hence, the need for formalising how test objectives are described has

arisen. In the Pattern for Test Development (PTD) group initiated by the Euro-

pean Telecommunications Standards Institute (ETSI) some patterns have been

proposed for that purpose [51]. The initial intent of that work was to enable

automatic derivation of test cases from such formalised and machine processable

test objectives. However, one had to acknowledge that there was some level of

contradiction that made that goal difficult to achieve: an automated transforma-

tion of test objectives (i.e. a description of WHAT needs to be tested) can by no

means provide enough information for a test case, which is an implementation of

HOW the test needs to be conducted. Therefore, a couple of additional steps are

50 CHAPTER 4. PATTERN ORIENTED MODEL DRIVEN TESTING

required to describe in the same systematic and potentially formalised manner,

how each test objective will be checked.

Test Procedure Design Patterns

After the test objectives have been identified, comes the step of designing the

test procedures for the SUT, i.e. to specify, how the test objectives identified in

the previous step will be checked. Those descriptions of how test objectives will

be checked are called test procedures3.

Test procedures design patterns are those that are applicable when designing

how each of the test objectives is going to be checked. While they need to follow

a clear structure and provide as much information as possible, test procedures

do not need to describe the technical means required for performing the tests.

Therefore, as they are supposed to be understood by various stakeholders in

the software system development process (e.g. system designers, test designers,

test developers, quality management and product support personnel, etc.), they

should (as much as possible) be expressed in natural language, however within

clearly defined template structures.

4.2.4 Patterns in the Test System Design Phase

The lower part of figure 4.1 depicts the test system design phase in the test de-

velopment process, whereby the composing elements the test system and their

relations with the SUT are modelled. Those composing elements are used to pro-

vide the three main aspects of any test model, i.e. topology, data and behaviour.

In the process of designing each of those test system model elements, different

types of test patterns can be identified and re-used. The next sections discuss

those test patterns.

Test Architecture Design Patterns

The test architecture describes the topology of the test system, i.e. its compo-

sition as a set of (parallel) test components and the points of communication

between those and elements belonging to the SUT. Depending on the goal of

test(e.g. conformance, performance, functional, robustness, etc.), different test

architectures might be more or less suitable. Test architecture design patterns

define good practices and established recommendations in designing or selecting

appropriate test architectures.

Architectural patterns address solutions as to how test architectures can be

designed to solve or avoid specific recurring problems in producing high quality

3In previous works the term test strategy was used in this context, but it was rather changed
to align to the IEEE-829 standard [83]

4.3. A METHODOLOGY OF PATTERN ORIENTED MODEL-DRIVEN TEST

ENGINEERING 51

test solutions efficiently. This also includes patterns for the coordination and

synchronisation of test components in a test system.

Test Data Design Patterns

Data patterns are test patterns describing reusable concepts and approaches for

designing test data, i.e. data to be exchanged between entities in test architec-

tures. Test data does not only mean concrete values or message objects, but

also abstract values based on constraints defining properties, potentially used for

evaluating data received from the SUT to assign a verdict to the test case.

Test Behaviour Design Patterns

Test Behaviour design patterns document approaches and principles for designing

the behaviour of test systems, i.e. the interactions between entities within a test

architecture.

Behaviour patterns might apply for a single entity of a test architecture (e.g.

a test component) or for the interaction of test components with each other or

with elements of a given SUT.

4.3 A Methodology of Pattern Oriented Model-Driven

Test Engineering

A methodology for test patterns should not only address the various kinds of

test patterns for the different approaches of test reuse, but also define how a test

pattern is to be identified, specified, selected and applied. The following sections

discuss those aspects of test pattern engineering.

4.3.1 Test Design Pattern Mining

Pattern mining is the process of abstracting from existing software design to iden-

tify patterns suitable for potential reuse in future contexts. Test design pattern

mining is the application of pattern mining techniques to the testing domain.

Several techniques are described in the existing literature for design pattern min-

ing in generic software engineering [46, 45]. Those techniques aim at analyzing

existing software artifacts (e.g. source code or high-level design models) automat-

ically or semi-automatically (i.e. by involving human user interaction) to identify

known design patterns or commonalities that may be elligible as candidates for

new patterns. Those pattern mining techniques can be classified in three main

categories, based on the aspects of software design they analyse to discover pat-

terns. While some techniques analyse structural aspects of the artifacts, others

analyse behavioural aspects and finally a last category of techniques cover both

structural and behavioural aspects. A common point among all techniques is

52 CHAPTER 4. PATTERN ORIENTED MODEL DRIVEN TESTING

that they use an intermediary representation of the base artifacts to perform

their pattern discovery algorithms, rather than the artifact in its original form

itself.

The problem of test pattern mining does not differ much from that of pattern

mining in generic software engineering, beyond the fact that here, the artifacts to

be analysed are source code of abstract or executable test scripts , models of test

systems or combinations thereof. Therefore, the pattern mining techniques for

generic software engineering can also be applied for test pattern mining. How-

ever those techniques will have to be customized in such a way that instead of

trying to identify generic design patterns, they would rather search for specific

patterns that are relevant in their usage for testing. An example application of

those techniques for test pattern mining in TTCN-3 test suites is reported by

Neukirchen et al [116] who use an abstract syntax tree (AST) as intermediary

representation of TTCN-3 source code to identify so-called code smells. Code

smells are defined as patterns of inappropriate language usage that is error-prone

or may lead to quality problems for the overall test suite. Besides facilitating

reuse at the conceptual level and uncovering potential errors in existing arti-

facts, another motivation for pattern mining is to facilitate the understanding of

existing artifacts so that they could be reegineered to address changed require-

ments. However, while the task of identifying the patterns and displaying their

occurence in the artifacts can be done (semi-)automatically using the techniques

described above, the task of making sense of the results generated by those tech-

niques still needs to be performed by human beings based on their expertise.

Visualisation can contribute in facilitating that human analysis by putting the

collected pieces of information gathered through pattern mining in relationship

to each other [45]. These findings can also be applied for test pattern mining.

However, just as reverse engineering, design patterns are a rather recent topic in

the testing domain. Obviously, as demonstrated in a case study in Chapter 6, the

type of pattern-oriented test engineering described in this thesis can contribute

in addressing those issues. Overall, although the process of going through ex-

isting test artifacts and trying to identify patterns for later reuse might appear

costly and unrewarding at the first sight, in long term, it could effectively help

in shortening the test development life cycle and hence reduce costs.

4.3.2 Test Design Pattern Template

Binder [16] defines a pattern template as a list of subjects (sections) that comprise

a pattern. To unify the pattern definition process and to avoid misunderstandings

between stakeholders involved in test development, such a template is required

to serve as a guideline. Taking Binder’s test pattern template as basis, a more

refined test pattern template is proposed that is better adapted to the testing

domain covered by this work. The content of the test pattern template depends

4.3. A METHODOLOGY OF PATTERN ORIENTED MODEL-DRIVEN TEST

ENGINEERING 53

on which of the benefits listed in section 4.1 are the main driving forces for pattern

mining. While Binder’s test pattern template is driven by the test effectiveness

qualitative characteristic mentioned in Section 4.1, the pattern mining activities

in this work are mainly motivated by other benefits such as usability, (process)

efficiency and maintainability. For example, because it is more relevant for white-

box testing and less for black-box testing, which is the main concern of this thesis,

the test effectiveness criterium plays a less central role in this thesis than in

Binder’s work, although it is considered as well. Therefore the original template

has been modified to reflect the fact that the focus is more on enhancing the

test engineering process rather than on increasing the effectiveness of the tests.

Another important difference between the test pattern template proposed in this

thesis and the ones proposed in other publications is that, sections which play a

less important role in the context of this thesis have been removed. For example,

while the subjects fault model, entry criteria and exit criteria sections proposed

by Binder [16] play a role for code-oriented, white-box testing, they are far less

relevant for function-oriented, black-box testing, which are the main concern of

this work. Therefore, the applicable test scope section was added instead, to

capture the preconditions for applying test model patterns. This thesis’ test

modelling pattern template consists of the following subjects:

• Pattern name: A meaningful name for the test pattern.

• Context : To which specific context does it apply? This includes the kind of

test pattern (organisational vs. design, generic, architectural, behavioural

or test data etc.) as well as the test scope in which the pattern may be

applied.

• Problem: What is the problem, this pattern addresses and which are the

forces that come into play for that problem?

• Solution: A full description of the test pattern including examples of ap-

plications. Where applicable, UTML and TTCN-3 [58] will be used as

notations for the examples.

• Known uses: Known applications of the test pattern in existing test so-

lutions or existing concepts enabling the application of the test pattern in

existing test specification or test modelling languages. Although this def-

inition of the known uses section is slightly different from the one used in

the patterns literature, it can still be considered a valid one, because test

suites are not always publicly available to be referenced as known uses of a

given pattern. However it can be assumed that the fact that a concept is

provided in a test design notation indicates that there was a need for such

a concept and subsequently that there are eventually existing usages of the

concept, even if those have not been published.

54 CHAPTER 4. PATTERN ORIENTED MODEL DRIVEN TESTING

• Discussion: A short discussion on the pitfalls of applying the pattern and

the potential impact it has on test design in general and on other patterns

applicable to that same context in particular.

• Related patterns (optional): Test design pattern related to this one or sys-

tem design patterns in which faults addressed by this test pattern might

occur. This section is optional and will be omitted, if no related pattern

can be named.

• References (optional): Bibliographic references to the pattern. This section

is also optional and will be omitted, if no reference can be provided.

4.3.3 Specification of Test Design Patterns

One of the key challenges to address with regard to pattern-oriented test engi-

neering is that of selecting a suitable approach for specifying test patterns in

such a way that their exploitation would be facilitated to automatically gener-

ate new test solutions. In the case of generic product software design patterns,

J. Bosch [19] has identified the following three approaches for specifying design

patterns:

• Design environment support : The design environment support approach

consists in providing via the software design environment the capability

to model new software designs along defined patterns and to annotate the

corresponding source code accordingly.

• Programming Language Extensions: Design patterns come originally from

Object-oriented (OO) software design. Therefore, the usage of OO pro-

gramming languages or extensions thereof appears to be a natural choice

for describing those patterns in a systematic manner. This approach is

advocated by J. Bosch [19] and Hedin [78].

• Generative approach: The generative approach consists in using ontologies

and meta-Modelling to describe design Patterns. For example, Fontoura et

al [55] propose an extension to the UML notation to represent architecture

design patterns. Kim et al [98] propose a UML-based meta-modelling lan-

guage to specify design patterns. A similar approach is also advocated by

Rauf et al [131], S.-K. Kim et al [94], Mak et al [104] and Le Guennec et

al [75]

Although test design patterns have already been discussed in the literature in

many instances, literature references on attempts to specify test design patterns

are much harder to be found. Just as for software system development, one of

the following three alternatives discussed above is applicable.

4.3. A METHODOLOGY OF PATTERN ORIENTED MODEL-DRIVEN TEST

ENGINEERING 55

Specification of Test Design Patterns via Design Environment Support

One possibility for enabling the specification of test patterns consists in providing

appropriate technical support through the test design environment. This can be

achieved through so-called wizards, i.e. applications or applets that guide the

test engineer stepwise through the process of specifying test patterns. While such

wizards are already very common for generic software design and development

tools, they are yet to gain the same level of popularity in test design environments.

An advantage of that approach lies in the fact that the test designer is not

required to learn any new modelling notation, because he/she is only presented

a template-like interface, through whichthe required information can be filled-

out for specifying a new test pattern or instantiation thereof, while the test

design environment takes care of verifying that those information are complete

and translating them into any notation in the background, if required.

Specification of Test Patterns with Test Script Notations and Extensions

Test scripting notations are the equivalent to programming languages in test

engineering. Therefore, in the same way that programming languages can be

extended to support the specification of design patterns, it has been suggested

that test scripting notations could also be extended to specify test design patterns.

The TTCN-3 notation has been chosen as a candidate for that purpose, illustrated

through idioms added to that language to specify test patterns.

TTCN-3 provides some concepts for test patterns such as the import mech-

anism, value parameterization and modifiable templates. Object-based concepts

providing further means for the specification and application of test patterns do

not exist, but are currently discussed with regard to their inclusion into TTCN-3.

It is expected that with the new features of the language, support for test pat-

tern specification should be improved. In the meantime specific annotations to

TTCN-3 are used, in order differentiate the generic parts and specific parts of a

test pattern. The generic parts are annotated with <> and are to be replaced

when applying the test pattern. The specific parts are not annotated. They

constitute the essence of the test pattern and should remain untouched when

applying that pattern. These annotations are used to illustrate some of the test

patterns in this work.

The specification of test patterns in TTCN-3 (and extensions thereof) pro-

vides several benefits. TTCN-3 test patterns

• are expressed formally.

• provide means for patterns in all phases of test system development and for

the different approaches of test reuse.

• are defined already in the language of the target test suite.

56 CHAPTER 4. PATTERN ORIENTED MODEL DRIVEN TESTING

However, using TTCN-3 or extensions thereof to specify test patterns also

comes with some drawbacks that need to be seriously considered:

• Inability to express test patterns for certain aspects of test engineering (e.g.

test objectives, test procedures)

• Difficulty to express concepts at higher level of abstraction.

• Tool support for new extensions. Validation of test patterns might be dif-

ficult to achieve, because patterns are generic, whereas syntax/semantics

checkers require complete code.

• No visualisation, which leads to lower understandability of the specified test

patterns.

• Difficulty to translate the test patterns into other test scripting notations

and vice-versa.

Specification of Test Design Patterns with a Generative Approach by using

Meta-Modelling

Alternatively to scripting extensions and design environment support, test pat-

terns can also be specified using meta-modelling facilities, based on modelling

languages such as UML and its extensions e.g. UTP, SysML, etc. The approach

consists in defining an ontology of test patterns, i.e. a formal description of con-

cepts embodying those patterns and of the relationships between them. Using a

meta-model to specify that ontology defines a domain-specific modelling language

(DSML) especially tailored for designing new test solutions as models instanti-

ating the test patterns supported by the meta-model. This approach has several

benefits:

• High level of abstraction: The test patterns concepts can be expressed at

a high level of abstraction. This makes the approach independent of any

lower-level test scripting notation. By that, its expressiveness and potential

integration in existing test infrastructures remain unrestricted.

• Integration to existing MDE infrastructures: This enables access to ele-

ments of the SUT’s model, if those have been specified in the same environ-

ment or using the same notation (e.g. UML). Additionally, the facilities

provided by those environments can be used to generate tools for the DSML

and enhance their functionalities towards improved usability. Such facilities

include

– better visualisation possibilities.

– improved transformation capabilities.

4.4. THE PATTERN ORIENTED MODEL DRIVEN TEST ENGINEERING

PROCESS 57

– built-in model checking and validation facilities.

However, despite the numerous benefits it bears, this approach also comes with

some drawbacks that need to considered. Those include:

• Additional costs and risks of designing, implementing and disseminating

a new notation: Although current existing MDE infrastructures (e.g. the

Eclipse [147] IDE’s Modelling Framework EMF [146]) have contributed to

significantly reduce the risk and efforts associated with the introduction of

a DSML, organisations should be well aware of those and analyse carefully,

before opting for or against that approach. However it should be pointed

out that the effort of introducing such a meta-model based DSML might be

lower than that of introducing a new programming language, because the

concepts defined by the meta-model play a more critical role than the syntax

of the representation format used for the notation. This is a totally different

situation from notations specified using (E)BNF, for which, additionally to

the semantical concepts, the syntax of the language also needs to be learned.

• Difficulty in translating abstract concepts into concrete executable test

scripts: patterns and high-level models are generic per se. Therefore so-

lutions based on them require a certain amount of customisation to be

completed, in such a way that automation towards generation of executable

test scripts or valid code snippets thereof would be possible.

• Difficulty in ensuring bi-directional traceability between abstract test mod-

els and generated test scripting source resulting from model-transformation:

If an appropriate solution for this issueis not found , then there is a risk

of the code added manually to complete the generated source code, being

overwritten whenever new source code is generated from the test model.

4.4 The Pattern Oriented Model Driven Test Engineering

Process

Pattern-oriented model driven test engineering is a process whereby test patterns

are used to design a test model that is then transformed and refined into ex-

ecutable test cases, following a model-driven engineering approach. Figure 4.2

depicts a representation of that process in the form of a Business Process Mod-

elling Notation (BPMN) diagram. The usage of test patterns may be explicit

or implicit in pattern-oriented MDTE, depending on whether the person per-

forming the test modelling activity is made aware of the patterns being applied

(explicit) or not (implicit). Explicit usage of patterns is achieved through model

design templates, based on which new model elements or skeletons thereof can

be created automatically, before they are completed manually. For convenience,

58 CHAPTER 4. PATTERN ORIENTED MODEL DRIVEN TESTING

F
ig

u
re

4.
2:

B
P

M
N

D
ia

gr
am

of
th

e
P

at
te

rn
-O

ri
en

te
d

M
D

T
E

P
ro

ce
ss

4.4. THE PATTERN ORIENTED MODEL DRIVEN TEST ENGINEERING

PROCESS 59

the process of providing the missing elements to fill out the design template

may be accompanied with tool support in the form of so-called wizards. On the

other hand, implicit usage of patterns is achieved through the enforcement of

constraints and policies that guide the test modelling process. In which case, the

test designer may not even be aware of the fact that he or she would be applying

a given test pattern in the process. The top-most pools of the BPMN diagram

in Figure 4.2 display the other processes that are related to the test engineering

process, namely requirements engineering and system engineering, while the pool

at the bottom displays the test engineering process. That process is subdivided

in three lanes, each of which contains a sub-process dedicated to a phase of test

engineering:

4.4.1 Test Analysis

The test analysis sub-process is triggered by requirements engineering or by high-

level system design. It takes user requirements, use cases or a complete system

specification as input and combines those with test objective patterns to produce

a test objectives model. After the test objectives model is designed, the process

continues either with the design of a test procedures model or moves to the next

sub-process, i.e. test design.

4.4.2 Test Design

The test design sub-process starts with test data or test architecture design, both

of which may run in parallel. Test data design takes the SUT’s data model as

input and combines it with test data patterns to produce a test data model. In a

similar manner, the test architecture design process takes the SUT’s architecture

model and the test data model as inputs, combining them with test architectural

patterns to produce the test architecture model. Then, the process continues

with test behaviour design which, based on the others test models (objectives,

procedures, data and architecture), uses test behaviour patterns to produce a

test behaviour model.

4.4.3 Test Implementation

The test implementation sub-process takes the test design model resulting from

the previous phases as input and transforms it into executable test scripts in

a notation suitable for the target test environment. Depending on the level of

details provided in the test design model, the generated test scripts will require

more or less manual refinement to be complete. After those refinements, they

can then be executed against the implemented SUT resulting from the system

engineering process to produce the test reports.

60 CHAPTER 4. PATTERN ORIENTED MODEL DRIVEN TESTING

4.5 A Collection of Test Design Patterns

A collection of test design patterns identified in various testing projects dur-

ing this work is provided in Appendix A. The patterns are organised along the

classification described in Section 4.2.

Table 4.1 presents an overview of those test design patterns and the page in

which their description is located.

Category Test Design Pattern Page

Generic
Separation of Test Design Concerns 245
Grouping of Test Design Concerns 247

Test Objectives

Prioritization of Test Objectives 248
Traceability of Requirements to Test Artifacts 250
Selection Criteria for Test Objectives 251
Traceability of Test Objectives to Fault Man-
agement

252

Test Architecture

Extensibility/Restriction of Test Architecture 253
One-on-One Test Architecture 250
Flexibility of the Test Architecture Model 256
Proxy Test Component 257
Monitoring Test Component 259
Central Test Coordinator 260

Test Data

Purpose-Driven Test Data Design 262
Basic Static Test Data Pool 263
Reusable Test Data Definitions 264
Dynamic Test Data Pool 265

Test Behaviour

Assertion-Driven Test Behaviour Design 266
Context-Aware Test Behaviour Design 267
Test Component Factory 269
Central Coordination of Test Components 270
Distributed Coordination of Test Components 270
Time Constraints on Test Behaviour 271

Table 4.1: Overview of Test Design Patterns Described in this Work

4.6 Summary

This chapter has described the concept of pattern oriented MDT, which combines

a model-driven engineering approach with test design patterns for more efficiency

in test automation. After defining the key concepts of the approach at the be-

ginning of this chapter, a classification of test design patternshas been provided.

Then, finally the methodology for applying the approach has been presented,

together with the process it implies.

4.6. SUMMARY 61

Obviously the pattern oriented MDT approach can help addressing some of

the key issues currently faced with in test automation; Especially if the con-

cepts contained in those patterns are expressed in such a way, that they can be

processed automatically to optimize the test development process through auto-

mated code generation, model validation, etc. However, two additional elements

are required for that to be possible: A suitable test design approach supporting

the expression of test pattern instantiations and a mean for cataloguing identified

test patterns.

In section 4.3.3, the existing possibilities for specifying test patterns have

been described, including a discussion on the pros and cons of each approach.

Eventually, a DSML based approach has been chosen to facilitate the usage of

design patterns in test automation. In the next section, the concepts of that

DSML - called UTML - are described, along with the relationships between them.

Chapter 5

UTML: A Notation for Pattern

Oriented Model Driven Test

Design

5.1 The Need to Formalise Test Patterns

One of the most important benefits expected when applying patterns in any do-

main is a facilitated instantiation of new solutions to recurrent problems through

reuse of concepts. Such reuse at the conceptual level does not only have a positive

impact on the key software quality factors of the resulting products, but also on

the overall development process within the organisation. This leasds logically to

higher productivity, shortened development cycles and last but not least, reduced

costs.

As an activity in which expert knowledge plays an important role, test au-

tomation could benefit a lot from cataloguing that knowledge as patterns and pro-

viding tool support to facilitate reuse. This, however demands that the concepts

described by the patterns are expressed in a formal and unambiguous manner to

avoid confusion and facilitate automated processing. Furthermore, appropriate

tool support is required to guide test designers in the process of applying pat-

terns efficiently, because manual application of patterns is known to be tedious

and error-prone [124].

Several efforts to formalise patterns have already been undertaken in the

past, with the same motivations as mentioned above. Baroni et al [12] present

an overview of approaches in formalising design patterns. A wide range of pro-

posals are described, ranging from extensions to the classical object model [19]

to new formalisms, extending existing object-oriented programming languages

63

64
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

(OOPLs) [78] or expressed as new text-based notations or as UML-based DSMLs [2] [105].

Test design aims at addressing the specific purpose of modelling test artifacts.

Therefore it has a narrower scope than generic software design. Hence, the choice

of an approach for formalising test patterns appears to be less difficult than in

the case of generic software patterns. The main criteria in selecting an approach

for describing test design patterns in this thesis were as follows:

1. Non-Dependency of any particular testing infrastructure.

2. Reuse or extension of existing notations and well-established concepts.

3. Support of graphical representation.

4. Integrability in the overall software model-driven engineering process.

Given the above criteria, a DSML-based approach was chosen, as it allows to de-

fine concepts at a level of abstraction that is high enough to be kept independent

of any specific testing infrastructure, while at the same time providing all the

mechanisms for defining the concepts precisely and unambiguously.

As discussed in Section 3.3.1, the approach for designing that DSML also

needed to be selected. Considering criteria 2 from the list above, taking the

UML notation, which is the lingua franca of software design as a basis appeared

to be inevitable. Therefore it was essentially a matter of which of the standard-

conformant extension mechanisms provided by that notation would be suitable.

The choice was between a UML profile-based approach (light-weight UML exten-

sion) e.g. reusing the UTP, a (heavy-weight) extension to the UML Metamodel

itself, and a new stand-alone metamodel with a specifically dedicated to the pur-

pose of pattern-oriented test design.

Weisemöller et al. [160] provide a comparison of UML standard compliant

ways of defining DSMLs and came up with the result displayed in Table 5.1

which clearly indicates that an approach based on a domain-specific metamodel

for test design is an interesting option to consider. Despite the additional effort

it implied with regard to tool support and the definition of the metamodel itself,

the metamodel approach was chosen, based on the analysis made in this work,

which confirmed the results displayed in Table 5.1. The metamodel was designed

in such a way that it embodies concepts of test design patterns while reusing as

much as possible the test design concepts introduced by the UTP. The defined

DSML was called Unified Test Modelling Language (UTML).

5.2 Overview of UTML

As mentioned previously, the UTML notation reuses and extends concepts of the
UTP into a stand-alone DSML specifically dedicated to model-driven test design.
Table 5.2 presents an overview of UTP concepts and their equivalent in UTML

5.2. OVERVIEW OF UTML 65

UML pro-
file

UML
MM-
extension

New
Meta-
model

Expressive power - + +

Flexibility - o +

Clarity of seman-
tics

- + +

Simplicity of con-
straints

- o +

Model notation - - +

Tool support + - -

Table 5.1: Overview of approaches to specify DSMLs [160]

where applicable. Additionally, some comments on the motivations for adopting
or leaving out the element are also provided.

Table 5.2: A Comparison of UTML and UTP

UTP Concept UTML Equivalent Comments

Test Architecture Concepts

Arbiter - Test behaviour in UTML is designed

following the Assertion-Driven Test

Design design pattern defined in Sec-

tion A.5.1. Therefore, the test verdict

is either implicitly or explicitly spec-

ified through the test behaviour and

the StopAction(see Table 5.29) respec-

tively. This makes the usage of an extra

arbiter obsolete.

Scheduler - Test execution and the mechanisms for

instantiating test components and con-

trolling their lifecycle is out of scope

for the UTML language, as those as-

pects can hardly be expressed at such

a high level of abstraction. If a sce-

nario for controlling the way test cases

will be executed is required, this can

be designed using UTML test activity

diagrams.

SUT ComponentKind

property used for

component instances

see Table 5.24

TestContext TestArchitecture see Table 5.31.

TestComponent ComponentInstance

with kind property

set to TEST -

COMPONENT.

see Table 5.29.

Test Behaviour Concepts

66
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Verdict Verdict see Table 5.68.

Default DefaultBehaviour-

Def

See Table 5.82.

FinishAction StopAction See Table 5.88.

TestLog - Logging is considered to be a func-

tionality of the test execution environ-

ment that is inherently platform spe-

cific. Therefore, it is not viewed as es-

sential for test design at this level of

abstraction.

TestLogApplication - See comments for TestLog element.

LogAction - See comments for TestLog element.

DefaultApplication ActivateDefault-

Action

See Table 5.115

determAlt AltBehaviourAction See Table 5.113.

TestCase Testcase See Table 5.74.

TestObjective TestObjective The UTML extends the syntax and

the semantics of the TestObjective ele-

ment, as defined by the UTP.

ValidationAction CheckAction and ex-

tensions thereof (e.g.

ValueCheckAction,

ExternalCheck-

Action).

See Table 5.106 and Table 5.105

Test Data Concepts

Wildcards Constraints on test

data instances

See Table 5.54

Data partition Abstract test data in-

stances

See Table 5.54

Data pool - Rather than defining data pools, the

UTML defines abstract data instances

that may be mapped to data genera-

tors or data pools specific to a given

test platform.

Data selector - The data selector concept is associ-

ated with the UTP’s data pool concept.

Given that the approach for designing

test data with UTML follows a different

strategy, this concept is also not sup-

ported.

Coding rules - In UTML coding rules are defined via

the coding rules property of a Test-

DataType element (see Section 5.7.13).

LiteralAny - See comments on Wilcards elements

LiteralAnyOrNull - See comments on Wilcards elements

Time Concepts

TimeZone - Timezone are considered to be a

platform-specific feature in UTML.

5.2. OVERVIEW OF UTML 67

GetTimeZoneAction - Timezone and associated actions are

considered to be a platform-specific fea-

ture in UTML.

SetTimeZoneAction - Timezone and associated actions are

considered to be a platform-specific fea-

ture in UTML

Duration - UTML defines no specific concept for

designing duration. Timing constraints

can be defined on test actions and

events to specify that those should be

taken in account.

Time - In UTP Time is a predefined primitive

type used to specify concrete time val-

ues. Although UTML does not define

any such concept, an equivalent type

can be created through the BasicTest-

DataType element as part of a library of

primitive type definitions, if required.

TimeOut TimerExpiration-

Event

see Table 5.81

TimeOutMessage - As previously mentioned, in UTML,

timers are simple declarative elements

without any semantics. Therefore,

they may not send messages to other

entities as part of test behaviour.

TimeOutAction - In UTP the TimeOutAction element

models an action to occur, after a given

timer has expired. Given that, any test

action is a potential TimeOutAction,

this class cannot be instantiated mean-

ingfully. Therefore, the UTML pro-

poses the WaitAction(see Table 5.87)

through which the timer’s expiration

could be awaited, before the following

actions in the test sequence are exe-

cuted.

Timer Timer Timers in UTML are purely declarative

and do not bear any semantics in them-

selves, but only in combination with

behaviour elements.

StartTimerAction StartTimer-

Action(see Ta-

ble 5.85)

Timers are started implicitly in UTML,

depending on the context in which they

are referenced. However in certain sit-

uations the StartTimerAction may be

used to start a timer explicitly.

StopTimerAction StopTimer-

Action(see Ta-

ble 5.86)

The semantics of the StopTimerAction

element is the same in UTML as de-

fined in UTP.

68
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

ReadTimerAction - The action of reading a timer is always

implicitly associated to a specific test

behaviour in UTML and is generally

not required to be invoked explicitly.

At least, at the time being, the need for

explicitly reading a timer’s value has

not yet been identified.

TimerRunning-

Action

- The same comments made for the

ReadTimerAction element also apply

for the TimerRunningAction element.

Beyond concepts adopted from the UTP, design of test automation in UTML

is based on a series of principles of abstraction which guide the whole process to

ensure that the resulting model remains concise while at the same time, being as

complete as possible.

Prenninger et al. [125] identify four categories of such principles of abstraction,

namely functional, data, communication, and temporal. The same categories have

been used for UTML. However, the abstraction approach used in each of those

categories shows some differences with those described in that work and will be

described further in the next section.

Taking into account those principles of abstraction, the concepts of the UTML

notation follows can be grouped in six main categories:

• Generic UTML concepts application field span over all phases of the test

development process.

• Test planing modelling concepts specify the means for organising test plans

in such a way that they can be integrated to the other phases of test devel-

opment.

• Test procedures modelling concepts help in documenting test procedures

and ensuring that those documentations follow specific patterns and guide-

lines.

• Test data design concepts define the means for specifying data used in test

scenarios.

• Test architecture design concepts

• Test behaviour design concepts build on test data and test architecture for

system, i.e. test data, test architecture and test behaviour.

Figure 5.1 depicts a UML class diagram displaying the hierarchy of UTML

test models and illustrating the structure of the language. As depicted in that

figure, the UTML metamodel defines five different views on the test model, each

of them dealing with a specific aspect of test design and extending the abstract

5.2. OVERVIEW OF UTML 69

Figure 5.1: Overview of UTML Test Models

BasicTestModel element. Also depicted in that figure are the relationships

between the categories of test models, which participate in defining a clear process

for test design.

5.2.1 Visualisation

Test models are essential instruments of communication between all stakeholders

involved in the software business process. Therefore, they need to be understood

by technical (testers, designers, developers) and less technical staff (sales, support,

managers) in their interactions before, during and after the development phase.

At the same time, test models must meet certain requirements, so that they can

be exploited for automatic transformation in a model-driven testing approach to

reduce the test development lifecycle.

It is well-known that graphics are the most appropriate way of sharing tech-

nical information. As Tufte states in his book The Visual Display of Quantitative

Information [155]:

At their best, graphics are instruments for reasoning about quanti-

tative information. Often the most effective way to describe, explore,

and summarise a set of numbers even a very large set is to look at

pictures of those numbers. Furthermore, of all methods for analysing

70
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

and communicating statistical information, well designed data graph-

ics are usually the simplest and at the same time the most powerful.

Although Tufte is referring here to statistical information, this statement also

holds true for nearly any type of information. This might explain why visualisa-

tion is such a key aspect of every modelling approach.

The need for visual notations has long been acknowledged in the testing

community. This is illustrated by the important amount of research in that

area, starting with works on the usage of Message Sequence Charts (MSCs) (in-

cluding variants thereof) [66, 139, 65] and of the Specification and Description

Language (SDL), via the graphical presentation format of the TTCN-3 nota-

tion [143](GFT), through to the UML and extensions thereof e.g. the UML Test-

ing profile or notations based on the same concepts [119]. However, most of those

approaches either try to use a generic modelling language (UML, SDL, MSCs) for

test modelling or they provide a graphical representation of concepts originating

from a textual test notation without raising the abstraction level(GFT). In the

first case, the notation used was designed with product design as its main pur-

pose and does not address specific testing concerns, while in the second case the

one-to-one mapping of concepts from the textual to the graphical format makes

the modelling process less efficient.

Besides being specifically design for modelling test solutions, the UTML no-

tation defines testing concepts at a higher level of abstraction to facilitate their

mapping to graphical elements. In fact the concepts of the UTML notation were

tailored so as to facilitate the definition of visual elements to illustrate them and

to allow a more natural process of test design.

Diagrams

UTML models are expressed in the form of diagrams in which elements of the

test model can be added and modified graphically. For each of the seven types

of UTML test models, a UTML diagram type is defined to visually represent the

concepts supported by that model. Those seven diagram types are:

• Test model diagrams: Test model diagrams visualise instances of the UTML

TestDataModel (Cf. Table 5.37). Their main purpose is to provide an

overview of the structure of test model by displaying other models contained

in the TestDataModel instance.

• Test objectives diagrams: Test objectives diagrams define visual elements

for test objectives model instances, as defined by the TestObjectivesModel

(Cf. Table 5.11) element of the UTML metamodel.

5.2. OVERVIEW OF UTML 71

• Test procedures diagrams: Test procedures diagrams provide a graphical

view on the content of a test procedures model, as defined by the Test-

ProceduresModel (Cf. Table 5.17) element of the UTML metamodel.

• Test architecture types diagrams: Test architecture types diagrams visualise

elements of a TestArchitectureTypesModel, i.e. type definitions to be used

in a test architecture.

• Test architecture diagrams: Test architecture diagrams allow the graphical

representation of test architecture models (Cf. Table 5.25). They provide

a structural view on the topology of the test system, depicting groups,

architectures, components, ports, etc.

• Test data diagrams: Test data diagrams can be used to visualise elements

of a UTML test data model(Cf. Table 5.37). Therefore, they provide a

view on the structure and content of the test data model.

• Test behaviour diagrams: The UTML notation defines two types of dia-

grams for designing test behaviour: test sequence diagrams and test ac-

tivity diagrams. Test sequence diagrams are based on UML 1.4 sequence

diagrams, which they modify with some specific semantics to allow the de-

sign of test scenarios. On the other hand, test activity diagrams are similar

to UML activity diagrams and can be used to design composition of test be-

haviours involving several test scenarios modelled as test sequence diagrams.

This approach was already chosen for the TeLa notation [119, 118, 120]

which follows similar goals as UTML, to address the shortcomings of UML

with regard to test design. However, the UTML approach is less formal

and primarily based on well-established patterns and good practices in test

automation design. Therefore the modifications proposed in this thesis are

different from those proposed by the authors of TeLa. This was motivated

by the fact the main concern here was to provide means for supporting

model-driven test engineering by test designers and test developers, rather

than to generate test sequences automatically from existing system design

models.

Generic Visualisation Concepts

While designing the graphical elements for the UTML notation, special care was

taken to reuse visual elements from existing well-known notations such as the

UML and the SysML. Figure 5.2 illustrates the picture that emerges as a result

of that effort. As depicted in that figure, the UTML notation uses as much as

possible visual concepts introduced by SysML, while at the same time inheriting

some of the concepts SysML adopted from the UML. However, as also visible

from that figure, some additional visual elements had to be provided to express

72
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Figure 5.2: The UTML notation and its relation to UML and SysML

concepts specific to UTML for which satisfactory symbols were not available in

the two other notations.

Some of the visualisation concepts defined for graphical test modelling apply

to all types of UTML test models. The next sections list those concepts and the

elements for which they have been used.

Figure 5.3: The Package Visual Element

The Package Visual Element The Package visual element, depicted on figure 5.3,

is adopted from UML class diagrams and is used to display instances of the UTML

metamodel that are containers for other elements. Examples of such containing

UTML model elements include:

• Test Models (e.g. elements of meta-classes TestArchitectureModel, Test-

DataModel, TestObjectivesModel, etc.

• Group definitions (e.g. elements of meta-classes TestArchitectureGroupDef,

TestDataGroupDef, TestObjectivesGroupDef, etc.)

5.2. OVERVIEW OF UTML 73

Figure 5.4: The Class Visual Element

The Class Visual Element The Class visual element, depicted on figure 5.4, is

adopted from UML class diagrams and is used to display instances of the UTML

metamodel that can be assimilated to classes or objects in the OO-programming

sense (i.e. instances of leaves in the UTML metamodel). Examples of such UTML

model elements include:

• Type definitions (e.g. elements of meta-classes MessageTestDataType),

OperationTestDataType, SignalTestDataType, etc.

• Instances definitions (e.g. elements of meta-classes TestDataInstance, Test-

Objective, TestProcedure, etc.)

Figure 5.5: The Generalisation Visual Element

The Generalisation Visual Element The Generalisation visual element, depicted

on figure 5.5, is adopted from UML class diagrams and is used to display gener-

alisation relationships between model elements.

Figure 5.6: The Dependency Visual Element

The Dependency Visual Element The Dependency visual element, depicted on

figure 5.6, is adopted from UML class diagrams and is used to display dependency

links between model elements.

74
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.3 Generic UTML Metamodel concepts

Generic concepts of the UTML metamodel are those that provide a common

base for other elements of the metamodel and therefore cannot be classified as

belonging to any particular type of test model.

5.3.1 UtmlElement

Description

The UtmlElement element is an abstract classifier defined as the base classifier

for all other classifiers in the UTML metamodel. It carries no particular semantic

information.

5.3.2 BasicTestModel

Description

The BasicTestModel element is the abstract base classifier for all UTML test

models.

Semantics

The BasicTestModel element is no specific semantics, besides being an abstract

container for UTML model elements at the highest level.

Syntax

The BasicTestModel element extends the following elements of the metamodel:

• UniqueNamedElement (Cf. Table 5.7)

• UtmlElement (Cf. Section 5.3.1)

• DescribedElement (Cf. Table 5.4)

5.3.3 TestModel

Description

The TestModel UTML element defines a root test model. Root test models

describe the static structure of a composite test model consisting of a number of

test models of various kinds (e.g. test objective models, tests data models, test

behaviour models, etc.). Figure 5.1 illustrates the relationship of the TestModel

element with those other kinds of test models.

5.3. GENERIC UTML METAMODEL CONCEPTS 75

Semantics

Beyond their role as containers for the various other types of test models, Test-

Model elements have no specific semantics.

Syntax

As described in Section 5.2.1, just like other UTML models, TestModel elements

are represented graphically with the Package visual element. Each of the con-

tained Package elements in a root test model diagram can be linked to another

diagram visualising the content of the associated UTML test model.

Additionally, import relationships between UTML test models can be ex-

pressed using the Dependency visual element known from UML class diagrams.

The TestModel element extends the BasicTestModel element described in

Table 5.3.2.

Table 5.3: Properties of the TestModel UTML element

Property Description Type Occu-

rence

test-

Objectives-

Model

Test objectives models contained in this

composite test model.

Test-

Objectives-

Model (Cf.

Table 5.11)

0..n

imported-

Model

References to other composite test models

linked to this test model.

TestModel

(Cf. Ta-

ble 5.3)

0..n

testArchi-

tecture-

Model

Test architecture models contained in this

composite test model.

TestArchi-

tectureModel

(Cf. Ta-

ble 5.25)

0..n

test-

Behaviour-

Model

Test behaviour models contained in this

composite test model.

Test-

Behaviour-

Model (Cf.

Table 5.66)

0..n

testData-

Model

Test data models contained in this com-

posite test model.

TestData-

Model (Cf.

Table 5.37)

0..n

testArchi-

tecture-

TypesModel

Test architecture type models contained in

this composite test model.

testArchi-

tectureTypes-

Model (Cf.

Table 5.20)

0..n

5.3.4 DescribedElement

Description

The UTML DescribedElement element is an abstract classifier used in all cate-

gories of test models to introduce textual documentation for the extending UTML

76
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

meta-class.

Constraints

For certain UTML model elements, depending on the defined modelling policies,

the description associated with the DescribedElement element may be made

compulsory by activating the following OCL constraint:

s e l f . d e s c r i p t i o n . oclIsTypeOf (OclVoid) = f a l s e

and s e l f . d e s c r i p t i o n <> ’TODO: Add d e s c r i p t i o n ’

Syntax

Table 5.4: Properties of the DescribedElement UTML element

Property Description Type Occu-

rence

description A free textual description of the UTML el-

ement.

xsd:string 0..1

5.3.5 GroupItem

Description

The GroupItem UTML element is an abstract classifier used to design the

grouping mechanism for elements of the test model. UTML elements extending

GroupItem can be added as children to a group definition. The GroupItem

UTML element has no fields and no attributes.

Semantics

A GroupItem element can be contained in a group definition.

5.3.6 GroupDef

Description

The GroupDef UTML element represents a group definition within a generic

test model. Table 5.5 lists the properties of each GroupDef.

Semantics

The GroupDef element defines a structural container for other model elements.

5.3. GENERIC UTML METAMODEL CONCEPTS 77

Syntax

The GroupDef element extends the following elements of the metamodel:

• ElementWithUniqueID (Cf. Table 5.9)

• DescribedElement (Cf. Table 5.4)

• GroupItem (Cf. Section 5.3.5)

Table 5.5: Properties of the GroupDef UTML element

Property Description Type Occu-

rence

groupItem children elements contained in the group

definition.

GroupItem

(Cf. Sec-

tion 5.3.5)

0..n

5.3.7 NamedElement

Description

The NamedElement element is an abstract classifier used as the base for named

UTML elements.

Syntax

Table 5.6: Properties of the NamedElement UTML element

Property Description Type Occu-

rence

name Name of the element. xsd:string 1..1

5.3.8 UniqueNamedElement

Description

The UniqueNamedElement element is also an abstract classifier and provides

the same functionality as the NamedElement element, with the difference that

the name used in this case must be unique for the whole test model.

78
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Syntax

Table 5.7: Fields and attributes of the UniqueNamedElement UTML

element

Property Description Type Occu-

rence

name Name of the element. xsd:string 1..1

5.3.9 ElementWithID

Description

The ElementWithID element is an abstract classifier used as the base for

UTML elements for which an identifier is required.

Syntax

Table 5.8: Properties of the ElementWithID UTML element

Property Description Type Occu-

rence

id The identifier for the element. xsd:string 1..1

5.3.10 ElementWithUniqueID

Description

The ElementWithUniqueID element is also an abstract classifier and provides

the same functionality as the ElementWithID element, with the difference that

the identifier used in this case must be unique for the whole test model.

Syntax

Table 5.9: Properties of the ElementWithUniqueID UTML element

Property Description Type Occu-

rence

id The unique identifier for the element. xsd:string 1..1

5.3.11 TestPatternKind

Description

The TestPatternKind UTML element is an enumeration defining a classifier

for the various types of test modelling patterns.

5.4. TEST OBJECTIVES DESIGN CONCEPTS 79

Table 5.10: The TestPatternKind UTML element

Literal Description

ARCHITECTURE Indicates a test architectural pattern.

BEHAVIOUR Indicates a test behavioural pattern.

DATA Indicates a test data pattern.

Syntax

5.4 Test Objectives Design Concepts

The UTML metamodel’s test objectives design concepts define the toolset re-

quired for modelling test plans in a rigourous and systematical manner. In this

section the elements of the metamodel dealing with test planing are described,

along with their relationships with other elements of the UTML metamodel.

Figure 5.7: Class Diagram: UTML Metamodel for Test Objectives

Figure 5.7 displays a class diagram of the UTML metamodel for test objectives

design.

5.4.1 TestObjectivesModel

Description

Contained TestObjectivesModel elements and TestObjectivesGroupDef elements

(defining groups of test objectives) are modelled using the aforementioned Pack-

age visual symbol, while leaves of the test objectives model (i.e. test objectives)

are modelled using the Class visual element.

Figure 5.8 displays an example UTML test objectives diagram containing one

group of test objectives and two test objectives.

80
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Figure 5.8: Example UTML Test Objectives Diagram

Syntax

The TestObjectivesModel element extends BasicTestModel (See Table 5.3.2)

Table 5.11: Properties of the TestObjectivesModel UTML element

Property Description Type Occu-

rence

test-

Objective-

Element

Test objective elements contained

in the test specification.

testObjective-

Element (See

Section 5.4.6)

0..n

test-

Objectives-

Model

References to other test objectives

models linked to this test objective

model.

Test-

Objectives-

Model

0..n

5.4.2 ObjectiveGroupDef

Description

The ObjectiveGroupDef element defines a group of objectives in a test speci-

fication model.

5.4. TEST OBJECTIVES DESIGN CONCEPTS 81

Syntax

The ObjectiveGroupDef element extends DescribedElement (See Table 5.4)

Table 5.12: Properties of the ObjectiveGroupDef UTML element

Property Description Type Occu-

rence

objective-

GroupItem

Test objectives or test objectives

groups contained in this group.

Objective-

GroupItem

(See Sec-

tion 5.4.3)

0..n

id An identifier for the group. xsd:string 1..1

priority The priority level assigned to the

group.

Priority (See

Table 5.13)

1..1

implemen-

tationStatus

The current implementation status

of the test objectives group.

Implementa-

tionStatus

(See Ta-

ble 5.14)

1..1

5.4.3 ObjectiveGroupItem

Description

The ObjectiveGroupItem UTML element is an abstract class used to define a

grouping mechanism for test objectives in a test specification model.

5.4.4 Priority

Description

The Priority element is an enumeration used for classifying the various priority

levels for test objectives in a UTML test model. Based on those values, each test

objective in the test plan is assigned a priority, which can guide decision taking in

critical phases of the test project. The priority level of test objectives can be used

as criterium to select which test objectives to implement first, if deadlines are

approaching or resources scarce. Table 5.13 lists the pre-defined priority levels in

the UTML metamodel.

Syntax

Table 5.13: The Priority UTML element

Priority Level

LOWEST

LOWER

LOW

NORMAL

82
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.13: The Priority UTML element

Priority Level

HIGH

HIGHER

HIGHEST

5.4.5 ImplementationStatus

Description

The ImplementationStatus UTML element is an enumeration listing possible

values for the implementation status of test objectives. Keeping track of the

implementation status of test objectives can contribute significantly to improving

productivity within a test project. In fact all other aspects of test modelling can

benefit from those information, which can be used to filter test model elements for

selection, edition or exporting (documentation, test script code, etc.). Table 5.14

lists the pre-defined implementation status values in the UTML metamodel, along

with their meaning.

Semantics

Figure 5.9: State Diagram: The Test Objective Lifecycle

Figure 5.9 displays a state diagram illustrating the usage of the Implemen-

tationStatus to document the lifecycle of a test case from requirements analysis

through to test execution. Each of the possible implementation status is repre-

sented as state in the diagram and the actions leading to state transition underline

the semantics of this element.

Syntax

Table 5.14 describes the syntax of ImplementationStatus element.

5.4. TEST OBJECTIVES DESIGN CONCEPTS 83

Table 5.14: The ImplementationStatus UTML element

Implementation

Status

Description

ANALYZED Indicates that the test objective has been

analyzed and found valid based on the sys-

tem specification (default).

PROCEDURE DE-

SIGNED

Indicates that a test procedure has been

designed for the test objective.

REVIEWED A test case covering the test objective has

been designed and reviewed.

IMPLEMENTED Indicates that a test case has been designed

covering the test objective.

REVIEWED A test case covering the test objective has

been designed and reviewed.

RELEASED Indicates that a test case covering the test

objective has been released.

NEEDS FIX Indicates that a bug has been discovered in

the test case for this test objective. There-

fore, the test case needs to be fixed.

DROPPED Indicates the test objective has been

dropped, e.g. because it has been found as

not applicable or testable upon analysis.

5.4.6 TestObjectiveElement

Description

The TestObjectiveElement is an abstract class, modelling an element that can

be added as child to a UTML test objectives model.

Syntax

The TestObjectiveElement element extends UtmlElement (See Section 5.3.1)

5.4.7 TestObjective

Description

TestObjective elements are the building entities of test objectives models (or

test specifications). Their purpose is to document precisely and in a systematic

manner what a test case will try to check on the SUT.

Semantics

The purpose of TestObjective elements is to enable a systematic approach to the

test automation process by providing a common base for all parties, on which test

cases will be designed and implemented. A TestObjective element represents a

84
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

traceability link to phases in the software development process that preceded test

design. A test objective element can be linked to one or several requirements.

Syntax

The TestObjective element extends the following elements of the metamodel:

• ElementWithUniqueID (See Table 5.9)

• DescribedElement (See Table 5.4)

• TestObjectiveElement (See Table 5.4.6)

Table 5.15: Fields and attributes of the TestObjective UTML element

Property Description Type Occu-

rence

objective-

DescEle-

ment

Description elements for the test

objective.

TestObjective-

Description-

Element (See

Table 5.16)

1..n

testProce-

dure

A reference to test procedures that

cover this test objective.

TestProce-

dure (See

Table 5.19)

0..n

priority The priority level assigned to the

test objective.

Priority (See

Table 5.13)

1..1

implemen-

tationStatus

The current implementation status

of the test objective.

Implemen-

tationStatus

(See Ta-

ble 5.14)

1..1

notes Any additional notes to the test ob-

jective’s description.

xsd:string 0..1

5.4.8 TestObjectiveDescriptionElement

Description

The TestObjectiveDescriptionElement element is an entity used to provide

description of test objectives in a systematic manner. Each test objective de-

scription element is a name-value pair of free text. The name element provides

the name of a description field for the test objective, while the value element

provides the content of that description field.

Syntax

Table 5.16 describes the syntax of TestObjectiveDescriptionElement ele-
ment.

5.5. TEST PROCEDURES DESIGN CONCEPTS 85

Table 5.16: Fields and attributes of the TestObjectiveDescriptionEle-

ment UTML element

Property Description Type Occu-

rence

name Name of the description element. xsd:string 1..1

value Value of the description element. xsd:string 1..1

5.5 Test Procedures Design Concepts

The UTML metamodel’s test procedures concepts define the means for modelling

test procedures for test objectives modelled in a test specification. A test proce-

dure describes the sequence of steps that will have to be performed on the test

system and the SUT to verify that a test objective is met satisfactorily. In this

section the elements of the UTML metamodel’s for test procedures are described,

together with the relationships between them and other UTML elements.

Figure 5.10: Class Diagram: UTML Metamodel for Test Procedures

Figure 5.10 provides an overview of the UTML metamodel for test procedures

which illustrates the relationships between its components.

5.5.1 TestProceduresModel

Description

The TestProceduresModel UTML element is the root element for a test pro-

cedures model. Conceptually a test procedures model consists in a collection of

test procedures, each of those covering at least one test objective.

86
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.17: Properties of the TestProceduresModel UTML element

Property Description Type Occu-
rence

testProce-
dures-
Element

Test procedures or groups contained in the
test procedures model.

Test-
Procedures-
Element (See
Section 5.5.3)

0..n

testObjec-
tivesModel

References to test objectives models linked
to this test procedures model.

TestObjec-
tivesModel
(See Ta-
ble 5.11)

0..n

testProce-
duresModel

References to test procedures models
linked to this test procedures model.

TestPro-
ceduresModel
(See Ta-
ble 5.17)

0..n

Syntax

The TestProceduresModel element extends BasicTestModel (See Table 5.3.2)

5.5.2 TestProceduresGroupItem

Description

The TestProceduresGroupItem UTML element is an abstract class used to

provide a grouping mechanism for test procedures in a test procedures model.

Syntax

The TestProceduresGroupItem element extends GroupItem (See Table 5.3.5)

5.5.3 TestProceduresElement

Description

The TestProceduresElement is an abstract class that is the base for all other

elements of the UTML test procedures model.

Syntax

The TestProceduresElement element extends TestProceduresGroupItem (See Sec-

tion 5.5.2)

5.5.4 TestProceduresGroupDef

Description

The TestProceduresGroupDef UTML element defines a group within a test

procedures model. A TestProceduresGroupDef can contain other TestPro-

5.5. TEST PROCEDURES DESIGN CONCEPTS 87

ceduresGroupDef as subgroups or single test procedures.

Syntax

The TestProceduresGroupDef element extends the following elements of the meta-

model:

• DescribedElement (See Table 5.4)

• ElementWithUniqueID (See Table 5.9)

• TestProceduresGroupItem (See Section 5.5.2)

• TestProceduresElement (See Section 5.5.3)

Table 5.18: Properties of the TestProceduresGroupDef UTML element

Property Description Type Occu-

rence

test-

Procedures-

GroupItem

children elements of the test procedures

group.

Test-

Procedures-

GroupItem

(See Sec-

tion 5.5.2)

1..n

5.5.5 TestProcedure

Description

The TestProcedure element models a test procedure in the UTML metamodel.

Syntax

The TestProcedure element extends the following elements of the metamodel:

• DescribedElement (See Table 5.4)

• UniqueNamedElement (See Table 5.7)

• TestProceduresGroupItem (See Section 5.5.2)

• TestProceduresElement (See Section 5.5.3)

Table 5.19: Properties of the TestProcedure UTML element

Property Description Type Occu-

rence

testSteps The test steps for this test procedure. xsd:string 0..n

88
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.19: Properties of the TestProcedure UTML element

Property Description Type Occu-

rence

testcase A reference to a testcase modelling the the

test behaviour for this test procedure.

Testcase (See

Table 5.74)

0..1

testObjec-

tive

References to the test objectives covered

by this test procedure.

TestObjec-

tive (See

Table 5.15)

0..n

sub-

Procedure

References to other already defined test

procedures which are parts of this test pro-

cedure.

TestProce-

dure (See

Table 5.19)

0..n

remarks Additional remarks concerning this test

procedure.

xsd:string 0..1

5.6 Test Architecture Design Concepts

UTML test architecture concepts provide the means for designing test architec-

tures following a pattern driven approach. Those concepts are based on the same

principles of communication abstraction ([125]) used for the UML testing profile

and the TTCN-3 notation.

UTML test architecture design concepts can be grouped in two main cate-

gories. The first group of concepts aims at defining type classifiers or descriptors

for elements of test architectures, while the second group define concepts for

designing instances based on the aforementioned descriptors.

Figure 5.11: Class Diagram: UTML Metamodel for Type Definitions in Test
Architectures

Figure 5.11 displays the UML class diagram for the first group of UTML test

architecture concepts.

5.6. TEST ARCHITECTURE DESIGN CONCEPTS 89

Figure 5.12: Class Diagram: UTML Metamodel for Test Architectures

Figure 5.12 depicts the UTML metamodel for the second group of test archi-

tecture concepts and illustrates the relationships between its composing elements.

5.6.1 TestArchitectureTypesModel

Description

A TestArchitectureTypesModel provides type definitions for instances in a

test architecture model. Therefore, it is the basis for a test architecture model,

which can be extended and reused in other test architecture models without

affecting the existing test model artifacts.

The graphical modelling of test architecture type elements follows the same

principles as those of other UTML models for which structure is the sole motivat-

ing factor. Accordingly, similar to those other diagram types, the Package and

the Class graphical elements are used to model groups of test architecture type

elements and instances of single elements (e.g. test component type definitions,

port type definitions) respectively.

Syntax

The TestArchitectureTypesModel element extends BasicTestModel (See Table 5.3.2).

90
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.20: Properties of the TestArchitectureTypesModel UTML ele-

ment

Property Description Type Occu-

rence

testArchi-

tecture-

TypesModel

References to other existing testArchi-

tectureTypesModel elements.

TestArchi-

tectureTypes-

Model

0..n

testData-

Model

References to data model documents from

which test data definitions are used in this

test architecture basic model.

TestData-

Model (See

Table 5.37)

testArchi-

tecture-

TypesEle-

ment

Test architecture elements contained in the

model.

TestArchi-

tectureTypes-

Element (See

Section 5.6.2)

5.6.2 TestArchitectureTypesElement

Description

The TestArchitectureTypesElement is an abstract class used as the base for

UTML test architecture concepts that can be shared among several test archi-

tecture models.

Syntax

The TestArchitectureTypesElement element extends UtmlElement (See Section 5.3.1)

5.6.3 TestArchTypesGroupItem

Description

The TestArchTypesGroupItem element is an abstract class used to model the

grouping mechanism in UTML test architectural basic models. Any object of a

class extending TestArchTypesGroupItem can be added as a child to a group

in a test architecture basic model.

Syntax

The TestArchTypesGroupItem element extends the following elements of the

metamodel:

• DescribedElement (See Table 5.4)

• TestArchitectureTypesElement (See Section 5.6.2)

5.6. TEST ARCHITECTURE DESIGN CONCEPTS 91

5.6.4 TestArchTypesGroupDef

Description

The TestArchTypesGroupDef element represents a group definition within a

UTML model for test architecture type definitions.

Syntax

Figure 5.13: Example UTML Test Architecture Types Group

The TestArchTypesGroupDef element extends the following elements of the

metamodel:

• DescribedElement (See Table 5.4)

• ElementWithUniqueID (See Table 5.9)

• TestArchTypesGroupItem (See Section 5.6.3)

Table 5.21: Properties of the TestArchTypesGroupDef UTML element

Property Description Type Occu-

rence

testArch-

Types-

GroupItem

Basic test architecture model elements

contained in the group.

TestArch-

GroupItem

(See Sec-

tion 5.6.9)

0..n

5.6.5 PortType

Description

The PortType provides a descriptor for a type of port.

Semantics

The main purpose of PortType is to define a classifier for modelling port in-

stances. If a PortInstance element (see Section 5.6.12) is associated to a given

92
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

PortType element through its type property, then the automatically inherits all

the properties defined in the PortType element.

Syntax

Figure 5.14: Example UTML Port Type

The PortType element extends the following elements of the metamodel:

• DescribedElement (See Table 5.4)

• NamedElement (See Table 5.6)

• TestArchGroupItem (See Section 5.6.9)

• TestArchitectureTypesElement (See Section 5.6.2)

• TestArchitectureElement (See Section 5.6.11)

Table 5.22: Properties of the PortType UTML element

Property Description Type Occu-

rence

supported-

Types

A list of test data types supported by the

port type. If no type is indicated, it is

assumed that port instances of this port

type support all types of test data.

TestData-

Type (See

Table 5.46)

0..n

5.6.6 ComponentType

Description

The ComponentType element provides a descriptor for a type of test component

to be used in test scenarios.

Semantics

The ComponentType element defines a mean for enabling the instantiation of

components with a predefined set of properties. Component instances associated

to a given ComponentType element through their type property automatically

inherit all properties defined in that ComponentType element.

5.6. TEST ARCHITECTURE DESIGN CONCEPTS 93

Syntax

Figure 5.15: Example UTML Component Type

The ComponentType element extends the following elements of the meta-

model:

• DescribedElement (See Table 5.4)

• UniqueNamedElement (See Table 5.7)

• TestArchGroupItem (See Section 5.6.9)

• TestArchitectureElement (See Section 5.6.11)

Table 5.23: Properties of the ComponentType UTML element

Property Description Type Occu-

rence

portType A list of port types supported by compo-

nents of this type.

PortType (See

Table 5.22)

0..n

port-

Instance

Concrete port instances provided by the

test component type. Every component

instance having this component type as

its type property implicitely inherits these

port instances and may used them at any

time for sending or receiving data in test

actions.

PortInstance

(See Ta-

ble 5.28)

0..n

var-

Declaration

Local variable declarations. These vari-

ables may be used by any test component

instance having this ComponentType as

type for storing and retrieving data while

performing test behaviour.

Variable-

Declaration

(See Sec-

tion 5.8.25)

0..n

timer Local timers associated to the test compo-

nent type. These timers must be contained

in the component type element itself and

not simply referenced.

Timer (See

Table 5.83)

0..n

94
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.23: Properties of the ComponentType UTML element

Property Description Type Occu-

rence

baseCom-

ponentType

Reference to component types that are ex-

tended by this component type. This field

allows the specification of inheritance rela-

tionships between component types to fa-

cilitate reuse of existing elements in the

test architecture model. If a component

type B extends a component type A, then

component type B inherits all ports, vari-

ables and timers declared in component

type A

Component-

Type (See

Table 5.23)

0..n

5.6.7 ComponentKind

Description

The ComponentKind element is an enumeration listing the kinds of compo-

nents possible in a UTML test architecture.

Syntax

Table 5.24: The ComponentKind UTML element

Component Kind Description

TEST COMPO-

NENT

Used to indicate that the component is

part of the test system

SUT Used to indicate that the component is

part of the System Under Test

5.6.8 TestArchitectureModel

Description

The TestArchitectureModel element is the root element for every UTML test

architecture model document.

Syntax

The TestArchitectureModel element extends the BasicTestModel (See Table 5.3.2)

element defined previously

5.6. TEST ARCHITECTURE DESIGN CONCEPTS 95

Table 5.25: Properties of the TestArchitectureModel UTML element

Property Description Type Occu-

rence

testArchi-

tecture-

Model

Links to other related test architec-

ture model documents.

TestArchi-

tectureModel

0..n

testData-

Model

Links to test data models. TestData-

Model (See

Table 5.37)

0..n

testArch-

GroupDef

Groups contained in this test archi-

tecture model.

TestArch-

GroupDef

(See Ta-

ble 5.26)

0..n

testArchi-

tecture

Contained test architectures. TestArchi-

tecture (See

Table 5.31)

0..n

5.6.9 TestArchGroupItem

Description

The TestArchGroupItem element is an abstract class defining an element for

a group in a test architecture model.

Syntax

The TestArchGroupItem element extends GroupItem (See Section 5.3.5)

5.6.10 TestArchGroupDef

Description

The TestArchGroupDef element represents a group definition within a UTML

test architecture.

Syntax

The TestArchGroupDef element extends the following elements of the metamodel:

• DescribedElement (See Table 5.4)

• ElementWithUniqueID (See Table 5.9)

• TestArchGroupItem (See Section 5.6.9)

96
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.26: Properties of the TestArchGroupDef UTML element

Property Description Type Occu-

rence

testArch-

GroupItem

test architecture model elements contained

in the group.

TestArch-

GroupItem

(See Sec-

tion 5.6.9)

0..n

5.6.11 TestArchitectureElement

Description

The TestArchitectureElement element is an abstract class representing the

base type for all other elements in the UT ML test architecture meta-model.

Syntax

The TestArchitectureElement element extends UtmlElement (See Section 5.3.1)

5.6.12 PortInstance

Description

A PortInstance element represents a communication point through which test

components can exchange data with other test components or with SUT compo-

nents.

Semantics

PortInstance elements are instantiations of PortType elements and can be used

to model points of communication for components in a test architecture. A com-

ponent instance may own one or more port instances. The type of data that can

be exchanged via a given port instance is determined by the associated Port-

Type’s supportedTypes property. This means, the communication paradigm(s)

supported by the port instances depend(s) on the kinds of data types that can be

exchanged through it. As described in Section 5.7.5, UTML defines three kinds

of data types, namely Operation, Message and Signal.

The direction in which the port may be used to exchange data is defined by

its direction property. It must also be ensured that the value of that property

is also used to check if a connection can be created between two port instances or

not. Table 5.27 provides a matrix for allowing/disallowing connections between

port instances based on their directions.

5.6. TEST ARCHITECTURE DESIGN CONCEPTS 97

Target Port

Source Port

INOUT IN OUT
INOUT Yes Yes Yes
IN Yes No Yes
OUT Yes Yes No

Table 5.27: Direction of Port Instances and Connection Support

Constraints

Constraint Port instances may only refer to model elements contained in the

same test architecture.

(s e l f . theConnection −> isEmpty () = f a l s e and s e l f . theConnection −>
f o rA l l (a r c h i t e c t u r e . oc lIsTypeOf (OclVoid)= f a l s e) and

s e l f . theConnection −>
f o rA l l (a r c h i t e c t u r e . componentInstance −> notEmpty ()))

implies

(s e l f . theConnection . a r c h i t e c t u r e . componentInstance −> e x i s t s (id =

s e l f . theComponent . id))

Constraint A port instance’s port type must be among the port types declared

to be supported by the owning component’s type definition element.

(s e l f . theComponent . ocl IsTypeOf (OclVoid) = f a l s e)

implies

(s e l f . theComponent . type . portType −> e x i s t s (name = s e l f . type . name))

Constraint Each port instances must have an associated port type.

s e l f . type . oclIsTypeOf (OclVoid) = f a l s e

Syntax

The PortInstance element extends the following elements of the metamodel:

• DescribedElement (See Table 5.4)

• NamedElement (See Table 5.6)

98
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.28: Properties of the PortInstance UTML element

Property Description Type Occu-

rence

type The port type for the port instance. PortType (See

Table 5.22)

1..1

theConnec-

tion

Connections in which the port is involved,

either as source or as target.

Connection

(See Ta-

ble 5.30)

0..n

theConnec-

tionAction

Connection actions in which the port in-

stance is involved.

Connec-

tionAction

(See Sec-

tion 5.8.16)

0..n

direction Direction in which communication through

the port instance will occur.

DataDirec-

tion (See

Table 5.39)

0..n

theCom-

ponent

The test component owning the port in-

stance.

Component-

Instance (See

Table 5.29)

1..1

5.6.13 ComponentInstance

Description

The ComponentInstance element represents an instance of a test component

in a UTML test model. ComponentInstance elements are instantiations of

ComponentType elements defined in Section 5.6.6.

Semantics

For more details on the semantics of component instances, see Section 5.8.1.

Constraints

Constraint Components belonging to the SUT must not be cloned.

(s e l f . kind = utml : : t e s t a r c h i t e c t u r e : : ComponentKind : : SUT)

implies (s e l f . c l on e s = 0)

Constraint If a number of clones is provided for a component, then that number

must be greater than or equal to zero. I.e. negative values are not allowed.

(s e l f . kind = utml : : t e s t a r c h i t e c t u r e : : ComponentKind : :TESTCOMPONENT)

implies (s e l f . c l on e s >= 0)

5.6. TEST ARCHITECTURE DESIGN CONCEPTS 99

Syntax

Figure 5.16: Component and Port Instances in UTML Diagrams

As depicted in Figure 5.6.13 components are visualised in UTML architecture

diagrams through Class graphical elements similar to block elements in SysML.

Each component carries the component’s identifier as label. Components marked

as being part of the SUT are colored in black color to underline the fact that

they are considered black-boxes.

figure 5.6.13 also illustrates the visualisation of port instances belonging to

components, as well as connections between those. For example, the solid line

between testPort and sutPort in that figure indicates that those two ports are

connected with each other in the containing architecture. The visualisation of

ports owned by components is achieved using flowport symbols defined by the

SysML notation. A flowport is represented graphically as a little box attached to

the border of the owning component and containing an arrow that indicates in

which direction the port may send or receive data. In the case of an IN -port or an

OUT -port, the contained arrow will be directed inwards or outwards respectively,

while for an INOUT -port a bidirectional arrow will be displayed.

Also, test behaviour naturally involves elements of the test architecture de-

fined previously in the test architecture model. Therefore, the test behaviour

sequence diagram defines graphical representation elements for those test archi-

tecture elements that might be used to model test behaviour. Those elements

are component instances and port instances.

Figure 5.6.13 shows the graphical element for a component within a UTML

test behaviour sequence diagram. As shown in that figure, test components are

designed as a box potentially containing instance of port instances, represented

by a life line graphical element.

The ComponentInstance element extends the following elements of the meta-

model:

100
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

• ElementWithID (See Table 5.8)

• TestArchitectureElement (See Section 5.6.11)

• TestArchGroupItem (See Section 5.6.9)

Table 5.29: Properties of the ComponentInstance UTML element

Property Description Type Occu-

rence

type A reference to the test component type

which is instanciated by this component.

Component-

Type (See

Table 5.23)

1..1

architecture The parent architecture to which this com-

ponent instance belongs.

TestArchi-

tecture (See

Table 5.31)

1..1

port Port instances owned by this component. PortInstance

(See Ta-

ble 5.28)

0..n

kind Indicate whether the component is marked

as part of the SUT or as part of the test

system (Default)

Component-

Kind (See

Table 5.24)

1..1

clones Defines the number of clones to be created

with this component. If the clones prop-

erty is set to a value Nclones, then Nclones

instances of type will be instantiated and

started whenever this component instance

element will be involved in test behaviour.

Integer 0..1

5.6.14 Connection

Description

The Connection element represents a connection, i.e. a data exchange channel

between two ports in UTML.

Semantics

As described in Section 5.6.12, connections may only be created between ports if

their direction allow it (See Table 5.27) and if they share supported data types

as defined in the supportedTypes property or the port type referred to by their

type property.

Constraints

Constraint Connections may only be created between port instances belonging

to components within the same test architecture.

5.6. TEST ARCHITECTURE DESIGN CONCEPTS 101

(s e l f . sourcePort . oc l IsTypeOf (OclVoid) = f a l s e and

s e l f . destPort . oc lIsTypeOf (OclVoid)) implies

(s e l f . a r c h i t e c t u r e . componentInstance −> e x i s t s (id =

s e l f . sourcePort . theComponent . id) and

s e l f . a r c h i t e c t u r e . componentInstance −> e x i s t s (id =

s e l f . destPort . theComponent . id))

Constraint A port instance must not be connected to itself.

s e l f . sourcePort <> s e l f . destPort

Constraint (Optional) A port instance should not be connected to another port

instance belonging to the same component instance.

(s e l f . sourcePort . oc l IsTypeOf (OclVoid) = f a l s e

and s e l f . destPort . oc lIsTypeOf (OclVoid) = f a l s e)

implies

(s e l f . sourcePort . theComponent <> s e l f . destPort . theComponent)

Syntax

The Connection element extends the following elements of the metamodel:

• ElementWithID (See Table 5.8)

• TestArchitectureElement (See Section 5.6.11)

Table 5.30: Properties of the Connection UTML element

Property Description Type Occu-

rence

sourcePort The source port for the connection. PortInstance

(See Ta-

ble 5.28)

1..1

destPort The destination port for the connection. PortInstance

(See Ta-

ble 5.28)

1..1

architecture The test architecture in which the connec-

tion has been created.

TestArchi-

tecture (See

Table 5.31)

1..1

102
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.6.15 TestArchitecture

Description

The TestArchitecture element represents a test architecture in UTML. I.e. a

collection of component instances that are connected via ports to build a setup

on which test behaviour will be executed to assess the system under test.

Semantics

TestArchitecture elements define the architectural context in which test be-

haviour will take place. Therefore, test architectures will be associated to UTML

behaviour elements so that test behaviour design will take into account the con-

straints defined by the test architecture.

Constraints

Constraint (Optional) Every test architecture should contain at least one com-

ponent belonging to the SUT.

s e l f . componentInstance

−> e x i s t s (kind = utml : : t e s t a r c h i t e c t u r e : : ComponentKind : : SUT)

Syntax

Figure 5.17: Example UTML Test Architecture Diagram with contained Archi-
tectures and Group Definitions

Figure 5.17 displays an example test architecture diagram for a test model

containing a group of test architecture elements and two test architectures. As

5.6. TEST ARCHITECTURE DESIGN CONCEPTS 103

depicted in that figure, each test architecture is visualised as a Class-type graph-

ical element, with the test architecture’s identifier as label. The usage of Package

graphical element to visualise groups in test architecture diagrams is also illus-

trated on that picture.

The TestArchitecture element extends the following elements of the meta-

model:

• DescribedElement (See Table 5.4)

• ElementWithUniqueID (See Table 5.9)

• TestArchGroupItem (See Section 5.6.9)

• TestArchitectureElement (See Section 5.6.11)

Table 5.31: Properties of the TestArchitecture UTML element

Property Description Type Occu-

rence

component-

Instance

Component instances contained in the test

architecture.

Component-

Instance (See

Table 5.29)

0..n

connections Connections between the component in-

stances through ports.

Connection

(See Ta-

ble 5.30)

0..n

setup-

Function

A list of references to behaviour function

definitions that initialize the test architec-

ture. The behaviour functions listed are

called sequentially to initialize the test ar-

chitecture, in the same order in which they

have been added.

TestBeha-

viourAction-

Def (See

Table 5.72)

0..n

teardown-

Function

A list of reference to behaviour function

definitions that terminates the test archi-

tecture (e.g. performing some cleanup op-

erations after test execution). The be-

haviour functions listed are called sequen-

tially to teardown the test architecture, in

the same order in which they have been

added.

TestBeha-

viourAction-

Def (See

Table 5.72)

0..n

associated-

Default

References to default behaviour definitions

to which the test architecture is associated.

A default behaviour being associated to a

test architecture means that, when the ar-

chitecture is setup the default is activated

and when the architecture is teared down

(e.g. at the end of a testcase), the default

is deactivated.

DefaultBeha-

viourDef (See

Table 5.82)

0..n

104
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.31: Properties of the TestArchitecture UTML element

Property Description Type Occu-

rence

execution-

Mode

The execution mode defines how the com-

ponent instances defined in the test archi-

tecture will be started when test behaviour

designed to be run on that architecture is

executed. Possible values are SEQUEN-

TIAL(Default), indicating that the com-

ponents will be instanciated and started

sequentially in the same order of their cre-

ation in the UTML model or PARALLEL,

indicating that all will be started in par-

allel according to an appropriate synchro-

nization scheme.

Execution-

Mode (See

Table 5.32)

1..1

5.6.16 ExecutionMode

Description

The ExecutionMode UTML element is a classifier defining possible modes of

execution for elements of a test architecture, when test behaviour designed on

that architecture is executed.

Semantics

The only usage of the ExecutionMode element is as an attribute of a TestAr-

chitecture element. Therefore, the ExecutionMode element has no semantics

as such, but its value has an impact on the syntax of the test architecture to

which it is associated.

Syntax

Table 5.32: The ExecutionMode UTML element

Literal Description

SEQUENTIAL Indicates that test component instances in the test

architecture will be started sequentially, according

to their order of creation in the UTML model.

PARALLEL Indicates that test component instances in the test

architecture will be started in a synchronised man-

ner, according to a given synchronisation scheme.

Currently, the definition of the synchronisation

scheme is out of UTML’s scope, but could be

added at a later stage, if required as an extension

to the metamodel.

5.6. TEST ARCHITECTURE DESIGN CONCEPTS 105

5.6.17 TestArchPatternKind

Description

The TestArchPatternKind UTML element is an enumeration defining a clas-

sifier for the various types of architectural patterns identified so far.

Syntax

Table 5.33: Fields and attributes of the TestArchPatternKind UTML

element

Pattern Kind Description

P2P Indicates a Point-to-Point(P2P) kind of ar-

chitecture, involving two component in-

stances as endpoints with each of their

ports connected at most once to the other

one’s. This corresponds to the One-on-

One Test Architecture design pattern de-

scribed in Section A.3.2.

PROXY Indicates a proxy kind of architecture in-

volving a test component placed as a proxy

to intercept and monitor the data exchange

between two components belonging to the

SUT. This corresponds to the Proxy Test

Component test architecture design pat-

tern described in Section A.3.5.

SANDWICH Indicates a sandwich kind of test architec-

ture involving two test components, each

of which is placed exchange data with an

SUT component that is virtually placed in

the middle between those two test compo-

nents. This corresponds to the Sandwich

Test Architecture pattern described in Sec-

tion A.3.6.

PMP Indicates a Point-to-Multi-Point(PMP),

i.e. one whereby the connections between

the ports involved provide multiple paths

from a single location to multiple loca-

tions [35] kind of architecture. This cor-

responds to the Point-to-Multi Point Test

Architecture design pattern described in

Section A.3.3.

MESH Indicates a mesh kind of architecture. I.e.

one whereby, each of the components in-

volved is connected to a port of the other

component instances.

CUSTOM Reserved for user customisation. This lit-

eral indicates a user-defined architecture

scheme.

106
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.6.18 P2PArchitecture

Description

The P2PArchitecture element is a realization of the One-on-One (or Peer-To-

Peer) test architecture pattern, which consists of a test system composed of a

single component, that is connected to the SUT, also represented as a single

component. The One-on-One test architecture is described with further details

in section A.3.2.

Semantics

The P2PArchitecture element extends the TestArchitecture element (See Ta-

ble 5.31). Therefore, it inherits the basic semantics defined for that element.

Constraints

Constraints The P2PArchitecture element inherits all the constraints defined

for the TestArchitecture element as defined in Section 5.6.15

Syntax

Table 5.34: Properties of the P2PArchitecture UTML element

Property Description Type Occu-

rence

firstCompo-

nent

First component instance involved in the

P2P test architecture.

Component-

Instance (See

Table 5.29)

1..1

system-

Component

Other component instance involved in the

P2P test architecture.

Component-

Instance (See

Table 5.29)

1..1

patternKind Test architecture pattern kind:

P2P(See 5.33)

TestArch-

PatternKind

(See Ta-

ble 5.33)

1..1

5.6.19 PMPArchitecture

Description

The PMPArchitecture element is a descriptor for a Point-to-Multi Point(PMP)

test architecture, which consists of a component connected via a single port to

a set of other components. This architecture is an instantiation of the PMP

architecture pattern, which is described in section A.3.3.

5.6. TEST ARCHITECTURE DESIGN CONCEPTS 107

Semantics

The PMPArchitecture element extends the TestArchitecture element (See Ta-

ble 5.31). Therefore, it inherits the basic semantics defined for that element.

Constraints

The PMPArchitecture element inherits all the constraints defined for the TestAr-

chitecture element as defined in Section 5.6.15

Syntax

Table 5.35: Properties of the PMPArchitecture UTML element

Property Description Type Occu-

rence

firstCompo-

nent

First component instance involved in the

PMP test architecture.

Component-

Instance (See

Table 5.29)

1..1

otherCom-

ponents

Other component instances involved in the

PMP test architecture.

Component-

Instance (See

Table 5.29)

1..n

patternKind Test architecture pattern kind: PMP

(See 5.33)

TestArch-

PatternKind

(See Ta-

ble 5.33)

1..1

5.6.20 MeshArchitecture

Description

A fully connected mesh network is a network in which all nodes are intercon-

nected. Such networks are used in wireless networks and other application fields

for which self-healing capacity is required. Self-healing is the ability for nodes

in the network to reconnect themselves to overcome the failure of a part of the

network.

The UTML MeshArchitecture element models a test architecture following

the mesh networking pattern. However, only the topological aspects of mesh net-

works are expressed with a MeshArchitecture element, while the behavioural

aspects (e.g. the self-healing) are not implied. Therefore, a test architecture

created with the mesh architecture architectural pattern has all its associated

component instances connected to each other wherever their owned ports allow

it.

108
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Semantics

The MeshArchitecture element extends the TestArchitecture element (See Ta-

ble 5.31). Therefore, it inherits the basic semantics defined for that element.

Constraints

The MeshArchitecture element inherits all the constraints defined for the TestAr-

chitecture element as defined in Section 5.6.15

Syntax

The MeshArchitecture element extends TestArchitecture (See Table 5.31)

Table 5.36: Properties of the MeshArchitecture UTML element

Property Description Type Occu-

rence

components Component instances building the mesh

test architecture.

Component-

Instance (See

Table 5.29)

0..n

patternKind Test architecture pattern kind: MESH cf.

Table 5.33

TestArch-

PatternKind

(See Ta-

ble 5.33)

1..1

5.7 Test Data Design Concepts

Figure 5.18: Class Diagram: Hierarchy of UTML Metamodel for Test Data Mod-
elling

The UTML metamodel’s test data concepts provide the means for modelling

data types and data instances to be used for testing. Data abstraction [125]

is an essential aspect of UTML test modelling. The idea is to find the right

balance between the need for abstraction and the necessity of providing enough

5.7. TEST DATA DESIGN CONCEPTS 109

information to allow the design of sensible test cases. Therefore, constraints play

a central role in the specification of test data in UTML, as they enable to define

the requirements that need to be met by data to be suitable as input (i.e. as

stimuli) or as output (response) in test sequences. Based on those requirements,

concrete instances of data may be generated dynamically for testing purpose or

validated to check if they meet the requirements.

To facilitate exchange with other notations, UTML’s test data concepts reuse

a lot of the concepts of the XML Schema Definition (XSD) language, adding

elements specific to the testing domain. In this section, the elements of the

UTML test data metamodel are described, along with the relationships between

themselves and other aspects of the UTML metamodel.

5.7.1 TestDataModel

Description

The TestDataModel element is the root container for UTML test data design.

It contains model elements for designing the structure of data to be exchanged

in testing and the mechanisms for generating concrete test data.

Constraints

Constraint (Optional) The same field definition should not be duplicated in more

than one message type definition. If so, then the usage of inheritance should be

considered.

utml : : t e s t d a t a : : MessageTestDataType . a l l I n s t a n c e s () −>
i sUnique (dataTypeField)

Syntax

The TestDataModel element extends the BasicTestModel (See Table 5.3.2)
element defined previously

Table 5.37: Properties of the TestDataModel UTML element

Property Description Type Occu-

rence

testData-

Model

References to other related test data mod-

els.

TestData-

Model (See

Table 5.37)

0..n

testData-

Element

Contained test data model elements. TestData-

Element (See

Section 5.7.2)

0..n

110
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.7.2 TestDataElement

Description

The TestDataElement is an abstract classifier that is the base for all elements

in the UTML test data metamodel

Syntax

The TestDataElement element extends UtmlElement (See Section 5.3.1)

5.7.3 DataTypeIndicator

Description

The DataTypeIndicator element is an enumeration listing the different cate-

gories of type indicators in the UTML test data metamodel.

Semantics

The DataTypeIndicator element’s purpose is to be used as a property for data

type model elements to define their structure in a more precise manner.

Syntax

Table 5.38: The DataTypeIndicator UTML element

Literal Description

SEQUENCE Used for a data structure containing ordered

fields.

CHOICE Used for a data structure in which only one of the

listed fields may be present.

ALL Used for a data structure containing unordered

fields.

ENUMERATION Used for an enumeration kind of data structure.

5.7.4 DataDirection

Description

The DataDirection element is an enumeration for indicating the direction in

which a test data instance may be used in test scenarios. It should be kept in

mind that in UTML test modelling, according to the black-box paradigm, all

definitions are expressed from the test system’s perspective.The details provided

for DataDirection follow that same rule. For example, whenever direction IN

is mentioned, it refers to data moving into the test component.

5.7. TEST DATA DESIGN CONCEPTS 111

Semantics

The DataDirection element has no specific semantics, beyond being used as

a property for data instances (see Section 5.7.23) and port instances (see Sec-

tion 5.6.12). It should be noted that the direction of data and port instances

is always relative to the component hosting the port instance or using the data

instance for test behaviour.

Syntax

Table 5.39: The DataDirection UTML element

Literal Description

INOUT Used for a data instance that may be used both for

sending data with other components (Test-, SUT-

) or for verifying data received from it. When used

in association with port instances, this indicates

that the port instance may be used both for re-

ceiving data IN to the owning test component or

for sending data OUT to other entities.

IN Used for test data modelled for verifying data re-

ceived from the SUT or from other test compo-

nents. When, used in association with port in-

stances, it indicates that data can be received via

the referencing port instance into the owner test

component.

OUT Used for test data modelled for sending data out

to other components in a test architecture. When

used in association with port instances, this indi-

cates that the port can be used to send data out

of the owning test component to other entities.

5.7.5 DataKind

Description

The DataKind element is an enumeration listing the different kinds of data

currently supported by the UTML metamodel for designing test data.

Semantics

The DataKind element has no specific semantics, beyond being used as a prop-

erty for data types.

Syntax

Table 5.40 describes the syntax of DataKind element.

112
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.40: The DataKind UTML element

Literal Description

MESSAGE Indicates a test data kind used for asynchronous

communication.

OPERATION Indicates a test data kind used for modelling

synchronous communication schemes, i.e. those

whereby entities invoke operations or methods

provided by others to exchange data.

EXCEPTION Test data of this kind can be used to refine OPER-

ATION kind data types by specifying potentially

exceptional behaviour that could occur when the

operation is called.

CONTINUOUS Indicate a test data kind exchanged through con-

tinuous signals.

5.7.6 DataPatternKind

Description

The DataPatternKind UTML element is an enumeration defining a classifier

for types of test data patterns.

Semantics

The main purpose of the DataPatternKind element is to serve as a property

of test data instance to model data that will be generated during test execution

based on the selected test data pattern. The implementation of the mechanism for

generating concrete data instances based on the UTML test data model element

is left to the implementing body and is therefore out-of-scope for this thesis.

Syntax

Table 5.41: The DataPatternKind UTML element

Pattern Kind Description

DOMAIN PARTI-

TION

Indicates data obtained through domain parti-

tion. [132]

DEFAULT VALUE Default value used as test data.

BOUNDARY VA-

LUE

Indicates a scheme whereby boundary values are

used as test data.

RANDOM VALUE For values obtained by selecting randomly within

a range.

CUSTOM This literal is for user-defined data pattern.

5.7. TEST DATA DESIGN CONCEPTS 113

5.7.7 ConstraintKind

Description

The ConstraintKind element is an enumeration listing mechanisms for defining

constraints for test data in UTML. Most UTML constraint kinds are inherited

from the XSD language and follow the same semantics defined in the XSD spec-

ification [63] and described in table 5.42.

Semantics

The main purpose of the ConstraintKind element is to be used as a property

for constraints, e.g generic constraints (see Section 5.7.27) or field constraints (see

Section 5.7.27).

Syntax

Table 5.42: The ConstraintKind UTML element

Constraint kind Description

ENUMERATION Indicates a constraint reducing acceptable choices

to those present in an enumeration of values.

FRACTION -

DIGITS

Defines a constraint indicating that a test data

instances total number of decimal places should

be equal to a given value. Obviously constraints of

this kind are only applicable to types of test data

where they make sense, namely those representing

rational values (e.g. float).

LENGTH Defines a constraint on the length of a test data

value or that a contained field.

MAX EXCLUSIVE Defines a constraint indicating that a test data in-

stance’s value should be lower than a given value.

MAX INCLUSIVE Defines a constraint indicating that a test data

instance’s value should be lower than or equal to

a given value.

MAX LENGTH Defines a constraint indicating that a test data in-

stance’s length should be not exceed a given value.

MIN EXCLUSIVE Defines a constraint indicating that a test data

instance’s value should be greater than a given

value.

MIN INCLUSIVE Defines a constraint indicating that a test data

instance’s value should be lower than or equal to

a given value.

MIN LENGTH Defines a constraint indicating that a test data in-

stance’s length should be lower than a given value.

114
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.42: The ConstraintKind UTML element

Constraint kind Description

PATTERN Defines a constraint indicating that a test data

instance’s value should match a given pattern.

The pattern matching mechanism used is out

of UTML’s scope and is to be handled by the

lower level test infrastructures. Obviously, (Perl/-

Posix)regular expressions are good candidates for

that purpose, but other similar approaches could

be used instead.

TOTAL DIGITS Defines a constraint indicating that a test data in-

stance’s total number of digits should be equal to

a given value. Obviously constraints of this kind

are only applicable to types of test data where

they make sense (e.g. integer values).

HAS ELEMENT Defines a constraint indicating that a test data

instance is a list containing a given value as ele-

ment.

IS PRESENT Defines a constraint indicating that a given field is

present in a test data instance of a complex data

type.

EQUALS Defines a constraint indicating that a given test

data instance equals a given value.

IS NOT PRESENT Defines a constraint indicating that a given field

is not present in a test data instance of a complex

data type.

5.7.8 TestDataGroupItem

Description

The TestDataGroupItem is an abstract classifier providing the base for the

grouping mechanism in UTML test data models. Each classifier extending Test-

DataGroupItem can be added as a child of a group in a test data model.

Syntax

The TestDataGroupItem element extends GroupItem (See Section 5.3.5)

5.7.9 TestDataGroupDef

Description

The TestDataGroupDef element models a group in a test data model.

Syntax

The TestDataGroupDef element extends the following elements of the meta-

model:

5.7. TEST DATA DESIGN CONCEPTS 115

• DescribedElement (See Table 5.4)

• ElementWithUniqueID (See Table 5.9)

• TestDataGroupItem (See Section 5.7.8)

Table 5.43: Properties of the TestDataGroupDef UTML element

Property Description Type Occu-

rence

testData-

GroupItem

test data elements contained in the group. TestData-

GroupItem

(See Sec-

tion 5.7.8)

0..n

5.7.10 RelationKind

Description

The RelationKind element is an enumeration of the kinds of relationship be-

tween test data types.

Semantics

A test data type may extend or restrict another existing test data type element

to provide a mechanism similar to object inheritance for data types. The details

of that mechanism are described in Section 5.7.11.

Syntax

Table 5.44: The RelationKind UTML element

Literal Description

EXTENSION Indicates that a test data type extends another

existing one.

RESTRICTION Indicates that a test data type restricts an existing

test data type.

5.7.11 DataTypeRelationship

Description

The DataTypeRelationship element is used to model a relationship between a

new test data type and an already existing one in UTML.

116
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Semantics

The UTML notation defines two kinds of relationship between data types: ex-

tension and restriction. If test data type B extends test data type A(referred

to by its baseDataType property), then B may modify fields defined in A (e.g.

through redefinition, or by adding new constraints) and at the same time add

new fields to those defined in A. On the other hand, if test data type B restricts

test data type A, then B may only add new constraints or redefine fields defined

in B without being able to add any new field.

Syntax

Table 5.45: Properties of the DataTypeRelationship UTML element

Property Description Type Occu-

rence

baseData-

Type

The base data type this relationship refers

to.

TestData-

Type (See

Table 5.46)

1..1

dataCons-

traint

Data constraints being added to the base

data type.

DataCons-

traint (See

Table 5.57)

0..n

relation-

Kind

Kind of relationship. One of the following

val ues:

• EXTENSION (Default)

• RESTRICTION

Relation-

Kind (See

Table 5.44)

1..1

5.7.12 BasicTestDataType

Description

The BasicTestDataType element models a basic simple test data type in

UTML. A basic test data type has no fields.

Syntax

The BasicTestDataType element extends test data:TestDataType (See Table 5.46)

5.7.13 TestDataType

Description

The TestDataType is an abstract classifier that is the base for test data type

definitions in UTML.

5.7. TEST DATA DESIGN CONCEPTS 117

Figure 5.19: Class Diagram: UTML Metamodel for Modelling Test Data Types

Syntax

The TestDataType element extends UniqueNamedElement (See Table 5.7)

Table 5.46: Properties of the TestDataType UTML element

Property Description Type Occu-

rence

dataType-

Relationship

Defines a relationship with another test

data type.

DataType-

Relationship

(See Ta-

ble 5.45)

0..1

kind Kind of test data. DataKind

(See Ta-

ble 5.40)

1..1

name Unique identifier of the test data type. xsd:string 1..1

coding rule Encoding rule of the test data type. The

mechanism for evaluating the character

string used for expressing encoding rules

is out of UTML’s scope.

xsd:string 0..1

5.7.14 MessageTestDataType

Description

The MessageTestDataType element models a structured MESSAGE kind of

test data type, suitable for useage in asynchronous exchange of data in a UTML

test model.

Semantics

The MessageTestDataType is a descriptor which can be used at a later stage to

design test data instances for systems supporting asynchronous communication.

Syntax

A Class visual element is used to represent test data types.

Figure 5.20 shows an example UTML test data diagram, featuring a Message-

TestDataType being extended by another one. As depicted in that figure, fields

contained in MessageTestDataType elements are represented graphically in a

manner similar to the representation of attributes in UML class diagrams. The

same rule applies to the representation of parameter declarations in Operation-

TestDataType. Also visible in that figure is the graphical representation of op-

tional fields (e.g. DataTypeField2, DataTypeField3 and DataTypeField4 in Mes-

sageTestDataType2) caracterized by a surrounding dash-styled border line and

the associated dark gray color.

118
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Figure 5.20: Example UTML Test Data Diagram

Additionally, the Dependency graphical element is used to represent import-

type relationships between elements contained in test data diagrams, while the

Generalisation graphical element is used to represent inheritance-type relation-

ships (extension/restriction) between test data type definitions and test data

instances.
The MessageTestDataType element extends BasicTestDataType (See Sec-

tion 5.7.12)

Table 5.47: Properties of the MessageTestDataType UTML element

Property Description Type Occu-

rence

dataType-

Field

Fields of the message data type. DataType-

Field (See

Table 5.48)

0..n

dataType-

Indicator

Selector for indicating the kind of struc-

tured data type.

DataType-

Indicator (See

Table 5.38)

1..1

5.7. TEST DATA DESIGN CONCEPTS 119

5.7.15 DataTypeField

Description

The DataTypeField element models a field in a structured test data type.

Syntax

The DataTypeField element extends the following elements of the metamodel:

• NamedElement (See Table 5.6)

• DescribedElement (See Table 5.4)

Table 5.48: Properties of the DataTypeField UTML element

Property Description Type Occu-

rence

fieldData-

Type

Reference to type definition for the field. BasicTest-

DataType

(See Sec-

tion 5.7.12)

1..1

optional Indicates whether the field is optional (De-

fault is false)

xsd:boolean 1..1

minOccurs If message kind is a list, then this indi-

cates, the minimal number of occurences

of elements of the list. The provided string

is one that can be evaluated to an integer

value in the lower level test infrastructure.

xsd:string 0..1

maxOccurs If message kind is a list, then this indi-

cates, the maximal number of occurences

of elements of the list. The provided string

is one that can be evaluated to an integer

value in the lower level test infrastructure.

xsd:string 0..1

dataType-

Indicator

A selector for indicating the type of struc-

tured data type.

DataType-

Indicator (See

Table 5.38)

1..1

defaultValue A reference to a previously defined Value-

Instance element, serving as default value

for insta nces of this field.

ValueInstance

(See Ta-

ble 5.53)

0..1

default-

ValueLiteral

A string literal representing the de fault

value for the field. This is an alternative to

providing a reference for the default value

via the defaultValue child element men-

tioned above.

xsd:string 0..1

120
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.7.16 ParameterDeclaration

Description

The ParameterDeclaration element models a parameter declaration for a test

data type, a test data instance or a behaviour definition (i.e. a function) in the

UTML metamodel.

Semantics

The ParameterDeclaration element provides the mean for modelling the dec-

laration of a parameter for any other UTML elements for which parameterization

is to be supported. Therefore, this element can only be used in combination with

those other UTML elements.

Syntax

The ParameterDeclaration element extends the following elements of the

metamodel:

• NamedElement (See Table 5.6)

• AbstractDataInstance (See Section 5.7.21)

Table 5.49: Properties of the ParameterDeclaration UTML element

Property Description Type Occu-

rence

type Type of the parameter. BasicTest-

DataType

(See Sec-

tion 5.7.12)

1..1

direction Direction of the parameter: one of IN, IN-

OUT or OUT. The direction of parame-

ter declarations follows the same semantic

as defined in the Interface Definition Lan-

guage (IDL) or in the TTCN-3language.

DataDirec-

tion (See

Table 5.39)

1..1

5.7.17 OperationTestDataType

Description

The OperationTestDataType element models an OPERATION kind of test

data type in the UTML metamodel.

5.7. TEST DATA DESIGN CONCEPTS 121

Semantics

The OperationTestDataType element is a descriptor which can be used to

design test data instances for systems supporting synchronous communication

using a semantics of operation calls that block until the called party returns a

result.

Syntax

The OperationTestDataType element extends TestDataType (See Table 5.46)

Table 5.50: Properties of the OperationTestDataType UTML element

Property Description Type Occu-

rence

operation-

Response-

Def

Response declaration for the operation test

data type.

Operation-

ResponseDef

(See Ta-

ble 5.51)

1..1

parameter-

Declaration

Parameters declarations for the operation

data type.

Parameter-

Declaration

(See Ta-

ble 5.49)

0..n

operation-

Exception-

Def

Exceptions declarations for the operation

data type.

Operation-

ExceptionDef

(See Ta-

ble 5.52)

0..n

5.7.18 OperationResponseDef

Description

The OperationResponseDef element models a response definition in a UTML

test operation specification.

Semantics

The OperationResponseDef element is only used in combination with the

OperationTestDataType element. It represents the modelling of the response

part of an operation.

Syntax

The OperationResponseDef element extends the DescribedElement element

of the metamodel(See Table 5.4).

122
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.51: Properties of the OperationResponseDef UTML element

Property Description Type Occu-

rence

type Data type of the operation response. TestData-

Type (See

Table 5.46)

1..1

5.7.19 OperationExceptionDef

Description

The OperationExceptionDef element models an exception definition in a UTML

test operation specification.

Semantics

In a similar manner as the OperationResponseDef element, the Operation-

ExceptionDef is also only used in combination with the OperationTestDataType

element. It can be used to model exceptional responses potentially returned by

an operation.

Syntax

The OperationExceptionDef element extends the DescribedElement element
of the metamodel(See Table 5.4).

Table 5.52: Properties of the OperationExceptionDef UTML element

Property Description Type Occu-

rence

type Data type of the operation exception. TestData-

Type (See

Table 5.46)

1..1

5.7.20 SignalTestDataType

Description

The SignalTestDataType element models a test data type descriptor for con-

tinuous signals in UTML.

Syntax

The SignalTestDataType element extends MessageTestDataType (See Table 5.47)

5.7. TEST DATA DESIGN CONCEPTS 123

5.7.21 AbstractDataInstance

Description

Figure 5.21: Class Diagram: UTML Metamodel for Test Data Instances

The AbstractDataInstance element is an abstract classifier providing the

base for modelling data instances in UTML.

Syntax

The AbstractDataInstance element extends DescribedElement (See Table 5.4)

5.7.22 ValueInstance

Description

The ValueInstance element models a value of a given data type in UTML.

124
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Syntax

The ValueInstance element extends the following elements of the metamodel:

• UniqueNamedElement (See Table 5.7)

• AbstractDataInstance (See Section 5.7.21)

Table 5.53: Properties of the ValueInstance UTML element

Property Description Type Occu-

rence

type Reference to the type definition for this

value instance.

TestData-

Type (See

Table 5.46)

1..1

5.7.23 TestDataInstance

Description

The TestDataInstance is an abstract classifier used as base for all test data

instances in UTML. Test data instances represent concrete data resulting from

instantiating previously defined TestDataType elements (See Section 5.7.13) or

extensions thereof, e.g. MessageTestDataType (See Section 5.7.14), Opera-

tionTestDataType (See Section 5.7.17) and SignalTestDataType (See Sec-

tion 5.7.17)

Syntax

The TestDataInstance element extends the following elements of the meta-

model:

• TestDataGroupItem (See Section 5.7.8)

• ValueInstance (See Table 5.53)

The TestDataInstance element is an abstract classifier that is the base for

all data instance definitions in UTML.

Table 5.54: Properties of the TestDataInstance UTML element

Property Description Type Occu-

rence

mirrorData-

Instance

A test data instance that is suitable as re-

sponse to this test data instance.

TestData-

Instance (See

Table 5.54)

0..1

direction Direction in which the test data might be

used.

DataDirec-

tion (See

Table 5.39)

1..1

5.7. TEST DATA DESIGN CONCEPTS 125

5.7.24 MessageTestDataInstance

Description

The MessageTestDataInstance element models a message that can be ex-

changed between components in a test architecture.

Semantics

MessageTestDataInstance elements represent instantiations of MessageTest-

DataType elements.

Constraints

Constraint If a MessageTestDataInstance element extends another one and that

MessageTestDataInstance (base data instance) was designed for incoming data

(i.e. with its direction property set to IN), then the extending data instance

may not be used for outgoing test data. The motivation for this constraint is the

fact that test data designed for checking incoming data may include constraints

expressed using wildcards, which may not be enough to create concrete data to

be sent to other entities.

(s e l f . baseDataInstance . oclIsTypeOf (OclVoid) = f a l s e

and

s e l f . baseDataInstance . d i r e c t i o n

= utml : : t e s t d a t a : : DataDirect ion : : IN

)

implies

(s e l f . d i r e c t i o n=utml : : t e s t d a t a : : DataDirect ion : : IN)

Constraint The type property of a MessageTestDataInstance element must

be a MessageTestDataType or a BasicTestDataType.

s e l f . oclAsType (utml : : t e s t d a t a : : ValueInstance)

. type . oclIsTypeOf (OclVoid) = f a l s e

implies

(s e l f . oclAsType (utml : : t e s t d a t a : : ValueInstance) . type

. oclIsTypeOf (utml : : t e s t d a t a : : MessageTestDataType) = true

or

s e l f . oclAsType (utml : : t e s t d a t a : : ValueInstance) . type

. oclIsTypeOf (utml : : t e s t d a t a : : BasicTestDataType) = true)

Syntax

The MessageTestDataInstance element extends the TestDataInstance el-

ement (See Table 5.54) of the metamodel.

126
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.55: Properties of the MessageTestDataInstance UTML element

Property Description Type Occu-

rence

dataCons-

traint

Constraints associated to this message

data instance.

DataCons-

traint (See

Table 5.57)

0..n

data-

Pattern-

Kind

Test data pattern this message data in-

stance is based on. This property can

be used to design dynamic generation of

test data based on the selected pattern.

The implementation of the mechanism for

generating test data dynamically is tool-

specific and therefore out of the scope of

the UTML notation.

DataPattern-

Kind (Cf.

Table 5.41)

0..1

baseData-

Instance

Test data instance which this data instance

extends or restricts.

TestData-

Instance (See

Table 5.54)

0..1

parameter-

Declaration

Describes a parameter declaration for a

message data instance. This functional-

ity imported from the TTCN-3notation is

very convenient for defining reusable test

data for which the values or the constraints

can be customized for a specific test case.

It should be noted that concrete values

must be provided for parameterized test

data instances, whenever those are used to

design test behaviour. Otherwise, the re-

sulting test model is considered invalid.

Parameter-

Declaration

(See Ta-

ble 5.49)

0..n

5.7.25 SignalTestDataInstance

Description

The SignalTestDataInstance element models a test data instance for commu-

nication based on continuous signals.

Constraint The type property of a SignalTestDataInstance element must be

a SignalTestDataType or a BasicTestDataType.

s e l f . oclAsType (utml : : t e s t d a t a : : ValueInstance)

. type . oclIsTypeOf (OclVoid) = f a l s e

implies

(s e l f . oclAsType (utml : : t e s t d a t a : : ValueInstance) . type

. oclIsTypeOf (utml : : t e s t d a t a : : SignalTestDataType) = true

or

s e l f . oclAsType (utml : : t e s t d a t a : : ValueInstance) . type

. oclIsTypeOf (utml : : t e s t d a t a : : BasicTestDataType) = true)

5.7. TEST DATA DESIGN CONCEPTS 127

Syntax

The SignalTestDataInstance element extends TestDataInstance (See Table 5.54)

5.7.26 OperationTestDataInstance

Description

The OperationTestDataInstance element models a test data instance for syn-

chronous communication between components in a test model. It is equivalent

to the invocation of a method or a function on an interface.

Semantics

OperationTestDataInstance elements represent instantiations of Operation-

TestDataType elements. This includes the specification of parameters, if any

were defined in the associated OperationTestDataType.

Constraints

Constraint The type property of an OperationTestDataInstance element must

be an OperationTestDataType.

s e l f . oclAsType (utml : : t e s t d a t a : : ValueInstance)

. type . oclIsTypeOf (OclVoid) = f a l s e

implies

s e l f . oclAsType (utml : : t e s t d a t a : : ValueInstance) . type

. oclIsTypeOf (utml : : t e s t d a t a : : OperationTestDataType) = true

Syntax

The OperationTestDataInstance element extends TestDataInstance (See Ta-

ble 5.54)

Table 5.56: Properties of the OperationTestDataInstance UTML ele-

ment

Property Description Type Occu-

rence

operation-

Parameter

Parameter values for the operation data in-

stance.

Parameter-

Def (See

Table 5.60)

0..n

128
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.7.27 DataConstraint

Description

The DataConstraint element provides a means for specifying constraints that

have to be fullfiled by a given value instance to meet specific test requirements.

Based on such constraints, instances of data can be generated automatically for

sending stimuli to the SUT or responses from other (e.g. SUT) components can

be validated against those constraints to assess correct behaviour.

Semantics

The DataConstraint element is used as a property of test data instances to

indicate which constraints must be met by those data instances to serve a par-

ticular test purpose. Data constraints may be defined both for data designed to

be sent to other components (e.g. to the SUT as stimulus) or to express require-

ments on incoming responses from the SUT. Based on those data constraints

concrete values may be generated automatically in the target test environment

to be used as stimuli. In the same manner oracles for checking SUT responses

may be generated automatically as well for test execution.

Constraints

Constraint For constraints checking the value of a data instance or a field thereof,

a reference value must be provided, either as string literal to be evaluated by the

test environment or as a reference to another defined value instance of compatible

type. The targetted element (i.e. the one for which the constraint is defined)

is then compared with the reference value to assess whether the constraint is

fullfiled or not. This constraint does not apply to UTML data constraints used

for checking whether a value is present or not. If a reference value is provided in

those cases, it will simply be ignored.

(s e l f . const ra intKind

<> utml : : t e s t d a t a : : ConstraintKind : : IS PRESENT

and

s e l f . const ra intKind

<> utml : : t e s t d a t a : : ConstraintKind : : IS NOT PRESENT

)

implies

(

((s e l f . r e f e r e n c eVa l u eL i t e r a l . oc l IsTypeOf (OclVoid) = true

or

s e l f . r e f e r e n c eVa l u eL i t e r a l = ’ ’)

implies

s e l f . r e f e r enceData . oclIsTypeOf (OclVoid) = f a l s e)

or

(s e l f . r e f e r enceData . oclIsTypeOf (OclVoid) = true

implies

5.7. TEST DATA DESIGN CONCEPTS 129

(s e l f . r e f e r e n c eVa l u eL i t e r a l . oc l IsTypeOf (OclVoid) = f a l s e

and

s e l f . r e f e r e n c eVa l u eL i t e r a l <> ’ ’

)))

Syntax

The DataConstraint element extends DescribedElement (See Table 5.4)

Table 5.57: Properties of the DataConstraint UTML element

Property Description Type Occu-

rence

constraint-

Kind

Kind of constraint. Constraint-

Kind (See

Table 5.42)

1..1

reference-

Data

A defined test data instance which this

constraint refers to. This means, data in-

stances required to meet this constraint

will be compared against the value pointed

to by this property.

TestData-

Instance (See

Table 5.54)

0..1

reference-

ValueLiteral

a character string representing the value

which this constraint refers to. This field

is to give the test designer a more flexible

mean for defining the value of the reference

for the constraint. It is then left to the

lower-level test infrastructure to handle the

mechanism for verifying that a test data

instance fullfils the constraint or not. If the

ReferenceData field has been provided,

then this field can be omitted.

xsd:string 0..1

5.7.28 FieldConstraint

Description

The FieldConstraint element provides a mean for modelling a constraint on a

field in a UTML structured test data type.

Constraints

Constraint The field property of a FieldConstraint element must refer to a field

effectively supported by the type definition for the associated message data in-

stance. The field may also be inherited from an extended data type.

(s e l f . f i e l d . oc lIsTypeOf (OclVoid)= f a l s e

and

s e l f . f i e l d . f ie ldDataType . oclIsTypeOf (OclVoid)= f a l s e

130
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

and

s e l f . theContainerMessageDataInstance

. oclIsTypeOf (OclVoid)= f a l s e

)

implies

(s e l f . theContainerMessageDataInstance

. oclAsType (utml : : t e s t d a t a : : ValueInstance) . type

. oclAsType (utml : : t e s t d a t a : : MessageTestDataType)

. dataTypeField −> e x i s t s

(f ie ldDataType . name = s e l f . f i e l d . f ie ldDataType . name)

or (s e l f . theContainerMessageDataInstance .

oclAsType (utml : : t e s t d a t a : : ValueInstance)

. type . oclAsType (utml : : t e s t d a t a : : MessageTestDataType)

. dataTypeRelat ionship −> f o rA l l (oclIsTypeOf (OclVoid) = f a l s e)

and

s e l f . theContainerMessageDataInstance

. oclAsType (utml : : t e s t d a t a : : ValueInstance) . type

. oclAsType (utml : : t e s t d a t a : : MessageTestDataType)

. dataTypeRelat ionship −> f o rA l l (baseDataType

. oclIsTypeOf (OclVoid) = f a l s e)

and

s e l f . theContainerMessageDataInstance

. oclAsType (utml : : t e s t d a t a : : ValueInstance) . type

. oclAsType (utml : : t e s t d a t a : : MessageTestDataType)

. dataTypeRelat ionship −> e x i s t s (baseDataType

. oclAsType (utml : : t e s t d a t a : : MessageTestDataType)

. dataTypeField −> e x i s t s (f ie ldDataType . name

= s e l f . f i e l d . f ie ldDataType . name))

)

)

Syntax

The FieldConstraint element extends DataConstraint (See Table 5.57)

Table 5.58: Properties of the FieldConstraint UTML element

Property Description Type Occu-

rence

field Reference to the field to which the con-

straint applies.

DataType-

Field (See

Table 5.48)

1..1

5.7.29 ParameterConstraint

Description

The ParameterConstraint element provides a mean for modelling a constraint

on a declared parameter in a UTML operation test data type.

Syntax

The ParameterConstraint element extends DataConstraint (See Table 5.57)

5.7. TEST DATA DESIGN CONCEPTS 131

Table 5.59: Properties of the ParameterConstraint UTML element

Property Description Type Occu-

rence

param Reference to the parameter declaration to

which the constraint applies.

Parameter-

Declaration

(See Ta-

ble 5.49)

1..1

5.7.30 ParameterDef

Description

The ParameterDef element models a parameter definition in UTML. Param-

eter definitions can be used to set the values of parameters to a any parameter-

izable UTML element. Parameterizable UTML elements include execution and

thus can be used to customized a test suite to a given platform, a specific SUT

or ensure that certain preconditions are fullfiled for a test case.

Semantics

The ParameterDef elements are used in combination with parameterizable

elements to model the values to be used for the parameters declared by those

elements when they are instantiated or used in test actions and test events.

Constraints

Constraint The value for the parameter must be provided either as a character

string literal to be evaluated by the target test environment or as a reference to

a previously defined value instance.

(s e l f . paramValue . oc lIsTypeOf (OclVoid) = true

implies

(s e l f . paramValueLitera l . oc l IsTypeOf (OclVoid) = f a l s e)

and

s e l f . paramValueLitera l <> ’ ’)

or

((s e l f . paramValueLitera l . oc l IsTypeOf (OclVoid) = true

or

s e l f . paramValueLitera l = ’ ’)

implies

s e l f . paramValue . oc lIsTypeOf (OclVoid) = f a l s e)

Constraint The value instance provided as parameter for a ParameterDef el-

ement may also be parameterizable. If so, the parameters required must be

provided to match the definition of the value instance.

132
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

(s e l f . paramValue .

ocl IsTypeOf (utml : : t e s t d a t a : : MessageTestDataInstance) = true)

implies

(s e l f . parameterDef −> s i z e ()

= s e l f . paramValue

. oclAsType (utml : : t e s t d a t a : : MessageTestDataInstance)

. parameterDec larat ion −> s i z e ())

Syntax

The ParameterDef element extends AbstractDataInstance (See Section 5.7.21)

Table 5.60: Properties of the ParameterDef UTML element

Property Description Type Occu-

rence

parameter-

Declaration

The parameter declaration for which a

value is being set.

Parameter-

Declaration

(See Ta-

ble 5.49)

1..1

paramValue A reference to a previously defined value

instance that will be attributed to the pa-

rameter.

ValueInstance

(See Ta-

ble 5.53)

0..1

param-

ValueLiteral

Alternatively to providing a reference to a

defined value instance, a character string

representing the value to be attributed to

the parameter. At least one of those two

alternatives must be provided for any pa-

rameter definition. If both the paramValue

and paramValueLiteral are provided, then

the paramValue field has priority.

xsd:string 0..1

5.7.31 TestParameter

Description

The TestParameter element models a test parameter definition in UTML. Test

parameters are constant values that can be set prior to test execution and thus

can be used to customize a test suite for a given platform, a specific SUT or to

ensure that certain preconditions are fullfiled for a given test case.

Semantics

Syntax

The TestParameter element extends ValueInstance (See Table 5.53)

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 133

Table 5.61: Properties of the TestParameter UTML element

Property Description Type Occu-

rence

value A reference to a previously defined Value-

Instance with which the test paramater is

initialized.

ValueInstance

(See Ta-

ble 5.53)

0..1

valueLiteral A character string literal describing a value

to be assigned to the parameter. This is an

alternative to providing a ValueInstance as

described above. If both the value and the

valueLiteral fields are provided, than the

ValueInstance field has priority.

xsd:string 0..1

5.7.32 TestParameterSet

Description

The TestParameterSet element models a set of parameters, which can be at-

tached to a test case.

Semantics

Syntax

The TestParameterSet element extends the following elements of the meta-

model:

• UniqueNamedElement (See Table 5.7)

• DescribedElement (See Table 5.4)

Table 5.62: Fields and attributes of the TestParameterSet UTML ele-

ment

Property Description Type Occu-

rence

testPara-

meter

A list of references to previously defined

test parameters.

TestPara-

meter (See

Table 5.61)

1..n

5.8 Test Behaviour Design Concepts

As described in the overview to this chapter, test behaviour is designed with

UTML through test sequence diagrams and test activity diagrams. Test sequence

diagrams are used to describe test interactions between test components and SUT

components via ports. To design more complex test behaviours, those interactions

134
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

can be combined with each other in test activity diagrams.

5.8.1 Basic Principles of UTMLTest Behaviour Design

Action- and Event-based Semantics

Figure 5.22: Class Diagram: UTML Atomic Actions

Test behaviour modelling in UTML is based on the same functional abstrac-

tion principles as those of the Action-Based or Action-Driven Testing (ABT)

methodology introduced by Buwalda et al. [28] [29] and Li Feng et al. [52], re-

spectively. The ABT methodology aims at optimizing the process of defining test

cases by enabling test engineers to create executable test scripts from reusable

actions. Those reusable actions encapsulate complex test scripting elements, so

that the production of new test scripts is made easier and faster. The main

difference between the ABT methodology and the one proposed in this work is

that, instead of stating those actions informally using natural language, a clearly

defined pattern-oriented test metamodel is used. This has the advantage that,

the test models can remain as intuitive and concise as ’actions’, while at the same

time benefiting from the validation and transformation facilities that come with

a model-driven engineering process.

Additionally to actions, UTML introduces the concept of events to design

reactions expected to be observed on the SUT to assess that its behaviour is

inline with the requirements of the test case.

Actions and Events are owned by test components on which they are run or

to which they are attached. For interactive actions, the reference to the owning

component can be derived automatically from the port instances involved in

the interactive action. For local test actions, structured test actions and action

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 135

blocks, the owning component is either set manually by selecting a reference to

the owning test component from the action’s/event’s theComponent property’s

dialog or graphically by positioning the action’s/event’s figure on the hosting

component’s figure.

UTML Ele-
ment

Owning Test Component

SendDataAction Test component containing the source port.

ReceiveDataEvent Test component containing the reception port.

Table 5.63: Rules for Test Action Ownership

Figure 5.23: Class Diagram: UTML Observation Elements

Figure 5.24: Class Diagram: UTML Declarative Behaviour Elements

136
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Declarative Elements Declarative UTML behaviour elements are used to declare

items that will be referenced by other elements in a test behaviour model. Declar-

ative elements do not have any semantics in themselves, but their semantics will

depend on the context in which they are refered to. The UTML notation defines

the following declarative elements for test behaviour:

• VariableDeclaration (see Section 5.8.25).

• Timer(see Section 5.8.26).

• State(see Section 5.8.27).

Interactive actions Interactive actions are those in which more than one com-

ponent are involved. Examples of interactive actions include UTML SendData-

Action, SendReceiveSequence, SetupConnectionAction, etc. Those actions are

represented graphically by different forms of lines connecting the port instances

involved.

Local Test Actions Local UTML test behaviour actions are those that are asso-

ciated to a single (owning) test component in the test architecture. Examples of

local test actions include:

• WaitAction

• CheckAction and elements extending it (e.g. ValueCheckAction, Exter-

nalCheckAction, etc.)

• TestBehaviourActionInvocation

Structured Test Actions and Action Blocks

Structured test actions are those that combine several other test actions, e.g. to

model more complex test behaviour or a sequence of testing actions.

Architecture-Aware Test Design

The test architecture plays a central role for every UTML test design, as it does

not only define the framework in which test behaviour is designed, but is also

taken into account for determining which data types and values are relevant or

not for certain test actions or events. For example, depending on the way a

SUT is connected to other entities in the architecture and on the accessibility

of those connection points with the SUT taken as black-box, the test designer

would have to model certain data in the data model (e.g. those exchanged with

the SUT via those points and those referenced as fields or values by them), while

ignoring other data types and values (e.g. those exclusively used for internal

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 137

Figure 5.25: Class Diagram: UTML Structured Actions

communication between sub-entities of the SUT). Furthermore, while designing

test behaviour, the constrained defined by the test architecture will have to be

taken into account, to avoid that invalid test behaviour is designed. Examples of

invalid test behaviour include:

• Establishing a connection between incompatible ports.

• Sending data via a port designed in the architecture as supporting only

incoming communication (IN-Direction).

• Exchanging data over a port that does not support that type of communi-

cation.

• Designing an action to be hosted on a component that is inaccessible, given

the selected test architecture.

Test Components Behaviour

Each test component is assumed to be a parallel test component in the same

sense as in TTCN-3[58]. Therefore, concurrent behaviour can be designed by us-

ing more than one test component. First assessments indicate that this principle,

combined with the possibility of describing synchronisation/coordination schemes

among the test components is sufficient for expressing most test behaviour sce-

narios, including the more complex ones involving concurrency.

138
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Verdicts Assignment

Following the Assertion-Based Test Behaviour design pattern described in Sec-

tion A.5.1, test behaviour design with UTML focusses on correct test behaviour,

while using assertions for checking SUT failures. Therefore the test behaviour

model will not attempt to describe all possible branches of an SUT’s behaviour

tree, but rather describe the correct test behaviour between the test system and

the SUT for the implemented test objective. The term “correct” here is used

relative to requirements on the SUT and the resulting specification. Thus, it is

sufficient for the UTML test behaviour model to describe the branch leading to

the PASS verdict according to the designed test procedure.

The reasons for this principle are twofold:

Firstly, because with the purpose of testing being to uncover failures of the

SUT, any test case terminating with a verdict different from PASS is an indica-

tion of a potential failure either on the side of the SUT or that of the test system

and therefore, requires further analysis. Based on the selected predefined policy

(Cf. Table 5.71), any deviation from the test behaviour specified in a UTML test

model would lead to a FAIL or INCONCLUSIVE verdict. This means, there

should be no such thing as a “positive” FAIL or INCONCLUSIVE verdict.

Secondly, this principle enables UTML test behaviour models to remain concise,

thus increasing their readability, understandability and maintainability. Obvi-

ously, this means that the test designer will have to analyse each requirement

from the testing perspective rather than simply trying to emulate the SUT’s

behaviour.

For example, given the following requirement on an SUT:

“The system must respond to invalid input for parameter p of its operation

f by throwing an exception e of type ExceptionType”

A possible test procedure would consist of the following test steps:

• Instanciate a value suitable v as invalid input for parameter p of operation

f .

• Call operation f using v for parameter p.

• Check that an exception of type ExceptionType is thrown.

As displayed in the test procedure above, the SUT’s exceptional behaviour,

though unwished for, is considered to be “correct” with regard to the stated

requirement.

Temporal abstraction

UTML defines concepts for supporting various forms of temporal abstraction [125].

The main temporal abstraction is that only the ordering of actions and events

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 139

matters for test behaviour. Therefore, the notion of time used in UTML is an

abstraction from physical time and its mapping to concrete values and associated

clocks is left to the target test execution environment.

5.8.2 UTML Test Sequence Diagrams

Figure 5.26: Example UTML Test Behaviour Sequence Diagram

Figure 5.26 depicts an example UTML test sequence diagram which illustrates

the similarities and the main differences to UML 1.4 sequence diagrams:

Lifelines

In basic UML sequence diagrams (as defined in version 1.4 of the notation), a

lifeline is a representation of the lifecycle of an object involved in the interaction

modelled in the diagram. Therefore, no distinction is made between the com-

munication points actually used by the object to exchange messages with other

entities. This limitation was found to be unsatisfactory for pattern-oriented test

design, because the resulting sequence does not visually reflects the test architec-

ture in which it is to occur. Therefore, UTML defines a lifeline as a combination

of the lifecycle of a component involved in a test scenario and the port instances

owned by that component and used for exchanging messages with other entities

in the test architecture. While the port instances (represented in the same way

as object lifelines in UML) can be used to attach the starting and end points of

messages between the components, the components themselves can be used to

140
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

attach actions and events that are internal to the test component and thus are

not necessarily related to a particular port instance.

Another difference between lifelines in UTML and those in UML sequence

diagrams is that the concept of activation boxes does not exist for UTML ports

and components. A component is considered to be active over the whole duration

of the test scenario, as long as it is not explicitly terminated.

Supported elements and operations

Table 5.64 lists the elements of UML sequence diagrams supported by UTML

test sequences and their corresponding equivalents, where applicable.

Messages

Overview of messages supported by UTML test sequences

The first difference between UTML test sequence diagrams and UML sequence

diagrams is the lifeline behaviour is designed with UTML along a series of prin-

ciples that are based on the test design patterns described in Chapter 4. Those

principles are presented in the next sections, before the elements of the UTML

metamodel dedicated to test behaviour design are described in details.

5.8.3 UTML Test Activity Diagrams

Figure 5.27 displays an example UTML test activity diagram equivalent to the

test sequence diagram displayed in Figure 5.26. As depicted in that figure, test

activity diagrams are similar to UML activity diagrams, both syntactically and

semantically. As one would have expected, the UML signal elements are used

to represent interaction events such as SendDataAction and ReceiveDataEvent.

Meanwhile, UML activity elements are used for all local test behaviour actions.

Additionally, UTML test activity diagrams may be used to design complex test

execution scenarios, with activity elements used to represent test cases or invo-

cations of structured test behaviour elements. Finally, given the fact that con-

current behaviour is designed in UTML through parallel components, the UML

activity diagrams’ fork and join elements are not supported.

5.8.4 TestBehaviourModel

Description

The TestBehaviourModel element models a UTML test behaviour model. A

TestBehaviourModel instance is equivalent to the behavioural part of a test

suite.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 141

Figure 5.27: Example UTML Test Behaviour Activity Diagram

Figure 5.28: Class Diagram: UTML Main Containers for Test Behaviour

142
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

UML se-
quence di-
agram ele-
ment

UTML equiva-
lent

Syntax

Lifelines Component in-
stances and
contained port
instances

see Figure 5.26

Messages See Table 5.65

Self-
Messages

none N/A

Lost mes-
sages

none N/A

Found Mes-
sages

ReceiveDataEvent
or ReceiveSync-
DataEvent from
unspecified source

Life line
start and
end

none N/A

Duration
and time
constraints

Duration and
time constraints
are expressed
in UTML for
expected events
only through the
association with
timers.

N/A

Alternative
fragment

IfElseAction(see
Section 5.8.57)

See Figure 5.37

Loop frag-
ment

RepeatTest-
Action (see
Section 5.8.56)

See Figure 5.36

Option
fragment

AltBehaviour-
Action (see
Section 5.8.60)

See Figure 5.38

Gate none N/A

Table 5.64: Overview of UML sequence diagram elements supported by UTML
test sequences

Constraints

Constraint (Optional) A test behaviour model should define a default timer to

be used for actions and events to which no timer is explicitly associated.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 143

Message Concrete Syntax Effect

SendData-
Action

Send asyn-
chronous data
(message or
signal).

SendSync-
DataAction

Send synchronous
data (operation).

Receive-
DataEvent

Expect asyn-
chronous data
(message or
signal).

Receive-
SyncData-
Event

Expect syn-
chronous data
(operation).

Table 5.65: Overview of Messages supported by UTML Test Sequences

s e l f . de faultTimer . ocl IsTypeOf (OclVoid) = f a l s e

Syntax

The TestBehaviourModel element extends the BasicTestModel (See Table 5.3.2)

element defined previously

Table 5.66: Properties of the TestBehaviourModel UTML element

Property Description Type Occu-

rence

testArchi-

tecture-

TypesModel

References to test models contain-

ing basic test architecture elements.

TestArchi-

tectureTypes-

Model (See

Table 5.20)

0..n

testData-

Model

References to related test data

models.

TestData-

Model (See

Table 5.37)

from package

test data

0..n

test-

Behaviour-

Model

References to related test behaviour

models.

Test-

Behaviour-

Model (See

Table 5.66)

0..n

testBeha-

viour-

Element

Contained test behaviour model el-

ements.

Test-

Behaviour-

Element

(See Sec-

tion 5.8.49)

0..n

144
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.66: Properties of the TestBehaviourModel UTML element

Property Description Type Occu-

rence

test-

Procedures-

Model

Reference to related test procedures

models.

Test-

Procedures-

Model (See

Table 5.17)

0..n

timer Reference to a timer to serve as

default timer for all elements con-

tained in the test behaviour model,

for which though a timer is recom-

mended, none was explicitly spec-

ified. For example, if a Receive-

DataEvent element is designed in a

test behaviour model and the timer

property of that element is left un-

specified, then, if provided, the con-

taining TestBehaviourModel ele-

ment’s default timer applies.

Timer (See

Table 5.83)

0..1

5.8.5 TestBehaviourGroupItem

Description

The TestBehaviourGroupItem element is an abstract classifier that serves as

base for members of groups in a UTML test behaviour model. Therefore, it

provides the base for the partitioning mechanism in test behaviour models.

5.8.6 TestBehaviourGroupDef

Description

The TestBehaviourGroupDef element models a group in a UTML test be-

haviour model. A TestBehaviourGroupDef element is a mean for partitioning

a test model in a manner similar to UML packages. It may contain other Test-

BehaviourGroupDef elements as sub-groups, as well as other test behaviour

model elements extending the TestBehaviourGroupItem abstract classifier as chil-

dren.

Semantics

The TestBehaviourGroupDef element has no associated semantic and is just

a container for organising elements contained in a test behaviour model

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 145

Syntax

The TestBehaviourGroupDef element extends the following elements of the meta-

model:

• DescribedElement (See Table 5.4)

• ElementWithUniqueID (See Section 5.9)

• TestBehaviourGroupItem (See Section 5.8.5)

Table 5.67: Properties of the TestBehaviourGroupDef UTML element

Property Description Type Occu-

rence

test-

Behaviour-

GroupItem

Test behaviour elements contained

in the group.

Test-

Behaviour-

GroupItem

(See Sec-

tion 5.8.5)

0..n

5.8.7 Verdict

Description

The Verdict UTML element is a classifier for the possible kinds of verdict

assignable in a test model.

Semantics

Following the Assertion-Driven Test Behaviour Design pattern described in Sec-

tion A.5.1, the Verdict has no semantics in itself, but simply defines a value

that can be used as an attribute for other elements. In fact, at the moment, the

only UTML element requiring a verdict as attribute is the StopAction element

described in Table 5.88. For all other behaviour elements the resulting verdict is

derived from the assertions made on the SUT’s responses.

The verdict assignment mechanism in UTML follows the same principles as

defined for the TTCN-3 notation. It is therefore assumed that each component

instance maintains a local verdict that will be influenced by the actions and events

defined for that component. The overall verdict for a test case will be calculated

by applying the verdict overwriting rule defined in the TTCN-3 standard speci-

fication [58], which stipulates that once a verdict different from PASS has been

set in a test case, then that verdict cannot be overwritten back to PASS again.

146
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Syntax

Table 5.68: The Verdict UTML element

Literal Description

ERROR An ERROR verdict.

NONE The NONE verdict is the default value for in-

stances of the Verdict UTML element.

INCONC Indicates that no clear verdict could be assigned.

FAIL Indicates that the SUT did not meet the require-

ments implemented by the test case.

PASS Indicates that the SUT completed the test suc-

cessfully and thus meets the assessed test objec-

tive.

5.8.8 BehaviourPatternKind

Description

The BehaviourPatternKind UTML element is an enumeration used to classify

test behaviour patterns.

Syntax

Table 5.69: Properties of the BehaviourPatternKind UTML element

Property Description

SEND RECEIVE Indicates a send-receive test sequence.

TRIGGER RE-

CEIVE

Indicates a trigger-receive test sequence, i.e. one

whereby the SUT is triggered to send data which

the test system then evaluates.

SEND DISCARD Indicates a send-discard test sequence. A send-

discard test sequence is one whereby the test sys-

tem sends some data to the SUT and expects

those data to be discarded. I.e. the SUT is ex-

pected to ignore the data and not to respond to

it.

CUSTOM This literal is for user-defined test behaviour pat-

terns.

5.8.9 BehaviourActionKind

Description

The BehaviourActionKind element is an enumeration used to classify test

behaviour actions in categories, so that the main purpose of each action would be

easily recognizable, without having to look at the details of the code. Table 5.70

lists the literals of that enumeration representing categories currently defined in

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 147

UTML and describes each of them.

Syntax

Table 5.70: Properties of the BehaviourActionKind UTML element

Property Description

GENERIC The GENERIC literal is the default value for the

BehaviourActionKind element. It should be

used for any test behaviour action that cannot

be classified as belonging to any of the other cat-

egories.

VALUE COMPU-

TATION

Should be used for a test action whose main pur-

pose is to compute a value required for testing.

For example, a function for calculating a Cyclic

Redundancy Check (CRC) for a given message in

protocol testing.

STATE CHANGE Used for a test action whose purpose is to trigger

a state transition at the SUT.

STATE CHECK Used for an action whose purpose is to check that

an SUT is in a given state.

ARCHITECTURE-

SETUP

For a test action used to setup a test architecture.

ARCHITECTURE-

TEARDOWN

For a test action used to tear down an existing (or

running) test architecture.

EXPECT-

MESSAGE

For an action used to expect a message from an

SUT.

SEND MESSAGE For an action used to send data to an SUT.

EXTERNAL For an action which is executed beyond the bor-

ders of the test system, but which has an impact

on it or on the SUT.

MONITOR Used to monitor a certain state on the SUT.

5.8.10 PolicyKind

Description

The PolicyKind element is an enumeration used to classify the kinds of policy to

follow for assigning a test verdict following assertions and observation of expected

events from the SUT. Therefore the PolicyKind element is used as property

of UTML event elements such as the ReceiveDataEvent (See Table 5.99), the

TimerExpirationEvent elements .

148
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Syntax

Table 5.71 describes the syntax of PolicyKind element.

Table 5.71: Properties of the PolicyKind UTML element

Property Description

STRICT STRICT policy means any deviation from the ex-

pected behaviour from the SUT would lead to a

fail verdict.

RELAX In case of RELAX policy, whenever the SUT’s be-

haviour does not match the described behaviour,

then a verdict of inconclusive is applied.

5.8.11 TestBehaviourActionDef

Description

The TestBehaviourActionDef element is a key element of the UTML meta-

model. It is equivalent to a function definition in a functional programming

language. Therefore it might contain several types of other elements to represent

a complete test behaviour.

Semantics

The TestBehaviourActionDef models test behaviour that can be reused in

different context by invocation with the TestBehaviourInvocationAction element.

For a TestBehaviourActionDef to be invoked in another one or in a test case,

the test architectures associated to both elements must be equal or compati-

ble with each other. The rule for test architecture compatibility for behaviour

invocation is as follows:

If a behaviour f is defined on an architecture Af and another behaviour g is

defined on a test architecture Ag, then an invocation of g may only contain an

invocation of f if Af equals Ag or Af is a subset Ag. With Af being a subset of

Ag if it contains the same component instances and features the same connections

as Ag. TestBehaviourActionDef element may be associated to a component

type definition. This implies that all elements contained in the component’s type

definition (e.g. port instance, declared variables, timers, etc.) are accessible from

the behaviour definition.

Constraints

Constraint (Optional) A TestBehaviourActionDef should be associated to

static test architecture.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 149

s e l f . t e s tA r ch i t e c t u r e . oc lIsTypeOf (OclVoid) = f a l s e

Constraint (Optional) A TestBehaviourActionDef should contain at least one

component belonging to the SUT.

s e l f . componentInstance

−> e x i s t s (kind = utml : : t e s t a r c h i t e c t u r e : : ComponentKind : : SUT)

Syntax

The TestBehaviourActionDef element extends the following elements of the meta-

model:

• DescribedElement (See Table 5.4)

• TestBehaviourGroupItem (See Section 5.8.5)

Table 5.4)
Table 5.72 list the various elements possibly contained in a TestBehaviour-

ActionDef element.

Table 5.72: Properties of the TestBehaviourActionDef UTML element

Property Description Type Occu-

rence

testArchi-

tecture

A reference to the test architecture

required for this function definition.

TestArchi-

tecture (See

Table 5.31)

0..1

component-

Instance

A test component instance on

which the TestBehaviourAction-

Def will be running. This concept

of attaching a behaviour to a test

component has been borrowed from

the TTCN-3 language [58].

TestCom-

ponentIns-

tance (See

Table 5.29)

1..1

connections Connections between test compo-

nent instances involved in this

TestBehaviourActionDef

Connection

(See Ta-

ble 5.30)

1..1

component-

Type

Type of component on which this

TestBehaviourActionDef might be

run (See TTCN-3 [58])

Component-

Type (See

Table 5.23)

from package

test architec-

ture

1..1

beginState If a given SUT state is required as

precondition for the TestBehaviour-

ActionDef to be executed, it should

be selected here.

State (See Ta-

ble 5.84)

0..1

150
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.72: Properties of the TestBehaviourActionDef UTML element

Property Description Type Occu-

rence

testAction Test actions contained in the be-

haviour action definition.

TestAction

(See Ta-

ble 5.75)

from package

test behaviour

0..n

endState Final state of the SUT after the ex-

ecution.

State (See Ta-

ble 5.84) test-

behaviour

0..1

variable-

Declaration

Contained local variable declara-

tions.

Variable-

Declaration

(See Sec-

tion 5.8.25)

0..n

parameter-

Declaration

A list of parameters for the

TestBehaviourActionDef. This

is equivalent to function parame-

ters in generic purpose program-

ming languages.

Parameter-

Declaration

(See Ta-

ble 5.49)

0..n

name An identifier for the TestBehaviour-

ActionDef.

xsd:string 1..1

actionKind Classifier representing the main

purpose of this TestBehaviour-

ActionDef

Behaviour-

ActionKind

(See Ta-

ble 5.70)

0..1

responseDef A definition of the response re-

turned when this TestBehaviou-

ActionDef is invoked.

Operation-

ResponseDef

(See Ta-

ble 5.51)

0..1

5.8.12 TestBehaviourActionInvocation

Description

The TestBehaviourActionInvocation element models the invocation of a pre-

viously defined test behaviour action element. It can be viewed as the equivalent

to the invocation of a function in a classical programming language.

Constraints

Constraint A test behaviour definition may only be invoked on a test component

if the component’s type is compatible to the component type for which the test

behaviour was designed.

(s e l f . tes tBehaviourAct ionDef . oc lIsTypeOf (OclVoid) = f a l s e

and

s e l f . tes tBehaviourAct ionDef . componentType

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 151

. oc l IsTypeOf (OclVoid) = f a l s e)

implies

((s e l f . theComponent . ocl IsTypeOf (OclVoid) = f a l s e

and s e l f . theComponent . type . name

= s e l f . testBehaviourAct ionDef . componentType . name)

or

(s e l f . theComponent . ocl IsTypeOf (OclVoid) = f a l s e

and s e l f . theComponent . type . baseComponentType −> isEmpty () = f a l s e

and s e l f . theComponent . type . baseComponentType −>
e x i s t s (name=s e l f . testBehaviourAct ionDef . componentType . name)))

Syntax

The TestBehaviourActionInvocation element extends AtomicTestAction (See Sec-

tion 5.8.15)

Table 5.73: Properties of the TestBehaviourActionInvocation UTML

element

Property Description Type Occu-

rence

testBeha-

viour-

ActionDef

A reference to the testBehaviourActionDef

element to be invoked.

TestBeha-

viourAction-

Def (See

Table 5.72)

1..1

parameter-

Def

A set of values to be passed as parameters

for the invocation.

Parameter-

Def (See

Table 5.60)

0..n

5.8.13 Testcase

Description

The Testcase element models a test case in the UTML metamodel.

Semantics

The Testcase element extends the test behaviour:TestBehaviourActionDef ele-

ment(See Table 5.72) and just like that element, the Testcase element defines a

scope, in the sense that it may contain declarative elements reachable only within

the testcase.

There is no requirement for a Testcase element to explicitly assign a verdict.

Constraints

Constraint (Optional) A test case should define a component type as main com-

ponent type. This constraint is adopted from the TTCN-3 notation.

152
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

s e l f . componentType . oclIsTypeOf (OclVoid) = f a l s e

Constraint (Optional) A test case should define a component type as system

component type to label which of the components in a test architecture represent

the SUT.

s e l f . systemComponentType . oclIsTypeOf (OclVoid) = f a l s e

Constraint (Optional) The main test component type and the system component

type should be different from each other.

s e l f . componentType <> s e l f . systemComponentType

Constraint (Optional) A description should be provided for every test case.

s e l f . d e s c r i p t i o n . oclIsTypeOf (OclVoid) = f a l s e and s e l f . d e s c r i p t i o n <>

’TODO: Add d e s c r i p t i o n ’

Constraint (Optional) Each test case should contain at least one test component

instance belonging to the SUT.

s e l f . oclAsType (utml : : t e s t b ehav i ou r : : TestBehaviourActionDef)

. componentInstance −>
e x i s t s (kind = utml : : t e s t a r c h i t e c t u r e : : ComponentKind : : SUT)

Constraint (Optional) Each test case should be associated to at least one test

objective or test procedure.

s e l f . t e s tOb j e c t i v e −> s i z e () > 0

or s e l f . t e s tProcedure . ocl IsTypeOf (OclVoid) = f a l s e

Constraint (Optional) A test case should not be directly associated to a test

procedure and test objectives at the same time. Otherwise, that may lead to

conflicts with regard to traceability, because the test objectives referred to by the

test procedure may be different from the ones directly associated to the test case.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 153

(s e l f . t e s tOb j e c t i v e −> s i z e () > 0

implies (s e l f . t e s tProcedure . ocl IsTypeOf (OclVoid) = true))

and

(s e l f . t e s tProcedure . ocl IsTypeOf (OclVoid) = f a l s e

implies (s e l f . t e s tOb j e c t i v e −> s i z e () = 0))

Constraint (Optional) Each test case should contain at least one test action with

the passCriterium property set to true.

s e l f . t e s tAct i on −> e x i s t s (

(oclIsTypeOf (utml : : t e s t b ehav i ou r : : SendDataAction)

and

oclAsType (utml : : t e s t b ehav i ou r : : SendDataAction)

. passCr i ter ium = true

)

or

(oclIsTypeOf (utml : : t e s t b ehav i ou r : : CheckAction)

and

oclAsType (utml : : t e s t b ehav i ou r : : CheckAction)

. passCr i ter ium = true

)

or

(oclIsTypeOf (utml : : t e s t b ehav i ou r : : ValueCheckAction)

and

oclAsType (utml : : t e s t b ehav i ou r : : ValueCheckAction)

. passCr i ter ium = true

)

or

(oclIsTypeOf (utml : : t e s t b ehav i ou r : : ExternalCheckAction)

and

oclAsType (utml : : t e s t b ehav i ou r : : ExternalCheckAction)

. passCr i ter ium = true

)

or

(oclIsTypeOf (utml : : t e s t b ehav i ou r : : GenericCheckAction)

and

oclAsType (utml : : t e s t b ehav i ou r : : GenericCheckAction)

. passCr i ter ium = true

)

or

(oclIsTypeOf (utml : : t e s t b ehav i ou r : : ReceiveDataEvent)

and

oclAsType (utml : : t e s t b ehav i ou r : : ReceiveDataEvent)

. passCr i ter ium = true

)

or

(oclIsTypeOf (utml : : t e s t b ehav i ou r : : TestEvent)

and

oclAsType (utml : : t e s t b ehav i ou r : : TestEvent)

. passCr i ter ium = true

)

)

154
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Syntax

Table 5.74: Properties of the Testcase UTML element

Property Description Type Occu-

rence

systemCom-

ponentType

The type of system component for

which this test case is applicable.

Component-

Type (See

Table 5.23)

0..1

testProce-

dure

A reference to a test procedure

describing the testcase’s scenario.

This field is a mean for ensuring

traceability of test cases to test ob-

jectives through the reference to

those in the test procedure.

TestProce-

dure (See

Table 5.19)

from package

test proce-

dures

0..1 1

testObjec-

tive

A reference to a test objective or

a collection thereof covered by this

test case. This is an alternative to

the TestProcedure field for ensuring

traceability between test cases and

requirements.

TestObjec-

tive (See

Table 5.15)

0..12

testPara-

meterSet

A reference to a set of parameters

which is associated to this test case.

A parameter set defines a series of

static preconditions that must be

fullfiled for the test case to be ex-

ecuted.

TestPara-

meterSet (See

Table 5.62)

0..1

notes Free textual notes. xsd:string 0..1

5.8.14 TestAction

Description

The TestAction element is an abstract classifier providing the base for the test

action concept of UTML. UTML test behaviour models consist of test actions

being executed on test component instances interconnected within a given test ar-

chitecture. Therefore, the UTML meta-model defines TestAction as an abstract

classifier from which all test actions will inherit.

Syntax

The TestAction element extends TestBehaviourElement type(See Section 5.8.49).

1Mandatory if no reference to covered test objectives was provided.
2Mandatory if no reference to test procedure was provided.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 155

Table 5.75: Properties of the TestAction UTML element

Property Description Type Occu-

rence

parent-

ActionDef

If the test action is part of a test

action definition element, then this

field contains a reference to the

owning test action definition.

TestBeha-

viourAction-

Def (See

Table 5.72)

0..1

theTest-

Component

A reference to the owning test

component. As described in Sec-

tion 5.8.1, each test action is owned

by a test component.

Component-

Instance (See

Table 5.29)

1..1

parent-

Action

If the test action is a sub-action,

then this field contains a reference

to the parent test action.

Structured-

TestAction

(See Sec-

tion 5.8.55)

0..1

5.8.15 AtomicTestAction

A AtomicTestAction element is an abstract classifier modelling an atomic test

action in UTML, i.e. one that cannot be decomposed into many sub actions.

Constraints

(s e l f . theComponent . ocl IsTypeOf (OclVoid) = f a l s e and

s e l f . theComponent . type . ocl IsTypeOf (OclVoid) = f a l s e and

s e l f . parentAct ion . ocl IsTypeOf (OclVoid) = f a l s e

and s e l f . parentAct ion . theComponent . type . oc lIsTypeOf (OclVoid))

s e l f . theComponent . type . name = s e l f . parentAct ion

. theComponent . type . name

5.8.16 ConnectionAction

Description

The ConnectionAction is an abstract classifier providing the base for modelling

actions that have an impact on connections in a test architecture.

Syntax

The ConnectionAction element extends test behaviour:AtomicTestAction (See

Section 5.8.15)

156
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.8.17 SetupConnectionAction

Description

The SetupConnectionAction element models an action for setting up a con-

nection between two ports.

Semantics

A SetupConnectionAction element may only be created between two ports, if

the directions and data types supported by those ports allow them to be connected

with each other.

Syntax

Figure 5.29: SetupConnectionAction in UTML Test Behaviour Sequence Dia-
gram

UTML SetupConnectionAction elements are represented graphically by the

symbol displayed on figure 5.29 and drawn as a link between the source port

instance and the target port instance of the connection being setup.

The SetupConnectionAction element extends the following elements of the

metamodel:

• ConnectionAction (See Section 5.8.16)

• Connection (See Section 5.30)

Table 5.76: Fields and attributes of the SetupConnectionAction UTML

element

Property Description Type Occu-

rence

sourcePort A reference to the source port in-

stance.

PortInstance

(See Ta-

ble 5.28)

1..1

destPort A reference to the destination port

instance.

PortInstance

(See Ta-

ble 5.28)

from package

test architec-

ture

1..1

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 157

Table 5.76: Fields and attributes of the SetupConnectionAction UTML

element

Property Description Type Occu-

rence

architecture A reference to the test architecture

in which the connection is created.

TestArchi-

tecture (See

Table 5.31)

1..1 3

5.8.18 CloseConnectionAction

Description

The CloseConnectionAction element models an action for closing a connection

between two ports.

Syntax

The CloseConnectionAction element extends the ConnectionAction (See Sec-
tion 5.8.16) element of the metamodel.

Table 5.77: Fields and attributes of the CloseConnectionAction UTML

element

Property Description Type Occu-

rence

connection A reference to the connection to be

closed.

Connection

(See Ta-

ble 5.30)

1..1

5.8.19 DefaultBehaviourAction

The DefaultBehaviourAction element extends test behaviour:TestAction (See Ta-

ble 5.75)

A DefaultBehaviourAction element models an alternative branch in a de-

fault test behaviour in UTML. The default test behaviour mechanism used in

UTML is a translation of the altstep-default behaviour concept introduced in

TTCN-3.

3Implicit (Implicit properties like this one can be derived implicitly from other related prop-
erties of the same element and thus will not have to be explicitly specified by the test designer.
For example, in this particular case, the reference to the containing test architecture can be
retrieved automatically while creating the connection between two ports.)

158
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.79: Fields and attributes of the Observation UTML element

Property Description Type Occu-
rence

passCrite-
rium

A boolean value indicating whether
or not this event should be con-
sidered as a criterium for assign-
ing a PASS verdict or not. The
motivation for this property stems
from the fact that it is sometimes
required to label some test steps
in a test procedure as critical for
the overall test case verdict. The
concrete interpretation of this prop-
erty will depend on the target test-
ing infrastructure and on the cho-
sen test strategy. A possible in-
terpretation would consist in set-
ting the test case verdit to PASS,
if this property was set to true and
the event’s assertions were success-
ful. Otherwise, test execution will
simply proceed without any verdict
being set. However the successful
assertion should be documented for
traceability, e.g. in the form of cor-
responding log traces.

PortInstance
(See Ta-
ble 5.28)

1..1

policyKind Policy for setting the verdict after
this event’s assertions are checked.

PolicyKind
(See Ta-
ble 5.71)

1..1

Table 5.78: Properties of the DefaultBehaviourAction UTML element

Property Description Type Occu-

rence

triggering-

Event

The event triggering the alternative

branch to be chosen.

TestEvent

(See Sec-

tion 5.8.21)

1..1

subAction A set of test actions to be per-

formed if the branch is selected.

Atomic-

TestAction

(See Sec-

tion 5.8.15)

0..n

5.8.20 Observation

Description

An Observation element is an abstract classifier defined in the UTML meta-

model as base classifier for observable test behaviour elements.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 159

Syntax

5.8.21 TestEvent

Description

A TestEvent element is an abstract classifier defined in the UTML metamodel

as base classifier for observable test events.

Syntax

The TestEvent element extends test behaviour:Observation (See Section 5.8.20)

5.8.22 DataReceptionEvent

Description

The DataReceptionEvent element models the reception of asynchronous data

at a component from another (Test-/SUT-) component.

Syntax

The DataReceptionEvent element extends test behaviour:TestEvent (See Section 5.8.21)

Table 5.80: Properties of the DataReceptionEvent UTML element

Property Description Type Occu-

rence

portIns-

tance

A reference to the reception port in-

stance.

PortInstance

(See Ta-

ble 5.28)

1..1

incoming-

Data

A reference to a test data instance

as expected incoming data.

TestData-

Instance (See

Table 5.54)

1..1

5.8.23 TimerExpirationEvent

Description

The TimerExpirationEvent element models an event indicating the expiration

of a timer in a UTML test behaviour model.

Syntax

The TimerExpirationEvent element extends test behaviour:TestEvent (See Sec-

tion 5.8.21)

160
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.82: Properties of the DefaultBehaviourDef UTML element

Property Description Type Occu-
rence

default-
Action

The default actions represent-
ing the test behaviour alterna-
tives.

Default-
Behaviour-
Action (See
Table 5.78)

com-
ponent-
Type

A reference to the type of test
component for which the de-
fault behaviour is applicable.

Com-
ponentType
(See Ta-
ble 5.23)

1..1

id An identifier for the default
behaviour definition.

xsd:string 1..1

Table 5.81: Fields and attributes of the TimerExpirationEvent UTML

element

Property Description Type Occu-

rence

timer A reference to the timer to expire. Timer (See

Table 5.83)

1..1

5.8.24 DefaultBehaviourDef

Description

The DefaultBehaviourDef element has been borrowed from the TTCN-3 no-

tation, in which it is used to define a behaviour that may be checked implicitly

on the SUT if the explicitly defined behaviour does not match expectations.

Syntax

The DefaultBehaviourDef element extends DescribedElement (See Table 5.4)

5.8.25 VariableDeclaration

Description

The VariableDeclaration element models the declaration of a variable in a UTML test be-

haviour model.

Semantics

VariableDeclaration elements can be used to store data received through ReceiveDataEvent or

resulting from a TestBehaviourInvocation element. The value stored in a VariableDeclaration

can be used for any test behaviour in which a value may be required.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 161

Syntax

The VariableDeclaration element extends the following elements of the metamodel:

• TestBehaviourElement (See Section 5.8.49)

• ValueInstance (See Section 5.53)

5.8.26 Timer

Description

The Timer element models a timer declaration in the UTML metamodel

Semantics

Timers may be declared as default global timers for a whole test behaviour model, as local timers

inside a component type or instance thereof or as local timers for a given TestBehaviourActionDef

or Testcase element.

Constraints

((s e l f . de lay . ocl IsTypeOf (OclVoid) = true or s e l f . de lay <= 0)

and s e l f . delayValue . ocl IsTypeOf (OclVoid) = true) = f a l s e

Syntax

The Constraints element extends DescribedElement (See Table 5.4)

Table 5.83: Properties of the Timer UTML element

Property Description Type Occu-

rence

delay A value for the timer’s duration. xsd:float. For

more flexibil-

ity, the unit

for the timer

delay values

is left open

and can be

decided at the

later stage.

1..1

name An identifier for the timer. xsd:string 1..1

5.8.27 State

Description

A State in UTML is a declarative element describing a state in which the SUT

may find itself at a given point in time of its behaviour. Based on those infor-

mation, preambles can be executed to put the SUT in the required state, if that

162
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

was defined as a precondition for the test case.

Syntax

The State element extends the following elements of the metamodel:

• DescribedElement (See Table 5.4)

• UniqueNamedElement (See Table 5.7)

Table 5.84: Properties of the State UTML element

Property Description Type Occu-

rence

testArchi-

tecture

A reference to a test architecture for which

this state is applicable.

TestArchi-

tecture (See

Table 5.31)

0..1

component-

Type

A reference to the type of component for

which this state is applicable.

Component-

Type (See

Table 5.23)

1..1

triggering-

Actions

A sequence of actions that trigger the com-

ponent to enter the state. The actions

listed here are to be provided in their

chronological order of occurence.

TestBeha-

viourAction-

Invocation

(See Ta-

ble 5.73)

0..n

precondition A list of references to other state defini-

tions that are preconditions to this state.

State (See Ta-

ble 5.84)

0..n

validity-

Expression

A character string representation of an ex-

pression that can be used to verify that a

given component is in this state.

xsd:string 0..1

5.8.28 StartTimerAction

Description

The StartTimerAction element models an action for starting a timer.

Syntax

The StartTimerAction element extends test behaviour:AtomicTestAction (See Sec-

tion 5.8.15)

Table 5.85: Fields and attributes of the StartTimerAction UTML ele-

ment

Property Description Type Occu-

rence

timer A reference to the timer to be

started.

Timer (See

Table 5.83)

1..1

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 163

5.8.29 StopTimerAction

Description

The StopTimerAction element models an action for stopping a timer.

Syntax

The StopTimerAction element extends test behaviour:AtomicTestAction (See Sec-

tion 5.8.15)

Table 5.86: Properties of the StopTimerAction UTML element

Property Description Type Occu-

rence

timer A reference to the timer to be

stopped.

Timer (See

Table 5.83)

1..1

5.8.30 WaitAction

Description

The WaitAction element models a behaviour action whereby the associated

test component is requested to suspend its behaviour for a certain delay before

resuming to its other actions.

Semantics

The suspension mechanism for the WaitAction element is based either on a

delay provided by the user or on a timer referrence. At the moment the UTML

provides no notion of absolute time, however that could be added at a later

stage, if required. Then, a corresponding property would be added to the current

structure and the constraints will be extended accordingly.

Constraints

((s e l f . de lay . ocl IsTypeOf (OclVoid) = true or s e l f . de lay <= 0)

and s e l f . t imer . oclIsTypeOf (OclVoid) = true) = f a l s e

Syntax

The WaitAction element extends test behaviour:AtomicTestAction (See Section 5.8.15)

164
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Figure 5.30: WaitAction in UTML Test Behaviour Sequence Diagram

Table 5.87: Properties of the WaitAction UTML element

Property Description Type Occu-

rence

delay A value indicating the duration of

the delay.

xsd:float 0..1

timer A reference to a declared Timer. If

the delay property has not been

set, then the associated test com-

ponent will suspend its behaviour

until the referred timer expires.

Timer (See

Table 5.83)

0..1

5.8.31 StopAction

Description

The StopAction element models an action for terminating test execution im-

mediately.

Semantics

The StopAction element terminates test execution immediately, assigning it the

selected verdict. Therefore, the StopAction element provides the only mecha-

nism for setting a test verdict explicitly. However, the overall test verdict is

calculated according to the rule defined in TTCN-3 for verdict assignment.

Syntax

The StopAction element extends test behaviour:AtomicTestAction (See Section 5.8.15)

Table 5.88: Properties of the StopAction UTML element

Property Description Type Occu-

rence

verdict The verdict to assign. Verdict (See

Table 5.68)

1..1

5.8.32 ExternalAction

Description

The ExternalAction element models an external test action. I.e. one that is to

happen outside of the test system.

Syntax

The ExternalAction element extends test behaviour:AtomicTestAction (See Sec-

tion 5.8.15)

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 165

Table 5.89: Fields and attributes of the ExternalAction UTML element

Property Description Type Occu-

rence

instructions A message describing instructions

to be transmitted to the entity run-

ning the tests.

xsd:string 1..1

5.8.33 MonitoringAction

Description

The MonitoringAction element models an action for monitoring a given com-

ponent until a certain state is reached.

Syntax

The MonitoringAction element extends test behaviour:AtomicTestAction (See Sec-
tion 5.8.15)

Table 5.90: Fields and attributes of the MonitoringAction UTML ele-

ment

Property Description Type Occu-

rence

breaking-

State

A reference to this state that, if en-

tered, will cause the monitoring to

stop.

State (See Ta-

ble 5.84)

1..1

5.8.34 SendDiscardAction

Description

The SendDiscardAction element models an action whereby the a component

sends data to another one and expects those data to be discarded without notice.

Semantics

The SendDiscardAction element inherits all the constraints defined for the

SendDataAction element.

Syntax

UTML SendDiscardAction elements are represented graphically by a crossed ar-

row linking the source port instance to the target port instance.

Figure 5.31 shows an example SendDiscardAction in its graphical represen-

tation. As displayed on that figure, the label associated to a SendDiscardAction

follows the same format as for a SendDataAction discussed previously.

166
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Figure 5.31: SendDiscardAction in UTML Test Behaviour Sequence Diagram

The SendDiscardAction element extends test behaviour:SendDataAction (See

Table 5.96)

Table 5.91: Properties of the SendDiscardAction UTML element

Property Description Type Occu-

rence

timer A reference to the timer, which if

it expires, implies that the message

has been discarded.

Timer (See

Table 5.83)

1..1

allowedRes-

ponse

References to test responses that

might be allowed from the other

party, with the message still being

considered discarded.

Response (See

Table 5.92)

0..n

5.8.35 Response

Description

The Response element is a helper classifier modelling a potential response from

an SUT after a stimulus.

Semantics

The Response element has no semantics in itself and is only used in combination

with structured test behaviour actions to design a response from an SUT, e.g.

following a stimulus by a test component.

Syntax

Table 5.92: Properties of the Response UTML element

Property Description Type Occu-

rence

port A reference to a port instance via

which the response is expected.

PortInstance

(See Ta-

ble 5.28)

1..1

expected-

Data

A reference to a test data instance

designing the expected data.

MessageTest-

DataInstance

(See Ta-

ble 5.55)

1..1

unexpected-

Data

Reference to data instances that are

disallowed as response.

MessageTest-

DataInstance

(See Ta-

ble 5.55)

0..n

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 167

5.8.36 OperationOutput

Description

The OperationOutput element is a helper element used to design the expected

output for an operation call.

Syntax

Table 5.93: Properties of the OperationOutput UTML element

Property Description Type Occu-

rence

value A reference to a previously de-

fined ValueInstance representing

the value against which the oper-

ation’s output will be compared to

assess its validity.

ValueInstance

(See Ta-

ble 5.53)

0..1

valueLiteral A character string literal describing

a value which the operation output

will be compared against. This is

an alternative to providing a Val-

ueInstance as described above. If

both the value and the valueLit-

eral fields are provided, than the

ValueInstance field has priority.

xsd:string 0..1

dataCons-

traint

A collection of constraints that have

to be met by the operation output

to be valid.

DataCons-

traint (See

Table 5.57)

0..n

5.8.37 TriggerAction

Description

A TriggerAction element models an action for triggering an action on an SUT

component.

Syntax

The TriggerAction element extends test behaviour:AtomicTestAction (See Sec-
tion 5.8.15)

Table 5.94: Properties of the TriggerAction UTML element

Property Description Type Occu-

rence

trigger-

Notification

A notification textual message to

describe the triggering action.

xsd:string 1..1

168
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.8.38 BaseSendDataAction

Description

A BaseSendDataAction element is an abstract classifier that models an action

for sending data from one component to another one through a test port instance.

Semantics

BaseSendDataAction elements may only be created between ports that are

connected with each other. The connection between ports may have been de-

fined in a static test architecture associated to the contained test behaviour or

may result from a precedent dynamic connection using the SetupConnection-

Action element. It should be noted that the dynamic connection may occur

in a separate TestBehaviourActionDef element invoked earlier using the Test-

BehaviourInvocationAction.

The data to be sent by the BaseSendDataAction element may be defined

either by providing a reference to a previously designed test data instance (see

the transmittedDataInstance property) or by a combination of a data type and a

collection of constraints based on which a concrete value would be generated by

the target test environment (see the transmittedDataInstance).

Constraints

Constraint Data must not be sent from one port to the same port.

s e l f . sourcePort <> s e l f . destPort

Constraint Data designed as incoming data (i.e. with their direction property

set to IN) must not be sent out through a BaseSendDataAction element.

(s e l f . t ransmittedDataInstance

. oclIsTypeOf (utml : : t e s t d a t a : : TestDataInstance) = true

or s e l f . t ransmittedDataInstance

. oclIsTypeOf (utml : : t e s t d a t a : : MessageTestDataInstance) = true

or s e l f . t ransmittedDataInstance

. oclIsTypeOf (utml : : t e s t d a t a : : Operat ionTestDataInstance) = true

or s e l f . t ransmittedDataInstance

. oclIsTypeOf (utml : : t e s t d a t a : : S igna lTestDataInstance) = true)

implies

(s e l f . t ransmittedDataInstance

. oclAsType (utml : : t e s t d a t a : : TestDataInstance) . d i r e c t i o n

<> utml : : t e s t d a t a : : DataDirect ion : : IN)

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 169

Constraint According to the black-box testing paradigm, data must be sent out

only from components belonging to the test system and not from those belonging

to the SUT.

(s e l f . theComponent . ocl IsTypeOf (OclVoid) = f a l s e)

implies

(s e l f . theComponent . kind

= utml : : t e s t a r c h i t e c t u r e : : ComponentKind : :TESTCOMPONENT)

Constraint Data must not be sent from a port, if that port was assigned the

direction IN. Only ports defined as INOUT or OUT may be used for that purpose.

(s e l f . sourcePort . oc l IsTypeOf (OclVoid) = f a l s e)

implies

(s e l f . sourcePort . d i r e c t i o n

<> utml : : t e s t d a t a : : DataDirect ion : : IN)

Constraint If a paramaterizable test data instance is used in a SendDataAction

element, then the required parameters must be provided to complete the test

data instance.

(s e l f . t ransmittedDataInstance . oclIsTypeOf

(utml : : t e s t d a t a : : MessageTestDataInstance) = true)

implies

(s e l f . t ransmittedDataInstanceParameter −> s i z e () =

s e l f . t ransmittedDataInstance . oclAsType

(utml : : t e s t d a t a : : MessageTestDataInstance)

. parameterDec larat ion −> s i z e ())

((s e l f . t ransmittedDataInstance

. oclIsTypeOf (OclVoid) = true)

implies

(s e l f . transmittedDataType

. oclIsTypeOf (OclVoid) = f a l s e

and

s e l f . dataConstra int −> isEmpty () = f a l s e))

and

(

(s e l f . transmittedDataType

. oclIsTypeOf (OclVoid) = true

or

s e l f . dataConstra int −> isEmpty () = true)

implies

(s e l f . t ransmittedDataInstance

. oclIsTypeOf (OclVoid) = f a l s e)

)

170
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Constraint

Syntax

The BaseSendDataAction element extends test behaviour:AtomicTestAction (See

Section 5.8.15)

Table 5.95: Fields and attributes of the BaseSendDataAction UTML

element

Property Description Type Occu-

rence

connection A reference to the connection to use

for sending the data.

Connection

(See Ta-

ble 5.30)

1..1

sourcePort A reference to the source port in-

stance for transmitting the data.

PortInstance

(See Ta-

ble 5.28)

1..1

expected-

Operation-

Output

A reference to a data instance ex-

pected to be sent as response for

this SendDataAction.

MessageTest-

DataInstance

(See Ta-

ble 5.55)

0..1

transmitted-

DataIns-

tance

A reference to the test data instance

to be transmitted.

Abstract-

DataInstance

(See Sec-

tion 5.7.21)

0..1

transmitted-

Data-

Instance-

Parameter

Optional parameter values for the

transmitted test data instance.

Parameter-

Def (See

Table 5.60)

0..n

transmitted-

DataType

For asynchronous communication,

this property is a reference to a test

data type based on which a concrete

value will be generated for trans-

mission. For synchronous commu-

nication, the parameters required

for the referred OperationTestData-

Type will have to be provided.

TestData-

Type (See

Table 5.46)

0..1

destPort Reference to the destination port. PortInstance

(See Ta-

ble 5.28)

1..1 4

5.8.39 SendDataAction

Description

A SendDataAction element models an action for sending asynchronous data

from one component to another one through a test port instance.

4Implicit

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 171

Semantics

The SendDataAction element extends the test behaviour:BaseSendDataAction el-

ement (See Section 5.8.38). Therefore it shares the same semantics as defined in

that section, with the only difference being that it is used for sending data in an

asynchronous communication scheme.

Constraints

The SendDataAction element inherits all the constraints defined for the BaseSend-

DataAction.

Syntax

Figure 5.32: SendDataAction in UTML Test Behaviour Sequence Diagram

UTML SendDataAction elements are represented graphically by an arrow

linking the source port instance to the target port instance.

As displayed in Figure 5.32, the label associated to a SendDataAction follows

the format <DataTypeId>:<DataInstanceId>, whereby <DataType> denotes the

identifier for the type of be transmitted and <DataInstanceId> the identifier of

the data instance itself.

Table 5.96: Fields and attributes of the SendDataAction UTML element

Property Description Type Occu-

rence

transmitted-

DataIns-

tance

A reference to the test data instance

to be transmitted.

ValueIns-

tance (See

Table 5.53)

0..1

data-

Constraint

A collection of constraints which in

combination with the transmitted-

DataType property will be used

generate a concrete value for trans-

mission.

Data-

Constraint

(See Ta-

ble 5.57)

1..1

5.8.40 SendSyncDataAction

Description

A SendSyncDataAction element models an action for sending synchronous

data from one component to another one through a test port instance.

172
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Semantics

The SendSyncDataAction element extends the test behaviour:BaseSendDataAction

element (See Section 5.8.38). Therefore it shares the same semantics as defined

in that section, with the only difference being that it is used for sending data in

a synchronous communication scheme.

Constraints

The SendSyncDataAction element inherits all the constraints defined for the

BaseSendDataAction.

Syntax

Figure 5.33: SendSyncDataAction in UTML Test Behaviour Sequence Diagram

SendSyncDataAction elements are represented graphically by an arrow sim-

ilar to the one used for SendDataAction elements with the difference that the

decorator at the end of the arrow is a filled triangle similar to those used for

synchronous messages in UML sequence interaction diagrams.

Table 5.97: Fields and attributes of the SendSyncDataAction UTML

element

Property Description Type Occu-

rence

expected-

Operation-

Output

A reference to a data instance

expected to be sent as response

for this SendSyncDataAction. It

should be noted that exceptions

supported by the called operation

are included among possible re-

sponses for this property.

Operation-

Output (See

Table 5.93)

0..1

transmitted-

DataIns-

tance

A reference to the test data instance

to be transmitted.

Operation-

TestDataIns-

tance (See

Table 5.56)

0..1

transmitted-

DataType

For asynchronous communication,

this property is a reference to a test

data type based on which a concrete

value will be generated for trans-

mission. For synchronous commu-

nication, the parameters required

for the referred OperationTestData-

Element will have to be provided.

TestData-

Type (See

Table 5.46)

0..1

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 173

Table 5.97: Fields and attributes of the SendSyncDataAction UTML

element

Property Description Type Occu-

rence

output-

Parameter-

Constraint

A collection of constraints which

the INOUT and OUT parameters

provided by the SendDataAction

must fullfil after the called opera-

tion returns.

Parameter-

Constraint

(See Ta-

ble 5.59)

0..n

destPort Reference to the destination port. PortInstance

(See Ta-

ble 5.28)

1..1 5

return-

Timer

This property is for synchronous

communication and indicates the

maximum delay for expecting the

operation call modeled by this

SendSyncDataAction to return.

Timer (See

Table 5.83)

5.8.41 BaseReceiveDataEvent

Description

A BaseReceiveDataEvent element defines an abstract classifier modelling the

expection of incoming data from another source.

Semantics

In accordance to the black-box testing paradigm, the receiving port i.e. the port

instance at which the data is expected must not belong to an SUT component

but to a test component. Also in a similar manner than for actions for sending

data, a BaseReceiveDataEvent element can only be created between ports that

are connected.

Constraints

Constraint (Optional) A guard timer should be provided for every ReceiveDataEvent

element to ensure that if the expected data is not received, then the timer’s ex-

piration would be used to stop waiting for the data and thus avoid a livelock

situation. If no timer is provided, then the default timer defined for the whole

test behaviour model (see Table 5.66) will be used instead.

s e l f . t imer . oclIsTypeOf (OclVoid) = f a l s e

5Implicit

174
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Constraint Data may only be received from components belonging to the test

system and not to the SUT.

(s e l f . theComponent . ocl IsTypeOf (OclVoid) = f a l s e)

implies

(s e l f . theComponent . kind

= utml : : t e s t a r c h i t e c t u r e : : ComponentKind : :TESTCOMPONENT)

Constraint Data reception must not be defined through ports designed to be

used exclusively for outwards communication, i.e. ports having their direction

property set to OUT.

(s e l f . r e c ept i onPor t . oc lIsTypeOf (OclVoid) = f a l s e)

implies

(s e l f . r e c ept i onPor t . d i r e c t i o n

<> utml : : t e s t d a t a : : DataDirect ion : :OUT)

Constraint The port from which the expected data is expected to originate from

must be different from the port at which it is expected.

s e l f . r e c ept i onPor t <> s e l f . sourcePort

Constraint If a parameterized value is used to model the expected data, then

the parameter values for those parameters must be provided to complete the

definition.

(s e l f . expectedDataInstance . ocl IsTypeOf

(utml : : t e s t d a t a : : MessageTestDataInstance) = true) implies

(s e l f . expectedDataInstanceParameter −> s i z e () =

s e l f . expectedDataInstance . oclAsType

(utml : : t e s t d a t a : : MessageTestDataInstance)

. parameterDec larat ion −> s i z e ())

Constraint The expected data must be specified either using a combination of

the data type and a series of constraints (for checking) or through a predefined

reusable value instance in which the required constraints would have been stated.

((s e l f . expectedDataInstance . ocl IsTypeOf (OclVoid) = true)

implies

(s e l f . expectedDataType . oclIsTypeOf (OclVoid) = f a l s e

and

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 175

s e l f . dataConstra int −> isEmpty () = f a l s e))

and

(

(s e l f . expectedDataType . oclIsTypeOf (OclVoid) = true

or

s e l f . dataConstra int −> isEmpty () = true)

implies

(s e l f . expectedDataInstance . ocl IsTypeOf (OclVoid) = f a l s e)

)

Syntax

The BaseReceiveDataEvent element extends test behaviour:AtomicTestAction (See

Section 5.8.15)

Table 5.98: Properties of the BaseReceiveDataEvent UTML element

Property Description Type Occu-

rence

timer A reference to a timer to use for

avoiding deadlock while expecting

the incoming data instance.

Timer (See

Table 5.83)

0..1

reception-

Port

The reception port at which the

component will listen to check for

the incoming data.

PortIns-

tance (See

Table 5.28)

from package

test architec-

ture

1..1

connection Connection via which data will be

transmitted.

Connec-

tion (See

Table 5.30)

1..1

expected-

DataIns-

tancePara-

meter

Optional Reference to parameter

values for the expected test data in-

stance.

Parameter-

Def (See

Table 5.60)

0..n

storage A reference to a variable declaration

in which the received data instance

will be storaged for possible later

usage.

Variable-

Declaration

(See Sec-

tion 5.8.25)

0..1

sourcePort A reference to a port instance from

which the data is expected.

PortInstance

(See Ta-

ble 5.28)

1..1 6

6Implicit

176
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.8.42 ReceiveDataEvent

Description

A ReceiveDataEvent element models an action for expressing that a test com-

ponent is expecting another component to send some data.

Semantics

The ReceiveDataEvent element extends the test behaviour:BaseReceiveDataEvent

element(See Section 5.8.41). Therefore it shares the same basic semantics, with

the specificity that the data is being expected in a synchronous communication

scheme.

Constraints

(s e l f . expectedDataInstance

. oclIsTypeOf (utml : : t e s t d a t a : : TestDataInstance) = true

or s e l f . expectedDataInstance

. oclIsTypeOf (utml : : t e s t d a t a : : MessageTestDataInstance) = true

or s e l f . expectedDataInstance

. oclIsTypeOf (utml : : t e s t d a t a : : Operat ionTestDataInstance) = true

or s e l f . expectedDataInstance

. oclIsTypeOf (utml : : t e s t d a t a : : S igna lTestDataInstance) = true)

implies

(s e l f . expectedDataInstance

. oclAsType (utml : : t e s t d a t a : : TestDataInstance)

. d i r e c t i o n <> utml : : t e s t d a t a : : DataDirect ion : :OUT)

Syntax

Figure 5.34: ReceiveDataEvent in UTML Test Behaviour Sequence Diagram

UTML ReceiveDataEvent elements are represented graphically by an arrow

linking the port instance at which data is expected to the originating port in-

stance.
As depicted on figure 5.35, the label associated to a ReceiveDataEvent follows

the format <DataTypeId>:<DataInstanceId>[<TimerDelay>], whereby <Datatype>
denotes the identifier for the type of test data expected, <DataInstanceId> the
identifier of the data instance expected and <TimerDelay> the maximal delay
of the timer associated to the ReceiveDataEvent.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 177

Table 5.99: Properties of the ReceiveDataEvent UTML element

Property Description Type Occu-

rence

expected-

DataIns-

tance

A reference to the test data instance

expected.

Abstract-

DataInstance

(See Sec-

tion 5.7.21)

1..1

storage A reference to a variable declaration

in which the received data instance

will be storaged for possible later

usage.

Variable-

Declaration

(See Sec-

tion 5.8.25)

0..1

5.8.43 ReceiveSyncDataEvent

Description

A ReceiveSyncDataEvent element models an action for expressing that a test

component is expecting another component to send some data.

Semantics

In accordance to the black-box testing paradigm, the receiving port i.e. the port

instance at which the data is expected must not belong to an SUT component

but to a test component.

Constraints

s e l f . expectedDataInstance

. oclIsTypeOf (utml : : t e s t d a t a : : Operat ionTestDataInstance) = true

implies

(s e l f . expectedDataInstance

. d i r e c t i o n <> utml : : t e s t d a t a : : DataDirect ion : :OUT)

((s e l f . expectedDataInstance . ocl IsTypeOf (OclVoid) = true)

implies

(s e l f . expectedDataType . oclIsTypeOf (OclVoid) = f a l s e

and

s e l f . dataConstra int −> isEmpty () = f a l s e))

and

(

(s e l f . expectedDataType . oclIsTypeOf (OclVoid) = true

or

s e l f . dataConstra int −> isEmpty () = true)

implies

(s e l f . expectedDataInstance . ocl IsTypeOf (OclVoid) = f a l s e)

)

178
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Syntax

Figure 5.35: ReceiveSyncDataEvent in UTML Test Behaviour Sequence Diagram

UTML ReceiveSyncDataEvent elements are represented graphically by the

same kind of arrows as ReceiveDataEvent with the difference that the decorator

at the end of the arrow is a filled triangle similar to the one used for synchronous

messages in UML sequence interaction diagrams.

The ReceiveSyncDataEvent element extends test behaviour:AtomicTestAction

(See Section 5.8.15)

Table 5.100: Properties of the ReceiveSyncDataEvent UTML element

Property Description Type Occu-

rence

expected-

DataIns-

tance

A reference to the test data instance

expected.

Operation-

TestData-

Instance (See

Table 5.56)

1..1

operation-

Output

A reference to a test data instance

expected to be returned by the test

component receiving the data.

Operation-

Output (See

Table 5.93)

0..1

5.8.44 MultipleReceiveDataEvent

Description

The MultipleReceiveDataEvent element models the awaiting of successive

messages from another component. The associated test component instance

starts a loop, checking everytime that the incoming message is received. If the

indicated break-expression evaluates to true or the maximal number of expected

data instances is reached, then the component stops looping.

Semantics

The MultipleReceiveDataEvent element extends the test behaviour:ReceiveDataEvent

element (See Table 5.99). Therefore, it inherits the same basic semantics and as-

sociated constraints.

Syntax

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 179

Table 5.101: Fields and attributes of the MultipleReceiveDataEvent

UTML element

Property Description Type Occu-

rence

break-

Expression

A character string representing an

expression which evaluates as a

boolean value.

xsd:string 0..1 7

max-

Instances-

Expression

A character string representing an

expression which evaluates as the

maximal number of expected in-

coming data instances.

xsd:string 0..1 8

5.8.45 TestArchitectureActionKind

Description

The TestConfigActionKind element is an enumeration used to classify possible

kinds of test behaviour actions on test architectures elements. Table 5.102 lists

the literals of that enumeration and their meaning.

Syntax

Table 5.102: Properties of the TestArchitectureActionKind UTML ele-

ment

Property Description

ARCHITECTURE-

SETUP

For a test action used to setup a test ar-

chitecture.

ARCHITECTURE-

TEARDOWN

For a test action used to tear down an ex-

isting (or running) test architecture.

5.8.46 TestSequence

Description

The TestSequence element is an abstract classifier modelling a sequence of test

actions in the UTML metamodel.

Syntax

The TestSequence element extends test behaviour:TestAction (See Table 5.75)

7Mandatory, if maxInstancesExpression omitted.
8Mandatory, if breakExpression omitted.

180
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.8.47 SendReceiveSequence

Description

The SendReceiveSequence element models a test sequence whereby the owner

test component sends some data to another one and immediately expects the

other component to respond by sending data.

Syntax

The SendReceiveSequence element extends test behaviour:TestSequence (See Sec-

tion 5.8.46)

Table 5.103: Fields and attributes of the SendReceiveSequence UTML

element

Property Description Type Occu-

rence

sendData-

Action

The description of the action for

sending out data.

SendDataAction

(See Ta-

ble 5.96)

1..1

receiveData-

Event

A description of the action for re-

ceiving incoming response data.

ReceiveData-

Event (See

Table 5.99)

1..1

5.8.48 TriggerReceiveSequence

Description

The TriggerReceiveSequence element models a test sequence whereby the

owner testcomponent expects another component to send some data, after it

has been triggered through some external means for doing so.

Syntax

The TriggerReceiveSequence element extends test behaviour:TestSequence (See

Section 5.8.46)

Table 5.104: Properties of the TriggerReceiveSequence UTML element

Property Description Type Occu-

rence

trigger-

Action

Details on the action for triggering

the other component.

Trigger-

Action (See

Table 5.94)

1..1

receiveData-

Event

Details on the action for receiving

incoming data.

ReceiveData-

Event (See

Table 5.99)

1..1

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 181

5.8.49 TestBehaviourElement

Description

The TestBehaviourElement element is an abstract classifier that serves as base

classifier for all other elements in a UTML test behaviour model.

Syntax

The TestBehaviourElement element extends UtmlElement (See Section 5.3.1)

5.8.50 CheckAction

Description

The CheckAction is an abstract classifier that serves as base for test behaviour

actions designed to perform some verifications in the test behaviour.

Syntax

The CheckAction element extends test behaviour:Observation (See Section 5.8.20)

5.8.51 ExternalCheckAction

Description

The ExternalCheckAction element models an action whereby a manual check is

performed externally during test execution. In the lower-level test infrastructure,

the execution of an ExternalCheckAction should return an OK or NOK value

indicating whether the check was successful or not.

Syntax

The ExternalCheckAction element extends test behaviour:CheckAction (See Sec-

tion 5.8.50)

Table 5.105: Fields and attributes of the ExternalCheckAction UTML

element

Property Description Type Occu-

rence

condition A textual description of a condition

to check on the component.

xsd:string 1..1

182
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.8.52 ValueCheckAction

Description

The ValueCheckAction element models an action for verifying that the value

of a given variable meets certain constraints.

Semantics

The ValueCheckAction may be associated to a variable declaration designed

using the VariableDeclaration element or contain a behaviour invocation designed

using the BehaviourActionInvocation element. In the later case, the value re-

turned by the behaviour invocation will be checked against the provided con-

straints.

Constraints

Constraint If a reference to a defined variable is omitted in the ValueCheckAction

element, then a test behaviour invocation must be provided instead and vice-

versa.

(s e l f . v a r i ab l e . oc l IsTypeOf (OclVoid) = true

and s e l f . t e s tBehav iourAct ionInvocat ion

. oclIsTypeOf (OclVoid) = true) = f a l s e

Constraint The invoked test behaviour type definition must define a return value

to be used in a ValueCheckAction element.

s e l f . t e s tBehav iourAct ionInvocat ion . oclIsTypeOf (OclVoid) = f a l s e

implies

(s e l f . t e s tBehav iourAct ionInvocat ion . testBehaviourAct ionDef

. oc lIsTypeOf (OclVoid) = f a l s e

and

s e l f . t e s tBehav iourAct ionInvocat ion . testBehaviourAct ionDef

. responseDef . oc l IsTypeOf (OclVoid)

= f a l s e

)

Syntax

The ValueCheckAction element extends test behaviour:CheckAction (See Section 5.8.50)

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 183

Table 5.106: Fields and attributes of the ValueCheckAction UTML ele-

ment

Property Description Type Occu-

rence

variable The variable whose value will be

checked.

Variable-

Declaration

(See Sec-

tion 5.8.25)

0..1

test-

Behaviour-

Action-

Invocation

A definition of a behaviour invo-

cation whose return value will be

checked against the provided con-

straints.

Variable-

Declaration

(See Sec-

tion 5.8.25)

0..1

dataCons-

traint

The set of constraints the data will

be checked against.

DataCons-

traint (See

Table 5.57)

1..n

5.8.53 ActionBlock

Description

The ActionBlock element is an abstract classifier used for designing blocks of

complex behaviours in a UTML test model. Therefore, as it defines a container for

other kinds of test behaviour actions, all other elements of the UTML metamodel

requiring that functionality extend this classifier.

Syntax

Table 5.107: Properties of the SubActionBlock UTML element

Property Description Type Occu-

rence

testAction The sub-actions composing the ac-

tion block.

TestAction

(See Ta-

ble 5.75)

0..n

5.8.54 SubActionBlock

Description

A SubActionBlock element models an action block that may be contained in

another action block.

Syntax

The SubActionBlock element extends test behaviour:ActionBlock (See Section 5.8.53)

184
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.108: Properties of the SubActionBlock UTML element

Property Description Type Occu-

rence

theCompo-

nent

A reference to the owning test com-

ponent.

Component-

Instance (See

Table 5.29)

1..1

5.8.55 StructuredTestAction

Description

The StructuredTestAction element is an abstract classifier modelling a struc-

tured test action in UTML, i.e. an action that can be decomposed in several

other actions called sub-actions.

Semantics

The StructuredTestAction element extends the test behaviour:TestAction (See Ta-

ble 5.75) and the test behaviour:ActionBlock (See Table 5.107) elements. There-

fore, it models an action that may not only contain other actions refered to as

sub-actions, but also be contained itself in other action blocks.

5.8.56 RepeatTestAction

Description

The RepeatTestAction element models a loop in a UTML test model. Fig-

ure 5.36 depicts an example UTML RepeatAction in its graphical representation.

Semantics

The RepeatTestAction element defines a test behaviour block used to model a loop

in UTML. All sub-actions contained in the RepeatTestAction will be repeated

sequentially following one of the following schemes:

• If the breakExpression property is provided, then repeat the contained ac-

tions until the defined breaking expression is evaluated to true.

• If the continueConditionExpression property is provided, then repeat the

contained actions as long as the provided expression evaluates to true.

• If the maxNumberOfTimes property is provided, then repeat the contained

actions for the specified number of times.

• If the timer property is provided, then repeat the contained actions until

the referenced timer expires.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 185

Syntax

Figure 5.36: RepeatAction in UTML Test Behaviour Sequence Diagram

The RepeatTestAction element extends test behaviour:StructuredTestAction

(See Section 5.8.55)

Table 5.109: Properties of the RepeatTestAction UTML element

Property Description Type Occu-

rence

break-

Expression

A character string describing the

expression, which if true would stop

the loop.

xsd:string 0..1 9

maxRepeat-

Times-

Expression

A String literal which evaluates to

the maximal number of times to go

through the loop.

xsd:string 0..1 10

continue-

Condition-

Expression

A String literal which expresses the

condition required by the loop to

continue execution.

xsd:string 0..1 11

timer Reference to a timer whose expira-

tion will stop the loop

Timer (See

Table 5.83)

0..1 12

5.8.57 IfElseAction

Description

The IfElseAction element models an If-Else block in a UTML behaviour model.

9Mandatory, if maxRepeatTimesExpression and continueConditionExpression are
omitted.

10Mandatory, if breakExpression and timer are omitted.
11Mandatory, if breakExpression and timer are omitted.
12Mandatory, if breakExpression and continueConditionExpression are omitted.

186
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Constraints

Constraint The condition for an IfElseAction element must be provided, either

as a character string literal or as a reference to a previously defined value instance

of type boolean or extension thereof.

((s e l f . c o nd i t i o nL i t e r a l . oc l IsTypeOf (OclVoid) = true

or s e l f . c o nd i t i o nL i t e r a l=’ ’)

and s e l f . c ond i t i onRe f e r ence

. oclIsTypeOf (OclVoid) = true) = f a l s e

Syntax

Figure 5.37: IfElseAction in UTML Test Behaviour Sequence Diagram

Figure 5.37 depicts an example IfElseAction element in a UTML test sequence
diagram, which illustrate the associated concrete syntax. The graphical element
consists of a mandatory If-block and an optional Else-Block. In each of those
blocks test-actions can be designed using the same toolset as for other UTML
elements. Table 5.110 displays the structure of the IfElse element.

Table 5.110: Properties of the IfElseAction UTML element

Property Description Type Occu-

rence

condition-

Literal

A character string describing the

expression to be used as condition

for the if-statement.

xsd:string 0..1 13

13Mandatory, if conditionReference is omitted.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 187

Table 5.110: Properties of the IfElseAction UTML element

Property Description Type Occu-

rence

condition-

Reference

A reference to value instance to be

used as condition

Abstract-

DataInstance

(See Sec-

tion 5.7.21)

0..1 14

ifAction A block containing actions to be ex-

ecuted if the condition is evaluated

to true

IfAction (See

Table 5.111)

1..1

elseAction A block containing actions to be ex-

ecuted if the condition is evaluated

to false

ElseAction

(See Ta-

ble 5.112)

0..1

5.8.58 IfAction

Description

The IfAction element models the part of an If-Else block that applies if the

condition specified is evaluated to true.

Syntax

The IfAction element extends test behaviour:SubActionBlock (See Section 5.8.54)

Table 5.111: Properties of the IfAction UTML element

Property Description Type Occu-

rence

parent-

Action

The parent action in which this ac-

tion is contained.

TestAction

(See Ta-

ble 5.75)

1..1

5.8.59 ElseAction

Description

The ElseAction element models the part of an If-Else block that applies if the

condition specified is evaluated to false.

Syntax

The ElseAction element extends test behaviour:SubActionBlock (See Section 5.8.54)

14Mandatory, if conditionLiteral is absent.

188
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

Table 5.112: Properties of the ElseAction UTML element

Property Description Type Occu-

rence

parent-

Action

The parent action in which this ac-

tion is contained.

TestAction

(See Ta-

ble 5.75)

1..1

5.8.60 AltBehaviourAction

Description

The AltBehaviourAction element models a block of alternative behaviours in a

UTML model.

Constraints

((s e l f . c o nd i t i o nL i t e r a l . oc l IsTypeOf (OclVoid) = true

or s e l f . c o nd i t i o nL i t e r a l=’ ’)

and s e l f . c ond i t i onRe f e r ence

. oclIsTypeOf (OclVoid) = true) = f a l s e

Constraint

Syntax

Figure 5.38: AltBehaviourAction in UTML Test Behaviour Sequence Diagram

Figure 5.38 depicts an example AltBehaviourAction element as represented
in a test sequence diagram. As shown in that figure, the concrete syntax of the
AltBehaviourAction element is the same as for UML sequence diagrams’ option
elements. Table 5.113 describes the element’s abstract syntax via the properties
it includes.

5.8. TEST BEHAVIOUR DESIGN CONCEPTS 189

Table 5.113: Properties of the AltBehaviourAction UTML element

Property Description Type Occu-

rence

condition-

Literal

A character string describing the

expression to be used as condition

for evaluating the alternative be-

haviour action.

xsd:string 0..1 15

condition-

Reference

A reference to value instance to be

used as condition

Abstract-

DataInstance

(See Sec-

tion 5.7.21)

0..1 16

altAction Blocks containing alternative ac-

tions to be executed if their asso-

ciated triggering event is observed

AltAction

(See Ta-

ble 5.114)

0..n

interleave A flag indicating whether interleave

operation should apply for the al-

ternatives or not. If this property

is set to true, interleave behaviour

will apply.

Boolean 0..1

5.8.61 AltAction

Description

The AltAction element models an alternative sub-block within an AltBehaviourAc-

tion element block.

Syntax

The AltAction element extends test behaviour:SubActionBlock (See Section 5.8.54)

Table 5.114: Properties of the AltAction UTML element

Property Description Type Occu-

rence

parent-

Action

The parent action in which this ac-

tion is contained.

TestAction

(See Ta-

ble 5.75)

1..1

triggering-

Event

. TestEvent

(See Sec-

tion 5.8.21)

1..1

15Mandatory, if conditionReference is omitted.
16Mandatory, if conditionLiteral is absent.

190
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

5.8.62 ActivateDefaultAction

Description

The ActivateDefaultAction element models the activation of a default be-

haviour to be checked implicitly, if explicitly specified test behaviour options do

not apply.

Syntax

The ActivateDefaultAction element extends test behaviour:AtomicTestAction (See

Section 5.8.15)

Table 5.115: Properties of the ActivateDefaultAction UTML element

Property Description Type Occu-

rence

default-

Behaviour-

Def

A reference to the default behaviour

definition, that needs do be acti-

vated.

Default-

BehaviourDef

(See Ta-

ble 5.82)

1..1

5.8.63 DeactivateDefaultAction

Description

The DeactivateDefaultAction element models the activation of a default be-

haviour to be checked implicitly, if explicitly specified test behaviour options do

not apply.

Syntax

The DeactivateDefaultAction element extends test behaviour:AtomicTestAction
(See Section 5.8.15)

Table 5.116: Properties of the DeactivateDefaultAction UTML element

Property Description Type Occu-

rence

activate-

Default-

Action

A reference to the default activation

to which this deactivation will ap-

ply.

Activate-

DefaultAction

(See Ta-

ble 5.115)

1..1

5.9. MAPPING UTML CONCEPTS TO EXISTING (TEST SCRIPTING)

LANGUAGES 191

5.9 Mapping UTML Concepts to Existing (Test Scripting)

Languages

Model transformation is an essential aspect of MDE. The transformation from

PIM to PSM is a model-to-model (M2M) transformation, but eventually models

will mostly be transformed into lower level textual notations through a model-

to-text (M2T) transformation. As a language defining concepts at a higher level

of abstraction, UTML can be mapped to any lower-level notation used for im-

plementing executable test scripts. This transformation can be performed in-

dependently of whether the notation is an intermediary scripting notation (e.g.

TTCN-3) to be executed in a particular test execution environment, or a generic

purpose programming language instrumented for test automation (e.g. JAVA,

Python, C, etc.).

Given the importance of model-transformation to the MDE-process, the Ob-

ject Management Group (OMG) has introduced a collection of standard notations

for specifying such transformations in a tool-independent manner. While the

MOF Model-to-Text(MOFM2T) Transformation Language (MTL) [73] can be

used for transforming MOF metamodel instantiations into textual notations, the

QueryViewsTransformation (QVT) [71] language is more appropriate for speci-

fying transformations from one metamodel into another one. Alternatively, the

ATLAS Transformation Language (ATL) [92] may be used for that purpose, al-

though it is not an OMG standard.

In the next sections, possible mapping approaches from UTML into selected

notations are described. It is worth noting that for the sake of conciseness,

these are just proposals for mapping covering a selection of elements from the

UTML notation, because introducting a complete mapping would have widely

exceeded the scope of this thesis. Also, the proposed mapping cannot be viewed

as normative, because depending on the intended purpose, different mapping

schemes can be developed and applied to fit the constraints of existing testing

infrastructure or test equipments.

5.9.1 Mapping to TTCN-3

The mapping to TTCN-3 proposed in this section is based on a M2T transfor-

mation. That approach was chosen, mainly because the TTCN-3 metamodel is

not part of the standard for that language. Moreover, a transformation via that

metamodel would have just unnecessarily introduced an additional step in the

process, because the end target notation for TTCN-3 is its textual form and not

its metamodel form. In fact, no tool support for working directly with instances

of the TTCN-3 metamodel was known to the author as those lines were written.

The mapping defines a transformation rule for each of the selected UTML

elements it addresses. The transformation rules are expressed using the OMG’s

192
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

MTL standard language, which allows the specification of complex transformation

rules through a syntax adopted from the OCL langage.

Table 5.117: Example UTML to TTCN-3 Mapping

UTML Element TTCN-3 Mapping

TestModel, TestArchitecture-

TypesModel, TestDataModel,

TestArchitectureModel, Test-

BehaviourModel

module

MessageTestDataType record, union, enumerated (depending on type selector in

UTML)

MessageTestDataInstance template

OperationTestDataType operation

OperationTestDataInstance template

TestBehaviourActionDef function

Testcase See Section B.1.1 for details.

SendDataAction See Section B.1.2 for details.

ReceiveDataEvent See Section B.1.3 for details.

SendDiscardAction See Section B.1.4 for details.

WaitAction See Section B.1.5 for details.

SetupConnectionAction See Section B.1.6 for details.

CloseConnectionAction See Section B.1.7 for details.

Timer timer

State N/A

DefaultBehaviourDef See Section B.1.8 for details.

StopTimerAction See Section B.1.9 for details.

StartTimerAction See Section B.1.10 for details.

ValueCheckAction See Section B.1.11 for details.

5.10. SUMMARY 193

5.9.2 Mapping to JUnit

The mapping for JUnit is provided using the same approach as for TTCN-3.
Again, the mapping rules are specified as MTL transformation rules, taking as
input the UTML metamodel element to be transformed and generating JAVA
code suitable for execution via the JUnit testing engine.

Table 5.118: Example UTML to JUnit Mapping

UTML Element JUnit Mapping

TestModel, TestArchitecture-

TypesModel, TestDataModel,

TestArchitectureModel, Test-

BehaviourModel

Testsuite class

MessageTestDataType context-specific (e.g. Class definition)

MessageTestDataInstance context-specific (e.g. Object Instantiation)

OperationTestDataType method declaration

OperationTestDataInstance method invocation (in connection with a SendDataAction)

TestBehaviourActionDef function

Testcase JAVA class extending JUnit’s Testcase class (See Section B.2.1

for details)

SendDataAction context-specific (e.g. method invocation, Remote Procedure

Call (RPC), etc.)

ReceiveDataEvent context-specific

SendDiscardAction context-specific

WaitAction See Section B.2.2

SetupConnectionAction context-specific, depending on the SUT

CloseConnectionAction Context-specific (SUT-dependent)

Timer JAVA Object emulating a timer

State N/A

DefaultBehaviourActionDef N/A

StopTimerAction Timer object stop

StartTimerAction Timer object start

ValueCheckAction assertTrue statement

5.10 Summary

This chapter has presented the concepts of the UTML notation and their graph-

ical representation in various forms of diagrams. A metamodel approach was

chosen to express those concepts to ensure that they are completely defined and

thus applicable in a practical sense. The work presented in this chapter is closely

related to the UML Testing Profile proposed by the OMG. However most of the

concepts defined by that profile remain vague and hardly applicable for solv-

ing real-life test engineering problems. Therefore, conciseness, preciseness and

practicability were the main driving forces in defining the UTML notation.

Section 5.2.1 has presented graphical visualisation elements for UTML. How-

ever, it is worth noting that some technical constraints had to be taken into

194
CHAPTER 5. UTML: A NOTATION FOR PATTERN ORIENTED MODEL

DRIVEN TEST DESIGN

account while selecting the graphical elements. The decision on which figure to

use for each of the visual UTML elements had to ensure that the selected fig-

ure can also be implemented and used in the framework used for prototyping.

Therefore, those figures leave room for further improvements at a later stage.

Section 5.9 has described how UTML concepts map to existing notations used

for implementing executable test scripts. Example mappings were provided for

TTCN-3 and JUnit, clearly demonstrating that similar mappings could be added

for any other language, depending on the targetted test environment.

However, defining a notation for pattern-oriented test engineering also implies

providing an appropriate tool set for using that notation in real-life case studies.

In that process, new ideas emerge on potential improvements to the notation itself

and the associated tool set towards higher usability, robustness and expressivity.

In the next section, an extensible architecture for such a tool chain is described,

including a prototype implementation aimed at supporting the evaluation of the

proposed methodology through the case studies.

Chapter 6

Evaluation: Implementation and

Case Studies

6.1 Introduction

This work started with the intuitive assumption that model-driven development

techniques bear the potential of significantly improving the test development

process, both quantitatively and qualitatively. That assumption originates from

claims of similar gains from applying MDE to software system development.

However, although it may sound plausible and even obvious, providing scientific

evidence to support it is less trivial than it might appear. This has lead some

authors to even question the real benefits of MDE as a whole. E.g. Mohagheghi

et al [111] ask a bit provocatively:

Where is The Proof?

The task of verifying that assumption appears to be even more difficult in the

context of model-driven test development, as it is advocated in this work. One

of the reasons for that difficulty is the quasi non-existence of published practical

experiences of applying the methodology described in this work. This might find

its explanation in the scarcity of software available on the market for support-

ing such a methodology [134], combined with the reticence from the industry

to publish results related to product quality assessment. In fact, compared to

the large number of MBT tools featuring automated generation of tests from

system models [14, 156], the number of existing tools to support MDT is in-

significantly low. The only list of available MDT tools similar to those provided

by [14, 156] that could be found for this thesis is the one provided by Torres

et al [153]. Although some of the tools described in that work claim to provide

support for model-based manual test case construction, the methodology they

195

196 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

use was found to be inappropriate for the type of experimentation required to

verify the hypothesis of this thesis. Therefore a collection of prototype tools

were developed during this work to assess our methodology and the process it

supports. Although this required a significant effort, those software design and

implementation activities were also beneficial for the work, because they helped

identify several requirements and issues through practical experimentation, that

would have been difficult to anticipate otherwise.

Therefore, an important part of the work in this thesis consisted in designing

and implementing an appropriate toolset to support the pattern-oriented model-

driven test development methodology, so that it could then be evaluated in some

real-life case studies.

This chapter describes the architecture designed for that tool set, the im-

plementation approach and the prototype implementation resulting from that

process.

After the prototype tool has been presented, a small scale example is presented

to illustrate how pattern-oriented test engineering can be applied in a real-life

test development project. Also, four case studies conducted during this work to

evaluate the proposed methodology are presented. The first case study features a

conformance test suite for the IP Multimedia Subsystem (IMS) and was used to

measure the impact of the approach on the test development process in terms of

productivity gain, to verify the assumption made intuitively at the beginning of

the work. Additionally, three further case studies targeting a variety of systems

and domains are described.

6.2 Implementation: The UTML Eclipse Plug-in Tool chain

6.2.1 Requirements on The Model-Driven Test Engineering Toolset

As in any software development project, the first development phase for the

UTML MDT toolset consisted in gathering user requirements.

Jennitra [5] lists a selection of requirements on functional tests to address the

growing challenges faced with in testing todays, in particular in the context of

extreme programming and agile methods. Those requirements are:

• Ease to write: Writing functional tests should be an activity that remains

accessible to staff with little technical background and that can produce

results quickly to ensure that it does not become a bottleneck for other

activities of the software system development process.

• Readability: Functional tests are shared artifacts between stakeholders in

the software product’s business process. Therefore, they must remain read-

able, so that all parties can easily understand what each test case verifies.

6.2. IMPLEMENTATION: THE UTML ECLIPSE PLUG-IN TOOL CHAIN 197

• Correctness: Despite being readable, functional tests must be correct to

ensure that products are not deployed with failures that are generally more

costly and difficult to identify and to correct, once the software is deployed.

• Maintainability: Tests are essential to ensure the quality of software prod-

ucts. However, it cannot be assigned too much resources. Therefore the

effort in maintaining tests should not be main cost factor in the development

process and afterwards.

• Locatability: The tests should be organised in such a way that finding a

given test should be possible quickly and without too much effort.

For these requirements to be fulfilled by tests scripts and the test models out of

which they are generated, the test modelling toolset must also take them into

account.

6.2.2 The Proposed Architecture

Figure 6.1: Architecture of the UTML Prototype Toolchain

198 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Figure 6.1 displays an architecture designed for building a prototype applica-

tion to meet the requirements listed in section 6.2.1. As depicted in that figure,

the prototype application is built around a UTML model editor that forms the

core of the architecture. The UTML model editor provides a graphical user in-

terface, through which users are able to perform all types of operations on test

models (e.g. creating, modifying, transforming, analysing, etc.). To ensure that

those test models can be shared among distributed users, they are stored in a

common repository, as depicted on the right-hand side of the figure.

The need to incorporate legacy tests in any new testing approach has al-

ready been highlighted and is viewed as an important issue by the industry [122].

Therefore, additionally, to support the reuse of legacy test artifacts designed

using other notations, the tool provides a flexible application programming inter-

face (API) through which transformators from those notations into UTML can

be plugged-in at runtime. Those user-defined transformators will add to a de-

fault set of standard transformators or front-end plugins that are provided by the

application to support automatic transformation from established test notations

(e.g. TTCN-3) to UTML.

Following the same principle, another API is provided to support the integra-

tion of so-called back-ends, i.e. transformators from UTML abstract test models

to concrete executable test scripts source code.

The presence of front-ends and back-ends enables the usage of the tool to

perform round trip engineering. Using the front-ends, legacy test artifacts can be

imported into UTML so that they can visualised and analysed more easily to be

used as a base for new test model elements. Then, using the back-ends the new

test model will be transformed back to the lower-level test notation for further

processing, leading eventually to test execution.

6.2.3 Prototype Implementation

Implementation Approach

Interestingly, an MDE approach was chosen for the prototype toolset itself.

Therefore, this work provided a unique opportunity for not just evaluating the ap-

plication of the MDE approach to test development, but also to product software

development in general.

The implementation approach is based on a specification of the UTML meta-

model as an EMF (Eclipse Modelling Framework) ECore model. EMF is one of

the most popular MDE frameworks available on the market. It is integrated in the

Eclipse framework and provide a series of tools to support modelling and model

transformation into numerous programming languages (JAVA, C++, PHP, etc.)

and modelling notations (UML, SysML, etc.). ECore is an implementation of

the OMG’s Meta-Object-Facility (MOF) concept for the Eclipse framework. Us-

6.2. IMPLEMENTATION: THE UTML ECLIPSE PLUG-IN TOOL CHAIN 199

Figure 6.2: UTML Prototype Toolchain’s Implementation Approach

ing the facilities provided by EMF an automatic generation of a toolset from the

metamodel can be performed, producing an editor for the notation represented by

the metamodel. However the automatically generated editor is exclusively based

on the information provided in the metamodel. Therefore, it lacks some essen-

tial context information required to improve the usability of the resulting tools.

Those context information can be added manually to the generated JAVA code.

Using appropriate annotations in Javadoc comments, it can be ensured that the

manually modified code is not destroyed by following generation processes.

To provide a graphical editor implementing the visualisation of UTML ele-

ments discussed in Chapter 5 an MDE approach was applied again. The Open-

Source Toolkit for Critical Systems (TOPCASED) [148] is a framework based on

EMF and allowing the definition of graphical representation for elements of an

ECore metamodel. The mapping between elements of the ECore metamodel and

their graphical representation is described in so-called diagram configurator files.

For each of the diagram types defined in Section 5.2.1, a diagram configurator file

was specified in XML, based on which source code was generated automatically,

using the facilities of TOPCASED.

200 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Implementation of Test Patterns As discussed in Section 4.3.3 an approach com-

bining the generative approach with the tool environment support approach was

chosen to specify test patterns in this thesis. To implement that approach, three

groups of features are provided with the prototype tool, additionally to the con-

straints already embodied in the UTML metamodel.

Policies on actions One way of implementing patterns in a modelling tool

consists in defining policies, based on which operations on graphical elements of

the notation would be allowed or disallowed, depending on the current context.

The prototype tool implemented in this thesis provides the possibility for acti-

vating or deactivating the enforcement of those policies, depending on the main

purpose of the test modelling activity. If the test modelling activity is performed,

just to provide a visual documentation to a test suite and it is not intended to

generate any test scripts out of the test model, then the policies should be de-

activated, with the logical consequence of a higher probability that the resulting

test models may be syntactically and semantically faulty. On the other hand, if

emphasis is laid on the correctness of the test model with the aim of transforming

it into executable test scripts for a target test execution environment, then the

policies should be activated and will make it impossible to perform disallowed

actions on graphical elements of the test model.

OCL-Constraints OCL-constraints enable an online or offline validation of

the test model or elements thereof to ensure that the semantical requirements with

regard to the underlying patterns are met. Online validation refers to the fact

that the test models are validated automatically every time a modification has

occurred, whereas offline validation refers to on-demand validation triggered by

a corresponding request. The prototype tool implements all the OCL constraints

defined for the UTML notation in Section 5. Thus a total of 54 OCL-constraints

are used to semantically check the test models. Listing 6.1 shows an example

OCL-constraint used to ensure that connections between ports belonging to the

same component are identified and disallowed.

inv d i f f e r e n t c omponen t s f o r po r t c onn e c t i on :

(s e l f . sourcePort . oc l IsTypeOf (OclVoid) = f a l s e

and s e l f . destPort . oc lIsTypeOf (OclVoid) = f a l s e)

implies

(s e l f . sourcePort . theComponent <> s e l f . destPort . theComponent)

Listing 6.1: Example OCL-Constraint

Wizards Wizards provide support to test modelling activities by guiding

the process and ensuring that the test expert is provided the right set of available

tools and possible choices at each step of that process. As a proof of concept,

the prototype tool implemented in this thesis provides two main categories of

6.2. IMPLEMENTATION: THE UTML ECLIPSE PLUG-IN TOOL CHAIN 201

wizards: creation wizards and transformation wizards. While creation wizards

provide guidance for the instantiation of new elements to existing or newly created

test models, transformation wizards guide the test designer through the process

of creating another view to a test model from an existing view. An example of

transformation wizard allows the creation of a test behaviour diagram (i.e. the

behaviour view on a test model) from an existing test architecture diagram (i.e.

the architectural view). Also, to illustrate the potential of wizards for pattern-

oriented test modelling, the prototype tool implements a wizard for creating new

test architectures based on the architectural test patterns described in Section A.3

of Appendix A.

Technical Challenges

Several technical challenges were faced while developing the prototype tools. One

of the main difficulties originated from poor documentation of the many features

present in the TOPCASED platform. However, once this hurdle was crossed

and the mechanisms of the platform were understood, it proved a very efficient

tool for implementing a visual DSML like UTML. Customisation of the source

code generated with TOPCASED also worked smoothly. Even whenever the

code needed to be newly generated (e.g. after a modification to the meta-model

or to the graphical editor’s model), the manually modified code would be left

untouched, provided it was annotated properly beforehand.

The MDTester Prototype Tool

Figure 6.3 displays a screenshot of the MDTester (Model Driven Test EngineeR-

ing) application developed as a proof of concept for this thesis. MDTester is

provided either as a stand-alone Eclipse Rich-Client Platform (RCP) applica-

tion or as a set of Eclipse plugins, which can installed on applications based on

the Eclipse platform to provide an Integrated Development Environment (IDE)

for modelling test systems, transforming the latter into executable test scripts,

execute them and analyse the results.

For that purpose, MDTester provides the following features:

• Graphical Editor for all types of test diagrams defined by the UTML meta-

model

• Tabular editor for all types of UTML test models.

• Test modelling policies based on black-box test patterns (e.g. filtering of

selection choices, allowance/proscription of actions on test model elements)

• Automatic validation of test models against the UTML metamodel

202 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

F
ig

u
re

6.
3:

S
cr

ee
n

sh
ot

of
U

T
M

L
P

ro
to

ty
p

e
T

o
o
l

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 203

• Automatic validation of test models against test patterns constraints ex-

pressed in the OMG’s OCL notation

• Integration of externally defined OCL constraints for automatic validation

of test models

• Automatic transformation of UTML test models into test scripting nota-

tions to obtain executable test scripts. Currently supported: TTCN-3,

JUnit, XML.

• Plug-in API to support the seamless integration of additional external trans-

formators

Please refer to MDTester’s complete installation and user guide [159] for de-

tails on how to install and to use the prototype tools.

6.3 Evaluation: Example and Case Studies

6.3.1 An Example: Pattern Oriented MDT for a Web Application

Introduction

This section describes an example usage of MDTester, the prototype implemen-

tation developed in this work, to design functional tests for a web application,

following the pattern-oriented test engineering approach. Firstly, the UTML test

model designed for the test suite is described, then the process of transforming

that test model into executable tests is explained.

The Test Model

Figure 6.4 displays an overview of the UTML test model for the web application

example. As depicted in that figure, the test model comprises three submodels,

with the test behaviour model in a central role. The test behaviour model refers

to the test architecture types model and the test data model for accessing test

architecture type definitions and test data model elements respectively. Also

visible in that figure is the fact that the test objectives and the test procedures

model have been omitted from the root test model. Furthermore, a separate test

architecture model (e.g. to define static test architectures) was omitted as well.

This is an illustration of how optional test models might be skipped in the process

towards executable test cases. For example, in case of harsh time constraints for

the test project under development or for small-scale projects where no benefits

are expected from such formalism in gathering test requirements and describing

test procedures.

204 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Figure 6.4: Overview of UTML Test Model for HTTP example

Figure 6.5: Test Data Type Definitions for HTTP example

Modelling Test Data Figure 6.5 shows a view on the test data model, displaying

the test data type definition for a HTTP request message. As depicted in that

figure, the HTTP request message type is modeled as MessageTestDataType

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 205

UTML element containing three fields. The figure also displays the type defini-

tions associated to that data type, as well as the links between type fields and

their associated type definitions (dashed lines between fields and type definitions).

Figure 6.6: Elements of UTML Test Data Model for HTTP example: Impulses

After the types have been defined, modelling data instances, i.e. more or less

concrete values to be used for sending impulses to the SUT or verify its response,

is the next step. Figure 6.6 and figure 6.7 show examples of test data instances

designed for this example. The model elements displayed on Figure 6.6 represent

data instances suitable to be used to describe impulses on the SUT, while those

on Figure 6.7 represent data instances for modelling expectations on the SUT’s

responses.

206 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Figure 6.7: Elements of UTML Test Data Model for HTTP example: Responses

Figure 6.8: Structure of Test Behaviour Model for HTTP example

Modelling Test Behaviour Figure 6.8 displays an overview of the test behaviour

model’s tree structure for the web testing example. The behaviour model con-

sists of a single group of testcases containing two testcases. The first test case

(Testcase GET redirect) checks that the SUT (Web server) performs HTTP redi-

rection correctly, when submitted with a given URL as input, while the second

test case (Testcase GET OK) verifies that the SUT responds with a normal 200

OK HTTP response, if provided a valid URL as input. Figure 6.9 displays the

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 207

UTML test sequence diagram for the Testcase GET redirect test case, which re-

flects the behaviour expected from a web server performing HTTP redirection.

Figure 6.9: Test Behaviour Diagram for HTTP redirecting scenario

Test Execution

To execute the tests modeled for this case study, it was chosen to use the JUnit

test framework. That choice was mainly motivated by the existence and avail-

ability of the HTTPUnit framework that relies on JUnit to provide a convenient

API for performing all types test operations using the HTTP protocol. The aim

was to avoid the additional burden of designing and implementing yet another

test execution environment or of implementing the complex adaptation layer for

one of the existing test execution environments.

However, a prerequisite to test execution is the transformation of the test

model into a notation that can be handled by the target test framework (JAVA-

JUnit in this case). The transformation was achieved automatically, using the

MDTester tool’s JUnit export-plugin. Listing 6.2 and listing 6.3 display excerpts

from the source code automatically generated from the UTML test model. While

listing 6.2 displays the JUnit test suite mapping the WebTestExample BehaviourModel

test behaviour model, listing 6.3 displays the source code mapping the Test-

case GET redirect test case modeled on figure 6.9

import de . f r aunho f e r . fokus . t e s t i n g . web . http . ∗ ;

208 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

import j u n i t . framework . Test ;

import j u n i t . framework . TestSu i te ;

/∗∗
∗ This JUnit t e s t s u i t e has been automat i ca l l y generated from a UTML t e s t

∗ model . Mod i f i c a t i on s on t h i s source code w i l l not

∗ be taken in to account by the genera to r in subsequent

∗ ope ra t i on s Please make sure you keep a copy o f

∗ the f i l e , b e f o r e re−s t a r t i n g the t rans fo rmat ion proce s s .

∗/
pub l i c c l a s s WebTestExample BehaviourModel {

pub l i c s t a t i c Test s u i t e () {
TestSu i te s u i t e = new TestSu i te (”WebTestExample BehaviourModel ”) ;

s u i t e . addTestSuite (Testcase GET redi rect . c l a s s) ;

s u i t e . addTestSuite (Testcase GET OK . c l a s s) ;

s u i t e . addTestSuite (MyTestcase . c l a s s) ;

r e turn s u i t e ;

}
}

Listing 6.2: Generated JUnit Code for the HTTP example

/∗∗
∗ @purpose TP ve r s i on :

∗ @desc : A t e s t c a s e f e a t u r i n g the HTTP GET command and i t s usage

∗ to r e t r i e v e a web page content

∗ Test procedures :

∗
∗/

pub l i c c l a s s Testcase GET redi rect extends HttpTestcase {

pub l i c Testcase GET redi rect () {
super (” Testcase GET redi rect ” , ”Automatica l ly generated t e s t case ”) ;

}

pub l i c void te s tTes t ca se GET red i r e c t () throws Exception {

// Setup a r c h i t e c t u r e

// Preamble

// Test body

createHttpRequest (” http ://www. fokus . f r aunho f e r . de ”) ;

setURL(” http ://www. fokus . f r aunho f e r . de ”) ;

setMethod (MethodKind .GET()) ;

sendHttpRequest (5) ;

HTTP Response v la s tResponse = getHttpResponse () ;

checkHttpResponseDelay (5) ;

checkHttpResponse code (”EQUALS” , ”302”) ;

createHttpRequest (v la s tResponse . getHeader (” l o c a t i o n ”)) ;

setURL(v la s tResponse . getHeader (” l o c a t i o n ”)) ;

setMethod (MethodKind .GET()) ;

sendHttpRequest (5) ;

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 209

checkHttpResponseDelay (5) ;

checkHttpResponse code (”EQUALS” , ”200”) ;

// Postamble

}

}// end Testcase GET redi rect

Listing 6.3: Generated JUnit source code for the Testcase GET redirect test case

displayed in figure 6.9

One of the biggest benefits of generating JUnit tests in combination with Eclipse-

based (test) development environments, is their ease of use, additionally to the

fact that they can be executed without any further implementation effort re-

quired. Figure 6.10 shows a screen capture of the test execution window, which

is integrated in the development environment. However, it is worth noting that

in case of a JUnit assertion failing, thus leading to a FAIL verdict for the test

case, an analysis of the reasons for failure appears to be less convenient.

Figure 6.10: Screenshot of JUnit test execution for HTTP example

210 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

6.3.2 The IMS Case Study

Introduction

This section describes a case study featuring the usage of pattern-oriented test

engineering to design and implement an IMS conformance test system.

The Test Model

Figure 6.11: Overview of UTML Test Model for IMS case study

The aim of the test model for the IMS case study was to cover all aspects

of the test development process, starting from designing a test plan based on

conformance requirements specified in the various IMS standards, through to ex-

ecutable test cases in the form of TTCN-3 scripts. Figure 6.11 depicts a graphical

view on the test model’s root element and illustrates that process, reflected in the

structure of the test model. As depicted in that figure, the test model consists of

six sub-models, each of them covering a specific aspect of test design, according to

the separation-of-concerns pattern described in section A.1.1. The next sections

provide a detailed description of each of those sub-models.

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 211

Figure 6.12: Overview of Test Objectives Diagram for IMS case study

Designing the Test Plan Following the process illustrated in Figure 4.1 and de-

scribed in Section 4.2, the test engineering process starts with the design of a test

plan in the form of a test objectives model. Figure 6.12 displays a view on the

ETSI IMS TestObjectivesModel test model, which contains three groups of test

objectives. The structure of the test objectives model corresponds to that of the

original test suite structure (TSS) document defined by the European Telecom-

munication Standardization Institue (ETSI). The TSS document was provided

as a set of text format files (MS-Word), containg test purposes written in the

TPLan notation. Figure 6.13 shows a sample test purpose for IMS conformance

testing specified with TPLan. Each TPLan test purpose consists of two parts:

• The declaration part comprises the first five upper rows of the table. It

contains an identifier, a summary description of the test purpose and several

other information on the test purpose.

• The behavioural part comprises the lower part of the table and describes a

sequence of actions and observations to be performed for the test case.

In accordance to the methodology proposed in this thesis, the declaration part of

the TPLan test purposes maps to UTML test objectives. Therefore, the essential

part of the test objectives modelling activity consisted in transforming those

TPLan test purposes into UTML test objectives model elements, following that

mapping. Figure 6.12 also displays the visualisation of a test objective element

resulting from that transformation, while Figure 6.14 shows a tree view on the

whole test objectives model with the associated diagrams and the other related

test models.

Designing the Test Procedures The test procedures model for the case study was

also obtained by transforming the TPLan test purposes into UTML test proce-

212 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Figure 6.13: Example of TPLan Test Purpose for IMS Conformance Testing

dures. However, to obtain the test procedure, the behavioural part of the test

purpose (cf. figure 6.13) was taken as input. Figure 6.15 displays an overview

of the test procedures model for the IMS case study in its tree representation.

As depicted in that figure, the test procedures model has the same structure

as the test objectives model, since both are derived from the same TSS docu-

ment. Further, figure 6.16 displays a graphical representation of two selected test

procedures resulting from the manual transformation process.

Designing Test Data After the test procedures have been defined, the test de-

sign process moved to the next phase of design the test data required for the IP

Multimedia Subsystem (IMS) conformance test suite. Figure 6.17 displays the

root test data diagram for the IMS case study and at the same time illustrates

the structure of that model, which comprises eight groups of test data modelling

elements. As depicted in that figure, some of the groups contain data type def-

initions for a given protocol used in the IMS context, while others contain data

instances (i.e. concrete values) to be used for modelling test behaviour. E.g. the

SipDataTypes group contains data type definitions for the Session Initiation Pro-

tocol (SIP) protocol [136], while the SipDataInstances group contains concrete

test values for those data types. Additionally, more groups might be created for

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 213

Figure 6.14: Overview of Test Objectives Model for IMS case study

Figure 6.15: Overview of Test Procedures Diagram for IMS case study

generic data types or data instances, e.g. for global test parameters. Figure 6.18

shows a view on the test data model displaying sample test data type defini-

tions for the SIP protocol. As depicted in that figure, most SIP request types

are based on a generic type definition (SIPRequestType), which they extend or

214 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Figure 6.16: Example Test Procedures for IMS case study

restrict using additional constraints on the contained fields.

Finally, figure 6.19 displays sample test data instances from the test model,

illustrating the extension mechanism allowing the reuse of previously defined test

data instances to define new ones.

Designing the Test Architecture The design of the test architecture is divided

in two phases. The first phase consists in defining types for the architectural

elements that are required for building test architectures. Then, in a second

phase, the test architectures are modeled, based on instances of the types defined

in the first step.

Defining Types for the Test Architecture Figure 6.20 displays an

overview of the test architecture types diagram for the IMS case study, which

contains a series of test component types and a group containing port type def-

initions. A more detailed view on the test architecture types model is displayed

on figure 6.21 in a tree representation of that model. The definition of port types

and component types require access to test data information (e.g. data type

definitions). Therefore, as already depicted on figure 6.11, the test architecture

types model refers to the test data model to achieve that purpose.

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 215

Figure 6.17: Root Test Data Diagram for IMS case study

Designing Static Test Architectures Based on the type definitions for

test architecture elements modeled in the previous step the static test architec-

tures could be modeled as well. Figure 6.22 displays the root test architecture

diagram for the IMS case study. As depicted in that figure, the test architecture

model contains four different static test architecture, each of which is represented

as a cloud in its graphical form. Those test architectures were selected among the

11 defined in the TSS document mentioned previously, because the test cases se-

lected for the case study required them. A test architecture diagram for a sample

test architecture used in the case study is shown in Figure 6.23.

Modelling Test Behaviour The test behaviour model has the most dependencies

to other elements of the test model. Therefore it can only be designed, once

those test models are finished and ready to be refered to. Figure 6.24 displays an

216 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Figure 6.18: Test Data Type Definitions for IMS case study

Figure 6.19: Test Data Instances for IMS case study

overview of the test behaviour model for the IMS case study. The test behaviour

models consists of five groups represented each as package symbol:

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 217

Figure 6.20: Overview of Test Architecture Types Diagram for IMS case study

Figure 6.21: Overview of Test Architecture Types Model for IMS case study

• The timers group contains timer declarations.

218 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Figure 6.22: Root Test Architecture Diagram for IMS

Figure 6.23: Test Architecture Diagram for a static IMS test architecture

Figure 6.24: Overview of Test Behaviour diagram for IMS case study

• The behaviourDefs group contains reusable behaviour definition elements

similar to functions in functional programming languages that can be in-

voked in test cases or other behaviour definitions.

• The States group contains elements modelling the possible state in which

components of the test architecture can find themselves in. Those states can

then be used as pre-/post conditions for test cases and other test behaviours.

Figure 6.25 shows the structure of the States group with further details on

some of the state definitions it contains. As displayed in that figure, each

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 219

state contains a series of triggering function invocations that it requires to

be entered.

• Finally, the MwTestcases and the gmTestcases groups contain the test cases.

An example of one test sequence diagram for a test case is displayed at

figure 6.26.

Figure 6.25: Modelling of states for the IMS test model

Test Execution

Listing 6.4 displays an extract from the TTCN-3 source code resulting from

the automated transformation of the UTML test model into TTCN-3, using

the TTCN-3 backend developed with the prototype tool. The transformation

is performed according to the mapping rules defined in Section B and illustrates

how parallel test components are designed with UTML and how they may be

translated into a test specification language such as TTCN-3. As displayed in

the listing, the behaviour of each test component is translated into a TTCN-3

function, which is then invoked in the test case when the component instance is

started. Logically, passive test components (i.e. those for which the first action

consists of waiting for an incoming message or for user interaction) are started

first, before active components are started in their turn.

220 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Figure 6.26: Test Behaviour diagram for a sample IMS test case

It is worth noting that the TTCN-3 code displayed in Listing 6.4 was auto-

matically generated in its entirety and was compilable right away, without any

additional manual editing.

∗ Functions for t e s t component behaviours

∗/
group TC IMST2 GM INI 08 functions {
function f TC IMST2 GM INI 08 UE2 behaviour () runs on UEType {
T Guard . start ;

alt {
[] gm2 . receive (va l id INVITE acceptab l e exp i ra t i on) {
T Guard . stop ;

setverdict (

pass ,

”∗∗∗ F TC IMST2 GM INI 08 UE2 BEHAVIOUR () : ”

&”SIP InviteRequestType message ”

&”r e c e i v ed as expected ∗∗∗”) ;

}
[] T Guard . timeout {
setverdict (

f a i l ,

”∗∗∗ F TC IMST2 GM INI 08 UE2 BEHAVIOUR () : ”

&”Time out while expect ing ”

&”SIP InviteRequestType message ∗∗∗”) ;

}
}
} // end f TC IMST2 GM INI 08 UE2 behaviour

function f TC IMST2 GM INI 08 UE1 behaviour () runs on UEType {
gm1 . send (va l id INVITE acceptab l e exp i ra t i on) ;

T Guard . start ;

alt {
[] gm1 . receive (a 100 r e sponse) {
T Guard . stop ;

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 221

setverdict (

pass ,

”∗∗∗ F TC IMST2 GM INI 08 UE1 BEHAVIOUR () : ”

&”SIPResponseType message ”&

&”re c e i v ed as expected ∗∗∗”) ;

}
[] T Guard . timeout {
setverdict (

f a i l ,

”∗∗∗ F TC IMST2 GM INI 08 UE1 BEHAVIOUR () : ”

&”Time out while expect ing ”

&”SIPResponseType message ∗∗∗”) ;

}
}
} // end f TC IMST2 GM INI 08 UE1 behaviour

} // end TC IMST2 GM INI 08 functions

/∗∗
∗ @purpose

∗ TP vers ion : Clause : 5 . 2 . 7 . 2 , 5 . 2 . 8 . 3 , RFC4028

∗ References :

∗ RQ 003 5064 , RQ 003 5068 , RQ 003 5065

∗ IUT Role : IMS

∗ Config Ref :

∗ CF 2GM

∗ Se l e c t i on Express ion : PICS A.2/1 , A.3/12 .1 . 1

∗ Summary :

∗ When a

∗ P−CSCF requ i r e s p e r i od i c re freshment o f a s e s s i on e s t a b l i s h e d a f t e r

∗ r e c e i v i n g a SIP INVITE reque s t from a UE and the Session−Expires

∗ header o f the INVITE reque s t i n d i c a t e s accep ta b l e r e f r e s h frequency

∗ then i t forwards the r eque s t to the d e s t i na t i on UE and re turns a 100

∗ (Trying) to the o r i g i n a t i n g UE.

∗@desc : TODO: Add de s c r i p t i on

∗Test procedure :

∗ 1 : Preamble check t ha t UE1 and UE2 r e g i s t e r e d in IUT

∗ 2 : UE1 sends INVITE for UE2

∗ 3 : Check t ha t UE1 r e c e i v e s 100 response from IUT

∗ 4 : Check t ha t UE2 r e c e i v e s INVITE with a v a l i d Session−Expires

∗ header

∗/
testcase TC IMST2 GM INI 08 () runs on ComponentType system IMSNetwork {
// Test execu t ion

// Setup con f i gu ra t i on : CF 2GM

// In s t anc i a t e t e s t components

var UEType UE2 := UEType . create ;

var UEType UE1 := UEType . create ;

map(UE1 : gm1 , system : gm1) ;

map(UE2 : gm2 , system : gm2) ;

// Preamble

// Test body

// F i r s t s t a r t pa s s i v e components

UE2. start (f TC IMST2 GM INI 08 UE2 behaviour ()) ;

// Then , s t a r t a c t i v e components

UE1. start (f TC IMST2 GM INI 08 UE1 behaviour ()) ;

// Wait u n t i l components complete t h e i r job

UE2.done ;

UE1 .done ;

222 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

// Postamble

// Teardown con f i gu ra t i on : CF 2GM

unmap(UE1 : gm1 , system : gm1) ;

unmap(UE2 : gm2 , system : gm2) ;

} // end TC IMST2 GM INI 08

Listing 6.4: Generated TTCN-3 Code for the IMS case study

Evaluation

Quantitative Analysis A key metric for quantitative analysis of any development

process is productivity gain. Evaluating the productivity of pattern oriented test

development is a relatively straightforward task. For that purpose, the output

(e.g. number of implemented test cases) would simply have to be correlated with

the invested effort (e.g. number of person-days/person-months involved) for a

project or a series of projects. However, to measure the impact of introducing a

new approach on that productivity is a less trivial task, because productivity data

before and after the introduction of the new approach need to be compared with

each other. Ideally, to ensure a fair comparison, at least the following conditions

need to be fulfilled:

• Both methodologies should be applied on the same case study: The starting

point for both test development approaches should be the same system

specification or test plan, targeting the same SUT

• Separate teams should apply the methodology, each on its side in a separate

project.

• The same time frame will apply to both projects and results will be collected

at the end for evaluation.

• Both teams should have comparable level of expertise in their respective

field.

However, such an ideal setup could not be provided for this IMS case study.

Therefore the quantitative comparison in this work had to be based on assump-

tions resulting from statistical analysis of past TTCN-3 test development projects.

Table 6.1 summarizes the results obtained, after applying the pattern-oriented

test development methodology on the case study. Taking into account that the

project duration was set to 5 person-days and that a total result of 19 test cases

were implemented at its end, productivity factor is 19/5 = 3.8 test cases/day. It

should be pointed that, this result was obtained with team of designers with a

rather low level of testing and modelling expertise. Therefore, it can be assumed

that slightly higher results would be obtained with experienced test designers.

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 223

Project Dura-
tion(Days)

Produced
Test cases

Producti-
vity (Test
cases/-
Day)

5 19 3.8

Table 6.1: Results of Applying Pattern-Oriented Test Engineering to IMS Case
Study

To measure the productivity gain generated by this work’s approach, the re-

sults obtained with pattern-oriented test modelling are compared with those gen-

erally obtained through “traditional” test development approaches. Figure 6.27

Figure 6.27: Productivity Gain From Pattern-Oriented Test Development, with-
out taking into account the impact of Test Objectives and Test Procedures

depicts the evolution of productivity gain, depending on the productivity ob-

tained without pattern-oriented test development. Generally, for TTCN-3 test

development, realistic estimations of productivity range between 2 and 5 test cas-

es/day. Therefore,the plot in Figure 6.27 indicates that, if the existing process

allows a production rate of more than 4 test cases/day (including test objec-

tives definition, test procedure design and documentation), then applying the

224 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

methodology proposed in this thesis would rather cause a productivity loss. On

the other hand, the productivity could be significantly improved (30 to 90%),

when the production rate of the existing methodology is between 2 and 4 test

cases/day. Moreover, if it is assumed that, the specification of a test plan (test

Figure 6.28: Productivity Gain From Pattern-Oriented Test Development Based
on Pure Test System Design

objectives) and of test procedures consumes 20% of the effort in pattern-oriented

test development and are generally not taken into account, when estimating the

productivity of the test development process, then the productivity gain is even

higher, as depicted on Figure 6.28.

Qualitative Analysis Using model-driven approach to test development offers a

wide range of qualitative benefits, compared to traditional development approach.

Test models offer a higher level of readability, maintainability, documentation and

flexibility that plain test scripts and non-formal notations. Furthermore, existing

MDE frameworks (e.g. Eclipse EMF, TOPCASED) provide a wide range of

functionalities for creating, managing, validating and transforming models that

can be used to provide powerful tool chains to support the process. However, a

source of general concern is the quality of the test scripts generated automatically

from the process. For this IMS case study, the TRex [163] tool was used measure

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 225

the quality of the generated TTCN-3 test scripts. The authors of TRex define

a metric called Template coupling (ranging between 1 and 3) to measure the

maintainability of TTCN-3 scripts. The automatically generated IMS test scripts

scored 1.015 on that metrics, indicating the high level of maintainability of those

scripts (1.0 is best).

6.3.3 The OMA SUPL Case Study

Introduction

The Open Mobile Alliance1 (OMA) is an international body which defines open

standards for the application layer in fixed and mobile communications networks.

Location Based Services (LBS) are one of the categories of services addressed by

OMA through various protocols such as MLP (Mobile Location Protocol), RLP

(Roaming Location Protocol) and SUPL (Secure User Plane Location Protocol).

With the release of its version 2.0, new functionalities were added to the initial

SUPL v1.0 specification. Therefore, the existing conformance tests developed for

version 1.0 with TTCN-3 needed to be upgraded to cover version 2.0.

This case study describes how the methodology proposed in this thesis was

used to perform round-trip engineering, firstly to visualize and analyze the ex-

isting test scripts, then to reuse elements thereof to design new test cases at a

higher level of abstraction, before finally transforming those back into executable

TTCN-3 test cases.

The Test Model

Although reuse is known to be a potentially highly rewarding task, putting it in

practice is by no means trivial. In fact, a pre-condition for reusing legacy source

code or any sort, is to figure out how it is structured and how its composing

elements are related to each other. Given that a (good) picture is said to be

worth thousand words, visualizing the source code can be a good starting point

in analysing it for potential reuse.

Therefore the first step in this case study consisted in using the TTCN-3 fron-

tend developed with the prototype tool to transform the TTCN-3 source code

for SUPL v1.0 into UTML models. The TTCN-3 frontend for UTML transforms

elements defined in TTCN-3 into their UTML equivalents according to the map-

ping described in Section B.1 of Appendix B. However, it worth mentioning that

to limit the size of the resulting test model, the transformation does not cover the

whole depth of the TTCN-3 abstract syntax tree(AST). For example, for func-

tions defined in TTCN-3, only their signature is transformed to allow their reuse,

while the behaviour they contain is left out. In a similar manner, for TTCN-

3 templates, only their key caracteristics are extracted (e.g. name, direction,

1http://www.openmobilealliance.org

http://www.openmobilealliance.org

226 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

parameters etc.), while other details are simply ignored by the transformation

process.

type record ULP PDU {
0ULP PDU length ,

Vers ion vers ion ,

Sess ionID sess ionID ,

UlpMessage message

}

type integer 0ULP PDU (0 . . 65535) ;

type union UlpMessage {
SUPLINIT msSUPLINIT ,

SUPLSTART msSUPLSTART,

SUPLRESPONSE msSUPLRESPONSE,

SUPLPOSINIT msSUPLPOSINIT,

SUPLPOS msSUPLPOS,

SUPLEND msSUPLEND,

SUPLAUTHREQ msSUPLAUTHREQ,

SUPLAUTHRESP msSUPLAUTHRESP,

Ver2 SUPLTRIGGEREDSTART msSUPLTRIGGEREDSTART,

Ver2 SUPLTRIGGEREDRESPONSE msSUPLTRIGGEREDRESPONSE,

Ver2 SUPLTRIGGEREDSTOP msSUPLTRIGGEREDSTOP,

Ver2 SUPLNOTIFY msSUPLNOTIFY,

Ver2 SUPLNOTIFYRESPONSE msSUPLNOTIFYRESPONSE,

Ver2 SUPLSETINIT msSUPLSETINIT ,

Ver2 SUPLREPORT msSUPLREPORT

}

Listing 6.5: Example TTCN-3 Source Code for OMA SUPL Test Data Type

Listing 6.5 shows a code snippet from the legacy TTCN-3 test specification for

the OMA SUPL protocol, while Figure 6.29 depicts the UTML test data diagram

resulting from the transformation of that test specification into UTML.

Figure 6.29 provides a good illustration of the power of visualisation for un-

derstanding and reusing existing TTCN-3 test automation scripts. An example

of such reuse is displayed in Figure 6.30, which features an existing SUPL v.1.0

test data instance (s ulpPdu), initially defined in as a TTCN-3 template, beeing

extended to design a new test data instance for SUPL v2.0 (m ulpPduVersion).

Finally, Figure 6.31 displays the test sequence diagram for one of the new OMA

SUPL v2.0 test cases designed in the case study.

Test Execution

Using the TTCN-3 backend for UTML, the test models were transformed auto-

matically into TTCN-3 test skeletons which were then completed manually into

fully executable test cases. The manual effort for completing the test cases could

be estimated to approximately 10% of the total effort. A sample TTCN-3 code

generated from the testcase depicted in Figure 6.31 can be found in Appendix C.

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 227

Figure 6.29: Examples of UTML Test Data Diagram resulting from automated
Transformation from TTCN-3 OMA SUPL v1.0

Evaluation

Some tooling issues needed to be addressed during this case study. Those issues

were mostly related to the ability of the EMF tools to handle large size models

resulting from reverse engineering of the existing TTCN-3 code. The consequence

of this was that the delay for loading the test model was too long and thus was

affecting productivity.

This case study also underlined the need for supporting functionalities that

are essential for any development or modelling activity, such as tools for searching

for certain elements in the artefacts or for tracking modifications between different

228 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Figure 6.30: Reuse of Legacy Test Data in UTML Test Data Model for OMA
SUPL Testing

versions. The latter is even more important if several designers/developers work

on the same model. Eventually, those functionalities were implemented in the

prototype tool using mechanisms provided by the EMF tool chain. However,

it was later discovered that those functionalities would fail because of the large

size of the model. Therefore, after all test cases had been designed completely

in the test model, an algorithm was developed and applied to reduce the size of

the test model, by deleting all elements that were not actually referred to by the

test cases. This lead to a reduction of the test model’s size by 1/3, namely from

approximately 40kLOC to 12kLOC.

Eventually at the end of this case study, a total of 29 test cases were developed

using the approach proposed in this thesis, while at the same time 35 test cases

were developed in parallel using a more traditional TTCN-3 test development

approach. This means that, despite the efforts that were required to fix the

previously mentioned tooling issues, neearly the same level of productivity was

achieved with model-driven test engineering as with traditional test engineering.

This indicates that, if the prototype tool had reached a higher level of maturity

at the beginning of the case study, the MDTE approach would have lead to even

better results.

Furthermore, the fact that the documentation for the test cases could be gen-

erated automatically from the UTML model helped not only for internal com-

munication within the project, but also for providing the final project report

including a graphical description of the behaviour in each test case. Which can

undoubtedly be considered an enhancement to the overall quality of the resulting

test suite.

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 229

F
ig

u
re

6
.3

1:
U

T
M

L
T

es
t

S
eq

u
en

ce
D

ia
gr

am
fo

r
an

O
M

A
S

U
P

L
T

es
t

C
as

e

230 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

6.3.4 The Parlay-X Case Study

Introduction

This section describes a case study featuring the usage of pattern-oriented test

engineering to design and implement a test automation solution for web services

specified through the Parlay-XAPIs. The purpose of the Parlay APIs2 is to facil-

itate access to services provided by telecommunication networks, so that new IT

and telephony applications using those services can be developed more rapidly,

even by IT-developers who are not necessarily experts in telecommunication sys-

tems. With the growing importance of web services, the Parlay APIs have been

specified since 2004 as a collection of web services gathered under the Parlay-X

label.

The idea of applying the method proposed in this thesis for test automation in

the context of Parlay-X was found attractive, because it provided the opportunity

for assessing the application of the approach to a new domain, namely that of web

services, while at the same time for checking whether the approach is suitable for

systems using synchronous (Request-Response) communication scheme.

The Parlay-X web service APIs are specified with the Web Service Definition

Language (WSDL) and cover several categories of services such as Call Control,

User Interaction, Messaging, Mobility etc. For the case study, the Send SMS

interface that belongs to the Messaging category and provides a gateway to Short

Messaging System usually available in mobile GSM networks.

The Test Model

The test model for this case study was designed by transforming the system

model (provided as a set of WSDL/XSD files) into UTML and to extend the

automatically generated test model manually to obtain a complete test model.

This manual step was required because the WSDL system model does not contain

a description of the system’s behaviour, but only its structure and the associated

data types.

The Test Data Model Listing 6.6 displays an extract from WSDL specification

for the Parlay-X SendSMS interface, containing definitions of data types used by

that web service.

type=”pa r l ayx sms s end l o ca l x sd : sendSms”/> <xsd : complexType name=”sendSms”>

<xsd : sequence>

<xsd : element name=”addre s s e s ” type=”xsd : anyURI” minOccurs=”1”

maxOccurs=”unbounded”/> <xsd : element name=”senderName” type=”xsd : s t r i n g ”

minOccurs=”0” maxOccurs=”1”/> <xsd : element name=”charg ing ”

type=”parlayx common xsd : ChargingInformation ”

minOccurs=”0” maxOccurs=”1”/>

<xsd : element name=”message” type=”xsd : s t r i n g ”/> <xsd : element

2The Parlay APIs are defined by the Parlay Group (http:\www.parlay.org)

http:\www.parlay.org

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 231

name=”rece ip tReques t ” type=”parlayx common xsd : S impleReference ”

minOccurs=”0” maxOccurs=”1”/>

</xsd : sequence>

</xsd : complexType>

<xsd : element name=”sendSmsResponse”

type=”pa r l ayx sms s end l o ca l x sd : sendSmsResponse”/>

<xsd : complexType name=”sendSmsResponse”>

<xsd : sequence>

<xsd : element name=”r e s u l t ” type=”xsd : s t r i n g ”/>

</xsd : sequence>

</xsd : complexType>

<wsdl : message name=”SendSms sendSmsRequest”>

<wsdl : part name=”parameters ”

element=”pa r l ayx sms s end l o ca l x sd : sendSms”/>

</wsdl : message>

<wsdl : message name=”SendSms sendSmsResponse”>

<wsdl : part name=”r e s u l t ”

element=”pa r l ayx sms s end l o ca l x sd : sendSmsResponse”/>

</wsdl : message>

Listing 6.6: Extract from the Parlay-X SendSMS WSDL Service Specification of

Data Types

Figure 6.32 displays an extract of the UTML test data diagram for the test data

model resulting from transforming the WSDL elements displayed in Listing 6.6

to UTML, using the WSDL frontend provided by the prototype tool.

Figure 6.32: Extract of UTML Test Data Diagram displaying Elements imported
from Parlay-X System Model (WSDL)

The Test Architecture Model As displayed in Listing 6.7, besides the system’s

data object model, the SUT’s WSDL file also contains a specification of ports

through which the SendSMS service can be accessed and the operations supported

by those ports. Those information can be transformed automatically into UTML,

so that they can be reused to design the test architecture model.

232 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

<wsdl : portType name=”SendSms”>

<wsdl : ope ra t i on name=”sendSms”>

<wsdl : input message=”par layx sms send : SendSms sendSmsRequest”/>

<wsdl : output message=”par layx sms send : SendSms sendSmsResponse”/>

<wsdl : f a u l t name=”Serv i ceExcept ion ”

message=”par layx common faults : Se rv i ceExcept ion”/>

<wsdl : f a u l t name=”Pol i cyExcept ion ”

message=”par layx common faults : Po l i cyExcept ion”/>

</wsdl : operat ion>

. . .

</wsdl : portType>

Listing 6.7: Extract from the Parlay-X SendSMS WSDL Service Specification

Operation Types

Figure 6.33 displays the test architecture resulting from that transformation. As

displayed in that figure, a simple P2P test architecture following the One-on-One

architectural test design pattern (see Section A.3.2) has been applied to derive

the test architecture, which consists of one test components connected to the

SUT via the sendSMSPort.

Figure 6.33: Automatically Generated Test Architecture for the Parlay-X
SendSMS Web Service

The Test Behaviour Model The behaviour of the client and the application server

involved in a Parlay-X scenario is specified by the Parlay-X standard in the form

of natural language, sometimes illustrated with UML sequence diagrams showing

the expected interactions between those parties. An example of one such UML

sequence diagram is displayed in Figure 6.34, which depicts how a client may

invoke the Parlay-X SendSMS web service to send a short message, then after

a short while, query the web service to get the delivery status of the sent short

message. Based on the Parlay-X specification and on UML sequence diagrams

such as the one displayed in Figure 6.34, test sequence diagrams were designed

for the SendSMS service, taking into account and referring to the test data and

the test architecture models described in Paragraph 6.3.4 and Paragraph 6.3.4

respectively.

Figure 6.35 displays a UTML test sequence diagram for a test case targetting

the Parlay-X SendSMS web service. The objective of the test case is to check

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 233

Figure 6.34: UML Sequence Diagram for Parlay-X SendSMS Web Service

that the web service meets the requirements on the delivery delays for SMSs sent

through it. The depicted test behaviour goes as follows:

1. The test system starts two different timers for checking network and termi-

nal delivery respectively.

2. The test component calls the SUT’s SendSmsOperation method to send

an SMS to a pre-defined destination address. The value returned by that

method call is stored in the v inResp variable.

3. The test system waits until the network delivery timer expires.

4. The test component calls the SUT’s getSmsDeliveryStatusOperation to re-

quest the status of the previously sent SMS and checks that the SUT re-

turned a status indicating that the SMS was successfully delivered to the

network (DeliveredToNetwork).

5. The test component waits again until the terminal delivery timer expires.

6. The test component calls the SUT’s getSmsDeliveryStatusOperation again

and checks that the SUT returns a status indicating that the SMS has been

successfully delivered to the destination address(DeliveredToTerminal).

234 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Figure 6.35: UTML Test Sequence Diagram of Test Case for Parlay-X SendSMS
Web Service

Test Execution

To illustrate the transformation of the UTML test model designed in this case

study towards executable test cases, the TTCN-3 backend was used again, leading

to the source code displayed in Listing 6.8.

testcase TC SmsDeliveryDelay ()

runs on SendSmsComponentType

system SendSmsComponentType {
//Local v a r i a b l e s and t imers

var s t r i n g v r eque s t Id ;

var SendSms sendSmsResponse v inResp ;

timer T networkDel ivery := MAXNETWORKDELIVERYDELAY;

timer T termina lDe l ive ry := MAX TERMINAL DELIVERY DELAY;

//Test execu t ion

//Setup con f i gu ra t i on : MyP2PTestArchitecture

map (s e l f : sendSmsPort , system : sendSmsPort) ;

//Preamble

//Test body

T networkDel ivery . start ;

T te rmina lDe l ive ry . start ;

sendSmsPort . ca l l (sendSmsOperation :

{m SendSms Request (DEFAULT SMS MESSAGE, DEST TERMINAL ADDRESS)}) {
[] sendSmsPort . getreply

(sendSmsOperation : ? value mw sendSms SendSmsResponse)

−> value v inResp {
log (”∗∗∗ Got reply mw sendSms SendSmsResponse

for sendSmsOperation

ca l l ∗∗∗”) ;

}
[] sendSmsPort . getreply {

setverdict (f a i l) ;

}
[] sendSmsPort . catch {

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 235

setverdict (f a i l) ;

}
}
log (”∗∗∗ TC SMSDELIVERYDELAY: start wait ing

until T networkDel ivery exp i r e s . ∗∗∗”) ;

wait (MAXNETWORKDELIVERYDELAY) ;

sendSmsPort . ca l l (getSmsDel iveryStatusOperat ion :

{m sendSms getSmsDeliveryStatus (v inResp . r e s u l t . r e s u l t)}) {
[] sendSmsPort . getreply (getSmsDel iveryStatusOperat ion : ?

value mw sendSms getSmsDeliveryStatusResp) {
log (”∗∗∗ Got reply mw sendSms getSmsDeliveryStatusResp

for getSmsDel iveryStatusOperat ion ca l l ∗∗∗”) ;

}
[] sendSmsPort . getreply {

setverdict (f a i l) ;

}
[] sendSmsPort . catch {

setverdict (f a i l) ;

}
}
log (”∗∗∗ TC SMSDELIVERYDELAY: start wait ing until

T termina lDe l ive ry exp i r e s . ∗∗∗”) ;

wait (MAX TERMINAL DELIVERY DELAY) ;

sendSmsPort . ca l l (getSmsDel iveryStatusOperat ion :

{m sendSms getSmsDeliveryStatus (v inResp . s t a tu s . s t a tu s)}) {
[] sendSmsPort . getreply (getSmsDel iveryStatusOperat ion : ?

value mw sendSms getSmsDeliveryStatusResp) {
setverdict (pass ,

”∗∗∗ Got reply mw sendSms getSmsDeliveryStatusResp

for getSmsDel iveryStatusOperat ion ca l l ∗∗∗”) ; }
[] sendSmsPort . getreply {

setverdict (f a i l) ;

}
[] sendSmsPort . catch {

setverdict (f a i l) ;

}
}
//Postamble

unmap (s e l f : sendSmsPort , system : sendSmsPort) ;

} //end TC SmsDeliveryDelay

Listing 6.8: TTCN-3 Source Code generated from the UTML test behaviour

model for the Parlay-X SendSMS Testcase displayed in Figure 6.35

Although the generated TTCN-3 source code was not effectively executed against

an application server providing the Parlay-X services, the fact that it was suc-

cessfully validated with a TTCN-3 compiler is a clear indication, that its quality

can at least be considered as acceptable.

Evaluation

This case study has demonstrated how the approach proposed in this thesis can be

used to develop test automation for systems and services that use a synchronous

communication scheme following a request-response scenario. The case study

also provided the opportunity to evaluate the WSDL-frontend developed with

236 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

the prototype tool. The WSDL frontend transforms system models specified with

WSDL automatically into UTML test model , using the mapping rules described

in Section B.2 of Appendix B. The combined usage of that frontend together

with the TTCN-3 backend made reduced the test development effort for such

systems drastically, while at same time ensuring a higher quality of the resulting

test cases.

6.3.5 The Digital Watch Case Study

Introduction

The digital watch case study is an interesting application of the methodology

proposed in this thesis for combining MBT and MDT techniques to facilitate test

automation. Also, this study demonstrate how the proposed approach can be

used in the embedded systems domain, besides the services and communication

domains covered by the other case studies.

The Test Model

The system model used for this case study is an example SysML model for a dig-

ital watch, provided by the TOPCASED modelling tool to demonstrate SysML

support3. The test model for the digital watch results from a combination of

automated generation from the SUT’s model (SysML). Firstly, the requirements

on the SUT are transformed into UTML test objectives, using a model-to-model

transformation implemented via the MDTester SysML frontend. The transforma-

tion of SysML requirements into UTML test objectives can either be performed

on individual requirements or on packages containing several requirements or

subpackages. Figure 6.36 depicts an example requirements package that was

added to the original example model for demonstration purpose. As depicted

in that figure, the designed requirements are not more than illustrating exam-

ples without any real semantical relationship to the digital watch model itself.

To ensure traceability between system and test model, there’s a need to create

references between the test model and the requirements specified in the system

model. Therefore, those requirements had to be transformed from SysML to

UTML, using the SysML frontend developed with the prototype tool in this the-

sis. The SysML to UTML transformation was performed based on the mapping

rules defined in Table B.1 of Appendix B. Figure 6.37 displays the result of that

transformation process. As depicted in that figure, the transformation not only

creates a structure in the test objectives model that is equivalent to the original

structure of the SysML, but also keeps track of the dependency relationships

existing between elements of the system model.

3The complete model is available for download at http://www.topcased.org

http://www.topcased.org

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 237

Figure 6.36: SysML Requirements Diagram for the digital watch

Figure 6.37: UTML Test Objectives Diagram resulting from transformation of
SysML Requirements

238 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Then, the SUT’s logical architecture (including associated data model) is

transformed in a similar manner into a test architecture using one of the archi-

tectural test design patterns described in Section A.3 of Appendix A. Figure 6.38

displays the logical architecture of the digital watch, represented as a SysML

internal block diagram. As depicted in that figure, the digital watch consists of a

processor block and of a series of blocks building together the watch’s display. For

this case study, the processor (watchProcessor) block was taken as the SUT for

which test cases were to be developed. The transformation of the watchProces-

Figure 6.38: SysML Block Diagram Displaying the Logical Architecture of the
digital watch

sor block from SysML to UTML consisted, not just of generating the equivalent

SUT component in UTML, but also a test architecture on which test cases could

be designed in a following step. The generation of a test architecture is done

based on the test architecture pattern selected by the user through the wizard

provided by the prototype tool. Figure 6.39 displays the result of the transfor-

mation operation, in case the One-on-One test architecture pattern described in

Section A.3.2 was selected. As expected, the resulting test architecture features

one test component providing the same ports as the SUT, but with inverted

directions (mirror ports). Alternatively, the Sandwich test architecture pattern

6.3. EVALUATION: EXAMPLE AND CASE STUDIES 239

Figure 6.39: Test Architecture derived from the SysML Block Diagram for the
watchProcessor Block (One-on-One Test Architecture Pattern)

described in Section A.3.6 could have been chosen instead, leading to the test ar-

chitecture displayed in Figure 6.40. As expected, the resulting test architecture

splits test behaviour between two parallel test components, whereby one of those

components (Stimulating TC) will be used for send stimuli to the SUT, while the

other one (Observing TC) will be used to assess that the SUT reacts as expected

to those stimuli.

Figure 6.40: Test Architecture derived from the SysML Block Diagram for the
watchProcessor System Component (Sandwich Test Architecture Pattern)

Test Execution

For this case study, no test behaviour was designed, because the SysML sys-

tem model only contains architectural elements and does not address behaviour.

Furthermore, adding such behaviour elements to the system model from scratch

required significantly more resources and deeper domain-specific knowledge, both

of which were unavailable at that moment.

240 CHAPTER 6. EVALUATION: IMPLEMENTATION AND CASE STUDIES

Evaluation

This case study has demonstrated how model-to-model transformation can be

used to implement traceability between system and test model. Additionally, the

usage of the SysML notation in the case study demonstrates that the approach

proposed in this thesis can also be applied to domains in which that notation is

used for system design (e.g. Embedded systems, Automotive, Avionics).

6.4 Summary

This chapter has proposed an application’s architecture for pattern-oriented model-

driven testing. As a proof-of-concept, a prototype application based on the pro-

posed architecture has been implemented. Then, that prototype tool chain was

used to apply the pattern-oriented test development approach on a selection of

case studies to evaluate it and identify future potential improvements. A total

of five case studies have been presented, describing how the approach proposed

in this thesis was applied successfully to improve the test automation process for

various kinds of SUTs from different application domains. A comparison of the

output obtained with pattern-oriented MDT with current state of the art indi-

cates improvements, both in terms of the productivity and of the quality of the

resulting test suites. The evaluation done in this thesis has mainly been of tech-

nical nature based on collected case study data and statistical figures. However,

further analysis will be required to evaluate to which extends the approach meets

its potential end user requirements, e.g. with regard to usability. Furthermore,

as already indicated in a publication of first results of this work [53], it should be

interesting to evaluate the impact of the method for test development in other

domains beyond the communication domain that has been the focus of the de-

scribed case studies. However, the results obtained in the case studies presented

in this chapter clearly demonstrate that the proposed approach can truely be

considered as a promising way ahead for further research. Possible domains to

be considered include automotive, railway and transformation systems, as well

as service-based systems.

Chapter 7

Conclusions And Outlook

7.1 Summary and Conclusion

Combining models and software testing has always been a tempting idea. With

the increasing popularity of models and model-driven software engineering, that

idea has been gaining even more momentum expressed in various forms of model-

based or model-driven testing.

This thesis has analyzed the model driven testing problem from the test au-

tomation perspective and after identifying the strengths and weaknesses of ex-

isting approaches, has proposed a new methodology for a more efficient use of

design pattern in test automation. Firstly a collection of design patterns in test

automation has been presented, resulting from experience gathered by test engi-

neers in past successful test automation projects. Then the concepts identified

by those patterns provided the base for the UTML notation, a DSML dedicated

to test design following a MDT process with the aim of facilitating test design

through usage of patterns. The definition of the UTML notation presented in

Chapter 6 of this thesis has addressed not just both the abstract and the concrete

syntax of that new language, but also its semantics and the constraints associated

to each of its elements.

However, the fact that patterns come from practical experience implies that

any methodology related to patterns must be checked against real case studies.

Therefore a prototype test design tool was developed to validate the initial as-

sumption made at the beginning of the work. Using that prototype tool, two case

studies were conducted as part of this thesis and could demonstrate the positive

impact of applying pattern-oriented model-driven testing. The result is a test

development process that takes full advantage of the benefits that come with

MDE and were introduced in Section 1.1 of this thesis. Those benefits include

higher quality test artifacts (e.g. with regard to readability, understandability,

241

242 CHAPTER 7. CONCLUSIONS AND OUTLOOK

reusability) obtained through automated model transformations and round-trip

engineering.

Although the concepts presented in this thesis, both for pattern-oriented

model-driven testing and the supporting UTML notation clearly aim at a broader

application spectrum, the selected case studies are located in the domain of com-

munication protocols and reactive software systems. This has undeniably in-

fluenced some of the design decisions with regard to the notation and can be

explained by the fact that practical experiences gathered during the thesis were

mainly located in that domain. Nevertheless, the definition of the UTML nota-

tion provided in this thesis offers a good base for further improvements to support

other communication paradigms more common in other application domains (e.g.

embedded systems, continuous signals etc.).

7.2 Outlook

The topics discussed in this thesis obviously cover a too broad spectrum to be

covered with the same level of detail in a single thesis. Therefore, some issues were

left for further research in future work, because they required a deeper analysis

and resource beyond the scope a thesis like this one. Some of those issues include:

7.2.1 Usage of state machines for test behaviour modelling

Integration of state machines for test behaviour modelling to generate the se-

quences automatically from those: Using a state machine to describe behaviour,

though less intuitive and more difficult than with sequence diagrams, undoubt-

edly has some advantages, such as a higher level of conciseness and the possibility

of generating the sequence diagrams automatically from the state machine. In

this thesis the possibility of using state machines to describe test behaviour has

not been analysed further in detail, although it represents an interesting way of

combining different approaches of model-based testing to achieve more efficiency.

7.2.2 Implementation of further templates for test patterns instanti-

ation

The test patterns described in this thesis from an analysis of a large number

of test suites mostly specified with the TTCN-3 notation. Therefore, although

the identified test patterns can rightfully be considered to reflect accurately the

practical experiences in that area, a further analysis with other black-box testing

techniques and notations may reveal new patterns that have not been considered

in this thesis.

7.2. OUTLOOK 243

7.2.3 Better modelling support for continuous signals and case studies

thereof

Because of the lack of practical case studies dealing with continuous signals, out

of which testing patterns specific for that domain could be gathered, this thesis

focused mainly on an application to the testing of asynchronous and synchronous

communication protocols. Further works and case studies are required to evaluate

to what extend the approach, at its current stage, is applicable for that domain

as well and potentially to provide the modifications necessary for it to better

address requirements specific to that domain or beyond.

7.2.4 Automated Analysis of Test Script Code based on Patterns

Another interesting work area for the future is the instrumentation of patterns

to facilitate the analysis of legacy test scripts through automated recognition of

patterns they may contain. The method consists of walking through an abstract

syntax tree (AST) of the test script code to be analysed, searching for code

snippets that meet the definition of the patterns. Once identified, a visualisation

of the patterns found can quickly provide a more abstract and clearer picture of

the test script code, thus facilitating further operations such as reuse, refactoring

etc.

During the work of this thesis, that approach has been applied on some ex-

isting TTCN-3 test suites to visualise the test data defined in those test suites

with very satisfying results. Doing the same for test behaviour appears to be a

tempting and promising idea that is certainly worth exploring further.

7.2.5 Empirical evaluation of the approach based on feedback from

test experts

The evaluation of the approach proposed in this thesis, as described in Chapter 7

has been essentially of technical nature, based on statistics and using quantifiable

metrics. However, some key factors for a successful adoption of a new technology

as the one proposed in this thesis are more difficult to quantify, because they are

determined by the way the new technology is perceived by the domain experts

supposed to use it. In its book Diffusion of Innovations [135], Rogers lists the

following five key characteristics for the adoption of innovations:

• Relative advantage: is your innovation better than the existing method?

• Compatibility: does your innovation integrate with the existing method?

• Complexity: is your innovation difficult to understand?

• Trialability: is it easy for people to experiment with your innovation?

244 CHAPTER 7. CONCLUSIONS AND OUTLOOK

• Observability: are the benefits of your innovation easily visible?

Although those characteristics have been carefully taken into account with the

approach presented in this thesis, only a series of case studies including a usage

of the associated tools by test experts and a survey of their feedback will provide

an accurate picture, as to what extent those goals have effectively been met.

Appendix A

A Collection of Test Design

Patterns

This appendix describes a collection of patterns identified in various test automa-

tion projects during this work. Each pattern is described based on the template

provided in Section 4.3.2.

A.1 Generic Test Design Patterns

A.1.1 Pattern: Separation of Test Design Concerns

Context

This pattern is a generic organisational test design pattern and is applicable at

any test scope for large size test projects. It is assumed that test development

is process running in parallel to the development of the SUT or integrated to it,

with both of them having the requirements as a common starting point.

Problem

How to organise the file structure of test artifacts. Test artifacts are resources

used for storing the design and implementation of a test automation solution.

They include high level design models, documentation artifacts through to source

code of executable test scripts. The size and the complexity of those test artifacts

can grow considerably, raising questions as to how to organise properly to keep

a good overview and facilitate collaborative work.

Forces

245

246 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

• To avoid test design activity becoming a bottleneck to the development

process, having different teams working in collaboration on the will speed

up that process.

• Synchronisation and version control conflicts between the actors involved

in test design may cause resources being wasted to address them.

• Large compilation units increase the risk of potential version control con-

flicts among parallel developers/designers.

Solution

Divide the various tasks over several test designers, by organising modules accord-

ingly. Each task is addressed separately to allow parallel processing. Applying

this pattern requires that the technologies involved (e.g. the notation used for

designing the tests) provide such mechanisms. Modules may be organised based

on the aspect they cover(e.g. Test data, test architecture) or based on the SUT

feature they target.

Known Uses

Instantiations of this test pattern can be observed in numerous test automation

solutions. The code snippet below from the IPv6 conformance test suite [144]

displays an example in TTCN-3 of a test script importing elements of other test

modules to design test behaviour.

module AtsIpv6 Common Functions {
// Importing Generic L i b r a r i e s

//LibCommon

import from LibCommon BasicTypesAndValues a l l ;

import from LibCommon DataStrings a l l ;

. . .

// Importing t e s t data modules

// LibIpv6

import from Lib Ipv6 Inte r f a ce Templa t e s a l l ;

import from LibIpv6 CommonRfcs TypesAndValues a l l ;

. . .

// Importing t e s t a r c h i t e c t u r e modules

//AtsIpv6

import from AtsIpv6 TestSystem a l l ;

import from AtsIpv6 TestConf igurat ion TypesAndValues a l l ;

. . .

} //end module AtsIpv6 Common Functions

Discussion

A difficulty in applying this pattern consists in ensuring that the number of sep-

arate modules remains within sensible limits. Otherwise, the effort of managing

all parallel activities can reduce the positive impact of the pattern and even lead

A.1. GENERIC TEST DESIGN PATTERNS 247

to less productivity. However a small number of modules will inevitably lead

to more version controlling conflicts, with several people potentially working in

parallel on the same modules. In such cases the usage of an appropriate version

controlling system, along with clearly defined policies is highly recommended.

Related Patterns

This pattern is an application of the Separation of Concern, a.k.a Divide and

Conquer design pattern known both in generic software engineering, as well as

in test design [47].

A.1.2 Pattern: Grouping of Test Design Concerns

Context

This pattern is a generic organisational test design pattern and is applicable at

any test scope for test projects of any size.

Problem

The size of test models can grow considerably in the development process. How to

organise tests within a module to enhance reuse, maintainability and readability?

To be able to manage the test model conveniently, elements added to it should

be easy to localize to check their definition, modify them or even refer to them.

Solution

Just as each test model should be divided in several different modules which can

be concatenated using an import mechanism, each of those modules should have

a clear structure using a grouping mechanism to organise tests artifacts. The

grouping mechanism allows for elements of the test model to be organised in

groups which can be used to keep a clear overview of the elements contained in

a test model file or module. The criteria for grouping can be defined based on:

• SUT Features: e.g. in a test behaviour model different groups of test cases

can be defined, each of them covering a feature of the SUT targeted by the

contained test cases. This will facilitate selecting or disabling that group of

test cases, depending on whether the feature is effectively provided in the

end product or not.

• Category of elements: e.g. in a test data model, a group can be defined to

contain data type definitions, while another one can be defined containing

data instance definitions. In a similar manner, a test behaviour model may

be organised in separate groups, e.g. containing respectively test cases,

function definitions or any other elements of test behaviour.

248 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

For more expressiveness, the grouping mechanism should allow groups to contain

subgroups

Known Uses

• The UTML notation introduced in this work provides a grouping mecha-

nism for all kinds of test model elements it supports

• The TTCN-3 language [58] also provides a grouping mechanism using its

group keyword.

• The TPLan [57, 145] also defines a group keyword in its syntax for the

same purpose.

• Although, xUnit [108] (junit, HTTPUnit, XML-Unit, etc.) do not explicitly

define a grouping mechanism for organising tests, test cases can be grouped

together, using an xUnit TestSuite class, which can contain several test

cases, but can be executed at once.

Discussion

While this pattern may not be very useful for small size test models, it is nearly

indispensable for any bigger ones. There is practically no alternative to grouping

as such. One potential pitfall to be avoided is, when the tree structure created

by the groups and their contained subgroups is too deep, to the extent that the

contained model elements become too difficult to access.

Related Patterns

This pattern is an extension to the Aspect Driven Test Design pattern defined in

Section A.1.1

References

[67, 47]

A.2 Patterns in Test Objectives Design

A.2.1 Pattern: Prioritization of test objectives

Context

This pattern is an organisational test design pattern that aims at optimizing the

planning of testing activities and is applicable to any test scope.

A.2. PATTERNS IN TEST OBJECTIVES DESIGN 249

Problem

Due to resource limitations, it is often the case in testing projects that not all

test cases can be developed and/or executed at a time. How to design tests, so

that key decisions can be taken confidently in the testing process. Key decisions

include:

• When can test activities be considered sufficient to provide a level of con-

fidence in the SUT that is high enough to allow its release?

• Which test cases need to be implemented and executed first and which ones

can be left aside for later stage in the testing process?

Solution

As recommended by IEEE 829 [83], introduce a prioritization scheme for test

objectives in the test model. Prioritization can be provided for a test objective

taken individually or for a group of test objectives. Test implementation and test

execution can then be planned based on the priority level of the test objectives, to

ensure that test cases with highest priority are available on time before product

delivery.

Test case prioritization aims at ordering test cases according to some criterion

to schedule their implementation and/or execution. The choice of a test case

prioritization among the numerous ones described in the literature [50] depends

not only on the applied test design strategy, but also on the objectives of that

prioritization. Possible objectives include a higher fault detection rate and costs

reduction in system and regression testing. Rothermel et al. [138] define the test

case prioritization problem as follows:

Given: T, a test suite; PT, the set of possible orderings (prioritizations) of T;

and f , a function from PT to the set of real numbers.

Problem: Find T ′ ∈ PT such that (∀T ′′)(T ′′ ∈ PT)(T ′′ 6= T ′)[f(T ′) ≥ f(T ′′)]

The test objectives are ordered based on the real number value (award) returned

by the function f . Obviously that value depends on the prioritization objective

and thus on the factors taken into account by function f .

Discussion

Again, similar to other organisational patterns mentioned before, the size of the

testing project and the resource constraints it faces shall be taken into account,

whenever the application of this pattern is considered.

Known Uses

Besides code-coverage based approaches such as the one proposed by Rothermel

et al. for regression testing [137, 138, 49, 50, 44], Srikanth et al. [149, 150] propose

250 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

an approach consisting in prioritizing requirements for tests, based on a series of

factors, e.g. customer-assigned priority, requirements volatility or implementation

complexity. Other uses include Srivatsva et al. [151] who propose a prioritization

technique that adds risk factors to the equation and Qu et al. [129] who propose

a test case prioritization technique suitable for black-box testing. Finally, as

suggested by many authors [150, 165], economic factors may also be considered

as prioritization factors for test cases.

As shown by the numerous examples mentioned above, prioritization of test

cases is used implicitly in several instances, even though it may not always be

explicitely supported by the test design notation itself. Generally a separate tool

is used to manage that aspect of the test process. However, it would be highly

beneficial to integrate it into the test design process, so that appropriate tool

support can be used to calculate the priority value for each test case automatically,

based on the predefined factors.

A.2.2 Pattern: Traceability of Requirements to Test Artifacts

Context

This pattern is an organisational test design pattern that aims at facilitating the

coupling of testing activities to the rest of the software development process. It

is mainly applicable to integration and system tests.

Problem

How to achieve (bi-directional) traceability between test design artifacts and sys-

tem artifacts to enable automatic coverage analysis, monitor progress of testing

activities and assess overall quality?

Solution

Each test objective should be linked to a (set of) requirements or features of

the SUT. Those requirements could be functional or non-functional. The test

objectives could represent a risk in relation to the feature or a mean for verifying

that the SUT meets the requirements

Known Uses

Known uses of this pattern include:

• The UTML meta-model’s TestObjective element defines a reference to a

series of requirements the specified test objective covers

• The TPLan [57, 145] notation also provides a similar concept in its syntax

definition

A.2. PATTERNS IN TEST OBJECTIVES DESIGN 251

• Some model-based testing tools generate test objective descriptions from

state diagrams of the system under the test (e.g Conformiq’s QTronic

tool [82]). Since, the test objectives are a result of a transformation pro-

cess from the system model, a link to system requirements is also possible,

provided those requirements can be mapped to certain paths in the state

automaton.

Discussion

One key difficulty in applying this pattern is to ensure that changes to the test

model are propagated in both directions of the link to avoid dead links and

keep the test model consistent. The test design tool should take care of that

and update a test objective element accordingly, if one of the covered system

requirements is altered (e.g. deleted, moved to another location, renamed, etc.).

Such a propagation of changes could be facilitated by the usage of the same

notation or of the same design technology (e.g. EMF, MOF) for those aspects

being linked with each other. Otherwise, some serious maintainability issues will

emerge.

A.2.3 Pattern: Selection criteria for test objectives

Context

This test design pattern aims at optimizing testing activities by making testing

more efficient and is applicable to any test scope.

Problem

Shorter test development life cycle to address more complex SUTs means not all

tests can always be developed and executed in time. How to allow a selection of

which tests should be treated with higher priority, while ensuring that a minimum

number of failures are still present in the delivered product?

Solution

Let each test objectives model define selection criteria for the applicability of test

objectives at individual or at group level. Such selection criteria will be used to

make decisions on planing test design, test implementation and test execution.

Also, according to whether a given feature is supported by a product line test

cases applying to that product line could be selected automatically and prioritized

accordingly for development and execution.

252 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

Known Uses

The ISO 9646 Conformance Test Methodology Framework (CTMF) [87] defines

the concept of an Implementation Conformance Statement (ICS) as

A statement made by the supplier of an implementation or system

claimed to conform to a given specification, stating which capabilities

have been implemented.The ICS can take several forms: protocol ICS,

profile ICS, profile specific ICS, and information object ICS.

ICSs are commonly used in conformance testing to define selection criteria for

test objectives and the test cases (or groups thereof) implementing them. That

approach is implemented in several TTCN-3 test suites, in which, test execution

is controlled using the values set for the ICS in the control part.

Related Patterns

This pattern can be combined with the Prioritization of Test Objectives pattern

described in Section A.2.1.

A.2.4 Pattern: Traceability of Test Objectives to Fault Management

Context

This organisational test design pattern aims at facilitating the coupling of testing

activities to other activities in the software development process. Although it may

also be used for unit-level testing, it mainly targets system and integration tests.

Problem

In spite of all testing efforts, errors in software are inevitable and will eventually

occur. How can it be ensured that the information gathered in analysing and

fixing those errors can be exploited for the benefit of future testing activities and

for improving the overall quality of the software product under test?

Solution

Every time a failure is (inadvertently or deliberately) discovered on a version

of the SUT, a test objective should be created in the test objectives model to

cover that defect and ensure that it will be checked in subsequent regression tests

automatically

Known Uses

• Testopia [113] is a test case management extension to the well-known bug

management tool Bugzilla. However, due to time constraints, we have not

A.3. TEST ARCHITECTURE DESIGN PATTERNS 253

used Testopia yet, to analyse to what extent it applies this pattern. It is

likely that similar other tools exist on the market, but we have not got the

opportunity to look into those for further analysis yet.

Discussion

The same type of potential issues identified for the linkage of test objectives to

system requirements pattern (section A.2.2) also apply for this pattern.

A.3 Test Architecture Design Patterns

A.3.1 Pattern: Extensibility/Restriction of Test Architecture Elements

Context

This test design pattern aims at enhancing reuse of test design artifacts and is

applicable for (sub-)system level and integration testing. The potential benefits

are lower for unit-testing at the class level, because those rarely require complex

test architectures.

Problem

Reuse in test development can help in avoiding redundancy and save time, as well

as costly resources. Therefore, wherever applicable, means should be provided

to reuse already defined test elements to create new ones. Test architecture is

one area, where this can be done, with potential high benefits. How to enhance

reusability of test architecture artifacts?

Solution

Provide the ability to extend or restrict existing test architecture artifacts. Mod-

ifiable test artifacts include. Test architecture artifacts

Known Uses

• The TTCN-3 language provides a concept of component type reuse through

the extends keyword

• UTML notation implements this pattern by providing the capability to

specify a base component type for any new component type being defined,

thus, introducing a mechanism similar to inheritance in OO-programming.

Related Patterns

A similar pattern for test data elements is described in section A.4.3

254 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

A.3.2 Pattern: One-on-One Test Architecture

Context

This pattern is applicable for system testing. For integration testing, it has

limited impact, because more than one component might need to be emulated

by the test system. While this might be feasible in some cases, it would be more

difficult to achieve if the behaviour of the components to be emulated are required

to follow parallel and concurrent threads.

Problem

How to model a test architecture for a system providing a limited set of entry

points and interacting with its environment following a sequential non-concurrent

behaviour?

Solution

Figure A.1: Test architecture Diagram for One-on-One Pattern

This pattern is applicable to all those SUTs where the SUT interfaces are

directly controllable and observable. Benefits: Having a single test component

implies that synchronisation mechanisms based on message exchange or other

RPC-like mechanism do not have to be implemented at the testing side. Variables

defined in the test component can be used to describe states based on which

decisions can be made on the test verdict. Shortcomings: The test component has

to emulate the complete behaviour of system component it replaces. Depending

on the level of complexity of that behaviour, this might be more or less difficult

to achieve. Furthermore, having a single component makes it difficult to deal

with concurrency at the testing side, if required.

A.3. TEST ARCHITECTURE DESIGN PATTERNS 255

Known Uses

This pattern is applied in numerous conformance test suites. E.g.:

• the collection of IPv6 test suites [144] used e.g. for the IPv6 logo brand

• the IP Multimedia Subsystem (IMS) benchmark test suite [43] used for

performance testing IMS server equipment

• the CORBA component test suite [13] used for integration testing of CORBA

components

Discussion

Potential difficulties in handling concurrent behaviour from the SUT and to em-

ulate similar behaviour to stimulate the SUT.

Related Patterns

This pattern is the logical opposite to the Central Test Coordinator test design

pattern described in Section A.3.8. It is also referred to as the Central tester test

design pattern [51].

A.3.3 Pattern: Point-to-Multi Point(PMP) Test Architecture

Context

This test design pattern is applicable to system or integration-level testing of

distributed systems exchanging data through communication protocols.

Problem

How to design a test architecture suitable for an SUT under the following re-

quirements/constraints:

• The test system shall not be distributed, i.e. all its components will be

running on a single host.

• The SUT will be exchanging data through several different ports and may

consist of several distributed SUT components.

Solution

A PMP test architecture consists of one test component hosting a single port,

which is connected to each of the ports provided or required by the SUT compo-

nents to send impulses and check responses.

256 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

Discussion

The advantage of the PMP test architecture design pattern is that it helps the

test system in avoiding concurrency issues, because a single port is used in the

same test component. However, there are also some drawbacks to be taken into

account. For example, given the fact that the test component’s port must sup-

port communication with more than one SUT component at the same time, the

state of each of those communication will have to be handled by the test compo-

nent. Furthermore, if the SUT ports support different communication protocols,

then the test component ports will have to support all of those communication

protocols at the same time and provide multiplexing capability to handle each of

the communication channels separately.

A.3.4 Pattern: Flexibility of the test architecture model

Context

This pattern is applicable to integration- and system testing.

Problem

How to facilitate transformation of SUT architecture into test architecture?

Solution

The test architecture model should allow any component within a test architec-

ture to be marked either as parallel test component (PTC) i.e. as part of the test

system or as SUT component.

Known Uses

• The TTCN-3 system keyword can be used to mark a selected test compo-

nent in a test case as a representation of the SUT’s interfaces.

• The UTP standard defines a concept of SUT as

a part, the system, subsystem, or component being tested [70].

Further, [70] states that

A SUT can consist of several objects.The SUT is exercised via its

public interface operations and signals by the test components.

No further information can be obtained from the SUT as it is a

black-box.

A.3. TEST ARCHITECTURE DESIGN PATTERNS 257

• UTML has adopted the SUT concept defined by UTP in the form of the

ComponentKind attribute of each ComponentInstance element of its meta-

model, which allows to specify the nature of an entity in a test architecture

either as part of the test system or of the SUT. Figure A.2 depicts the

Figure A.2: UML Class Diagram for UTML ComponentInstance Element

UML class diagram for the UTML ComponentInstance element, along with

its ComponentKind attribute.

A.3.5 Pattern: Proxy Test Component

Context

This test architecture is applicable to (sub-)system- and integration testing

Problem

How to verify that two SUT components behave correctly without interfering in

their logic and without having to emulate their behaviour in the test system? How

to observe (and evaluate) the communication exchange between SUT components

or to observe (and evaluate) the communication exchange at an SUT interface.

Solution

Figure A.3: Test architecture Diagram for Proxy Test Component Pattern

A proxy test component is connected between two SUT components. Each

message that is received by the proxy test component is evaluated, then forwarded

to its actual recipient, i.e. the other SUT component. A proxy test component

can operate in duplex mode and forward messages in both directions if required

by the SUT components’ design.

258 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

Known Uses

Known uses of this pattern include

• Conformance testing of CORBA Components Model (CCM) entities [13]

Discussion

Performance issues: Delay created by the proxy test component might alter the

communication between SUT components. If time constraints for that communi-

cation are too tight, it might be impossible to apply the pattern, because of the

SUT components’ inability to deal with such unexpected behaviour. Additionally

no online evaluation should be performed by the proxy test component to avoid

additional flaws.

Related Patterns

The Monitoring Test Component test design pattern described in Section A.3.7

is an extension of this pattern [51]

A.3.6 Pattern: Sandwich Test Architecture

Context

The sandwich test architecture design pattern is applicable to subsystem, system-

and integration testing.

Problem

How to design a test architecture for an SUT that uses more than one communi-

cation channel to exchange data with its environment?

Solution

Figure A.4: Test architecture Diagram for Sandwich Test Architecture Pattern

As depicted in figure A.4, the sandwich test architecture design pattern fea-

tures two parallel test components, each of which emulate an entity that interact

with the SUT and each of which is connected to the SUT via one or several of

its ports.

A.3. TEST ARCHITECTURE DESIGN PATTERNS 259

Known Uses

The sandwich test architecture design pattern defines an architecture that is

similar to the one defined by ISO 9646 [87] for conformance testing and featuring

an upper tester and a lower tester, with the IUT between the two. That kind of

architecture is widely used in conformance testing of communication protocols.

Discussion

A sandwich test architecture makes more sense, if the behaviour of both test

components involved is required to run concurrently in parallel, with no relation

to each other. Otherwise the one-on-one test architecture may be more appro-

priate to provide the same functionality, while avoiding the computational and

implementation costs of parallel test components.

A.3.7 Pattern: Monitoring Test Component

Context

The monitoring test component test architecture design pattern is applicable to

subsystem-, system- and integration testing.

Problem

How to observe (and evaluate) the communication exchange between SUT com-

ponents or to observe (and evaluate) the communication exchange at an SUT

interface.

Solution

Figure A.5: Test architecture Diagram for Monitor Pattern

One test component per monitored connection or one test component per

monitored port is involved in this pattern. It observes at a special monitoring

260 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

port being attached to a connection between SUT components or the communi-

cation at the port to which it is attached to. The monitoring component is in

a passive role and is simply a data sink for messages being sent from the SUT

component. By defining constraints (time, data) on the incoming data, the mon-

itoring component can check that the SUT component behaves according to the

system’s requirements.

Known Uses

CCM-Testing [13]

Related Patterns

This pattern is a specialization of the Proxy Test Component test design pattern

described in Section A.3.5.

References

[51]

A.3.8 Pattern: Central Test Coordinator

Context

This pattern is more applicable to integration and system testing. It is less the

case for unit testing at the class level. However, it can be applied for system

testing, whereby a unit testing framework is instrumented for that purpose.

Problem

How to model a test architecture that is suitable for load- , performance- or

conformance testing on an SUT requiring parallel and possibly distributed pro-

cessing.

Solution

As depicted in Figure A.6, this pattern features a test component acting as test

coordinator and thus controlling the life cycle other components it controls. Each

of the controlled test components is connected to the controlling component via a

connection through which coordination messages can be exchanged to control the

components’ behaviour. To keep the overhead of processing those coordination

messages as low as possible, to not affect the proper test behaviour, coordination

messages should be kept as simple as possible in their structure. The real testing

activities are performed by the controlled test components, which are directly

connected to the SUT.

A.4. TEST DATA DESIGN PATTERNS 261

Figure A.6: Test architecture Diagram for Central Test Coordinator Pattern

Known Uses

Several TTCN-3 projects such as [123] involving UTML protocol testing (Siemens)

and [42] involving BCMP protocol performance testing.

Discussion

An intelligent coordination pattern is required between the main test compo-

nent and the parallel test components. The additional load and delays created

by that communication should be taken into account while evaluating the SUT

component’s test results.

Related Patterns

This pattern is the opposite of the One on One test architecture pattern defined

in Section A.3.2

References

[51]

A.4 Test Data Design Patterns

In this section patterns for designing test data are presented, as well as patterns

for automatically generating test data

262 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

A.4.1 Pattern: Purpose-Driven Test Data Design

Context

This pattern is more applicable to integration and system testing. For unit test-

ing, the efforts implied would outweigh the potential benefits of applying the

pattern.

Problem

How to ensure that all the test data model elements required for a test suite have

been defined ? In large test development projects involving more than one test

engineer working on the same test model, there is a need to ensure that redundant

data is not defined at many instances in the same test suite, thus negatively

affecting readability and maintainability. For example, in TTCN-3 test suites,

too many templates might be defined under different identifiers, although they

represent the same test data instances, in terms of functionality. Such redundancy

in a test system can affect its understandability and maintainability.

Solution

Assign each defined test data a rule specifying what makes the test data unique

and what purpose it fulfills in the test suite. Additional benefit might be obtained

by using a machine processable notation for specifying the rule associated to the

data instance. For that purpose, an assertion language such as OCL can be used.

Based on that rule, before a new test data would be added to the test model, it

can be checked automatically, if another test data meeting the associated criteria

does not exist yet in the test model and a warning issued accordingly.

Known Uses

• The UTML associates each test data instance with a set of constraints it

meets

• The Classification Tree Method (CTM) and similar class partitioning ap-

proaches for data generation are applications of this pattern.

Discussion

A post-analysis of the test model [116] can also help identifying and addressing

this problem.

A.4. TEST DATA DESIGN PATTERNS 263

A.4.2 Pattern: Basic Static Test Data Pool

Context

This test design pattern is applicable for any test scope.

Problem

Defining test data from scratch is time costly and inefficient. How to reduce the

effort for that activity and save costly time and resources?

Solution

Providing a basic data pool from which further data instances can be specified,

using extension/restriction schemes can help in reducing the test data specifi-

cation efforts. The initial set of static test data definitions can be specified or

automatically generated, using one the following techniques:

• Boundary Value Analysis(BVA) [141, 130]

• Random Value Analysis(RVA)

• Default Values Analysis(DVA)

• (Domain) Equivalence Partitioning(EP)

Detailed descriptions of each of these techniques can be found in various pub-

lications on testing (e.g. The British Computing Society’s (BCS) Standard for

Software Component Testing [84]).

Once the basic set of static test data has been specified or generated, new

instances of test data can be created by changing some of the properties of the

appropriate basic test data, or by adding further rules, based on which the in-

stances of the test data can be created at test execution or be used to validate

the EUT’s responses.

Known Uses

The UTML notation allows the application of this pattern by providing the ca-

pability to link a specified data instance with a data pattern kind describing a

mechanism through which a concrete instance of the specified test data can be

created. Data pattern kinds correspond to the testing techniques listed above.

The implementation of the mechanism is left to the test environment.

Related Patterns

This test design pattern can be combined with the Reusable test data definitions

pattern described in Section A.4.3.

264 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

References

A.4.3 Pattern: Reusable Test Data Definitions

Context

This test design pattern is applicable to unit, integration and system testing

Problem

How to facilitate reuse of already defined test data artifacts?

Solution

To facilitate reuse of already defined test data artifacts (i.e. both types and

instances) the test design notation should provide a mean for referring to existing

test data elements in the test model. The relationship between the original test

data artifact and the new one can be based on extension or restriction. An

extension means, all the rules of the original remain valid, but are extended with

new additional rules. For example, for a data type definition an extension may

consist in adding an additional field to the existing structure of the type. On

the other hand, a restriction maintains the structure of the original data artifact

as-is, but adds new constraints to it. An example of constraint would consist in

making mandatory a field that was previously defined as optional in a data type

definition.

Known Uses

Mechanisms for extending/restricting existing test data artifacts are provided

by several test notations (e.g. the XML Schema Descriptor language (XSD),

TTCN-3, UTML). Classical object inheritance, as supported by several object-

oriented programming languages can also be instrumented to implement a similar

result, in situations whereby they are used for test scripting.

Discussion

If the test notation supports a form of inheritance, it will facilitate the application

of this pattern.

Related Patterns

This test design pattern can use the Default values, the Boundary values and the

Domain partitioning techniques described in section A.4.2, which provide a base

for the Basic static test data pool pattern.

A.4. TEST DATA DESIGN PATTERNS 265

A.4.4 Pattern: Dynamic Test Data Pool

Context

This Pattern is applicable to any test scope

Problem

Statically defined test data restrict the coverage of the tests, because they increase

the risk of ignoring certain areas of the testing domain. Certain tests require for

test-data to be generated dynamically, at test execution time, on an “on-demand”

basis. This can be very useful in situations whereby it would be too costly to

define all test data statically. Furthermore that enhances the quality of the tests,

as each set of test will be created very specifically for the objective to be addressed

by that test case.

Solution

A dynamic test data pool is an entity which can be called via a predefined API

to generate test data dynamically, i.e. during test execution. For that purpose,

the data pool is provided a set of criteria, which the generated data is supposed

to fulfill, and based on which an appropriate test data instance will be selected

or generated to be returned to the calling entity. For expressing the criteria on

the test data, a constraint notation such as the OMG Object Constraint Lan-

guage (OCL) or any other similar notation is recommended to allow automated

processing.

Known Uses

• This pattern is applied by IBM’s Rational Functional Tester to generate

test data based on equivalence class partitioning.

• The Classification Tree Method (CTM) [68] follows a strategy similar to this

pattern, with each branch of the classification tree representing a constraint

fulfilled by the associated data.

• This pattern is also applied in OO-Programming (e.g. C# [128]) as a mean

to provide test data on an on-demand base. The approach proposed there

consists in using the Builder design pattern [60] and to create a builder class

for every class to be tested. The builder class provides a set of methods,

each creating a different flavor of an instance of the class, matching certain

requirements for the purpose of testing.

266 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

Discussion

The mean for defining the selection criteria of test data instances is a critical

aspect of this pattern. The chosen notation should base on a clearly defined

syntax to allow the criteria to be processed automatically while selecting matching

data instances. Using natural language instead would significantly reduce the

impact of the pattern.

Related Patterns

This pattern is sometime combined with the class partitioning pattern, whereby

equivalent classes are defined and test data are dynamically generated for each

class, based on its defining criteria.

To instantiate this test design pattern, the Builder design pattern, which is

similar to the Factory pattern [60], can be used. In particular in the case of

unit-level testing.

A.5 Test Behaviour Design Patterns

Patterns in test behaviour modelling

A.5.1 Pattern: Assertion-Driven Test Behaviour Design

Context

This pattern can be applied to unit, integration and system testing

Problem

How to ensure that the intent of each test case can be quickly understood, without

having to navigate too deeply into the test script’s source code?

Solution

While modelling each test case, the focus should always be laid on what behaviour

is expected from the SUT for that particular test case. Even if an erroneous

behaviour is expected, then the positive path for the test case is the one to be

visible from the test case’s design and implementation. Here, the positive path in

a test script for a test case is defined as the one leading to a PASS verdict. That

means, there should be no “positive” FAIL verdict. Furthermore, unexpected

behaviour in testing should not be modeled explicitly in test behaviour model,

but should rather be handled implicitly by some exception handling or similar

mechanism, based on the expected behaviour’s model. Otherwise the test model

loses in readability and maintainability.

A.5. TEST BEHAVIOUR DESIGN PATTERNS 267

Known Uses

• The concept of

• Several TTCN-3 test suites define functions for key actions in the test sce-

narios and invoke those functions in the test cases, instead of putting all the

details of those actions at the highest level of the source code, i.e. the test

case level. Key actions include sending an impulse to the SUT, receiving

a given response from the SUT, checking that SUT’s response meets some

defined constraints and assertions, etc.

• The TTCN-3 altstep-default mechanism can also be viewed as an applica-

tion of this pattern. A TTCN-3 default behaviour is one that is used as

alternative whenever an explicitly specified behaviour does not occur. Acti-

vating/deactivating a TTCN-3 altstep-default switches it on/off as possible

alternative behaviour.

• xUnit (JUnit, HTTP-Unit . . .) use this test design pattern. In JUnit and

frameworks based on JUnit, the test cases mainly consist of assertions to

be verified on objects and values from returning methods. If any exception

is thrown in the process a FAIL or an ERROR verdict is set for the test

case.

Discussion

Related Test Patterns

This pattern provide the base for all xUnit Test Patterns [108]. Also it is widely

used as Assertion-Based Verification for various software domains ranging from

UML to embedded systems.

References

xUnit Test Patterns [108]

A.5.2 Pattern: Context-Aware Test Behaviour Design

Context

This pattern is applicable to any test scope

Problem

While designing a test model, there is always a risk for conceptual flaws finding

their way into the model, thus making it inconsistent and more difficult to ex-

ploit for automatic processing. Such conceptual flaws include for instance, the

268 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

specification of actions that are effectively impossible to implement in black-box

testing scenarios. For example, specifying a test impulse from an entity marked

as being part of the SUT or selecting an abstract data instance to be used as test

impulse. How could such errors be avoided right away to ensure high quality of

the resulting test models and save costs?

Solution

While modelling test behaviour, the current test context should constantly be

taken into account. For example, it should be ensured that the test modeler

designs the test behaviour from the tester’s perspective in a black-box testing

approach. Therefore, the test design tool should use those context information

to filter the choices presented to the user for selection in a pro-active approach, to

avoid that, conceptual flaws are introduced in the test model. Furthermore, the

test design tool should provide facilities to verify a test model partly or entirely,

to identify such flaws and provide guidance for their correction.

Known Uses

• The TTCN-3 applies this pattern in the semantics of its port concept, by

providing the possibility of specifying a test component for a given test case

as the system component. TTCN-3 compilers then check that the seman-

tics match the defined rules. However, a pro-active approach, consisting in

appropriate type completion and wizards, while writing TTCN-3 code is

not yet supported by most of the existing tools.

• Model-driven test engineering approaches like the one proposed in this work

with the UTML notation offer better opportunities to implement this test

pattern, since model-driven development environments provide the tech-

nical means for attaching rules to a metamodel in form OCL constraints,

which can be evaluated on-line (i.e. as the test model is being designed) or

offline (after the test model has completely been designed).

Discussion

The application of this pattern requires a good documentation and technical

support on the part of the test design tools, as it might not always be clear to

users why certain operations, they try to perform would be disallowed. Also, the

error and warning messages resulting from validation should be clear enough to

inform the person doing the test design on the issue identified and potentially on

ways to address them.

A.5. TEST BEHAVIOUR DESIGN PATTERNS 269

A.5.3 Pattern: Test Component Factory

Context

Integration-, System Testing

Problem

How to model dynamically scalable, but yet maintainable tests?

Solution

One test component, generally called main test component (MTC) serves as the

generator without any further test functionality. The actual testing of the SUT is

performed by the generated parallel test components (PTCs). The behaviour of

all PTCs is specified only once and linked to the type definition of the component

type.

Known Uses

This pattern is used in several test suites. In particular to measure the latency of

servers e.g. IMS serving entities [43], web services. The test component factory

can generate parallel test components at runtime, with each of those emulating a

client. The ability to instantiate test components dynamically makes it possible

to generate load on the server under test according to any predefined scenario or

to reflect a given distribution (Poisson, Normal, Exponential, etc.).

Discussion

The architecture of the PTCs, i.e. the connections among themselves and between

them and the EUTs is not considered by this pattern and should be addressed by

the use of the appropriate architectural patterns. It should be taken into account

that a mechanism for controlling the lifecycle of the test components will also be

required, along with a mean to coordinate the behaviour of the created PTCs.

Related Patterns

This pattern is the testing pendant to the abstract factory design pattern known

in generic software design [90, 62]. It has also been referred to as the generator

pattern [51] or the Give me an army pattern [51]

References

[51]

270 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

A.5.4 Pattern: Central Coordination of Test Components

Context

Integration- and System Testing

Problem

How to coordinate multiple parallel test components to perform a given test

behaviour?

Solution

Let one of test components play a central role as main coordination points for

the remaining test components in the test architecture.

Known Uses

In TTCN-3, the Main Test Component (MTC) can be used as central coordi-

nation point for the parallel test components. For that purpose, it must be

connected to each of them and exchange coordination messages over those con-

nections to control the behaviour of the PTCs to achieve the required behaviour

for the whole test system.

Related Patterns

This pattern is related to the centralized test coordinator architectural test design

pattern mentioned in section A.3.8 above. Furthermore, this pattern extends the

test component factory pattern mentioned previously. Finally, this pattern is the

logical opposite to the distributed coordination of test design patterns pattern.

References

[51]

A.5.5 Pattern: Distributed Coordination of Test Components

Context

Problem

How to coordinate multiple parallel test components to perform a given test

behaviour?

A.5. TEST BEHAVIOUR DESIGN PATTERNS 271

Solution

Define and implement a coordination scheme, whereby the behaviour of each test

components depends of the behaviour of the other test components involved in

the test scenario.

APartioning of Test Artifacts

Known Uses

This test design pattern is applied in several TTCN-3 test suites, using a combi-

nation of that notation’s stop and stop all keywords.

Discussion

Related Patterns

This pattern is the logical opposite of the Central Coordination of Test Compo-

nents test design pattern described in Section A.5.4. The Follow the Leader test

behaviour pattern described in the ETSI’s collection of test design patterns is an

extension of this test design pattern, which defines how test components should

terminate their life cycle, depending on the termination of one of the others test

components involved in the test architecture. The initially terminating test com-

ponent is referred to as the “leader”, which other test components follow, by

stopping their test execution and terminating as well.

References

[51]

A.5.6 Pattern: Time Constraints in Test Behaviour

Context

This pattern is applicable to any test scope

Problem

How to handle exceptional situations in test scenarios involving interactions be-

tween test components among themselves or with SUT components

Solution

Define timing constraints on test actions involving more than one component.

E.g. for each action representing an impulse to an SUT component or an expected

response, provide a timing constraint to allow the test system to recover, if the

action does not complete smoothly. The timing constraint can be defined via a

272 APPENDIX A. A COLLECTION OF TEST DESIGN PATTERNS

timer which is started shortly before the action is started and which would trigger

an event, if it expires before the action has completed as expected.

Known Uses

• In TTCN-3 a so-called guard-timer can be used to define a timing constraint

for an expected signal on a test component. The guard timer’s expiration,

while waiting for a reaction from the SUT, triggers an event that can be

handled to set the test verdict accordingly.

• Real-Time TTCN-3 [37] proposes to extend the TTCN-3 notation with the

concept of this pattern.

• The UTML notation applies this pattern by attaching a timer specification

to every specification of an event expected as response from an EUT.

Related Patterns

This pattern is equivalent to the latency test design pattern mentioned in [37]

and used in performance testing of various kinds of servers (e.g. web, application,

etc.).

Appendix B

UTML Mapping Examples

This appendix provides some details on the mapping of UTML elements to

TTCN-3 and JUnit.

B.1 UTML to TTCN-3 Mapping Rules

B.1.1 Testcase

[template pub l i c p roce s sTes t ca s e (t e s t c a s e p : Testcase)]

/∗∗
[i f (t e s t c a s e p . d e s c r i p t i o n . oc lIsTypeOf (OclVoid))]

∗ @desc :

[printAsComment (t e s t c a s e p . d e s c r i p t i o n) /]

[/ i f]

∗ @purpose [i f (t e s t c a s e p . t e s tOb j e c t i v e . oc lIsTypeOf (OclVoid))]

[f o r (t ob j : TestObject ive | t e s t c a s e p . t e s tOb j e c t i v e)] [t o b j . id /] [/ f o r]

[/ i f]

∗ TP ve r s i on :

[i f (t e s t c a s e p . t e s tProcedure . oclIsTypeOf (OclVoid))]

[i f (t e s t c a s e p . t e s tProcedure . t e s tOb j e c t i v e . oc lIsTypeOf (OclVoid))]

[f o r (t ob j : TestObject ive | t e s t c a s e p . t e s tProcedure . t e s tOb j e c t i v e)]

[f o r (descE l t : Descr ipt ionElement | t ob j . object iveDescElement)]

[i f (descE l t . value <>””)]

∗
∗ [mapKeyword(descE l t . name) /]

[printAsComment (descE l t . va lue) /]

[/ i f]

[/ f o r]

[/ f o r]

[/ i f]

[/ i f]

[f o r (t ob j : TestObject ive | t e s t c a s e p . t e s tOb j e c t i v e)]

[f o r (descE l t : Descr ipt ionElement | t ob j . object iveDescElement)]

[i f (descE l t . value <>””)]

∗
∗ [mapKeyword(descE l t . name) /]

273

274 APPENDIX B. UTML MAPPING EXAMPLES

[printAsComment (descE l t . va lue) /] [/ i f] [/ f o r]

[/ f o r]

[i f (t e s t c a s e p . t e s tProcedure . oclIsTypeOf (OclVoid))]

∗ Test procedure :

[l e t cnte r : Integer = 1]

[f o r (t s t e p : TestStep | t e s t c a s e p . t e s tProcedure . t e s tS t ep)]

[printAsComment (cnte r . t oS t r i ng () . concat (” : ”) . concat (t s t e p . content)) /]

[l e t cnte r : Integer = cnte r +1]

[/ f o r]

[/ i f]

∗
∗/
[l e t i nrOfComps : Integer = te s t c a s e p . componentInstance−>s i z e ()]

[l e t testCompType : String = ”ComponentType ”/]

[l e t sysCompType : String = ”SystemComponentType ”/]

[i f (i nrOfComps > 2)]

[i f (t e s t c a s e p . componentType . oclIsTypeOf (OclVoid))]

[l e t testCompType : String = te s t c a s e p . componentType . name/]

[/ i f]

[i f (t e s t c a s e p . systemComponentType . oclIsTypeOf (OclVoid))]

[l e t sysCompType : String = te s t c a s e p . systemComponentType . name/]

[/ i f]

[else]

[i f (t e s t c a s e p . localTestComponent . oclIsTypeOf (OclVoid))]

[i f (t e s t c a s e p . localTestComponent . type . oclIsTypeOf (OclVoid))]

[l e t testCompType : String = te s t c a s e p . localTestComponent . type . name/]

[/ i f]

[/ i f]

[/ i f]

t e s t c a s e [t e s t c a s e p . name /] ()

runs on [testCompType /]

system [i f (t e s t c a s e p . systemComponentType . oclIsTypeOf (OclVoid))]

[t e s t c a s e p . systemComponentType . name/] [else] SystemComponentType [/ i f]

{

[i f (t e s t c a s e p . va r i ab l eDec l a r a t i on−>s i z e () > 0

| | t e s t c a s e p . t imerDec larat ion−>s i z e () > 0)]

// Local v a r i a b l e s and t imers

t imer T WAIT;

[f o r (vd : Var i ab l eDec l a ra t i on | t e s t c a s e p . v a r i ab l eDec l a r a t i on)]

[p r o c e s sVar i ab l eDec l a r a t i on (vd) /]

[/ f o r]

[f o r (td : Timer | t e s t c a s e p . t imerDec la ra t i on)]

[proces sTimerDec larat ion (td) /]

[/ f o r]

[/ i f]

[i f (t e s t c a s e p . t e s tProcedure . oclIsTypeOf (OclVoid))]

[i f (t e s t c a s e p . t e s tProcedure . t e s tOb j e c t i v e . oc lIsTypeOf (OclVoid))]

//Test execut ion

[p ro c e s sPr e cond i t i on s (t e s t c a s e p . t e s tProcedure . t e s tOb j e c t i v e , t e s t c a s e p . name) /]

[/ i f]

[e l s e i f (t e s t c a s e p . t e s tOb j e c t i v e . oc lIsTypeOf (OclVoid))]

//Test execut ion

[p ro c e s sPr e cond i t i on s (t e s t c a s e p . t e s tOb j e c t i v e , t e s t c a s e p . name) /]

[/ i f]

//Setup con f i gu r a t i on

B.1. UTML TO TTCN-3 MAPPING RULES 275

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . oc lIsTypeOf (OclVoid))] :

[t e s t c a s e p . t e s tA r ch i t e c t u r e . id /] [/ i f]

[i f (i nrOfComps > 2)]

// I n s t an c i a t e t e s t components

[f o r (comp : ComponentInstance | t e s t c a s e p . componentInstance)]

[i f (comp . kind . l i t e r a l <> ”SUT”)]

var [comp . type . name/] [comp . id /] := [comp . type . name /] . c r e a t e ;

[/ i f]

[/ f o r]

[/ i f]

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . oc lIsTypeOf (OclVoid))]

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . setupFunction−>s i z e ()>0)]

[f o r (setupFunct ion : TestBehaviourActionDef |
t e s t c a s e p . t e s tA r ch i t e c t u r e . setupFunct ion)]

[proces sTestAct ion (setupFunction , t e s t c a s e p . name) /]

[/ f o r]

[else]

[f o r (connect ion : Connection | t e s t c a s e p . t e s tA r ch i t e c t u r e . connect i ons)]

[i f (i nrOfComps > 2)]

[processConnect ion (connect ion) /]

[else]

[processSingleComponentConnection (connect ion) /]

[/ i f]

[/ f o r]

[/ i f]

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . a s s o c i a t edDe f au l t . oc l IsTypeOf (OclVoid))]

[f o r (d e f au l t : DefaultBehaviourDef | t e s t c a s e p . t e s tA r ch i t e c t u r e . a s s o c i a t edDe f au l t)]

a c t i v a t e ([d e f au l t . id /] ()) ;

[/ f o r]

[else]

//WARNING: No con f i gu r a t i on f o r t e s t c a s e

[/ i f]

[/ i f]

//Preamble

[i f (t e s t c a s e p . beg inState . oc lIsTypeOf (OclVoid))]

[f o r (s t : State | t e s t c a s e p . beg inState)]

[f o r (t a c t : TestAction | s t . t r i g g e r i n gAc t i o n s)]

[i f (t a c t . theComponent . oclIsTypeOf (OclVoid))]

[i f (i nrOfComps > 2)] [t a c t . theComponent . id /] . s t a r t ([/ i f]

[i f (t a c t . oc lIsTypeOf (TestBehaviourAct ionInvocat ion))]

[i f (t a c t . testBehaviourAct ionDef . oc lIsTypeOf (OclVoid))]

[i f (t a c t . s t o rage . oclIsTypeOf (OclVoid))] [t a c t . s t o rage . name/]

:= [/ i f] [t a c t . testBehaviourAct ionDef . name /] ([processParams (t a c t) /])

[else]

// Warning : Miss ing TestBehaviourActionDef in t e s t behaviour ac t i on invoca t i on .

// No code generated

[/ i f]

[/ i f]

[i f (i nrOfComps > 2)]) [/ i f] ;

[i f (i nrOfComps > 2)] [t a c t . theComponent . id /] . done ; [/ i f]

[else]

//WARNING: No t e s t component f o r invoca t i on . No code generated

[/ i f]

[/ f o r]

[/ f o r]

[/ i f]

//Test body

276 APPENDIX B. UTML MAPPING EXAMPLES

[i f (i nrOfComps <= 2)]

[f o r (ta : TestAction | t e s t c a s e p . t e s tAct i on)]

[proces sTestAct ion (ta , t e s t c a s e p . name) /]

[/ f o r]

[else]

// F i r s t s t a r t pa s s i v e components

[f o r (comp : ComponentInstance | t e s t c a s e p . pass iveComponentInstance)]

[i f (comp . kind . l i t e r a l <> ”SUT”)]

[comp . id /] . s t a r t (f [t e s t c a s e p . name/] [comp . id /] behav iour ()) ;

[/ i f]

[/ f o r]

//Then , s t a r t a c t i v e components

[f o r (comp : ComponentInstance | t e s t c a s e p . act iveComponentInstance)]

[i f (comp . kind . l i t e r a l <> ”SUT”)]

[comp . id /] . s t a r t (f [t e s t c a s e p . name/] [comp . id /] behav iour ()) ;

[/ i f]

[/ f o r]

//Wait u n t i l components complete t h e i r job

[f o r (comp : ComponentInstance | t e s t c a s e p . componentInstance)]

[i f (comp . kind . l i t e r a l <> ”SUT”)]

[comp . id /] . done ;

[/ i f]

[/ f o r]

[/ i f]

//Postamble

[i f (t e s t c a s e p . endState . oc l IsTypeOf (OclVoid))]

[f o r (s t : State | t e s t c a s e p . endState)]

[f o r (t a c t : TestAction | s t . t r i g g e r i n gAc t i o n s)]

[i f (t a c t . theComponent . oclIsTypeOf (OclVoid))]

[i f (i nrOfComps > 2)] [t a c t . theComponent . id /] . s t a r t ([/ i f]

[i f (t a c t . oc lIsTypeOf (TestBehaviourAct ionInvocat ion))]

[i f (t a c t . testBehaviourAct ionDef . oc l IsTypeOf (OclVoid))]

[i f (t a c t . s t o rage . oclIsTypeOf (OclVoid))] [t a c t . s t o rage . name/]

:= [/ i f] [t a c t . testBehaviourAct ionDef . name /] ([processParams (t a c t) /])

[else]

// Warning : Miss ing TestBehaviourActionDef in t e s t behaviour

// ac t i on invoca t i on . No code generated

[/ i f]

[/ i f]

[i f (i nrOfComps > 2)]) [/ i f] ;

[i f (i nrOfComps > 2)] [t a c t . theComponent . id /] . done ; [/ i f]

[else]

//WARNING: No t e s t component f o r invoca t i on . No code generated

[/ i f]

[/ f o r]

[/ f o r]

[/ i f]

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . oc lIsTypeOf (OclVoid))]

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . teardownFunction−>s i z e () > 0)]

//Teardown con f i gu r a t i on : [t e s t c a s e p . t e s tA r ch i t e c t u r e . id /]

[f o r (teardownFunction : TestBehaviourActionDef

| t e s t c a s e p . t e s tA r ch i t e c t u r e . teardownFunction)]

[proces sTestAct ion (teardownFunction , t e s t c a s e p . name) /]

[/ f o r]

[else]

B.1. UTML TO TTCN-3 MAPPING RULES 277

[f o r (connect ion : Connection | t e s t c a s e p . t e s tA r ch i t e c t u r e . connect i ons)]

[i f (i nrOfComps > 2)]

[p roce s sD i s connec t i on (connect ion) /]

[else]

[processSingleComponentDisconnect ion (connect ion) /]

[/ i f]

[/ f o r]

[/ i f]

[/ i f]

}//end [t e s t c a s e p . name/]

[i f (t e s t c a s e p . t e s tOb j e c t i v e . oc lIsTypeOf (OclVoid))]

[f o r (t ob j : TestObject ive | t e s t c a s e p . t e s tOb j e c t i v e .)]

[f o r (descE l t : Descr ipt ionElement | t ob j . object iveDescElement)]

[i f (descE l t . name . toLower () . conta in s (” d e s c r i p t i o n ”))]

with { ex tens i on ”Desc r ip t i on : [de scE l t . va lue /]”}
[/ i f]

[/ f o r]

[/ f o r]

[/ i f]

[/ template]

B.1.2 SendDataAction

[template pub l i c processSendDataAction (ac t i on p : SendDataAction , mir ror p :Boolean)]

[i f (a c t i on p . connect ion . oclIsTypeOf (OclVoid)

&& act i on p . sourcePort . oc lIsTypeOf (OclVoid)

&& act i on p . t ransmittedDataInstance . oc lIsTypeOf (OclVoid))]

[i f (! mir ror p)]

[a c t i on p . sourcePort . name /] . send ([a c t i on p . t ransmittedDataInstance . name/]

[i f (a c t i on p . transmittedDataInstanceParameter−>s i z e ()>0)]

([processParamsList (a c t i on p . transmittedDataInstanceParameter) /]) [/ i f]) ;

[else]

[i f (a c t i on p . destPort . oc l IsTypeOf (OclVoid))]

t imer t d e f a u l t := 100 . 0 ;

a l t {
[] [a c t i on p . destPort . name /] . r e c e i v e ([a c t i on p . t ransmittedDataInstance . type . name /] : ?)

{
[i f (a c t i on p . passCr i ter ium)]

s e t v e r d i c t (pass ,”∗∗∗ r e c e i v ed expected

[a c t i on p . t ransmittedDataInstance . type . name/] message ∗∗∗”) ;
[else]

l og (”∗∗∗ r e c e i v ed expected

[a c t i on p . t ransmittedDataInstance . type . name/] message ∗∗∗”) ;
[/ i f]

}
[] [a c t i on p . destPort . name /] . r e c e i v e {
s e t v e r d i c t (f a i l , ”∗∗∗ r e c e i v ed unexpected message ∗∗∗”) ;
stop ;

}
[] t d e f a u l t . t imeout {
s e t v e r d i c t (f a i l , ”∗∗∗ t imer t d e f a u l t timed out =>

message [a c t i on p . t ransmittedDataInstance . name/] not r e c e i v ed ∗∗∗”) ;
stop ;

}
}
[else]

// Warning : Test model incomplete :

278 APPENDIX B. UTML MAPPING EXAMPLES

// Unspec i f i ed Des t inat i on Port f o r Send Data Action . No code generated

[/ i f]

[/ i f]

[else]

// Warning : Test model was incomplete . No code generated f o r send data ac t i on

[/ i f]

[/ template]

B.1.3 ReceiveDataEvent

[template pub l i c processReceiveDataEvent

(ac t i on p : ReceiveDataEvent , context p : String , mi r ror p :Boolean)]

[i f (a c t i on p . connect ion . oclIsTypeOf (OclVoid)

&& (ac t i on p . t imer . oclIsTypeOf (OclVoid) | | ac t i on p . de faultTimer . oclIsTypeOf (OclVoid))

&& act i on p . r e c ept i onPor t . oc lIsTypeOf (OclVoid)

&& act i on p . expectedDataInstance . oclIsTypeOf (OclVoid))]

[i f (a c t i on p . t imer . oclIsTypeOf (OclVoid))]

[l e t t imer : Timer = ac t i on p . t imer]

[e l s e i f (a c t i on p . de faultTimer . oclIsTypeOf (OclVoid))]

[l e t t imer : Timer = ac t i on p . de faultTimer] [/ i f]

[i f (! mir ror p)]

[l e t b s t o rage :Boolean = f a l s e /]

[i f (a c t i on p . s t o rage . ocl IsTypeOf (OclVoid))]

[l e t b s t o rage :Boolean = true /]

// @proces sVar iab l eDec la ra t ion varDecl p = ac t i on p . s t o rage /

[/ i f]

[i f (a c t i on p . t imerRestar t)]

[t imer . name /] . s t a r t ;

[/ i f]

a l t {
[] [a c t i on p . r e c ept i onPor t . name/]

. r e c e i v e ([a c t i on p . expectedDataInstance . name/]

[i f (a c t i on p . expectedDataInstanceParameter−>s i z e ()>0)]

([processParamsList (a c t i on p . expectedDataInstanceParameter) /])

[/ i f]) [i f (b s to rage)] −> value [a c t i on p . s t o rage . name /] [/ i f]{
[t imer . name /] . stop ;

[i f (a c t i on p . passCr i ter ium)]

s e t v e r d i c t (pass ,”∗∗∗ [context p . toUpper () /] :

[a c t i on p . expectedDataInstance . type . name/] message r e c e i v ed as expected ∗∗∗”) ;
[else]

l og (”∗∗∗ [context p . toUpper () /] :

[a c t i on p . expectedDataInstance . type . name/] message r e c e i v ed as expected ∗∗∗”) ;
[/ i f]

}
[i f (wrapper . p r op e r t i e s . g ene ra te t imeout branches)]

[i f (t imer . oclIsTypeOf (OclVoid))]

[] [t imer . name /] . t imeout {
s e t v e r d i c t (f a i l , ”∗∗∗ [context p . toUpper () /] :

Time out whi l e expect ing [a c t i on p . expectedDataInstance . type . name/] message ∗∗∗”) ;
stop ;

}
[else]

//Warning : Code gene ra t i on skipped f o r ReceiveDataEvent : t imer miss ing

[/ i f]

[/ i f]

}
[else]

[i f (a c t i on p . sourcePort . oc lIsTypeOf (OclVoid))]

B.1. UTML TO TTCN-3 MAPPING RULES 279

[i f (a c t i on p . expectedDataInstance . mirrorDataInstance . ocl IsTypeOf (OclVoid))]

[a c t i on p . sourcePort . name/]

. send ([a c t i on p . expectedDataInstance . mirrorDataInstance . name /]) ;

[else]

[a c t i on p . sourcePort . name /] . send ([a c t i on p . expectedDataInstance . name /]) ;

[/ i f]

[else]

//Warning : Code gene ra t i on skipped f o r ReceiveDataEvent : source port miss ing

[/ i f]

[/ i f]

[else]

// Warning : Test model was incomplete . No code generated f o r r e c e i v e data ac t i on

[/ i f]

[/ template]

B.1.4 SendDiscardAction

[template pub l i c processSendDiscardAct ion (ac t i on p : SendDiscardAction ,

context p : String , mi r ror p :Boolean)]

[i f (a c t i on p . connect ion . oclIsTypeOf (OclVoid)

&& act i on p . sourcePort . oc lIsTypeOf (OclVoid)

&& act i on p . t ransmittedDataInstance . oc lIsTypeOf (OclVoid)

&& act i on p . t imer . oclIsTypeOf (OclVoid)

&& act i on p . al lowedResponse . oclIsTypeOf (OclVoid))]

[processSendDataAction (act ion p , mir ror p) /]

[i f (a c t i on p . t imerRestar t)]

[a c t i on p . t imer . name /] . s t a r t ;

[/ i f]

a l t {
[f o r (re sp : Response | ac t i on p . al lowedResponse)]

[f o r (data : MessageTestDataInstance | re sp . expectedData)]

[] [r e sp . port . name /] . r e c e i v e ([data . name /]){
l og (”∗∗∗ [context p . toUpper () /] : r e c e i v ed al lowed [data . type . name/] message ∗∗∗”) ;
r epeat ;

}
[/ f o r]

[f o r (data : MessageTestDataInstance | re sp . unexpectedData)]

[] [r e sp . port . name /] . r e c e i v e ([data . name /]){
[a c t i on p . t imer . name /] . stop ;

s e t v e r d i c t (f a i l , ”∗∗∗ [context p . toUpper () /] :

r e c e i v ed unexpected [data . type . name/] message ∗∗∗”) ;
stop ;

}
[/ f o r]

[] [r e sp . port . name /] . r e c e i v e {
s e t v e r d i c t (f a i l , ”∗∗∗ [context p . toUpper () /] :

r e c e i v ed d i s a l l owed message f o r a message to be d i s ca rded ∗∗∗”) ;
stop ;

}
[/ f o r]

[] [a c t i on p . t imer . name /] . t imeout {
[i f (a c t i on p . passCr i ter ium)]

s e t v e r d i c t (pass ,”∗∗∗ [context p . toUpper () /] :

t imer [a c t i on p . t imer . name/] timed out => message

[a c t i on p . t ransmittedDataInstance . name/] d i s ca rded as expected ∗∗∗”) ;
[else]

l og (”∗∗∗ [context p . toUpper () /] : t imer [a c t i on p . t imer . name/] timed out

=> message [a c t i on p . t ransmittedDataInstance . name/] d i s ca rded as expected ∗∗∗”) ;

280 APPENDIX B. UTML MAPPING EXAMPLES

[/ i f]

}
}

[else]

// Warning : Test model was incomplete . No code generated f o r send−d i s ca rd sequence

[/ i f]

[/ template]

B.1.5 WaitAction

[template pub l i c processWaitAction (ac t i on p : WaitAction , context p : String)]

[l e t bTimer :Boolean = f a l s e /]

[l e t bDelay :Boolean = f a l s e /]

[i f (a c t i on p . de lay > 0)]

l og (”∗∗∗ [context p . toUpper () /] :

s t a r t wa i t ing f o r [a c t i on p . de lay fo rmatted /] seconds . ∗∗∗”) ;
[l e t timerName : String = ”T WAIT”/]

[l e t bDelay :Boolean = true /]

[e l s e i f (a c t i on p . t imer . oclIsTypeOf (OclVoid))]

[l e t timerName : String = act i on p . t imer . name/]

[l e t bTimer :Boolean = true /]

l og (”∗∗∗ [context p . toUpper () /] : s t a r t wa i t ing un t i l [a c t i on p . t imer . name/] e xp i r e s . ∗∗∗”) ;
[/ i f]

[i f (wrapper . p r op e r t i e s . mapping wai t act ion == ””)]

[i f (bTimer | | bDelay)]

[i f (bDelay)]

[timerName /] . s t a r t ([a c t i on p . de lay fo rmatted /]) ;

[/ i f]

a l t {
[] [timerName /] . t imeout {
[i f (bTimer)]

l og (”∗∗∗ [context p . toUpper () /] :

f i n i s h e d wai t ing f o r t imer [timerName /] to exp i r e . ∗∗∗”) ;
[else]

l og (”∗∗∗ [context p . toUpper () /] :

f i n i s h e d wai t ing f o r [a c t i on p . de lay fo rmatted /] seconds . ∗∗∗”) ;
[/ i f]

}
}
[else]

//WARNING: Timer and delay miss ing f o r WaitAction model element . No code w i l l be generated

[/ i f]

[else] // Customized Mapping

[i f (bTimer | | bDelay)]

[i f (bDelay)]

[wrapper . p r op e r t i e s . mapping wai t act ion /] ([a c t i on p . de lay fo rmatted /]) ;

[e l s e i f (bTimer)]

[wrapper . p r op e r t i e s . mapping wai t act ion /] ([a c t i on p . t imer . de lay fo rmatted /]) ;

[/ i f]

[else]

//WARNING: Timer and delay miss ing f o r WaitAction model element . No code w i l l be generated

[/ i f]

[/ i f]

[/ template]

B.1.6 SetupConnectionAction

[template pub l i c processSetupConnect ionAct ion (ac t i on p : SetupConnectionAction)]

[i f (a c t i on p . sourcePort .

B.1. UTML TO TTCN-3 MAPPING RULES 281

oclIsTypeOf (OclVoid) && act i on p . destPort . oc l IsTypeOf (OclVoid))]

[i f (a c t i on p . destPort . theComponent . ocl IsTypeOf (OclVoid))]

[i f (a c t i on p . destPort . theComponent . kind . l i t e r a l==”SUT”)]

map(s e l f : [a c t i on p . sourcePort . name/]

, system : [a c t i on p . destPort . name /]) ;

[else]

connect ([a c t i on p . connect ion . destPort . theComponent . id /] : [a c t i on p . sourcePort . name/]

, system : [a c t i on p . destPort . name /]) ;

[/ i f]

[else]

// Warning : Test model was incomplete . No code generated f o r SetupConnection ac t i on

[/ i f]

[e l s e i f (a c t i on p . connect ion . oclIsTypeOf (OclVoid))]

[i f (a c t i on p . connect ion . destPort . theComponent . oc lIsTypeOf (OclVoid))]

[i f (a c t i on p . connect ion . destPort . theComponent . kind . l i t e r a l==”SUT”)]

map(s e l f : [a c t i on p . connect ion . sourcePort . name/]

, system : [a c t i on p . connect ion . destPort . name /]) ;

[else]

connect (s e l f : [a c t i on p . connect ion . sourcePort . name/]

, [a c t i on p . connect ion . destPort . theComponent . id /]

: [a c t i on p . connect ion . destPort . name /]) ;

[/ i f]

[else]

// Warning : Test model was incomplete . No code generated f o r SetupConnection ac t i on

[/ i f]

[else]

// Warning : Test model was incomplete . No code generated f o r SetupConnection ac t i on

[/ i f]

[/ template]

B.1.7 CloseConnectionAction

[template pub l i c processCloseConnect ionAct ion

(ac t i on p : CloseConnectionAction , context p : String)]

[i f (a c t i on p . connect ion . oclIsTypeOf (OclVoid))]

[i f (a c t i on p . connect ion . destPort . theComponent . kind . l i t e r a l==”SUT”)]

unmap(s e l f : [a c t i on p . connect ion . sourcePort . name/]

, system : [a c t i on p . connect ion . destPort . name /]) ;

[else]

d i s connec t (s e l f : [a c t i on p . connect ion . sourcePort . name/]

, [a c t i on p . connect ion . destPort . theComponent . id /]

: [a c t i on p . connect ion . destPort . name /]) ;

[/ i f]

[else]

// Warning : Test model was incomplete . No code generated f o r CloseConnect ion ac t i on

[/ i f]

[/ template]

B.1.8 DefaultBehaviourDef

[template pub l i c processDefau l tBehav iourDef (de f au l tDe f p : DefaultBehaviourDef)]

a l t s t e p [de f au l tDe f p . id /] ()

[i f (de f au l tDe f p . componentType . ocl IsTypeOf (OclVoid))]

runs on [de f au l tDe f p . componentType . name /] [/ i f]

{
[f o r (act : TestAction | de fau l tDe f p . de fau l tAct i on)]

[i f (act . t r i gg e r i ngEvent . oclIsTypeOf (OclVoid))]

[] [p roce s sTr igge r ingEvent (act . t r i gg e r ingEvent) /]{
[f o r (subAct : TestAction | act . t e s tAct i on)]

282 APPENDIX B. UTML MAPPING EXAMPLES

[p roces sTestAct ion (subAct , de f au l tDe f p . id) /]

[/ f o r]

}
[else]

//WARNING: Tr igge r ing event miss ing f o r d e f au l t a c t i on

[/ i f]

[/ f o r]

}
[/ template]

B.1.9 StopTimerAction

[template pub l i c processStopTimerAction (ac t i on p : StopTimerAction , context p : String)]

[i f (a c t i on p . t imer . oclIsTypeOf (OclVoid))]

[a c t i on p . t imer . name /] . stop ;

[else]

//WARNING: Timer miss ing f o r StopTimerAction model element . No code w i l l be generated

[/ i f]

[/ template]

B.1.10 StartTimerAction

[template pub l i c processStartTimerAct ion (ac t i on p : StartTimerAction , context p : String)]

[i f (a c t i on p . t imer . oclIsTypeOf (OclVoid))]

[a c t i on p . t imer . name /] . s t a r t [i f (a c t i on p . de lay . oclIsTypeOf (OclVoid)

&& act i on p . de lay > 0)] ([a c t i on p . de lay fo rmatted /]) [/ i f] ;

[else]

//WARNING: Timer miss ing f o r StartTimerAction model element . No code w i l l be generated

[/ i f]

[/ template]

B.1.11 ValueCheckAction

[template pub l i c processValueCheckAction (ac t i on p : ValueCheckAction , context p : String]

[i f (a c t i on p . dataConstra int−>s i z e () > 0

&& (ac t i on p . v a r i a b l e . oc lIsTypeOf (OclVoid)

| | ac t i on p . t e s tBehav iour Invocat ionAct ion . oclIsTypeOf (OclVoid)))]

[i f (a c t i on p . v a r i a b l e . oc lIsTypeOf (OclVoid)

&& act i on p . v a r i a b l e . name . oclIsTypeOf (OclVoid))]

[l e t v a r i a b l e : String = act i on p . v a r i a b l e . name/]

[else]

[i f (a c t i on p . t e s tBehav iourAct ionInvocat ion

. testBehaviourAct ionDef . oc l IsTypeOf (OclVoid)

&& act i on p . t e s tBehav iourAct ionInvocat ion

. testBehaviourAct ionDef . name . oclIsTypeOf (OclVoid))]

[l e t v a r i a b l e : String]

[a c t i on p . t e s tBehav iourAct ionInvocat ion . testBehaviourAct ionDef . name/]

([processParams (ac t i on p . t e s tBehav iourAct ionInvocat ion) /]) [/ l e t]

[else]

[l e t v a r i a b l e : String = ”UNSPECIFIED FUNCTION”/]

[/ i f]

[/ i f]

[f o r (cons t r : DataConstraint | ac t i on p . dataConstra int)]

[p roce s sCons t ra in t (constr , va r i ab l e , act ion p , context p) /]

[/ f o r]

[else]

// Warning : Test model was incomplete . No code generated f o r va lue check ac t i on .

[i f (a c t i on p . dataConstra int−>s i z e () <= 0)]

B.2. UTML TO JUNIT MAPPING RULES 283

//No con s t r a i n t s p e c i f i e d

[/ i f]

[i f (! a c t i on p . v a r i a b l e . oc lIsTypeOf (OclVoid))]

//NO va r i ab l e s p e c i f i e d

[/ i f]

[i f (! a c t i on p . t e s tBehav iourAct ionInvocat ion . oc lIsTypeOf (OclVoid))]

//NO behaviour invoca t i on s p e c i f i e d

[/ i f]

[/ i f]

[/ template]

B.2 UTML to JUnit Mapping Rules

B.2.1 Testcase

[template pub l i c p roce s sTes t ca s e (t e s t c a s e p : Testcase)]

[i f (s e l e c t edOb j e c t s−>s i z e ()==1)]

import de . f r aunho f e r . fokus . t e s t i n g . web . http . ∗ ;
import de . f r aunho f e r . fokus . utml . generated . ∗ ;

[/ i f]

/∗∗
∗ @purpose [i f (t e s t c a s e p . t e s tOb j e c t i v e . oc lIsTypeOf (OclVoid))]

[f o r (t ob j : TestObject ive | t e s t c a s e p . t e s tOb j e c t i v e)] [t o b j . id /] [/ f o r]

[/ i f]

∗ TP ve r s i on : [i f (t e s t s p e c . oclIsTypeOf (OclVoid))]

[i f (t e s t s p e c . v e r s i on . oclIsTypeOf (OclVoid))] [t e s t s p e c . v e r s i on /] [/ i f] [/ i f]

[i f (t e s t c a s e p . t e s tProcedure . oclIsTypeOf (OclVoid))]

[i f (t e s t c a s e p . t e s tProcedure . t e s tOb j e c t i v e . oc lIsTypeOf (OclVoid))]

[f o r (t ob j : TestObject ive | t e s t c a s e p . t e s tProcedure . t e s tOb j e c t i v e)]

[f o r (descE l t : Descr ipt ionElement | t ob j . object iveDescElement)]

[i f (descE l t . value <>””)]

∗
∗ [mapKeyword(descE l t . name) /]

[printAsComment (descE l t . va lue) /]

[/ i f]

[/ f o r]

[/ f o r]

[/ i f]

[/ i f]

∗ @desc :

[i f (t e s t c a s e p . d e s c r i p t i o n . oc lIsTypeOf (OclVoid))]

[printAsComment (t e s t c a s e p . d e s c r i p t i o n) /]

[/ i f]

∗ Test procedure :

[i f (t e s t c a s e p . t e s tProcedure . oclIsTypeOf (OclVoid))]

[l e t cnte r : Integer = 1]

[f o r (t s t e p : TestStep | t e s t c a s e p . t e s tProcedure . t e s tS t ep)]

[printAsComment t ex t p=cnte r +”: ”+t s t e p . content /]

[l e t cnte r : Integer = cnte r +1]

[/ f o r]

[/ i f]

∗
∗/
pub l i c c l a s s [t e s t c a s e p . name/] extends HttpTestcase {

pub l i c [t e s t c a s e p . name /] () {

284 APPENDIX B. UTML MAPPING EXAMPLES

super (” [t e s t c a s e p . name/]”

,” This t e s t case has been automat i ca l l y generated from a UTML t e s t model .

[t e s t c a s e p . d e s c r i p t i o n ? j s s t r i n g /] ”) ;

}

pub l i c void t e s t [t e s t c a s e p . name /] () throws Exception {

[i f (t e s t c a s e p . t e s tProcedure . oclIsTypeOf (OclVoid))]

[i f (t e s t c a s e p . t e s tProcedure . t e s tOb j e c t i v e . oc lIsTypeOf (OclVoid))]

[l e t t o b j l i s t : Set (TestObject ive) = t e s t c a s e p . t e s tProcedure . t e s tOb j e c t i v e]

[/ i f]

[e l s e i f (t e s t c a s e p . t e s tOb j e c t i v e . oc lIsTypeOf (OclVoid))]

[l e t t o b j l i s t : Set (TestObject ive) = t e s t c a s e p . t e s tOb j e c t i v e]

[/ i f]

//Test execut ion

[i f (t o b j l i s t . oc l IsTypeOf (OclVoid))]

[f o r (t ob j : TestObject ive | t o b j l i s t)]

[f o r (descE l t : Descr ipt ionElement | t ob j . object iveDescElement)]

[i f (descE l t . name . toLower()==” p i c s item ”)]

[i f (descE l t . va lue . conta in s (PICS SEPARATOR))]

[l e t sep : String = PICS SEPARATOR]

[else]

[l e t sep : String = ” ”]

[/ i f]

[f o r (p i c : String | descE l t . va lue ? s p l i t (sep))]

[i f (! (p i c ==””))]

i f (! ([p i c /]))

{
printOut (”∗∗∗∗ [t e s t c a s e p . name /] : In f o :

TC needs [p i c . r ep l a c e (”−” , ” ”) /] to be supported ∗∗∗∗”) ;
stop () ;

}
[/ i f]

[/ f o r]

[/ i f]

[/ f o r]

[/ f o r]

[/ i f]

//Setup con f i gu r a t i on [i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . oc lIsTypeOf (OclVoid))]

: [t e s t c a s e p . t e s tA r ch i t e c t u r e . id /] [/ i f]

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . oc lIsTypeOf (OclVoid))]

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . setupFunction−>s i z e ()>0)]

[f o r (setupFunct ion : TestBehaviourActionDef |
t e s t c a s e p . t e s tA r ch i t e c t u r e . setupFunct ion)]

[proces sTestAct ion (setupFunction , t e s t c a s e p . name) /]

[/ f o r]

[else]

[f o r (connect ion : Connection | t e s t c a s e p . t e s tA r ch i t e c t u r e . connect i ons)]

[processConnect ion (connect ion) /]

[/ f o r]

[/ i f]

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . a s s o c i a t edDe f au l t . oc l IsTypeOf (OclVoid))]

[f o r (d e f au l t : DefaultBehaviourDef | t e s t c a s e p . t e s tA r ch i t e c t u r e . a s s o c i a t edDe f au l t)]

a c t i v a t e ([d e f au l t . id /] ()) ;

[/ f o r]

[else]

//WARNING: No con f i gu r a t i on f o r t e s t c a s e

B.2. UTML TO JUNIT MAPPING RULES 285

[/ i f]

[/ i f]

//Preamble

[f o r (bs : State | t e s t c a s e p . beg inState)]

[f o r (t a c t : Action | bs . t r i g g e r i n gAc t i o n s)]

[t a c t . name /] ([processDefaultParams (t a c t) /]) ;

[/ f o r]

[/ f o r]

//Test body

[f o r (var : Var i ab l eDec l a ra t i on | t e s t c a s e p . v a r i ab l eDec l a r a t i on)]

[p r o c e s sVar i ab l eDec l a r a t i on (var) /]

[/ f o r]

[i f (i nrOfComps <= 2)]

[f o r (ta : TestAction | t e s t c a s e p . t e s tAct i on)]

[proces sTestAct ion (ta , t e s t c a s e p . name) /]

[/ f o r]

[else]

// F i r s t s t a r t pa s s i v e components

[f o r (comp : ComponentInstance | t e s t c a s e p

. pass iveComponentInstance)]

[i f (comp . kind . l i t e r a l <> ”SUT”)]

f [t e s t c a s e p . name/] [comp . id /] behav iour () ;

[/ i f]

[/ f o r]

//Then , s t a r t a c t i v e components

[f o r (comp : ComponentInstance | t e s t c a s e p . act iveComponentInstance)]

[i f (comp . kind . l i t e r a l <> ”SUT”)]

f [t e s t c a s e p . name/] [comp . id /] behav iour ()) ;

[/ i f]

[/ f o r]

[/ i f]

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . oc lIsTypeOf (OclVoid))]

[i f (t e s t c a s e p . t e s tA r ch i t e c t u r e . teardownFunction−>s i z e () > 0)]

//Teardown con f i gu r a t i on : [t e s t c a s e p . t e s tA r ch i t e c t u r e . id /]

[f o r (teardownFunction : TestBehaviourActionDef |
t e s t c a s e p . t e s tA r ch i t e c t u r e . teardownFunction)]

[proces sTestAct ion (teardownFunction , t e s t c a s e p . name) /]

[/ f o r]

[else]

[f o r (connect ion : Connection | t e s t c a s e p . t e s tA r ch i t e c t u r e . connect i ons)]

[p roce s sD i s connec t i on (connect ion) /]

[/ f o r]

[/ i f]

[/ i f]

//Postamble

[f o r (es : State | t e s t c a s e p . endState)]

[f o r (t a c t : TestAction | es . t r i g g e r i n gAc t i on s)]

[t a c t . name /] ([processDefaultParams (t a c t) /]) ;

[/ f o r]

[/ f o r]

}

}//end [t e s t c a s e p . name/]

[/ template]

286 APPENDIX B. UTML MAPPING EXAMPLES

B.2.2 WaitAction

[template pub l i c processWaitAction (ac t i on p : WaitAction , context p : String)]

printOut (”∗∗∗ [context p . toUpper () /] :

s t a r t wa i t ing f o r [a c t i on p . de lay fo rmatted /] ms . ∗∗∗”) ;
s l e e p ([a c t i on p . de lay fo rmatted /]) ;

[/ template]

B.3 SysML to UTML Mapping

Table B.1: SysML to UTML Mapping

SysML Element UTML Equivalent

Requirements Concepts

Package in require-

ments diagram

Test objectives group definition (TestOb-

jectivesGroupDef)

Requirement TestObjective

Dependency Rela-

tionship

Requirement relationship

Verify Relationship Requirement relationship

Testcase TestObjective

Architecture Concepts

Package in block dia-

gram

Test architecture group definition (TestAr-

chitectureGroupDef)

Block Component instance (ComponentIn-

stance)

Flowport Port Instance (PortInstance)

B.4 WSDL to UTML Mapping

Table B.2: WSDL to UTML Mapping

WSDL Element UTML Equivalent

Data Concepts

definitions-

/wsdl:definitions

TestDataModel

complexType-

/wsdl:complexType

MessageTestDataType

simpleType-

/wsdl:simpleType

MessageTestDataType

part/wsdl:part ParameterDeclaration, if parent XML

node is of type operation or DataTypeField

otherwise

fault/wsdl:fault OperationExceptionDef

operation OperationTestDataType

output/wsdl:output OperationResponseDef

input/wsdl:input ParameterDeclaration

Architecture Concepts

B.4. WSDL TO UTML MAPPING 287

Table B.2: WSDL to UTML Mapping

WSDL Element UTML Equivalent

definitions-

/wsdl:definitions

TestArchitectureTypesModel

portType-

/wsdl:portType

PortType

Appendix C

UTML Model Transformation

Examples

C.1 Example of Model Transformation: UTML to TTCN-

3

/∗∗
∗ @desc :

∗
∗ @purpose SUPL−2.0−con−110−12−1
∗ TP vers ion :

∗
∗ Test Case Id :

∗
∗ SUPL−2.0−con−110
∗
∗ Test Object :

∗
∗ Cl i en t

∗
∗ Test Case Descr ip t ion :

∗
∗ To t e s t SET co r r e c t l y ac t i ons s i n g l e s e s s i on Pos i t i on ing method

∗
∗ Sp e c i f i c a t i o n Reference :

∗
∗ ULP TS 5 .2 . 1 , 8 , 9

∗
∗ SCR Reference :

∗
∗ ULP−PRO−C−009−O, ULP−PRO−C−011−M, ULP−PRO−C−012−O,

∗ ULP−PRO−C−013−O, ULP−PRO−C−014−O, ULP−PRO−C−015−O, ULP−PRO−C−016−O,

∗ ULP−PRO−C−018−O ∗
∗
∗ Tool :

∗

289

290 APPENDIX C. UTML MODEL TRANSFORMATION EXAMPLES

∗ SUPL Cl i en t Conformance Test Tool

∗
∗ Test code :

∗
∗ Val idated t e s t code f o r t h i s t e s t case

∗
∗ Precondi t ions :

∗
∗ ((ics AGANSSSETassis ted Gal i leo SET init iated

∗ AND ics AGANSSSETbased Gali leo SET initiated) OR

∗ (ics AGANSSSETassisted GLONASS SET initiated AND

∗ ics AGANSSSETbased GLONASS SET initiated)) AND

∗ (ixit gANSS . g a l i l e o or

∗ ixit gANSS . g l oneas s)

∗ Test Procedure :

∗
∗ Test 12: A−GANSS Preferred methods [Inc ludes op t i ona l f e a t u r e s]

∗ Note t ha t t he se t e s t cases only t e s t a s i n g l e GNSS at one time .

∗ Test ing o f support f o r mu l t i p l e s imul taneous GNSSs i s f o r f u r t h e r s tudy .

∗
∗ 1 . A l l t e s t s : s t a r t a SI Location Sess ion

∗ 2 . The SET sends SUPL START with :

∗ SET c a p a b i l i t i e s parameter c on s i s t en t with the Pos i t i on ing t e c hno l o g i e s

∗ supported

∗
∗ by the SET as dec la red in the i c s

∗ 3 . Send SUPL RESPONSE with : Pos i t i on ing Method s e t to the va lue

∗ s p e c i f i e d in the t a b l e below

∗
∗ GNSS Pos i t i on ing Technology s e t to the va lue s p e c i f i e d in the t a b l e below

∗
∗ 4 . The SET sends SUPL POS INIT with :

∗ SET c a p a b i l i t i e s parameter c on s i s t en t with the Pos i t i on ing

∗ t e c hno l o g i e s supported by the SET

∗
∗ as dec la red in the i c s

∗ 6 . A l l t e s t s excep t Test 4 and Test 5 : A SUPL POS se s s i on

∗ t a ke s p lace and completes s u c c e s s f u l l y

∗
∗ using the Pos i t i on ing Method de f ined by the t e s t case .

∗ Test 12 , Case 1 : A−GANSS SET a s s i s t e d i s used .

∗ The GANSS used can be one o f Ga l i l e o or GLONASS depending on

∗ the techno logy supported by the SET

∗
∗ and dec lared in ixit gANSS .

∗ 8 . Test 1 , Test 6 , Test 7 , Test 11 Case 1 and Test 12 Case 1 :

∗ send SUPL END with : Pos i t ion s e t to

∗
∗ a r e a l i s t i c p o s i t i on fo r the SET.

∗ 9 . A l l t e s t s : the SET r e l e a s e s the secure IP connect ion .

∗ Note : Repeat f o r a l l Pos i t i on ing t e c hno l o g i e s supported

∗ by the SET as dec la red in the i c s

∗
∗
∗ Pass−Cr i t e r i a :

∗
∗ Al l t e s t s :

∗ 1 . At s t ep 2 the SET s h a l l send SUPL START with :

∗ SET c a p a b i l i t i e s parameter c on s i s t en t with the Pos i t i on ing

C.1. EXAMPLE OF MODEL TRANSFORMATION: UTML TO TTCN-3 291

∗ t e c hno l o g i e s supported by the SET as dec lared

∗
∗ in the i c s

∗ 2 . At s t ep 2 the SET s h a l l send SUPL POS INIT with :

∗ SET c a p a b i l i t i e s parameter c on s i s t en t with the Pos i t i on ing

∗ t e c hno l o g i e s supported by the SET

∗ as dec la red in the i c s

∗
∗ Al l t e s t s excep t Test 4 and Test 5 :

∗ 3 . At s t ep 6 a SUPL POS se s s i on s h a l l take p lace and s h a l l complete

∗ s u c c e s s f u l l y us ing the Pos i t i on ing Method de f ined by the t e s t case .

∗
∗ Test 12 , Case 1 : A−GANSS SET a s s i s t e d s h a l l be used .

∗ The GANSS used can be one o f Ga l i l e o or GLONASS depending

∗ on the techno logy supported by the SET

∗
∗ and dec lared in ixit gANSS .

∗
∗
∗ @desc To t e s t SET co r r e c t l y ac t i ons s i n g l e s e s s i on Pos i t i on ing method −
∗ Test 12: A−GANSS SET Preferred methods

∗
∗/
testcase TC 110 12 1 ()

runs on SUPLComponent system Sys temInte r f ace s {

// Local v a r i a b l e s and t imers

var

GNSSPosTechnology

v posTechnology := c GNSSPosTechnologyGalileoGloneASS ;

// Test execu t ion

// check precond i t i ons

i f (not

(((ics AGANSSSETass i s ted Gal i l eo SET init iated and

ics AGANSSSETbased Gali leo SET init iated) or

(ics AGANSSSETassisted GLONASS SET initiated and

ics AGANSSSETbased GLONASS SET initiated)) and

(ixit gANSS . g a l i l e o or ixit gANSS . g l onea s s))) {
log (

”∗∗∗∗ TC 110 12 1 : In f o : TC needs

((ics AGANSSSETass i s ted Gal i l eo SET init iated

AND ics AGANSSSETbased Gali leo SET init iated) OR

(ics AGANSSSETassisted GLONASS SET initiated AND

ics AGANSSSETbased GLONASS SET initiated)) AND

(ixit gANSS . g a l i l e o or ixit gANSS . g l onea s s) to be supported ∗∗∗∗”
) ;

stop ;

}

i f (ixit gANSS . g a l i l e o) {
v posTechnology := c GNSSPosTechnologyGalileo ;

} else i f (ixit gANSS . g l onea s s) {
v posTechnology := c GNSSPosTechnologyGloneASS ;

}

// Setup con f i gu ra t i on : s imp leTes tArch i t ec ture no s im

activate (t s De fau l tDe f ()) ;

292 APPENDIX C. UTML MODEL TRANSFORMATION EXAMPLES

// Preamble

f i n i t (s ta t i cde fau l tGPS) ;

f s ta r t SCC () ;

// Test body

// STEP 1: S ta r t a SI Location Sess ion

showMessage (” Please start a new s e s s i o n at the SET”) ;

TGuard . start ;

alt {
// STEP 2: SET send SUPL START

[] u lpPort . receive (r ulpPdu (r s up l S t a r t)) −> value vc inPdu

{
TGuard . stop ;

log (

”∗∗∗ TC 110 12 1 : ULP PDU (SUPL START)

message r e c e i v ed as expected ∗∗∗”
) ;

}
}

// STEP 2: check the c on s i s t e n t s o f SET c a p a b i l i t i e s wi th

// the Pos i t i on ing techno logy supported

i f (f checkPosCapabi l i t i e sParam againstSET (vc inPdu)) {
setverdict (

pass ,

”∗∗∗ TC 110 12 1 Received po s i t i o n i n g c a p a b i l i t i e s

are c on s i s t e n t with SET c a p a b i l i t i e s ∗∗∗”
) ;

} else {
setverdict (

f a i l ,

”∗∗∗ TC 110 12 1 Received po s i t i o n i n g c a p a b i l i t i e s

are NOT con s i s t e n t with SET c a p a b i l i t i e s ∗∗∗”
) ;

stop ;

}
v s e s s i o n I d :=

valueof (generateCompletedSess ionId (v s e s s i on Id ,

s lpSe s s i on Id IPv6)) ;

// STEP 3: send SUPL RESPONSE

ulpPort

. send (m ulpPdu (m Version , v s e s s i on Id ,

m ulpMessageSuplResponse posTechnology

(ver2 agnssSETass i s ted , v posTechnology))) ;

TGuard . start ;

alt {
// STEP 4: SET sends SUPL POS INIT

[] u lpPort . receive (r ulpPdu (r s up lPo s I n i t)) −>
value vc inPdu {

TGuard . stop ;

log (

”∗∗∗ TC 110 12 1 : ULP PDU (SUPL POS INIT)

message r e c e i v ed as expected ∗∗∗”
) ;

}
}

// STEP 4: check the c on s i s t e n t s o f SET c a p a b i l i t i e s wi th

// the Pos i t i on ing techno logy supported

C.1. EXAMPLE OF MODEL TRANSFORMATION: UTML TO TTCN-3 293

i f (f checkPosCapabi l i t i e sParam againstSET (vc inPdu)) {
setverdict (

pass ,

”∗∗∗ TC 110 12 1 Received po s i t i o n i n g c a p a b i l i t i e s

are c on s i s t e n t with SET c a p a b i l i t i e s ∗∗∗”
) ;

} else {
setverdict (

f a i l ,

”∗∗∗ TC 110 12 1 Received po s i t i o n i n g c a p a b i l i t i e s

are NOT con s i s t e n t with SET c a p a b i l i t i e s ∗∗∗”
) ;

stop ;

}

// STEP 6: A SUPL POS se s s i on take s p lace and completes

// s u c c e s s f u l l y

f s tartAndCompletePosSess ion (vc inPdu , v s e s s i on Id ,

m methodType msAssisted

(m accuracyOpt omitted)) ;

// STEP 8: send SUPL END with Pos i t ion s e t to a r e a l i s t i c

// po s i t i on fo r SET

sendSuplEndWithPosData (v s e s s i on Id , true) ;

// Postamble

f Postamble () ;

} // end TC 110 12 1

with {
extension

”Desc r ip t i on : To t e s t SET c o r r e c t l y a c t i on s s i n g l e s e s s i o n Pos i t i on ing method”

}

Bibliography

[1] Ellen Agerbo and Aino Cornils. How to preserve the benefits of design patterns.

SIGPLAN Not., 33(10):134–143, 1998. [cited at p. 45]

[2] Hervé Albin-Amiot and Yann-Gaël Guéhéneuc. Design patterns: A round-trip.

In Gilles Ardourel, Michael Haupt, Jose Luis Herrero Agustin, Rainer Ruggaber,

and Charles Suscheck, editors, proceedings of the 11th ECOOP workshop for Ph.D.

Students in Object-Oriented Systems, June 2001. [cited at p. 64]

[3] Ch. Alexander. The Timeless Way of Building. Oxford University Press, 1979.

[cited at p. 9, 31]

[4] Daniel Amyot, Luigi Logrippo, and Michael Weiss. Generation of test purposes

from use case maps. Comput. Netw., 49(5):643–660, 2005. [cited at p. 10]

[5] Jennittra Andrea. Envisioning the next-generation of functional testing tools. Soft-

ware, IEEE, 24(3):58–66, 2007. [cited at p. 196]

[6] L. Apfelbaum and J. Doyle. Model-based testing. In Proceedings of the 10th

international software quality week (SQW97), May 1997. [cited at p. 25, 31]

[7] J. Bach. Test automation snake oil. In Proceedings of the 14th International

Conference and Exposition on Testing Computer Software, 1999. [cited at p. 11]

[8] Janvi Badlaney, Rohit Ghatol, and Romit Jadhwani. An introduction to data-flow

testing. Technical report, NC State University, Department of Computer Sciences,

Sep 2006. [cited at p. 12]

[9] Stefan Baerisch. Model-driven test-case construction. In ESEC-FSE ’07: Proceed-

ings of the the 6th joint meeting of the European software engineering conference

and the ACM SIGSOFT symposium on The foundations of software engineering,

pages 587–590, New York, NY, USA, 2007. ACM. [cited at p. 42, 43]

[10] Paul Baker, Zhen Ru Dai, Jens Grabowski, Oystein Haugen, Ina Schieferdecker,

and Clay Williams. Model-Driven Testing: Using the UML Testing Profile.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007. [cited at p. 37]

[11] Paul Baker, Shiou Loh, and Frank Weil. Model-driven engineering in a large indus-

trial context - motorola case study. In MoDELS, pages 476–491, 2005. [cited at p. 36,

37]

295

296 BIBLIOGRAPHY

[12] Aline Lúcia Baroni, Yann-Gaël Guéhéneuc, and Hervé Albin-Amiot. Design pat-

terns formalization. Technical Report 03/03/INFO, École des Mines de Nantes,

June 2003. [cited at p. 63]

[13] Harold J. Batteram, Wim Hellenthal, Willem A. Romijn, Andreas Hoffmann, Axel

Rennoch, and Alain Vouffo. Implementation of an open source toolset for ccm

components and systems testing. In Roland Groz and Robert M. Hierons, editors,

TestCom, volume 2978 of Lecture Notes in Computer Science, pages 1–16. Springer,

2004. [cited at p. 255, 258, 260]

[14] A. Belinfante, L. Frantzen, and C. Schallhart. Model-Based Testing of Reactive

Systems, chapter Chapter, pages 391–438. Springer, 2005. [cited at p. 195]

[15] Matthias Beyer, Winfried Dulz, and Fenhua Zhen. Automated ttcn-3 test case

generation by means of uml sequence diagrams and markov chains. ats, 0:102,

2003. [cited at p. 10, 30]

[16] Robert V. Binder. Testing Object Oriented Systems: Models, Patterns and

Tools. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1999.

[cited at p. 23, 27, 42, 48, 52, 53]

[17] Sandrine Blazy, Frédéric Gervais, and Régine Laleau. Reuse of specification pat-

terns with the b method. In ZB, pages 40–57, 2003. [cited at p. 9]

[18] Marc Born, Ina Schieferdecker, Olaf Kath, and Chiaki Hirai. Combining system

development and system test in a model-centric approach. In RISE, pages 132–143,

2004. [cited at p. 30]

[19] Jan Bosch. Design patterns & frameworks: On the issue of language support. In

ECOOP Workshops, pages 133–136. Springer, 1997. [cited at p. 54, 63]

[20] Lionel C. Briand and Yvan Labiche. A uml-based approach to system testing.

In ’UML’ ’01: Proceedings of the 4th International Conference on The Unified

Modelling Language, Modelling Languages, Concepts, and Tools, pages 194–208,

London, UK, 2001. Springer-Verlag. [cited at p. 27]

[21] Lionel C. Briand and Yvan Labiche. A UML-based approach to system testing.

Software and System Modelling, 1(1):10–42, 2002. [cited at p. 10]

[22] Lionel C. Briand and Yvan Labiche. A uml-based approach to system testing.

Technical Report Technical Report SCE-01-01, Carleton University, February 2002.

[cited at p. 27]

[23] Ed Brinksma, Wolfgang Grieskamp, and Jan Tretmans. 04371 summary –

perspectives of model-based testing. In Ed Brinksma, Wolfgang Grieskamp,

and Jan Tretmans, editors, Perspectives of Model-Based Testing, number 04371

in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales

Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,

Germany. [cited at p. 29, 30, 38]

[24] Trask Bruce, Paniscotti Dominick, Roman Angel, and Vikram Bhanot. Using

model-driven engineering to complement software product line engineering in de-

veloping software defined radio components and applications. In OOPSLA ’06:

BIBLIOGRAPHY 297

Companion to the 21st ACM SIGPLAN symposium on Object-oriented program-

ming systems, languages, and applications, pages 846–853, New York, NY, USA,

2006. ACM. [cited at p. 9]

[25] J. Bruck and K. Hussey. Customizing uml: Which technique is right for you?

http://www.eclipse.org/modelling/mdt/uml2/docs/articles/Customizing UML2 Which-

Technique is Right For You/article.html. [cited at p. 40, 41]

[26] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-

Oriented Software Architecture, A System Of Patterns, Volume 1. Wiley Series in

Software Design Patterns, 2001. [cited at p. 31, 32, 45]

[27] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Past, present, and

future trends in software patterns. IEEE Software, 24(4):31–37, 2007. [cited at p. 9]

[28] H. Buwalda. Action figures. Software Testing and Quality Engineering, pages

42–47, 2003. [cited at p. 134]

[29] H. Buwalda and M. Kasdorp. Getting automated testing under control. Software

Testing and Quality Engineering, pages 39–44, 1999. [cited at p. 134]

[30] Jens R. Calamé and Jaco van de Pol. Applying Model-based Testing to HTML

Rendering Engines – A Case Study. In Kenji Suzuki, Teruo Higashino, Andreas

Ulrich, and Toru Hasegawa, editors, Proceedings of the 20th IFIP TC6/WG6.1

International Conference on Testing of Communicating Systems (TestCom 2008),

7th International Workshop on Formal Approaches to Testing of Software (FATES

2008), volume 5047 of LNCS, pages 250–265. Springer, 2008. [cited at p. 31]

[31] T. S. Chow. Testing software design modeled by finite-state machines. IEEE Trans.

Softw. Eng., 4(3):178–187, 1978. [cited at p. 25]

[32] J. M. Clarke. Automated test generation from a behavioral model. In Proceedings

of the 11th international software quality week (SQW98), May 1998. [cited at p. 25]

[33] Middleware Company. Model driven development for j2ee utilizing a model driven

architecture (mda) approach. productivity analysis. Technical report, Report by

the Middleware Company on behalf of Compuware, 2003. [cited at p. 9]

[34] Mirko Conrad. Systematic testing of embedded automotive software - the

classification-tree method for embedded systems (ctm/es). In Ed Brinksma, Wolf-

gang Grieskamp, and Jan Tretmans, editors, Perspectives of Model-Based Test-

ing, number 04371 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-

und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.

<http://drops.dagstuhl.de/opus/volltexte/2005/325> [date of citation: 2005-01-

01]. [cited at p. 8]

[35] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-

Interscience, August 1991. [cited at p. 105]

[36] I. Craggs, M. Sardis, and T. Heuillard. Agedis case studies: Model-based testing in

industry. In Proceedings of the 1st European Conference on Model Driven Software

Engineering, pages 106–117. imbus AG, December 2003. [cited at p. 31]

298 BIBLIOGRAPHY

[37] Zhen Ru Dai, Jens Grabowski, and Helmut Neukirchen. Timedttcn-3 a real-time

extension for ttcn-3. In Testing of Communicating Systems, pages 407–424. Kluwer,

2002. [cited at p. 272]

[38] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, and

B. M. Horowitz. Model-based testing in practice. Software Engineering, Interna-

tional Conference on, 0:285, 1999. [cited at p. 28, 29, 31]

[39] David E. Delano and Linda Rising. System test pattern language copyright 1996

ag communication systems corporation permission is granted to make copies for

plop ’96., 1996. [cited at p. 43]

[40] David E. DeLano and Linda Rising. Pattern languages of program design

3. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1997.

[cited at p. 47]

[41] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, and Guilherme H.

Travassos. A survey on model-based testing approaches: a systematic review.

In WEASELTech ’07: Proceedings of the 1st ACM international workshop on Em-

pirical assessment of software engineering languages and technologies, pages 31–36,

New York, NY, USA, 2007. ACM. [cited at p. 30]

[42] Sarolta Dibuz, Tibor Szabó, and Zsolt Torpis. Bcmp performance test with ttcn-3

mobile node emulator. In TestCom, pages 50–59, 2004. [cited at p. 261]

[43] George Din. An ims performance benchmark implementation based on the ttcn-3

language. Int. J. Softw. Tools Technol. Transf., 10(4):359–370, 2008. [cited at p. 255,

269]

[44] Hyunsook Do, Gregg Rothermel, and Alex Kinneer. Prioritizing junit test cases:

An empirical assessment and cost-benefits analysis. Empirical Softw. Engg.,

11(1):33–70, 2006. [cited at p. 249]

[45] J. Dong and Y. Zhao an T. Peng. A review of design pattern mining tech-

niques. International Journal of Software Engineering and Knowledge Engineering

(IJSEKE), 19(6):823–855, 2009. [cited at p. 51, 52]

[46] Jing Dong, Yajing Zhao, and Tu Peng. Architecture and design pattern discovery

techniques - a review. In Software Engineering Research and Practice, pages 621–

627, 2007. [cited at p. 51]

[47] E. Dustin. Effective Software Testing. 50 Specific Way to Improve Your Testing.

Addison-Wesley, 2003. [cited at p. 43, 247, 248]

[48] Ibrahim K. El-Far and James A. Whittaker. Encyclopedia of Software Engineering,

chapter Model-based software testing. John Wiley & Sons, Inc., 2002. [cited at p. 24,

25, 29]

[49] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Test case prior-

itization: A family of empirical studies. IEEE Trans. Softw. Eng., 28(2):159–182,

2002. [cited at p. 249]

BIBLIOGRAPHY 299

[50] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G. Malishevsky.

Selecting a cost-effective test case prioritization technique. Software Quality Con-

trol, 12(3):185–210, 2004. [cited at p. 249]

[51] M. Frey et al. Etsi draft report: Methods for testing and specification (mts); pat-

terns for test development (ptd). Technical report, European Telecommunications

Standards Institute (ETSI), 2004. [cited at p. 49, 255, 258, 260, 261, 269, 270, 271]

[52] Li Feng and Sheng Zhuang. Action-driven automation test framework for graphical

user interface (gui) software testing. Autotestcon, 2007 IEEE, pages 22–27, Sept.

2007. [cited at p. 134]

[53] Alain-Georges Vouffo Feudjio. Model-driven functional test engineering for service

centric systems. In Proceedings of The 5th International Conference on Testbeds

and Research Infrastructures for the Development of Networks and Communities

(TridentCom 2009), 2009. [cited at p. 240]

[54] D.G. Firesmith. Pattern language for testing object-oriented software. Object

Magazin, 5(9):42–45, 1996. [cited at p. 42]

[55] Marcus Fontoura and Carlos José de Lucena. Extending UML to improve the rep-

resenation of design patterns. Journal of Object Oriented Programming, 13(11):12–

19, March 2001. [cited at p. 54]

[56] Rüdiger Foos, Christian Bunse, Hagen Höpfner, and Torsten Zimmermann. Tml:

an xml-based test modelling language. SIGSOFT Softw. Eng. Notes, 33(2):1–6,

2008. [cited at p. 41]

[57] ETSI ES 202 553: Methods for Testing and Specification (MTS). Tplan: A nota-

tion for expressing test purposes. Technical report, European Telecommunications

Standards Institute, Sophia Antipolis, 2007. [cited at p. 248, 250]

[58] Methods for Testing and Specification (MTS). The testing and test control notation

version 3; part1: Ttcn-3 core language. Technical report, European Telecommuni-

cations Standards Institute (ETSI), 2003. [cited at p. 18, 53, 137, 145, 149, 248]

[59] Robert B. France, Dae-Kyoo Kim, Sudipto Ghosh, and Eunjee Song. A uml-based

pattern specification technique. IEEE Trans. Softw. Eng., 30(3):193–206, 2004.

[cited at p. 9]

[60] Elisabeth Freeman, Eric Freeman, Bert Bates, and Kathy Sierra. Head First Design

Patterns. O’Reilly, October 2004. [cited at p. 265, 266]

[61] S. Fujiwara, G. V. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test

selection based on finite state models. IEEE Transactions on Software Engineering,

17:591–603, 1991. [cited at p. 25]

[62] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc.

Boston, MA, USA, 1994. [cited at p. 9, 32, 45, 269]

300 BIBLIOGRAPHY

[63] Shudi Gao, C. Michael Sperberg-McQueen, Henry S. Thompson, Noah Mendel-

sohn, David Beech, and Murray Maloney. W3c xml schema definition language

(xsd) 1.1 part 1: Structures. World Wide Web Consortium, Working Draft WD-

xmlschema11-1-20080620, June 2008. [cited at p. 113]

[64] Adam Geras, James Miller, Michael R. Smith, and James Love. A survey of test

notations and tools for customer testing. In XP, pages 109–117, 2005. [cited at p. 19,

35]

[65] J. Grabowski. Sdl and msc based test case generation: An overall view of the

samstag method, 1994. [cited at p. 30, 70]

[66] J. Grabowski, D. Hogrefe, and R. Nahm. Test case generation with test purpose

specification by mscs, 1993. [cited at p. 30, 70]

[67] Dorothy Graham, Erik van Veenendaal, Isabel Evans, and Rex Black. Foundations

of Software Testing: ISTQB Certification. Int. Thomson Business Press, 2006.

[cited at p. 18, 248]

[68] Matthias Grochtmann and Klaus Grimm. Classification trees for partition testing.

Softw. Test., Verif. Reliab., 3(2):63–82, 1993. [cited at p. 265]

[69] Juergen Grossmann, Ines Fey, Alexander Krupp, Mirko Conrad, Christian Wewet-

zer, and Wolfgang Mueller. Testml - a test exchange language for model-based

testing of embedded software. In Manfred Broy, Ingolf H. Krger, and Michael

Meisinger, editors, ASWSD, volume 4922 of Lecture Notes in Computer Science,

pages 98–117. Springer, 2006. [cited at p. 42]

[70] Object Management Group. Unified modelling language: Testing profile, final-

ized specification. Technical report, Object Management Group, April 2004.

[cited at p. 10, 37, 256]

[71] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/Trans-

formation Specification, Version 1.1, 2005. [cited at p. 191]

[72] Object Management Group. Meta Object Facility (MOF) Core Specification Ver-

sion 2.0, 2006. [cited at p. 40]

[73] Object Management Group. MOF Model to Text Transformation Language, Ver-

sion 1.0, 2008. [cited at p. 191]

[74] Object Management Group. OMG Unified Modelling Language (OMG UML),

Superstructure, 2009. [cited at p. 39]

[75] Alain Le Guennec, Gerson Sunyé, and Jean marc Jézéquel. Precise modelling of

design patterns. In In Proceedings of UML00, pages 482–496. Springer Verlag,

2000. [cited at p. 54]

[76] Mary Jean Harrold and Gregg Rothermel. Performing data flow testing on classes.

pages 154–163. ACM Press, 1994. [cited at p. 12]

BIBLIOGRAPHY 301

[77] A. Hartman and K. Nagin. The agedis tools for model based testing. In ISSTA

’04: Proceedings of the 2004 ACM SIGSOFT international symposium on Software

testing and analysis, volume 29, pages 129–132, New York, NY, USA, July 2004.

ACM Press. [cited at p. 10, 29, 30]

[78] Görel Hedin. Language support for design patterns using attribute extension. In

ECOOP ’97: Proceedings of the Workshops on Object-Oriented Technology, pages

137–140, London, UK, 1998. Springer-Verlag. [cited at p. 54, 64]

[79] Mats P. E. Heimdahl. Model-based testing: Challenges ahead. In COMPSAC

’05: Proceedings of the 29th Annual International Computer Software and Ap-

plications Conference, page 330, Washington, DC, USA, 2005. IEEE Computer

Society. [cited at p. 28, 29]

[80] Brian Henderson-Sellers. Uml - the good, the bad or the ugly? perspectives from

a panel of experts. Software and System Modelling, 4(1):4–13, 2005. [cited at p. 38]

[81] William E. Howden. Software test selection patterns and elusive bugs. In COMP-

SAC ’05: Proceedings of the 29th Annual International Computer Software and Ap-

plications Conference (COMPSAC’05) Volume 1, pages 25–32, Washington, DC,

USA, 2005. IEEE Computer Society. [cited at p. 42]

[82] Antti Huima. Implementing conformiq qtronic. In TestCom/FATES, pages 1–12,

2007. [cited at p. 251]

[83] IEEE. Draft ieee standard for software and system test documentation (revision

of ieee 829-1998). Technical report, IEEE, 2008. [cited at p. 18, 21, 50, 249]

[84] Specialist Interest Group in Software Testing (BCS SIGIST). Standard for software

component testing, working draft 3.4. Technical report, British Computer Society

(BCS), apr 2001. [cited at p. 263]

[85] ISO/IEC. Iso/iec standard no. 9126: Software engineering product quality; parts

14. Technical report, Organization for Standardization (ISO) / International Elec-

trotechnical Commission (IEC), Geneva, Switzerland, 2001-2004. [cited at p. 33, 46]

[86] ISTQB. Standard glossary of terms used in software testing. Technical report,

International Software Testing Qualification Board ISTQB, 2006. [cited at p. 18, 21]

[87] ITU-T. Osi conformance testing methodology framework(ctmf), recommendation

x-290. Technical report, ITU-T, 1995. [cited at p. 252, 259]

[88] Ivar Jacobson, M. Griss, and P. Jonsson. Software Reuse: Architecture, Process

and Organization for Business Success. Addison-Wesley Longman Publishing Co.,

Inc. Boston, MA, USA, 1997. [cited at p. 32]

[89] A. Z. Javed, P. A. Strooper, and G. N. Watson. Automated generation of test

cases using model-driven architecture. In AST ’07: Proceedings of the Second

International Workshop on Automation of Software Test, page 3, Washington, DC,

USA, 2007. IEEE Computer Society. [cited at p. 30]

[90] Jean-Marc Jézéquel, Michel Train, and Christine Mingins. Design Patterns and

Contracts. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1999. [cited at p. 269]

302 BIBLIOGRAPHY

[91] Paul C. Jorgensen. Software Testing: A Craftsman’s Approach. CRC Press, Inc.,

Boca Raton, FL, USA, 1995. [cited at p. 24]

[92] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl: A model

transformation tool. Science of Computer Programming, 72(1-2):31–39, June 2008.

[cited at p. 191]

[93] Cem Kaner. Architectures of test automation, 2000. [cited at p. 11]

[94] S.-K. Kim and D. Carrington. Using integrated metamodelling to define oo design

patterns with object-z and uml. Software Engineering Conference, 2004. 11th

Asia-Pacific, pages 257–264, Nov.-3 Dec. 2004. [cited at p. 54]

[95] S. Kleene. Representation of Events in Nerve Nets and Finite Automata, pages

3–42. Princeton University Press, Princeton, N.J., 1956. [cited at p. 24]

[96] Anneke G. Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model

Driven Architecture: Practice and Promise. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2003. [cited at p. 8]

[97] Thomas Kühne. What is a model? In Jean Bezivin and Reiko Heckel, ed-

itors, Language Engineering for Model-Driven Software Development, number

04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales

Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-

many. [cited at p. 23]

[98] Dae kyoo Kim, Robert France, Sudipto Ghosh, and Eunjee Song. A uml-based

metamodelling language to specify design patterns. In In Proceedings of WiSME,

UML Conference, 2003. [cited at p. 54]

[99] R. Lai. How could research on testing of communicating systems become more

industrially relevant? In Selected proceedings of the IFIP TC6 9th international

workshop on Testing of communicating systems, pages 3–13, London, UK, UK,

1996. Chapman & Hall, Ltd. [cited at p. 30, 31]

[100] R. Lai. A survey of communication protocol testing. Journal of Systems and

Software, 62(1):21 – 46, 2002. [cited at p. 29, 30]

[101] Richard Lai and Wilfred Leung. Industrial and academic protocol testing: the gap

and the means of convergence. Computer Networks and ISDN Systems, 27(4):537–

547, 1995. [cited at p. 30]

[102] Chang Liu and Debra J. Richardson. Using application states in software testing.

Software Engineering, International Conference on, 0:776, 2000. [cited at p. 25]

[103] Jochen Ludewig. Models in software engineering an introduction. Software and

Systems Modeling, 2(1):5–14, March 2003. [cited at p. 23]

[104] Jeffrey K. H. Mak, Clifford S. T. Choy, and Daniel P. K. Lun. Precise modelling of

design patterns in uml. In ICSE ’04: Proceedings of the 26th International Con-

ference on Software Engineering, pages 252–261. IEEE Computer Society, 2004.

[cited at p. 54]

BIBLIOGRAPHY 303

[105] David Mapelsden, John Hosking, and John Grundy. Design pattern modelling

and instantiation using dpml. In James Noble and John Potter, editors, Fortieth

International Conference on Technology of Object-Oriented Languages and Systems

(TOOLS Pacific 2002), volume 10 of CRPIT, pages 3–11, Sydney, Australia, 2002.

ACS. [cited at p. 64]

[106] John D. McGregor and David A. Sykes. A Practical Guide to Testing Object-

oriented Software (Object Technology Series). Addison-Wesley Longman Publish-

ing Co., Inc. Boston, MA, USA, 2001. [cited at p. 48]

[107] G. H. Mealy. A method for synthesizing sequential circuits. Bell Systems Technical

Journal, 1955. [cited at p. 24]

[108] Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code. Addison-Wesley,

2007. [cited at p. 11, 42, 48, 248, 267]

[109] MODELWARE. Modelware d5.3-1 industrial roi, assessment, and feedback. master

document. revision 2.2. Technical report, 2006. [cited at p. 9]

[110] MODELWARE. Modelware d5.3-4 france telecom roi, assessment, and feedback.

revision 1.1. Technical report, 2006. [cited at p. 9]

[111] Parastoo Mohagheghi and Vegard Dehlen. Where is the proof? - a review of

experiences from applying mde in industry. In ECMDA-FA ’08: Proceedings of

the 4th European conference on Model Driven Architecture, pages 432–443, Berlin,

Heidelberg, 2008. Springer-Verlag. [cited at p. 8, 195]

[112] E. F. Moore. Gedanken experiments on sequential machines, pages 129–153. Prince-

ton University Press, Princeton, N.J., 1956. [cited at p. 24]

[113] Mozilla.org. Testopia. Web Page, 2009. [cited at p. 252]

[114] Arilo Dias Neto, Rajesh Subramanyan, Marlon Vieira, Guilherme Horta Travassos,

and Forrest Shull. Improving evidence about software technologies: A look at

model-based testing. IEEE Software, 25(3):10–13, 2008. [cited at p. 31]

[115] Helmut Neukirchen. Languages, Tools and Patterns for the Spec-

ification of Distributed Real-Time Tests. PhD thesis, Dissertation,

Universität Göttingen, November 2004 (electronically published on

http://webdoc.sub.gwdg.de/diss/2004/neukirchen/index.html and archived

on http://deposit.ddb.de/cgi-bin/dokserv?idn=974026611 . Persistent Identifier:

urn:nbn:de:gbv:7-webdoc-300-2), November 2004. [cited at p. 11]

[116] Helmut Neukirchen and Martin Bisanz. Utilising Code Smells to Detect Quality

Problems in TTCN-3 Test Suites. In Proceedings of the 19th IFIP International

Conference on Testing of Communicating Systems and 7th International Workshop

on Formal Approaches to Testing of Software (TestCom/FATES 2007), pages 228–

243. Springer, Heidelberg, June 2007. [cited at p. 52, 262]

[117] Model Driven Architecture (MDA), Juli 2001. [cited at p. 8]

[118] S Pickin. Test des Composants Logiciels pour les Telecommunications. PhD thesis,

Universite de Rennes, France, 2003. [cited at p. 41, 71]

304 BIBLIOGRAPHY

[119] S. Pickin, C. Jard, T. Heuillard, J.M. Jezequel, and P. Defray. A uml-integrated

test desciption language for component testing. In A. Evans, R. France, A. Mor-

eira, and B. Rumpe, editors, Practical UML-Based Rigorous Development Methods,

volume P7 of Lecture Notes in Informatics (GI Series). Kollen-Druck + Verlag,

2001. [cited at p. 41, 70, 71]

[120] Simon Pickin and Jean-Marc Jezequel. Using uml sequence diagrams as the basis

for a formal test description language. In Integrated Formal Methods, pages 481–

500. Springer, 2004. [cited at p. 37, 38, 41, 71]

[121] S. Pietsch and B. Stanca-Kaposta. Model-based testing with utp and ttcn-3 and

its application to hl7. Technical report, Testing Technologies, Conquest, Potsdam,

Germany, 2008. [cited at p. 24]

[122] Andrej Pietschker. Automating test automation. Int. J. Softw. Tools Technol.

Transf., 10(4):291–295, 2008. [cited at p. 198]

[123] Andrej Pietschker. Automating test automation. Int. J. Softw. Tools Technol.

Transf., 10(4):291–295, 2008. [cited at p. 261]

[124] L. Prechelt, B. Unger, W. F. Tichy, P. Brössler, and L. G. Votta. A controlled

experiment in maintenance comparing design patterns to simpler solutions. IEEE

Trans. Softw. Eng., 27(12):1134–1144, 2001. [cited at p. 63]

[125] Wolfgang Prenninger and Alexander Pretschner. Abstractions for model-based

testing. Electronic Notes in Theoretical Computer Science, 116:59 – 71, 2005.

Proceedings of the International Workshop on Test and Analysis of Component

Based Systems (TACoS 2004). [cited at p. 29, 68, 88, 108, 138]

[126] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,

B. Sostawa, R. Zölch, and T. Stauner. One evaluation of model-based testing

and its automation. In ICSE ’05: Proceedings of the 27th international confer-

ence on Software engineering, pages 392–401, New York, NY, USA, 2005. ACM.

[cited at p. 31]

[127] A. Pretschner, O. Slotosch, E. Aiglstorfer, and S. Kriebel. Model-based testing for

real: The inhouse card case study. Int. J. Softw. Tools Technol. Transf., 5(2):140–

157, 2004. [cited at p. 31]

[128] Nat Pryce. Test data builders: an alternative to the object mother pattern.

http://www.natpryce.com/articles/000714.html, aug 2007. [cited at p. 265]

[129] Bo Qu, Changhai Nie, Baowen Xu, and Xiaofang Zhang. Test case prioritization

for black box testing. Computer Software and Applications Conference, Annual

International, 1:465–474, 2007. [cited at p. 250]

[130] Muthu Ramachandran. Testing software components using boundary value analy-

sis. EUROMICRO Conference, 0:94, 2003. [cited at p. 263]

[131] I. Rauf, A. Nadeem, and M. Khokhar. Formalizing object oriented design patterns

with object-z. Multitopic Conference, 2006. INMIC ’06. IEEE, pages 269–274,

Dec. 2006. [cited at p. 54]

BIBLIOGRAPHY 305

[132] Stuart C. Reid. An empirical analysis of equivalence partitioning, boundary value

analysis and random testing. Software Metrics, IEEE International Symposium

on, 0:64, 1997. [cited at p. 112]

[133] Debra J. Richardson, Owen T. O’Malley, and C. Tittle. Approaches to

specification-based testing. In Symposium on Testing, Analysis, and Verification,

pages 86–96, 1989. [cited at p. 19]

[134] H. Robinson. Obstacles and opportunities for model-based testing in an indus-

trial software environment. In Proceedings of the 1st European Conference on

Model Driven Software Engineering, pages 118–127. imbus AG, December 2003.

[cited at p. 29, 30, 195]

[135] Everett M. Rogers. Diffusion of Innovations, 5th Edition. Free Press, 5 edition,

August 2003. [cited at p. 243]

[136] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler. Rfc3261 - sip: Session initiation protocol. Technical

report, IETF, 2002. [cited at p. 212]

[137] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. Test

case prioritization: An empirical study. In ICSM ’99: Proceedings of the IEEE

International Conference on Software Maintenance, page 179, Washington, DC,

USA, 1999. IEEE Computer Society. [cited at p. 249]

[138] Gregg Rothermel, Roland J. Untch, and Chengyun Chu. Prioritizing test cases for

regression testing. IEEE Trans. Softw. Eng., 27(10):929–948, 2001. [cited at p. 249]

[139] Ekkart Rudolph, Ina Schieferdecker, and Jens Grabowski. Hypermsc - a graphical

representation of ttcn. In SAM, pages 76–, 2000. [cited at p. 70]

[140] M. Al Saad, N. Kamenzky, and J. Schiller. Model Driven Engineering Languages

and Systems, chapter Visual ScatterUnit: A Visual Model-Driven Testing Frame-

work of Wireless Sensor Networks Applications, pages 751–765. Springer, 2008.

[cited at p. 42]

[141] Philip Samuel and Rajib Mall. Boundary value testing based on uml models. Asian

Test Symposium, 0:94–99, 2005. [cited at p. 263]

[142] Pedro Santos-Neto, Rodolfo Resende, and Clarindo Pádua. Requirements for in-

formation systems model-based testing. In SAC ’07: Proceedings of the 2007 ACM

symposium on Applied computing, pages 1409–1415, New York, NY, USA, 2007.

ACM. [cited at p. 10]

[143] Ina Schieferdecker and Jens Grabowski. The graphical format of ttcn-3 in the

context of msc and uml. In Proceedings of the 3rd Workshop of the SDL Forum

Society on SDL and MSC (SAM’2002), Aberystwyth (UK, pages 2–6. Springer

Verlag, 2002. [cited at p. 70]

[144] Stephan Schulz. Test suite development with ttcn-3 libraries. Int. J. Softw. Tools

Technol. Transf., 10(4):327–336, 2008. [cited at p. 246, 255]

306 BIBLIOGRAPHY

[145] Stephan Schulz, Anthony Wiles, and Steve Randall. Tplan-a notation for express-

ing test purposes. In Alexandre Petrenko, Margus Veanes, Jan Tretmans, and

Wolfgang Grieskamp, editors, TestCom/FATES, volume 4581 of Lecture Notes in

Computer Science, pages 292–304. Springer, 2007. [cited at p. 248, 250]

[146] Eclipse Open source Project. The eclipse modelling project.

http://www.eclipse.org/modelling, 2008. [cited at p. 57]

[147] Eclipse Open source Project. The eclipse project. http://www.eclipse.org, 2008.

[cited at p. 57]

[148] TOPCASED Open source Project. Toolkit in open source for critical applications

& systems development. http://topcased.gforge.enseeiht.fr/, 2008. [cited at p. 199]

[149] Hema Srikanth. Requirements-based test case prioritization. In Doctoral Sym-

posium in International Conference of Software Engineering, page 27695, 2005.

[cited at p. 249]

[150] Hema Srikanth and Laurie Williams. On the economics of requirements-based

test case prioritization. In EDSER ’05: Proceedings of the seventh international

workshop on Economics-driven software engineering research, pages 1–3, New York,

NY, USA, 2005. ACM. [cited at p. 249, 250]

[151] Praveen Ranjan Srivastva, Krishan Kumar, and G Raghurama. Test case prior-

itization based on requirements and risk factors. SIGSOFT Softw. Eng. Notes,

33(4):1–5, 2008. [cited at p. 250]

[152] Gerson Sunyé, Alain Le Guennec, and Jean marc Jézéquel. Design pattern applica-

tion in uml. In In Proceedings of the 14 th European conference on Object Oriented

programming, Springer LNCS 1850, pages 44–62. Lecture, 2000. [cited at p. 9]

[153] Arturo H. Torres-Zenteno, Mariá J. Escalona, Manuel M., and Javier J. Gutiérrez.

A mda-based testing - a comparative study. In Boris Shishkov, Jose Cordëıro, and

Alpesh Ranchordas, editors, ICSOFT (1), pages 269–274. INSTICC Press, 2009.

[cited at p. 195]

[154] G. J. Tretmans and H. Brinksma. Torx: Automated model-based testing. In

A. Hartman and K. Dussa-Ziegler, editors, First European Conference on Model-

Driven Software Engineering, Nuremberg, Germany, pages 31–43, December 2003.

[cited at p. 31]

[155] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,

May 2001. [cited at p. 69]

[156] M. Utting, A. Pretschner, and B. Legeard. A taxonomy of model-based testing.

In A Taxonomy of model-based testing, number 04/2006 in Working paper series.

University of Waikato, Department of Computer Science, 2006. [cited at p. 10, 24,

195]

[157] Mark Utting and Bruno Legeard. Practical Model-Based Testing. A Tools Ap-

proach. Elsevier, 2006. [cited at p. 7, 8, 23, 24]

BIBLIOGRAPHY 307

[158] Alain Vouffo-Feudjio and Ina Schieferdecker. Test patterns with ttcn-3. In Jens

Grabowski and Brian Nielsen, editors, FATES, volume 3395 of Lecture Notes in

Computer Science, pages 170–179. Springer, 2004. [cited at p. 11, 43]

[159] Alain-G. Vouffo Feudjio and Achille Kingni Nent-

edem. Mdtester user and installation guide.

http://www.fokus.fraunhofer.de/distrib/motion/utml/MDTesterUserGuide.html,

March 2009. [cited at p. 203]

[160] Ingo Weisemoeller and Andy Schuerr. A comparison of standard compliant ways

to define domain specific languages. In Models in Software Engineering, Lecture

Notes in Computer Sciences, pages 47–58. Springer, 2008. [cited at p. xiv, 64, 65]

[161] J. Zander, Zhen Ru Dai, I. Schieferdecker, and G. Din. From u2tp models to

executable tests with ttcn-3. Proceedings of Second European Workshop On Model

Driven Architecture (MDA) EWMDA, 2004. [cited at p. 25, 30, 37]

[162] J. Zander-Nowicka, A. Marrero Perez, I. Schieferdecker, and Z.R. Dai. Test design

patterns for embedded systems. 2007. [cited at p. 11]

[163] Benjamin Zeiß, Helmut Neukirchen, Jens Grabowski, Dominic Evans, and Paul

Baker. TRex - An Open-Source Tool for Quality Assurance of TTCN-3 Test

Suites. In Proceedings of CONQUEST 2006 – 9th International Conference on

Quality Engineering in Software Technology, September 27-29, Berlin, Germany.

dpunkt.Verlag, Heidelberg, September 2006. [cited at p. 224]

[164] Benjamin Zeiß, Diana Vega, Ina Schieferdecker, Helmut Neukirchen, and Jens

Grabowski. Applying the ISO 9126 Quality Model to Test Specifications – Exem-

plified for TTCN-3 Test Specifications. In Software Engineering 2007 (SE 2007).

Lecture Notes in Informatics (LNI) 105. Copyright Gesellschaft für Informatik,

pages 231–242. Köllen Verlag, Bonn, March 2007. [cited at p. 46]

[165] Xiaofang Zhang, Changhai Nie, Baowen Xu, and Bo Qu. Test case prioritization

based on varying testing requirement priorities and test case costs. In QSIC, pages

15–24, 2007. [cited at p. 250]

Index

abstract syntax tree, 243

AbstractDataInstance, 123

ABT, see action-based testing

action-based testing, 134

ActionBlock, 183

ActivateDefaultAction, 190

adaptability, 47

AltAction, 189

AltBehaviourAction, 188

analyzability, 47

API, see aplication programming interface19,

30

application programming interface, 19

AST, 52

AST see abstract syntax tree, 243

ATG, 10, 24

ATL, see ATLAS transformation language191

AtomicTestAction, 155

BaseReceiveDataEvent, 173

BaseSendDataAction, 168

BasicTestDataType, 116

BehaviourActionKind, 146

BehaviourPatternKind, 146

BNF, 57

Boundary value analysis, 263

BPMN, 57

Builder design pattern, 266

BVA, 263

changeability, 47

CheckAction, 181

CloseConnectionAction, 157

cMOF, see complete MOF

code smells, 52

complete MOF, 40

ComponentInstance, 98

ComponentKind, 94

ComponentType, 92

conformance testing, 19

Connection, 100

ConnectionAction, 155

ConstraintKind, 113

CORBA, 33

correctness, 46

coverage, 46

CTMF, 17

customer testing, 19

DataConstraint, 128

DataDirection, 110

DataKind, 111

DataPatternKind, 112

DataReceptionEvent, 159

DataTypeField, 119

DataTypeIndicator, 110

DataTypeRelationship, 115

DeactivateDefaultAction, 190

Default Values Analysis, 263

DefaultBehaviourAction, 157

DefaultBehaviourDef, 160

domain specific modelling language, 36

DSL, see domain specific language

DSML, see domain specific modelling lan-

guage, 39–43, 56, 64, 201

DVA, 263

Dynamic test data pool, 265

EBNF, see extended Backus-Naur form, 57

eclipse, 224

Eclipse modelling framework, 57

Eclipse modelling framework, 198

ECore, 198

Efficiency, 46

EFSM see extended finite state machine, 24

ElseAction, 187

309

310 INDEX

EMF, 57, 198, see Eclipse modelling frame-

work, 199, 224

eMOF, see essential MOF

enumeration, 146, 147, 179

EP, 263

Equivalence partitioning, 263

essential MOF, 40

Estelle, 22

extended Backus-Naur form, 40

extended finite state machine, 24

ExternalAction, 164

ExternalCheckAction, 181

Factory design pattern, 266

fault-revealing capability, 46

fault-tolerance, 46

FDT, see formal description techniques

FieldConstraint, 129

finite state machine, 24

formal description techniques, 22

FSM, 24

FSM see finite state machine, 24

Gang of four, 9

generic modelling language, 36

GFT, 70

GML, see generic modelling language

granularity, 27

hardware-in-the-loop, 42

high level test design, 26

HIL, see hardware-in-the-loop42

ICS, 252

IDE, 201

IDL, see interface definition language, 120

IEEE, 18

IEEE-829, 18

IfAction, 187

IfElseAction, 185

ImplementationStatus, 82

IMS, see IP multimedia subsystem, 210, see

I multimedia subsystem212, 224,

see I multimedia subsystem255

inheritance, 94

installability, 47

interface definition language, 30

IP multimedia subsystem, 196, 212, 255

ISO 9646, 18, 252

ISO-IEC 9126, 46

ISTQB, 18

LBS, see Location Based Services225

LOTOS, 22

M2M, see model-to-model

M2T, see model-to-text

Maintainability, 46

maturity, 46

MBT, 10

MDA, 8

MDE, 8, 23

MDT, 10, see model-driven testing, 35, 40–

42, see model-driven testing, 195,

196

MDTester, 201

MeshArchitecture, 107

MessageTestDataInstance, 125

MessageTestDataType, 117

meta-object facility, 40

MIL, see model-in-the-loop42

MLP, see Mobile Location Protocol225

model based testing, 23, 24

model driven test case construction, 42

model-driven testing, 25

model-in-the-loop, 42

model-to-model, 191

model-to-text transformation language, 191

MOF, see meta-object facility, 198

MOFM2T, seeMOF model-to-text191

MonitoringAction, 165

MPM, 29

MSC, 42, 70

MTC, 270

MTCC, see model driven test case construc-

tion

MTL, see model-to-text transformation lan-

guage

MultipleReceiveDataEvent, 178

ObjectiveGroupDef, 80

ObjectiveGroupItem, 81

Observation, 158

OCL, 9, 76, 192, 200, 203

OMA , see Open Mobile Alliance225

OMG, 8

OOAD, 24

OperationExceptionDef, 122

OperationOutput, 167

OperationResponseDef, 121

OperationTestDataInstance, 127

OperationTestDataType, 120

P2PArchitecture, 106

ParameterConstraint, 130

INDEX 311

ParameterDeclaration, 120

ParameterDef, 131

Parlay-X, 230

PIM, 8, 9, see platform independent model

PIT, 10, see platform independent test model

platform independent model, 25

platform independent test design model, 43

platform independent test model, 25

PMP, 255

PMP , see point-to-multi point106

PMPArchitecture, 106

point-to-multi point, 106

PolicyKind, 147

Portability, 47

PortInstance, 96

PortType, 91

prioritization, 249

Priority, 81

PSM, 8

PST, 10

query/views/transformations, 191

QVT, see queryviewstransformations

Random value analysis, 263

RCP, see rich client platform

ReceiveDataEvent, 176

ReceiveSyncDataEvent, 177

recoverability, 46

RelationKind, 115

Reliability, 46

RepeatTestAction, 184

replaceability, 47

Response, 166

Reusability, 47

rich client platform, 201

RLP, see Roaming Location Protocol225

round trip engineering, 9, 198

RTE, see round trip engineering

RVA, 263

scalability, 29

SDL, 70

security, 46

SendDataAction, 170

SendDiscardAction, 165

SendReceiveSequence, 180

SendSyncDataAction, 171

session initiation protocol, 212

SetupConnectionAction, 156

SignalTestDataInstance, 126

SignalTestDataType, 122

SIL, see software-in-the-loop42

SIP, see session initiation protocol

software-in-the-loop, 42

specification-based testing, 19

stability, 47

StartTimerAction, 162

State, 161

state space explosion, 29

StopAction, 164

StopTimerAction, 163

StructuredTestAction, 184

SubActionBlock, 183

SUPL, see Secure User Plane Location Pro-

tocol225

SysML, 22, 56, 198

system component, 18

system model, 26

TeLa, 41, 71

test architecture model, 20

test case prioritization, 249

test component, 18

test data, 19

Test effectiveness, 46

test event, 20

test model, 26

test modelling language, 41

test objective, 21

test procedure, 21

test repeatability, 46

test specification, 21

test step, 20

test system, 21

TestPatternKind, 78

testability, 27

TestAction, 154

TestArchGroupDef, 95

TestArchGroupItem, 95

TestArchitecture, 102

TestArchitectureActionKind, 179

TestArchitectureElement, 96

TestArchitectureModel, 94

TestArchitectureTypesElement, 90

TestArchitectureTypesModel, 89

TestArchPatternKind, 105

TestArchTypesGroupDef, 91

TestArchTypesGroupItem, 90

TestBehaviourActionDef, 148

TestBehaviourActionInvocation, 150

TestBehaviourElement, 181

TestBehaviourGroupDef, 144

312 INDEX

TestBehaviourGroupItem, 144

TestBehaviourModel, 140

Testcase, 151

TestDataElement, 110

TestDataGroupDef, 114

TestDataGroupItem, 114

TestDataInstance, 124

TestDataModel, 109

TestDataType, 116

TestEvent, 159

TestML, 42

TestObjective, 83

TestObjectiveDescriptionElement, 84

TestObjectiveElement, 83

TestObjectivesModel, 79

TestParameter, 132

TestParameterSet, 133

TestProcedure, 87

TestProceduresElement, 86

TestProceduresGroupDef, 86

TestProceduresGroupItem, 86

TestProceduresModel, 85

TestSequence, 179

Timer, 161

TimerExpirationEvent, 159

TML, see test modelling language

TOPCASED, 199, 201, 224

TRex, 224

TriggerAction, 167

TriggerReceiveSequence, 180

TTCN-3, 18, 37, 43, 52, 53, 55, 56, 70, 120,

126, 137, 149, 151, 157, 160, 164,

191, 192, 194, 198, 203, 210, 222,

223, 225, 226, 242, 243, 246, 248,

252, 253, 256, 261, 262, 264, 267,

268, 270–272

UML, 10, 22, see unified modelling language,

36–41, 54, 56, 71, 72, 198

UML testing profile, 37

unified modelling language, 30

Usability, 46

usage model, 26

UTML, 53, 64, 70–73, 75, 79, 80, 89, 91–93,

99, 102, 117, 118, 134, 136, 139–

141, 156, 164–166, 171, 172, 176,

178, 184–186, 188, 191–194, 196,

198–201, 203, 207, 211, 242, 248,

250, 253, 261–264, 268, 272

UTP, 10, 24, 26, 37, 38, 41, 64

ValueCheckAction, 182

ValueInstance, 123

VariableDeclaration, 160

WaitAction, 163

web service definition language, 30

WSDL, see web service definition language,

see web service definition language

XML, 199

XSD, 109, 264

	Contents
	List of Symbols and Abbreviations
	List of Figures
	List of Tables
	Introduction
	Introduction
	Scope and Purpose of this Thesis
	Structure of this Thesis

	Basics
	Introduction
	Principles of Software Testing
	Terminology

	Testing and Models
	What is a model?
	Model-Based Testing
	Model Driven Testing
	High Level Test Design
	A few Words on Model-Based and Model-Driven Testing
	Conclusions

	(Design) Patterns
	Summary

	State of the Art in Model-Driven Test Automation
	Introduction
	Using GMLs for MDT
	The UML Testing Profile (UTP)

	Using DSMLs for MDT
	Approaches for Designing a DSML

	Related Works
	Conclusions and Summary

	Pattern Oriented Model Driven Testing
	Introduction
	Classification of Test Design Patterns
	Introduction
	Generic Test Design Patterns
	Patterns in the Test Analysis and Planing Phase
	Patterns in the Test System Design Phase

	A Methodology of Pattern Oriented Model-Driven Test Engineering
	Test Design Pattern Mining
	Test Design Pattern Template
	Specification of Test Design Patterns

	The Pattern Oriented Model Driven Test Engineering Process
	Test Analysis
	Test Design
	Test Implementation

	A Collection of Test Design Patterns
	Summary

	UTML: A Notation for Pattern Oriented Model Driven Test Design
	The Need to Formalise Test Patterns
	Overview of UTML
	Visualisation

	Generic UTML Metamodel concepts
	UtmlElement
	BasicTestModel
	TestModel
	DescribedElement
	GroupItem
	GroupDef
	NamedElement
	UniqueNamedElement
	ElementWithID
	ElementWithUniqueID
	TestPatternKind

	Test Objectives Design Concepts
	TestObjectivesModel
	ObjectiveGroupDef
	ObjectiveGroupItem
	Priority
	ImplementationStatus
	TestObjectiveElement
	TestObjective
	TestObjectiveDescriptionElement

	Test Procedures Design Concepts
	TestProceduresModel
	TestProceduresGroupItem
	TestProceduresElement
	TestProceduresGroupDef
	TestProcedure

	Test Architecture Design Concepts
	TestArchitectureTypesModel
	TestArchitectureTypesElement
	TestArchTypesGroupItem
	TestArchTypesGroupDef
	PortType
	ComponentType
	ComponentKind
	TestArchitectureModel
	TestArchGroupItem
	TestArchGroupDef
	TestArchitectureElement
	PortInstance
	ComponentInstance
	Connection
	TestArchitecture
	ExecutionMode
	TestArchPatternKind
	P2PArchitecture
	PMPArchitecture
	MeshArchitecture

	Test Data Design Concepts
	TestDataModel
	TestDataElement
	DataTypeIndicator
	DataDirection
	DataKind
	DataPatternKind
	ConstraintKind
	TestDataGroupItem
	TestDataGroupDef
	RelationKind
	DataTypeRelationship
	BasicTestDataType
	TestDataType
	MessageTestDataType
	DataTypeField
	ParameterDeclaration
	OperationTestDataType
	OperationResponseDef
	OperationExceptionDef
	SignalTestDataType
	AbstractDataInstance
	ValueInstance
	TestDataInstance
	MessageTestDataInstance
	SignalTestDataInstance
	OperationTestDataInstance
	DataConstraint
	FieldConstraint
	ParameterConstraint
	ParameterDef
	TestParameter
	TestParameterSet

	Test Behaviour Design Concepts
	Basic Principles of UTMLTest Behaviour Design
	UTML Test Sequence Diagrams
	UTML Test Activity Diagrams
	TestBehaviourModel
	TestBehaviourGroupItem
	TestBehaviourGroupDef
	Verdict
	BehaviourPatternKind
	BehaviourActionKind
	PolicyKind
	TestBehaviourActionDef
	TestBehaviourActionInvocation
	Testcase
	TestAction
	AtomicTestAction
	ConnectionAction
	SetupConnectionAction
	CloseConnectionAction
	DefaultBehaviourAction
	Observation
	TestEvent
	DataReceptionEvent
	TimerExpirationEvent
	DefaultBehaviourDef
	VariableDeclaration
	Timer
	State
	StartTimerAction
	StopTimerAction
	WaitAction
	StopAction
	ExternalAction
	MonitoringAction
	SendDiscardAction
	Response
	OperationOutput
	TriggerAction
	BaseSendDataAction
	SendDataAction
	SendSyncDataAction
	BaseReceiveDataEvent
	ReceiveDataEvent
	ReceiveSyncDataEvent
	MultipleReceiveDataEvent
	TestArchitectureActionKind
	TestSequence
	SendReceiveSequence
	TriggerReceiveSequence
	TestBehaviourElement
	CheckAction
	ExternalCheckAction
	ValueCheckAction
	ActionBlock
	SubActionBlock
	StructuredTestAction
	RepeatTestAction
	IfElseAction
	IfAction
	ElseAction
	AltBehaviourAction
	AltAction
	ActivateDefaultAction
	DeactivateDefaultAction

	Mapping UTML Concepts to Existing (Test Scripting) Languages
	Mapping to TTCN-3
	Mapping to JUnit

	Summary

	Evaluation: Implementation and Case Studies
	Introduction
	Implementation: The UTML Eclipse Plug-in Tool chain
	Requirements on The Model-Driven Test Engineering Toolset
	The Proposed Architecture
	Prototype Implementation

	Evaluation: Example and Case Studies
	An Example: Pattern Oriented MDT for a Web Application
	The IMS Case Study
	The OMA SUPL Case Study
	The Parlay-X Case Study
	The Digital Watch Case Study

	Summary

	Conclusions And Outlook
	Summary and Conclusion
	Outlook
	Usage of state machines for test behaviour modelling
	Implementation of further templates for test patterns instantiation
	Better modelling support for continuous signals and case studies thereof
	Automated Analysis of Test Script Code based on Patterns
	Empirical evaluation of the approach based on feedback from test experts

	A Collection of Test Design Patterns
	Generic Test Design Patterns
	Pattern: Separation of Test Design Concerns
	Pattern: Grouping of Test Design Concerns

	Patterns in Test Objectives Design
	Pattern: Prioritization of test objectives
	Pattern: Traceability of Requirements to Test Artifacts
	Pattern: Selection criteria for test objectives
	Pattern: Traceability of Test Objectives to Fault Management

	Test Architecture Design Patterns
	Pattern: Extensibility/Restriction of Test Architecture Elements
	Pattern: One-on-One Test Architecture
	Pattern: Point-to-Multi Point(PMP) Test Architecture
	Pattern: Flexibility of the test architecture model
	Pattern: Proxy Test Component
	Pattern: Sandwich Test Architecture
	Pattern: Monitoring Test Component
	Pattern: Central Test Coordinator

	Test Data Design Patterns
	Pattern: Purpose-Driven Test Data Design
	Pattern: Basic Static Test Data Pool
	Pattern: Reusable Test Data Definitions
	Pattern: Dynamic Test Data Pool

	Test Behaviour Design Patterns
	Pattern: Assertion-Driven Test Behaviour Design
	Pattern: Context-Aware Test Behaviour Design
	Pattern: Test Component Factory
	Pattern: Central Coordination of Test Components
	Pattern: Distributed Coordination of Test Components
	Pattern: Time Constraints in Test Behaviour

	UTML Mapping Examples
	UTML to TTCN-3 Mapping Rules
	Testcase
	SendDataAction
	ReceiveDataEvent
	SendDiscardAction
	WaitAction
	SetupConnectionAction
	CloseConnectionAction
	DefaultBehaviourDef
	StopTimerAction
	StartTimerAction
	ValueCheckAction

	UTML to JUnit Mapping Rules
	Testcase
	WaitAction

	SysML to UTML Mapping
	WSDL to UTML Mapping

	UTML Model Transformation Examples
	Example of Model Transformation: UTML to TTCN-3

	Bibliography
	Index

