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1 Introduction  

Proteins are one of the most important classes of biological macromolecules and involved 

in virtually all cellular processes. Their central role is reflected in the molecular basis of 

life, the cellular machinery that translates genetic information (DNA) into proteins. 

Nucleotide sequences exist for every protein , which  contain the required information to 

synthesize  the protein out of amino acids. Despite the modest number of amino acids 

(20), protein diversity is overwhelming. This variety arises from the multitude of 

possible combinations. A polypeptide with 60 amino acids offers 20 60 (1.153ā1078) different 

theoretical species, all unique  in their sequence  (Mountain et al. , 1999). 

The function of a protein  is determined by its three -dimensional structure , built  by 

folding of the linear polypeptide sequence into a compact structure.  Folding is energy 

driven  and the native , biologically active  structure is generally considered the most 

stable configuration  under physiological conditions (Dill and Chan, 1997) . Although  the 

structure of the folded protein is encoded in its amino acid sequen ce (Anfinsen, 1972) , 

protein folding is a complex problem due to the immense conformational space 

(Levinthal, 1969 ). Despite intense research , a prediction from the sequence is not 

feasible today and experimental studies are necessary to study structure and function.   

The structural and functional diversity and the vital importance make proteins a very  

interesting ta rget for science and industry. Modern molecular biology methods allow  an 

easy and comprehensive analysis of genes and the corresponding proteins . Proteins of 

interest are usually produced in host organism s like Escherichia  coli , which are easy to 

handle an d feature well -established genetic tools. Besides the expression of genes from 

other organisms, which  are simply transferred to the host  organism , it is also possible to 

modify the nucleotide sequence and generate new variants. Thus , the enormous set of 

natural proteins is extended by  a novel set of designed molecules with customized 

functionality in features like activity, stability or binding (protein engineering).  Two 

classes of proteins are especially focused on for industrial applications : enzymes as 

natural catalysts (white biotechnology) and proteins for therapeutic applications  (red 

biotechnology) . For both, target protein s have to be produced pure, cost -efficiently and on 

a large scale (Mountain et al. , 1999; Voet and Voet,  2004).  
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2 Thesis Motivation and Objectives  

2.1 Motivation  

Protein expression in Escherichia  coli  (E. coli ) is a standard low cost and high yield 

production process for recombinant proteins  (Graumann and Premstaller, 2006) . 

However, in vivo  solubility  is often limited . Approximately  40 % of the proteins 

overexpressed in E. coli  are insoluble (Mayer and Buchner, 2004)  and require 

solubili zation and subsequent refolding  in order to obtain the biologically active nati ve 

structure. This refolding step represents  a bottleneck in process development , as optimal 

refolding conditions have to be determined in large screening experiments  (Clark, 2001; 

Middelberg, 2002) .  

Standard refolding screens described in  the literature are prim arily based on statistical 

methods ( fractional factorial designs ) and limited in some core characteristics. Either a 

limited  number  of buffer components that affect refolding are analyzed (Boyle et al. , 

2009) or their interdependence  is not sufficiently considered (Cowan et al. , 2008; Willis et 

al. , 2005). Another shortcoming of those studies is often the lack  of further optimization 

of suitable refolding  conditions  (Arms trong et al. , 1999; Hofmann et al. , 1995). In 

addition, previous studies either do not include a n analysis of the variable effects 

(Hofmann et al. , 1995; Lin et al. , 2006) or perform only a regression analysis of the most 

important variables (Armstrong et al. , 1999; Tobbell et al. , 2002; Willis et al. , 2005). A 

comprehensive model which connects the refolding success and the composition of the 

refolding buffer is missing.  

Stochastic search methods like genetic algorithms (GA) offer the potential to combine 

screening and optimization in one step. In contrast to statistic screening methods, like 

the fractional factorial screen s, they are not based on a simplified process model. GAs 

are able to  identify optimal solutions with limited experimental effort in complex search 

spaces. The major advantage of stochastic search strategies lie s in the multi -objective 

optimization of complex search spaces  (Bianchi et al. , 2008). Protein refolding, with its 

variety of interacting variables ( protein, pH, ionic strength , additives, redox agents) , is 

presumed to be such a complicated problem.   
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2.2 Objectives  

This thesis investigated the application of a stochastic search method on the problem of 

protein refolding. The aim  was to provide a robust, standardized, one -step opti mization 

strategy which allows an experimenter to optimize the refolding conditions in a series of 

parallel experiments.  Acquired  data should be used to model the coherence of refolding 

conditions and refolding yields and deduce trends . 

The individual objectives of this thesis were to:  

¶ Establish a  standard  experimental design approach for protein refolding based on 

a genetic algorithm  (GA). 

¶ Optimize the refolding conditions of a variety of well -characterized model proteins 

partially in cooperation with the  project partner  (Department Chemie, Center for 

Integrated Protein Science , Technische Universität München).  

¶ Evaluate the performance of this approach and compare it to standard statistical 

design of experiments  (DOE) strategies . 

¶ Analyze the experimental d ata and b uild black box model s that  model refolding 

success as a function of  the composition of the refolding buffer . 
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3 Theoretical Background  

3.1 Production of recombinant proteins  

3.1.1 Protein expression systems  

Today, protein production is almost exclusively  performed recombinantly , which means 

that the protein is heterologously expressed in a host organism. Because of the immense 

structural and functional diversity of proteins, the expression system has to adapted to 

the protein under study. Standard expression systems include bacteria, yeast, 

filamentous fungi and mammalian cell cultures. In the following sections, applications, 

advantages and disadvantages are outlined briefly.  

Escherichia  coli  (E. coli ) is the standard microorganism for the production of 

recombinant proteins. Efficient  tools for genetic manipulation, high growth rates, high 

content of recombinant protein (up to 50 % of the dry cell mass) and cheap and easy 

cultivation  in defined media make E. coli  the primary choice for host organisms . 

Applica tions range from high -throughput sc reening to large -scale production processes 

(Andersen and Krummen, 2002; Graumann and Premstaller, 2006; Schmidt, 2004) . 

However , E. coli  lacks several eukaryotic properties  with severe consequences for the 

expression of euka ryotic and especially mammalian proteins. Posttranslational  

modifications like glycosylation are challenging and recombinant  proteins expressed in 

high titers are often prone to aggregation . Consequently, the expression  of soluble 

protein is limited and pr otein aggregates, so called inclusion bodies (IB s), are often 

observed inside the cells  (Choe et al. , 2006). This solubility problem poses a major 

challenge and will be discussed in d etail in section 3.1.2. 

Yeast expression systems are usually applied if  the protein cannot  be produced in soluble 

form in E. coli  or posttranslational modifications are required.  Both , Pichia  pastoris and 

Saccharomyces cerevisiae are established host organisms  that enable moderate protein 

titers  (up to 15  g Lĭ1) with a relatively straightforward downstream processing  (Cregg et 

al. , 2000; Gerngross, 2004; Graumann and Premstaller, 2006) . Filamentous fungi 

expression systems, for example Aspergillus  niger  are largely comparable to yeasts . They 

offer an efficient  secretion system and moderate  process costs (slightly higher than 

E. coli ). Consequently, extracellular proteins with disulfide bonds and other proteins , 

which  are inadequa te for expression in E. coli , are often produced with either yeast or  
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fungi. The latter  are mainly used for industrial enzymes , for which  costs are critical , and 

not for therapeutic proteins  (Gerngross, 2004).  

Mammalian cell cultures , specifically  Chinese Hamster Ovary (CHO) cells, are almost 

exclusively used for therapeutic proteins due to the higher costs . Today, about 70 % of all 

therapeutic  proteins on the market are produced in CHO  cells, while most of the rest is 

expressed in E. coli  (Hacker et al. , 2009; De Jesus and Wurm, 2011) . As mammalian cell 

cultures are closer related to the human than the previously discussed  expression 

systems, post-translational modifications are in general a minor problem. Recent 

advances in the field significantly  improved both productivity (50  pg cellĭ1 dayĭ1 

to 60 pg cellĭ1 dayĭ1) and harvest concentrations (1  g Lĭ1 to 5 g Lĭ1) for CHO processes 

(Hacker et al. , 2009). 

Concluding remarks  

In conclusi on, E. coli  is the primary choice for expression systems and close to ideal with 

respect to costs and most practical consideration. If the expression cannot be realized in 

E. coli , either yeast and fungi (enzymes) or CHO cells ( therapeutic proteins ) are ty pically 

studied as alternatives.  

3.1.2 Expression in bacterial hosts  ð the issue of protein solubility  

Cytoplasmic expression in E. coli  

E. coli  is the standard host organism  for the expression of non -glycosylated peptides and 

proteins. In principle, t hree diffe rent expression strategies exist , each with unique 

advantages and disadvantages (Table 3.1). 

Table 3.1: Strategies for protein expression in E. coli  (Andersen and Krummen, 2002) . (IB) 

inclusion body.  

Expression route  Advantages  Limitations  

Cyt oplasmic  Highest yields, IB formation 

enrich es the protein   

IB formation makes r efolding 

necessary 

Periplasmic  Disulfide bridging, natural 

secretion signals  

Empirical  and often inefficient 

translocation , typically low yields  

Secretory  Easy product separation , 

reasonably efficient for peptides  

Secretion machinery not fully 

understood, inefficient for proteins  
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This thesis  focuses on the cytoplasmic expression strategy, as it is used for most 

industrial processes.  Pivotal for the wide-spread application are  very high productivities 

and product yields. A good example is the production of human interferon -Ȃ in high cell 

density cultivation. In this case,  a fed-batch processes with a maximal  biomass of 

127 g Lĭ1 cell dry weight ( CDW) enabled the production of 42.5 g Lĭ1 product in 17  h 

cultivation time  with a productivity of 2.5  g Lĭ1 hĭ1 and a specific yiel d of 

0.33 gproduct  gCDW
ĭ1 (Koolaee et al. , 2006). 

However, approximately 40 % of the proteins  overexpressed in E. coli  exhibit a low in 

vivo  solubility and form IB  (Mayer and Buchner, 2004) . The exact mechanism of 

misfolding and aggregation is not clearly understood , but several factors are assumed to 

contribute to IB formation . One of the main factors is the difference between pro - and 

eukaryotic proteins . This applies to the protein size, as only 13 % of E. coli  proteins 

possess more than 500 residues ( roughly 500 kDa ) compared to 38 % in 

Saccharomyces cerevisiae (Hartl and Hayer -Hartl, 2002) . In addition , the complexity  is 

lower for prokaryotic proteins.  Multiple domains, oligomer ic structure and  multiple 

disulfide bonds  are far more common in eukaryotes.  The second factor that contributes to 

misfolding is t he difference between the prokaryot ic host and eukaryot es. Translational 

and post-translational machineries  and folding modulators (chaperones  and foldases) are 

partly or completely unalike. Finally, the  reductive conditions of the bacterial cytoplasm  

promote misfolding and aggregation  for disulfide -bridged proteins (Choe et al. , 2006; 

Graumann and Premstaller, 2006) . 

In the light of this problem two different process strategies are pursued.  

On the one hand , it  is possible to optimize the soluble expression in order to obtain more 

functional protein. In the last decades considerable progress was realized in this subject 

(Makino et al ., 2011). Protein expr ession as fusion proteins  to solubilizing partners  like  

the maltose -binding protein or glutathione -S-transferase (Cho et al. , 2008; Rabhi -Essafi 

et al. , 2007) or the co-expression of various chaperones or folding assistants (de Marco et 

al. , 2007) enables higher expressio n rates for many proteins . Furthermore, mutant 

strains of E. coli  allow a more efficient expression of disulfide -bridged proteins (Bessette 

et al. , 1999) or glycosylated proteins (Wacker et al. , 2002), though  the yields are still low.  

On the ot her hand , many industrial processes are based on the insoluble expression of 

the protein of interest in IBs. (Table 3.2). Insulin an d insulin analogs are probably the 

best-known products . In addition , various other therapeutic pro teins including  growth 

hormones, growth factors, interferons  and interleukins  are all produced in IB s. The 
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general advantages are the enrichment of the product, the protectio n from proteolysis 

and the ability to produce proteins that are toxic to E. coli  cell s (Choe et al. , 2006). Such 

aspects compensate for the additional effort required in the  downstream processing. For 

IB based processes two additional processing steps become necessary : Solubilization and 

the subsequent refolding , which will be discussed in detail in section 3.2. 

Table 3.2: Overview of therapeutic peptides and proteins produced in E. coli  (Choe et al. , 

2006; Rabhi -Essafi et al. , 2007). 

Product  Remarks  Companies  

Asparaginase  - Merck  

B-type natriuretic peptide  Inclusion bodies  Scios/Johnson & Johnson  

Cholera toxin subunit B - SBL Vaccine  

Granulocyte -colony 

sti mulating factor  

Inclusion bod ies  Amgen 

Human Growth Hormone  Inclusion bodies  

or periplamic  

Genentech, Eli Lilly, Pfizer, 

Schwartz Pharma, Novo Nordisk  

Insulin and analogs  Inclusion bodies Eli Lilly, Aventis  

Interferon alfacon -1 Inclusion bodies  Valeant  

Interferon Ȁ-2a - Hoffmann -LaRoche, Schering  

Interferon ȁ-1b Inclusion bodies  Schering AG, Chiron  

Interferon Ȃ-1b Inclusion bodies  Genentec, Intermune  

Interleukin 11  - Genetics Institute  

Interleukin 2  - Chiron  

Interleukin -1 receptor 

antagonist  

- Amgen 

Parathyroid Hormone  Inclusion bod ies Eli Lilly  

Pertussis toxin  - Chiron  

Salmon Calcitonin  Secretion Unigene  

Tissue Plasminogen activator  Inclusion bodies   Roche 

Tumor necrosis factor alpha  - Boehringer Ingelheim  
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Insoluble protein expression in  i nclusion bod ies  (IB s)  

Before detailing the typical production process with IB s, it is important to characterize 

the properties of IB s (Figure 3.1). IBs are protein aggregates located in the cytopla sm or 

rarely the periplasm . The composition and the amount of IBs var y significantly . Both are 

influenced by the growth conditions (temperature, medi um and other process 

parameters), the induction (system, concentration, time), the expression system and the 

protein of interest  (Choe et al. , 2006). In general , IB s comprise the target protein (up to 

95 %) and contaminants. For example, inclusion bodies of ȁ-lactamase contained  35 % to 

95 % protein of interest , 5 % to 50 % polypeptides, 1 % to 13 % phospholipids and traces 

of nucleic acids (Valax and Georgiou, 1993) . However, in most cases washing steps 

enable an efficient depletion of contaminant s. I t was shown that most contaminants  

absorb onto the IBs after  cell di sruption . They are generally not incorporated  in the IB  

and thus easy to remove  (Clark, 2001; Middelberg, 2002; Valax and Georgiou, 1993) . The 

physical properties of IBs again vary according to process conditions  and the protein 

under study . In general, a size distribution between 0.35  µm and  1.28 µm (diameter) and 

a density between 1.034  g cmĭ3 and 1.260 g cmĭ3 are  observed (Jin et al. , 1994; Taylor et 

al. , 1986). Consequently, a fractionation of IBs from ins oluble cell debris is possible  but 

in some cases challenging (Clark, 2001; Middelberg, 2002) .  

 

Figure 3.1: Electron micrograph of E. coli  cells containing cytosolic inclusion bodies  

(http://web.mit.edu/king -lab/www/research/Scott/Scott -Research.html ; Feb 2012; 

Betts and King, 1998 ;). 

In the past, it was assumed that IBs contain only misfolded, inactive protein. However, 

recent work revealed native -like secondary structures and active protein in IBs of 

several proteins. Instead of being homogenous, IBs seem to consist of a distribution of 

misf olded and partially or fully folded protein species (Doglia et al. , 2008; Jevsevar et al. , 

2005; Oberg et al. , 1994; Ventura  and Villaverde, 2006) .  

200 nm 
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Protein production processes that are based on IBs  rely on the conversion from the 

aggregated, non-functional prot ein to the soluble and active f orm and are structu red in 

three parts : preprocessing, solubilization and refolding  (Figure 3.2). After  the 

cultivation , cells are disrupted and soluble impuri ties and other (lighter) particles are 

depleted via  centrifugation or filtration. The insoluble IBs are enriched as pellets  and 

washed with detergents to remove other contaminants (see above). In some cases , the 

requirements for  downstream processing may contraindicate detergent usage  (Choe et 

al. , 2006). For the solubilization , the IBs are dissolved in solutions with high 

concentrations of chaotropes (urea or guanidine hydrochloride, GdnāHCl). Hereby, the 

chaotropes break up the non -covalent bonds in the IB and the protein aggregates 

dissolve. Furthermore , reducing agents like dithiothreitol (DTT)  are added to break up  

disulfide bonds  via reduction . They facilitate the effective dissol ution of IBs with 

disulfide -bridged proteins. Finally, the remaining insoluble material is removed by a 

fractionatio n step (usually centrifugation). Refolding  or renaturation of the correctly 

folded bioactive product requires the removal of chaotropes and reducing agents. This 

step is critical both in process development and economic evaluations and strongly 

dependent on the  protein  (Choe et al. , 2006). Protein refolding will be discus sed in detail 

in the next section.  

 

Figure 3.2: Traditional processing scheme for the production of recombi nant proteins 

in insoluble form. Preprocessing typically involves m echanical cell disruption , 

centr ifugation steps and preliminary purification. Subsequently, the inclusion bodies 

(IBs) are solubilized with chaotropes. Finally, r efolding reconstitutes the native 

protein structure which is necessary for biological activity.  

Cultivation  

Cell removal and disruption  

IB fractionation and purification  

Solubilization  

Refolding  

Purification and polishing  

Preprocessing  
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IB based processes were subject to great variety of innovations in the last decades, 

improving various process steps , ranging from cell disruption, IB extraction, 

solubilization  and purification  to refolding (Choe et al. , 2006; Crisman and Randolph, 

2009; Jungbauer and Kaar, 2007; Middelberg, 2002; Qoronfleh et al. , 2007; Singh and 

Panda, 2005). Naturally, these improvements affect the competitiveness to alternat ive 

strategies and the economic performance  (Freydell et al. , 2011; Lee et al. , 2006). 

Concluding remarks  

The expression of recombinant proteins in E. coli  is often associated with misfolding and 

aggregation to IB s. IBs enable a high enrichment of the protein of interest (of up to 95 % 

Valax and Georgiou, 1993)  and are the basis for a variety of pro ducts, especially 

therapeutic proteins  (Graumann and Premstaller, 2006) . In comparison to soluble 

expression, IB based processes require  two additional steps: A solubili zation step with 

chaotropes and the subsequent refolding o f the native protein structure.  
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3.2 Protein refolding  

Protein refolding or renaturation  reconstitutes the native structure of the protein of 

interest after the IB solubilization  in chaotropes . It is general ly  considered the 

bottleneck of IB  based processes, since reaction conditions that enable efficient refolding 

drastically vary depending on  the protein of interest  (Jungbauer and Kaar, 2007; Lilie et 

al. , 1998). Furthermore, m isfolding and aggregation represent  competing side reactions  

that can severely reduce the refolding yield . Therefore , refolding conditions have to be 

optimized experimentally for each protein (Basu et al. , 2011; Clark, 2001; Middelberg, 

2002; Rudolph and Lilie, 1996) . This chapter details protein refolding  and is structured 

in : refolding methods (3.2.1), parameters  (3.2.2), reaction kinetics (3.2.3) and the 

analy sis of folded protein s (3.2.4).  

3.2.1 Refolding methods  

In order to obtain bi ologically active protein s out of  the solubilized IB s, the chaotropes 

have to be removed from the protein containing solution. Additionally , for oxidative 

protein refolding , the redox environment may be altered to enable disulfide bond 

formation. Both processing steps are usually combined  and several different methods 

exist for efficient protein refolding.  

Dilution  

Dilution of the unfolded protein into an appropriate refolding buffer is straightforward 

and the simplest and most commonly used refolding metho d. The main applications are 

small -scale refold ing studies and high -throughput screening experiments (Mannall et al. , 

2009; Trésaugues et al. , 2004; Willis et al. , 2005). Large -scale dilution is also used in 

industry , mainly because of the simplicity of the processing scheme  (Jungbauer and 

Kaar, 2007) . After the dilution of the IBs in the refolding buffer , the solution is stirred at 

a controlled temperature. Subsequently , the protein is harvested  after a fixed time . 

However , large-scale dilution has serious drawbacks in terms of the reaction vessels 

(large volumes , uniform mixing ) and further processing (a dditional concentration steps).  

In order to avoid aggregation and low refolding yields, i t is decisive to main tain low 

protein concentrations . Therefore, good mixing and a slow addition of the protein 

containing solution are required. A final protein concentration of 10 mg Lĭ1 to 100 mg Lĭ1 

is applied  in  most processes (Jungbauer and Kaar, 2007) . Furthermore, a step-wise 

dilution  of the protein , the so called pulse renaturation, is possible and often enables 

higher yields  and final  protein concentrations . Thus, pulse renaturation or other 
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implementations, like fed -batch or continuous processes , facilitate more economic 

dilution processes  (De Bernardez Clark et al. , 1999; Katoh and Katoh, 2000; Lilie et al. , 

1998). 

Dialysis   

Buffer exchange and thus  removal of chaotropes is also possible through dialysis . In 

comparison to dilution, dialysis enables refolding with very l ow protein concentration s 

and a complete exchange of the buffer is possible . However, refolding yields can be 

negatively affected by non -specific protein adsorption to the dialysis membran e (West et 

al. , 1998). Furthermore, slow buffer exchange kinetics can induce aggregation of 

refolding intermediates, especially if the protein folding rate is low  (Basu et al. , 2011; 

Tsumoto et al. , 2003b). Comparable to pulse renaturation  for dilution , stepwise dialysis 

enables improved refolding yields (Tsumoto et al. , 2010). Due to the disadvantages  of 

dialysis , dilution is nevertheless the preferred method for most application s. 

Matrix -assisted refolding  

On-column refolding provides an alternative to dilution, especially  for proteins wit h slow 

refolding kinetics or a high tendency for aggregation  (Jungbauer et al. , 2004). The 

immobilization of the protein on the chromatography matrix enables a spatial isolation 

of the protein s. Thus, intermolecular interactions of folding intermediates and 

consequently aggregation  are reduced (Schmoeger et al. , 2010). Several different 

chromatography methods ar e used for on-column refolding . 

Immobilized metal affinity chromatography (IMAC ) refolding  is based on the 

immobilization of the denatured protein , which has  a functional tag, onto the matrix and 

the subsequent dilution of the denaturant to promote refoldi ng. Hence, IMAC refolding 

is restricted to proteins, whose function or structu re are not affected by the tag 

(Jungbauer et al. , 2004). In addition, the column material restricts the choice of refolding 

buffers (pH, detergents and redox agents). IMAC refolding is in particular  interesting for 

screening applications and proteins that are d ifficult to refold by dilution.  

Size exclusion chromatography (SEC)  has been used since the 1990s for refoldi ng 

(Werner et al. , 1994). In general, an optimization of the buffer system is necessary for 

efficient refolding. Furthermore, the r efolding yield is dependent on the matrix 

composition  (Fahey et al. , 2000; Jungbauer et al. , 2004). In comparison to dilution, 

refolding yields are often higher, but many proteins show identical performance for both  

methods. However, SEC incorporates a fractionation of different molecule sizes. Hence, a 
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depletio n of contaminants is possible and advantageous for this method (Middelberg, 

2002).  

Ion exchange chromatography  (IEC)  is also used for refolding. The applications are 

generally comparable to SEC. However, IEC was reported to be m ore efficient for crude 

samples (Jungbauer et al. , 2004; Kweon et al. , 2004; Li et al. , 2003).  

Furthermore, it is possible to mimic in vivo  folding conditions by immobilization of 

folding catalysts onto the chromatographic support. This method might improve in vi tro  

refolding yields and extend the range of proteins that can be refolded from IB s 

(Jungbauer et al. , 2004; Middelberg, 2002) . However, only a few examples have been 

published so far (Altamirano et al. , 1999; Altamirano et al. , 2001; Tsumoto et al. , 2003a) 

and the cost s of immobilized chaperonin systems and oxidoreductases hinder  an 

ind ustrial application.  

Concluding remarks  

In summary, dilution is the standard method for protein refolding  (Jungbauer and Ka ar, 

2007). Especially for high -throughput screening experiments , the simplicity of the 

process outweighs the disadvantage of low protein concentrations (Mannall et al. , 2009; 

Trésaugues et al. , 2004; Willis et al. , 2005). Chromatography is an important alternative, 

as it enables higher final protein concentrations and yields for many protei ns 

(Middelberg, 2002) . Dialysis  is mainly considered as a niche strategy.  

3.2.2 Parameters in protein refolding  

Protein folding normally proceeds in vivo , after or during translation. The refolding 

reaction, which  is carried out in vitro  from the solubilized protein , takes place under 

drastically di fferent conditions.  The protein is typically diluted in a buffered solution 

comprising  various small molecule additives and defined  redox conditions . Major 

differences to the cell are t he absence of molecular crowding  and chaperone systems and 

the remainder of the denaturant . Additionally, little is known about the functional 

relationships between refolding yield and process conditions. Therefore, process design is 

based on rough guidelines and the parameters have to be optimized experimentally for 

each protein (Basu et al. , 2011; Jungbauer and Kaar, 2007; Lilie et al. , 1998; Middelberg, 

2002). The different parameters that influence  protei n refolding are detailed  in the 

following.  
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Protein concentration  and t emperature  

High concentrations of the protein of interest promote aggregation, hence refolding 

yield s are decreased. Aggregation is the result of the exposure of normally inaccessible , 

hydrophobic  core residues that become exposed on the surface of folding intermediate s. If 

the protein concentration  is high, hydrophobic interactions between thes e residues 

become more probable and aggregation occurs  (Fischer et al. , 1993; Rudolph et al. , 1979). 

Therefore, refolding is usually performed at low protein concentrations between 

10 mg Lĭ1 and 100 mg Lĭ1 (Jungbauer and Kaar, 2007; Lilie et al. , 1998) and most 

refolding screens are based on similar  ranges (Armstrong et al. , 1999; Trésaugues et al. , 

2004; Willis et al. , 2005). The relation  of applied  protein concentration and obtained 

refolding yield is not universal,  as some proteins  are more prone to aggregation and 

misfolding. Furthermore, the refolding method has an influence  on this concentration 

dependency (Jungbauer et al. , 2004; Middelberg, 2002; Tsumoto et al. , 2003b). 

H igh local protein concentrati ons have to be avoided in the refolding process. This is 

especially important during  the initial phase, in which the denatured protein is diluted 

in the refolding buffer or loaded on the chromatography column.  Therefore,  mixing is an 

important process para meter on large industrial scales (Clark, 2001; Jungbauer and 

Kaar, 2007)  and high -thr oughput screening in µL-volumes (Mannall et al. , 2009). 

For most proteins , higher yields and less aggregation are observed at lower refolding 

temperatures  (Mattingly et al. , 1995; Wang and Engel, 2009; Xie and Wetlaufer, 1996) . 

While high temperatures seem to  promote aggregation, lower temperatures decrease the 

folding speed and hydrophobic interactions  of folding intermediates.  However, it was 

also observed that high refolding temperature s may improve refolding for stable proteins 

like lysozyme (Sakamoto et al. , 2004). For screening experiments , protein concentration 

and temperature  are usually standardized  and kept constant at low levels (Cowieson et 

al. , 2006; Trésaugues et al. , 2004; Vincentelli et al. , 2004; Willis et al. , 2005). 

pH  of the refolding buffer  

Native proteins show an increasing solubility with increasing distance from the 

isoelectric point (pI). The pH of the solution d etermines the total charge of the dissolved 

protein . Highly charged proteins are less prone to aggregation, as repulsive interactions 

raise the energy barrier for protein -protein interactions and thus for aggregation. In 

contrast, proteins near the pI have  both negative and positive charges. An anisotropic 

distribution of positive and negative charges can result in dipole formation, making 

protein -protein interactions much more favorable (Chi et al. , 2003). However, guidelines 
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for protein sol ubility are not generally transferable to protein refolding. For oxidative 

refolding , an alkaline pH is required for the formation of thiolate ions and native 

disulfide bond s. Suitable conditions have to be evaluated experimentally  and a 

prediction on the basis of the pI is not feasible . In m ost refolding screens , the pH is 

varied from slightly acidic (pH 6 .0) to alkaline (pH 9.5) (Armstrong et al. , 1999; Cowan et 

al. , 2008; Tobbell et al. , 2002; Trésaugues et al. , 2004). 

Refolding  additives  

Numerous  additives either promote refolding by stabilizing  the native structure or 

inhibit ing aggregation.  According to Hamada et al.  (2009) additives can be grouped in 

three  classes: Denaturants , including guanidine , urea, strong ionic detergents  and 

other chaotropes, which bind to the protein (folding intermediates) and prevent 

aggregation.  Stabilizers , including sugars and polyhydric alcohols (glycerol ), which 

stabilize the  native state during refolding through preferential hydration.  Mixed class  

additives , which combine characteristics of denaturants and stabilizers . This group 

contains  all other refolding additives : various  detergents  and non-detergent surfactants, 

ionic  l iquids, arginine, other amino acid s and derivates  and amphiphilic  polymers like 

polyethylene glycol (PEG). 

Prior to discussing  the most important addit ives in the following , it is important to note 

that  the focus of this literature review lies on the refol ding application. Many  of the 

above-mentioned additives are commonly used to stabilize proteins and suppress non -

native aggregation  (Chi et al. , 2003). This information is incorporated  as the same effect 

(aggregation) is circumvented. Howeve r, protein refolding exhibits some differences : a 

background of denaturants  is usually present  and the starting point is the unfolded 

protein , not the native protein .  

Guanidine hydrochloride  (GdnāHCl) 

Denaturing chemicals like GdnāHCl or urea are used for the solubilization of IB s (see 

section 3.1.2). They disrupt both intra - and intermolecular interactions, enabling IB 

solubilization and concomitant protein denaturation. If the protein is refolded via 

dilution, residual amount s of guanidine or urea remain. These non-denaturing residual 

concentrations enable the refolding of proteins that are otherwise very difficult to refold 

(Hevehan and De Bernardez Clark, 1997; Lilie et al. , 1998). The underlying mechanism  

is the solubilization of solvent exposed hydrophobic regions in misfolded species or 

folding intermediates. Both molecular dynamics simulation (OõBrien et al. , 2007) and 
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thermodynamic measurements (Arakawa and Timasheff, 1984)  show, that guanidine 

interacts with the peptide backbone and negatively charged residues. Thus, aggregation -

prone species or folding intermediates  are stabilized . 

Detergents, non-detergent surfactants and ionic liquids   

Detergents enable higher refolding yields for many  proteins (Wetlaufer and Xie, 1995; 

Yasuda et al. , 1998). The underlying mechanism is an increased solubilization of folding 

intermediates, as hydrophobic moieties are shielded by the detergent from the 

hydrophilic solvent. Consequently, aggregation is suppressed (Lilie et al. , 1998). The 

impact on  refolding is strongly dependent on the protein concentration, the concentration 

of the detergent and the critical micellar concentration (CMC) of the detergent (Tandon 

and Horowitz, 1987) . Strong detergents like sodium dodecyl sulfate (SDS) function as a  

denaturant (se e GdnāHCl). Specifically , SDS strongly binds to the protein  (Takagi et al. , 

1975), resulting in an overall negative charge . Thus, aggregation is suppressed as 

protein -protein interactions become energetically disfavored. Refolding conditions have  

to be selected careful ly , as higher SDS concentrations cause denaturation , while high 

concentrations of other detergents are less critical.  

Non-detergent surfactant s, mainly non -detergent sulfobetaines , consist of a hydrophilic 

head group and a hydrophob ic tail. However, this tail is very short compared to above -

mentioned detergents. Consequently, no micelles are formed, even at concentrations of 

up to 1  M. Like detergents , non-detergent sulfobetaines prevent protein aggregation by 

interacting with foldin g intermediates (Vuillard et al. , 1998). 

Ionic liquids  are a recent class of refolding additives consisting of an organic cation and 

an either organic or inorganic anion. Most important representatives for refolding 

applic ations are N -alkyl - and N -hydroxyalkyl -N-methyl -imidazolium  chlorides  (Buchfink 

et al. , 2010; Lange et al. , 2005). Ionic liquids suppr ess protein aggregation and are  more 

or less denaturing , depending on the cation . Therefore , the ir  mode of action incorporates 

properties  of denaturants  (GdnāHCl) and stabilizers  (see below).  

Cosolvent sugars and glycerol 

Glycerol  and several sugars  act as stabilizers  of the native state during refolding. Their 

function can be explained by their influence  on the water molecules at the protein 

surface. Tw o concepts are important : preferential hydration and the Wyman linkage 

function  (Gekko and Timasheff, 1981; Timasheff, 1998) . The Wyman linkage func tion is 

the differential bindi ng of a ligand in a two -state equilibrium , which  shifts the 
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equilibrium towards the state with greater affinity or binding. Preferential hydration is 

usually interpreted as a negative binding.  Protein stabilizers like glycerol are 

preferentially excluded f rom the protein surface  and water molecules are enriched in this 

area (Figure 3.3). This can be considered as a negative binding  of the cosolvents , since 

the surface contact s between protein and glycerol are minimized  leading to h igher local 

concentrations of water molecules near the protein surface . The exposed surface area of 

unfolded proteins is larger than the native state . Therefore,  the degree of preferential 

exclusion is higher.  Hence, a high negative binding of the unfolded  state has the effect of 

favoring the native state  (Chi et al. , 2003; Timasheff,  2002). Although entropy is most 

probably involved, specific changes in the entropy of the water / bounded water and the 

protein surface residues seem to be largely neglected and the simplified model of the 

preferential binding is generally used to explain the additive function (Arakawa et al. , 

2007; Hamada et al. , 2009; Timasheff, 2002) . 

 
Figure 3.3: Preferential hy dration . (A) normal binding of ligands to a protein . (B) 

preferential hydration  of proteins in aqueous solutions with cosolvents like glycerol 

observed in dialysis equilibrium experiments (Gekko and Timasheff, 1981) . (ˈ) water 

molecules, (ƍ) diffusible molecule either normal ligand s (A) or glycerol ( B).  

Mechanist ic knowledge of the effect of cosolvents on protein structure and folding is best 

for glycerol, that is also the most used refolding cosolvent (Phan et al. , 2011). According 

to Vagenende et al.  (2009), the preferential hydration  of protein s in glycerol -water 

mixtures originates from spatial orientation of glycerol molecules on the protein surfac e 

through electrostatic interactions . These interactions disfavor the larger exposed surface 

areas of the unfolded protein and thus bias the native state. In addition, the amphiphilic 

Dialysis membrane  

   
Protein  

Preferential hydration  

   
Protein  

Norm al binding  

(A)  (B)  
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glycerol shields hydrophobic areas and stabilizes aggregation -prone inte rmediates, 

comparable to the above -mentioned effect of detergents.   

Polyethylene glycol  (PEG) 

Amphiphilic polymers  like PEG are used for the stabilization of protein s by chemical 

modification (PEGylation ; Roberts et al. , 2002) and serve as important refolding 

additives as well. The underlying mechanism is the preferential protein hydra tion 

(compare cosolvents). However, in contrast to the electrostatic interactions of glycerol, 

steric exclusion of the PEG from the protein surface is mainly responsible for this effect. 

Thus, the effect varies dependent on the  molecular size of the PEG. For PEGs with 

molecular weights between 200  g molð1 and 6000 g molð1, the magnitude of preferential 

hydration increased with increasing PEG size (Bhat and Timasheff, 1992) . PEG is 

considered to be a mixed class additive , because it can also bind  to non-polar residues . 

Salts and  ionic strength  

Various sa lts act similar  to the above-mentioned additives by preferential hydration. In 

this case, the exclusion of the salt molecules is based on the perturbation of the surface 

water tension. A cosolvent that increases the surface tension of water, will be depleted at 

the protein surface.  The stabilizing effect on proteins is related to the  salting -out effect 

described by the Hofmeister series  (Kunz et al. , 2004).  

Next to the influence on surface tension, which  is generally obse rved at high 

concentrations (M) , salts act as electrolytes . Hence, the ionic strength of the solution 

influences  refolding  by modulat ing  the strength of electrostatic interactions between 

charged groups (Chi et al. , 2003). Consequently, the effect s are very complex , as both 

intra - and intermolecular interactions between proteins are affected. Additionally, all 

other refolding additives with charged groups are affected , too. Combined with the 

impact  of the pH (see above), this generates a network of very complex interactions.  

L iterature on the effects of the ionic strength of the refolding buffer is rather sparse. 

Most reviews mention ionic strength as an important factor, but experim ental values are 

not given (Lilie et al. , 1998; Rudolph and Lilie, 1996; Wang, 2005) . The most common 

salt for ionic strength variation is NaCl, which is used in concentrations of 50  mM  to 

500 mM for refolding experiments (Cabrita and Bottomley, 2004) . Human growth 

hormone was reported to refold nearly independent ly  from the  ionic strength. However, 

only low ionic strengths of up to 200  mM were examined (Kim and Lee, 2000) . 
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Arginine  and other amino acids (mixed class) 

The amino acid a rginine is the most important refolding additive and commonly used for 

standard refolding protocols and screens  in concentrations of up t o 750 mM  (Phan et al. , 

2011). Arginine increases the solubility of aggregation -prone folding intermediates. 

Although, arginine has a guanidine group, it  exhibits no  denaturing  or destabilizing 

effects on the native structure  (Hamada et al. , 2009). Despit e intense research on the 

mode of action, the exact mechanism is so far unsolved  (Arakawa et al. , 2007; Tsumoto et 

al. , 2004a; Tsumoto et al. , 2004b). Arginine interacts with aromatic and charged protein 

residues and stabilizes unfolded intermediates. In addition, aqueous arginine solutions 

show a tendency for self -association and the formation of arginine clusters. The plan ar 

guanidine group is probably pivotal for this effect (Shukla and Trout, 2010) . Other amino 

acids and alkyl - or amide derivates have a positive effect on refolding as well, but 

arginine usage is predominant  (Hamada et al. , 2009; Phan et al. , 2011). 

Concluding remarks  on the classification  of refolding additives  

Refolding additiv es have complex effects on the protein and the solvent water  (Gekko 

and Tim asheff, 1981; Timasheff, 1998) . Stabilizing agents (glycerol ) mainly act through 

preferential hydration. In contrast, denaturant s (guanidine , strong detergents) suppress 

aggregation mainly by the opposite effect. Denaturant s bind  to the protein and shield  

aggregation -prone hydrophobic moieties of folding intermediates . Hence, the different 

size (solvent accessible surface) of native (small, compact) and unfolded (large, diffuse) 

protein states plays an important role for both stabilizers and denaturants. Denaturants 

preferentially bind to the larger unfolded state . Whereas stabilizers are preferentially 

excluded from the protein surface,  therefore, the smaller native state is favored. 

However, the underlying mechanism s are usually more complex and a mixture  of effects 

is observed. 

Redox agents  

Proteins with disulfide bonds complicate the refolding  process. Next to the correct 

noncovalent secondary and tertiary structure of the protein, the covalent disulfide bonds 

have to be reformed  after IB solubilization . Correct disulfide bond formation is biased, as 

the native structure is generally most stable. However , proteins with many cysteine 

residues are difficult targets  for refolding , as the number of possible combinations 

increases dramatically with the number of cysteine residues  present  (Table 3.3). 
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Table 3.3: Statistics of the disulfide bond (1 to j)  formation  in proteins with varying number of 

cysteine residues  (1 to 2n)  (Galat, 1982) . 

Disulfide 

bonds  

Cysteine 

residues  

Poss ible combinati ons, 

maximum of disulfide bonds  

Possible combinations, 

partial formation allowed  

1 2 1 1 

2 4 3 9 

4 8 105 763 

8 16 2 027 025 46 306 735 

j 2n 
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IB solubilization is routinely performed  under reductive conditions,  in order to dissolve 

possible wrong ly formed  disulfide bonds in the IB. Hence, upon disulfide bridge 

formation,  an oxidation of the cysteine residues is necessary (Figure 3.4). 

ὙὛὌὙὛὌ  O  ὙὛὛὙς Ὄ ς Ὡ  

Figure 3.4: Oxidation for disulfide bond formation . 

Although it is po ssible to use molecular oxygen for this oxidation , the yields for air 

oxidation are very low  (Sela et al. , 1957). Therefore, thiols with low molecular weight are 

usually added to the refolding buffer . Common reagents include: reduced and oxidized 

glutathione (GSH, GSSG), cysteine and cystine, 2-mercaptoethanol, dithiothreitol (DTT)  

and tris -carboxyethyl -phosphine  (TCEP). Typical  molar ratios vary  between 1:1 and 1:10  

for the reduced and oxidized form, respe ctively  (Lilie et al. , 1998). Thiols enable a  rapid 

reshuffling of disulfide bonds, as the thiol -disulfide exchange is fast and reversible  

(Figure 3.5). Hence, redox agents often increase the yield of correct protein disulfide 

formation  (Rudolph and Lilie, 1996) . An alkaline pH is necessary for thiol -disulfide 

exchange, as the reaction  mechanism is  based on a nucleophilic attack of the thiolate 

anion.  
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Figure 3.5: Disulfide bond formation and oxido -shuffling  with glutathione in the 

reduced (GSH) and oxidized state (GSSG) (Voet and Voet, 2004) . 

Chaperones  

The impact of folding catalysts was alread y mentioned in case of column 

chromatography using  immobilized chaperones, which  effectively mimics in vivo  

conditions ( see 3.2.1). Chaperones and other folding helpers are also used for dilution 

experiment as supplements  to th e refolding buffer . They often increase refolding yields  

and enable refolding of challenging  proteins  (Mayer and Buchner, 20 04; Schwarz et al. , 

1996; Vallejo and Rinas, 2004) . The bacterial GroEL  / GroES chaperone complex is the 

most common system for in vitro  refolding applications (Ayling and Baneyx, 1996) . 

However, the high cost s of chaperones hinder an  industrial application  (Jungbauer and 

Kaar, 2007) .  

REFOLD database  

The REFOLD database (http://refold.med.monash.edu.au ; Feb 2012; Amin et al. , 2006; 

Buckle et al. , 2005;) is a repository for refolding data  with the information of 

approximately 1100 refolding experiments. Ex perimental data are extracted from the 

primary literature and dependent on contributors. Thus, data quality and filtering are 

an issue. Nevertheless, the database offers far more information than literature reviews 

and is especially valuable for t he design of refolding screens.  For this thesis, the 

possibility to extract quantitative data about the refolding buffer composition w as 

especially valuable.  

Concluding remarks  

A variety of parameters affect refolding by either suppressing aggregation or stabilizi ng 

folding intermediates or the native structure. The underlying mec hanisms are only 

roughly  understood.  Interdependencies  and the requirements for disulfide -bridged 

proteins  further complicate the picture  and hinder a prediction of suitable refolding 

conditions.  
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3.2.3 Refolding  ð a kinetic  competition between folding and 

aggregation  

Refolding of the denatured protein to the biologically active, native state requires the 

formation of secondary, super -secondary, tertiary and quaternary structure s (for 

oligomers) out of the denatured, highly flexible polypeptide chain. Although the native 

structure is encoded in its amino acid sequence (Anfinsen, 1972)  and is generally the 

most stable structure under physiological conditions  (Dill and Chan, 1997) , protein 

folding is a complex problem due to the immense conformational space (Levinthal, 1969) .  

While exact mechanism s and pathways of protein folding remain controversial , it was 

proven that most pr oteins undergo different intermediate conformations before achieving 

their native structure  (Dill et al. , 2008; Lindorff -Larsen et al. , 2011; Onuchic and 

Wolynes, 2004; Sosnick and Hinshaw, 2011) . These intermediat e states are more or less 

unstable and subject ed to nonspecific hydrophobic interactions and incorrect int eractions 

of partially structured regions. Hence, aggregation may occur, which  is generally 

considered a second (or higher) order reaction . This poses the central problem for in vitro  

refolding : Because cellular chaperone systems are absent, folding interm ediates readily 

aggregate without supplementation of refolding  additives  (Jungbauer et al. , 2004).  

In vitro  refolding is a competition between the correct fol ding pathway and misfolding 

and aggregation (Figure 3.6). Intermediate (I) formation and correct folding (N) are 

typically described as a first order reaction, while the aggregation (A) has a higher order  

(Kiefhaber et al. , 1991).  

 

Figure 3.6: (A) Refolding  kinetics with unfolded (U), intermediate (I), aggregated (A) 

and native (N) protein and rate constants (k i) (Kiefhaber et al. , 1991). (B) Schematic 

influence of refolding additives. Stabilizers like glycerol stabilize the native state, 

while denaturants like guanidine  prevent aggregation of folding intermediates 

(denaturing and destabilizing effects of de naturants are omitted for clarity) . 
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The model can be further simplified for practical purposes . Typically, intermediate 

formation from the unfolded state is considered instantaneous . Thus, k1 (compare Figure 

3.6) is neglected. In addition, the reverse reaction from the native state (k 4) is also 

neglected (k 2 >> k 4). Therefore, the simplified model is a straightforward competition 

between first and higher order reaction s. For batch processes refolding can be described 

by the followi ng equations.  

Unfolded (U) and native (N) protein concentrations  can by described as: 

ὨὟ

Ὠὸ
 ὯὟ ὯὟ  

(Equation 1) 

     

 with  U unfolded protein   

  t time   

  n reaction order   

  k2, k3 folding, aggregation rate  

constants 

 

     

Ὠὔ
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(Equation 2) 

     

 with  N native  protein   

     

For a second order (n = 2) aggregation  reaction , the refolding yield (Y) is given by: 
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(Equation 3) 

     

 with  Y refolding yield   

  U0 unfolded protein, initial 

concentration  

 

     

Thus , the final refolding yield (t approaches infinity) is:  
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(Equation 4) 

     

Hence, th e refolding yield depends on the initial concentration of the unfolded protein 

and the rate constants for folding and aggregation. The differen ce of the reaction order s 

results in  a drastic decrease of refolding yields at higher protein concentration, as 

described previously ( see section 3.2.2).  
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3.2.4 Analysis  of folded proteins  

In order to evaluate refolding yields , sensitive analytical methods are required which  

quantify the correctly folded protein. These may either be based on structural or 

function al features  and have to be able to  differentiate between folded and m isfolded or 

aggregated protein. Especially for refolding screens , which  are designed to evaluate and 

optimize refolding of a variety of different proteins, the correct  quantification is a basic 

concern (Basu et al. , 2011; Middelberg, 2002) .  

Structure -based  methods  

Several structure -based methods provide exact data on the folding state , but are not 

suitable for  high -throughput refolding screens. Instead, they are mainly used  for 

stability and folding studies : Intrinsic protein f luorescence is limited to protein s with 

internal tryptophan residues. Furthermore, quenching effects of buffer components are 

problematic and fluorescence spectra of the native protein have to be avail able (Royer, 

2006). Circular dichroism spectroscopy (CD) uses the differential absorption of circularly 

polarized  light  to investigate the secondary structure  of proteins . However, the 

application is limited to pure protein samples and a high -throughput application in 

screens is not feasible.  Limited proteolysis is based on the higher stability of compact 

native protein structures against photolytic cleavage . Native protein stability and 

cumbersome fragment analysis are major drawbacks (Heiring and Muller, 2001) . Other 

methods like nuclear magnetic resonance (NMR) or sophisticated spectroscopy coupled 

with detailed analysis of spectra might be suitable future methods . However, they are 

not readily applicable today (Balbach et al. , 1995; Middelberg, 2002) . 

In contrast to above -mentioned methods, a variety of techniques are technologically fully 

developed and established for large-scale refolding screens. Absorbance, light scatteri ng 

or turbidity measurements provide information about protein solubility , thus enabling a 

quantification of protein aggregation  (Basu et al. , 2011; Middelberg, 2002) . Several 

refolding screens use this as a first analytic al step. In  a second step, positive ref olding 

conditions are subject to a more detailed analysis with another method to verify  correct 

folding (Dechavanne et al. , 2011; Scheich et al. , 2004; Willis et al. , 2005). Reverse phase 

high -performance liquid chromatography (HPLC) and hydrophobic interaction HPLC 

detect the surface hydrophobicity differences of native and misfolded protein  by different 

retention times . Due to the serial mode , data analysis can be time consuming. In 

addition , native protein has to be available for comparison and the resolution is li mited if 

http://en.wikipedia.org/wiki/Circular_polarization
http://en.wikipedia.org/wiki/Circular_polarization
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Secondary_structure
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many misfolded species occur. Nevertheless , this method is used in  several refolding 

screens (Boyle et al. , 2008; Boyle et al. , 2009; Cowan et al. , 2008). 

Function or specific binding based methods  

Protein specific assays based on enzymatic activity and imm uno- or bioassays provide  

very reliable information on protein folding  (Middelberg, 2002) . In comparison to 

structure -based methods, functional assays are generally rather simple to automate. 

Furthermore, most assays are either already established in 96 -well plate scale or can be 

easily parallelized. For th ese reasons, functional assays are the method of choice for 

most refolding screens  (Armstrong et al. , 1999; Hofmann et al. , 1995; Mannall et al. , 

2009; Willis et al. , 2005). However, each protein of interest requires a suitable enzymatic 

assay or antibody. Especially for  therapeutic protein s, the biological activity is the 

overall decision criteria and  often the exclusive optimization criteria. However, 

regulations for therapeutic protein often demand a combination of methods, for example 

bioassays and turbidity measureme nts , to quantify aggregation which is not accessible 

by functional assays  (Jungbauer and Kaar, 2007) . 

Concluding remarks  

Structure -based methods have the potential advantage of a wide applicabilit y for a high 

number of proteins . The application for high -throughput refolding screens  is usually 

limited  to solubility  measurements  or HPCL methods . On the other hand , functional 

assays provide reliable information about protein structure and the final criteria for 

protein applications (enzymes or therapeutics) is also enzymatic - or biological activity. 

However, these methods are protein -specific and development time for new target 

proteins has to be taken into account . Finally, a  combination of analytical steps 

(aggregation measurement and activity ) is required for therapeutic proteins.  
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3.2.5 Model proteins for refolding ð overview of the analyzed proteins  

Refolding screen s from the lite rature are not standardized regarding  the proteins under 

study. While almost all screens include lysozyme (LYZ) as a well -characterized model 

protein, other proteins differ from screen to screen  (Armst rong et al. , 1999; Hofmann et 

al. , 1995; Willis et al. , 2005). This chapter briefly outline the six proteins which were 

optimized within the scope of this thesis .  

Green fluorescent protei n from Aequorea victoria  (GFP)  

Green fluorescent protein (GFP) constitutes an important reporter and biosensor in 

molecular biology (Chalfie et al. , 1994). GFP is a monomeric protein with a rather small 

molecular mass of  28 kDa  and a pI of 5. 7. Its  distinctive feature is the intrinsic 

fluorescence under exposure to blue light.  The chromophore  (p-hydroxy -

benzylideneimidazolidone ) is located in the center of an 11 -stranded beta barrel  which is 

illustrated in Figure 3.7. Chromophore  formation proceeds autocatalytically  during 

folding. Refolding was examined for the engineered e nhanced GFP (variant F64L and 

S65T, Topell et al. , 1999) which is more stable than the wild -type.   

 

 

  

Green fluorescent protein   

from  Aequorea victoria  

PDB 1EMA; Uni Prot P42212 

28 kDa, monomer,  pI 5.7  

no disulfide -bridges 

intrinsic fluorescence   

 

Figure 3.7: Structure  (Ormö et al. , 1996) and key data of GFP. PDB (Protein Data 

Bank ; http://www.rcsb.org; Feb 2012; Berman et al. , 2000), UniProt  (Universal 

Protein Resource ; http://www.uniprot.org; Feb 2012; The Uniprot Consortium , 2012). 
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Glutathione reductase fro m Saccharomyces cerevisiae  (GLR)  

Glutathione reductase (GLR) from Saccharomyces cerevisiae exhibits a molecular mass 

of 53 kDa and a pI of 7.7  (Collinson and Dawes, 1995) . The protein  contains three 

distinctive domains and is active as  a dimer (Yu and Zhou, 2007) . GLR plays an 

important role in cytoplasmic and  mitochondrial redox  regulatory systems.  The flavo-

oxidoreductase (EC 1.8.1.7) reduces oxidized glutathione (GSSG) to the reduced form 

(GSH) with nicotinamide adenine dinucleotide phosphate  (NADPH) as electron donor 

and flavin adenine dinucleotide (FAD) as  coenzyme. The enzyme folds as a 3-layer(bba) 

sandwich  (Yu and Zhou, 2007)  (Figure 3.8). 

GLR activity is influenced by the redox environment and various metal ions including 

Zn2+. The active site comprises a redox-active disulfide bond. Hence, GLR activity is 

quite sensitive to the stated changes to the redox environment . However, 

ethylenediaminetetraacetic acid  (EDTA) was reported to regenerate GLR activity after 

treatment with Zn 2+ (Tandoķan and Ulusu, 2007) . 

 

 

  

Glutathione reductase  

from  Saccharomyces cerevisiae 

PDB 2HQM ; Uni Prot P41921 

53 kDa, dimer , pI 7.7 

no disulfide -bridges 

oxidoreductase  (EC 1.8.1.7) 

Figure 3.8: Structur e (Yu and Zhou, 2007)  and key data of GLR. PDB (Protein Data 

Bank ; http://www.rcsb.org; Feb 2012; Berman et al.,  2000), UniProt (Universal 

Prote in Resource; http://www.uniprot.org; Feb 2012; The Uniprot Consortium, 2012) . 
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Glucokinase from Escherichia coli  (GLK)  

Intracellular glucose in E. coli is phosphorylated to glucose-6-phosphate by the en zyme 

glucokinase (GLK) (EC 2.7.1.2) in the first step of the glycolysis . GLK is not considered 

essential for the E. coli  metabolism as  glucose is transported into the cell as glucose-6-

phosphate (phospho-transferase system ). However, GLK plays a n important  role in the 

regulation of the carbohydrate metabolism . GLK is a homodimeric protein with a mass of 

35 kDa and a pI of 6.1  (Meyer et al. , 1997). Each monomer  folds into two distinct 

domains with the active site located in a cleft in between (Lunin et al. , 2004) (Figure 3.9). 

Compared to closely related hexokinases (EC 2.7.1.1) which phosphorylate various  

sugars, the substrate specificity of GLK is narrow  and limited to glucose. The activity of 

GLK  depends on adenosine-triphosphate  (ATP)  and Mg2+ which is typical for kinases  

(Meyer et al. , 1997). 

 

 

  

Glucokinase  

from  Escherichia coli  

PDB 1Q18; Uni Prot P0A6V8 

35 kDa, dimer , pI 6.1 

no disulfide -bridges 

kinase  (EC 2.7.1.2) 

Figure 3.9: Structure (Lunin et al. , 2004) and key data of GLK. PDB (Protein Data 

Bank ; http://www.rcsb.org; Feb 2012; Berman et al.,  2000), UniProt (Universal 

Protein Resource ; http://w ww.uniprot.org; Feb 2012; The Uniprot Consortium, 2012) . 
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Lysozyme from Gallus gallus  (LYZ)  

The well -characterized lysozyme (LYZ) is a disulfide -bridged protein with a small 

molecular mass of 14 kDa and  an exceptionally high pI of 9.3 (Diamond, 1974) . Its 

biological function is primarily bacteriolytic : LYZ exhibits a strong antimicrobial effect 

as the monomeric enzyme hydrolyses (EC 3.2.1.17) peptidoglycan linkages between  

N-acetylmuramic acid and N -acetyl -D-glucosamine residu es present in microbial cell 

walls. Thus , the structural integrity of the bacterial cell wall is disturbed . LYZ  folds as a 

compact orthogonal bundle (Rypniewski et al. , 1993) (Figure 3.10). 

LYZ is an extracellular enzyme which exhibits a high stability . The protein  shows 

activity over a broad pH range with an optimum at slightly acidic conditions (pH 5.5 to 

pH 6.0) (Xu et al. , 2004). Higher ionic strength  of the reaction buffer decreases  the 

activit y (Davies et al. , 1969). 

 

 

  

Lysozyme  

from  Gallus gallus  

PDB 132L; Uni Prot P00698 

14 kDa, monomer, pI 9.3 

4 disulfide -bridges 

hydrolase (EC 3.2.1.17) 

Figure 3.10: Structure (Rypniewski et al. , 1993) and key data of LYZ. PDB (Protein 

Data Bank ; http://www.rcsb.org ; Feb 2012; Berman et al.,  2000), UniProt (Universal 

Protein Resource ; http://www.uniprot.org; Feb 2012; The Uniprot Consortium, 2012) . 
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Lactate dehydrogenase from Oryctolagus cuniculus  (LDH)  

Lactate dehydrogenase (LDH) (EC 1.1.1.27) catalyzes the conversion of pyruvate to 

lactate.  For eukaryotes the main function of LDH is the recycling of oxidized 

nicotinamide adenine dinucleotide (NAD +) in the presence of  oxygen limitations (Pineda 

et al. , 2007). The analyzed LDH from Oryctolagus cuniculus  muscle is a tetramer ic 

protein with a monomer mass of 36  kDa and a pI of 8.2  (Sass et al. , 1989). A crystal 

structure is not available for this subtype of LDH. Hence, another closely related LDH 

(LDH from human heart) is il lustrated in Figure 3.11. 

In vivo  activity of LDH is influenced by the substrate pyruvate and the product lactate 

as well as ascorbate (Stambaugh and Post , 1966). The enzyme is most stable at neutral 

pH and low temperatures (Zheng et al. , 2004). 

 

 

  

Lactate dehydrogenase  

from  Oryctolagus cuniculus  

PDB 1I0Z ; Uni Prot P13491 

36 kDa, tetramer , pI 8.2 

no disulfide -bridges 

oxidoreductase  (EC 1.1.1.27) 

Figure 3.11: Structure of the LDH from human heart  (Read et al. , 2001) and key 

data of the LDH from rabbit muscle. PDB (Protein Data Bank ; http://www.rcsb.org; 

Feb 2012; Berman et al.,  2000), UniProt (Universal Protein Resource ; 

http://www.uniprot.org; Feb 2012; The Uniprot Consortium, 2012) . 
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Lipase from Thermomyces lanuginosus  (LIP)  

The l ipase from Thermomy ces lanuginosus (LIP)  is one of the most important industrial 

enzymes. It is mainly applied  in  washing agents to remove  oils and fats from fabrics  

(Brzozowski et al. , 2000; Jaeger and Reetz, 1998). LIP was one of the first enzymes 

subjected to intensive protein engineering (Danielsen et al. , 2001) resulting in more 

stable variants which  are commercia lly available (trade names LipolaseUltra and 

LipoPrime, Novozymes). In this thesis , the wild type LIP (Lipolase, Novozymes) was 

characterized with regard to refolding.  

LIP  is a disulfide -bridged  monomeric protein with a mass of 29 kDa and a pI o f 5.0. The 

hydrolytic enzyme (EC 3.1.1.3) cleaves triglycerides into  glycerol and fatty acids. LIP 

features an active center which is covered by an Ȁ-helical lid  (Figure 3.12). This òclosed 

stateó of the enzyme is stable in aqueous solution. For catalysis, t he lid must be 

displaced to allow the substrate access to the active  center (Ollis et al., 1992). The 

activation proceeds quickly in the presence of a partially hydrophobic environment : LIP 

activity increases dramatically at  the oil -water  interface, a phenomenon known as 

interfacial activation  (Derewenda et al. , 1994).  

 

 

  

Lipase   

from  Thermomyces lanuginosus  

PDB 1TIB ; Uni Prot O59952 

29 kDa, monomer, pI 5.0 

3 disulfide -bridges 

hydrolase (EC 3.1.1.3) 

Figure 3.12: Structure (Derewenda et al. , 1994) and key data of LIP . PDB (Protein 

Data Bank ; http://www.rcsb.org; Feb 2012; Berman et al.,  2000), UniProt (Universal 

Protein Resource ; http://www.uniprot.org; Feb 2012; The Uniprot Consortium, 2012) . 
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3.3 Experimenta l design strategies  

Optimization of experimental problems is a challenging task in both engineering and 

science. In princi ple, two different  experimental desi gn strategies exist : statistic  and 

stochastic (heuristic) methods. Both aim for an efficient  and precise identif ication of  

optimal solutions inside the problem specific search space. This subchapter introduces 

both strategies and details standard designs and algorithms.  

3.3.1 Statistical design of experiment s (DOE)  

Statistic  experimental design was establish ed in the 1920s by Ronald Fisher (Fisher, 

1971). Next to the three principles of randomization, replication and blocking , he 

introduced the factorial designs. Response surface methodology (RSM) was the next 

development al step in the 1950s. Afterwards, the application of design of experiment s 

(DOE) spread from the agricultural sciences to industry and engineering. Today DOE is 

widely used , both in the commercial sector and academia (Montgomery, 2009) . In 

addition, DOE constitute s an integral part of quality by design principles, which are 

applied  for product quality control in industrial production processes (Lasky and Boser, 

1997; Lionberger et al. , 2008). 

Statistical DOE is based on a process model (Figure 3.13), which is approxima ted by 

more or less complex equations . DOE generally aims to optimize this process with 

respect to the output, the so called response variables (Y). Examples of Y are yields, 

product concentrations or costs. While some process variables (or factors) are no t 

controllable (z i) and thus kept constant, the other variables  (xi) are varied in order to 

obtain an optimized response.  

 

Figure 3.13: General process model with in - and output (Y) and influencing factors . 

Factors are either controllable (x i) or uncontrollable (z i) (Montgomery, 2009) . 
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Depending  on the problem , the method for experimental design  varies  greatly . First, the 

process or problem of interest  is examined and important factors (controllable and 

signifi cant effect on response)  are selected. For simple problems with  only one factor  

influe ncing  the response, univariate methods are pursued. However, most problems 

show more complexity and many factors need to be considered. Here, the experimenter 

has the choice between univariate  or multivariate DOE approaches  (Figure 3.14). 

 

Figure 3.14: Overview of statistic al DOE strategies  with univariate (left) a nd 

multivariate methods (right).  

In  the classic one-factor -at -a-time approach a series of straightforward univariate 

optimizations are carried out. One factor is varied , subsequently this factor is fixed at 

the optimum and the next factor is varied in turn. Consequently, interactions betwee n 

factors are not considered and only a small part of the experimental space is sampled. 

Therefore, obtaining a global optimum is not assured and strongly dependent on the 

initial conditions . Furthermore, the number of required experiments is higher compar ed 

to multivariate methods  (Montgomery, 2009) .  

Multivariate strategies vary several factors simultaneously . Thereby, more information 

can be obtained in less experiments. The advantage of analyzing multiple factors is 

illustrated in Figure 3.15. On the left side  (Figure 3.15, A), the one-factor -at-a-time 

approach fai ls to detect the global optimum  because of the interaction between both 

variables. On the right  side (Figure 3.15, B), a simultaneous variation of both variables 
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in a factorial design reveal s the direction of the global optimu m. This optimum can be 

further approximated  in a subsequent experiment .  

 

Figure 3.15: Compariso n between univariate and multivariate DOE strategies  on a 

problem with two interacting variables . The optimum is illustrated with a contour 

plot. (A) one-factor -at -a-time, (B) factorial design, (ƍ) planned experiments.  

This chapter  focuses on simultaneous  DOE. Alternatives like the simplex method 

(Nelder et al. , 1965) will not be detailed here. Simultaneous DOE is characterized by an 

experimental setup with a number of predefined experiments , that are performed in 

parallel at the same time,  the so called experimental design. After the experimental 

evaluation , the results are statistically evaluated and if necessary , an additional 

experiment is planned. Statistical DOE is structured into two parts  (compare Figure 

3.14): In a first screening experiment, a large number of factors are evaluated in  

relatively few experiments . In the process, variable interactions are usually neglected to 

minimize experimental effort. Afterwards, a statistical analysis identifies the most 

significant factors. If only one variable is important , an univariate optimization is 

applied subsequently . Otherwise, multiple variables and their interactions are analyzed, 

typically with response surface methodology ( RSM).  

  

(A)  (B)  
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Screening  

Screening methods  are mainly based on two-level  factorial designs illustrated in  Figure 

3.16. Factors are varied in two level s (coded ĭ1 and 1) with the shape of the DOE 

resembl ing  a quadrat ( two factors)  or cube (three  factors ).  

 

Figure 3.16: Two-level  full factorial designs . (A) Two factors 22, (B) three factors 23,  

(ƍ) planned experim ents.  

Full factorial designs  

Full factorial designs contain all possible combinations between the factors (f) and their 

levels (L). All planned experiments (ƍ) of the factorial  design are evaluated (see Figure 

3.16). This enables an estimation of both main effects (the factors) and their interactions . 

However, the  large experimental effort  for processes with  many important factors 

(Equation 5), severely restrict s the application  for screening purposes. Full factorial 

designs are, however, the base for most RSM designs (see optimization section) . An 

example for a two-level  design is given in the appendix ( Table 9.1). In this design ,  

8 experiments are nece ssary to examine three factors . 

   ὔ ὒ ς (Equation 5) 

     

 with  N  number of experiments  - 

  f  factors  - 

  L  level (two is standard  for 

screening methods) 

- 

     

 

(A)  (B)  
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Fractional factorial design s 

For screening purp oses, only a fraction of the above -mentioned full factorial design is 

evaluated experimentally. Consequently, some information is lost and not all main and 

interaction effects can be estimated separately. Therefore, i n most cases interactions are 

neglected for analysis. The experimental effort is  much smaller  compared to full factorial 

designs (Equation 6).  

   ὔ ς  (Equation 6) 

     

 with  v fraction of the full factorial  - 

     

An example for a fractional factorial two-level  design is given in  the appendix ( Table 

9.2). Here, 8 experiments are ne cessary to examine four factors. Thus , half of the 

experiments of the full factorial design are evaluated.  

Plackett-Burman designs  

Plackett -Burman designs are a derivate of fractional factorial designs developed by 

Plackett and Burman  (1946). These designs display a very low experimental effort , as k 

factors can be studied in N = k + 1 experiments . Hence, they are ideal for large screening 

experiments.  An example for a Plackett -Burman  design with 7 factors is depicted in the 

appendix ( Table 9.3). Here 8 experiments are necessary to analyze 7 factors. Thus , the 

experimental effort  is very low compared to the 2 7 = 128 required experiments for the 

full factorial desi gn (Equation 5). The method to construct Plackett -Burman  designs 

with a differing number of factors is detailed in Montgomery  (2009). 

The loss of information due to the limited number of performed experiments  is an 

embedded disadvantage  of these design. In contrast to normal fractional factorial 

designs, Plackett -Burman  designs cannot be represented as cubes and often depict 

messy alias structur es (Montgomery, 2009) . For practical purposes , so called dummy  

factors are often defined  in order to obtain an estimation of experimental error variance. 

Therefore, the number of necessary experiments will be  slightly larger . Typically 

N = k + 4 experiments are needed (Weuster -Botz, 2000). 
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Factorial designs with mixed levels  

Naturally, real -world problems often demand modifications  to the previously detailed  

theoretical designs. A common issue are processes, in which  one factor needs to be varied 

in more than two levels. This can be accomplished by combining two-level  factors into 

one overall factor ( Table 3.4). However, this approach is only straightforward and simple 

to use for full factoria l designs. Mixed fractional factorial or Plackett -Burman  designs 

should be used very carefully, as alias matrices get more complicated and the relative 

variance of factors can pose problematic (Montgomery, 2009) .  

Table 3.4: Mixed -level designs. The use of two-level factors to form a three -level factor  

(Montgomery, 2009) . 

Two -level  factor  Three -level 

factor  

ĭ                 ĭ x1 

+                 ĭ x2 

ĭ                 + x2 

+                 + x3 

  

D-optimal designs  

D-optimal design s are model-specific and thus able to address some of the limitations of 

the previously discussed design types. In essence, knowledge of the experimental domain 

can be readily integrated into the optimization : It is possible to generate designs with 

custom models, in which some factors interact and other s do not. F urthermore, designs 

with mixed levels (compare Table 3.4) are easier to realize and statistically more sound, 

as the relative factor variance s of the optimized model are equal  in most cases 

(Montgomery, 2009) .  

For screening purposes, D-optimal designs are based on a linear regression model wit h 

first order terms ( main effects ) (Equation 7). They examine k factors in N  Ó k + 1 

experiments . Hence, the experimental effort is comparable to Plackett -Burman  designs. 
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Ù  ὦ ὦὼ (Equation 7) 

     

 with  y response variable - 

  xi  input variables  - 

  b0,bi  zero and first order coefficients - 

     

D-optimal designs are generated using a search algorithm and not based on orthogonal 

matrices . In a first step, an initial design m atrix X is generated. Afterwards, an iterative 

search algorithm minimizes the variance of the model regression coefficients  

(covariance). This is equivalent to maximizing the determinant D  = |X TX|, where X is 

the design matrix of model terms (columns) eval uated at the different experimental 

conditions  (rows). Most algorithms either exchange entire rows or single elements of X. 

Both , in the initial design generation and in the incremental change of the search 

algorithm , random effects are observed. Consequen tly, p arameter estimates may be 

locally, but not globally, D -optimal . Most publications  recommend running the design 

algorithms multiple times and then selecting the best design. Additionally, u nlike the 

previously discussed  designs, D-optimal designs are not based on orthogonal design 

matrices.  Therefore , parameter estimates may be correlated  (Dejaegher and Heyden, 

2011; Montgomery, 2009) . 

Supersaturated designs  

All above -mentioned experimental designs are saturated, that is k factors a re examined 

in N  > k + 1 experiments . Another recent class of DOE uses even less experiments, hence 

they are commonly called  supersaturated designs  (Sun et al. , 2011). Supersaturated 

designs contain the absolute minimum of necessary experiments . Consequently , even 

their main effects are confounded and cannot be estimated unconfounded anymore. 

Supersaturated designs are only sensible with regards to very large screening  

experiments . In this case the òsparsity of effect principle ó often applies : Most of the 

examined factors have no significant impact on the response , especially in large 

screening experiments with very many factors . Supersaturated design construction is 

controversial,  in general the y are either generated from heuristic local search algorithms 

or are based on one of the above-mentioned  designs (Dejaegher and Heyden, 2011; Sun et 

al. , 2011). 

Optimization  

The screening experiments (previous section) represent  only the first step  with regard to 

process optimization . The most important factors , which wer e identified in the screening 
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are subsequently subjected to a more detailed analysis in order to find the optimal 

conditions for th is subset of factors. For this application , response surface methodology 

(RSM) is  predominant  (Montgomery, 2009) . 

RSM describes the response (for example yields or product concentrations) as a function 

of the analyzed factors, enabling a visualization of the response in the experimental 

design space. The differences to the previously discussed screening design s are the 

reduced num ber of factors and the model complexity  (Equation 7). RSM models typically 

include interaction and second order (quadratic) terms (Equation 8). 

Ù  ὦ ὦὼ ὦϽὼ ὦϽὼὼ (Equation 8) 

     

 with  xi, xj input variables  - 

  b0, bi, biāi, 

biāj 

zero, first, second order and 

interaction coefficients  

- 

     

Standard experimental designs for RSM are symmetrical and based  on full factorial 

designs (Figure 3.17, A). Central composite designs are  generally  the method of choice. 

They contain a two-level  full factorial design (the cube) , a star design and a centre point. 

Thus, N  = 2k + 2k + 1 experime nts are needed for k factors . While the points of the full 

factorial design describe a cube at factor levels of ĭ1 and 1, the points of the star  have a 

different distance (ĭȀ / +Ȁ) to the centre point , which is situated at zero. Several different 

designs with varying Ȁ exist . The circumscribed design  (Ȁ > 1) is most common . This 

design type is illustrated for three  factors in Figure 3.17. The respective design matrix 

for this example is depicted in the appendix  (Table 9.4).  

 

Figure 3.17: (A) Two-level  full factorial design. (B) Circumscribed central composite 

design for response surface methodology with three factors . (ƍ) planned experiments.  

(A)  (B)  
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Other design types  include inscribed (Ȁ < 1) and faced (Ȁ = 1) star points. While 

circumscribed RSMs offer a good accuracy over the entire design space, inscribed designs 

are better over the central subset . Faced designs are in overall good , but the quadratic 

coefficients are poorly estimated.  Values for Ȁ are dependent on the number of analyzed 

factors  (k): | Ȁ|  = (2k)0.25. Other symmetrical designs include Box -Behnken and Doehlert  

(uniform shell) , which are a less popular choice s (Dejaegher and Heyden, 2011; 

Montgomery, 2009) . Asymmetrical designs for specific problems can be generated by the 

D-optimal method, analogue to the D -optimal screening design. Naturally, a more 

complex model with interaction and quadr atic terms is used for optimization purposes 

(Equation 8). Therefore, far more experiments are required . 

Concluding remarks  

Statistical design of experiments  (DOE) is based on simplified process model s, in which  a 

variable of inte rest  (response) is described by a function of factors. Generally, the aim is 

to optimize this response by varying the factors in a defined set of experiments. Due to 

the drastically increasing complexity for problems with many factors , a two-step 

procedure is typically used: In a first set of experiments, the statistical DOE is confined 

to linear effects. The aim is to iden tify the most important factors  wit h the least possible 

experimental effort . In a second set of experiments , this subset of factors  is then 

optimized . In this step,  the process model incorporates  both interaction and quadratic 

effects.  

 

3.3.2 Stochastic optimization strategies for experimental design  

Stochastic  optimization and global search algorithms are standard method s in 

informatics , engineering  and related sciences  (Bianchi et al. , 2008). Various heuristic 

optimization strategie s like ant colony optimization , evolutionary algorithms, or particle 

swarm optimization are applied routinely , especially in multi -objective optimization or 

for problems with complex search spaces . All these approaches are heuristic, as they try 

to examine  the search space in an òintelligent way ó: They attempt to find optima l 

solutions with minimal effort . Marked similarities of all approaches are the stochastic 

aspect of the optimization (there is no guarantee of reaching  the global optimum ) and the 

effici ency of the optimization process  compared to classical approaches  (Coello Coello, 

2006). In this chapter , the experimental application of these algorithms as stochastic 
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DOE strategies is in the foreground, the focus lies on m ulti -objective genetic algorithms 

(GAs). 

Principles of g enetic algorithms  

One subtype of heuristic global search algorithms are GAs, which are inspired by 

evolutionary principles. GAs are considered robust and powerful search and optimization 

methods especially for large complex search spaces and multiple objectives (Back et al. , 

1997a). In principle, GAs simulate the process  of natural evolution starti ng with a set of 

randomly  generated candidate solutions , which iteratively evolve to  better solutions 

during the optimization. Typically, the following nomenclature is used for GAs:  

¶ A candidate solution is termed individual.  

¶ The set of individuals  is called population.  

¶ One iteration  of the algorithm  is called a generation  (GEN) . 

The basic structure of a  GA is depicted in Table 3.5. In short, the GA maintains a set of 

feasible solutions, which change iteratively in each generation. After a number of GENs 

the GA converges and possibly , but not necessarily finds the global  optim um. In order to 

work correctly , a balance is necessary between selection and evolutionary pressure on 

the one hand and maintenance of variance on th e other hand : Individuals with low 

scores of the objective functions are removed from the population, while high scoring 

individuals are retained and hence reproduce. The aim  is to narrow the search space to 

particular ly  promising areas and to increase the  average quality within the population.  

However, the variance  of the population has to be retained  at the same time  in order to 

avoid local optima and successfully identify the global optimum.  This is achieved 

through mutation and recombination . 
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Table 3.5: General structure of a genetic algorithm (GA)  (Back et al. , 1997a). 

Pseudo code  Comment  

1. t  := 0 Starting point  

2. initialize P(t)  Generate (random) first population (P).  

3. evaluate P(t)  Evaluate objective function values of all individuals.  

4. while not terminate do  Iterate the following steps until a termination criteria 

is achieved.  

     5. t  := t  + 1 Next iteration step, increase iteration numerator . 

     6. select P(t) from P(t  ĭ 1) Select subset from the previous population.  

     7. vary P(t)  Apply mating, recombination and mutation operators 

to generate a new population.  

     8. evaluate P(t)  Evaluate objective function values of all individuals.  

9. end Terminate if terminat ion criteria is true.  

  

Search,  decision and objective space  

GAs typically operate in three different  spaces (Figure  3.18):  

¶ The decision space (X) constitutes the real -world problem , in this thesis , the 

refolding buffer conditi ons with the various experimental  parameters . In analogy 

to evolution , it  is also called phenotype space.  

¶ The search space (I ) is an encoded representation (often with reduced order) of 

the decision space in which recombination and mutation takes place.  The 

representation of an individual  in the search space is called chromosome . The 

entire space is also referred to as genotype space.  

¶ The objective space (Y) maps the individuals according to the objective functions  

and is decisive for fitness assignment and  selection, which will be discussed later.  

During optimization, high -quality individuals are selected on basis of the objective 

function (f). For stochastic DOE, the experimental evaluation itself serves as the 

objective function. Hence, the optimization i s not based on a simplified model  (compare 

statistical DOE, section 3.3.1). Fitness assignment and the following selection are 



Theoretical Background   43 

entirely based on the obtained experimental data (y), representing the objective space 

(Y). 

 

Figure  3.18: Standard spaces used for GAs. The search space (I) with the individual 

solutions (i), the decision space (X) with the decision vectors (x) and the objective 

space (Y) with the objective vectors (y). Gr ey shading illustrates the different 

structure and dimensional properties of the spaces. Mapping (m) and objective (f) 

functions connect the spaces (Zitzler, 1999) . 

As mentioned before, the GA is not working in the decision space (X) itself. Instead , the 

experimental problem is encoded, typically in form of a bit string (Back et al. , 1997a). All 

operations of the GA are appl ied to this encoded version of the problem. A decoder or 

mapping function (m) is necessary to map the search space on to the decisi on space. 

Practically , the decoder translates the individual (i), a bit string, into a decision vector 

(x). This vector describes one experiment, for example in this thesis , one refolding 

condition  (one unique combination of  pH and refolding additives ).  

The encoding of the problem has a strong impact on the results and  a well -suited genetic 

representation (chromosome) is essential for good performance (Back et al. , 1997a). A 

binary representation is often the method of choice, as it is (for most problems)  ideal in 

view of the schema theory  (Rudolph, 1994; Schmitt, 2001) . The schema theory  analyzes 

the behavior of the chromosome during recombination. I t observes how the chromos ome 

changes: which subsets (schema) are retained  and what is altered . Evolution  is largely 

attributed to the augmentation and recombination of these schemes, which are also 
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referred to as  building blocks. Mutation happens on the lowest tier (one bit), but the 

overall optimization is based on the larger subsets (building blocks) , that are retained 

and rearranged during the optimization. This represents a form of dimensional 

reduction, as the real variables are mapped into a virtual space with reduced order. 

Hence, GAs are typically considered to be a good choice for complex, multidimensional 

problem spaces (Back et al. , 1997a; Weuster -Botz, 2000).  

Although, the bina ry representation is widespread and often considered standard , 

various other option s exist. These are important if the problem at hand is not well -suited 

for a binary represent ation (encoding function to complex) or a problem -related , more 

natural representation is preferred. In these cases, other evolutionary algorithms 

(evolutionary programming and evolution strategies) offer suitable alternatives to GAs  

(Back et al. , 1997a; Van Veldhuizen and Lamont, 20 00). Another concept are hybrid 

evolutionary algorithms, which combine the efficiency of a heuristic method  with a 

classic search algorithm for a finer resolution of t he optimal region  (Grosan and 

Abraham, 2007) . 

Selection for m ulti -objective optim ization : the pareto principle  

Next t o the genetic representation of the problem, several other factors drastically 

influence the optimization success. Most important are the selected objective functions 

together with the fitness assignment  and the selection procedure . In this thesis a multi -

objective GA  was used, the strength pareto evolutionary algorithm  (SPEA 2), which  is 

able to optimize several variables  in parallel.  

Multi -objective optimization is characterized by a subset of optimal solutions, as it is not 

possible to select the best ca ndidate if more than one objective is considered. One of the  

most popular concepts to compare these optimal solutions is the pareto principle , 

illustrated in Figure 3.19 (Zitzler, 1999) .  
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Figure 3.19: Schematic example of pareto optimality  with two o bjective functions.  ( )̍ 

dominated solutions , (ƍ) non-dominated solutions , ( ) pareto  front.  

According to the pareto principle, a solution (objective vector, y 1) dominate s another 

solution (objective vector,  y2) in the objective space (Y) if no component of  y1 is smaller  

than the corresponding component of y 2 and at least one component is evaluated better. 

For two objective function s (compare Figure 3.19), at least one value of either objective 1 

or objective 2 has t o be higher and the other one has to be at least equal. The sum of all 

non-dominated solutions in the objective space (Y) is called pareto front.  

The same principle can also be applied on the decision space X, but the difference s 

between the two spaces ha ve to be considered. Non-dominated solution vectors (x) may 

be mapped to different objective vectors (y). Therefore, there may be several non-

dominated objective vectors. The set of optimal solutions in the decision space (X) is 

termed pareto set . A global ly optimal solution  (the global pareto set ) is the non -

dominated set in the whole search space  (X). The aim of the optimization is to identify 

this set of optimal solutions . However, due to the heuristic nature, it is not guaranteed 

that the GA correctly i dentifies the global pareto set. A local pareto  set is defined as a set 

of solutions (x) , for which no objective vector (y) in the neighborhood dominates any 

member of the set  (Zitzler, 1999) . 

Although the selection process for multi -objective algorithms is typically based on the 

above-discussed pareto dominance, which is used to assign a fitness value for  each 

individual, the practical implementation is usually modified. One important addition  is 

clustering, which  is used to reduce the amount of non-dominated solutions  and is applied 

after evaluation dominance and fitness assignment. A reduction is necessa ry a s too 

many individuals could reduce the selection pressure and slow down the optimization 

process (Covas et al. , 1999). Specific methods and implementation are dependent on the 
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algorithm of choice.  For details regarding  the specific algorithm (SPEA 2) the reader is 

referred to  the original literature (Zitzler et al. , 2002). 

Recombination  

After the selection  of the best (highest fitness values) individuals, a new set of candidate 

solutions  is generated by recombination. This procedure is typically divided in three 

parts . In the first s tep a mating pool  is generated , based on the selected individuals of 

the current GEN  and optionally an external archive with good solutions  from previous 

GENs. Afterwards, it is necessary to d etermine which individuals recombine with each 

other. A popular  method  is binary tournament  (Zitzler, 1999) . Subsequently , operators 

like crossing -over are applied , which recombine the individuals in analogy to basic 

genetic principles.  In order to maintain schemes (building blocks ) in the optimization, 

single point crossing -overs are typical (Weuster -Botz, 2000). Finally, the variance of the 

above-generated candidate solution is increased by mutation. For a representation as a 

binary string , mutation usually affects each bit individually, this means that each bit 

has a certain probability to be flipped. In practice , methods and i mplementation are both 

dependent on the algorithm and the encoding of the problem (Zitzler, 1999) . In addition, 

other functions may be implemented . A common example is the verification of the new 

candidate solutions to ensure that only novel solutions are evaluated and no experiment 

is repeated.  

Experimental applicatio ns: number of experiments  and error  

Most GAs focus on pure in silico  problems or problems in which a simulation is carried 

out to evaluate the objective function. Thus, the objective function(s) is computationally 

evaluated and real experiments are limited to a validation of the optimal condi tions at 

the end. In these cases, experimental effort is a matter of computational time and largely 

neglectable. Therefore, large population sizes and many iterations  are the norm.  In 

contrast, following criteria have to be considered for experimental stoc hastic 

optimizations . First, the e xperimental effort (number of experiments)  should be 

minimized , as experiments are the major cost factor.  Additionally, a  relative high 

experimental error of up 20 % standard deviation is often observed. Finally , complex 

problems with a many variables and possible interactions occur on a regular basis  

(Weuster -Botz, 2000). 
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Concluding remarks  

Genetic algorithms (GAs) are population -based heuristic search methods, that use 

evolutionary principles to efficiently examine the search space in an intelligent way. GAs 

are considered robust and powerful, especially for large complex search spaces and 

multiple objectives (Back et al. , 1997a). Typical applications involve in silico  problems, in 

which computational time is the only limiting factor. GAs can also be used as a 

stochastic DOE . In this case , the experimental evaluation itself consti tutes the objective 

function. The distinguishing feature i n comparison  to the statistical DOE strategies 

(3.3.1), is the model independence . There is no underlying simplified process model and 

no unimodality assumed. 
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3.4 Black -bo x model s for data analysis  

Models are typically classified according to the amount of available a priori  information 

on the analyzed system. In the best case , the system is well understood and the 

knowledge about the functional relations between variables can be used to generate a 

mechanistic model. Thus, the model is only used to estimate unknown parameters. 

However, many problems offer  only limited information about the functional relations.  

Hence, both function and parameters have  to be estimated.  These models are typically 

called black -box models. Two standard approaches will  be discussed in this chapter: 

artificial neural netw orks  (ANN) , a biologically -inspired method  that mimics n eural 

processing and bagged decision trees  (BDT) , an example for ensemble  models. 

3.4.1 Artificial n eural networks  (ANNs)  

Artificial neural networks (ANN s) are applied  in virtually every scientific  discipline and 

are widely  used in industry as well. Traditionally, ANNs focus on three areas: pattern 

recognition , data clustering and  function fitting  (Meireles et al. , 2003).  

Artificial neurons ð the processing units of ANNs  

ANNs , like genetic algorithms , belong to the biologically -inspired computing methods. 

ANN s are based on neurons as the individual processing units of the network (Figure 

3.20). Neurons are structured exactly  like the biological prototype  and characterized by a 

series of weighted (w) inputs (x), a transfer function (f) and one output (y).  Incoming 

signals are processed by calculating the weighted sum of all inputs (I) . This can be done 

straightforward (Equation 9) or additional weights (bias) can be integrated in this step.  

)  ὼύ (Equation 9) 

     

 with  I  weighted sum of inputs  - 

  xi inputs  - 

  w i  weights - 
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Figure 3.20: Schematic neuron. Comparison between the biological prototype ( A) and 

the artificial model ( B) with inputs (dendrites, x i and  w i), processing (cell, sum and 

transfer functions) and output (axon, y) (Agatonovic -Kustrin and Beresford, 2000) . 

After calculating the net signal (weighted sum of inputs, I), the signal is transformed 

and an output signal is generated. In the biological system , the neuron only  responds if a 

certain threshold value is exceeded. In the model , a transfer function  (f) transforms the 

net signal into an output (y)  with an output value ranging from  ĭ1 to 1. A variety of 

transfer functions are illustrated in Figure 3.21. Most common for multilayer networks 

is the  log-sigmoid transfer function.  
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Figure 3.21: Standard transfe r functions  for neurons  (Patnaik, 1998)  

Network structure  

Neurons are only the individual processing units of the network. An ANN is structured 

into several layers of neurons interconnected by outputs from neurons of the previous 

layer and inputs to the next layer , each with their respective weight s. Various ANN 

structures are used which differ in the number of neurons, the connection formula and 

the training procedure. The general structure of an ANN is the following:  

¶ Inputs, xi. 

¶ Inpu t layer, with as much neurons as input variables.  

¶ Hidden layer(s), one or mor e layers with varying number of  neuron s. 

Architecture, size and connectivity is strongly dependent on the problem , the type 

of network used and often subject to iterative changes to optimize the 

performance. The hidden layers represent  the processing part of the network . 

Because of the complexity , it is usually regarded as a black -box system. 

¶ Output layer,  with as much neurons as output variables.  

¶ Outputs, yi. 

A standard ANN networ k is the  feedforward net work , also called backpropagation 

network . I ts architecture is depicted in Figure 3.22. 
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Figure 3.22: Feedforward ANN  with three layers and four input (x i) and two output 

variables (y i) (Patnaik, 1998) . 

Training and validation  

For the application , an ANN with a specified structure is first generated and weights (w i) 

are initialized. Afterwards , the network is trained using  part of the exp erimental data. 

In the training process the network weights are adjusted to optimize performance, that 

is the correct prediction of the functional relationship between inputs (x) and outputs (y). 

The usual measure of performance is the mean square error (Equation 10) between the 

network output and the know n real output, commonly called target output.  

-3%  
ρ

ὔ
Ὕ ὃ  

(Equation 10) 

     

 with  MSE  mean square error  - 

  T i  target outputs  - 

  Ai  network output s - 

     

A variety of standard numerical algorithms can be used to optimize the network 

performance. Common choices are: Levenberg-Marquardt , gradient descent, gradient 

descent with momentum or scaled conjugate gradient. These optimization methods use 

the gradient of the network performance with respect to the network weights . The 

gradient is calculated u sing a technique called backpropagation, which involves 

performing computations backward through the network  according to  Rumelhart et al.  

(1986).  

After training, the network is validated on the part of the dataset , that was not used for 

training purposes. Ratios of 75  % (training) and 25 % (validation ) are typical if no 

internal test or cross validation is used.  ANN per formance in the validation is strongly 
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dependent on the amount of available training data and the division of training and 

validation datasets  (Meireles et al. , 2003; Patnaik, 1998) . Due to their complexity ANNs 

are able to approximate any reasonable function. However, the application of the 

network on new data  (generalization ) can pose a serious problem. (Meireles et al. , 2003; 

Razi and Athappilly, 2005) . 

Concluding remarks  

ANNs are biologically -inspired models with wide -spread use in science and industry. 

ANNs mimic neural processing both with re gards to the processing unit (neuron) and the 

connectivity. Modeling is based on adjusting the network weights in the training and 

then using the trained network to predict the output for the rest of data (validation).  

While ANNs are considered powerful to ols for data mining and modeling, the 

generalization error is often problematic (Razi and Athappilly, 2005) . 

3.4.2 Bagged decision trees (BDT) ð random forest  

Decision Trees  

Decision trees are a common method in data mining which can be used both for 

classification or regression. In such a tree structure , leaves represent class labels or real 

numbers and branches are logical conjunctions (va riable thresholds). The general 

structure of a regression tree is illustrated in Figure 3.23. 

 

Figure 3.23: Exemplary  decision tree for a regression problem with two input 

variables  (xi), four normal nodes (Ǥ) and six leaves (ˈ). 
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The generation of the tree model is generally performed top -down by splitting, that is 

introducing branch points  (recursive partioning) . At each branch point, one of the input 

variables (x i) is selected and an attribute test (below o r under threshold) is performed. If 

the test is positive, the tree is split and t wo subsets are generated . This process is 

repeated until s plitting no longer increases the prediction performance  (Breiman et al. , 

1993). 

Although decision trees have a  variety of advantages (simple to understand, no black -

box-model, works with numerical and categorical data) individual trees have serious 

drawbacks in comparison with other modeling approaches. For a comparison to ANN s 

the reader is referred to Razi and Athappilly (2005). However, ensemble system s, which  

are based on many individual t rees are far more effective  (Breiman, 2001) . The concept 

of ensemble models will be discussed in the following.  

Ensemble based s ystems ð bootstrap aggregation  

A recent development in modeling is the concept of combining many individual models 

and using the entire ensemble for prediction. These methods are based on resampling 

techniques  like bootstrap aggregating  (bagging). Advantag es of ensemble systems 

include  above all a good generalization performance.  The model prediction of new data  is 

not as problematic compared to other approaches  like ANN s. Individual models show 

different generalization performance . Thus, averaging over all  models reduces the risk of 

making a poor choice and the overall  generalization errors are typically smaller . In 

addition , ensembles perform better in the absence of adequate training data, that is 

insufficient  experimental data or an unsuitable distributi on. Resampling techniques can 

be used to obtain overlapping subsets of the available dataset . Afterwards each subset is 

used to train a different individual model.  Furthermore, e nsemble models are able to 

approximate complex problem s with non-linear intera ctions. A classification problem in 

which a complex de cision boundary between class 1 (ƍ) and 2 (ˈ) is approximated with 

an ensemble is exemplified  in Figure 3.24. Finally, e nsemble systems also perform better 

on too much data or a fu sion between different datasets  (Polikar, 2006) . 

Different methods exist for creating the ensemble . Next to boosting (Freund and 

Schapire, 1997)  bagging is the most popular choice. Bagging is generally considered 

superior for datasets with high errors (Breiman, 2001; Polikar, 2006) .  




























































































































































































































































