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Abstract:

Answering a question by Bedford and Fisher in [4] we show that for the circular and
one-sided average densities of a Radon measure g on the line with positive lower and

finite upper a-densities the following relations hold p-almost everywhere

Qi(“?‘r) = Qi(uar) = (1/2)'Qa(ﬂ7m) and Ei(ua‘r) = ﬁ-al-(ﬂ7$) = (1/2)'ﬁa(l%93) :

We infer the result from a more general formula, which is proved by means of a
detailed study of the structure of the measure and which involves the notion of
tangent measure distributions introduced by Bandt ([2]) and Graf ([9]). We show

that for py-almost every point z the formula

//Gl/udy u) dP(v //G Yy, —u) dv(u) dP(v)

holds for every tangent measure distribution P of p at  and all Borel functions G :
M(R) x R — [0, 00). Here T"v is the measure defined by T"v(F) = v(u+ F) and
M(IR) is the space of Radon measures with the vague topology. By this formula the
tangent measure distributions are Palm distributions and thus define a-self similar

random measures in the sense of U.Zidhle ([22]).



1 Introduction

In this paper we study nonnegative Radon measures on the real line such that, for some 0 <

a < 1, p has positive lower and finite upper a-densities, i.e.

([w —-Lz+ t]) < lim sup :u([w -tz + t])

oo for p-almost every z.
o o o < u y

0 < liminf al
10

Examples of measures fulfilling these conditions are Hausdorff measures on many a-sets includ-
ing self-similar sets and statistically self-similar sets, measures arising in dynamical systems

theory and many more. Typically these measures do not have obvious self-similarity properties.

In [4] Bedford and Fisher introduce average or order-two densities for the study of measures of
fractional dimension. For these measures the density functions ¢ — p([z — ¢, 2 + t])/t* fluctuate
as t tends to 0 and therefore the limit does not exist (see [3]). Bedford and Fisher apply a

logarithmic average and define the lower and upper circular average densities as

(o] . . _ 1 ‘,E_t7x+t dt
L e e

and

te t

. 1 —tz+ 1)) dt
D (M,I)=1ir§_§51p(|10g€|)"1/a wllz = b2+ 1)

The lower and upper left-sided average densities D* (u, z) and D2 (i, x) are defined in the same
way replacing the symmetric interval [z —¢, x+¢] by [z —¢, z], and the lower and upper right-sided
average densities DY (u,z) and DS (y, ) are defined replacing [z — ¢,z +t] by [z,2 + #]. The
average density of p at x exists if D*(u,2) = D" (u, ) and in this case the joint value is denoted

by D*(p, z).



Bedford and Fisher show that the average density exists almost everywhere for Hausdorff meas-
ure on hyperbolic Cantor sets and zero-sets of Brownian motion. Recently other authors (see
for example [5], [19] and [7]) have extended this result to various other classes of fractal meas-
ures with self-similarity properties. Average densities have also been used for the investigation
of general measures with positive lower and finite upper densities. For example, Falconer and
Springer in [6] and Marstrand in [11] generalize a classical inequality of Marstrand using average

densities and in [16] it is shown that the lower one-sided average densities do not vanish.

In [4] Bedford and Fisher ask whether the left-sided and right-sided average densities always

agree. An answer to this question can be given in the following form.

Theorem 1.1 Suppose p is a Radon measure on the line with positive lower and finite upper

a-densities. Then at p-almost every point x the following equations hold
D (,ua m) = Qi (/La x) = (1/2) ) Qa(:ua :E) and ﬁ‘i (:LLa :E) = ﬁi— (:ua m) = (1/2) ' ﬁa(:ua :U) :

In order to get a more detailed analysis of the local geometry Bandt in [2] and Grafin [9] sugges-
ted the investigation of random tangent measures based on the same averaging principle. These
random measures or, equivalently, probability distributions on the space M(IR) of nonnegative

Radon measures with the vague topology are called tangent measure distributions.

For every z € R define the family of measures (ps¢)r>0, the enlargements of p about z, by

pzi(A) = p(z +tA) for all Borel sets A C R. Define probability distributions P2 on M(IR) by

1 et di
PZ(M) = (|10g5|)_1/ lM('u"t) " for Borel sets M C M(IR).

£ . o
P(u,z) is defined as the set of all limit points in the weak topology of (P¥).s¢ as e | 0. The

elements of P(u,z) are the tangent measure distributions of p at . We also define measures



vy € M(IR) by

vZ(A) = (|logel)~ / 'u“ “ for Borel sets A C R.

A(p, z) is defined as the set of all limit points in the vague topology of (v¥).5¢ as € | 0. The
elements of A(u, ) are called average tangent measures of p at z. If P(u,z) is a singleton, we
say that g has a unique tangent measure distribution at z; if A(u, z) is a singleton, we say that

1t has a unique average tangent measure at z.

The following formula is a generalization of Theorem 1.1 involving tangent measure distributions.

For every u € IR we define the shift operator T : M(R) — M(IR) by T"v(F) = v(u + E).

Theorem 1.2 Suppose that i is a nonnegative Radon measure on the line with positive lower

and finite upper a-densities. Then at p-almost all points x every tangent measure distribution

P e P(u,z) fulfills

//Gl/udy )dP(v //GT“V—udV()dP()

for all Borel functions G : M(IR) x R — [0, c0). (1)

This theorem not only implies the statement on one-sided average densities, but it is also the
key to a surprising self-similarity property of the tangent measure distributions described in
Section 2. The paper is organized as follows: In Section 2 we show some of the consequences of
Theorem 1.2, in Section 3 we attempt to give a global description of the measure p, and in the

final section we give the proof of Theorem 1.2 using the results of Section 3.



2 The Local Geometry of the Measure

In this section let 0 < @ < 1 and g be a nonnegative Radon measure on the line with positive
lower and finite upper a-densities. We analyse p using its tangent measure distributions (see
the introduction for the definition). We start with some immediate observations: For all z € IR

all tangent measure distributions P € P(u, z) are concentrated on the set

Tan(y,z) ={v = lim in the vague topology for some ¢, | 0 }

n—o0

lu’-'l’fytn
ta

of tangent measures, which were introduced in [21]. For every z such that the upper a-density

is finite, the closure of the set

{Et st 00} c M(w)

is compact. Hence every sequence (P7 ),cn has a convergent subsequence and P(p, x) is compact

in the weak topology. The average tangent measures can be described as
AW@Q:{/yﬂijEPmJ” )
and the average densities are given by
D (u, z _sup{/ )dP : P € Pu,z )} and

lﬁ{/ JdP : PPz} (3)

The following scaling-invariance property of tangent measure distributions is easy to check.

Proposition 2.1 For every X > 0 define the rescaling operator S§ : M(IR) — M(IR) by

SYv(E) = (1/A*) - v(AE). For allz € R and P € P(u,z) we have

P=Po(S))~" forall x> 0.



The next proposition contains a useful localization principle.

Proposition 2.2 [If £ C R is p-measurable and p|g is defined by p|g(A) = p(E N A) for all

A C IR Borel, then P(u,z) = P(p|m, ) for p-almost every z € E.

Proof: This is an application of the Density Theorem [8, 2.9.11]. ]

We shall prove our main theorem (Theorem 1.2) in Section 4. In the remainder of this section
we show how Theorem 1.2 can be used to derive interesting properties of average densities
and tangent measure distributions. The description of one-sided average densities in terms of
circular average densities (Theorem 1.1) is an immediate consequence of the following symmetry

principle:

Theorem 2.3 At p-almost every point x we have

1y (le — — u(lz.
[t ) b
clo |loge] o t

Proof: Let « be such that (1) holds and the upper a-density of p at z is finite. Suppose €, | 0

is given. Then there is a subsequence (r,) of (g,) such that there is P = lim,_,,, P7 . Define

G(v,z) = 1 41(2). Then we have

lim (|logr,|)~ / plle, 2 +1) ww-l—t d
n—oo

:JLTEO//GVde //G v,y)dv(y) dP(v),

and

lim (|logr,|)~ - ;

n—o0

/1 p(lr —t, z]) dt

— lim /G(Tyy,—y)dy( )dPE (v //G (T, —y) dv(y) dP(v)

n—oo



and this implies, by means of (1),

(ogra)™ [ PETID Ly (rogr, - [ 2L

lim
n—o0o . e

which implies the statement. [

In the next corollary we give a reformulation of this symmetry principle in the language of
singular integrals. For 0 < s < 1 consider the kernel

K;: R\{0} — R

sign (z)

’ EE

K is a natural generalization of the kernel 1/z of the classical Hilbert transform

Hf(z) = lim 1) dt
40 Hytlo—y>e} = @

= lim Ki(t—x)f(t)dt.
5 eyt 17 M)

The question whether for 0 < a < 1 the limits

lim Koy —z)du(y
ed0 J{y:|z—y|>e} ( ) duly)

exist on a set of positive measure has been answered in the negative by Mattila and Preiss in

[13] (see also [12]). Our symmetry principle yields:

Corollary 2.4 For p-almost all x we have

lim 105_1/ Kyoly—z)du(y) =0.
i (Hoge)™ [ ey Kely = @) duly)

Proof: We can assume without loss of generality that p is finite. Fix 2 such that the upper

density of p at z if finite and the symmetry principle holds. Integration by parts yields

1 _ [ p(z,z+e) © u([z,z+t])
/{y:y_m} =) du(y) = |=——4 +oz-/€ =t



and thus, for some constant C' > 0,

c Ll o) de . 1
————+a-(|loge 1/ — — < loge / 7(1# Y
Toge] (Jloge)™ | o " ([ogel) . x>5}( a;)a (y)
,u z, m—l—t
< a-(|loge|)” ta+1 dt,

and analogously we get

A

ey o o)™ [TEREEELE < e /wx}ﬁd’“y)

[loge]
p(lz —t,z])
“(|loge|)~ / ,«a+1 dt

IN

As € | 0 we thus have

lim (| loge _1/ Koy —z)du(y
i (loge)™ [ Kty ) du()

1 y — r — ¢, x]) dt
— a_liig(lloggl)—l/ M([Tvm-l't])ta:u([r t7r])7:0.

Another remarkable fact is that on the real line the average tangent measures are completely
determined by the average densities. Note that by an example of O’Neil (see [17]) this is different

in higher dimensions.

Corollary 2.5

(a) For pu-almost every x all average tangent measures v of j at x are symmetric around 0.

(b) Suppose the average densities of u exist u-almost everywhere. Then p has unique average

tangent measures v at p-almost every x. Moreover, 0" is given by
v (A) = (1/2) - D*(p, z) / alt]*='dt  for every A C R Borel.
A

10



Proof: Let x be such that the upper density of y at z is finite and (1) holds. If 7 is an average
tangent measure at x, then there is a tangent measure distribution P such that 7 = [vdP(v).

Using (1) for the function G(v,y) = 14(y) we get, for every Borel set A C R,

P (A) :/z/(A) dP(z/):/z/(—A) dP(v) = p(-A),

which is the first statement.
Suppose now that the average density at z exists. For A > 0 and any half-open interval [0, A)
we have, by Proposition 2.1, 7([0,A)) = A* - ([0, 1)), and using the symmetry and 7({0}) =0

we have
v([0,1)) = (1/2) - v((-1,1)) = (1/2) - D*(p, ) ,

and similarly for intervals [—A,0). Therefore the measure v” defined using the formula in the
corollary and the measure 7 agree on all (right-)half-open intervals and hence they are identical.

This implies the uniqueness of the average tangent measures as well as the formula. [

Studying the relation between the existence of average densities and uniqueness of average

tangent measures and tangent measure distributions we get the following picture:

Theorem 2.6 For the following statements the implications (a) = (b) and (b) < (c) hold.

(b) = (a) does not hold.

(a) The measure p has a unique tangent measure distribution p-almost everywhere.
(b) The measure i has a unique average tangent measure p-almost everywhere.

(¢) The average density of u at x exists p-almost everywhere.

11



Proof: Tmplications (a) = (b) and (b) = (c) follow immediately from formulas (2) and (3).
(¢) = (b) follows from Corollary 2.5, and it remains to give an example that the implication
(b) = (a) fails. Consider the following construction: Fix a sequence (ay) of integers with ag =0

and ay 1 oo such that

ag

— 0.
k41

Define the code-space ¥ =[]72,{0, 1,2} and define a measure i on X by
A({(z)ien : z1=y1,..., 20 = yn}) = (1/3)" forye 3.
Define sets Iy, Iz, I by

Ilz{m:§:% : x¢6{0,2,6}}, ]2:{;10:50:% : m¢6{0,4,6}}
i=1 i=1

and

[:{x: o z; € {0,2,6}if agr < i < aggsr and
i=1

T; € {0,4,6} if A2k+1 < 1} S A2k42 },

and mappings ¢1, ¢z, ¢ by

bp:Y — I, m»—)Z@k(m) for k=1,2,

=1 7
and
. i (2
RPN mH;¢37(i),
where
0 ifz=0, 0 ifz=0,
pi(z) =9 2 ifz=1, and () =4 4 ifz=1,
6 ifz=2, 6 ifz=2,

12



and

0 ifz=0,
2 ifz =1 and azk<i§a2k+1,
4 ifz =1 and agx41 < 7 < aggy2,

6 ifz=2.

Let u=jiod™ puy=fod]" and pug = fiody'. u, 1 and py can be extended in a natural
way to Radon measures on R. Let a = i%g—?. t1, p2 and p have positive lower and finite upper
a-densities for all z € Iy, Iy, I. As p; and py are self-similar measures fulfilling the strong

separation condition they have unique tangent measure distributions Py, P, almost everywhere

and, as in [9], we can describe Py, P, by

1 K (#1,2)z,0\ di
P1,2(E) = log 7 s /77/7 lE(T) Td,um(x) )

where F' € My, the o-algebra on M(IR) generated by the mappings v +— v(B) for all Borel sets
B C B(0,b), and n < (1/(7b)). It is easy to see that [v([-1,1])dPi(v) = [v([-1,1]) dP(v).
Using messy but straightforward calculations (see [15] for details) we can also see that for p-

almost all points z € I the set of tangent measure distributions of p at z is given by

This not only shows that the set of tangent measure distributions of y at x is not a singleton
but (with the help of (3)) also implies that the average densities of u exist and thus p has a

unique average tangent measure at p-almost all points. [

We now show that formula (1) relates tangent measure distributions to Palm distributions.

Palm distributions originate from queuing theory and they are nowadays widely used in the

13



theory of point processes where they play the role of conditional distributions of stationary
point processes given a point at the origin (see [10]). A probability distribution P on M(IR) is
a Palm distribution if there is a stationary o-finite measure Q on M(IR) with finite intensity

A >0 and
/ v(B)dQ(v) = )\-/ Po(T*)(M)du forall M C M(IR), B C IR Borel.
M B

The link between our theorem and Palm distributions is the following classical characterization

due to Mecke (see [14]):

Lemma 2.7 A probability measure P on M(IR) is a Palm distribution if and only if P({¢}) = 0,

where ¢ is the zero-measure, and (1) holds.

Theorem 1.2 and Proposition 2.1 yield an interesting connection of tangent measure distributions
to the theory of self-similar random measures. In [22] U. Zahle suggested the following axiomatic

concept of statistical self-similarity.

Definition
A probability distribution P on M(IR) defines an a-self similar random measure if P is a Palm

distribution and invariant under the rescaling group (SY)xso.

The heuristic idea of this definition is the following: A random measure is statistically self-
similar if it is scaling invariant with respect to a “typical point” of the random measure. We
can interpret Palm distributions as those distributions which have the origin as a “typical point
of their realizations” (see [22] for details). This concept of statistical self-similarity has been
studied by Patzschke, U. Zdhle and M. Zahle for example in [18], [20] where also its relation to

statistically self-similar measures in the constructive sense was investigated.

14



We get the following theorem (recall that we did not require p to be self-similar in any sense).

Theorem 2.8 At p-almost all points @ every tangent measure distribution P € P(p,z) defines

an «-self similar random measure.

Proof: Clearly P({¢}) = 0 for all P € P(u,z) if the lower density of p at 2 is positive. Thus
Theorem 1.2 together with Lemma 2.7 implies that for y-almost every z every P € P(u,z) is a
Palm distribution. This fact and the scaling invariance of tangent measure distributions imply

the statement. [ ]

3 The Global Geometry of the Measure

Let 0 < @ < 1 and p a finite nonnegative Radon measure on the real line with positive and finite
a-densities p-almost everywhere. Using the inner regularity of p we can find for every 6 > 0 a

compact set £ C IR such that g(IR \ ) < § and there are 0 < ¢ < C' < o0 and ¢y > 0 with

p(lz —t,z+1t]) <Ct* and p(fz —t,z +1t]) > ct” forall 2 € F and 0 <t < 1. (4)

In this section we study the geometry of the set F. The constants in the following lemmas may

depend on the measure y. |U] denotes the diameter of a set U C IR.
Proposition 3.1 F is an a-set, i.e. E has positive and finite a-Hausdorff measure.

Proof: For every ty >t > 0 we can cover I with a family i = {[z —¢t,z+1t] : z € S} of intervals

such that S C F and every y € IR is contained in at most two sets U € /. Then

DU @) Y0 pU) < 2(2°/¢) - u(R) < o0

Ueld Ueld

15



and thus #®(F) < co. Now let ty >t > 0 and let ¢ be an arbitrary cover of £ such that |U| <t

and UNE #( forall U € Y. Then

U >(1/C) Y2 n(U) > w(E)/C

Uel veld

and thus #*(F) > 0. ]

Let D be the convex hull of . Then we can write

D\E=[]I,

IeA
where A is the collection of connected components of D\ E. A is a collection of disjoint open

intervals. Let

A.={I€A:|I|>e} and E.=D\ (J I.
Te A

Then K =().5q E.. Let

NeN:

where N, is the collection of connected components of the set £.. N; is a collection of disjoint

compact (possibly degenerate) intervals.

Before we give an upper bound to the length of the intervals in N, let us introduce some useful

notation. For every interval I C IR and every & > 0 let
I7(k)={z € R\ [ : thereis y € [ such that 0 <y — 2 <k -|I|},

and

IT(k) ={x € R\ I : thereis y € I such that 0 <z —y < k- ||},

16



and also

I°(k) = [T (K)UTUIT (k).

Proposition 3.2 There are constants C; > 1 and 0 < g9 < tg with £g < 1/e such that, for all

0<e<epandall K € N, we have |K| < (Cy <.

Proof: For ¢ > 0 denote r = r(¢) = max{|N| : N € N.} and choose 0 < ¢y < ty such
that g < 1/e and r(gg) < to. Fix 0 < & < g and pick N € A; such that |[N| = r. Let
N = N~(1)UN, in other words N is the closed interval of diameter 2r with centre at the left
endpoint of N. Consider the intervals Iy, Iy, I3,... € A that fulfill I; C N and observe that
|1;] <e. Define I,=1U I7(1) C N. The sets I, Iy, I5, . .. cover almost all of N in the sense of
Lebesgue measure. By Vitali’s Covering Theorem (see for example [12, Theorem 2.1]) we can

pick a disjoint subsequence jkl , I~k2, I~k3, ...covering at least 1/5 of the length of N. Now we can

use (4) to infer

p(N) 1. - c = b € e c <5>°‘_1
> > — I,.) > — I..|" > — I — | -
C2=3 _ra;ﬁt(m)_ra;MJ 2 o€ ;|k1|>10 .
and, defining C; = (10C/¢)'/ (=) we have r(¢) < Ci¢, as required. |

Proposition 3.3 There is a constant Co > 1 such that, for all 0 < e < gy and every interval K

with endpoints in F and |K| < ty, we have

SN[ <G K[ and Y N[ <G

NEeNe NeN:
NCK

In particular, we have

17\7 “

H (E)Shr&lonf > IN|* < limsup > < Cy - HY(E).

NEN. 0 New.

17



Proof: We fix K and 0 < ¢ < gy. For all N € N, we let N* = N~(1/C;) U N. Consider the
closed interval B of diameter 2|N|/Cy centred at the left endpoint of N. We have B C N* and
thus we get, using (4),

PINT) 2 p(B) Z e (IN]/C1)"

Because, by Proposition 3.2, the intervals I separating the N € A, fulfill |I| > & > |N|/C1, the
collection {N* : N € M. and N C K} is digjoint. Also N* C K* for all N* in the collection.

Therefore

<(C7/e) Do m(NT) < (CF/e) - p(K7). ()

NeNe NeNe
NCK NCK

Now the first inequality follows using u(K*) < C'|K|* and summing (5) for all intervals K € N,
yields the second inequality. The first inequality involving Hausdorff-measure is immediate since,
by Proposition 3.2, N, is a covering of F by sets of diameter less than C;¢. Given an arbitrary
cover U of F¥ with intervals of length less than ¢, we can assume, by expanding each U € U
slightly and using the compactness of E, that i/ is finite and every U € U has endpoints in
D\ E. By shrinking each U slightly we can now get a covering U’ such that there is gg > &’ > 0
such that every set U € U’ is the convex hull of a collection of intervals from A./. The first

inequality asserts that for ¢ < &’ the coverings N, fulfill

doINIT< G Y (U

NeN: Uel

This yields the last inequality. [

Proposition 3.4 There is a constant C3 > 1 such that, for all 0 < € < g¢ and all intervals K

18



with endpoints in E and |K| < gy, we have

Y HI*<Cs-|K|*|loge| and > |I|* < Cs-|loge]| .

TEAe IeA.
ICK

Proof: Fix K and denote K = K~ (1) U K. Observe that u(K) < C|K|*. Similarly, for I € A
with [I| > &, I C K, we define I = I=(1) U I and observe that I C K and u(I) > ¢|I|*. For
z € K denote by Iy, I, ..., I, the collection of intervals I € A. such that / C K and z € I,
ordered from left to right. For 3 < k < n we have || > |Iy—1| + [Ix—2| + ...+ |I2| and thus

€2"=3 < |I,] < |D|. Hence we get n < 3 +log|D|/log2 + |loge|/log?2 and thus

S < Y (e < (1/e)- [ 3 1pdu < (nfe) () < (Cfe)nl K| < Cllogel-| K]
T€Ae TEA: TEA:
ICK ICK ICK

as required to prove the first inequality. To prove the second inequality observe

DoM< Y+ Y Y e

IcA. IcA., KeN, IIGCf}g

and use Proposition 3.3 and the first part. [

We shall now derive some useful estimates involving the averaging procedure of Bedford and

Fisher. For this purpose define for every 2 € R and € > 0 a measure ¢ by
z -1 1 dt
PI(A) = (logel) / (Ia(z+1t)+1a(z —1)) " for A C IR Borel.
€
Let Ey C E be a subset of diameter less than ¢y and define g = u|g,. Then

g(B) <C-|B|* forall BCIR. (6)

Lemma 3.5 There are constants C4,Cs,Cs,C7 > 0 such that, for all intervals I C R and all

€ > 0, the following estimates hold:

19



x = s k+1 o
(a) /I_(H)UI+(H) Y7 (1) dp(z) < Cq . <10g( p ) K ) forall0 < x < 1,

[loge]

e 11—
b) [ vt <0 e (B) T or a0,

\I(x) | loge|
_ |]”
(N dua(z) < Cg - ,
(C) R\ ¢s( ) M(T) > L6 |10g€|
) e
d (N2 du(z) < Cr - | .
@ [ e < e 1

Proof: Denote the left endpoint of I by a and let R(t) = i([a—t, a]). By (6) we have R(t) < Ct.

We use integration by parts to see, for all 0 < k < 1,

f, st < (g™ [ o (”t'") an(t)
< (|loge|)™ [1og( ) T /On (;:(ilil))tdt}
cl K1 g
| loge| [ ( ) / ]
< (141/(a-log2))-C - 1| ] <1Og("ﬁ:1).na)

and, for all A > 0 and x > 0,

IN

Yo (I) di(z (|loge)™" /Oolog th[
J gy D) < (loge) @)

IN

(|logel)~ [ t+1 }

C|I” ./00 dt

| loge] 2o
(i—a)-c. 1 (l)l_a.

|loge| \k

IA

Analogous calculations can be performed for I* (k) and thus (a) and (b) follow. (c) follows by

adding (a) and (b) for kK = 1. To prove (d) observe that, for every A > 0,

_ o0 , /t+1
(jtogel) ™+ [~ tog? () (el
0

c|I~ /00 2t> t+1
= _. . dt.
[Toge|? tt+1) os / )

T\

=
o)
-
™8
—~~
~
~
Nl

[\

2
=I
—~~
=
~
N\

20



An analogous estimate for /*(\) completes the proof. [

Lemma 3.6 There is Cs > 1 such that, for all 0 < ¢ < & < g9/Cy, all kK > 1 and for every

K € Ns, we have

[ (wztr) -

I\1-a 1

vz (D) diw) < G- IR ((5) 7+ o)

IeAzg,;gI\ ) <K) | ]Og€|
zGIO(n)

and

[z % ) dae < e () + g )

T€Ae
zelo(m)

Proof: We start with the first inequality. For all z € IR we have

VEK) = Y Wi = ) RN+ Y wE) .

I€AL ICK NEN: T€EAICK
z€I0(k) NCK 2@10(x)

To estimate the integral of the first summand, we use |N| < Cye to infer that

IN|*
|logel|

_ 2-]03;61 _
I(N)d < ——p(N) <201 .
[, vy i) < SOERL - (N) < 20 ogcy

By Lemma 3.5(c) we know that

[V
[loge|’

[ ) dite) < €
R\N

These two estimates together with Proposition 3.3 give

N|~ | K|~
I (N 2C -logCi +C 5 < Cy-(2C - logCy +Cp) -
NGNE / ( 1 6) = |10 | 2" ( 1 6) |10g5|
NCK NCK

For the second summand we use Lemma 3.5(b) and Proposition 3.4 to see

|I|a 1 11— - 1 11—
> / )dfi(z) <Cs5- ) oo\ <CsCo [K[- (=) .
rea. YR\ (x TEA|I|>e |log | K K

ICK ICK
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This gives the first inequality. To prove the second inequality, apply the first part to the set

Ny € N, that contains Fy. Denote ¢ = min(Ny), b = max(/Ny) and use Lemma 3.5(c) to infer

2Cs
[loge|’

[ @) — 20 di(e) < [z a1, a) dite) + [0 b+ 1) dite) <

This finishes the proof of the second inequality. [

4 Proof of Theorem 1.2

We may assume without loss of generality that p is a finite measure. Recall the definition of the
set F/ from the beginning of Section 3 and, as before, fix a set Ey C F with |Fy| < ¢ and let

i = jt|m,. Since, by Proposition 2.2,
P(p,z) =P(fr,z) for p-almost every z € Ep,

it suffices to prove (1) for the restricted measures g and p-almost every point z. We fix a

continuous function

G: MR)xR — [0, 00),

(v,y) = g(y)-h(v(f))

where f : IR — [0,00), ¢ : R — [0, 00) are Lipschitz functions with compact support and
h :[0,00) — [0,1] is a Lipschitz function. We start by showing that (1) holds for G and all
P € P(fi,z) at fi-almost all points z. To this end we shall introduce a family (¢;) of functions,
the sum of which approximates the difference of the two sides of the formula (see Lemma 4.1)
and show that the set of points where the approximating function has large modulus has small

measure (see Lemma 4.2). In the following, we allow the constants Cg, Ci0, ... to depend on the
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choice of G. Define Gy,G3 : M(IR) — [0, 00) by

i) =[Gy dv) = [ b( [ fw)du(w) dv(y),

o) = [ G-y dvty) = [gt=y)-h( [ 0= y)dv(w))du(y).
(1 and G4 are continuous and there is Cg > 0 such that, for all z € R and ¢ > 0,

il — th, 2 + 1K)
ta

o (fet) B

= “) < llgllsup - < gllsup - CR* = Ca, (7)

choosing R € IN such that supp g C [-R, R]. Define a signed measure ¢? by

for A C IR Borel and observe that the total variation measure |¢Z| is dominated by Cg - ¥7.

6/(1— a)

Define the function k(e) = (log|log €|) For every interval I C IR define a function

¢r: R x (0,00) = R by

GE(l) it 2 € 17 (k(e) U TH((E),
@I(ma‘s) =
0 otherwise.

Observe that for all intervals I C IR, € > 0 and for all z € R,

lpr(z,€)] < |2 (D] < Co- 92 (1), (8)

and therefore, noting that 7 (R) = 2,

S ler(e,e)| < 2o (9)

TeA.

From the definition of G and G5 we get

_ ﬂx,t y—z i =
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and

:uxt /G Ty,uxt . ) ﬂx,t(y):/G(@ l'_y) ldﬁ(y)

o’ te o't te

and hence we can derive the following expression for ¢7

/An[o: ) /G T:—zacx z : ;) dii(y) (Zlbfjgtz)a
/ /G /'Ly;ac z T y) dﬂ(y) dlb?(zl ) (10)
AN(—co,x] (

2)* -2 T —z)

For small € > 0 the function ) ;. 4 @1(,¢) is a good approximation of
r _ /Lacz T y— Hy,x z =Y — d/f(z)
@E(IR) - // z—x z—m)d'u( z—m // :U—z m—z)d'u(y)(m—Z)o‘

dt
te )>T

= (oge)™ [ (622 - a2

as the following lemma shows.

Lemma 4.1 There is a constant C19 > 0 such that, for all 0 < £ < eq/Cy and o > 0, we have

x, _a:, C
‘|10g8|/ Gl ,u 75 GQ('Mtat)) __IZJ;E SQI x 8)‘ > G'}) S U-(logll(l)og€|)2.

Proof: We use |¢%| < Cq -9 and Lemma 3.6 to get

o Ia({y 2 (| loge]) ™! /: (Gl(ﬂtzt)

)T X eial> o))

Te A,

! ot dt
< []iogeh /E(Gm’;)—Ga( ))T—Igswwé‘)‘du()
= [ler(ry U 1) da)

zelo(l)
< G [ (vrmy - > vz da()

zEIO(ii)

1 \1-o 1 2CoCs

< s ()™ * og) < TToashy
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We now show that the set of points z € I where the function ) ;. 4. ¢r(2,¢) has large modulus

is small. This is the main step in the proof.

Lemma 4.2 for o > 0 and e > 0 denote

B. _{xEE ‘ng[mg)‘> }

IcA.

Then there is a constant C11 > 0 such that, for every o > 0 and all sufficiently small £ > 0,

Cn
a? - (log|loge|)?

p(Be) <
Proof: Let 1 = 1/e and define a sequence ¢, | 0 such that
loger = (14 (1/k)*) -logex_y for all k> 1.

For 0 < € < gy define p = p(¢) € IN such that €,_1 > ¢ > ¢,, and define A = A(¢) as the largest
integer such that A(g) < (log|loge|)*. We establish some inequalities which hold for sufficiently

small € > 0: Using

p P d
log | loge] <Zlog (1+ (1/k)%/% Z (1/k)%/* < /0 mB—'Zzél\“/f)

k=1

and a similar chain of reverse inequalities we get constants ¢y, ¢ > 0 such that

(a) e (log | 10g8|)4 <pe) <ep (1og|10g8|)4-

We also get a constant ¢z > 0 such that

log ey p=l logep_q p=l k A1 c3
(b) loge ‘ < 11 log ey, ‘S 11 k+1  p = (log|logel])?”
kE=A+1 k=A\+1
From
k-1
log(ex—1/er) = (- 10g€k-1)/k3/4 = H (1 + (1/i)3/4) ) (1/k)3/4 > k4
i=1
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we infer that log(sx—1/cx) is monotonically increasing and from the estimates on A(¢) and p(e)

we thus get constants cq, ¢s > 0 such that, for all p(e) > k > A(e),

eh log e
(c)  ea-y/log|loge] Slog< skl) S%'%’

and, in particular, for all p(e) = 1 > k > A(e),

Ek+1

> exp [ex - flog [log | > (log log =) ™7 = (e).

Fix 0 < £ < g9/Cy such that (a), (b), (c) and (d) hold. Denote k = k(). Define Z; = {I € A,

|[I| > e1} and Iy = {I € A. : €1 > |I| > e} for k£ > 2. Then

p
=z
k=1

We estimate p(B;) by means of the mean square of 3~ ;. 4. ¢7. Observing that p;(z, )@ (2, €) <

0 unless z € I=(k)NJ~ (k) or z € I (k) N JT (k) and using the natural partial order on the set

of intervals we can write

pb) -t < (gwf(m,s>)2dn<m>
IcA.
- [(X T erte0) dite)
k=11€I;
Ap
< 2.3 5 % [|erte o) o)|dits)

k:l] 1 [EI JET;

Yy ¥ S 61005V 472

k=X+1T€T, ULy JeIkUIk+1

¥y s = /1 e, )l )] i)

B TET,UT gy J€Tk 0T RO (s
I<J

£ Y Y [l o it

k=\+1I€T,

-I—Q/Z Z ZZQ@IzscpJacs))d,u()

k=A+1=k4+2 I€I; J€I}
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To estimate (12) we observe that, by (9), >%_, 2IeT, ‘991 x 8)‘ < 2Cy, and therefore we have,

using also (8), Lemma 3.5(c), Proposition 3.4 and (b),

A P
ZZZZ/‘@I:ce gajcce)‘d,u ) < 2Cq - ZZ/|§0J$€|d/L)
k=1 J€T, j=1 1€, k=1J€Ty
2 |]| 2 logs,\ QC 6664 C3
< 2Ce Z 2 |Toge| = S Wolela loge ‘ < (log|logel)? "

k=1J€eI;

Let us look at (13) and fix an interval I = (a,b) € Zp UZpyq. If J € Ty, UZpyy then |J| < epy

and if, moreover, I < J and I~ (k) N J~ (k) # 0, we infer
JClha+(k+1) ep1].
For all 2 € I~ (k) we thus get, using (8) and || > ex41,
Y lea(ze)l < Copi(latenr,at (k4 1) epi])

log(k 4+ 1) + loger—1 — loger+1
| log el

IA

Co -

?

where the sum extends over all J € Ty UZy4 such that I < J and I~ (k) NJ~ (k) # 0. We use

this inequality and (9) to estimate

Yy ¥ Lo 1910022 )

k=M1 T€T,UT)p JGIkUIk+1

< Co- frax ]Og(K+])+log€k 1~ 108 ekt /2 Z lor(z,€)| dip(z)

k=A+1 | loge| i3,
_ —1 /log(k(e)+1)  lo og(=t) 1
< 402, o p—l k41 <
< ek ) Bo (g T Thogel ) < TogTogel?

for sufficiently small ¢ > 0 by (c), finishing the estimate of term (13). Term (14) can be estim-

ated in exactly the same manner.
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Let us now consider (15), and estimate using (8), Lemma 3.5(d) and Proposition 3.4,

e 1
Z Z /Iﬂp[ (z,e)*du(z) < C3C Z [loge|? < |loge]| = (log | loge|)?

k=\+1 €T, IeA.

for sufficiently small ¢ > 0.

We now look at term (16). Given J € 7 we denote by K7 , respectively IC}', the collection of

all K € M., . such that

k41

KnNJ (k) #0 , respectively K NJT (k) # 0.

Recall again that ¢r(z,e)ps(z,e) <0 unless z € I7(k)NJ~ (k) or z € IT (k)N JT (k).
Observe that, whenever p—1> k> X, J € Zy, j > k+2, 1 € Z; and I~ (k) NJ ™ (k) # 0, there is
a K € K7 such that I C K . To see this we suppose the contrary. Since [ is contained in some

K € N.,,, we must have [ > J and hence g, < |J| < k(e)|I| < K(g) - €g41. This contradicts (d)

k41
and therefore our statement holds.

Also, by an analogous argument, if J € Zy, [ € Z; and [T (k) NJT (k) # 0, there is K € KT such

that I C K. Therefore we have

Z MDD > [ (e1(e,2) - ¢a(e,2)) dita)

k=A+1j=k+2 JET, T€T;

< T Y Y Y Y (ee e dato (7

k=X4+1 j3=k+2 J€T} KeKy IEI
I\

+ Z Z >y Z/ er(z,¢) cpj(xs))d,u() (18)

k=A+1 j=k+2 JET} IXE}C+ IEI
We can concentrate our investigation on one of these expressions, say (17), since the other one

can be treated analogously. For J € 7 and K € K7 define

K= (K~ (k) UK)NJ (k)
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and

QDA‘T&‘ ZZQ@[%&

J=k+2 1€7;
IgK

Let K9 € K7 be the element of K7 adjacent to J, i.e. K < K forall K € K7 \ {K§}. Since

¢x(2,¢) - pi(z,e) <0 for all z € R\ K, we have

Y Yy oy z/ #1(2,9)  1(2,9)) di(e)

k=\+1 j3=k+2 JETI} IXE}C_ TGI

< S/

k= )\+1JEI K5

S [ (x(@.90(2,2) dia). (20)

k=A+1J€ly KeKT\{KY}

o (@) pu(x,€) | dii(a) (19)

Let us give the estimate for (19) first. Observe that, by Proposition 3.2, |K9| < (k+1)-C1 -€x41

and therefore, denoting J = (a, b),
K§ Cla— (Ciepr1(1+ k), a] € [a = 87|, ],

where

§:=Ci(1+ K,(e))z:i > Ci(1+ K(e)) 5|’f]+|1 .

Since, by (9), [@xo (z,€)| < 2Cy we get, using also (8), Lemma 3.5(a) and Proposition 3.4,

Z Z/ ‘gpkmsgpjxs)‘d,u() < 202 Z Z/ V2 (J) di(z)
k=A+1 €T} k=A\+1J€ET}
< 204C5 I (21 g
= a9 LZ/\;J%I: |log€| ( ) )
< 204C4C5 - log2 - [Cl(l‘}"i(g))'i%r
1

(log [logel)?’

for sufficiently small £ > 0 by (c), finishing the estimate of term (19).
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It remains to investigate (20). This is the crucial part. In order to carry out the estimate we

first observe that for every J € 7, and K € K7 \ {K9}, z € K we have

ertoe) = (loge)™ [ [ o= U (o] [ 1= 2E)) 225

A straightforward calculation shows that there is a constant Ci3 > 0 such that z — ¢ (z,¢) is

Lipschitz on the domain K with a Lipschitz constant ¢(K,J) such that

(K, J)+|J| 1

d(K,J) ) d(K,J)’ (1)

C]Q
K .1
() < o og (

where d(K,.J) denotes the distance of K and J. We now show, and this is a crucial step in our

proof, that here is a constant Cy3 > 0 such that, for all K € K7,

1 (o
< Cig- (s(e) +1)* |K|* . (22)
| log el

. #:(K) dp(z)
K

For this purpose recall equation (10) and observe that

Joeswyantey = iowey™ [ [ ([o(ft ) - an) dnto

where, choosing R such that supp ¢ C [-R, R],

K@) ={(z,9) - 2 € (K- K, == e[-R K]}

Thus we can use the cancelation and get

[ ez ) i) < Qlogel)™ [l 72K 0\ K (=0) 715 (23)
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and

- [t dnte) < oge)™ [ lgllon - 54K (=0)\ K(0) 24)

recalling that G is bounded by ||g||sup. For t € IR we take a closer look at the sets
) . . - y—z . -
KM\ K(=t) ={(z,y) : 2 € (K=1)NK, —— €[-RR],y¢ (K +1)NK}.

First observe that if [t| > |K|(k(g) + 1) we have (K —t) N K = and thus K(t) \ K(-t) = 0.

Otherwise if (z,y) € K(t) \ K(—t) then, denoting the distance of z and K by d(z, K),
yeS:={z4t:d(z,K) < RJt|+2|t| and 2 ¢ K}U{z : d(z,K) < R|t| and z ¢ K}.
Then, by (6), £(S) <2C - |t|* - [(R+2)* + R*] and thus
FRWONK0) < [ lly ~ 1R,y 4 W) dily) < 2071 - B[R0 4 (R42)7). - (25)

Let Ci3=2C%/a - ||g|lsup - R*(R* + (R + 2)®). Then (23),(24) and (25) give

K (k) + 1)
| loge|

b

IS
‘ = QDE | (l 10g8|) LN '613 . / ta_ dt S 613
2N 13

which is the required estimate (22).

We can now split (20) again, writing (x for the right endpoint of K and using the Lipschitz

property of 7,

YY Y [ (reaenen) i)

k=A+1JEL; [(E)C;\{[((}}

S YT Y AR IR] [ e dato) (26)

k=A+1Jely KeKF\{KY}

+ Z Yoo > leallkee I/Isoa (K) — ¢ ()| dii(z) (27)

k=M1 J€Tx KeK;\{KS}

+ZZ Y. lealr,e) ‘/%K ) dfi(a)). (28)

k=A+1J€Tx K ek 7\{K9}
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To finish the proof we have to give estimates for (26) to (28).

Let us start by considering (26). Using (8), Lemma 3.5(c) and Propositions 3.4 and 3.2 we get

Ot

ﬁ; |§5K($,€)| dﬂ(ac) < 2C9Cs - Z |1 < 2C9CeC3 - |K’|°‘ < 20966630111 . €%+1 . (29)
‘ TeA:
ICK

Using k- |J| > d(K,J) > ep41 > |K|/Cy for all K € K7 \ {K}, we get

|K| Z |K|+d(K,J) | K| dt
Y o = : <a+en [ 5
Kexo\(KY) (K,J) Kexov (k) Ad(K,J) K[+ d(K,J) = At
€
< (14C)-log (K, : (8;—1) + Cl) (30)

where the domain of integration is A = {t : g4 <t < (K|J| 4+ Cigr41)}. We can now use (21),

(29), (30) and Proposition 3.4 and get, abbreviating Ci4 = 2CoCeC3C7C12(1 4 C1),

XYY e K] [ o)l dit)

k=21 J€Lx KeKT\{K}

o g)+1 ( | K| ]| )
< 2C9CeC3CTC e .7 k log I
TeeE kZA;-l J%I: ! |10g | Keg\:{f{g} d(K; J) (d(K,,]) )
5%-}-1 Ek—1 k1 )
< A o | +1)-1 k+C
- k;—l J%I: ( |10g€| o8 (€k+1 ) °8 (€k+1 : ])
|J| p—2 Ek+1\ 9 (€k=1
= <k§_1J§ |10g5|) k= /\-|)-(1 [( €L ) - log (5k+1 +£(€) +C1) - (k(e) + 1)}
1

(log |loge|)?

for sufficiently small £ > 0 by (c), and this finishes the estimate of term (26).

d(wN U T)|dad)

Let us give an estimate for (27). We use |¢Z| < Cg - 97 and Lemma 3.6 to infer
[ ez(r) — er@. )l dnta) = [ o
K K T€Ae,ICK
Z‘EIO(K)

e [ (b= X wz(n) die)

I€A,ICK
.’L‘GIO(N)

IA
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K

< R il N
S 2ols (log | logel)®

Recall from (9) that, for every K € Ny, ., > jer, |07(Cr,e)| < 2Co. For (27) we get, using

Proposition 3.3,

Y Y el [ IeK) - el i)

k=A+1J€Lk Kek\{K9}

= K|
< Z Z (2Cq) - (2CoCsg - —————
k=M1 KeN., |, ( (log | 10g€|)6)

1

&
< (4C2CSCs) - LG < (4C5CsCzc3) - (log [loge|)?’

(log |loge)

for sufficiently small £ > 0 by (a). This finishes the estimate of (27).

Finally consider (28). Use (22), (9) and Proposition 3.3 to estimate

SX Y letel] | #20) ditz)|

k=A+1J€Ty Kek7\{K9}

< i > (2Ce) - <C13 : % : |K|a)
k=\+1 Ke./\fgk+1
< (209(}13@2) . M .p(g) < !

|log | (log|logel)*’
for sufficiently small £ > 0 by (a), finishing the estimate of (28).

We have thus finished the proof of Lemma 4.2 by showing that all the sums, in which we have

split the original expression (11), are bounded by a constant multiple of 1/(log|loge|)?. ]

Lemma 4.3 The set
{m : //G(l/, y)dv(y) dP(v) = //G(Tyy, —y) dv(y) dP(v) for all P € P(, x)}

has full p-measure.
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Proof: To begin with, fix s > 1 and let & = exp(—s*). Let 1 > o > 0. We have

o -
< e [ (G2 ) % 5 it 1] T o).
IeAs,, 16A;,

LLemma 4.1 and Lemma 4.2 therefore give, for sufficiently large n € IN,

i ({o s [(roea [ ez - culz) T o)) < S0t

to o? - (log s)

Since Y02, (1/n)? < oo, the Borel-Cantelli-Lemma yields

i ({e s imsun (o)™ [ (Gi(52) - ozt > 0} ) 0.

n

For every 4, < e < §,_1 we have

te te te

|log 6y, -1 Bzt it dt
+ Bl (ogan ! [ (GaBet) - GalBet)) 7

(Hoge)™ [ (6n(Ezt) ~ Ga(Bey) % = (ogel)™ [ (ca(et) — o zty) &

o o

Now |logd,|/|loge| < s and thus

“t) Gy (let)) &

This and (31) together imply, for fi-almost every z,

hoeei [ o

limsup‘(|log€|)_1/s (Gl(

el0

Since this holds for all s > 1, we get

im ([oge)™ [ (Gr(E2t) — Gu(Ezty) L= g

for fi-almost all z. By Proposition 2.2(2) the closure of the set {£zt : ¢ € (0,1)} is compact,

hence the continuous functions G; and G5 are bounded on the set and, for g-almost every z,
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every tangent measure distribution P = lim,,_., P of g at z fulfills

xTr
En

//G v,y)dv(y)dP(v) = hm (|logen])™ / Gh 'u“)(it
(L z, dt — ! i\ dl
— lim_(|logeal)" / (Gr(B2t) = Ga(P2) S+ T ([logeal) 1/ Gy(Hety &
1o to e (AT 4
_ //GT%— ) dv(y) dP(v)
as required. [

To finish the proof it remains to show that the set of all z where the Palm formula (1) holds
for all Borel measurable functions G : M(IR) x R — [0,00) has full measure. We use a
straightforward approximation argument to show that there is a set A C F with i(A) = a(F)
such that (1) holds for all P € P(u,z), 2 € A and all Borel functions G : M(R) x R — € of
the form G(v, z) = g(z) - exp(iv(f)) for g, f continuous with compact support and g > 0. Now
fix such a function g and define two finite measures Ay, Ay on the Borel o-algebra of M(IR) by

means of

non) = [ [owiuw) dv)arw),

Ao(M) = //g Y)1ar (TY0) dv(y)dP(v)

for all Borel sets M C M(IR). Ay and Ay coincide because their Fourier transforms coincide
and hence the Palm formula holds for all z € A, P € P(fi,z) and all bounded functions G of
the form G(v,y) = g(y) - F(v) for Borel functions ¥ : M(IR) — [0,00) and for g : R — [0, c0)
continuous with compact support. Again by a standard approximation argument this can be

extended to the full statement of Theorem 1.2.
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