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Abstract

The Earth, as viewed from a physicist’s perspective, is a dynamical system of
great complexity. The contemporary presence and ever-increasing magnitude of
anthropogenic perturbations, such as greenhouse gas emissions and large-scale
land-use changes, call for a detailed understanding of critical subsystems that
can exhibit abrupt qualitative change induced by small shifts in some control
parameter (tipping elements). In this context, the complex interdependency
structure between tipping elements is of major interest. (i) Complimenting
and (ii) connecting research techniques and results concerning the detailed
processes at work in the Earth system’s subdomains (e.g., the atmosphere,
hydrosphere, lithosphere, or anthroposphere), the theory of complex networks
provides the concepts and methods needed for a holistic and data-driven approach
to Earth system analysis. Functional complex networks serving as macroscopes,
scientific instruments that condense instead of magnify information, are either
inferred from observational data and model runs or constructed on the basis
of theoretical considerations. Representing statistical interdependencies or
causal interactions between objects (e.g., Earth system subdomains, processes,
or locations), functional complex networks are conceptually well-suited for
naturally addressing some of the fundamental questions of Earth system analysis
concerning, among others, major dynamical patterns, teleconnections, and
feedback loops in the planetary machinery, as well as critical elements such as
thresholds, bottlenecks, and switches.
The first part of this thesis offers an introduction to the basic concepts of

choice: complex network theory and network-based analysis of time series data.
Specifically, novel theoretical contributions to both fields are reported, which are
applicable to the study of general complex network-structured systems found
in nature, society, and technology. Regarding complex network theory, these
include consistent frameworks for analyzing the topology of (i) general networks of
interacting networks and (ii) networks with vertices of heterogeneously distributed
weights, size, or importance, as well as (iii) an analytical theory for describing the
structure of spatial networks. In the realm of time series analysis, (i) recurrence
network analysis is put forward as a conceptually simple, but versatile, nonlinear
technique for the study of single, but possibly multivariate time series, that is
well-founded in classical mechanics, as well as in dynamical systems and graph
theory. (ii) Coupled climate networks are introduced as an exploratory tool
of data analysis for mapping and quantitatively characterizing the intricate
statistical interdependency structure within and between several fields of time
series.

The novel concepts and techniques developed in the first part are motivated by
and designed for their application to real-world problems and data in the context
of Earth system analysis. Consequently, the second part of this dissertation
focusses on investigating tipping elements and their interactions, tipping points,
and regional vulnerability. Recurrence network analysis is employed to robustly
detect dynamical transitions or tipping points in synthetic and paleoclimate data.
This reveals a possible influence of large-scale shifts in Plio-Pleistocene African
climate variability on events in human evolution, i.e., an interaction of climatic
and biological tipping points. Finally, coupled climate networks yield insights
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into the atmosphere’s general circulation structure and allow to quantify regional
centrality and vulnerability with respect to interactions between disparate parts
of the Earth system.
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Zusammenfassung

Vom Standpunkt des Physikers aus gesehen, ist die Erde als ein dynami-
sches System von großer Komplexität zu betrachten. Das gegenwärtig stets
zunehmende Ausmaß anthropogener Einflüsse wie Treibhausgasemissionen und
großskaliger Landnutzungsänderungen erfordert ein detailliertes Verständnis
kritischer Subsysteme, die auf kleine Variationen von Kontrollparametern mit
abrupten, qualitativen Veränderungen in Zustand und Dynamik reagieren können
(Kippelemente). Insbesondere ist dabei die komplexe Wechselwirkungsstruktur
zwischen einzelnen Kippelementen von großem Interesse. Die Theorie komplexer
Netzwerke stellt die Konzepte und Methoden für solch einen holistischen und
datengetriebenen Zugang zur Erdsystemanalyse zur Verfügung. Der auf Ideen
aus der Graphentheorie und statistischen Physik basierende Netzwerkansatz
kann so (i) zur Ergänzung und (ii) zur Zusammenführung von Forschungsergeb-
nissen zu detaillierten Vorgängen in den verschiedenen Sphären des Erdsystems,
z. B. der Atmosphäre, Hydrosphäre, Lithosphäre und Anthroposphäre, beitragen.
Funktionale, komplexe Netzwerke können als Makroskope aufgefasst werden,
die Information kondensieren anstatt immer weitere Details zu liefern. Sie wer-
den aus Beobachtungs-, Reanalyse- und Modelldaten abgeleitet oder aufgrund
theoretischer Überlegungen konstruiert. Indem sie statistische Zusammenhänge
oder kausale Wirkbeziehungen zwischen der Dynamik gewisser Objekte, z. B.
verschiedenen Sphären des Erdsystems, Prozessen oder geographischen Orten
darstellen, bieten funktionale komplexe Netzwerke einen natürlichen Ansatz
zur Bearbeitung fundamentaler Probleme der Erdsystemanalyse. Dazu gehö-
ren Fragen nach dominanten, dynamischen Mustern, Telekonnektionen und
Rückkopplungsschleifen in der planetaren Maschinerie, sowie nach kritischen
Elementen wie Schwellwerten, sogn. Flaschenhälsen und Schaltern im Erdsystem.
Der erste Teil dieser Dissertation behandelt die ihr zugrundeliegenden Kon-

zepte und Methoden: Die Theorie komplexer Netzwerke, ebenso wie die netz-
werkbasierte Zeitreihenanalyse. Neben einer Einführung werden insbesondere
neue theoretische Beiträge zu beiden Forschungsfeldern vorgestellt, die auf all-
gemeine, in Natur, Gesellschaft und Technologie vorkommende Systeme mit
Netzwerkstruktur anwendbar sind. Die Beiträge zur Theorie komplexer Netzwer-
ke beinhalten Sätze konsistenter Maße und Modelle zur Analyse der Topologie
(i) allgemeiner Netzwerke von wechselwirkenden Netzwerken und (ii) Netzwerken
mit ungleichmäßig verteilten Knotengewichten, -größen oder -wichtigkeiten, so-
wie (iii) eine analytische Theorie zur Beschreibung der speziellen Eigenschaften
von räumlich eingebetteten Netzwerken. Im Bereich der Zeitreihenanalyse werden
(i) Rekurrenznetzwerke als eine konzeptionell einfache, vielseitige und nichtlineare
Methode zum Studium multivariater Zeitreihen vorgestellt, die konzeptionell in
der klassischen Mechanik, der Theorie dynamischer Systeme und der Graphen-
theorie begründet ist. (ii) Gekoppelte Klimanetzwerke werden als ein exploratives
Werkzeug der Datenanalyse zur Abbildung und quantitativen Charakterisierung
der komplexen statistischen Interdependenzstruktur innerhalb und zwischen
verschiedenen Feldern von Zeitreihen eingeführt.

Die Entwicklung der im ersten Teil der Arbeit vorgestellten, neuartigen Kon-
zepte und Methoden war durch ihre Anwendung auf offene Forschungsfragen
und Daten im Kontext der Erdsystemanalyse motiviert. So konzentriert sich der
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zweite Teil dieser Dissertation auf die Untersuchung von Kippelementen und
ihren Wechselwirkungen, sowie von Kipppunkten und regionaler Vulnerabilität.
Zunächst werden Rekurrenznetzwerke zur robusten Detektion von dynamischen
Übergängen oder Kipppunkten in synthetischen und paläoklimatologischen
Zeitreihendaten eingesetzt. Diese Analyse deutet auf mögliche Zusammenhänge
zwischen großskaligen Veränderungen der afrikanischen Klimadynamik während
des Plio-Pleistozäns und Ereignissen in der Menschheitsevolution, in anderen
Worten auf eine Wechselwirkung von klimatischen und biologischen Kipppunkten,
hin. Schließlich erlauben gekoppelte Klimanetzwerke Einblicke in die Struktur
der allgemeinen Zirkulation der Atmosphäre und ermöglichen weiterhin, regio-
nale Zentralität und Vulnerabilität im Hinblick auf Wirkbeziehungen zwischen
verschiedenen Komponenten des Erdsystems zu quantifizieren.
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Chapter .

Introduction

.. Earth system analysis

The Earth, enwrapped by a vanishingly thin biological layer, is recognized as a highly
complex dynamical system operating far from thermodynamic equilibrium (Schelln-
huber et al., ). The entangled interactions and feedbacks between its inanimate
(e.g., atmosphere, hydrosphere, and lithosphere) and living (biosphere) constituents
inspired the metaphor of a self-regulating metabolism, Gaia, named after the primal
ancient Greek goddess of the Earth (Lovelock, ). Gaia theory postulates that the
co-evolution of life and its environment during the past 4.5 billion years gravitated
towards favorable conditions for living organisms controlled by tightly entwined feed-
back loops (Lovelock, ; Lenton et al., ). With the dawn of the anthropocene
at most a few thousand years ago (Ruddiman, ), a single species, Homo sapiens ,
began to interfere with this delicate balance and emerged as a formative geological
force. This development gave rise to a host of planetary syndromes tending to push
the Earth system out of the relatively stable Holocene state (Rockström et al., ),
most notably, anthropogenic climate change or global warming (Solomon et al., ).
Earth system analysis pursues unraveling the complex interplay between Gaia’s sub-
systems (Schellnhuber and Wenzel, ; Schellnhuber et al., ) and, as layed
out in the geocybernetic theory of Schellnhuber (), aims to find pathways for a
sustainable long-term co-evolution of ecosphere and anthroposphere.

.. The network macroscope

The principal idea behind this thesis project is to explore the use of complex net-
works (Cohen and Havlin, ; Newman, ) as macroscopes (Schellnhuber,
), scientific instruments for condensing instead of magnifying information, for
an integrated analysis of the Earth’s planetary inventory. Networks inferred from
observational data and model runs, or constructed on the basis of theoretical consider-
ations, are conceptually well-suited for naturally addressing some of the fundamental
questions highlighted in a Hilbertian program for Earth system science akin to the
collection of basic mathematical problems put forward by David Hilbert in the
s (Schellnhuber et al., , p. ). These concern, among other problems, major
dynamical patterns, teleconnections, and feedback loops in the planetary machinery
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as well as critical elements of the Earth system such as thresholds, bottlenecks, and
switches.

The idea of tackling these questions using network macroscopes rests on the assump-
tion that (i) for adequately describing a complex system of nonlinearly interacting
subsystems, its coupling structure has to be understood and (ii) to first-order approx-
imation the subsystems’ detailed dynamics is of minor importance for the networked
system’s global behavior. Theoretical insights into the synchronization of nonlinear
dynamical systems coupled via a complex network support these claims (Arenas et al.,
). Moreover, since its early days, network theory has focussed on quantifying the
local centrality and vulnerability of subsystems with respect to the overall complex
interaction structure (Albert and Barabási, ; Newman, ; Boccaletti et al.,
). It hence provides a well-developed theoretical basis for studying the impact
of global syndromes like climate change on local and regional scales, or investigat-
ing the role of particular physical, chemical, or biological processes for the Earth
system’s functioning. All in all, the network macroscope as an advanced tool for
data analysis can be considered complementary to the three macroscopic approaches
for Earth system analysis described by Schellnhuber (): observation from space
(The “bird’s-eye” principle), computer simulations (The digital-mimicry principle),
and experimental investigations using small-scale models (The “Lilliput” principle).

.. Tipping elements and tipping points

Directing network macroscopes to the study of potential tipping elements in the
Earth system is of specific interest for this dissertation (Lenton et al., ). Tipping
elements are subsystems that can alter their dynamics qualitatively and/or abruptly in
response to small changes in a control variable like global mean surface air temperature
after crossing a tipping point (in physics, tipping points are more commonly known
as bifurcations or dynamical transitions). Passing tipping points could have drastic
consequences (not only) for the anthroposphere, e.g., the Indian summer monsoon
could switch into an irregular state with a lower total precipitation after crossing a
certain temperature threshold, while increased melting of the Greenland and West
Antarctic ice shields after passing a different threshold is projected to contribute to
an accelerated global sea-level rise. Both events are expected to have a potentially
large impact on humankind, because a substantial fraction of the global population
inhabits low-lying coastal regions that are vulnerable to flooding, as well as the area of
influence of the Asian monsoon system, where agriculture is dependent on monsoonal
precipitation.
Now tipping elements are not independent from each other. On the contrary,

complex interactions between tipping elements are known to exist, but the scientific
understanding of these couplings is still in a nascent stage. Illustrative examples
are the coupling between the Indian summer monsoon and the El Niño-Southern
Oscillation (ENSO) (Maraun and Kurths, ; Krishna Kumar et al., ), or the
interactions of deep water formation as well as other oceanographic processes with
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large continental ice sheets (Stouffer et al., ; Nicholls et al., ; Straneo et al.,
; Rignot et al., ).

.. Contents and arrangement of this thesis

The present dissertation is divided into two parts focussing on theoretical aspects
(Part I) and applications thereof (Part II). After embarking on the project of applying
network-theoretic concepts to Earth system analysis, it quickly became apparent
that the existing tools of complex network theory and time series analysis were not
sufficient to address the questions at hand. This insight lead to the development of
new theoretical tools that are introduced and explained in Part I of the thesis.
On the network side, firstly, Chapter  starts with briefly presenting the basic

elements of network theory. Secondly, the tools and measures needed to quantitatively
analyze and model the complex topology of interacting networks or networks of
networks are described which appear naturally when studying interdependencies
between different subdomains of the Earth system. Thirdly, in many cases of interest
for employing the network macroscope, subsystems or vertices within the network may
be of differing size or importance, e.g., they might represent differently sized regions
on the planetary surface. To consistently account for this effect, vertex-weighted
versions of statistical measures for standard and interacting networks based on the
concept of node splitting invariance are introduced (see also Appendix A).
On the time series side, Chapter  first reviews the literature on various concepts

of network-based time series analysis developed for constructing networks from
multivariate time series and subsequently extracting information on the underlying
dynamics from the inferred network structure (see also Appendix B). Subsequently,
recurrence networks are introduced as a flexible method for time series analysis that
is well-founded in classical mechanics and dynamical systems theory by exploiting
the recurrence of states in phase space (Poincaré, ; Marwan et al., ), as well
as applicable to relatively short, real-world time series such as typical geoscientific
observational data (see also Appendix C). It is shown that recurrence networks can
be employed to distinguish qualitatively different dynamics (e.g., periodic or chaotic),
trace unstable periodic orbits, or define new notions of (fractal) dimensionality of
general sets like strange attractors based on transitivity in the recurrence structure
(see also Appendix D). Finally, moving from single, but possibly multivariate time
series to fields of time series data, functional networks are discussed as a general
tool for mapping and investigating the statistical interdependency structure between
the components of spatially extended dynamical systems like the Earth’s climate.
Adhering the topical setting of this thesis, special focus is put on providing a sweeping
overview of the emerging field of climate network analysis and pointing out links to
research on functional networks in other fields such as neuroscience and quantitative
finance.

Chapter  integrates the two preceding ones by developing an analytical framework
for describing networks embedded in a general space, be it physical (e.g., climate
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networks) or phase space (e.g., recurrence networks), and applying it to various
paradigmatic model systems.

The second half of this dissertation, Part II, is devoted to presenting applications
of the above developed methods for inspecting the inner workings of the Earth’s
planetary machinery in the spirit of data analysis. Clearly, the selection of analytical
techniques from the rich toolbox accessible to the researcher has to be guided by the
structure of the available data as well as the research questions at hand. Paleoclimate
records from geological archives as diverse as ice cores from the continental ice sheets of
Antarctica and Greenland, speleothems growing in caves, or marine sediments sampled
from the sea floor contain information on past climate and environmental variability
that is of paramount importance for understanding Earth system dynamics (Bradley,
). In particular, they are indispensable sources of data needed for identifying
tipping elements and uncovering the underlying mechanisms as well as their mutual
interrelationships (Lenton et al., ).
In Chapter , it is shown that recurrence network analysis is well-suited for de-

tecting nonlinear dynamical transitions, a specific class of tipping points, in short
paleoclimate time series with problematic properties such as irregular sampling and
dating uncertainties. The method is validated drawing on nonstationary time series
generated by prototypical model systems with time-varying parameters and its robust-
ness is tested for model systems and measured paleoclimate records. Building on these
results, Chapter  sets out to address a long standing challenge going back to Darwin
(): the potential effect of climatic change (geosphere) on evolutionary processes
(biosphere), specifically concerning the development of human ancestors. Applying
recurrence network analysis to marine records of African paleoclimate-variability
during the Plio-Pleistocene reveals large-scale dynamical transitions (potential tipping
points) that are put into context with known climatological and tectonic processes
acting during that epoch. Relating the timing of these transitions to events in human
evolution documented in the known fossil record suggests that the observed shifts
between more regular and more erratic environmental variability may have acted
as a trigger for rapid change in the development of humankind in Africa (see also
Appendix E).

In contrast to paleoclimatology, where the accessible records are sparsely scattered
in time and space, with the advent of global measurement networks and satellite
observations, the amount, quality, and resolution of available climatological data
has vastly increased during the th century and continues to rise until today. In
Chapter , coupled climate networks are proposed as a further development of the
network macroscope for harnessing and making sense of this wealth of available
data. Combining functional network analysis and the newly introduced interacting
networks framework, this approach is specifically designed for exploring the statistical
interdependency structure between data sets originating from distinct components of
the Earth system, e.g., observables like atmospheric sea level pressure and oceanic
sea surface temperature. As a first application of coupled climate network analysis, a
study of the atmosphere’s three-dimensional general circulation structure based on
geopotential height data is presented.
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Finally, Chapter  concludes this dissertation by recapitulating the achievements
attained and sketching promising avenues for future research.







Part I.

Theoretical foundations

This first part of the thesis offers an introduction to
basic concepts of complex network theory and network-
based time series analysis. Furthermore, this disser-
tation’s novel theoretical contributions to both fields
are reported. Regarding complex network theory, these
include consistent frameworks for analyzing general
networks of interacting networks and networks with
vertices of heterogeneous weights, size, or importance,
as well as an analytical theory for describing the struc-
ture of spatial networks. Recurrence network analysis
is put forward as a conceptually simple, but versatile,
technique of nonlinear time series analysis that is well-
founded in classical mechanics, as well as in dynamical
systems and graph theory.
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Complex network theory

.. Introduction

Networks are recognized as a structurally simple, yet powerful representation of
the manifold complex systems consisting of large numbers of intricately interacting
elements found in nature, technology and human society. Examples from these realms
include food webs and genetic regulatory networks in biology, the internet and logistic
networks in engineering, or online social networks in sociology (Albert and Barabási,
; Newman, ; Boccaletti et al., ). These, like most other real-world
networks, have a complex structure that is neither regular nor fully random (Fig. .).

Disorder

Figure ..: A traverse through network space towards increasing randomness starting from a
regular lattice and heading to a fully random Erdős-Rényi graph (Erdős and Rényi,
; Erdős and Rényi, ). Complex networks like the Barabási-Albert scale-free
network (Barabási and Albert, ) in the center are encountered between both
extremes. All three networks are simple graphs of N = 100 vertices and edge
density ρ ≈ 4% (note that there exist more than 10332 distinct networks of this
kind). Vertex shading encodes degree kv (white: small, black: large).

There are
((N2 )
L

)
distinct labeled simple graphs with N vertices and L edges.
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Interdependency structure
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Figure ..: Interdependency (or interaction) structure and vertex weights are both important
properties of complex networks. Novel measures are developed in Sections ., .,
and Appendix A to incorporate this information consistently into the statistical
analysis complimenting and generalizing standard quantifiers for unweighted networks
without interdependency structure (lower left quadrant). Vertex size encodes scalar
weight, vertex shading distinguishes subnetworks (interdependency structure).

Drawing on ideas from mathematical graph theory, statistical physics, and other
fields complex network theory allows a detailed and quantitative investigation of
the topology and evolution of interlinked systems (Costa et al., ) as well as
exploring the interplay between network structure and dynamics on the interacting
elements (Arenas et al., ). The fundamental idea behind this theory is to discover
what aspects of the observed complex behavior of real-world networked systems can be
explained by focussing on their interaction structure and neglecting most other details
like different types of interrelationships between or dynamics on the subcomponents.
It is important to clearly distinguish between systems with a physically evident
network structure like power grids or neural networks (structural networks) and those
networks representing more abstract relationships between objects, e.g., citation
networks or functional networks constructed from electroencephalogram or climate
data (see the discussion in Chapter ). Because this work focusses on network-based
data analysis, i.e., on studying networks constructed from data, we will solely study
networks of the latter kind throughout this thesis. For a broad overview of the state
of the art in complex network theory and its applications, we direct the interested
reader to the abundant literature on the topic, e.g., Kolaczyk (); Newman ();
Cohen and Havlin ().
After introducing the necessary concepts from graph theory (Section .) and

those needed for understanding spatially embedded networks (Section .), the newly
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developed methods and measures for investigating networks with interdependency
structure (Section .) and vertex weights (Section .) are presented (Fig. .).

.. Elements of graph theory

This section introduces the essential graph-theoretical vocabulary that will be relied
on throughout this thesis, partly following Donges (). For a thorough treatment
of the mathematical theory of (di)graphs see, e.g., Bang-Jensen and Gutin ().

Definition . (Graph / Network). An undirected graph is defined as an ordered
pair G := (V,E) containing a set V = {1, ..., N} of vertices or nodes together with a
set E ⊆ V × V of edges or links {i, j} with i, j ∈ V which are -element subsets of
V . N = |V | denotes the size (number of vertices) of G, L = |E| the number of edges.
The following types of graphs are considered (see also Fig. .):

(i) In a simple graph, at most one edge {i, j} ∈ E can exist between a pair of
vertices and self-loops of the type {i, i} are not allowed (all graphs treated in this
thesis are simple). A simple graph is called dense if L is close to the maximum
number of edges Lmax =

(N
2
)
. It is called sparse if L� Lmax.

(ii) A finite graph has a finite number of vertices N .

(iii) An infinite graph carries a countably or uncountably infinite number of vertices
N (Chapter  studies graphs of the latter kind).

(iv) The vertices of a spatially embedded graph are placed in some general metric
space, inducing the notion of length of edges (see Section .).

(v) A graph can be said to have interdependency structure if some decomposition
into interconnected subgraphs is of particular interest for the investigator (see
Section .).

(vi) A vertex-weighted graph consists of vertices that carry a scalar weight encoding,
e.g., vertex size, importance, or represented area in a domain of interest (see
Section .).

We do, in this thesis, neither explicitly consider directed networks, or digraphs nor
edge-weighted networks. However, possible generalizations of the discussed concepts
incorporating this additional structure are pointed out wherever appropriate. In
the following, hierarchically structured systems that can be viewed as networks of
interacting (sub)networks will be of particular interest.

Definition . (Subgraph / Subnetwork). A subgraph G′ := (V ′, E′) of a graph
G = (V,E) contains a vertex set V ′ ⊆ V and an edge set E′ ⊆ E, where ∀{i, j} ∈
E′ : i, j ∈ V ′. A subgraph G′ of a graph G is said to be induced if, for any pair of
vertices i, j ∈ V ′, {i, j} ∈ E′ if and only if {i, j} ∈ E.
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For performing calculations on a simple graph, it can be represented by an ad-
jacency matrix. However, this type of representation is computationally feasible
only for relatively small graphs, mostly because the memory needed to store the
dense adjacency matrix on a computer grows as N2. Therefore, while the matrix
representation is primarily used for formal purposes in this work, most calculations
rely on sparse adjacency list or edge list representations (see Bang-Jensen and Gutin
() and Appendix F).

Definition . (Adjacency matrix). A simple (directed) graph G = (V,E) without
edge-weights can be represented by a binary adjacency matrix A = {Aij}ij with
elements

Aij =
{

1 if {i, j} ∈ E,
0 otherwise,

(.)

where i, j ∈ V . For an undirected graph, A is symmetric.

Definition . (Neighborhood). In a simple undirected graph G = (V,E), the
neighborhood Ni of a vertex i ∈ V is defined as the set of vertices that are directly
adjacent to i, i.e.,

Ni = {j ∈ V : Aij = 1} . (.)

For networks with an uncountably infinite number of vertices, we can loosely think
of the adjacency matrix as a mapping A : R× R→ {0, 1} if |V | ≤ |R|.

In many applications, the potential movement of some entities on a network, e.g.,
information packets in the internet, as well as higher-order connectivity properties,
e.g., for identifying community structure or critical elements like bottlenecks, are
of major interest. This directly leads to the graph-theoretical notions of walk, path,
cycle, and component.

Definition . (Walk). A walk on the graph G = (V,E) is an alternating sequence
of vertices and edges that starts and ends with a vertex. The vertices that precede and
follow an edge in the sequence are the end vertices of that edge. A walk is called

(i) open if its start and end vertices are different,

(ii) closed if its start and end vertices are identical,

(iii) simple if no vertex except of start and end vertices (and therefore no edge) is
visited more than once.

Definition . (Path). A path π(i, j) is a simple walk on the graph G = (V,E)
from start vertex i ∈ V to end vertex j ∈ V . i is said to be reachable from j if a
path containing both vertices exists on G. The length of the path |π(i, j)| is defined
as the number of edges the path contains. We denote the set of all existing different
paths from i to j by P(i, j). The shortest-path length from i to j is then given by
dij = minπ(i,j)∈P(i,j) |π(i, j)|, where dii = 0 and dij =∞ if P(i, j) = ∅.
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In this work, we generally use Dijkstra’s algorithm to calculate the topological
distance matrix dij (Dijkstra, ).

Definition . (Cycle). A cycle is a simple and closed walk on a graph G.

Definition . (Component). A component is a maximally connected subgraph
G′ := (V ′, E′) of a graph G = (V,E). That is, all vertices in V ′ are reachable from
all other vertices in V ′ and no vertex i ∈ V \V ′ is reachable from any vertex j ∈ V ′.
The largest component of G with size N ′ ≈ N is referred to as the giant component.

The standard measures of complex network theory such as degree, closeness, and
shortest-path betweenness centralities (Newman, ) will be defined where they
are needed throughout the remainder of this thesis.

.. Spatially embedded networks

Many networks of interest map the interrelationships between objects (vertices)
residing in some metric space, be it abstract like the phase space of dynamical
systems (Section .) or physical space like the Earth’s surface (Section .). Hence,
a spatially embedded or spatial network G = (V,E) carries a mapping V → S : i 7→ xi
assigning each vertex i ∈ V to an element xi ∈ S of a set S and a metric l : S × S →
R : (xi, xj) 7→ lij . xi is called the coordinate vector of a vertex i and lij can be used
as a measure of edge length whenever {i, j} ∈ E.
The vertices’ spatial embedding can impose considerable constraints on network

structure (Boccaletti et al., ; Bullock et al., ; Barthélemy, ) that in
real-world systems manifest themselves as increasing costs or decreasing probability of
edge establishment with increasing edge length and other, more subtle effects (Gastner
and Newman, ). To first-order, the spatial structure of a complex network is
captured by the edge length distribution p(l), a probability density function (PDF),
where

∫ l+∆l
l−∆l dl p(l) is the probability that an edge {i, j} randomly chosen from E has

a length l−∆l ≤ lij ≤ l+ ∆l. For example, in random geometric graphs only vertices
that are within a certain distance from each other in S are linked (Penrose, ),
leading to a rectangularly shaped edge length distribution p(l) ∝ Θ(ε − l), where
ε is a threshold distance and Θ(·) denotes the Heaviside function (see Chapter ).
Other spatial networks possess a monotonously decaying p(l), e.g., an exponential
decay p(l) ∝ exp(l/l′) with a typical scale l′ (see Fig. . for some typical edge length
distributions).

It is important to conceptually distinguish a system’s intrinsic edge length distribu-
tion pI(l) that is exclusively determined by the internal laws governing its formation
and evolution (Fig. .), e.g., a tendency to form edges of a particular length l,
from geometric effects originating from the particular distribution of vertices in S,
the global topology of S, and the influence of boundaries. The latter effects are
summarized by the geometric edge length distribution pg(l), the PDF comprising the
distances of all possible pairs of vertices (pg(l) = p(l) holds for fully connected net-
works). In other words, pI(l) gives the probability that an edge of length l is formed
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Figure ..: Idealized intrinsic edge length distributions pI(l) of typical spatial networks: (A) uni-
form distribution pointing at a network structure that is independent from the spatial
embedding, (B) distribution with a finite cutoff as in random geometric graphs and
recurrence networks (Section .), (C) distribution quickly decaying with l as in
road networks (Gastner and Newman, ; Chan et al., ), and (D) distribution
including numerous long-range edges as observed in the internet (Gastner and
Newman, ) or climate networks (Section .).

by the underlying networked system irrespective of the geometrical arrangement of
vertices (tendency of edge formation), while pg(l) is the probability that an edge of
length l occurs only due to the specific spatial embedding of vertices (possibility of
edge formation). As a first-order approximation, assuming that system-intrinsic and
geometric factors are statistically independent, one can assume that

p(l) = pI(l)pg(l). (.)

By inversion, this relation can be used to correct for geometric effects when the
interest is in a system’s intrinsic edge length distribution pI(l), but usually only
p(l) and pg(l) can be observed. For example, assuming a uniform and continuous
distribution of vertices on the surface of a -sphere with radius r yields

pg(l) = 1
2r sin

(
l

r

)
, (.)

which is a useful correction factor when studying global networks embedded on the
Earth’s surface such as climate networks (Donges, ) (see also Section ..). An
analytical framework for assessing the effects of prescribed edge length distributions
on certain structural properties of spatial networks is presented in Chapter .





.. Networks of interacting and interdependent networks

Figure ..: Systems of interacting and interdependent networks or networks of networks are a
natural representation of many systems found in nature, technology, and society. The
partition into interacting subnetworks (indicated by vertex symbols of different shape)
is either naturally induced by the considered problem, e.g., consider interdependent
infrastructures (Buldyrev et al., ) or cortical areas of the mammalian brain (Zhou
et al., ), or may be generated by a community detection algorithm (Fortunato,
). Such a system is characterized by dependencies within subnetworks (internal
edges, solid lines) as well as interactions between different subnetworks (cross edges,
dashed lines).

.. Networks of interacting and interdependent networks

Most studies have so far concentrated on isolated networks, where vertices represent
single elements or subsystems, and edges indicate interactions or relationships between
vertices. However, it has recently been realized that a considerably large class of
systems of interest warrants a more natural representation as networks of interacting
and interdependent networks for an appropriate description of their structure and
dynamics (Fig. .). Notable examples are representations of the mammalian
cortex, where cortical areas form complex subnetworks that are themselves linked
via a complex network topology (Zhou et al., ; Zhou et al., ), systems
of interacting populations of heterogeneous oscillators (Barreto et al., ; So et
al., ), or mutually interdependent infrastructure networks (Vespignani, ;
Parshani et al., ) such as the power grid and electricity consuming communication

In the following, we will use the terms interacting and interdependent interchangeably in the context
of studying networks of networks. This choice is legitimate, since we focus on characterizing
the complex coupling structure of these systems, but not their dynamical evolution (Gao et al.,
a).
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networks (Buldyrev et al., ). More generally, and particularly if the system’s
representation as a network of interacting networks is a less obvious choice than in the
aforementioned examples, networks with a pronounced community structure may also
be viewed as networks of networks, where subnetworks are constituted by communities
or clusters as identified by some community detection algorithm (Fortunato, ). A
related but distinct concept is presented by layered networks (Kurant and Thiran,
b; Kurant and Thiran, a; Kurant et al., ), where essentially different
sets of edges (layers) are considered connecting the same substrate of vertices, e.g.,
describing a two-layered transportation network with roads forming a layer of physical
connections between locations and a superposed layer of virtual connections induced
by actual pathways of traffic flow on the physical layer. In Chapter , we will
investigate networks of networks in the wider context of Earth system analysis by
means of coupled climate network analysis.

So far research on interacting and interdependent networks has focussed on global
properties and dynamics of these systems, e.g., percolation thresholds and cascading
failures, showing that networks of interdependent networks are much more vulnerable
to cascading failures than isolated networks are (Buldyrev et al., ; Parshani
et al., ; Parshani et al., ; Shao et al., ; Buldyrev et al., ; Bashan
et al., ; Gao et al., b). A review of recent work on the global structural
characteristics of networks of interdependent random networks is given by Gao et al.
(a). However, real-world networks of networks usually possess a well-organized,
non-random interaction/interdependency structure (Parshani et al., ). It is hence
of major interest to determine in detail the importance and role of single vertices
for the interaction or communication between different subnetworks as well as to
characterize their mutual interaction topology, e.g., for studying the vulnerability of
coupled and interdependent networked systems to random perturbations or targeted
attacks (Huang et al., ). Here, following Donges et al. (b, P), we propose a
general and novel framework that allows to quantitatively investigate the interaction
structure of networks of networks on multiple topological scales. We derive graph-
theoretical measures that allow to answer questions like: Does a vertex have a
large direct influence on and/or is it an efficient transmitter of information to a
specific subnetwork? Which amount of control does a vertex have on the interaction
between two subnetworks? Are two subnetworks topologically well separated or
tightly intertwined and is their interaction structure well organized or random?
The methodology introduced in this section therefore creates a new setting for a
detailed graph-theoretical assessment of the functional roles of vertices within complex
networks of networks, e.g., integration or segregation of information that have been
studied in corticocortical networks of cats or macaque monkeys (Zamora-López et al.,
; Zamora-López et al., ).

... Basic definitions

Consider a network G = (V,E). As we wish to study a network of K interacting
subnetworks, we consider a complete decomposition of the vertex set V into disjoint
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sets {Vi}Ki=1 such that
⋃K
i=1 Vi = V and Vi ∩ Vj = ∅ ∀i 6= j, where the number of

vertices in subset Vi is Ni = |Vi|. Similarly, the edge set E is decomposed into sets Eii
containing edges between vertices inside Vi and sets Eij of edges connecting vertices
from Vi and Vj , i.e.,

⋃K
i,j=1Eij = E with Eij ∩ Ekl = ∅ ∀(i, j) 6= (k, l). In other

words, the mutual interactions between subnetworks Gi = (Vi, Eii) (Gi is the induced
subgraph of Vi) are described by the edge sets Eij for i 6= j. For simplicity, we restrict
ourselves to undirected and unweighted simple graphs represented by a symmetric
adjacency matrix A, since the generalization of the concepts and measures introduced
below is straightforward. In this section, indices i, j, k, l always denote subnetworks
while v, w, p, q designate single vertices.

... Measures for studying networks of networks

In the following we define several local as well as global network measures to quantify
and investigate the interaction structure of networks of networks on different topolog-
ical scales. Here, local network measures assign a real number to a vertex v ∈ Vi in
relation to (a generally different) subnetwork Gj , or to any other vertex w ∈ V de-
pending on two subnetworks Gi, Gj . They are inspired by the “trinity” of classical and
frequently used centrality measures degree, closeness, and betweenness (Freeman, ;
Newman, ; Boccaletti et al., ), as well as the local clustering coefficient (Watts
and Strogatz, ), and accordingly quantify direct influence on Gj (cross-degree,
Eq. (.)), local organization of interdependency with Gj (local cross-clustering,
Eq. (.)), effectiveness of interaction with Gj (cross-closeness, Eq. (.)), and
the control over communication between Gi and Gj (cross-betweenness, Eq. (.)),
respectively. The global network measures we introduce assign a real number to a
pair of subnetworks (Gi, Gj). They are derived from the well-established measures
edge density, global clustering coefficient, transitivity, and average path length (Watts
and Strogatz, ). These global network measures quantify various overall aspects
of the interaction between two subnetworks such as its degree of organization (global
cross-clustering coefficient and cross-transitivity, Eqs. (.), (.)), effectiveness
and speed of information exchange (cross-average path length, Eq. (.)), or their
mutual interconnectivity (cross-edge density, Eq. (.)).

In the following definitions, we always assume v ∈ Vi if not indicated otherwise. The
term cross generally relates to the interaction between subnetworks Gi, Gj , whereas
internal refers to the structure within a single subnetwork. Furthermore, it should be
noted that the formulae given below explicitly account for the general case i 6= j. In
some cases, e.g., for the cross-edge density, normalization factors need to be modified
to suit the special case i = j.
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Figure ..: The cross-degree kijv counts the number of neighbors of vertex v ∈ Vi within
subnetwork Gj . In this example, the cross-edge density is given by ρij = 0.5.

Local measures

Cross-degree kijv gives the number of neighbors of the vertex v ∈ Vi within subnet-
work Gj (Fig. .),

kijv = kjv =
∑
q∈Vj

Avq. (.)

This measure thus captures the importance of v for the interaction or communication
between two subnetworks Gi, Gj in terms of the number of direct connections it
projects between Gi and Gj . For brevity, we will in the following suppress the
somewhat redundant index i whenever possible, e.g., write kjv instead of kijv . The
standard degree kv considering the full network G can be obtained by summing up
the contributions from all subnetworks:

kv =
K∑
j=1

kjv (.)

=
∑
p∈V

Avp. (.)

Parshani et al. () introduce the inter degree-degree correlation rij measuring
the correlation between the internal degrees kiip , kjjq of vertices at the ends of all
cross-edges {p, q} ∈ Eij .

Local cross-clustering coefficient Cijv is the probability that two randomly drawn
neighbors of v from subnetwork Gj are also neighbors (Fig. .),

Cijv = Cjv = 1
kjv(kjv − 1)

∑
p,q∈Vj

AvpApqAqv. (.)
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Figure ..: The local cross-clustering coefficient Cijv is the probability that two randomly drawn
neighbors of vertex v from subnetwork Gj are neighbors themselves, where v belongs
to subnetwork Gi. In this example, the global cross-clustering coefficients are given
by Cij = 0.5 and Cji = 0. However, for the cross-transitivities one obtains Tij = 1
and Tji = 0. Note that already in this simple example, the interaction structure of
Gi and Gj is asymmetric, i.e., Cij 6= Cji and Tij 6= Tji.

For all vertices v∗ with kjv∗ ∈ {0, 1} we set Cjv∗ = 0 consistently with Newman ()
(alternatively one could leave Cijv∗ undefined). Cjv quantifies the tendency of vertices to
form clusters spanning two subnetworks and therefore contains important information
on the interaction structure between them.

Assuming no correlations between the occurrence of edges within Gj and between
Gi and Gj (described by the sets Ejj and Eij , respectively) the expectation value for
Cjv is the internal edge density of subnetwork Gj , i.e., E(Cjv) = ρj ∀v, where

ρj = 2|Ejj |/(Nj(Nj − 1)). (.)

This lack of correlations would arise if edges in Eij were distributed randomly
and independently between subnetworks Vi and Vj . Hence, Cjv � ρj (Cjv � ρj)
hints at significant correlations (anti-correlations) in the connectivity between both
subnetworks that may be related to design principles or details of growth processes
depending on the specific application (e.g., see Section .). On the contrary, as it is
always the case for statistical hypothesis tests, Cjv ≈ ρj for all v ∈ Vi does not imply
a random directional interdependency structure between Gi and Gj , because a null
hypothesis such as that of random interdependency structure can never be confirmed,
but only rejected (see also Section ..).

Compared to the other local measures introduced in this section, Cjv has a less direct
relationship with the standard local clustering coefficient Cv (Newman, ), since
the contributions from triangles containing vertices from three different subnetworks
as well as those from triangles with two vertices in Gi and one vertex in a different
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subnetwork also have to be taken into account (second summand in Eq. (.)),

Cv = 1
kv(kv − 1)

 K∑
j=1

kjv(kjv − 1)Cjv +
K∑
l=1
l 6=i

K∑
k=1
k 6=l

∑
p∈Vk
q∈Vl

AvpApqAqv

 (.)

= 1
kv(kv − 1)

∑
p,q∈V

AvpApqAqv, (.)

where again this holds only if kv > 1. Note that Cijv is conceptually related, but
not equivalent to the measure inter-clustering coefficient proposed by Parshani et al.
().

Cross-closeness centrality cijv measures the topological closeness of v to subnetwork
Gj along shortest paths,

cijv = cjv = Nj∑
q∈Vj dvq

, (.)

where dvq is the shortest-path length between vertices v and q. If no path exists,
i.e., the vertices are not mutually reachable, dvq = N is set as an upper bound
consistently with the literature (Kolaczyk, ), since the longest possible path
length in the considered network is N − 1. Alternatively, to avoid cjv = 0 for all v
in disconnected networks with dvq = ∞ for at least one pair (v, q), closeness can
be computed separately for each component of G. It is important to note that for
generality, we do not restrict paths to subnetworks Gi, Gj or a particular order of
vertices as in earlier works (Flom et al., ), which might however be appropriate
depending on the specific application. In contrast, the shortest paths analyzed here
and below may contain any vertices w ∈ V in any order depending on the topology
of the full graph G.
Cross-closeness therefore quantifies the effectiveness of interaction between a par-

ticular vertex and a specific subnetwork taking the entire network structure into
account. A vertex with high cross-closeness is likely to be important for the fast
exchange of information with a certain subnetwork, even if it does not have a large
number of direct neighbors in that subnetwork or a high closeness centrality with
respect to the whole network. The standard closeness centrality cv (Freeman, )
can be obtained from the cjv as

cv = N − 1∑K
j=1Nj

(
cjv
)−1 (.)

= N − 1∑
p∈V dvp

. (.)
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Figure ..: The shortest-path cross-betweenness centrality bijw measures the importance of a
vertex w ∈ V for mediating or controlling interactions or communication on shortest
paths between two subnetworks Gi and Gj . In this example, vertices w,w′ ∈ Vk
(red) have a large cross-betweenness bijw , b

ij
w′ , while the remaining vertices in Gk,

p ∈ Vk \ {w,w′}, do not participate in shortest paths between Gi and Gj . Hence,
they have a vanishing cross-betweenness bijp = 0.

Cross-betweenness centrality For any vertex w ∈ V , shortest-path cross-between-
ness centrality bijw indicates its role for mediating or controlling interactions or
communication on shortest paths between two subnetworks Gi and Gj (Fig. .),

bijw =
∑

p∈Vi,q∈Vj
p6=q;p,q 6=w

σpq(w)
σpq

= bjiw , (.)

where σpq gives the total number of shortest paths from p to q and σpq(w) counts the
number of shortest paths between p and q that include w (Freeman, ; Brandes,
). While a vertex with high cross-degree (relational hub) may function as a robust
transmitter between two subnetworks, its functional redundancy for communication
is evaluated by cross-betweenness centrality. E.g., a network containing relational
hubs with high cross-betweenness is more vulnerable to attack or failure with respect
to the interaction of two subnetworks than another one with overall lower cross-
betweenness and, hence, a higher redundancy of the interaction structure. The
standard betweenness centrality bw (Freeman, ) of the full network is obtained
by summing up the contributions from all pairs of subnetworks,

bw =
K∑

i,j=1
bijw (.)

=
∑
p,q∈V

p6=q;p,q 6=w

σpq(w)
σpq

. (.)
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In this sense, cross-betweenness centrality can be seen as a decomposition of the
standard betweenness centrality with respect to a certain partition of the full network.
Cross-betweenness is a generalization of the measure Q2 defined by Flom et al. ()
that is restricted to networks consisting of only two different sorts of vertices or two
subnetworks in our terminology (Brandes, ).

Global measures

Cross-edge density ρij measures the density of connections between distinct sub-
networks Gi and Gj (Fig. .),

ρij = |Eij |
NiNj

=
〈
kjv
〉
v∈Vi

Nj
= ρji. (.)

Two subnetworks can be considered to be well separated topologically if their internal
edge densities ρi, ρj are clearly larger than their cross-edge density, i.e., ρij � ρi, ρj .
More generally, subnetworks form communities of the full network (Fortunato, )
if this inequality holds for all pairs of subnetworks. In other words, in this situation
the partition of the full network G induced by the subnetworks Gi would give rise to
a high modularity (Newman and Girvan, ). It should be stressed, however that
there exists a multitude of other definitions of communities (Fortunato, ). Our
general framework does not require the chosen partition to be consistent with any
such definition as long as it allows the resulting cross-network measures to be readily
interpretable.

Global cross-clustering coefficient Cij is the mean probability for vertices from
subnetwork Gi to have mutually connected neighbors within subnetwork Gj ,

Cij =
〈
Cijv
〉
v∈Vi

= 1
Ni

∑
v∈Vi,kjv>1

∑
p,q∈Vj AvpApqAqv∑
p6=q∈Vj AvpAvq

. (.)

It is important to note that in contrast to cross-edge density and cross-average path
length the cross-clustering coefficient is not a symmetric property of two subnetworks,
i.e., in general Cij 6= Cji (Fig. .). As was shown above, we expect E(Cij) = ρj if
the interaction structure of subnetworks Gi and Gj is random, i.e., cross edges are
distributed randomly and independently between the two subnetworks. In contrast,
Cij � ρj or Cij � ρj points to an organized interdependency structure.

Cross-transitivity Tij is the probability that two vertices in subnetwork Gj are
connected if they have a common neighbor in subnetwork Gi,

Tij =
∑
v∈Vi;p,q∈Vj AvpApqAqv∑
v∈Vi;p6=q∈Vj AvpAvq

. (.)
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Here, Tij 6= Tji holds in general as well (Fig. .). Like the global cross-clustering
coefficient Cij , Tij is a measure of the degree of organization of the subnetworks’
topological interdependence. Analogous to the standard version of transitivity (New-
man, ), Tij tends to weigh contributions of vertices in Gi with low cross-degree
kjv less heavily than Cij . From another point of view, in the average of Eq. (.)
edges have equal weights, while Eq. (.) has the same property with respect to
vertices. This peculiarity has to be born in mind when interpreting the values of Tij
and Cij for general complex networks of networks (Fig. .). Given a fully random
interconnectivity structure, the expectation value for cross-transitivity is E(Tij) = ρj .

Cross-average path length Lij measures the topological closeness of two subnet-
works Gi and Gj ,

Lij = 1
NiNj −Mij

∑
v∈Vi,q∈Vj

dvq = Lji, (.)

where Mij is the number of pairs (v, q) ∈ (Vi × Vj) which are not mutually reachable
and we prescribe dvq = 0 for these pairs. Hence, Lij measures the average length of
existing shortest paths between the subnetworks Gi and Gj . Alternatively, akin to
the definition of cross-closeness centrality, dvp = N could set for disconnected pairs
of vertices v, p, or the calculation of Lij could be restricted to the giant component
of G.
Lij can be interpreted as a measure of the effectiveness of interaction between two

subnetworks. Subnetworks with low Lij are closely interwoven and are likely to show a
high degree of functional interdependence, while those with high Lij are topologically
more separated and likely to be dynamically and functionally more independent from
each other. If Mij = 0, Lij is related to the cross-closeness centralities cijv via

Lij = 1
Ni

∑
v∈Vi

(
cijv

)−1
. (.)

Further measures

The selection of measures introduced above was chosen to be as concise as possible,
while at the same time representing all classes of commonly used network quantifiers.
Similar generalizations of other local and global network properties (like local random
walk betweenness, or global efficiency among many others (Albert and Barabási,
; Newman, ; Boccaletti et al., )), may be derived to quantify additional
nuances of the topology of interacting networks. Adaptations for directed and edge- or
vertex-weighted networks (Heitzig et al., , P) can also be deduced (Appendix A
and Wiedermann (); Wiedermann et al. (, P)). Similarly, it is possible
on the basis of our proposed framework to design measures to take into account
different qualities or functions of vertices and edges within or between subnetworks,
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e.g., the additional constraint that the functioning of vertices v ∈ Vi depends on the
functioning of vertices v′ ∈ Vj studied by Buldyrev et al. ().

... Surrogate models and significance tests for networks of
networks

When analyzing empirical networks of networks using the newly introduced tools
described in Section .., it is of major importance to identify those nontrivial
observed structural characteristics that cannot be explained by ensembles of random
surrogate networks subject to some boundary conditions such as fixed edge density,
fixed degree sequence, or fixed edge length distribution (Newman, ; Donges,
). Analogously to the method of surrogate data in time series analysis (Schreiber
and Schmitz, ), the aim of this exercise in statistical hypothesis testing is usually
to identify structures within the network that are unlikely to arise with respect to
the chosen random ensemble. These statistically significant structures are considered
potentially interesting and may be subjected to further analysis. A hierarchy of
surrogate tests can be constructed by imposing additional constraints on the random
ensemble in several steps to discover under which particular boundary conditions the
observed network’s properties of interest loose their statistical significance (Zamora-
López, ; Donges, ).
As for isolated networks, one can construct surrogates for networks of networks

to specifically study their interdependency structure in several steps (Schultz, ):
(i) To obtain a simple kind of surrogate for a given observed network of networks, the
cross-edge structure Eij is randomized conserving only the cross-edge densities ρij
for all pairs of subnetworks Gi, Gj . The corresponding null hypothesis is that a given
observed cross-characteristic can be explained solely by the subnetworks’ internal
edge-structure Eii and prescribed ρij . The expectation values for local and global
measures of cross-clustering and cross-transitivity with respect to this particular
random ensemble are given in Section ... (ii) A more restricted surrogate ensemble
with prescribed cross-degree sequences kijv for all vertices v ∈ Vi and all pairs of
subnetworks is readily generated using a random edge rewiring algorithm. This
ensemble is related to the configuration model (Newman, ) and may be used
to test the effect of the cross-degree sequences and/or distributions on higher-order
cross-characteristics like local and global cross-clustering, cross-transitivity, or cross-
betweenness. (iii) The next step in the surrogate hierarchy could now be constructed
in an iterative fashion, e.g., by additionally prescribing aspects of a spatial embedding
of vertices such as the cross-edge length distributions, depending on the research
question at hand.
It should be noted that the construction and analysis of ensembles of network

surrogates can be computationally demanding and algorithmically challenging, partic-

Like isolated networks, most relevant real-world networks of networks are spatially embedded, e.g.,
consider a power grid interacting with a communication network (Buldyrev et al., ). The
cross-edge length distribution pij(l) can be defined as the PDF of the lengths l of all cross-edges
in the set Eij
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Figure ..: Detail of a vertex-weighted spatial network G = (V,E) obtained by sampling from
an underlying infinite graph G0 = (V0, E0) defined on the -sphere, e.g., G could be
a climate network (Section .). In this example, V is a regular latitude-longitude
discretization of V0 as it is commonly found in gridded climate data. Hence, the
vertices i ∈ V (disks) represent differently sized shares wi (hatched areas) of the
domain of interest V0. In consequence, only the node splitting invariant degree
k∗v(G) (not the standard degree kv(G)) is a good estimator for the size of v’s
neighborhood kv(G0) in the domain of interest V0 (gray shaded area).

ularly given large networks and tight constraints on network structure (Zamora-López,
). These caveats can be circumvented at least for simple network models when
analytical results are available (see, e.g., Section .. and Chapter ). Further details
on surrogates for networks of networks and their applications in significance testing
are provided by Schultz ().

.. Vertex-weighted networks

In many networks of interest, vertices represent objects of heterogeneous size, weight,
or importance (Figs. . and .). Typical examples include networks describing
(i) statistical associations between climatological time series representing the dynamics
on differently sized portions of the Earth’s surface (climate networks, see Section .),
(ii) proximities between sampled state vectors in the phase space of a dynamical
system, possibly sampled at irregularly spaced points in time (recurrence networks,
see Chapters  and ), (iii) functional connections between regions of differing volume
in the human brain (Zhou et al., ), or (iv) cross-references between articles of
varying length and content in an online encyclopedia (Capocci et al., ). Following
the arguments of Heitzig et al. (, P), already from an intuitive point of view it
is evident that the results of a statistical network analysis will be distorted by this
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Figure ..: The operation of node splitting transforms a network G of size N into a network
G′ of size N + 1 by replacing a vertex s of weight ws with two linked vertices s′, s′′

of weights ws′ + ws′′ = ws. Additionally, s′, s′′ have the same neighborhood as s.

heterogeneity in node size, weight, or importance if the latter is taken into account
inappropriately or not at all (as is usually the case in the literature).
More precisely, usually one is actually interested in the connectivity structure of

a very large or even infinite set of objects of interest, i.e., a finite or infinite graph
G0 = (V0, E0). The typically finite set of vertices V of the available empirical network
G = (V,E) is often either a somehow selected or sampled subset of the larger set V0,
or is obtained from it by some discretization, aggregation, or coarse-graining (Fig. .).
E.g., given an empirical global climate network, where V is a finite collection of grid
points or measurement stations, the domain of interest V0 is the set of uncountably
many points on the Earth’s surface and, hence, the underlying network G0 has an
uncountably infinite number of vertices and edges.
Now the task is to estimate the characteristics of G0 given an empirical network

G together with scalar weights wv assigned to all vertices v ∈ V that are together
considered representative of G0. The concept of node splitting invariance is a con-
structive axiomatic approach designed to tackle this estimation problem (Heitzig
et al., , P). Assume that G and wv already provide a sufficiently informative
representation of the properties of G0. When edges symbolize some kind of similarity
(like a statistical association in climate networks), one would then expect that in
a further refinement G′ obtained from G by splitting a vertex s of weight ws into
two vertices s′, s′′ of weights ws′ + ws′′ = ws, those vertices would be linked, i.e.,
A′s′s′′ = 1, and have the same neighborhood as s: Ns′ = Ns′′ = Ns (Fig. .). In
other words, s′, s′′ represent objects in the domain of interest that are similar enough
to have been aggregated into s in the first place, hence, it is reasonable to assume
that they should be linked and have the same neighborhoods.

To derive consistently weighted variants of certain statistical network quantifiers of
interest, Heitzig et al. (, P) now require that the desired local and global measures
fv(G), f(G) are invariant under further refining node splitting operations, because the
empirical network G together with the weights wv is already considered representative
of G0: f(G) = f(G′), fv(G) = fv(G′) for all v 6= s, and fs(G) = fs′(G′) = fs′′(G′).
Furthermore, vertices are now considered as linked to themselves because they embody
a larger collection of similar and, thus, linked objects. This gives rise to the extended
adjacency matrix

A+
ij = Aij + δij , (.)
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unweighted degree (Arctic) unweighted clustering (Arctic)

n.s.i. degree (Arctic) n.s.i. clustering (Arctic)

Figure ..: Comparison of unweighted and weighted (node splitting invariant) versions of (A,C)
degree kv, k∗v and (B,D) local clustering coefficient Cv, C∗v in the northern polar
region (Lambert equal area projection) of a global climate network representing
correlations in temperature dynamics (Heitzig et al., , P). The high values at
the pole in (A,B) turn out to be an artifact of the increasing grid density toward the
pole, as demonstrated by (C,D). Moreover, the n. s. i. results in (C,D) are confirmed
by being virtually identical to results obtained for unweighted network measures
from data on an icosahedral grid with homogeneous vertex density (Chapter ).

where δij is Kronecker’s delta. Both demands induce a canonical construction
mechanism for transforming statistical measures from complex network theory to
their node splitting invariant (n. s. i.) counterparts(Appendix A and Heitzig et al.
(, P)). As a relatively simple characteristic, the n. s. i. degree

k∗v =
∑
i∈V

wiA
+
vi (.)

estimates the share of objects in the domain of interest that a vertex v ∈ V is
connected to (Fig. .). In turn, the n. s. i. local clustering coefficient

C∗v =
∑
i,j∈V wiwjA

+
viA

+
ijA

+
jv

(k∗v)
2 (.)

estimates the probability that two weight units (or points in terms of G0) drawn at
random from the part of the network linked to v are linked with each other (Fig. .).
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Even if the assumptions made above do not hold exactly for a given empirical
network, we can still use the derived n. s. i. measures for consistently incorporating
vertex weights into the statistical analysis. A typical example is analyzing a climate
network on a regular latitude-longitude grid (Figs. . and .). In this case, n. s. i.
measures serve to reduce distortions in local connectivity and transitivity properties
that are caused by the area represented by vertices decreasing towards the poles like
wv = cos(ϑv), where ϑv denotes the latitude of v (Fig. .). Note that for these
particular vertex weights arising in climate networks, the n. s. i. degree is closely
related to the heuristically defined area weighted connectivity (Tsonis et al., ).
Besides these more practical and applied benefits, the concepts of node splitting
invariance and vertex-weighted network measures are valuable from an epistemological
point of view. This is because they force the researcher to explicitly think about
and specify what underlying system G0 a given empirical network G is supposed to
approximate and how the properties of G0 can be estimated using G.

Heitzig et al. (, P) further exploit the concept of node splitting invariance for
deriving vertex-weighted versions of many other statistical quantifiers, algorithms,
and methods of complex network theory, while Wiedermann (),Wiedermann et al.
(, P) extend it to obtain consistently weighted cross-measures for investigating
networks of interacting networks with differently sized vertices (see also Fig. .).
Some relevant formulae are collected in Appendix A.

.. Summary

The basic concepts of complex network and graph theory have been introduced,
motivating their benefits for the analysis of real-world complex systems encountered
in many disciplines ranging from physics over biology and medicine to engineering.
Subsequently, the specific properties and intricacies of spatially embedded networks
appearing throughout this thesis have been discussed. Finally, we have put forward
novel conceptual frameworks for consistently investigating complex networks of
interacting or interdependent networks as well as general networks with weighted,
differently sized, sampled, or spatially embedded vertices.

Specifically, the area weighted connectivity AWCv =
∑

i∈V Aij cos(ϑi)/
∑

i∈V cos(ϑi) of Tsonis
et al. () does not include area contributions from vertex v itself and involves a normalization
term.
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Network-based data analysis

Es gibt, seit Tagen gibt es keinen Wind.
Vielleicht, weil der Schmetterling atmet,
bewegt sich die Luft und ändern die
Abendmaschinen den Kurs. Als ginge die
Landschaft verloren, so trostlos hast du
gesprochen, aber das stimmt nicht, du weißt
es, die ganze Zeit [. . .]

Jürgen Becker ()

.. Introduction

It has become popular recently in several fields of science to apply the wealth of
concepts and measures from complex network theory for the analysis of data that
is not given explicitly in network form. In network-based data analysis, a data set
at hand, e.g., consisting of time series such as electroencephalogram and climate
records or spatiotemporal point events such as earthquake aftershock swarms, first
has to be transformed to a network representation by means of a suitable algorithm
or mathematical mapping. We refer to the resulting networks quite generally as
functional networks in the course of this thesis, mainly to distinguish them clearly from
structural networks that are derived from systems with a more obvious graph structure,
e.g., social networks or power grids. Examples of functional networks include gene
regulatory networks in biology (Hempel et al., ), functional brain networks in
neuroscience (Bullmore and Sporns, ), climate networks in climatology (Donges
et al., b, P; Donges et al., a, P; Donges et al., b, P), or networks
of earthquake aftershocks in seismology (Davidsen et al., ).
As will be elaborated in the remainder of this chapter, the particular interest

and focus of this dissertation is on transformations from data to network that are
based on first principles and fundamental (physical) laws allowing the rigorous
analysis, interpretation, and understanding of the resulting network properties. In
this respect, the approaches of interest for this work are conceptually distinct from
rather application-oriented techniques such as neural networks (Haykin, ) and
(probabilistic) graphical models (Koller and Friedman, ) used for machine learning
and data mining mainly in engineering and computer science.
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The first part of this chapter, Section ., covers complex network approaches
for nonlinear time series analysis of single system, but possibly multivariate time
series. After giving a brief overview of the field, we specifically introduce recurrence
network analysis of time series and review related results and developments attained
recently. Secondly, network techniques for investigating spatiotemporal data like
point processes or fields of time series are presented, with a special focus on climate
networks reconstructed from fields of climatological time series such as surface air
temperature and other applications in the geosciences (Section .).

.. Single time series

... Overview

Analogies are a fundamental motor of innovation in physics and other disciplines,
since they foster the transfer of theoretical insights, results, and techniques from one
field to the other. In the last years, complex network theory has been particularly
successful in providing unifying concepts and methods for understanding the structure
and dynamics of complex systems in many areas of science, ranging from power grids
over social networks to neuronal networks (Chapter ). Similarly, nonlinear time
series analysis aims to gain insights into a wide variety of natural, technological,
and experimental dynamical systems drawing on a generic body of theory and
methods (Kantz and Schreiber, ; Pikovsky et al., ).

By exploiting analogies in the structure and mathematical description of complex
networks and dynamical systems, a number of new network-based techniques for
nonlinear time series analysis have been proposed recently (Donner et al., a,
P). The first class of these methods makes use of graph representations of sim-
ilarity relationships between state vectors or groups of state vectors (e.g., cycles)
in phase space. It includes transition networks based on a coarse-graining of phase
space (Nicolis et al., ), cycle networks (Zhang and Small, ), correlation
networks (Yang and Yang, ), k-nearest-neighbor (Shimada et al., ) and
adaptive nearest neighbor networks (Xu et al., ; Xiang et al., ), as well as
ε-recurrence networks (Marwan et al., , P; Donner et al., c, P). The
latter three techniques harness the fundamental analogy between the Poincaré recur-
rence structure (Poincaré, ) of a time series in phase space, which is commonly
represented by a binary recurrence matrix and allows us to recover basic dynamical
invariants of the underlying system (Marwan et al., ), and the binary adjacency
matrix describing a complex network. Other methods such as visibility graphs (Lacasa
et al., ) work in the time domain and focus on studying stochastic properties of
time series. In summary, all approaches mentioned above propose a mapping from
the time series to the network domain and then proceed to interpret the statistical

The potentials and pitfalls encountered when applying visibility graphs to the analysis of geo-
scientific data (Donner and Donges, b, P) as well as their use in devising novel ways for
detecting time-reversal asymmetry in general time series (Appendix B and Donges et al. (,
P); Donner and Donges (a, C)) have been explored during this thesis project.
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Figure ..: Realization of the Lorenz system (Eq. (.)) with parameters r = 28, σ = 10,
and β = 8/3 that is used for network construction in Fig. . (sampling time
∆T = 0.05).

properties of the resulting (usually complex) network in terms of the underlying
system’s dynamical properties.

An exhaustive treatment of all above mentioned techniques for network-based time
series analysis and their applications is far beyond the scope of this thesis and is
already provided elsewhere (Donner et al., a, P). Here, we restrict ourselves to
an illustrative visual comparison of the different network structures resulting from a
single realization of the paradigmatic Lorenz system

d

dt
(x, y, z) = (σ(y − x), x(r − z)− y, xy − βz) (.)

exhibiting chaotic dynamics and a strange attractor with complex geometry in phase
space (Figs. ., .). Notably, the networks resulting from all six distinct approaches
all display the characteristic double-scroll structure of the Lorenz attractor (Fig. .),
albeit for different reasons (Donner et al., a, P).

... Recurrence network analysis

Complementary views on Poincaré recurrence

Recurrence in phase space is a basic property of complex dynamical systems. Since
the seminal work of Poincaré (), it is known that under rather general conditions,
dynamical systems tend to return arbitrarily close to their previous states in the long-
term limit. In the last decades, the recurrence property has attracted considerable
interest, since it has been shown that essential information about the main dynamical
properties is contained in the temporal pattern of mutual recurrences of a state (Thiel
et al., ; Robinson, ). Particularly, the visual representations of recurrence
plots (Eckmann et al., ; Marwan et al., ) obtained from (multivariate) time
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A B

C

D

E

F

Figure ..: Illustration of the different types of time series networks all constructed from
the x-component of the same realization of the Lorenz system shown in Fig. .
(see Donner et al. (a, P) for details). (A) Cycle network, (B) correlation
network, (C) k-nearest neighbor network (asymmetric version), (D) ε-recurrence
network, (E) visibility graph, and (F) transition network. The graphs have been
embedded into an abstract two-dimensional space using a force-directed placement
algorithm (Battista et al., ). For panels (A)–(E), the vertex color indicates the
temporal order of observations (from orange to bright green), for the transition
network (panel (F)), colors correspond to the different x values. In panels (B) and
(D), some individual disconnected vertices have been removed from the network
representations.
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A B

Figure ..: (A) Phase space trajectory for a single realization of the Lorenz system (see
Fig. . for details). (B) Recurrence plot obtained from its embedded x-component
(embedding dimension m = 3 and delay τ = 3, see Section ..) using a recurrence
threshold ε = 2 and the supremum norm. The corresponding recurrence matrix
R(ε) is directly related to the adjacency matrix A(ε) of the ε-recurrence network
displayed in Fig. .D via Eq. (.).

series {x(ti)}Ni=1 with x(ti) ∈ Rm, have found wide use and are commonly expressed
by a binary recurrence matrix R(ε) with elements

Rij(ε) = Θ(ε− ‖x(ti)− x(tj)‖), (.)

where Θ(·) is the Heaviside function, ε a threshold distance in phase space used
for defining the neighborhood of a state vector x(ti) = xi, and ‖ · ‖ denotes some
norm acting on Rm. Given univariate observational or experimental time series
{x(ti)}, it is usually necessary to reconstruct the corresponding system’s trajectory
in some higher-dimensional phase space to recover its recurrence structure reliably
(e.g., by time-delay embedding (Packard et al., ; Takens, ), see Section ..).
Additionally, a Theiler window (Marwan et al., ) can be used to eliminate trivial
recurrences between temporally neighboring state vectors from R(ε) that are merely
due to the finiteness of ε and the trajectory’s continuity (tangential motion).
Recurrence plots typically show distinct line structures (Fig. .), the length

distributions of which can be used for defining suitable measures of complexity
in terms of recurrence quantification analysis (RQA), or for estimating dynamical
invariants such as the correlation dimension D2, the nd-order Rényi entropy K2, or
the generalized mutual information I2(τ) (Marwan et al., ). In the context of
paleoclimate research, recurrence plots and RQA have been successfully applied for
tracing dynamical changes (Trauth et al., ; Marwan et al., ) and aligning
records with different age-depth models (Marwan et al., ).
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Recently, it has been suggested to approach recurrence matrices from a complex
network perspective by identifying

Aij(ε) = Rij(ε)− δij (.)

(δij denoting Kronecker’s delta) as the elements of the adjacency matrix A(ε) of
a ε-recurrence network associated with the underlying time series (Marwan et al.,
, P; Donner et al., a, P). This fundamental analogy implies that each
sampled state vector is assigned to one of N vertices in the ε-recurrence network
(for brevity, the term recurrence network will sometimes be used in the following
to name the very same concept), where two vertices are linked if the corresponding
state vectors are recurrent, i.e., mutually close, in phase space. Due to the symmetric
definition of R(ε) (Eq. (.)), the resulting ε-recurrence network G = (V,E) is an
undirected and simple graph.

In contrast to RQA, which considers temporal dependencies between observations
in form of diagonal and vertical line structures in the recurrence plot, recurrence
network analysis discards all temporal information and solely quantifies the geometry
of the underlying set S (e.g., an attractor) (Donner et al., c, P; Donges et al.,
a, P), see Chapters  and .

Global ε-recurrence network measures

The statistical properties of ε-recurrence networks (parameterized by the single
parameter ε) have been shown to trace structures in phase space corresponding to
dynamically invariant objects (Donner et al., a, P; Donner et al., b, P)
as well as qualitative changes in the dynamical behavior of time series (Marwan et al.,
, P; Donner et al., a, P). For detecting bifurcations in time series, global-
scale characteristics from complex network theory are of particular interest (Newman,
; Boccaletti et al., ; Costa et al., ). Here, we introduce a set of measures
that are used for detecting dynamical transitions in model systems and paleoclimate
records in Chapters  and , and additionally give heuristic interpretations of their
behavior in terms of the dynamics of the underlying system. A more rigorous
interpretation of the following and other statistical network measures in the context
of ε-recurrence network analysis is provided in Chapter .

Edge density ρ measures which fraction of the maximum theoretically possible
number N(N − 1)/2 of undirected edges is present in the ε-recurrence network,

ρ = 1
N(N − 1)

∑
i,j∈V

Aij . (.)

Note that similar approaches can also be found in other geoscientifically relevant applications of
data analysis, such as dendrograms in agglomerative cluster analysis, or nonlinear decomposition
of multivariate data using isometric feature mapping (Gámez et al., ).
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It is equivalent to the recurrence rate RR in traditional RQA (Marwan et al., ,
P).

Transitivity T of an unweighted and undirected network characterizes the overall
probability that two randomly chosen neighbors of an also randomly chosen vertex
are connected (Newman, ),

T =
∑
i,j,k∈V AijAjkAki∑
i,j,k∈V ;i6=j AikAjk

. (.)

In recurrence network analysis, T serves as a measure for the regularity of the
dynamics as encoded in the ε-recurrence network’s mesoscopic structure (Donner
et al., a, P). Specifically, regular dynamics (e.g., on a periodic orbit) is typically
characterized by higher values of the transitivity T than chaotic dynamics (it will be
shown below that T is closely related to a specific notion of dimensionality of the
underlying attractor in phase space). When dealing with short time series (segments),
e.g., typical paleoclimate records, transitivity is a more robust measure than the
related global clustering coefficient C (Watts and Strogatz, ; Newman, ),
since the latter gives relatively more weight to sparsely sampled regions in phase
space (vertices with low degree kv, Eq. (.)) (Donner et al., a, P; Donner
et al., a, P).

Average path length L is defined as the mean value of the shortest-path lengths
dij between all mutually reachable pairs of vertices (i, j) (see Section .),

L = 〈dij〉i,j∈V :P(i,j)6=∅ . (.)

Since for comparable values of ε the average distances along different types of orbits
typically differ significantly, changes in L can be used as sensitive indicators of
dynamical transitions (Marwan et al., , P; Donner et al., a, P). Refer
to the definition of cross-average path length in Section .. for a discussion of
alternative treatments of networks with more than one component.

Assortativity A network is called assortative if vertices tend to connect preferentially
to vertices of a similar number of connections (degree kv). On the other hand, it is
called disassortative if vertices of high degree prefer to link to vertices of low degree,
and vice versa (Newman, ). This assortativity property can be quantified by the
Pearson correlation coefficient

A =
1

2L
∑
i,j∈V kikjAij −

(
1

2L
∑
i,j∈V

1
2(ki + kj)Aij

)2

1
2L
∑
i,j∈V

1
2(k2

i + k2
j )Aij −

(
1

2L
∑
i,j∈V

1
2(ki + kj)Aij

)2 (.)

between the degrees ki, kj of the vertices on both ends of all L edges (Costa et al.,
). In the recurrence network context, A can be considered as a measure for the
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local continuity of the phase space density of state vectors (Donner et al., a,
P).

Diameter D is the maximum geodesic (shortest-path) distance between all mutually
reachable pairs of vertices in the network (Newman, ),

D = max
i,j∈V :
P(i,j)6=∅

(dij) . (.)

From this definition, there are obvious relationships with the average path length
L, which are expected to lead to correlations between both measures (Donner et al.,
a, P).

Theoretical results and applications

Recently, ε-recurrence networks have been demonstrated to be a useful tool in diverse
applications of nonlinear time series analysis ranging from model systems (Marwan
et al., , P; Donner et al., a, P; Donner et al., c, P; Donner et al.,
b, C; Senthilkumar et al., ; Donner et al., a, P; Donner et al., b,
P; Zou et al., , P; Li et al., ; Strozzi et al., ; Zou et al., )
via experimental data (Gao and Jin, b; Gao and Jin, a; Gao et al., ;
Marwan et al., b) to recent and (paleo)climate records (Marwan et al., ,
P; Donner et al., a, P; Donges et al., a, P; Donges et al., c,
P; Hirata et al., ) as well as financial time series (Donner et al., b, C).
They allow one to uncover complex bifurcation scenarios (Marwan et al., , P;
Donges et al., a, P) and to reliably distinguish between chaotic and non-chaotic
dynamics (Zou et al., , P). Furthermore, the local and global transitivity
characteristics of ε-recurrence networks have been shown to enable the tracing of
unstable periodic orbits (Donner et al., c, P) as well as the definition of notions
of fractal dimension (Donner et al., b, P) independently of earlier approaches
(see below).

An important advantage of nonlinear ε-recurrence network analysis of time series
is that it performs well in the detection of dynamical transitions within significantly
shorter time series (O(102) data points (Marwan et al., , P; Zou et al., ,
P; Donges et al., a, P)) than required by classical techniques such as
estimating the maximum Lyapunov exponent from data (Abarbanel, ; Kantz
and Schreiber, ). This renders ε-recurrence networks readily applicable to the
analysis of non-stationary real-world data (Chapter ). The method has also been
applied successfully to time series with irregular sampling and/or uncertain timing of
observations that are commonly found in the geosciences or in astrophysics (Donges
et al., a, P; Donges et al., c, P), see Chapters  and .
Notably, ε-recurrence network analysis has recently been extended to allow the

investigation of interrelationships between two or more (multivariate) time series
generated by distinct dynamical systems (Appendix C). Inter-system recurrence net-
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Figure ..: Estimation of the transitivity dimensions D̂u,l
T for the generalized baker’s map

(Eq. .) at α = 1/2 and λa = λb = 1/4 for different N . Gray horizontal lines
indicate numerical estimates of Du,l

T obtained with N = 30, 000 data points at
small ε. See Donner et al. (b, P) for details.

works have been shown to enable detecting the coupling direction between interacting
dynamical systems (Feldhoff et al., , P) by exploiting the intrinsic asymmetry of
the coupled network measures cross-transitivity and global cross-clustering coefficient
(Section ..), while certain features of joint recurrence networks are sensitive to
complex synchronization regimes like generalized synchronization (Feldhoff et al.,
, P).

Transitivity-based dimensions

Interestingly, transitivity-based measures like transitivity T and local clustering
coefficient Ci computed from ε-recurrence networks are closely related to the underlying
attractive set’s effective dimensionality. For a smooth d-dimensional manifold S ⊆ Rm,
it can be shown that the expectation values of the measures are

E(T ) = E(Ci) =
(3

4

)d
(.)

when using the supremum norm in phase space (Donner et al., b, P). Focussing
on the global network measure transitivity, for continuous-time systems this implies
E(T ) = 3/4 for a periodic orbit, but T < 3/4 is observed for chaotic dynamics
on strange attracting sets (Marwan et al., , P; Donner et al., c, P).
This behavior motivates defining a novel notion of global dimensionality based on T .
However, it turns out that it is not sufficient to simply solve Eq. (.) for d given any
recurrence threshold ε, since self-similar (fractal) features of the studied set of state
vectors in phase space typically lead to oscillations of T with changing ε (Fig. .).
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These oscillations can be taken into account by defining an upper transitivity
dimension D̂u

T together with a lower transitivity dimension D̂l
T (the hat D̂ indicates

that these measures are estimators of the true transitivity dimensions derived from
continuous ε-transitivity, see Chapter  and Donner et al. (b, P)):

D̂u
T = max

ε∈E

log T (ε)
log(3/4) , (.)

D̂l
T = min

ε∈E

log T (ε)
log(3/4) . (.)

These can be estimated from a sufficiently long sampled trajectory for a suitably
large set E of different values of ε that are as small as possible while still providing
sufficiently large values of ki to avoid problems due to lack of neighbors in low density
regions of phase space (Donner et al., b, P). Notably, the number of data
points needed for reliably estimating transitivity dimensions is significantly larger
than that required for detecting dynamical transitions in time series (see above). In
both applications, this number depends strongly on the dimension of the considered
phase space (see the arguments given in Smith ()).

For illustration, we estimate the newly defined upper and lower transitivity dimen-
sions with analytically calculated bounds as well as established measures of (fractal)
dimensionality like the box-counting, information, or correlation dimensions (Rényi
dimensions D0,1,2 of order ,,, respectively (Hentschel and Procaccia, )) for
the prototypical generalized baker’s map

xn+1 =
{
λaxn if yn < α,
(1− λb) + λbxn if yn > α,

yn+1 =
{
yn/α if yn < α,
(yn − α)/(1− α) if yn > α

(.)

with α < 1, λa, λb > 0 and λa + λb ≤ 1 (Farmer et al., ; Ott, ). This
exercise reveals that the newly defined transitivity dimensions are well-behaved and
vary consistently with the classical Rényi dimensions (Fig. .). However, it should
be stressed that computing the latter typically involves the problematic task of
estimating power law exponents γ from functions of the form εγ (Stumpf and Porter,
) (Eq. (.)), while the estimation of transitivity dimensions simply requires
finding the minimum and maximum of a sequence T (ε) (Eq. (.) and Fig. .).
It is instructive in this context to compare the definitions of the correlation and

transitivity dimensions in a common notation. Given a set of points xi ∈ Rm,
i = 1, . . . , N , the correlation dimension D2 can be estimated as a scaling exponent of
the correlation sum C(ε) (which is directly related to the corresponding ε-recurrence
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Figure ..: Dependence of several global measures of dimensionality on the parameter α
(λa = λb = 1/4) of the generalized baker’s map (Eq. .): Upper and lower
transitivity dimensions D̂u,l

T , Rényi dimensions D0,1,2, and Lyapunov dimension
Dmax
L . One realization has been considered for each value of α. The gray line

corresponds to an analytically calculated lower bound of Du
T . Numerical estimates

have been obtained with N = 15, 000 data points, and results are robust for various
choices of N (Fig. .). See Donner et al. (b, P) for details.

network’s link density ρ(ε) (Donner et al., c, P))

C(ε) = 1
N2

N∑
i,j=1
i6=j

Θ (ε− ‖xi − xj‖) , (.)

which scales like

C(ε) ∝ εD2 (.)

for small ε (Grassberger and Procaccia, ). In turn, the recurrence network
transitivity (Eq. (.)) can be written as

T (ε) =

∑N
i,j,k=1
i6=j 6=k

Θ (ε− ‖xi − xj‖) Θ (ε− ‖xj − xk‖) Θ (ε− ‖xk − xi‖)∑N
i,j,k=1
i6=j 6=k

Θ (ε− ‖xi − xj‖) Θ (ε− ‖xi − xk‖)
. (.)

Introducing a scale-dependent transitivity dimension D̂T (ε) (see Fig. .) yields

T (ε) =
(3

4

)D̂T (ε)
(.)
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when using the supremum norm. Comparing Eqs. (.) and (.) suggests that
independently from the graph-theoretical background of recurrence network analysis,
T (ε) can be viewed as phase space transitivity, a generalization of the correlation sum
C(ε) (or correlation integral, when using the continuous ε-transitivity introduced in
Chapter  and Donner et al. (b, P)). However, and interestingly, for fractal sets
of points both quantities show a fundamentally different behavior with decreasing scale
parameter ε, i.e., a power-law decrease for C(ε) and oscillations for T (ε), requiring
distinct approaches for estimating the related dimensions (Eqs. (.), (.), and
above discussion).
Similarly to the global transitivity dimension, local clustering dimensions can be

defined based on the local clustering coefficient Ci in Eq. (.), e.g., for tracing
invariant objects in phase space (Donner et al., b, P). Furthermore, the above
introduced notions of transitivity-based dimensions can be readily generalized to
obtain a sequence of higher-order dimensionality measures analogous to the Rényi
dimensions (Appendix D).

.. Spatiotemporal data

... Overview

Besides network-based approaches for investigating (multivariate) time series from
isolated dynamical systems (Section .), much efforts have been spent for developing
network techniques for analyzing data from spatially extended systems like the
mammalian brain or the Earth’s climate system. In these data sets, observations and,
consequently, vertices of the resulting functional networks are usually embedded in
four-dimensional space-time. This is in contrast to the time series networks discussed
in the previous section, where in most approaches vertices are either embedded in
abstract phase space or on the time axis.

In methods designed for analyzing data in the form of fields of time series, networks
are commonly constructed using measures of statistical association from linear (Brock-
well and Davies, ) and nonlinear time series analysis (Sprott, ; Kantz and
Schreiber, ). Examples include functional brain networks constructed from elec-
troencephalogram (EEG) or functional magnetic resonance imaging (fMRI) data in
the neurosciences (Zhou et al., ; Zamora-López et al., ; Zamora-López et al.,
), gene expression networks (Hempel et al., ), climate networks derived from
climatological observables (Section ..), or functional networks describing statistical
interrelationships between stock indices in finance (Bonanno et al., ). Most works
rely on “naively” quantifying the similarity of time series using measures like Pearson
correlation or mutual information. Measures of different types of synchronization
like phase or generalized synchronization are also frequently used (Pikovsky et al.,
; Boccaletti et al., ; Arenas et al., ). Moreover, there is an increasing





.. Spatiotemporal data

interest in networks representing causal relationships in the data, i.e., excluding the
influence of auto-dependencies, indirect coupling, or common-driver effects on the
association measure. A commonly used, classical linear and parametric approach to
this task is Granger causality (Granger, ). Modern non-parametric techniques
drawing on information theoretic ideas include transfer entropy (Schreiber, ) and
partial mutual information (Frenzel and Pompe, ). A common drawback of these
causality measures is that they are hard to estimate in practice, particularly given
large sets of relatively short and noisy real-world times series which are typically
encountered in the construction of functional networks from data. Recently, Runge
et al. () proposed an efficient algorithm based on the framework of graphical
models for consistently estimating multivariate transfer entropy in such problematic
situations.
Particularly in the geosciences, research has focussed on the network analysis

of spatiotemporal point events or point processes, where in contrast to the time
series data discussed above, no underlying continuous process exists even in idealized
situations. For example, network approaches have been used for unveiling the
complex spatiotemporal dependencies between earthquakes and their aftershock
sequences (Abe and Suzuki, ; Davidsen et al., ; Jiménez et al., ) as well
as for investigating possible long-range interactions between active volcanos (Nunnari
et al., ). Other application of network theory to geoscientific problems include
the study and/or modeling of diffusion processes in porous and disordered soils and
rocks (Yang, ; Santiago et al., ), erosion processes (Winter and Damron,
), and transport in river networks (Zaliapin et al., ) or systems of rock
fractures (Berkowitz, ).
The following section attempts to provide a comprehensive review of research in

the rapidly developing field of climate network analysis that has been missing in the
literature so far. This review includes and puts into context own work on general
climate network structure and construction (Donges et al., a, P; Donges et al.,
b, P; Donges, ; Heitzig et al., , P), regional climate networks (Donges,
), the signature of qualitatively distinct El Niño episodes (Zou et al., , P;
Radebach et al., subm. P) as well as climate network visualization (Tominski et al.,
, P). Particularly, it sets the stage for the coupled climate networks (Donges
et al., b, P) that are introduced in Chapter .

... Climate network analysis

Historical background

Climatologists have been long interested in studying correlations between climatologi-
cal variables for gaining an understanding of the Earth’s climate system’s large-scale
dynamics (Katz, ). Pioneering work in this field was done by Sir Gilbert T.

As is common practice in the time series analysis literature, we use the notion of causality in
a loose sense. Strictly, it is clearly impossible to infer a causal relationship from statistical
reasoning alone.
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Earth system Recording sites

Time series dataFunctional climate network

Graph theoretical analysis

1

2

3

4

5
Climate network 

analysis

Figure ..: Illustration of the workflow of climate network analysis (note the analogies to
Bullmore and Sporns (, Box ) concerning the analysis of structural and
functional brain networks). At step , a discretized time series representation
{xi(t)}Ni=1 of the climatological field(s) of interest is chosen that is usually dictated
by the available gridded or station data. At step , coupling metrics Cij are estimated
for quantifying statistical interdependencies between pairs of climatological time
series. At step , the construction of a functional climate network from the similarity
matrix Cij typically involves some thresholding criterion (see Tominski et al. (,
P) for details on the climate network shown here). At step , the obtained climate
network is subjected to graph-theoretical analysis drawing on the toolbox of complex
network theory. Finally, at step , the results of this analysis need to be interpreted
in terms of the underlying dynamical system, the Earth, for extracting novel insights
as well as iteratively refining the employed analytical tools.





.. Spatiotemporal data

Walker in the beginning of the th century while attempting to find precursory
patterns for Indian monsoon events using statistical methods (Walker, ), which
culminated in the discovery of the tropical Walker circulation and the Pacific Southern
Oscillation (a part of the El Niño-Southern Oscillation known as ENSO). Later, the
rapid increase in available computing power allowed to investigate the correlation
structure of global or regional climatological fields {xi(t)}Ni=1 such as surface air
temperature, pressure, or geopotential height. Here, i is a spatial index, e.g., labeling
meteorological measurement stations or grid points in an aggregated data set (see
Section .), and t denotes time. The aim is to find spatial as well as temporal
patterns accounting for a large fraction of the field’s variance, commonly relying on
established linear methods such as principal component analysis (termed empirical
orthogonal function (EOF) analysis in climatological parlance), singular spectrum
analysis (Kutzbach, ; Wallace and Gutzler, ; Vautard and Ghil, ; Storch
and Zwiers, ; Mudelsee, ), or nonlinear extensions thereof (Hsieh, ).

Climate network construction

The first functional network analysis of fields of climatological time series {xi(t)}Ni=1
was presented by Tsonis and Roebber (), introducing the term climate network.
Climate network analysis offers a complementary view and novel insights by trans-
ferring the toolbox of measures and algorithms from complex network theory to the
study of climate system dynamics (Fig. .). Since the field is still in a nascent stage,
we will, in the following, attempt to give a comprehensive overview of the relevant
literature. In all works considered here, climate networks are simple graphs consisting
of N spatially embedded vertices i that correspond to time series {xi(t)} represent-
ing proxy reconstructions (Rehfeld et al., in press), observations (obs.), reanalyses
(rean.), or simulations (mod.) of climatological variables at fixed measurement sta-
tions, grid cells, or certain predefined regions. Edges {i, j} represent particularly
strong and/or significant statistical interdependencies between two climate time series
{xi(t)}, {xj(t)}, where usually some kind of filtering procedure is applied first to
reduce the effects of the annual cycle (Donner et al., ). Put differently, for some
pairwise measure of statistical association Cij , a climate network’s adjacency matrix
is given by

Aij =
{

Θ (Cij − Tij) if i 6= j,

0 otherwise,
(.)

where Tij denotes a threshold parameter and Aii = 0 is set for all vertices i to exclude
self-loops. Usually, the threshold is fixed globally, i.e., Tij = T for all vertices i, j.

Note that the term climate network is also used in distinct contexts that are unrelated to graph
theory or data analysis, e.g., for describing collections of climatological/weather observation
stations like the Greenland climate network (Steffen and Box, ) or associations of polit-
ical organizations dealing with anthropogenic climate change such as the Climate Network
Europe (Raustiala, ).
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Tij may be set for each pair individually to only include edges with values of Cij
exceeding a prescribed significance level, e.g., determined from a statistical test using
surrogate time series (Paluš et al., ). In most studies, symmetric measures of
statistical interdependencies Cij = Cji have been considered, leading to undirected
climate networks. However, Malik et al. () and Gozolchiani et al. () recently
exploited asymmetries in the cross-correlation function as well as in a measure of
event synchronization to reconstruct directed climate networks.

A careful and differentiated treatment of the construction, graph-theoretical analysis,
and interpretation (Steps , , and  in Fig. .) of climate networks has been
provided by Radebach (). Finally, when considering the results of climate network
studies summarized in the following sections, it is important to bear in mind that
certain properties of functional networks (like climate networks or functional brain
networks), e.g., the small-world property, can be spuriously induced by the network’s
spatial embedding and/or the statistical association measures used for network
reconstruction (Bialonski et al., ; Bialonski et al., ). An overview of relevant
studies on climate networks is compiled in Table ..
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Studies on basic topology and methodological options

The first functional network studies of climatological data reported global properties
like the small-world effect, scale-free like degree distributions, typical edge length
distributions as well as distinctively different large-scale network structure in the
tropics and extratropics (Tsonis and Roebber, ; Tsonis et al., ; Tsonis, ).
A detailed study of the local structural characteristics and vertex centralities in
surface air temperature climate networks (Donges et al., a, P) led to the
discovery of a pronounced geodesic backbone (Fig. .) in the field of shortest-path
betweenness centrality that is possibly related to a significantly increased matter and
energy flow in major oceanic and atmospheric circulation patterns (Donges et al.,
b, P). Recent results support this view by studying numerical fluid dynamical
experiments (Kutza, ) as well as theoretically showing in a simplified setting
that edges parallel to the main direction of flow are typically longer than those
perpendicular to it (Molkenthin et al., ). Also considering the basic topology of
climate networks, Berezin et al. () focussed on investigating the temporal stability
of their structure, while Steinhaeuser () compared the inter- and intra-model
variability of climate network topology based on simulations from multiple climate
models and evaluated the effect of model resolution on larger-scale structural features.
Other studies concentrated on exploring and comparing various options for con-

structing climate networks. Linear Pearson correlation applied to temporally aggre-
gated data (Gong et al., ) as well as ordinal pattern mutual information have been
used to construct networks representing statistical associations in climate dynamics
on different time scales (Barreiro et al., ). The performance of several linear
and nonlinear measures Cij has been compared (Donges et al., a, P; Pelan
et al., ) and the effect of the common auto-dependencies in climatological time
series investigated (Paluš et al., ). Runge et al. (); Ebert-Uphoff and Deng
(a); Ebert-Uphoff and Deng (b) discussed the potentials for inferring climate
networks mapping causal dependencies between time series (see the comments in
Section ..). An overview of methodological options for constructing and analyzing
climate networks has been given by Steinhaeuser et al. (b) and Zou et al. (,
P).

Regional studies

A small number of climate network studies focussed on regional climatological phe-
nomena relying on meteorological station data or high resolution gridded fields
from reanalysis projects or simulations, e.g., covering Japan (Donner et al., ),
China (Wang and Tsonis, ), South Asia (Malik et al., ), Korea (Jung et al.,
), the Indian (Donges, ) and North Atlantic Oceans (Guez et al., ), and

Analogously, shortest-path betweenness centrality can be interpreted as a measure of information
flow in complex brain networks under the assumption that signals travel preferentially on shortest
paths (Bullmore and Sporns, ). In the context of climatological fields, the term information
flow can be used to describe the advective or diffusive transport of fluctuations from one location
to the other (Vastano and Swinney, ).
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Figure ..: Visualization of a global surface air temperature climate network taking into account
the spatial embedding of vertices on the Earth’s surface (Tominski et al., , P).
Vertex color and size encode degree kv (green: small, red: large) and shortest-path
betweenness centrality bv, respectively (visualization created with CGV (Tominski
et al., )). Edge color interpolates between the colors of both vertices adjacent
to each edge. The network has been filtered by masking out vertices and edges with
small shortest-path (edge) betweenness to reveal its geodesic backbone (Donges
et al., b, P), the most central regions and their interdependencies in terms
of shortest paths connecting different parts of the network.
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Figure ..: Structural characteristics (A) n. s. i. degree k∗v and (B) n. s. i. shortest-path between-
ness b∗v on a decadal log scale (Appendix A) for a regional climate network for
Germany constructed from observational weather station data of daily mean surface
air temperature covering the years  to . The raw data was provided by
the German Weather Service and subsequently processed for improving its quality
and consistency (Werner and Gerstengarbe, ). Pearson correlation at zero lag
Pij was used as the measure of statistical association and a global threshold T was
selected to yield an edge density ρ ≈ 0.01 (Tominski et al., , P). To account
for the inhomogeneous distribution of meteorological stations (vertices, black dots)
over Germany, the node splitting invariant network measures are computed using
as weights wi the area of the Voronoi cell (colored polygons) associated to each
vertex.

the Arctic (Wiedermann, ; Heitzig et al., , P). Climate networks constructed
from observational data over Germany have been investigated by Tominski et al.
(, P) and Rheinwalt (); Rheinwalt et al. (). Among others, notable
features in a regional climate network constructed from daily surface air temperature
(SAT) data over Germany include: (i) a pronounced northeast to southwest gradient
in n. s. i. degree k∗v pointing at a comparably larger correlation length in the SAT
field over the North German Plain (Fig. .A) as well as (ii) structures of large n. s. i.
shortest-path betweenness b∗v that locally coincide with orographic features such as
the Black Forest or the Middle Rhine Highlands (Fig. .B). Furthermore, Rheinwalt
(); Rheinwalt et al. () devised and applied a surrogate-based method for
eliminating the boundary effects unavoidably arising in regionally limited networks
(see Section . and Chapter ).
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Signature of large-scale modes of climate dynamics

Uncovering and understanding the signatures of large-scale modes of climate variability
like the El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO),
and other major teleconnection patterns, or the Asian monsoon in climate data is
of paramount interest for climate network research. Linking this novel approach of
climate data analysis to more classical techniques, Tsonis et al. (b) investigated
the imprints of known teleconnection patterns defined by classical EOF analysis
on climate network structure, and among others identified prominent supernodes
(vertices with large degree kv) related to NAO and the Pacific-North American (PNA)
pattern. Donges () pointed out some formal connections between the degree
and eigenvector centralities of climate network analysis and the empirical orthogonal
functions commonly studied in climatology. Furthermore, climate networks have
been used to devise novel approaches for discovering known as well as previously
unknown dipole structures in climate variability (Kawale et al., ; Steinhaeuser,
) that are conceptually similar to the classical teleconnection patterns of Wallace
and Gutzler ().

The pronounced global effects of ENSO on the statistical interdependency structure
of various climatological fields as represented by climate networks constructed from
moving time windows (evolving climate networks) or data separated into El Niño
and La Niña episodes have been studied by several authors (Gozolchiani et al., ;
Tsonis and Swanson, ; Yamasaki et al., ; Yamasaki et al., ; Wang et al.,
; Marwan et al., a, C; Radebach, ; Berezin et al., ; Carpi et al.,
; Gozolchiani et al., ; Paluš et al., ; Zou et al., , P; Radebach
et al., subm. P). One main finding is that climate dynamics appears to become more
spatiotemporally complex and, hence, less predictable during El Niño events (Tsonis
and Swanson, ; Yamasaki et al., ). Moreover, investigating the behavior
of global characteristics of evolving climate networks like transitivity T or average
path length L, Radebach et al. (subm. P) were able to disentangle the signatures of
La Niña events, volcanic eruptions, and distinct types of El Niño episodes, namely
Eastern Pacific and Central Pacific events.

Similarly, climate networks have been employed to study the temporal evolution and
global imprints of the North Atlantic Oscillation (Guez et al., ; Paluš et al., ).
They furthermore provide valuable insights into the spatial organization, scales, and
structure of extreme rainfall events during the Indian summer monsoon, identifying,
inter alia, water vapor pathways and decadal-scale moisture sinks over the South
Asian region (Malik et al., ). Tsonis et al. () used a climate network-like
approach to detect global climate shifts during the th century based on a small
number of climate indices describing the dynamics of large-scale modes like ENSO or
NAO.
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Community structure

Searching for community structure (Fortunato, ) in climate networks is a promis-
ing data-driven approach for dividing the Earth’s climate system into dynamically
related regions. Studies based on univariate (Tsonis et al., ; Steinhaeuser et
al., ) and multivariate (Steinhaeuser et al., a) data as well as employing
different algorithms for community detection in networks reported a small number of
robust significant communities for most climatological variables. This suggests that
the complexity of the climate system may reduce to a small number of interacting
components beyond synoptic time scales (Tsonis et al., ). From a methodological
point of view, it can be argued that network-based community detection is better
suited for climate data analysis tasks such as defining climate indices than classical
methods like k-means clustering algorithms (Steinhaeuser et al., a; Steinhaeuser
et al., a).

Predictions

While most research on climate networks has been of a descriptive nature, the
information on complex interrelationships in climate dynamics contained in the
networks can be exploited for making predictions. Climate indices derived from
significant communities detected in climate networks have been successfully used
for predicting regional climate variability (Steinhaeuser et al., b) and enabled
significantly better predictions than standard clustering algorithms applied directly to
the underlying climate data (Steinhaeuser et al., a; Pelan et al., ). Without
relying on community detection, probabilistic graphical models allowed to construct
climate networks with predictive power (Das and Srivastava, ; Banerjee, ).
Furthermore, Malik et al. () drew on directed climate networks for forecasting
monsoonal rainfall events on short time scales. In contrast to the previously mentioned
studies that focussed on predictions of climate time series, a comparison of methods
for predicting the appearance or disappearance of edges in evolving climate networks
has been presented by Davis et al. ().

Multivariate and coupled climate networks

One option for condensing information from more than one climatological observable
in a climate network is to define edges based on statistical interdependencies between
multivariate time series describing the dynamics of multiple observables recorded
at the same locations/vertices. For example, Steinhaeuser et al. (a) analyzed a
climate network constructed from surface air temperature, pressure, relative humidity,
and precipitable water to extract regions of related climate variability (see above).
In contrast to this multivariate approach, coupled climate networks are designed to
represent statistical dependencies within and between multiple climatological fields
or within and between different regions (Chapter ). For this purpose, all univariate
time series from each of the involved climatological fields are associated to vertices
in the resulting network. Coupled climate networks have been applied for studying
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interactions between Earth system tipping elements (McKechnie, ), the Earth’s
atmosphere’s general circulation structure (Schultz, ; Donges et al., b, P),
processes linking climate variability in the North Atlantic and North Pacific regions
via the Arctic (Wiedermann, ), and global atmosphere-ocean interactions (Feng
et al., ). The theoretical foundations for studying coupled climate networks are
elaborated in Section ..

Challenges in estimating climate network properties and their solutions

In the many climate network studies relying on regular latitude-longitude grids or
station data (Table .), vertices typically represent differently sized shares of the
Earth’s surface, i.e., they carry non-uniformly distributed weights (Section .).
To correct for the resulting distortions in standard measures of complex network
theory, Tsonis et al. () first proposed an area-weighted version of the degree
centrality. Extending and generalizing this idea, a framework for deriving consistently
weighted versions of any network property of interest based on the concept of node
splitting invariance has been developed and validated in the context of climate
network analysis (Heitzig et al., , P) (see Fig. .). Consistently weighted
variants of interacting network measures have been shown to be relevant for the
investigation of coupled climate networks (Wiedermann, ; Wiedermann et al.,
, P), particularly when studying local network properties close to the poles,
where the vertex density of regular latitude-longitude grids varies most strongly with
latitude (Wiedermann, ; Heitzig et al., , P) (see Figs. . and .).

Since a climate data set is a discrete representation of a spatially continuous field,
the resulting climate network properties should not depend strongly on the chosen
spatial resolution. This was shown to be indeed the case, as long as the number of
vertices N is large enough (Sexton, ).

Another factor potentially distorting the statistical analysis of climate networks
is the local spatial correlation structure of most climatological variables, i.e., the
dynamics at neighboring locations is usually more similar than that at more distant
points (Radebach et al., subm. P). A modified version of the local clustering coefficient
that aims to correct for this effect has been introduced by Tsonis et al. (a). As
an alternative and more general approach to solve this problem, ensembles of network
surrogates with a prescribed edge length distribution p(l) may be used to test for
the effect of spatial correlations on any climate network property of interest (Donges
et al. (, P) and Section .).

Visualization

For complementing the analysis of climate networks, it is beneficial to directly visualize
their structure either including or discarding the spatial embedding of vertices. In the
spirit of explorative data analysis, this procedure can be helpful for gaining an overview
of the network structure, discovering traces of underlying climatological processes, and
generating hypotheses that can then be tested by other means. However, visualizing
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the full network structure is usually only feasible for networks with a small number
of vertices, e.g., in the climate network constructed from  Japanese weather station
records by Donner et al. (). Larger networks, such as those usually encountered
in climate network studies (Table .), typically lead to cluttered views that obscure
most useful information (Feng et al., , Fig. ). One solution to enable the visual
exploration of large climate networks in the face of these problems is interactive
visualization involving techniques like edge bundling (Fig. ., lower left panel) or
filtering for vertices and edges that do not meet prescribed requirements such as
centrality, size, or length (Tominski et al., , P) (Fig. .).

.. Summary

This chapter provided an overview of methods for the complex network-based analysis
of both isolated time series and spatiotemporal data sets. While we emphasized
theoretical and methodological aspects, a review of applications has been given
focussing on geoscientific studies that are (sometimes remotely) related to Earth
system analysis. Concerning isolated time series, special attention has been payed to
recurrence network analysis, a versatile nonlinear technique that can be, among other
uses, harnessed for detecting subtle dynamical transitions in time series or defining
novel measures of dimensionality of chaotic attractors and general point sets. With
respect to spatiotemporal data sets such as climatological fields, special focus was
put on providing a thorough review of research in the rapidly developing field of
climate network analysis. This review included own work on general climate network
structure and construction, regional climate networks, the signature of qualitatively
distinct El Niño episodes as well as climate network visualization. Particularly, it set
the stage for the coupled climate networks introduced in Chapter .





Chapter .

A general analytical framework for
describing spatial networks

.. Introduction

Most kinds of data-based networks proposed so far, e.g., the recurrence and climate
networks reviewed in the previous chapter, are spatial networks (Barthélemy ()
and Section .), since vertices are embedded either in phase space, on the time axis,
or in real physical space. This implies that general results obtained for this large class
of networks representing many of the complex systems found in nature, technology,
and society are applicable to time series networks as well. Following Donges et al.
(, P), the main aim of this chapter is to introduce and apply for the first time
an analytical theory for recurrence network analysis of time series (Section ..).
However, the concepts and measures developed here can be readily generalized to
describe the structure of a wider class of spatial networks, e.g., random networks with
an arbitrary prescribed edge length distribution pl(l) = p(l) (Section .), which
is of interest for statistically investigating and modeling climate networks and other
types of networks encountered in Earth system analysis.
As discussed in Section ., all methods of network-based time series analysis

first construct a mapping from time series to network space and, subsequently,
attempt to interpret the statistical characteristics of the resulting (typically complex)
networks in terms of the properties of the underlying dynamical system. While these
interpretations are mostly based on empirical findings for paradigmatic model systems
and heuristic arguments, only a few rigorous results are available. So far, Lacasa et al.
() have pointed out a relationship between the scaling exponent of the degree
distribution pk(k) ∝ k−γ in visibility graphs constructed from fractional Brownian
motion and the Hurst exponent. Exact results are also available for horizontal visibility
graphs constructed from random time series (Luque et al., ). Furthermore, close
relationships between the transitivity properties (network transitivity and local
clustering coefficients) (Donner et al., b, P) as well as the degree distribution’s
power-law scaling exponent γ (Zou et al., , P) of ε-recurrence networks and
the (fractal) global and local dimensionality of the attracting set underlying the time
series have been found. Constituting random geometric graphs (Dall and Christensen,

Throughout this chapter, pl(l) is used indicate the edge length distribution to avoid confusing the
latter with the probability density function p(x) that is defined on the set S for all x ∈ S.
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), ε-recurrence networks represent the geometry induced by the time series in
phase space in a simple and well-defined way. This enabled Donner et al. (c, P);
Donner et al. (b, P) to define continuous transitivity properties depending
solely on the geometry of the (attracting) set S and the probability density function
p(x). These can in turn be calculated analytically for paradigmatic model systems
with smooth and self-similar geometry and are approximated by the corresponding
discrete ε-recurrence network measures.
Given the diverse and successful applications of ε-recurrence network analysis

reported in the literature (see Chapter .), it is important to establish a firm
theoretical foundation for advancing the understanding of the method. Building on
earlier work (Donner et al., b, P), we propose here an analytical framework
for ε-recurrence network analysis of time series encompassing neighborhood-based
transitivity measures, mesoscopic measures relying on network motifs (Milo et al.,
), path-based network characteristics as well as spectral and random walk-based
measures. Specifically, our theory describes all graph-theoretical recurrence network
quantifiers that have been used in the literature so far (Donner et al., c, P).
Beyond forming a solid theoretical basis for this modern nonlinear approach to time
series analysis and fostering its detailed understanding in a way comparable to that
of standard linear time series analysis (Brockwell and Davies, ), our analytical
framework opens several avenues for practically improving the method when dealing
with finite (real-world) time series: (i) We are able to obtain closed-form analytical
results for paradigmatic model systems with stochastic (uniform and Gaussian noise)
and deterministic (periodic, quasi-periodic, and chaotic) dynamics. These can in
turn be harnessed as a benchmark for the discrete standard estimators from complex
network theory which have been employed so far (Donner et al., c, P), e.g., for
assessing the estimators’ bias and variance. (ii) This bottom-up approach allows us to
design improved, weighted statistical estimators (Heitzig et al., , P) which may
be more appropriate in specific situations. (iii) Moreover, our framework enables us
to derive rigorous bounds for feasible values of the recurrence threshold ε, the most
important parameter of the method, the choice of which is critical when analyzing
finite (experimental) time series (Donner et al., a, P).
This chapter is organized as follows: We introduce a continuous framework for

recurrence network analysis in Section .. After reviewing the corresponding discrete
estimators (Section .), we present examples ranging from periodic and quasi-periodic
dynamics and higher-dimensional symmetric sets over chaotic maps to stochastic
processes and compare some of the results to discrete estimates (Section .). We
conclude with a discussion of these achievements and elaborate on generalizations of
the proposed framework for describing more general spatial networks (Section .).





.. Continuous framework

S

x

yg(x,y)

Figure ..: Illustration of a set S (gray), where g(x, y) denotes the geodesic distance between
x, y ∈ S.

.. Continuous framework

... General setting

Let us consider a path-connected Lebesgue-measurable subset S ⊂ X of an m-
dimensional compact smooth manifold X with a non-vanishing continuous probability
density function p : S → (0,∞) with

∫
S d

mx p(x) = 1. We will use the abbreviation∫
dµ(x) =

∫
S d

mx p(x) throughout this chapter, where µ is a probability measure on S
(Fig. .). Then we can define “continuous” equivalents of all relevant graph-theoretical
measures for ε-recurrence networks which may be approximated by calculating their
discrete counterparts in the limit ε→ 0, N →∞ (Section .). Here ε is the threshold
used for network construction (Eq. (.)) and N denotes the number of data points
(samples, phase space vectors, . . .) considered. These measures capture the properties
of a “continuous” network with uncountably many vertices and edges which may
be defined (see Section .) by a continuous analog of the adjacency matrix, the
adjacency function

A(x, y) = Θ(ε− ‖x− y‖)− δxy (.)

for all x, y ∈ S. It is important to realize that the framework introduced here is
not restricted to ε-recurrence networks alone, but may be more generally applied
to describe random geometric graphs (aka spatial networks) (Dall and Christensen,
; Herrmann et al., ; Penrose, ) and other types of networks with strong
spatial constraints (Barnett et al., ; Itzkovitz and Alon, ).

In the following we will formally define the proposed continuous recurrence network
measures and discuss their properties, interrelationships, and interpretations (see
Table . for an overview). Statements made for the limits ε → 0 and x → y for
x, y ∈ S should be understood to hold for smooth S and p. We do not consider them
for fractal geometries explicitly.

... Neighborhood-based measures

Among other interesting properties, it has been shown that the local and global
transitivity properties of ε-recurrence networks measured by the local clustering
coefficient Ci and the global transitivity T , respectively, are closely related to a





Chapter . A general analytical framework for describing spatial networks

Table ..: A summary of the continuous geometric properties of the set S (Fig. .) and its
associated probability density p defined in Section . (the adjective “continuous” is
omitted for brevity). The heuristic interpretations follow Donner et al. (c, P);
Donner et al. (a, P). See main text for formal probabilistic interpretations.
SP abbreviates “shortest path”.

Class Name Heuristic interpretation

Neighborhood-based
Local ε-degree density (Eq. (.)) Local density

local ε-clustering (Eq. (.)) Local dimension
ε-matching index (Eq. (.)) Local density gradient

Global ε-edge density (Eq. (.)) Average local density
ε-transitivity (Eq. (.)) Global dimension
global ε-clustering (Eq. (.)) Average local dimension
ε-assortativity (Eq. (.)) Average local density gradient

Mesoscopic ε-motif density (Eq. (.)) Higher-order density structure
Density anisotropy

Path-based
Local ε-closeness (Eq. (.)) Geometric centrality

ε-efficiency (Eq. (.)) —”—
ε-SP betweenness (Eq. (.)) Geometric bottleneckishness
ε-SP edge betweenness (Eq. (.)) —”—

Global ε-average path length (Eq. (.)) Average separation
global ε-efficiency (Eq. (.)) —”—
ε-diameter (Eq. (.)) Geometric diameter
ε-radius (Eq. (.)) Geometric radius

certain notion of the fractal dimension of an underlying set S and its associated
probability density p(x) with x ∈ S (Donner et al., b, P). To capture this
theoretically, continuous versions of both measures denoted C(x; ε) and T (ε) have
been defined together with a continuous degree density ρ(x; ε).

Local measures

Definition .. The continuous ε-degree density

ρ(x; ε) =
∫
Bε(x)

dµ(y) (.)

measures the probability that a point y randomly drawn according to p lies in an
ε-neighborhood Bε(x) = {y ∈ S : ‖x− y‖ ≤ ε} of x.
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Definition .. In turn, the continuous local ε-clustering coefficient of any point
x ∈ S,

C(x; ε) =
∫∫
Bε(x) dµ(y) dµ(z)Θ(ε− ‖y − z‖)

ρ(x; ε)2 , (.)

is the probability that two points y and z randomly drawn according to p are closer
than ε given they are both closer than ε to x.

Definition .. The continuous ε-matching indexM(x, y, ε) measures the overlap
between the neighborhoods of x, y ∈ S,

M(x, y; ε) =
∫
Bε(x)∩Bε(y) dµ(z)∫
Bε(x)∪Bε(y) dµ(z) . (.)

It gives the probability that a point z drawn randomly from Bε(x) according to p is
also contained in Bε(y) and vice versa.

For x→ y,M(x, y; ε)→ 1. Furthermore,M(x, y; ε) = 0 if ‖x− y‖ > 2ε.

Global measures

Definition .. The continuous ε-edge density

ρ(ε) =
∫
S
dµ(x)ρ(x; ε) (.)

=
∫
S
dµ(x)

∫
Bε(x)

dµ(y)

is the expectation value of the continuous ε-degree density ρ(x; ε).

Definition .. As a global measure of geometric transitivity, we define the continu-
ous ε-transitivity of S as

T (ε) =
∫∫∫
S dµ(x) dµ(y) dµ(z)Θ(ε− ‖x− y‖)Θ(ε− ‖y − z‖)Θ(ε− ‖z − x‖)∫∫∫

S dµ(x) dµ(y) dµ(z)Θ(ε− ‖x− y‖)Θ(ε− ‖x− z‖) , (.)

which is the probability that among three points x, y, z drawn randomly according to
p, y and z are closer than ε given they are both closer than ε to x.

Definition .. Similarly, the continuous global ε-clustering coefficient

C(ε) =
∫
S
dµ(x)C(x; ε) (.)

is defined as the expectation value of the continuous local ε-clustering coefficient C(x; ε)
(Eq. (.)).

Note that the above defined measures of transitivity have been mainly considered
for the supremum norm L∞ in Donner et al. (b, P).
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Definition .. Continuous ε-assortativity

A(ε) = r

(
ρ(x; ε), ρ(y; ε) | ‖x− y‖ < ε

)
(.)

gives the Pearson product-moment correlation coefficient (Brockwell and Davies, )
of the degree densities ρ(x; ε) and ρ(y; ε) of all points x, y that are closer than ε to
each other.

A(ε) can be considered as a measure of the smoothness of the set S and the
probability density p (Donner et al., c, P). In the limit ε→ 0, A(ε)→ 1 holds.

... Mesoscopic measures

Motifs of order α are small connected subgraphs of α vertices that are embedded
within the topology of a complex network (Milo et al., ). For combinatorial
reasons, usually α < 5 is considered. Measuring motif densities is a useful approach
for quantifying higher-order neighborhood relationships in complex geometries (Xu et
al., ) and may be seen as a generalization of the transitivity concepts introduced
above.

Definition .. The continuous ε-motif density

Mα
β =

(
α∏
i=1

∫
S
dµ(xi)

) ∏
(j,k)∈Eα

β

Θ(ε− ‖xj − xk‖) (.)

quantifies the frequency of occurrence of a certain motif of order α described by
the corresponding edge set Eαβ , where β = 1, . . . , n(α) and n(α) is the total number
of distinct motifs of order α. Mα

β is the probability that α points drawn randomly
according to p are arranged according to the motif described by Eαβ .

For example, the density M4
t of the motif t of order 4 is measured by

M4
t =

( 4∏
i=1

∫
S
dµ(xi)

)
Θ(ε− ‖x1 − x2‖)Θ(ε− ‖x2 − x3‖)Θ(ε− ‖x3 − x4‖). (.)

In contrast to the study of motifs for other general complex networks (Milo et al.,
), it is neither meaningful nor necessary to normalize motif densities by their
expectation values for randomized networks here. The reason is that the Mα

β already
have a natural probability interpretation. To render the results for different α more
comparable, one may consider to use relative motif densities normalized by

∑n(α)
β=1 M

α
β .

We conjecture that motif densities as generalizations of the continuous ε-transitivity
are like the latter related to certain notions of the dimensionality of the set S and its
associated probability density p (Donner et al., b, P). This would allow us to
define and study a new class of motif-based measures of dimensionality analogously
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c(x;ε) e(x;ε) b1(x) b2(x;ε)

Figure ..: Local path-based measures continuous ε-closeness c(x; ε), ε-efficiency e(x; ε),
and ε-shortest-path betweenness b1(x) (based on Eq. (.)), b2(x; ε) (based
on Eq. (.)) in three example sets S with a uniform density p: two convex sets
(circle and square) and a nonconvex set. The grayscale indicates the value of the
measures (white: small, black: large) obtained by Monte Carlo numerical integration
using the Euclidean norm for small ε to avoid boundary effects. Note the more
complex structure of the betweenness field, displaying particularly large values (dark)
at the inward corners where many shortest paths must pass. In contrast to the
path-based measures shown here, continuous ε-degree ρ(x; ε) and local ε-clustering
coefficient C(x; ε) are constant in the interior of S due to the uniform p. Variations
of these measures due to boundary effects occur only closer than ε to the boundary
of S (Donner et al., b, P).

to the sequence of Rényi dimensions from dynamical systems theory (Hentschel and
Procaccia, ) (see Appendix D).

... Path-based measures

While the neighborhood-based properties defined above describe the small-scale
geometry of the set S and probability density p, path-based measures quantify their
global geometry in terms of global geodesics (see Fig. . for examples). Most of
the path-based concepts defined below do not conceptually depend on the threshold
ε. Nevertheless, we introduce the appropriate scaling with ε into the definitions for
consistency with the corresponding discrete estimators from complex network theory
(Section .) and the recurrence network literature.

As in standard topological terminology, a path in S is a continuous function f :
[0, 1]→ S, and its path length l(f) ∈ [0,∞] is the supremum of

∑n
i=1 d(f(ti−1), f(ti))

over all n > 0 and all tuples 0 = t0 ≤ . . . ≤ tn = 1, where d(·, ·) is some metric. Note
that l(f) can be infinite in which case the path is called non-rectifiable. For points
x, y, the geodesic distance g(x, y) ∈ [0,∞] is the infimum of l(f) over all paths in
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S from x to y (i.e., with f(0) = x and f(1) = y). A corresponding path of this
length is called a global geodesic or shortest curve (O’Neill, ). Depending on
the geometry of S, there may be none, one, or multiple distinct global geodesics
connecting x and y, but in a sufficiently well-behaved set S, there will usually be a
unique global geodesic for almost every pair x, y (Fig. .) and almost every metric
(in particular, for the Euclidean metric). By “almost every” we mean as usual that
the set of exceptions has zero measure. Note that, however, for some pathological
metrics global geodesics are rarely unique, including the L1 and L∞ metrics.

To understand the reasoning behind the following definitions, one has to note that
discrete shortest paths in random geometric graphs approximate global geodesics
connecting two points x, y ∈ S for small ε and large N . Then the shortest-path
length dij(ε) (the minimum number of edges that have to be traversed to reach vertex
i from vertex j (Newman, )) approximates g(x(ti), x(tj)), i.e.,

εdij(ε) ≈ g(x(ti), x(tj)), (.)

where x = x(ti) and y = x(tj) (Fig. .). In the limit ε→ 0, and if N →∞ sufficiently
fast, we argue in Section .. that indeed εdij(ε)→ g(x(ti), x(tj)), independently of
which metric is used for constructing the ε-recurrence network.

Local measures

Definition .. Given that a point y is drawn randomly according to p, continuous
ε-closeness

c(x; ε) =
(∫

S
dµ(y)g(x, y)

ε

)−1
= ε

(∫
S
dµ(y)g(x, y)

)−1
(.)

is the inverse expected geodesic distance of y to another chosen point x in units of ε.

Definition .. Similarly, continuous local ε-efficiency

e(x; ε) =
∫
S
dµ(y)

(
g(x, y)
ε

)−1
= ε

∫
S
dµ(y)g(x, y)−1 (.)

gives the expected inverse geodesic distance of y to x measured in units of ε.

Note that when defined in this way, g(x, y) may change discontinuously under continuous changes
of the probability density p. This is because we require the geodesics to stay within S which
consists of all points x where p(x) 6= 0. When p(x) is continuously changed to zero, the length of
geodesics running through x for p(x) > 0 may change abruptly once p(x) = 0 is reached, e.g.,
when x constitutes some kind of geometric bottleneck. If this behavior is undesirable, one may
consider generalized p-weighted notions of the geodesic distance. These could be motivated by
an analogy to the optical path length in heterogeneous and non-isotropic media in physics, where
the probability density p would play the role of the spatially varying refractive index.
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Both c(x; ε) and e(x; ε) quantify the geometric closeness of x to any other point
in S given a probability density p. Hence, points in the center of S will carry larger
values of c(x; ε) and e(x; ε) than those on its boundaries (see Fig. . and below).

Definition .. Continuous ε-shortest-path betweenness

b(x; ε) =
∫∫

S
dµ(y) dµ(z)σ(y, z;x; ε)

σ(y, z) , (.)

is the probability that a point x lies on a randomly chosen global geodesic connecting
two points y, z drawn randomly from S according to p. Here, σ(y, z;x; ε) denotes the
number of times x ∈ S lies on a global geodesic between y, z ∈ S and σ(y, z) is the
total number of global geodesics between y, z (Fig. .).

In pathological situations, e.g., for certain open sets S, σ(y, z) may be zero even
when the geodesic distance g(y, z) is well-defined and finite. We ignore these cases for
now. There are several ways to formally define σ(y, z;x; ε). Using a parametrization
fκ(t) of the family of global geodesics connecting y and z, with t ∈ [0, 1] and fκ(0) = y,
fκ(1) = z, we may write

σ1(y, z;x; ε) =
σ(y,z)∑
κ=1

∫ 1

0
dt δ(fκ(t)− x) = σ1(y, z;x), (.)

where δ(·) is Dirac’s multi-dimensional delta function. Alternatively, we can include
the finite ε-effect by counting all shortest paths that pass through the ε-neighborhood
of x by setting

σ2(y, z;x; ε) =
σ(y,z)∑
κ=1

∫ 1

0
dtΘ(ε− ‖fκ(t)− x‖). (.)

Both variants of σ(y, z;x; ε) yield different, yet qualitatively similar results for b(x; ε)
as is illustrated in Fig. ..
Given convex domains S, σ(y, z) = 1 always holds, i.e., there is only one straight

line connecting y and z, parametrized by f(t) = y + t(z − y). For one-dimensional,
convex sets S and using σ1(y, z;x), continuous ε-shortest-path betweenness simplifies
to

b(x) = 2
∫∫

S
dµ(y) dµ(z)Θ(x− y)Θ(z − x). (.)

Definition .. Continuous ε-shortest-path edge betweenness

b(x, y; ε) =
∫∫

S
dµ(z) dµ(w)σ(z, w;x, y; ε)

σ(z, w) , (.)

An analogous behavior is observed for visibility graphs that are embedded on the time axis (Donner
and Donges, b, P).
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y
z

A B

x

y

z

x

Figure ..: Illustration of the definition of continuous ε-shortest-path betweenness (the set S is
indicated by gray shading). (A) There are σ(y, z) = 2 global geodesics connecting
y, z ∈ S, but only σ(y, z;x; ε) = 1 includes x ∈ S. (B) In this example, x lies on
all four global geodesics between x and y, i.e., σ(y, z) = σ(y, z;x; ε) = 4.

is the probability that two points x, y both lie on a randomly chosen global geodesic
connecting two points z, w drawn randomly according to p. σ(z, w;x, y; ε) counts the
number of global geodesics between z, w which contain x, y.

Analogously to continuous ε-shortest-path betweenness b(x; ε), we can define this
quantity as

σ1(z, w;x, y; ε) =
σ(z,w)∑
κ=1

(∫ 1

0
dt δ(fκ(t)− x)

)(∫ 1

0
dt δ(fκ(t)− y)

)
, (.)

= σ1(z, w;x, y).

Further generalizations for including the finite ε-effect may be deduced as shown
above for continuous ε-shortest-path betweenness.

For one-dimensional convex sets S and using σ1(z, w;x, y; ε), Eq. (.) reduces to

b(x, y) = 2
∫∫

S
dµ(z) dµ(w)Θ(x− z)Θ(y − z)Θ(w − x)Θ(w − y). (.)

In the limit x→ y we always have b(x, y; ε)→ b(x; ε). We note that b(x, y; ε) does
not require the condition Θ(ε− ‖x− y‖) as is the case for the corresponding discrete
estimator (Table .). Related generalized concepts of co- and group betweenness
have been described for discrete complex networks (Kolaczyk et al., ).

For general well-behaved S we almost surely have σ(z, w) = 1, i.e., the probability
that there is more than one global geodesics connecting z and w drawn randomly
from S according to p is zero. For example, in both Figs. .A and B, the set of
pairs z, w with σ(z, w) = 2 and σ(z, w) = 4, respectively, is of measure zero. In these
cases, b(x; ε) and b(x, y; ε) reduce to

b(x; ε) =
∫∫

S
dµ(y) dµ(z)σ(y, z;x; ε) (.)
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and

b(x, y; ε) =
∫∫

S
dµ(z) dµ(w)σ(z, w;x, y; ε). (.)

It should be noted that for general S and p, the center of mass

X =
∫
S
dµ(x)x (.)

does not necessarily extremize c(x; ε), e(x; ε), or b(x; ε). However, for convex S, the
generalized continuous ε-closeness

cη(x; ε) =
(∫

S
dµ(y)

(
g(x, y)
ε

)η)−1
= εη

(∫
S
dµ(y)g(x, y)η

)−1
(.)

can be shown to assume a global maximum at x = X for the special case η = 2.
In turn, the standard continuous ε-closeness c(x; ε) (η = 1) is maximized at the
geometric median or Fermat-Weber point (Fekete et al., ).

Global measures

Definition .. The continuous ε-average path length

L(ε) =
∫∫

S
dµ(x) dµ(y)g(x, y)

ε
= ε−1

∫∫
S
dµ(x) dµ(y)g(x, y). (.)

measures the expected geodesic distance in units of ε between two points x and y
drawn randomly according to p.

From Eq. (.), the equivalence of this formulation of continuous average path
length to the intensively studied problem in probabilistic geometry (Bailey et al., )
of finding the expectation value of the distance between two randomly drawn points
x, y ∈ S according to the probability density p becomes evident. Our definitions
imply the relationship

L(ε) =
∫
S
dµ(x)c(x; ε)−1. (.)

Definition .. Similarly, the continuous global ε-efficiency

E(ε) =
(∫∫

S
dµ(x) dµ(y)

(
g(x, y)
ε

)−1)−1

(.)

= ε−1
(∫∫

S
dµ(x) dµ(y)g(x, y)−1

)−1
.

is the inverse of the expected inverse geodesic distance between two points x, y drawn
randomly according to p measured in units of ε.
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Here, we have

E(ε) =
(∫

S
dµ(x)e(x; ε)

)−1
. (.)

More generally, let ∆S,p(η) be the expectation value of a power η of the geodesic
distance g(x, y) between two points x, y ∈ S randomly drawn according to p:

∆S,p(η) =
∫∫

S
dµ(x) dµ(y)g(x, y)η. (.)

Then, continuous ε-average path length and global ε-efficiency may be expressed as

L(ε) = ε−1∆S,p(1) (.)

and

E(ε) = ε−1 (∆S,p(−1))−1 . (.)

Definition .. The ε-diameter

D(ε) = ε−1 sup
x,y∈S

g(x, y) (.)

and the ε-radius

R(ε) = ε−1 inf
x∈S

sup
y∈S

g(x, y) (.)

are global geometric characteristics of the set S that are independent of p (O’Neill,
).

... Further measures

To illustrate that the proposed framework can be extended in several directions, we
shortly discuss spectral and random-walk-based measures in the context of continuous
recurrence networks. Motivated by the study of eigenvector centrality in complex
networks (Newman, ), we first consider spectral properties of the set S and
probability density p.

Definition .. The linear Laplace operator

(Lεh) (x) =
∫
S
dµ(y) [Θ(ε− ‖x− y‖)− δ(x− y)ρ(y; ε)]h(y) (.)

is a continuous equivalent of the discrete Laplacian matrix in network theory (Newman,
).
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We are interested in its eigenfunctions h(x) and eigenvalues λ satisfying

(Lεh) (x) = λh(x) (.)

for all x ∈ S. For example, considering an arbitrary S with uniform p, one obtains
an eigenfunction h(x) = C for some C ∈ R associated with the eigenvalue λ = 0.
This is analogous to the eigenvector (1, 1, . . . , 1) with eigenvalue 0 which is always
present for the discrete Laplacian matrix of general networks (Newman, ). We
can expect more interesting results for non-uniform p. For example, one may define a
continuous analog of the eigenvector centrality of complex network theory (Bonacich,
) by considering the eigenfunction h̃(x) corresponding to the largest eigenvalue λ̃.

For discrete networks, there are several measures of betweenness based on random
walks rather than shortest paths (Arenas et al., ; Newman, ). Continuous
versions of these measures would be based on continuous analogs of random walks on
S that start and end at points y and z randomly chosen from p. Since in a discrete
network the limit distribution of a random walk without a sink is proportional to
the degree distribution, a natural choice for a continuous analog is an Itō diffusion
process, the limit distribution of which is proportional to ρ(x; ε), with a source at
y and a sink at z (Øksendal, ). Such a process can most easily be defined as a
gradient flow dXt = −∇Ψ(Xt) dt +

√
2T dBt that combines a Brownian motion B

with a local drift coefficient −∇Ψ(Xt) which comes from a potential Ψ(x) that is the
product of a temperature T > 0 and the information corresponding to ρ(x; ε), which
is − ln ρ(x; ε). The resulting process

dXt = T
∇ρ(Xt; ε)
ρ(Xt; ε)

dt+
√

2T dBt (.)

can then be interpreted as a diffusion that drifts in the direction of increasing density.
The continuous version of Arenas’ random walk betweenness (Arenas et al., )
would then be the expected density of the process at x when the source and sink
are drawn from p. Similarly, the continuous version of Newman’s random walk
betweenness (Newman, ) would be the expected absolute value of the resulting
flux density at x for a random source and sink.

... Behavior under affine transformations

All continuous measures defined above are based on neighborhood relationships
in S and geodesic distances between points therein. They are therefore invariant
with respect to the subclass of affine transformations which leaves these properties
unchanged, i.e., x→ Dx+ s for x ∈ S with D being a combination of rotation and
isotropic scaling operations and s a translation. This is to be understood in the sense
that for a measure f , f(Dx + s; aε) = f(x; ε) holds, where a is the scaling factor.

Alternatively, one could study the spectral properties of a linear adjacency operator (Aεh) (x) =∫
S
dµ(y)Θ(ε− ‖x− y‖)h(y).
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The measures considered here are generally not invariant under non-isotropic scaling
and shear operations.

.. Discrete estimators

Given the continuous framework defined above, we are able to treat the commonly
used recurrence network quantifiers (Donner et al., c, P; Donner et al., a,
P) taken from standard complex network theory (Newman, ; Boccaletti et al.,
) as the most straightforward discrete estimators of the continuous quantities
for a finite number of observations N and finite ε. The discrete estimators will be
denoted using hats, e.g., the discrete estimator of continuous average path length
L(ε) is L̂(ε,N) (we will in the following omit the estimators’ dependency on ε and N
to simplify the notation). Their detailed properties have been numerically studied in
detail in earlier works (Donner et al., a, P; Donner et al., c, P; Donner
et al., b, P; Donner et al., a, P; Marwan et al., , P; Zou et al.,
, P). The characteristics of these standard measures for discrete and finite
complex networks have also been studied for random geometric graphs and more
general network models with strong spatial contraints (Barnett et al., ; Herrmann
et al., ; Itzkovitz and Alon, ), e.g., the degree distribution (Herrmann et al.,
), network motifs (Itzkovitz and Alon, ), as well as clustering coefficient and
degree correlations (Barnett et al., ).
Here, we briefly review the estimator’s definitions (Table .). For some specific

examples, the estimators will be compared to the results theoretically derived from
their continuous counterparts in Section .. This will also allow us to gain certain
insights into their bias and variance for finite data sets.
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... Weighted network statistics and node splitting invariant
measures

We may now ask how the estimation of the above defined continuous geometric
properties from a finite data set can be improved with respect to the measures from
complex network theory that have been used so far for this purpose. One way to
go in line with standard estimation theory is vertex-weighted network statistics, as
proposed by Heitzig et al. (, P). For a full application of that theory, weights
wi for all vertices i have to be chosen in a suitable way which we leave as a subject
of future research. But even with constant weights wi ≡ 1, the axiomatic theory
developed in Heitzig et al. (, P) allows us to improve estimation by using
so-called node splitting invariant (n. s. i.) versions of network measures to reduce the
estimation bias that results from excluding self-loops from the network (Section .).
Let us illustrate this for the case of continuous ε-degree density, ρ(x; ε) =

∫
Bε(x) dµ(y).

If x is a vertex, p is approximately constant in Bε(x), and the latter contains k̂i
additional vertices (see Table .), then ρ(x; ε) ≈ p(x)Vol(Bε(x)) ≈ (k̂i + 1)/N since
Bε(x) contains k̂∗i = k̂i + 1 out of N vertices. In other words, k̂∗i /N is a better
estimator for ρ(x; ε) than k̂i/N , since the latter has a bias of ∼ O(1/N). Likewise,
the transitivity measure T̂ (see Table .) can be improved by using instead the
n. s. i. transitivity T̂ ∗ =

∑N
i,j,k=1A

+
ijA

+
jkA

+
ki/
∑N
i,j,k=1A

+
kiA

+
kj (see Appendix A), where

A+
ij = Aij + δij = Rij , showing that this approach is also more in line with recurrence

plot analysis. This would also reduce the bias in the estimation of the transitivity
dimension that was observed in Fig. .. The measures k̂∗i and T̂ ∗ are examples of
n. s. i. measures with unit weights which can basically be interpreted as variants of the
classical measures in which vertices are considered to be linked to themselves (Heitzig
et al., , P).

... Threshold selection in recurrence network analysis

A careful choice of the recurrence threshold ε is critical for faithfully estimating the
continuous recurrence network properties defined above (Donner et al., a, P).
For too large ε, i.e., on the order of the diameter of S, boundary effects dominate,
the discrete recurrence network used for estimation becomes too dense and is unable
to capture the geometry induced by S and p (see Section ..). In contrast, the
network’s giant component breaks down for too small ε with a phase transition at
the critical value εc. This obstructs our ability to properly estimate mesoscopic
and path-based measures for ε < εc. Therefore we expect a good performance of
the discrete estimators for thresholds just above the critical εc, where much of the
geometric fine structure is still resolved (Donner et al., b, P).

The problem of selecting ε therefore reduces to deriving the percolation threshold
εc which is directly related to the critical edge density ρc = ρ(εc) of the theory of
random geometric graphs (Penrose, ) via Eq. (.). ρc is linked to the commonly





.. Examples

studied critical mean degree zc by

ρc = zc
N − 1 . (.)

The Erdős-Rényi graph is the simplest random network model (Newman, ). Since
any pair of vertices is linked with the same probability ρ independently of their
distance, it neglects the effects of spatial embedding. Therefore the Erdős-Rényi
model is inadequate for describing d-dimensional random geometric graphs, and the
corresponding critical mean degree zc = 1 (Newman, ) turns out to be too low
except for the limiting case d→∞ (Dall and Christensen, ) (see Section ..
for an example). Taking into account the effects of clustering of vertices induced
by the spatial embedding (Bialonski et al., ) yields improved analytical bounds
on the true zc obtained from numerical simulations (Kong and Yeh, ). Exact
analytical results for arbitrary d are not available so far, but Dall and Christensen
() have empirically found the scaling law

zc(d) = zc(∞) +Ad−γ (.)

from extensive numerical simulations, where zc(∞) = 1, γ = 1.74(2) and A = 11.78(5).
Inverting ρc = ρ(εc) (which is possible as dρ(ε)/dε > 0 in non-pathological situations)
yields the associated critical threshold

εc(d) = ρ−1
(
zc(d)
N − 1

)
. (.)

To our best knowledge this is the most useful result available so far for our aim of
choosing the recurrence threshold ε. However, one should be aware that the results
of (Dall and Christensen, ) were obtained for the box S = [0, 1]d with uniform
probability density p which is the most commonly studied setting in random geometric
graph theory. When considering general S and p they may be appropriate as a first
educated guess for properly selecting ε in line with the guidelines discussed in (Donner
et al., a, P; Donner et al., b, P). Deriving analytical bounds on zc for
such geometries remains an open problem.

.. Examples

We illustrate the above defined continuous geometric quantities and their estimators
for paradigmatic examples by giving closed-form analytical results and relating them
to numerical evidence from ε-recurrence networks constructed from time series. The
focus will be on examples where all quantities of interest can be calculated either
analytically or semi-analytically (relying on numerical evaluation of some integrals),
i.e., possessing smooth sets S and density functions p(x). This implies that when
considering the Euclidean norm (which we will use for all examples below) and
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neglecting boundary effects (Donner et al., c, P; Donner et al., b, P),
we obtain

C(x; ε) = 1− dΓ(d/2)
2
√
πΓ((d+ 1)/2)

[
2F1

(1
2 ,

1− d
2 ; 3

2; 1
4

)
− 1
d+ 12F1

(1− d
2 ,

d+ 1
2 ; d+ 3

2 ; 1
4

)]
= C(ε) = T (ε)

(.)

for all transitivity-based measures, where 2F1(·) is the hypergeometric function and d
the manifold dimension of S. A simpler exponential scaling with d can be found for
the supremum metric (Eq. (.)). Nontrivial transitivity-based properties for fractal
sets S and densities p(x) allowing for non-integer d, where an analytical calculation
of path-based measures is problematic, have been treated exhaustively by Donner
et al. (b, P) (see Section .. and Appendix D).

The results given here hold in the limit ε→ 0. For simplicity we ignore boundary
effects which have been discussed by Donner et al. (c, P); Donner et al. (b,
P). In all examples, we use the parametrization σ1(y, z;x) to compute continuous
ε-shortest-path betweenness.

... One-dimensional chaotic maps and stochastic processes

All examples considered in the following are defined on convex sets S embedded on
the real axis. Therefore, the geodesic distance of x, y ∈ R reduces to g(x, y) = |x− y|.
Since for one-dimensional S the integral

∫
S dy p(y) |x − y|−1 diverges for all p and

all x ∈ S, we get E(ε) = 0 and e(x; ε) = ∞ ∀x in all examples of this section. In
contrast, the corresponding integral always converges for non-fractal S with d ≥ 2
and general p.

Bernoulli map / uniformly distributed noise

The Bernoulli map xn+1 = (2xn) mod 1 defined on the interval S = [0, 1) induces
p(x) = 1. This yields

T (ε) = C(ε) = C(x; ε) = 3
4

L(ε) = 1
3ε
−1

c(x; ε) = 2ε
1− 2x+ 2x2

b(x) = 2x(1− x).

The same results hold for uniformly distributed noise on the interval [0, 1], since S
and p(x) are identical to those of the Bernoulli map (an exemplary calculation for
this setting is shown in Section ..). This equality clearly illustrates that recurrence
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network analysis is purely geometric and, hence, by design masks out the auto-
dependency structure of dynamical systems. Stochastic and deterministic dynamics
can be distinguished when embedding techniques are used prior to recurrence network
analysis (Donner et al., c, P).

Gaussian noise

Considering Gaussian noise with zero mean and standard deviation σ, i.e., p(x) =(
1/
√

2πσ2
)

exp
(
−x2/(2σ2)

)
, on the real axis S = (−∞,+∞) we obtain

T (ε) = C(ε) = C(x; ε) = 3
4

L(ε) = 2σ√
π
ε−1

c(x; ε) = ε√
2
πσ exp

(
− x2

2σ2

)
+ xerf

(
x√
2σ

)
b(x) = 1

2

(
1− erf

(
x√
2σ

)2
)
,

where erf(x) = 2√
π

∫ x
0 e
−t2dt is the error function. The results for mean χ 6= 0 can

be derived by substituting x→ x− χ on the right side of the equations for the local
measures given above (see also Section ..).

Logistic map

We can also give exact analytical solutions for the logistic map in the fully chaotic
regime, xn+1 = 4xn(1− xn), defined on the interval S = [0, 1]. Using the probability
density p(x) = π−1√x(1− x)−1 (Alligood et al., ) yields

T (ε) = C(ε) = C(x; ε) = 3
4

L(ε) = 4
π2 ε

−1

c(x; ε) = πε

(
2
√
x(1− x) + (1− 2x)

(
arccos

(√
x
)
− arcsin

(√
x
)))−1

b(x) = 8 Im [arcosh (
√
x)] arcsin (

√
x)

π2 .

Comparison to numerical results

Within an intermediate range of ε, the continuous ε-average path length L(ε) is
approximated well by the estimators L̂(ε) calculated from ε-recurrence networks for
both the Bernoulli and logistic map (Fig. .). For small ε, the estimator breaks down
due to the finite number of samples used (finite size effect) after the network’s giant
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A Bernoulli map B Logistic map

Figure ..: Continuous ε-average path length L(ε) for (A) the Bernoulli map and (B) the
logistic map. Analytical results are indicated by solid red lines. Estimates L̂(ε)
have been obtained from ε-recurrence networks constructed from one realization
of N = 1, 000 samples, respectively, for each map (black dots). Ensemble mean
(dash-dotted black line) and standard deviation (gray band) for different ε have
been obtained from a set of  realizations of each model with initial conditions
uniformly distributed in the interval [0, 1]. Vertical lines indicate the estimated
percolation thresholds εc (Eq. (.)).

component decomposes into smaller and smaller disconnected components. The Erdős-
Rényi approximation yields a critical percolation threshold εc = 1/(2(N−1)) ≈ 5·10−4

for both maps using the parameters of Fig. . which is one order of magnitude
smaller than the numerically observed phase transition point (Fig. .). As explained
in Section .., this is because the Erdős-Rényi model does not account for the
effects of spatial embedding and clustering. To be able to use the relationship of
Eq. (.) based on the empirical results of Dall and Christensen () for m = 1,
we approximate ρ(ε) = 2ε (Bernoulli map) and ρ(ε) = 8ε artanh(1− 2ε)/π2 (logistic
map) for small ε. This yields εc ≈ 6.4 · 10−3 for the Bernoulli map and εc ≈ 6.2 · 10−3

for the logistic map, which is consistent with the phase transition points observed
numerically (Fig. .). The good agreement of predicted and observed phase transition
for the Bernoulli map can be explained by the fact that the latter exactly meets the
assumptions underlying the theory of Dall and Christensen (Section ..). These
observations indicate that Eq. (.) is indeed useful for deriving an educated guess on
the proper choice of ε, even for strongly varying probability densities p. Moreover, the
phase transition for the logistic map occurs at notably larger ε than for the Bernoulli
map. Consistently with the results of Kong and Yeh (), this indicates that the
increased spatial clustering induced by peaks in the density p leads to larger values
of the critical mean degree zc and therefore the associated percolation threshold εc.
However, the results of Barnett et al. () suggest that there may be in fact no
true phase transition in giant component size for non-uniform p in the limit N →∞.
For large ε, the approximation in Eq. (.) is not valid anymore and, hence, the

discrete estimator breaks down in this regime. Note that L(εc′) = 1 for a critical εc′ .
Since L(ε) < 1 whereas L̂(ε) = 1 for ε > εc′ , the definition of the discrete estimator
is not meaningful anymore for thresholds larger than the critical threshold. For the
Bernoulli map we have εc′ = 1/3, while for the logistic map, εc′ = 4/π2 follows.
The continuous ε-closeness c(x; ε) is approximated well by the estimator ĉ(xi; ε)
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A Bernoulli map B Logistic map

N
 = 1000

C D
N

 = 2000

E F

N
 = 5000

Figure ..: Continuous ε-closeness c(x; ε) for (A,C,E) the Bernoulli map and (B,D,F) the
logistic map. Analytical results are indicated by red solid lines. Estimates ĉ(xi; ε)
have been obtained from ε-recurrence networks at ε = 0.01 constructed from
single realizations of (A,B) N = 1, 000, (C,D) N = 2, 000, and (E,F) N = 5, 000
samples (all: black squares). Ensemble mean (black dash-dotted lines) and standard
deviation (gray bands) have been calculated as in Fig. .. The standard deviation
is too small to be visible in the plots for N = 5, 000 (E,F).

for both the Bernoulli and logistic maps (Fig. .). However, ĉ(xi; ε) is notably
smaller than the true theoretical value particularly in the center of S at x = 1/2,
implying that shortest paths are longer in the empirical ε-recurrence network than
expected theoretically. This is clearly a finite size effect as the bias and variance of
the estimator decrease for growing N and fixed ε (Fig. .).
The shape of continuous ε-shortest-path betweenness b(x) is approached well by

the estimator b̂(xi; ε) for both maps (Fig. .). However, there is a large bias that
increases with the number of samples N , while the variance decreases with growing
N . That the estimator b̂(xi; ε) is generally smaller than the theoretical value b(x)
for all x can be explained by the skipping of vertices due to the finite ε in the
empirical ε-recurrence network. This effect is expected to increase for growing N
when ε is fixed, since more and more vertices can be skipped along a shortest path
for the same recurrence radius ε, which also explains the growing bias in this setting.
Accordingly, the bias decreases for decreasing ε when N is sufficiently large regarding
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A Bernoulli map B Logistic map

N
 = 1000

C D

N
 = 2000

E F

N
 = 5000

G H

N
 = 10000

Figure ..: Continuous ε-shortest-path betweenness b(x) for (A,C,E,G) the Bernoulli map and
(B,D,F,H) the logistic map. Analytical results are indicated by red solid lines.
Estimates b̂(xi; ε) have been obtained from ε-recurrence networks at ε = 0.01
constructed from single realizations of (A,B) N = 1, 000, (C,D) N = 2, 000, and
(E,F) N = 5, 000 samples (all: black squares). Panels (G,H) show results for
ε = 0.005 and N = 10, 000. Ensemble mean (black dash-dotted lines) and standard
deviation (gray bands) have been calculated as in Fig. .. Note that b̂(xi; ε) is the
discrete shortest-path betweenness of Donner et al. (c, P), but normalized
by its theoretical maximum value (N − 1)(N − 2)/2 (Table .).
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the discussion of suitable choices of ε in Section .. (Fig. .G,H). However, the
bias is not a problem in practical situations, because for local measures we are usually
only interested in relative differences between vertices and not in the absolute values.

... Periodic and quasi-periodic dynamics

Periodic orbit

We analyze next a periodic orbit (general closed curve) of curve length l embedded in
an m-dimensional phase space, i.e., S = {x ∈ Rm : x = f(s); s ∈ [0, l]; f(0) = f(l)},
with uniform probability density p(x) = 1/l. The geodesic distance of two points
x(s), x(t) along the curve is then given by g(x(s), x(t)) = |s− t|. This yields

T (ε) = C(ε) = C(x; ε) = 3
4

L(ε) = l

4ε
−1

c(x; ε) = 4ε
l

b(x) = 1
4 .

As the periodic orbit is a one-dimensional set we have E(ε) = 0 and e(x; ε) =∞ as in
the examples in Section ... E.g., a circular orbit of radius R as generated by a har-
monic oscillator with S =

{
x ∈ R2 : x1 = R sin(s/R), x2 = R cos(s/R); s ∈ [0, 2πR]

}
and p(x) = 1/(2πR) gives the above results with l = 2πR.

Flat -torus

Quasi-periodic dynamics is displayed by a system oscillating with two incommen-
surable frequencies ω1 and ω2, i.e., where the ratio ω1/ω2 is not a rational number.
The phase space trajectory fills a -torus S = {x = (s, t) : s ∈ [0, 2πR], t ∈ [0, 2πr]}
uniformly with p(s, t) = p = 1/(4π2Rr). The radii R, r are related to the oscillation’s
amplitudes. With the geodesic distance

g((s, t), (s′, t′)) =
√

min (|s− s′|, 2πR− |s− s′|)2 + min (|t− t′|, 2πr − |t− t′|)2

we obtain

T (ε) = C(ε) = C(x; ε) = 1− 3
√

3
4π ≈ 0.5865

L(ε) = πε−1

12rR

(
4rR

√
r2 +R2 + 3r3arsinh

(
R

r

)
+ 2R3artanh

(
r√

r2 +R2

)
− r3artanh

(
R√

r2 +R2

))
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E(ε) = 2πrRε−1
(

2rartanh
(

R√
r2 +R2

)
+R ln

(
r +
√
r2 +R2

−r +
√
r2 +R2

))−1

.

Because of symmetry, the local path-based measures do not depend on x as for the
periodic orbit discussed above and we have

c(x; ε) = L(ε)−1

e(x; ε) = E(ε)−1

b(x) = 1
4π2Rr

= p.

As expected, in the limit r → 0 the average path length converges to the value
obtained for a circle of radius R (see above), i.e., limr→0 L(ε) = (πR/2)ε−1.

... Higher-dimensional symmetric sets

The m-dimensional hyperball and hypercube may be viewed as tractable idealizations
of higher-dimensional attracting sets of dynamical systems (in this section we set
d = m, since the considered sets S all have integer dimension d). Their study highlights
that continuous path-based measures may depend sensitively and non-trivially on
the global geometry of the set. In contrast, their neighborhood and transitivity-
based counterparts just depend on the dimension m and are therefore identical
for the hyperball and hypercube (Eq. (.)), consistently with the dimensionality
interpretation of C(x; ε) and T (ε) (Section .. and Donner et al. (b, P)).
The sets considered here are convex, hence, g(x, y) = ‖x− y‖2 holds when using the
Euclidean norm.

m-dimensional hyperball

We consider the m-dimensional hyperball S = Sm with the uniform probability
density p(x) = p = 1/

∫
S dx = Vol (Sm)−1 = Γ

(
m
2 + 1

)
/π

m
2 . Following Hammersley

(), the r-th moment of the distribution of point-to-point distances ‖x− y‖2 in
Sm is given by

µmr = 2 mΓ (m+ 1)
Γ
(

1
2m+ 1

2

) Γ
(

1
2m+ 1

2r + 1
2

)
(m+ r)Γ

(
m+ 1

2r + 1
) . (.)

Then the continuous ε-average path length is

L(ε) = µm1ε
−1 = 2 m

m+ 1
Γ (m+ 1)

Γ
(

1
2m+ 1

2

) Γ
(

1
2m+ 1

)
Γ
(
m+ 3

2

) ε−1, (.)
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Figure ..: Continuous ε-average path length εL(ε) of the hyperball Sm with uniform probability
density, obtained from Eq. (.).

and all its higher moments are known via Eq. (.) (see Fig. .). Some examples
for lower-dimensional spheres follow:

εL(ε) =



2
3 m = 1
128
45 π

−1 m = 2
36
35 m = 3
16384
4725 π

−1 m = 4
800
693 m = 5

.

Note that the result form = 1 agrees with the corresponding one for the Bernoulli map
when considering the stretching of the domain by a factor of 2, since S1 = [−1, 1]. In
the limit m→∞ the continuous ε-average path length is L(ε) =

√
2ε−1 (see Fig. .).

We can also derive in closed form an expression for the continuous ε-closeness c(0; ε)
of the center of Sm, taking advantage of the spherical symmetry:

c(0; ε)−1 = ε−1
∫
Sm
dx1 . . . dxm p

√
x2

1 + . . .+ x2
m = ε−1Ωmp

∫ 1

0
dr rm−1r.

With the full solid angle in m dimensions Ωm = mπ
m
2 /Γ(m2 + 1) this leads to

c(0; ε) = m+ 1
m

ε. (.)

The limit εc(0; ε)−1 → 1 for m → ∞ shows that almost all of the measure µ(Sm)
of the unit radius hyperball Sm is concentrated at its surface for large m. For the
special case of m = 2 (unit disk with uniform p(x)), Lew et al. () give a nearly
closed-form expression for the continuous ε-closeness at x(q) = (q, 0),

c(x(q); ε)−1 = 1
9π
(
16(q2 − 1)K(q2) + 4(q2 + 7)E(q2)

)
ε−1,
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where 0 ≤ q ≤ 1 and the value for arbitrary x ∈ S2 may be obtained after an
appropriate rotation. K(m) and E(m) are complete elliptic integrals of the first and
second kind (see §. in Abramowitz and Stegun ()).
For the continuous local ε-efficiency e(0; ε) of the center of Sm we get for m > 1

e(0; ε) = ε

∫
Sm
dx1 . . . dxm p

√
x2

1 + . . .+ x2
m

−1
= εΩmp

∫ 1

0
dr rm−1r−1

= m

m− 1ε.

A somewhat more involved calculation of the continuous ε-betweenness b(0) of the
center of Sm yields (see Section ..)

b(0) = 1
Ωm

=
Γ(m2 + 1)
mπ

m
2

. (.)

The high degree of symmetry of Sm allows to derive closed-form results for local
path-based measures at its center for many p(x) = p(r,Ω), as long as the probability
density separates into a radial and an angular part, i.e., p(r,Ω) = p(r)p(Ω).

m-dimensional hypercube

The hypercube S = Km = [0, 1]m with uniform probability density p(x) = p =
Vol(Km)−1 = 1 is much harder to treat analytically than the hyperball Sm. Hence,
rigorous results are only available for isolated dimensions m and a subset of the
continuous measures defined above (Anderssen et al., ; Bailey et al., ; Bailey
et al., ; Bailey et al., ). Solving the resulting general box integrals remains a
largely unsolved problem of applied and experimental mathematics.
The following closed-form expressions for the continuous ε-average path length
L(ε) are based on the expectation values for point-to-point distances ∆Km(1) = εL(ε)
(see Eq. (.)) listed in Bailey et al. ():

εL(ε) =


1
3 m = 1
1
15

(
2 +
√

2 + 5 ln
(
1 +
√

2
))

m = 2
−118

21 −
2
3π + 34

21
√

2− 4
7
√

3 + 2 ln(1 +
√

2) + 8 ln(1+
√

3√
2 ) m = 3

.

Some numerical results for m = 1, . . . , 10 are displayed in Fig. .. Anderssen et al.
() proved the bounds

1
3
√
m ≤ εL ≤

√
1
6m

√√√√1
3

(
1 + 2

√
1− 3

5m

)
(.)

implying εL → ∞ for m → ∞. This is in contrast to the hyperball, where this
limit is finite (see above). Using expectation values for the inverse point-to-point
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Figure ..: Continuous ε-average path length εL(ε) of the hypercube Km with uniform proba-
bility density, obtained by numerical Monte Carlo integration using Mathematica
(yellow diamonds). Analytical lower (blue disks) and upper (red squares) bounds
from (Anderssen et al., ) are also shown.

distances ∆Km(−1) = ε−1E(ε)−1, we are able to give the following expressions for
the continuous ε-efficiency E(ε):

(εE(ε))−1 =


∞ m = 1
4
3(1−

√
2) + 4 ln(1 +

√
2) m = 2

2
5 −

2
3π + 2

5
√

2− 4
5
√

3 + 2 ln(1 +
√

2) + 12 ln
(

1+
√

3√
2

)
m = 3

−4 ln(2 +
√

3)

.

Note that as S = K1 = [0, 1], the results for m = 1 agree with the corresponding
ones for the Bernoulli map for both continuous ε-average path length and efficiency.
Further expressions for ∆Km(1) and ∆Km(−1) for m = 4, 5 are given in Bailey et al.
(). Another object of interest in the theory of box integrals is the integral

Bm(η) =
∫
Km

dx‖x‖η2, (.)

which is related to the continuous ε-closeness c(0; ε) of the origin x = 0 (and, by
symmetry, to that of all the 2m corners of the hypercube) for η = 1 and to the local
efficiency e(0; ε) of the same points for η = −1:

c(0; ε) = Bm(1)−1ε (.)
e(0; ε) = Bm(−1)ε. (.)
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We can now once again use results from Bailey et al. () to give some closed forms
for small m:

εc(0; ε)−1 =


1
2 m = 1
1
3(
√

2 + ln(1 +
√

2)) m = 2
1
4
√

3− 1
24π + 1

2 ln(2 +
√

3) m = 3

and

ε−1e(0; ε) =


∞ m = 1
2 ln(1 +

√
2) m = 2

−1
4π + 2

3 ln(2 +
√

3) m = 3
.

Further solutions for m = 4, 5 are given in Bailey et al. ().

.. Discussion

We have shown that the definitions of continuous geometric measures provided in
this chapter are feasible for describing ε-recurrence networks for time series analysis
as well as, more generally, random geometric graphs (Dall and Christensen, ;
Herrmann et al., ; Penrose, ). Our theoretical framework may readily be
generalized to encompass other classes of random networks with spatial constraints
(i.e., spatial networks) (Barnett et al., ; Itzkovitz and Alon, ; Barthélemy,
), e.g., those with an edge length distribution of the form pl(l) ∝ exp(−l/ξ)
describing among others the substrate of climate networks (Tsonis and Swanson, ;
Donges et al., a, P) (in contrast to the sharp cutoff pl(l) ∝ Θ(ε− l) for random
geometric graphs). For the neighborhood-based measures, this generalization can
be achieved by substituting terms containing the Heaviside function or Bε(x) with
suitably chosen expressions involving pl(l). For example, a measure of transitivity in
generalized spatial random networks with prescribed pl(l) would be

T ′(ε) =
∫∫∫
S dµ(x) dµ(y) dµ(z)pl(‖x− y‖)pl(‖y − z‖)pl(‖z − x‖)∫∫∫

S dµ(x) dµ(y) dµ(z)pl(‖x− y‖)pl(‖x− z‖)
. (.)

One possible application to real-world spatial networks is computing expectation
values for the characteristics of an ensemble of spatial random network surrogates
to assess which properties of a given empirical network can be explained by pl(l)
alone. Additionally, more general metrics could be used for measuring the distance l
between connected vertices. Research along these lines may also help to shed light on
the specific topology and dynamics of growing spatial complex networks (cf. Kaiser
and Hilgetag (); Zhang and Small ()).

Furthermore, we have demonstrated that the resulting continuous properties can be
approximated by estimators calculated from empirical ε-recurrence networks reason-
ably well, even for relatively small N and large ε. The continuous framework promotes
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considerable advances in the theoretical understanding of ε-recurrence network-based
time series analysis. Among others, from the examples of hyperballs and hypercubes
in various dimensions m, the claim that path-based measures depend explicitly on
the global geometry of the set S is theoretically justified. This is in contrast to
the continuous notions of local and global transitivity, as at least the continuous
local ε-clustering coefficient C(x; ε) depends on the local dimensionality of the set
S (Appendix D and Donner et al. (b, P)). Along these lines, in the future
we may gain an understanding of the differing performance of transitivity-based
and path-based measures in classifying qualitatively different behavior of dynamical
systems (Marwan et al., , P; Zou et al., , P; Zou et al., ). For
example, more complex dynamical systems such as the Lorenz and Rössler models or
noisy dynamical systems, where no closed-form expression for the invariant proba-
bility density p exists, may be studied by estimating p̂ from simulated trajectories.
ε-recurrence network measures could then be calculated by numerical integration
techniques relying on p̂ and the integral expressions given in this chapter. Circum-
venting the computational limitations of discrete ε-recurrence network analysis when
N → ∞, this approach would in principle allow us to approximate the continuous
geometric quantities defined above as closely as desired.

The examples of hyperballs and hypercubes establish links to some current research
problems in probabilistic geometry and applied mathematics, among others, to the
theory of box integrals (Anderssen et al., ; Bailey et al., ; Bailey et al.,
; Bailey et al., ). Perhaps these highly symmetric model sets could serve
to understand theoretically some qualitative features of path-based ε-recurrence
network measures for strange attractors such as the Lorenz or Rössler attractors. It
remains an open question whether it is possible to solve the integrals for continuous
path-based measures in the case of self-similar sets S and more complex, potentially
also self-similar densities p.
The theoretical framework put forward in this chapter enables several practical

advances, which are particularly relevant for applications to time series analysis of
real-world data. Analytical solutions for continuous ε-recurrence network measures
allow us to assess the bias and variance of the discrete estimators from complex
network theory that have been used in the literature so far. These insights led
to devising improved discrete estimators based on the concept of vertex-weighted
network statistics (Heitzig et al., , P). Furthermore, for the first time we were
able to formulate a theoretically motivated criterion for the selection of the recurrence
threshold ε based on the critical percolation threshold εc, which for a given system
can be estimated using our theory.
Finally, we should note that we now have a comprehensive continuous theory for

essentially all relevant measures of ε-recurrence networks. This foundation will help
to further increase our understanding as well as strengthen the general confidence in
the method of ε-recurrence network analysis in practical situations, e.g., the analysis
of real-world time series. Our results suggest that ε-recurrence network analysis is
among the simplest and best understood network-based approaches to nonlinear time
series analysis available so far.
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.. Mathematical supplement

... Sketch of proof of Eq. (.)

For ε > 0, we define the continuous ε-distance d(x, y; ε) between x 6= y ∈ S to be the
smallest integer k > 0 such that there are points z0, . . . , zk ∈ S with z0 = x, zk = y,
and ||zi−1−zi|| < ε for i = 1 . . . k. Note that because S is path-connected, d(x, y; ε) is
finite. We also put d(x, x; ε) = 0. Let dij(ε,N) ≥ d(xi, xj ; ε) be the network distance
between xi and xj in the ε-recurrence network constructed from the first N points
of a sequence of independent draws from p. One can then prove that for fixed ε,
fixed vertices xi, xj , and N →∞, it has probability one that dij(ε,N) = d(xi, xj ; ε)
eventually (i.e., there is some N(i, j, ε) so that dij(ε,N) = d(xi, xj ; ε) for all N >
N(i, j, ε)). This is because for k = d(xi, xj ; ε), there is δ > 0 and z0, . . . , zk ∈ S with
z0 = x, zk = y, and ||zi−1− zi|| < ε− 2δ for i = 1 . . . k, and with probability one, the
sequence contains points w0, . . . , wk ∈ S with w0 = xi, wk = xj , and ||wi − zi|| < δ
for i = 1 . . . k− 1, so that also ||wi−1−wi|| < ε for i = 1 . . . k, implying dij(ε,N) ≤ k
when N > N(i, j, ε) where N(i, j, ε) is the index of the last of the wi to occur in the
sequence.
Moreover, d(x, y; ε) ≤ g(x, y)/ε + 1 and εd(x, y; ε) ≤ g(x, y) if g(x, y) is not an

integer multiple of ε. This is because for all δ > 0 and ε′ < ε, there is a path
from x to y of length ≤ g(x, y) + δ, hence for k = d(g(x, y) + δ)/ε′e (dxe is the
smallest integer not less than x), there are z0, . . . , zk ∈ S with z0 = x, zk = y, and
||zi−1 − zi|| ≤ ε′ < ε for i = 1 . . . k, so that d(x, y; ε) ≤ k. On the other hand if S
is sufficiently well-behaved, one will also have εd(x, y; ε)↗ g(x, y) for ε→ 0. More
precisely, assume S is “locally almost convex” in the sense that for all L > 1, there is
some ε > 0 so that for all x, y ∈ S with ||x− y|| < ε, we have g(x, y) < Lε. Then for
all L > 1, there is some ε > 0 so that εd(x, y; ε) > g(x, y)/L. Putting all these facts
together, we see that εdij(ε,N) is a plausible estimate of g(x, y).

... Continuous ε-average path length for Bernoulli map and
uniformly distributed noise

For illustration, we give the detailed calculation of L(ε) for the Bernoulli map and,
equivalently, uniformly distributed noise:

εL(ε) =
∫ 1

0

∫ 1

0
dxdy |x− y|

=
∫ 1

0
dx

(∫ 1

x
dy |x− y|+

∫ x

0
dy |x− y|

)
=
∫ 1

0
dx

(∫ 1

x
dy (y − x) +

∫ x

0
dy (x− y)

)
=
∫ 1

0
dx

([1
2y

2 − xy
]1

x
+
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2y
2
]x

0

)
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=
∫ 1
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... Continuous ε-betweenness for the center of a hyperball

b(0) = p2
∫∫

S
dy dz

∫ 1

0
dt δ(f(t))

= p2
∫∫

dΩ dΩ′
∫ 1

0

∫ 1

0
drdr′rm−1r′m−1δ(Ω− Ω′)

= p2
∫
dΩ
(∫ 1

0
dr rm−1

)2

= p2Ωm
1
m2

=
Γ
(
m
2 + 1

)
mπ

m
2

= 1
Ωm

.. Summary

Recurrence networks are a powerful nonlinear tool for time series analysis of complex
dynamical systems. While there are already many successful applications ranging
from medicine to paleoclimatology, a solid theoretical foundation of the method
has still been missing so far. Here, we have interpreted an ε-recurrence network
as a discrete subnetwork of a “continuous” graph with uncountably many vertices
and edges corresponding to the system’s attractor. This step allowed us to show
that various statistical measures commonly used in complex network analysis can be
seen as discrete estimators of newly defined continuous measures of certain complex
geometric properties of the attractor on the scale given by ε. In particular, we have
introduced local measures such as the ε-clustering coefficient, mesoscopic measures
such as ε-motif density, path-based measures such as ε-betweennesses, and global
measures such as ε-efficiency. This new analytical basis for the so far heuristically
motivated network measures also provides an objective criterion for the choice of
ε via a percolation threshold, and it shows that estimation can be improved by
so-called node splitting invariant versions of the measures. We finally illustrated
the framework for a number of archetypical chaotic attractors such as those of the
Bernoulli and logistic maps, periodic, and two-dimensional quasiperiodic motions,
and for hyperballs and hypercubes by deriving analytical expressions for the novel
measures and comparing them with data from numerical experiments. More generally,
the theoretical framework describes random geometric graphs and other networks
with spatial constraints which appear frequently in disciplines ranging from biology
to climate science.







Part II.

Applications

The novel concepts and techniques developed in Part I
call for their application to real-world problems and
data in the context of Earth system analysis. This sec-
ond part focusses on tipping elements and their inter-
actions, tipping points, as well as regional vulnerability.
Recurrence network analysis is employed to detect dy-
namical transitions or tipping points in synthetic and
paleoclimate data. This reveals a possible influence
of large-scale shifts in Plio-Pleistocene African climate
variability on events in human evolution, i.e., an in-
teraction of climatic and evolutionary tipping points.
Finally, coupled climate networks yield insights into the
atmosphere’s general circulation structure and allow
to quantify regional centrality and vulnerability with
respect to interactions between disparate parts of the
Earth system.





Chapter .

Identification of dynamical transitions
in paleoclimate records

My eye is better than any statistical test.
Well-known paleoceanographer, circa 

(after Wunsch ())

.. Introduction

Paleoclimate proxy data representing past variations of environmental conditions can
be obtained from various types of geological archives distributed over the Earth’s
surface. The study of time series of such proxies, i.e., data that encode the temporal
variability of physical, chemical, biological, or sedimentological properties, is a major
source of information fostering our understanding of the functioning of the complex
Earth system in the past, present, and future. However, non-equidistant sampling,
uncertain age models, multi-scale, and multi-stable state variability as well as relatively
high noise levels render the study of these proxy records a challenging problem for
time series analysis. Most certainly, these complications contest the meaningfulness
of a purely visual inspection of paleoclimate data (see the quote from Wunsch ()
cited above).
Methods used for time series analysis can be roughly classified as linear or non-

linear. On the one hand, linear methods are based on the evaluation of certain
classical statistical characteristics and assume the presence of an underlying linear
stochastic process with eventually some superimposed deterministic (e.g., periodic)
components (Brockwell and Davies, ; Brockwell and Davies, ; Hamilton,
). Prominent examples that are frequently used for the analysis of real-world
time series, including such obtained from geological archives (Schulz and Stattegger,
; Schulz and Mudelsee, ; Mudelsee et al., ; Rehfeld et al., ), are
correlation functions and power spectra. On the other hand, nonlinear methods follow
a dynamical systems point of view, implicitly assuming the presence of certain types
of deterministic behavior (Abarbanel, ; Kantz and Schreiber, ; Donner et al.,
).
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The vast majority of existing linear or nonlinear methods of time series analysis
relies on the quantification of patterns of temporal dependencies between observations
{x(t)} made at times t, i.e., aims to quantify functional relationships of the form

x(t) =
∑
τ>0

f(x(t− τ), τ, t) + η(t), (.)

where f(x, τ, t) is a general deterministic function and {η(t)} a stochastic process
(often assumed to be fully uncorrelated, i.e., δ-correlated, in time). For a stationary
system, the functional dependence f does not explicitly depend on time t. In standard
linear methods of time series analysis, f is often assumed to be a linear function; in this
case, the parameters of f encode linear temporal correlations. More generally, one may
consider arbitrary (i.e., not explicitly specified) deterministic relationships f , which
may be characterized using nonlinear concepts such as mutual information (Kantz
and Schreiber, ).

In the following, we will refer to methods of time series analysis that are based on
the quantification of temporal interrelationships between observations, e.g., correlation
and mutual information functions or power spectra, as correlative methods. These
clearly depend on how well the observation points are specified. In particular, in case
of a non-uniform sampling of the considered time series, estimates of even simple linear
characteristics can often not be expressed in a straightforward analytical way. For
example, if one wishes to avoid interpolation (which leads to additional uncertainties),
power spectra can be estimated using harmonic regression of the data (e.g., by
means of the Lomb-Scargle periodogram (Lomb, ; Scargle, )), projection
methods (Foster, a; Foster, b), or a variety of alternative approaches (Babu
and Stoica, ; Rehfeld et al., ). However, in the specific case of paleoclimate
data where typically not even the exact timing of the individual observations is
sufficiently well known (Telford et al., ), correlative methods can have strong
conceptual disadvantages.
In contrast to this large class of methods (which characterize time series from a

more or less rigorous statistical point of view), alternative concepts such as fractal
dimensions and generalizations thereof have been first developed in different math-
ematical disciplines and later applied to the characterization of the properties of
certain dynamical systems (Sprott, ). Statistical estimates of such measures can
be obtained by a variety of different approaches, most of which take into account the
spatial arrangement of observations in the (possibly reconstructed) phase space. From
this perspective, the mentioned methods do not directly require knowledge about
the timing of observations, i.e., can be considered as non-correlative or geometric
methods, since they rely on geometric attractor properties in phase space rather than
on explicit dynamical information. In the case of paleoclimate data with uncertain
age models, geometric methods may provide a considerable alternative for statistical
analysis. However, as a particular disadvantage, we note that the proper estimation
of fractal dimensions usually requires a considerably larger amount of data than
necessary for most correlative methods (Sprott, ) which is typically not available
in paleoclimatology.





.. Introduction

Some fundamental relationships between the geometric properties of attractors in
phase space (e.g., Hausdorff and box dimensions) and important invariants of the
associated dynamics (e.g., Lyapunov exponents) are known to exist (Chlouverakis and
Sprott, ). Note that certain measures of dimensionality include both geometric
and dynamical information, i.e., all Rényi dimensions Dq for q > 1 including the
information dimensionD1 (Sprott, ). However, besides fractal dimension estimates
based on attractor topology there are only very few suitable and purely geometric
methods available.

Recently, it has been suggested to characterize the mutual proximity relationships
of all pairs of state vectors from the sampled attractor in phase space by means of
complex network methods (Section .). Among others, the concept of ε-recurrence
networks (Marwan et al., , P; Donner et al., a, P; Donner et al.,
c, P) has been proven particularly useful for this purpose (Section ..).
Since ε-recurrence networks take only spatial information into account, they can
be considered as important examples of geometric methods of time series analysis.
Recurrence networks provide a set of nonlinear measures characterizing the complexity
of dynamical systems (Donner et al., a, P; Donner et al., a, P), e.g.,
allowing to distinguish periodic from chaotic dynamics (Zou et al., , P).
While recent findings demonstrate close interrelationships between certain recurrence
network properties and fractal dimensions (Donner et al., b, P), the graph-
theoretical measures can often be estimated with high confidence from much shorter
time series than fractal dimensions. This warrants their application as a tool for
window-based analysis of non-stationary data (Marwan et al., , P; Donner
et al., a, P). In contrast to ε-recurrence networks and conceptually related
techniques, transition networks (Nicolis et al., ) and visibility graphs (Lacasa
et al., ) are correlative methods in the sense that they depend explicitly on the
temporal ordering of observations (Donner and Donges, b, P).
When considering network-based methods of time series analysis, so far only

recurrence networks (Marwan et al., , P; Donner et al., a, P; Hirata et
al., ) and visibility graphs (Elsner et al., ; Telesca and Lovallo, ; Donner
and Donges, b, P) have been used to analyze geoscientific data. Following Donges
et al. (a, P), in this chapter we discuss the application of recurrence networks to
studies of paleoclimate records, with a special focus on the identification of structural
changes in the dynamics that are not easily found when relying on simple linear
statistics. As a benchmark example, we will mainly utilize three marine records of
aeolian dust flux from Northern Africa during the last  million years (Myr) (Trauth
et al., ; Marwan et al., , P; Donner et al., a, P; Donges et al., c,
P).
In Section ., we present a detailed description of the considered data sets, the

necessary preprocessing steps, and the general idea of applying the quantitative
analysis of ε-recurrence networks in a sliding-windows framework. Application to
typical nonlinear model systems with a systematic drift of the control parameters in
Section . suggests that network statistics are well suited for identifying dynamical
transitions from finite time series. Finally, in Section ., we describe the results of
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Figure ..: Map displaying the locations of the three ODP drilling sites considered in this
chapter (Tiedemann et al., ; deMenocal, ; deMenocal, ; Larrasoaña
et al., ).

our investigations obtained for the different paleoclimate time series and discuss their
robustness with respect to the fundamental parameters of our method.

.. Data and methods

... Description of the data

Marine records of terrigenous dust flux from North Africa are an important source
of information on the long-term aridification of the continent during the Plio-Plei-
stocene (Trauth et al., ). Continuous time series {xi = x(ti)}Ni=1 sampled at
times ti, where i is an index variable and N the number of samples, are available
from three sediment cores: ODP  (Atlantic Ocean offshore subtropical West
Africa) (Tiedemann et al., ), ODP / (Arabian Sea) (deMenocal, ;
deMenocal, ), and ODP  (Eastern Mediterranean Sea) (Larrasoaña et al.,
) (Fig. .). These records allow the reconstruction of North African dust
mobilization and transport over the last  Myr and, hence, encode temporal changes
in both the aridity of the region and the strength and direction of dominant regional
atmospheric circulation patterns (Trauth et al., ). We chose these records as they
are well studied in the literature (deMenocal, ; deMenocal, ; Larrasoaña
et al., ; Tiedemann et al., ; Trauth et al., ) and are at the same time
representatively distributed around North Africa (Fig. .). Terrigenous dust flux
has been estimated using different approaches: from the relative abundance of the
non-carbonate fraction and the dry-bulk density for ODP site , via linear regression
from magnetic susceptibility (which can be measured much more easily) for ODP
site / (Bloemendal and deMenocal, ), to artificially induced magnetic
remanescence for ODP site  (for more details, see Trauth et al. ()).
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Figure ..: Plio-Pleistocene variability of (A) δ18O at ODP site  (Tiedemann et al., ),
and of terrigenous dust flux from North Africa at ODP sites (B)  (Tiedemann
et al., ), (C) / (deMenocal, ; deMenocal, ), and (D)  (Lar-
rasoaña et al., ). The horizontal red bars in panel (A) indicate two consecutive
recurrence windows of length W ∗ = 410 kyr and mutual offset ∆W ∗ = 41 kyr as
used in the analysis of Section . and in Figs. .–..

In addition, the benthic oxygen isotope (δ18O) record from ODP site  (Tiede-
mann et al., ) will be studied as a proxy for variations in global ice volume which
can be assumed to have a considerable impact on the continental aridification via a
southward displacement of climate and vegetation zones. All time series are shown in
Fig. ..

... Detrending

All considered time series {xi} show a nonlinear trend of increasing amplitude and
variance towards the present. This trend reflects the successive aridification of North
and East Africa and the intensification of Northern Hemisphere glacial cycles during
the Plio-Pleistocene (Trauth et al., ). To prevent corruption of the results of
our analysis and significance test due to this nonlinear trend, we attempt to remove
it to first-order by subtracting from xi the mean of a sliding window of size WD(ti)
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centered at ti for all time points ti, i.e.,

x̂i = xi −
1

2bWD(ti)/2c+ 1

bWD(ti)/2c∑
j=−bWD(ti)/2c

xi+j , (.)

where for a chosen detrending window size WD,

WD(ti) =


2(i− 1) if i < WD,

WD if WD ≤ i ≤ N −WD,
2(N − i) if i > N −WD.

(.)

That is, the effective detrending window size decreases towards the time series’ bound-
aries, resulting in x̂1 = x̂N = 0. This simple approach avoids the complication of
locally or globally fitting higher-order polynomials or performing high-pass filter-
ing given irregular sampling and uncertain dating of measurements to remove the
nonlinear trend. Since recurrence network analysis as our method of choice is a
non-correlative technique and its results are permutation invariant (Section ..),
spurious autocorrelations which may be introduced by the sliding window detrending
do not pose a serious problem here. We will show in Section .. that our results
are robust with respect to a large range of reasonable choices of WD. Except of the
detrending, no further preprocessing was applied to the data. Particularly, we do
not resample the time series to obtain an evenly spaced record in the time domain,
since the necessary interpolation could corrupt the results of the further analysis to
be performed below (see, e.g., Rehfeld et al. ()).

... Embedding

Univariate time series often reflect the dynamics of a higher-dimensional system as
viewed through some observation function. In typical situations, it is possible to
reconstruct the phase space trajectory using time-delay embedding, i.e., considering
state vectors

y
(m,τ)
i =

(
x̂i, x̂i+τ , . . . , x̂i+(m−1)τ

)
(.)

instead of the univariate observations {x̂i} themselves (Packard et al., ; Takens,
). Due to the finite length of the available time series, the index i is now restricted
to the range i = 1, . . . , N − (m − 1)τ . The embedding parameters (embedding
dimension m and delay τ) have to be appropriately determined from the available
data, e.g., using approaches such as the false nearest-neighbors (Kennel et al., )
and average mutual information (Fraser and Swinney, ) methods, respectively.
Although there are good reasons for applying embedding techniques, it is known that
this approach also has conceptual disadvantages and may induce spurious structures
in recurrence plots and corresponding misleading results of recurrence quantification
analysis (RQA) (Thiel et al., ). In contrast, many important dynamical invariants
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Figure ..: Linear autocorrelation functions C(τ) for (A) the δ18O record at ODP site 
and the dust flux records from ODP sites (B) , (C) /, and (D) .
The autocorrelation functions were estimated using a Gaussian kernel-based esti-
mator (Rehfeld et al., ) adapted to irregularly sampled data (solid line) and
directly from time series linearly interpolated to a regular sampling with sampling
time 〈∆T 〉 (dash-dotted line). For the Gaussian kernel-based estimator we used
the recommended optimum bandwidth h = 〈∆T 〉 /4 (Rehfeld et al., ), where
h is the standard deviation of the Gaussian kernel. These results show that the
estimator based on linear interpolation tends to overestimate autocorrelation at
most time delays.

can be estimated from non-embedded time series as well, especially using recurrence
plot-based methods (Thiel et al., ). From here on we will use the simplified
notation yi for reconstructed state vectors and assign to them the ages ti, respectively.

While the standard approaches for determining the optimum embedding parameters
typically provide feasible results in the case of many applications, the situation is
considerably more challenging for paleoclimate records: On the one hand, traditional
embedding methods require equally spaced observations, so that interpolation of
the available data might become necessary with all corresponding conceptual dis-
advantages. On the other hand, in the presence of dating uncertainties, even such
interpolation is hardly possible and would lead to an enormous enhancement of
uncertainty in the embedded record.

Given these methodological difficulties we attempt a compromise: (i) The embed-
ding dimension m = 3 is a trade-off given the relatively short time series forbidding
larger embedding dimensions (Eckmann and Ruelle, ; Kantz and Schreiber, )
and the underlying high-dimensional dynamics as suggested by the false nearest-
neighbors criterion (Kennel et al., ; Marwan et al., , P). (ii) Using a
Gaussian kernel-based estimator of the autocorrelation function adapted to irregularly
sampled time series (Rehfeld et al., ), we find that the autocorrelation of all four
time series has decayed markedly after 10 kyr (Fig. .). Hence, we choose the delay
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Table ..: Basic properties of the analyzed paleoclimate time series. N is the number of samples
contained in the time series, 〈∆T 〉 the mean sampling interval, and σ(∆T ) the
standard deviation of sampling intervals. For a desired window size W ∗ = 410 kyr
and step size ∆W ∗ = 41 kyr (as chosen in Section .. for recurrence network
analysis), W and ∆W give the corresponding window and step size (in numbers of
observations), 〈W ∗〉 and 〈∆W ∗〉 the average effective window and step size, and
σ(W ∗) and σ(∆W ∗) the associated standard deviations (in units of time).

ODP  δ18O ODP  dust ODP / dust ODP  dust

N 1170 1221 2757 8417
〈∆T 〉 (kyr) 4.28 4.10 1.81 0.36
σ(∆T ) (kyr) 2.88 2.69 1.52 0.31
W 95 100 226 1139
∆W 9 10 22 113
〈W ∗〉 (kyr) 400.37 408.16 401.97 409.10
σ(W ∗) (kyr) 46.58 33.09 62.66 78.04
〈∆W ∗〉 (kyr) 38.37 41.25 39.29 40.67
σ(∆W ∗) (kyr) 4.36 3.22 6.09 7.51

τ to cover approximately the same time scale τ∗ = 10 kyr for all considered records,
i.e.,

τ = bτ∗/ 〈∆T 〉c, (.)

where 〈∆T 〉 is the average sampling time (Table .). This yields τ1 = 2 for ODP site
, τ2 = 5 for site /, and τ3 = 27 for site  corresponding to τ∗ = 10 kyr.
Promising and more sophisticated techniques for consistent embedding of irregularly
sampled time series are based on Legendre polynomials (Gibson et al., ) or
Bayesian regression (Heitzig, ) and should be explored in future studies.

... Windowed analysis

For detecting structural changes in the dynamics encoded by the time series, we slide
a window over the embedded record {yi} and perform the subsequent analysis for
the data contained in each window separately. However, the records under study
are quite heterogeneous with respect to their basic sampling properties (Table .).
The average sampling time 〈∆T 〉 differs widely across the records. In order to assure
comparability of our results uncovered from the different time series, the most natural
approach is to choose windows of a fixed size W ∗ in units of time. However, this
approach has two disadvantages: The exact timing ti of the available observations is
not known as is the case for most geological proxy records, and due to the non-uniform
sampling rates, different windows would contain different amounts of data. While the
latter is not problematic for statistical tests for homogeneity of the distribution of
values in different windows, a quantitative comparison of statistical characteristics of
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Figure ..: (A) Probability distribution (PDF) p(∆T ) of the sampling intervals of the three dust
flux records according to their established age models (ODP sites : solid line,
/: dash-dotted, : dashed). The distribution for the δ18O record at ODP
site  is visually almost indistinguishable from that of the corresponding dust flux
record and therefore not shown. The PDFs were estimated using a Gaussian kernel
with bandwidth h = σ(∆T )(N − 1)−1/5 (Table .) following Scott’s rule (Scott,
). (B,C,D) Temporal variation of the sampling times ∆T for the three dust
flux records.
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the associated recurrence networks (see Section ..) is not possible. Therefore, in
the following, we will proceed in a different way by prescribing both the window size
W and step size ∆W for recurrence network analysis measured in units of sampling
points. In order to derive W and ∆W from the desired quantities in units of time,
W ∗ and ∆W ∗, we divide by the average sampling time,

W = bW ∗/ 〈∆T 〉c, (.)
∆W = b∆W ∗/ 〈∆T 〉c, (.)

where bxc denotes the integer part of x. In turn, the actual window size W ∗(ti) is
determined by the average sampling time in the size-W window centered around ti.
For a particular choice of W ∗ and the associated step size ∆W ∗ in units of time, the
resulting values of W and ∆W , the mean window widths, and step sizes as well as
the corresponding standard deviations are given in Table ..

The simple approach for determining the window size described above guarantees
that the windows cover approximately the same time span for all records and positions
within the time series. While most sampling intervals take values close to the mean,
there are distinct outliers which most likely correspond to missing data due to
incomplete core recovery, hiata, or disturbances of the sediment such as turbidites
(Fig. .A). Nevertheless, the standard deviation of window size σ(∆W ∗) is still
small in comparison to the average window size 〈∆W ∗〉 (Table .), suggesting that
statistical characteristics computed for different windows can still be quantitatively
compared in a reasonable way.
Formally, the data series {yµi } within the µ-th window, µ = 1, 2, . . ., is given by

{yµi } = {y(µ−1)∆W+i}, (.)

where from here on i = 1, . . . ,W . We use the window’s mid-point’s timing

tµ = t(µ−1)∆W+bW/2c (.)

to attach an age to the scalar network measures fµ calculated from the data within
the µ-th window.

... Recurrence network analysis

Following the general methodology of ε-recurrence network analysis described in
Section .., the recurrence matrices Rµ with elements

Rµij(ε) = Θ(ε− ‖yµi − y
µ
j ‖) (.)

are computed from the state vectors {yµi } in the µ-th window (see Fig. . for
examples), where the appropriate choice of the recurrence threshold parameter ε
is discussed below. The corresponding recurrence networks (see Fig. . and the
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Figure ..: Recurrence plots (equivalently adjacency matrices of the recurrence networks shown
in Fig. .) obtained from the dust flux record at ODP site , centered around (A)
., (B) ., and (C) . Myr BP (before present), using window sizeW ∗ = 410 kyr,
step size ∆W ∗ = 41 kyr, and embedding parameters m = 3, τ∗ = 10 kyr. ε was
chosen in a data-adaptive way to yield a fixed edge density ρ(ε) = 0.05 for each
window.

corresponding discussion in Section ..) are then fully described by the adjacency
matrices Aµ with elements

Aµij(ε) = Rµij(ε)− δij . (.)

According to the conventions of Section .., each vertex i in the µ-th window has
an age tµi = t(µ−1)∆W+i attached to it. To simplify the notation when referring to
network measures, we will drop the window index µ in the following.
In order to apply recurrence networks in a sliding window analysis, a reference

framework is necessary. Here, we consider a data-adaptive choice of ε that guarantees
for a fixed edge density ρ of % which has been characterized as a reasonable choice in
previous studies (Donner et al., c, P; Donges et al., , P) (see the related
discussion in Section ..). One should note, however that even with this choice
the characteristics of recurrence networks can only be compared in a meaningful
way if the network size W is kept fixed (see Section ..). Among the considered
complex network measures, transitivity T and assortativity A are mainly affected
by finite-sample problems otherwise, whereas average path length L and diameter D
explicitly depend on ε and W (Section .. and Donner et al. (a, P)).

... Significance test

We perform a relatively simple statistical test of whether the network characteristics
(see Section ..) in a certain time interval differ significantly from the general
network characteristics expected given the phase space distribution of state vectors
yi from the whole detrended and embedded record and a certain recurrence window
size W . The corresponding null hypothesis is that the network measures observed
for a certain window are consistent with being calculated from a random draw of W
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A B C

Figure ..: Recurrence networks obtained from the dust flux record at ODP site , centered
around (A) ., (B) ., and (C) . Myr BP and corresponding to the recurrence
plots of Fig. .. Vertex color indicates the age tµi associated to single state vectors
µ (from blue [=old] to red [=young]). The two-dimensional graph visualization has
been obtained with the software package GUESS using a force-directed placement
algorithm (see Appendix F). It is important to note that in this visualization, node
positions are determined by the aforementioned algorithm and do not correspond to
a projection of the node coordinates in the reconstructed three-dimensional phase
space.

state vectors from the prescribed phase space distribution induced by the complete
detrended time series. We can justly assume a thus randomized embedded time series
without losing essential information, because all network measures f(·) considered here
are permutation-invariant when considering a fixed subset of state vectors y1, . . . , yW .
More formally, f(y1, . . . , yW ) = f(yπ(1), . . . , yπ(W )) for arbitrary permutations π. A
similar test for RQA measures requires a more advanced method (Schinkel et al.,
). In order to create an appropriate null model, we use the following approach:

(i) Draw randomly W state vectors from the embedded time series (corresponding
to the window size chosen for the original data).

(ii) Construct a recurrence network from this set of state vectors.

(iii) Compute the network measures of interest.

Repeating this procedure sufficiently many times, we obtain a test distribution for
each of the network measures and choose to estimate its . and . quantiles
that can be interpreted as % confidence bounds. These conservative symmetric
confidence bounds were selected because due to the relatively small number of state
vectors yi available for bootstrapping, the Monte Carlo draws are not sufficiently
independent to allow the reliable estimation of stricter confidence bounds.
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The proposed significance test can be interpreted as a test for stationarity of
the higher-order geometrical properties of the time series that are quantified by
qualitatively different recurrence network measures. It is conceptually distinct from
the network surrogate-based hypothesis tests put forward in Section .., since the
latter essentially rely on network surrogates obtained by directly randomizing the
network structure under certain constraints. In contrast, the test proposed here
operates by first generating multivariate time series surrogates by bootstrapping from
all available state vectors and subsequently constructing recurrence networks from
these surrogates.

.. Dynamical transitions in model systems

To validate the proposed methodology for detecting transitions in time series based on
recurrence networks, we apply it to the logistic map and the Lorenz system with drift-
ing bifurcation parameter as paradigmatic examples of discrete and continuous-time
dynamical systems, respectively. While step-like changes of bifurcation parameters
have already been studied for discrete (Marwan et al., , P) and continuous-time
dynamical systems (Zou et al., , P; Donner et al., a, P), here we are
particularly interested in the effect of transients, which are expected to be present
in real-world systems and, hence, data extracted from them. We will check whether
the global network quantifiers described above are able to detect transitions in the
system’s dynamics induced by bifurcations due to a slowly changing control parame-
ter. For this purpose we are specifically looking for time intervals (or equivalently,
values of the bifurcation parameter), where one or more of the considered network
quantifiers undergo sudden changes. This requires taking into account the measures’
interpretation in terms of dynamical systems theory (Section ..). Furthermore,
we will study how their performance and the level of resolved detail depend on the
window size W . This analysis particularly shows that the window sizes W chosen
for the recurrence network analysis of terrigenous dust flux records (Table .) are
indeed appropriate for detecting bifurcations.

... Logistic map

We iterate the logistic map

xi+1 = rixi(1− xi)
ri+1 = ri + ∆r (.)

while varying the bifurcation parameter linearly from r1 = 3.8 to rM = 3.9 in
M = 10, 000 equidistant steps setting ∆r = 1×10−5 (Fig. .), similar to Trulla et al.
(). We analyze the resulting time series {xi} without embedding or detrending.
The transition from chaotic to -periodic dynamics after an interior crisis at r =
1 +
√

8 ≈ 3.8284 (Wackerbauer et al., ) is clearly displayed by all four measures.
As expected from theoretical considerations for discrete-time systems (Marwan et al.,
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Transitivity Average path length

Assortativity Diameter

Figure ..: (A) Transitivity T , (B) average path length L, (C) assortativity A, and (D) diameter
D for varying recurrence window size W for the logistic map (Eq. (.)) with
drifting bifurcation parameter r (see text) and initial condition x1 = 0.7. W
was varied linearly in the interval [100, 600], the recurrence window step size was
fixed to ∆W = 10 time steps. No embedding was used and the threshold set to
ε = 0.05σ (Marwan et al., , P), where σ denotes the standard deviation of
the time series segment within the recurrence window. Vertical dashed lines indicate
the critical values of r discussed in the text.

, P; Donner et al., a, P; Donner et al., b, P), T and A abruptly
increase to their maximum value of  following this transition, whereas at the same
time L and D sharply decrease to their minimum value of . Among all four measures,
T and A most clearly detect the termination of the period-doubling cascade following
the period- behavior at the accumulation point r ≈ 3.849, while T , L, and D
highlight the merger of the subsequently formed three chaotic bands at the interior
crisis at r ≈ 3.857 (Wackerbauer et al., ). The latter transition is only weakly
visible in A. Additionally, much fine-structure is resolved by the network measures,
e.g., a narrow period- window at r . 3.89 that is most clearly indicated by an
increased transitivity T across all W . Generally, the transitions appear more and
more blurred as W increases, which is due to the growing number of samples from
both periodic and chaotic dynamical regimes contained in the recurrence windows
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when sliding over the bifurcation point. In consequence, some of the narrow periodic
windows appearing for r < 3.83 and r > 3.86 are only visible for small recurrence
window sizes W . As a rule of thumb, we can expect a periodic (chaotic) window
of width wr embedded within a chaotic (periodic) background to be detectable if
wr &W∆r.
Another notable feature is that both L and D show a clear tendency to increase

with growing W in the chaotic parameter ranges (Fig. .B,D). This is theoretically
expected, since both measures are extensive, i.e., they depend explicitly and non-
linearly on the number of vertices W in the recurrence network for a general phase
space distribution of state vectors as induced by chaotic dynamics (Donner et al.,
a, P). In contrast, L and D do not change with W in the periodic windows,
most notably in the large period- window of the logistic map (Fig. .B,D). We can
explain this behavior by recalling that for discrete-time systems in a p-periodic regime,
the recurrence network reduces to a set of p fully connected components (Donner
et al., a, P). Following the definitions in Section .., this in turn leads to
L = D = 1 in any periodic regime and independent of W .

... Lorenz system

To illustrate the performance of windowed recurrence network analysis for detecting
transitions in continuous-time dynamical systems, we consider the Lorenz system
(see Figs. . and .) with a time-dependent bifurcation parameter r = r(t),

d

dt
(x, y, z) =

(
10(y − x), x(r − z)− y, xy − 8

3z
)
. (.)

While the system is evolving, r increases linearly from r0 = 160 at time t0 = 0 to
rf = 170 at time tf = 500, i.e.,

r(t) = r0 + rf − r0
tf − t0

(t− t0). (.)

For consistency with the analysis of scalar paleoclimate time series to be performed
in Section ., we use an embedding of the x-component time series for recurrence
network analysis without prior detrending (see caption of Fig. . for details). The
recurrence network measures indicate two major transitions towards increasingly
irregular dynamics at r ≈ 161 and r ≈ 166.5 (Fig. .). The former possibly reflects
an initial transient due to the chosen initial condition. The latter agrees well with
the major shift from periodic (large T , large L and D for continuous-time systems,
see Chapter  and Donner et al. (a, P); Donner et al. (b, P); Zou
et al. (, P); Donges et al. (, P)) to chaotic (small T , small L and D)
behavior which is present in the Lorenz system’s non-transient bifurcation scenario
at r ≈ 166 (Barrio and Serrano, ; Donner et al., a, P). On a shorter time
scale, the path-based measures L and D among others detect weaker transitions at
r ≈ 163.5, r ≈ 164.5 and r ≈ 166. Note that one has to be careful when comparing
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Figure ..: (A) Transitivity T , (B) average path length L, (C) assortativity A, and (D) diameter
D for varying recurrence window size W for the Lorenz system (Eq. (.)) with
drifting bifurcation parameter r (see text) and initial condition (x0, y0, z0) =
(10, 10, 10). Because we are interested in the performance of our method for scalar
time series, we chose the x-component of the trajectory sampled with sampling time
∆T = 0.05 and embed it with embedding dimension m = 3 and delay τ = 15. W
was varied linearly in the interval [100, 600], the recurrence window step size was
fixed to ∆W = 10 samples. We varied the recurrence threshold ε to yield a fixed
edge density ρ = 0.05 (Donner et al., c, P). Vertical dashed lines indicate
the critical values of r discussed in the text.
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these results to bifurcation studies, where distinct realizations of the Lorenz system
with fixed parameter r (not varying in time) are studied (e.g., Donner et al. (a,
P)), since transients influence the results and cannot be excluded by construction
when r is continuously varied in time. However, our results are consistent with the
work of Trulla et al. () who observed that in transient scenarios bifurcations
may appear for larger bifurcation parameters than in their non-transient equivalents.
The dependence of the results on the recurrence window size W is more pronounced
than that described above for the logistic map. This is likely due to the fact that
transients play a larger role in continuous-time systems like the Lorenz model than
in discrete-time systems.

.. Dynamical transitions in paleoclimate records

Our studies in the previous section demonstrated that recurrence network analysis
can be meaningfully applied for detecting dynamical transitions in non-stationary
time series from different model systems by applying this kind of analysis to running
windows. This is a necessary, but not sufficient condition for ensuring the feasibility
of recurrence network analysis for detecting regime shifts in paleoclimate records
as well. However, the application of our simple significance test (Section ..)
diminishes the danger of confusing statistical fluctuations with proper dynamical
changes substantially. Time series from geological archives are typically characterized
by a variety of different types of nonstationarities, including (i) changes in the long-
term mean or variance of the recorded proxies, (ii) variations in the amplitudes of
almost periodic variability components (e.g., such attributed to Milankovich-type
variations caused by periodic changes in the Earth’s orbital parameters), or (iii)
even multimodal behavior (e.g., transitions between glacial and interglacial periods,
see Section B..). All these three types of nonstationarities are contained in our
data (Fig. . and Trauth et al. ()). While these different phenomena can
be analyzed using more specific methodological approaches, we propose recurrence
network analysis as a general exploratory tool for detecting time intervals containing
changes in the dominating type of dynamical behavior. In the following, we will
illustrate the robustness of this approach for the four marine records introduced
in Section .. and briefly discuss the possible climatological background of the
observed dynamical changes. These results are elaborated in detail and put into
context with additional paleoclimate and paleontological data in Chapter  and
Donges et al. (c, P).

... Time-dependence of network properties

We consider the four marine paleoclimate records embedded in a three-dimensional
reconstructed phase space with a time delay of approximately τ∗ = 10 kyr, resulting
in the embedding parameters described in Section ... For an initial inspection,
we use recurrence windows of size W ∗ = 410 kyr with a mutual offset of subsequent
windows ∆W ∗ = 41 kyr. Note that the latter two parameter choices correspond to
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those used in previous work on the ODP site  dust flux record (Marwan et al.,
, P; Donner et al., a, P). The selection of both parameters results from
a compromise between high temporal resolution of the finally produced recurrence
network measures (small W ∗, ∆W ∗) and larger statistical confidence in the results
(large W ∗). The choice of W ∗ is more critical than that of ∆W ∗, because the former
directly influences the number of vertices W in the recurrence networks via Eq. (.).
Since a formal criterion for determining an optimal choice of W ∗ and ∆W ∗ is not
available so far, we study the robustness of our results with respect to variations in
the more critical parameter W ∗ in Section ...
We additionally apply local detrending by removing the long-term average taken

over windows of W ∗D = 500 kyr, where

WD = bW ∗D/ 〈∆T 〉c, (.)

which has not been considered in the aforementioned studies. As we will show in the
following, the main features recovered by our analysis are not qualitatively changed
when applying detrending. However, this step appears relevant in other kinds of
statistical analyses, e.g., for estimating spectrograms or time-dependent coefficients
of autoregressive processes, since the data show considerable long-term trends in both
mean and variance (Fig. .).
Regarding the transitivity (Fig. .), we find a synchronous behavior of the two

geographically distinct records at ODP sites  and / during the Pliocene
(∼.–. Myr BP (before present)) and Early Pleistocene (.–. Myr BP),
including two periods of extraordinarily large values of T at about .–. and
.–. Myr BP, related to pronounced clusters of vertices shown in Figs. .B,C.
The first of these periods results from a time interval of strongly suppressed and
almost constant dust flux in the Mid Pliocene (see Figs. .,.), while the latter
one coincides with a period of almost periodic Milankovich-type variations (Trauth
et al., ). We note that it is known that both types of dynamics typically lead to
large values of T (Marwan et al., , P; Donner et al., a, P; Donner et al.,
b, P; Zou et al., , P), so that this result is consistent with theoretical
expectations (Chapter ). During the Early Pleistocene, the signatures at both
sites decouple from each other, which could be the result of an enhancement of the
atmospheric Walker circulation (Ravelo et al., ). For the last about . Myr, the
variations of transitivity become more similar between ODP sites / and ,
particularly highlighting the Mid Pleistocene transition between . and . Myr
BP (Fig. .A), which corresponds to a change in the dominating Milankovich-type
periodicity. The results obtained for the average path length L (Fig. .) are mostly
consistent with these findings, also highlighting the Mid Pliocene, Early Pleistocene,
and Mid Pleistocene as periods with changes in the long-term dust flux variability.
Specifically, L tends to show significant peaks at abrupt change points between regular

Here “Early Pleistocene” does not refer to any of the archetypical stages (Upper, Middle and Lower
Pleistocene). Its timing .–. Myr BP is not motivated stratigraphically, but climatologically,
i.e., by the onset of the Mid-Pleistocene transition around . Myr BP.
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Figure ..: Evolution of recurrence network transitivity T for (A) the δ18O record from ODP
site , and the dust flux records from ODP sites (B) , (C) , and (D) .
T reveals changes in the regularity of African climate during the Plio-Pleistocene.
Here we used a detrending window size W ∗D = 500 kyr, recurrence window size
W ∗ = 410 kyr and step size ∆W ∗ = 41 kyr, embedding dimension m = 3 and
delay τ∗ = 10 kyr. The recurrence threshold ε was chosen adaptively to yield a
fixed edge density ρ = 0.05. The gray bars represent the % and % quantiles
with respect to the test distribution obtained from , realizations of our null
model for each record separately. Vertical dashed lines indicate the detected epochs
of transitions discussed in the main text.

and more erratic climate variability, as indicated by T (see Marwan et al. (, P)
for a theoretical explanation of this behavior).
The oxygen isotope anomaly obtained from the analysis of benthic foraminifera

characterizes a distinctively different climatic parameter (i.e., global ice volume)
than terrigenous dust flux, so that it can be expected that the variability recorded
by this proxy differs from that of the dust flux. An inspection of the recurrence
network properties indeed confirms this expectation. Specifically, the transitivity T
does not show any systematic maxima at all (indicating time intervals with regular
long-term dynamics) (Fig. .A), which is in clear contrast to the aeolian dust flux.
The average path length L shows significant maxima around . Myr BP (possibly
being related to the intensification of Northern Hemisphere glaciation at around this
time), between . and . Myr BP (consistent with the corresponding results for
the dust flux records, suggesting a high-latitude mechanism behind the large-scale
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Figure ..: Evolution of recurrence network average path length L for (A) the δ18O record
from ODP site , and the dust flux records from ODP sites (B) , (C)
, and (D) , indicating transitions in African climate dynamics during the
Plio-Pleistocene. Parameters, significance test, and vertical lines are the same as
in Fig. ..

climatic changes during this time period), and after about  kyr BP (possibly
resulting from the glacial terminations and inceptions with a rather long – roughly
 kyr – periodicity) (Fig. .A).

Figures . and . additionally show the time variability of the two other
recurrence network properties assortativity A and diameter D. Since the latter one is
closely related to the average path length L (Donner et al., a, P), the variability
of both measures is very similar. Moreover, we also find some much weaker similarities
between the temporal variability patterns of transitivity T and assortativity A, which
are less pronounced, since both properties characterize not so obviously related aspects
of the network geometry in phase space. Specifically, the time interval of suppressed
dust flux in ODP  and / during the Mid Pliocene (Fig. .) results not only
in an increased transitivity, but also a high assortativity. The latter feature can be
explained by the fact that a relatively large cluster of state vectors representing this
laminar regime emerges in the network, which is rather densely connected (Fig. .C).

We conclude that the recurrence network measures are not statistically independent
in their time evolution (Table .). For the ODP site  δ18O and dust flux records,
the correlations between transitivity T and assortativity A as well as between
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Figure ..: Evolution of recurrence network assortativity A for (A) the δ18O record from ODP
site , and the dust flux records from ODP sites (B) , (C) , and (D) 
during the Plio-Pleistocene. Parameters, significance test, and vertical lines are
the same as in Fig. ..

average path length L and diameter D as measured by Spearman’s ρ are most
pronounced, which is consistent with theoretical expectations (Donner et al., a,
P). Correlations are more clearly developed between all four measures in case of the
more highly sampled dust flux records from ODP sites / and  (Table .).
However, for all records the four measures can be considered sufficiently independent
to justify including all of them for a broad and thorough nonlinear time series analysis
of oxygen isotope and terrigenous dust flux variability.

... Robustness of the results

To assure the reliability and robustness of our results, we systematically study their
dependence on the relevant algorithmic parameters of our method, in particular, the
widths of the recurrence window (W ∗) and the detrending window (W ∗D) as well
as the embedding delay (τ∗). In Figs. .–., the results of the significance test
are presented as contours at two prescribed significance levels obtained from the
observed measure’s quantiles with respect to the corresponding test distribution.
Green contours represent the lower prescribed quantile (%), while black contours
indicate the upper one (%). This implies that values of the measure under study
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Figure ..: Evolution of recurrence network diameter D for (A) the δ18O record from ODP
site , and the dust flux records from ODP sites (B) , (C) , and (D) 
during the Plio-Pleistocene. Parameters, significance test, and vertical lines are
the same as in Fig. ..

enclosed by green contours can be considered as exceptionally low, while those lying
within black contours are exceptionally large, recalling the interpretation of the
applied null model given in Section ... It is, however, important to recognize
that the null hypothesis of stationarity has been tested pointwise, while physical
significance requires the null hypothesis to be rejected over a certain period of time,
i.e., for several subsequent time points (Maraun et al., ). Therefore, certain
line-like structures, particularly those seen in Fig. ., are likely to reflect statistical
fluctuations rather than physically significant dynamical transitions. In the following,
we will only present the results for the ODP site  dust flux record.

Recurrence window size W ∗

As for the model systems in Section ., we first discuss the sensitivity of our results
to the changing width of the recurrence window W ∗. The corresponding results for
the four chosen recurrence network measures are shown in Fig. .. We recognize
that the most significant features persist under varying W ∗, although the relevant
structures become broader and less significant for larger windows. This is to be
expected since more and more data from time intervals not directly affected by the
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Table ..: Spearman’s ρ measuring monotonic correlations in the time evolution of recurrence
network measures for (A) the ODP site  δ18O record, and the dust flux records
from ODP sites (B) , (C) /, and (D) . Significant correlations having
a p-value smaller than . under the assumption of uncorrelated data of the same
length are marked in bold.

(A)

T L A D
T 1.00 −0.08 0.38 0.00
L −0.08 1.00 −0.06 0.92
A 0.38 −0.06 1.00 0.03
D 0.00 0.92 0.03 1.00

(C)

T L A D
T 1.00 0.50 0.40 0.37
L 0.50 1.00 0.37 0.74
A 0.40 0.37 1.00 0.35
D 0.37 0.74 0.35 1.00

(B)

T L A D
T 1.00 −0.05 0.12 0.03
L −0.05 1.00 −0.08 0.77
A 0.12 −0.08 1.00 0.23
D 0.03 0.77 0.23 1.00

(D)

T L A D
T 1.00 0.65 0.61 0.23
L 0.65 1.00 0.54 0.78
A 0.61 0.54 1.00 0.16
D 0.23 0.78 0.16 1.00

origin of specific network properties (e.g., a laminar phase in the dynamics) contribute
to the longer windows. As the window width is increased linearly, cone-like structures
emerge (which is especially well visible for the Mid Pliocene transitivity maximum as
the most relevant feature). In general, we observe that for our example the transitivity
is most robust with respect to changes of W ∗, whereas the other network measures
may lose significance if this parameter of our analysis method is varied. We note,
however, that the periods of interest identified in Section .. are robust for a wide
range of recurrence window sizes, presenting a trade-off between good localization
of identified features (small windows) and reasonable statistical confidence of the
calculated network properties (large windows).

Detrending window size W ∗D

Regarding the dependence of our observations on the choice of the detrending window,
Fig. . shows that the general temporal variability pattern of the different network
measures remains unchanged as W ∗D is altered, whereas the actual significance levels
are more strongly influenced. In general, we can conclude, however, that the most
significant time periods persist under variations of W ∗D, which is particularly well
expressed for the transitivity during the Mid Pliocene. Together with the fact that
recurrence network analysis of the three dust flux records without detrending produces
consistent results (Donges et al., c, P) this suggests that trends do not have
a significant influence on the outcomes of recurrence network analysis as long as
W ∗ � N 〈∆T 〉. However, this should be checked in any particular application by
comparing the results for the time series data before and after detrending. Note
that the results for undetrended time series are approximated by those displayed in
Fig. . for W ∗D ≈ N 〈∆T 〉, since recurrence network analysis is invariant to nearly
uniform translations of the data (Section ..).
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Embedding delay τ∗

Our results are also robust with respect to reasonable variations of the embedding
delay τ∗ around the previously chosen delay time τ∗ = 10 kyr (Fig. .). However, for
the embedding delay exceeding τ∗ = 20 kyr the results and significance levels change
considerably. This is expected as for delays larger than 20 kyr, autocorrelations in the
time series do not decrease significantly anymore. In the case of the δ18O record from
ODP site  they even increase again due to pronounced periodicities (Fig. .), so
that the autocorrelation criterion for the choice of τ∗ does not apply here anymore.
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Transitivity Average path length
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Figure ..: Dependence of (A) transitivity T , (B) average path length L, (C) assortativity A,
and (D) diameter D on the recurrence window sizeW ∗ for the dust flux record from
ODP site . The recurrence window step size is fixed to ∆W ∗ = 41 kyr, the
detrending window size to W ∗D = 500 kyr. Green and black contours correspond
to the % and % quantiles with respect to the test distribution obtained
from , realizations of our null model. Other parameters were: embedding
dimension m = 3 and delay τ∗ = 10 kyr, the threshold was chosen to yield a
fixed edge density ρ = 0.05. The white bands indicating “no value” at the left
and right margins of each panel appear because we plot the network measures
fµ,W

∗
at the mid-points tµ of the windows µ used for recurrence network analysis

(Section ..). As the mid-points of the first (last) window move further into
the past (present) for increasing W ∗, the white bands grow linearly for linearly
increasing W ∗.
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Transitivity Average path length
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Figure ..: Dependence of (A) transitivity T , (B) average path length L, (C) assortativity A,
and (D) diameter D on the detrending window size W ∗D for the dust flux record
from ODP site . The recurrence window size is fixed to W ∗ = 410 kyr with
a step size of ∆W ∗ = 41 kyr. Green and black contours correspond to the %
and % quantiles with respect to the test distribution obtained from 10, 000
realizations of our null model. Other parameters were: embedding dimension
m = 3 and delay τ∗ = 10 kyr, the threshold was chosen to yield a fixed edge
density ρ = 0.05. In regions outside the black dashed lines the results are influenced
by boundary effects, since the effective detrending window size WD(t) has to
decrease towards the time series’ limits (Eq. (.)). The white bands indicating
“no value” at the left and right margins of each panel appear because we plot
the network measures fµ,W

∗
D at the mid-points tµ of the windows µ used for

recurrence network analysis (Section ..). In contrast to Fig. . their width
does not change as W ∗ is fixed here.
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Transitivity Average path length
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Figure ..: Dependence of (A) transitivity T , (B) average path length L, (C) assortativity
A, and (D) diameter D on the embedding delay time τ∗ for the dust flux record
from ODP site . The recurrence window size is fixed to W ∗ = 410 kyr with a
step size of ∆W ∗ = 41 kyr, the detrending window size to W ∗D = 500 kyr. Green
and black contours correspond to the % and % quantiles with respect to the
test distribution obtained from , realizations of our null model. Vertical
line-shaped contours are likely to correspond to statistical fluctuations rather than
physically significant time intervals (see text). Other parameters: embedding
dimension m = 3, the threshold was chosen to yield a fixed edge density ρ = 0.05.
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.. Discussion

We have demonstrated that recurrence network analysis allows detecting dynamical
transitions in non-stationary model systems as well as real-world paleoclimate data.
Transitivity and average path length have been previously discussed as appropriate
network properties indicating qualitative changes in the dynamics of the underlying
system (Marwan et al., , P; Donner et al., c, P). Here, we have provided
examples that also other global network measures such as assortativity and network
diameter trace qualitative changes in dynamical systems, where, specifically, assor-
tativity does not have a similarly straightforward interpretation in terms of basic
system properties as the other mentioned quantities (see Chapter ).

Our results show that the outcomes of recurrence network analysis are quite robust
if the fundamental parameters of the method (detrending and recurrence window sizes,
embedding delay) are varied within a reasonable range. Unlike for other methods of
time series analysis, the consideration of embedding with properly chosen parameters
is necessary in order to obtain feasible results.

In contrast to other techniques, recurrence network analysis does not characterize
temporal interrelationships within the analyzed records (although time information
enters indirectly through embedding parameters, however, mostly on short time scales
as typically mτ∗ � N 〈∆T 〉), but quantifies geometric properties of the sampled
dynamical system in its (reconstructed) phase space. The only implicit assumption
is that the available sample of observed state vectors {yµi } represents the spatial
distribution of the true state vectors in the (properly reconstructed) phase space of
the underlying dynamical system sufficiently well (see Chapter ).
In this respect, our approach is very generally applicable and has comparably

moderate requirements in terms of the requested number of data (i.e., windows with
O(100) data points are sufficient for a reasonable analysis of non-stationary systems).
In case of paleoclimate records, this complementary way for characterizing time series
avoids conceptual problems of other approaches due to uncertain age models and
non-uniform sampling. E.g., the results of recurrence network analysis {fµ} are
invariant to changes in the age model {ti}, only the associated windows’ mid-points
{tµ} change with variations in {ti} (Eq. (.)). However, the aforementioned problems
indirectly persist in terms of the necessary embedding of the data and have to be
finally resolved in corresponding future work. While the present chapter focussed
on the technical aspects of applying recurrence network analysis to paleoclimate
time series, an in-depth discussion of the results obtained for the three dust flux
records in the light of additional proxy records and paleontological evidence is given
in Chapter  and Donges et al. (c, P).

.. Summary

The analysis of paleoclimate time series is usually affected by severe methodological
problems, resulting primarily from non-equidistant sampling and uncertain age models.





.. Summary

As an alternative to existing methods of time series analysis, in this chapter we have
argued that the statistical properties of recurrence networks are promising candidates
for characterizing the system’s nonlinear dynamics and quantifying structural changes
in its reconstructed phase space as time evolves. The results of recurrence network
analysis are invariant under changes in the age model and are not directly affected by
non-equidistant sampling of the data. Specifically, we have investigated the behavior
of recurrence network measures for both paradigmatic model systems with non-
stationary parameters and four marine records of long-term paleoclimate variations.
We have shown that the obtained results are qualitatively robust under changes of the
relevant parameters of our method, including detrending, size of the running window
used for analysis, and embedding delay. We have demonstrated that recurrence
network analysis is able to detect relevant regime shifts in synthetic data as well as
in problematic geoscientific time series. This suggests its application as a general
exploratory tool of time series analysis complementing existing methods.







Chapter .

Paleoclimate-variability transitions
possibly related to human evolution

Fan the flames of controversy.
Roger Revelle (after Inman ())

.. Introduction

Recent comparisons of terrestrial and marine paleoclimate archives have resulted
in an intense debate concerning global vs. regional forcing of East Africa’s climate
and its relationship to human evolution during the last  Myr (deMenocal, ;
deMenocal, ; Trauth et al., ; deMenocal, ). The gradual long-term
retreat of equatorial rain forests and the emergence of drier environments in East
Africa (Clemens et al., ; Trauth et al., ; deMenocal, ) were interrupted
by distinct epochs of increased humidity indicated by paleo-lake levels in different
basins of the East African Rift System (EARS) displaying synchronous highs at
about .–. Myr, .–. Myr, and .–. Myr BP (before present) (Trauth et al.,
). Notably, these epochs coincide well with certain global-scale climate transitions
like the final closure of the Panama isthmus (Haug and Tiedemann, ; Bartoli
et al., ; Sarnthein et al., ), the intensification of the atmospheric Walker
circulation (Ravelo et al., ), and the shift from a predominance of obliquity-
driven glacial variability ( kyr period) to glacial-interglacial cycles with a  kyr
period (Berger and Jansen, ; Mudelsee and Schulz, ). Further reconstructions
revealed additional relevant lake periods at .–. Myr, .–. Myr, .–. Myr, and
.–. Myr BP (Trauth et al., ). Previous findings suggest that the dominating
summer aridity in East African climate was controlled mainly by orbitally driven
changes in the local irradiation driving regional monsoon activity via changes of sea
surface temperatures (SSTs) (Kutzbach and Streetperrott, ; Clemens et al., ;
Kutzbach and Liu, ; Ruddiman, ; Trauth et al., ; Trauth et al., )
rather than by high-latitude glacial dynamics. In addition, tectonic activity and
the resulting complex topography of East Africa could have triggered particularly
variable climate conditions during the Plio-Pleistocene (Trauth et al., ; Reynolds
et al., ).
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Figure ..: Map displaying the locations of the marine sediment cores analyzed in this chapter
(orange): ODP  (East Atlantic) (Tiedemann et al., ), / (Ara-
bian Sea) (deMenocal, ; deMenocal, ), and  (Eastern Mediterranean
Sea) (Larrasoaña et al., ). In addition, locations of additional complemen-
tary records of Plio-Pleistocene climate evolution (red) in the Atlantic (ODP site
 (Herbert et al., )) and the Mediterranean (composite sequence of marine
sediments at the Sicilian and Calabrian coast (Lourens et al., )) as well as the
East African Rift System (EARS) are shown.

As early as Darwin (), scholars have speculated on if and how climate change
shaped human evolution (deMenocal, ). Based on the present-day knowledge of
Plio-Pleistocene African climate, three general hypotheses concerning mechanisms of
climate-induced mammalian evolutionary processes are currently discussed (Trauth
et al., ): (i) The turnover pulse hypothesis postulates progressive habitat chan-
ges (Vrba, ; Vrba, ) due to abrupt climate shifts (deMenocal, ; deMenocal,
) enforcing the adaptation of existing and the evolution of new species. (ii) The
variability selection hypothesis proposes an increasing instability of environmental
conditions as a driver for the simultaneous emergence of species (Potts, ; Potts,
). (iii) Finally, the pulsed climate variability hypothesis promotes spikes of more
variable climate conditions unrelated to high-latitude glacial cycles as a key driver
of evolutionary selection (Trauth et al., ; Trauth et al., ; Trauth et al.,
; Maslin and Trauth, ). With the currently available paleoclimate and
paleoanthropological records, it has not been possible to provide clear evidence for
one of these hypotheses by means of traditional (linear) statistical analysis.

Although there is an unequivocal correlation of terrestrial and marine paleoclimate
records, to date, marine sediments (Fig. .) provide the only archive that allows
the study of Plio-Pleistocene African climate on all relevant time scales. However,
earlier analyses of terrigenous dust flux records using traditional time series analysis
techniques to detect important transitions in African climate yielded contradictory
results with respect to the signature and timing of these events (deMenocal, ;





.. Results

deMenocal, ; Trauth et al., ). Difficulties like these are to be expected
when applying linear methods to the highly nonlinear climate system underlying
paleoclimate proxy records. Linear techniques of time series analysis by definition
are limited to the study of linear dynamics. To circumvent this problem and explore
the vast remainder of nonlinear phenomena, following Donges et al. (c, P)
here we present results based on recurrence network analysis (see Section ..). As
shown in Chapter , this nonlinear technique enables us to reliably detect qualitative
changes within observational time series which are largely indiscernible for linear
methods of data analysis (Xu et al., ; Donner et al., c, P; Donner et
al., a, P). This instrument leads to an improved detection of a particular
flavor of Plio-Pleistocene African climate change and its potential influence on the
habitats of early humans. Based on concepts of dynamical systems and graph theory,
recurrence network analysis is particularly efficient in applications where the number
of observations is limited and the data points are unevenly spaced, which is common
for paleoclimate proxy records such as time series of dust accumulation rates (Donges
et al., a, P). Specifically, recurrence network analysis is sensitive to general
changes in the dynamics, rather than those in the amplitudes of the entire record
(e.g., trends in mean or variance) or modes with a certain periodicity. Therefore
it is well suited for detecting tipping points or, more generally, bifurcations in the
behavior of nonlinear complex systems like the Earth’s climate (Marwan et al., ,
P; Donner et al., a, P; Donges et al., a, P).

.. Results

For detecting significant shifts in the dynamics of Plio-Pleistocene African climate
as reflected by terrigenous dust flux (see Section ..) we rely on two established
measures of complex network theory: transitivity and average path length (Newman,
). It has been theoretically and empirically shown in several studies that, when
calculated for recurrence networks of selected time series segments (see Chapter ),
transitivity reflects the regularity of the dynamics within this segment or time
window (Marwan et al., , P; Donner et al., a, P; Zou et al., , P;
Donges et al., , P). Noisy or chaotic dynamics gives rise to low values, while
(almost) periodic or laminar behavior induces high values of transitivity. We therefore
refer to it as a climate regularity (CR) index in the following. Along the same lines,
extreme values of the average path length indicate an abrupt dynamical change (ADC)
between different dynamical regimes within the considered time window (Marwan
et al., , P; Donner et al., a, P; Zou et al., , P) (see Section ..).
It is a crucial feature of our approach that CR and ADC do not reflect changes
in long-term trends, but are in contrast sensitive to the regularity of short-term
fluctuations (CR) and general abrupt changes in this short-term dynamics (ADC).

Both measures are hence responsive to different nonlinear aspects of the time series

However, it should be born in mind that in the context of this study on geological time scales,
short-term fluctuations actually reflect millennial-scale climate variability.
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Figure ..: (A) Terrestrial dust flux records from the three considered ODP sites (Tiedemann et
al., ; deMenocal, ; deMenocal, ; Larrasoaña et al., ). (B,C) Results
of recurrence network analysis of the three dust flux records including % confidence
bands (vertical shadings) of a stationarity test (Section ..). Comparing both
measures for all records reveals significant and synchronous large-scale regime shifts
in dust flux dynamics (horizontal shadings). (D) Time intervals with geological
evidence for large lakes in East Africa, comprising collected information from
different areas in the EARS (Trauth et al., ) and additional results from the
Afar basin (Hailemichael et al., ; Campisano and Feibel, ). (E) Major
known steps of human evolution in East Africa (simplified from Trauth et al. ()).
Red bars indicate epochs where the possible emergence and/or extinction of known
hominin species coincides with detected climate transitions (Appendix E).

data and do not necessarily show transitions at the same epochs (Marwan et al., ,
P; Donner et al., c, P; Donges et al., a, P). If they do so, however,
this points at a particularly relevant feature in the data.
The results reported below are obtained using the methods and parameters that

are documented in detail in Section ., but omitting the detrending step described
in Section .. consistently with earlier work on ODP site  (Marwan et al., ,
P; Donner et al., a, P). This change in procedure is justified by the manifest
robustness of our results with respect to variations of the detrending window size
(Section ..).

For representative dust flux records from the Atlantic as well as the Indian Ocean
(ODP sites  and /, Fig. .A), CR reveals surprisingly similar long-term
change in short-term fluctuations before about . Myr BP (in contrast to the Mediter-
ranean ODP site , Fig. .A), although both sites are strongly geographically
separated and, hence, characterized by distinct wind systems and dust sources (de-





.. Nonlinear identification of critical transitions in paleoclimate

Menocal, ; Prospero et al., ; Trauth et al., ) (Fig. .B). Specifically, the
Saharan Air Layer, African Equatorial Jet, and trade winds contribute at ODP site
 (Tiedemann et al., ), while the Shamal winds from the Arabian Peninsula,
which are connected to the western branch of the Asian monsoon system, dominate
at ODP site / (Clemens et al., ). This indicates that changes in CR during
the Pliocene and early Pleistocene are robust manifestations of long-term variations
in the dynamics of large-scale African dust mobilization and transport.
As a particularly striking feature, we identify a pronounced maximum of CR

between .–. Myr BP at both ODP sites  and / signaling a period of
exceptionally regular dust flux dynamics. The epochs highlighted by ADC support
these findings (Fig. .C). The time interval .–. Myr BP is characterized by
three distinct and highly significant extrema (two maxima, one minimum) in the
ODP site  record, indicating shifts between regimes of higher and lower regularity
in the variations of environmental conditions (Marwan et al., , P). Similar
observations can be made for the ODP site / data, however, the increased
values of ADC are less well pronounced but persist considerably longer (until . Myr
BP).
In general, the variations of ADC observed at ODP sites  and / differ

remarkably (Fig. .C), although CR traces consistent shifts between more and less
regular variability until about . Myr BP. Considering the Mediterranean record
(ODP site ), further synchronous events are identified. Specifically, we find an
extended, highly significant maximum of CR between about . and . Myr BP,
and of ADC between . and . Myr BP. The latter one roughly coincides with the
observations made at ODP site . Moreover, between about . and . Myr BP,
both CR and ADC show significant maxima for ODP site  and ODP site /,
but not for ODP site .

In summary, our analysis identifies three main epochs of interest: .–., .–.,
and .–. Myr BP (Fig. .). All three are characterized by significant extrema
of CR and/or ADC in at least two of the analyzed records. In addition, there are
further shorter time periods of considerably increased/decreased CR/ADC observed
in different records which are, however, typically less pronounced. Our results do
not change significantly if the basic parameters of our analysis method are modified
(Section .. and Donges et al. (a, P)).

.. Nonlinear identification of critical transitions in
paleoclimate

Tipping points in the climate system, i.e., values of system parameters at which
critical transitions in climate dynamics take place, have gained increasing attention
in the course of the ongoing debate on potential impacts of anthropogenic climate
change (Lenton et al., ; Schellnhuber, ; Levermann et al., ). Given
the large risk (product of impact and likelihood) associated with the activation of
certain climate tipping elements (e.g., the Greenland and West Antarctic ice-sheets),
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understanding and anticipating future qualitative changes in climate tipping elements
is of major importance and requires a good knowledge of past transitions recorded
in paleoclimate data (Lenton, ). Previous research revealed different kinds of
characteristic precursory signatures associated with climate tipping points (Kuehn,
; Thompson and Sieber, [b]; Lenton, ). Predominantly, changes in the
variance structure of relevant observables represent a critical slowing down of intrinsic
transient responses within the data prior to the instabilities (Held and Kleinen, ;
Livina and Lenton, ; Dakos et al., ; Scheffer et al., ; Scheffer, ).

Recurrence network analysis is a particularly promising exploratory tool for detect-
ing structural changes in paleoclimate dynamics potentially associated with certain
tipping elements in the Earth’s climate system. It has several advantages above other
frequently used techniques for detecting (incipient) bifurcations in time series: (i)
Recurrence network analysis is not explicitly based on temporal correlations, but on
geometric considerations (Donner et al., b, P; Donges et al., a, P). Hence
it is more robust with respect to noisy and non-uniformly sampled paleoclimate time
series with uncertain timing than methods relying on temporal correlations (Held and
Kleinen, ; Donner and Witt, ; Livina and Lenton, ; Dakos et al., )
like degenerate fingerprinting (Held and Kleinen, ) and detrended fluctuation
analysis (Livina and Lenton, ). (ii) As a nonlinear technique, recurrence network
analysis is not restricted to detecting only changes in linear statistical properties
(i.e., the autocovariance structure) of a time series (Held and Kleinen, ; Dakos
et al., ; Scheffer et al., ; Scheffer, ). In contrast, it characterizes more
general variations in the recorded dynamics which may become particularly relevant
close to bifurcation points. (iii) Recurrence network analysis has been shown to
reliably perform with a comparably small number of data points (Donges et al., a,
P; Zou et al., , P), particularly when contrasting it with linear spectral
methods (deMenocal, ; deMenocal, ) or certain nonlinear stochastic models
of climate fluctuations for detecting noisy bifurcations (Livina et al., ; Thompson
and Sieber, [a]).

We emphasize that all existing methods for detecting tipping points from paleocli-
mate time series (including recurrence network analysis) make use of sliding window
techniques. By construction, such methods have a limited temporal resolution of
the variations of the statistics of interest. Hence, identified dynamical transitions
can only be attributed to epochs rather than distinct points in time. This strategy
has the advantage of a higher robustness with respect to uncertainties in the data
themselves as well as the associated age models, rendering the results of recurrence
network analysis particularly robust and statistically reliable (Donges et al., a,
P).

.. Climatological interpretation

The three identified transition periods (Fig. .), which are only partially known from
previous studies, can be clearly related to distinct and known climatic mechanisms.





.. Climatological interpretation

Specifically, the interval .–. Myr BP corresponds to the Mid-Pleistocene transi-
tion (MPT) characterized by a change from glacial cycles predominantly related to
obliquity variations of the Earth’s orbit (approximately  kyr period) to such with
an approximately  kyr periodicity. The timing of this transition and its underlying
mechanisms have been extensively studied elsewhere (Mudelsee and Schulz, ;
Clark et al., ). That the MPT is not detected in the record from ODP site  by
recurrence network analysis does not imply that it did not have any climatic impact
in the corresponding dust-source areas in North-West Africa. It just shows that our
technique is not sensitive to the local signature of the transition if present, e.g., if it
manifests itself in some change of trend (deMenocal, ; deMenocal, ; Trauth
et al., ) (see the discussion in Section .). Alternatively the locally available
data may be insufficient in quality and/or resolution to reveal the subtle type of
events recurrence network analysis is focussing on. This reasoning holds for any
other known transition that is not detected by our method in any of the considered
records. Regarding the transition period in the Early Pleistocene (.–. Myr BP),
the timing well coincides with known large-scale changes in atmospheric circulation
associated with an intensification and spatial shift of the Walker circulation (Ravelo
et al., ).

The third identified transition period includes the Mid Pliocene (.–. Myr BP),
the last long period during which global mean temperatures have been consistently
higher than present day (Haywood et al., ). This epoch is thus considered as
an analog for future climate of the late st century if anthropogenic emissions of
greenhouse gases continue to rise (Solomon et al., ). It was characterized by a
strongly reduced meridional temperature gradient due to an intermittent poleward
shift of the North Atlantic overturning resulting in a strong warming of the Arctic
by oceanic surface currents (Robinson, ; Dowsett et al., ). At the same
time, recurrence network analysis reveals an enhanced regularity of African dust
flux variations in both the Arabian Sea and Atlantic Ocean. At ODP site /,
this observation is predominantly caused by a well-pronounced epoch of relatively
weak and approximately constant dust flux between about . and . Myr BP
(Fig. .E). A similar – but shorter – feature is found at ODP site  between about
. and . Myr BP (Fig. .D) as well as at ODP sites  and  in the Eastern
Equatorial Atlantic (deMenocal, ; deMenocal, ). The presence of such very
similar features with a clearly different timing suggests the presence of either one
common climatological mechanism influencing the Arabian Peninsula much earlier
than Northwest Africa, or two distinct (but eventually interrelated) factors, where
the first only affected the Northeast African and/or Arabian dust flux dynamics.

A first important candidate factor is the marine isotope stage (MIS) M (Shackleton
et al., ), an unusually cold period (.–. Myr BP) prior to the Mid Pliocene
warm period (Lisiecki and Raymo, ; Steph et al., ), cf. Fig. .A. This cooling
was most likely triggered by a significant reduction of northward heat transport via
the North Atlantic Current between . and . Myr BP (de Schepper et al.,
) – possibly due to intermittent closures and re-openings of the Panamaian
Seaway (Sarnthein et al., ) – and led to a strong increase in global ice volume and
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Figure ..: Comparison of Mid Pliocene (.–. Myr BP) global ice volume, sea surface temper-
ature, and dust flux reconstructions: (A) δ18O benthic stack record LR (Lisiecki
and Raymo, ), (B) benthic δ18O record from ODP site , (C) Alkenone-based
SST reconstruction from ODP site  (Herbert et al., ), (D) terrigenous
dust flux at ODP site  (Tiedemann et al., ), (E) terrigenous dust flux at
ODP site / (deMenocal, ; deMenocal, ), (F) Alkenone-based SST
reconstruction from ODP site  (Herbert et al., ), (G,H) planktonic δ18O
and SST reconstruction from ensembles of planktonic foraminifera for a composite
sequence from Southern Italy (Lourens et al., ). The dark gray vertical bar
indicates the MIS M (preceding an epoch with cold SST in the Mediterranean
Sea and reduced dust flux into the Atlantic Ocean), the light gray bar indicates the
interval of reduced dust flux into the Arabian Sea.





.. Climate variability and human evolution

a global sea-level fall to up to  m below present-day values (Dwyer and Chandler,
). As a consequence, global SST decreased by – K (de Schepper et al., ),
with a – K decrease in the tropics (Herbert et al., ), see Fig. .C,F. This
low-latitude cooling could be related to the reduced dust flux offshore of Northwest
Africa, but can hardly explain the much earlier signature in the Arabian Sea.

A second possible triggering mechanism is the successive northward displacement of
New Guinea, due to which instead of warmer Equatorial Pacific water presently only
less saline and colder North Pacific water can pass the Indonesian throughflow (Cane
and Molnar, ). Recent paleoceanographic reconstructions revealed that during the
Pliocene, subsurface waters in the eastern tropical Indian Ocean freshened and cooled
by about K, including a major cooling step between . and . Myr BP (Karas
et al., ). Although SST was much less affected in most parts of the Indian Ocean,
the southern coast of the Arabian Peninsula as well as the region around the horn of
Africa are known as (wind-driven seasonal) upwelling regions (Schils and Coppejans,
; Herbert et al., ), which suggests that cold subsurface waters could have
(at least intermittently) reached the ocean surface in this area and, thus, have led
to a considerable decrease in the average regional SST. Recent alkenone-based SST
reconstructions for ODP site / (Herbert et al., ) actually confirm strong
SST variations with partially extremely low values between at least . Myr BP (the
beginning of the respective record) and . Myr BP (see Fig. .F), which cannot be
explained by the known pattern of early glacial activity (Lisiecki and Raymo, ).
In summary, both aforementioned factors would have led to decreasing SSTs and,

hence, to lower surface air temperatures and potential changes in the evaporation-
precipitation balance. As a consequence, less convective rainfall, but also a shift
(and possible weakening) of dominating atmospheric circulation patterns was likely.
Since in the potential source areas of terrigenous dust lower temperatures foster
the formation of a closed vegetation cover, erosion and, hence, dust mobilization
would have decreased. This interpretation is supported by the existence of large
lakes in East Africa between . and . Myr BP (including the most pronounced
lake episode in the Afar region (Campisano and Feibel, ) at about .–.
Myr BP) pointing towards a very humid climate (Fig. .D). However, we have to
emphasize that our considerations above are speculative so far and need confirmation
from modeling studies and complementary paleoclimate archives.

.. Climate variability and human evolution

To study the influence of African climate variability on human evolution, we compare
the major large-scale transitions in African climate identified above with the currently
available fossil record (Fig. .E). Particularly, we observe that transitions in hominin
evolution indicated by the appearance and disappearance of hominin species tend
to cluster close to the identified climate shifts. These observed coincidences are
unlikely to arise by chance even when taking into account dating uncertainties and
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the inherent incompleteness of the fossil record, as can be shown using a suitable
statistical significance test (Appendix E).
The presented results therefore shed some light on the possible interrelationships

between long-term climate change and hominin evolution. Specifically, we suggest
that shifts between periods of more regular and more erratic environmental variability
have been particularly important triggers for the development of humankind in East
Africa. On the one hand, epochs of higher regularity could have led to a stabilization
and gradual increase of a population and, thus, a spread of a species over a larger area.
On the other hand, subsequent periods of more irregular climate variability, possibly
associated with changes in long-term trends, would have created an additional
evolutionary pressure via a fragmentation of habitats and, thus, adaptation and
diversification leading to speciation (Trauth et al., ).

Supporting and extending Potts’ variability selection hypothesis on environmental
control of human evolution (Potts (); Potts () and hypothesis (ii) in Sec-
tion .), our point of view strongly suggests that in addition to the mean climate
conditions and the amplitude of variations of environmental parameters, (intermittent)
changes in the regularity of climate fluctuations should be considered in future, more
refined theories. In line with Potts’ hypothesis, this mechanism on orbital time-scales
would benefit generalists like Homo which are able to cope with strongly varying
environmental conditions, but penalize specialists like Paranthropus (Potts, ).
We must however keep in mind that the time scales of variations that are possibly
relevant for migration of populations are not yet resolved in the available paleoclimate
data. The necessity for further testing the extended variability selection hypothesis
put forward here against other hypotheses (see Section .) calls for future efforts to
obtain high-resolution (decadal to centennial scale) data on Plio-Pleistocene African
climate history.

.. Discussion

Recurrence network analysis has proven its ability to unravel large-scale changes in
the temporal variability of African environmental conditions on super-millennial time
scales. Comparing our results with findings from linear studies (Trauth et al., )
demonstrates that past climate change in Africa includes a significant, previously
overlooked nonlinear component. This complementary information supports the
conclusions of Trauth et al. () in that we do not find evidence for sustained and
irreversible step-like changes in climate variability that were proposed by deMenocal
(); deMenocal ().

Our results provide clear evidence for subtle, but significant transitions in the
dynamics of mineral dust transport from the African continent to the adjacent oceans
at about .–., .–., and .–. Myr BP. These transitions unanimously
correlate with important global climate transitions, such as changing ocean circulation
(after . Myr BP), the intensification of the low-latitude Walker Circulation (ca. .

A different view on the reversibility properties of time series is presented in Appendix B.





.. Summary

Myr BP) and the onset of  kyr glacial-interglacial cycles during the Mid-Pleistocene
transition (ca. .–. Myr BP). The three episodes are characterized by radical
changes in the ocean-atmosphere conditions, and hence the timing, magnitude, and
style of wet-dry-wet transitions in tropical and subtropical Africa, without doubt
influencing the regional climate and environment of early humans.

Indeed we observe statistically significant coincidences between the detected climate
shifts and transitions in human evolution in the geological record. By analogy,
this may be regarded as a warning considering the large risks for future human
societies associated with climate tipping elements undergoing potentially irreversible,
qualitative transitions due to anthropogenic climate change during the st century,
even if the time scales involved are very different. However, to harness the potential of
recurrence network analysis and other nonlinear techniques to provide early warning
of climate tipping points on these centennial time scales remains a challenge for future
research.

.. Summary

Potential paleoclimatic driving mechanisms acting on human evolution present an
open problem of cross-disciplinary scientific interest. The analysis of paleoclimate
archives encoding the environmental variability in East Africa during the last  Myr
(million years) has triggered an ongoing debate about possible candidate processes and
evolutionary mechanisms. In this chapter, we have successfully applied recurrence
network analysis to three distinct marine records of terrigenous dust flux. Our
method enabled us to identify three epochs with transitions between qualitatively
different types of environmental variability in North and East Africa during the
(i) Mid-Pliocene (.–. Myr BP (before present)), (ii) Early Pleistocene (.–
. Myr BP), and (iii) Mid-Pleistocene (.–. Myr BP). A deeper examination of
these transition periods revealed potential climatic drivers, including (i) large-scale
changes in ocean currents due to a spatial shift of the Indonesian throughflow in
combination with an intensification of Northern Hemisphere glaciation, (ii) a global
reorganization of the atmospheric Walker circulation induced in the tropical Pacific
and Indian Ocean, and (iii) shifts in the dominating temporal variability pattern
of glacial activity during the Mid-Pleistocene, respectively. A reexamination of the
available fossil record demonstrated statistically significant coincidences between the
detected transition periods and major steps in hominin evolution. This suggests that
the observed shifts between more regular and more erratic environmental variability
may have acted as a trigger for rapid change in the development of humankind in
Africa.







Chapter .

Coupled climate networks and the
atmosphere’s general circulation

The more you tune, the less you should trust.
Michael Ghil (pers. comm.)

.. Introduction

Recently, climate networks representing the statistical similarity structure of spa-
tiotemporally resolved climatological fields have been successfully employed for re-
vealing novel aspects of climate dynamics in reanalysis data sets and in simulations
of global climate models (Section ..). As argued in Chapter , understanding the
complex interactions between different domains of the Earth system which may them-
selves be viewed as complex dynamical systems, e.g., the atmosphere, hydrosphere,
cryosphere and biosphere, remains a great challenge for modern science (Schellnhuber,
). The urge to make progress in this field is particularly pressing as substantial
and mutually interacting components of the Earth system (tipping elements), such as
the Indian Monsoon and ENSO, may soon pass a bifurcation point (tipping point)
due to global climate change and consequently experience abrupt and possibly irre-
versible transitions in their dynamics and function (Lenton et al., ). Mapping
the complex interdependency structure of subsystems, components or processes of
the Earth system to a network of interacting networks provides a natural, simplified,
condensed, and model-free mathematical representation (Section .). This structure
can in turn be harnessed for generating new insights by graph-theoretical analysis
and, hence, fostering an improved understanding of the Earth system’s vulnera-
bility to perturbations like anthropogenic emissions of greenhouse gases (Donner
et al., ). As a first step in this direction, in this chapter we develop a novel
approach termed coupled climate network analysis for representing and studying the
dynamical interrelationships between distinct fields of climatological observables and
apply it to investigate the atmosphere’s vertical dynamical structure and general
circulation (Schneider, ; Hartmann, ) from a network perspective.
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Figure ..: Illustration of a coupled climate network as it is constructed in this chapter, where
V1 denotes the set of vertices in the near-ground subnetwork and Vi that of another
isobaric surface higher up in the atmosphere. E11, Eii are sets of internal edges of
the two isobaric surfaces or subnetworks describing the statistical relationships within
each isobaric surface, while E1i contains information on their mutual statistical
interdependencies.

.. Coupled climate network analysis

In climatology, classical techniques such as empirical orthogonal function analysis
(Storch and Zwiers () and Section ..) have been generalized to detect coupled
patterns in climate data for investigating the correlation structure between fields of
different climatological observables using techniques such as canonical correlation
analysis or singular value decomposition of the covariance matrix (Bretherton et
al., ). In analogy to the study of coupled patterns and following Donges et al.
(b, P), we expand the climate network approach to analyze the dynamical
interrelationships between two different climatological fields by constructing coupled
climate networks and investigating them within the interacting networks framework
introduced in Section .. In other words, the correlation structure within and
between two sets of discrete field observables {xi(t)}Nxi=1, {yj(t)}

Ny
j=1 is mapped to a

complex coupled climate network (Fig. .), where i and j are spatial indices and t
denotes time.

In order to justify treating a coupled climate network as a network of networks, an ab
initio physical separation of the climatological fields is necessary regarding processes
responsible for internal coupling within a single field and those mediating interactions
between both fields, as is elaborated in the following. The Earth’s quasi-spherical
shape and almost homogeneous mass distribution result in a hydrostatic equilibrium
in first-order approximation, implying a stable isobaric quasi-horizontal stratification
and therefore a strong buoyancy constraint (Salby, ). Local heating of the Earth’s
surface and atmosphere due to temporally and spatially varying solar radiation
induces minor disturbances of the system which give rise to weather variability and
are propagated by advection, diffusion (dominantly turbulent in the homosphere),
and convection processes. Convection processes lead to vertical movement resulting
in pressure gradients which are balanced by quasi-horizontal geostrophic winds along
isobars. An important mechanism is slant convection arising as an adjustment of
baroclinic instabilities (Pedlosky, ).





.. Coupled climate network analysis

Geopotential height Z(ϑ, φ, h) is a vertical coordinate referenced to the Earth’s
mean sea level which takes into account the variation of gravitational acceleration
g(ϑ, φ, h) with latitude ϑ, longitude φ, and geometrical height h. It is defined as

Z(ϑ, φ, h) = 1
g0

∫ h

0
dzg(ϑ, φ, z), (.)

where g0 denotes the standard gravitational acceleration at mean sea level (Salby,
). Z(ϑ, φ, h) is approximately equivalent to geometrical height h within the
homosphere, i.e., the lower portion of the atmosphere we consider in this work. The
geopotential height Z(ϑ, φ, P ) of a certain pressure level P is defined as the geopoten-
tial height necessary to reach the given pressure P . In meteorology and climatology,
the field Z(ϑ, φ, P ) is frequently used as an equivalent and convenient representation of
the three-dimensional atmospheric pressure field P (ϑ, φ, Z). Therefore the discretized
and vertically resolved geopotential height field {Ziv(t)}, sampled at predefined points
v on isobaric surfaces i at pressure Pi, captures the dynamics of both the geostrophic
wind field as well as convection processes and, hence, reflects global weather and
climate dynamics to a good approximation (Salby, ). Given the distinct physical
processes behind vertical and quasi-horizontal atmospheric dynamics described above,
it is hence feasible to apply the interacting networks approach, treating the induced
subgraphs of vertices lying on the same isobaric surface i as distinct subnetworks Gi.
In this chapter, we specifically focus on the interaction structure between near-ground
and upper-level atmospheric dynamics which is particularly interesting as a large
portion of the solar forcing driving atmospheric dynamics takes place on the Earth’s
surface (Fig. .).

To better understand our coupled climate network approach, one should be aware of
the strong analogy existing between the concepts of climate networks and functional
brain networks studied in neuroscience (Zamora-López et al., ; Zamora-López
et al., ; Zhou et al., ; Zhou et al., ; Bialonski et al., ; Bullmore and
Sporns, ). Both types of networks describe statistical similarity relationships
between spatially embedded time series using the same methods of time series analysis,
but relying on distinct data sources, i.e., the climate system and the mammalian
brain. Now there exist two fundamentally different types of networks: (i) Structural
(or anatomical) networks, on the one hand, reflect the topological structure of existing
ties between objects (e.g., computers, neurons, columns of neurons), referring to
either physical connections (e.g., internet, power grids, neuronal networks) or abstract
relations (e.g., world wide web, social networks, citation networks). (ii) Functional
networks, on the other hand, including functional brain networks and complex
climate networks, are extracted from an underlying system by detecting and assessing
similarities in the dynamical behavior of its components (Section .). In other words,
structural networks represent a priori knowledge on a system’s internal structure
on a certain level of abstraction, whereas functional networks are inferred solely
from the measured or simulated dynamics of subsystems, usually without including
any additional information. Hence, in contrast to structural networks, the resulting
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topological interconnections in functional networks do not directly allow to draw
conclusions on a causal interrelationship between the dynamics displayed at different
vertices. When constructed and compared for the same system, e.g., a neuronal
network, both types of networks will usually not be identical (Bullmore and Sporns,
). This implies that special emphasis has to be put on physical arguments when
interpreting topological features of climate networks. A further noteworthy duality
exists between spatial similarity networks based on fields of time series such as the
climate networks discussed above, and temporal similarity networks (see Chapter ),
e.g., recurrence networks (Donner et al., a, P; Donner et al., c, P;
Marwan et al., , P), representing a single time series.

.. Data

Table ..: Atmospheric pressure Pi and associated mean geopotential height Zi (Eq. (.))
for each isobaric surface i in the NCEP/NCAR Reanalysis  reconstruction of the
geopotential height field.

i Pi (mbar) Zi (km)

1 1000 0.1
2 925 0.8
3 850 1.5
4 700 3.0
5 600 4.3
6 500 5.7
7 400 7.3
8 300 9.3
9 250 10.6

10 200 12.0
11 150 13.8
12 100 16.3
13 70 18.5
14 50 20.5
15 30 23.8
16 20 26.4
17 10 30.9

To construct coupled climate networks capturing longer-term dynamics of the
geostrophic wind field as well as large-scale convection processes, we rely on the
global monthly averaged and vertically resolved atmospheric geopotential height
field covering the troposphere and the lower stratosphere. We use Reanalysis  data
provided by the National Center for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) (Kistler et al., ). For each of the 
isobaric surfaces, the NCEP/NCAR data is given on an angularly evenly spaced
spherical grid with a latitudinal and longitudinal resolution of .◦× .◦, resulting





.. Network construction

in , grid points for each layer. Using this type of grid for network construction
would induce biases in the statistical properties of climate networks, since the area
covered by each grid point is not uniform but decreases towards the poles like the
cosine of latitude (Section . and Tsonis et al. (b); Heitzig et al. (, P)).
To avoid these effects, we choose to project the data to an icosahedral grid (Heikes
and Randall, ) of Ni = 2, 562 time series {Ziv(t)} with v ∈ {1, . . . , Ni} for each
isobaric surface i, respectively, at pressure Pi using the conservative interpolation
scheme described by Jones (). Each isobaric surface i may be associated to an
average geopotential height

Zi =
〈
Ziv(t)

〉
v,t

(.)

by averaging over time t and all grid points v contained within this level (Table .).
The time series {Ziv(t)} contain  monthly averaged data points from January 
until February .

Relying on the icosahedral grid, which is used by the German Weather Service for
its operational global weather forecast model Global Modell Extended (GME) and
referred to as “triangular grid” (Majewski et al., ), guarantees nearly uniform
grid cell areas within each isobaric surface i. The differences in grid cell area between
different isobaric surfaces due to their varying distance from the Earth’s surface are
negligible since the maximum vertical separation of isobaric surfaces (≈  km, see
Table .) is much smaller than the Earth’s mean radius a ≈ 6, 370 km.

As a final step of preprocessing the data, we calculate climatological anomaly
time series {Ẑiv(t)} by phase averaging (see Donges et al. (a, P)) to remove
the leading order effect of the annual cycle from the geopotential height time series
{Ziv(t)}. This helps to avoid spurious correlations solely due to the solar forcing
common to all time series.

.. Network construction

We now construct a sequence of pairwise coupled climate networks based on statistical
interrelationships within the three-dimensional geopotential height anomaly field by
using the linear Pearson correlation at zero lag. As was shown by Donges et al. (a,
P), linear correlation measures are sufficient for a first overview study like the
present work, because they capture the great majority of statistical interrelationships
within fields of smooth (non-intermittent) climatological variables like temperature or
geopotential height. The so obtained networks describe both the intrinsic structure of
a single isobaric surface as well as the interaction structure between pairs of isobaric
surfaces, in other words comprising horizontal as well as vertical interdependencies
of the spatially embedded time series. First the Ni, Nj = 2, 562 time series of
two isobaric surfaces i, j are relabeled using indices p, q ∈ {1, . . . , N}, N = Ni +Nj ,
{Ẑiv(t)}, {Ẑjv(t)} → {Ẑp(t)}, {Ẑq(t)}, where the fully coupled climate networks contain
N = 5, 124 vertices. The anomaly time series {Ẑp,q(t)} are identified with vertices
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p, q of the coupled climate network and subsequently collected in sets Vi, Vj based
on their native isobaric surface. The classic Pearson correlation between any pair of{
Ẑp(t), Ẑq(t)

}
is then given by

P i,jpq =

〈(
Ẑp(t)− µp

) (
Ẑq(t)− µq

)〉
t

σpσq
, (.)

where µp,q and σp,q are the mean and standard deviation of the Ẑp,q(t), respectively.
Edges {p, q} are introduced into the coupled climate network if the absolute value of
Pearson correlation |P i,jpq | at zero lag between both time series {Ẑp(t)} and {Ẑq(t)}
exceeds a certain threshold value 0 ≤ T ≤ 1. The threshold should be carefully
chosen to ensure that only statistically significant and reasonably strong correlations
are included in the network (Donges et al., a, P). Because an optimal value of
T is neither easy to define nor to determine (it would even be possible to determine
a threshold Tpq for each pair of time series p, q separately), we will present results for
various thresholds below (Section .). Furthermore it would be feasible to avoid the
choice of a threshold altogether by including a function of the correlation measure
wi,jpq = ω(P i,jpq ) into the network analysis as edge weights wi,jpq . However, we do not
follow this research avenue here as it introduces as a new complication the choice of
a meaningful transfer function ω for mapping correlations to edge weights depending
on the interpretation of a specific network measure. In contrast, this chapter focusses
on the topology of statistical interrelationships between different isobaric surfaces on
the network level. The consideration of edge weights will be an interesting subject of
future work.
Finally, the coupled climate networks are completely described by the adjacency

matrices Ai,j with elements

Ai,jpq = Θ
(∣∣∣P i,jpq ∣∣∣− T)− δpq, (.)

where Θ(·) is the Heaviside function and Kronecker’s delta δpq indicates that self-
loops are not considered. The subnetworks Gi, Gj representing the correlation
structure within the isobaric surfaces i, j are the induced subgraphs of the sets Vi, Vj
embedded within the coupled climate network Gi,j described by the adjacency matrix
Ai,j . In the following, local as well as global (cross-)network measures f ijv , fij (see
Section ..) will be calculated from the coupled climate network Gi,j consisting
of two isobaric subnetworks Gi and Gj and their interaction structure Eij , i.e.,
Gi,j = (Vi ∪ Vj , Eii ∪ Ejj ∪ Eij).
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Figure ..: (A) Internal edge density ρi of all subnetworks on isobaric surfaces i, (B) cross-
edge density ρ1i between the surface level  and all other isobaric surfaces i of
average height Zi, (C) the ratio ρ1/ρ1i, and (D) the ratio ρi/ρ1i in the coupled
geopotential height climate network for various thresholds T . Note the inversions of
cross-edge density at Z ≈ –, ,  and  km becoming increasingly pronounced
for decreasing threshold T .

.. Results

Global measures The available data describes the dynamics of geopotential height
in the lower homosphere, encompassing the troposphere and lower stratosphere, where
most atmospheric dynamical processes relevant for the Earth’s climate system are
concentrated to (Salby, ). In the following we will investigate which aspects of
atmospheric dynamics can be revealed by analyzing the sequence of coupled climate
networks G1,i, i = 1, ..., 17.
It is pivotal to be aware that for similarity networks constructed from spatiotem-

poral data, such as the coupled climate networks studied here, network structure is
subject to statistical uncertainties (Kramer et al., ). One consequence is that
average path length and global clustering coefficient cannot be considered as useful
order parameters for network classification (Bialonski et al., ). Both are biased
by spurious or missing links due to the network construction algorithm and local
correlations between spatially close observations. Particularly, this implies that it is
not meaningful to classify interaction networks as small-world networks (Watts and
Strogatz, ), Erdős-Rényi type random networks, or grid-like regular networks, as
is common practice for other networks without given spatial embedding (Newman,
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; Boccaletti et al., ). Since the corresponding arguments of Bialonski et al.
() also hold for the modified clustering coefficients, transitivities, and average
path lengths defined in Section .., we in the following do not consider the ab-
solute values of these measures. In contrast, here we are solely interested in their
relative changes conveying information on the varying interaction structure within
and between different isobaric surfaces of the atmosphere.

Our first and fundamental observation is that the cross-edge density ρ1i (Fig. .B)
between the near-surface and all other isobaric surfaces i is always smaller than and
well separated from the internal edge density of the upper isobaric subnetwork ρi
(Fig. .A) for all considered thresholds T . Moreover, the ratio of the edge densities
ρi/ρ1i and, hence, the physical separation of the underlying dynamics is increasing
with height Zi (Fig. .D). Approximately the same holds for the internal edge
density ρ1 of the near-surface subnetwork which is considerably larger than ρ1i for
most Zi and T (Fig. .C). This observation reflects topologically the dynamical
separation of atmospheric processes within and between isobaric surfaces i, respectively
that led to identifying them with subnetworks in the first place (see Section .).
Nevertheless, ρ1 can be slightly smaller than the cross-edge density ρ1i, particularly
close to the two pronounced minima of the ratio ρ1/ρ1i (the overall minimum value
is mini,T ρ1/ρ1i ≈ 0.7, see Fig. .C). This finding, however, does not challenge the
applicability of our method as our framework does not require that subnetworks
constitute communities of the full network (Section ..).
The cross-edge density ρ1i displays prominent extrema with varying height Zi of

the isobaric surface i, which become more pronounced for decreasing threshold T
(Fig. .B). Two maxima of ρ1i are located at – km and  km, while a minimum
is found at  km. A much more weakly developed inversion of cross-edge density
ρ1i occurs at  km, but it is only visible for small T . These findings indicate that
correlations of large-scale quasi-geostrophic wind dynamics are significantly increased
between the near-ground and higher isobaric surfaces at approximately – km and
 km. The superficially similar inversions in internal edge density ρi with two
maxima at – km and – km and a minimum at – km have to be carefully
distinguished from those of cross-edge density ρ1i (Fig. .A). First, the geopotential
height intervals within which the respective extrema are observed for different T
do not overlap. Second, on the one hand, recall that in contrast to ρ1i the internal
edge density ρi measures dynamical correlations occurring within a quasi-horizontal
isobaric surface at pressure Pi. On the other hand, the physical processes acting
within isobaric surfaces (geostrophic wind, planetary Rossby waves, gravity waves)
and between them (convection, turbulent mixing), which are relevant for large scale
dynamical coupling, are distinctively different.
The cross-average path length L1i between the near-ground layer and all other

isobaric surfaces possesses two minima at  km and  km as well as one maximum at
 km (Fig. .). In contrast to cross-edge density, small values of L1i imply tight
dynamical relationships between two isobaric surfaces, while large values indicate
a weaker coupling. Hence, cross-average path length consistently behaves comple-
mentarily to cross-edge density ρ1i and internal edge-density ρi, as shortest paths
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Figure ..: The cross-average path length L1i between the surface level  and all other isobaric
surfaces i of average height Zi in the coupled geopotential height climate network
for different thresholds T . In the lower stratosphere and for larger thresholds, L1i is
not defined due to vanishing cross-edge density ρ1i and, hence, the corresponding
data points are not shown. L1i shows inversions at similar height levels as the cross-
edge density ρ1i (Fig. .), which in contrast decrease in sharpness for deceasing
threshold T .

between two different subnetworks generally contain edges from both subnetworks
implying their average length to decrease with increasing ρ1i and ρi. Interestingly, in
contrast to the behavior of ρ1i and ρi, the extrema in L1i are rendered increasingly
pronounced for increasing threshold T . Cross-average path length remains sensitive
to variations in the topological closeness of two isobaric surfaces even as more and
more edges {p, q} of weaker correlation strength |Ppq| are removed from the coupled
climate networks.
While the cross-network measures discussed so far are symmetric with respect to

exchanging the involved subnetworks (see Section ..), the two clustering measures
global cross-clustering coefficient Cij and cross-transitivity Tij are intrinsically direc-
tional. Hence, as for the horizontally resolved cross-measures to be treated below, we
are able to distinguish C1i and T1i pointing “upward” from the near-ground to higher
isobaric surfaces from their counterparts Ci1 and Ti1 projecting “downward”. Both
C1i and T1i consistently uncover that the probability of vertices within the near-ground
isobaric surface to have connected neighbors in higher isobaric surfaces reaches local
maxima between – km and – km, whereas a local minimum is assumed at  km
(Figs. .A and C). For both measures, all three inversions are only observed for
low thresholds T . It is particularly interesting to compare the measured values of
C1i and T1i with those expected for a fully random connectivity structure between

In this context, “upward” refers to global cross-clustering and cross-transitivity counting triangles
with their apex rooted in the near-ground isobaric surface, while “downward” applies to the case
when the triangles’ apex is based in a higher isobaric surface.
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Figure ..: Global cross-clustering coefficients (A) C1i calculated “upward” from the surface level
 to all other isobaric surfaces i and (B) Ci1 defined “downward” (solid lines), as well
as cross-transitivities (C) T1i (“upward”) and (D) Ti1 (“downward”). For comparison
with the global cross-clustering coefficients E(Cij) expected for a fully random
connectivity between isobaric surfaces, (A) and (B) also feature the expectation
values E(C1i) = ρi and E(Ci1) = ρ1, respectively (dashed lines).

isobaric surfaces (see Section ..). The “upward” pointing global cross-clustering
coefficients C1i are considerably larger than the expectations ρi (indicated by dashed
lines in Fig. .A) below  km, and markedly smaller for average geopotential heights
above  km. Similarly, the “upward” projecting cross-transitivity T1i is significantly
larger than the expected values ρi for the fully random null model for all height levels
(Fig. .C).

Compared to their counterparts, the behavior of the “downward” projecting measures
Ci1 and Ti1 is less consistent. The global cross-clustering coefficient Ci1 possesses
two extrema at – km and – km, whereas the cross-transitivity Ti1 takes local
minima between – km and – km and local maxima between – km and at
 km of geopotential height (Figs. .B and D). Note that “downward” pointing
cross-transitivity Ti1 behaves complementarily to its “upward” projecting counterpart
T1i. Both clustering measures are significantly larger than their values ρ1 expected
for a fully random connectivity structure for nearly all height levels, only above  km
the global cross-clustering coefficient Ci1 is consistent with the expectation value for
larger thresholds T .

In summary, the clustering measures exhibit that the interaction topology between
the near-ground and higher isobaric surfaces is not consistent with a fully random
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null model, except for the lower stratosphere above  km. The same holds when
comparing the observed values of the clustering measures to those expected from a
more sophisticated null model with fixed cross-degree sequences but otherwise random
interaction topology (Section .. and Schultz ()). These findings highlight that
the coupled climate networks considered here have a nontrivial interaction topology
which is consistent with known features of the atmosphere’s vertical dynamical
structure and stratification, and may contain additional information on previously
unknown features of the atmosphere’s general circulation (Schneider, ; Hartmann,
) (see Section .). The large values of clustering measures observed for most
height levels can be partly explained by spatial correlations between closely neighbored
time series stemming from the continuity of the geopotential height field in conjunction
with the intrinsic transitivity of the Pearson correlation coefficient Ppq used for network
construction (Langford et al., ; Bialonski et al., ). Directly comparing Ci1
and Ti1 as well as C1i and T1i, respectively, furthermore clearly reveals the bias in the
global cross-clustering coefficient, which leads to generally lower values for increasing
height through weighing more strongly the contribution of the increasing number of
vertices of low cross-degree induced by the decreasing trend in cross-edge density ρ1i
(see Section ..). Consequently, as for the standard versions of global clustering and
transitivity (Newman, ), special care has to be taken when interpreting absolute
values of global cross-clustering and cross-transitivity. The suggested best practice is
to always consider the two measures simultaneously and to draw conclusions only
from qualitative features exhibited by both of them.

Local measures For visualizing the inherently three-dimensional fields of local cross-
network measures (one of the subnetwork indices i, j being fixed as in our application)
f ijv = f ijv(ϑ,φ), where ϑ and φ denote latitude and longitude, we choose to focus on
their variation with height and latitude. This is most appropriate as our aim is
to study from a complex network perspective aspects of the atmosphere’s general
circulation (Schneider, ; Hartmann, ), the dominant forcing of which is the
latitudinal variation of radiative solar forcing (Salby, ). Hence, in the following
we will consider zonal averages

f ij(ϑ) =
〈
f ijv(ϑ,φ)

〉
φ∈[0◦,360◦]

(.)

along circles of constant latitude. A detailed study and interpretation of the lat-
itudinally and longitudinally resolved fields of cross-network measures will be the
subject of future work (see Schultz () for first results). Like the scalar mea-
sures of cross-clustering discussed above, most local cross-network measures are
non-symmetric with respect to interchanging subnetworks and, hence, intrinsically
directional. Therefore we distinguish “upward” cross-degree centrality k1i(ϑ) from
“downward” cross-degree centrality ki1(ϑ), and “upward” cross-closeness centrality
c1i(ϑ) from “downward” cross-closeness centrality ci1(ϑ). For brevity, here we present
results for representative thresholds of T = 0.4, 0.5, 0.6 only.
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Figure ..: Zonally averaged cross-degree centralities (A) k1i(ϑ) pointing “upward” from the
near-ground level  to all other isobaric surfaces i and (B) ki1(ϑ) projecting
“downward”, zonally averaged cross-closeness centralities (C) c1i(ϑ) pointing “upward”
and (D) ci1(ϑ) projecting “downward”, (E) b1i

1 (ϑ) near-ground and (F) b1i
i (ϑ) upper

level component of zonally averaged cross-betweenness centrality for a threshold
of T = 0.4. Panel (B) can be interpreted to show the number of cross-edges
connecting a certain volume element with the whole near-ground isobaric surface,
averaged along bands of approximately equal latitude (approximately because of
the geodesic grid).
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Figure ..: As Fig. . with threshold T = 0.5.
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Figure ..: As Fig. . with threshold T = 0.6





.. Results

Cross-degree and cross-closeness centrality show a similar structure in both direc-
tions (Figs. ., ., .A–D). Both measures are generally increased in the tropics
and polar regions, whereas they take smaller values in the mid-latitudes. We observe
a pronounced asymmetry between both hemispheres as the cross-degree and cross-
closeness centralities in the northern polar regions are significantly larger than those
above Antarctica and the surrounding Southern Ocean in the Southern Hemisphere.
Furthermore, a structure of increased “downward” cross-degree ki1(ϑ) and -closeness
centrality ci1(ϑ) appears above the northern mid-latitudes but not above those of the
Southern Hemisphere (Figs. ., ., .B and D).
Additionally considering the dependence of both local measures on geopotential

height Zi, the “upward” pointing cross-degree k1i(ϑ) and -closeness centralities c1i(ϑ)
possess two distinct tropical maxima centered around  km and  km, as well as
two northern polar maxima at  km and  km (Figs. ., ., .A and C). While
k1i(ϑ) decreases monotonously with height in the mid-latitudes and above the polar
regions of the Southern Hemisphere, c1i(ϑ) maintains its bimodal structure there. The
“downward” projecting cross-degree ki1(ϑ) and -closeness centralities ci1(ϑ) display
two pronounced tropical maxima at  km and  km, and a maximum centered around
 km in the northern mid-latitudes (Figs. ., ., .B and D). Furthermore, ci1(ϑ)
reveals a maximum of topological closeness to the near-ground isobaric surface at
 km above the northern polar regions, while k1i(ϑ) decreases monotonically with
height there.
It is worth noting that the observed extrema in cross-degree are directly related

to those in cross-edge density via Eq. (.) and extrema in cross-closeness have an
equivalent association to those of cross-average path length (Eq. (.)). Moreover,
we point out that plots of cross-degree centrality like those presented in this chapter
may be used to draw conclusions on the main sources and destinations of cross-
edges without relying on full three-dimensional visualizations of the coupled network
structure. For example, consider the region of increased “downward” cross-degree
ki1(ϑ) between  km and  km of geopotential height above the northern mid-
latitudes (Fig. ., ., .B). It implies that a considerably large number of cross-
edges connect this region directly to the whole near-ground isobaric surface. We learn
where exactly on the near-ground surface those cross-edges originate from by looking
at the “upward” cross-degree k1i(ϑ). It measures how many and from where on the
near-ground surface cross-edges connect to some higher isobaric surface. Now the
regions of increased k1i(ϑ) between  km and  km above the tropics and northern
polar regions imply that many cross-edges originating in the tropics and northern
polar regions of the near-ground surface project to isobaric surfaces between  km
and  km (Fig. ., ., .A). As these are the only major structures in this range of
geopotential height, we are lead to conclude that a significant number of cross-edges
must link the tropical and northern polar near-ground isobaric surface with the
northern mid-latitudes’ upper troposphere to lower stratosphere between  km and
 km.

In contrast to the latter two local measures, cross-betweenness bijw with w ∈ Vi ∪ Vj
is symmetric with respect to exchanging the involved subnetworks (see Eq. (.)),
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but assigns a value to vertices of both subnetworks. Therefore we will in the following
analyze zonally averaged fields of cross-betweenness

biji (ϑ) =
〈
bijw(ϑ,φ)

〉
φ,w∈Vi

(.)

for vertices taken from a specific isobaric subnetwork i. It was shown earlier for climate
networks constructed from surface air temperature data that betweenness centrality
(Eq. (.)) yields additional information when compared to degree (Eq. (.)) and
closeness centrality (Eq. (.)) (Donges et al., b, P). Similarly, the near-
ground and higher isobaric surface components of cross-betweenness centrality b1i1 (ϑ),
b1ii (ϑ) reveal rich structures which are partially complementary to those seen in the
zonally averaged fields of degree and closeness centrality (Figs. ., ., .E and
F). Both fields highlight how frequently certain regions on the two isobaric surfaces
are traversed by shortest paths connecting the near-ground to a higher isobaric
surface. Now due to our network construction procedure (Section .), shortest paths
correspond to sequences of strongly and significantly statistically interrelated pairs of
time series with a minimum number of intermediate steps. Hence, it is conceivable
to assume that to a first approximation a markedly increased cross-betweenness
centrality indicates that a region is particularly important for mediating interactions
between two isobaric surfaces, while the contrary is true for regions with significantly
decreased cross-betweenness (Donges et al., b, P).
The hemispherically asymmetric near-ground component of cross-betweenness

centrality b1i1 (ϑ) reveals that the northern subpolar regions are exceptionally important
for mediating interactions between the near-ground and all considered heights ranging
from the lower troposphere across the tropopause to the lower stratosphere (Figs. .,
., .E). The near-ground tropics and southern polar regions appear only to be
relevant for coupling the near-ground to isobaric surfaces in the upper troposphere
and above. In contrast, the upper surface component of cross-betweenness b1ii (ϑ)
possesses a more pronounced inter-hemispheric symmetry (Figs. ., ., .F). Most
notable and stable for various thresholds T are the two tongues of increased b1ii (ϑ)
ranging from the near-ground tropics to the mid-latitudes and subpolar regions
in the lower stratosphere. These structures indicate that the latitude at which
shortest paths connecting near-ground and upper isobaric surfaces arrive in the upper
surface tends to increase towards the poles for growing geopotential height Zi in both
hemispheres. One should be aware that the structures detected in both components
of the cross-betweenness field in the stratosphere as well as in all other local and
global measures above  km of geopotential height should be treated with care. This
is because only very few edges exist between the near-ground and isobaric surfaces in
these height levels (Fig. .B) and, hence, statistically expected false detections or
omissions of cross-edges are likely to induce recognizable changes in the respective
measures (Bialonski et al., ). To quantitatively assess the effects of small changes
in the interaction topology between subnetworks, new types of significance tests based
on network null models need to be developed in future work (see Section ..).
After describing the results of our analysis we would like to draw attention to
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the fact that the observed correlations in various measures revealed by qualitatively
similar structures like the inversions at mostly three different height levels are not
necessarily a direct consequence of the measure’s definitions (see Section ..), but
point to a specific type of network structure. While correlations in different measures
quantifying distinct aspects of network topology need not be present for general
network structures, they are prevalent in many different types of real-world networks
and network models (Costa et al., ). Particularly, these correlations are expected
to arise in spatially embedded functional climate (and brain) networks like the coupled
climate networks considered in this work, since the increased probability of spatially
close vertices to be connected imposes a substantial constraint on network topology
(Section . and Donges et al. (b, P); Bialonski et al. (); Radebach ();
Donges et al. (, P)).

.. Climatological interpretation

We are now in a position to elaborate on the climatological implications of our
coupled climate network analysis. First, recall that the coupled climate networks were
constructed from monthly averaged time series of geopotential height describing the
dynamics of the atmosphere’s quasi-geostrophic wind field on longer than monthly
time scales. Variability on shorter time scales, e.g., synoptic-scale weather systems, is
included in the averages but does not appear explicitly in the time series. Therefore,
we can indeed expect the coupled climate networks to represent the climatological
mean state of the atmosphere’s three-dimensional correlation structure, excluding the
direct effects of such weather phenomena with typical lifetimes of clearly less than
one month.
The cross-network measures discussed in Section . reveal for a wide range of

thresholds T aspects of the atmosphere’s stratification and, more importantly, physical
processes which couple the dynamics on different isobaric surfaces despite the strong
buoyancy constraint imposed by vertical stratification. First it should be noted that
in accordance with results of atmospheric physics and observations, all cross-network
measures consistently indicate that most atmospheric dynamics takes place within the
troposphere with comparatively weak coupling to the superjacent stratosphere (Salby,
). Steadily increasing (decreasing) from the near-ground to reach a first maximum
(minimum) at  km to  km of geopotential height, cross-edge density ρ1i and cross-
average path length L1i indicate that the near-ground and higher isobaric surfaces
become dynamically more densely interwoven when ascending from the planetary
boundary layer below approximately 1 km into the lower free atmosphere (Figs. .B
and .). Bearing in mind the spatial continuity of the geopotential height field,
spatially close vertices are likely to be connected and to share common neighbors.
This implies that the typical correlation radius from near-ground vertices to higher
isobaric surfaces and vice versa increases throughout the lower troposphere. This
observation is consistent with the influence of the Earth’s surface orography on
atmospheric flow exponentially decreasing with height in the planetary boundary
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layer via the Ekman effect. Hand in hand with the prevalence of turbulence, the
formation of long-range dynamical couplings is inhibited by this essentially frictional
effect. In turn, within the less turbulent free atmosphere above approximately  km
the wind field behaves quasi-geostrophically and allows for the long-range propagation
of dynamical influences between the near-ground and higher altitudes (Salby, ).
Within the cross-edge density (Fig. .B), we observe that the first maximum

shifts from approximately  km to  km for higher thresholds. This detail can be
credited to the decreasing height of the planetary boundary layer with latitude, the
typical zone within which convection cells form. The prominent tropical convection
processes are known to be more diffusive than those in the mid-latitudes and, hence,
yield lower correlation values. Thus higher thresholds rather account for mid-latitude
convection phenomena rejecting the relatively low correlated processes in the tropics.
The prevalence of the latter, on the other hand, is reflected in lower thresholds.

Above approximately  km of geopotential height, ρ1i and L1i decrease (increase)
again until reaching a local minimum (maximum) between  km and  km (Figs.
.B and .), indicating a dominating effect of a more stable vertical stratification
acting to inhibit dynamical couplings between the now vertically more separated
isobaric levels  and i. This may be understood considering that turbulent vertical
mixing is significantly less prevalent in the free atmosphere than it is in the planetary
boundary layer and convection is suppressed by baroclinic adjustment forcing the
atmosphere to interact horizontally. The second local maximum (minimum) of ρ1i
and L1i at  km highlights that the cumulative action of tropical penetrative convec-
tion processes (hot towers) reaching up to this height mediates markedly increased
dynamical interrelationships between the near-ground and isobaric surfaces close to
the tropopause (Riehl and Malkus, ). The tropical origin of this coupling is more
readily seen in the fields of zonally averaged cross-degree and -closeness centralities
(Fig. ., ., .). When entering the stratosphere, quickly decreasing (increasing)
ρ1i and L1i indicate that influences reaching from the near-ground to these heights
are strongly inhibited by the dynamical barrier formed by the temperature inversion
which marks the boundary between troposphere and stratosphere. This conclusion
is further supported by the random-like interconnectivity structure revealed by the
“downward” pointing global cross-clustering coefficient Ci1 within the stratosphere
(Fig. .B). The behavior of internal edge density ρi is consistent with the foregoing
argumentation in the troposphere, its striking increase above the tropopause reveals
the spatially uniform dynamics of the stratospheric wind field (Fig. .A) (Salby,
).

The zonally averaged fields of cross-degree, -closeness and -betweenness centrality
uncover features of the atmosphere’s general meridional circulation (Schneider, ;
Hartmann, ). Most evident are the Hadley and polar cells which are indicated
by markedly increased values of both measures in the tropics and polar regions
(Figs. ., ., .). Here the generally rising motion of air above the equator
and subpolar latitudes couples surface wind dynamics to the upper troposphere
which becomes apparent in both components of zonally averaged cross-betweenness
(Figs. ., ., .E and F). The surface component of cross-betweenness may also
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be interpreted to show a signature of the Northern Hemisphere circumpolar vortex
around a typical height of approximately  km which is known to induce vertical air
motion and, hence, vertical dynamical coupling (Figs. ., ., .E) (Andrews et al.,
). Supporting this interpretation, a corresponding signature is not seen in the
Southern Hemisphere which is consistent with the Antarctic ice shield inhibiting the
formation of a polar vortex there. Cross-degree and -closeness centrality also show
that the height of the tropopause decreases towards the poles by a slight poleward
shift of their maximum values towards lower altitudes, as this dynamical barrier
strongly inhibits the propagation of signals from the near-ground to the stratosphere.
The Ferrel circulation may be involved in forming the comparably weak dynamical
interrelationships between the near-ground southern subtropics and mid-latitudes
with isobaric surfaces lying in the upper troposphere and lower stratosphere (Figs. .,
., .A and C). Similarly, the remarkable coupling of wind dynamics within the
upper troposphere and lower stratosphere of the northern mid-latitudes with the
near-ground tropics and northern polar regions might be related to the northern
Ferrel cell (Figs. ., ., .B and D, see also the discussion in Section .).

.. Discussion

In summary, we have developed a novel graph-theoretical framework for investigating
in detail the interaction topology between pairs of subnetworks embedded within a
network of networks. Applying this framework to analyze the correlation structure of a
four-dimensional (spatiotemporal) data set of the climatological variable geopotential
height yielded a consistent picture of the large scale circulation of the Earth’s
atmosphere. Particularly, the new measure cross-betweenness centrality has the
potential to reveal previously unknown features of and to help address open questions
on the atmosphere’s general circulation (Holton, ; Schneider, ), particularly
when considering its response to climate change (Lenton et al., ). Our results
suggest that the coupled climate network approach presented in this chapter opens
promising perspectives for the integrated analysis of several fields of climatological
observables or, more generally, spatially embedded fields of arbitrary time series in
the context of Earth system analysis. Particularly it will serve researchers as a tool
complementary to established linear methods for the joint analysis of several climate
data sets like canonical correlation analysis or singular value decomposition of the
covariance matrix between two fields (Bretherton et al., ).

While it should be born in mind that the results of our study are subject to known
deficiencies and limitations of the NCEP/NCAR Reanalysis  data, the variable
geopotential height we analyze here is considered as one of the most reliable products
of this reanalysis, since it is strongly determined by observations and, hence, less
dependent on the particular model used for data assimilation (Kistler et al., ).
However, we suggest that the results generated from several independent reanalysis
data sets should be compared if definite climatological conclusions are to be drawn in
future studies using coupled climate network analysis.
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Additional information can be extracted from the available coupled climate networks
by investigating the spatially fully resolved fields of local cross-network measures and
relying on further measures such as the local cross-clustering coefficient (Schultz, ).
In a next step, network null models with a randomized interaction topology could be
developed and used to assess the statistical significance of observed local and global
cross-network measures (see Section ..). The simplest meaningful network null
model of this type that was already discussed in the context of (local) cross-clustering
and cross-transitivity (Section ..) can be constructed by fully randomizing the
interaction structure between two subnetworks while keeping the number of cross-
edges fixed, e.g., by first deleting all cross-edges and subsequently redistributing
them randomly between the two subnetworks. Furthermore, the network construction
methodology may be fine-tuned, e.g., by using measures for detecting nonlinear or
even directional interrelationships between time series or, alternatively, by including
edges in the network-based on the statistical significance of their associated correlation
strengths (see Section .).
Summarizing the results of this first application of our framework for interacting

network analysis, a particular advantage of coupled climate network analysis is that
substantial conclusions can be drawn by analyzing the dynamical correlation structure
of the three-dimensional geopotential height field alone, without considering fields of
temperature, moisture content, or other relevant climatological variables. Subject
to future research is the application of the interacting networks approach to fields
of distinct climatological observables, e.g., surface air temperature and sea surface
salinity, to further investigate the coupled dynamical behavior of different components
of the climate system. Recently, Wiedermann () and Feng et al. () have
harnessed coupled climate networks for disentangling the complex interactions between
ocean and atmosphere (for a summary, see Section ..).

.. Summary

Climate networks have recently been shown to be a powerful exploratory tool for the
analysis of climatological data. Applying a general framework for studying networks
of interacting networks, we have introduced coupled climate networks to represent
and investigate the topology of statistical relationships between the fields of multiple
climatological variables. Using coupled climate networks to investigate the terrestrial
atmosphere’s three-dimensional geopotential height field, known as well as interesting
novel features of the atmosphere’s vertical stratification and general circulation have
been discovered. Specifically, the new measure cross-betweenness identified regions
which are particularly important for mediating vertical wind field interactions. The
promising results obtained by following the coupled climate network approach present
a first step towards an improved understanding of the Earth system and its complex
interacting components from a network perspective.
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Conclusion

Nansen was too kind and lost his treasure.
Truly, words have no power.
Even though the mountain becomes the sea,
Words cannot open another’s mind.

Ekai, called Mu-mon
(Aitken, , translator)

.. Closing the loop

Returning to the grand background theme of this dissertation, Earth system analysis,
it is now time to recapitulate what has been learnt, examine which open questions
remain, and outline what paths may be followed in future research. The initial
aim was to explore the potentials of complex network-based time series analysis for
possibly contributing to a second Copernican revolution (Schellnhuber, ) needed
for leveraging our understanding of the Earth system to a new operational level
in the face of global warming and environmental change (Fig. .). As a result of
this undertaking, several of the challenges cast into a Hilbertian program for Earth
system analysis have been addressed. It has been shown in Part I of this thesis that
the network point of view is well tailored for tackling operational questions such
as (Schellnhuber et al., , p. ):

“What are the principles for constructing ‘macroscopes’, i.e., representa-
tions of the Earth system that aggregate away the details while retaining
all systems-order items?”

“Is it possible to describe the Earth system as a composition of weakly
coupled organs and regions, and to reconstruct the planetary machinery
from these parts?”

Network macroscopes are designed for representing the complex structure of dynam-
ical interactions between the manifold subdomains within the Earth system while
maintaining a maximum degree of formal simplicity, adhering to the principle of
Occam’s razor (Chapters , , and ). These network representations are physical
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Figure ..: Depiction of the enlightenment, comprising the first Copernican revolution, in a
wood engraving by an unknown artist that first appeared in Flammarion ()
(image source: Wikimedia Commons). If “words cannot open another’s mind
[. . .]” (Aitken, ), maybe images can.

in the sense that they embody condensed information on either functional or mech-
anistic dependencies within and between physical systems (Donges, , Chapter
). Notably, networks of interacting or interdependent networks are argued to allow
to naturally decompose the Earth system into weakly coupled subsystems, such as
the atmosphere and ocean, for diagnostic and prognostic analysis (Section . and
Chapter ).

Building on this conceptual work, in Part II we have developed and applied recur-
rence network (Chapters  and ) and coupled climate network analysis (Chapter )
as two powerful and versatile approaches for approaching analytical questions such
as (Schellnhuber et al., , p. ):

“What are the critical elements (thresholds, bottlenecks, switches) in
the Earth System?”

“What are the major dynamical patterns, teleconnections, and feedback
loops in the planetary machinery?”

These studies relied on time series data of vastly different quality and resolution,
covering Earth system dynamics from  million years before present until today on
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continental and global scales. Specifically, recurrence network analysis allowed the
detection of nonlinear transitions in African millennial-scale paleoclimate-variability
during the Plio-Pleistocene which may be related to the appearance and disappearance
of hominin species from the fossil record (Chapter ). These possibly interlinked
transitions in climatic and evolutionary processes point at the presence of critical ele-
ments (thresholds and switches) and their interactions (bottlenecks) within the Earth
system during the considered epoch. Moreover, through a case study investigating
the atmosphere’s general circulation structure (Chapter ), coupled climate network
analysis has been characterized as a promising tool for extracting major dynamical
patterns, teleconnections, and, possibly, feedback loops.

All in all, it is closing the positive feedback loop between applications to data-driven
Earth system analysis on the one hand, and theoretical as well as methodological
developments on the other hand that has inspired my work during this dissertation
project. This cyclic way of doing science did not only serve to continuously sharpen
my research questions together with the analytical tools designed for tackling them
(Fig. .), but additionally opened a number of surprising connections to other
fields. For example, consider the link from searching for dynamical transitions in
climatological time series via recurrence network analysis and probabilistic geometry
to experimental mathematics that is drawn in Chapter . Conversely, and adding
further to this entangled semantic network of theories and ideas, the general diagnostic
concepts and methods presented in this thesis may potentially prove useful for studying
the structure and dynamics of complex interdependent systems in other disciplines
such as neuroscience, medicine, or infrastructure engineering. Concerning Earth
system analysis, future efforts in applying and further developing ideas and techniques
from complex network as well as dynamical systems theory should particularly focus on
informing the improvement of prognostic models, both conceptual and comprehensive,
for addressing the looming nexus of global change.

.. Contributions of this thesis

To conclude, in the following the contributions to the fields of graph and network
theory, nonlinear time series analysis, and (paleo)climatology that have been reported
in this thesis are summarized in concert with giving an outlook on open problems
and promising avenues for future research. For reference, and to emphasize the
collaborative efforts that come along naturally with network science, the publications
(co-)authored by myself and related to each contribution are listed below the respective
paragraphs.

... Graph and network theory

Analyzing and modeling networks of networks

A consistent framework for studying in detail the complex topology of networks of
networks providing a natural description of the manifold interacting, interdependent,





Chapter . Conclusion

or hierarchical systems appearing in nature, society, and technology has been developed
(Section .). This framework comprises a rich toolbox of novel graph-theoretical
measures for analyzing their structure and gives rise to specifically tailored network
surrogates for developing statistical null models and significance tests.

Worthwhile future extensions may include taking into account the directionality of
interactions by allowing for directed edges or arcs and devising advanced network
surrogates for testing hypotheses on more subtle, but interesting, aspects of the
interaction structure of networks of networks, possibly specifically taking into account
their spatial embedding. Furthermore, building on the diagnostic work presented in
this thesis, it appears promising and necessary to develop a dynamical systems theory
of networks for describing and, ultimately, predicting the dynamics of temporally
evolving networks.

Related publications Donges et al. (b, P); Wiedermann et al. (, P)

Consistent analysis of vertex-weighted networks

We have introduced a general framework for the statistically consistent analysis of
vertex-weighted networks based on the concept of node splitting invariance (Sec-
tion .). This result is an important step forward in the theory of general complex
networks in so far as most studies in the past have simply neglected the sometimes
strongly heterogeneous size, weight, or importance of the objects represented by
vertices in the investigated networks, possibly leading to significant distortions in
measured network properties.
The proposed framework is flexible in providing general rules for deriving consis-

tently weighted variants of any network measures that may be of interest in future
research (Appendix A). Open questions include defining meaningful weights in gen-
eral situations and accounting for networks where edges do not imply a similarity or
coupling between vertices.

Related publications Heitzig et al. (, P); Wiedermann et al. (, P)

Analytical theory of spatial networks

As a third general contribution to graph and network theory, we have proposed
an analytical theory for describing the characteristics of spatial networks on local,
mesoscopic, and global topological scales (Chapter ). This development leads to
deeper insights into the geometrical meaning underlying many network quantifiers
that are commonly used in the analysis of spatial networks. Specifically, the theory
views these standard measures as estimators of the underlying geometrical properties
and allows to derive analytical results for paradigmatic model systems that can serve
for benchmarking and, consequently, improving the estimators.
Worthwhile tasks for future research include deriving further analytical solutions,

assessing boundary effects in spatial networks, testing hypotheses on their specific





.. Contributions of this thesis

structure, or generalizing the theory to describe spatial random networks with non-
isotropic edge length distributions p(l,Ω), where Ω is a solid angle in arbitrary
dimensions measuring the direction an edge is pointing at.

Related publications Donner et al. (b, P); Donges et al. (, P)

... Nonlinear time series analysis

Recurrence network analysis

We have introduced recurrence networks as a versatile technique of nonlinear time
series analysis that is rooted deeply in dynamical systems theory (by exploiting
Poincaré recurrences of a dynamical system’s trajectory in phase space) and graph
theory (by belonging to the class of random geometric graphs). It has been shown
that recurrence network analysis is capable of identifying dynamical transitions
or bifurcations in time series, uncovering dynamically invariant objects in phase
space as well as oddly shaped periodic islands (shrimps) in the parameter space of
complex dynamical systems. Moreover, recurrence networks provide new concepts for
measuring the (fractal) dimensionality of chaotic attractors and, more generally, point
sets (Section .. and Appendix D). An analytical framework for deepening the
understanding of the method as well as practically improving it has been proposed
(Chapter ). Multivariate extensions of recurrence networks, namely joint and
inter-system recurrence networks, allow to study complex synchronization scenarios
and coupling directions in interacting dynamical systems (Appendix C). Successful
applications to the analysis of real-world time series range from the fields of medicine
to paleoclimatology.

Open problems include developing and testing advanced methods for the embedding
of real-world times prior to recurrence network analysis for consistently taking into
account irregular sampling and errors in the timing and magnitude of observations,
e.g., dating uncertainties. Furthermore, a systematic comparison of linear and
nonlinear methods of time series analysis for detecting dynamical transitions, including
recurrence network analysis, would be desirable.

Related publications Marwan et al. (, P); Zou et al. (, P); Donner
et al. (b, C); Donner et al. (c, P); Donner et al. (a, P); Donner
et al. (b, P); Donner et al. (a, P); Donges et al. (a, P); Donges
et al. (, P); Zou et al. (, P); Feldhoff et al. (, P); Feldhoff et al. (,
P); Donner et al. (, C)

Visibility graphs

In contrast to recurrence networks, visibility graphs are embedded in the time domain
and, hence, by design capture distinctive temporal characteristics of a time series.
We have exploited this feature for introducing and applying novel tests for time-
reversal symmetry (reversibility), an important property of dynamical systems that
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is informative for model development (Appendix B). Furthermore, the potentials of
visibility graphs for analyzing geoscientific time series have been explored.

Future work may focus on deriving analytical results for the proposed measures
of time series reversibility and studying possible multivariate extensions of visibility
graph analysis.

Related publications Donner and Donges (b, P); Donner and Donges (a,
C); Donges et al. (, P)

Coincidence analysis

In the geosciences, researchers are often faced with processes that on sufficiently long
time scales can be regarded as point events, e.g., earthquakes, volcanic eruptions,
abrupt climatic transitions such as Dansgaard-Oeschger and Heinrich events, or rapid
jumps in the evolution of species. Based on the concept of temporal coincidences
between point processes, we have developed (Appendix E) and applied (Chapter ) a
method for measuring the correlation of event series and testing its significance with
respect to a fully random null model.
Future research may focus on deriving additional analytical results and using

Monte Carlo simulations for evaluating the significance of observed coincidences
based on more sophisticated null models, including, for example, the effects of
auto-dependencies in event series such as bunching and antibunching.

Related publication Donges et al. (c, P)

... (Paleo)climatology

Detection of variability transitions in African paleoclimate during the
Plio-Pleistocene

We have detected large-scale and nonlinear paleoclimate-variability transitions during
the Plio-Pleistocene (the past  million years) in Africa using proxy records obtained
from marine sediment cores (Chapter ). Paleoclimatological and -oceanographic
mechanisms such as a change in the dominant periodicities of ice age cycles (the
Mid-Pleistocene transition), a reorganization of the tropical Walker circulation, and
a spatial shift of the Indonesian throughflow connecting the Pacific and Indian
Oceans have been discussed as potential drivers of the detected transitions. A
possible connection to speciation and extinction events in the fossil record of human
evolution has been evaluated, favoring an extended variant of Pott’s variability
selection hypothesis (see also Appendix E). Importantly, the detected paleoclimate
regime shifts are robust with respect to reasonable variations in parameter choices
(Chapter ).

Promising tasks for future work include analyzing additional paleoclimate records
providing a higher spatial and temporal resolution, as well as quantitatively comparing
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and statistically testing the various hypotheses proposed in the literature regarding
the influence of climate on evolutionary processes (particularly human evolution).

Related publications Donges et al. (c, P); Donges et al. (a, P)

Insights into the atmosphere’s general circulation structure

Coupled climate network analysis has been established as a novel approach for
unraveling the complex structure of dynamical interdependencies between different
climatological fields such as surface air temperature and sea level pressure (Chapter ).
It is based on our newly established framework for investigating the topology of
networks of interacting networks (Section .). A first application to studying
reanalysis data representing the dynamics of the three-dimensional geopotential
height field yielded insights into the structural organization of the atmosphere’s
general circulation. These include the detection of previously known features like the
Hadley circulation, but also novel signatures of vertical interaction processes, e.g.,
over the Arctic.
Open questions for future research include applying coupled climate network

analysis to study other atmospheric processes of interest and extending it to probe
the intricate interactions and interdependencies between different spheres of the Earth
system such as atmosphere and ocean, or atmosphere and biosphere. Furthermore, it
is paramount to advance the understanding of the relationships between (coupled)
climate network structure and the underlying physical processes at work in Earth
system dynamics, e.g., advection, diffusion, turbulence, or radiation. This goal may
be achieved by both rigorous mathematical considerations and numerical simulations.

Related publications Donges et al. (b, P); Donges et al. (a, P); Mar-
wan et al. (a, C); Zou et al. (, P); Tominski et al. (, P); Donges
et al. (b, P); Heitzig et al. (, P); Radebach et al. (subm. P)
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Appendix A.

Vertex-weighted network measures

For reference, we list vertex-weighted node splitting invariant (n. s. i.) versions f∗ of a
number of commonly used local and global network measures f that can be found in
the literature (see Chapter ). Specifically, we provide formulae for standard complex
network measures (Section A.) and cross-network measures designed for networks of
networks (Section A.). For details on their derivation and interpretation, the reader
is referred to Section ., Heitzig et al. (, P); Wiedermann et al. (, P),
and Wiedermann ().
Here, we consider undirected and simple networks G = (V,E) represented by

adjacency matrices A = {Aij}ij , where V is the set of vertices and E is the set
of edges (see Chapter ), with weights wv ∈ R associated to all vertices v ∈ V
(Section .). The notation concerning networks of networks is the same as in
Section .. For simplicity, specifically with respect to definitions of path-based
measures, we only consider connected networks (all vertices belonging to the same
component) here.

To define the n. s. i. measures in a compact notation below, a few more quantities
will have to be introduced. d∗vi is the n. s. i. shortest-path length (or n. s. i. geodesic
distance) between vertices v and i:

d∗vv = 1 and d∗vi = dvi for i 6= v. (A.)

The total weight W is given by

W =
∑
i∈V

wi. (A.)

The total subnetwork weight Wi of subnetwork Gi is defined as

Wi =
∑
q∈Vi

wq. (A.)
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A.. General rules for deriving n. s. i. network measures

The basic construction mechanism for deriving n. s. i. network measures from their
unweighted counterparts is the following (Heitzig et al., , P; Wiedermann et al.,
, P):

(i) Sum up weights wv wherever the original measure counts vertices v.

(ii) Use unpunctured neighborhoods N+
v = Nv ∪ {v} wherever the original measure

uses punctured neighborhoods Nv (in other words, consider v as linked to itself).

(iii) Also allow for equality of i, j wherever the original measure involves a sum over
distinct vertices i, j.

(iv) “Plug-in” a n. s. i. version of a measure g wherever this g is used in the definition
of another measure f .

A.. Vertex-weighted measures for isolated networks

A... Local measures

N. s. i. degree

k∗v =
∑
i∈V

wiA
+
vi (A.)

N. s. i. local clustering coefficient

C∗v = 1
(k∗v)

2
∑
i,j∈V

wiwjA
+
viA

+
ijA

+
jv (A.)

N. s. i. closeness

c∗v = W∑
i∈V wid

∗
vi

(A.)

N. s. i. shortest-path betweenness

σ∗ij =
∑

(t0,...,tdij )∈V dij+1

t0=i, tdij=j

At0t1 dij∏
`=2

(wt`−1At`−1t`)



σ∗ij(v) = 1
wv

dij−1∑
m=1

∑
(t0,...,tdij )∈V dij+1

t0=i, tm=v, tdij=j

At0t1 dij∏
`=2

(wt`−1At`−1t`)

 (A.)





A.. Vertex-weighted measures for networks of networks

b∗v = 1
W 2

∑
i,j∈V
i,j 6=v

wiwj
σ∗ij(v)
σ∗ij

(A.)

A... Global measures

N. s. i. edge density

ρ∗ = 1
W 2

∑
i,j∈V

wiwjA
+
ij = 1

W 2

∑
v∈V

wvk
∗
v (A.)

N. s. i. global clustering coefficient

C∗ = 1
W

∑
v∈V

wvC∗v (A.)

N. s. i. transitivity

T ∗ =
∑
v,i,j∈V wvwiwjA

+
viA

+
ijA

+
jv∑

v,i,j∈V wvwiwjA
+
viA

+
vj

(A.)

N. s. i. average path length

L∗ = 1
W 2

∑
i,j∈V

wiwjd
∗
ij (A.)

A.. Vertex-weighted measures for networks of networks

A... Local measures

N. s. i. cross-degree

kij∗v =
∑
q∈Vj

wqA
+
vq (A.)

N. s. i. local cross-clustering coefficient

Cij∗v = 1(
kij∗v

)2
∑
p,q∈Vj

wpwqA
+
vpA

+
pqA

+
qv (A.)
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N. s. i. cross-closeness

cij∗v = Wj∑
q∈Vj wqd

∗
vq

(A.)

N. s. i. cross-betweenness

bij∗v = 1
WiWj

∑
p∈Vi;q∈Vj
p,q 6=v

wpwq
σ∗pq(v)
σ∗pq

(A.)

A... Global measures

N. s. i. cross-edge density

ρ∗ij = 1
WiWj

∑
p∈Vi;q∈Vj

wpwqA
+
pq (A.)

N. s. i. global cross-clustering coefficient

C∗ij = 1
Wi

∑
q∈Vi

wqCij∗v (A.)

N. s. i. cross-transitivity

T ∗ij =
∑
v∈Vi;p,q∈Vj wvwpwqA

+
vpA

+
pqA

+
qv∑

v∈Vi;p,q∈Vj wvwpwqA
+
vpA

+
vq

(A.)

N. s. i. cross-average path length

L∗ij = 1
WiWj

∑
p∈Vi;q∈Vj

wpwqd
∗
pq (A.)
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Visibility graphs for testing reversibility
of time series

Reversibility or time-reversal symmetry is a fundamental property of time series.
Among other applications, it can be harnessed for selecting models that are consistent
with experimental time series data (Timmer et al., ; Diks et al., ). We propose
a novel set of statistical tests for reversibility based on visibility graphs constructed
from time series as well as on time-directed variants of common graph-theoretical
measures like degree and local clustering coefficient (Donges et al., , P; Donner
and Donges, a, C). Unlike other tests for reversibility, the technique proposed
here has the advantage that it does not require the construction of surrogate time
series. We investigate the performance of our statistical tests for time series from
paradigmatic model systems with known time-reversal properties and compare it to
a traditional test for reversibility. Finally, our tests are applied to characterize the
temporal structure of electroencephalogram (EEG) time series representing normal
and pathological dynamics of the human brain as well as to study paleoclimate
dynamics during the last , years and transitions within it.
Note that independently from the work presented here, Lacasa et al. () have

proposed a test for reversibility of time series based on horizontal visibility graphs as
well as using different network measures and test statistics.

B.. Visibility graph analysis

Visibility graphs provide a simple mapping from the time series to the network domain
by exploiting certain convexity characteristics of scalar time series {x(ti)}Ni=1 (Lacasa
et al., ). Vertices i in a visibility graph represent observations xi = x(ti) at time
ti. Two vertices i, j are linked by an edge {i, j} if

xk < xj + (xi − xj)
tj − tk
tj − ti

(B.)
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holds for all vertices k with ti < tk < tj (Fig. B.). That is, the corresponding
adjacency matrix A is given by the elements

Aij =
j−1∏
k=i+1

Θ
(
xj + (xi − xj)

tj − tk
tj − ti

− xk

)
. (B.)

The construction algorithm implies that visibility graphs are spatial networks (Sec-
tion .) with vertices embedded on the one-dimensional time axis, e.g., giving rise
to boundary effects on commonly studied network measures (Donner and Donges,
b, P). For example, visibility graphs have been employed for studying memory
in stochastic time series (Lacasa et al., ) or for investigating geophysical time
series (Elsner et al. (); Donner and Donges (b, P), see also Section .).

B.. Time-directed visibility graph characteristics

Since visibility graphs are embedded on the one-dimensional time axis, their structure
is intrinsically interwoven with the direction of time. This insight leads us to defining
novel statistical network quantifiers for visibility graphs taking the time direction
into account.
As the simplest possible network characteristic, the retarded degree

kri =
∑
j<i

Aij (B.)

counts the number of samples that are visible in the past of a measurement at time
ti. Likewise, the advanced degree

kai =
∑
j>i

Aij (B.)

gives the number of data points in its future from which xi is visible.
The local clustering coefficient Ci is a higher-order statistic describing the neigh-

borhood structure of vertex i (Newman, ). To allow studying the neighborhood
structure in the past and future of i separately, we define the retarded local clustering
coefficient

Cri =
(
kri
2

)−1 ∑
j,k<i

AijAjkAki (B.)

as well as the advanced local clustering coefficient

Cai =
(
kai
2

)−1 ∑
j,k>i

AijAjkAki, (B.)





B.. Test for reversibility

i

Figure B..: A visibility graph generated from uncorrelated Gaussian noise ξ(ti) (mean µ = 0
and standard deviation σ = 1). Vertices are marked by black disks, edges by gray
lines. Vertex i has retarded degree kri = 2, advanced degree kai = 4, and identical
retarded and advanced local clustering coefficients Cri = Cai = 1.

where
(kr,ai

2
)
is a binomial coefficient. Both measure the probability that two neighbors

in the past (future) of observation i are mutually visible themselves, respectively.
Further higher-order time-directed network characteristics for visibility graphs are

conceivable, but are not considered here for brevity. Note that in a directed visibility
graph with edges always pointing towards the future, kri corresponds to the in-degree
of i, while kai is equivalent to its out-degree (compare Lacasa et al. ()). Cri and Cai
are equivalent to the in- and out-clustering coefficients defined for directed networks
by Fagiolo ().

B.. Test for reversibility

A stationary time series xi is said to be reversible if

p(xn, xn+1, . . . , , xn+k) = p(xn+k, xn+k−1, . . . , , xn) (B.)

holds for all n and k in the limit N →∞ (Diks et al., ).
The frequency distributions p(kr,ai ) and p(Cr,ai ) of our time-directed network mea-

sures are of special interest for testing the reversibility of a time series xi. Particularly,
in a reversible time series the visibility structure towards the past and future of
any observation has to be statistically equivalent. That is, both observed degree
sequences {kr,ai } (or local clustering sequences {Cr,ai }) should be drawn from the same
underlying probability distribution. The corresponding null hypothesis H0 is

p(kr) = p(ka), (B.)
p(Cr) = p(Ca). (B.)
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A B

C D

Figure B..: Distributions of retarded/advanced (A,C) degree kr,ai and (B,D) local clustering
coefficient Cr,ai for model systems: (A,B) linear first-order auto-regressive (AR)
process and (C,D) nonlinear Hénon map (first component). Time series of length
N = 500 have been used for estimating the probability density functions (PDF) with
a kernel density estimator. The mean (solid lines) and standard deviation (dashed
lines) of the PDFs have been computed based on an ensemble of M = 1, 000
realizations with random initial conditions for both model systems.

The Kolmogorov-Smirnov (KS) test is a suitable and generally applicable means to
test this null hypothesis. Now we argue that rejecting the null hypothesis that {kr,ai }
({Cr,ai }) are drawn from the same probability distribution is equivalent to rejecting
the null hypothesis that the time series under investigation is reversible (time-reversal
symmetric). In other words, a small p-value of the KS test statistic (traditionally
one considers p < 0.05 as small, hence, a significance level of . is used below)
implies that the time series would be observed very rarely if the stochastic process or
dynamical system were reversible (symmetric with respect to time-reversal).

B.. Application to model systems

As a first step, the newly developed visibility graph tests for reversibility are applied
to time series from model systems. Since the properties of these model time series are
known, they can be used for assessing the performance of our tests. For illustration, we
focus on the linear first-order auto-regressive (AR) process and the nonlinear Hénon
map as examples of truly reversible and irreversible dynamical systems, respectively
(see, e.g., Kantz and Schreiber () for details). Similar results as reported below





B.. Application to model systems

are obtained for reversible processes such as uniformly or Gaussian distributed noise
and higher-order auto-regressive processes, as well as for irreversible systems such as
the chaotic logistic map or the Lorenz and Rössler systems.
An AR process is defined as

xi = αxi−1 + ξi, (B.)

and in the following, α = 0.5 is chosen, whereas {ξi} denotes a Gaussian noise process
with zero mean and unit standard deviation. In turn, the chaotic Hénon map is given
by

x0
i = A−

(
x0
i−1

)2
+Bx1

i−1

x1
i = x0

i−1 (B.)

with parameter choices A = 1.4 and B = 0.3. In all cases, we use random initial
conditions that are uniformly drawn from the interval [0, 1] and discard , data
points at the beginning of each time series to avoid transient effects. Since the
proposed test is only applicable to univariate time series, the first component x0

i of
the two-dimensional time series generated by the Hénon map is used.
As expected, for the reversible AR process, the empirical distributions of re-

tarded/advanced degree kr,ai and local clustering coefficient Cr,ai collapse onto each
other (Fig. B.A,B). Consequently, the null hypothesis of reversibility is never rejected
by the test based on degree (Fig. B.A) and only rarely rejected by the clustering-
based test well below the expected false rejection rate of % (Fig. B.B). In contrast,
for the irreversible Hénon map the distributions of retarded and advanced visibility
graph measures appear distinct already by visual inspection (Fig. B.C,D). In ac-
cordance with this observation, the null hypothesis of reversibility is nearly always
(Fig. B.C) or always (Fig. B.D) rejected.

To evaluate the performance of the tests for varying sample sizes N , we consider
the fraction q(N) of time series from an ensemble for which the null hypothesis of
reversibility can be rejected (Fig. B.). It is known that the null hypothesis is true for
the AR process, hence, q(N) estimates the probability of type I errors (incorrect
rejections of true null hypothesis) for both tests (Fig. B.A). Notably, q(N) is always
zero for the degree-based test, while it fluctuates below the expected type I error
rate of . for the test based on local clustering. In the case of the irreversible
Hénon map, the null hypothesis is known to be false. Therefore, 1− q(N) estimates
the probability of type II errors (failure to reject a false null hypothesis) in this
case (Fig. B.B). Interestingly, the power q(N) of the clustering-based test increases
markedly earlier than that of the degree-based test. The former reaches q(N) ≈ 1
around N = 200, whereas the latter requires twice as many samples to arrive at the
same power.

In this context, 1− q(N) measures the specificity of the test.
Here, 1− q(N) is equivalent to the sensitivity of the test, while q(N) is known as its power.
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A B

C D

Figure B..: Frequency distributions of p-values of the Kolmogorov-Smirnov test statistic for
comparing the distributions of retarded/advanced (A,C) degree kr,ai and (B,D)
local clustering coefficient Cr,ai from an ensemble of M = 1, 000 realizations of
model system time series of length N = 500: (A,B) linear first-order auto-regressive
(AR) process and (C,D) nonlinear Hénon map (first component). Vertical red
lines indicate the chosen significance level of ..

In summary, we find that the proposed tests of reversibility of time series based on
visibility graphs are well-behaved and have reasonable specificity and power for time
series of a few hundred samples or more. For a given sample size N , the clustering-
based test is more sensitive, but less specific than its degree-based equivalent.





B.. Testing for time-reversal asymmetry in real-world data

A B

Figure B..: Fraction q(N) of model system time series of length N from an ensemble of
M = 200 realizations for which the null hypothesis of reversibility was rejected at
the . significance level: (A) linear first-order auto-regressive (AR) process and
(B) nonlinear Hénon map (first component). Results of tests based on time-directed
degree (local clustering) are marked by solid (dash-dotted) lines, respectively. The
null hypothesis is never rejected for the test based on degree applied to AR time
series (A).

B.. Testing for time-reversal asymmetry in real-world
data

B... Electroencephalogram data

To further assess the performance of our newly developed tests of reversibility for
real-world data, we apply them to continuous electroencephalogram (EEG) recordings
for healthy and epileptic patients that were analyzed and made publicly available
by Andrzejak et al. () (Fig. B.). These authors selected five sets of M = 100
representative time series segments of length N = 4, 096 comprising recordings of
brain activity for different patient groups and recording regions (Table B.). To
look for traces of low-dimensional nonlinear dynamical behavior in the data, they
used a nonlinear prediction error P and an effective correlation dimension D2,eff as
statistics to test the null hypothesis H lin

0 that the time series are compatible with a
Gaussian linear stochastic and stationary process.
Since irreversibility is a signature of nonlinear dynamics, we would expect the

results of our tests to be consistent with those of Andrzejak et al. (). Indeed,
the rate of rejections q of the null hypothesis of reversibility increases markedly from
hardly any rejections for set A, where H lin

0 could not be rejected by Andrzejak et al.
(), to q ≈ 1, where H lin

0 was rejected using both test statistics (Table B.). Hence,
consistently with the results of Andrzejak et al. (), the visibility graph-based
tests indicate reversible linear dynamics for healthy subjects (set A, Fig. B.A,B)
and irreversible nonlinear dynamics during epileptic seizures (set E, Fig. B.C,D).
The other data sets are intermediate with respect to the proposed tests.

In summary, it is encouraging to find that our tests perform consistently with
the tests applied by Andrzejak et al. () which are arguably more complicated
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A B

C D

Figure B..: Frequency distributions of p-values of the Kolmogorov-Smirnov test statistic for
comparing the distributions of retarded/advanced (A,C) degree kr,ai and (B,D)
local clustering coefficient Cr,ai from a set of M = 100 electroencephalogram time
series segments of length N = 4, 096. Recordings originate from (A,B) healthy
subjects with eyes open (data set A) and (C,D) epileptic patients during seizure
(data set E). Vertical red lines indicate the chosen significance level of ..

both technically and conceptually. Furthermore, we find that the results of the
visibility graph-based tests for reversibility are consistent with those obtained using
the classical Q statistic of Theiler et al. (, p. ) together with standard and
amplitude adjusted Fourier surrogate time series (Schreiber and Schmitz, ).

B... Paleoclimate time series

Since we have gained some confidence in our tests for reversibility over the last two
sections, in the spirit of this thesis’ background theme, Earth system analysis, we now
proceed to apply them to look for signatures of nonlinearity in paleoclimate records.
Visibility graph methods are particularly suitable for analyzing this type of data,
because their construction does not require any assumptions on regular sampling of
observations in time series. One can argue that the irregular sampling that is typical
of paleoclimate records retrieved from geological archives such as marine sediment
cores, ice cores, or speleothems would not strongly impact the performance of the
proposed tests for reversibility given that the sampling process is stationary and the
sample size is sufficiently large (Telesca and Lovallo, ). For now, we accept this
reasoning and leave detailed tests for future research.
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Table B..: Results of a visibility graph-based test for reversibility of electroencephalogram time
series put into context with results taken from Andrzejak et al. (). These authors
use a nonlinear prediction error P and an effective correlation dimension D2,eff as
statistics to test the null hypothesis H lin

0 that the time series are compatible with
a Gaussian linear stochastic and stationary process. qk (qC) denote the fraction
of time series from a set of M = 100 segments for which the null hypothesis of
reversibility was rejected by the proposed visibility graph tests based on time-directed
degree (clustering) (see also Fig. B.).

Andrzejak et al. () This study

Set State Recording sites P D2,eff qk qC

A healthy, mixed no reject H lin
0 no reject H lin

0 0.00 0.07
eyes open

B healthy, mixed reject H lin
0 no reject H lin

0 0.07 0.16
eyes closed

C pathological, hippocampal reject H lin
0 no reject H lin

0 0.13 0.22
no seizure formation

D pathological, epileptogenic zone reject H lin
0 reject H lin

0 0.36 0.37
no seizure

E pathological, mixed reject H lin
0 reject H lin

0 0.87 0.94
seizure

We analyze four speleothem records of δ18O variability during the Holocene from
geographically widely separated caves serving as proxies for temperature and pre-
cipitation changes related to monsoonal activity in the past (Dykoski et al. ();
Fleitmann et al. (), and Breitenbach et al., unpublished). For evaluating the
robustness of the results, we create ensembles of time series from each record applying
a leave-K-out cross-validation procedure by randomly removing % of the data
points without changing their time ordering. In all four cases, the null hypothesis of
reversibility cannot be rejected for a significantly large fraction of bootstrapped time
series (possibly, with the exception of the record from stalagmite D by Fleitmann
et al. () with respect to the clustering-based test) (Table B.). Similar results
are obtained when randomly removing different fractions of the available data points,
as long as the resulting length N remains sufficiently large. Hence, the proposed tests
can be said to not detect a signature of nonlinearity in δ18O variability recorded in
the four considered speleothems. It is, however, impossible to determine from the
present data whether this apparent lack of nonlinearity in the Holocene paleoclimate
records is a direct signature of climate dynamics or an imprint of the complex physical,
chemical, biological, and geological processes influencing the oxygen isotope signal
deposited in the speleothems.

To address this question of distinguishing the contributions of paleoclimate dynamics
and proxy genesis, it is illustrative to look at records spanning several qualitatively
different climate regimes. As an example, we study the  m resolution δ18O isotope
record from the GISP ice core from Greenland (Grootes and Stuiver, ) that
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Table B..: Results of a visibility graph-based test for reversibility of Holocene δ18O variability
recorded in speleothems. Ensembles of M = 100 realizations are created for each
record by leave-K-out cross-validation with K = 0.2N . 〈∆T 〉 denotes the mean
sampling time, σ(∆T ) its standard deviation, and N the full time series length
(before bootstrapping). qk (qC) denote the fraction of bootstrapped time series for
which the null hypothesis of reversibility was rejected by the proposed visibility graph
tests based on time-directed degree (clustering).

Reference Location 〈∆T 〉 (yr) σ(∆T ) (yr) N qk qC

Fleitmann et al. () Stalagmite D, 8.3 3.1 530 0 0.24
Dimarshim Cave,
Socotra, Yemen

Fleitmann et al. () Stalagmite Q, 7.1 36.4 1405 0 0.08
Qunf Cave,
Oman

Breitenbach et al., Stalagmite DHAR, 2.8 8.3 739 0 0.04
unpublished Dharamjali Cave,

India
Dykoski et al. () Stalagmite D, 17.4 18.2 908 0 0.00

Dongge Cave,
China

covers both the Holocene and the last glacial period (Fig. B.). Applying the proposed
test for reversibility to the Holocene and the last glacial period separately, we find
that the null hypothesis of reversibility can be quite safely rejected for the last glacial,
whereas it cannot be rejected for the Holocene (Table B.). Since the conditions
for the deposition of ice and snow at the drilling site are argued to have remained
more or less constant throughout the entire time span covered by the record, these
results point at a strong signature of nonlinear climate dynamics during the last
glacial, which is not detected for the Holocene, consistently with the results for
the Holocene speleothem records reported above. One visually directly accessible
piece of evidence for the detected irreversible dynamics during the last glacial period
are the frequently occurring Dansgaard-Oeschger events that are characterized by
rapid warming (change towards more positive δ18O values) and subsequent slower
cooling (change towards more negative δ18O values) of Greenland climate (Fig. B.).
Extending on these results, in the spirit of Chapters  and , the proposed test could
be used to detect transitions between reversible (linear) and irreversible (nonlinear)
dynamics in general paleoclimate records.
Note that the sampling times increase with age for the GISP as for all ice core

proxy records, because the ice column is compressed by the ice and snow deposited
on top of it over the years. It remains to be tested whether this nonstationarity has
a strong impact on the results of the visibility graph test for reversibility.
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Figure B..: GISP ice core δ18O record from Greenland (Grootes and Stuiver, ). The
boundary between the last glacial and the Holocene is defined by the Younger
Dryas-Preboreal transition at , years BP (Grootes and Stuiver, ) (vertical
line).

Table B..: Results of visibility graph-based test for reversibility of the GISP ice core δ18O 
meter record from Greenland (Grootes and Stuiver, ). Ensembles of M = 100
realizations are created for each record by bootstrapping % of the data points
without changing their time ordering. See the caption of Table B. for column
descriptions.

Period Time span (kyr BP) 〈∆T 〉 (yr) σ(∆T ) (yr) N qk qC

Last glacial . – . 175.8 119.6 566 0.93 0.82
Holocene . – today 14.2 6.3 824 0.00 0.00

B.. Discussion

A test for reversibility of scalar time series based on time-directed visibility graphs
has been proposed. It has been evaluated for time series generated by model systems
with reversible (e.g., Gaussian noise and AR processes) and irreversible (e.g., logistic
and Hénon maps) dynamics. Furthermore, the technique has been used to detect
irreversibility as a signature of nonlinear dynamical behavior in electroencephalogram
recordings from healthy and epileptic patients as well as paleoclimate records from
speleothems and and an ice core from Greenland.
The proposed test has two notable advantages with respect to other tests for

reversibility of time series reported in the literature: (i) It does not require the
construction of surrogate time series for obtaining a p-value and (ii) it is directly
applicable to irregularly sampled time series without the need of any preprocessing
such as interpolation. Feature (i) serves to circumvent technical problems related to
the choice and construction of surrogate time series and leads to a fast and efficient
algorithm, while feature (ii) implies that the test is particularly well suited for
analyzing geoscientific time series (Donner and Donges, b, P) (see the discussion
of this type of data in Chapter ).
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Multivariate recurrence network
analysis

In the last decade, multivariate extensions of recurrence quantification analysis
(RQA) have been proposed for studying interrelationships between time series from
distinct systems, e.g., for investigating synchronization phenomena or coupling direc-
tions (Marwan et al., ). Two alternative multivariate extensions of the recurrence
plot (see Section ..) have been proposed: (i) joint recurrence plots (Romano et al.,
) and (ii) cross-recurrence plots (Marwan and Kurths, ). Here, corresponding
multivariate extensions of recurrence network analysis, which have been discussed
by Feldhoff () for the first time, and their applications are briefly recapitulated.
Joint recurrence networks derived from joint recurrence plots are introduced in Sec-
tion C., while inter-system recurrence networks, which are related to cross-recurrence
plots, are described in Section C.. An analytical framework for the description of
their statistical characteristics, analogous to the treatment in Chapter , is sketched
in Section C..

In the following, we considerK (potentially multi-dimensional) time series {xk(tki ) =
xki }

Nk
i=1 sampled at times {tki } from dynamical systems {Xk} with k = 1, . . . ,K.

C.. Joint recurrence networks

C... Definition

The idea behind joint recurrence plots is that the simultaneous occurrence of re-
currences in two or more dynamical systems {Xk} contains information on possible
interrelationships between them (Marwan et al., ). Consequently, based on time
series {xki }, the joint recurrence matrix JR with elements

JRij(ε1, . . . , εK) =
K∏
k=1

Rkij(εk) (C.)

is defined as the element-wise product of the single-system recurrence matrices Rk

(Section ..) with elements

Rkij(εk) = Θ(εk − ‖xki − xkj ‖), (C.)
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Table C..: Comparison of multivariate generalizations of recurrence network analysis regarding
the principal requirements on the time series to be analyzed (see Donner et al. (,
C) for a discussion). Identical means that a specific property must be the same for
all involved time series, while arbitrary implies that this does not need to be the
case.

Joint recurrence network Inter-system recurrence network

Length identical arbitrary
Sampling identical arbitrary
Physical unit arbitrary identical
Phase space dimension arbitrary identical

where εk is the vector of recurrence thresholds that can be selected for each time
series individually.
Analogously to single-system recurrence network analysis, we can take a graph-

theoretical perspective by defining a joint recurrence network by its adjacency matrix

A(ε1, . . . , εK) = JR(ε1, . . . , εK)− 1N , (C.)

where 1N denotes the N -dimensional identity matrix. In the undirected and simple
joint recurrence network, vertices i represent points in time tki = tli, and edges
{i, j} indicate joint recurrences occurring simultaneously in all K time series under
study. Alternatively, A(ε1, . . . , εK) may be viewed as the element-wise product the
single-system recurrence networks’ adjacency matrices Ak(εk).

By construction, the time series {xki } used for building a joint recurrence network
need to be sampled at identical times {tki } and have to have the same length, i.e.,
N1 = N2 = . . . = NK . However, since recurrences are compared instead of state
vectors, the {xki } neither have to represent the same physical quantity measured in
identical units, nor need they reside in the same phase space (Table C.).

C... Applications

Joint recurrence networks can be analyzed by standard statistical measures from
complex network theory (Newman, ; Donner et al., c, P), which, how-
ever, need to be reinterpreted in terms of the underlying systems’ joint recurrence
structure (Feldhoff, ; Feldhoff et al., , P; Donner et al., , C). The
transitivity properties of joint recurrence networks have been shown to reveal complex
synchronization scenarios, notably including the detection of the onset of generalized
synchronization, in coupled chaotic oscillators such as Rössler systems (Feldhoff et al.,
, P). Moreover, the specific requirements on the time series data render joint
recurrence networks a promising approach for detecting intricate interconnections
between qualitatively distinct observables in observational or experimental real-world
data.
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C.. Inter-system recurrence networks

C... Definition

A complementary way of extending recurrence analysis to the study of multiple
dynamical systems is looking at cross-recurrences, i.e., encounters of the trajectories
of the systems Xk and Xl, where xki ≈ xlj (Marwan et al., ). In contrast to the
joint recurrence matrix JR, the cross-recurrence matrix CRkl with elements

CRklij (εkl) = Θ(εkl − ‖xki − xlj‖), (C.)

where i = 1, . . . , Nk, j = 1, . . . , Nl, and εkl is the recurrence threshold, cannot be
directly interpreted as the adjacency matrix of a simple graph. This is because
the indices i and j label two distinct sets of state vectors belonging to systems
Xk and Xl, respectively. Instead of investigating the structure of a corresponding
bipartite graph, the information contained in the single-system recurrence matrices
Rk(εk) and the cross-recurrence matrices CRkl(εkl) can be combined to construct
an inter-system recurrence matrix

R(ε) =


R1(ε1) CR12(ε12) . . . CR1K(ε1K)

CR21(ε21) R2(ε2) . . . CR2K(ε2K)
...

...
. . .

...
CRK1(εK1) CRK2(εK2) . . . RK(εK)

 . (C.)

Here, ε = {εkl}kl is a K ×K matrix holding the single-system and cross-recurrence
thresholds εkl. The corresponding inter-system recurrence network is fully described
by its adjacency matrix

A(ε) = R(ε)− 1N , (C.)

where N =
∑K
k=1Nk is the number of vertices. In the undirected and simple

inter-system recurrence network, vertices represent state vectors in the phase space
common to all systems Xk and edges indicate pairs of state vectors from the same
or different systems that are mutually close. By construction, an inter-system
recurrence network can be viewed and statistically analyzed as a network of networks
(Sections . and C.).

In contrast to joint recurrence networks, the meaningful construction and analysis
of inter-system recurrence networks requires time series {xki } that reside in the same
phase space and, hence, describe the same observables with identical physical units
It is important to realize that cross-recurrences are not to be understood in the Poincaré sense,

since they do not indicate the return of an isolated dynamical system to some previously assumed
state. In contrast, they imply a delayed close encounter of the trajectories of two distinct systems
and, therefore, should be named cross encounters instead. Following the same reasoning, terms
such as cross-recurrence plot or cross-recurrence rate are suggestive, but potentially misleading.

In a bipartite graph, only edges connecting two distinct groups of vertices exist (Newman, ),
i.e., in the terminology of Section . only cross-edges, but no internal edges occur.
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(Table C.). However, the time series under study can in principle be sampled at
arbitrary times {tki } and have different lengths {Nk}, because the method discards
all information on time and focusses exclusively on neighborhood relationships in the
shared phase space.

C... Applications

The new class of statistical network measures designed for investigating the topology
of networks of networks introduced in Section . is readily applicable for analyzing
the interdependency structure of multiple complex dynamical systems. Feldhoff
et al. (, P) have shown that the asymmetry intrinsic to the global measures
cross-transitivity Tkl and global cross-clustering coefficient Ckl (see Section C.) can
be exploited to reliably detect the direction of coupling between chaotic oscillators
over a wide range of coupling strengths, requiring only a small number of samples
O(Nk) = 100. Inter-system recurrence network analysis is readily applicable to
the analysis of paleoclimate data, since it does not require equidistant sampling
or identical sampling times across multiple records (see above). A first successful
application to detecting the predominant direction of coupling between the Indian
and East Asian monsoon systems during the Holocene based on paleoclimate records
of monsoonal variability from speleothems has been presented (Feldhoff et al., ,
P; Marwan et al., , C).

C.. Analytical framework for inter-system recurrence
network analysis

C... General framework

Given a general undirected and unweighted simple (no multiple edges, no self-loops)
graph G = (V,E) described by the adjacency matrixA = {Aij}ij , consider a partition
of the vertex set V into K disjunct subsets Vk ⊆ V such that

⋃K
k=1 Vk = V and

Vk∩Vl = ∅ for all k 6= l (see also Section .). Similarly, the edge set E is decomposed
into disjunct Ekl ⊆ E with

⋃K
k,l=1Ekl = E and Ekl ∩Emn for all (k, l) 6= (m,n) such

that Gk = (Vk, Ekk) is the induced subgraph of the vertex set Vk with respect to
the full graph G. Then Ekk contains the (internal) edges within the subgraph or
subnetwork Gk, while Ekl comprises (cross-) edges connecting subnetworks Gk and
Gl. In the specific case of inter-system recurrence networks considered here, the Gk
correspond to the single-system recurrence networks constructed from the systems
Xk, whereas the cross-recurrence structure is contained in the sets of cross-edges Ekl
for k 6= l.

C... Continuous measures for inter-system recurrence networks

We are now in a position to study the interconnectivity structure between two
subnetworks Gk, Gl on several topological scales drawing on the lineup of local and
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global graph-theoretical measures proposed in Section .. In this context, local
measures fklv characterize a property of vertex v ∈ Vk with respect to subnetwork Gl,
while global measures fkl assign a single real number to a pair of subnetworks Gk, Gl
to quantify a certain aspect of their mutual interconnectivity structure.
All relevant graph-theoretical measures for recurrence networks can be seen as

discrete approximations of more general and continuous geometrical properties of a
dynamical system’s underlying attractor characterized by a set S together with an
associated invariant density p(x), x ∈ S (Chapter  and Donges et al. (, P)).
This point of view allows to obtain deeper insights into the geometrical meaning of
the numerous and diverse network quantifiers and enables one to establish surprising
connections to other fields, e.g., the close relationship of transitivity measures like the
local clustering coefficient and transitivity to the local and global fractal dimension of
the dynamical system’s attractor, respectively (Chapter  and Donner et al. (b,
P)).
In the same spirit, we can consider the graph-theoretical measures for studying

the interconnections between subnetworks within inter-system recurrence networks
as discrete approximations of more general geometrical properties. Let Sk ⊂ Y be
a subset of an m-dimensional compact smooth manifold Y and pk(x) represent its
invariant density for all k = 1, . . . ,K, where x ∈ Sk. In the following, the Sk and pk
are assumed to fulfill the same requirements that are stated for S and p in Section ..
We will use the abbreviation

∫
dµk(x) =

∫
Sk
dmx pk(x), where µk is a probability

measure on Sk. For simplicity, only a single recurrence threshold ε = εkl for all k, l
will be used.

Local measures

In all definitions, x denotes a state of system Xk, hence, x ∈ Sk holds.

Continuous ε-cross-degree density

ρkl(x; ε) =
∫
Bε(x)∩Sl

dµl(y) =
∫
dµl(y)Θ(ε− ‖x− y‖) (C.)

measures the probability that a randomly chosen state from Xl is found in the
recurrence neighborhood Bε(x) of x ∈ Sk. Its discrete version is the cross-degree
density

ρ̂klv (ε) = 1
Nl

∑
i∈Vl

Avi(ε) (C.)

with v ∈ Vk.

Continuous local ε-cross-clustering coefficient

Ckl(x; ε) =
∫∫
Bε(x)∩Sl dµl(y) dµl(z) Θ(ε− ‖y − z‖)

ρkl(x; ε)2 (C.)
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gives the probability that two randomly chosen states from Xl are recurrent to each
other if they both lie in the recurrence neighborhood of state x ∈ Xk. Ckl(x; ε) is
approximated by the discrete local cross-clustering coefficient

Ĉklv (ε) = 1
k̂klv (ε)(k̂klv (ε)− 1)

∑
i,j∈Vl

Avi(ε)Aij(ε)Ajv(ε), (C.)

where k̂klv (ε) = ρ̂klv (ε)Nl.

Continuous ε-cross-closeness centrality and -efficiency Considering the mutual
global geometry of the systems Xk, Xl, we furthermore introduce continuous ε-cross-
closeness centrality

ckl(x; ε) =
(∫

dµl(y) g(x, y)
ε

)−1
(C.)

quantifying the closeness of state x of system Xk to all states of system Xl along
geodesics together with the related harmonic continuous local ε-cross-efficiency

ekl(x; ε) =
∫
dµl(y)

(
g(x, y)
ε

)−1
. (C.)

Here, geodesics are defined with respect to the union of all involved systems’ attractors
S =

⋃K
k=1 Sk and g(x, y) is a suitable distance metric on such geodesics (Section ..).

The proposed local path-based measures for inter-system recurrence networks are
approximated by the discrete cross-closeness centrality

ĉklv (ε) =
(∑

i∈Vl dvi(ε)
Nl

)−1

(C.)

and local cross-efficiency

êklv (ε) =
∑
i∈Vl dvi(ε)

−1

Nl
, (C.)

where again v ∈ Vk. These path-based estimators break down for disconnected
inter-system recurrence networks (Section ..). Section .. discusses alternative
definitions of path-based measures in this situation.

Global measures

Continuous ε-cross-edge density The simplest continuous global property describ-
ing the recurrence structure between systems Xk and Xl in phase space is the
continuous ε-cross-edge density

ρkl(ε) =
∫∫

dµk(x)dµl(y)Θ(ε− ‖x− y‖)) = ρlk(ε) (C.)





C.. Analytical framework for inter-system recurrence network analysis

that is empirically estimated by

ρ̂kl(ε) = 1
NkNl

∑
i∈Vk,j∈Vl

Aij(ε) = ρ̂lk(ε). (C.)

ρ̂kl(ε) corresponds to the definition of the cross-recurrence rate CRR from cross-
recurrence quantification analysis (CRQA) (Marwan et al., ).

Continuous global ε-cross-clustering coefficient The expectation value of the local
ε-cross-clustering coefficient Ckl(x; ε) is referred to as the continuous global ε-cross-
clustering coefficient

Ckl(ε) =
∫
dµk(x) Ckl(x; ε). (C.)

In general, the cross-transitivity structure is asymmetric and Ckl(ε) 6= Clk(ε) follows.
The corresponding discrete estimator, global cross-clustering coefficient is given by

Ĉkl(ε) =
〈
Ĉklv (ε)

〉
v∈Vk

= 1
Nk

∑
v∈Vk,k̂klv >1

∑
i,j∈Vl Avi(ε)Aij(ε)Ajv(ε)∑

i6=j∈Vl Avi(ε)Avj(ε)
. (C.)

Continuous ε-cross-transitivity Designed for quantifying transitivity in the cross-
recurrence structure, the continuous ε-cross-transitivity

Tkl(ε) =
∫∫∫

dµk(x)dµl(y)dµl(z)Θ(ε− ‖x− y‖)Θ(ε− ‖y − z‖)Θ(ε− ‖z − x‖)∫∫∫
dµk(x)dµl(y)dµl(z)Θ(ε− ‖x− y‖)Θ(ε− ‖x− z‖)

(C.)

gives the probability that two randomly chosen states y, z of system Xl which are
“cross-recurrent” to a randomly chosen state x of system Xk are also recurrent with
respect to each other. As for the continuous global ε-cross-clustering coefficient, in
general Tkl(ε) 6= Tlk(ε). Tkl(ε) is approximated by the discrete cross-transitivity

T̂kl =
∑
v∈Vk;i,j∈Vl Avi(ε)Aij(ε)Ajv(ε)∑

v∈Vk;i6=j∈Vl Avi(ε)Avj(ε)
. (C.)

Note that although cross-transitivity and global cross-clustering coefficient are based
on a similar concept, they capture distinctively different network properties (see
Section ..).

Continuous ε-cross-average path length and -efficiency While the two former
measures depend only on the local recurrence structure between Xk, Xl, path-based
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measures contain information on the global geometry of both systems’ attractors.
The continuous ε-cross-average path length

Lkl(ε) =
∫∫

dµk(x)dµl(y)g(x, y)
ε

= Llk(ε) (C.)

gives the average length of geodesic paths starting in Sk and ending in Sl or vice
versa.

Similarly, we define the continuous ε-cross-efficiency

Ekl(ε) =
(∫∫

dµk(x)dµl(y)
(
g(x, y)
ε

)−1)−1

= Elk(ε) (C.)

which is the harmonic mean geodesic distance between Xk and Xl.
Discrete approximations of these global path-based quantifiers are provided by the

cross-average path length

L̂kl(ε) = 1
NkNl

∑
i∈Vk,j∈Vl

dij(ε) = L̂lk(ε) (C.)

and the cross-efficiency

Êkl(ε) =

 1
NkNl

∑
i∈Vk,j∈Vl

dij(ε)−1

−1

= Êlk(ε), (C.)

where dij(ε) is the graph-theoretical shortest-path length between vertices i, j in G.
Refer to Section .. for a discussion of the treatment of these measures in the case
of disconnected networks.
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Higher-order transitivity-based
dimensions

The standard local clustering coefficient and global transitivity measures, as well
as their continuous equivalents (Chapter ), have been successfully employed for
defining novel notions of local and global dimensionality for general sets such as
the strange (fractal) attractors of chaotic dynamical systems that are based on
recurrence networks (Section .. and Donner et al. (b, P)). In Section ..
and Donges et al. (, P), we formulated the idea that motif densities in recurrence
networks could be used analogously to define higher-order local and global measures
of dimensionality, similarly to the sequence of Rényi dimensions from dynamical
systems theory (Rényi, ; Hentschel and Procaccia, ). Following this train of
thought, we begin with defining a family of higher-order local κ-clustering coefficients
and global κ-transitivities, respectively, based on counting clique and star motifs of
order κ (Section D.). Exploiting their behavior for smooth manifolds with integer
dimension, these new classes of network quantifiers are consequently used for defining
families of transitivity-based local and global dimensionality measures (Section D.).
The numerical estimation of these measures is discussed in Section D.. Finally,
we present first numerical results for paradigmatic model systems (Section D.).
Concluding remarks including a conjecture on the relationship between clustering
and transitivity dimensions of different orders κ are given in Section D..

D.. Higher-order clustering and transitivity

The standard (local and global) clustering coefficient and global transitivity measure
locally or globally the density of triangles within a simple and undirected complex
network described by a symmetric adjacency matrix A = {Aij}ij . Triangles are
cliques of order  (-cliques), i.e., fully connected subgraphs of  vertices. A more
restrictive notion of clustering is obtained when measuring the local or global density
of κ-cliques (fully connected subgraphs of κ nodes, see Fig. D.). This straightforward
generalization of the standard idea of clustering in networks induces a spectrum
of local and global κ-clustering coefficients as well as κ-transitivities. These are
distinct from other generalized clustering measures which were proposed earlier, e.g.,
considering the density of loops of different length keeping in mind that triangles are
loops of length  (Boccaletti et al., ).
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A B C D

Figure D..: Cliques of orders (A) κ = 3, (B) κ = 4, (C) κ = 5, and (D) κ = 6.

D... Local κ-clustering coefficient

Let Zκv be the number of κ-cliques vertex v participates in, Hκ
v is the maximum

possible number of κ-cliques. Then we define the local κ-clustering coefficient

Cκv = Zκv
Hκ
v

= Zκv( kv
κ−1
) , (D.)

where kv denotes the degree of v. For convenience, we set Cκv = 0 for all v with
kv < κ− 1. This implies the bounds 0 ≤ Cκv ≤ 1. Obviously, the local κ-clustering
coefficient and all further measures given below are neither meaningful nor instructive
for orders κ < 3. In the following we give explicit formulae for calculating some
low-order κ-clustering coefficients. Here Nv denotes the set of neighbors of vertex v
and N the total number of vertices in the network.

κ = 3 (Standard local clustering coefficient)

C3
v =

1
2!
∑
i,j∈Nv Aij(kv

2
) (D.)

with C3
v = 0 ∀kv < 2.

κ = 4

C4
v =

1
3!
∑
i,j,k∈Nv AijAjkAki(kv

3
) (D.)

with C4
v = 0 ∀kv < 3.

κ = 5

C5
v =

1
4!
∑
i,j,k,l∈Nv AijAjkAklAliAikAlj(kv

4
) (D.)

with C5
v = 0 ∀kv < 4.
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κ = 6

C6
v =

1
5!
∑
i,j,k,l,m∈Nv AijAikAilAimAjkAjlAjmAklAkmAlm(kv

5
) (D.)

with C6
v = 0 ∀kv < 5.

D... Global κ-clustering

The global κ-clustering coefficient Cκ is defined as the average taken over all local
κ-clustering coefficients,

Cκ = 〈Cκv 〉v∈V . (D.)

We can easily derive the expectation values E(Cκ) for fully random networks (Erdős-
Rényi graphs (Erdős and Rényi, )) given the probability q of edges to exist
independently of each other. Studying this simple network ensemble allows to gain
an impression of the expected magnitudes of Cκ for different orders κ in other types
of networks as well.

The global κ-clustering coefficient essentially gives the mean probability that
(κ−1

2
)

edges exist between κ − 1 vertices in the first neighborhood of a vertex. For the
Erdős-Rényi model the expectation value is then

E(Cκ) = q(
κ−1

2 ) = q(κ−1)(κ−2)/2, (D.)

since edges are fully independent. This yields E(C3) = q, E(C4) = q3, E(C5) = q6,
E(C6) = q10 . . .. Hence, the expectation value E(Cκ) decreases faster than exponen-
tially with increasing order κ implying that higher-order cliques are unlikely to be
observed in finite fully random networks. Conversely it highlights that non-zero
values of Cκ are to be considered as noteworthy in empirical networks for larger κ.

D... κ-transitivity

κ-transitivity counts the global density of κ-cliques within a network. It is defined as

T κ = κ×Number of cliques of κ nodes
Number of stars of κ nodes

(D.)

and is normalized to 0 ≤ T κ ≤ 1. The factor κ in the nominator is introduced here
to correct for the fact that each κ-clique implies the presence of κ distinct κ-stars
in the network. It is important to note that this definition requires that the motifs
counted must be only subgraphs of the network under study, they do not need to be
induced subgraphs. For example, this ensures that for each κ-clique, the number of
associated κ-stars is correctly counted as κ.
Considering the expectation values E(T κ) for Erdős-Rényi graphs one can show

that E(T κ) = E(Cκ) = q(κ−1)(κ−2)/2 by similar arguments as those given above. We
now list explicit formulae for calculating some low-order κ-transitivities.
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κ = 3 (Standard transitivity)

T 3 =
∑
v,i,j∈V AviAijAjv∑
v,i,j∈V AviAvj

(D.)

κ = 4

T 4 =
∑
v,i,j,k∈V AviAvjAvkAijAikAjk∑

v,i,j,k∈V AviAvjAvk
(D.)

κ = 5

T 5 =
∑
v,i,j,k,l∈V AviAvjAvkAvlAijAikAilAjkAjlAkl∑

v,i,j,k,l∈V AviAvjAvkAvl
(D.)

D.. Higher-order local clustering and transitivity
dimensions

D... Behavior for smooth manifolds

In spatially embedded networks such as recurrence networks or random geometric
graphs, due to spatial clustering of points particularly in high density regions (see also
Section ..), Cκv , Cκ, and T κ are expected to be significantly larger than for typical
fully random Erdős-Rényi graphs with the same edge density. Indeed, analogously
to the derivations carried out in Donner et al. (b, P), it can be shown that
the expectation values for recurrence networks constructed by drawing randomly
from smooth manifolds S of integer dimension d associated with a smooth associated
probability density p are given by

E(Cκv ) = E(Cκ) = E(T κ) =
(

κ

2κ−1

)d
(D.)

independently of the recurrence threshold ε, when using the supremum norm for
measuring distances between points (e.g., state vectors) x ∈ S. The leading term in
this expression for random geometric graphs on d-dimensional smooth manifolds is
(1/2)dκ which for increasing κ decays more slowly than the corresponding leading
term qκ

2 for Erdős-Rényi graphs. For κ = 3, one obtains the expectation value (3/4)d
that has been reported earlier (Section .., Donner et al. (c, P); Donner et al.
(b, P)).

Similarly to the continuous ε-motif densities introduced in Section .., contin-
uous versions of the higher-order transitivity-based measures Cκv , Cκ, and T κ from
Section D. can be constructed. For these continuous measures, which are not shown
here for brevity, Eq. (D.) would hold exactly, not just on average (see also Donner
et al. (b, P)). In line with the general treatment in Chapter , Cκv , Cκ, and T κ
can then be viewed as discrete estimators of their continuous equivalents.
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D... Higher-order local clustering dimensions

Analogously to the case κ = 3 discussed in Section .., a single scale local κ-
clustering dimension can be defined as

D̂Cκ,v(ε) = log (Cκv (ε))
log

(
κ

2κ−1

) (D.)

for a fixed scale ε, order κ, and vertex v. Here, and in the following, hats D̂ are used to
distinguish the discrete estimators presented from the true underlying dimensionalities
based on continuous versions of Cκv , Cκ, and T κ (see Donner et al. (b, P) for
details).
While E(D̂Cκ,v(ε)) = d for smooth d-dimensional manifolds S independently of

the scale ε, self-similarities in the set of interest, e.g., a strange attractor, can lead
to oscillations in D̂Cκ,v(ε) with changing ε (Section .. and Donner et al. (b,
P)). Hence, for fully characterizing the set under study it is necessary to introduce
an upper local κ-clustering dimension

D̂u
Cκ,v = max

ε∈E
D̂Cκ,v(ε) (D.)

together with a lower local κ-clustering dimension

D̂l
Cκ,v = min

ε∈E
D̂Cκ,v(ε). (D.)

E is a set of appropriately chosen recurrence thresholds ε, i.e., covering at least one
oscillation of D̂Cκ,v(ε) at as small as possible scales ε where lack of neighbors (too
small edge densities) is not yet a problem (see Donner et al. (b, P) for details).

D... Higher-order transitivity dimensions

Similarly, a global single scale κ-transitivity dimension can be defined as

D̂T κ(ε) = log (T κ(ε))
log

(
κ

2κ−1

) (D.)

for a fixed scale ε and order κ. For the same reasons that were mentioned in
Section D.. (see Fig. D.), a more representative measurement of the global (fractal)
dimensionality of the set under study is provided by the upper κ-transitivity dimension

D̂u
T κ = max

ε∈E
D̂T κ(ε) (D.)

and the lower κ-transitivity dimension

D̂l
T κ = min

ε∈E
D̂T κ(ε). (D.)
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D.. Numerical estimation

A very simple algorithm for computing the local κ-clustering coefficient is to traverse
over all vertices and check for existing edges between all groups of κ−1 neighbors (see
Schank and Wagner () for a discussion of the standard local -clustering coeffi-
cient). For a vertex of degree kv there are

( kv
κ−1
)
∼ kκ−1

v such groups with each
(κ−1

2
)

edges to check for. Hence, the running time of this algorithm for computing Cκv for
all v ∈ V is

O
(
N max

v∈V
(kv)κ−1

(
κ− 1

2

))
⊂ O

(
Nκ

(
κ− 1

2

))
. (D.)

The associated algorithms for calculating the global κ-clustering coefficient Cκ and
κ-transitivity T κ have the same running time.
Since the running time of the simple algorithm grows exponentially with κ it

is impractical for computing higher-order local clustering and global transitivity
dimensions for the large N needed for a reliable estimation of these quantities. More
efficient algorithms and approximation procedures are available to circumvent this
problem (Schank and Wagner, ; Wernicke and Rasche, ). In Section D.,
an algorithm for approximating the numbers of motifs embedded in a network that
has been proposed by Wernicke and Rasche () is used for estimating transitivity
dimensions. In contrast, local clustering dimensions are estimated using the simple
algorithm described above. Further work is needed to optimize the numerical estima-
tion of clustering and transitivity dimensions, particularly for rendering the study of
κ ≥ 4 practical in the future.

D.. Results

D... Generalized baker’s map

For consistency with Section .. and Donner et al. (b, P), we study the global
transitivity dimensions for κ = 3, 4 in the case of the prototypical generalized baker’s
map (Eq. (.)). Results for larger κ are not yet available due to computational
limitations (see Section D.). D̂T 3(ε) and D̂T 4(ε) behave consistently for varying
ε (Fig. D.), both showing a maximum close to ε = 0.01. In both cases, this
maximum is most likely part of an oscillatory pattern akin to that displayed in
Fig. .. Notably, the variations of D̂T 4(ε) (Fig. D.B) appear more noisy than those
of D̂T 3(ε) (Fig. D.A). This effect is due to the comparably much lower expected
number of 4-cliques as compared to that of -cliques (see above) resulting in a larger
variance of D̂T 4(ε).

Similarly, D̂u,l
T 3 and D̂u,l

T 4 vary comparably when changing the control parameter
α (Fig. D.). In both cases, the upper κ-transitivity dimensions tend to increase
with growing α which is consistent with the behavior of the frequently studied
Rényi dimensions D0 (box-counting dimension), D1 (information dimension), and D2





D.. Results

Figure D..: Estimation of the higher-order transitivity dimensions (A) D̂u,l
T 3 and (B) D̂u,l

T 4 for the
generalized baker’s map (Eq. (.)) at α = 1/2 and λa = λb = 1/4 for different
N . Dashed horizontal lines indicate numerical estimates of Du,l

T obtained with
N = 30, 000 data points at small ε.
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(correlation dimension). In contrast, the corresponding lower κ-transitivity dimensions
appear to be independent of α. For the same reasons as elaborated in the previous
paragraph, the results for κ = 4 (Fig. D.B) show a higher noise level than those for
κ = 3 (Fig. D.A).

D... Rössler system

While for the generalized baker’s map, the local clustering dimensions D̂u,l
Cκ,v can

be theoretically shown to be constant for all points on the attractor (Donner et al.,
b, P), the Rössler system

d

dt
(x, y, z) = (−y − z, x+ ay, b+ z(x− c)) (D.)

offers a richer structure in phase space.
It was shown earlier that the local -clustering coefficient C3

v allows to detect
unstable periodic orbits (UPOs) in recurrence networks of dynamical systems (Donner
et al., c, P). This is because the local convergence of trajectories leads to a
clustering of state vectors along these lower-dimensional objects. Similarly, local
κ-clustering dimensions allow to trace UPOs of the Rössler system (Fig. D.). Only
the lower local clustering dimensions D̂l

Cκ,v are shown, because the estimation of D̂u
Cκ,v

is complicated by Cv(ε) = 0 (leading to D̂u
Cκ,v →∞ for most v) occuring frequently

for some ε due to the finite number of samples N .
The expectation is that higher-order local κ-clustering dimensions should highlight

UPOs embedded within the attractor more sharply, because tight κ-clustering is
very unlikely except close to UPOs where trajectories converge. One cannot see
this effect very clearly for the examples presented here (Fig. D.), but this is most
likely due to the relatively small N that has been chosen for computational reasons.
Furthermore, it is notable that in the considered example the median of the estimated
lower local κ-clustering dimensions increases with growing κ: median(D̂l

C3,v) = 1.28 <
median(D̂l

C4,v) = 1.41 < median(D̂l
C5,v) = 1.53. For comparison, the median of the

upper local -clustering dimensions is median(D̂u
C3,v) = 2.63.





D.. Results

Figure D..: Dependence of several global measures of dimensionality on the parameter α
(λa = λb = 1/4) of the generalized baker’s map (Eq. (.)): Upper and lower
transitivity dimensions (A) D̂u,l

T 3 , (B) D̂u,l
T 4 , and Rényi dimensions D0,1,2. One

realization has been considered for each value of α. The gray line in (A) corresponds
to an analytically calculated lower bound of Du

T 3 . Numerical estimates have been
obtained with N = 15, 000 data points using  equidistantly spaced recurrence
thresholds ε in the range [0.001, 0.015], and results are robust for various choices
of N (Fig. D.).
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A B

C

Figure D..: Lower local κ-clustering dimensions (A) D̂l
C3,v, (B) D̂

l
C4,v, and (C) D̂l

C5,v for the
Rössler system (Eq. (D.)) with a = 0.15, b = 0.2, and c = 10, shown in a
projection to the x-y coordinate plane. The equations were integrated with a
sampling time ∆T = 0.05, where a transient of 1, 000 samples was excluded.
For constructing the recurrence networks from N = 15, 000 samples we used
original coordinates (no embedding), the supremum norm, and  equidistantly
spaced recurrence thresholds ε in the range [0.1, 1.0]. Vertices (state vectors) with
D̂l
Cκ,v > 3 are not shown (these values can arise in low density regions of phase

space due to finite size effects or in certain exceptional geometries (Donner et al.,
b, P)).
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D.. Discussion

It is tempting to conjecture that the upper and lower local κ-clustering and κ-
transitivity dimensions defined above should be subject to inequalities similar to
those governing the behavior of Rényi dimensions Dq, i.e., Dq ≥ Dq′ for all q ≤ q′

(Hentschel and Procaccia, ). For example, the relationship Du,l
T κ ≥ Du,l

T κ′ for
all κ ≤ κ′ is conceivable with regard to Fig. D.. However, the numerical results
presented in this appendix are clearly insufficient to draw any conclusions on this
matter. Further theoretical work and substantial numerical simulations are needed
to address the conjecture.







Appendix E.

Contemplating coincidences

. . .for the “one chance in a million” will
undoubtedly occur, with no less and no more
than its appropriate frequency, however
surprised we may be that it should occur to us.

Ronald A. Fisher (, p. )

E.. Problem setting

We are concerned with the statistical problem of testing for coincidences of two
distinct types of events: (i) shifts in climate (C-events) and (ii) the appearance
and disappearance of species in the fossil record (S-events). Consider a record of N
S-events S1, . . . , SN and M C-events C1, . . . , CM over a time period T , where both
sequences are not necessarily ordered chronologically. A single coincidence occurs if an
S-event falls within the temporal tolerance window of a C-event, i.e., |tS − tC | ≤ ∆T ,
where tS and tC denote the timing of both events (Fig. E.).

Assume that we observe in our record Ke single coincidences. Given these findings
and considering the uncertainties in the timing of both types of events as well as
the inherent incompleteness of the fossil record we ask the following questions: Are
the observed numbers of coincidences likely to have arisen by pure chance? Can we
derive a significance test by combinatorial reasoning?

E.. Statistical null model

Our null hypothesis is that both S- and C-events are distributed randomly, inde-
pendently and uniformly over the time interval T . Furthermore, we assume that
∆T � T/M � T . Based on these assumptions, the probability of a specific S-event
Si falling into the tolerance window of a specific C-event Cj is

p = 2∆T
T
. (E.)
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Time

2ΔT
C-events S-events

Figure E..: Schematic representation of C-events (black vertical lines) and S-events (blue
vertical lines). Red horizontal bars of length 2∆T centered around C-events indicate
coincidences of one or more S-events with one C-event. This leads to Ke = 4
coincidences in this example.

Then the probability of a specific S-event Si coinciding with at least one of the M
C-events is given by

1− (1− p)M = 1−
(

1− 2∆T
T

)M
. (E.)

Now we are in a position to compute the probability P (K;N, 1− (1− p)M ) that
exactly K single coincidences are observed for a given realization of the fully random
null model. Since S-events are assumed to be distributed independently in the interval
[0, T ], P (K;N, 1− (1− p)M ) is the binomial distribution with N trials and success
probability 1− (1− p)M (Jaynes and Bretthorst, ) yielding

P (K;N, 1−(1−p)M ) =
(
N

K

)(
1−

(
1− 2∆T

T

)M)K ((
1− 2∆T

T

)M)N−K
. (E.)

From this distribution (Eq. (E.)) we easily derive the expectation value 〈K〉 and
standard deviation σ(K) as

〈K〉 = N
(
1− (1− p)M

)
= N

(
1−

(
1− 2∆T

T

)M)
(E.)

and

σ(K) =
√
N
(
1− (1− p)M

)
(1− p)M

=

√√√√N (
1−

(
1− 2∆T

T

)M)(
1− 2∆T

T

)M
. (E.)





E.. Application

Table E..: Timing of climate shifts identified by recurrence network analysis (see Chapter )
and related paleoenvironmental change.

Timing (Myr BP) Paleoenvironmental change

3.50 Appearance of lakes in EARS
2.95 Disappearance of large lakes in EARS
2.25 Reorganization of Walker circulation (beginning)
1.60 Reorganization of Walker circulation (end)
1.10 Mid-Pleistocene transition (beginning)
0.70 Mid-Pleistocene transition (end)

The p-value of an observation Ke with respect to the test distribution (Eq. (E.)),
i.e., the probability to obtain a number of coincidences K larger or equal to the
empirically observed number Ke, is then given by

P (K ≥ Ke) =
N∑

K∗=Ke
P (K∗;N, 1− (1− p)M ). (E.)

E.. Application

The record of interest for the case study presented in Chapter  and Donges et al.
(c, P) spans a time period of T = 5 Myr and contains M = 6 climate shifts
(C-events) as well as N = 2 × 18 + 1 = 37 S-events (note that Homo sapiens is
not extinct yet). In Fig. ., significant shifts in African climate (C-events) are
marked by the upper and lower bounds of the gray bars spanning all data and
results shown. Coincidences with the time of species appearance and disappearance
(S-events) considering a temporal tolerance of ∆T = 0.1 Myr are marked by red bars.

The C-events occur at approximately ., ., ., ., ., and . Myr BP
(Table E.) according to recurrence network analysis (Chapter  and Donges et al.
(c, P)), while the timings of all considered S-events are listed in Table E..
Given a tolerance ∆T = 0.1 Myr, we observe Ke = 15 single coincidences (Fig. .).
This particular choice of the tolerance parameter ∆T is motivated by (i) the fact
that the timings of most of the considered C- and S-events have been rounded to
the first decimal point prior to the analysis, and (ii) uncertainties in dating of the
analyzed dust flux records, the detected climate shifts and hominin fossils which can
be assumed to be roughly of this order.
We now aim to quantify the significance of the observed number of coincidences

Ke with respect to the null model formulated above, i.e., assuming that both C-
and S-events are distributed uniformly and independently within the time interval of
interest. The null model yields an expected number of E(K) = 8.0 coincidences with
the standard deviation σ(K) = 2.5 and the empirical observation corresponding to a
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(Myr)

A

(Myr)

B

Figure E..: (A) p-values P (K ≥ Ke) of the (B) observed number of coincidences Ke for varying
tolerance parameter ∆T . We consider the results to be significant if the p-value is
smaller than the commonly chosen significance level of . (red horizontal line).





E.. Discussion

Table E..: Times of the appearance and disappearance of hominin species from the known fossil
record taken from Trauth et al. (), based on Bromage et al. (); Kimbel
et al. (); Reed (); White (); Dunsworth and Walker (); McHenry
(); Antón and Swisher (); White et al. (). The timing of most of these
evolutionary S-events has been rounded to the first decimal point.

Species Appearance (Myr BP) Disappearance (Myr BP)

Ardipithecus ramidus 4.55 4.40
Australopithecus anamensis 4.20 3.90
Kenyanthropus platyops 3.55 3.45
Australopithecus afarensis 3.60 2.90
Australopithecus bahrelghazali 3.55 3.45
Australopithecus africanus 3.00 2.50
Australopithecus garhi 2.55 2.50
Paranthropus aethiopicus 2.50 2.30
Paranthropus boisei 2.30 1.40
Homo habilis 2.30 1.60
Homo rudolfensis 2.30 1.60
Paranthropus robustus 1.90 1.10
Homo ergaster 1.90 1.00
Homo erectus 1.90 0.30
Homo antecessor 0.90 0.70
Homo heidelbergensis 0.60 0.10
Homo neanderthalensis 0.30 0.05
Homo floresiensis 0.10 0.05
Homo sapiens 0.16 n/a

p-value of P (K ≥ Ke) = 0.003. The change of p-values P (K ≥ Ke) and the observed
number of coincidences Ke with varying tolerance ∆T is shown in Fig. E..

E.. Discussion

Our analysis reveals that the observed number of coincidences is robustly significant
with p-values P (K ≥ Ke)� 0.05 for a range of tolerance parameters 0.05 ≤ ∆T ≤
0.17 with respect to the fully random null model (Fig. E.A). Considerably larger
∆T do not meet the basic assumption ∆T � T/M � T any more. In this sense
the analysis supports a statement like: The observed coincidences between detected
climate shifts and the appearance or disappearance of hominin species are unlikely to
arise by chance (Chapter  and Donges et al. (c, P)). We should emphasize
here that coincidence alone, like correlation, does not imply causality (deMenocal,
). It can only serve as a hint at a possible causal relationship.

Note that it is known that the appearance and/or disappearance of different species
is typically correlated. This effect is not included in the null model, but could be
assessed with the help of more sophisticated Monte Carlo simulations. The proposed
null model should be seen as the simplest possible quantitative means to justify
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discussing the influence of Plio-Pleistocene climate change on hominin evolution in
the first place.
The presented statistical analysis assumes that the life spans of hominin species

are approximated by the times to which their known fossils are dated, an assumption
which is also routinely relied upon in the reconstruction of hominin evolutionary trees
or dispersal patterns (Strait and Wood, ). Minor dating uncertainties and fossil
sampling effects are covered by the tolerance parameter ∆T . However, as is always the
case in paleontological research, new fossil evidence may dramatically alter the current
view of events in hominin evolution summarized in Table E. (Strait and Wood,
). Furthermore, taphonomic biases and sampling effects may play a significant
role (deMenocal, ). Given new evidence, the proposed statistical framework will
allow future investigators to quickly evaluate the significance of observed coincidences
between C- and S-events. The same is true if the timing or number of climate shifts
were to be revised. Our null model could moreover prove useful to test and compare
other hypotheses relating changes in climate to evolutionary events.
Finally it is important to stress that the proposed significance test is asymmetric

with respect to C- and S-events which is mathematically expressed by the fact that
Eq. (E.) is asymmetric with respect to the numbers of events M and N . Above we
were concerned with the clustering of S-events around C-events, thereby implicitly
testing for a potential causal influence of C-events on S-events and not vice versa.
Considering the research question under study this seems reasonable, since humans
are not thought to have had a significant influence on continental and larger-scale
climate change before a few thousand years ago (see, e.g., the early anthropogenic
hypothesis (Ruddiman, )).

E.. Related measures and concepts

The observed number of coincidences can be written as

Ke =
N∑
i=1

M∑
j=1

Θ
(
∆T − |tSi − tCj |

)
, (E.)

where {tSi }Ni=1 and {tCj }Mj=1 are the timings of S- and C-events, respectively. This
formulation highlights that Ke and coincidence analysis as a whole are closely related
to certain measures of event synchronization (Kreuz et al., ), the cross-recurrence
rate of recurrence quantification analysis (Marwan et al., ), and Ripley’s cross-K
from spatial statistics measuring the correlation of spatial point processes (Dixon,
). Consequently, the proposed significance test could be applied to those concepts
as well, given that the requirements and basic assumptions described above are met.
Finally, it should be noted that the statistical and mathematical literature contains
a large number of less closely related studies of coincidences, e.g., concidering the
birthday problem (Diaconis and Mosteller, ).





Appendix F.

Software and implementation

The results presented in this thesis rely heavily on numerical computations. For
this purpose, the software package pyunicorn (Donges et al., -) written
in the object oriented programing language Python (Rossum and Drake, ) and
embedded C++ code was developed (pyunicorn: Pythonic unified complex network and
recurrence analysis tool box). It implements the methods, measures, and algorithms
described in Part I and the appendices. The package consists of three subpack-
ages: (i) pygeonetwork for the general study and modeling of complex, possibly
spatially embedded networks including interacting networks or networks of networks,
(ii) pyclimatenetwork for constructing functional networks from time series data, and
(iii) pyrecurrence for uni- and multivariate recurrence quantification (RQA) and re-
currence network analysis as well as visibility graph analysis. pyunicorn partly relies
on the following open source packages: NumPy (Oliphant, ), SciPy (Jones et al.,
), igraph (Csárdi and Nepusz, ), pysparse (Geus and Arbenz, ; Bröker
et al., ), PyNio (Schmidli et al., ; Brown et al., ), netCDF-4 (Whitaker,
), Matplotlib (Hunter, ), mpi4py (Dalcín et al., ), and progressbar
(Volpato, ). The package pyunicorn will be made available to the public as an
open source package in the near future.

Partially parallelized numerical calculations were performed on the IBM iDataPlex
Cluster and the visualization servers at the Potsdam Institute for Climate Impact
Research as well as on Apple MacBook and Dell Latitude laptops using Linux and
Mac OS X operating systems.

The figures displaying quantitative information throughout this thesis were created
using the Matplotlib package and Matlab. Network visualizations were produced in
CGV (Tominski et al., ), GUESS (Adar, ), and Gephi (Bastian et al., ).
Adobe Illustrator was employed to compose all further illustrations.
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