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ABSTRACT 
 

Thiol-ene networks were synthesized at different monomer concentrations by 

using difunctional triethyleneglycol divinylether monomer and tetrafunctional 

pentaerithritol trimercaptopropionate crosslinker. The studied network is 

thought to have a homogenous structure due to the stepgrowth nature of the 

polymerization mechanism during synthesis. The aim of this thesis was to 

investigate this idea with the help of various methods such as rheology and 

dynamic light scattering. 

Measurements are conducted during and after synthesis of thiol-ene 

networks. Rheological measurements showed that the gelation reaction via 

the thiol-ene mechanism is quite rapid and the gels synthesized have a 

relatively high crosslinking efficiency up to 60% with respect to the predictions 

of phantom network model. This was explained by the high monomer 

conversion at the gel point. Syneresis is observed for the networks below 20% 

(w/v) monomer concentration due to the contraction of the network as the 

clusters merge during the crosslinking reaction.  

DLS measurements were conducted with networks right after the synthesis 

and in equilibrium swollen states. Applying the nonergodic approach 

according to Pusey and van Megen, the static portion of the ensemble 

average scattering intensity was found to be 90±2% for concentrations 10% 

(w/v) and above. Compared to the measurements conducted right after 

synthesis, the ensemble average scattering intensity is also found to increase 

up to 25 fold as the gel reaches to equilibrium swollen state, which uncovers 

the inhomogenous nature of the thiol-ene networks. 
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1 INTRODUCTION 
 
 

Polymeric gels are three-dimensional networks of polymer chains that are 

connected with chemical and/or physical crosslinks and which are swollen in a 

solvent. They have a wide range of practical applications such as 

biomaterials, sensors and super absorbents [1-5]. Since the nature and the 

formation mechanism of the network bonds strictly affects the properties of 

these materials, [6-7] it is worth investigating the relationship between the 

macrostructure and the microstructure inside the network.  

Homogeneity is one of the most desired properties of polymer networks to 

obtain mechanically strong, optically transparent polymeric gels. Many 

approaches are developed in order to obtain homogeneous polymer networks 

such as application of controlled polymerization techniques, introducing 

monomers with bulky side groups, or crosslinking polymer solutions [8-10]. 

Among the existing techniques, thiol-ene polymerization is getting favorable in 

the last two decades due to the practical advantages such as non-sensitivity 

to oxygen, low shrinkage during the synthesis and high number of possible 

reactants which provides a structural variety [11]. Furthermore, since thiol-ene 

polymerization proceeds via radicalic step-growth mechanism, gelation occurs 

at high monomer conversions compared to conventional free radical 

crosslinking copolymerization, leading to more homogeneous networks [12-

13].  

However the studies investigating the structure-property relationship of these 

materials are mostly limited to bulk resins, and there are not enough studies 

on the properties of thiol-ene gels synthesized in the presence of a diluent. 

Also the microstructure of thiol-ene organogels are not investigated yet with 

direct methods such as dynamic light scattering.  

The main objective of the present study is to investigate the microstructure 

and inhomogeneity of thiol-ene networks. Dynamic light scattering and 

rheological techniques are mainly utilized for this purpose.  
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2       BACKGROUND 
 

 

2.1 Step Growth Polymerization 
 

Since thiol-ene polymerization proceeds via a step growth polymerization 

mechanism [11-14], an introduction about this mechanism and its distinctive 

properties will be given in this chapter. The main reason that this mechanism 

is called step growth is because it proceeds via stepwise reactions of 

difunctional monomer pairs.  

The most distinctive feature of the step growth polymerization that 

distinguishes it from the chain growth polymerization is the growth of 

molecular weight with the conversion. A general scheme of the relationship 

between molecular weight (Mw) and monomer conversion for both step growth 

and chain growth polymerization is shown in Scheme 1.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Scheme 1. Growth of molecular weight with respect to monomer conversion during 
chain growth and step growth mechanism. 
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This behavior can be explained by using the Carothers equation [15]. For a 

step growth polymerization the number average degree of polymerization, DP, 

can be expressed as 

 

    DP =
A0
At

             (1) 

 

 

where A0 and At are number of molecules at the beginning of the reaction and 

the number of molecules at time t, respectively. If At = A0(1 - p), where p is the 

fraction of functional groups that have reacted at time t, and (1-p) is the 

fraction of unreacted functional groups, equation 1 becomes:  

 

    DP =
A0

A0(1!p)
=
1
1!p

 (2) 

 

which is known as the Carothers equation. 

 

2.2 Thiol-Ene Polymerization  
 

Highly efficient reactions of thiols with reactive carbon-carbon double bonds or 

so-called “enes” have been known for more than a century now [16-17]. High 

yields, rapid reaction rates over a large concentration range, being insensitive 

to ambient oxygen or water and availability of a wide range of both thiols and 

enes makes this type of reactions quite versatile in a large number of 

application areas such as dental restorative materials, microfluidic devices, 

biomaterials or the synthesis of functional polymers [18-22].  

An important advantage of thiol-ene reactions is the broad range of monomer 

choices [11]. For enes, having a non-sterically hindered terminal structure is 

the only requirement to participate in a thiol-ene polymerization. In general the 

reactivity of the ene structure increases with the electron density of the 

carbon-carbon double bond. However, norbornene structure is an exception 
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while the ring strain increases the reactivity. The following sequence lists 

various enes in order of decreasing reactivity [11]: 

 

Norbornene > Vinyl ether > Propenyl > Alkene ≈ Vinyl ester > N-vinyl amide > 

Allyl ether ≈	
 Allyltriazine > N-vinyl amide > Allyl ether ≈	
 Allyltriazine ≈	
 

Allylisosyanurate > Acrylate > Unsaturated ester > N-substituted maleimide > 

Acrylonitrile ≈	
 Methacrylate > Styrene > Conjugated Dienes  

 

Scheme 2 shows the three types of multifunctional thiols used mostly in thiol-

ene photopolymerization reactions : alkyl thiols, thiol glycolate esters and thiol 

propionate esters. Thiols based on propionate esters and glycolate esters 

result in greater reaction rates because of a weakening of the sulfur-hydrogen 

bond by hydrogen bonding of the thiol hydrogen groups with the ester 

carbonyl.  

 

 

            

 

 

Alkyl 3-mercaptopropionate Alkyl thioglycolate  Alkyl thiol 

 
Scheme 2. Most common thiol structures used in thiol-ene photopolymerization 
reactions. [11] 
 

 

2.2.1 Thiol-Ene Polymerization Mechanism 
 

Thiol-ene polymerization proceeds by the radically catalyzed addition of a thiol 

to a vinyl functional group. When multifunctional monomers with an average 

functionality greater than two are utilized, highly cross-linked polymer 

networks are formed via a step growth mechanism. As shown in scheme 3, 

the thiol-ene step growth reaction is initiated with the creation of a radical on 

the thiol group (step 1). Then propagation takes place via addition of the thiyl 

radical to a vinyl function (step 2), followed by chain transfer from the resulting 

HS
R

n
HS O

O

R HS
O

O

R
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carbon radical to a thiol functional group, regenerating the thiyl radical (step 

3). These successive propagation/chain transfer steps serve as the basis for 

the step growth thiol-ene photopolymerization reaction. Finally, termination 

occurs by coupling of any two radical species (step 4). 

 
Step 1 – Initiation 
 

 
 

Step 2 – Propagation 
 

 
 
Step 3 – Chain transfer  
 

 
 
Step 4 – Termination 
 

 
 
 

Scheme 3. Mechanism of thiol-ene reaction 
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2.2.1.1 Oxygen Insensitivity 
 

One of the most favorable properties of the thiol-ene polymerization 

mechanism is the oxygen insensitivity. As shown in scheme 4, peroxy radicals 

are created with the presence of oxygen in the system. They do not add to the 

polymer, but instead, undergo a chain transfer reaction with a thiol to give an 

oxygen addition product and regenerate the propagating species again [23].  

 

 
Scheme 4. Oxygen scavenging mechanism for thiol molecule [23] 

 

2.2.2 Initiators 
 

Thiol-ene systems are amenable for different methods of initiation such as 

thermal, redox or photo initiation [24-27]. Furthermore, these systems are so 

reactive that, the polymerization can be initiated even without an initiator but 

with the charge transfer interactions between thiol and ene molecules [23].  

Photopolymerization method is mostly utilized for the synthesis of thiol-ene 
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networks due to the experimental convenience and the opportunity of 

interrupting the reaction. In the present study photopolymerization technique 

is applied as well.  

Thiol-ene photo polymerization can be initiated by excitation of type 1 photo 

initiators which undergo alpha-cleavage of an aromatic ketone upon 

excitation, or type 2 photo initiators that abstracts hydrogen from a hydrogen 

donor or simply by excitation of thiol monomer that is followed by a lysis of the 

sulfur-hydrogen bond. [11, 28]. An example of radical formation for a type 1 

photo initiator, namely dimethoxyphenyl acetophenone (DMPA) is shown in 

scheme 5. By the absorption of a photon of light, a benzoyl and a tertiary 

carbon radical is formed and then the tertiary carbon radical rearranges to 

give a methyl radical. Both methyl and benzoyl radicals are capable of 

initiating the thiol-ene reaction.  

 

 
 

Scheme 5. Radical formation by the cleavage type photoinitiator, namely, DMPA. 

 

On the other hand, the mechanism of radical formation is different for type 2 

photoinitiators. An example of disintegration mechanism, namely for 

camphorquinone is given in scheme 6. Upon irradiation at the absorption 

wavelength range (400-500nm), dicarbonyl cromophore group on 

camphorquinone is excited to its singlet state by an (n,π*) transition and by 

intersystem crossing it proceeds to the respective triplet state. It is then 

capable of abstracting a hydrogen atom from the relatively weak SH bond, 
creating a thiyl radical which can subsequently start the polymerization [29]. 

The additionally formed hydrogenated camphorquinone radical cannot initiate 

a polymerization due to  its steric hindrance. 
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Scheme 6. Formation of thyl radical with camphorquinone photoinitiator 

 

2.2.3 Properties of Thiol-Ene Polymers 
 

Thiol-ene networks are claimed to be more homogenous than those 

synthesized by free radical chain copolymerization mechanism [12-13]. 

Dynamic mechanical analysis (DMA) show that during glass transition, 

networks synthesized via thiol-ene mechanism show narrower tanδ peaks 

than the networks sythesized by free radical crosslinking copolymerization as 

shown in scheme 7. This means that the chain lengths between crosslink 

points are more homogenously distributed for thiol-ene networks. The main 

reason for such behavior is the high conversion of monomers at the gel point 

due to the step growth character of the thiol-ene mechanism.   

 

 
Scheme 7. the loss tangent, tanδ at the glass transition of differently prepared 
networks plotted versus temperature. Narrow and broad curves belong to the 
networks synthesized via thiol-ene and free radical crosslinking copolymerization 
respectively. [12-13] 
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In order to quantify this behavior, the Carothers equation has to be modified 

[15] due to the additional functional groups on monomers that lead to the 

network formation. For this purpose, a functionality factor, fav, which is equal 

to the average number of functional groups per reactive molecule is 

calculated with equation 3, 

 

    fav =
nR • f
n

     (3) 

 

where nR, f and n are the mole of the reactant, functionality of the reactant 

and the total number of moles in the reaction mixture respectively. After  

insertion of the equation 3 into the Carothers equation, one obtains 

 

    DP = 2
2!pfav

     (4) 

 

The critical conversion, pcrit, that leads to a theoretically infinite degree of 

polymerization becomes, 

 

                           pcrit =
2
fav

      (5) 

 

So, for a reaction between a tetrafunctional thiol and a difunctional ene the 

average functionality can be calculated as 2.667 and the critical conversion 

that leads to an infinite network formation becomes 0.75. 
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3   METHODS 
 

 

As mentioned in section 2.2.3, thiol-ene networks are considered as uniform 

structures because their DMA thermograms show narrow glass transition 

regions. This behavior is associated with the polydispersity of the network 

chains. The aim of this study is to use more direct methods such as dynamic 

light scattering and rheology to monitor the microstructure of the thiol-ene 

networks. 

 

 

3.1 Dynamic Light Scattering  
 

Dynamic light scattering (DLS) is one of the most powerful tools employed to 

characterize the structure and dynamics of polymer solutions with micelles or 

aggregates [30,31], proteins [32,33], bulk copolymers [34] and polymer 

networks [35-41]. A schematic representation of a DLS measurement setup is 

shown in scheme 8. When a monochromatic, coherent beam of light passes 

through a polymer solution or gel medium it is scattered in all directions. A 

photon detector positioned at a certain angle collects the photons scattered in 

that direction and sends the data to the correlator.  

 The scattered light intensity, I(q,t), measured over time shows a noisy pattern 

due to the brownian motions of the species in the observed sample, which 

seems meaningless at first sight. However treatment of this noisy pattern with 

equation 6 by a correlator gives a similar decaying autocorrelation function 

such as shown in Figure 1 [42]. Angular brackets indicate a time averaged 

quantity [43]. Hence the autocorrelation function calculated is called the time 

averaged intensity correlation function. q is the amplitude of the scattering 

vector given by the equation 7, where θ is the scattering angle, n is the 

refractive index of the medium and λ0 is the wavelength of the incident light in 

vacuum.  
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Scheme 8. A simple drawing of DLS instrument 

 

The autocorrelation function, which is often a single exponential decaying 

function for dilute solutions, contains valuable information about the dynamics 

of the sample observed. Since instantaneous fluctuations of the intensity of 

the scattered light depend on thermal motions of the chains, molecules, or 
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particles one can gather information on the intensity correlation time, τ(2), of 

the system from the autocorrelation curve by the use of equation 8 and τ(2) is 

connected to the cooperative diffusion coefficient, D, according to equation 9. 

 

    g(2) q,!( ) = exp "
!
!(2)

#

$
%
%

&

'
(
(+1   (8) 

 

      !(2) =
1

2Dq2
   (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Example of an autocorrelation function obtained from a DLS measurement 
 

Experimental detection of the scattered light is carried out by photon sensitive 

devices such as photomultiplier tubes. This means that the measured quantity 

during a dynamic light scattering measurement is the number of photons per 

unit time arriving at the detector and this quantity is used as a measure of the 

intensity of the scattered light. However the relevant quantity is basically the 

electric field. The intensity at a specific time is proportional to the amplitude of 

the electric field (Eq. 10) 

τ / ms

10-4 10-3 10-2 10-1 100 101 102 103

g(2
) t(τ

) -
 1
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                                   I q,t( ) ! E q,t( )
2
   (10) 

 

The time averaged field correlation function, g(1)(q,τ), shown in equation 11 is 

connected to the time averaged intensity correlation function through the 

Siegert relation (eq. 12). 

 

 

g(1) q,!( ) =
E q,t( )•E" q,t + !( )

T

E q,t( )
T

2
  (11) 

 

         

                                      g(2)(q,!) = g(1)(q,!)
2
+1      (12) 

 

 

where E is the amplitude of the field and E* is the conjugate field amplitude. 

The Siegert relation applies only to the scattering processes in which the 

scattered field is a zero mean complex Gaussian variable and the sample is 

assumed to show a full relaxation during a DLS experiment. However this is 

not the case for a polymer gel [35,44,45]. During gelation an infinite network is 

formed with some frozen-in structures and the polymer chains that form the 

network are confined in this limited space. The scattering obtained from a 

polymer gel is the combination of these frozen-in structures and freely moving 

segments of the chains consisting the network. Thus, the time averaged 

scattering intensities and the amplitude of the electric field can be expressed 

as  

 

I
T
= I

F
+ IC       (13) 

 

                                         E t( ) =EF t( ) +EC      (14) 
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Where <I>F and IC, are the light intensities and EF(t) and EC are the fields 

originating from the dynamic and static components in the observed system. 

respectively. 

The relative magnitudes of static and dynamic contributions to the total 

scattering intensity, which originate from the frozen-in structures and freely 

moving segments inside the network respectively, are important measures for 

the inhomogeneity of the network and the mobility of the chains forming it. 

The so-called nonergodic approach developed by Pusey and van Megen [35] 

has been proved to be a useful method to separate the portions of scattering 

intensity from static and dynamic contributions in the network and will be 

utilized in the context of this dissertation. 

 

 

3.1.1 Nonergodic Method 
 

For a given fluid-like medium such as colloidal particles in suspension or 

polymer solutions, a single observation gives a representative information on 

an observed property as its ensemble average. This is because the system 

can cover enough possible configurations in the course of a single experiment 

to represent an ensemble average, which means that the time average 

magnitude of the property is equal to the ensemble average ( I
T
= IE ). In 

other words, the system is ergodic. However the situation for a crosslinked 

polymer network is not the same. Since the system is connected with physical 

or chemical crosslinks, the movements of the chains are hindered. Hence, 

during a single experiment performed on a single sample point the observed 

part of the whole system cannot cover all the possible configurations to 

represent an ensemble average through the sample. Then the sample is 

called nonergodic.  

As indicated in the above, the Siegert relation is valid only for ergodic media, 

and since not all spatial conformations can be assumed to be covered, it does 

not apply for solid-like systems, like polymer gels. To obtain a self-consistent 

result over an entire sample, it is necessary to conduct ensemble averaging 
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over many different sample positions. This can be done by stepwise rotation 

of the cell or measurements done in many sample points. Generally 100-150 

sample positions are considered statistically sufficient. When that condition is 

assured, one can state the fluctuating field as : 

  

 EF q,0( )E!
F q,"( )

T
= EF q,0( )EF! (q,") E

                   (15)  

 

the right hand side of the equation can be related to the normalized time 

correlation function as  

 

    EF q,0( )EF* q,!( )
E
= I q( )

E
f q,!( )" f q,#( )$
%

&
'           (16) 

 

where, f(q,τ) is the normalized intermediate ensemble averaged scattering 

function. 

At the zero time limit, equation 16 reduces to   

 

                                       IF q( ) T
= I q( )

E
1! f q,"( )#
$

%
&                                   (17) 

 

and, with the necessary rearrangement, the normalized intermediate 

scattering function for the nonergodic approach becomes, 

 

    f q,!( ) =1+
I
T,p

I
E

g(2) q,!( )"1( )"#p2 +1( ) "1$

%&
'

()
              (18) 

 

Where σ2 defines the intercept of the intensity correlation function.  

Figure 2 shows an example of intensity correlation function transformed into 

the normalized intermediate ensemble averaged scattering function. As can 

be seen from the figure, resultant curve starts from 1 and relaxes to an offset 

value. As this curve is fit to the exponential function given by the equation 19, 

the offset value, f(q,! ), would give the relative fraction of the scattering 

originated by the frozen-in parts of the network and the amplitude, A, would 
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give the relative portion of the scattering originated from the dynamic or 

fluctuating parts in the network. 

 

f q,!( ) = f q,"( ) + A #exp $
!
!
1( )

%

&

'
'

(

)

*
*
          (19) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 2. An example of intensity correlation function and normalized intermediate 
ensemble average scattering function calculated from the same measurement, 
shown with open and filled symbols respectively. 
 

3.2 Mechanical Characterization[47-50] 
 

Since gels are three dimensional polymer networks, they tend to resist to an 

applied force. This behavior is directly related to the microstructure of the 

material. Therefore mechanical characterization is one of the most important 

methods to gain insight into polymer gels. In the context of this thesis the 

increase of the shear modulus during gelation, the final shear modulus 

attained after completion of gelation and the maximum degree of swelling of 

the gels synthesized are utilized as mechanical characterization methods. So 

far the theory of viscoelasticity and rubber elasticity are the best fitting 
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!x"

h 

approaches to understand the mechanical behavior of polymer networks          

[47,48].  

 

 

3.2.1.Viscoelasticity[47] 

 

Being an intermediate structure between pure solid (elastic) and pure liquid 

(viscous), a polymer gel shows the combination of both viscous and elastic 

properties. This means when a shear force is applied as in scheme 9, it 

reflects both the viscous and the elastic properties of the material [47].  

 f
!

 

 

 

 

 

 

 
Scheme 9  Shematic illustration of deformation under simple shear. 

 

The shear stress, σ, is defined as the ratio of the applied force, f, and the 

cross-sectional area of the surfaces A, which is also the area of any plane 

perpendicular to the y direction within the material being sheared : 

  

                                                         ! "
f
A

                                                      (20)                                           

 

The shear strain, γ, is defined as the displacement of the top plate, Δx, relative 

to the height of the sample h: 

        ! " #x
h

           (21) 

 

In case of the observed material being a purely elastic, the ratio of the shear 

stress and shear strain is constant and gives the shear modulus, G: 
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         G !
"
#

          (22) 

 

On the other hand if the material between the surfaces is a simple liquid, the 

stress is zero for a constant strain, thus the term shear rate, γ , is introduced 

instead: 

 

              !! " d!
dt

                          (23) 

 

 

For a simple fluid, the shear stress is linearly proportional to the shear rate,  

which defines the shear viscosity, η : 

 

           ! " #

$
•

        (24) 

 

Oscillatory measurements are widely employed in order to characterize the 

viscoelastic properties of the materials due to both practical and strategical 

advantages. During an oscillatory shear measurement a sinusoidal strain with 

angular frequency, ω, is applied to the sample in simple shear :  

    ! t( ) = !0 sin "t( )                            (25) 

 

 

The principal advantage of this technique is the opportunity of observing 

material properties in different time scales by simply changing the angular 

frequency. If the material studied is an ideally elastic solid, the stress is 

related to the strain according to Hooke’s law: 

 

 

                                          ! t( ) =G " # t( ) =G " #0 sin $t( ) (26) 
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However if the material being studied is a Newtonian liquid, the stress in the 

liquid will be related to the shear rate through Newton’s law : 

  

 !(t) = " d#(t)
dt

$

%
&

'

(
) = "#0*sin *t + +

2
$

%
&

'

(
)
                           (27)

 

 

 

The linear response of a viscoelastic material always has stress oscillate at 

the same frequency as the applied strain but the stress leads the strain by a 

phase angle, δ, δ being between π and π/2  . 

 
! t( ) = !0 sin "t + #( )                                       (28) 

 
  
 

Solids which obey Hooke’s law have δ = 0 at all frequencies and liquids that 

obey Newton’s law have δ = π/2 at all frequencies. Since in the limit of linear 

viscoelasticity the stress is always a sinusoidal function with the same 

frequency as the strain, it can be separated into two orthogonal functions 

which oscillate with the same frequency, one in-phase with the strain and the 

other out-of-phase with strain by π/2 :  

    

! t( ) = "0 G' #( )sin #t( ) +G" #( )cos #t( )$
%

&
'                 (29) 

 

 

This equation defines G’(ω) as the storage (or elastic) modulus and G”(ω) as 

the loss (or viscous) modulus : 

 

                                
 
G' =

!0
"0
cos #( )

                (30)
 

 

                                            G" =
!0
"0
sin(#)

                                              (31)
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Then the tangent of the phase angle, the loss tangent, is the ratio of loss and 

storage moduli : 

 

                                         
tan(!) = G"

G'                                                          (32)
 

 

The storage and loss moduli are the real and imaginary parts of the complex 

modulus G*(ω) : 

 

                                     

 G*(ω) = G’(ω) + iG”(ω)                                           (33) 

 

 

3.2.1 Theory of Rubber-Like Elasticity [48-51] 

 

Rubbers are lightly crosslinked polymeric networks with rather large free 

volume that allows them to respond to external stress with a rapid 

rearrangement of the polymer segments [52]. In their swollen states most 

polymer gels satisfy these criteria for a rubber [53]. Since the theory of rubber 

elasticity deals with the time independent chain orientation and structure, it 

takes into account the storage modulus only.  

The theory of rubber elasticity assumes that the network chains forming the 

structure have an ideal Gaussian distribution of the end-to-end distances [54], 

and has a theoretical crosslink density, νth , given by the ratio of molar 

crosslinker concentration to the crosslinker functionality, f, as in equation 34 

[55]: 

 

!th =
2 XL"# $%
f

          (34) 

 

Two basic network models have been developed in order to describe the 

elastic behavior of polymer networks [49,55], namely the affine and the 
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phantom network models. They both assume that the polymer chains forming 

the network are monodisperse and have a perfect network structure.   

 

 

3.2.1.1 Affine Network Model [49] 
 

In the affine network model, it is assumed that the relative deformation of 

each network strand is the same as the macroscopic relative deformation 

imposed on the whole network and the effect of entanglements is omitted. In 

this case, the Boltzmann equation can be used to compare the entropy of the 

network chains before and after deformation 

 

   S = kB ln(W)       (35) 

 

Here, kB is the Boltzmann constant and W is the number of chain 

conformations that can be obtained from the distribution of end-to-end 

vectors.   

If the W value is approximated as a Gaussian function, then the entropy 

change upon deformation can be given as [56] 

 

 !S = "
nkB
2
(#2x + #

2
y + #

2
z "3)       (36) 

 

where λx, λy and λz  are the relative deformations in x-, y-, and z-directions,  

 

Lx = !xLx0  Ly = !yLy0  Lz = !zLz0      (37) 

 

and, n is the number of elastically effective network strands. 

For further simplicity uniaxial deformation is considered only in x-direction and  

the entropy change is calculated for a constant volume as 

 
 

!S = "
nkB
2
(#2 + 2

#
"3)  (38) 
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Then the change of free energy, ∆G, can be expressed as 
 
 

                                       !G = "T!S =
nkBT
2

#2 +
2
#
"3

$

%
&

'

(
)                        (39) 

 

  
As the force required to deform a network is the derivative of the free energy, 

G, with respect to the length along the x axis of deformation and as the 

definition of the stress, σ, is the ratio of force and cross-sectional area, σ 

becomes 

 

                ! =
nkBT
V

(" # 1
"2
)                         (40) 

 

The coefficient that relates the stress and deformation is known as the shear 

modulus,G, 

 
 

G =
nkBT
V

= !kBT =
"RT
MC

                         (41) 

 
 

with ν number of network strands per unit volume, Mc the average molecular 

weight of the strands between crosslink points, ρ the network density (mass 

per unit volume) and R the gas constant.  

 

 

3.2.1.2 Phantom Network Model [49] 
 

The main assumption in the phantom network model differing from the affine 

network model is that the junction points inside the network can move freely 

and chains can pass through each other which also excludes the influence of 

any entanglements. The crosslink junctions are not fixed in a coordinate 

system as assumed in the affine network model and can fluctuate about their 
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average positions. This leads to a drop in their free energy by reducing the 

cumulative stretching of the network strands. Therefore a structure factor to 

correct the fluctuation of the f-functional crosslinks is introduced: 

  

 

                                               G = !kBT
f " 2
f

=
#RT
MC

(1" 2
f
)                            (42) 

  
 
where f is the functionality of a cross-link in the network.  

 

 

3.3 Swelling [57,58] 
 

One of the most distinct features of polymeric gels is their ability to swell. 

Since crosslinked polymer networks cannot dissolve in a solvent, they rather 

swell. A swollen polymer network is actually in an equilibrium state governed 

by the elastic force that holds the chains together and the osmotic pressure 

arised from the mixing entropy of the solvent and the network polymer chains.  

Free energy of swelling, ΔGsw, can be expressed as the combination of free 

energy of mixing (ΔGmix) and elasticity (ΔGEl) : 

 

        !GSw = !Gmix +!GEl                              (43) 

 

Free energy of mixing for polymer solutions is given by Flory-Huggins relation 

(eq. 44) [59,60] and energy change with deformation of the network is given in 

equation 39.  

 

(44) 

 

Where n1, n2, ν1, ν2 and χ12 are number of solvent and polymer molecules, 

volume fraction of solvent and polymer molecules and interaction parameter 

between polymer and solvent molecules respectively. 

!Gmix = kT n1ln"1 +n2 ln"2 +n1#12"2( )
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With proper rearrangements, free energy change during swelling process is 

calculated according to the equations 39, 43 and 44 which is known as Flory-

Rehner relation: 

 

                             
!Gsw =RT ln 1" #2( ) + #2 + $12#22 +V1# #2

1/3 "
#2
2

%

&
'

(

)
*

+

,
-
-

.

/
0
0
       (45) 

   

Polymeric gels are mostly synthesized in solution by copolymerization of an 

appropriate monomer and a crosslinking agent or by intermolecular reaction 

of dissolved polymers that have multiple active sites. Thus, right after the 

synthesis, a polymer gel is already in a particular swollen state because, as 

the reaction carried on, the network chains come to an unperturbed 

conformation driven by just the reaction kinetics and the mobility of the 

reactants. Hence right after the synthesis state is an important reference point 

for comparison with the equilibrium swollen state. Equation 42 gives the 

relative swelling ratio, qr, as:  

 

   
qr =

msw

mras

         (46) 

 

msw and mras are the masses of the gels in equilibrium swollen and right after 

synthesis states respectively.   

The absolute swelling ratio is given by a gels swelling capacity relative to its 

dried state, 
    

       

             (47)
 

 

 

 

 

 

qw =
msw

mdry
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4  EXPERIMENTAL 
 

 

4.1 Chemicals 
 

Pentaerithritol tetrakis(3-mercaptopropionate) (PETMP), and triethyleneglycol 

divinylether (TEGDVE) are used as tetrafunctional crosslinker and monomer 

respectively, camphorquinone is used as the photoinitiator and 1,1,2-

trichloroethane is used as the solvent. Chemical structures of the monomers, 

initiator and the solvent are given in scheme 9. Detailed information about the 

chemicals used are given in Appendix 1. 

 

 

 
 
 
 
 
 
 
 
 
 
Pentaerithritol trimercaptopropionate      Camphorquinone 
 
 
 
 
 
 
 
 
 
Triethyleneglycol divinylether               1,1,2-trichlorethane 
 
 
 
Scheme 9. Chemical structures of the tetra-functional crosslinker, monomer, 
photoinitiator and the solvent used in gelation reactions. 
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4.2 UV/VIS Measurements  
 

Jasco V-550 UV/VIS spectrophotometer was used to make sure that the 

absorption bands of monomers and the photoinitiator do not overlap. UV 

absorption graphs for a reaction mixture of 10% (w/v) monomer concentration 

and camphorquinone solution are shown in Figure 3. As shown PETMP-

TEGDVE mixture have a strong absorption between 350-370 nm. On the 

other hand, absorption band of the initiator at higher wavelengths, i.e. 400 – 

500 nm does not interfere with that of monomers. Thus in order to obtain a 

controllable light intensity through the sample a photoinitiator with a different 

absorption wavelength, i.e., 465 nm, was used. As a calibration curve was 

generated for camphorquinone, the molar absorption coefficient is found to be 

43.21 L.mol-1.cm-1 and 90 % of transmission through the DLS cuvettes during 

illumination was obtained at 1.21 mM concentration. Smaller amounts of 

initiator down to 0.3 mM is also used for the synthesis of thiol-ene organogels. 

However, no change in scattering intensities and network density values are 

observed. Hence, the value 1.21 mM is fixed as the initiator content.  

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 3. Absorption spectra of 10% monomer mixture composed of PETMP- 
TEGDVE and 3.6 mM camphorquinone shown with black and red curves 
respectively.  
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4.3 Synthesis of Thiol-Ene Organogels 
 
 
The calculated amount of thiol crosslinker PETMP, solvent, ene monomer 

TEGDVE and photoinitiator stock solution were mixed in that order to reach 

the calculated volume and the accurate concentration. Since the sampling of 

reactants for the synthesis were practiced gravimetrically, all the 

concentrations are given in weight percent unless stated otherwise. The 

concentration of the photoinitiator was kept constant at 1.21 mM as 

mentioned in previous section. Amounts of chemicals used in synthesis are 

given in Appendix 2. 

After mixing the components in a flask, the reaction was conducted in three 

different media, for DLS measurements in a DLS cuvette with the inner 

diameter of 0.875 ±  0.025 cm, for swelling measurements in a glass tube with 

an inner diameter of  0.23 cm and on the rheometer plate. The samples in 

DLS cuvette and glass tubes were illuminated for 5 hours and for rheological 

measurements illumination time was limited to that of obtaining a steady 

moduli plateau during the measurement. Samples for near-infrared (NIR) 

measurements were filtered in a quartz cuvette with 1 cm width. An LED blue 

light set-up that has a peak-intensity wavelength of 465 nm was used for 

illumination. 

 

4.4 Dynamic Light Scattering Measurements 
 

DLS measurements were performed with an ALV/CGS-3 compact goniometer 

(ALV GmbH) equipped with a helium-neon laser with a wavelength of 632.8 

nm, ALV/LSE-5003 correlator, a cuvette rotation/translation unit for measuring 

nonergodic samples and fiber optical three mode detection optics combined 

with an ALV/HIGH QE avalanche photodiode detector. All the measurements 

were performed at 25°C and at scattering angles between 50°-130°. However, 

preliminary results showed that the samples measured did not show any 

angle dependencies, thus the majority of the measurements were performed 

at θ=90°. After placing the cuvettes into the toluene bath inside the DLS 
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instrument, the samples were allowed to thermally equilibriate for  

approximately 10 minutes before the measurements start. 

Three sets of measurements were carried out for the application of 

nonergodic approach and to reveal the position dependency of the time 

average scattering intensity of the gel samples. For each sample a single 

measurement was performed in order to obtain an ensemble average 

scattering intensity, IE, value while the cuvette was constantly rotating. Then 

another 15 measurements were carried out at different sample positions, 

performing 1200 seconds for each in order to obtain a smooth autocorrelation 

curve for application of nonergodic approach and finally 100 measurements at 

different sample positions for 30 seconds to show the position dependency of 

the time average scattering intensity. On the other hand, for gelation study, 

just ten measurements are performed at different positions. Illumination was 

turned off during all measurements.  

 

 

4.4.1 The Coherence Factor β 
 

The intercept of the intensity correlation function, σ2, is affected by the 

character of the sample and the detection optics. The theoretical value of σ2 

for a homodyne sample is 1. However this value cannot be observed for the 

instrument employed in current study, since a three-mode fibre optic detection 

unit is utilized within and the term, coherence factor (β) is introduced which is 

defined as in equation 48 [61]: 

 

! "
1
#

     (48) 

 

Where ! is the number of modes.  

With increasing number of modes, the average signal intensity is also 

increases, however the coherence factor, i.e. the amplitude of the dynamic 

part of the multimode correlation function, decreases correspondingly.  If the 

coherence factor is taken into account for the mentioned instrumental setup 
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that is utilized for the current study, equation 18 should be rewritten as in 

equation 49: 

 

 
           (49) 

      

 

In order to ensure that the correct coherence factor is used for nonergodic 

approach calculations, scattering intensities from dilute polystyrene solutions 

prepared at different concentrations are plotted against the intercept of 

intensity correlation function according to equation 50 [62], 

 

g 2( ) 0( )!1= 1!
I0
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&
'

2

()    (50) 

 

where I0 is the scattering intensity of pure solvent, I is the scattering intensity 

of polymer solution, g(2)(0) – 1 is the intercept of intensity correlation function.  

Molecular weight of polystyrene used for preparation of the polymer solutions 

was 212,000 g/mol. In order to obtain minimize the concentration errors 

5mg/ml of polymer stock solution is prepared and diluted to different 

concentrations. Slope of the two lines created toluene and 1,1,2-trichlorethane 

result two different but close β values, i.e., 0.424 and 0.412 respectively. 

Since 1,1,2-trichlorethane is used as the reaction solvent, 0.412 is taken as 

the β value.     
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Figure 4. Variation of the intercept of intensity correlation function with the scattering 
intensity at different linear polystrene concentrations (Mw = 212,000 g/mol). For filled 
and open symbols toluene and 1,1,2-trichlorethane are used as solvent respectively. 
 

4.5 Rheological Measurements 
 

Rheological measurements were carried out with a Bohlin Gemini 150 

rheometer system equipped with a cone-and-plate geometry (40mm diameter 

and 4° cone angle), a quartz glass bottom plate which lets the blue light pass 

through without  any significant absorption and an LED-illumination system 

placed underneath as 465 nm light source. A picture of the setup is shown in 

Figure 5. 

After the reaction mixture was prepared, it was placed on the quartz plate and 

the cone was lowered so that the gap between cone and plate would be 150 

µm. Once the full contact of the sample and cone was ensured the 

illumination was turned on and the reaction allowed to  start. Illumination was  
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Figure 5. Rheometer setup for in situ photocrosslinking. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Growth of elastic (G’) and viscous (G”) moduli during the gelation reaction 
of 20% (w/v) monomer concentration. Filled and open symbols represent G’ and G” 
respectively 
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not turned off until  the elastic modulus leveled off to a plateau value. An 

example of rheological measurement is shown in Figure 6.  

 

4.6 Swelling 
 

After 5 hours of illumination, the tubes were broken and the gel samples were 

immersed into the excess of the solvent after weighting. Swelling of thiol-ene 

networks were followed gravimetrically and solvent that the gels were swelling 

in was changed every other day until the swelling equilibrium was reached.  

 

4.7 NIR Measurements 
 

Since vinyl groups have absorption between 1612-1640 nm, near-infrared 

(NIR) measurements were conducted in order to monitor the conversion of 

double bonds using a Jasco V-670 NIR spectrophotometer. Figure 7 shows 

an example of variation in NIR spectra of TEGDVE during a thiol-ene gelation 

reaction with 20% monomer concentration.  

 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Variation of absorption spectra of TEGDVE during thiol-ene gelation 
reaction. Measurements were taken at 0, 2, 3, 4, 5, 6, 7 and 10 minutes of reaction 
time from top to bottom, respectively.  
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5   RESULTS AND DISCUSSION 
 

 

A tetra functional thiol, pentaerithritol tetrakis(3-mercaptopropionate) 

(PETMP), and a difunctional ene, triethyleneglycoldivinylether (TEGDVE) are 

photochemically crosslinked to form thiol-ene organogels. Investigation of 

gelation process is carried out by dynamic light scattering (DLS), rheometer  

and near infra-red spectroscopy (NIR). Dynamic light scattering method is 

also utilized for revealing inhomogeneity of the resultant gels.  

 

 

5.1 Gel Formation 
 

DLS measurements are performed at certain reaction times after the 

illumination of the monomer mixture starts. In order to control the progress of 

the reaction without illumination, rheological measurements of two thiol-ene 

organogels at the same monomer concentration are compared. In Figure 8, 

plot A shows the thiol-ene photopolymerization reaction that is disturbed by 

turning the illumination off for certain time intervals. Data points obtained 

without illumination are shown in red circles. On the other hand plot B depicts 

the measurement carried out with continuous illumination. Both reaction 

mixtures contain 20% (w/v) monomer concentration. Since the growth of 

elastic modulus is a direct indicator of the crosslinking reaction taking place, 

this comparison shows how turning off the illumination affects the reaction and 

the final crosslink density.  

As can be seen from Figure 8, growth of elastic modulus delayed during non-

illuminated intervals of the reaction time. For low moduli values about 1 kPa, 

the reaction does not seem to stop completely but proceeds quite slowly and 

as the illumination is turned on, the reaction continues again. Also the 

comparison with the undisturbed reaction in plot B shows that the final 

modulus obtained in this particular experiment is equivalent to the modulus 

that is obtained in a continuous reaction carried out with the same monomer 

concentration. So, Figure 8 implies that we can gather reliable information 
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from the DLS and near infrared absorption (NIR) measurements conducted 

during the dark periods of the gelation process to investigate the change of 

the microstructure of the reaction medium and the conversion of the ene 

molecules in a thiol-ene crosslinking reaction respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Rheological measurements of 20% (w/v) thiol-ene mixture. Plot A and B 
show the measurements in which illumination is turned off for certain time intervals 
and the one that let react without any disturbance, respectively. Data points shown 
with red circles in plot A show the time intervals that the illumination turned off.  
 

Figure 9 shows the variation of average scattering intensity of the thiol-ene 

mixture at 20% (w/v) concentration with reaction time at a fixed scattering 

angle, 90°. During the light scattering measurements no illumination was 
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difference between sol and gel scattering suggests that the thiol-ene 

organogels show a homogenous microstructure. However homogeneity of the 

studied network may not be the only reason for low scattering intensity. Since 

the intensity of scattered light from a gel sample increases with the refractive 

index fluctuations, a small refractive index difference between the gel and the 

medium, i.e., the solvent, would also result in a low intensity of scattered light. 

Results of more detailed experiments for a better understanding of the nature 

of the corresponding networks and related analyses will be given in the next 

sections of this chapter. 

 

               
Figure 9. Variation of ensemble average scattering intensity (<I>E) of 20% (w/v) gel 
with reaction time. 
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5.5 minutes. The gel point is observed as the power-law behavior at 6th 
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obtained at t<6min are somewhat doubtful because the scattering intensity is 

very low.  

DLS measurements conducted at different sample positions at different 

reaction times are shown in Figure 11. It is clear that the time average 

scattering intensity starts to fluctuate with sample position approximately 7 

minutes after the reaction has started. It is interesting that the strong 

fluctuations in time average scattering intensity start not at the gel point but 

after the gelation. This suggests that a relatively uniform three dimensional 

structure is formed just in the beginning of the gelation and then with 

increasing time of reaction, i.e. increasing conversion of the monomers, the 

structure becomes more inhomogeneous.  

In order to study this behavior in a systematic way, three sets of gelation 

reactions are carried out with different monomer concentrations at 10, 20 and 

30 % (w/v). Conversion of the difunctional ene molecule is followed by NIR 

spectrophotometer and gelation point is determined by turning the cuvette 

upside-down. The results are shown in Figure 12. As can be seen from the 

figure, gelation for each concentration achieved at different conversions but 

approximately the same reaction times, between 6-7 minutes. Figure also 

shows that conversion at the gel point decreases with increasing monomer 

concentration. This makes sense because the gelation can not occur until the 

critical overlap concentration is reached which can be obtained with lower 

conversions at higher monomer concentrations.  However even for the 30% 

concentration, the gel point is achieved at approximately 70% monomer 

conversion. It should be noted that, the critical conversion observed in NIR 

measurements are actually in a good agreement with the theoretical value 

calculated with equation 5.  

After the gel point is reached, clusters in the structure become immobile and 

start to react intramolecularly and this phenomenon give rise to the position 

dependency of the time average scattering intensity, i.e. the speckle pattern.  
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Figure 10. Double-logarithmic plots of the intensity time correlation functions (ICFs) 
during polymerization of 20% (w/v) thiol-ene organogel.   
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Figure 11. Formation of speckle pattern through the course of the thiol-en gelation 
reaction at 20% (w/v) monomer concentration.  
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Figure 12. Conversion of TEGDVE over the reaction time with 10, 20 and 30% (w/v) 
total monomer concentration. Data points shown in red are the reaction times that 
the gel points were reached. 
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Figure 13. Growth of the Elastic Moduli, G’, versus time during the thiol-ene 
crosslinking reaction at different monomer concentrations.  
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Figure 14 shows the elastic moduli of the thiol-ene gels synthesized at 
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crosslink points.  
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Figure 14. Variation of elastic moduli (G’) with % monomer concentration of thiol-ene 
organogels.  
 

 
 
Figure 15.  Calculated values of effective crosslink densities and the theoretical 
crosslink densites of thiol-ene organogels synthesized at different monomer 
concentrations. Diagonal line, open squares and filled squares show the theoretical 
crosslink density, effective crosslink density calculated by phantom network model, 
and effective crosslink density calculated by affine network model, respectively.   
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The effect of increasing monomer concentration on the crosslinking behavior 

of the thiol-ene organogels is shown in Figure 16. The crosslinking efficiency 

is simply calculated by taking the ratio of the theoretical and the effective 

crosslink density shown in Figure 15. As expected from the previous results 

and graphs, efficiency of the crosslinking reaction increases up to 40% of 

monomer concentration and then starts to decrease significantly due to the 

stiffness of the network and the hindered mobility of the active chains. This 

would give rise to the intramolecular reactions and cyclizations, which 

eventually decrease the efficiency of effective crosslinking reactions.  

The efficiency of the effective crosslinking reactions increases up to 60% for 

the phantom network model and 30% for the affine network model. Both 

values can be considered as high and efficient compared to free radical 

crosslinking copolymerization reactions. 

 

 
Figure 16. Crosslinker efficiencies of thiol-ene organogels synthesized at different 
monomer concentrations, calculated by the theoretical and the effective crosslink 
densities of the networks formed. Open and filled symbols represent the results of 
the calculations according to affine and phantom network models respectively.   
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change and stabilize. After swelling the gels are let dry in the oven for at least 

two weeks and their weight checked every other day until weight loss is 

completed. Figure 17 shows the absolute swelling ratio (msw/mdry) of the gels 

synthesized with different monomer concentrations. Gels synthesized from 

bulk and 80% monomer concentrations are crumbled during swelling process. 

The swelling degree of the gels decreases constantly, which is to be expected 

since the amount of crosslink points increase as the monomer concentration 

increases. However, the relative swelling ratio shown in Figure 18 exhibits a 

linear increase with increasing monomer concentration which can be 

explained with increasing osmotic preassure originated from the increase of 

polymer concentration inside the gel.  

 
Figure 17. Absolute swelling ratio of thiol-ene gels as a function of monomer 
concentration at preparation.   
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Figure 18. Relative swelling ratio of thiol-ene gels as a function of monomer 
concentration at preparation.   
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curves for 30 and 40 % monomer concentration overlap and look quite similar.  
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Figure 19. A Sample of intensity correlation curves for thiol-ene gels synthesized at 
different concentrations. 
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Figure 20. Variation of time averaged scattering intensity with sample position of 
thiol-ene organogels synthesized at different monomer concentrations before the 
solvent correction (see text). Solid and dashed lines represent the ensemble-
averaged scattered intensity, <I>E, and the fluctuating component of the scattering 
intensity, <I>F , respectively.  
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the ensemble average scattering intensity from the sample at 30% polymer 

concentration.  

In order to prevent the error that originates from the solvent scattering, we 

simply subtracted the solvent scattering intensity from the <I>E and <I>T 

values of every single measurement and recalculated the <I>F values. The 

results are shown in Figure 21. As shown in the figure, an exact match 

between <I>F and smallest <I>T values is obtained when the solvent 

scattering is subtracted.  

 

Figure 21. Variation of time averaged scattering intensity with sample position of 
thiol-ene organogels synthesized at different monomer concentrations after the 
solvent correction. Solid and dashed lines represent the ensemble-averaged 
scattered intensity, <I>E, and fluctuating component of the scattering intensity, <I>F, 
respectively.  
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Nevertheless, despite the very small values of the intensities of the scattered 

light, it would not be correct to state that these gels are homogenous.  

                 
Figure 22. An example of normalized intermediate scattering functions calculated for 
thiol-ene gels synthesized at different monomer concentrations.  
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ensemble average scattering intensity is below 10%, which means most of the 

gel network is composed of frozen-in structures.  

 

 

 

 

 

             
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. The ratio of fluctuating component of the scattering to the ensemble 
average scattering intensity (<I>F/<I>E ) of thiol-ene organogels synthesized at 
different monomer concentrations.  
 
 

Since thiol-ene polymerization proceeds via a step-growth mechanism and no 

homopolymerization occurs with the TEGDVE monomer a relatively ordered 

and homogeneous structure is expected to be formed. Also, without 

homopolymerization the chain length between the cross-links would be rather 

short, which is expected to lead high moduli for the gels. By considering these 

facts it is expected to obtain a quite stiff network with a very low portion of 

dynamic structure inside. So, having more than 90% static contribution to the 

ensemble scattering intensity does not necessarily mean that the structure is 

inhomogeneous. However the measurements carried out with the gels in 

equilibrium swollen state are a good indicator for the characterization of the 

inhomogeneity of the corresponding gels. Figure 24 shows the DLS 

measurements carried out with gel samples just after synthesis and in the 

equilibrium swollen states. The graphs have been drawn to the same scale to 

facilitate comparison. The data for the right after synthesis state is shown in a   
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Figure 24. Variation of time averaged scattering intensities with sample position of 
thiol-ene organogels synthesized at different monomer concentrations, at their right 
after synthesis and equilibrium swollen states. Solid and dashed lines represent the 
ensemble-averaged scattered intensity, and the fluctuating component of the 
scattering intensity, respectively.  
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greater detail in Figure 21. As can be seen from the figure, swelling process 

causes a dramatic increase in the scattering intensity of the thiol-ene 

organogels. This behavior, actually, reveals the inhomogenous microstructure 

of the corresponding network. It is known that the crosslink density 

fluctuations inside the gel may not always be detectable by scattering 

methods right after the synthesis due to the high polymer concentration but 

become visible with swelling of the network, since the densely crosslinked 

regions swell much less than the loosely crosslinked regions [37,64]. Hence, 

most of the swelling process is achieved by those loosely crosslinked regions. 

This natural difference between densely and loosely crosslinked regions 

reveals the inhomogenous crosslinking by increasing the contrast inside the 

gel and increasing the ensemble average scattering intensity which is the 

exact case exhibited in Figure 24. As can be seen from the figure, the 

ensemble average scattering intensity is no more concentration dependent 

after the gels are in their equilibrium swollen states. This suggests that the 

decrease of <I>E with increasing concentration that is observed right after the 

synthesis is not due to the homogenous structure of the gels but rather due to 

the space filling effect of the polymer, which covers the inhomogeneous 

crosslinking character of the reaction itself.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Ensemble average scattering intensity of the thiol-ene organogels 
synthesized at different monomer concentrations. Filled and open symbols represent 
right after synthesis and the equilibrium swollen states, respectively. 
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Figure 26. The ratio of the ensemble average scattering intensities of the thiol-ene 
organogels at right after synthesis and equilibrium swollen states at different 
monomer concentrations employed for synthesis. 
 

 

Figures 25 and 26 are plotted in order to underline the variation of the 

ensemble average scattering intensity with swelling. As can be seen from the 

figures, the values of ensemble average scattering intensity show no 

significant concentration dependence and increase up to 25 fold by 

equilibrium swelling compared to ones at the right after synthesis states.  

As the dynamic contribution to the ensemble average scattering intensity is 

calculated (Figure 27 and 28) the <I>F is found to be increased slightly, due to 

the separation of the polymer chains by swelling, which provides the chains 

more space to fluctuate. However, the fraction of dynamic contribution to the 

ensemble average scattering intensity, <I>F/<I>E values are found to be 

decreased. This result actually underlines the static nature of the thiol-ene 

networks studied and implies that there is no significant physical 

entanglements in the network structure. Increasing <I>F  values of swollen 

samples at 25 and 30% monomer concentrations are due to the experimental 

error, while the values are too small.  
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Figure 27. Fluctuating component of the total scattering intensity of thiol-ene 
organogels synthesized at different monomer concentrations. Filled and open 
symbols represent right after synthesis and the equilibrium swollen states 
respectively 
 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. The ratio of fluctuating component of the scattering to the ensemble 
average scattering intensity (<I>F/<I>E) at different monomer concentrations. Filled 
and open symbols represent right after synthesis and the equilibrium swollen states 
respectively. 
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Figure 29. Cooperative diffusion coefficients of thiol-ene networks in (A) right after 
synthesis and (B) equilibrium swollen states.  
 
 

Calculated cooperative diffusion coefficients are given in Figure 29. Plot A and 

B show the diffusion coefficients of the gels in right after synthesis and 

equilibrium swollen states. Plotted data points are the mean values of 15 

measurements. As can be seen from the plots, the diffusion coefficients of the 

gels increase with increasing monomer concentration up to 17.5% and stays 

constant which is an indication of fixed distance between crosslink points. 

With further swelling no significant change is observed on the mean values of 

diffusion coefficients but the standard deviation from the average values 

increase significantly, especially for the concentrations above 20% which 

reflects the existance of densely and loosely crosslinked regions, and hence, 

the inhomogeneous structure of the networks.  
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6      SUMMARY AND CONCLUSION 
 
 
 
Within the context of this study thiol-ene networks were synthesized at 

different concentrations by using a difunctional ene monomer and a 

tetrafunctional thiol crosslinker. The studied network is thought to have a 

homogenous structure due to the stepgrowth nature of the polymerization 

mechanism during synthesis. The aim of this thesis was to investigate this 

phenomena with the help of direct methods such as rheology and dynamic 

light scattering. Gelation characteristics and the microstructure of the resultant 

networks are investigated.  

Rheological measurements conducted during and after the synthesis of thiol-

ene networks showed that the gelation reaction via thiol-ene mechanism is 

quite rapid. Syneresis is observed for the networks below 20% monomer 

concentration since the network contracts as the clusters merge during the 

crosslinking reaction. Crosslink density is found to increase up to 40% 

monomer concentration and then stays almost constant due to the steric 

hindrance and decreased mobility of the network chains. However, a relatively 

high crosslinking efficiency up to 60% for phantom network model is 

calculated and explained by the high monomer conversion which is above 

70%, at the gel point.  

On the other hand, DLS measurements conducted with networks right after 

synthesis have quite small light scattering intensity values, i.e., smaller than 

twice the value of solvent scattering intensity. Thus incoherent solvent 

scattering was found to interfere with the scattering of the networks studied. 

When the data were analysed with the nonergodic approach, it has been 

realized that a solvent correction was necessary. In order to correct the data, 

solvent scattering intensity value was simply subtracted from the total 

scattering intensity and the analysis was performed with the network 

scattering intensity values.  

When the data were analyzed with the help of the nonergodic approach, the 

static portion of the ensemble scattering intensity is calculated as 90±2% for 

concentrations 10% and above, which suggests an inhomogeneous 

microstructure. Since the monomers do not homopolymerize, the network 
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formed with short TEGDVE monomer chains between PETMP units were 

expected to result in a rigid, homogenous structure. However, as DLS 

mesurements were carried out with gels in their equilibrium swollen state, the 

ensemble average scattering intensity is found to increase up to 25 fold 

relative to the samples at the right-after-synthesis states, which uncovers the 

inhomogenous nature of the thiol-ene networks despite the high crosslinking 

efficiency.  

It is noteworthy that the ensemle average scattering intensities for thiol-ene 

networks at equilibrium swollen state are not concentration dependent and  

show no pattern, which suggests that the microstructure of equilibrium swollen 

gels are  similar.  

Also, the calculated cooperative diffusion coefficients of studied networks at 

the right after synthesis and equilibrium swollen states reflects the 

inhomogeneous structure of thiol-ene networks. Actually, the mean values of 

cooperative diffusion coefficients do not show a significant difference with 

swelling. However, standard deviations of the mean values of the cooperative 

diffusion coefficients increase abrubtly, which is explained by the 

inhomogeneous swelling process inside the network, resulting in an increased  

contrast of highly and loosely crosslinked regions.   
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APPENDIX A -  List of Chemicals 
 

 

 

 

 

Substance Abbreviation 
Molar Mass 

(g/mol) 
Supplier Purity 

Pentaerithritol 

tetrakis(3-

mercaptopropionate) 

PETMP 488 

donated by 

Bruno Bock 

Chemische 

Fabrik 

GmbH&Co. Kg 

>95% 

 

Triethyleneglycol 

divinylether 
 

TEGDVE 202 Sigma-Aldrich >98% 

 

Camphorquinone 

 

CQ 166.22 Sigma-Aldrich >97% 

1,1,2-Trichlorethane TCE 133.4 
Acros 

Organics 
>98% 
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APPENDIX B – Molar Amounts of Chemicals Used in the 

Study 
 

 

 

Chemical 7% 8% 9% 10% 12.5% 15% 

PETMP 0.0785 M 0.0897 M 0.1009 M 0.1121 M 0.1401 M 0.1682 M 

TEGDVE 0.1569 M 0.1794 M 0.2018 M 0.2242 M 0.2803 M 0.3363 M 

CQ 1.21 mM 1.21 mM 1.21 mM 1.21 mM 1.21 mM 1.21 mM 

 

 

Chemical 17.5% 20% 22.5% 25% 30% 35% 

PETMP 0.1962 M 0.2242 M 0.2522 M 0.2802 M 0.3364 M 0.3924 M 

TEGDVE 0.3924 M 0.4484 M 0.5045 M 0.5604 M 0.6728 M 0.7848 M 

CQ 1.21 mM 1.21 mM 1.21 mM 1.21 mM 1.21 mM 1.21 mM 

 

 

Chemical 40% 50% 60% 80% 100% 

PETMP 0.4484 M 0.5604 M 0.6728 M 0.8968 M 1.2669 M 

TEGDVE 0.8968 M 1.1208 M 1.3456 M 1.7936 M 2.5337 M 

CQ 1.21 mM 1.21 mM 1.21 mM 1.21 mM 1.21 mM 

 

 

 

 

 

 


