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SUMMARY 

In addition to the classic catabolic effects, it is now widely accepted that parathyroid 

hormone (PTH) exerts anabolic effects on bone, when administered intermittently. As 

a result of the regenerative characteristic, Teriparatide (Forsteo® Europe, Forteo® 

U.S.A., Eli Lilly) which is a recombinant PTH (1-34), was recently approved for 

treatment of osteoporosis in the USA and the Europe.  The dual actions of PTH are 

mediated primarily through PTH receptor 1 (PTH1R), which is a class II G protein-

coupled receptor. PTH1R can activate diverse signaling pathways, including 

cAMP/PKA and PLC/PKC pathways (Vilardaga et al., 2011). 

Periodontitis is an inflammatory disease, which manifests clinically as loss of 

supporting periodontal tissues. Accumulating evidences in vivo and vitro indicate that 

the intermittent PTH administration exerts anabolic effects on periodontal ligament 

(PDL) tissue and alveolar bone (Nohutcu et al., 1995; Ouyang et al., 2000; Barros et 

al., 2003; Lossdörfer et al., 2005, 2006b). Understanding the physiology of PTH1R is 

crucial to promote the regenerative effect of PTH. PTH1R has been exclusively 

studied in kidney and bone cells. However, the knowledge on PTH1R characteristics 

and physiology in PDL cells is still in its infancy. 

In this study, we characterized the PTH1R in PDL cells, in terms of its cellular 

localization, binding affinity, density, signal transduction and gene regulation, and 

compared these characteristics with those of PTH1R in human osteosarcoma cell 

line (MG63) and Human Embryonic Kidney 293 cells (HEK293). In the second part, 

we transplanted human PDL cells into immunodeficient nude mice and evaluated in 

vivo the regenerative capacity of PDL cells upon intermittent hPTH (1-34) 

administration. 

PTH1R mRNA and protein were detected in PDL, MG63 and HEK293 cells. Like 

other GPCRs, PTH1R was found on the plasma membrane and in the cytoplasm of 

the three cell lines, while they were to some extent also present in the nuclei of PDL 

and MG63 cells. Binding characteristics of PTH1R were cell type specific in the 

examined three cell lines, with PDL cells demonstrating a low binding affinity 

(Kd=1030±10 nM) and a relative high number of receptors (3.03±0.57 million 

receptors/cell). Dexamethason and 1,25-dihydroxyvitamin D3 increased the 

expression level of PTH1 mRNA in PDL cells (12-fold and 14-fold of the 

corresponding control group, respectively), whereas the effect of hPTH (1-34) on 
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receptor mRNA expression was depended on the mode of its administration. The 

response of cAMP in MG63 and HEK293 cells was additive with growing 

concentration of hPTH (1-34), while it was concentration dependent in PDL cells. 

However, in all three cell lines, we observed a cross-talk between the cAMP/PKA and 

PLC/PKC signaling pathways, which were regulated oppositely at a given 

concentration of hPTH (1-34). The results of the in vivo experiments proved that the 

implanted human PDL cells not only survived, but also were able to develop a 

bone/cementum like tissue which closely resembles natural bone or cementum and 

this capacity was significantly enhanced by intermittent PTH administration. 
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ZUSAMMENFASSUNG 

Neben dem klassischen katabolen Effekt von Parathormon (PTH), wurde aktuell 

auch eine anabole Wirkung von intermittierend appliziertem PTH auf den Knochen 

erkannt. Aufgrund seiner regenerativen Wirkung wurde Teriparatide (Forsteo® 

Europa, Forteo® U.S.A., Eli Lilly)  ein rekombinantes PTH (1-34), in den USA und 

Europa zur Therapie von Osteoporose zugelassen. Die dualen Wirkungen von PTH 

werden primär über den PTH Rezeptor 1 (PTH1R) vermittelt, der der Klasse II der G-

Protein gekoppelten Rezeptoren angehört. Durch Ligand-induzierte Aktivierung des 

PTH1R werden verschiedene intrazelluläre Signalwege, wie z.B der cAMP/PKA - und 

der PLC/PKC-Signalweg, reguliert (Vilardaga et al., 2011). 

Parodontitis ist eine entzündliche Erkrankung, die zur irreversiblen Zerstörung des 

Zahnhalteappartes führt. Ergebnisse von Untersuchungen in vitro und in vivo deuten 

darauf hin, dass intermittierendes PTH eine anabole Wirkung auf das 

Parodontalligament (PDL) Gewebe und den Alveolarknochen hat (Nohutcu et al., 

1995; Ouyang et al., 2000; Barros et al., 2003; Lossdörfer et al., 2005, 2006b). Die 

Aufklärung der Physiologie dieses Rezeptors ist äußerst wichtig für die Optimierung 

der regenerativen Wirkung von PTH. PTH1R wurde exklusiv in den Zellen der Nieren 

und des Knochens untersucht. Allerdings stecken unsere Kenntnisse über die 

Physiologie des PTH1R in PDL Zellen  noch in den Kinderschuhen. 

In der vorliegenden Arbeit wurde der PTH1R in PDL-, MG63- und HEK293-Zellen 

bezüglich seiner zellulären Lokalisation, Bindungsaffinität, Rezeptordichte, 

Signalvermittelung und Genregulation charakterisiert, beziehungsweise wurden diese 

Charakteristika mit denen des PTH1Rs in MG63- und HEK293-Zellen verglichen. Der 

zweite Teil der Arbeit beschäftigte sich mit der Untersuchung der regenerativen 

Kapazität von transplantierten humanen PDL Zellen durch intermittierend 

angewandtes hPTH (1-34). 

PTH1R-mRNA und-Protein konnten in PDL-, MG63- und HEK293-Zellen 

nachgewiesen werden. Wie andere GPCR, zeigte PTH1R in allen untersuchten 

Zelllinien eine Zellmembran-ständige und cytoplasmatische Lokalisierung, während 

die Präsenz des Rezeptors zum Teil auch in den Zellkernen der PDL- und MG63-

Zellen gezeigt werden konnte. Die Bindungeigenschaften von PTH1R scheinen 

zelltypspezifisch zu sein, wobei in PDL-Zellen eine geringere Affinität bei hoher 

Anzahl des Rezeptors festgestellt wurde (Kd=1030±10 nM, 3.03±0.57 Millionen 
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Rezeptoren/Zelle). Eine Stimulation der Zellen mit Dexamethason oder 1,25-

Dihydroxyvitamin D3 steigerte die mRNA Expression von PTH1R (12 - und 14 - fach 

jeweils im Vergleich zu der Kontrollgruppe), während der Effekt des hPTH (1-34) von 

der Art der Administration abhängig war. Die cAMP-Akkumulation in MG63- und 

HEK293-Zellen stieg mit aufsteigender Konzentration des hPTH (1-34), während sie 

in PDL-Zellen von der Konzentration des Hormons abhängig war. Interessanterweise 

wurde eine “cross-talk’’-Interaktion zwischen den cAMP/PKA- und PLC/PKC-

Signalwege festgestellt, wobei die beiden Signalwege durch die jeweilige PTH- 

Konzentration gegenläufig reguliert wurden. Die Ergebnisse der Tierversuche 

belegten, dass die transplantierten humanen PDL-Zellen nicht nur überlebten, 

sondern auch ein Knochen/Zementum ähnliches Gewebe bilden konnten, und dass 

diese Differenzierung durch intermittierend zugeführtes hPTH (1-34) gesteigert 

werden konnte. 
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1 INTRODUCTION 

1.1 Periodontitis 
 

Periodontitis, also known as periodontal disease, is a bacterially induced chronic 

inflammation of the periodontium. The periodontal diseases range from the relatively 

benign form of gingivitis to aggressive periodontitis, depending on the severeness of 

the infection and the response of the host. Gingivitis, the most common form of 

periodontal disease, is characterized by inflammation, swelling, and bleeding of the 

gums and results most often from bacterial plaque. It is non-destructive and 

reversible with professional treatments. However, if not treated adequately, gingivitis 

can advance to periodontitis, which is a destructive form of the periodontal disease. 

In severe form, it triggers the degradation of periodontal connective tissue and 

alveolar bone, resulting in the most common cause of tooth loss in the world. 

 

               

 

Figure 1.1 Schematic illustrations of Periodontitis (Taken from: Periodontitis Types: Periapical and Apical, 

Chronic and Aggressive Periodontitis, http://periodontitis.dentalbuzz.org). A:  Healthy periodontium B:  Moderate 

periodontitis. C: Severe periodontitis. 

 

Periodontitis is a very common disease worldwide and associated with diverse 

physiological disorders such as cardiovascular disease (Kebschull et al., 2010), 

dyslipidemia (King, 2008), Type 2 diabetes (Seymour et al., 2007), low birth weight 

(Offenbacher et al., 1996) in otherwise healthy individuals  and metabolic syndrome 

in hemodialysis patients (Chen et al., 2011). 

Besides bacterial plaque, genetic as well as environmental factors have been proven 

to cause periodontal disease, especially tobacco use (Pihlstrom et al., 2005). 

Additionally, several physiological disorders, such as dermatological, haematological, 

granulomatous, immunosuppressive, and neoplastic diseases can exert an effect on 

periodontitis (Pihlstrom et al., 2005). 

A B C 
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1.2 Periodontal ligament  
 

The periodontium is a topographically complex organ that surrounds and supports 

the teeth. The structures comprising the periodontium include two soft tissues: 

gingiva, periodontal ligament and two hard tissues: cementum and alveolar bone. 

While each of the periodontal components has a specialized tissue architecture and 

characteristic biochemical composition, they interact dynamically and influence the 

cellular activities of each other (Bartold, 2006). 

 

Periodontal ligament

Gingiva

Cementum

Alveolar bone

Crown

Roots
Periodontal ligament

Gingiva

Cementum

Alveolar bone

Crown

Roots

Gingiva

Cementum

Alveolar bone

Crown

Roots

 

 

Figure 1.2 Components of the periodontium (Modified after: Periodontal Ligament - Studio Dentaire, 

http://www.studiodentaire.com). The four structural components of the periodotium, two soft connective tissues: 

gingival and periodontal ligament and two hard tissues cementum and alveolar bone are indicated in red. They 

interact with each other and together support and maintain the physiological activity of teeth. 

 

The periodontal ligament, abbreviated as the PDL, is a highly specialized soft 

connective tissue embedded between the cementum covering the tooth root and 

alveolar bone. Thus, forming a link between the tooth and the bone, the ligament 

supports not only teeth, but also contributes to tooth nutrition, homeostasis, and 

repair of damaged tissue (Bartold et al., 2000). It ranges in width from 0.15 to 0.38 

mm, reaching the thinnest portion around the middle third of the root (Nanci and 

Bosshardt, 2006). Upon aging, the thickness of this ligament decreases 

progressively. 

This tissue is characterized by rapid turnover and high remodeling rates, which are 

essential for maintaining the width and integrity of the PDL as the teeth assume new 

positions in the jaws in response to changing forces such as mastication, speech and 
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orthodontic tooth movement (Beertsen, 1975; Berkovitz and Shore, 1995). Both 

turnover and remodeling are precisely regulated by the complex interplay between 

breakdown and synthesis of extracellular matrix components, specifically the 

collagenous meshwork (Beertsen et al., 1997). The collagen degradation is thought 

to be a result of collagen phagocytosis by fibroblasts without the involvement of 

collagenases (Beertsen et al., 1997). Moreover, the PDL is considered to be involved 

in repair, remodeling, and regeneration of the adjacent tissues, cementum and 

alveolar bone (Boyko et al., 1981; Nyman et al., 1982).  

Similar to all soft fibrous connective tissues, the PDL consists of a fibrous matrix 

embedded in a gel of ground substance containing cells, blood vessels and nerves 

(Berkovitz, 1990). Its fibrous elements consist of mostly bundles of collagen fibers, 

which are distributed throughout the space of the periodontal ligament to join the 

tooth to the alveolar bone. The predominant collagens of the PDL are type I and III 

(Berkovitz, 1990; Takayama et al., 1997), which traverse the ligament space and 

insert into the cementum and bone surface as Sharpey’s fibers. Additionally, the 

presence of collagen type V (Becker et al., 1991), type VI (Becker et al., 1991), XII 

(Dublet et al., 1988) and Oxytalan (Fullmer, 1958) in the PDL have been also 

reported. Aside from these fibrous elements, several matrix proteins are found in the 

periodontal ligament, including proteoglycans (Häkkinen et al., 1993) and 

glycoproteins such as undulin, tenascin, and fibronectin (Zhang et al., 1993). The 

ground substance of the PDL is structure-less and has been estimated to be 70% 

water. It is thought to have a pivotal role on the tooth’s ability to withstand mechanical 

stress loads (Nanci and Bosshardt, 2006).  

The PDL consists of a heterogeneous cell population that includes fibroblasts, 

cementoblasts, osteoblasts, endothelial progenitor cells, epithelial cell rests of 

Malassez, macrophages, osteoclasts and progenitor/stem cells (Ten Cate, 1998). 

While fibroblasts, macrophages, undifferentiated progenitor/stem cells, neural 

elements, and endothelial cells are found throughout the PDL, osteoblasts and 

osteoclasts reside on the alveolar bone side. Epithelial rests of Malassez cells and 

cementoblasts are localized close to the root surface of the tooth (Marchesan et al., 

2011) whereas progenitor/stem cells are observed adjacent to blood vessels in the 

PDL (Gould et al., 1977). 
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Figure 1.3 Overview of the structure and components  of the periodontal ligament tissue (PDL) (Taken 

from: Marchesan et al., 2011). The structure and heterogeneous cell population of periodontal ligament, along 

with its vascular and extracellular matrix elements are illustrated. The different cells are depicted in different 

colors: osteoblasts (orange), osteoclasts (pink), fibroblasts (green), stem cells (purple), cementoblasts (blue), 

epithelial cells rest of Malassez (ERM) (aqua), macrophages (grey). Blood vessels emerge from the alveolar 

bone, along with nerve fibres. 

 

 

1.3 PDL fibroblasts 
 

PDL fibroblasts, referred to as PDL cells, are the predominant cell type (Beertsen et 

al., 1997) and are thought to be mainly responsible for PDL homeostasis and 

regeneration (Lekic and McCulloch, 1996). The fibroblasts of the ligament are 

thought to originate in part from the ectomesenchyme of the investing layer of the 

dental papilla (Ten Cate et al., 1971), which may impart these cells specialized 

characteristics. The rapid turnover rate and remodelling of collagen in the PDL is 

considered to be the result of the phagocytosis by the periodontal fibroblasts. 

Moreover, they may provide a reservoir for mineral-forming cementoblasts or bone-

forming osteoblasts (McCulloch et al., 2000).  

Apart from theses unique properties, PDL fibroblasts exhibit osteoblastic properties 

such as alkaline phosphatase activity (Yamashita et al., 1987), production of bone 

sialoprotein in response to 1,25-dihydroxyvitamin D3 (Nojima et al., 1990) and 

responsiveness to parathyroid hormone (Nojima et al., 1990). Furthermore, they 

have been shown to express not only proteins with osteoblastic properties such as 



Introduction 
 
 

9 

the runt-related transcription factor-2 (RUNX-2), osterix (Kato et al., 2004), 

osteocalcin (OSC) (Li et al., 2001), osteopontin (OPN) (Lekic et al., 2001; Li et al., 

2001), periostin (Horiuchi et al., 1999), osteonectin (OSN) and type I collagen (Col I) 

(Lukinmaa and Waltimo, 1992), but also receptor activator of NF-kappa B ligand 

(RANKL) and osteoprotegerin (OPG), which play a pivotal role in the regulation of 

bone metabolism (Wada et al., 2001). PDL cells from rat were able to form 

mineralized nodules in vitro, although the mineralized nodules appeared to be 

different from those produced by osteoblasts (Cho et al., 1992). Other reports have 

shown the presence of type XII collagen (Col XII) (Karimbux et al., 1992), alpha-

smooth muscle actin (a-SMA) (Arora and McCulloch, 1994) and scleraxis (Seo et al., 

2004) in  PDL fibroblasts.  

In addition to their fibroblastic and osteoblastic properties, PDL cells demonstrate 

also functional characteristics of leucocytes and leucocyte-derived cells (e.g. 

macrophages) involved in classical innate immunity (Jönsson et al., 2011). It has 

been shown that ligament fibroblast cells up-regulated transcript and protein levels of 

several cytokines and chemokines upon stimulation with inflammatory promoters 

such as bacterial lipopolysaccharides (Jönsson et al., 2011). 

These findings suggest that PDL fibroblasts contain a variety of subpopulations with 

different functional characteristics, although morphologically they look alike. 

However, whether these subsets are derived from a single type of progenitor cell is 

still unknown. Phenotypically stable but functionally different fibroblast 

subpopulations have been reported also in skin and other tissues (Hassell, 1993). 

PDL fibroblasts are large cells with a spindle-shaped, elongated appearance in vitro, 

which is characteristic of fibroblast-like cells (Somerman et al., 1988). However, in 

vivo, they show an irregular disc-shape with a mean diameter of about 30 µm (Shore 

and Berkovitz, 1979). These cells have a prominent nucleus with approximately 25 % 

of the cell by volume (Berkovitz, 1990), and an extensive cytoplasm containing an 

abundance of organelles such as rough endoplasmic reticulum (5-10 % of the 

volume of the cytoplasm), mitochondria, golgi complex and vesicles. They possess a 

well-developed cytoskeleton and show frequent adherens and gap junctions (Nanci 

and Bosshardt, 2006). In the ligament, the fibroblasts are oriented parallel to the 

collagen fiber bundles and extend cytoplasmic processes that wrap around them 

(Beertsen et al., 1997). 
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1.4 Periodontal regeneration 
 

Traditional treatment modalities of periodontitis include nonsurgical debridement of 

root surfaces or root canals, as well as resective surgery that provide better access 

to reshape the surrounding bone or root apex (Bashutski and Wang, 2009). Although 

these therapies have been established as effective treatment regimens in periodontal 

disease, the destruction of the attachment apparatus or bone is often the outcome 

and healing is always by repair (Bashutski and Wang, 2009). Since repair does not 

fully restore the function or structure of the destroyed tissue, new approaches such 

as regenerative therapies that aim to restore lost tissue through the regeneration of 

cementum, PDL, and alveolar bone have been introduced. These methods include 

bone replacement grafts, guided tissue regeneration and growth factors / cytokines / 

host modulating agents. 

In bone replacement grafts, a ‘‘filler’’ bone graft material is introduced into the 

periodontal defect in the hope of inducing bone regeneration (Bartold et al., 2000). In 

guided tissue regeneration, occlusive barrier membranes are employed to inhibit the 

rapid downgrowth of epithelial cells and gingiva fibroblasts from a periodontal wound, 

which allows other regenerative cells (osteoblasts, PDL cells, cementoblasts) to 

repopulate the area and promote periodontal regeneration (Bashutski and Wang, 

2009). Platelet-rich plasma (PRP) and growth factors such as bone morphogenic 

proteins (BMPs), platelet-derived growth factor  (PDGF), and enamel matrix proteins 

(EMD) are the most commonly used agents to promote the healing and regeneration 

potential of periodontal destructed tissue (Heijl et al., 1997; Giannobile and 

Somerman, 2003; Jung et al., 2003; Nevins et al., 2005). Other therapeutics 

including collagen fragments bound to bone grafts, parathyroid hormone (Liu et al., 

2009), and transforming growth factor beta 3 (Teare et al., 2008) have also been 

shown to promote the regenerative potential on the damaged tissue. Additionally, the 

application of cell-based, protein-based and genetic engineering approaches in 

periodontal tissue regeneration are currently under investigation (Rios et al., 2011). 
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1.5 Parathyroid hormone in PDL regeneration 
 

Progressive periodontitis often results in alveolar bone resorption, and ultimately 

leads to the loss of teeth. Accordingly, the arrest of bone resorption and regeneration 

of alveolar bone are of significant importance.  

Parathyroid hormone (PTH), an endogenous hormone, is involved in bone 

remodelling by exerting its catabolic effects (bone resorption) and anabolic effects 

(bone formation), depending on its administration mode (Neer et al., 2001). The 

prevailing view of catabolic effects of PTH suggests that PTH enhances production of 

receptor activator of nuclear factor- кB ligand, macrophage colony-stimulating factor 

and possibly other cytokines (i.e., IL-1, IL-6, and TNF-α) and downregulates the 

production of osteoprotegerin (Murray et al., 2005). 

The anabolic activity of PTH on osteoblasts has been studied intensively both in vivo 

and vitro. Preclinical studies and small clinical trials have proven distinct anabolic 

effects of intermittent PTH administration on bone (Rubin et al., 2002; Turner, 2002). 

In another study, both full length PTH (1–84) and teriparatide (PTH 1–34) 

administration resulted in a rapid up-regulation of markers of bone formation, but a 

down-regulation of markers of resorption (Hodsman et al., 2003, 1993). Daily 

injections of PTH (1–84) or PTH (1–34) increase bone mass and reduce the 

incidence of fracture in postmenopausal women, in elderly men, and in women with 

glucocorticoid-induced osteoporosis (Jilka, 2007). The anabolic effect of intermittent 

PTH has also been extensively demonstrated in mice and rats (Hodsman et al., 

2002). These findings finally resulted in an approval of the PTH therapy for 

osteoporosis by the US Food & Drug Administration (FDA) for FORTEO® (PTH). 

Although the exact underlying mechanism accounting for the anabolic effect of 

intermittent PTH remains to be elucidated, emerging evidence indicates that the 

increase in bone formation is largely due to an increase in the number of  

osteoblasts, which is mediated by repeated delays of osteoblast apoptosis (Jilka et 

al., 1999), enhancing the recruitment of preosteoblasts from marrow stromal cells 

and stimulating the maturation of lining cells (Jilka, 2007). 
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Figure 1.4 Proposed cellular mechanisms accounting f or the anabolic effect of intermittent PTH  (Taken 

from: Jilka, 2007). Intermittent PTH has been proposed to increase osteoblast number by: (A) increasing the 

development of osteoblasts, (B) inhibiting osteoblast apoptosis, and (C) reactivating lining cells to resume their 

matrix synthesizing function. 

 

The anti-apoptotic signaling pathways triggered by intermittent PTH involve cAMP-

mediated activation of protein kinase A (PKA), subsequent phosphorylation and 

inactivation of the pro-apoptotic protein Bad, and increased transcription of survival 

genes like Bcl-2 (Bellido et al., 2003). On the other hand, intermittent PTH has been 

shown to decrease the expression of histone H4, a marker of the cell cycle (Onyia et 

al., 1995), and expression of the cell cycle inhibitors p27KIP1 and p21Cip1 (Qin et al., 

2005), in metaphyseal bone of young rats, a site rich in replicating osteoblast 

progenitors. This fact together with the results of other in vivo and in vitro studies 

strongly suggests that intermittent exposure to PTH causes an exit of osteoblast 

progenitors from the cell cycle, which leads to the differentiation and suppression of 

proliferation of these cells (Jilka, 2007). 

Based on the anabolic properties of PTH established in osteoblasts and the fact that 

the PDL cells show osteoblastic characteristics, there have been numerous studies 

conducted both in vivo and vitro to elucidated the effect of PTH on PDL cells. The 

results of these studies have indicated that periodontal ligament cells respond to PTH 

in a osteoblastic manner, both in vitro (Nohutcu et al., 1995; Ouyang et al., 2000; 

Lossdörfer et al., 2005, 2006b) as well as in in vivo models (Barros et al., 2003). The 

involvement of PTH in the regulation of periodontal activities is further supported by 

the fact that PTH and parathyroid gland extract enhance tooth eruption and 

orthodontic tooth movement (Schneider et al., 1972; Davidovitch et al., 1972). 

Moreover, PTH receptors were immunohistochemically detected in rat cementoblasts 

(Tenorio and Hughes, 1996). Recently, Bashutski et al. reported markedly improved 

clinical and radiographic outcomes in patients with severe, chronic periodontal 
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disease who underwent periodontal surgery and received daily injections of 

teriparatide (Bashutski et al., 2010). Taken together, these lines of evidence suggest 

that PTH, currently approved for use in osteoporosis therapy, might also contribute to 

treatment of periodontal disease. In addition, bisphosphonates, another category of 

drugs, approved for the treatment of osteoporosis, have been evaluated for their 

therapeutic benefit in periodontal diseases, with promising results (El-Shinnawi and 

El-Tantawy, 2003). 

 

 

1.6 Parathyroid hormone 
 

Parathyroid hormone (PTH) is a single-chain polypeptide of 84 amino acids, which is 

synthesized in and secreted by the parathyroid glands (Habener et al., 1978). PTH is 

formed as a 115-amino acid polypeptide precursor (pre-pro-PTH) which then 

undergoes two successive proteolytic cleavages (Habener et al., 1976). First, in the 

rough endoplasmic reticulum, the NH2-terminal peptide of 25 amino acids is cleaved 

from pre-pro-PTH and yields pro-parathyroid hormone (pro-PTH), an intermediate 

precursor of 90 amino acids, which is subsequently transported to the golgi 

apparatus, where the NH2-terminal hexapeptide of pro-PTH is removed, resulting in 

the formation of active PTH (84 amino acids) (Habener et al., 1978). 

The primary amino acid sequence of PTH is highly conserved among mammalian 

species (Figure 1.4). While the strongest homology resides in the N terminus of the 

molecule (32 of the first 38 residues), the greatest evolutionary variation is evident in 

the middle region of the hormone (between residues 39 and 52). In the C-terminal 

region, from 53 to 84, several stretches of high homology can be found. A number of 

residues are conserved also in the chicken and zebrafish sequences. Furthermore, 

sequence from 65 to 78 varies at only three positions among mammals (Murray et 

al., 2005). 
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Figure 1.5 Amino acid sequences of intact PTH from s everal mammalian species  (Taken from: Murray et al., 

2005). Amino acids are denoted by the single-letter abbreviation for each of the indicated species. Shading 

indicates residues in hPTH that are conserved in other species, and those residues conserved in all species 

shown are indicated in bold. 

 

In addition to intact PTH (1–84), parathyroids also secrete relatively high 

concentrations of heterogenous C-terminal fragments, which are thought to be 

inactive in classical terms (Murray et al., 2005). While another source of the C-

terminal fragments is the proteolysis of intact PTH by Kupffer cells in liver, there is no 

direct evidence that N-terminal fragments are produced in vivo by metabolic cleavage 

or gland secretion under normal physiological conditions (Murray et al., 2005). Both 

the liver and kidney take part in the clearance of the circulating intact PTH and C-

terminal fragments (Murray et al., 2005). 

PTH regulates serum calcium concentration via acting directly on bone to increase 

calcium resorption and on kidney to increase calcium reabsorption in renal tubules 

(Potts et al., 1995). Additionally, PTH inhibits reabsorption of phosphate in kidney, 

stimulating its excretion (Pullman et al., 1960; Beutner and Munson, 1960). PTH has 

been also shown to act indirectly on intestine to promote absorption of calcium, which 

is mediated by 1,25-dihydroxyvitamin D3 (Lawson et al., 1971). Apart from actions on 

calcium and bone metabolism, PTH has been also reported to have proliferative 

effects on blood and liver cells (Rixon et al., 1958; Whitfield et al., 1969; Rixon and 

Whitfield, 1972). 

The secretion and synthesis of PTH is regulated by a number of factors such as 

calcium, phosphate and 1,25-dihydroxyvitamin D3 level. A particular characteristic of 

the parathyroid gland is its sensitivity to small changes in serum calcium, which leads 

to large changes in PTH secretion, with a sigmoidal type response (Silver et al., 

1999). Serum calcium is the chief regulatory signal for PTH secretion, and a 
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decrease in extracellular calcium enhances not only the PTH secretion but also 

increases PTH gene expression level and parathyroid cell proliferation (Silver et al., 

1998). The parathyroid recognizes the changes in serum calcium via a G-protein 

receptor coupled on the cell membrane of parathyroid cells, the calcium sensing 

receptor (CaSR) (Brown et al., 1993). Conversely, CaSR activation by increased 

extracellular calcium induces the release of intracellular calcium, which in turn inhibits 

secretion of PTH (1–84) (Friedman and Goodman, 2006). Inhibition of PTH (1–84) 

secretion is accompanied by enhanced proteolysis of the NH2 terminus of PTH, with 

the attendant secretion of PTH (7–84) and other NH2-terminal truncated PTH peptide 

fragments (Friedman and Goodman, 2006). 

A high serum phosphorus concentration has been shown to be associated with an 

increase in PTH secretion (Silver and Levi, 2005). The effect of phosphate is 

considered to be posttranscriptional and independent of 1,25-dihydroxyvitamin D3 

and calcium (Kilav et al., 1995). 1,25-dihydroxyvitamin D3 dramatically decreased the 

levels of PTH mRNA in the parathyroids of normal rats at physiologically relevant 

doses without changing the levels of serum calcium (Shvil et al., 1990). Unlike 

phosphate, the effect of 1,25-dihydroxyvitamin D3 on the PTH gene was shown to be 

transcriptional (Silver et al., 1986). 

Studies on the structure and function of PTH have revealed that most of the 

biological activity of intact PTH (1–84) resides in the 1-34 N-terminal fragment of the 

hormone. It was found that a synthetic bovine (b)PTH(1–34) was able to generate the 

major biological actions of the full-length native bPTH (1-84), including activation of 

adenylyl cyclase in bone and kidney cells, increased urinary excretion of cAMP and 

phosphate in rats, and elevation of blood calcium in rats, dogs, and chickens (Murray 

et al., 2005). Moreover, Teriparatide has a similar binding affinity for PTH receptor 1 

as PTH (1–84) (Brixen et al., 2004). Teriparatide (ForsteoA or ForteoA, Eli Lilly), a 

recombinant human PTH (1–34) (hPTH [1–34]), was first approved in the United 

States in November 2002 for the treatment of osteoporosis in men and women and 

became available in other countries, such as the United Kingdom and several other 

countries in the European Union, in April 2003 (Quattrocchi and Kourlas, 2004). 

These facts, together with the practical difficulties in synthesizing large quantities of 

chemically pure PTH (1–84), led to the widespread use of recombinant PTH (1–34) 

as a surrogate for intact PTH in studies of hormone effect in vitro and in vivo. 



Introduction 
 
 

16 

While synthetic PTH (1–31), (1–34) and (1–38), seem to have the same anabolic 

effect on bone as PTH (1–84) (Brixen et al., 2004), PTH peptides lacking one or 

more amino acid residues such as PTH (2–34), N-terminal truncated peptides such 

as PTH(3–34) and PTH(7–34) bind with affinities considerably lower than that of 

PTH(1–34) (Friedman and Goodman, 2006; Murray et al., 2005). On the other hand, 

PTH (3–38), did not demonstrate an anabolic effect (Armamento-Villareal et al., 

1997). Based on these observations, it appears that the first two amino acids are 

essential for biological activity, and the bone promoting properties are fully 

maintained in the 1–31 N-terminal domain of PTH.  PTH (1–14) was shown to be the 

shortest native N-terminal PTH peptide for which some cAMP agonist activity could 

be detected (EC50 ~200 µM) (Luck et al., 1999). Studies on the structure and activity 

of the PTH (1–14) scaffold have shown that the first 9 amino acids are essential for 

receptor activation, and also that amino acid substitutions at several positions 

[Ala3,12,Gln10,Arg11,Trp14] in PTH(1–14) led to improved potency in stimulating 

cAMP accumulation, which was 250 times that of native PTH(1–14). By the same 

substitutions, the otherwise inactive PTH (1–11) could also be activated (Shimizu et 

al., 2000b). The modified PTH (1–14) has led to define the minimum N-terminal PTH 

agonist pharmacophore, which resides within the first 9 amino acids of the hormone, 

whereby the amino acids were covalently bound to the juxtamembranedomain using 

a tetraglycine linker (Shimizu et al., 2000a). 

Although carboxyl fragments such as PTH (44–68), PTH (53–84), and PTH (39–84) 

did not compete for binding with PTH (1–34) radioligands, nor did they activate 

adenylyl cyclase in renal membranes or bone cells (Murray et al., 2005), both in vitro 

and in vivo studies indicate that the C-terminal part of PTH may have significant 

biological effects in bone (Hodsman et al., 2005). It has been reported that C- 

terminal PTH fragments may enhance osteocyte apoptosis (Divieti et al., 2001), and 

C-terminal fragments containing at least the last 30 or more amino acids of PTH 

increase production of alkaline phosphatase and other markers of osteoblast activity 

(Sutherland et al., 1994). 
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1.7 Parathyroid hormone related peptide 
 

PTHrP was discovered in association with humoral hypercalcemia of malignancy 

syndrome and certain types of cancer in affected patients. The hypercalcemia, 

caused by the uncontrolled secretion of PTHrP, is a result of promoted Ca2+ 

resorption from bone and suppression of urinary Ca2+ loss (Guerreiro et al., 2007). 

PTHrP is widely expressed in a large variety of normal adult and fetal tissues, 

including cartilage, heart, kidney, hair follicles, placenta, breast, lungs, and many 

epithelial tissues (Schipani and Provot, 2003). This peptide has a pivotal role in 

regulating embryonic development of the skeleton and other tissues via intracellular, 

paracrine, and endocrine pathways (Gardella and Jüppner, 2001). Human PTHrP 

protein is encoded by a single gene, and generated by alternative splicing of the 

primary transcript as one of three variants of 139, 141 or 173 amino acids (Mannstadt 

et al., 1999). Both PTH and PTHrP bind to parathyroid hormone/parathyroid hormone 

related peptide receptor (PTH1R) (see section 1.6), and exert anabolic effects on 

bone (Stewart, 1996). 

PTH and PTHrP share significant sequence homology within the first 13 amino acid 

residues, which underlines the functional importance of the N-terminal residues in 

receptor signaling. However, the sequence homology decreases siginficantly in the 

14–34 region, showing no recognizable similarity beyond residue 34 (Mannstadt et 

al., 1999). For both PTH and PTHrP, the 15–34 region functions as the principal 

PTH1R binding domain 

 

 

1.8 G-protein coupled receptors  
 

GPCRs comprise the largest family of membrane proteins in the human genome, 

mediate most cellular responses to hormones and neurotransmitters, and are 

responsible for vision, olfaction and taste. Based on the similarity of their sequence 

and structure, GPCRs in vertebrates are commonly divided into five families: 

rhodopsin (family A), secretin (family B), glutamate (family C), adhesion and 

Frizzled/Taste2 (Fredriksson et al., 2003). These receptors are characterized by a 

common structural signature of seven hydrophobic transmembrane (TM) segments, 

with an intracellular carboxyl terminus and an extracellular amino terminus. 
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Figure 1.6 Seven transmembrane helix structure of GP CRs (Taken from: Kobilka, 2007).  GPCRs contain an 

intracellular carboxyl terminus, an extracellular amino terminus and seven transmembrane helix segments. Cell 

membrane (green); Ligand peptide (yellow); 

 

The G proteins comprise α, β and γ subunits. The α subunit is responsible for GTP 

and GDP binding for GTP hydrolysis, whereas the β and γ subunits are associated in 

a tightly linked βγ complex. GPCRs activate intracellular heterotrimeric G-proteins by 

stimulating the exchange of bound GDP in the α-subunit for GTP. Binding of GTP 

induces the dissociation of the α subunit from the βγ dimer, both being able to 

regulate the activity of target enzymes or channels responsible for the cellular 

response. There are at least 18 different human Gα proteins to which GPCRs can be 

coupled (Hermans, 2003; Wong, 2003). These Gα proteins form heterotrimeric 

complexes with Gβ subunits, of which there are at least 5 types, and Gγ subunits, of 

which there are at least 11 types (Hermans, 2003). Depending on the type of G 

protein to which the receptor is coupled, a variety of downstream signaling pathways 

can be activated. Consequently, the Gα- and Gβγ-subunits stimulate effector 

molecules, which include adenylyl and guanylyl cyclases (AC and GC), 

phosphodiesterases, phospholipase A2 (PLA2), phospholipase C (PLC) and 

phosphoinositide 3-kinases (PI3Ks), thereby activating or inhibiting the production of 

a variety of second messengers such as 3'-5'-cyclic adenosine monophosphate 

(cAMP), cyclic guanosine monophosphate (cGMP), diacylglycerol (DAG), inositol 

(1,4,5)-trisphosphate (IP3), phosphatidyl inositol (3,4,5)-trisphosphate, arachidonic 

acid and phosphatidic acid, in addition to promoting increases in the intracellular 

concentration of Ca2+ and the opening or closing of a variety of ion channels 
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(Marinissen and Gutkind, 2001). Furthermore, GPCRs may also activate intracellular 

pathways independently of G-proteins, possibly by the regulation of effector 

molecules through novel molecular mechanisms (Marinissen and Gutkind, 2001). 

 

 
 

Figure 1.7 Diversity of GPCRs (Taken from: Marinissen and Gutkind, 2001). Various ligands, including biogenic 

amines, amino acids, ions, lipids, peptides and proteins, activate cytoplasmic and nuclear targets with or without 

heterotrimeric G-proteins, by binding GPCRs on cellular membrane. Such signaling pathways regulate key 

biological functions such as cell proliferation, cell survival and angiogenesis. Abbreviations: DAG, diacylglycerol; 

FSH, follicle-stimulating hormone; GEF, guanine nucleotide exchange factor; LH, leuteinizing hormone; LPA, 

lysophosphatidic acid; PAF, plateletactivating factor; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; 

PLC, phospholipase C; S1P, sphingosine-1-phosphate; TSH, thyroid-stimulating hormone. 

 

The ligand efficacy is defined as the effect of a ligand on the structure and 

biophysical properties of a receptor. Based on their efficacy, natural and synthetic 

ligands are divided into four groups: full agonists – capable of maximal receptor 

stimulation; partial agonists – unable to elicit full activity even at saturating 

concentrations; neutral antagonists – with no effect on signaling activity; and inverse 

agonists – reduce the level of basal activity of the receptor. 

The signal triggered by the exposure of GPCRs to agonists is attenuated by 

desensitization of the receptors, which is a combined consequence of several 

different mechanisms. These mechanisms include the uncoupling of the receptor 
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from heterotrimeric G proteins in response to receptor phosphorylation, the 

internalization of cell surface receptors to intracellular membranous compartments, 

the lysosomal and plasma membrane degradation of receptors, and the down-

regulation of receptor mRNA and protein synthesis (Ferguson, 2001). The time 

course of these processes ranges from seconds (phosphorylation) to minutes 

(endocytosis) and even hours (down-regulation). The outcome of receptor 

desensitization varies from absolute termination of signaling to the attenuation of 

agonist potency and maximal responsiveness and is regulated by multiple factors, 

which include receptor structure and cellular environment (Ferguson, 2001). 

 

 

1.9 PTH receptor 1 
 

The pleiotropic actions of PTH are mediated primarily through the binding and 

activation of the PTH/PTH-related peptide (PTHrP) receptor (PTH1R), which is highly 

expressed in a variety of tissues, with highest expression in the kidney, bone, and 

cartilage (Langub et al., 2001). PTH binds also to a second receptor (PTH2R) with a 

distinct pharmacology (Gensure et al., 2005). Both PTH receptors are the class B G 

protein-coupled receptors (GPCRs), to which the receptors for secretin, calcitonin, 

glucagons and several other peptide hormones also belong. One prominent feature 

of these peptide hormone receptors, which can be distinguished from other classes 

of GPCRs, is their relatively large glycosylated N-terminal extracellular domain (~170 

aa in PTH1R) containing six conserved cysteine residues, as well as by several other 

conserved amino acids that reside throughout the N-terminal domain, the membrane-

embedded helixes, and the connecting loops (Gardella and Jüppner, 2001). 

The complementary DNA (cDNA) encoding the PTH1R was first cloned in 1991 by 

COS-7 expression using an opossum kidney cell cDNA library (Juppner et al., 1991) 

Since then, PTHR1 has been cloned in a number of other species such as, rat 

(Abou-Samra et al., 1992), human (Schipani et al., 1993), mouse (McCuaig et al., 

1994), pig (Smith et al., 1996), zebrafish (Rubin and Jüppner, 1999), as well as rabbit 

(Lu et al., 2001). Human PTH1R has 95% sequence homology with pig and dog, 

90% with rat and mouse and 79% with opossum. The PTH1R gene consists of 2007 

bp mRNA, which contains 14 exons and two transcript variants encoding the same 

protein with 593 amino acids (NCBI Reference Sequence: NM_001184744.1). In 
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addition to bone, kidney and cartilage, PTH1R expression was also found in heart 

and smooth muscle, skin, uterus, placenta, mammary gland, liver, ovary and testis 

(Ureña et al., 1993). 

Like other members of class B GPCRs, PTH1R contains an extended N-terminal 

extracellular domain, a seven hydrophobic helical transmembrane domain (TMDs), 

and an intracellular cytoplasmic domain. The N-terminal domain is glycosylated at 

four asparagine residues clustered near the junction with the first TMD such as N151, 

N161, N166 and N176, at least one of which is required for the expression, ligand 

binding, and signal transduction of the PTH1R (Zhou et al., 2000). Additionally, the 

N-terminal domain contains three disulfide bonds involving six highly conserved 

cysteines, Cys48/Cys117, Cys108/Cys148, and Cys131/Cys170 (Grauschopf et al., 

2000). The C-terminal domain contains several serine residues that undergo 

phosphorylation upon ligand binding (Hodsman et al., 2005). 

 

 

COOH

NH2

 
 

Figure 1.8 Schematic representation of the PTH1R (Taken from: Gensure et al., 2005). The amino acid 

sequence of the PTH1R is represented in single-letter amino acid code in open circles, with the predicted 

locations of the transmembrane domains. Black circles represent amino acid positions for N-linked glycosylation, 
N151, N161, N166 and N176. The inverted triangle indicates the cleavage site for the 23-amino acid signal 

sequence. 

 

The essential role of the PTH1R in endochondral bone development is underscored 

by the diseases such as Blomstrand’s lethal chondrodysplasia, Jansen’s 
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metaphyseal chondrodysplasia and enchondromatosis that are caused by mutations 

of this protein. Blomstrand’s lethal chondrodysplasia is caused by inactivating 

mutations in the PTH1R and characterized by prenatal lethality, premature and 

abnormal bone mineralization and ossification, and shortened limbs. Defects in tooth 

and mammary gland development were also noted as a result of the disease.  

Jansen’s metaphyseal chondrodysplasia is a rare autosomal dominant disorder 

characterized by short-limbed dwarfism secondary to severe abnormalities of the 

growth plate, and hypercalcemia. Three different heterozygous PTH1R mutations 

have been found to be responsible for the disease, which at cellular level lead to 

increases in basal cAMP. Enchondromas are common benign cartilage tumors of 

bone that can occur as solitary lesions or, in enchondromatosis, as multiple lesions. 

The heterozygous missense mutation identified in the PTH1R is responsible for the 

disorder (Schipani and Provot, 2003). 

 

 
 

Figure 1.9 PTH1R related diseases (Taken from: Schipani and Provot, 2003). The PTH1R-mutations identified 

are represented in patients with Jansen’s metaphyseal chondrodysplasia (in green), Blomstrand’s lethal 

chondrodysplasia (in red), and enchondromatosis (in yellow). 
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1.10 PTH and PTH1R interactions  
 

The general mechanism of PTH-PTH1R interaction has been deduced from an 

extensive series of studies including mutational analysis of both receptor and the 

ligand, use of ligand and/or receptors chimeras, as well photo-affinity cross-linking of 

ligands using photoreactive groups. These analyses suggested a simple “two-site 

model” of PTH-PTH1R interaction that involves two principal components: (1) an 

interaction between the C-terminal region of PTH (1–34) and the N-terminal domain 

of the receptor, which contributes predominantly to binding affinity; and (2) an 

interaction between the N-terminal domain of the ligand and the juxtamembrane 

region of the receptor comprised of the seven TMDs and their connecting intra- and 

extracellular loops, which contributes to receptor activation (Figure 1.8) (Gardella and 

Jüppner, 2001). 

 

     
 

 

Figure 1.10 Representation of the “two-site model” and photoaffinity cross-linking of PTH to the PTH1R 

(Taken from: Gensure et al., 2005). A:  The interaction between PTH (1–34) and PTH1R involves two principal 

mechanistic components: (1) an interaction between the C-terminal domain of PTH(1–34), represented by 

residues 17–31, and the N-terminal extracellular domain of the receptor; and (2) an interaction between the N-

terminal domain of PTH, represented by residues 1–9, and the juxtamembrane region of the receptor. These two 

components of the interaction are postulated to contribute predominantly to binding affinity and receptor 

activation, respectively. B:  A representation of the ligand-receptor through photoaffinity cross-linking is shown. 

The ligand is represented by the heavy filled bar. Segments and defined residues of contact in the receptor are 

indicated by open boxes and open circles, respectively. 

 

 

 

A B 
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1.11 PTH1R signaling 
 

Like all members of the Family B receptors, the PTH1R is coupled to signal effector 

molecules by heterotrimeric G proteins. Studies of the signaling  properties of clonal 

PTH1Rs expressed in heterologous cell lines, such as LLC-PK1, COS-7, or HEK 293 

kidney cells or CHO cells, have revealed that this single receptor type is capable of 

activating multiple signaling pathways, including adenylyl cyclase (AC), 

phospholipase C (PLC), phospholipase D (PLD), protein kinase C (PKC), and 

mitogen-activated protein kinase (MAPK) as well as of increasing the concentration 

of cytoplasmic Ca2+ (Hodsman et al., 2005). 

Following ligand binding, the PTH1R receptor can activate AC through the action of 

Gs (Gαs), and PLC through Gq (Gαq). Activated AC then stimulates the formation of 

3,5-adenosine monophosphate (cAMP), which in turn binds to the regulatory subunit 

of the enzyme PKA that releases the active catalytic subunit of the enzyme. On the 

other hand, activated PLC cleaves phosphatidylinositol (4,5)-bisphosphate (PIP2) 

into diacylglycerol (DAG) and inositol (1,4,5)-trisphosphate (IP3). Subsequently, DAG 

activates PKC, and IP3 results in increased intracellular free Ca2+, which then 

promotes PKC translocation to the plasma membrane, and then activation by DAG 

(Schipani and Provot, 2003). 
 

PTH

PTH

PTH

PTH

 
Figure 1.11 Gs (G αs) and Gq (G αq) transduction signaling pathways mediated by PTH1R  (Taken from: 

Vilardaga et al., 2011). Up on ligand binding, PTH1R undergoes conformational changes, which induce its 

coupling with heterotrimeric G proteins (Gαβγ), and catalyzes the exchange of GDP for GTP on the a-subunit. 

This event triggers the dissociation the α unit from βγ dimer. GS activates AC leading to cAMP synthesis, which in 

turn activates PKA. Gq activates PLC, which cleaves PIP2 into DAG and IP3. DAG then activates PKC and IP3 

diffuses through the cytosol and activates IP3-gated Ca2+ channels in the membranes of the endoplasmic 

reticulum, causing the release of stored Ca2+ into the cytosol. The increase of cytosolic Ca2+ promotes PKC 

translocation to the plasma membrane, and then activation by DAG 
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The N-terminal truncated PTH peptides have been shown to activate PKC(s) in cells 

expressing endogenous or transfected recombinant PTH1Rs (Hodsman et al., 2005). 

On the other hand, studies of cells stably expressing the transfected PTH1R indicate 

that activation of PLC, which can lead to activation of PKC via generation of IP3 and 

DAG, requires the intact N terminus of the ligand (Takasu et al., 1999). These 

findings indicate that PTH1R can activate PKC(s) via a PLC-independent pathway, 

which is triggered by C-terminal ligand determinants, such as the residues 29–32 of 

PTH (Jouishomme et al., 1994). Indeed, PTH1R has been shown to activate PLD in 

the distal tubule cells of the kidney, whereas in proximal tubule cells it activated PLC 

(Friedman et al., 1999). Moreover, PTH (1–31) found unable to activate PKC in some 

systems, could nevertheless activate PKC in others (Hodsman et al., 2005). Thus, 

PTH1R might recognize different portions of the ligand as activation determinants for 

various phospholipases, depending on the cellular milieu (Whitfield et al., 2001). 

Moreover, PTH1R can also couple to other subtypes of G proteins, including Gi/o, 

which can inhibit adenylyl cyclase (Mahon et al., 2006), and Ga12/13 which activates 

phospholipase D and RhoA in osteosarcoma cells challenged with PTH (Singh et al., 

2005). 

As with most GPCRs, the activation of PTH1R leads to the phosphorylation of its 

cytoplasmic tail by G protein-coupled receptor kinases (GRKs), which then facilitate 

the association with ß-arrestin proteins, resulting in internalization and 

desensitization of the receptor (Malecz et al., 1998; Tawfeek et al., 2002). Mapping of 

the phosphorylation acceptor sites of the opossum PTH1R receptor using 

mutagenesis approaches revealed that six serine residues at positions 483, 485, 

486, 489, 495, and 498 are the sites for PTH-stimulated receptor phosphorylation, 

with the serine residue at position 489 being required for phosphorylation (Tawfeek et 

al., 2002). These residues correspond to S489, S491, S492, S495, S501, and S504 

of the rat PTH1R (Tawfeek et al., 2002). Albeit the importance of the phosphorylation 

in PTH1R receptor internalization, it appears to be cell line and/or receptor species 

dependent, whether receptor internalization requires phosphorylation or not (Malecz 

et al., 1998; Tawfeek et al., 2002). 

Arrestins are cytoplasmic proteins that bind to phosphorylated GPCRs and uncouple 

them from their cognate G proteins; thereby inactivate agonist-mediated G protein-

signaling (Wang et al., 2009). ß-Arrestin1 and ß-arrestin2 are widely expressed and 

play a pivotal role in regulation of the functions of many GPCRs, including the 
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PTH1R (Malecz et al., 1998; Ferrari et al., 1999). The interaction of ß-arrestin1 or ß-

arrestin2 with phosphorylated PTH1R is considered to be the likely mechanism of 

desensitization of the PTH1R-activated responses (Tawfeek et al., 2002). The ß-

arrestins serve as an adaptor molecule that targets activated and phosphorylated 

receptors to clathrin-coated pits (Ferguson et al., 1996; Goodman et al., 1996). 

 

 

 

Figure 1.12 Schematic overview of ß-Arrestins associ ated with many GPCRs (Taken from: Hall and 

Lefkowitz, 2002). ß-Arrestins interact with GPCRs, uncoupling them from G-protein and also acting as scaffold 

proteins to facilitate multiple interactions between GPCRs and cytoplasmic proteins. 

 

ß-Arrestin-PTH1R interactions lead to internalization (endocytosis) of the receptors 

which are either destined for degradation, resulting in receptor down-regulation (Tian 

et al., 1994; Ureña et al., 1994b; Massry and Smogorzewski, 1998), or recycled back 

to cell surface, leading to receptor resensitization (Chauvin et al., 2002). 

In addition, ß-arrestin-associated GPCRs may also initiate activation of MAPK 

pathways, independent of classical G protein-mediated second messenger systems 

(Hall and Lefkowitz, 2002). 

Na+/H+ exchange regulatory factor 1 (NHERF1), also known as ezrin-radixin-moesin-

binding phosphoprotein-50 (EBP50), is a cytoplasmic scaffolding protein that recruits 

various cellular receptors, ion transporters, and other proteins to the plasma 

membrane of epithelia and other cells (Wang et al., 2009). NHERF1 contains 2 

tandem N-terminal postsynaptic density 95/discs large/ zona occludens (PDZ) 

domains and a C-terminal merlin-ezrin-radixinmoesin (MERM) domain, through which 

it connects to actin bundles (Vilardaga et al., 2011). The PTHR harbors a C-terminal 

PDZ-like ligand domain that recognizes the PDZ1 domain of NHERF1 and the PDZ2 

domain of NHERF2, leading to PTH1R binding to these domains (Songyang et al., 

1997; Mahon et al., 2002; Mahon and Segre, 2004). NHERF1-null mice exhibited 

decreased phosphate reabsorption and elevated urinary phosphate excretion 
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because of reduced apical membrane tethering of the Npt2, the major hormone-

regulated sodium-phosphate cotransporter in the renal proximal tubule. Although 

serum calcium level was unchanged, increased excretion secondary to complexation 

with phosphate was observed. Moreover, reduced bone mineralization was found 

(Shenolikar et al., 2002). On the other hand, humans with NHERF1 mutations 

present with renal stones or bone demineralization (Karim et al., 2008). These 

findings underscore the primary role of NHERF1 in associating with and modulating 

PTH1R activity. 

NHERF1 promotes membrane retention of the PTH1R by inhibiting receptor 

endocytosis in several cell models both endogenously and exogenously expressing 

NHERF1, and for this effect both intact NHERF1 PDZ and MERM domains are 

essential (Wang et al., 2007). Moreover, the presence of NHERF1 suppresses 

PTH1R desensitization, and inhibiting NHERF1 restores receptor desensitization. 

This action appears to be due to preventing ß-arrestin2 from binding to the PTH1R, 

rather than altered receptor phosphorylation (Wang et al., 2009). Altogether, these 

actions may avert PTH resistance and downregulation of the PTH1R. In addition, 

NHERF2 can switch PTH1R signaling from AC to PLC by assembling a signaling 

complex that incorporates the PTHR, phospholipase C, and actin filaments (Mahon 

et al., 2002). 

 

 

1.12 PTH2R 
 

The PTH2R was first identified in 1995 through homology screening of a human brain 

cDNA library for other members of the class II GPCR family (Usdin et al., 1995). In 

humans, the PTH2 receptor is abundantly expressed in the brain, and found also in 

pancreas, testis, placenta, and lung. However, it was not detected on northern blots 

of human kidney mRNA or in bone-derived cell lines using RT-PCR (Hoare et al., 

1999). In rats, PTH2 receptor expression was found in a number of discrete nuclei in 

the brain, vasculature, heart, scattered endocrine cells, as well as in pancreas. In the 

rat kidney, it is expressed by an extremely small number of cells, which are near the 

vascular pole of glomeruli (Usdin et al., 1996). Besides rat and human, zebrafish has 

also been reported to possess PTH2R, in addition to its PTH1R and a novel PTH3R 

with high homology to the PTH1R (Gensure et al., 2004). 
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The PTH2R shows 70% amino acid sequence homology and 52% identity to PTH1R. 

The highest amino acid sequence homology resides within the transmembrane 

domain, while it is as low as 14% within the C-terminal domain (Bisello et al., 2004). 

Like the PTH1R, the PTH2R exhibits dual signaling in response to PTH (1–34), 

coupling strongly to stimulation of cAMP accumulation, and more weakly, in a cell-

specific manner to increases in intracellular calcium concentration (Usdin et al., 

2002). In rats, PTH was reported to weakly stimulate cAMP accumulation via the 

PTH2R receptor, while no considerable increase in intracellular calcium was 

detectable (Goold et al., 2001). 

The PTH2 receptor is also activated by tuberoinfundibular peptide of 39 residues 

(TIP39), a secreted peptide that is highly expressed in testis and, at lower levels, in 

various central nervous system cells, liver, and kidney (John et al., 2002). 

Conversely, in spite of a binding with moderate affinity, TIP 39 does not activate 

PTH1R (Hoare et al., 2000). 

TIP39 appears to be distantly related to PTH and PTHrP. In most assays, the first 34 

residues exhibit full activity, eight of which are identical in PTH and PTHrP from all 

species, and 11 are identical in mammalian peptides (Usdin, 2000). Residues at a 

number of additional positions are similar in size, charge, or hydrophobicity. TIP39 

contains three of the residues shared by all mammalian PTH and PTHrP species and 

another five residues that are present in most of these peptides. If similar residues 

are considered, the homology between TIP39 and PTH or PTHrP increases to almost 

50% (Usdin et al., 2000). 

 

 
 

Figure 1.13 Sequence alignment of bTIP39 with PTH and PTHrP (Taken from: Usdin, 2000). The currently 

known sequence of bTIP39 is aligned to the N-terminal residues of PTH and PTHrP from several species. 

Colored backgrounds are used to indicate residues that are identical in TIP39 and PTH or PTHrP, and colored 

letters are used to indicate residues with similar properties. Numbering refers to residues of mature PTH. 
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The activation of human PTH2R via TIP39 triggers both cAMP and intracellular Ca2+ 

signaling, but in a different manner other than via PTH (Bisello et al., 2004). While 

PTH stimulation of cAMP formation is brief and rapidly resensitizes, the response to 

TIP39 is sustained and remains partly desensitized for a prolonged period (Bisello et 

al., 2004). 

 

 

1.13 Aim of the study 
 
PTH1R has been exclusively studied in bone and kidney cells, however not yet in 

PDL cells.  In order to elevate the actions of PTH on PDL tissue regeneration, it is 

crucial to understand the physiology of PTH1R in PDL cells. In light of this, we aimed 

to clarify the characteristics of PTH1R in PDL cells and compare its characteristics to 

those of MG63 and HEK293 cells. 

The objectives of the present study were to: 

1. Detect and quantify PTH1R mRNA in PDL, MG63 and HEK293 cells 

2. Detect and localize PTH1R in PDL tissue in vivo as well as in cultured PDL cells 

3. Screen for a PTH1R-positive subpopulation in PDL, MG63 and HEK293cells 

4. Study the effect of dexamethason, 1,25-dihydroxyvitamin D3  and hPTH(1-34) on 

the expression level of PTH1R mRNA 

5. Reveal the signaling pathways involved in mediating the actions of hPTH (1-34) on 

PDL, MG63 and HEK293 cells 

6. Study the effect of intermittent hPTH (1-34) on human periodontal ligament cells 

transplanted into immunodeficient nude mice 
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2 MATERIALS AND METHODS 

2.1 Materials 
 

2.1.1 Equipment 
 

Equipment Supplier  

Autoclave Model Varioklav 25T H+P Labortechnik GmbH 

Axioskope 2 Microscope Carl Zeiss AG 

Centrifuge 5804 R Eppendorf 

Centrifuge 5415 R Eppendorf 

ChemiDoc™ XRS Bio-Rad Laboratories GmbH  

TCS SP2 Laser Scanning Spectral Confocal 

Microscope  
Leica Microsystems 

Dounce Homogenizer 1 ml Tissue Grinder Wheaton 

Flow Cytometer LSR II BD Bioscience 

Freezer (-20°C)  Liebherr Premium 

Freezer (-80°C)  Revco 

Fridge (4°C)  Liebherr Premium 

Fluorescence Microscope Axio Imager A1 Carl Zeiss AG 

FugeOne™ Microcentrifuge Starlab Groupe 

Haemocytometer Neubauer improved Brand GmbH + CO KG 

iCycler iQ™ Real-Time PCR Detection 

System 
Bio-Rad Laboratories GmbH 

Incubator (cell culture) Thermo Electronic 

Laboport Vacuum Pump KNF Neuberger GmbH 

Light Microscope Axiovert 25 Carl Zeiss AG 

Magnetic Stirrers MR 3001 Heidolph Instruments GmbH & Co. KG 

Microwave Siemens 

MS2 Minishaker IKA®-Werke GmbH & Co 

Multi-channel Pipettes Eppendorf 

Multipette® plus Eppendorf 

Nanodrop ND-1000 Peqlab Biotechnologie GmbH 

Paraffin Oven  Memmert GmbH & Co. KG 
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pH-meter 
Wissenschaftlich-Technische Werkstätten 

GmbH 

Pipetboy Eppendorf 

Pipetman Gilson 

PowerPac BasicTM Power Supply Bio-Rad Laboratories GmbH 

PowerPac HCTM Power Supply Bio-Rad Laboratories GmbH 

PowerWave X UV-Vis Plate Reader BioTek Instruments, Inc. 

Precision Weigher A 120 S Sartorius AG 

Mini-PROTEAN Tetra Cell, Bio-Rad Laboratories GmbH 

PTC-200 DNA Engine GMI 

Rocker PMR-30 Grant-bio Cambridgeshire 

Sonopuls HD 2070 Bandelin Electronic  GmbH & Co. KG  

Sterile Workbench HeraSafe Heraeus-Christ 

Sub-Cell® GT Agarose Gel Electrophoresis 

Systems 
Bio-Rad Laboratories GmbH 

Thermo Block Biometra Biomedizinische Analytik GmbH 

Trans-Blot SD Semi-Dry Transfer Cell Bio-Rad Laboratories GmbH 

Wallac WIZARD γ-counter  PerkinElmer  

Water Bath Memmert GmbH & Co. KG 

 

 

2.1.2 Plastic and glassware 
 

Item Supplier 

96-well Flat Bottom Transparent Microplate Greiner Bio-One GmbH 

Adhesive Plate Seals ABgene 

Blot Absorbent Filter Paper Bio-Rad Laboratories GmbH 

Cell Culture Dishes Greiner Bio-One GmbH 

Cell Culture Flasks (T-75/175 cm2) Greiner Bio-One GmbH 

Cell Culture Multiwell Plates (24,12 and 6-well plates) Greiner Bio-One GmbH 

Cover Slips Carl Roth GmbH + Co. KG 

Combitips Plus (2.5 mL/10 ml) Eppendorf 

Cryogenic Vials Nalge Nunc 

Filtertips Starlab 

Gelfoam® Sullivan-Schein 
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Luer Slip Syringes (2 mL/5 ml) Sartorious Stedim Biotech 

Microcentrifuge Tubes (1.5 mL, 2 ml) Eppendorf 

Microscope Cover Glasses (15 mm Ø) Marienfeld GmbH & Co. KG 

Microscope Slides (75x25x1.0 mm) Thermo Scientific 

Filter Papers (Folded Filters) Roth 

Parafilm Pechiney 

PCR Tubes (0.2 ml) Bio-Rad Laboratories GmbH 

Pipette Tips Sarsted AG & Co. 

Polypropylene Tubes (15 ml and 50 ml) Greiner Bio-One GmbH 

Polystyrene Round-Bottom Tubes (5 ml,12x75 mm) BD Bioscience 

Serological Pipettes (5 ml, 10 ml, 25 ml) Corning Incorporated 

Single-Use Filter Unit (0.2 µm) Sartorius Stedim Biotech 

Sterile Filters Millipore 

Test Tube Soda Glass VWR 

 

 

2.1.3 Chemicals 
 

Chemical Specification Supplier 

0.01% Poly L-Lysine  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

0,05 % (w/v) Trypsin 

-EDTA 
 

Invitrogen GmbH 

Karlsruhe, Germany 

 
Forene® 

 
2 vol% isoflurane 

Abbott GmbH & Co. KG 

Wiesbaden, Germany 

30% H2O2 Hydrogen peroxide 
Merck KGaA  

Darmstadt, Germany 

30% Acrylamid/Bis 

Solution 37.5:1 

(2.6% C) 

 
Bio-Rad Laboratories GmbH 

Munich, Germany 

Accutase  
PAA Laboratories GmbH 

Pasching, Austria 

Acetone  
Merck KGaA 

Darmstadt, Germany 
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Agarose Promega 

Madison, WI, USA 

Albumin Standard  
Pierce 

Rockford, USA 

Alizarin Red S 
3,4-Dihydroxy-9,10-dioxo-2-

anthracenesulfonic acid sodium salt 

Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Aprotinin  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

 

APS 

 

Ammonium persulfate 

 

Sigma-Aldrich Chemie GmbH 

Munich, Germany 

β-glycerolphosphate β-glycerolphosphate disodium salt 
Fulka Chemie GmbH 

Buchs, Switzerland 

β-Mercaptoethanol  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Boric acid  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Bromphenol Blue  
Roth GMBH 

Karlsruhe, Germany 

BSA Bovine Serum Albumin 
Roche Diagnostics GmbH 

Mannheim, Germany 

Citric Acid 

Monohydrate 
 

Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Cruz MarkerTM 

Molecular Weight 

Standards 

 
Santa Cruz Biotechnology 

CA, USA 

DAB Diaminobenzidine 
Pierce 

Rockford, USA 

DABCO 
Triethylendiamin, 1,4-

Diazabicyclo[2.2.2]octan 

Roth GMBH 

Karlsruhe, Germany 

DAPI 4',6-diamidino-2-phenylindole 
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

DePeX  
Serva Electrophoresis GmbH 

Heidelberg, Germany 

Dexamethason  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 
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DMEM 

Dulbecco's Modified Eagle Media 

DMEM (1X), liquid - with 

GlutaMAX™ I, Sodium Pyruvate 

Invitrogen GmbH 

Karlsruhe, Germany 

DMSO Dimethyl sulfoxide 
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

DTT Dithiothreitol 
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

EDTA 
Ethylenediamine tetraacetic acid 

Na2-salt 
CalBiochem 

San Diego, CA, USA 

EGTA 

Ethyleneglycol-O, O'-bis(2-

aminoethyl)-N, N, N', N'-tetraacetic 

Acid 

Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Ethanol  
Merck KGaA 

Darmstadt, Germany 

Ethidium bromide Ethidium Bromide (1% solution) 
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

FBS Fetal Bovine Serum 
Invitrogen GmbH 

Karlsruhe, Germany 

GeneRuler™ 

DNA Ladder, Low 

Range 

 
MBI Fermentas GmbH 

 St. Leon-Rot, Germany 

Glycerol  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

H-8, Dihydrochloride 

(H8) 

PKA inhibitor 

Chamical formula: 

C12H15N3O2S · 2HCl 

Calbiochem, Germany 

HCl  
Merck KGaA 

Darmstadt, Germany 

HEPES Buffer 
(4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid ) 

PromoCell GmbH 

Heidelberg, Germany 

Hoechst 33342 Dye  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

IBMX 3-isobutyl-1-methylxanthine 
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

 

 

 

(Octylphenoxy)polyethoxyethanol, 

 

Sigma-Aldrich Chemie GmbH 
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IGEPAL® CA-630 Octylphenyl-polyethylene glycol Munich, Germany 

 

Isopropanol 
 

Merck KGaA 

Darmstadt, Germany 

iQTM SYBR® 

GreenSupermix 
 

Bio-Rad Laboratories GmbH 

Munich, Germany 

Leupeptin  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Light Green SF 

yellowish 
 

Chroma-Gesellschaft Schmidt 

GMBH & CO.  

Münster, Germany 

Mayer's 

haematoxylin 
 

Merck Eurolab AG 

Dietikon, Switzerland 

Methanol  
Merck KGaA 

Darmstadt, Germany 

Mowiol 4-88  
Roth GMBH 

Karlsruhe, Germany 

MOPS 
3-(N-Morpholino)propanesulfonic 

Acid Sodium Salt 

Sigma-Aldrich Chemie GmbH 

Munich, Germany 

NaOH  
Merck KGaA 

Darmstadt, Germany 

Nitrocellulose-

Membran 
 

Bio-Rad Laboratories GmbH 

Munich, Germany 

Non-Fat Dry Milk  
Bio-Rad Laboratories GmbH 

Munich, Germany 

Normal Goat Serum  
Dako 

Glostrup, Denmark 

PBS 

Dulbecco’s PBS (1x) without Ca & 

Mg 

(Phosphate buffered saline) 

PAA Laboratories GmbH 

Pasching, Austria 

PBS Tablets 
 

Phosphate Buffered Saline Tablets 

Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Penicillin / 

Streptomycin 

Penicillin (10000 U/ml) / 

Streptomycin (10 mg/ml) 

PAA Laboratories GmbH 

Pasching, Austria 

Peroxidase 

Substrate Buffer 
 

Thermo Scientific 

Rockford, USA 

Plasmocin™ Plasmocin Prophylactic CAYLA 
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Toulouse, France 

PFA Paraformaldehyde 
Merck KGaA 

Darmstadt, Germany 

PMSF Phenylmethanesulphonyl Fluoride 
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Ponceau S solution 

for electrophoresis 

(0.2 %) 

 
Sevra Electrophoresis GmbH 

Heidelberg, Germany 

Precision Plus 

Protein 

Kaleidoscope 

Standards 

 
Bio-Rad Laboratories GmbH 

Munich, Germany 

Protease Inhibitor 

Cocktail Tablets 
 

Roche Diagnostics GmbH 

Mannheim, Germany 

PVDF-membrane Polyvinylidene fluoride membrane 
Bio-Rad Laboratories GmbH 

Munich, Germany 

RestoreTM Western 

Blot Stripping Buffer 
 

Bio-Rad Laboratories GmbH 

Munich, Germany 

RIPA 

Radioimmunoprecipitation assay 

Composition: 25 mM Tris-HCl pH 

7.6, 150 mM NaCl, 1% NP-40, 1% 

sodium deoxycholate, 0.1% SDS 

Sigma-Aldrich Chemie GmbH 

Munich, Germany 

 

RO-32-0432 

PKC inhibitor  

Chemical formula: C28H28N4O2 · HCl 
Calbiochem, Germany 

Sodium Azide  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Tri-Sodium Citrate 

Dihydrate  
 

Merck KGaA 

Darmstadt, Germany 

SDS Sodium Dodecyl Sulfate 
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Sodium Vanadate  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

TBS 
Tris Buffered Saline (x10) 

20 mM Tris, 500mM NaCl, PH 7.4 

Bio-Rad Laboratories GmbH 

Munich, Germany 

 

TEMED 

 

N,N,N',N'-Tetramethylethylendiamin 

 

Bio-Rad Laboratories GmbH 



Materials and Methods 
 
 

37 

Munich, Germany 

Tris Tris-[hydroxymethyl]amino-methane 
MP Biomedicals 

Illkirch Cedex, France 

0.5M Tris-HCl 

(PH6.8) 
 

Bio-Rad Laboratories GmbH 

Munich, Germany 

1.5M Tris-HCl 

(PH8.8) 
 

Bio-Rad Laboratories GmbH 

Munich, Germany 

Triton X-100  
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Tween 20 
Polyoxyethylene (20) Sorbitan 

Monolaurate 

Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Vitamin C Ascorbic acid 
Sigma-Aldrich Chemie GmbH 

Munich, Germany 

Vitamin D3 
1,25-Hydroxyvitamin D3 

Monohydrate 

Sigma-Aldrich Chemie GmbH 

Munich, Germany 

XEM-200 Xylol Substitute 
Vogel GmbH 

Giessen, Germany 

 

 

2.1.4 Kits 
 

Kit Supplier 

cyclic AMP (Direct) Enzyme Immunometric 

Assay (EIA) Kit 

Enzo Life Sciences GmbH 

Lörrach, Germany 

Fix&Perm Kit 
An Der Grub Bio Research GmbH 

Kaumberg, Austria 

Immuno Pure Metal Enhanced DAB 

Substrate Kit 

Pierce 

Rockford, USA 

iScript TM Select cDNA Synthese Kit 
Bio-Rad Laboratories GmbH 

Munich, Germany 

LIVE/DEAD® Fixable Dead Cell Stain Kit 
Invitrogen GmbH 

Karlsruhe, Germany 

Micro BCA Protein Assay Reagent Kit 
Pierce 

Rockford, USA 

Osteoprotegerin (OPG) ELISA Kit Immundiagnostik AG 
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Bensheim, Germany 

Osteocalcin (Mouse) ELISA Kit 
DRG Instruments GmbH 

Marburg, Germany 

PKC Kinase Activity Assay Kit 
Enzo Life Sciences GmbH 

Lörrach, Germany 

RNeasy Mini Kit 
Qiagen 

Hilden, Germany 

SuperSignal® West Pico Chemiluminescent 

Substrate Kits 

Pierce 

Rockford, USA 

SuperSignal West Femto Chemiluminescent 

Substrate Kits 

Pierce 

Rockford, USA 

 

 

2.1.5 Peptides 
  

Peptide Supplier  

Parathyroid Hormone (Human, 1-34) 
PeptaNova GmbH 

Sandhausen, Germany 

Parathyroid Hormone 1-34 (Human) [125I-

Nle8,18, Tyr34], 10 µCi 

Specific Activity: 81.4 TBq/mmol 

2200 Ci/mmol 

PerkinElmer Life Sciences, Inc. 

 Boston, USA  
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2.1.6 Antibodies 
 

Primary Antibodies 

Antibody  Supplier  Origin  Concentration/Dilution  

ß-Actin  (AC-15)  Mouse 

Anti-human Monoclonal 

Antibody 

Santa Cruz 

Biotechnology 

CA, USA 

Mouse 
100 µg/mL 

 WB: 1:2000 

Parathyroid Hormone 

Receptor 1 

Mouse Anti-human 

Monoclonal Antibody 

[3D1.1] 

Santa Cruz 

Biotechnology 

CA, USA 

Mouse 

Epitope: 

Amino acids 

155-169 

200 µg/mL 

IF: 1:50 

ICC:1:50 

IHC:1:20 

FC: 5µl for 1x106 cells 

Parathyroid Hormone 

Receptor1 

Mouse Anti-human 

Monoclonal antibody 

[3D1.1] 

Abcam 

Cambridge, UK 

Mouse 

Epitope: 

Amino acids 

146-169 

200 µg/mL 

IF: 1:50 

ICC:1:50 

IHC:1:20 

FC: 5µl for 1x106 cells 

Normal Mouse IgG 

Santa Cruz 

Biotechnology 

CA, USA 

Mouse 

 

200 µg/0.5mL 

FC: 5µl for 1x106 cells 

Alkaline Phosphatase 

Rabbit Anti-human 

polyclonal antibody 

Quartett GmbH  

Berlin, Germany 
Rabbit Ready to use 

Osteocalcin Rabbit Anti-

human polyclonal 

antibody  

Abcam 

Cambridge, UK 
Rabbit IHC:1:50 

Osteopontin Rabbit Anti-

human polyclonal 

antibody 

IBL International 

GmbH 

Hamburg, 

Germany 

Rabbit IHC:1:100 

Anti-Nuclei, clone 235-1 

Monoclonal Antibody 

Millipore GmbH 

Schwalbach/Ts., 

Germany 

Mouse IHC:1:20 

Goat polyclonal 

Secondary Antibody to 

Mouse IgG - Fc 

Abcam 

Cambridge, UK 
Goat IHC:1:200 
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Secondary Antibodies 

Antibody  Supplier  Origin  Concentration/Dilution   

Goat Anti-Mouse 

IgG HRP 

Santa Cruz 

Biotechnology 

CA, USA 

Goat 
200 µg/0.5mL 

WB: 1:1000 

Goat Anti-mous 

Dako EnVision®+ 

System-HRP (DAB) 

Dako GmbH 

Hamburg, Germany 
Goat Ready to use  

Goat Anti-rabit 

Dako EnVision®+ 

System-HRP (DAB) 

Dako GmbH 

Hamburg, Germany 
Goat Ready to use 

Texas Red®-X 

Goat Anti-mouse 

IgG (H+L) 

Invitrogen GmbH 

Karlsruhe, Germany 
Goat 

2 mg/mL 

IF: 1:500 

Alexa Fluor® 647 

goat anti-mouse 

IgG (H+L) highly 

cross-adsorbed 

Invitrogen GmbH 

Karlsruhe, Germany 

Goat 

 

2 mg/mL 

FC: 1:250 

 

 

IF: Immunofluorescence ; ICC: Immunocytochemistry ;  IHC: Immunohistochemistry ; 

WB: Western blotting; FC: Flow cytometry 

 

 

2.1.7 Oligonucleotides 
 

Gene Sequence (5’ →3’) 
β-actin CATGGATGATGATATCGCCGCG           (for) 

ACATGATCTGGGTCATCTTCTCG          (rev) 
 ALP GTGGAAGGAGGCAGAATTGACCA        (for) 
AGGCCCATTGCCATACAGGATGG        (rev) 
 PTH1R GGAATCAGACAAGGGATGGACATC      (for) 
TCGGTAGGCATGGCCTTTGTGATT       (rev) 
 TGF-ß1 GAGCCCTGGACACCAACTAT                 (for) 
GACCTTGCTGTACTGCGTGT                 (rev) 

Ocal ATGAGAGCCCTCACACTCCTCG            (for) 
GTCAGCCAACTCGTCACAGTCC            (rev) 

BMP-4 CCTGGTAACCGAATGCTGATGGTCG    (for) 
AGACTGAAGCCGGTAAAGATCCCGC    (rev) 

BMPR-1a GCTTCATGGCACTGGGATGAAATCA     (for) 
CGACAACATTCTATTGTCCGGCGTA     (rev) 
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BMPR-2 TGCGGCTGCTTCGCAGAATCAAGAA    (for) 
CCATTCTGAATTGAGGGAGGAGTGG    (rev) 

Cyclin D1 AGCTCCTGTGCTGCGAAGTGGAA         (for) 
AGTGTTCAATGAAATCGTGCGGGG       (rev) 

BMPR-1b AGCAAGCCTGCCATAAGTGAGAAGC    (for) 
ACAGGCAACCCAGAGTCATCCTCTT     (rev) 

Integrin A6 GAGATGGAGAAGTTGGAGGTGCA         (for) 
CGATCAAGGTCCATGTTTCCAGCA        (rev) 

Integrin B4 CTATGAGGCTGATGGCGCCAAC            (for) 
GCAGCTCCACGATGTTGGACGA            (rev) 
 BMP-2 CTCGGCCTTGCCCGACACTGA              (for) 
TAAGAAGCACGCGGGGACACGT           (rev) 

 

 

 

2.1.8 Software 
 

GraphPad PRISM™ 4.0    GraphPad Software, Inc. 

San Diego, CA, USA 

FlowJo 7.2.5     Treestar 

Ashland, OR, USA 

 

Quantity One software   Bio-Rad Laboratories GmbH,  

Munich, Germany 

KC4 software   BioTek Instruments, Inc. 

Bad Friedrichshall, Germany 
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2.2 Methods 
 

2.2.1 Primary cells  
 

PDL Cells 

Throught out the whole project, fifth passage periodontal ligament (PDL) cells of six 

different human donors (12-14 years of age) that showed no clinical signs of 

periodontitis were studied. The PDL cells were isolated from the middle third of the 

roots of premolars from teeth that had been extracted for orthodontic reasons, with 

informed parental consent and following an approved protocol of the ethics 

committee of the University of Bonn (Reference number 029\08). 

After extraction, the teeth were washed with PBS and the middle third of the 

periodontal ligament was scraped off using a sterile scalpel (Figure 2.1). The apical 

and gingival parts of the periodontal ligament were discarded to avoid contamination 

with cell types other than PDL fibroblasts. The scraped pieces were cultured as 

described in section 2.2.3 Cell Culture. The cells migrating out of the explants were 

splitted after reaching confluence. 

 

     
 

Figure 2.1 Isolation of PDL cells.  PDL cells were mechanically isolated from an extracted tooth and cultured in 

Dulbecco's Modified Eagle Media (DMEM) supplemented with 10% FBS and 1% of an antibiotics mixture of 

Penicillin / Streptomycin. The cell culture was maintained at 37°C in an atmosphere of 100% humidity, 95% air, 

and 5% CO2. 
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2.2.2 Cell lines  
 

MG63 Cell line 

MG63 cells, a human osteosarcoma cell line, were purchased from European 

Collections of Cell Cultures (ECACC) (Now: Health Protection Agency). The cells 

were originally obtained from American Type Culture Collection (ATCC) with catalog 

number CRL-1427TM. 

 

HEK293 Cell line 

Human Embryonic Kidney 293 cells, referred to as HEK293 cells were generated by 

transformation of human embryonic kidney cell cultures. In this study, HEK293 T cell 

line was used which was a kindly gift from Prof. Dr. Sven Burgdorf (Life & Medical 

Sciences Institute, Bonn, Germany). HEK293T is an important variant of HEK293 cell 

line and contains the SV40 Large T-antigen, which allows for substantial replication 

of transfected plasmids containing the SV40 promoter by the T-antigen. 

 

 

2.2.3 Cell Culture 
 

Thawing of cells 

The cell lines frozen in cryovials were immersed immediately into a 37°C water bath 

until they were completely thawed and the contents were transferred to T-75 flasks 

containing culture medium. The cells were allowed to attach for 24 h prior to a 

change of the medium. 

 

Cell culture conditions 

PDL, MG63 and HEK293 cells were cultured in Dulbecco's Modified Eagle Media 

(DMEM) supplemented with 10% FBS and 1% of an antibiotics mixture of Penicillin / 

Streptomycin. The cell culture was maintained at 37°C in an atmosphere of 100% 

humidity, 95% air, and 5% CO2.  For different purposes, cells were seeded 

respectively in 10 cm petri dishes, T-75, 175 cm2 flasks, as well as 6-well, 12-well, 

24-well plates. 
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Splitting of cells 

Cells were trypsinized upon reaching a confluency of about 60-70%. For seeding and 

passaging, the medium was removed and the cells were washed once with PBS. 

Then, Trypsin / EDTA (2 ml for 10 cm dishes/T-75 flask, 500 µl for 6-well plates and 

200 µl for 24-well plates) was added and incubated at 37°C for 3-5 min. After slightly 

rocking, detached cells were resuspended in a three fold excess of growth media and 

separated to single cell level via pipetting in a sterile 50 ml Falcon tube. The cell 

suspension was then centrifuged at 500xg for 5 min and the supernatant was 

discarded carefully without disturbing the cell pellet. The cells were then counted with 

a hemocytometer (Hemocytometer Neubauer) according to manufacturer’s 

instructions after resupension in 1 ml PBS. Appropriate numbers of resuspended 

cells were used for seeding new dishes and plates. Cell growth was observed with an 

inverted microscope, Axiovert 25. 

 

Cell storage 

Cells were detached using Trypsin/EDTA solution, the contents was transferred into 

a 50 ml Falcon tube and centrifuged at 500xg for 5 min to remove the medium. The 

pellet was resuspended in the cell freezing media and dispensed into cryovials 

(1x106cells/ml). The cryovials were allowed to freeze at -20°C for 2 h and then at -

80°C overnight. The cells were transferred to liqui d nitrogen for long-term storage. 

 

Cell counting  

The cells were counted with a Neubauer Hemocytometer. 0.2 ml of the cell 

suspension was diluted in 0.2 ml of 0.1% Trypan blue in PBS (w/v). Subsequently, 10 

µl of well resuspended cell suspension was pipetted into Neubauer counting chamber 

and counted microscopically. Trypan blue is a dye that stains dead cells, while the 

live cells remain unstained. The total number of cells in the four marked squares 

(Figure 2.2) was counted. 

A hemocytometer consists of 2 chambers, each of which is divided into 9 squares 

with a surface area of 1.0 mm2. A cover glass is supported 0.1 mm over these 

squares so that the total volume over each square is 0.1 mm3 (1.0 mm2 x 0.1 mm) or 
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10-4 cm3. Since 1 ml is equivalent to 1 cm3, the cell concentration per ml is the 

average count per square x dilution factor x 104. 

  

      

                   

Figure 2.2 Counting cells with Neubauer hemocytomet er. Cells stained with trypan blue were loaded onto the 

hemocytometer and the total number of cells in the four 4 squares (pointed in the figure) was counted. The cell 

number was calculated according to the following formula. Cells per ml = the average count per square x the 

dilution factor x 104. 

 

 

2.2.4 Stimulation of PDL cells  
 

For the functional studies, PDL cells of fifth passage from three donors were seeded 

in 24-well plates and cultured to confluency in DMEM supplemented with 10% FBS 

and 1% of an antibiotics mixture of Pen/Strep at 37°C with 5% CO 2.  For each donor, 

at any given concentration of the stimulant, duplicate test series were carried out. 

 

hPTH (1-34) 

Confluent PDL cells were treated with 10−8 M human PTH (1-34) [hPTH (1-34)] for 1, 

24 and 48 h within three incubation cycles of 48 h each. For the remaining time, 

experimental media was replaced by media without hPTH (1-34) to mimic an 

intermittent treatment effect. The hPTH (1-34) was diluted in culture medium from a 

10−4 M stock solution that was prepared in ddH2O according to the manufacturer’ 

instructions. 

 

 

 

Count the cells within  

the 4 corner squares 
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Dexamethason 

After reaching confluence, the PDL cells were treated with 10−6 M dexamethason for 

1, 2, 3, 4, 6, 14, 21 d. Dexamethason was prepared by dissolving the powder in 

100% ethanol. For control purposes, cells were treated with the same amount of 

solvent as in the stimulated group. 

 

Vitamin D3 

10−7 M 1,25-dihydroxyvitamin D3, dissolved in 100% ethanol, was applied to the 

confluent PDL cells for 2, 4 and 6 d, respectively. Ethanol-treated cultures served as 

controls. 

 

Inhibition of PKA and PKC 

Confluent PDL cells were cultured in the presence of 10−12 M hPTH (1–34) for 1 h 

and 24 h within a 48 h incubation cycle. For the remaining time, experimental media 

were replaced by tissue culture media without hPTH (1–34). These cycles were 

carried out three times resulting in a total experimental period of 6 days to mimic the 

anabolic effects of intermittent PTH. 1 h prior to treatment with intermittent 10-12 M 

hPTH (1–34) or vehicle, either the PKC inhibitor RO-32-0432 (10-6 M) or the PKA 

inhibitor H8 (10-5 M) was added to the cultures and remained in the medium for the 

entire experimental period. Vehicle-treated cultures for each treatment group and 

cells cultured in the presence of the respective inhibitors but without hPTH (1–34) 

served as controls. At harvest, osteoprotegerin production was determined as 

described in section 2.2.16. 

 

 

2.2.5 RNA isolation 
 

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany) 

following the protocol provided by the manufacturer. The RNA concentration was 

determined by a NanoDrop ND-1000 spectrophotometer. The total RNA was stored 

at -80 °C. 
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2.2.6 cDNA synthesis 
 

1 ug total RNA was reverse transcribed using the iScript TM Selected cDNA Synthese 

kit with oligo(dT)-primers. Buffer and cycling conditions were set according to the 

manufacturer’s instructions: 

 

 

Reaction set up 

Component                   Volume per reaction 

Nuclease-free water                                                Variable 

5x iScript select reaction mix                                   4 µl 

Oligo(dT)20 primer                                                    2 µl 

RNA sample (1 µg total RNA)                                  Variable 

iScript reverse transcriptase                                     1 µl 

------------------                                                  --------------------------- 

Total                                                                          20 µl 

 

The reaction mix was mixed gently and incubated for 90 min at 42°C, followed by a 5 

min incubation step at 85°C to inactivate reverse t ranscriptase. The synthesized 

cDNA was stored at -20°C. 

 

 

2.2.7 Real Time PCR 
 

Differential gene expression was analyzed by real-time PCR with the iCycler iQ™ 

using SYBR® Green as fluorophore. Real time PCR is a technique used to monitor 

the progress of a PCR reaction in real time. At the same time, a relatively small 

amount of PCR product can be quantified by recording the amount of fluorescence 

emission at each cycle produced by a reporter molecule, which increases as the 

reaction proceeds. By plotting the detected fluorescence against the cycle number on 

a linear scale, the amount of DNA present during the exponential phase of the 

reaction can be determined. The cycle at which the fluorescence from a sample 

crosses the threshold is called the cycle threshold, Ct (Figure 2.3). The lower a Ct 

value, the more copies are present in the specific sample. In general, the threshold is 
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set by the user and should be in the linear part of the reaction, but not more than half 

way up the linear part. 

 

Figure 2.3 Real time PCR Graph.  In this Graph, the detected fluorescence is plotted against the cycle number 

on a linear scale. In real time PCR, the instrument measures the cycle number at which the increase in 

fluorescence (and therefore cDNA) is exponential. The exponential phase because it provides the most precise 

and accurate data for quantitation. The Threshold line (orange line) is the level of detection at which a reaction 

reaches a fluorescent intensity above background. The PCR cycle at which the fluorescence crosses the 

threshold is termed as Ct (red circles). 

SYBR® Green binds to the minor groove of the DNA double helix, but not to single 

stranded-DNA molecules, which leads to a substantial enhancement in fluorescence 

based on a change of the absorption characteristics upon DNA-binding. Since it does 

not distinguish between specific and nonspecific PCR products resulting from 

contamination, mispriming and primer-dimer artifacts, an important means of quality 

control is to check that all samples have a similar melting temperature. After real time 

PCR amplification, the cycler was programmed to do a melt curve analysis depicting 

the fluorescence change rate over time as a function of temperature. The melting 

temperature of a DNA double helix depends on its base composition. All PCR 

products for a particular primer pair should have the same melting temperature, 

unless there are nonspecific products. A negative control without template was 

performed to show the lack of intrinsic fluorescence. 

The relative gene expression was assessed by the method developed by M.W Pfaffl 

(Pfaffl, 2001) as shown below (Equation 2.1), with ß-actin serving as the endogenous 

reference gene. 
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Equation 2.1  The mathematical model of relative expression ratio  in real-time PCR . The ratio of a target 

gene is expressed in a sample versus a control in comparison to a reference gene. Etarget  is the real-time PCR 

efficiency of target gene transcript; Eref is the real-time PCR efficiency of a reference gene transcript; ∆CPtarget  is 

the CP deviation of control – sample of the target gene transcript; ∆CPref = CP deviation of control – sample of 

reference gene transcript. The reference gene should be a stable and secure unregulated transcript, e.g. a house- 

keeping gene transcript. For the calculation of Ratio, the individual real-time PCR efficiencies and the CP 

deviation (∆CP) of the investigated transcripts must be known. Real-time PCR efficiencies were calculated, 

according to the formula: E = 10[–1/slope] . 

All primers used, unless specified otherwise, were self-designed and evaluated for 

specificity using a web-based primer design and analysis tool (NCBI/Primer-Blast 

program, http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The efficiencies of all the 

primers were determined by dilution series and the optimal annealing temperature 

was confirmed by performing a gradient PCR.  Finally the end-point PCR products 

were checked on the 2% agarose gel to assure the expected amplicon size and the 

specificity of the PCR. 

The real time PCR was performed using the iQTM SYBR® Green Supermix (Bio-Rad 

Laboratories GmbH, Munich, Germany) according to the manufacturer’s instructions 

as follows: 

Reaction set up 

Component    Volume per reaction 

iQTM SYBR® GreenSupermix   12.5 µl 

Primer mix                                                    0.125 µl 

cDNA template                                             1 µl 

Sterile water                                                 11.75 µl 

-----------------                                   --------------------------- 

Total                                                              25 µl 
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2.2.8 Agarose Gel Electrophoresis of DNA 
 

The separation of DNA fragments was performed using submerged horizontal 2% 

agarose gels. Agarose powder was dissolved in TBE-buffer and boiled in a 

commercial microwave until a clear, transparent solution was obtained. Ethidium 

bromide was added to a final concentration of 0.4 µg/ml. The Mini-Sub Cell GT 

system was assembled following the manufacturer’s instructions. Subsequently, the 

agarose gel was poured into the electrophoresis chamber and allowed to solidify. 

Before loading samples onto the gel, the gel was covered with the electrophoresis 

buffer (1xTBE). The DNA moves towards the anode due to the negatively charged 

phosphate groups. Runs were performed under constant voltage of 60 V to 120 V 

and migration of nucleic acids was monitored. Gels were documented using the 

ChemiDoc™ XRS. The size of the DNA fragments was assessed by comparing their 

size to that of the GeneRuler™ DNA Ladder, Low Range. 

 

TBE-buffer (10x) DNA loading buffer  (10x) 

Tris base 890mM Glycerol 24% (v/v) 

Boric acid 890mM Bromophenol blue spatula tip 

EDTA, pH 8.0 20mM   

 

Table 2.1 Composition of buffers used for agarose g el electrophoresis. 

 

 

2.2.9 Immunocytohistochemistry  
 

Tissue staining 

For immunohistochemical tissue staining, formalin-fixed and paraffin-embedded 

tissue sections were used. The tissue sections were deparaffinized in xylene, dipped 

in decreasing concentrations of alcohol, and then rehydrated in water. Endogenous 

peroxidase activity was blocked by incubating the slides in a solution of 700 µl H2O2 

(30%) in 70 ml methanol for 10 min. To unmask the antigen, the sections were 

immersed in 10 mM citrate buffer (pH 9.0) and heated to 80°C in an ovan for 30 min. 

Blocking was done with 4 % BSA/TBS for 30 min at RT. After an overnight incubation 

with primary anti-PTH1R mouse monoclonal antibody diluted 1:50 in 1% BSA/TBS in 
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a humidified chamber at 4°C, the slides were washed  with TBS buffer for 10 min. 

Then, the HRP-conjugated secondary antibody (Dako, Hamburg, Germany) was 

applied to each specimen and incubated for 1 h at RT. After washing 10 min with 

TBS, freshly prepared DAB substrate was added to the slides until a suitable staining 

developed. The sections were rinsed with water and counterstained with Mayer's 

haematoxylin. The sections were rinsed again in water and dehydrated by rinsing the 

sections in 100% ethanol and XEM-200, respectively twice for 2 min each. The 

specimens were mounted with DePex and examined under an Axioskope 2 

Microscope. Negative controls were included in each experiment to verify antibody 

specificity, by omitting the primary antibody. 

 

Immunofluorescence staining of cells 

PDL, MG63 and HEK293 cells were cultured on glass coverslips (Marienfeld GmbH & 

Co. KG, Lauda - Kölnigshofen, Germany) placed in 12-well plates and allowed to 

grow until 60-70% confluence at 37°C with 5% CO 2. After removal of the culture 

medium, cells were washed once with PBS and fixed with 500µl acetone for 10 min 

at -20°C. The acetone was removed and the coverslip s were washed with PBS prior 

to the antigen retrieval step. 500 µl of 10 mM citrate buffer (PH 9.0) was added to 

each well and the plate was heated for 30 min at 80°C in an incubator, followed by a 

washing step with PBS. Blocking was performed by incubating the cells with 1% BSA 

in PBS for 30 min at RT. Subsequently, the anti-PTH1R mouse monoclonal primary 

antibody (Abcam, Cambridge, UK) which was diluted 1:50 in 1% BSA, was applied to 

the specimens at 4°C over night. Afterwards, the ce lls were washed for three times 

with PBS for 5 min each, and subjected to the TexRed-conjugated secondary goat 

anti-mouse antibody (Invitrogen GmbH, Karlsruhe, Germany) that was diluted 1:500 

in 1% BSA for 1 h at RT.  After washing with PBS three times for 5 min each, cell 

nuclei were counter stained with DAPI diluted 1:5000 in ddH2O from the stock 

solution (1 mg/ml). Prior to mounting with 15 µl Mowiol, the specimens were washed 

with PBS and rinsined briefly in ddH2O. Stained cells were then examined with a 

Leica TCS SP2 Laser Scanning Spectral Confocal Microscope. Negative controls 

were included in each experiment to verify antibody specificity, by omitting the 

primary antibody. 
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Conventional DAB  staining of cells  

PDL, MG63 and HEK293 cells were cultured on glass cover slips (Carl Roth GmbH + 

Co. KG, Karlsruhe, Germany) to 60-70% confluency at 37°C with 5% CO 2. The cells 

were then fixed with 4% paraformaldehyde (PFA) in PBS for 10 min at RT after 

washing with PBS. The endogenous peroxidase and non-specific antibody binding 

sites were blocked by incubating the specimen in 30% H2O2 in methanol for 10 min 

and 10% normal goat serum 30 min at RT, respectively. After each step, the 

specimens were washed with TBS for 10 min. Then the cells were exposed for 1 h to 

the primary anti-PTH1R mouse monoclonal antibody (Abcam, Cambridge, UK) 

diluted 1:50 in 1% BSA/TBS. After three washes in TBS, each for 5 min, a 

peroxidase coupled secondary anti-mouse antibody (DAKO EnVision+ System- HRP 

Labelled Polymer, DAKO, Denmark) was applied for 1 h at RT. Excessive antibody 

was removed by washing the cells three times with TBS (each time 5 min). The 

freshly prepared 3,3'-diaminobenzidine substrate (DAB) diluted 1:10 in Peroxidise 

Substrate Buffer was added and incubated for 10 min at RT. The cells were then 

counterstained 5 sec in Mayer's haematoxylin solution diluted 1:5 in ddH2O. After 

washing thoroughly with water, the specimens were rinsed two times each 2 min 

respectively in 100% ethanol and XEM-200 (Xylol substitute). The sections were 

mounted with DePeX and examined under an Axioskope 2 Microscope. Negative 

controls were included in each experiment to verify antibody specificity, by omitting 

the primary antibody. 

 

 

2.2.10 Flow cytometry analysis 
 

The proportion of the PTH1R-positive subpopulations in PDL, MG63 and HEK293 

cells were quantified by flow cytometry analysis. For this purpose, cells were seeded 

in T-75 flasks and allowed to reach confluency. In order to conserve the cell surface 

receptor proteins, accutase was applied for cell detachment. Accordingly, after 

removing the culture medium and washing with PBS, cells were exposed to 5 ml of 

accutase for 10 min at 37°C and centrifuged at 500x g for 5 min. The cell pellet was 

resuspended in 1 ml PBS and cell number was determined with a Neubauer 

Hemocytometer. 
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Cell surface staining 

Approximately 1x106 cells were incubated with 5 µl of primary mouse monoclonal 

antibody raised against PTH1R (Abcam, Cambridge, UK) in 100 µl ice cold PBS with 

1% BSA on ice for 30 min. After three washing steps with cell sorting buffer (1% 

BSA/PBS), cells were incubated on ice for 30 min with Alexa Fluor 647-tagged goat 

anti-mouse secondary antibody (Invitrogen GmbH, Karlsruhe, Germany) which was 

diluted 1:250 in 1% BSA/PBS.  

Because of the high autofluorescence in the short wave length region, the dead 

portion of PDL cells was excluded via the LIVE/DEAD® Fixable Dead Cell Stain Kit 

with near-IR (infra red) dye according to the instructions of the manufacturer. After 

removing the excessive antibody via centrifugation at 500xg at 4°C, the pellet was 

washed again with the cell sorting buffer and resuspended in 1 ml ice cold PBS. 1 µl 

of the freshly reconstituted fluorescent reactive dye was then added to the cell 

suspension and incubated on ice for 30 min in the dark. The cells were washed once 

and resuspended in 500 µl ice cold cell sorting buffer for further analysis. 

The dead cell discrimination of MG63 and HEK293 cells was achieved by Hoechst 

33342 dye. After washing off the excessive antibody, the pellet was resuspended in 

500 µl Hoechst 33342 dye which was diluted 1:20000 in cell sorting buffer from the 

stock solution. The cells were kept in the Hoechst 33342 dye solution on ice in the 

dark until the scheduled time for analysis. The whole procedure was carried out on 

ice in order to minimize cell surface receptor internalization. 

 

Intracellular staining  

After removal of PBS, about 1x106 cells were fixed with reagent A for 15 min and 

subsequently permeabilized with reagent B for 15 min using the Fix&Perm kit. In 

each step cells were exposed to the corresponding reagent for15 min followed by a 

washing step with cell sorting buffer. The same dilution of primary and secondary 

antibody as stated above was applied for 1 h at RT. Finally, the labeled cells were 

resuspended in 500 µl cell sorting buffer and kept in the dark until the scheduled time 

for analysis. 
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Flow cytometry analysis 

The quantitation of the PTH1R-positive proportion of the cells was performed using a 

LSRII flow cytometer. Before acquiring data, the compensation of Alexa Fluor 647 

against near-IR and vice versa was adjusted and the specificity of the staining was 

ensured with a mouse IgG antibody as negative control. The acquired data was 

analyzed by FlowJo 7.2.5. 

 

 

2.2.11 Competitive radioactive binding assay 
 

Performing the experiment 

In order to assess the binding affinity of PTH1R to hPTH (1-34) and the PTH1R 

density, homologous competitive radioactive binding experiments were performed 

using hPTH (1-34) as the cold ligand and its radioactive labeled homologue, human 

[125I]-[Nle8,18, Tyr34]-PTH (1-34) (PerkinElmer Life Sciences, Inc., Boston, USA), as 

the hot ligand. 

For this assay, PDL, MG63 and HEK293 cells were seeded in 24-well plates and 

grown to confluence at 37°C with 5% CO 2. Prior to the assay, the cells were 

subjected to whole cell binding buffer (DMEM supplemented with 5 % FBS and 0.5 % 

BSA) for 1 h. After removing the whole cell binding buffer, approximately 40,000cpm 

[125I]-[Nle8,18, Tyr34]-hPTH (1-34) and 12 concentrations of hPTH (1-34) spanning 

about six orders of magnitude (10-4.5,10-5,10-5.5,10-6,10-6.5,10-7,10-7.5,10-8,10-8.5,10-9,10-

9.5, and 10-10 M), each prepared in a 7-fold concentrated solution in 30 µl binding 

buffer, were added to 150 µl binding buffer in each well and incubated at RT for 90 

min with gentle swirling. The final volume in each well was 210 µl. The unbound 

ligand was removed by washing the cells three times with 0.5 ml ice-cold PBS. The 

cells were then lysed by addition of 0.5 ml 1 N NaOH and the lysate was measured 

for 125I content in a Wallac WIZARD γ-counter. 
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Analyzing homologous competitive binding data 

Nonlinear regression analysis of the data was performed using GraphPad PRISM™ 

4.0). This program fits the data to the following equation and determines the inhibitory 

concentration 50% (IC50): 

 

]log[IClog[D] 50101
c)Nonspecifi(Total

cNonspecifiY −+
−+=  

Equation 2.2  Y is the total binding measured in the presence of various concentrations of the cold ligand (PTH), 

and log[D] is the logarithm of the concentration of competitor (PTH). Nonspecific is the binding in the presence of 

a saturating concentration of D, and Total is the binding in the absence of competitor. 

 

The concentration of unlabeled drug halfway between the upper and lower plateaus 

is called the IC50 (inhibitory concentration 50%) also called the EC50 (effective 

concentration 50%). 

 

 
 

Figure 2.4 Analyzing competitive binding data (Taken from GraphPad Prism).  The top of the curve is total 

binding which is a plateau at a value equal to radioligand binding in the absence of the competing unlabeled drug. 

The bottom of the curve is a plateau equal to nonspecific binding (NS). The difference between the top and 

bottom plateaus is the specific binding. The IC50 is the concentration of unlabeled drug that blocks half the specific 

binding. 

 

The Ki, the inhibition constant, can be calculated from the IC50 using the equation of 

Cheng and Prusoff (Cheng and Prusoff, 1973). 
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Equation 2.3  Euqation of Cheng and Prusoff  (Cheng and Prusoff, 1973). The Ki is the concentration of the 

competing ligand that will bind to half the binding sites at equilibrium, in the absence of radioligand. Kd is the 

equilibrium dissociation constant. 

 

The equation is based on following assumptions: 

• Only a small fraction of both the labeled and unlabeled ligands has bound. 

• The receptors are homogeneous and all have the same affinity for the ligands. 

• There is no cooperativity - binding to one binding site does not alter affinity at 

another site. 

• The experiment has reached equilibrium. 

• Binding is reversible and follows the law of mass action. 

Because the labeled and unlabeled ligands used in this experiment were 

homologous and, thus, chemically identical, the assumption was made that both 

ligands have identical receptor affinities. This simplifies the equation of Cheng and 

Prusoff further to the following: 

 

[ ]dRadioliganICKK 50id −==  

Equation 2.4 The simplified form of Cheng and Prusoff equation for homologous competitive binding experiment. 

Kd is equal to Ki, as the hot and cold ligands are homologous. 

 

The concentration of the radioligand depends on the reaction volume and the amount 

of radioligand added to the reaction. Consequently, its calculation can be summed up 

as following: 
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Euqation 2.5 The concentration of hot ligand or radioligand depends on the amount of radioligand, C (cpm), in 

the reaction and the volume of reaction, V (mL), in each well. The reaction volume was 0.21mL. E is the efficiency 

of the gamma counter and in this case it was 87% (0.87). D is the radioactive decay factor (Table 2.2).  A 

Becquerel, Bq, equals one radioactive disintegration per second. As a result, it is further divided by 60. S is the 

initial specific activity of the radioligand, which is 81.4 TBq/mmol or 2200Ci/mmol. Bq = 1x10-12 TBq. The unit of 

[Radioligand] is M. 

 

Thus, using the equation (2.4) and (2.5), the binding affinity of the radioligand for the 

receptor (Kd) was determined. Kd is the concentration of ligand which occupies half of 

the receptors at equilibrium. A low Kd means that the receptor has a high affinity for 

the ligand. A high Kd indicates a low affinity to the ligand. 

To address the question of PTH1R density, the Bmax was calculated from the 

following equation: 
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Equation 2.6 To obtain the Bmax, specific binding (Top – Bottom) is divided by fractional occupancy.  

 

Bmax is the amount of ligand required to saturate receptors and a measure of the 

number of receptors at saturation. Based on the above equation, the receptor density 

can be elucidated as follow: 

 

( ) [ ]( )
[ ]

( ) numberCell
1

106.022
Bq/mmol1081.4

1
60
1

D
1

87%
1

dRadioligan
dRadioliganKBottomTop

Cell
eceptorsR

23
12

d

×××
×

××××

+×−=
 

 

Equation 2.7 Using the Avogadro constant, the amount of specifically bound ligand at saturation (Bmax) can be 

transformed into the number of receptor molecules. The efficiency of the gamma counter is 87%. D is the 

radioactive decay factor (Table 2.2). 81.4x1012 (Bq / mmol)  is the initial specific activity of the radioligand. The 

cell number was counted on the day of the experiment.  

 

For each cell line, experiments were performed in triplicate. 
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Table 2.2 Idione-125 decay chart. The half-life of idione-125 is 60 days (Taken from the product data sheet, 

PerkinElmer Life Sciences Inc., Boston, USA)  

 

 

2.2.12 Functional assays for PTH1R activity  
 

cAMP is one of the most important second messengers and modulates various 

cellular activities in different cell types of numerous species. Receptor-mediated 

activation of the G protein triggers the activation of adenylate cyclase (AC) which 

converts ATP to cAMP and subsequently activates protein kinase A (PKA). Protein 

kinase C (PKC) is a large superfamily of serine- and threonine-specific protein 

kinases that mediate essential cellular signals involved in activation, proliferation, 

differentiation and survival. The PKCs participate in cellular events via their activation 

by second messenger pathways such as diacylglycerol (DAG) and Ca2+.  

In order to assess the PHT1R activity, the quantitative determination of intracellular 

adenosine 3’,5’-cyclic monophosphate (cAMP) accumulation and protein kinase C 

(PKC) activity in the PDL, MG63 and HEK293 cells was performed using a 

commercially available cAMP enzyme immunometric assay (EIA) kit and a PKC 

activity assay kit, respectively.  

 

cAMP assay  

This assay is based on the competition between cAMP in the sample and a fixed 

amount of alkaline phosphatese-conjugated cAMP for a limited number of cAMP-

specific rabbit polyclonal antibody binding sites. As the concentration of the 

conjugated cAMP is kept constant while the concentration of cAMP in the sample 
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varies, the amount of conjugated cAMP that is able to bind to the rabbit polyclonal 

antibody will be inversely proportional to the concentration of cAMP in the sample. 

The rabbit polyclonal antibody-cAMP complex binds to the goat anti-rabbit IgG that 

has been previously attached to the well. The microplate is then washed to remove 

any excess conjugate and unbound sample. To determine the bound enzyme 

activity, a substrate solution is added to the well. The final product of this enzymatic 

reaction has a distinct yellow color and absorbs strongly at 405 nm. The intensity of 

this color, determined spectrophotometrically, is proportional to the amount of 

conjugated cAMP bound to the well, which is inversely proportional to the amount of 

cAMP present in the sample during the incubation. 

PDL, MG63 and HEK293 cells were seeded in 24-well plates and allowed to reach 

confluency. 3-isobutyl-1-methylxanthine (IBMX) is a non-specific inhibitor of 

phosphodiesterases and promotes the accumulation of cAMP in cells. After removal 

of the culture medium, cells were pretreated with DMEM supplemented with 1 % 

BSA, 20 mM Hepes and 1 mM IBMX for 1 h. The stimulation with various 

concentrations of hPTH (1-34) (10-6, 10-7, 10-8, 10-9, 10-10 and 10-12 M) continued for 

15 min at 37°C. Cells were lysed by treating the ce lls with 0.1 M HCl for 10 min at 

RT. Insoluble material was removed by centrifugation at 600xg. The supernatant was 

stored at -20°C until use.  

To normalize for the protein content, the measured cAMP concentration was divided 

by the total protein concentration in each sample. The samples were tittered back 

using 0.1 M NaOH for measurement of the total protein concentration via the Pierce 

BCA (bicinchoninic acid) Protein Assay kit.  

 

 
 

Figure 2.5 Schematic priniciple of cAMP assay (Adapted from cyclic AMP Direct assay kit from Assay Designs, 

Michigan USA). cAMP in the sample is in red color. Alkaline phosphates conjugated cAMP is in blue color. 

Primary rabit polycolonal antibody is in yellow color. The mircoplate is coated with goat anti-rabbit IgG. Upon 

substrate incubation, the reaction generates a yellow color which is read at 405nm. 
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PKC activity assay 

This assay is designed in form of a solid phase enzyme-linked immuno-absorbent 

assay (ELISA). In this assay, a specific synthetic peptide, which is readily 

phosphorylated by PKC, is immobilized on the wells of the provided microtiter plate.  

After adding the samples to the wells, the reaction is initiated by the addition of ATP.  

The kinase reaction is then terminated by emptying contents in each well. A 

phosphospecific substrate antibody that binds specifically to the phosphorylated 

peptide substrate is applied to each well. Subsequently, the primary phosphospecific 

antibody is detected by a peroxidase conjugated secondary antibody. Upon the 

addition of tetramethylbenzidine substrate (TMB), a color develops proportional to 

PKC phosphotransferase activity. The color development is stopped with acid stop 

solution and the intensity of the color is measured at 450 nm.  

The purified active PKC provided by the manufacturer is serially diluted and used as 

the positive control. Using the graph created by plotting the varying quantities of the 

purified active PKC against absorbance, the PKC kinase activity in the sample is 

assessed. The measured PKC kinase activity was normalized to the total protein in 

each sample. The total protein concentration was determined with the Pierce BCA 

Protein Assay kit. 

For this assay, PDL, MG63 and HEK293 cells were cultured to confluence in 24-well 

plates. After removal of the culture medium, the cells were subjected to various 

concentrations of hPTH (1-34) (10-6, 10-7, 10-8, 10-9, 10-10 and 10-12 M) for 15 min at 

37°C diluted in DMEM. The media was aspirated and t he cells were washed with ice 

cold PBS. Subsequently, the cells were incubated with 130 µl of the lysis buffer 10 

minutes on ice [20 mM MOPS, 50 mM β-glycerolphosphate, 50 mM sodium fluoride, 

1 mM sodium vanadate, 5 mM EGTA, 2 mM EDTA, 1% NP40, 1 mM dithiothreitol 

(DTT), 1 mM benzamidine, 1 mM phenylmethanesulphonylfluoride (PMSF) and 10 

µg/ml leupeptin and aprotinin]. The cells were scraped by a cell scraper on ice and 

the lysate was collected in a pre-chilled 1.5 ml microcentrifuge tube. After a 

centrifugation step at 13,000 rpm for 15 min, the clear supernatant was transferred to 

a pre-chilled 1.5 ml microcentrifuge. The samples were stored at -70°C untill the day 

of assay. 
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Figure 2.6 The principle chart of the PKC kinase act ivity assay  (Taken from the PKC kinase activity assay kit 

from Assay Designs, Michigan USA).  

 

 

2.2.13 Total protein extraction 
 

For western blot analysis, PDL, MG63 and HEK293 cells were cultured in T-75 flasks 

at 37°C with 5% CO 2 and allowed to reach confluence. After removal of the culture 

medium, 5 ml PBS was added to the flasks. The cells were subsequently scraped by 

a cell scraper and collected into a 15 ml falcon tube. The remaining cells in the 

culture flask were washed with 5 ml PBS and taken into the same falcon tube, which 

was centrifuged for 5 min at 1500 rpm. The supernatant was decanted and the cell 

pellet was washed again with 5 ml PBS. After removal of the PBS, the cell pellet was 

resuspended in 200 µl RIPA buffer that was freshly mixed with protease-inhibitor-

cocktail and allowed to lyse on ice for 15 min. Cellular debris was excluded by 

centrifuging the cell lysate for 5 min at 12000 rpm at 4°C. The protein extract was 

stored at -20°C. 
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2.2.14 Protein quantification 
 

The protein extracted following the protocols described in above sections was 

quantified using the BCA Protein Assay Reagent kit.  

This assay is based on the combination of reduction of Cu+2 to Cu+1 by protein in an 

alkaline environment (the biuret reaction) with the highly sensitive and selective 

colorimetric detection of the resulting cuprous cation (Cu+1) by BCA (Smith, P.K., et 

al. 1985). This reaction generates a purple colored product formed by the chelation of 

two molecules of BCA with one cuprous ion. The BCA / copper complex is water-

soluble and has a strong absorbance at 562 nm that is nearly linear with increasing 

protein concentrations. 

The assay procedure was based on the instructions of the manufacturer. 25 µl of 

each standard or unknown sample was pipetted into a microplate in duplicate. 

Subsequently, 200 µl Working Reagent (WR) was added to each well. After mixing 

thoroughly on a plate shaker for 30 sec, the plate was incubated for 30 min at 37°C. 

The plate was cooled down to RT and the absorbance nm was measured at 562 with 

the PowerWave X UV-Vis plate reader. 

The WR was prepared by mixing 50 parts of BCA Reagent A with 1 part of BCA 

Reagent B (50:1, Reagent A:B). A set of standards was made by diluting the bovine 

serum albumin (BSA) standard included in the assay kit. The protein concentration of 

the unknown samples was determined from the standard curve plotted for the BSA 

standards. 

 

 

2.2.15 Western Blot 
 

The PTH1R in PDL, MG63 and HEK293 cells was quantified at protein level by 

means of western blot analysis to acquire further information on the cellular 

localization of the receptors. After separation on sodium dodecylsulfate-

polyacrylamide gel electrophoresis (SDS-PAGE), the extracted or fractionized 

proteins were blotted and detected on a membrane with an antibody raised against 

PTH1R. 
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Protein gel electrophoresis (SDS-PAGE) 

Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is a 

technique used to separate proteins based on their molecular weight. In SDS-PAGE, 

the samples are pre-treated with SDS combined with a reducing agent, such as ß-

mercaptoethanol (ß-ME) or dithiothreitol (DTT) by heating at 70°C or boiling briefly, 

which leads to the formation of a linear polypeptide chain. SDS is a strong anionic 

detergent that denatures by disrupting the secondary, tertiary and quaternary 

structures of the protein. ß-ME or DTT combined with a heating step disrupts all the 

disulphide bonds in the protein. Due to SDS, the proteins become overall negatively 

charged and migrate from cathode (-) to anode (+) in accordance to their size. 

In SDS-PAGE, to obtain optimal separation of proteins, a stacking gel is cast over the 

resolving gel. The stacking gel has a larger pore size, a lower pH and a different ionic 

content than the resolving gel. This allows the proteins to be concentrated into a tight 

band before entering the resolving gel. Protein separation is achieved in the resolving 

portion of the gel.  

For the separation of the PTH1R proteins, a 10% resolving gel was prepared as 

follows:  

 

10% resolving gel:  

ddH2O        4 ml 

30 % Acrylamide/ bis-acrylamide 37.5:1   3.3 ml 

1.5 M Tris-HCl (PH 8.8)      2.5 ml 

10% SDS 10%       0.1 ml 

10% APS        0.1 ml 

TEMED        0.004 ml 

 

The gel was then covered with isopropanol to get a horizontal gel surface and 

allowed to polymerize (>30 min). After removal of the isopropanol, a 5% stacking gel 

was cast on top of the resolving gel by combining the following: 
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5% stacking gel: 

ddH2O        1.4 ml 

30 % Acrylamide/ bis-acrylamide 37.5:1   0.33 ml 

0.5 M Tris-HCl (PH 6.8)      0.25 ml 

10% SDS       0.02 ml 

10% APS        0.02 ml 

TEMED        0.002 ml 

 

After the stacking gel had polymerized (>30min), the Mini-PROTEAN Tetra cell was 

assembled according to the instructions of the manufacturer and placed in the cell 

containing the running buffer. Typically, 20-40 µg of protein was mixed 6:1 with 6X 

Laemmli buffer (Laemmli, 1970) and heated for 5 min at 95°C. After loading the 

denatured protein sample and the molecular weight standards, the gel was run at 

200 V until the required resolution was obtained.  

 

Protein blotting  

The proteins resolved on the gel were transferred onto either a polyvinylidene fluoride 

(PVDF) membrane or nitrocellulose membrane by a semi-dry blotting method. After 

SDS-PAGE, the gel was immediately equilibrated in a small container of transfer 

buffer for approximately 15 min. The nitrocellulose membrane and filter papers were 

soaked also in transfer buffer for 15-30 min. (The PVDF membrane was first soaked 

in 100% methanol for 15 sec). The sandwich blot was assembled on the Trans-Blot 

SD Semi-Dry Transfer Cell in the order shown below. Transfer of proteins was done 

for 1 h at 15 V. 
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black (-)
filter paper

gel
membrane

filter paper
red (+)

 
 
 
 
Figure 2.7 Assembly order of the blot for Semi-dry B lotting (Taken from Bio-Rad). A: Semi-Dry Transfer Cell. 

1. Safety lid, 2. Cathode assembly with latches, 3. Three pieces blot filter paper, 4. Gel, 5. Nitrocellulose/PVDF 

membrane, 6. Three pieces blot filter paper 7. Spring-loaded anode platform, mounted on four guide posts, 8. 

Power cables, 9. Base, B: Assembly scheme of the Semi-dry Blotting. 

 

Protein detection  

Transfer efficiency was checked by staining the membrane with Ponceau S solution. 

After washing away the Ponceau S staining solution with water, the membrane was 

blocked in blocking solution on a rocker platform for 1 h at RT. Subsequently, primary 

PTH1R mouse monoclonal antibodies diluted 1:100 in blocking solution were applied 

overnight at 4°C.  Following three 10-min washes wi th wash buffer, the blot was 

incubated for 1 h at RT with the HRP-conjugated secondary goat anti-mouse 

antibody diluted 1:1000 in blocking solution.  After three washing steps of 10 min 

each with wash buffer and rinsing briefly in TBS, the blot was incubated 5 min in the 

SuperSignal West Femto Maximum Sensitivity Substrate working solution in the dark. 

The excess reagent was drained and the blot was covered with clear plastic wrap. 

Finally, the blot was visualized on a ChemiDoc™ XRS system and analyzed using 

Quantity One software. The size of the proteins was determined by comparing the 

protein bands with that of a molecular weight marker.  

 

Stripping for reprobing western blots 

In order to detect another protein or proteins of interest, the membrane was stripped 

using Restore™ Western Blot Stripping Buffer. This was done by incubating the 

A B 
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membrane in the stripping buffer for 15 min at RT with shaking, followed by a 

washing step with washing buffer. 

 

Used buffers and solutions:  

1. Laemmli buffer (6x) 

SDS (sodium dodecyl sulfate)   1.2 g 

bromophenol blue     6 mg 

glycerol      4.7 ml 

Tris 0.5 M (pH 6.8)     1.2 ml 

ddH2O       2.1 ml 

- Warmed with shaking till the solution was dissolved.  

- Added 0.93 g DTT. 

After completely dissolved, the buffer was aliquoted and stored at -20ºC. 

2. Running buffer:  1x Tris/Glycine/SDS 

10x Tris/Glycine/SDS (Bio-Rad) was 1:10 diluted in ddH2O 

3. Wash buffer:  0.1% Tween 20 /TBS 

0.1 ml Tween 20 + 99.9 ml TBS (Bio-Rad Laboratories GmbH, Munich, Germany) 

4. Transfer buffer: Tris/Glycin/20% Methanol  

20 ml Methanol +80 ml Tris/Glycin (Bio-Rad Laboratories GmbH, Munich, Germany) 

5. Blocking solution: 5% Milk/0.1% Tween 20 /TBS 

2.5g milk + 50 ml 0.1% Tween 20 /TBS 

6. SuperSignal West Femto Maximum Sensitivity Substrate working solution 

The two substrate components were mixed at a 1:1 ratio. 
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2.2.16 ELISA 
 

The Enzyme-Linked Immunosorbent Assay (ELISA) was first published by Engvall et 

al (1971) and the first microplate-based ELISA was established by Voller et al (1974). 

Osteoprotegerin levels in the conditioned media were assayed by a commercially 

available ELISA kit. The principle of this kit is based on a sandwich-type ELISA, in 

which two highly specific antibodies against OPG are used. The binding antibody is 

attached to the wells of the microtiterplate, while the detection antibody is labeled 

with biotin. In a first incubation step the samples and the biotinylated antibody against 

OPG react simultaneously with the pre-coated antibody on the microtiterplate. Thus, 

a “sandwich” complex is formed consisting of the binding antibody on the plate, OPG 

and the biotinylated detection antibody. In a second step, streptavidin-peroxidase is 

added, which reacts with the detection antibody. After incubation with the substrate, 

an acidic stopping solution is added, which changes the blue colour to yellow. The 

intensity of the yellow colour is directly proportional to the concentration of OPG in 

the sample. A dose-response curve of the absorbance units (at 450 nm) versus 

concentration is generated. OPG, present in the samples, is determined directly from 

this calibration curve. The data were assessed as a function of cell number to 

exclude the possibility that changes in osteoprotegerin production simply result from 

increased cell numbers due to the culture period and not from an altered production 

by the individual cell. 

 

 

2.2.17 Statistical analysis 
 

All statistical tests were performed by GraphPad PRISM™ 4.0. All values were 

expressed as mean ± standard error of mean (SEM), and compared using Student’s 

t-test, Dunnett-test, Bonferroni's and Tukey’s test. Statistical significance was 

accepted at p < 0.05. 
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2.2.18 Methods used in in vivo  experiments 
 

Induction of osteoblastic differentiation 

Fifth passage PDL cells from two donors were cultured in 24-well plates at a seeding 

density of 10000 cells/well and stimulated with 10−6 M dexamethasone for 3 weeks to 

induce a more differentiated osteoblastic phenotype. 

 

CD-1® nude mice 

Twelve male, 4-6 weeks old, CD-1® nude mice with an average body weight of 20g 

(Charles River Laboratories, Germany), were stabilized at the animal research facility 

of the University of Bonn of Medicine. Mice were housed one per cage under specific 

pathogen-free conditions, in a continuously filtered room, maintained between 21-

22°C, with 40-60% humidity on 12 h light and dark c ycles and given free access to 

food and water. Animal body weights were recorded before the onset and at the end 

of the experiment. All experimental protocols were reviewed and approved by the 

ethics committee of the University of Bonn (reference number 887-50.103709.196). 

 

Surgical implantation of PDL Cells 

The PDL cells were resuspended each in fresh growth media, and 3×106 cells were 

incorporated into gelatin sponges 3–5mm in diameter by capillary action. The 

implantation procedure was adopted from Pettway et al (Pettway et al., 2008). 

According to this protocol, animals were anaesthetized with 2 vol% isoflurane and 

two midlongitudinal skin incisions, approximately 1cm in length, were made on the 

dorsal surface of each mouse. Blunt dissection was used to form subcutaneous 

pouches. Two implants per animal were inserted. Post surgically, mice were 

monitored daily for any signs of infection like shivering, lethargy, and diarrhea. 

Neither were signs of impaired healing nor adverse side effects of the procedures or 

drug dosage observed. 

 

Intermittent hPTH (1-34) administration 

In order to examine the mineralization capacity of PDL cells and the anabolic 

potential of intermittent hPTH (1-34) regarding the support of this capacity, mice were 
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randomly assigned to one of two experimental groups, with one group receiving daily 

subcutaneous injections of 40 µg/kg body weight recombinant human hPTH (1-34) 

for a period of 4 weeks starting at day 1 after PDL cell implantation, whereas the 

other group received sham-injections of an equivalent dose of saline. The dose of 

hPTH (1-34) used in these studies proved effective in previous experiments 

(Johnston et al., 2007). On day 28, the animals were anesthetized with isoflurane, 

blood (by means of cardiac puncture) and mineralized gelatin sponges were 

collected before euthanasia via cervical dislocation (Figure 2.8). 

 

 
 

Figure 2.8 Schematic illustration of in vivo injecti on of PTH (1-34) (adapted from: (Pettway et al., 2005) . The 

experimental design was used to investigate the effect an intermittent anabolic hPTH (1-34) or vehicle (sterile 

water) treatment on human PDL cells transplanted into immunocompromised mice Subcutaneous injections were 

administered for 28 days beginning one day after implantation procedures.  

 

Preparation of paraffin tissue sections 

The explants were fixed in 4 % phosphate buffered (according to Sörensen) 

formaldehyde for 24 h at room temperature. Thereafter, they were first hydrated, then 

dehydrated in an ascending ethanol series and finally embedded in paraffin. As a 

next step, tissue sections of 5 µm thickness were cut in the sagittal plane, mounted 

on glass slides and dried at 37 °C overnight before  further processing. Tissue 

sections were deparaffinized by passing them through a descending series of ethanol 

ending with distilled water as described in section 2.2.9 (Tissue staining). 
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Immunohistochemistry 

The immunohistochemical staining of the paraffin embedded tissue sections was 

performed as described in section 2.2.9 (Tissue staining), with the exception of the 

used antibodies and the concentration of the antibodies. 

The presence of the transplanted PDL cells was confirmed by staining the nuclei of 

those cells using an antibody specific to human, but not mouse cells (diluted 1:20 in 

1% BSA/TBS). In order to avoid the unspecific binding of the secondary antibody, the 

slides were pre-incubated with a goat polyclonal secondary antibody to mouse IgG - 

Fc (diluted 1:200 in 1% BSA/TBS) for 1 h at room temperature prior to the incubation 

with the primary antibody. For a better contrast, the tissue sections were 

counterstained with light green, instead of Mayer's haematoxylin.  

For the staining of alkaline phosphotase, osteocalcin and osteopontin, sections were 

incubated with a polyclonal primary antibody of rabbit origin in a 1:50 (osteocalcin) or 

1:100 (osteopontin) working solution of 1% BSA/TBS either for 1h at room 

temperature (osteocalcin) or at 4°C overnight in a humidified chamber (ALP, 

osteopontin). The anti-ALP antibody was supplied in a ready-to-use working solution 

by the manufacturer. The slides were rinsed again and incubated for 30 min with a 

peroxidase labeled polymer conjugated to a goat anti-rabbit immunoglobulin provided 

as a ready-to-use solution as secondary antibody. The staining of PTH1R was 

performed as described in section 2.2.9 (Tissue staining). In order to prove the 

specificity of the immunoreactions, negative controls were carried out by omitting the 

primary antibody.  

 

Alzarin red staining 

The mineralization capacity of transplanted PDL cells was assessed by staining of 

the calcium deposits with alizarin red solution. To this end, a solution of 2% w/v 

alizarin red was prepared in ddH2O and the pH was adjusted to 4.1-4.3 using 0.5% 

ammonium hydroxide. Sections were deparaffinized and rinsed briefly in ddH2O. 

Thereafter, the sections were placed in alizarin red solution and observed 

microscopically until an orange-red color developed (~5 min). After removing the 

excess dye, the slides were dehydrated in acetone (20 dips) and then in acetone-

xylene (1:1) solution (20 dips). Finally, the slides were cleared in xylene and mounted 

with DePex. Red-orange color was considered positive for mineral deposition. 
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Alizarin Red S forms a chelate complex with calcium salts and therefore stains 

mineralized tissue.  

 

Semiquantitative assessment of the immunoreactivity  

Three representative sections per specimen were randomly selected for the 

assessment of the staining intensity for a particular antigen resulting in a total of 36 

specimens per experimental group. Immunoreactivity was determined 

semiquantitatively by assigning one of the following grades to the specimen: 0: no 

immunoreactivity; 1: weak immunoreactivity with only single cells presenting faint 

immunoreactions; 2: moderate immunoreactivity with about 50% of cells showing a 

visible immunoreaction; 3: strong immunoreactivity in most of the cells. 

Reproducibility of the readouts was ensured by analyzing 36 selected specimens in 

duplicate. An intraobserver error was demonstrated to happen in less than 4% of the 

cases and the deviation did not exceed one grade. 

 

Serum analysis of osteocalcin 

To demonstrate a systemic effect of the intermittent hPTH (1-34) administration on 

bone turnover, serum was isolated from blood via centrifugation at 1500 rpm for 30 

min at 4°C and stored in single use aliquots at -80 °C for future analysis. The 

quantification of serum levels of osteocalcin was performed using a commercially 

available ELISA assay (mouse) following the manufacturer’s instructions. The assay 

principle is the same as described in the previous section (2.2.16 ELISA), with the 

exception of used antibodies. 

 

Statistical analysis 

For any given experiment, each data point represents the mean ±±±± SEM of 36 

independent specimens. Statistical significance of the data was analyzed using the 

Mann-Whitney-U Test. P-values <0.05 were considered to be significant. 
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3 RESULTS 

3.1 Primary characterization of PDL cells in vitro  
 

Morphological characterization 

At higher seeding densities, cultured PDL cells exhibited a fibroblast-like morphology 

with a spindle-like shape, which is typical of fibroblasts (Figure 3.1). When seeded at 

lower densities, the appearance of cell clusters was observed. The rate of cell growth 

varied among the donors. The doubling time of PDL primer cell lines generally 

ranged from 3 to 5 days.  These characteristics remained constant up to passage six. 

Figure 3.1, A and B represent the confluent and preconfluent stage of PDL cells, 

respectively. 

 

   
  

Figure 3.1 Confluent and preconfluent PDL cells.  PDL cells were mechanically isolated from an extracted 

tooth. In culture, PDL cells exhibited a spindle-shaped fibroblast-like morphology. A: PDL cells at confluent stage. 

B:  PDL cells at preconfluent stage. Magnification: X100 

 

Molecular characterization 

The confluent and preconfluent PDL cells of the six donors were characterized for the 

mRNA expression level of marker genes involved in osteogenesis such as ALP, 

osteocalcin, PTH1R, bone morphogenetic protein (BMP)-2 and -4, bone 

morphogenetic protein receptor (BMPR)-1a, -1b and -2, integrin A6, integrin B4, 

transforming growth factor-β1 (TGF-β1) and cyclin D1. The confluent cells were 

cultured to ~100% confluence, while preconfluent cells to ~70% confluence. In data 

analysis, the mRNA expression level of these markers in confluent cells was 

compared to that in preconfluent cells. As shown in Figure 3.2, the confluent PDL 

A B 
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cells revealed a relatively higher gene expression level of these markers than 

preconfluent cells, with the highest being the expression level of osteocalcin (~26-

fold). Regarding PTH1R gene expression, the confluent cells showed an almost 15-

fold higher mRNA level than the preconfluent cells. The lowest difference was 

observed in cyclin D1 gene expression level, with almost 4-fold in confluent cells. 

As a result of these divergences which are caused by the state of confluency, we 

used the PDL cells at confluent stage in all forth coming experiments. 

 

R
el

at
iv

e 
ge

ne
ex

pr
es

si
on

(f
ol

d
of

 c
on

tr
ol

)

 
 

Figure 3.2 Characterization of confluent vs. precon fluent periodontal ligament (PDL) cell cultures.  Fifth-

passage human PDL cells from six donors were cultured to either 70% confluence (preconfluent cells) or 100% 

confluence and were then characterized for the mRNA expression level of marker genes involved in osteogenesis 

such as [alkaline phosphatase (ALP), osteocalcin, parathyroid hormone receptor (PTH-R), bone morphogenetic 

protein (BMP)-2 and -4, bone morphogenetic protein receptor (BMPR)-1a, -1b and -2, integrin A6, integrin B4, 

transforming growth factor-β1 (TGF-β1) and cyclin D1 by the use of a microarray. For comparison, the expression 

level of the investigated genes in preconfluent cells was set to 1 and served as a reference for the expression at 

the confluent state. Each value represents the mean + SEM for 6 independent cultures 

 

 

3.2 Autofluorescence characteristics of PDL cells 
 

One prominent characteristic of PDL cells is the autofluorescence, which was first 

observed, as the fixed cells were stained using FITC-conjugated antibody and 

examined with a Zeiss Axioskop 2 fluorescence microscope. The unstained cells 

emitted a significantly high green fluorescence, which was at the same level as that 
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of the stained cells (Figure 3.3, A, B and C). However, no detectable red 

autofluorescence was observed using TRITC filter sets (Figure 3.3, D). 

 

    
 
 
Figure 3.3 Green autofluorescence of fixed PDL cells . After fixing with 4% paraformaldehyde for 10 min, PDL 

cells were stained for PTH1R using a FITC coupled secondary antibody and examined with a fluorescence 

microscopy using FITC and TRITC filter sets. The images were acquired using the same adjustments. 

Magnification: X200. A:  unstained PDL cells. B:  only secondary antibody treated PDL cells. C: PTH1R antibody 

and respective secondary FITC coupled antibody treated PDL cells. D: unstained PDL cells examined using 

TRITC filter sets.  

 
As shown in Figure 3.4, the autofluorescence was mainly localized in the perinuclear 

area, while in other parts of the cytoplasm and in the nucleus, it was hardly 

detectable. Moreover, the intensity of the autofluorescence differed among the cells 

examined, ranging from an extremely high level to almost no detectable 

autofluorescence in some cells. 

 
 

 
 

 
Figure 3.4 Localization of the green autofluorescen ce in PDL cells. The 4% paraformaldehyde fixed cells 

were examined with a fluorescence microscope. Magnification: X630. In this image, three cells can be seen, of 

which two exhibit high autofluorescence around the nucleus, while the last one has almost no detectable 

autofluorescence. The nuclei of the cells are indicated with N.  

 
In order to clarify the effect of fixation agents on autofluorescence, the PDL cell 

suspension in PBS and coverslip-cultured unfixed PDL cells were examined directly 

A B D C 

N 
N 
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using FITC filter sets. In both experimental setups, a high level of green 

autofluorescence was detected (Figure 3.5, A and B). This observation confirmed 

that the green fluorescence stems from PDL cells, and is not caused by the fixation 

agent. 

 

    
 

Figure 3.5 Green autofluorescence of unfixed PDL cel ls and PDL cell suspension. A: Unfixed PDL cells. 

PDL cells cultured on coverslip were washed once with PBS and mounted on a microscope slide.  B: PDL cell 

suspension. After trypsinizing, PDL cells were washed once with PBS and centrifuged down to pellet. The pellet 

was then resuspended in PBS and one drop of the suspension pipetted onto a microscope slide. The so prepared 

sections were then examined with a Zeiss Axioskop 2 fluorescence microscope using FITC filter sets. 

Magnification: X200.  

 

The autofluorescence characteristics of PDL cells were further investigated with a 

LSR II flow cytometry using different filter sets. For comparison, other cells lines such 

as HaCaT, MG63, HEK293 cells and oral keratinocytes were included. The flow 

cytometry data revealed that PDL cells exhibit very low autofluorescence in the long 

wavelength region (from red to far infrared) such as Alexa Fluor 645, being the 

lowest among the five investigated cell lines (Figure 3.6, A), and high auto 

fluorescence in short wavelength region such as FITC, being the highest among the 

cell lines investigated (Figure 3.6, B). Thus, based on the low autofluorescence 

characteristic of PDL cells in red fluorescence region and antibody availability, Texas 

Red and Alexa Fluor 647-conjugated antibodies were chosen for 

immunofluorescence staining and flow cytometry analysis of PDL cells, respectively.   
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Figure 3.6 Comparison of the autofluorescence of PDL , MG63, HaCa T, HEK293 cells and keratinocytes in 

Alexa Fluor 647 and FITC filter sets. After detachment, the cells were washed once with PBS and centrifuged. 

The cell pellet was then resuspended in sorting buffer (1% BSA in PBS) and screened using different filter sets 

with a LSR II flow cytometry. The data analysed with FlowJo 7.2.5 software.  As indicated above, the five cell 

types were represented with different colors. A:  Autofluorescence intensity in Alexa Fuor 647 filter sets. B:  

Autofluorescence intensity in FITC filter sets.  

 

To elicit further information on the autofluorescence, PDL cells were permeabilized 

after a fixation step and viewed under a Zeiss Axioskop 2 fluorescence microscope. 

The permeabilization step decreased dramatically the autofluorescence of the cells, 

as shown below (Figure 3.7, A and B). This result was further confirmed by the flow 

cytometry analysis, wherein the autofluorescence intensity of fixed but not 

permeabilized PDL cells was compared to that of fixed and subsequently 

permeabilized PDL cells (Figure 3.7, C). Thus, in the immunofluorescence staining of 

the PTH1R, the problem of autofluorescence was circumvented by permeabilizing 

the PDL cells after a fixation step. 
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Figure 3.7 Comparison of autofluorescence in fixed and fixed subsequently permeabilized PDL cells. A: 

Fluorescence image of fixed PDL cells B: Fluorescence image of fixed and subsequently permeabilized PDL 

cells. C: Comparison of autofluorescence intensity of PDL cells after fixation and permeabilization. For fixation, 

cells were treated with 4 % paraformaldehyde for 10 min.  For permeabilization, cells were treated for 5 min with 

1% triton X-100 after a 15 min fixation. The sections were examined with a fluorescence microscope and LSR II 

flowcytometry. Magnification: X400. 

 

 

3.3 Analysis of relative gene expression level of P TH1R 
 

The relative expression levels of mRNA encoding the PTH1R was measured in PDL, 

MG63 and HEK293 cells, using real time PCR method. 

The results showed a distinct expression of PTH1R gene in the three cell lines. 

However, the gene expression level of the PTH1R varied among these cell lines. 

While the highest mRNA expression was found in HEK293 cells, with ~14-fold higher 

gene expression of PTH1R compared to PDL cells, MG63 cells expressed app. 2-

fold lower PTH1R mRNA level than PDL cells (Figure 3.8, A). The PCR products run 

on the agarose gel showed a distinct band of the correct size (250 bp) (Figure 3.8, 

B). 
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Figure 3.8 Comparison of gene expression level of PT H1R in PDL, MG63 and HEK293 cells. Real time PCR 

was performed from total RNA of PDL, MG63 and HEK293 cells. Expression of mRNA for PTH1R was normalized 

using expression of β-actin as a reference (relative expression). The values were then compared to that of PDL 

cells. A: Relative gene expression level analysis using real time PCR method. All values were expressed as 

mean ± SEM, and compared using one-way ANOVA. Statistical significance was accepted at p < 0.05 (*: p < 

0.05). B: The PCR products were run on a 2% agarose gel and the size of the PCR products was assessed using 

GeneRuler™ DNA Ladder, Low Range. As expected, the amplicon size was 250 bp. 

 

 

3.4 Detection and cellular localization of PTH1R 
 

Detection 

To detect the PTH1R in PDL tissues, paraffin-embedded tissue sections prepared 

from extracted teeth were stained with antibody against PTH1R.  

As Illustrated in Figure 3.9, a distinct positive immunoreaction for PTH1R was 

observed in the PDL tissue. The overall staining pattern indicated that the PTH1R 

was distributed equally throughout the whole PDL tissue. Meanwhile, no difference 

was observed in the distribution of the PTH1R on the side of alveolar bone and tooth 

root (Figure 3.9, A). At cellular level, the immunostaining for PTH1R was observed 

mainly in PDL fibroblasts and endothelial cells, whereas the epithelial cell rests of 

Malassez (ERM) remained unstained (Figure 3.9, B, C and D ). As expected, 

cementoblasts and odontoblasts showed also a positive immunostaining for PTH1R 
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(Figure 3.9, E and F ). The unstained negative control sections ensured the specificity 

of the used primary antibody (Figure 3.9, a and b ). This PDL tissue as shown in 

Figure 3.9 was isolated mechanically and cultured for the establishment of the PDL 

cell culture, as described in the materials and methods section.  

 

 

 

 

 

 

 

 

 

 

 

  
 

                                                                                                        

 

 

 

 

 

 

 

 

Figure 3.9 Immunohistochemical detection of PTH1R in  PDL tissue section of human.  A:  DAB stained PDL 

tissue section. Magnification: X100. B:  X400 magnification of the with arrow indicated area in figure A. Black 

arrows indicate the PDL fibroblasts. C: Black arrows: the epithelial cell rests of Malassez (ERM). Magnification: 

X400. D: Black arrows: endothelial cells. Magnification: X400. E: Black arrows: cementoblasts. Magnification: 

X200. F: Black arrows: odontoblasts. Magnification: X200. a:  Negative control section in which the PTH1R 

antibody was omitted. Magnification: X100. b:  X400 magnification of the with arrow indicated area in figure a. 

Magnification x400. The images were acquired with a light microscope. The figure is representative of sections 

from two separate specimens. 

 

The detection of PTH1R was further extended to in vitro by staining the cultured PDL 

cells using antibody-based methods.  
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As demonstrated in microscopic images A and B in Figure 3.10, the PTH1R in 

cultured PDL cells was visualized with DAB (brown) and Texas Red fluorochrome 

(red), respectively. Sections stained without the primary antibody served as negative 

control (Figure 3.10, a and b). 

 

 

 

 

 

 

 

 

 

            
Figure 3.10 Immunohistochemical detection of PTH1R i n cultured PDL cells and semi-quantification of 

PTH1R in PDL, MG63 and HEK293 cells using western blot  method.  A:  PDL cells stained with DAB (brown 

color).  a: The negative control section in which the PTH1R antibody was omitted. B: Immunofluorescence 

staining of the PTH1R in PDL cells. For detection, a goat anti - mouse secondary antibody conjugated with Texas 

Red was used. b:  The negative control section without the primary antibody. Magnification: X400. The figure is 

representative of two separate experiments. C: Semi-quantification of PTH1R in PDL, MG63 and HEK293 cells 

using western blot method. Cell lysates of PDL, MG63 and HEK293 cells were resolved by SDS-PAGE and the 

protein was detected with anti-PTH1R and anti-ß-actin antibody, respectively. In each lane, the same amount of 

protein was loaded and the protein levels were normalized by β-actin levels. 

 

As next, we investigated the PTH1R protein level in PDL, MG63 and HEK293 cells 

using westernblot method. As shown in Figure 3.10, C, the band detected in HEK293 

cells was much more intensive than those of in MG63 and PDL cells, while the 

intensities of the bands in these latter cell lines were at the same level. These results 

confirmed the presence of PTH1R at protein level in the three cell lines investigated 

and showed that HEK293 cells contain much more PTH1R proteins than PDL and 

MG63 cells, while the amount of this receptor protein was at the same level in the 

latter cell lines. This finding is in accordance with the result of the mRNA expression 

level of PTH1R in the three cell lines.  
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Localization  

After having established the immunohistochemical staining of PTH1R, we have 

addressed the question of the PTH1R localization in PDL, MG63 and HEK293 cells. 

As expected, a distinct immunostaining of the PTH1R was observed on the plasma 

membrane of all the three cell lines investigated (Figure 3.11, A, B, C and D). 

However, the strongest immunoreactivity was seen in the cytoplasm of the three cell 

lines. On the other hand, a weak nuclear staining for PTH1R was seen in MG63 and 

PDL cells, whereas the nuclei of HEK293 cells were almost devoid of staining. The 

specificity of the staining was ensured by the negative controls without the primary 

antibody was omitted (Figure 3.11, a, b, c and d). 
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Figure 3.11 Subcellular localization of PTH1R in PDL, MG63 and HEK293 cells.  A: PDL cells were stained for 

PTH1R with Texas Red (red) and examined with a confocal laser scanning microscopy. Magnification: x400. B:  

PDL cells were stained for PTH1R with DAB (brown) and examined with a light microscope. Magnification: x400. 

C and D:  MG63 and HEK293 cells were stained for PTH1R with Texas Red (red) and examined with a Leica 
TCS SP2 confocal laser scanning microscopy. Magnification: X630. The nucleus and plasma membrane were 

indicated with white arrows. N: nucleus; M: plasma membrane. Images: a, b, c and d are the corresponding 

negative controls of A, B, C and D, respectively. 

 

 

Internalization of PTH1R 

Agonist activation of G protein-coupled receptor (GPCR) results in the redistribution 

of the receptor protein away from the cell surface into internal cellular compartments 

through a process of endocytosis known as internalization. To demonstrate the 

internalization of the PTH1R from the plasma membrane upon ligand binding, PDL, 

MG63 and HEK293 cells were challenged with 10-7 M hPTH (1-34) for 30 min and 

stained for PTH1R. 

As shown with white arrows in Figure 3.12, the hPTH (1-34) treatment for the 

indicated period of time reduced dramatically the Texas Red fluorescence signal on 

the plasma membrane of PDL and MG63 cells. However, since HEK293 cells have a 

relative small cytoplasm and large nucleus, the difference in the fluorescence signal 

intensity on the plasma membrane could not be distinguished.  

The internalization process further confirmed the presence of functional PTH1R in 

PDL and MG63 cells. Regarding HEK293 cells, this process needs to be visualised 

by other approaches. 
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Figure 3.12 Internalization of PTH1R in PDL, MG63 and  HEK293 cells.  PDL, MG63 and HEK293 cells were 

stimulated with 10-7 M hPTH (1-34) for 30 min and subsequently stained for PTH1R with Texas Red (red). In 

control groups, PDL, MG63 and HEK293 cells were treated with vehicle for 30 min and subsequently stained for 

PTH1R with Texas Red. The specimens were examined with a Leica TCS SP2 confocal laser scanning 

microscopy. Magnification: X630. The detected PTH1R on the plasma membrane were indicated with white 

arrows. The figures are representative of two separate experiments. 

 

 

3.5 Flow cytometry analysis of the PTH1R-positive s ubpopulation in 

PDL, MG63 and HEK293 cells 

 

Albeit morphological homogeneity, PDL cells are considered to contain a variety of 

subpopulations with different functional characteristics. On the other hand, previous 

studies showed that MG63 cell line is representative of early undifferentiated 

osteoblast-like cells. Although HEK293 cells were originally derived from embryonic 

kidney, the exact cellular origin of these cells is still unclear, as embryonic kidney 

cultures may contain small numbers of almost all cell types of the body. These facts 
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lead to the question of whether these cell lines possess distinct subpopulations, 

which present PTH1R. To address this question, we analysed PDL, MG63 and 

HEK293 cells using a flow cytometery. To this end, we have established a protocol 

for the cell sorting analysis and optimized the antibody concentration. 

First, the living cells were sorted, as the antibody cannot penetrate the intact 

membrane effectively and can only bind the epitope in the extracellular part of the 

PTH1R on the plasma membrane. In each experiment, data from at least 10,000 

cells was acquired and analyzed with FlowJo 7.6.1 software.  Dead cells were 

excluded using a commercially available dead cell staining kit. In the course of data 

processing, cell clumps and debris were distinguished from the main population by 

gating the cells on the scatter plots with forward scatter (FSC) vs. side scatter (SSC). 

The forward scatter represents the size, and side scatter the granularity of cells 

(Figure 3.13, A). Subsequently, the gated cell population was further analyzed on the 

dot plot with the X-axis representing the fluorescence intensity of the fluorescent 

reactive dye used for dead cell discrimination and Y-axis representing the Alexa 

Fluor 647 dye. Mouse IgG1 monoclonal antibody served as isotype control (Figure 

3.13, B, D and F ). The upper right quadrant (Q2) of each plot indicates the dead cells 

that are positive for PTH1R. The Q3 represents the PTH1R-positive cells, which are 

intact (Figure 3.13, C, E and G ).  

After gating out dead cells, no PTH1R-positive subpopulation was detected in PDL 

cells, while almost all of the HEK293 cells were positive for PTH1R. In contrast, 

approximately 40% of MG63 cells were positive for PTH1R, indicating the presence 

of a subpopulation which contains PTH1R (Figure 3.14).  
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Figure 3.13 Flow cytometry analysis of PTH1R-positiv e subpopulation in intact PDL, MG63 and HEK293 

cells.  A: A representative scatter plot. Cell clumps and debris were discriminated by gating the main population of 

PDL cells (circled). X-axis represents side scatter (SSC-A) and Y-axis represents forward scatter (FSC-A). B, D 

and F:  Representatives of flow cytometry analysis of isotype control (mouse monoclonal antibody) treated cells. 

C, E and G: Representatives of flow cytometry analysis of PTH1R-positive subpopulation in cells. Dots in lower 

right quadrant (Q3) represent the intact PTH1R-positive cells. 
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Figure 3.14 Quantification of PTH1R-positive subpopu lations in PDL, MG63 and HEK293 cells. Y-axis: 

Portion of intact cells positive for PTH1R (%).  Data were acquired from one of two separate experiments, both 

yielding comparable results. Each value represents the mean + SEM for 6 independent cultures. *** : P<0.001 

(Dunnett-test). 

 

We next permeabilized the cells and stained intracellular PTH1R. To this end, prior to 

the staining, the cells were fixed and subsequently permeabilized with a commercial 

kit. After gating the main population of cells, the SSC was plotted against Alexa Fluor 

647 on the Y-axis. Mouse IgG1 monoclonal antibody served as isotype control. In 

this case, all three cell lines showed ~100% positive population for PTH1R (blue 

circled region) (Figure 3.15).  

Taken together, in terms of surface PTH1R, we could observe a distinct PTH1R-

positive subpopulation in MG63 cells, but not in HEK293 cells. Regarding PDL cells, 

because of the used PTH1R antibody's inaccessibility to the surface antigen in living 

PDL cells, we could not detect any PTH1R-positive subpopulation. However, after 

permeabilization, all of the three cell lines were almost 100% positive for PTH1R. 
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Figure 3.15 Flow cytometry analysis of PTH1R-positiv e subpopulation in fixed and permeabilized PDL, 

MG63 and HEK293 cells.  Cell clumps and debris were discriminated by gating the main population of cells. X-

axis represents side scatter (SSC-A) and Y-axis represents Alexa Fluor 647 dye. The population in red represents 

the isotype control (mouse monoclonal antibody) treated cells, as negative control. The population in blue 

represent the PTH1R-positive cells.  

 

 
Figure 3.16 Quantification of PTH1R-positive subpopu lations in fixed and permeabilized PDL, MG63 and 

HEK293 cells.  Y-axis: Portion of cells positive for PTH1R (%).  Data were acquired from one of two separate 

experiments, both yielding comparable results. Each value represents the mean + SEM for 6 independent 

cultures.  

 

 

3.6 Binding characteristics of PTH1R and its densit y 

 

The binding affinity and density of PTH1R have been intensively studied in 

osteoblast-like cells as well as in PTH1-transfected HEK293 cells, however not yet in 

PDL cells. To fill the gap, we assessed the binding characteristics of the PTH1R in 
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PDL, MG63 and HEK293 cells using a homologous competitive binding assay. In this 

assay, a constant concentration of radioactive labelled ligand, h[125I]-[Nle8,18, Tyr34]-

PTH (1-34) competed with a series of concentrations of its unlabelled homologous, 

hPTH (1-34) for the binding sites. The acquired data was analyzed with the nonlinear 

curve-fitting program of GraphPad PRISM™ 4.0 and IC50 (inhibitory concentration 

50%) was determined. Binding affinity (Kd) and receptor density (Bmax) were 

calculated by the equation of Cheng and Prusoff using IC50 values and the 

concentration of radioligand, as stated in materials and methods.  

 

 
Figure 3.17 Binding characteristics of PTH1R in PDL, MG63 and HEK293 cells. In the graphic, the 

competitive binding curves of hPTH (1-34) against [125I]-[Nle8,18, Tyr34]-PTH 1-34 (h) in PDL (▼), MG63 (■) and 

HEK293 cells (●) are shown. Y-axis: specific binding (%). X-axis: concentrations of hPTH (1-34), respectively: 10-

4.5,10-5,10-5.5,10-6,10-6.5,10-7,10-7.5,10-8,10-8.5,10-9,10-9.5,10-10 M. In the table, the estimated Kd and Bmax values for 

PTH1Rs in PDL (blue), MG63 (red) and HEK293 cells (green) are shown. Data represent the average (± SD) of 

two independent experiments, each performed in triplicate. 

 

Among the three cell lines, the binding affinity of hPTH (1-34) to PTH1R in PDL cells 

was the lowest (Kd=1030±10 nM), while the PTH1R density in this cell line was the 

highest (3.03±0.57 million receptors/cell). The highest binding affinity was estimated 

in MG63 cells (Kd=80.1±20.2 nM), with the lowest receptor density (0.365±0.1 million 

receptors/cell. The binding affinity of hPTH (1-34) and the receptor density in 

HEK293 cells were Kd=670±417 nM and 2.27±1.4 million receptors/cell respectively, 

and these two values reside between those of PDL and MG63 cells. 
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3.7 Regulation of PTH1R gene expression in PDL cell s 

 

It is well established that the expression of PTH1R mRNA in osteoblasts is regulated 

by extracellular factors, such as dexamethason (Ureña et al., 1994a; Yaghoobian 

and Drüeke, 1998; Haramoto et al., 2007), 1,25-dihydroxyvitamin D3 (Xie et al., 1996; 

Sneddon et al., 1998) and PTH (Jongen et al., 1996). Accordingly, we investigated 

the effects of these factors on the expression level of PTH1R mRNA in PDL cells. For 

this aim, PDL cells of three donors were stimulated with 10-6 M dexamethason, 10-7 

M 1,25(OH)2 D3 and 10-8 M hPTH (1-34) and the gene expression level was 

assessed using real time PCR method.  

 

Dexamethason 

As illustrated in Figure 3.18, A, stimulation with 10-6 M dexamethason led to a 

significant increase in PTH1R mRNA level over a period of 21 days, resulting in a 

148-fold higher level compared to the untreated group on day 1. In the corresponding 

control groups, the PTH1R mRNA level also increased in a time-dependent manner. 

The effect of dexamethason on PTH1R gene expression increased with the time in 

the first four days, with the highest increase in PTH1R mRNA level on the 4th day 

(~12-fold of the corresponding control group), as shown in graphic B (Figure 3.18). 

Thereafter, the effect of dexamethason declined gradually, resulting in the decrease 

of the PTH1R gene expression. Correspondingly, the relative increase in the PTH1R 

mRNA level on the 14th and 21st day dropped to ~3-fold of that of the control groups. 

(Figure 3.18, B). 
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Figure 3.18 Effect of 10 -6 M dexamethason on mRNA level of PTH1R in PDL cells. The effect of 

dexamethason (10-6 M) on PDL cells of three donors was studied using real time PCR. Data were acquired from 

one of two separate experiments, both yielding comparable results. Each value represents the mean ±SEM for 6 

independent cultures. A:  Comparison of all the experimental groups and vehicle-treated controls to the vehicle-

treated control of the 1st day. The vehicle-treated control on the 1st day was taken as reference for normalization. 

# : P<0.05 (t-test), experimental group vs. vehicle-treated control (at the same time point); * : vehicle-treated 

controls on the fist day vs. all other vehicle-treated controls and experimental groups (Dunnett-test). B: 

Comparison of experimental groups to corresponding vehicle-treated control (at the same time point). Each 

experimental group was normalized to the corresponding control group (at the same time point).  # : P<0.05 (t-

test), experimental group vs. corresponding vehicle-treated control.  

 

1,25-dihydroxyvitamin D 3  

Over the 6 days of stimulation with 10-7M 1,25-dihydroxyvitamin D3, the PTH1R 

mRNA level was increased in a time-dependent manner, with the highest level on 6th 

day (~10-fold of the control group of the 1st day, as shown in graphic A (Figure 3.19). 

In the control groups, the mRNA level of PTH1R also increased with the time. 

An apparent effect of 1,25-dihydroxyvitamin D3 was seen on the 6th day of 

stimulation, with an increase of ~14-fold over the corresponding control group, as 

illustrated in graphic B (Figure 3.19). 
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Figure 3.19 Effect of 10 -7 M 1,25-dihydroxyvitamin D3 on the gene expression level of PTH1R in PDL cells. 

The effect of 1,25-dihydroxyvitamin D3 (10-7 M) on PDL cells of three donors was studied using real time PCR. 

Data were acquired from one of two separate experiments, both yielding comparable results. Each value 

represents the mean ±SEM for 6 independent cultures. A:  Comparison of all the experimental groups and vehicle-

treated controls to the vehicle-treated control on the 1st day. The vehicle-treated control on the 1st day was taken 

as reference for normalization. # : P<0.05 (t-test), experimental group vs. vehicle-treated control (at the same time 

point); * : vehicle-treated controls on the first day vs. all other vehicle-treated controls and experimental groups 

(Dunnett-test). B: Comparison of experimental groups to corresponding vehicle-treated control (at the same time 

point). Each experimental group was normalized to the corresponding control group (at the same time point). # : 

P<0.05 (t-test), experimental group vs. vehicle-treated control (at the same time point). 
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hPTH (1-34) 

PDL cells were exposed to 10-8 M hPTH (1-34) continuously as well as intermittently 

for 1 h and 24 h within 3 incubation cycles of 48 h each. In the first cycle, PTH1R 

mRNA expression was increased ~1.7-fold by 1h intermittent treatment and ~2.5-fold 

by continuous treatment (48h), but decreased ~2-fold by 24 h intermittent treatment, 

compared to the control group (Figure 3.20, A). In the second cycle, the mRNA level 

of PTH1R was further elevated to ~3-fold by the 1 h hPTH (1-34) application (Figure 

3.20, B). The 24 h/cycle intermittent treatment further decreased PTH1R mRNA 

expression to ~20% of the control (Figure 3.20, C). However, when hPTH (1-34) was 

continuously applied for 96 h, the PTH1R mRNA level was significantly down-

regulated to ~0.5-fold of the control group, which was a ~5-fold drop compared to the 

same treatment in the first cycle (Figure 3.20, D).  In the third cycle of treatment, the 

PTH1R mRNA level fell back almost to control levels, regardless of intermittent or 

continuous application of hPTH (1-34) (Figure 3.20, A).  

Taken together, a distinct effect of the hPTH (1-34) on PTH1R gene regulation was 

observed in the first two cycles of treatment. While the 1 h intermittent exposure up-

regulated PTH1R gene expression, 24 h intermittent administration inhibited it. The 

continuous administration of this peptide elevated the gene expression of PTH1R in 

the first cycle, but took an opposite effect in the second cycle and decreased the 

gene expression of PTH1R. 
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Figure 3.20 Effect of 10 -8 M hPTH (1-34) on the gene expression level of PTH1R in PDL cells. The effect of 

intermittent (exposed respectively for 1 h and 24 h) and continuous application of hPTH (1-34) (10-8 M) on PDL 

cells of three donors was studied using Real time PCR. Data were acquired from one of two separate 

experiments, both yielding comparable results. Each value represents the mean ±SEM for 6 independent 

cultures. A:  Graphic of all three incubation cycles. The vehicle-treated control in each cycle was taken as 

reference for normalization. # : P<0.05 (Dunnett-test), vehicle-treated control vs. each experimental group (in 

each cycle). B: Graphic of 1 h intermittent hPTH (1-34) (10-8 M) treatment in 3 incubation cycles. C: Graphic of 24 

h/cycle intermittent hPTH (1-34) (10-8 M) treatment in 3 incubation cycles. D: Graphic of continuous hPTH (1-34) 

(10-8 M) treatment in 3 incubation cycles. In Graphic B, C and D, * : P<0.05 (Tukey’s test). 

 

 

3.8 Signal transduction of PTH1R  

 
Upon ligand binding, PTH1R activates mainly two signalingpathways: cAMP/PKC 

and PLC/PKA (Mannstadt et al., 1999), which, in turn, regulate the downstream 

physiological response of cells. To elucidate the signal transduction of PTH1R, we 

exposed PDL cells of three donors, MG63 and HEK293 cells to 10-6, 10-7, 10-8, 10-9, 
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10-10 and 10-12 M hPTH (1-34) for 15 min and measured for cAMP accumulation level 

and PKC activity. 

 

cAMP accumulation 

The cAMP production of PDL cells in response to hPTH (1-34) after 15 min was not 

accumulative, but rather concentration-dependent (Figure 3.21, A).  The highest 

effect of hPTH (1-34) on PDL cells was seen at 10-12 M with a more than 120% 

increase, followed by a ~90% increase at 10-8 M. cAMP accumulation was also 

observed at 10-7 M treatment with a 60% increase. The PDL cells showed no 

apparent change in cAMP level, when exposed to 10-10, 10-9 and10-6 M hPTH (1-34). 

In HEK293 cells, low concentrations of hPTH (1-34) (10-12 and 10-10 M) did not induce 

apparent changes in the cAMP accumulation (Figure 3.21, C). The first response of 

cAMP to hPTH (1-34) stimulation was observed at 10-9 M, with a ~70% increase in 

the cAMP level compared to the control group. After a slight decrease at 10-8 M, the 

cAMP accumulation was increased to the highest level at 10-7 M of hPTH (1-34), with 

a ~230% increase in cAMP level in contrast to the control. The second highest 

response of cAMP to hPTH (1-34) was detected at concentration of 10-6 M, with a 

~120% increase in cAMP level (compared to control) 

Like HEK293 cells, the MG63 cells triggered no apparent response in terms of cAMP 

accumulation until stimulated with 10-9 M hPTH (1-34) (Figure 3.21, B). After a slight 

increase at 10-9 M, cAMP production dropped by ~35 % from the baseline level, when 

treated with 10-8 M hPTH (1-34). The highest cAMP accumulation was induced by10-6 

M hPTH (1-34) with 40% increase from the baseline level. 

The baseline cAMP production was not at the same level in the three cell lines 

studied. (PDL cells: 18.26 pmol/mg total protein, MG63 cells: 15.56 pmol/mg total 

protein and HEK293: 10.62 pmol/mg total protein) (Figure 3.21, D). No change in 

cAMP level was observed in all three cell lines, when exposed to 10-10 and 10-9 M 

hPTH (1-34).  Another similarity was seen at the 10-7 M of hPTH (1-34), with a 

significant increase in the cAMP production in all the three cell lines. When subjected 

to 10-12 and 10-8 M hPTH (1-34), PDL cells demonstrated a significantly higher 

increase in the cAMP accumulation compared to MG63 and HEK293 cells. 
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Figure 3.21 Effect of hPTH (1-34) on cAMP accumulatio n in PDL, MG63 and HEK293 cells. The effect of 

hPTH (1-34) on cAMP production was analysed after 15 min of stimulation using a commercial cAMP assay kit. 

Each value represents the mean ± SEM for 6 independent experiments. A:  cAMP accumulation upon hPTH (1-

A B 

C 

D 

HEK293 cells  

MG63 cells  PDL cells  
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34) stimulation in PDL cells. B:  cAMP accumulation upon hPTH (1-34) stimulation in MG63 cells. C: cAMP 

accumulation upon hPTH (1-34) stimulation in HEK293 cells. In Graphic, A, B and C, * : P<0.05 (Dunnett-test), 

vehicle-treated control vs. each experimental group. D: Comparison of cAMP accumulation in the three cell lines 

studied in response to hPTH (1-34) stimulation.  # : P<0.05  PDL cells vs. HEK293 cells, ● : P<0.05  PDL cells vs. 

MG63 cells, $ : P<0.05  MG63 cells vs. HEK293 cells (Tukey’s test). 

 

PKC activity 

The activity of PKC was assessed by quantifying the active PKC protein, which was 

produced in PDL, MG63 and HEK293 cells upon the stimulation with hPTH (1-34) for 

15 min. 

In PDL cells, the production of active PKC protein was again dependent on the 

concentration of hPTH (1-34) (Figure 3.22, A). At first, the level of the active PKC 

protein dropped slightly at 10-12 M and then increased to the highest level at 10-10 M 

(~23% increase). The 10-9 M stimulation had almost the same effect as the 10-10 M 

stimulation. The lowest active PKC amount was seen at 10-8 M with ~66% decrease, 

followed by ~36% decrease at 10-7 M (compared to control group). Stimulation with 

10-6 M hPTH (1-34) caused almost no change in the baseline level of active PKC 

protein. 

The response of MG63 to the stimulation was different from the other two cell lines 

(Figure 3.22, B). The effect of hPTH (1-34) was first seen at 10-9 M with ~43% 

decrease, which was then slightly up-regulated at 10-8 M (~20%). At concentrations 

10-7 M and 10-8 M, hPTH (1-34) demonstrated the same effect as observed with 10-9 

M treatment. 

In HEK293 cells, the amount of active PKC protein declined gradually from the 

baseline level to the lowest level, until 10-9 M treatment (~30% decrease from the 

baseline level) and was then subsequently up-regulated to the highest level with 

~24%, at 10-6 M (Figure 3.22, C). 

In average, the baseline amount of the active PKC protein in PDL cells was 5~7-fold 

higher than that in MG63 and HEK293 cells, while the last two cell lines produced 

almost the same baseline level of the active PKC protein.  

When the plots were combined into one graph, the response of the active PKC 

protein production to hPTH (1-34) stimulation in each cell line revealed an almost 

opposite direction of cAMP accumulation (Figure 3.22, D, E and F). At a given point 

of hPTH (1-34) stimulation, if the cAMP accumulation was up or down-regulated, the 
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active PKC protein level was down or up-regulated and the magnitude of the 

response was almost at the same level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

0 0.001 0.1 1 10 100 1000
1

3

5

7

9

cAMP
PKC

0

10

20

30

40

* * *#

#
#

[PTH (1-34)] nMA
ct

iv
e 

P
K

C
 p

m
ol

/1
00

m
g 

to
ta

l p
ro

te
in cA

M
P

 pm
ol/m

g total protein

0 0.001 0.1 1 10 100 1000
1.8

2.8

3.8

4.8

PKC

0

10

20

30

40
cAMP

*

*
#

#

[PTH (1-34)] nMA
ct

iv
e 

P
K

C
 p

m
ol

/1
00

m
g 

to
ta

l p
ro

te
in cA

M
P

 pm
ol/m

g total protein

0 0.001 0.1 1 10 100 1000
0

10

20

30

40
cAMP

0

10

20

30

40

PKC

*

*

#

#

#

[PTH (1-34)] nMA
ct

iv
e 

P
K

C
 p

m
ol

/1
00

m
g 

to
ta

l p
ro

te
in cA

M
P

 pm
ol/m

g total protein

A D 

B E 

F 

0 0.001 0.1 1 10 100 1000
1 .5

2 .5

3 .5

4 .5

*

*

[P TH  (1-34) ]  nM A
ct

iv
e 

P
K

C
 p

m
ol

/1
00

m
g 

to
ta

l p
ro

te
in

0 0 .001 0 .1 1 10 100 10 00
0

10

20

30

40

*

*

[P TH  (1-34) ]  n MA
ct

iv
e 

P
K

C
 p

m
ol

/1
00

m
g 

to
ta

l p
ro

te
in

0 0.001 0.1 1 10 100 1000
0

2

4

6

8

10

* * *

[PTH  (1-34)]  nM A
ct

iv
e 

P
K

C
 p

m
ol

/1
00

m
g 

to
ta

l p
ro

te
in

PDL cells  PDL cells  

HEK293 cells  HEK293 cells  

MG63 cells  MG63 cells  

C 



Results 
 
 

99 

Figure 3.22 Effect of hPTH (1-34) on PKC activity in P DL, MG63 and HEK293 cells. The effect of hPTH (1-34) 

on PKC activity after was assessed using a commercial PKC activity assay kit. Each value represents the mean 

±SEM for 6 independent experiments. A:  Active PKC amount upon hPTH (1-34) stimulation in PDL cells. B:  

Active PKC amount upon hPTH (1-34) stimulation in MG63 cells. C: Active PKC amount upon hPTH (1-34) 

stimulation in HEK293 cells. In Graphic, A, B and C, * : P<0.05 (Dunnett-test), vehicle-treated control vs. each 

experimental group. D: cAMP accumulation vs. active PKC protein level in PDL cells in response to hPTH (1-34) 

stimulation. E: cAMP accumulation vs. active PKC protein level in MG63 cells in response to hPTH (1-34) 

stimulation. F: cAMP accumulation vs. active PKC protein level in HEK293 cells in response to hPTH (1-34) 

stimulation. In Graphic, D, E and F, * : P<0.05 (Dunnett-test), vehicle-treated control vs. each experimental group 

in PKC activity assay. # : P<0.05 (Dunnett-test), vehicle-treated control vs. each experimental group in cAMP 

accumulation assay. 

 

 

3.9 Effect of 10 -12 M hPTH (1-34) on osteoprotegerin 

 

The observation that a concentration as low as 10-12 M hPTH (1-34) triggers the 

cAMP/PKA pathway in PDL cells was further confirmed by other lines of data, 

wherein the effect of 10-12 M hPTH (1-34) on osteoprotegerin production of these 

cells was investigated. 

In confluent PDL cells, intermittent 10-12 M hPTH (1–34) administration for both 1 

h/cycle and 24 h/cycle significantly reduced osteoprotegerin at protein level (Figure 

3.23). This regulation scheme was sustained, when the PKC pathway was blocked 

with RO-32-0432. However, the blocking of PKA pathway with H8 did not induce any 

notable change in the basal protein level of this cytokine.  
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Figure 3.23 Regulation of the osteoprotegerin produ ction by intermittent 10 −12 M hPTH (1–34) in confluent 

PDL cells . The cells were treated intermittently with 10−12 M hPTH (1–34) for 1 or 24 h during three cycles of 48 h 

each. Vehicle treated cultures served as controls. The osteoprotegerin content in the conditioned medium was 

assayed by ELISA and expressed as a function of the cell number. From all data obtained, the osteoprotegerin 

level at the onset of hPTH (1-34) administration (T0) was subtracted serving as a baseline correction. Data were 

acquired from one of two separate experiments, both yielding comparable results. Each value represents the 

mean ± SEM for six independent cultures. * : P<0.05, experimental group vs. vehicle control at a particular 

maturation state. 

 

 

3.10 Effect of intermittent hPTH (1-34) on human pe riodontal 

ligament cells transplanted into immunocompromised mice. 

 

In this section, we analyzed the effect of an intermittent hPTH (1-34) administration 

on human periodontal ligament cells in vivo. To this end, gelatin sponges containing 

explanted and dexamethasone pre-differentiated human PDL cells were transplanted 

into immunocompromised mice and grown for 4 weeks with daily injections of hPTH 

(1-34). Markers of osteoblastic differentiation including alkaline phosphatase, 

osteopontin, and osteocalcin as well as well PTH1R were immunohistochemically 

determined. Meanwhile, the degree of mineralization was analyzed by staining tissue 

specimens with alizarin red.  

 

Effect of intermittent PTH (1-34) on osteocalcin bl ood serum level 

Daily subcutaneous injections of 40µg/kg hPTH (1-34) raised the blood serum level 

of osteocalcin by approximately factor 3 (41.61±13.02ng/ml) compared to the control 

animals which only received sham-injections (13.90±2.81ng/ml). These differences 

proved statistically significant (Figure 3.24). 
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Figure 3.24 hPTH (1-34)-induced increase of osteocal cin serum levels as a hint towards enhanced bone 

turnover.  Prior to sacrifice of the animals at the end of the experimental period, blood was collected by cardiac 

puncture and the osteocalcin level was determined in the serum by ELISA. The bar graph shows the mean + SEM 

for 6 mice per experimental group. *: P<0.05, experimental group vs. vehicle control. 

 

Identification of human PDL cells in mouse tissue 

Proof of the human origin of the cells under investigation was provided by an 

immunohistochemical staining specific to human but not mouse cell nuclei. In all 

specimens, a positive immunoreaction demonstrated the presence of human 

transplanted PDL cells in the gelatin sponges after growing 4 weeks in the mouse 

(Figure.3.25, A). Mouse tissue, which served as a negative control, remained 

unstained (Figure.3.25, a). 

 

    
 

Figure 3.25 Proof of human cells in the specimens ex planted from the mice. Following sacrifice, specimens 

were processed for immunohistochemical detection of human cell nuclei to identify human PDL cells. A: The 

nuclei of the transplanted PDL cells were immunohistochemically stained using an antibody specific to human, but 

not mouse cells. Open arrows indicated the stained PDL cells in the gelatin sponges. a: Mouse tissue, which 

served as a negative control, remained unstained. Magnification: x400. 

a A 
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Histology 

Histology of the recovered specimens revealed the collagenous structure of the 

scaffolds, which mostly appeared as a fibrous network containing porous spaces 

ranging from 5 to 10 µm. In those spaces, a gradual distribution of the PDL cells 

including extracellular matrix throughout the gelatin sponges with the outer areas 

being more populated by PDL cells than the inner regions became evident (Figure 

3.26). 

  

 

Figure 3.26 Histology of the recovered specimens. Following sacrifice, specimens were stained with 

haematoxylin-eosin (HE). Blue arrows indicate the gelatin sponges. The cytoplasm of transplanted PDL cells was 

stained red   A: Magnification: x200. B:  Magnification: x400. 

 

ALP, osteopontin, osteocalcin and PTH1R immunohisto chemistry 

In the control specimens, alkaline phosphatase, osteopontin, and osteocalcin 

immunoreactivity was detected in the cytoplasm of the PDL cells and in the 

extracellular matrix, respectively, with the intracellular staining being stronger than 

the extracellular. PTH1R exhibited the same staining pattern as found in PDL tissues, 

as described previously. Correlating with the cell distribution pattern, the staining was 

found to be more intense in the outer areas as compared to the inner zones of the 

specimens. Intermittent hPTH (1-34) administration in the post surgical period 

resulted in a visible increase of both the number of immunoreactive cells and the 

staining intensity for all four antigens under investigation as compared to the sham-

injected controls (Figure 3.27, A-D and a-d). This visual impression was further 

substantiated by semiquantitative assessment using a rating system ranging from 0 

to 3 and proved statistically significant for all parameters tested (Figure 3.28). 

 

A B 



Results 
 
 

103 

 

 

 

Figure 3.27 Immunohistochemical detection (DAB) of alkaline phosphatase (ALP), osteocalcin (Ocal), 

osteopontin (OP) and PTH1R in the explants retrieved from the immunodeficient mice after 28 days.  The 

respective panels on the left represent specimens of the animals treated with hPTH (1-34) intermittently (A-D), 

whereas those on the right are representative of the sham-injected group (a-d). Magnification: x400.  
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Figure 3.28 Semiquantative immunohistochemical analy sis of alkaline phosphatase (ALP), osteocalcin 

(Ocal), osteopontin (OP) and PTH1R protein expression  in the transplanted human PDL cells.  Fourth 

passage PDL cells from two donors were stimulated with dexamethasone for three weeks prior to implantation 

into 6 CD-1® nude mice using gelatin sponges as a carrier. Post implantation, 40µg hPTH (1-34)/kg body weight 

were administered subcutaneously once daily for a period of 4 weeks. Sham injections of saline served as vehicle 

controls. Following sacrifice, specimens were processed for immunohistochemical staining and semiquantitative 

assessment of immunoreactivity. The bar graph shows the mean + SEM for 36 specimens per experimental 

group. *: P<0.05, experimental group vs. vehicle control. 
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Biomineralization 

Alizarin red staining as a marker of biomineralization followed a similar staining 

pattern as described for the osteoblastic marker proteins with ossicles from hPTH (1-

34) treated animals exhibiting a significantly higher degree of mineralization than 

ossicles from vehicle-treated animals (Figure 3.29). 

 

 

 

 

 

 

 

Figure 3.29 Alizarin red staining of calcium deposi ts in the explants retrieved from immunodeficient m ice 

after 28 days.  Alizarin red staining indicates areas of mineralization. A: PTH-treated mice. a: sham-injected mice. 

Magnification: x100. 
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Figure 3.30 Semiquantative immunohistochemical anal ysis of mineralization of the transplanted human 

PDL cells.  Fourth passage PDL cells from two donors were stimulated with dexamethasone for three weeks prior 

to implantation into 6 CD-1® nude mice using gelatin sponges as a carrier. Post implantation, 40µg hPTH (1-

34)/kg body weight were administered subcutaneously once daily for a period of 4 weeks. Sham injections of 

saline served as vehicle controls. Following sacrifice, specimens were processed for Alizarin red staining and 

semiquantitative assessment of staining intensity. The bar graph shows the mean + SEM for 36 specimens per 

experimental group. *: P<0.05, experimental group vs. vehicle control. 

 

a A 
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4 DISCUSSION 

In addition to the classic catabolic effects, it is now widely accepted that PTH exerts 

anabolic effects on bone, when administered intermittently. As a result of the 

regenerative characteristic, PTH (1-34) (Teriparatide) has been approved for the 

treatment of osteoporosis (Hodsman et al., 2003).  

Periodontitis is one of the most common diseases, which causes the resorption of 

alveolar bone and can result in the loss of teeth, if treated not adequately. Over the 

past several years, numerous in vivo and vitro studies have been conducted to reveal 

the anabolic effect of PTH on PDL tissue and alveolar bone (Nohutcu et al., 1995; 

Ouyang et al., 2000; Barros et al., 2003; Lossdörfer et al., 2005, 2006b). The result of 

these findings suggests that PTH has anabolic effects on oral bone. 

The dual actions of PTH are mediated primarily through the PTH1R, which is a class 

II G protein-coupled receptor. Upon ligand binding, PTH1R can activate diverse 

signaling pathways, including cAMP/PKA and PLC/PKC pathways (Vilardaga et al., 

2011).  In light of this, understanding the physiology of the PTH1R is crucial to 

promote the regenerative effect of PTH. PTH1R has been exclusively studied in 

kidney and bone cells. However, the knowledge on PTH1R characteristics and 

physiology in PDL cells is still in its infancy. 

The objective of this study was to characterize the PTH1R in PDL cells, in terms of its 

cellular localization, binding affinity, density, signal transduction and gene regulation 

by diverse stimulants such as dexamethasone, vitamin D3 and hPTH (1-34), as well 

as to compare these characteristics with those of MG63 and HEK293 cells as 

representatives of bone and kidney cells, respectively.    

 

 

4.1 Cell culture establishment and cell characteriz ation 

 

A crucial aspect of in vitro study is the establishment of a healthy cell culture model, 

which promises the reproducibility of experimental data. This becomes even more 

important with the use of primary cell line cultures. Moreover, albeit the similarity in 

morphology, PDL cells are considered to possess multiple characteristics, including 

fibroblastic and osteoblastic properties (Yamashita et al., 1987).   The shift between 
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the multiple characteristics could be dependent on the condition and state of the PDL 

cell culture.  Therefore, in the whole project, healthy, fifth passage PDL cells from 

different donors were used for each experimental setup. Additionally, it has been 

demonstrated that the confluent degree of PDL cells is correlated with the expression 

of differentiation markers and responsiveness to hPTH (1-34) stimulation (Lossdörfer 

et al., 2006a, 2006b).  Along the line, it is likely that the expression of PTH1 is also 

dependent on the state of confluence. To address this question, PDL cells at 

confluent and preconfluent stages were characterized for marker genes involved in 

osteogenesis, and a comparative gene expression profile of these markers, confluent 

vs. preconlfuent, was established using real time PCR method. Accordingly, to 

assure the consistent expression of PTH1R, we used confluent PDL cells for each 

experimental setup in this study.  

PTH1R are abundantly expressed in the bone and kidney (Langub et al., 2001). 

MG63 cells are commonly used as osteoblastic models, and HEK293 cells originated 

from human embryonic kidney (Graham et al., 1977). Thus, these two cell lines were 

included in this study to compare the characteristics of PTH1R in these cell lines to 

those of PTH1R in PDL cells.   

 

 

4.2 Autofluorescence of PDL cells 

 

The high autofluorescence of PDL cells was a major obstacle in the successful 

immunofluorescence staining of PTH1R in these cells. The FITC-conjugated 

secondary antibody was the choice of method at the beginning of our 

immunofluorescence staining based experiments. However, we observed a very 

intensive green fluorescence also in the unstained PDL cells. There are generally two 

possible sources of this unspecific fluorescence; external factors and 

autofluorescence. The external factors include fixation agents such as 

paraformaldehyde and to some degree also the used culture medium. As next, we 

changed the culture medium and stained directly the cells without fixation, which did 

not alter the intensity of the unspecific green fluorescence.  

Autofluorescence, termed also as “natural fluorescence”, is the fluorescence found in 

natural substances. Cells in most organisms exhibit some intrinsic level of 
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autofluorescence, which is most commonly caused by metabolites and structural 

components such as NADH, riboflavins, and flavin coenzymes (Mosiman et al., 

1997). Autofluorescence spectra are generally broad and encompass most of the 

visible spectral range, overlapping the emission spectra of commonly used 

fluorescent dyes (Billinton and Knight, 2001) (Figure 4.1).  

 

 
 

Figure 4.1 Common biochemical sources of autofluore scence in a wide variety of cell types and 

organisms, with their respective emission and excit ation maxima (Taken from: Billinton and Knight, 2001). 

 

The immunofluorescence images and flow cytometry analysis revealed that PDL 

cells exhibits a high green autofluorescence, which overlaps with the emission range 

of FITC. However, the autofluorescence decreases dramatically in the long 

wavelength region (from Alexa Fluor 647 to far infra red).  In order to cast further 

insight, the autofluorescence  characteristics of PDL cells were compared to those of 

MG63, HEK293, HaCaT cells and keratinocytes using FITC and Alexa Fluor 647 

sets. Interestingly, among these cell lines, PDL cells and MG63 showed similar 

properties in terms of autofluorescence intensity (Figure 3.6). This could mean that 

the two cell lines have similar metabolic activities, since the metabolites are the 

common cause of autofluorescence. Another interesting observation is that the 

intensity of autofluorescence of the five cell lines in the emission wavelengthes for 

FITC appears to reflect the capacity of these cell lines to synthesize extracellular 

matrix proteins and collagens. High amount of NAD(P)H and flavin molecules 
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indicate an intensive cellular metabolism, which in turn is a sign of an intensive 

synthesis of extracellular matrix proteins and collagens. Along the same line, the 

intensity of autofluorescence in the emission wavelengths for FITC would reflect the 

intensity of matrix proteins and collagens synthesis. Indeed, PDL cells and MG63 

cells are characterized by their intensive synthesis of extracellular matrix proteins 

and collagens, which are needed to form hard tissues. On the other hand, 

keratinocytes, and HaCat cells are of epithelial origin and associated with soft 

tissues. This would indicate that these cell lines are less specialized in synthesis of 

extracellular matrix proteins and collagens. Although HEK293 cells are considered to 

be of epithelial origin, they might be less mature than keratinocytes and HaCaT cells, 

because they were generated at a less mature stadium by transformation of human 

embryonic kidney cells.  

The intensity of autofluorescence was decreased significantly by permeabilization of 

the cells (Figure 3.7). One possible explanation could be that the agents which cause 

the autofluorescence are either quenched by permeabilizing reagents or washed out 

through the permeabilized cell membrane.  

 

 

4.3 Detection and comparison of the mRNA expression  level of 

PTH1R in PDL, MG63 and HEK 293 cells. 

 

The real time PCR products run on the agarose gel confirmed the presence of 

PTH1R at transcriptional level in PDL, MG63 and HEK293 cells. It is well known that 

MG63 cells express PTH1R (Carpio et al., 2001; de Gortázar et al., 2006; Tenta et 

al., 2006; Avnet et al., 2008). However, to the best of our knowledge, this is the first 

evidence that native (non-transfected) HEK293 cells express PTH1R. In most studies 

related to PTH1R, the used HEK293 cells were transfected with PTH1R gene (Iida-

Klein et al., 1997; Ferrari et al., 1999; Chauvin et al., 2002; Gesty-Palmer et al., 

2006; Qiu et al., 2010; Feinstein et al., 2011). In terms of PTH1R mRNA expression 

level, the three cell lines differed significantly, with HEK293 cells expressing the 

highest level of PTH1R mRNA. This divergence in the gene expression level appears 

to be cell type specific. These results were further supported by the western blot 

anylsis of PTH1R, wherein this receptor protein was detected and semi-quantidfied in 
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PDL, MG63 and HEK293 cells, respectively. The semi-quantitavie analysis indicated 

that PTH1R in these cell lines follows at translational level the same regulation 

scheme as observed at trascriptional level, which was evidenced by the 

quantification of mRNA level of PTH1R.  

 

 

4.4 Detection of PTH1R proteins in PDL tissue as we ll as in PDL, 

MG63 and HEK293 cells 

 

The results of immunhistochemical staining of tissue sections not only confirmed the 

presence of PTH1R protein but also revealed an equal distribution of this receptor 

throughout the whole PDL tissue, with no prevalence to alveolar bone side or tooth 

root. At cellular level, PTH1R was found mainly in PDL fibroblasts as well as in 

endothelial cells, whereas no immunostaining was observed in epithelial cell rests of 

Malassez (ERM). ERM are discrete clusters of residual epithelial cells that arise from 

fragmentation of the Hertwig’s root sheath and persist in the periodontal ligament 

throughout life (Gonçalves et al., 2008). These cells form a network around the root 

and can be identified easily as small clumps of epithelial cells within the periodontal 

ligament, close to the surface of radicular cementum. Several studies have reported 

the expression of different types of proteins by the ERM, such as cytokeratins and 

neuropeptides, as well as extracellular matrix and cell-surface proteins including a 

variety of growth factors, cytokines and extracellular matrix-degrading proteinases 

(Rincon et al., 2006). To date, however, there is no available evidence that support 

the presence of PTH1R in these cells, although the expression of parathyroid 

hormone related protein (PTHrP) is postulated (Beck et al., 1995). The presence of 

PTH1R in endothelial cells was already reported by several researchers (Isales et al., 

2000; Rashid et al., 2007). Along with PDL fibroblasts and endothelial cells, 

cementoblasts and odontoblasts showed also positive immunostaining for PTH1R 

(Figure 3.9, E and F). These results are consistent with the already published data of 

other investigators (Tenorio and Hughes, 1996; Kato et al., 2005b, 2005a). 

As next, we confirmed the persistence of the expression of PTH1R in cultured PDL 

cells by staining the cells for PTH1R.  In this step, we established and optimized a 

suitable immunohistochemical staining protocol for PTH1R in PDL cells, as the 
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antigen accessibility of the antibody could vary depending on the cell type. In both of 

the tissue staining and cell staining for PTH1R, we could achieve better results using 

an antigen retrieval method. There have been several methods developed to 

circumvent the problem of antigen masking which is generally caused by aldehyde 

fixation. After having systematically tested and optimized these methods, we used 10 

mM citrate buffer (PH 9) for the antigen retrieval of PTH1R. To this end, the tissue 

sections as well as the cells were incubated in this buffer at 80°C  in an incubater for 

30 min. Additionly, the distinct bands of correct size detected by western blot method 

supported furhter the presecne of PTH1R protein in PDL, MG63 and HEK293 cells.  

 

 

4.5 Localization of PTH1R 

 

GPCRS are cell surface receptors located within the lipid bilayer of the cell with an 

extracellular N-terminal domain, a seven transmembrane domain and an intracellular 

C-terminal domain. The biosynthesis of GPCRs begins at the endoplasmatic 

reticulum (ER) where they are subsequently folded and assembled (Figure 4.2). 

Properly folded receptors are then recruited and packaged into ER-derived coat 

protein complex II (COPII) -coated vesicles (Dong et al., 2007). These transport 

vesicles carry the cargo receptors further to the ER-golgi intermediate complex, the 

Golgi apparatus and the trans-golgi network, where the receptors undergo post-

translation modifications (e.g. glycosylation). Once receptors have achieved their 

mature status, they leave the ER and are transported through the secretory pathway 

to their destination on the plasma membrane (Duvernay et al., 2005). On other hand, 

the misfolded receptors are transported back into the cytosol and degraded by the 

ER associated pathway (Tsai et al., 2002).  
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Figure 4.2 Schematic overview of GPCR physiology (Taken from: Duvernay et al., 2005).  GPCRs are 

synthesized, folded and assembled in ER (endoplasmic reticulum); post-translational modified in ERGIC (ER–

Golgi intermediate complex), TGN (trans-Golgi network) and finally transported through the secretory pathway to 

their destination at the plasma membrane. 

 

Thus, prior to activation, GPCRs are distributed not only on the plasma membrane, 

but also can be found in the ER, golgi apparatus and packaged in transport vesicles 

depending on their mature status. In addition, the nuclear localization of several 

members of class I and III GPCRs has been also reported (Lu et al., 1998; 

Bhattacharya et al., 1999; Lee et al., 2004; Jong et al., 2005).  

In all the three cell lines studied, PTH1R showed the classic scheme of GPCR 

localization, with distribution on the plasma membrane and in the cytoplasm (Figure 

3.11). However, unlike HEK293 cells, MG63 and PDL cells showed additionally a 

weak nuclear staining, implying the nuclear localization of these receptors (Figure 

3.11, C). Indeed, both nuclear and cytoplasmic localization of PTH1R were 

previously reported in cultured osteoblast-like cells (ROS 17/2.8, UMR-106, MC3T3-

E1, and SaOS-2) (Watson et al., 2000). In the cytoplasm, the staining was mainly 

observed around the nucleus, indicating the presence of premature PTH1R in the ER 

and golgi apparatus. Additionally, there were also intensively stained dots observed 

in the cytoplasm, which might represent the mature receptors heading to their 

destination on the cell membrane via the secretory pathway.  These findings are 

consistent with the GPCR physiology in inactive state. 

Like other GPCRs, the activation of PTH1R leads to phosphorylation of its 

cytoplasmic tail by GRKs, which then facilitate association with ß-arrestin proteins, 

resulting in internalization and desensitization of the receptor (Malecz et al., 1998; 

Tawfeek et al., 2002). ß-Arrestin-PTH1R interactions lead to internalization 

(endocytosis) of the receptor, which are then either destined for degradation, 
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resulting in receptor down-regulation (Tian et al., 1994; Ureña et al., 1994b; Massry 

and Smogorzewski, 1998), or recycled back to the cell surface, leading to receptor 

resensitization (Chauvin et al., 2002).   

In order to confirm the internalization of PTH1R upon ligand binding, the three cell 

lines were treated with 100nM hPTH (1-34) for 30 min and subsequently stained for 

PTH1R. This concentration and time period of stimulation was successfully applied 

by Qiu et al to observe the internalization of a tagged hPTH (1-34) along with PTH1R 

in osteoblasts (Qiu et al., 2010). 

As illustrated in Figure 3.12, the vivid line of membrane staining observed in 

unstimulated PDL and MG63 cells was not present in hPTH (1-34) stimulated cells, 

demonstrating  the internalization of the receptors upon ligand binding. However, as 

HEK293 cells have relative large nuclei and small space between plasma membrane 

and cytoplasm, the internalization of the receptors could not be successfully 

visualized.  

 

 

4.6 Identification of PTH1R-positive subpopulation  

 

To address the question of whether a PTH1R-positive subpopulation exists in PDL, 

MG63 and HEK293 cells, these cells were stained for PTH1R and analysed using 

flow cytometry method. 

At first, the living cells were analysed, since PTH1R resides on the plasma 

membrane and the PTH1R antibody binds an epitope in the extracellular part of the 

receptor. Furthermore, the receptors residing on the cell membrane are functional 

active, at least in terms of responsiveness to ligands. After gating out dead cells, MG 

63 cells revealed a PTH1R-positive subpopulation of 40%, while HEK293 cells were 

almost 100% positive. In PDL cells, however, no PTH1R-positive subpopulation 

could be detected. 

The heterogeneity of MG63 cells for PTH1R appears to be a matter of maturation 

state. Indeed, MG63 cells have been shown to exhibit both mature and immature 

osteoblastic features (Pautke et al., 2004), indicating the differentiation potential of 

this osteosarcoma cell line. On the other hand, PTH1R is widely recognized as an 
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osteoblast-differentiation marker. These facts along with our result are suggestive of 

the presence of a PTH1R-positive subpopulation in MG63 cells.  

In the data interpretation of HEK293 cells, we considered the shift of the whole cell 

population rather than recording the absolute percentage of the positive cells. In this 

case, the HEK293 cells reached an almost 100% positivity, which would be app.80%, 

if the absolute percentage of the positive cells would be taken into account. Indeed, 

depending on where to set the threshold between the positive and negative cells, 

there could be recorded false negative cells in the real negative cell population and 

vice versa.  

Despite numerous optimization steps including: titration of antibody concentration, 

cell-detachment with different reagents such as accutase, EDTA and trypsin and 

using PTH1R antibodies from other sources, we failed to detect any PTH1R-positive 

population in PDL cells. On the other side, the presence of PTH1R on the plasma 

membrane was visualized using immuno-staining method (Figure 3.11, A).  One 

possible explanation for this paradox is that the used primary antibodies cannot bind 

successfully to the corresponding epitope on PTH1R in PDL cells, because of the 

limited access of the antibody to its antigen. 

When permeabilized, all of the three cell lines showed almost 100% PTH1R-positive 

population. In fact, the permeabilized plasma membrane allows the antibody 

molecules to bind to intracellular antigens. Thus, having access to cell inside, the 

PTH1R antibody obviously can bind to receptors both on the plasma membrane and 

in the cytoplasm of MG63 and HEK293 cells. In case of PDL cells, the antibody can 

bind to the intracellular receptors. It might be also possible that the fixing and 

permeabilizing processes could have made the antigen accessible for the antibody, 

resulting in the successful staining of the plasma membrane receptors. Indeed, the 

optimal results of immunofluorescence staining of PTH1R were also achieved only 

after treating the cells with optimized fixing, permeabilizing and antigen retrieval 

methods. 
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4.7 Binding affinity and receptor density of PTH1R 

 

The binding affinity and density of PTH1R in PDL, MG63 and HEK293 cells were 

studied using a competitive radioactive binding assay. There are generally two types 

of this assay. One is performed with isolated cell membranes, while the other is 

performed with intact cells. In the present study, we have employed an intact cell 

binding assay. In the assays with intact cells, the plasma membrane receptors can 

be studied in their native environment without disturbing the membrane. PH gradients 

or other ions across the membrane remain intact during the binding assay. 

Additionally, interactions between the receptors and their associated effector systems 

as well as the cytoskeleton or other associated components also will be assured. 

However, in this assay, it is much more difficult to control the assay conditions to 

identify factors that modulate receptor binding. Another disadvantage of this assay is 

that certain radioligands may also be transported into the cell leading to an apparent 

nonspecific binding. On the other hand, this trapped radioligand can appear as 

specific binding without association, if the agent used to define nonspecific binding 

also inhibits the uptake of radioligand.  

The binding characteristics of PTH1R were quite different in the three lines, with the 

lowest affinity in PDL cells (Kd=1030±10 nM) and the highest in MG63 cells 

(Kd=80.1±20.2 nM). Both PDL (3.03±0.57 million receptors/cell) and HEK293 cells 

(2.27±1.4 million receptors/cell) revealed a relative high density of PTH1R, while 

MG63 cells showed the lowest receptor density (0.365±0.1). The calculated Kd value 

and the number of receptors in MG63 cells were similar to those in rat osteosarcoma 

cells, ROS 17/2.8 cells and in another rat osteosarcoma cell line, UMR-108 (Demay 

et al., 1985; Rao and Murray, 1985), while these results differed greatly from other 

reports on the binding characteristics of PTH1R (Pliam et al., 1982; Yamamoto et al., 

1988; Enomoto et al., 1989). These discrepancies might be due to changes in 

PTH1R depending on the cell type and different experimental conditions as well as to 

different ligands used in the respective binding assays. Virtually all the reports on the 

binding characteristics of PTH1R resulted from the HEK293 cells transfected with 

either native or mutant PTH1R. Thus, the results of these studies on binding 

characteristics of this receptor vary depending on the experimental purpose and 

design. In this study, we present the first results of binding studies on PTH1R in PDL 

cells, which showed low binding affinity, yet a relative high value for receptor density.  
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These data are suggestive of a cell type specific binding characteristic of PTH1R. On 

the other hand, as mentioned above, most of the studies on the binding 

characteristics of PTH1R were performed in cells transfected with either native 

PTH1R or mutant PTH1R. Additionally, the experimental conditions under which the 

binding assays were performed could have great impact on the results. 

 

 

4.8 Regulation of PTH1R mRNA level in PDL cells 

 

It is widely known that PTH1R is tightly regulated in osteoblast-like cells and 

opossum kidney (OK) cells by extracellular cell factors such as dexamethasone 

(Rodan et al., 1984; Ureña et al., 1994a), 1,25-dihydroxyvitamin D3 (Titus et al., 

1991) and PTH (Ureña et al., 1996; Jongen et al., 1996). In light of this, we have 

studied the effect of these factors on PTH1R mRNA expression using real time PCR 

method. 

We used the concentration of 10-6 M dexamethasone, according to a previous study 

in which the effect of dexamethasone on PTH1R mRNA has been examined in ROS 

17/2.8 (Ureña et al., 1994a). However, we prolonged the time course of the treatment 

to 21 days, in order to find out the time point at which this glucocorticoid exerts its 

highest effect on PTH1R mRNA expression. 

The effect of dexamethasone on PTH1R mRNA level in PDL cells was accumulative 

in the first four days, and exhibited its highest effect on the 4th day. Beginning on the 

6th day, it gradually lost its effect (Figure 3.18). These findings are consistent with the 

results of the studies in osteoblast-like cells, in which dexamethasone increased 

PTH1R mRNA level (Ureña et al., 1994a; Haramoto et al., 2007). 

We adopted the concentration of 10-6 M 1,25-dihydroxyvitamin D3 from a previous 

study in which the regulation of PTH1R mRNA level by 1,25-dihydroxyvitamin D3 has 

been examined in ROS 17/2.8 cells. Similarly, the exposure time was prolonged to 6 

days. No apparent effect of 1,25-dihydroxyvitamin D3 was observed in the first four 

days. However, on the 6th day, it dramatically increased PTH1 mRNA level, with 

almost 14 fold increase (compared to control) (Figure 3.19).  1,25-dihydroxyvitamin 

D3 has been reported to decrease mRNA level and receptor number of PTH1R in 

ROS 17/2.8 cells (Xie et al., 1996). This discrepancy could be cell type dependent. 
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Furthermore, ROS 17/2.8 cells were exposed to 1,25-dihydroxyvitamin D3 in that 

study for 3 days, which we prolonged to 6 days in our study. 

The pleiotropic actions of PTH are mediated primarily through the binding and 

activation of PTH1R, which in turn is regulated by PTH (Kawane et al., 2001). It has 

been reported that PTH either down-regulates or up-regulates PTH1R expression, 

depending on the cell type (Langub et al., 2001). Since PTH exerts dual effects 

depending on the administration mode, it is also plausible that this discrepancy in the 

regulation of PTH1R mRNA could be a result of different ways of its application. With 

this in mind, we have studied the effect of both intermittent and continuous PTH 

administration on PTH1R mRNA level in PDL cells. 

As expected, different ways of PTH administration exerted different effects on PTH1 

mRNA level. In the first two cycles, 1 h intermittent exposure increased the level of 

PTH1R mRNA, while 24 h intermittent treatment decreased it. The continuous 

treatment increased after the first cycle PTH1 mRNA expression, but decreased it 

after the second cycle. After the third cycle, none of the three ways of treatments 

showed an apparent effect. Thus, it is likely that different actions of PTH regulate the 

PTH1R expression specifically. The relationship between the dual effects of PTH and 

regulation of its receptor remains to be further elucidated. 

 

 

4.9 Signal transduction of PTH1R 

 

The actions of PTH1R are thought to be mediated mainly by activating Gs and Gq, 

which in turn regulate the activity of cAMP/PKA and PLC/PKC signaling cascades, 

respectively (Vilardaga et al., 2011). In light of this, we have investigated these two 

signaling pathways in PDL, MG63 and HEK293 cells, by challenging the cells with a 

series of hPTH (1-34) concentrations such as 10-6, 10-7, 10-8, 10-9, 10-10 and10-12 M. 

To this end, we quantified the cAMP accumulation and the active PKC protein using 

commercial kits. 

In terms of cAMP accumulation and active PKC amount, the three cell lines showed 

discrete patterns in response to the hPTH (1-34) stimulation. Interestingly, the 

response in PDL cells was not accumulative with increasing concentrations of hPTH 

(1-34), rather it was more of a concentration-dependent response, as evidenced by 
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10-12 M and 10-8 M hPTH (1-34) inducing the highest cAMP accumulation and by 10-

10 M and 10-6 M hPTH (1-34) showing no effect on the basal level of cAMP. In 

contrast, the response in HEK293 cells followed more or less an additive curve up to 

the stimulation with 10-6 M hPTH (1-34). The same scheme of regulation by this 

peptide was also found in MG63 cells, although the amplitude of the increase in 

cAMP accumulation was much smaller than in HEK293 cells. However, the exception 

was observed at 10-8 M hPTH (1-34) with even lower amount of cAMP than at the 

basal level. We considered this value as a deviation caused by experimental 

conditions, since the degradation of cAMP molecule was avoided by inhibition of 

phosphodiesterase using 3-isobutyl-1-methylxanthine (IBMX). The classic view on 

the response of cAMP to hPTH (1-34) assumes the additive accumulation of the 

cAMP with growing concentrations, as evidenced with MG63 and HEK293 cells. 

However, to our knowledge, we present the first evidence of a none-additive 

accumulation of cAMP molecule in response to PTH stimulation, with different 

concentrations of the hormone inducing similar magnitude of cAMP response. 

Indeed, our other lines of data (Lossdörfer et al., 2005) proved the effect of 10-12 M 

hPTH (1-34) on the signaling pathways in PDL cells. In that study, confluent PDL 

cells were challenged intermittently with 10-12 M hPTH (1–34) for both 1 h/cycle and 

24 h/cycle. This treatment regime significantly reduced osteoprotegerin at protein 

level (Figure 3.23). Interestingly, blocking of the PKC pathway did not alter this 

regulation scheme, whereas blocking of the cAMP/PKA pathway hampered greatly 

the effect of 10-12 M hPTH (1–34) on the level of this cytokine. 

One possible explanation for the apparent discrepancy might be ascribed to the 

heterogeneity of PDL cells which contain PTH1R with different binding characteristics 

leading to different responsiveness to PTH. As addressed previously, PDL cells are 

considered to possess multiple characteristics, including fibroblastic and osteoblastic 

properties (Yamashita et al., 1987). On the other hand, PTH1R seems to have 

different binding characteristics depending on the cell type, as observed in our study 

as well as in reports by others (Jonsson et al., 2001; Smock et al., 2001; Gentili et al., 

2003; Alokail and Peddie, 2008). 

In all the three cell lines, the response of the active PKC to hPTH (1–34) showed an 

exact opposite scheme of regulation compared to the response of cAMP. This 

became evident, when the response curves of cAMP and PKC were plotted on the 

same graph. Interestingly, at a given concentration of hPTH (1-34), if the cAMP level 
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was up-regulated, then the active PKC amount level was down-regulated, and vice 

versa, indicating a synchronical regulation of the two pathways after stimulation with 

hPTH (1-34). Indeed, the important role of the cross talk between cAMP/PKA and 

PKC pathways in the regulation of collagenase production and DNA synthesis by 

PTH in osteoblasts was pointed out by Civitelli et al. and Sugimoto et al.   (Sugimoto 

et al., 1994), whereas studies in other cell systems showed that the interaction 

between the two signalling cascades does not follow the same pattern in all cell 

types. Depending on the agonist and cell line, synergistic or antagonistic actions 

might be found (Sugimoto et al., 1994).  Several studies have shown that the cross-

talk between these pathways leads to further modulation of hormonal responses and 

cellular integration of signals (Cole, 1997). Furthermore, the activation of PKC was 

thought to induce tissue- and cell-specific changes in adenylyl cyclase activity by 

altering the phosphorylation state of the components of the receptor-G protein-

effector complex (Cole, 1997). However, the nature of the interactions between PTH 

responsive dual signal transduction systems in PDL cells remains to be elucidated. 

Taken together, these findings suggest that the concentration of hPTH (1-34) plays a 

pivotal role in the regulation of downstream signal transduction of PTH1R, at least in 

our used cell culture model. With respect to the applied concentrations of hPTH (1-

34), the cAMP/PKA and PLC/PKC signal cascades are regulated in PDL cells in a 

different way compared to that in MG63 and HEK293 cells, indicating a cell type 

specificity of the regulation scheme of the signal transduction pathways. Alternatively, 

the heterogeneity of the primary PDL cell lines may be of importance. 

 

 

4.10 Effect of intermittent hPTH (1-34) on human pe riodontal 

ligament cells transplanted into immunodeficient mi ce. 

 

The last part of this project was to study the regenerative capacity of human PDL 

cells and the anabolic effect of intermittent hPTH (1-34) administration in vivo. For 

this aim, we implied a cell-based tissue engineering model, which was first utilized by 

Pettway et al (Pettway et al., 2005). In this model, the researchers implanted gelatin 

sponges containing dexamthasone pre-treated bone marrow stromal cells into 

immunodeficient mice, which were then given daily subcutaneous injections of hPTH 
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(1-34). The gelatin sponge serves as a structural scaffold for the transplanted cells 

and provides a temporary extracellular matrix to allow for cell attachment (Lutolf and 

Hubbell, 2005; Ma, 2008). The pre-treatment of PDL cells with dexamethasone was 

based on the results of studies that point to the necessity of this supplement for PDL 

cells to facilitate mineralization of the extracellular matrix (Mukai et al., 1993). In 

another study, PDL cells were reported to be unable to form mineral-like nodules 

without prior aplication of osteodifferentiation medium, while the dexamethasone 

supplementation resulted in positive von Kossa staining (Flores et al., 2008). 

According to Sheehan et al. (2010), the anabolic effect of intermittent PTH on bone 

varies with the species studied as well as with the duration and mode of 

administration. Studies conducted in murine models suggest that the anabolic effect 

of intermittent PTH on bone is variable depending on the dose and duration/mode of 

administration as well as the species studied (Sheehan et al., 2010). Based on the 

results of previous studies by Johnston et al. (Johnston et al., 2007), we decided for 

daily subcutaneous injections of 40µg/kg body weight hPTH (1-34) for a period of 4 

weeks starting at day 1 after PDL cell implantation. 

Albeit the high potential of PDL cells for the regeneration of PDL tissue, there have 

been few in vivo studies providing proofs on the regenerative capacity of these cells. 

Akitzuki et al. demonstrated a successful regeneration of periodontal tissue utilizing a 

PDL cell sheet in a dehiscence model in vivo in beagle dogs (Akizuki et al., 2005). In 

our study, we present the first in vivo evidence for an anabolic effect of intermittent 

hPTH (1-34) on human PDL cells in terms of osteoblastic/cementoblastic 

differentiation and biomineralization. To this end, key proteins in 

osteoblastic/cementoblastic differentiation such as alkaline phosphatase, 

osteopontin, osteocalcin and PTH1 were investigated using immunohistochemical 

methods. Additionally, as a measure for biomineralization, calicium deposits in tissue 

section were stained with alizarin red. In order to evaluate the skeletal response to 

subcutaneously injected hPTH (1-34), the serum level of osteocalcin was quantified. 

Osteocalcin is widely accepted as a marker for bone turnover and was shown to be 

influenced by PTH treatment under different conditions and in different mouse gene 

types (Sheehan et al., 2010). 

The results of the immunohistochemical analysis proved that the implanted human 

PDL cells not only survived, but also were able to develop a bone/cementum like 

tissue which closely resembles natural bone or cementum and that this capacity was 
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significantly enhanced by intermittent PTH administration. These results mirror the in 

vitro findings of our group, which point to a maturation state-dependent effect of 

intermittent PTH on nearly all major PDL cell functions (Lossdörfer et al., 2011c, 

2005, 2011a) and provide proof of their physiological relevance. The anabolic effect 

of intermittent PTH on bone marrow stromal cells (BMSCs) transplanted in 

immunocompromised mice was previously demonstrated by Pettway et al. (Pettway 

et al., 2008). According to their study, 4 weeks of intermittent PTH administration 

increased the bone volume and bone content of implanted collagen sponges 

containing the implanted cells. Another proof of the anabolic potential of PTH in 

dentofacial applications was recently provided by Bashutski et al. who demonstrated 

the therapeutic effect of intermittent PTH on the osseous defect in the oral cavity in 

humans (Bashutski et al., 2010). 

Taken together, our results indicate that intermittent PTH accelerates the PDL cell 

mediated periodontal regeneration and provide further proofs on the therapeutic 

potential of intermittent PTH in regenerating a functional periodontal ligament and 

alveolar bone.  
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6 ABBREVIATIONS 

°C     degrees centigrade 

µg     micro grams 

µl     micro litre 

µM     micro molar 

µm    micro meter 

a.a.     amino acids 

APS     ammonium per sulfate 

ATP     adenosine triphosphate 

BCA     bicinchonic acid 

bp     base pairs 

BSA     bovine serum albumin 

cAMP    cyclic adenosine monophosphate 

cDNA     complementary deoxyribonucleic acid 

cm    centimeter 

DAB    diaminobenzidine 

DAPI     4', 6-Diamidino-2-phenylindole 

ddH2O    double distilled water 

dNTP     deoxynucleotide triphosphate 

DMEM    dulbecco´s modified Eagle’s medium 

DMSO    dimethyl sulphoxide 

DNA     deoxyribonucleic acid 

ECL     enhanced chemiluminescence 

EDTA    ethylene diamine tetra acetic acid 

ELISA    enzyme linked immunosorbant assay 

FACS    fluorescence actovated cell sorter 

FBS     fetal bovine serum 

FITC    fluorescein isothiocyanate 

gm     grams 

GPCR    G-protein coupled receptors 

GTP     guanosine triphosphate 

HRP     horse radish peroxide 

h    hour 
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IBMX     3-isobutyl-1-methylxanthine  

kb     kilo bases 

Kd    dissociation constant 

kDa     kilodalton 

kg    kilogram 

kV     kilovolts 

L    litre 

M     molar 

mg     milligrams 

min     minute(s) 

ml     milliliter 

mM     millimolar 

mm    millimeter 

ng     nanograms 

nm     nanometer 

mRNA    messenger ribonucleic acid  

O.D     optical density 

PCR    polymerase chian reaction 

pM    picomolar 

PKA    protein kinase A 

PKC    protein kinase C  

PTH    parathyroid hormone 

PTH1R   parathyroid hormone receptor 1 

PLC    phospholipase C 

RT    room temperature 

rpm     rounds per minute 

TBE    tris-borate-EDTA 

TBS    tris-buffered saline 

TRITC    tetramethylrhodamine isothiocyanate 
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