Inhaltsverzeichnis

Zι	ısamı	mentas	ssung		Ī
Sι	ummary				
Αl	bkürz	ungsve	erzeichnis	•	xii
1	Einl	eitung			1
	1.1	Metall	e in der U	mwelt und im Organismus	1
	1.2	Essent	ielle Meta	lle – Mangel und Überdosis	3
	1.3	Die Ül	oergangsm	netalle	5
		1.3.1	Das Übe	ergangsmetall Nickel	5
			1.3.1.1	Nickelvorkommen in der Natur	5
			1.3.1.2	Auswirkungen der Nickelexposition auf die Pflanzen- und Tierwelt	: 6
			1.3.1.3	Auswirkungen der Nickelexposition auf den Menschen	7
		1.3.2	Das Übe	ergangsmetall Cobalt	9
			1.3.2.1	Cobaltvorkommen in der Natur	9
			1.3.2.2	Auswirkungen der Cobaltexposition auf die Pflanzen- und Tierwelt	10
			1.3.2.3	Auswirkungen der Cobaltexposition auf den Menschen	10

Inhaltsverzeichnis vi

		1.3.3	Aufnahme von Metallen in die Zelle	11
	1.4	Aufbau	u eukaryontischer Zellen	12
		1.4.1	Transportproteine	13
		1.4.2	Aufrechterhaltung der Homöostase von Metallionen in Zellen	16
		1.4.3	Kompartimentierung in eukaryontischen Zellen	17
		1.4.4	Fibroblasten	19
		1.4.5	Pflanzenzellen	20
	1.5	Nachw	reis von Metallen in Zellen	21
		1.5.1	Nachweis von Metallen in bulk-Material	21
		1.5.2	Nachweis von Metallen in der Zelle durch Fluoreszenz	22
			1.5.2.1 Optische Sensoren für Kationen in Zellen	24
			1.5.2.2 Optische Sensoren basierend auf Dichlorofluorescein (DCF)	25
	1.6	Zielset	zung	27
2	Mat	erial u	nd Methoden	29
	2.1	Allgem	neine Laborgeräte und Reagenzien	29
		2.1.1	Allgemeine Laborgeräte	29
		2.1.2	Verbrauchsmaterialien	30
		2.1.3	Chemikalien	30
		2.1.4	Zellkulturmedien und Medienzusätze	31
		2.1.5	Fluoreszenzfarbstoffe	32
	2.2	Zellbic	ologische Methoden	33
		2.2.1	Verwendete Zellen	33
			2.2.1.1 Humane Gingiva-Fibroblasten	33

		2.2.1.2 Pflanzenzellen aus Catharanthus roseus	33
	2.2.2	Kultivierung von Zellen	33
		2.2.2.1 Anlage humaner adhärenter Zellen	33
		2.2.2.2 Anlage pflanzlicher Suspensionszellen	35
	2.2.3	Kryokonservierung und Reaktivierung humaner Gingiva-Fibroblasten	35
2.3	Konfol	kale Laser Raster Mikroskopie (CLSM)	36
	2.3.1	Aufbau und Komponenten des CLSM Leica TCS SP2	38
	2.3.2	CLSM-Einstellungen zur Visualisierung von Zellen	42
	2.3.3	Fluoreszenzanalyse mittels λ -Scan	42
2.4	Der op	otische Sensor Newport Green DCF	44
	2.4.1	Markierung von Nickel und Cobalt in humanen Gingiva-Fibroblasten mit Newport Green DCF	46
	2.4.2	Markierung von Ni und Co in Pflanzenzellen von <i>Catharanthus roseus</i> mit Newport Green DCF	47
2.5	Bioche	emische Methoden zur Visualisierung verschiedener Organellen	48
	2.5.1	Zellkernmarkierung mit Hoechst 33342	48
		2.5.1.1 Zellkernmarkierung in humanen Gingiva-Fibroblasten	49
		2.5.1.2 Zellkernmarkierung in Pflanzenzellen	49
	2.5.2	Nukleinsäuremarkierung in Pflanzenzellen mit SYTO 61	50
	2.5.3	Membranmarkierung in humanen Gingiva-Fibroblasten mit CellMask deep	50
	2.5.4	Markierung des ER in humanen Gingiva-Fibroblasten mit ER-Tracker red	51
	2.5.5	Markierung des Golgi-Apparates in humanen Gingiva-Fibroblasten mit Bodipy TR	52

Inhaltsverzeichnis viii

		2.5.6	Markierung von Pflanzenzellen mit Vybrant Dil	53
3	Erge	ebnisse	5	55
	3.1	Nickel-	und Cobaltdetektion in humanen Gingiva-Fibroblasten	55
		3.1.1	Analyse der Eigenfluoreszenz von Nickel- und Cobaltverbindungen 5	56
		3.1.2	Eigenfluoreszenz der humanen Gingiva-Fibroblasten	57
		3.1.3	Berechnung der relativen Fluoreszenzintensitäten	59
		3.1.4	Einfluss unterschiedlicher Metallkonzentrationen und Inkubationszeiten auf die Newport Green DCF-Fluoreszenz und Lokalisation 6	50
			3.1.4.1 Aufnahme von Nickel in humane Gingiva-Fibroblasten während NiCl ₂ -Exposition	50
			3.1.4.2 Aufnahme von Nickel in humane Gingiva-Fibroblasten während NiSO ₄ -Exposition	58
			3.1.4.3 Aufnahme von Nickel in humane Gingiva-Fibroblasten während Ni ₃ S ₂ -Exposition	75
			3.1.4.4 Aufnahme von Cobalt in humane Gingiva-Fibroblasten während CoCl ₂ -Exposition	84
			3.1.4.5 Aufnahme von Nickel in humane Gingiva-Fibroblasten bei 40 μ M NiCl $_2$ im Medium	91
		3.1.5	Nickel- und Cobaltaufnahme in humane Gingiva-Fibroblasten in Abhängigkeit des pH-Werts des BME-Mediums	93
		3.1.6	Zuordnung der Nickel- und Cobaltlokalisation durch Newport Green DCF zu ausgewählten Zellkompartimenten	97
		3.1.7	Fluoreszenzspektren von Newport Green DCF in BME-Medium 10	00
		3.1.8	Fluoreszenzspektren von Newport Green DCF in humanen Gingiva- Fibroblasten	01

			3.1.8.1	Fluoreszenzspektren von Newport Green DCF nach $NiCl_2$ -Inkubation	104
			3.1.8.2	Fluoreszenzspektren von Newport Green DCF nach $NiSO_4$ -Inkubation	107
			3.1.8.3	Fluoreszenzspektren von Newport Green DCF nach Ni_3S_2 -Inkubation	109
			3.1.8.4	Fluoreszenzspektren von Newport Green DCF nach CoCl ₂ -Inkubation	110
	3.2	Nickel-	und Coba	altdetektion in Pflanzenzellen von Catharanthus roseus	112
		3.2.1	Eigenfluc	preszenz der Pflanzenzellen von Catharanthus roseus	113
		3.2.2	bindunge	unterschiedlicher Inkubationszeiten von Nickel- und Cobaltver- en auf die Fluoreszenzintensität von Newport Green DCF und okalisation	114
			3.2.2.1	Aufnahme von Nickel in Pflanzenzellen von Catharanthus roseus während NiCl ₂ -Exposition	115
			3.2.2.2	Aufnahme von Nickel in Pflanzenzellen von <i>Catharanthus roseus</i> während NiSO ₄ -Exposition	117
			3.2.2.3	Aufnahme von Nickel in Pflanzenzellen von <i>Catharanthus roseus</i> während Ni ₃ S ₂ -Exposition	119
			3.2.2.4	Aufnahme von Cobalt in Pflanzenzellen von <i>Catharanthus roseus</i> während CoCl ₂ -Exposition	120
			3.2.2.5	Aufnahme von Nickel in Pflanzenzellen von Catharanthus roseus während kurzer Inkubationszeiten mit NiCl ₂	123
		3.2.3		ng der Nickel- und Cobaltlokalisation durch Newport Green DCF wählten Zellkompartimenten	124
ļ	Disk	cussion			127
	4.1	Auswa	hl der Met	thode zur optimalen Detektion von Nickel und Cobalt in einzelnen	
			en 7ellen		128

<u>Inhaltsverzeichnis</u> x

	4.1.1	Sind Nickel und Cobalt in Zellen durch Eigenfluoreszenz der Metalle mit dem CLSM detektierbar?	128	
	4.1.2	Der optische Sensor Newport Green DCF für den Nachweis von Nickel und Cobalt	129	
	4.1.3	Auswirkung der Kationenkonzentration in humanen Gingiva-Fibroblasten auf die Fluoreszenzintensität von Newport Green DCF	131	
4.2	Nachw	eis von Nickel und Cobalt in humanen Gingiva-Fibroblasten	132	
	4.2.1	Einfluss unterschiedlicher Metallkonzentrationen und Inkubationszeiten auf deren Aufnahme in humane Gingiva-Fibroblasten und die Fluoreszenzintensität von Newport Green DCF	132	
	4.2.2	Nickel- und Cobaltaufnahme in humane Gingiva-Fibroblasten in Abhängigkeit vom pH-Wert des Inkubationsmediums	140	
	4.2.3	Lokalisation von Nickel und Cobalt in verschiedenen Kompartimenten humaner Gingiva-Fibroblasten und deren Auswirkung auf die Zellen	142	
	4.2.4	Speziation von Nickel- und Cobaltverbindungen durch Newport Green DCF-Spektren ausgewählter ROIs in Fibroblasten	148	
4.3	Nachw	reis von Nickel und Cobalt in Pflanzenzellen von Catharanthus roseus	151	
	4.3.1	Einfluss unterschiedlicher Inkubationszeiten von Nickel- und Cobaltverbindungen auf die Fluoreszenz von Newport Green DCF in Pflanzenzellen von Catharanthus roseus	151	
	4.3.2	Lokalisation von Nickel und Cobalt in Pflanzenzellen von Catharanthus roseus	154	
4.4	_	ich der Nickel- und Cobaltaufnahme und deren Lokalisation zwischen hu- Gingiva-Fibroblasten und <i>Catharanthus roseus</i> -Zellen	156	
4.5		and Nachteile des optischen Sensors Newport Green DCF und der CLSM r Detektion von Metallspezies in einzelnen lebenden Zellen	158	
4.6	Lokalis	sation von Metallen in lebenden Zellen durch alternative Methoden	160	
4.7	Fazit und Ausblick			

Inhaltsverzeichnis			
Literaturverzeichnis	164		
•			
Poster und Vorträge	187		
Eidesstattliche Versicherung	` 189		
Lidesstattliche Versicherung	109		
Lebenslauf	190		

.

•

.