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-Pooh! Buck Mulligan said. We have
grown out of Wilde and paradoxes. It’s
quite simple. He proves by algebra that
Hamlet’s grandson is Shakespeare’s
grandfather and that he himself is the
ghost of his own father.

«Ulysses», James Joyce

Abstract

Today, researchers and practitioners in diverse �elds such as cancer classi�cation, genome

analysis, or neuroscience are equipped with highly sophisticated data acquisition devices that

produce hard to analyse high-dimensional data. Due to practical or �nancial issues the number

of samples acquired by such systems remains comparatively low — seldom more than a few

hundred.�us, dedicated methods for analysing high-dimensional small sample size data are

required. We analyse when and why standard machine learning methods such as the support

vector machine may fail to produce proper results on these datasets and motivate why reducing

the number of input features to a minimum is absolutely necessary. �erefore, we propose

the support feature machine (sfm) as an e�ective and e�cient classi�er with inherent feature

selection capabilities.�e sfm relies on approximation of the zero-norm minimising weight

vector of a separating hyperplane by minimising the weight vector’s one-norm. A lower number

of features is obtained compared to support vector-based feature selection which can be shown

both theoretically and empirically. First, we evaluate the sfm’s capability to deal with high-

dimensional small sample size data and compare it to other methods using arti�cial data and

a genetic benchmark dataset. �en, we show that, with some extensions, the sfm is able to

decode brain states in a motor task and even emotional brain states from human functional

magnetic resonance imaging (fmri) data across multiple participants. Further, with the sfm

it was possible to quantify the total number of voxels that are informative for discriminating

brain states. We found that a�ective states are represented in whole brain regions — in contrast

to classical neurological �ndings that propose local emotional regions. Additionally, a�ective

states spread over time, i.e. the redundancy of emotional information increases the longer

we express an emotion. In summary, we qualify the sfm as a universal method for feature

selection — especially promising for advanced analysis of fmri data.
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- Ach was, sagte Buck Mulligan. Oscar
Wilde und die Paradoxa haben wir hinter
uns. Die Sache ist ganz einfach. Er weist
per Algebra nach, dass Hamlets Enkel
Shakespeares Großvater ist und er selber
der Geist seines eigenen Vaters.

«Ulysses», James Joyce

Zusammenfassung

In der Krebsforschung, Genomanalyse oder in den Neurowissenscha�en stehen Wissenscha�-

lern undAnwendern komplexeMessgeräte zurDatenaufnahme zurVerfügung—dieDaten sind

stets hochdimensional und erfordern eine aufwendige Datenverarbeitung. Organisatorische,

technische und �nanzielle Rahmenbedingungen begrenzen die Anzahl der gemessenen Proben

auf einige wenige und erfordern spezielle Methoden, um derartige hochdimensionale Daten

von geringem Stichprobenumfang zu analysieren. Wir zeigen, wann und warum maschinelle

Lernverfahren, wie die Support Vector Machine, nicht in der Lage sind, valide Vorhersagen

auf Basis derartiger Daten zu machen [Klement et al., 2008]. Folglich sollte die Anzahl der

Merkmale eines Datensatzes stets auf ein Minimum reduziert werden. Dazu haben wir die

Support Feature Machine (sfm) entwickelt, eine e�ektive und e�ziente Methode zur Merk-

malsselektion. Die sfm basiert auf der Approximation der Null-Norm des Normalenvektors

der trennenden Hyperebene durch Minimierung der Eins-Norm. Die Überlegenheit dieses Ver-

fahrens gegenüber Support Vector Verfahren lässt sich sowohl theoretisch wie auch empirisch

zeigen [Klement and Martinetz, 2010b,Klement and Martinetz, 2010a,Klement and

Martinetz, 2011]. Mit wenigen Erweiterungen ist die sfm in der Lage, Bewegungen und sogar

emotionale Zustände probandenübergreifend allein auf der Basis von funktioneller Magnetre-

sonanztomogra�e (fmrt) vorherzusagen [Klement et al., 2013]. Weiterhin ist es mit der sfm

möglich, die Gesamtzahl von Voxeln zu bestimmen, die Information zur Unterscheidung von

Hirnzuständen tragen. Damit lässt sich zeigen, dass emotionale Zustände in Mustern kodiert

sind, die über das gesamte Gehirn verteilt sind — entgegen der klassischen Sicht von lokalen

Emotionsregionen. Außerdem ist die Redundanz emotionaler Information zeitabhängig: Je

länger wir uns in einem emotionalen Zustand be�nden, desto redundanter wird die Information

im Gehirn kodiert. Mit der sfm haben wir eine universelle Methode zur Merkmalsselektion

entwickelt, die insbesondere zur Analyse von fmrt Daten geeignet erscheint.
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I am a man of constant sorrow
I’ve seen trouble all my day.
I bid farewell to old Kentucky
�e place where I was born and raised.

For six long years I’ve been in trouble
No pleasures here on earth I found
For in this world I’m bound to ramble
I have no friends to help me now.

From the movie

«O Brother, Where Art Thou?»

directed by Joel and Ethan Coen
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Tell me, O Muse, of that ingenious hero
who travelled far and wide a�er he had
sacked the famous town of Troy. Many
cities did he visit, and many were the
nations with whose manners and customs
he was acquainted; moreover he su�ered
much by sea while trying to save his own
life and bring his men safely home; . . .

«Odyssey », Homer

translated by Samuel Butler

1 Introduction

How do we �nd the minimal set of features that best describes a certain behaviour when

there are countless distracting irrelevant features? �is is one of the main questions arising

in arti�cial intelligence, machine learning, neural networks, support vector machines, and

statistics. Such learning from examples with many degrees of freedom but few examples is a

challenging, yet the most frequent scenario in real-world problems. Today, massively parallel

data acquisition systems are standard tools in biological andmedical research.�ey are common

in diverse tasks such as tissue classi�cation based on microarray gene data [Golub et al.,

1999,Lockhart andWinzeler, 2000], identi�cation of disease-speci�c genome mutations

[Samani et al., 2007,McPherson et al., 2007, Raelson et al., 2007], or information based

neuroimaging [Haynes, 2011]. All of them have in common, that practical or �nancial issues

restrict the number of samples to very few.

Some aspects of such high-dimensional small sample size scenarios are obvious. First, they can
neither be analysed manually nor be visualised in a well-arranged way. Second, the low number

of samples can certainly not capture the whole variability of the data. And third, practical issues

of automatic computer-based methods — enormous runtime and memory requirements — set

limits. Besides, other less obvious aspects make such scenarios hard to handle.�e geometry

of high-dimensional small sample size data is unintuitive and may cause machine learning

methods to produce strange artefacts or to completely fail.

Due to their excellent generalisation capabilities, maximum margin methods such as the
support vector machine (svm) [Vapnik, 1999] have shown to be a good choice for many clas-
si�cation problems in biological and clinical applications. However, these methods may fail

especially in high-dimensional small sample size scenarios. Massively parallel data acquisition

systems— such as microarrays ormr tomographs — provide many more signals than necessary

1



1 Introduction

to solve a particular task, e.g. deciding whether a speci�c sample is pathological. Moreover,

in biological and clinical applications the primary goal is o�en not to achieve high prediction

accuracy but to identify informative features.�us, feature selection is not only needed to im-

prove runtime and to achieve proper prediction results, but also to allow meaningful inferences

about biologically signi�cant features.

�e contribution of this thesis is three-fold. First, we provide novel insight in high-dimen-

sional small sample size data. We show when and prove why the support vector machine may

fail to provide proper results. Additionally, we introduce theoretical bounds to measure how

likely a dataset may be classi�ed correctly using only few features.

Second, we introduce the support featuremachine (sfm) as a novelmethod for feature selection
that addresses the above issues: It aims to �nd the smallest subspace (the least number of features)

in a dataset such that within this subspace two classes are linearly separable without error.

�us, results on high-dimensional data become interpretable. And, due to its mathematical

formulation, it reduces the in�uence of high-dimensional artefacts to a minimum. Finally,

the engineering task, i.e. the implementation of an sfm is simple and straight-forward — it

only requires linear programming solvers, which are available in a variety of �avours, both

commercially and free. Results on arti�cial data as well as real-world datasets demonstrate that

this method is able to identify relevant features very e�ectively and is in many cases superior to

svm-based feature selection approaches, particularly in high-dimensional small sample size

scenarios.

�ird, the sfmmay contribute to some fundamental questions in cognitive neuroscience and

neuroimaging. Based on fmri data it allows to distinguish human brain states, and, further, to

quantify the amount and distribution of discriminative information. Our approach supports a

recent hypothesis that claims a�ective information to be distributed in whole brain regions — in

contrast to the classical hypothesis of local emotional regions. Even a time-dependent di�usion

e�ect can be observed. �us, we come closer to understand how a�ective information is

processed in the human brain, however, a universal mindreading device is far from being

feasible.

In total, this thesis addresses theoretical issues of high-dimensional data, it introduces and

evaluates a novel feature selection method, and it quali�es this method to analyse human brain

states.

Thesis Organisation �e thesis is organised in �ve major parts as follows. First, the theoret-

ical basics, frameworks and algorithms are introduced — statistical learning theory, maximum

margin methods, feature selection, and statistical geometry.�e unintuitive behaviour of high-

dimensional small sample size data is analysed in depth to provide insight in why machine

2



learningmethodsmay fail andwhich artefacts theymay produce.�e second chapter introduces

the support feature machine as a novel method for feature selection. It covers the theoretical

and technical details on how to engineer a support feature machine in an e�cient way.�e third

chapter consists of numerous experiments to verify and compare the performance of the support

feature machine. With arti�cial data and real-world microarray datasets we demonstrate its

superiority and practical advantages with respect to support vector-based approaches. A�er the

exclusively machine learning-oriented chapters, we introduce an image processing method for

illumination correction based on Gaussian pyramids that is used as a supplementary method

in the analysis of volumetric fmri data. Finally, the ��h chapter describes how the sfmmay

contribute in understanding human brain activity — especially a�ective brain states.�e thesis

concludes with a critical discussion of the results and the impact of the sfm in machine learning

and neuroimaging.
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�e 9000 series is the most reliable
computer ever made. No 9000 computer
has ever made a mistake or distorted
information. We are all, by any practical
de�nition of the words, foolproof and
incapable of error.

From the movie

«2001: A Space Odyssey»

directed by Stanley Kubrick

2 Machine Learning and High-dimensional
Spaces

A strong mathematical theory is regarded as the best foundation for making any practical

apparatus, machinery, instrument, system or technique as foolproof and incapable of error

as possible. Because of this, machine learning as a research �eld has become so popular

and successful in recent years. Machine learning provides a variety of tools for classi�cation,

regression, density estimation, feature selection, and model estimation, most of which are

based on statistical learning theory and structural risk minimisation. �e probably most

prominent and most widely used method in machine learning is the support vector machine
(svm). Although it has been shown theoretically and empirically that the svm is well suited for

classi�cation in many applications, there are also many practical scenarios where it may fail.

Especially in high-dimensional small sample size scenarios, which are common in medical and

biological applications, it is a�ected by the enormous amount of irrelevant noise features that

are included in the data.�erefore, feature selection methods have been designed to identify

relevant and irrelevant features.�ese feature selection methods come in a variety of �avours

mostly aiming to optimise the prediction capability.

�is chapter is organised as follows. First, we introduce the mathematical notations that will

be used throughout this thesis and brie�y introduce the basics of statistical learning theory,

structural risk minimisation and support vector learning. For assessing the accuracy of a

learning algorithm, we mention standard validation methods and accuracy measures. In the

second part, we give an overview of the unintuitive aspects of high-dimensional small sample

size scenarios, their geometry and why support vector machines in connection with cross-

validation may fail to produces adequate results. Additionally, we give estimates for a random

5



2 Machine Learning and High-dimensional Spaces

dataset being linearly separable in the original or a subspace. In certain circumstances, although

the data contains no information, we very likely �nd a low-dimensional subspace in which the

data is linearly separable.

2.1 Notations

Typesetting mathematical notations is a science in itself, and there is no universal consensus on

the optimal choice — except for not mixing notations. In this work, we use lowercase boldface

letters (e.g. x , y) for vectors and uppercase boldface letters formatrices (e.g. A). Sets are typeset
in uppercase calligraphic letters (e.g.D).

Wemake use of the common notations used in classi�cation and feature selection frameworks,

i.e. a datasetD = {x i , yi}ni=1 consists of feature vectors, samples, patterns or data points x i ∈ Rd

and corresponding class labels yi ∈ {−1,+1}. �e dimensionality of a vector is denoted by d,
while n refers to the cardinality of the set, i.e. the number of data points. For simplicity, we
de�ne z i = yix i and Z = (z1, . . . , zn).�e vectors 0 and 1 are vectors with all their entries being
zero or one, respectively. For reasons of readability, we omit the length of these vectors where

possible.�e identity matrix Id is a square matrix containing ones on the main diagonal and
zeros elsewhere, and the zero matrix 0n,d has n rows and d columns all set to zero.
A classi�er C de�nes a mapping from the input space to the space of labels. An inducer or

induction algorithm I builds a classi�er C from a dataset D. A new, unlabelled sample x is
classi�ed by

I(D, x) ∶= (I(D))(x) = C(x) = y .

�e Kronecker delta is used to compare whether two variables i and j are equal or not, i.e.

δi j = δ(i , j) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if i = j
0 if i ≠ j

Exceptions to the above rules are used, if a speci�c notation is more convenient or due to

historical reasons.

2.2 Basics in Statistical Learning Theory

Machine learning, a major branch in arti�cial intelligence, deals with methods to construct

machines with the ability to learn from examples. �e statistical learning theory — mainly

promoted by Vapnik [Vapnik, 1999] — is a general framework that describes the requirements

of successful learning, expected learning performances and appropriate learning strategies.

6



2.2 Basics in Statistical Learning�eory

Generator Supervisor

Learning machine

x y

y′

Figure 2.1: Vapnik’s model of learning from examples. Generator and supervisor supply

the learning machine with the training patterns x and the desired answer y.�e
learning machine minimises the di�erence between the supervisor’s answer y
and the learning machine’s answer y′.

Vapnik’s function estimationmodel consists of three components— the generator, the supervisor
and the learningmachine itself (see Figure 2.1).�e generator samples vectors x ∈ X ⊆ Rd drawn

from an unknown but �xed probability distribution function P(x).�e supervisor returns for
each input value x an output value y ∈ Y according to the unknown conditional distribution
function P(y ∣ x). �e learning machine implements a set of functions f (x , α) ∈ F with

parameters α ∈ Λ.�e joint density P(x , y) is expressed in terms of themarginal density P(x)
and the conditional density P(y ∣ x) by P(x , y) = P(y ∣ x) · P(x).�e ideal estimator f ∗ ∈ F

minimises the expected error, i.e. the risk functional

R(α) = ∫ L(y, f (x , α)) dP(x , y)

if it ful�ls

f ∗(x) = f (x , α∗) with α∗ = argmin
α∈Λ

R(α) .

Here, the loss function L(y, f (x , α)) describes the di�erence between the supervisor’s and the
learning machine’s answer. �e function space F is arbitrary, however, it directly controls

the generalisation capabilities of the machine and choosing an appropriate function space is

a crucial step in machine learning. Depending on the loss function, Vapnik discriminates

three machine learning tasks — classi�cation, regression estimation and density estimation. In
classi�cation, the task is to discriminate a �nite set of classes.�e estimated functions f (x , α)
can only take discrete values — in two-class classi�cation scenarios they are commonly either

−1 or +1, however, other values are possible.�en, the loss function

L(y, f (x , α)) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if y = f (x , α)

1 if y ≠ f (x , α)

7



2 Machine Learning and High-dimensional Spaces

indicates whether a pattern was correctly classi�ed by the estimated function or not. In re-

gression estimation, an arbitrary function has to be learned, and the supervisor’s answer can

take real numbers. A least-squares regression approach uses the loss function L(y, f (x , α)) =
(y − f (x , α))2, while in density estimation the loss function L( f (x , α)) = − log f (x , α) is com-
monly used. In the following sections the focus will be exclusively on classi�cation.

Empirical Risk Minimisation In practise, the distribution function P(x) is not known
explicitly but needs to be approximated by a �nite set of sample points.�us, the risk functional

R(α) is replaced by the empirical risk functional

Remp(α) =
1

n

n
∑
i=1

L(yi , f (x i , α)).

According to the law of large numbers, Remp converges to the expectation R with increasing
sample size n. However, the arguments that minimise R and Remp are not necessarily the same.
In order to �nd α∗ only by minimising Remp, the principle of empirical risk minimisation must
be consistent, i.e. R and Remp must uniformly converge:

lim
n→∞

P(sup
α∈Λ

∣R(α) − Remp(α)∣ < ε) = 0 .

Vapnik-Chervonenkis Dimension Necessary and su�cient conditions for uniform con-

vergence, i.e. consistency, have been derived based on the Vapnik-Chervonenkis dimension
(vc-dimension) [Vapnik and Chervonenkis, 1982].�is measure describes the expressive

power of a family of classi�cation functions. Each dataset D with n training patterns can be
labelled in 2n di�erent ways, however, not every family of classi�cation functions may correctly

separate the two classes for all labellings. Let N(D,F) be the number of dichotomies— i.e. sep-
arations into two classes — for the datasetD that can be realised by a family F of classi�cation

functions.�en, the growth function

GF(n) = maxD
N(D,F) ≤ 2

n

is a measure of the maximum number of di�erent labellings for an arbitrary set of size n.�e
vc-dimension of a function family F is the maximum number h of patterns, such that these
patterns can be separated correctly for each arbitrary labelling. In other words, C is shattered by
F .�e vc-dimension is in�nite if GF(n) = 2n for all n.�us, for any sample size n a particular
dataset exists such that the function family can discriminate all di�erent labellings of this dataset.

If the vc-dimension is bounded, the growth function is bounded by a polynomial function as

8



2.2 Basics in Statistical Learning�eory

vc-dimension, h

Error

Con�dence interval

Training error

Guaranteed risk

⋯ ≤ hn−1 ≤ hn ≤ hn+1 ≤ ⋯

⋯ ⊂ Fn−1 ⊂ Fn ⊂ Fn+1 ⊂ ⋯

h∗

Figure 2.2: Trade-o� between training error and con�dence interval.�e guaranteed risk is

an upper bound for the sum of both learning performance measures. Choosing

a function class with vc-dimension h∗ will yield the smallest guaranteed risk
( [Haykin, 1998], slightly modi�ed).

soon as the number of samples exceeds the threshold h (Sauer’s lemma, see e.g. [Sauer, 1972]).
In this case, no dataset with more than h data points can be shattered. A �nite vc dimension is
necessary and su�cient for uniform convergence and will guarantee fast convergence [Vapnik

and Chervonenkis, 1971,Vapnik and Chervonenkis, 1982].�us, learning by minimising

the empirical risk will be successful, as the empirical risk converges to the expected risk.

Structural Risk Minimisation According to the vc-theory, the challenge is to de�ne a

proper function family that is limited to achieve a low vc dimension but large enough to contain

a function that well separates the data. Vapnik proved the generalisation error to be upper

bounded by the guaranteed risk, which is the sum of the training error and the con�dence interval.
�e con�dence interval is a measure for the probability that a function, taken from the given

function family, with small generalisation error can be found at all.�e con�dence interval

increases with increasing vc dimension while the training error decreases (see Figure 2.2). Now,

the question is how to determine the function family that yields the least guaranteed risk.�e

idea of structural risk minimisation [Vapnik, 1999] is to de�ne a series of nested hypothesis spaces

9



2 Machine Learning and High-dimensional Spaces

F1 ⊂ F2 ⊂ ⋯ ⊂ Fn with increasing vc-dimension, i.e. h1 ≤ h2 ≤ ⋯ ≤ hn.�e learning machine
aims to choose the hypothesis space F∗ with the smallest guaranteed risk. In practice, this

can be implemented by increasing h until the guaranteed risk does not decrease signi�cantly
anymore.

2.3 Support Vector Machines

�e family of support vector machines aims to minimise the structural risk by a classi�er

that maximises the distance — themargin— between two classes for a given training dataset
D = {x i , yi}ni=1. In the most simple case, the classi�cation border is described by a hyperplane
de�ned by a normal vector w and a bias b, i.e. the distance of the hyperplane to the origin.�e
minimal distance γ from the hyperplane to a pattern is called geometric margin (see Figure 2.3).
�e maximummargin classi�er selects that hyperplane among the set of all separating hyper-

planes with the largest margin. It can be shown that maximising the margin while enforcing

correct classi�cation is equivalent to

minimising wTw
subject to yi (wTx i + b) ≥ 1 , i = 1, . . . , n .

(2.1)

�is primal problem— a linearly constrained convex optimisation problem—may be solved
by quadratic programming. �e mathematical formulation has a series of advantages over

classical neural networks. Assuming linear separability of the input data, it has a single unique

solution — neural networks generally have multiple solutions and may therefore get stuck in

local minima during optimisation. Further, the separating hyperplane is exclusively de�ned

by support vectors.�ey are obtained by transforming (2.1) into a dual formulation using the
Lagrangian function that combines objective function and linear constraints and introduces
Lagrangian parameters αi for weighting the constraints:

L(w , b, α) =
1

2
wTw −

n
∑
i=1

αi (yi (wTx i + b) − 1) .

�us, the dual problem is to

maximise
n
∑
i=1

αi −
1

2

n
∑
i , j=1

yi y jαiα jxTi x j

subject to

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

n
∑
i=1

αi yi = 0

αi ≥ 0 i = 1, . . . , n .

10



2.3 Support Vector Machines

normal vector wbias b geometric margin γ

support vectors

Figure 2.3: Maximum margin classi�er.�e classi�er is de�ned by a normal vector w and
the bias b. Points with geometric margin γ are called support vectors.

�e optimal w∗ and b∗ for the primal problem are obtained from the optimum α∗ in the
dual representation:

w∗
=

n
∑
i=1

yiα∗i x i and b∗ = − 1
2
( max
i ,y i=−1

(xTi w
∗) + min

i ,y i=+1
(xTi w

∗)) .

Only those αi di�er from 0 that have a functional margin of +1 or −1. Hence, the corresponding

patterns x i are called support vectors, and all other patterns do not contribute as their Lagrangian
parameters are 0:

f (x) =
n
∑
i=1

(yiα∗i x
T
i x) + b∗ = ∑

i ∈ S={s ∣αs>0}
(yiα∗i x

T
i x) + b∗ .

Besides, the dual representation provides a way to introduce the concept of kernels, which allow
more complicated decision borders to overcome the limitation to linear separable classes.�e

basic idea of kernels is to transform the low-dimensional input space into a high-dimensional

feature space by a mapping Φ(x). As dimensionality increases, a linear hypothesis more likely
separates the two classes. In practise, this is achieved by substituting all scalar products xTi x j

by a suitable kernel function K(x i , x j) = Φ(x i)TΦ(x j).�us, the transformation Φ(x) into a
higher-dimensional space is not done explicitly, but implicitly via the kernel function.
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2 Machine Learning and High-dimensional Spaces

�e above hard-margin classi�er may be strongly a�ected by outliers — one single outlier
may avoid linear separation.�us, so�-margin approaches are favoured in practise. For the
one-norm so�-margin approach, the dual representation remains the same as in the hard-margin
case except for the second constraint, which is now additionally upper bounded by the so�ness
parameter C, i.e. 0 ≤ αi ≤ C. In contrast, the two-norm so�-margin svm [Cristianini and

Shawe-Taylor, 2000] is implemented using the kernel

K(x i , x j) = Φ(x i)TΦ(x j) = xTi x j +
δi j
C

instead of the dot product in the dual representation. In both approaches, large values of C pro-
vide a hard-margin solution, while decreasing the so�ness parameter allows misclassi�cations.

Asmentioned before, the primal and the dual problemboth can directly be solved by quadratic

optimisation. However, by taking advantage of the particular structure of the optimisation prob-

lem, dedicated methods have been developed, such as sequential minimal optimisation [Platt,
1999] or variants of theMinOver algorithm [Krauth and Mézard, 1987,Martinetz et al.,

2005], which are extensions to the perceptron [Rosenblatt, 1958], one of the �rst arti�cial
neural networks.�e So�DoubleMinOver algorithm (see Figure 2.4) implements a two-norm
so�-margin svm by iteratively increasing the weights of those patterns with minimal residual

Input : Feature vectors x i , class labels yi , number of iterations tmax
Output :Weight vector α, bias b

1 α ← 0
2 for t ← 1, . . . , tmax do
3 for i ← 1, . . . , n do
4 ri ← yi∑n

j=1 y j α j (K(x i , x j) +
δ i j
C )

5 end
6 i+ ← argmini ,y i=+1 ri
7 i− ← argmini ,y i=−1 ri
8 αi+ ← αi+ + 1

9 αi− ← αi− + 1

10 end
11 Recalculate residuals ri as above
12 b ← 1

2
(ri− − ri+)

Figure 2.4: So�DoubleMinOver algorithm.
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margin from both classes. Either, these are the strongest misclassi�ed patterns, or, if all pat-

terns are correctly classi�ed, the patterns that are closest to the decision border.�e solution

obtained by So�DoubleMinOver converges with O(1/t) to the exact solution [Martinetz,

2004,Martinetz et al., 2005].

Finally, we address the issue of unbalanced datasets, where one class is represented by sig-

ni�cantly more samples than the other class. A standard so�-margin svm would be biased

towards the smaller class — independent of the actual implementation — as the svm implicitly

assumes equal misclassi�cation costs for each data point. In the limit for very so� scenarios,

the svm behaves like a majority classi�er and assigns all samples to the larger class. Several

concepts have been proposed to deal with this artefact, e.g. undersampling the majority class,

synthetic sample generation for oversampling the minority class [Chawla et al., 2002,Akbani

et al., 2004], one-class classi�ers [Raskutti and Kowalczyk, 2004], or class-speci�c so�ness

parameters [Veropoulos et al., 1999]. In the latter approach, each data point is associated with

a so�ness value C+ or C− depending on the class label. Equal overall misclassi�cation costs for
each class are ensured if C+n+ = C−n− holds for classes of size n+ and n−, respectively.

2.4 Validation Methods

When it comes to comparing the quality of a classi�er, we basically need two things. First, a loss

function to compare the predicted and the true outcome of the learning algorithm. And second,

a validation scheme, i.e. a method to derive the accuracy not only for a single sample but for

a whole dataset. In classi�cation tasks, the loss is commonly de�ned to be 0 if the classi�er

predicts the correct class and 1 otherwise.�e three widely used validation schemes are holdout
estimate, cross-validation and bootstrapping.
�e holdout method partitions the input data into a training setDt and a holdout or test set

Dh of size h. �e inducer I is trained on the training set and its accuracy is determined by
classifying all samples of the holdout set, i.e.

acch =
1

h
· ∑
(x i ,y i)∈Dh

L (I (Dt , x i) , yi)

with L as the loss function. A large proportion of the data is never used for training, so the
inducer cannot gain any information although the data is present. So, the holdout estimate

is o�en too pessimistic. Random subsampling, i.e. splitting the input data several times and
averaging the accuracies, takes more data into account.

In k-fold cross-validation, the input data is randomly partitioned into k equally sized subsets
(folds)D1, . . . ,Dk . In each training run, all subsets except for one are used for training, while

13



2 Machine Learning and High-dimensional Spaces

the accuracy is estimated on the le�-out subset:

acccv =
1

n

k
∑
t=1

⎛

⎝
∑

(x i ,y i)∈Dt

L(I(D/Dt , x i), yi)
⎞

⎠
.

�e extreme case where k = n is called leave-one-out cross-validation. If the subsets Di are

sampled in a naïve way, the class ratios may di�er signi�cantly for each fold — especially if the

sample size is low— and might bias the accuracy estimate. Such balancing artefacts are avoided

by using strati�ed cross-validation, i.e. all folds are sampled to contain the same proportion of
class labels.

In bootstrapping, the training set is selected by randomly sampling n instances from the
input data of size n with replacement. �us, the probability of a sample not to be chosen is
(1 − 1

n)
n ≈ e−1 ≈ 0.368.�e accuracy for a bootstrap sampleDt is estimated by a weighted sum

of training accuracy and test accuracy:

accboot = 0.632 · acctest + 0.368 · acctrain with

acctest = ∑
(x i ,y i)∈Dt

L(I(D/Dt , x i), yi) and

acctrain = ∑
(x i ,y i)∈Dt

L(I(Dt , x i), yi) .

Commonly, this measure is averaged over several runs. Bootstrapping was originally introduced

in [Efron, 1979]; an overview on various bootstrapping variants can be found in [Efron and

Tibshirani, 1993].

In practise, we seek for an accuracy estimator with low bias and low variance. However,

each estimator may fail in certain scenarios, e.g. when a simple majority voting rule is used

for classi�cation [Kohavi, 1995] or if an svm is used in high-dimensional small sample size

scenarios (see Section 2.5.5). Strati�ed ten-fold cross-validation [Kohavi, 1995] has been found

to be well suited for a variety of real-world scenarios and for di�erent induction methods.

Bootstrapping seems to have lower variance but a large bias in some scenarios.

Some attempts have been made to give bounds on the accuracy of these estimates, e.g. in

[Kearns and Ron, 1997]. According to [Vapnik, 1982], the di�erence between true and esti-

mated error will be at most Õ (
√

h/n) for a dataset of size n drawn from an arbitrary input
distribution and any learning algorithm with vc-dimension h. Note, the Õ-notation — some-
times called so�-O— ignores logarithmic factors as the big-O notation ignores constants,

i.e. Õ(g(n)) is shorthand for O(g(n)(log g(n))k).

14



2.5 Geometry of High-Dimensional Small Sample Size Scenarios

Alternative Performance Measures �e receiver operating characteristic (roc) curve is a
method in signal detection theory to choose optimal parameters for a classi�er. Depending on

a single parameter — e.g. the bias of a support vector machine — it relates false positive and

false negative rates.�e area under the curve (auc) quanti�es the overall performance of the
classi�er. Assume a test set with n+ and n− data points from each class, respectively. First, the
decision values obtained from the classi�er are sorted in ascending order. Let ri denote the
rank of the ith data point from class +1.�en the auc is estimated as [Hand and Till, 2001]

auc =

n+

∑
i=1

ri − n+(n−+1)
2

n+n−
.

�is measure is independent of the decision threshold and the distribution of the class labels

[Bradley, 1997]. Formally, it has been shown that using the aucmeasure is indeed statistically

consistent and better suited for discriminating performance than the classi�er’s accuracy [Ling

et al., 2003].

2.5 Geometry of High-Dimensional Small Sample Size
Scenarios

Convergence proofs and asymptotic bounds in statistical learning theory require su�ciently

large datasets that properly represent the data distribution. However, in practise this is gener-

ally not the case. Real-world datasets are high-dimensional, but only a few samples may be

acquired. Such high-dimensional small sample size scenarios are essentially di�erent from

their low-dimensional counterparts. As we do not have an intuition of how a two-thousand-

and-one-dimensional space looks like, we tend to characterise it in the same way as two or

three-dimensional spaces. But these spaces are totally di�erent and their unintuitive aspects

distract learning and validation methods in several ways.�e fact that machine learning al-

gorithms do not scale well with the number of features is o�en referred to as the curse of
dimensionality [Bellman, 1961].

2.5.1 Empty Space Phenomenon

�e most obvious aspect of the curse of dimensionality is that the number of data points

required to uniformly cover the whole input space increases exponentially with the number of

dimensions [Bellman, 1961]. Given a grid with m points in each direction.�e 3-dimensional
cube has m3 grid points, a 4-dimensional hypercube has m4 grid points and so on. A state-
of-the-art microarray chip for analysing human genome expression levels contains 54676
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2 Machine Learning and High-dimensional Spaces

probes (A�ymetrix, Inc., GeneChip Human Genome U133 Plus 2.0 Array). A hypercube with

the same dimensionality as this microarray dataset and with m = 2 has 254676 ≈ 1016549 grid

points. For comparison, estimates about the size of the observable universe are in the range

of 1080 atoms (Wikipedia. Retrieved on August 30, 2011 from http://en.wikipedia.org/

wiki/Observable_universe). So, any dataset in this space can only cover a vanishing small

proportion of the whole space.

2.5.2 Distance Concentration

Another well-known e�ect is that if dimensionality is increased towards in�nity, a �nite set of

points takes a speci�c deterministic topology. In the limit, the points are located on the vertices

of a regular simplex [Hall et al., 2005], i.e. all samples have nearly the same distances to the

origin as well as among each other, and they are pairwise orthogonal. �is is referred to as

distance concentration. Additionally, zero-mean samples taken from a Gaussian distribution are
commonly not located near the origin.�ese properties were shown for multivariate standard

normal distributions with zero mean and identity covariance matrix but hold under much

weaker assumptions as shown in [Ahn et al., 2007]. Here, the authors derive a condition such

that a �xed size dataset behaves as if it was drawn from a distribution with identity covariance

matrix for d →∞.�is condition is based on the sphericity measure

ε =
(∑

d
i=1 λi)

2

d∑d
i=1 λ2i

where λi denotes the ith eigenvalue of the covariance matrix. If the eigenvalues are su�ciently
di�used, i.e. if

lim
d→∞

d · ε = lim
d→∞

(∑
d
i=1 λi)

2

∑
d
i=1 λ2i

→ 0

then the dataset will show the same unintuitive behaviour as datasets with the identity covariance

matrix (see Figure 2.5 for an example using random normal distributed data with identity

covariance matrix).�us, any method that relies on measuring distances between data points

may become meaningless. Nearest neighbour based methods have been analysed with respect

to such distance concentration with application to high-dimensional databases [Aggarwal

et al., 2001a,Beyer et al., 1999]. In such applications, we seek for a given query data point the

data point with minimum distance. However, as dimensionality increases the distance to the

nearest and to the farthest data point become more and more equal [Beyer et al., 1999] due to

distance concentration — even in cases where the dimensions are correlated or the variance of

the newly added dimensions converges to zero.�us, nearest neighbour methods may become
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2.5 Geometry of High-Dimensional Small Sample Size Scenarios
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Figure 2.5: Distance concentration in high-dimensional spaces. �e e�ects of distance

concentration can be reproduced in a very simple way. Here we sampled n = 10
data points normally distributed from low to high-dimensional spaces and

plotted the mean (solid) and the extreme values (dashed) for various properties

averaged over 100 runs. �e distances to the origin (top le�) as well as the

pairwise distances (top right) concentrate, all pairwise angles (bottom le�)

converge to 90○, and the eigenvalues of the covariance matrix (bottom right)
converge to 1. �us, distances, angles, and eigenvalues all become the same,

although the data was sampled randomly.

meaningless or unstable from 10 to 20 dimensions upwards.

Most nearest neighbour methods apply the Euclidean norm as the distance measure, however,
other metrics are possible and in�uence the meaningfulness in high-dimensional spaces [Ag-

garwal et al., 2001a].�e Lp-norm

∣∣x∣∣p = Lp(x) =
⎛

⎝

d
∑
i=1

∣xi ∣p
⎞

⎠

1

p

with p ∈ R, p ≥ 1
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2 Machine Learning and High-dimensional Spaces

is more susceptible to distance concentration for large values of p.�us, the best choice with
respect to meaningfulness in high-dimensional spaces would be p = 1, o�en referred to as the
Manhattan metric. Even values between 0 and 1 could be used, however, such fractional distance
measures are no longer a metric in the strict mathematical sense as the triangle inequality is
not ful�lled. However, theoretical and empirical results show, that using fractional distance

measures improves the performance of nearest neighbour methods signi�cantly at least on

uniformly distributed data [Aggarwal et al., 2001a]. Distance concentration in fractional

distance measures may be quanti�ed in terms of relative concentration. Let x be a random vector
with each feature drawn from some distribution F .�en,

RVF ,p =

√

var (∣∣x∣∣p)

E (∣∣x∣∣p)

is a measure of the relative concentration of the norm. Low values indicate a high degree of

concentration, high values correspond to awider distribution of distances.�us, all distributions

and Lp metrics are prone to distance concentration [François et al., 2007] as

lim
d→∞

√

var (∣∣x∣∣p)

E (∣∣x∣∣p)
= 0.

However, the impact depends on the distributionF , and the choice of p needs to be validated for
each dataset individually. In total, nearest neighbour methods are prone to the phenomenon of

distance concentration, however, there is some evidence that using the L1-norm for measuring
distances relaxes this phenomenon to some extend.

2.5.3 Hubness

Distance concentration is closely related to hubness— another high-dimensional artefact that
may a�ect machine learning methods. Hubness refers to the e�ect that in high-dimensional

spaces some data points occur more frequently among the nearest neighbours than others.

Given a datasetD, Nk(x) refers to the number of times x is among the k nearest neighbours
of all other points inD. In low-dimensional scenarios, Nk converges to a Poisson distribution

with mean k, while in the high-dimensional case the distribution of Nk becomes skewed with

a long tail to the right [Radovanović et al., 2010].�us some data points — hubs— occur
much more frequent in the list of the k nearest neighbours than others. Hubs have a high
tendency to be close to the mean of the data distribution, in multimodal distributions they

appear close the mean of the unimodal distribution components. Hubness may occur even a�er
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2.5 Geometry of High-Dimensional Small Sample Size Scenarios

dimensionality reduction if a distance preserving method is used and the number of features

exceeds the intrinsic dimensionality. Bad hubs, i.e. hubs with a high probability not having
the same class label as the query point, describe the boundary of the classes and thus have

a signi�cant impact on classi�cation performance. However, their contribution depends on

the induction algorithm. A k-nearest-neighbour classi�er can signi�cantly be improved if the

contribution of these bad hubs is downweighted as the classi�er aims to describe the interior

of a class and not its borderline. In contrast, a support vector machine models the separation

surface between the classes and, thus, removing bad hubs causes a signi�cant performance

drop.

2.5.4 Incidental Separability

In general, a two-class scenariowith less samples than features is separable by a linear hyperplane.

However, random datasets with more samples than features may be separable by chance.�e

probability of a dataset being separable by chance depends on the data distribution, the sample

size and the dimensionality. In case of rotationally symmetric distributions this probability

can be given explicitly — but not for arbitrary distributions. Let Pd ,n denote the probability of
n data points drawn from a d-dimensional distribution to be linearly separable without bias,
i.e. the solution needs to pass through the origin.�is is equivalent to the probability that all

data points are located within the same half-space. For rotationally symmetric distributions,

such as the multidimensional standard normal distribution [Wendel, 1962]

Pd ,n =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2−n+1
d−1
∑
k=0

(
n−1
k ) for n > d

1 otherwise .

�e sample size n needs to be twice as large as the number of features d to let the probability
drop to 0.5 (see Figure 2.6). In practise, the above equation allows to estimate whether a linear

hard-margin classi�er may succeed in �nding a solution or not. However, real-world datasets

may contain irrelevant noise features and may be separable in less than d dimensions. Again,
a purely random dataset may show the same behaviour. Let Pd∗,d ,n be the probability that a
d∗-dimensional subspace with d∗ < d exists where all data points are linearly separable or,
in other terms, located in the same half-space. As there are (

d
d∗) possible ways to choose the

d∗-dimensional subspace, the following upper bound holds [Klement andMartinetz, 2010a]:

Pd∗,d ,n ≤ min(1, (
d
d∗

) Pd∗,n) ≤ min
⎛

⎝
1, (

d
d∗

) 2
−n+1

d∗−1
∑
k=0

(
n − 1
k

)
⎞

⎠
. (2.2)
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Figure 2.6: Probability of a normal distributed d-dimensional dataset to be located all in
the same half-space or being linearly separable without bias.

Additionally, Pd∗,d ,n ≤ Pd ,n holds, because if the dataset is separable in any subspace, it is also
separable in the original space. If it is not separable in the original space, it will never be in any

subspace. Further, Pd∗,d ,n is lower bounded by Pd∗,n, which can be illustrated as follows: Assume,
the dataset to be restricted to d∗ dimensions, then obviously Pd∗,d∗,n = Pd∗,n. Adding further
dimension may only increase the probability of �nding a d∗-dimensional subspace where the
data points are separable. In total, the following bounds hold for the probability of a random

dataset to be linearly separable in a subspace of dimension d∗:

Pd∗,n ≤ Pd∗,d ,n ≤ min(1, Pd ,n , (
d
d∗

) Pd∗,n) . (2.3)

�ese are very rough estimates and they are constrained to rotationally symmetric distributions.

However, if the upper bound is low in an arbitrary scenario, it is very unlikely that a random

dataset with the same parameters is separable by chance.

Unfortunately, Pd∗,d ,n cannot be written in closed form except for the special case d∗= 1. Let
Ei denote the event that the dataset is separable within dimension i. Now, the probability P1,d ,n
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Figure 2.7: Probability of a normal distributed d-dimensional dataset to be linearly separa-
ble without bias in any 1-dimensional subspace.

derives to

P1,d ,n = P (
d
⋃
i=1

Ei)

= P(E1) + . . . + P(Ed) − P(E1 ∩ E2) − . . . − P(Ed−1 ∩ Ed)

+P(E1 ∩ E2 ∩ E3) + . . . (−1)d−1 P (
d
⋂
i=1

Ei)

=
d
∑
i=1

(−1)
i+1

(
d
i
) P i

1,n

=
d
∑
i=1

(−1)
i+1

(
d
i
) 2

i · (−n+1)
.

Here, we use the fact that all events Ei are pairwise statistically independent, i.e. P(Ei ∩ E j) =

P(Ei)P(E j) for all i ≠ j.�e probability P1,d ,n drops much faster towards zero (see Figure 2.7)
than Pd ,n. Nevertheless, a dataset with 4 samples in 50 dimensions will have at least one
dimension in which it is separable with probability 1. Such a ratio of about 1 to 10 may be

considered extraordinary large in high-dimensional biological or medical datasets, i.e. high-

dimensional real-world data is very likely prone to such behaviour.

Finally, we empirically approximated Pd∗,d ,n to give an impression of its general behaviour in
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2 Machine Learning and High-dimensional Spaces

various scenarios.�erefore, we sampled d-dimensional datasets with n data points from the
standard normal distribution, partitioned them into two balanced classes and tested whether

the dataset was separable without bias in any d∗-dimensional subspace.�us, for each dataset at
most (

d
d∗) subsets had to be evaluated. As soon as we found a separable subspace, we skipped the

remaining subsets. Besides this combinatorial issue, the question arises whichmethod to choose

for testing separability. A non-exhaustive list includes methods based on linear programming,

convex hulls, neural networks and quadratic programming [Mangasarian, 1965,Elizondo,

2006]. For sake of simplicity, we chose a method that is as close to the de�nition of linear

separability as possible and does not require any parameters or assumptions.�erefore, we

minimise ξ
subject to yi (wTx i) + ξ ≥ 1 for all i

ξ ≥ 0 .

�e dataset is separable if and only if ξ = 0 in the optimum [Yogananda et al., 2007]. Of course,
we could also train a neural network such as the perceptron and stop the training as soon as

separation is achieved. However, the termination criterion, i.e. the number of iterations a�er

which the dataset is classi�ed as inseparable, is hard to choose and highly data dependent.

�e empirical results illustrate that in case of low dimensional datasets (e.g., d = 5, see

Figure 2.8, le� column) the bounds are quite close to the empirical probability — for P4,5,n the
upper bound almost matches the empirical measurements. In high-dimensional small sample

size scenarios, we know that no more than n dimensions are necessary to separate two classes
without bias. In general, we do not have an intuition of how likely a separation within very few

dimensions may exist. Empirical estimates for medium-sized datasets (see Figure 2.8, right

column) are time consuming and become infeasible for arbitrary high-dimensional datasets

due to combinatorial issues.

In [Lavine et al., 1988], chance classi�cation has been evaluated empirically depending on

the number of data points, the number of features, the class membership distribution and the

covariance structure of the data. Based on Monte Carlo simulations, they analysed how likely

a certain degree of separability can be achieved on random data.�ese simulations lead to a

simple, yet e�ective, plausibility check:�ey suggest to sample multiple instances of random

data having the same properties as the original dataset— i.e. the same cardinality, dimensionality,

distribution and class balance. �e classi�cation results obtained on these random datasets

are compared to those of the original dataset, i.e. to the chance level of comparable scenarios.

However, this procedure is time consuming as many instances of random data need to be

sampled and the classi�cation procedure needs to be executed multiple times to get valid results.
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Figure 2.8: Probability of normally distributed d-dimensional data to be linearly separable
without bias in any d∗-dimensional subspace. Shown are the empirical proba-
bilities a�er 1000 repetitions (dots) and the lower and upper bounds (dashed).

In the le� column, the overall dimension was �xed (d = 5) and Pd∗,d ,n was
evaluated for all possible choices of d∗. For d∗ = 1 and d∗ = 5 empirical mea-
surements match the bounds, while in all other cases the empirical results are

within the bounds. In the right column, various other combinations of d∗ and
d are shown. However, due to combinatorial issues only those combinations
with small (

d
d∗) are included.
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2 Machine Learning and High-dimensional Spaces

2.5.5 Reliability of Cross-Validation

In this section, we analyse when and why cross-validation for support vector machines may

be unreliable on high-dimensional small sample size data. Typically, when using the svm

there is a tendency to increase the dimensionality as higher-dimensional datasets are more

likely separable. Due to runtime considerations, leave-one-out cross-validation is in general

only feasible in small sample size scenarios. So, high dimensionality and small sample size

meet if svms are validated by leave-one-out cross-validation.�e dimensionality of any real-

world scenario is �nite, however, even comparatively low-dimensional data behaves as if being

in�nitely dimensional [Klement et al., 2008]. So, in�nity is rather small in small sample size
scenarios.

First, we show that the leave-one-out cross-validation error for hard-margin svms converges

to 1 in high-dimensional feature spaces for equal-sized classes drawn from the same distribution.

�e expected chance level of 0.5 is only obtained in low dimensions. In the general case — two

classes from di�erent distributions — a hard-margin svmwill vote along the majority rule alone

for a dimension towards in�nity [Hall et al., 2005]. Not only simple hard-margin svms are

prone to over�tting; so�-margin approaches make things even worse.�e margin is increased

to reduce the fat-shattering dimension. �is is supposed to reduce over�tting by allowing

training errors. Unfortunately, this does not increase the generalisation performance, again due

to the counterintuitive geometric properties of only few samples in high-dimensional space

and the asymmetries of a resampling scheme such as leave-one-out cross-validation. In the

so�-margin case, in�nity becomes even smaller.�ese properties are proven in the following
section.

Random Data Assume a random balanced two-class dataset, i.e. samples drawn from an

arbitrary distribution with randomly assigned class labels.�e best classi�er for completely

random datasets is simply themajority voting rule [Kohavi, 1995]. Unfortunately, leave-one-out

cross-validation will indicate poor performance, since the originally balanced dataset becomes

unbalanced in each and every validation step. As the le�-out pattern reduces the size of one

class, a majority classi�er will always vote for the other larger class, but the le�-out pattern

belongs to the smaller class. �us, the classi�er will always make the wrong decision. �is

behaviour is independent of the dimensionality or training set size.

Such an imbalancing artefact is no particular de�ciency of naïve classi�ers. In case of high-

dimensional scenarios, a linear support vector machine will show the same behaviour. Assume

an unlearnable scenario where each feature is independently drawn from the standard normal

distribution and the class labels are balanced but randomly assigned. Without loss of generality
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2.5 Geometry of High-Dimensional Small Sample Size Scenarios

we may assign the class labels

y1 = . . . = y n
2
= +1 and y n

2
+1 = . . . = yn = −1

because the support vector machine is independent of the order of the training samples. For

high-dimensional small sample size data, d ≫ n holds, and therefore, in general, the data is
linearly separable, except for cases with three or more collinear data points having alternating

class labels. However, the probability of this pathological case is 0. �e leave-one-out cross-

validation error is determined by training an svm n times, each time on a di�erent subset of
size n − 1.�e obtained classi�cation functions fi(x) are then used to classify the remaining
pattern, and the leave-one-out error E is determined by

E =
1

2n

n
∑
i=1

∣ fi(x i) − yi ∣ .

Intuitively, we would expect an average error of 0.5 as the le�-out pattern was drawn randomly

and is independent of the training data.�is is indeed the case in low-dimensional scenarios.

However, as dimensionality increases, the error rate converges to 1 for any �xed sample size

n (see Figure 2.9). To explain such unintuitive error rates for small sample sizes, we consider
datasets with in�nite dimensionality.

�eorem 2.5.1 For any dataset D = {x i , yi}ni=1 with x i ∈ Rd drawn from the multivariate
standard normal distribution, with y1 = . . . = y n

2
= +1 and y n

2
+1 = . . . = yn = −1 and n �xed, the

leave-one-out error rate of a hard-margin svm is 1 for d →∞.

Proof �e proof [Klement et al., 2008] relies on the geometry of high-dimensional datasets
as described in Chapter 2.5.2. Namely, for d → ∞ all x i ∈ D lie on the vertices of a regular
n-simplex, as well as all pairwise angles are orthogonal. Assuming the data to be drawn from the
standard normal distribution with identity covariance matrix, the mean vector length converges

to
√
d as d →∞ [Hall et al., 2005].�e total variability ofD is provided in the rotation of this

simplex. So, without loss of generality, we may rotate the simplex such that the edges are parallel

to the coordinate system, i.e we set x i =
√
d e i . Here, the vectors e i form the standard basis

of the Euclidean space:�e ith entry is 1 while all others are 0.�us, the following properties
hold for d →∞:

∣∣x i ∣∣2 =
√
d ∀ i

∣∣x i − x j∣∣2 = ∣∣e i − e j∣∣2 =
√
2 d ∀ i ≠ j

xTi x j = eTi e j = 0 ∀ i ≠ j .
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Figure 2.9: Leave-one-out cross-validation error of a hard-margin svm on normally dis-

tributed data with random class labels. Obviously, the error rate converges to 1

for any �xed sample size as the dimensionality goes towards in�nity. Only those

scenarios were evaluated where d > n to ensure separability. Smooth curves
were obtained by averaging 1000 runs.

So indeed, all data points have the same length, the same pairwise distance and they are orthog-

onal. Again without loss of generality, we select x1, . . . , xn−1 for training. We can analytically
determine the maximum margin classi�er

f (x) = sgn (wTx + b)

that minimises wTw

subject to yi (wTx i + b) ≥ 1 ∀ i

with simple vector algebra. As all samples are pairwise orthogonal, also the centroids of both

classes

x+ =
1
n
2

n
2

∑
i=1

√
d e i and x− =

1
n
2
− 1

n−1
∑

i= n
2
+1

√
d e i

are orthogonal.�us, the normal vector of the support vector solution points from the centroid

of the negative class to the centroid of the positive class (see Figure 2.10), i.e. w = α (x+ − x−).
�e scaling factor α and the bias are set according to the constraints as follows: Let x i and x j

be arbitrary support vectors from the positive and the negative class, respectively. As they are
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Figure 2.10: Geometry of high-dimensional small sample size data. Here, a schematic

view of an in�nite dimensional dataset drawn from the multivariate standard

normal distribution with 7 data points is shown.�e samples from the larger

class form a 4-simplex while those from the smaller class form a 3-simplex.

�e centroids of both simplices are denoted by x+ and x−, respectively.�e
separating hyperplane with maximummargin has the normal vector w and
points from the centroid of the negative class to the centroid of the positive class.

However, none of the unintuitive properties of high-dimensional small sample

size data can be visualised. For instance, the angle between the segments that

join the centre and the vertices of the tetraeder (the 3-dimensional simplex)

is ≈ 109.47○, however for d →∞ it is 90○.

support vectors, both ful�l the separability constraint with equality:

yi (xTi w + b) = 1

y j (xTj w + b) = 1 .

By substituting the weight vector w and the class labels yi = +1 and y j = −1 we obtain

αxTi (x
+
− x−) + b = αx iTx+ − αx iTx− + b = αx iTx+ + b = 1

−αxTj (x
+
− x−) − b = −αx iTx+ + αx iTx− − b = αx j

Tx− − b = 1 .
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2 Machine Learning and High-dimensional Spaces

�e solution to this equation system is

α =
n · (n − 2)
2 d · (n − 1)

and b = 1

n − 1
.

Resubstituting α and b shows that all constraints are ful�lled with equality.�erefore, all data
points become support vectors, which is anyway an indicator of poor performance.�e le�-out

data point xn (with yn = −1) is misclassi�ed, because

f (xn) = wTen + b = b > 0 .

�is will be the case in each and every validation step for le�-out data points xi with yi = −1. In
the opposite case, with one data point le�-out from the positive class, the above equations are

applied analogously. Again, the le�-out data point is misclassi�ed. So the overall leave-one-out

cross-validation error is 1. ◻

With decreasing dimensionality, the data points start to diverge more and more from the

vertices of a regular simplex and they are no longer orthogonal. �us, the conditions of the

above proof are only approximately ful�lled. �e probability increases for data points to be

correctly classi�ed, and the leave-one-out error rate will be less than 1 and will converge to the

intuitive error rate of 0.5 for n →∞.

Real Two-Class Scenarios In the above setting, the data was completely random. But even if

both classes are drawn from di�erent distributions, a similar e�ect may occur. Assume the sam-

ples of the two classes to be distributed asX = (X (1), . . . ,X (d))
T
andY = (Y(1), . . . ,Y(d))

T
.

�e distribution may be arbitrary as long as the mean variances converge for d →∞:

σ2 = lim
d→∞

1

d

d
∑
i=1
var (X

(i)
)

τ2 = lim
d→∞

1

d

d
∑
i=1
var (Y

(i)
)

µ2 = lim
d→∞

1

d

d
∑
i=1

(E (X
(i)

) − E (Y
(i)

))
2

.

Any d-dimensional Gaussian or rectangular distributions ful�l these conditions. Let k and l be
the number of data points drawn fromX andY , respectively.�e following theorem holds for
a hard-margin svm [Hall et al., 2005]:

�eorem 2.5.2 Assume that σ 2
k ≥ τ2

l (otherwise interchange the classes). If µ2 > σ 2
k − τ2

l , then the
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2.5 Geometry of High-Dimensional Small Sample Size Scenarios

probability of a new datum from either population to be correctly classi�ed by the svm converges
to 1 as d →∞. Otherwise any new sample will be classi�ed as belonging to class Y as d →∞.

Assume two classes having the same mean variance, i.e. σ2 = τ2. Further, assume the means
of the classes to di�er in exactly one dimension and to be the same in all others.�us, the single

relevant dimension has a vanishing impact on the whole di�erence of the class means, i.e. µ2

converges to 0 as d →∞. In leave-one-out cross-validation the class sizes di�er by one sample.

So, for any �xed sample size n and d →∞, the condition

σ2

k
−

τ2

l
=

σ2
n
2
− 1

−
σ2
n
2

=
σ2

( n
2
− 1) n

2

> 0 = µ2

holds. �us, any new sample is assigned to the larger class, but the le�-out sample always

belongs to the smaller class. Although the data might be separable in a single dimension, the

cross-validation error converges to 1.

Fat-Shattering Dimension �e vc-dimension is a measure for the discriminative power

of family of classi�cation functions but does not take into account the notion of margin.�e

generalisation of the vc-dimension to large margin classi�ers is the fat-shattering dimension
fat(γ). It is de�ned to be the largest number of data points such that all labellings can be
discriminated with a margin of γ.�e fat-shattering dimension for a linear classi�er is upper
bounded [Bartlett and Shawe-Taylor, 1999] by

fat(γ) ≤ (
R
γ
)

2

(2.4)

with R as the radius of the smallest enclosing sphere containing all samples. For random datasets
drawn from the standard normal distribution we can derive tight bounds on the fat-shattering

dimension [Klement et al., 2008].

�eorem 2.5.3 For any balanced dataset D = {x i , yi}ni=1 with x i ∈ Rd and d → ∞, the fat-
shattering dimension of a linear support vector machine is bounded by

n − 1 ≤ fat(γ) < n with γ =

¿
Á
ÁÀ d (n − 1)

n (n − 2)

in each leave-one-out cross-validation step.

Proof Assume the same dataset as in the proof of theorem 2.5.1, i.e. x i =
√
d e i . For d →∞
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the margin is half the distance between the centroids, i.e.

γ =
1

2
∥x+ − x−∥ =

¿
Á
ÁÀ d (n − 1)

n (n − 2)

and the radius of the smallest enclosing sphere containing the complete dataset is R ≤
√
d.

�us, using (2.4) the fat-shattering dimension is upper bounded by

fat(γ) ≤ n (n − 2)
n − 1

< n .

Further, fat(γ) is lower bounded by n− 1, if in each validation step all labellings can be shattered
with a margin of at least γ. �us, we need to show, that each labelling of the corners of the
(n− 1)-simplex allows a separation with a margin of γ. Let γk be the maximummargin between
the classes, if k samples are drawn from the positive class and n − k − 1 from the negative class:

γk =
1

2
∥x+k − x−k ∥ with x+k =

1

k

k
∑
i=1

√
d e i and x−k =

1

n − k − 1

n−1
∑
i=k+1

√
d e i

=
1

2

¿
Á
ÁÀ d (n − 1)

k (n − k − 1)
.

�e smallest margin γ∗k is obtained for k
∗ = argmaxk k (n− k− 1), by setting the derivative to 0:

∂(k (n − k − 1))
∂k

= −2 k + n = 0 ⇒ k = n
2
.

�us, the smallest margin is obtained exactly in the leave-one-out cross-validation setting where

the larger class contains n/2 samples and the smaller class n/2− 1 samples. For all other labellings

the margin is larger.�erefore, any labelling can be shattered with a margin of at least γ and the
fat-shattering dimension is lower bounded by n − 1. ◻

�ese bounds hold for the hard margin case and indicate that no generalisation is possible, as

all labellings can be shattered. Extending the above considerations to so�-margin svms makes

things even worse.

Soft-Margin Hard-margin support vector machines are prone to over�tting because a single

outlier may strongly a�ect the separating hyperplane. So�-margin svms trade o� margin

maximisation and training error.�e two-norm so�-margin svm is implemented by using the

kernel

K(x i , x j) = Φ(x i)TΦ(x j) = xTi x j +
δi j
C

(2.5)
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instead of the dot product in the dual representation, where C is the so�ness parameter. Large
values of C cause a hard-margin solution, decreasing the so�ness parameter allows more
and more training errors. Again, assume the same dataset as in the proof of�eorem 2.5.1,

i.e. x i =
√
d e i . �e input data is located on the edges of a regular simplex and the kernel

function (2.5) preserves this property also in the kernel space [Klement et al., 2008]:

∣∣Φ(x i)∣∣ =

√

K(x i , x i) =
√

xTi x i +
1

C
=

√

d + 1
C

∣∣Φ(x i) −Φ(x j)∣∣ =

√

(Φ(x i) −Φ(x j))
T
(Φ(x i) −Φ(x j))

=

√

K(x i , x i) − 2K(x i , x j) + K(x j , x j)

=

√

xTi x i + xTj x j +
2

C

=

√

2 (d + 1
C
) .

All samples are pairwise orthogonal:

Φ(x i)TΦ(x j) = K(x i , x j) = xTi x j +
δi j
C

= 0 .

�us, a so�-margin svm on d-dimensional data has the same properties as a hard-margin svm
on (d+ 1C )-dimensional data. ForC ≫ 1 the so�ness term is negligible, but forC < 1 the e�ective

dimensionality increases.�e so�-margin approach implicitly increases dimensionality such

that the leave-one-out error rate is close to 1 already for a smaller number of dimensions.

At �rst glance, this is counterintuitive since so�-margin approaches increase the margin and

therefore reduce the fat-shattering dimension such that over�tting is reduced. But in case of

high-dimensional small sample size data the asymmetries of leave-one-out cross-validation

stronger a�ect generalisation performance than over�tting problems do. For one-norm so�-

margin approaches we expect the same behaviour but a closedmathematical formulation cannot

be derived as simply as above.

2.6 Feature Selection

�e above considerations have shown that high-dimensional small sample size data has many

unintuitive geometric characteristics, visualisation is almost impossible, and such data causes a
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variety of machine learning algorithms to fail. Even if a method seems to have good prediction

performance, it is hard to interprete the results and to say which features are relevant for

classi�cation.�erefore, a large family of feature selection methods have been proposed and

used in practise, all of them aiming to reduce the number of features while preserving or

improving accuracy.�e optimal feature subset maximises the accuracy of the induced classi�er.
According to the notion in [Kohavi and John, 1997], each feature may be strongly relevant,
weakly relevant or irrelevant, depending on their in�uence on an optimal Bayesian classi�er.
A feature is strongly relevant if removing it causes a performance decrease. A weakly relevant

feature is one that is not strongly relevant but removing it from a particular feature subset

decreases the performance of a Bayesian classi�er. All other features are irrelevant.

In the following section, we give an overview on state-of-the-art feature selection methods.

2.6.1 Combinatorial Aspects

�e most naïve approach towards feature selection would be exhaustive search, i.e. enumerating
all 2d − 1 feature subsets, training a machine learning method on every single subset, and

�nally choosing the subset with the optimal performance. Besides the fact that this approach is

computationally intractable for most datasets, it has other drawbacks. First, it is not clear which

performance measure to use for evaluating whether a feature set is good or not. One might

simply use the generalisation performance — approximated by the test error on a separate

dataset — aiming for the feature set on which prediction works best. In this case, one could use

a validation method such as k-fold cross-validation to measure the performance. However, if
we aim to �nd a feature set that allows deeper insight into the data and which allows a better

interpretation, we might trade o� generalisation performance and the number of features. In

this case, the weighting of both measures — test error and feature set size — is the crucial factor.

�e second issue arises from the exponential number of training runs with di�erent feature

sets on the same initial dataset. Even for random data there is a non-vanishing probability of

�nding a small subset of features that allows separating the data (see Chapter 2.5.4). So, by

enumerating an exponential number of subsets, we might more likely �nd a good feature set

by chance. �us, all computationally feasible feature selection techniques approximate the

optimal feature set, e.g. by Bayesian inference, gradient descent, genetic algorithms, or various

numerical optimisation methods.

2.6.2 Categorisation

Feature selection methods may be categorised in several ways — subspace selection vs. dimen-

sion reduction, a�ne vs. combinatorial, and �lter vs. wrapper vs. embedded methods.
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2.6 Feature Selection

In subspace selection, the task is to �nd the largest subset of features such that the reduced
feature set satis�es a property that was not satis�ed in the initial set. In contrast, in dimension
reduction we aim to �nd the smallest subset that still satis�es a property that was also present in
the overall dataset [Charikar et al., 2000].

A�nemethods allow the selection of any a�ne subspace — i.e. valid transformations are ro-
tation, scaling, shearing and translation. Such transformations increase the �exibility, however,

the results are di�cult to interprete with respect to the original feature space. Combinato-
rial feature selection discards some dimensions and preserves the remaining — they are still
meaningful with respect to the initial feature space.

�e most common taxonomy divides feature selection into �lter, wrapper and embedded
methods [Saeys et al., 2007]. Filter methods separate feature selection and model selection,

the optimal feature subset is selected in advance, i.e. �ltered out from the overall set of features

without assessing the actual classi�er. Wrapper methods evaluate the outcome of the induction

algorithm to assess the prediction accuracy on multiple feature sets and apply heuristics to

guide the selection process. Embedded methods include feature selection in the model selection

such that the obtained classi�er is sparse in the sense that only few dimensions are involved.

�is corresponds to a combined search in the feature and hypothesis space.

2.6.3 Filter Methods

Filter methods use univariate scores to express the discriminative power of a single feature

without the need to actually train a classi�er.�us, pure noise features should be eliminated,

however, such methods cannot identify multidimensional feature sets with low individual but

strong combined discriminative power.

Fisher’s discriminant criterion �e Fisher Score [Duda et al., 2001] ranks all features

according to

wi =
(µ+i − µ−i )

2

(σ+i )
2
+ (σ−i )

2

where µ+i , µ−i and σ+i , σ−i are the means and the standard deviations for each feature within
class +1 and −1, respectively. Large scores indicate good separability.

Golub’s Score In [Golub et al., 1999] the authors use

wi =
µ+i − µ−i
σ+i + σ−i

(2.6)
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2 Machine Learning and High-dimensional Spaces

Input : Feature vectors x i , class labels yi , number of iterations tmax
Output :Weight vector w as a quality criterion for each feature

1 w ← 0
2 for t ← 1, . . . , tmax do
3 Randomly select a data point x
4 xhit ← nearest neighbour of x having the same class label
5 xmiss ← nearest neighbour of x having opposite class label
6 for all features j do
7 w j ← w j −

1

t di�( j, x , xhit) +
1

t di�( j, x , xmiss)
8 end
9 end

Figure 2.11: Relief algorithm.

as the ranking criterion. In contrast to the Fisher Score, this criterion can take positive and
negative values. Positive values indicate correlationwith the positive class and vice versa. Besides

the ranking criterion, a classi�cation rule can directly be obtained from the weight values:

f (x) = w (x −
µ+ + µ−

2
)

where µ+ and µ− are the mean vectors within each class.

Relief Ranking �e idea of the original Relief algorithm [Kira and Rendell, 1992b,Kira

and Rendell, 1992a] is to �nd those features that can well distinguish instances of the training

data that are close together. Within each iteration, the algorithm (see Figure 2.11) randomly

selects a data point x and its nearest neighbours from the same class and the opposite class (xhit
and xmiss).�e quality of a feature — stored in the weight vectorw— is increased if x and xmiss
largely di�er within this feature. If x and xhit largely di�er, the quality is decreased.�e update
step involves the univariate distance measure

di�(i , x , y) = ∣xi − yi ∣
maxi −mini

where maxi and mini are the minimum and maximum values of feature i in the overall dataset.
In the nearest neighbour search, the abovemeasure is applied for every feature and the outcomes

are summed to get the overall distance.
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2.6 Feature Selection

2.6.4 Wrapper Methods

In wrapper approaches the set of relevant features is successively updated according to the

accuracy of a classi�er on subsets of features. It requires the choice of four components — a

state space, an initial state, a termination condition and a search engine [Kohavi and John, 1997].
�e state space consists of all 2d feature subsets. Two states are connected, if the second state

contains the same features as the �rst state but one additional feature. Other interconnection

networks are as well possible.�e optimal feature subset is approximated based on heuristics

that de�ne the initial state, the termination criterion and the search engine. In forward selection
the initial state is the empty set, while in backward elimination it contains all features. �e
hill-climbing or greedy search engine evaluates the accuracy of each child node and then moves
to the child node with highest accuracy.�is procedure is terminated if the accuracy can no

further be improved. In contrast, the best-�rst search engine maintains a list of nodes that have
been evaluated so far, ordered according to their accuracy starting with the best. Within each

iteration, the neighbours of the �rst node within this list are evaluated and added to the list. It

terminates, if the accuracy has not been improved within a certain number of iterations.

Wrappermethods are an intuitiveway to combine feature selection and the entire classi�cation

framework, however, �ne-tuning the search heuristic may become complex.

2.6.5 Embedded Methods

Recursive Feature Elimination �e feature ranking scores obtained byGolub’smethod can

directly be used as weights in a classi�er, i.e. the feature selection results induce a linear classi�er.

�e opposite way would be to train a classi�er and use the weight vector as a feature ranking

criterion.�is is exactly what recursive feature elimination (rfe) [Guyon et al., 2002] does. It is
inspired by the optimal brain damage (obd) [LeCun et al., 1990] — a method for successively
reducing the number of connections in a neural network by setting those connection weights to

zero that cause aminimal performance loss.�e loss can be approximated by expanding the cost

function locally as a second order Taylor series. For linear svms with quadratic cost function,

this corresponds to discarding those features with minimum absolute weight (see Figure 2.12

for the overall algorithm). To reduce runtime, Guyon et al. suggest to discard multiple features

within each iteration.

Feature Selection via Mathematical Programming Alternatively, feature selection may

be regarded as an optimisation problem where the number of features and the training error are

both minimised. Given two classes with the data matrices A and B, having m and k samples,
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Input : Feature vectors x i and class labels yi
Output : List of ranks ri , weight vector w and bias b

1 Initialise list of surviving features s ← (1 . . . d)
2 while s ≠ ∅ do
3 Reduce feature vectors to surviving features, i.e. X′ = X(∶, s)
4 Train an svm on X′ and y, store weight vector w
5 Compute ranking criterion for all features, i.e. ci ← w2i
6 Find feature with minimum rank, i.e. f ← argmin c
7 Add feature to rank list, i.e. r ← (s f r)
8 Eliminate feature with lowest rank, i.e. s = (s1 . . . s f−1 s f+1 . . .)
9 end

Figure 2.12: Recursive feature elimination

respectively.�e optimisation problem [Bradley and Mangasarian, 1998]

minimise (1 − λ) ( 1
Ty
m + 1

Tz
k ) + λ 1Tw∗ with (w∗)i =

⎧⎪⎪
⎨
⎪⎪⎩

0 if wi = 0

1 otherwise

subject to −ATw + 1 γ + 1 ≤ y
BTw − 1 γ + 1 ≤ z

y ≥ 0, z ≥ 0, −v ≤ w ≤ v

allows a trade-o� between the training error and the number of non-zero entries in the weight

vector by choosing an appropriate λ ∈ [0, 1). Here, w denotes the weight vector and γ is the
bias such that any new sample x belongs to class A if xTw > γ. �e vectors y and z are the
class-speci�c slack variables, i.e. they quantify how far each pattern is away from being correctly

classi�ed. �e objective function may be linearised, and can then be solved by a successive

linearisation algorithm.�us, a classi�er with inherent feature selection is obtained.

Feature Scaling Methods for Support Vector Machines Feature scaling based methods

iteratively increase the weight of putatively relevant features and decrease the weight of putatively

irrelevant features. In case of convergence, this weight vector — not to be confused with the

weight vector of the entire classi�er — quanti�es the relevance of each feature. Most approaches

alternate between solving a support vector machine and ranking the features according to

some error criterion [Mukherjee et al., 1998, Jebara and Jaakkola, 2000,Chapelle et al.,

2002,Weston et al., 2000].
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2.6 Feature Selection

One-Norm Support Vector Machines �e one-norm support vector machine [Zhu et al.,

2004] is an application of the lasso [Tibshirani, 1996] to classi�cation. It

minimises ∑
n
i=1 [1 − yi (b +∑

q
j=1w jh j(x i))]+

subject to ∣∣w∣∣1 ≤ s

with [k]+ = max(k, 0) for a set of basis functions {hi , . . . , hq}, a weight vector w, a bias b and
a tuning parameter s. A more svm-like notation is obtained using the original features instead
of basis functions — h j(x) = x j — and a dual representation:

minimise
n
∑
i=1

[1 − yi (wTx i + b)]+ + λ∣∣w∣∣1 .

Zero-norm Based Methods All the above support vector related methods enforce sparse

solutions by adding parameters or constraints to the standard svm optimisation procedure.

�us, sparsity is merely an e�ect than a primary aim. In contrast, one may approximate the

zero-norm minimising weight vector of a separating hyperplane directly [Weston et al., 2003].

We assume the datasetD to be linearly separable, i.e.

∃w ∈ R
d
, b ∈ R with yi (wTx i + b) ≥ 0 ∀ i and w ≠ 0 , (2.7)

where the normal vector w ∈ Rd and the bias b ∈ R describe the separating hyperplane except
for a constant factor. Obviously, if w and b are solutions to the inequalities, also λw and λ b
solve them with λ ∈ R+. In general, there is no unique solution to (2.7). A solution with the

least number of features

minimises ∥w∥
0

0

subject to yi (wTx i + b) ≥ 0 ∀i
and w ≠ 0

(2.8)

with ∥w∥
0

0 = card{wi ∣wi ≠ 0}. Note, that any solution of (2.8) can be multiplied by a positive

factor and is still a solution. Weston et al. proposed to solve the above problem with a variant

of the support vector machine by

minimising ∥w∥
0

0

subject to yi (wTx i + b) ≥ 1 ∀i .
(2.9)

Indeed, as long as there exists a solution to (2.8) for which yi (wTx i + b) > 0 for all i = 1, ..., n,
solving (2.9) yields a solution to (2.8). Unfortunately, (2.8) as well as (2.9) are np-hard and
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Input : Feature vectors x i and class labels yi
Output :Weight vector w and bias b

1 Initialise z = (1, . . . , 1).

2 repeat
3 Minimise ∣w∣ such that yi (wT(x i ∗ z) + b) ≥ 1
4 Update z = z ∗w
5 until convergence

Figure 2.13: Iterative zero-norm approximating algorithm according to [Weston et al.,

2003].

cannot be solved in polynomial time.�erefore, Weston et al. proposed to approximate (2.9)

by

minimising ∑
d
j=1 ln (ε + ∣w j∣)

subject to yi (wTx i + b) ≥ 1 ∀i
(2.10)

with 0 < ε ≪ 1. If w0 and w∗ optimise (2.9) and (2.10), respectively, then

∥w∗
∥
0

0 ≤ ∥w0∥00 +O (
1

ln ε
) , (2.11)

i.e. both solutions coincide as ε → 0.�us, by minimising (2.10) an approximate solution to
(2.9) is found. However, (2.10) is not convex, may have many local minima, and is still hard to

solve. Weston et al. proposed an iterative scheme (see Figure 2.13) which �nds a local minimum

of (2.10) by solving a sequence of linear programs. �is modi�cation of the support vector

machine e�ectively reduces the feature space used for classi�cation. However, the number

of features may be further reduced by discarding any margin maximisation induced by the

constraints yi (wTx i + b) ≥ 1.�is is the basic idea of the support feature machine proposed in
the next chapter.

2.7 Conclusions

Statistical learning theory and support vector based methods are well established research �elds,

but their paradigms may fail in high-dimensional small sample size scenarios. Such datasets

are prone to the empty space phenomenon, distance concentration, hubness and incidental

separability. Further, support vector classi�cationmay produce completely unintuitive leave-one-

out cross-validation errors.�erefore, irrelevant features need to be excluded from the training
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2.7 Conclusions

data, or, if no prior information about relevance is available, feature selection methods should

be used for preprocessing. Here, multidimensional embedded methods are most promising

as feature selection and classi�cation are directly linked. Finally, there is some evidence that

zero-norm based approaches are well suited for feature selection in high-dimensional spaces,

as the phenomenon of distance concentration becomes less prominent.
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Mr Leopold Bloom ate with relish the inner
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palate a �ne tang of faintly scented urine.

«Ulysses», James Joyce

3 Support Feature Machine

�e support feature machine (sfm) — the main contribution of this work — is a novel method

for feature selection and aims to �nd the smallest subspace (the least number of features) such

that in this subspace two classes are linearly separable without error. Such a minimal feature

subset is essentially useful for the interpretation of high-dimensional data, e.g. in biological

or clinical applications, where we not only aim to classify samples but rather want to infer

novel insight on how the data is structured. In the terminology of feature selection, it is an

embedded method that combines feature selection and classi�cation within a single framework.

�e sfm implements the principle of structural risk minimisation (see Chapter 2.2) by limiting

the family of classi�cation functions to those with the fewest number of parameters — in this

case dimensions. Minimising the number of features also minimises the chance of incidental

separability (see Chapter 2.5.4). Most feature selection methods are conservative in the way

they select features, i.e. they keep all features that could ever be relevant and discard only those

features that are irrelevant for classi�cation with high probability. In contrast, the sfm is very

aggressive in discarding features.

First, we motivate and de�ne the core support feature machine for linearly separable data-

sets. We then extend the basic sfm to be applicable to non-separable classes and unbalanced

datasets and show how a repetitive sfm algorithm might be used to estimate the proportion

of informative features in highly redundant datasets. Further, the superiority of the sfm with

respect to the closely related svm-based method by Weston et al. is made plausible in the

second part of this chapter. Further, we derive bounds on the vc-dimension of combined

feature selection and classi�cation to estimate the expressive power of the sfm. Finally, an sfm

implementation requires solving a linear program.�erefore, the basic sfm notation needs to

be transformed into a solver-speci�c notation. We provide two alternative sfm formulations

that di�er in size and sparsity of the linear program.
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3 Support Feature Machine

3.1 Basic Algorithm

Minimising the number of features by minimising the zero-norm of the weight vector of the

separating hyperplane has previously been proposed [Weston et al., 2003], however, their

approach performs a mixture of feature selection and margin maximisation, which might be

con�icting objectives — a larger margin could induce a larger number of features. Taking

a di�erent approach [Klement and Martinetz, 2010b], we adapt the de�nition of linear

separability (2.8) slightly such that we

minimise ∥w∥
0

0

subject to yi (wTx i + b) ≥ 0 ∀i
and 1

n ∑
n
i=1 yi (wTx i + b) = 1 .

(3.1)

�e �rst constraint is insensitive to any margin.�e second constraint excludes the trivial solu-

tionw = 0, since otherwisewewould obtain 1n ∑
n
i=1 yib = 1 and yib ≥ 0, which cannot be ful�lled

for all i, because we have labels +1 and −1. As long as the input data is linearly separable with
yi (wTx i + b) > 0 for at least one i ∈ {1, ..., n}, the second constraint 1n ∑

n
i=1 yi (wTx i + b) = 1

can be satis�ed by scaling w and b appropriately. Hence, solving (3.1) yields a solution to the
ultimate problem (2.8). See Figure 3.1 for a 2-dimensional example that illustrates the di�erences

between support vector machine, support feature machine, and the svm-based feature selection

method by weston et al. In this scenario Weston’s method is unable to �nd the optimal

solution that involves a single feature.

Weston et al. apply an iterative framework to �nd an approximate solution to their formula-

tion of a zero-norm svm (2.9).�ey reformulate the objective function ∥w∥
0

0 as∑
d
j=1 ln (ε + ∣w j∣)

such that an approximate solution to the minimisation problem can be found by gradient de-

scent.�us, their zero-norm approximation framework can be applied in the same way to solve

(3.1), i.e. we

minimise ∑
d
j=1 ln (ε + ∣w j∣)

subject to yi (wTx i + b) ≥ 0 ∀i
and 1

n ∑
n
i=1 yi (wTx i + b) = 1

(3.2)

with a similar iterative scheme (see Figure 3.2). By successively minimising the one-norm

we aim to approximate the zero-norm minimising solution as accurately as possible. �is

implements the principle of structural risk minimisation: In the very �rst iteration the unscaled

d-dimensional input data is used for training. �is corresponds to �nding a solution in an
unrestricted hypothesis space Fd with vc-dimension hd . Here, hd = d + 1 as we are limited to
linear classi�ers with bias. If the weight vector contains zero entries a�er the �rst iteration, then

the corresponding entries of the scaling vector z are set to zero, and these features will have
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w
b

(a) Arbitrary solution

w
b

(b) Support vector machine

w
b

(c) Support feature machine

w
b

(d) Weston’s method

Figure 3.1: Solutions obtained by di�erent classi�ers.�e given dataset (white dots: class +1,

gray dots: class −1) is linearly separable in many ways — any classi�er passing

exclusively the gray region with the weight vector pointing towards the positive

class is a valid solution, e.g. the classi�er in (a).�e support vector classi�er (b)

separates both classes with maximum margin and is uniquely de�ned by the

support vectors (marked by circles) that all have the same distance to the decision

border. In contrast, the support feature machine (c) minimises the number of

involved features — in this example one feature (the x-axis) is su�cient to

linearly separate the classes. Note, the solution is not unique; the classi�er may

be shi�ed slightly without classi�cation error. For this dataset, the svm-based

feature selection method by Weston et al. (d) produces the same solution as a

standard svm, i.e. it is unable to �nd the least number of features for separation.
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3 Support Feature Machine

Input : Feature vectors x i and class labels yi
Output :Weight vector w and bias b

1 Initialise z = (1, . . . , 1)

2 repeat
3 Minimise ∣w∣ such that yi (wT(x i ∗ z) + b) ≥ 0 and 1n ∑

n
i=1 yi (wTx i + b) = 1

4 Update z = z ∗w
5 until convergence

Figure 3.2: Iterative sfm algorithm.�e algorithm aims to minimise the zero-norm of the

weight vectorw by iteratively minimising its one-norm.�e operator ∗ denotes
the component-wise multiplication.

no further e�ect on the training.�e hypothesis space is reduced to Fd′ with Fd′ ⊂ Fd and a

reduced vc-dimension hd′ .�us, the sfm derives a set of nested hypothesis spaces, reduces the
vc-dimension, and, therefore, minimises the structural risk.

Connection to Sparse Coding �e support featuremachine is a remote relative of the family

of sparse coding concepts.�e sfm aims to minimise the number of features to distinguish two
classes, i.e. it seeks a separating hyperplane with the sparsest weight vector. In sparse coding, the

task is to represent a signal by a linear combination of basis functions with as few components

as possible, i.e. we seek the sparsest representation of a signal.

Given a signal x ∈ Rd and a dictionary C ∈ Rd×l , we aim to �nd the sparsest coe�cient vector

w to represent x as a linear combination of basis functions from C by

minimising ∣∣w∣∣0 subject to x = Cw .

In general, dictionaries are designed to be overcomplete, i.e. the number of columns exceeds

the number of rows. Minimising the zero-norm requires enumerating all dictionary subsets

which is computationally infeasible. Again, a one-norm based approximation is well suited to

approximate the otherwise intractable optimisation problem. An equivalence condition has

been derived in [Donoho and Elad, 2003] to assess whether the optimal zero-norm solution

is found by minimising the one-norm of the coe�cient vector.

However, the results do not apply to the sfm as both methods are orthogonal in the way they

de�ne the term sparsity.�e sfm de�nes sparsity with respect to features, sparse coding de�nes
sparsity with respect to the data representation by basis functions or dictionary entries.
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3.2 Extensions

Naming Conflicts Assigning an intuitive, self-explanatory and yet unoccupied name to a

novel method is nothing trivial — and so was the choice support feature machine. First, the
name needs to re�ect its essential purpose which is feature selection. Second, the method is

obviously inspired by the theory of support vector machines but di�ers in some essential aspects.
So, putting a pre�x in front of svm might be misleading — in particular the sfm does not

maximise a margin in any sense. Finally, the name should be unique and it should not have

been used before for any other method. Unfortunately, we do violate this third requirement.

Coincidentally, at least three research groups — including our group — have published at the

same time a method called support feature machine. We shortly summarise these methods in

chronological order and explain why they claimed the term support feature machine.

�e sfm was invented for the �rst time in [Chaovalitwongse et al., 2007] as a method to

study multidimensional time series classi�cation. In particular, the authors proposed a method

for detecting abnormal brain activity such as epilepsy based on electroencephalography (eeg)
data.�ey aim to incorporate both temporal and spatial data into a single optimisation model.

�e derived optimisation problem combines information from neighbouring eeg electrodes

to build a stronger classi�er. Here, the term support feature refers to the optimal group of
electrodes to distinguish between epilepsy and normal brain activity.

�e second sfm-variant [Maszczyk andDuch, 2010a,Maszczyk andDuch, 2010b] extracts

new features from the original data in a canonical way and combines them in a new feature

space. �ey use features derived from a kernel function, i.e. zi = K(x , x i), or from linear
projections on the connecting line between cluster centres and even from arbitrary projections

of the input data.�ese features altogether are supposed to provide better discriminative power

than any of the feature sets alone. Here, the term support feature describes the process of feature
generation and combination to improve classi�cation performance.

In contrast, our de�nition of an sfm focuses on feature selection in the sense of dimension

reduction.�e support features constitute the smallest set of features that allows a separation of
two classes without error.

3.2 Extensions

Extension to Soft Separability In general, if n ≤ d + 1, the data is separable and the sfm
has a solution. In the following, we introduce slack-variables similar as for so�-margin svms to

allow for misclassi�cations during training.�is is done for two reasons: First, if the input data

is not separable in the intrinsic feature space, i.e. if the classes overlap, irrelevant features will be

added to achieve separation of the training data.�is leads to an overestimation of the number

of truly relevant features and might diminish generalisation performance. Second, even if the
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3 Support Feature Machine

classes are separable in the intrinsic feature space, the true separating hyperplane might not

be identi�ed correctly due to outliers. To address these problems, a mechanism is needed that

allows for misclassi�cations and thereby provides a better estimate of the true dimensionality.

Note that we do not address the problem of intrinsically non-linear decision borders.

We introduce slack variables ξi for each data point and a so�ness parameter C [Klement
and Martinetz, 2010a] in the same way this is done for so�-margin svms, i.e. we

minimise ∥w∥
0

0 + C∥ξ∥00

subject to

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

yi (wTx i + b) ≥ −ξi ∀i
1

n ∑
n
i=1 yi (wTx i + b) = ±1

ξi ≥ 0 .

(3.3)

As classi�cation errors are allowed, yi (wTx i + b)may become negative and the pathological
case where 1n ∑

n
i=1 yi (wTx i + b) is smaller than zero may occur.�erefore, the optimiser needs

to ful�l the latter constraint with +1 or −1. In practise, one needs to optimise for both variants

and �nally choose the solution with the lower objective function. To solve (3.3), we use the same

iterative approximation scheme as described above. An important property of our approach is

that the objective function explicitly trades o� the number of features ∥w∥00 and the number of

misclassi�ed training samples ∥ξ∥00.

Extension to Unbalanced Datasets A frequent issue of so� classi�ers is their sensitivity

to unbalanced datasets. If one class contains more samples than the other, many classi�ers

tend to behave like a majority classi�er and ignore the smaller class. Several solutions to this

problem have been proposed such as re-balancing the data arti�cially by oversampling and

undersampling or synthetic sampling, adjusting the output threshold of the classi�er according

to the data distribution, applying one-class classi�ers for one or both classes, and cost-sensitive

methods [Provost, 2000, Japkowicz, 2000,Chawla et al., 2004,He and Garcia, 2009].

Our approach is to adjust the so�ness of the sfm according to the class ratio. We start with

an example where the above so� sfm does not provide a valid solution due to class unbalance.

Assume a dataset of size n where n+ samples belong to one class and n− samples to the other
class. In any valid solution the vector w has at least one non-zero entry. �us, the objective
function ∥w∥

0

0 + C∥ξ∥00 is at least 1 if the data is separable within one dimension, and larger if
the slack variables take non-vanishing values. However, if the class sizes di�er, all constraints

are ful�lled by setting

w = 0, b = n
n+ − n−

and ξi = ∣
n

n+ − n−
∣

46



3.2 Extensions

because

yi (wTx i + b) = yi
n

n+ − n−
≥ − ∣

n
n+ − n−

∣ = −ξi and

1

n

n
∑
i=1

yi (wTx i + b) =
1

n
(n+ n

n+ − n−
− n− n

n+ − n−
) = 1 .

For C <
∣n+−n−∣

n2 , the objective function is even smaller than one for all n+ and n− with n =

n+ + n−:
∥w∥

0

0 + C∥ξ∥00 <
∣n+ − n−∣

n2
n = ∣n+ − n−∣

n
≤ 1 .

In this case, the optimal solution would have a smaller objective value than any solution with a

non-zero weight vector may have.�is can be avoided by introducing class-speci�c so�ness

parameters and by adjusting the equality constraint. For convenience, we de�ne two sets of

indices — one for each class — i.e. I+ = {i ∣yi = +1} and I− = {i ∣yi = −1}.�en, we

minimise ∥w∥
0

0 + C+∥ξ+∥00 + C−∥ξ−∥00

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi (wTx i + b) ≥ −ξ+i for all i ∈ I+

yi (wTx i + b) ≥ −ξ−i for all i ∈ I−

1

n+ ∑i∈I+
(wTx i + b) − 1

n− ∑i∈I−
(wTx i + b) = ±1

ξ+i , ξ−i ≥ 0 .

(3.4)

In this formulation, individual misclassi�cation costs can be assigned to each class. In practice,

choosing C+ and C− such that C+n+ = C−n− enforces the proportion of misclassi�ed samples
to be equal for both classes. In this setting w = 0 is avoided, since then

±1 =
1

n+ ∑i∈I+
b − 1

n− ∑i∈I−
b = b − b = 0 .

�us, it is ensured that the solution is non-trivial.

Behaviour in the Limit �e extension proposed above reduces the impact of single outliers

on the separating hyperplane by trading o� the number of obtained features and the number

of misclassi�ed samples. To complete the so�ness extension, we consider the behaviour of

the so� sfm in the limit for C± →∞ and C± → 0. In the �rst case, the dominant slack term
C+∥ξ+∥00 + C−∥ξ−∥00 forces the slack variables to zero such that we obtain the hard sfm.�e
opposite case, C+ → 0, allows arbitrary choices of the slack variables ξ+i and ξ−i such that the
objective function becomes independent of the misclassi�cation rate. �us, the inequality
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constraints are ful�lled for all w and b. In the limit, the optimisation problem (3.4) simpli�es to

minimise ∥w∥
0

0

subject to 1

n+ ∑i∈I+
(wTx i + b) − 1

n− ∑i∈I−
(wTx i + b) = 1 .

Assume the sfm identi�es one and only one feature to be relevant, i.e. the objective value is 1

and the weight vector di�ers from zero in exactly one entry. Let j be the index of this non-zero
entry.�en, the equality constraint is solved with respect to w j by

1

n+ ∑i∈I+
(wTx i + b) − 1

n− ∑i∈I−
(wTx i + b) = 1

⇔
1

n+ ∑i∈I+
(w j xi j + b) − 1

n− ∑i∈I−
(w j xi j + b) = 1

⇔ w j
⎛
⎜
⎝

∑
i∈I+

xi j

n+
+ b −

∑
i∈I−

xi j

n−
− b

⎞
⎟
⎠

= 1

⇔ w j =
1

µ+j − µ−j

where µ+j and µ−j are the class speci�c means. As the sfm approximates the zero-norm by min-
imising the one-norm, it will select the feature which minimises ∣w j∣ and, therefore, maximises

the distance of the class speci�c means ∣µ+j − µ−j ∣.�is is closely related to correlation-based
feature selection methods (see Chapter 2.6.3). �us, we expect the so� sfm to favour those

features that maximise the correlation between feature value and class label, or maximise the

di�erence between the feature values of the two classes. In total, the so� sfm is a trade-o�

between a hard sfm and correlation-based feature ranking.

Repetitive Feature Selection �e sfm described so far extracts a single set of relevant

features from a high-dimensional dataset. Speci�cally, the sfm �nds the smallest set of features
in which the two classes are linearly separable. As we will show in Chapter 4.2, this approach

identi�es truly relevant features with high reliability in many high-dimensional small sample

size scenarios, particularly if the data contains few relevant and many irrelevant dimensions.

However, high-dimensional real-world datasets o�en contain several informative feature subsets
that all permit linear separation. In such scenarios, one might not only be interested to �nd

the most informative features, but also to identify all informative features. Although the exact
number of features that carry information alone or in combination with others can o�en not

be determined in such datasets — the sample size is usually insu�cient to capture all sources

of variance and to accurately describe the decision border — the total amount of informative
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features might be determined with some simpli�cations and heuristics. In this section, we

propose a way how the sfm can be used to identify both the most informative and the least

informative features and to estimate the fraction of informative and uninformative features.

�e basic idea of the repetitive sfm approach (see Algorithm 3.3) is to train an sfm on

the complete dataset, remove all obtained features from the dataset, retrain on the reduced

dataset, discard the obtained features again, retrain again, and so on, until the dataset is no

longer separable within the remaining features. If the repetitive sfm (rsfm) correctly identi�es

the smallest informative feature set in each run, the size of the returned feature subsets will

monotonously increase as more and more features are discarded. However, in practise this

might not always be the case because the optimisation might terminate in a local optimum due

to the dataset con�guration or because of numerical issues of the technical implementation of

the sfm. To correct for such inaccuracies, we sort the obtained feature subsets according to their

size, starting with the smallest feature subset.�is way we obtain a sequence of monotonously

increasing feature subsets that, according to our de�nition, represents a sequence of feature

subsets which are less and less relevant for classi�cation.�e number of informative features

can then be estimated depending on (i) the size of the feature subset, (ii) the generalisation error

of the rsfm, or (iii) the generalisation error of an svm trained on the features that remained in

the dataset a�er all features identi�ed by the sfm in a particular repetition had been discarded.

In Chapters 4.4 and 6, we show that the rsfm �nds the relevant features (as identi�ed with

Input : Feature vectors x i and class labels yi
Output : For every iteration t, a weight vector w t , a bias bt , a set of active features Ft

and a set of relevant featuresRt

1 Initialise the set of active features F0 ← {1, . . . , d}
2 Set t ← 0
3 repeat
4 Train a support feature machine using the feature set Ft
5 if a solution was found then
6 Store the results, i.e. w t and bt
7 Store the set of relevant features, i.e. Rt = {i ∣wt,i ≠ 0}

8 Update the set of relevant features, i.e. Ft+1 = Ft ∖Rt
9 Reduce all feature vectors to Ft+1
10 end
11 until the data is no longer separable within the remaining features

Figure 3.3: Repetitive support feature machine.
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standard univariate approaches) of real-world microarray and neuroimaging datasets with high

accuracy and we discuss how a slightly altered version of the rsfmmight be used to derive an

estimate of the total number of informative features within a given dataset.

3.3 Mathematical Considerations

�e support feature machine enforces linear separation with an additional constraint on the

mean decision value to avoid the trivial solution w = 0. However, it is not obvious why this
novel method should be better suited to identify the minimum number of relevant features

than, e.g. the closely related method by [Weston et al., 2003]. Both methods obtain a local

minimum of the target problem (2.8). As our simulations show (see Chapter 4.2), the sfm

�nds the relevant features basically with the �rst step. Weston’s approach can hardly catch up

with the following iterations. It seems that the �rst step is important and decides, whether we

will converge into a good minimum.�e �rst step is equivalent to minimising the one-norm

instead of the zero-norm. We derive necessary conditions for �nding a zero-norm solution

by minimising the one-norm (see also [Klement and Martinetz, 2011]) — both for the sfm

and the related svm-based method by Weston et al. Based on this condition, we explain why

the sfm approach �nds a zero-norm minimising solution more frequently by comparing their

behaviour in a simple illustrative scenario.

First, we introduce some simpli�cations and notations to improve the readability of the

admittedly complex plausibility considerations. In the following, we assume the datasetD to be

linearly separable without bias, i.e.

∃w ∈ R
d
with yixTi w ≥ 0 ∀ i and w ≠ 0 ,

where the normal vectorw ∈ Rd describes the separating hyperplane except for a constant factor.

For abbreviation, we use z i = yix i and Z = (z1, . . . , zn) and z = ∑n
i=1 z i .�us,Weston et al. aim

to

minimise ∣∣w∣∣0 subject to ZTw ≥ 1 , (3.5)

while in the sfm setting we aim to

minimise ∣∣w∣∣0 subject to ZTw ≥ 0 and zTw = 1 . (3.6)

Both, (3.5) and (3.6), solve (2.8), but which setting does it more e�ectively within the �rst
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iteration? For both approaches, we replace the zero-norm by the one-norm such that we

minimise ∣∣w∣∣1 subject to ZTw ≥ 1 , (3.7)

for Weston’s approach and we

minimise ∣∣w∣∣1 subject to ZTw ≥ 0 and zTw = 1 (3.8)

in case of the sfm. First, we focus on (3.5). When do we �nd a solution to (3.5) by solving (3.7)?

We denote the solution space of (3.5) by Ω and de�ne the following two weight vectors:

w0 = argmin
w∈Ω

∣∣w∣∣1 subject to ZTw ≥ 1 (3.9)

w1 = argmin
w∈Rd

∣∣w∣∣1 subject to ZTw ≥ 1 (3.10)

Here, ∣∣w0∣∣0 = k, i.e. at least k features are necessary to separate the input data. In the following,
we assume w0 and w1 to be unique. Non-uniqueness will occur only in degenerate cases, and
since Z is drawn from a probability distribution, the probability of these cases is of measure
zero.�e probabilistic nature of the input data also ensures that all quadratic submatrices of

Z have full rank. Among all solutions of (3.5), w0 is the solution with lowest one-norm. Note
that if w1 is in Ω then w1 = w0. Since in practise, (3.5) cannot be solved directly, Ω is in general
unknown as well as w0. However, both are well-de�ned. In contrast, w1 is the solution on the
entire Rd and can e�ciently be found by linear programming. If w0 = w1 for a speci�c dataset,
then the optimal feature set can be obtained by optimising for the one-norm. Without loss of

generality, for the following considerations we assume:

1. All entries of the weight vector are positive, i.e. w0,i ≥ 0. Otherwise, we invert the
corresponding input dimension.

2. �e training data is ordered such that Z = (Ẑ Ž) with ẐTw0 = 1 and Ž
T
w0 > 1. So,

only the �rst columns of the design matrix Z correspond to active constraints, i.e. the
constraints are ful�lled with equality. Let k∗ be the number of active constraints.

3. �e dimensions ofD are sorted, such that the �rst k dimensions of w0 are non-zero:

w0,i
⎧⎪⎪
⎨
⎪⎪⎩

> 0 i = 1, . . . , k
= 0 otherwise

such that w0 =
⎛

⎝

ŵ0
0

⎞

⎠

.
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In total, the design matrix Z is organised as

Z =
⎛

⎝

Ẑ1
Ẑ2

Ž
⎞

⎠
with Ẑ1 ∈ Rk×k∗

, Ẑ2 ∈ Rd−k×k∗
, Ž ∈ R

d×n−k∗

where the dimensions n and d are known in advance. �e following lemma holds for the
relation between k and k∗:

Lemma 3.3.1 If w0 contains k non-zero entries, exactly k constraints in ZTw0 ≥ 1 are active,
i.e. k = k∗.

Proof In linear programming theory, a basic feasible solution is de�ned to be a solution located
in one of the corners of the solution space de�ned by the constraints.�e fundamental theorem
of linear programming (to be found in many textbooks on linear programming, e.g. in [Dantzig
and Thapa, 2003, Vanderbei, 2008]) states that if an optimal solution exists, then also a

basic optimal solution exists. In other words, optimal solutions are located in the corners of
the solution space, which is exploited by the simplex method for solving linear programming
problems.

As stated before, (3.5) may have multiple solutions. Each solution may involve a di�erent set

of features. Let Λi be the linear subspace spanned by the k features of a particular solution to
(3.5).�en, Ω ⊂ ⋃i Λi , and

w0 = argmin
w∈Ω

∣∣w∣∣1 subject to ZTw ≥ 1

= argmin
w∈⋃i Λ i

∣∣w∣∣1 subject to ZTw ≥ 1

is valid.�us,w0 can be obtained by a sequence of linear programs. All of them are feasible and
non-degenerate.�erefore, an optimal solution exists, and — according to the fundamental

theorem of linear programming — a basic optimal solution can be found. By de�nition, w0
contains k non-zeroentries, so ẐTw0 = ẐT1 ŵ0 = 1, i.e. the initial d-dimensional problem is
equivalent to a k-dimensional one. In a basic solution, k constraints are active and, hence,
k∗ = k follows. ◻

We proceed with the main theorem, that provides a necessary condition for �nding w0 with
a linear program, i.e. by solving (3.10).

�eorem 3.3.2 For w1 = w0, it is necessary that ∥Ẑ2Ẑ
T

1 (Ẑ1Ẑ
T

1 )
−1
1∥
∞
< 1.

52
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Proof If w0 = w1, for each in�nitesimal disparity vector ∆ with Ẑ
T
(w0 + ∆) = 1 and Ž

T
(w0 +

∆) > 1 we have

∣∣w0 + ∆∣∣1 > ∣∣w0∣∣1

⇔
d
∑
i=1

∣w0,i + ∆i ∣ >
d
∑
i=1

∣w0,i ∣ =
d
∑
i=1

w0,i

⇔
k
∑
i=1

∣w0,i + ∆i ∣ +
d
∑
i=k+1

∣w0,i
°
=0

+∆i ∣ >
k
∑
i=1

w0,i

⇔
k
∑
i=1

w0,i + ∆i +
d
∑
i=k+1

∣∆i ∣ >
k
∑
i=1

w0,i

⇔
k
∑
i=1
∆i +

d
∑
i=k+1

∣∆i ∣ > 0 . (3.11)

Next, we make use of the particular structure of the matrix Ẑ and split the disparity vector into
an upper and a lower part, i.e. ∆T = (∆T1 ∆T2 ) with ∆1 ∈ Rk ,∆2 ∈ Rd−k . A closed formulation

for ∆1 is derived by rearrangement and using Ẑ
T∆ = 0:

ẐT∆ = ẐT1 ∆1 + ẐT2∆2 = 0

⇔ ẐT1 ∆1 = −ẐT2∆2
⇔ Ẑ1Ẑ

T

1 ∆1 = −Ẑ1Ẑ
T

2∆2

⇔ ∆1 = − (Ẑ1Ẑ
T

1 )
−1
Ẑ1Ẑ

T

2∆2 (3.12)

⇒ 1T∆1 = − 1T (Ẑ1Ẑ
T

1 )
−1
Ẑ1Ẑ

T

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶=αT

∆2 .

Finally, (3.11) can be expressed using α and ∆2:

k
∑
i=1
∆i +

d
∑
i=k+1

∣∆i ∣ = −αT∆2 + ∣∣∆2∣∣1 =
d
∑
i=k+1

−αi−k∆i + ∣∆i ∣ > 0 . (3.13)

Equation (3.13) has to hold for any in�nitesimal ∆2, which is the case if and only if ∣αi−k ∣ < 1

holds for all k + 1 ≤ i ≤ d, i.e. if and only if

∣∣α∣∣∞ = ∥Ẑ2Ẑ
T

1 (Ẑ1Ẑ
T

1 )
−1
1∥
∞
< 1. (3.14)

(Note: ∆2 = 0 is excluded according to (3.12), since then ∆ = 0). ◻
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So far, all considerations apply for the optimisation problem (3.5). However, with the following

minor changes a similar condition can be derived for the sfm-problem (3.6):

1. �e design matrix Z is extended by an additional column, the vector z.

2. �e weight vectors w0 and w1 are de�ned analogously:

w0 = argmin
w∈Ω

∣∣w∣∣1 subject to (z1, . . . , zn)Tw ≥ 0 and zTw = 1

w1 = argmin
w∈Rd

∣∣w∣∣1 subject to (z1, . . . , zn)Tw ≥ 0 and zTw = 1

3. If w0 contains k non-zero entries, exactly k constraints are active. �e last of these
constraints is the equality constraint zTw = 1.

4. �e design matrix Z and the weight vector w0 are ordered in the same way as before,
i.e. the �rst k entries ofw0 are non-zero and the �rst k columns of Z correspond to active
constraints.�e kth column of Z contains z.

�eorem 3.3.2 and its proof now apply exactly in the same way also to the sfm. Both ap-

proaches are very closely connected, but the slight di�erence leads to a signi�cantly lower

number of features for the sfm. It is not possible to give a rigorous mathematical proof for

the superior performance of the sfm (3.6) compared to Weston’s approach (3.5) in general.

However, within a simpli�ed scenario and with approximate arguments we can use the result of

the above theorem tomake the superior performance plausible.�erefore, we consider the most

simple scenario. Assume the elements of each vector z i to be drawn from a normal distribution
N (µ, σ2) with the expected value

µ =
⎧⎪⎪
⎨
⎪⎪⎩

c i = 1, . . . , k, c ≠ 0
0 otherwise .

�us, only the �rst k features are relevant and all others are irrelevant. For Weston’s approach

(3.5) we have ẐT1 ŵ0 = 1 and obtain

Ẑ1Ẑ
T

1 ŵ0 = Ẑ11 ≈ k · c · 1 ⇔ ŵ0 ≈ k · c · (Ẑ1Ẑ
T

1 )
−1
1

such that

∣∣α∣∣∞ = ∥Ẑ2Ẑ
T

1 (Ẑ1Ẑ
T

1 )
−1
1∥
∞
≈ ∥

Ẑ2Ẑ
T

1 ŵ0
k · c

∥
∞
= ∥

Ẑ21
k · c

∥
∞
= ∥

εk
c
∥
∞
.
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�e entries of the vector εk are distributed asN (0, σ 2/k). In contrast, for the sfm (3.6), where

the last column of Ẑ is the mean of all z i , we have Ẑ
T

1 ŵ0 = (
0
1
) and obtain

Ẑ1Ẑ
T

1 ŵ0 = Ẑ1 (
0
1
) ≈ c · 1 ⇔ ŵ0 ≈ c · (Ẑ1Ẑ

T

1 )
−1
1

and

∣∣α∣∣∞ ≈ ∥
Ẑ2Ẑ

T

1 ŵ0
c

∥
∞
= ∥

Ẑ2
c

(
0
1
)∥

∞
= ∥

εn
c
∥
∞
.

Here, the entries of εn are distributed asN (0, σ 2/n). Obviously, for k ≪ n, the probability that
all elements of α stay below 1 and, hence, that the condition in�eorem 3.3.2 is ful�lled, is much
larger for the sfm. As expected, the larger c, the easier it is for both approaches to be successful.
Note, that we assumed that the elements of Ẑ1 and Ẑ2 are independent stochastic variables. Of
course, since Ẑ1 and Ẑ2 are selected by the respective algorithm according to certain criteria,
this is not necessarily the case.

To summarise, the above considerations are no proof for a superior performance of the sfm in

general, however, it provides some insight why we observe it to identify relevant features more

e�ectively than the svm-based feature selection method by Weston et al. in many scenarios.

3.4 On the VC-Dimension of the Support Feature Machine

�e vc-dimension is a measure for the expressive power of a family of classi�cation functionsF .

Feature selection methods aim to reduce the vc-dimension by restricting the family F to some

subset. In general, the vc-dimension of a particular method cannot be given in closed form,

however, with some assumptions, we may derive upper bounds to quantify the reduction of the

expressive power. Additionally, as numerous estimates on the generalisation error depend on the

vc-dimension, we may also derive limits on the probability to classify a novel sample correctly.

In the following, we assumeF to be the family of linear classi�cation functions passing through

the origin. Further, assume the inducer I to select for any given dataset exactly that function

that uses the least number of features while classifying all training samples correctly.

Feature selection methods can implement the concept of structural risk minimisation by

de�ning a nested set of classi�cation functions to reduce the initial set of d dimensions. A
combined feature selection and classi�cation method derives a classi�er that involves only a

subset of features, e.g. of size d∗. Naïvely, one would assume this classi�er to have the same
vc-dimension as a d∗-dimensional classi�er without feature selection. However, this is not the
case as the inducer chooses a speci�c subset from all d∗-dimensional feature subsets. �us,
the expressive power of the combined feature selection and classi�cation procedure is always
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larger than that of the core classi�er.�us, any embedded feature selection method may indeed

reduce the dimensionality signi�cantly, however, its vc-dimension is still larger as it would be

if the discarded features would not have been present in the input data at all. Consequently,

one should avoid to include input features that are known to have no relevance due to prior

knowledge whenever possible.

For one-dimensional feature subsets, the vc-dimension of combined feature selection and

classi�cation can be derived explicitly. Assume the training samples to be separable within a

single out of d dimensions. In this case, the family of classi�cation functions F consists of 2d
distinct functions, each corresponding to a one-dimensional classi�er either pointing towards

positive or negative values.�us, the growth function is GF(d) = 2d.�e vc-dimension h is
de�ned to be the largest sample size such that a con�guration exists for which F shatters the

dataset, i.e. allows to classify all 2h possible labellings correctly.�us, in case of dimensionality

reduction to a single dimension, the vc-dimension is

2d = 2
h
⇒ h = 1 + ⌊log2 d⌋.

�us, the freedom to choose a one-dimensional classi�er out of d di�erent ones comes with an
increase of the vc-dimension by ⌊log2 d⌋.

But how does a d-dimensional dataset with n = h data points look like, if it is separable
within a single dimension, no matter how we assign the labels? For simplicity, we assume d = 2k ,

and we restrict all feature values to be either +1 or −1.�us, we need to choose

n = h = 1 + ⌊log2 d⌋ = 1 + ⌊log2 2
k
⌋ = 1 + k

samples from {−1,+1}2
k
such that for all 2n = 21+k di�erent labellings a single dimension exists

in which the data is separable. A suitable choice would be:

X =

⎛
⎜
⎜
⎜
⎝

xT1
⋮

xTn

⎞
⎟
⎟
⎟
⎠

with xi , j =
⎧⎪⎪
⎨
⎪⎪⎩

+1 if the jth digit in the binary representation of i is 0
−1 otherwise.

In Figure 3.4, this data scenario is shown for d = 2 (k = 1, n = h = 2) in connection with all label
combinations and the obtained classi�cation functions for d = 2. Assume an arbitrary label vec-

tor y ∈ {−1,+1}d .�en a dimension j exists with either (x1, j . . . xn, j) = y or (x1, j . . . xn, j) = −y.
�us, a classi�cation function taken from F exists that separates the data in dimension i, i.e. F
shatters the above dataset.

In general, the input data is not separable in just one dimension, but in 1 ≤ d∗ ≤ d dimen-
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+1

−1

+1

+1

−1

+1

−1

−1

Figure 3.4: Data con�guration that is shattered by the family of linear classi�cation func-

tions without bias involving only one feature. Data points from class +1 are

shown as black dots ( ), while patterns from class −1 are drawn as white dots

( ). For any labelling of the input data (x1 = (
1

1
) and x2 = (

1

−1)) a 1-dimensional
classi�er exists that discriminates all patterns correctly. For each labelling, the

corresponding classi�er is visualised by marking the region where it classi�es

data points to belong to class +1 ( ).

sions.�us, an optimal inducer — one that indeed �nds a d∗-dimensional subspace given the
d-dimensional input data — has to choose a decision function from a total of ( d

d∗) possible

families of classi�cation functions. Each family contains the decision functions restricted to

one particular d∗-dimensional subspace. Given two arbitrary families of classi�cation functions
F1 and F2, the following relation holds for their growth functions:

GF1∪F2(n) ≤ GF1(n) +GF2(n) .

�us, the growth function G( d
d∗)

(n) of an inducer that combines feature selection and classi�-
cation in d∗ out of d dimensions is upper bounded by

G( d
d∗)

(n) ≤ (
d
d∗

)Gd∗(n)

where Gd∗(n) denotes the growth function of a classi�er without feature selection involving d∗

dimensions.�e growth function of a linear classi�er without bias is known to be

Gd(n) =
⎧⎪⎪
⎨
⎪⎪⎩

2n if n < d
2∑

d−1
k=0 (

n−1
k ) otherwise

⎫⎪⎪
⎬
⎪⎪⎭

,

a fact that has independently been proven by di�erent authors [Sauer, 1972,Wendel, 1962,

57



3 Support Feature Machine

G3(n)

G(10
3
)(n)

2n

Sample size n
1 h 10 h∗ 20

100

101

102

103

104

105

106

107

Sample size n

G2(n)

G(20
2
)(n)

2n

Sample size n
1 h 10 h∗ 20

100

101

102

103

104

105

106

Sample size n

G3(n)

G(50
3
)(n)

2n

Sample size n
1 h 10 20h∗ 40

101

104

107

1010

Sample size n

G4(n)

G(100
4
)(n)

2n

Sample size n
1 h 10 20 h∗40 60

101

105

109

1013

1017

Sample size n

Figure 3.5: Upper bounds of the growth function and the vc-dimension in combined

feature selection and classi�cation. Shown are the growth function Gd∗ of

a d∗-dimensional linear classi�er, the upper bound on the growth function
G( d

d∗) for combined feature selection and classi�cation when using d
∗ out of d

dimensions, and the respective vc-dimensions h and h∗.�e upper bound on
the growth function is very rough, so h∗—derived in this way —may be much
larger than the true vc-dimension and even larger than d (top le�).
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Cover, 1965,MacKay, 2002]. With n ≥ d, the vc-dimension h is upper bounded by h∗ with

2
h∗
= (

d
d∗

) 2
d∗−1
∑
k=0

(
h∗− 1
k

) .

Solutions with respect to h∗ can easily be derived numerically. In Figure 3.5, the characteristics
of 2n, Gd∗(n) and (

d
d∗)Gd∗(n) are shown for selected scenarios. Being a very conservative

estimate, in some cases h∗ may become even larger than hd — the vc-dimension of a classi�er
involving all features.

3.5 Implementation using Linear Programming Solvers

So far, the theoretical aspects of the sfm and related feature selection and classi�cation methods

have been discussed in detail. Next, we show, how these mathematical formulations are trans-

formed to be solved by standard optimisation frameworks. Given a particular optimisation

problem, it is in general impossible to say beforehand which of the numerous commercially or

freely available solvers will perform best.�erefore, we chose four optimisation packages to

empirically analyse their performance in solving the sfm. Of course, this list is only a small

excerpt of the confusingly vast world of linear programming toolboxes, however, they cover the

main concepts and algorithms including the simplex algorithm, interior-point methods and

presolvers.

We applied two proprietary optimisation packages (cplex and mosek), one solver included

in the numerical computing environment matlab, and, �nally, the open-source package glpk.

First, we transform the sfm formulation into a standard linear program to be solved using any

of the above packages and derive two alternative formulations that di�er in size and sparsity

of the constraint matrices. Depending on the problem size — the dimension and the sample

size — either of the alternatives may be better suited.�e aforementioned linear programming

solvers (see Figure 3.6) di�er slightly in the way the linear program has to be de�ned — either

the equality and inequality constraints are handled separately or they are combined. All solvers

provide a matlab interface and allow for comprehensive parameter tuning.

Transformation �e iterative sfm algorithm (3.2) requires to

minimise ∣w∣1

subject to yi (wTx i + b) ≥ 0 for all i
and 1

n ∑
n
i=1 yi (wTx i + b) = 1

(3.15)
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3 Support Feature Machine

Toolbox Notation Remarks

cplex �e function cplexlp

minimises f Tx
subject to Ax ≤ b

Aeqx = beq

l ≤ x ≤ u

with the objective function f , the
equality constraints de�ned by A and
b, the inequality constraints de�ned
by Aeq and beq and the variable
bounds l and u.

General purpose optimisation

package; distributed as ibm ilog

cplex Optimization Studio 12.3;

provided free of charge for aca-

demic non-commercial use.

mosek �e functionmsklpopt

minimises f Tx
subject to l c ≤ Ax ≤ uc

l x ≤ x ≤ ux

with the constraint bounds l c and uc

and the variable bounds l x and ux .

General purpose toolbox; dis-

tributed under commercial li-

cence by mosek Aps; academic li-

cences are available free of charge;

mainly based on the work of An-

dersen, e.g. [Andersen and An-

dersen, 2000].

matlab �e function linprog

minimises f Tx
subject to Ax ≤ b

Aeqx = beq

l ≤ x ≤ u .

Included in the numerical com-

puting environment matlab;

developed by MathWorks Inc.;

based on the predictor-corrector

algorithm [Mehrotra, 1992].

glpk �e function glpsol

minimises f Tx
subject to l c ≤ Ax ≤ uc

l x ≤ x ≤ ux .

Freely available open-source

package for linear programming

and mixed integer programming.

Figure 3.6: Notations of the evaluated linear programming toolboxes.
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3.5 Implementation using Linear Programming Solvers

multiple times. In order to be solved with standard linear programming frameworks, this

non-linear optimisation problem needs to be transformed into a linear one.�e basic idea is to

split each entry of the weight vector into a positive and a negative component where only one

may be active, i.e. wi = w+
i −w−

i with w+
i ,w−

i ≥ 0 and w+
i ·w−

i = 0. As either w+
i or w−

i or both

are 0, ∣wi ∣ = w+
i +w−

i holds.�us, we

minimise
d
∑
i=1

w+
i +w−

i

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi (
d
∑
j=1

(w+
j −w−

j ) xi j + b) ≥ 0 for all i

1

n

n
∑
i=1

yi (
d
∑
j=1

(w+
j −w−

j ) xi j + b) = 1

w+
i ,w−

i ≥ 0 for all i .

(3.16)

Note, the constraintw+
i ·w−

i = 0 is not required: Assume the optimal solution is found and both

variables take positive values.�en, one could reduce each of them by min(w+
i ,w−

i ) without

a�ecting wi , i.e. the overall weight vector stays the same. However, the objective function is

reduced by 2 ·min(w+
i ,w−

i ), which is a contradiction to the initial assumption of w+
i and w−

i
being optimal. In case of matlab’s linprog, the input matrices and vectors for the above linear

program take the following values:

f = ( 1T 1T 0 )
T

∈ R
2d+1

(objective function)

x = ( w+T w−T b ) (target variable)

A =

⎛
⎜
⎜
⎜
⎝

−y1xT1 y1xT1 −y1
⋮ ⋮ ⋮

−ynxTn ynxTn −yn

⎞
⎟
⎟
⎟
⎠

∈ R
n×2d+1

(inequality constraints)

b = 0 ∈ Rn

Aeq = (
1

n

n
∑
i=1

yixTi − 1n

n
∑
i=1

yixTi
1

n

n
∑
i=1

yi ) ∈ R
1×2d+1

(equality constraint)

beq = 1

l = ( 0T 0T −∞ ) (lower bounds of the variables)

u = ( ∞⋯∞ ∞⋯∞ ∞ ) (upper bounds of the variables)
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3 Support Feature Machine

Here, two slightly overlapping variable naming schemes are mixed to avoid uncommon nota-

tions.�us, x, the variable to be optimised, is not to be confused with the input data points
x1, . . . , xn and the bias b is to be distinguished from the equality constraint vector b. Addition-
ally, we use∞ and −∞ to indicate that the variables have no upper or lower bound, respectively.

�e above formulation is memory ine�cient as it requires the inequality constraint matrix to

be stored twice — once with a positive and once with a negative sign.�e second minor issue is

related to the number of non-zero entries in the constraint matrices. In general, linear program-

ming solvers are more e�cient on sparse matrices. An alternative formulation involving the

training data only once uses the substitution si = w+
i +w−

i .�us, we get

w+
i = si −w−

i ⇒ wi = w+
i −w−

i = si − 2w−
i ⇒

1

2
(si −wi) = w−

i ≥ 0

and, vice versa,

w−
i = si −w+

i ⇒ wi = w+
i −w−

i = 2w
+
i − si ⇒

1

2
(si +wi) = w+

i ≥ 0 .

�e transformed optimisation problem

minimise
d
∑
i=1

si

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi (wTx i + b) ≥ 0 for all i
1

n

n
∑
i=1

yi (wTx i + b) = 1

si +wi ≥ 0 for all i

si −wi ≥ 0 for all i

has the same optimum but is memory e�cient and much sparser. �e input matrices and

vectors take the following values:

f = ( 0T 1T 0 )
T

∈ R
2d+1

(objective function)

x = ( wT sT b ) (target variable)

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−y1xT1 0T −y1
⋮ ⋮ ⋮

−ynxTn 0T −yn
Id −Id 0

−Id −Id 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R
(n+2d)×(2d+1)

(inequality constraints)
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3.5 Implementation using Linear Programming Solvers

b = 0 ∈ Rn

Aeq = (
1

n

n
∑
i=1

yixTi 0T 1

n

n
∑
i=1

yi ) ∈ R
1×2d+1

(equality constraint)

beq = 1

l = ( −∞⋯ −∞ 0T −∞ ) (lower bounds of the variables)

u = ( ∞⋯ ∞ ∞⋯∞ ∞ ) (upper bounds of the variables)

In the �rst approach, the constraint matrix A has n(2d + 1) non-zero entries while in the
reformulated version n(d + 1) + 4d entries are non-zero. �us, for n > 4 the reformulated

version has less entries. However, the complexity of linear programming solvers makes an a

priori runtime prediction impossible due to numerous processing steps — presolving, scaling,

solving. So, other less obvious aspects than the number of non-zero entries might get important

in practise and require an empirical runtime evaluation (see Chapter 4.3).

�e so� sfm approach is reformulated in the same way. In the initial problem

minimise ∥w∥1 + C∥ξ∥1

subject to

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yi (wTx i + b) ≥ −ξi for all i
1

n

n
∑
i=1

yi (wTx i + b) = ±1

ξi ≥ 0 for all i

the substitution wi = w+
i −w−

i with w+
i ,w−

i ≥ 0 leads to

minimise
d
∑
i=1

(w+
i +w−

i ) + C
n
∑
i=1

ξi

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi (
d
∑
j=1

(w+
j −w−

j ) xi j + b) ≥ −ξi for all i

1

n

n
∑
i=1

yi (
d
∑
j=1

(w+
j −w−

j ) xi j + b) = ±1

w+
i ,w−

i , ξi ≥ 0 for all i .

Again, the size and the structure of the inequality constraint matrix A is the crucial factor:

A =

⎛
⎜
⎜
⎜
⎝

−y1xT1 y1xT1 −y1
⋮ ⋮ −In ⋮

−ynxTn ynxTn −yn

⎞
⎟
⎟
⎟
⎠

∈ R
n×2d+n+1

(3.17)
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3 Support Feature Machine

Here, n(2d + 2) entries are non-zero, and, as in the hard-margin case, the input data needs to
be stored twice.�is is again avoided by substituting si = w+

i +w−
i to get the linear program

minimise
d
∑
i=1

si + C
n
∑
i=1

ξi

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi (wTx i + b) ≥ −ξi for all i
1

n

n
∑
i=1

yi (wTx i + b) = ±1

si +wi ≥ 0 for all i

si −wi ≥ 0 for all i

ξi ≥ 0 for all i.

Now, the inequality constraint matrix is

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−y1xT1 −y1
⋮ 0n,d −In ⋮

−ynxTn −yn
−Id −Id 0d ,n 0
Id −Id 0d ,n 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R
(n+2d)×(2d+n+1)

(3.18)

with 4d + dn + 2n non-zero entries.

Technical Issues As with many machine learning algorithms, normalisation is an essential

preprocessing step for any of the proposed sfm variants. For all experiments, we normalised the

training datasets to zero mean and unit variance and �nally scaled all vectors to have a mean

norm of one.�is last step is sometimes bene�cial in high-dimensional scenarios to keep the

outcome of scalar products in a reasonable range.�e test sets were normalised according to

the factors obtained from the corresponding training sets.

In theory, for hard sfms, either no solution exists or a solution where all data points are

correctly classi�ed. However, since the optimiser uses numerical approximation methods with

certain accuracy thresholds, some constraints may be marginally violated. �us, some data

points may be located on the wrong side of the hyperplane, but very close to it, producing a

non-zero training error even in the hard case.

To avoid numerical issues, numbers that di�ered by no more than a speci�c implementation-

dependent number, normally closely connected to the machine epsilon ε, were considered to
be equal.

64



3.6 Conclusions

3.6 Conclusions

�e sfm aims to classify given input data with the least number of features. It approximates the

zero-normminimising weight vector of a separating hyperplane in the sameway as the approach

byWeston et al. — byminimising its one-norm. But, in contrast to support vector based feature

selection, it does not maximise the margin while simultaneously selecting features. We regard

this as the major advantage of the sfm— to focus exclusively on feature selection. �e sfm

implements the principle of structural risk minimisation by deriving a nested hypothesis space.

Each iteration requires solving a linear program— solvers for such problems are available in

many �avours both commercially and free.�e advantages of the sfm can be made plausible by

considering the coincidence of zero-norm and one-norm minimising solution in some speci�c

scenarios. Although no universal proof could be given, we expect the sfm to �nd the optimal

solution more likely than Weston’s method for a wide rage of scenarios. However, feature

selection has theoretical limits — the vc-dimension of combined classi�cation and feature

selection is larger than if the irrelevant features would not have been included in the training at

all.�us, we cannot expect any feature selection method to provide the same generalisation

performance as if no irrelevant features were present at all.
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A man of genius makes no mistakes. His
errors are volitional and are the portals of
discovery.

«Ulysses», James Joyce

4 Basic Experiments

We introduced the support feature machine as a novel feature selection method, showed why a

superior performance with respect to the svm-based method byWeston et al. is theoretically to

be expected and demonstrated how this machine can be engineered using linear programming

solvers. What now follows is an in depth analysis of the performance of the support feature

machine on various arti�cial and real world datasets. However, as most of them are high-

dimensional small sample size scenarios, we start with experiments that stress the unintuitive

behaviour of such datasets. In particular, we give practical bounds to decide when leave-one-

out cross-validation for support vector machines may completely fail. Datasets having higher

dimensionality will behave as if they were in�nite dimensional.

A�er these introductory experiments, we compare the performance of the basic sfm with

Weston’s svm-based feature selectionmethod on arti�cial data as bothmethods are very closely

related. Additionally, we compare both methods to a standard linear support vector machine to

demonstrate the necessity to reduce the number of features even in simple scenarios. We show

how the three methods perform as the number of irrelevant features grows exponentially.�e

basic experimental analysis concludes with an evaluation of the so� sfm.

Basically, a support feature machine is a linear program to be solved with any commercial or

freely available linear programming solver. However, their actual runtime is hard to predict in

advance.�erefore, we benchmark the runtime depending on the dataset size, the dimensional-

ity and an a priori known number of truly relevant features. We compare four popular linear

programming solvers and give advice which to use in particular scenarios.

A�er having evaluated the support feature machine on arti�cial datasets, we �nally apply it

to a publicly available microarray dataset.
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4 Basic Experiments

4.1 Reliability of Cross-Validation

In high-dimensional small sample size scenarios distances between data points tend to con-

centrate — they all become nearly the same. In the limit, for an in�nite number of irrelevant

dimensions, i.e. when d →∞, they become exactly the same (see Chapter 2.5.2). No real-world

dataset is actually in�nite dimensional, but the point from which on a �nite dimensional dataset

practically behaves as if it was in�nite dimensional is of particular interest.

First, we analyse how leave-one-out cross-validation performs on pure random data.�ere-

fore, we sampled two classes independently and identically distributed from the standard normal

distribution and trained support vector machines for n ∈ {4, 6, . . . , 40} and logarithmically

spaced d ∈ [10, 105]. For each con�guration the procedure was repeated 100 times and the

average leave-one-out error was determined.�e colour-coded results are shown in Figure 4.1.

For any �xed sample size (e.g. n = 20) the leave-one-out error reaches 1 as soon as a speci�c
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Figure 4.1: Average leave-one-out cross-validation error depending on sample size and

dimensionality for random data. White indicates an error rate of 1, i.e. the

corresponding parameter sets behave as if they had in�nite dimensionality.

Additionally, the border between normal and in�nite-like behaviour is approxi-

mated by a second order polynomial on those scenarios where the mean error

rate exceeds 0.99 for the �rst time.�is model— derived from the �rst 6 sample

sizes (black dots) — �ts well even in the extrapolation case (white dots).
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dimensionality is exceeded (in this case for approximately d = 50000). A precise border between

regular and in�nite-like behaviour does not exist, however, we can approximate the border with

a simple least-squares �t. For each sample size we picked the lowest dimensionality such that the

corresponding average error exceeds 0.99. We derived a least squares �t using the �rst 6 points

and the 2nd order polynomial dpoly(n) = α0 + α1 · n + α2 · n2.�is heuristic suits for illustrating
the asymptotic behaviour but should not be taken as an exact mathematical coherence.

In the second experiment, we consider more realistic scenarios where the two classes have

di�erent means. In this case, according to�eorem 2.5.2, the error rate converges to 1 for

small sample sizes and — as soon as the sample size exceeds a certain threshold — to zero

as dimensionality goes to in�nity. Again, it remains to show how large the dimensionality

must get to cause in�nite-like behaviour. Given two equally sized classes each drawn from

the multivariate standard normal distribution (σ2 = τ2 = 1) with an inter-class distance such
that µ2 = 1

30
(see Figure 4.2, again with samples n ∈ {4, 6, . . . , 40} and logarithmic-spaced

d ∈ [10, 105] for 100 independent runs). Obviously, the average error rate of all scenarios with a

sample size of at most 12 converges to 1, while in all other scenarios the error rate converges to

0.�e same threshold can be derived using the above class distribution parameters and the fact,

that in leave-one-out cross-validation one class contains n
2
data points while the other contains

one element less.�us, according to�eorem 2.5.2, the critical sample size derives as

σ2

k
−

τ2

l
= µ2 ⇒

1
n
2
− 1

−
1
n
2

=
1

30
⇒ n = 12 .

�erefore, the probability of a new data point to be classi�ed correctly by an svm using

leave-one-out cross-validation converges to 1 for n > 12 and to zero for n ≤ 12. Figure 4.2

visualises the critical scenarios where in�nite-like behaviour is to be expected (black and white

regions).

Finally, we evaluated the behaviour of a so�-margin svm. On random data, a so�ness

value of C causes a d-dimensional scenario to behave as if it was (d + 1

C )-dimensional (see

Chapter 2.5.5). In real two class scenarios, the behaviour was very sensitive to the actual choice

of C (see Figure 4.3), i.e. slightly changing C causes a dramatic change of the convergence
behaviour towards 1 and 0, respectively. In many svm applications, the so�ness parameter

is varied on a logarithmic grid from small (e.g. 10−8, allowing many outliers) to large values

(e.g. 108, allowing almost no outlier) to �nd the optimum. Due to runtime considerations the

grid spacing cannot be chosen arbitrary small. In general, a coarse grid is initially used which is

later re�ned around optimum candidates.�is technique assumes the performance to change

only gradually between neighbouring points. However, our experiment shows that for leave-one

out cross-validation in high-dimensional small sample size scenarios this is not the case — the
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Figure 4.2: Average leave-one-out cross-validation error depending on sample size and

dimensionality for real two class scenarios. Both classes have a distance corre-

sponding to µ2 = 1

30
. White indicates an error rate of 1, black an error rate of

0. Parameter sets corresponding to black or white behave as if they had in�-

nite dimensionality, while medium grey indicates the regular low-dimensional

behaviour (averaged over 100 runs).

convergence behaviour whether we choose C = 1 or C = 0.1 is completely di�erent. So, not only

the validation procedure fails but also the higher order methods such as grid search may fail.

4.2 Support Feature Machine on Artificial Data

Having introduced the basic principles of the sfm and its theoretical advantages (see Chapter 3),

we now show that the sfm outperforms both the standard svm andWeston’s svm-based feature

selection method in many simulations, particularly in high-dimensional small sample size

scenarios. We �rst compare the capability of the sfm andWeston’s method to identify the truly

relevant features in a very simple scenario with linearly separable, equally sized classes. We

then show how the three methods perform if an exponentially increasing number of irrelevant

features is added to the data, which is probably the most challenging setting for any feature

selection method.�e experimental analysis on arti�cial data concludes with an evaluation of

the so� sfm.

70



4.2 Support Feature Machine on Arti�cial Data

Sample size

D
im
e
n
si
o
n
a
li
ty

C = 1

10 20 30 40
10

100

1000

10000

100000

Sample size

D
im
e
n
si
o
n
a
li
ty

Sample size

D
im
e
n
si
o
n
a
li
ty

C = 0.5

10 20 30 40
10

100

1000

10000

100000

Sample size

D
im
e
n
si
o
n
a
li
ty

Sample size

D
im
e
n
si
o
n
a
li
ty

C = 0.2

10 20 30 40
10

100

1000

10000

100000

Sample size

D
im
e
n
si
o
n
a
li
ty

Sample size

D
im
e
n
si
o
n
a
li
ty

C = 0.1

10 20 30 40
10

100

1000

10000

100000

Sample size

D
im
e
n
si
o
n
a
li
ty

Figure 4.3: Average leave-one-out cross-validation error depending on sample size, dimen-

sionality and so�ness for real two class scenarios. Both classes have a distance

corresponding to µ2 = 1

30
. Shown are the results for slightly varying so�ness

parameters (C = 1.0, 0.5, 0.2, 0.1, averaged over 100 runs).

4.2.1 Basic Experiment

For the basic experiment, we generated arti�cial datasets with balanced classes. �e �rst k
dimensions xi , . . . , xk were drawn as xi = N (µ · y, 1).�e remaining features xk+1, . . . , xd were
noise drawn as xi = N (0, 1).�e parameter µ determines the distance between themeans of the
two classes. We ensured that both classes were linearly separable within the �rst k dimensions.
However, both classes might be separable with even less than k features by chance.�e number
of dimensions was set to d = 1000. In the �rst experiment, we used a �xed sample size of n = 100
and varied the number of relevant features from k = 1 to k = 20. In the second experiment, we
set the number of relevant features to k = 5 and varied the sample size from n = 10 to n = 1000.
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Figure 4.4: Feature selection performance of the sfm and Weston’s method depending

on the number of truly relevant features. Shown are the average number (1000

runs) of obtained features and the average percentage of correctly identi�ed

features as percentage of obtained features for both methods a�er the �rst and

a�er the �nal iteration (n = 100, d = 100, µ = 0.3).

Testing the basic sfm andWeston’s method with this data revealed that the ability to identify

relevant features di�ered between both methods in many aspects (see Figures 4.4 and 4.5).

Obviously, the sfm returned both a smaller total number of features and a higher percentage of

correctly identi�ed features for almost all scenarios. Weston’s method returnedmore irrelevant

features than the sfm in almost all individual scenarios. In scenarios with very low intrinsic

dimensionality — for k = 1, . . . , 4 — the sfm identi�ed all features correctly (see Figure 4.4,

bottom).

72



4.2 Support Feature Machine on Arti�cial Data

Sample size

N
u
m
b
e
r
o
f
o
b
ta
in
e
d
fe
a
tu
re
s

10 20 50 100 200 500 1000
1

10

100

Sample size

N
u
m
b
e
r
o
f
o
b
ta
in
e
d
fe
a
tu
re
s

SFM

SFM (1st)

Weston

Weston (1st)

Sample size

C
o
rr
e
c
tl
y
id
e
n
ti
�
e
d
fe
a
tu
re
s
[%
]

10 20 50 100 200 500 1000
0

10

20

30

40

50

60

70

80

90

100

Sample size

C
o
rr
e
c
tl
y
id
e
n
ti
�
e
d
fe
a
tu
re
s
[%
]

Figure 4.5: Feature selection performance of the sfm and Weston’s method depending

on the sample size. Again, the average number (1000 runs) of features and the

average percentage of correctly identi�ed features are shown for both methods

a�er the �rst and a�er the �nal iteration (d = 100, k = 5, µ = 0.3).

In scenarios with k = 5, the sfm identi�ed all relevant features correctly in each and every run,
if the number of data points exceeded 200 (see Figure 4.5). Weston’s method failed to converge

to the correct number of features even if the number of data points was further increased (to

1000) — the percentage of correctly identi�ed features stayed clearly below 80%. �us, the

sfm converged to the correct set of features, while the svm-based approach got stuck in a local

minimum even for large datasets. In contrast to Weston’s method, the sfm was close to the

�nal solution already in the very �rst iteration. In scenarios with a large number of data points,

the sfm converged already a�er one iteration (see Figure 4.5, n = 1000).
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4.2.2 Increasing the Dimensionality

For many biomedical applications, a feature selection method should not only be able to deal

with high-dimensional datasets but should also scale well, i.e. adding irrelevant features should
not signi�cantly degrade the performance. To assess how the performance of the svm, Weston’s

method, and the sfm degrade when irrelevant features are added to the data, we applied an

arti�cial dataset that has been used in a variety of publications but was originally proposed

in [Weston et al., 2003].

�e dataset contains two equally-sized classes, where the �rst six dimensions are relevant and

the remaining dimensions contain Gaussian noise. With probability 0.7, the �rst three features

are drawn as xi = yN (i , 1) and the second three features are drawn as xi = N (0, 1). With

probability 0.3 the setting is inverted, i.e. the �rst three features are drawn as xi = N (0, 1) and

the second three as xi = yN (i − 3, 1).�e remaining k∗ features are drawn as xi = N (0, 20)

with k∗ = 10, 102, 103, 104. Additionally, we ensured the training set to be linearly separable

within the six informative dimensions. We sampled n training points (n = 20, 50, 100, 200, 500)
and 5000 test data points.�ree classi�ers (a standard svm without feature selection, Weston’s

method, and the basic sfm) were trained on each dataset.

Figure 4.6 compares the capability of both feature selection methods to identify relevant

features. Shown are the average results of 100 runs. Compared to Weston’s approach, the sfm

returns (i) a smaller number of features and (ii) more likely the truly relevant ones. Even in very

high-dimensional small sample size scenarios the sfm can identify the relevant dimensions very

e�ectively: As the number of data points increases, the number of features found to be relevant

increases, but does not exceed 6 — the number of truly relevant features.�e percentage of

correctly identi�ed features decreases when the number of noise dimensions increases. However,

only in extremely high-dimensional small sample size scenarios the percentage of correctly

identi�ed features drops below 90%. Note, the sampling scheme causes the number of correctly

identi�ed features not to converge to 100% for large n. Due to the experimental design some
features provide a better separability than others.�en, by chance, one of the irrelevant features

may be favoured by the sfm (and alsoWeston’s method) instead of the weakest relevant feature.

�is e�ect gets ampli�ed for large sample sizes as the solution space becomes smaller and

smaller.

Figure 4.7 shows the impact of irrelevant features on the test error. Obviously, the svm

performs poorly for k∗ ≥ 1000. Both the sfm and Weston’s method perform signi�cantly

better in these scenarios:�ey show a signi�cantly lower test error than the svm, and test errors

increase signi�cantly more slowly with the number of irrelevant features than for the svm. For

n ≥ 50 the test error of the sfm andWeston’s method show no increase with increasing number

of irrelevant features, even if k∗ is increased from 10 to 10000.
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(a) sfm, number of obtained features

n k∗ = 10 k∗ = 100 k∗ = 1000 k∗ = 10000
20 2.0 (± 0.6) 2.0 (± 0.6) 2.0 (± 0.6) 1.9 (± 0.6)

50 2.3 (± 0.6) 2.4 (± 0.6) 2.4 (± 0.6) 2.5 (± 0.7)

100 2.7 (± 0.7) 2.6 (± 0.6) 2.6 (± 0.7) 2.6 (± 0.7)

200 3.1 (± 0.7) 3.2 (± 0.8) 3.2 (± 0.8) 3.1 (± 0.7)

500 4.1 (± 0.8) 4.2 (± 0.8) 4.2 (± 0.8) 4.2 (± 0.8)

(b) Weston, number of obtained features

n k∗ = 10 k∗ = 100 k∗ = 1000 k∗ = 10000
20 2.6 (± 0.8) 2.8 (± 0.9) 3.0 (± 1.1) 3.2 (± 1.1)

50 3.2 (± 1.0) 3.4 (± 1.1) 3.3 (± 1.1) 3.4 (± 1.1)

100 3.8 (± 1.1) 4.0 (± 1.2) 4.0 (± 1.2) 3.9 (± 1.2)

200 4.6 (± 1.2) 4.9 (± 1.4) 4.9 (± 1.4) 4.8 (± 1.2)

500 5.9 (± 1.3) 6.2 (± 1.5) 6.4 (± 1.5) 6.2 (± 1.4)

(c) sfm, percentage of correctly identi�ed relevant features

n k∗ = 10 k∗ = 100 k∗ = 1000 k∗ = 10000
20 98.5% (± 8.0%) 88.9% (±20.2%) 66.5% (±29.1%) 46.9% (±32.9%)

50 99.6% (± 3.5%) 98.8% (± 6.5%) 96.7% (±10.9%) 85.9% (±22.4%)

100 99.7% (± 3.1%) 99.1% (± 5.3%) 97.3% (± 8.8%) 96.9% (± 9.4%)

200 99.4% (± 3.9%) 98.5% (± 6.0%) 96.6% (± 8.9%) 95.1% (±11.0%)

500 98.8% (± 5.0%) 96.4% (± 8.7%) 94.3% (±10.8%) 92.2% (±11.7%)

(d) Weston, percentage of correctly identi�ed relevant features

n k∗ = 10 k∗ = 100 k∗ = 1000 k∗ = 10000
20 94.8% (±12.8%) 81.2% (±23.7%) 58.0% (±29.6%) 32.5% (±26.1%)

50 94.0% (±12.1%) 87.6% (±16.0%) 85.0% (±18.0%) 79.7% (±20.3%)

100 93.1% (±12.0%) 87.0% (±16.0%) 83.4% (±17.5%) 83.1% (±17.1%)

200 89.0% (±13.6%) 82.9% (±15.9%) 80.3% (±16.0%) 80.6% (±16.0%)

500 82.2% (±12.9%) 76.2% (±14.5%) 73.5% (±14.7%) 74.1% (±14.6%)

Figure 4.6: Impact of an exponentially increasing number of irrelevant features on the

variable selection performance. Shown are the average number of features

(1000 runs) found to be relevant (± std) by a hard sfm (a) and by Weston’s

method (b) and the average percentage of correctly identi�ed features (± std)

for a hard sfm (c) and for Weston’s method (d).
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(a) Support vector machine

n k∗ = 10 k∗ = 100 k∗ = 1000 k∗ = 10000
20 4.1% (± 2.1%) 23.3% (± 2.7%) 40.6% (± 1.1%) 47.0% (± 0.7%)

50 1.5% (± 0.6%) 12.4% (± 2.0%) 34.5% (± 1.1%) 44.9% (± 0.8%)

100 0.9% (± 0.3%) 6.5% (± 1.2%) 28.5% (± 1.1%) 42.8% (± 0.8%)

200 0.7% (± 0.2%) 3.2% (± 0.6%) 21.4% (± 1.0%) 39.7% (± 0.7%)

500 0.5% (± 0.1%) 1.5% (± 0.3%) 11.9% (± 0.8%) 34.0% (± 0.7%)

(b) Weston’s method

n k∗ = 10 k∗ = 100 k∗ = 1000 k∗ = 10000
20 5.0% (± 4.3%) 8.4% (± 7.6%) 17.5% (±12.1%) 30.6% (±13.7%)

50 2.2% (± 1.5%) 2.5% (± 1.6%) 2.7% (± 1.8%) 3.5% (± 3.3%)

100 1.5% (± 0.7%) 1.5% (± 0.7%) 1.6% (± 0.9%) 1.7% (± 0.9%)

200 1.1% (± 0.4%) 1.1% (± 0.5%) 1.1% (± 0.5%) 1.2% (± 0.5%)

500 0.8% (± 0.3%) 0.8% (± 0.3%) 0.8% (± 0.3%) 0.8% (± 0.3%)

(c) Support feature machine

n k∗ = 10 k∗ = 100 k∗ = 1000 k∗ = 10000
20 12.4% (± 5.4%) 14.2% (± 6.2%) 19.0% (± 9.9%) 27.7% (±15.3%)

50 5.3% (± 2.9%) 5.5% (± 3.3%) 6.1% (± 3.6%) 8.4% (± 5.2%)

100 3.0% (± 1.6%) 2.9% (± 1.6%) 2.9% (± 1.5%) 3.0% (± 1.9%)

200 1.7% (± 0.7%) 1.6% (± 0.7%) 1.7% (± 0.8%) 1.7% (± 0.8%)

500 1.0% (± 0.3%) 1.0% (± 0.3%) 1.0% (± 0.4%) 1.0% (± 0.3%)

Figure 4.7: Impact of an exponentially increasing number of irrelevant features on the test

error. Shown are the test error (± std) of an svm without feature selection (a),

of the method proposed by Weston (b), and of the hard sfm (c) on an arti�cial

dataset with 6 relevant k∗ irrelevant features averaged over 1000 runs.

4.2.3 Non-separable Classes

Finally, we constructed an arti�cial problem where the two classes were not linearly separable.

�e probabilities of the classes y = 1 and y = −1 were equal, both in the training and the test
set.�e �rst k dimensions x1, . . . , xk were drawn normally distributed as xi = N (µ · y, 1).�e
remaining features xk+1, . . . , xd were noise drawn as xi = N (0, 1).�e parameter µ was used to
adjust the distance between the class centres. Both, the training and the test sets were sampled

according to the above procedure, each containing n data points.�e so�ness parameter C was
sampled in 100 steps logarithmically spaced between 0.01 and 100.
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We tested four scenarios. In the �rst scenario, the data contains a high percentage of relevant

features. In the second scenario, we reduced the number of relevant features and increased the

number of irrelevant features. Finally, in the third and fourth scenario we further increased the

number of irrelevant features and reduced the number of data points.

Figure 4.8 shows the averaged results of 100 runs with a so� sfm. In all four scenarios,

increasing so�ness — allowing more training errors — results in a smaller number of obtained

features.�is is in line with the theoretical consideration that the so� sfm directly trades o� the

number of features and the training error, and that a very so� sfm will return a single feature.

As the number of obtained features decreases, the percentage of correctly identi�ed features

increases. However, this does not necessarily result in increased prediction performance: In the

second scenario the test error reaches a minimum just a�er the point where the percentage of

correctly identi�ed features sharply increases. In the �rst and third scenario, however, the test

error increases with increasing so�ness, and in the fourth scenario the test error remains almost

constant throughout all so�ness values. Below, we discuss the four data scenarios in detail.

Many Relevant Features, Few Irrelevant Features, Large Sample Size In this case, the

data contains a large percentage of relevant features and the number of data points exceeds

the number of dimensions. However, features might be correlated and not all features might

actually be required to separate the classes.�e sfm identi�ed almost no irrelevant feature as

being relevant, independent of the so�ness. However, only a small fraction of the truly relevant

features was identi�ed (at most 7 out of 20).�e test error decreased slightly with decreasing

so�ness (see Figure 4.8, top le�).

Few Relevant Features, Many Irrelevant Features, Large Sample Size In this scenario,

the data contains few relevant and many irrelevant features but the number of data points still

exceeds the number of dimensions (see Figure 4.8, top right). Increasing the so�ness resulted in

a smaller set of obtained features, while the percentage of correctly identi�ed features increased.

For the parameters chosen here, the optimal test error is achieved for medium so�ness (C = 0.2),

approximately at that point where almost all truly relevant features and almost no irrelevant

features are obtained.

Few Relevant Features, Many Irrelevant Features, Small Sample Size �e third and

fourth scenario both represent high-dimensional small sample size data with few relevant and

many irrelevant features (see Figure 4.8, bottom).�is is a very challenging scenario because the

information content is very small. As before, increasing so�ness resulted in a smaller number

of obtained features while the percentage of correctly identi�ed features increased. In the third
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Figure 4.8: Behaviour of the so� SFM for linearly non-separable classes. Shown are four

di�erent scenarios and the resulting number of obtained features (solid line, le�

axis), percentage of correctly identi�ed features (dashed, right axis), training

error (dash-dotted, right axis), and test error (dotted, right axis) averaged over

100 runs.

scenario (see Figure 4.8, bottom le�), we chose a larger class distance than in the previous

scenarios (µ was increased from 0.30 to 0.65). In this scenario, the test error increased slightly
with increasing so�ness, but stayed well below chance. In the fourth scenario we used the

same class distance as in the �rst two scenarios. Although the percentage of correctly identi�ed

features still increased with increasing so�ness, the test error remained almost constant and

never fell well below chance (see Figure 4.8, bottom right). �us, in this scenario the class

overlap seems to be too large to obtain meaningful results.

In sum, applying a so� sfm to the four exemplary datasets shows that the so� sfm performs

well on datasets with non-separable classes even in scenarios with few relevant and many irrel-
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evant features, as long the class overlap is not too large relative to the number of data points.

In high-dimensional small sample size scenarios with few relevant features and strongly over-

lapping classes, the performance of the sfm drops to chance, possibly because the information

content is no longer su�cient to allow valid feature selection. However, in such scenarios we

expect all feature selection methods to be signi�cantly a�ected by the low information content.

4.3 Runtime Simulations

�e above experiments have shown various aspects of the support feature machine, especially

its ability to identify relevant features and robustness against noise features. In practise, runtime

and memory requirements may be equally important. A support feature machine may be

implemented using linear programming solvers, however, the performances of conventional

linear programming solvers may di�er signi�cantly and may also depend on the particular

dataset con�guration. For choosing the appropriate solver, we implemented the sfm using four

linear programming toolboxes — cplex, mosek, matlab and glpk (see Chapter 3.5). �e

following experiments show how the solvers performwith respect to sample size, dimensionality,

intrinsic dimensionality, linear program formulation and class overlap.

�e data was drawn in the same way as in the previous section with the additional constraint

to be linearly separable.�us, a d-dimensional balanced training set with n data points was sam-
pled, where the �rst k dimensions x1, . . . , xk were drawn normally distributed as xi = N (µ · y, 1)
with µ ∈ R+.�e remaining features xk+1, . . . , xd were noise drawn as xi = N (0, 1).

�e performance of a linear programming solver does not exclusively depend on the dataset

con�guration but also on a variety of solver speci�c tuning parameters. Commercial solvers

allow for tuning hundreds of parameters, including the choice of solver variants, presolvers, and

numerous tolerance and termination thresholds. Changing the default values for a particular

dataset might improve accuracy or runtime signi�cantly. However, a systematic tuning of

all parameters is in practise infeasible due to the large number of parameters. Additionally,

parameter tuning is always biased according to the experience level of the user and will therefore

bias every performance measure. In the following experiments no parameter tuning was

applied — each solver was used with the default setting. Each solver was called within amatlab

script. Only the time consumed by the entire solver was measured, not the overhead for data

pre- and postprocessing. Further, we avoided swapping artefacts — i.e. runtime overheads

caused by copying from the main memory to the hard drive — by limiting the problem size

such that the problem �ts into the main memory at any time during optimisation.

Note, this is not a universal benchmark for linear programming solvers.�e runtime mea-

surements are speci�c to the support feature machine. Other linear programs might cause a
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completely di�erent workload, and even the tendencies might get reversed. All experiments

were run on an Intel Core 2 Quad machine with 2.4 GHz and 4 GB ram running Linux Ubuntu

10.10. All runtime measurements were averaged over 100 runs.

Sample Size Increasing the sample size caused an almost linear increase in overall runtime

(see Figure 4.9, upper curves) for all linear programming solvers and the standard linear

program formulation.�e absolute runtimes signi�cantly di�ered among the four solvers. For

a sample size of n = 500, mosek solved the problem in 84 ms on average, while the second best
solver cplex took twice the time (176 ms).�e remaining solvers — matlab and glpk— took

4.9 s (≈ 60 ×) and 41.6 s (≈ 500 ×), respectively.�is order stayed the same for a wide range
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Figure 4.9: Average runtime of linear programming solvers depending on the sample size.

�e runtime increases approximately linearly with the sample size because the

slopes in the above log-log graph are approximately 1 (slope in the last displayed

interval: 1.08 (mosek), 1.17 (matlab), 1.17 (cplex), 1.48 (glpk)).�e absolute

numbers di�er by magnitudes.�e relation between the overall runtime (upper

curves) and the time spend in the �rst iteration (lower curves) depends on the

sample size.
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of sample sizes, except for cplex and mosek that changed places for n ≥ 5000. �e cplex

performance curve shows several non-linearities, it even has a local minimum at n = 5000,

i.e. it takes less time to solve a problem with 5000 data points than a problem with 2000.�is

might be due to an automatic switch between di�erent optimisation procedures or presolving

routines that depend on the sample size.

Outer Loop Iterations �e support feature machine requires to solve multiple linear pro-

grams until convergence. In the very �rst iteration, all columns of the data matrix X serve as
input to the solver. As the number of outer loop iterations increases, more and more entries

of the scaling vector z become zero and the corresponding columns of the data matrix have
no in�uence, and, therefore, they can be discarded in a preprocessing step. Figure 4.9 shows

the relation between the overall runtime (upper curves) and the runtime spent in the very

�rst iteration (lower curves). In small sample size scenarios, this relation is large but becomes

smaller as the sample size increases. For n=50000, mosek and cplex spend more than 90% of
the overall runtime in the �rst iteration.

Dimensionality For any �xed number of data points, the runtime increases linearly to

quadratically with the number of input dimensions (see Figure 4.10). Again, cplex and mosek

showed the best performances, but neither was best for all data con�gurations. So, the choice

which one to use highly depends on the actual con�guration. Consistently, matlab’s linprog

and glpk were in third and last place, respectively.

Linear Program Formulation �e support feature machine may be translated into a linear

program in at least two di�erent ways (see Chapter 3.5). �e number of non-zero elements

of the inequality constraint matrix may largely di�er depending on the sample size and the

number of dimensions. Indeed, runtime measurements showed a signi�cant di�erence between

both formulations, however, the tendencies largely di�ered between solvers (see Figure 4.11).

In general, it is assumed that linear programming solvers can exploit sparsity very well, and

thus, sparse formulations should be favoured. As sparsity increases with the sample size, we

expect the sparse version to be faster if the sample size is large enough.�is is the case for three

out of four solvers — glpk, mosek and cplex— the matlab version does not show such a

tendency. However, in real-world applications the focus is on high-dimensional small sample

size scenarios, where the behaviour is even more diverse (see Figure 4.11). Here, mosek is the

least a�ected by the formulation (e.g. 14 s vs. 17 s for d = 20000). In contrast, cplex takes 20

times longer on the sparse formulation than on the original one (3 s vs. 60 s).
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Figure 4.10: Average runtime of linear programming solvers depending on the dimension-

ality.�e behaviour is more diverse as in the sample size dependent case (see

Figure 4.9). On average, the runtimes increase approximately linearly (average

slope: 0.73 (matlab), 1.04 (glpk), 1.09 (mosek), 1.14 (cplex)) butmay become

quadratic for large dimensionalities (e.g. the slope in the last displayed interval

for cplex is 1.79)

Intrinsic Dimensionality and Class Distance Finally, the intrinsic dimensionality k and
the class distance µ both only slightly a�ect the runtime.�e runtime is almost independent
of the intrinsic dimensionality (see Figure 4.12, le�) — only for an extremely small number of

truly relevant features the runtime slightly decreased. Increasing the class distance parameter µ
slightly reduced the runtime (see Figure 4.12, right), however, not for all solvers. All solvers

seem to be unable to exploit a higher level of separability to improve the convergence speed.

Although the data was generated in a simple and canonical way, the choice of the appropriate

problem formulation and the best suited optimiser is non-trivial. It mainly depends signi�cantly

on sample size and dimensionality — both are a priori known.�e intrinsic dimensionality

and the class distance have only a minor in�uence on the runtime, and they are not known

in advance.�us, the choice of the optimiser and the linear program formulation cannot be

based on any of both. Figure 4.13 shows which pairs of optimiser and problem formulation

perform best for a speci�c dataset con�guration. Obviously, cplex performs best for large scale

problems, while mosek seems to be better suited in low-scale problems.

82



4.3 Runtime Simulations

Mosek∗

Mosek

Matlab∗
Matlab

Cplex∗
Cplex

Glpk∗

Glpk

Sample size

R
u
n
ti
m
e
[s
]

d = 50, k = 5, µ = 0.2

10 100 1000 10000 100000
0.01

0.1

1

10

100

1000

Sample size

R
u
n
ti
m
e
[s
]

Mosek∗
Mosek

Matlab∗
Matlab

Cplex∗

Cplex

Glpk∗

Glpk

Dimensionality

R
u
n
ti
m
e
[s
]

n = 100, k = 5, µ = 0.1

10 100 1000 10000
0.01

0.1

1

10

100

Dimensionality

R
u
n
ti
m
e
[s
]

Figure 4.11: Mean runtime of linear programming solvers depending on the formulation

of the linear program. In general, the second formulation — indicated by an

asterisk — is sparser, i.e. the inequality matrix has less non-zero elements.
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Figure 4.12: Average runtime of linear programming solvers depending on the intrinsic

dimension and the distance of both classes.

Extension to Softness We conclude the runtime considerations with a comparison of hard

and so� sfm. In the so� case, an individual slack variable is introduced for each data point (see

Chapter 3.2): We expect the additional computational load to mainly depend on the sample size.

For any �xed dimensionality the runtime di�erence between both approaches should increase

as the sample size increases. In contrast, for any �xed sample size, the o�set between both

approaches should remain constant. We restricted our runtime measurements to the linear

programming solver that performed best on large-size problems, which was cplex.

For a �xed dimensionality (see Figure 4.14, top, d = 50), the so� approach was always slower

independent of the linear program formulation, and the runtime di�erence between both
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0.56 0.90 1.41 2.45 5.60 10.78

1.27 1.90 3.06 5.36 11.63
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Figure 4.13: Optimal choice of optimiser and linear program formulation. For each com-

bination of sample size and dimensionality the best optimiser con�guration

is shown together with the average runtime in seconds (10 runs, all iterations

until convergence). Scenarios were limited to those with n · d ≤ 5000000.

approaches increased with the sample size. For n = 10000, a so� sfm takes almost 100 times as
long as a hard-margin sfm. In contrast, for a �xed sample size (see Figure 4.14, bottom, n = 200)
the runtimes converge such that for d = 10000 no di�erence is measurable. Again, the runtime

curves are neither smooth nor strictly increasing due to solver inherent heuristics. Finally, the

non-sparse formulation in connection with cplex is the optimal choice for high-dimensional

problems, whilemosek is generally better suited for large-sample size problems (see Figure 4.15).

�e runtime measurements have shown that none of the evaluated solvers is the fastest on

every dataset.�e choice of the linear program formulation is crucial, and again, there is no

universally optimal choice.�e obtained runtime estimates were used throughout the following

experiments on real-world data to always choose the best suited solver and formulation.
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Figure 4.14: Overhead of the so� extension. For �xed dimensionality (top) the overhead

increases with the sample size. In contrast, for �xed sample size (bottom) the

overhead converges to zero with increasing dimensionality.
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Figure 4.15: Optimal choice of optimiser and linear program formulation for the so�margin

approach. For each combination of sample size and dimensionality the best

optimiser con�guration is shown together with the average runtime in seconds

(10 runs). Scenarios were limited to those with n · d ≤ 1000000.

4.4 Evaluation on Microarray Data

Analysis ofmicroarray data is probably one of the �rst biomedical applications in whichmachine

learning methods have been widely used. In one of the �rst works, two types of cancer (acute

myeloid leukaemia (aml) and acute lymphoblastic leukaemia (all)) were discriminated based

on gene expression data derived from dna microarrays using a correlation-based method

[Golub et al., 1999]. As this dataset is publicly available (www.broadinstitute.org/cancer/

pub/all_aml/), it has been used as a benchmark for numerous classi�cation and feature

selection methods [Mukherjee et al., 1998, Slonim et al., 2000, Furey et al., 2000,Guyon

et al., 2002,Chapelle et al., 2002].�e dataset consists of two classes with a total of 38 training

samples (27 vs. 11) and 34 test samples (20 vs. 14) with 7129 features. In the following experiments,

aml data is labelled with +1 and all data is labelled with −1.
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4 Basic Experiments

Correlation Analysis In a �rst step, we aim to reproduce the results in [Golub et al., 1999]

using their method.�e obtained heat map (see Figure 4.16) shows the 25 features with the

largest positive and the 25 features with the largest negative correlation coe�cients according to

Golub’s score (see Chapter 2.6.3). Our results slightly di�er from those originally obtained in

[Golub et al., 1999] which has several reasons. First, the publicly available dataset contains 7129

features while Golub et al. originally used no more than 6817. Second, the preprocessing and

normalisation steps remain unclear — the authors claim to have normalised the log expression

levels to zero mean and unit variance for each gene. However, the available data contained

negative expression levels, so taking the logarithm is impossible. Our reproductions came

closest to the originally published by normalising the expression levels to zero mean and unit

variance (without any logarithm).�e correlation coe�cients are biased towards positive values,

i.e. the absolute values of the largest positive correlation coe�cients are larger than those of the

largest negative correlation coe�cients on average.

In the following, we compare the classi�cation performance of svm and sfm on this dataset.

Further, we evaluate the capability of the sfm— with its extensions to so� separability and

multiple repetitions — to identify putatively relevant features as de�ned by Golub’s correlation-

based method.

Performance of the Support Vector Machine Several methods proposed for the analysis

of the leukemia dataset were based on the support vector machine. With a standard linear
hard-margin svm, trained on the 38 training samples, we obtained an error rate of 8.8% on the

34 test samples, i.e. three samples were misclassi�ed.�is is within the range of all previously

published results (see Figure 4.21).�e area under the curve (auc) was exactly one, indicating

that the orientation of the separating hyperplane obtained by the svm was optimal and that the

prediction error could further be reduced by adapting the bias. Introducing so�ness did not

further reduce the test error. A so�-margin svm with C = 1 produced a classi�cation error of

23.5% (8/34) with an auc of 0.99.�is e�ect of so�ness is likely due to the fact that the dataset

is unbalanced and introducing so�ness pushes the decision border towards the smaller class.

Feature Identification and Classification Performance of the Support Feature Machine
�e leukemia dataset shows strong correlations between many of the relevant features, i.e. a high
degree of redundancy, and even single features are useful for prediction to some extent.�us,

we expected the data to be separable within multiple low-dimensional subspaces. We show

this for the �rst 10 repetitions of a hard rsfm, where the number of obtained features ranges

between one and four (see Figure 4.17, (a)). As discussed in Chapter 3.2, if the sfm indeed

�nds the optimal zero-norm minimising weight vector in each repetition, then the number of
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Figure 4.16: Heat map obtained according to Golub’s method. Each column represents a

data point; each row represents a feature. Shown are the 25 genes with largest

and lowest correlation coe�cient. Truncations of gene names are denoted by

dots (. . . ). Genes are typeset in italics if they were not present in the original
feature list [Golub et al., 1999].�e deviations are due to normalisation issues

and an increased number of genes with respect to the original dataset.
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4 Basic Experiments

(a) hard sfm

Repetition 1 2 3 4 5 6 7 8 9 10

#Features 3 1 3 4 2 3 2 3 3 3

Test error (hard sfm) 0.26 0.09 0.21 0.09 0.15 0.32 0.24 0.41 0.18 0.09

(b) so� sfm

Repetition 1 2 3 4 5 6 7 8 9 10

#Features 1 1 2 1 1 1 2 3 1 2

Training error (so� sfm) 0.08 0.00 0.08 0.08 0.08 0.08 0.03 0.05 0.05 0.05

Test error (so� sfm) 0.24 0.09 0.21 0.35 0.18 0.29 0.24 0.12 0.06 0.15

Figure 4.17: Performance of the hard and so� sfm for 10 repetitions on the leukemia dataset.
Within each repetition, the hard sfm identi�ed one to four features that su�ce

to linearly separate the training data. So�ness reduced the number of obtained

features and led to one to three misclassi�ed samples in the training run.

obtained features should be a monotonously increasing function of repetition. However, for

reasons discussed in Section 3.2 this might in practise not always be the case. For the leukemia
dataset, we observed no signi�cant increase of the number of obtained features within the �rst

10 repetitions (see Figure 4.17, (a)). �e corresponding prediction error varied signi�cantly

from repetition to repetition. A very similar behaviour was observed for a so� SFM (C+ = 1,
C− chosen according to the class ratio, i.e. C− = C+ n+

n− , see Figure 4.17, (b)).

To assess whether combining several feature subsets would increase classi�cation perfor-

mance, we reordered the feature subsets returned by the rsfm according to their size, starting

with the smallest feature subset, and trained an svm on the accumulated feature sets. If the sfm

indeed identi�es multiple informative feature subsets, then the prediction performance should

increase if several feature subsets are cumulated.�is was the case for both the hard and the so�

rsfm (see Figure 4.18). Moreover, overall prediction performance was better when a so� rsfm

was used to identify relevant features than when a hard-margin rsfm was used — a behaviour

that is expected if the data is not separable in the intrinsic feature space, i.e. the classes overlap.

To assess whether the rsfm indeed identi�ed the putatively most relevant features within the

�rst 10 repetitions, we compared the obtained features to those identi�ed by Golub et al. (see

Figures 4.19 and 4.20). We observed a large overlap between the obtained feature sets. For the

hard sfm, 17 out of 27 features were also present in Golub’s 50 feature list. For the so� sfm, all

15 features were present in Golub’s 50 feature list.
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4.4 Evaluation on Microarray Data

(a) hard sfm

Repetition 2 5 7 1 3 6 8 9 10 4

#Features 1 2 2 3 3 3 3 3 3 4

#Cumulated features 1 3 5 8 11 14 17 20 23 27

Test error (hard sfm) 0.09 0.15 0.24 0.26 0.21 0.32 0.41 0.18 0.09 0.09

Training error (so� svm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Test error (so� svm) 0.09 0.12 0.06 0.09 0.12 0.18 0.18 0.18 0.18 0.09

auc (so� svm) 0.97 0.97 0.99 0.99 0.99 0.99 0.98 0.99 0.98 0.99

(b) so� sfm

Repetition 1 2 4 5 6 9 3 7 10 8

#Features 1 1 1 1 1 1 2 2 2 3

#Cumulated features 1 2 3 4 5 6 8 10 12 15

Training error (so� sfm) 0.08 0.00 0.08 0.08 0.08 0.05 0.08 0.03 0.05 0.05

Test error (so� sfm) 0.24 0.09 0.35 0.18 0.29 0.06 0.21 0.24 0.15 0.12

Training error (so� svm) 0.08 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.03 0.00

Test error (so� svm) 0.21 0.15 0.12 0.12 0.06 0.06 0.06 0.06 0.06 0.09

auc (so� svm) 0.76 0.94 0.94 0.95 0.97 0.97 0.99 0.97 0.99 0.98

Figure 4.18: Classi�cation performance of an svm trained on accumulated feature subsets

obtained with a hard (a) and a so� sfm (b).

Finally, low-dimensional feature subsets might be found due to incidental separability (see

Chapter 2.5.4). However, this is not very likely. Assume a random normally distributed dataset

of the same size as the leukemia dataset (D = 7129, n = 38).�en, P2,7129,38 (the probability of the
data being separable in just 2 dimensions) is upper bounded by 0.007, so 2-dimensional linearly

separable subspaces will almost never occur by random. Further, the intrinsic dimension is

probably not 7129 but much lower due to the strong correlation among many features.�is,

in connection with the fact that the leukemia dataset is de�nitely not random, provides some

intuition that also subspaces of size 3 and 4 are very unlikely to occur by random. However, an

accurate probability for incidental separability of the leukemia dataset cannot be derived.
In sum, for the leukemia dataset a repetitive support feature machine seems to e�ectively

identify the most relevant genes that allow to separate the two classes. Accumulating multiple

feature subsets as identi�ed by the so� rsfm provide a smoothly increasing prediction accuracy

as estimated by the svm. However, on average both approaches — hard and so� — do not di�er

signi�cantly.
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Figure 4.19: Heat maps obtained by repetitively applying the hard sfm to the leukemia
dataset. Each column represents a data point; each row represents a feature.

Each group of rows represents a feature set identi�ed by one sfm repetition.

�e feature sets are sorted in ascending order according to their size. Overall,

27 genes were identi�ed in the �rst 10 repetitions (see Figure 4.18). Genes are

typeset in italics if they are listed within the top 50 features (of 7129) according
to Golub’s score. It can be seen that there is a signi�cant overlap between both

feature sets (17 out of 27 features were also in Golub’s top 50 features list).

4.5 Conclusions

High-dimensional small sample size data has numerous unintuitive properties — distances

concentrate, hubs emerge, randomdata points have rather deterministic than randombehaviour.

All these theoretical issues have practical impact, e.g. in leave-one-out cross-validation for

support vector machines.�e outcome of such a validation scheme is dramatically biased. In
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Figure 4.20: Heat maps obtained by repetitively applying the so� sfm to the leukemia
dataset. Overall, 15 genes were identi�ed in the �rst 10 repetitions (see Fig-

ure 4.18, (b)) all of which were also listed within the top 50 features according

to the Golub’s score.

Chapter 2.5.5, we proved that the error rate converges to 1 as the dimensionality goes to in�nity.

In this chapter, we derived characteristics to decide whether a �nite random dataset behaves as

if it was in�nite dimensional. Similar characteristics were obtained for real two-class scenarios.

Here, the error rate becomes unstable, i.e. increasing the sample size by a single pattern may

cause the error rate to converge to 0 instead of 1. For so�-margin svms this behaviour is further

ampli�ed. With increasing so�ness — i.e. for small values of C — the data behaves in�nite
dimensional even for lower dimensionality as in the hard margin case. �ese experiments

again motivate the necessity to limit or reduce the dimensionality of any given dataset wherever

possible.

Experiments on arti�cial datasets show that the support feature machine very e�ectively

discards irrelevant features and converges to the true set of features as the number of data

points is increased. In comparison to the closely related svm-based feature selection method

by Weston et al., it almost always obtains a smaller set of features which are more likely

relevant ones and it provides a proper solution already in the very �rst iteration of the linear

programming based algorithm. Additionally, it scales well — i.e. the performance degrades

slowly — even if the dimensionality is increased exponentially.

93



4 Basic Experiments

Resources Methods Features Accuracy

[Golub et al., 1999] and Golub’s score 50 94–100%

[Slonim et al., 2000]

[Mukherjee et al., 1998] Golub’s score and linear svms 7129 97%

999 100%

99 100%

49 94%

[Furey et al., 2000] Golub’s score, svm, dot-product

kernel with diagonal factor

25, 250,

500, 1000

88–94%

modi�ed perceptron 7129 90%

[Guyon et al., 2002] svm, recursive feature elimination 8, 16 100%

[Zhu et al., 2004] 1-norm svm 17 94%

�is work Linear hard-margin svm 7129 91%

Repetitive hard sfm 5 94%

Repetitive so� sfm 5 94%

Figure 4.21:�e results of previouswork on the leukemia dataset and the results we obtained
with the sfm. All methods achieve accuracies between 88% and 100%, however,

the number of included or obtained features di�ers signi�cantly.

In any practical implementation of an sfm the choice of the linear programming solver is cru-

cial. We evaluated the runtime performance of the sfm based on four di�erent solvers and found

the commercial toolboxes mosek and cplex to outperform matlab and glpk.�e runtime

increases linearly both with the number of features and the number of samples. However, for

a particular scenario the runtimes of the alternative linear program formulations — standard

or sparse — may di�er by orders of magnitude. For the basic sfm we observe cplex to be

better suited for large-scale problems (large dimensionality or large sample size) while mosek is

better suited for small-scale problems. For the so� sfm, we found cplex to be better suited for

high-dimensional problems, while mosek is better suited for large sample-size problems. For

both sfm variants, we provided look-up tables to choose the best suited optimiser and linear

program formulation.

Finally, we evaluated the sfm on a real-world dataset. �e leukemia microarray dataset
is a well-known example of high-dimensional small sample size data and has been used by

many authors for benchmarking machine learning methods. Here, we found the repetitive
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sfm— both hard and so� — to e�ectively �lter out relevant features. �e test error was in

the same range as other state-of-the-art methods, while the number of obtained features was

signi�cantly lower. Five features were su�cient to achieve a prediction accuracy of 94%. Besides,

we empirically veri�ed that a so� sfm trades o� a hard sfm and correlation based feature

selection — a repetitive so� sfm successively selects feature sets with a large Golub’s score.
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�ey buy the place up with gold and still
they have all the gold. Swindle in it
somewhere. Piled up in cities, worn away
age a�er age. Pyramids in sand. Built on
bread and onions. Slaves Chinese wall.
Babylon. Big stones le�. Round towers.
Rest rubble, sprawling suburbs, jerrybuilt.
Kerwan’s mushroom houses built of breeze.
Shelter, for the night.
No-one is anything.

«Ulysses», James Joyce

5 Image Processing Excursus: The Gaussian
Pyramid for Illumination Correction

�e previous chapters were related to machine learning and feature selection with the aim to

de�ne a method for �nding the minimum number of features that are necessary to separate two

classes. However, prior to any machine learning method, it is o�en necessary to apply further

preprocessing techniques to remove data acquisition artefacts and to improve the signal-to-

noise ratio. In this chapter, we introduce such a preprocessing technique speci�cally for image

data.

Digital images in many ways su�er from de�ciencies of the hardware that was used for

capturing the image, including sensor, lenses, and illumination. Even with a perfect sensor, a

lens without aberrations and a perfectly homogeneous illumination, the image may still show

an intensity fallo� towards the corners of the image due to natural vignetting. In general, the

illumination inhomogeneity is much more complex [Aggarwal et al., 2001b] and cannot be

described with a simple model.

Illumination correctionmethods have been addressed bymany authors, o�enwith respect to a

speci�c illumination artefact. Vignetting correctionmethods have been proposed e.g. in [Zheng

et al., 2009] and [Kim and Pollefeys, 2008]. In magnetic resonance imaging the correction

components may bemodelled as combinations of smoothly varying basis functions [Likar et al.,

2001]. In face recognition, methods for illumination compensation are used as a preprocessing

step to �nd an invariant face representation [Adini et al., 1997]. An overview of stitching and

blending methods can be found in [Levin et al., 2004].

We propose a novel illumination correction method based on low-pass �ltering using Gaus-

sian pyramids extended by an appropriate image extrapolation to avoid boundary artefacts.
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5 Image Processing Excursus:�e Gaussian Pyramid for Illumination Correction

�is extrapolation step is essentially di�erent to all commonly used techniques. Originally,

it was designed to reduce visible image transitions when stitching images to form larger mo-

saics [Klement et al., 2011]. Such methods are of great importance in virtual material design

and rapid prototyping, where realistically looking scenes are rendered in so�ware to avoid

costly physical models. However, we found that our method — especially the way in which

the boundary of an image is handled in the �ltering step — is also suited for downsampling

3-dimensional fmri data.�is will be further analysed in Chapter 6.4.4.

�is chapter is organised as follows. First, we introduce a Gaussian pyramid-based framework

to remove illumination gradients from intensity images. Second, we apply the framework to

arti�cial and real-world images to show how the proper choice of the boundary extension relates

to intensity artefacts.

5.1 Illumination Correction Framework

For more than two decades, pyramid methods have been used for image processing tasks such

as image enhancement, compression, interpolation and extrapolation of missing image data

and numerous others [Ogden et al., 1985]. Given a gray-valued input image with intensity

values G0(x , y) at discrete locations x ∈ [0,m − 1] and y ∈ [0, n − 1] the Gaussian pyramid is
an e�cient data structure for spectral decomposition: For each level i the image Gi(x , y) is
low-pass �ltered and downsampled by a factor of two to produce the image Gi+1(x , y).�is is
commonly referred to as the reduce operation, i.e.

Gi+1 = reduce(Gi) = (↓ 2)(h ∗Gi) with (↓ 2) f (x , y) = f (2x , 2y)

where the �lter operator ∗ is de�ned as

( f ∗ g)(x , y) =
+∞
∑

i=−∞

+∞
∑
j=−∞

g(i , j) f (x − i , y − j) . (5.1)

�e reduce operation is repeated up to a certain level l .�en, the expand operation is applied
successively to get an image with the same size as G0, but containing only the low frequency
components of Gl :

G′
i−1 = expand(Gi) = 4 h ∗ ((↑ 2)Gi) .

�e weighting function h—the generating kernel— is commonly chosen to be a 5-by-5 binomial
�lter to approximate the Gaussian.�is method for computing the low frequency components

of the input image is more e�cient than direct convolution with a large �lter but also more

e�cient than using standard fast Fourier transform (fft) [Adelson et al., 1984]. In practise, as
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5.1 Illumination Correction Framework

images are of �nite size the �ltering operation (5.1) would be unde�ned for boundary pixels

such that the image needs to be extended by two pixels — either virtually or explicitly — in each

direction when using 5-by-5 �lters. Commonly, the pixels outside the image are set to a constant

value or to the value of the nearest boundary pixel (replicate boundary) or are computed by
assuming a periodic image (circular boundary). �e following general framework allows to
de�ne arbitrary boundary conditions: Given the input image f (x , y) with x ∈ [0,m − 1] and

y ∈ [0, n − 1] we de�ne the extended image f ′(x , y) for x ∈ [−2,m + 1] and y ∈ [−2, n + 1].�e
set of pixels

Px ,y = {(p x
i , p

y
i )}

∣Px ,y ∣−1
i=0

contains all those pixels that in�uence the intensity at (x , y) in the extended area of the image.
�e function gPx ,y(x , y) de�nes how to calculate the intensity at (x , y) from the intensities of
the set of pixels Px ,y.�us,

f ′(x , y) =
⎧⎪⎪
⎨
⎪⎪⎩

f (x , y) if x ∈ [0,m − 1] and y ∈ [0, n − 1]
gPx ,y(x , y) otherwise.

For convenience, we use g(x , y) instead of gPx ,y(x , y). Assuming a replicate boundary, the
intensity values of pixels outside of the image equal those of the nearest boundary pixel:

P
rep
x ,y = {(p x

0 , p
y
0
) ∣

p x
0 = min(max(x , 0),m − 1),

p y
0 = min(max(y, 0), n − 1)

} .

�us, ∣P
rep
x ,y ∣ = 1 for all x and y, and g rep(x , y) = f (p x

0 , p
y
0 ). Analogously, a circular boundary

condition corresponds to

P
circ
x ,y = {(p x

0 , p
y
0
) ∣

p x
0 = x modm,

p y
0 = ymod n

} .

Again, ∣P circx ,y ∣ = 1 for all x and y and g circ(x , y) = f (p x
0 , p

y
0 ). Both assumptions — replicate

and circular — are inapproriate when modelling illumination gradients. When compensating

for vignetting, the application of replicate or circular boundary assumptions overestimates the

intensity gradient at the boundary. We propose to use extrapolation methods that allow to

model smoothly continuing intensity gradients beyond the image boundary. With the above

framework, linear extrapolation would be achieved by:

P
lin
x ,y = {(p x

0 , p
y
0
) , (p x

1 , p
y
1
) ∣

p x
0 = min(max(x , 0),m − 1), p y

0 = min(max(y, 0), n − 1)
p x
1 = min(max(x , 1),m − 2), p y

1 = min(max(y, 1), n − 2)
}
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and

g lin(x , y) = f (p x
0 , p

y
0
) + ( f (p x

0 , p
y
0
) − f (p x

1 , p
y
1
)) ·

XXXXXXXXXXX

⎛

⎝

x − p x
0

y − p y
0

⎞

⎠

XXXXXXXXXXX1

.

A more stable extrapolation involves least-squares regression. Assume Px ,y = {(p x
i , p

y
i )} to

contain a 5-by-5 block of pixels within the image bounds that is closest to the point (x , y). By

minimising ∥Aβ − b∥2

with A =

⎛
⎜
⎜
⎜
⎝

p x
0 p y

0 (p x
0 )
2 (p y

0 )
2 p x

0 p
y
0 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

p x
24 p y

24 (p x
24)
2 (p y

24)
2 p x

24p
y
24 1

⎞
⎟
⎟
⎟
⎠

and b =
⎛
⎜
⎜
⎜
⎝

f (p x
0 , p

y
0 )

⋮

f (p x
24, p

y
24)

⎞
⎟
⎟
⎟
⎠

we obtain the coe�cients of a two-dimensional second order polynomial, modelling the intensity

in the region Px ,y with minimum error.�us, the intensity at (x , y) is approximated by

g(x , y) = (x y x2 y2 xy 1) · β with β = (ATA)−1ATb .

Alternative regression approaches may be applied. However, the complexity of a regression

model, i.e. the number of parameters to be estimated, should be low, as illumination gradients

are by de�nition smooth functions.�e choice of the neighbourhood size is a trade-o� between

stability and runtime, but, as our experiments show, 5-by-5 blocks are su�cient to remove

almost all visible boundary artefacts.�e computational complexity of the regression method

is no crucial factor, as extrapolation is done only for a low number of boundary pixels. So, other

operations, such as �ltering of the whole image, dominate the complexity of the illumination

correction method. In the overall algorithm (see Figure 5.1), extrapolation of boundary pixels is

used in steps (4) and (13).

In the downsampling loop (2–8), the image is �rst extended by two rows and columns in

each direction and then the intensity values of these pixels are determined by extrapolation.

A�er �ltering, the image is cropped to the original size. In the upsampling loop (10–15), the

image is �rst �ltered and then the intensity values of the �rst and last two rows and columns

are recalculated from the inner image by extrapolation. Finally, the low-frequency image is

subtracted from the original image and the mean intensity of the input image is added to obtain

the �nal image with the proper intensity level.

�e removal of low frequent image components with the aforementioned method may alter

the image histogram, especially if the input image contained saturated pixels. �us, further

postprocessing steps, such as histogram matching [Rolland et al., 2000], may be required to

improve the visual impression.
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5.1 Illumination Correction Framework

Input : Intensity image f (x , y), pyramid depth l
Output :Corrected image f ′(x , y)

1 G0 ← f ;
2 for i ← 0 to l do
3 Extend Gi ;

4 Extrapolate image Gi ;

5 Filter image, i.e. Gi ← h ∗Gi ;

6 Crop image Gi to original size;

7 Downsample, i.e. Gi+1 ← (↓ 2)(Gi);

8 end
9 G′

l ← Gl ;

10 for i ← l down to 1 do
11 Upsample, i.e. G′

i−1 ← (↑ 2)G′
i ;

12 Filter image, i.e. G′
i−1 ← h ∗G′

i−1;
13 Extrapolate image G′

i−1;
14 Scale image, i.e. G′

i−1 ← 4 ·G′
i−1;

15 end

16 Calculate mean intensity, i.e. f = ∑x ∑y f (x ,y)
nm ;

17 f ′ ← f −G′
0 + f ;

Figure 5.1: Overall illumination correction algorithm.

With a minor change, the above framework applies to arbitrary non-rectangular images

where the input image f (x , y) is de�ned for a set of pixels I ⊆ [0,m − 1] × [n − 1]. We de�ne
the extended image by:

f ′(x , y) =
⎧⎪⎪
⎨
⎪⎪⎩

f (x , y) if (x , y) ∈ I
gPx ,y(x , y) otherwise.

(5.2)

Here, Px ,y contains those pixels with minimum Euclidean distance to the query point.

�e above method can analogously be applied to 3-dimensional volumetric data — f (x , y)
becomes f (x , y, z), the generating kernel is now a 5-by-5-by-5 binomial �lter, and so on.�us
it can be used for volumetric medical imaging data such as fmri data to remove illumination

gradients or for downsampling.
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5.2 Evaluation on Artificial and Real-World Data

In the following experiments, we used gray-valued and rgb images with intensity values ranging

from 0 to 255. All operations where done in double-precision arithmetic to avoid discretisation

artefacts.

We start with an arti�cial image that contains no �ne-grained texture but a smooth intensity

gradient as in natural vignetting according to the cosine fourth law. �us, the intensity I
decreases with I(α) = I0 · cos4α where I0 is the maximum intensity and α the angle of the
incident light. Based on a full format sensor (36 × 24 mm), a �sh-eye lens with a focal length

of 10 mm and disregarding any further lens aberrations we obtain the image in Figure 5.2,

(a) (I0 = 200, 1280 × 1024 px). Perfect illumination correction would result in a completely
homogeneous image.�e choice of the boundary condition does not a�ect the centre of the

image (see Figure 5.2, (b)–(d)), which shows a slight gradient even a�er correction. However, the

intensities at the image boundaries di�er signi�cantly. A Gaussian pyramid-based illumination

correction (5 levels) with the replicate condition (see Figure 5.2, (b)) causes an intensity drop at

the boundary visible as linear isophotes (contours of equal luminance).�e replicate condition

is outperformed by linear and polynomial extrapolation (see Figure 5.2, (c) and (d), respectively),

both reduce the intensity change to less than 1 at the boundary.�us, the correction error is

below the discretisation error for 8-bit images.

�e very same artefact is visible in real-world textures, as they are used in virtual material

design for rapid prototyping (see Figure 5.3). �e images were acquired with an industrial

colour camera (Baumer txg14c, 1392 × 1040 px) and show clearly visible intensity fallo�s

towards the image corners. �ese fallo�s become particularly visible in image mosaics (see

Figure 5.3, le� column). We applied our illumination correction method to each colour channel

individually and compared the results of the replicate boundary condition and the polynomial

boundary extrapolation. Additionally, we matched the histograms of the corrected images to

the ones obtained from the central quarter of the respective input images. A�er correction,

the low-frequent intensity gradients are successfully removed. However, as in the previous

experiment, the replicate boundary condition introduces edge parallel intensity fallo�s (see

Figure 5.3, middle column). �ey are almost invisible within a single image, but obvious in

image mosaics by dark vertical and horizontal lines. With a polynomial boundary extrapolation

no darkening is visible (see Figure 5.3, right column). Still, the obtained image mosaics are not

visually pleasing. Inhomogeneities and artefacts such as repetitive texture patterns, re�ections,

subtle blurring towards the image corners due to lens de�ciencies, and saturated pixels cause

an arti�cial look of the stitched image mosaics.�is could be improved, e.g. by rearranging

texture patches from the original image. In [Efros and Freeman, 2001], each patch is chosen
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Figure 5.2: Illumination correction without texture.�e input image (a) visualises natural

vignetting according to the cosine fourth law; isophotes form concentric circles.
�e isophotes of the corrected images (second row) show a clear intensity artefact

at the image borders for the replicate condition (b). For both extrapolation

methods (c,d) this is signi�cantly reduced.�e intensity across the middle row

of each image (bottom row, 128 pixels from both sides) shows an intensity peak

of 4.35 (a), 0.36 (c), and 0.08 (d), respectively.
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5 Image Processing Excursus:�e Gaussian Pyramid for Illumination Correction

Figure 5.3: Real world colour textures. �e performance of the illumination correction

is shown for some real-world textured materials (from top to bottom: paper

towel, green linoleum, wood; 1392 × 1040 px, 5 levels) in 2-by-2 image mosaics.

Without illumination correction (le� column) vignetting is most obvious.�e

middle column shows image mosaics a�er correction with a replicate boundary

condition. Obviously, the correction using polynomial boundary extrapolation

(right column) gives the best results.

to optimise an overlapping region with the so far synthesised texture, and, �nally, the blockiness

of the boundary is reduced by �nding the minimum cost path within this region.

5.3 Conclusions

We introduced an illumination correction framework that minimises boundary artefacts by

extrapolating the image boundary in each �ltering step.�e assumption of a smooth intensity

gradient that continues beyond the image boundary motivates that linear and polynomial

extrapolation are better suited than the common replicate or circular conditions. Our framework
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5.3 Conclusions

allows arbitrary extrapolation functions and arbitrary shaped images. However, the complexity

of the extrapolation function should be kept low as intensity gradients are by de�nition low

frequent and slowly varying.

In practise, the standard replicate boundary condition introduces edge parallel darkening

artefacts. Simple extrapolation schemes — linear or polynomial — reduced this artefact below

the discretisation level for 8 bit images. In real-world textures, the method e�ectively removes

intensity gradients, however, postprocessing methods are necessary to obtain visually pleasing

large scale textures.
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When he had taken aim he let �y, and his
arrow pierced every one of the
handle-holes of the axes from the �rst
onwards till it had gone right through
them, and into the outer courtyard.

«Odyssey», Homer

translated by Samuel Butler

6 Mindreading: Classification and Feature
Selection for Brain Activity Data

Brain-computer interfaces, neuromarketing, lie detection, and mindreading based on electro-

physiological or neuroimaging data have been established in cognitive neuroscience research

during the last years (see [Haynes, 2011] for a recent review) but are still far from being consid-

ered for widespread application. Several studies— some based on electroencephalography (eeg)

others on functional magnetic resonance imaging (fmri) or even invasive methods — have

shown that brain reading, i.e. the prediction of a certain behaviour from neural activity, is feasi-

ble to some extent.�e challenges range from making costly and monstrous imaging devices

a�ordable to information theoretic considerations and data analysis techniques. Surprisingly,

although the human brain is thought to process information in highly complex neural networks,

multidimensional machine learning methods have only recently been introduced for analysis.

In this comparatively new �eld of research, the sfm, being an intrinsically multidimensional

method, might provide new insight in how information in general is processed in the human

brain.

So far, our focus was to qualify the sfm as a method to identify the least number of features

to discriminate two classes. Now, we aim to show that the sfm can reveal meaningful results

from neuroimaging data. In particular, the sfm will be used to address �ve questions:

1. How well may brain states be discriminated? Given solely brain activity data of a person
in a particular mental state — is it possible to tell whether the person felt joy or sadness?

Traditionally, univariate statistics have been the method of choice, i.e. individual brain

locations were analysed whether they are suited to decode the mental state. Only recently,

multidimensional pattern recognition has become in vogue and is still at its infancy
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[Haynes and Rees, 2006]. A�ective states are supposed to constitute complex patterns

whereas motor control tasks can already be predicted accurately on a single-trial basis

with univariate methods [Dehaene et al., 1998].

2. How many voxels are at least required to discriminate functional brain states and what is
the most informative voxel set? In neuroimaging, one is very o�en not only interested
whether two brain states can be discriminated, but also where themost informative voxels

are located. Previous studies that used multivariate decoding to compare structural or

functional maps have o�en reduced these maps in an initial univariate step to those

voxels that meet certain criteria, such as stability across trials [Mitchell et al., 2008].

However, such univariate criteria do not capture multidimensional dependencies and

likely overestimate the true number of voxels required to discriminate between brain

states, while voxels that carry signi�cant information only in combination with others

might be missed. In contrast, multivariate feature selection methods such as the sfm

combine feature selection and classi�cation and determine the smallest set of voxels that

discriminates between two brain states.

3. Howmany voxels carry relevant information and what are the least informative voxels? �e
human brain is characterised by its organisation into multiple hierarchical and parallel

neural networks, many of which carry similar information. Due to the high-dimen-

sional small sample size character of neuroimaging data the exact number of voxels

that carry information alone or in connection with others cannot be determined as the

number of data points is usually insu�cient to capture all sources of variance and to

accurately describe the decision border. However, the proportion of informative voxels

may be estimated with some simpli�cations and heuristics.�is should allow to capture

tendencies and to compare di�erent types of functional and pathological brain states.

4. How do brain states evolve over time? Brain states are no instantaneous events but evolve
over time. �is behaviour should be re�ected both in how well these states may be

discriminated and in the number of informative voxels.

5. What is theminimal resolution for discriminating brain states and how does the performance
degradewith the resolution?�e analysis of brain activity data involvesmany preprocessing
steps, such as registration, normalisation and smoothing. Being essential for comparing

activity across participants, these steps reduce the possibility to recognise �ne-grained

patterns. However, prominent and global patterns should be preserved even if the data is

downsampled to a lower resolution.

�e following chapter is organised as follows. First, we give an overview of what constitutes
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brain activity data and how it is commonly processed. We summarise previousmachine learning

based methods for the analysis of brain activity data and motivate why an sfm-based approach

is promising. Second, we analyse whole brain activity with a mass univariate method, a very

simple randomised support vector approach, and the sfm. In all analyses, we focus on cross-

participant prediction. We aim to identify informative activity patterns and to predict the

brain state for participants that were not included in the training data. For a simple motor

task — pressing a button with either the le� or right thumb — we show that an sfm-based

approach identi�es similar brain regions to be relevant as classical mass univariate methods

do. Additionally, we show that our approach is suited to identify the number of informative

voxels and the number of voxels that are non-informative. However, univariate statistics are by

de�nition inappropriate for analysing complex multidimensional patterns as they are supposed

to occur in emotional brain states. Finally, we investigate the performance of the support

feature machine in discriminating emotional brain states. We not only show how well the �ve

fundamental emotions — joy, anger, disgust, fear and sadness —may be discriminated, but also

that a�ective information is encoded in whole brain patterns. Moreover, we show that emotions

spread over time such that �nally most of the brain is involved.

6.1 Data and Preprocessing

Functional magnetic resonance imaging (fmri) measures neural activity by the blood-oxygen-

level dependent (bold) activity. �e standard fmri preprocessing steps are mentioned here

to illustrate why the analysis of brain states — especially across participants — is extremely

complex. Due to anatomical di�erences between participants, technical restrictions of magnetic

resonance imaging and information theoretic limitations, we expect brain states to be even

better separable than what we inferred from the data. Small-sized activity patterns might either

be invisible to fmri scanners or they may get blurred during the preprocessing.

Common fmri scanners acquire a 3-dimensional image in a series of 2-dimensional slices.

�us, �rst and last slice have a time delay of almost the repetition time tr (e.g. 3 seconds).�is

is accounted for by slice acquisition time correction— implemented by shi�ing and interpolating
the data at consistent timestamps. Next,motion correction realigns the whole brain volume to a
common reference by rigid body transformations. Spatial normalisationmaps the brain volume
to a standard brain and spatial �ltering improves the signal to noise ratio but may also blur �ne
grained activation regions. Grand mean scaling refers to a normalisation method that divides
each voxel value by the mean of all values within the same scanning session. �e obtained

sequence of brain activity volumes may be further condensed as beta images by estimating the
activity change across a whole trial.�e volumetric data is linearised to �t into standard data
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analysis and machine learning frameworks. For visualisation, the activity data is mapped onto

a standardised brain anatomy to allow for spatial interpretation of the data.�e outcome may

then be visualised as brain slices, 2-dimensional projections or directly as a rotatable object

in an interactive framework. Currently, the standard brain template is the icbm152, being the

average of 152 individual mri scans.

Image preprocessing and bold activity estimation was conducted with spm5— a free so�ware

package for the analysis of brain imaging data sequences (Wellcome Department of Imaging

Neuroscience, London, UK). Brain activities were visualised based on the BrainNet Viewer

(National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University,

China).

6.2 Machine Learning Approaches

Multidimensional machine learningmethods have only recently become in vogue in the analysis

of fmri data. In most studies, brain activity is averaged over space and time and frequently

across participants to achieve proper signal-to-noise ratios [Haynes and Rees, 2005], but with

the drawback of loosing information on spatial or temporal patterns.

Most fmri studies measure voxel-wise correlation coe�cients both for selecting informative

voxels and for reporting the signi�cance of the �ndings.�is mass-univariate approach has

several caveats as illustrated in a meta-analysis of 55 fmri studies [Vul et al., 2009]. Based

on reliability assumptions the highest expected correlation is claimed to be 0.74, which is

surprisingly o�en exceeded in the surveyed studies.�e non-independence error was identi�ed
to be the major reason for this discrepancy. Half of the surveyed studies used the same data for

selecting a subset of voxels being correlated to the behaviour and reported the correlation on

the very same data — no independent test data was used for veri�cation. In machine learning

terms, this corresponds to reporting the training error instead of the test error — the latter is

regularly worse. vul et al. propose two alternatives to avoid the non-independence error. Either,

one should select voxels before examining behavioural data or one should split the data — one

subset should be used for selecting voxels the second one for computing the actual correlation.

General Linear Models In classical fmri analysis, the general linear model (glm) [Friston
et al., 1995] is the most frequently applied method and o�en acts as a baseline model for

comparing alternative approaches. It models the activity in each voxel in a series of fmri

volumes by a linear combination of basis functions to derive a statistical parametric map (spm).
Such maps are suited to visualise task-speci�c di�erences in brain activity and for statistical

inference.
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Independent Component Analysis Traditionally, independent component analysis (ica)
has been applied in the �eld of blind source separation. Time-dependent fmri data can be

regarded as a complex mixture of high-frequent and low-frequent, task-speci�c and non-task

speci�c activation patterns. icahas successfully been used to extract such task-speci�c activation

patterns [McKeown et al., 1998] and to extract functional cortical maps solely from their time-

dependent activation [Bartels and Zeki, 2004]. Interestingly, a recent study has shown that

ica can e�ectively decompose neuroimaging data not due to its ability to select independent

components but because it �nds sparse components [Daubechies et al., 2009]. Consequently,

the authors recommend to use algorithms that are in particular designed for sparsity to analyse

fmri data — the sfm is such a method.

Linear Discriminant Analysis Conventional fmri scanners acquire brain volumes at a res-

olution of 3 × 3 × 3 mm. �us, it seems infeasible to characterise patterns below this spatial

resolution such as the orientation-selective regions in the visual cortex V1. However, by combin-

ing univariate statistics and linear discriminant analysis the orientation of a visual stimulus can

be predicted from such images [Haynes and Rees, 2005]. In this study, the most discriminative

individual voxels were identi�ed by applying voxel-wise t-tests. Assuming normal distributed
classes with equal covariance matrices, a novel data point was assigned to the class with smallest

Mahalanobis distance.

Support Vector-based Approaches �e searchlight approach [Haynes et al., 2007] places
spherical clusters — the searchlights — on each voxel, and the voxels within each sphere form

a single data point.�en, standard linear support vector machines are used for decoding the

brain state.

In [Davatzikos et al., 2005], the authors successfully discriminated emotional brain states

using a whole-brain support vector classi�er with Gaussian kernels even if the data was subsam-

pled and averaged.�e most discriminative regions were identi�ed, however, no information

was obtained about the minimum number of voxels that are necessary to discriminate two

states.

Support vector machines for classifying whether a person has seen a fearful or a neutral

face [Pessoa and Padmala, 2007] were found to perform signi�cantly better if voxels from

multiple brain regions were considered instead of voxels exclusively from a single region.�e

authors concluded that information is distributed across multiple regions, and multivariate

approaches were proposed to exploit the distributed information in a synergistical way — better
than any univariate approach could do.�e support feature machine exactly provides such a

synergistical way.
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�e major di�erence between the di�erent support vector-based approaches is the way in

which the dimensionality of the input data is reduced prior to training. Besides subsampling,

other techniques such as explicit feature selection or principal component analysis (pca) have
been used successfully. In [MourãoMiranda et al., 2005], the authors used loss-less pca,

i.e. the input data was rotated such that the axes of the transformed coordinate system were

parallel to the eigenvectors of the raw data. A�erwards, linear support vector machines were

trained to discriminate brain activity data.�e obtained weight vector may then be interpreted

as a discriminating volume— large positive and negative values indicate high activity in the �rst
and second task, respectively.

Alternative Imaging Methods Today, fmri is still expensive, non-portable and inapplicable

in natural environments. It cannot be integrated into a ubiquitous brain-computer interface.

A more user-friendly interface could rely on functional near-infrared spectroscopy (fnirs) to
measure the cortical activity, however, with a much lower spatial resolution. In a recent study

[Hosseini et al., 2011] based on fnirs data, svms were used to predict whether a subject likes or

dislikes a particular image. A�er reducing the dimensionality of the input data by pca, a linear

svm achieved a prediction performance of 72.9% for attractive and 68.3% for unattractive stimuli.

Here, the svm captured the multidimensional dependencies, however, no cross-participant

prediction is yet feasible due to the imaging method.

Affective States Only recently, the general feasibility of decoding a�ective states even across

participants has been shown [Baucom et al., 2012]. In a preprocessing step, the number

of voxels was reduced to the set of most stable voxels — i.e. those voxels that showed the

most consistent variation across all stimuli [Mitchell et al., 2008]. A logistic regression

classi�er for discriminating valence and arousal levels performed signi�cantly above chance.

�e authors conclude that information on valence and arousal are represented in whole brain
activation patterns. �e highest accuracy was obtained using 400 voxels (3 × 3 × 3 mm) for
within-participant prediction and 2000 voxels for across-participant prediction.

�ere is strong evidence that a�ective information �ows between communicating brains

[Anders et al., 2011], i.e. emotion-speci�c information is encoded in a similar way in the sender’s

and the perceiver’s brain but with temporal delay. Likewise, the brain activity between a speaker

and a listener is coupled and the amount of coupling might be used as a measure for the success

of the communication [Stephens et al., 2010].
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6.3 Localised Brain Activity

6.3 Localised Brain Activity

In the following, we demonstrate how the repetitive sfm (rsfm, see Chapter 3.2) can be used

to e�ectively identify informative voxels in an fmri dataset recorded during a simple motor

task [Klement et al., 2013]. Participants were asked to press a button in their le� or right hand.

�e goal was to identify voxels that discriminate between le� vs. right button presses. We will

see that the rsfm �nds the relevant voxels (as identi�ed with standard univariate approaches)

with high accuracy and might be used to derive an estimate of the total number of informative

voxels.

Data acquisition We used fmri data that was acquired from 12 healthy female participants

(mean age 21.6 years, range 19 to 26 years) in a 3 Tesla scanner (Philips Medical Systems).

Sixty-seven functional whole-brain images were acquired during each of a total of four runs per

participant (T∗2 weighted echo-planar images, 42 horizontal interleaved slices, tilt angle -30○,
3 mmslice thickness, in plane resolution 3 × 3 mm2, fov 240 × 240 mm2, te 35 ms, tr 3000ms).

Participants were shown short text messages (either happy or sad) through fmri-compatible
video goggles and asked to decidewhether theywanted to press a button in their le� or right hand

immediately whenever a text message appeared on the screen, but to hold their decision in mind

and to execute their decision only when a go-signal (two arrow heads, one pointing to the le�

and one pointing to the right) appeared on the screen. Participants were instructed to respond

as quickly as possible when the go-signal appeared by pressing the selected button with their le�

or right thumb, respectively. During each run, 12 trials (mean duration 5 scans) were presented

in pseudo-randomised order, using the following timing parameters: stimulus presentation time

1000ms; delay 2000 or 3500 ms; go-signal 300 ms; inter-trial interval 8700 to 13200ms (steps

of 1500 ms).�e study was approved by the Ethics Committee of the University of Lübeck.

Preprocessing �e preprocessing included removal of the �rst two functional scans of each

run, slice acquisition time correction, concurrent spatial realignment and correction of image

distortions, normalisation into standard mni space (Montreal Neurological Institute), and

spatial smoothing with an 8 mm fwhm (full width half maximum) Gaussian kernel. Individual

activity maps for le�-hand and right-hand button presses were estimated for each participant

and run using a standard glm procedure. In short, the amplitude of each participant’s voxel-wise

brain activity was estimated with an individual linear model that contained separate regressors

for the predicted time course of bold activity associated with le� and right button presses (stick

functions convolved with a canonical hemodynamic response function as provided with spm5).

Additional regressors were included in these models to account for low-frequency dri�s (cut-o�

period 128 s) and bold activity in response to text messages. High-frequency artefacts were
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6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

accounted for by removing �rst-order autocorrelations.�is procedure revealed eight activation

maps for each participant (four for le�-hand button presses and four for right-hand button

presses).�e overall dataset — in the following referred to as the buttonpress dataset — consists
of 96 brain volumes (2 conditions × 12 participants × 4 runs) each of which contains 50989

in-brain voxels identi�ed with the brain mask published by [Tzourio-Mazoyer et al., 2002].

Mass Univariate Analysis �e traditional approach to identify voxels in fmri data that show

di�erent levels of activity during two conditions (i.e. that are discriminative) are voxel-wise

univariate analyses [Holmes et al., 1997]. Here, we used such a mass univariate approach

to assess the overlap between voxels identi�ed as being discriminative with the univariate

approach and those identi�ed as being relevant with sfm-based repetitive feature selection.

For this, activation maps of each participant were averaged for each class and fed into a group-

level voxel-wise paired t-test, and the overlap between voxels with high absolute t-values and
voxels identi�ed as being relevant with the rsfm was assessed.�is approach is very similar to

Golub’s correlation-based feature selection (see Chapter 2.6.3). For two equally-sized classes,

Signi�cant voxels

Anatomical region name le� right

Postcentral gyrus 25.0% (319) 16.0% (204)

Precentral gyrus 7.4% (94) 7.5% (96)

Cerebellum VI 4.1% (52) 6.1% (78)

Inferior parietal lobe 5.3% (67) 1.3% (16)

Cerebellum IV/V 2.5% (32) 3.1% (39)

Putamen 1.5% (19) 0.0% (0)

Supplementary motor area 1.3% (17) 0.0% (0)

Superior parietal lobe 1.3% (16) 1.3% (16)

Pallidum 1.0% (13) 0.0% (0)

Supramarginal gyrus 0.9% (11) 0.4% (5)

Unassigned 9.0% (115)

Other regions (< 1%) 5.1% (65)

Figure 6.1: Discriminative voxels as identi�ed by the mass univariate approach (2.5% most

signi�cant voxels, voxel-wise t-statistics with p ≤ 0.001). Anatomical regions
were identi�ed by an automatic labelling procedure [Tzourio-Mazoyer et al.,

2002, Schmahmann et al., 1998]. Only regions that contain at least 1% of all

signi�cant voxels across hemispheres are listed.�e number of discriminative

voxels in each region are shown in brackets.
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6.3 Localised Brain Activity

Golub’s correlation coe�cient and Student’s t-value are equivalent. For comparison with the
sfm, the top 2.5% of all voxels (n = 1274, voxel-wise p ≤ 0.001) were deemed discriminative
(see Figure 6.4; note, in this �gure the results of the mass univariate method are compared to

those later obtained by the sfm). An automatic labelling procedure based on the anatomical

parcellation of the mni single-subject brain [Tzourio-Mazoyer et al., 2002, Schmahmann

et al., 1998] (see Figure 6.1) con�rmed that three major anatomical regions — the precentral
gyrus (primary motor cortex), the postcentral gyrus (primary somatosensory cortex) and a region
in the cerebellum— contain discriminative voxels.

Support Vector Machine with Random Feature Selection To obtain a baseline estimate

of classi�cation performance, we trained a linear hard-margin svm on randomly chosen

d-dimensional feature subsets (d = 1, 2, 4, . . . , 32768) with 44 samples in each class (11 par-

ticipants × 4 runs per class) in a leave-one-participant-out cross-validation scheme. �is

procedure was repeated 1000 times for each subset size. As can be seen in Figure 6.2, the test

error was below chance for the large majority of repetitions even if only a single dimension was

selected at random, and close to zero if more than 1000 features were included, indicating a

strong degree of redundancy in the data.
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Figure 6.2: Randomised support vector approach.�e boxplot visualises the distribution of

the leave-one-participant-out cross-validation error (median, lower and upper

quartile, outliers). For a sample size of 32, the error is below chance in every

single run.
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6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

Results with the Repetitive Support Feature Machine To reduce runtime, the data was

down-sampled for use with the sfm. Originally, the data contains 50989 dimensions. We chose

a down-sampling factor of two in each direction, which reduced the data by a factor of eight

(precisely, the number of voxels was reduced to 6362 due to the irregular shape of the brain).

Given that the data was spatially smoothed with an isotropic kernel of 8 mm fwhm (full width

at half maximum) during preprocessing, this should not reduce the information content of the

data. Using the Gaussian pyramid with an optimised boundary condition during �ltering (see

Chapter 5) the number of voxels may be reduced even further (see Chapter 6.4.4).

To estimate the fraction of informative and uninformative voxels in this dataset, we plot-

ted (i) the size of the feature subset, (ii) the test error of the rsfm and (iii) the test error of

an svm trained on the features that remained in the dataset a�er all features identi�ed by the

sfm in a particular repetition had been removed (see Figure 6.3). In this particular dataset,

we used a so� svm to test whether the remaining features a�er each run still contained in-

formation relevant for classi�cation. �e optimal so�ness of this svm was estimated by a

similar leave-one-participant-out cross-validation scheme as used for the rsfm.�us, for each

set of remaining features computed on 2 × 11 × 4 = 44 vs. 44 samples we trained the svm on

2×10×4 = 40 vs. 40 samples and tested on the 11th subject. Once the optimal so�ness parameter

was determined, the svm was retrained on all 11 subjects and tested on the 12th subject.�is

way, a function representing the test error of an optimised so� svm over repetitions was derived

for each of the 12 participants.

Since we used a leave-one-participant-out scheme for cross-validation, the feature set size and

error functions obtained during each validation do not necessarily have the same length (i.e. the

number of repetitions until all features are consumed may di�er across validation runs).�us,

these functions need to be re-sampled before averaging. We chose a re-sampling procedure in

which feature subsets were �rst sorted according to their size and each x ∈ 1, . . . , d was then
assigned with the performance value of the last repetition in which less than x features were
removed.�ese piece-wise constant curves were then averaged across all leave-one-participant-

out cross-validations.

A comparison of voxels obtained by the rsfm and voxels identi�ed as being discriminative

by univariate t-statistics revealed a large overlap (see Figure 6.3, top right and Figure 6.4).�is
indicates that the rsfm very quickly consumes signi�cant features before other features are

included. �e smallest feature subset contained 2.4 voxels on average.�e largest feature subset

contained an average of 77.7 voxels, which is below the upper bound (i.e. number of data points

(n = 88 samples) minus 1 (vc-dimension of a linear classi�er), see Figure 6.3, top le�).�e test
error of both the rsfm and the svm converged to chance level as more and more features were

discarded (see Figure 6.3, bottom). However, due to large repetition-to-repetition �uctuations
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(c) Test error (single-run sfm)
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(d) Test error (svm on remaining features)

Figure 6.3: Analysis of the buttonpress dataset with the rsfm and an svm trained on the
remaining features. Shown are the average number of relevant features (a), the

average overlap between the features identi�ed with the repetitive sfm and

those that were found to be discriminative with voxel-wise t-statistics (2.5%
most signi�cant features, p ≤ 0.001) (b), the average leave-one-participant-out
cross-validation error of the sfm (c), and the average leave-one-participant-out

cross-validation error of an svm trained on the remaining features (d). To

approximate the number of features (voxels) that carry information, a sigmoid

function (dashed) was �tted to the test error function of the svm.�e straight

line (dash-dotted) through the in�exion point of the sigmoid crosses chance

level at 35% ( ), indicating that no more than 35% of all voxels in this dataset

carry movement-speci�c information.
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6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

Figure 6.4: Voxels found to be relevant for discriminating the two tasks in the buttonpress
experiment. Discriminative voxels as identi�ed by voxel-wise t-statistics (2.5%
most signi�cant voxels, p ≤ 0.001) are red, voxels (features) found to be relevant
by the rsfm (cut-o� 2.5% of all voxels) are green. Overlapping regions are yellow.

Colour intensity indicates depth below surface, i.e. bright red regions are close to

the surface, while faint red regions are located deeper in the brain. Additionally,

for the rsfm, colour intensity indicates how consistent a speci�c voxel was

chosen across participants, i.e. bright green regions were consistently identi�ed

for all le�-out-participants, while faint green regions were only identi�ed in few

cross-validation runs. Discriminative voxels are mainly located in the precentral
and the postcentral gyri (motor and somatosensory cortex), with a high degree
of overlap between the two methods.�e cerebellum is not shown.
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6.3 Localised Brain Activity

of the test error, the point where the test error is no longer di�erent from chance is di�cult to

derive, particularly for the rsfm. To approximate that point, we �tted the sigmoid function

f (x) = α0 +
α1

1 + e−
x−α2

α3

to the test error function of the svm.�e coe�cients α0 to α3 were estimated using least-squares
approximation.�e point at which the remaining features contained no more information was

de�ned as the intersection point of a straight line through the in�exion point with the same slope

as the sigmoid at that point and chance level (Figure 6.5, bottom right). In the buttonpress dataset
this point was reached when approximately 35% of all voxels were discarded. Figure 6.5 shows

how the distribution of voxels identi�ed by the rsfm as being relevant evolves over repetitions.

Given our estimate that about 35% of all voxels carry information relevant for classi�cation, the

second last plot in the second row marks that point where all (even weakly) informative voxels

(a) 1% most relevant voxels (b) 2.5% (c) 5%

(d) 20% (e) 35% (f) 50%

Figure 6.5: Location of themost relevant voxels in the buttonpress dataset as obtained by the
sfm. Shown are those voxels that were consistently selected within the 12 cross-

validation runs as the most relevant voxels, i.e. they were among the �rst 1%

of the selected features (a), 2.5% (b) and so on. Obviously, the brain activity

remains localised in two clusters (a–d) up to a certain amount of features.�en,

more and more weakly relevant features from all over the brain are obtained.
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6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

have been identi�ed (marked in red). As can be seen, these voxels were mainly located in two

dense clusters in the motor and somatosensory cortex of both hemispheres. Pushing the rsfm

close to and beyond this limit returned voxels that were more or less scattered across the whole

brain because more and more weakly informative or non-informative features were included.

�is provides additional evidence that our estimate of the fraction of relevant voxels is a valid

approximation of the amount of truly informative voxels.

In sum, our results show that the proposed repetitive application of the sfm identi�es in-

formative features very e�ectively even in datasets that contain several informative feature

subsets that all permit linear separation such as the fmri dataset used here. Analysing the test

error function of an svm trained on the features discarded by the rsfm in each run revealed an

estimate of the fraction of informative voxels that converges with neuroscienti�c considerations.

It is important to note that the accuracy of this estimate relies heavily on the selectivity of the
applied feature selection method. If the method used for feature selection falsely identi�es

irrelevant (uninformative) features as relevant, then the proportion of relevant features in the

dataset is overestimated. Since the sfm is very restrictive in the way it selects relevant features

and returns a high percentage of truly relevant features (see Chapters 4.2 and 3.3), the estimate of

informative features obtained with the rsfm likely represents an unbiased estimate. As we use a

repetitive approach, the estimate of the proportion of informative features does not strongly rely

on the sensitivity of the feature selection — even if only one (truly relevant) feature is obtained
in each repetition, the proportion of informative voxels will still be estimated without bias.

6.4 Emotional Brain States

�e buttonpress dataset can e�ectively be decoded with mass univariate methods; the sfm-based
approach is equally well suited. But, the sfm is an intrinsically multidimensional method and

may therefore be used for complex activity patterns such as in the following study.

Data Acquisition A�ective brain states were analysed based on fmri data from six healthy

female participants (mean age 22 years, range 20 to 25 years). Participants gave their written

informed consent prior to participation and the study was approved by the ethics committee of

the University of Tübingen.

Each participant was informed that her task would be to submerge herself into emotional

situations and to facially express her emotional feelings as soon as they arise. To maximise the

participants compliance, they were told that their romantic partner would watch them and that

he would have the task to share her feelings. Scanning consisted of ten runs; each run comprised

four 20 s trials during which a�ective information was to be expressed, and �ve periods during
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6.4 Emotional Brain States

which the participant was instructed to relax (24 s, 22 s, 18 s, 22 s, 18 s). A single emotion

(joy, anger, disgust, fear, or sadness) was used in each run in order to avoid rapid switches
between con�icting emotions. A single printed word (e.g. joy) signalled emotion periods to the
participant.�e order of emotions was chosen by the participant, with the restriction that no

emotion could occur twice in a row and that each emotion had to be chosen once before an

emotion could be chosen a second time. Ninety-two functional images covering the whole brain

were acquired during each run (T∗2 weighted echo-planar images, 1.5 Tesla Siemens Avanto,
Erlangen, Germany; tilt angle -30○, 64 × 64 matrix, in plane resolution 3 × 3 mm, 24 axial slices,

interleaved order, slice thickness 6 mm with no gap, te 40ms, tr 2000ms).

Preprocessing Preprocessing included slice acquisition time correction, concurrent spatial

realignment and correction of image distortions by use of individual static �eld maps, normali-

sation into standard mni space and spatial smoothing (10 mm Gaussian kernel). For each 20 s

trial, a single beta image was estimated using a glm.�e �nal dataset contained 240 datapoints

(6 participants × 8 trials × 5 emotions) with 41642 voxels.

6.4.1 Pairwise Emotion Analysis

First, we focus on discriminating pairs of emotions, before we proceed with classifying one

emotion against all others. In all settings, prediction performance across participants was

evaluated by training on all but one participant and testing on the remaining — i.e. 6 cross-

validation runs, 80 data points for training (5 participants × 8 trials × 2 classes), 16 data points

for testing (1 participant × 8 trials × 2 classes).

Randomised Support Vector Machine As for the buttonpress dataset we trained linear
support vector machines on randomly selected d-dimensional voxel subsets (see Figure 6.6).
We observed that the pair joy vs. sadness was best separable by a linear svm, while the pairs fear
vs. sadness and anger vs. sadness were almost inseparable. Although emotions are supposed to
involve multiple regions, in some cases even a single feature may be suited for separation — the

average cross-validation error was less than chance.�is randomised approach gives a hint to

which emotions are well separable and which are not.

First Iteration of the SFM �e very �rst iteration of an sfm on the emotion dataset revealed
that on average 2.3 to 8.0 features were required to separate the training data (see Figure 6.7, b).

�e average test error ranged from 0.16 (joy vs. anger) to 0.42 (fear vs. sadness).�e emotion
joy was well separable from all other emotions — except for disgust. To assess incidental
separability, we randomly permuted the class labels for each participant separately and repeated

121



6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

Numbero f randoml ysel ectedvoxel s

Le
av

e−
on

e−
pa

rt
ic
ip
an

t−
ou

tt
es
te
rr
or

anger vs. disgust
joy vs. anger

anger vs. fear

anger vs. sadness

joy vs. disgust

disgust vs. fear

disgust vs. sadness
joy vs. fear

joy vs. sadness

fear vs. sadness

1 2 4 8 16 32 6
4

12
8

2
56 51
2

10
2
4

2
0
4
8

4
0
9
6

8
19
2

16
38
4

32
7
6
8

4
16
4
2

0

0.1

0.2

0.3

0.4

0.5

Number of randomly selected voxels

L
e
a
v
e
-o
n
e
-p
a
rt
ic
ip
a
n
t-
o
u
t
te
st
e
rr
o
r

Figure 6.6: Randomised support vector approach for pairwise emotion analysis. Shown are

the mean leave-one-participant-out cross-validation errors for all 10 emotion

pairs (averaged over 1000 repetitions).
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6.4 Emotional Brain States

the experiment (see Figure 6.8). Indeed, chance level was 0.5, while the number of relevant

features ranged from 15.5 to 16.3.�is is far less than the theoretical upper bound of 79 which is

the vc-dimension of a linear classi�er trained on 80 data points in a high-dimensional space.

Obviously, the large number of dimensions causes the solution space to contain solutions with

comparatively few features. Furthermore, although the test error of fear vs. sadness is very
poor (0.42), the number of relevant features (7.5) is far below chance level. In comparison to

the randomised svm approach, the sfm produces an error only slightly worse than the error

produced by an svm on the complete feature set. For joy vs. anger, the sfm identi�es 2.3 features
on average with a test error of 16%, while an svm trained on the overall feature set produces

only a slightly larger test error of 18.8%.

(a) Number of obtained features

2nd Emotion

1st Emotion Joy Anger Disgust Fear Sadness

Joy — 2.3 (± 0.5) 4.8 (± 0.7) 3.5 (± 1.1) 4.0 (± 0.6)

Anger 2.3 (± 0.5) — 5.3 (± 0.9) 7.5 (± 0.8) 6.8 (± 1.1)

Disgust 4.8 (± 0.7) 5.3 (± 0.9) — 4.7 (± 0.7) 8.0 (± 2.2)

Fear 3.5 (± 1.1) 7.5 (± 0.8) 4.7 (± 0.7) — 7.5 (± 0.5)

Sadness 4.0 (± 0.6) 6.8 (± 1.1) 8.0 (± 2.2) 7.5 (± 0.5) —

(b) Cross-validation error

2nd Emotion

1st Emotion Joy Anger Disgust Fear Sadness

Joy — 0.16 (± 0.15) 0.33 (± 0.12) 0.19 (± 0.18) 0.23 (± 0.14)

Anger 0.16 (± 0.15) — 0.25 (± 0.16) 0.24 (± 0.14) 0.34 (± 0.13)

Disgust 0.33 (± 0.12) 0.25 (± 0.16) — 0.28 (± 0.12) 0.32 (± 0.19)

Fear 0.19 (± 0.18) 0.24 (± 0.14) 0.28 (± 0.12) — 0.42 (± 0.19)

Sadness 0.23 (± 0.14) 0.34 (± 0.13) 0.32 (± 0.19) 0.42 (± 0.19) —

Figure 6.7: Leave-one-participant-out cross-validation results for each emotion pair using

the sfm. Shown are the number of obtained features (a) and the error rate (±

standard deviation) (b). Obviously, joy can be distinguished very much better
from other emotions than sadness or anger, e.g. joy is separable from sadness
with an error of 23% using only 4.0 voxels, while fear and sadness are separable
with an error of 42% using 7.5 features on average.
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6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

(a) Number of obtained features

2nd Emotion

1st Emotion Joy Anger Disgust Fear Sadness

Joy — 15.6 (± 2.5) 16.1 (± 2.7) 16.3 (± 2.4) 15.5 (± 2.6)

Anger 15.6 (± 2.5) — 15.7 (± 2.4) 15.5 (± 2.2) 16.0 (± 2.4)

Disgust 16.1 (± 2.7) 15.7 (± 2.4) — 15.8 (± 2.7) 15.9 (± 2.1)

Fear 16.3 (± 2.4) 15.5 (± 2.2) 15.8 (± 2.7) — 16.0 (± 2.3)

Sadness 15.5 (± 2.6) 16.0 (± 2.4) 15.9 (± 2.1) 16.0 (± 2.3) —

(b) Cross-validation error

2nd Emotion

1st Emotion Joy Anger Disgust Fear Sadness

Joy — 0.50 (± 0.11) 0.50 (± 0.11) 0.52 (± 0.10) 0.50 (± 0.11)

Anger 0.50 (± 0.11) — 0.49 (± 0.11) 0.48 (± 0.10) 0.48 (± 0.11)

Disgust 0.50 (± 0.11) 0.49 (± 0.11) — 0.50 (± 0.11) 0.48 (± 0.10)

Fear 0.52 (± 0.10) 0.48 (± 0.10) 0.50 (± 0.11) — 0.49 (± 0.10)

Sadness 0.50 (± 0.11) 0.48 (± 0.11) 0.48 (± 0.10) 0.49 (± 0.10) —

Figure 6.8: Leave-one-participant-out cross-validation results for each emotion pair using

the sfm a�er randomly permuting emotion labels within each participant.

Shown are the averaged results of 20 random permutations. As expected, we

observe an average error rate of 50%, but the number of features remains low

(15.5 – 16.3) compared to the theoretical upper bound of 79 (vc-dimension of

a linear classi�er trained on 80 data points).�us, even for random data the

obtained feature set may be small.

Repetitive Support Feature Machine A single run of the sfm quanti�es how well the

classes are separable with the least number of features. However, it does not capture the amount

of redundancy that we expect to be large for a�ective states. Additionally, as the sfm may

fail to converge, the true number of relevant features may even be less than in the very �rst

iteration. �erefore, we evaluated the repetitive support feature machine in the same leave-

one-participant-out cross-validation fashion as in the buttonpress experiment. We compared
a well separable pair (joy vs. sadness) and a second almost inseparable pair (fear vs. sadness)
(see Figure 6.9). �e amount of redundancy was again evaluated by training svms on the

remaining features, but we used the median — instead of the mean — to combine the six leave-

one-participant-out runs, because the median is less a�ected by outliers. As in the buttonpress
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6.4 Emotional Brain States

experiment, a sigmoid was �tted to the obtained error values, however, the sigmoid was less

prominent than in the buttonpress experiment and a least-squares �t gave numerically unstable
results.�us, we further restricted the sigmoid to the domain ]0, 0.5[, i.e. we �tted

f (x) = 0.5

1 + e−
x−α2

α3

.

For the well separable pair joy vs. sadness the sfm e�ectively �lters out relevant feature sets
(see Figure 6.9). Almost all feature sets produce a test error less than chance. Surprisingly, even

if the 80% most relevant features were discarded, the svm still performs better than chance.

�us, we conclude that — neglecting inaccuracies of the sfm – almost the whole brain carries

discriminative information. For the almost inseparable pair — fear vs. sadness— the behaviour
is completely di�erent. Only very few feature sets are relevant and the performance of an svm

on the remaining features quickly converges to 0.5. For both pairs we derived an estimate of the

information distribution via the straight line through the in�exion point of the �tted sigmoid.

Note, that for fear vs. sadness this in�exion point is not within the visible range. Using this
estimate, we found 79% of all features to be informative for joy vs. sadnesswhile only 17% carried
information for fear vs. sadness.

Finally, we visually compared the regions that were found to be relevant in both pairs (see

Figures 6.10 and 6.12).�e discriminating regions seem to only slightly overlap. We further

analysed this overlap across all ten emotion pairs, i.e. we identi�ed the brain regions that were

most frequently found to be relevant. For each of the ten emotion pairs, we selected those

voxels that were within the 20% most relevant voxels in at least four of the six cross-validation

runs (more than half). We then combined the results across emotion pairs by keeping only

those voxels that were present in at least half of all emotion pairs. �ese voxels have a large

probability to be relevant for all emotion pairs across all participants. An automatic anatomical

labelling of these voxels (see Figure 6.11) reveals that the largest overlap is located in the orbital

part of the inferior frontal gyrus (Brodmann area 47).�is region was shown to be involved in
computing the relevance of emotional information [Beer et al., 2006] especially reward and

punishment [Kringelbach and Rolls, 2004].�us, our �ndings are consistent with classical

neuroscienti�c research.

�ese results indicate that pairwise sfm-based emotion analysis e�ectively extracts relevant

regions to discriminate a�ective brain states. Joy is the emotion that can be best discriminated
from all other emotions. Further, a�ective information seems to be highly distributed across

the whole brain — we found up to 80% of the brain voxels to carry discriminative information.
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(a) Obtained features (single-run sfm)
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(b) Obtained features (single-run sfm)
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(c) Test error (single-run sfm)
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(d) Test error (single-run sfm)
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(e) Test error (svm on remaining features)
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Figure 6.9: Analysis of the emotion dataset with the repetitive sfm. Shown are the num-
ber of obtained features (a,b), the leave-one-participant-out cross-validation

error of the sfm (c,d), and the median of the leave-one-participant-out cross-

validation error of an svm trained on the remaining features (e,f) for a well

separable emotion pair (joy vs. sadness, le� column) and an almost inseparable
emotion pair (fear vs. sadness, right column).�e numbers of voxels that carry
information were again approximated by �tting sigmoids.
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6.4 Emotional Brain States

Figure 6.10: Regions found to be relevant to discriminate joy vs. sadness (red) and fear
vs. sadness (green). Overlapping regions are coloured in yellow. For both
emotion pairs the 2.5% most relevant features were included.

127



6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

Signi�cant voxels

Anatomical region name le� right

Inferior frontal gyrus, orbital part 2.2% (9) 6.0% (24)

Middle frontal gyrus 3.2% (13) 5.5% (22)

Superior frontal gyrus 5.0% (20) 4.5% (18)

Superior frontal gyrus, medial 4.5% (18) 3.0% (12)

Inferior temporal gyrus 1.0% (4) 4.5% (18)

Parahippocampal gyrus 1.2% (5) 3.7% (15)

Middle temporal gyrus 2.5% (10) 3.5% (14)

Temporal pole: superior temporal gyrus 3.5% (14) 3.5% (14)

Middle frontal gyrus, orbital part 3.2% (13) 2.7% (11)

Superior frontal gyrus, medial orbital 3.0% (12) 2.7% (11)

Other regions (< 4%) 30.9% (124)

Total 100.00% (401)

Figure 6.11: Hemisphere-speci�c anatomical distribution of relevant voxels in the emotion
dataset. Shown are those voxels that were consistently chosen to be relevant

across all ten emotion pairs and participants (20% most relevant voxels and
relevant in at least 4 out of 6 cross-validation runs and relevant in at least 6 out
of 10 emotion pairs).

6.4.2 One-vs.-All Emotions Analysis

�e next more complex question is whether a single emotion may be separated from all other

emotions. To address this question, we combined data from all but one emotion by averag-

ing across all 4 trials of one run such that we obtain 2 data points for each sender and each

emotion. In this way we rebalance the input data to avoid artefacts due to unequal class sizes.

We conducted the same leave-one-participant-out cross-validation analysis as for pairwise

emotions — each training set contained 40 vs. 40 samples (8 trials × 5 participants vs. 2 average

trials × 4 emotions × 5 participants) and the test sets contain 8 vs. 8 samples (1 emotion × 8 trials

from one participant vs. 2 average trials × 4 emotions from the same participant).

�e results of a single sfm run (see Figure 6.13) show that joy is the best separable single
emotion with an average number of relevant features of 5.5 and a mean test error of 19%. All

other emotions are separable with more features and less accuracy. A repetitive sfm reveals

further di�erences in the ability to separate emotions (see Figure 6.14).�e information on how

to separate joy from all other emotions seems to be widely distributed and even the least relevant
voxels still carry su�cient information to permit classi�cation with an accuracy of 40%. In con-
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6.4 Emotional Brain States

(a) 1% most relevant voxels (b) 2.5% (c) 5%

(d) 10% (e) 20% (f) 40%

Figure 6.12: Location of relevant voxels for discriminating joy vs. sadness (red) and fear
vs. sadness (green) as obtained by the sfm. Shown are those voxels that were
consistently selected within the six cross-validation runs as the most relevant

voxels, i.e. they were among the �rst 1% of the selected features (a), 2.5% (b)

and so on. In contrast to the buttonpress dataset, relevant regions are spread
all over the brain as small clusters. Additionally, the overlap between the two

tasks (yellow) remains small throughout many repetitions of the sfm.

trast, information on how to separate fear from all other emotions is less prominent — accuracy
reaches chance level when approximately 40% of all voxels were discarded.

�ese results further emphasise that a�ective information is distributed across large brain

regions. However, some emotions — especially joy— are better separable and seem to involve
larger regions while others cover a smaller proportion of the brain. Compared to pairwise

emotion analysis the error rates and the obtained feature sets are larger.�e classi�ers were less

accurate than in the pairwise scenarios.�is may be due to the way in which data points were

averaged: Balanced scenarios were obtained by averaging data of 4 out of 5 emotions — one

emotion was included unchanged. Further, high-dimensional data is almost never located close

to its mean, but the average of data points comes closer to the mean. Here, data from one

emotion (raw data, far away from the mean) and data from all other emotions (averaged data,

closer to the mean) are combined. So, rebalancing the data might have introduced another

imbalance which alters the high-dimensional distribution.
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6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

Emotion Joy Anger Disgust Fear Sadness

Features 5.5 (± 1.0) 7.2 (± 1.0) 6.8 (± 1.5) 8.2 (± 2.6) 9.7 (± 1.6)

Error 0.19 (± 0.11) 0.34 (± 0.09) 0.29 (± 0.17) 0.35 (± 0.11) 0.46 (± 0.09)

Figure 6.13: Performance of the sfm in a one-vs.-all emotions scenario. Shown are the

number of obtained features and the leave-one-participant-out cross-validation

error (± standard deviation).
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(a) Test error (svm on remaining features)
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(b) Test error (svm on remaining features)

(c) Relevant regions

Figure 6.14: Repetitive sfm for classifying emotional brain states. Shown are the accuracy

of an svm on the remaining features for joy vs. all (a) and fear vs. all (b) and the
relevant regions for both emotions (joy— red, fear— green, both — yellow).
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6.4 Emotional Brain States

6.4.3 Time Slice Analysis

In the previous evaluations, the input data consisted of beta images that were estimates of brain

activity across a whole trial in which participants had to experience and express emotions.�us,

each feature is an approximation of the average activity change within a period of 20 s. However,

such beta images do not allow to assess any time-dependent aspects of brain activity.

Preprocessing We slightly changed the preprocessing to get beta images at a higher time

resolution. For each trial, we estimated one pre-emotional (-4 to 0 s), �ve intra-emotional

(0 to 20 s) and three post-emotional (20 to 32 s) beta images each covering an interval of 4 s.

Again, the average bold activity change was estimated using the hemodynamic response func-

tion (hrf) as provided by spm5. All voxels that were unde�ned in at least one trial were discarded.

�us, we obtained 41180 voxels. Each time slice was labelled according to the timestamp (pre-

emotional: -2 s; intra-emotional: 2 s, 6 s, 10 s, 14 s, 18 s; post-emotional: 22 s, 26 s, 30 s).�en,

we conducted the same pairwise sfm-based information content analysis as before, i.e. the sfm

was trained for each emotion pair, each time slice and each le�-out-participant individually (40

vs. 40 samples) and tested on the le�-out-participant (8 vs. 8 samples).

First Iteration of a Support Feature Machine A single run sfm shows a clear time-depen-

dent behaviour (see Figures 6.15 and 6.16). For almost all emotion pairs the number of relevant

features is largest within the pre-emotional (-2 s) and the last post-emotional (30 s) phase.

Starting with the �rst intra-emotional phase the number of features rapidly decreased and

reached its minimum between 6 s (e.g. for joy vs. anger) and 18 s (e.g. for joy vs. fear). �e
number of features remained low for the rest of the intra-emotional phase — except for some

outliers, e.g. at 14 s in anger vs. disgust— and increased again in the �rst post-emotional phase.
�e same behaviour is observed if we average across each emotion or across all pairs. �e

leave-one-participant-out cross-validation error of the sfm shows a very similar behaviour (see

Figure 6.16). Although we only consider the error rate of a single-run sfm on very limited data,

we observe a smoothly decreasing error rate with a minimum between 6 s and 18 s (except for

two outliers, disgust vs. fear and fear vs. sadness).�e error rate remains low throughout the
remaining intra-emotional phase and increased in the post-emotional phase to reach chance

level at 30 s. Again, the averaged results show the same tendencies.

Obviously, the sfm is suited to extract the causalities of the experimental design.�ere is

no detectable information in the pre-emotional phase; a�ective information increases from

the beginning of the intra-emotional phase is most prominent a�er 6 to 10 s, and subsides in

the post-emotional phase.�e slightly better than chance performance in the pre-emotional

phase may be due to the experimental setup as the participants had to experience each emotion
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6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

Emotional phase/Time slice

Pre Intra Post

Emotion pair -2 s 2 s 6 s 10 s 14 s 18 s 22 s 26 s 30 s

Joy vs. Anger 10.3 7.3 3.2 4.2 3.7 3.7 5.5 10.8 11.3

Joy vs. Disgust 11.7 8.7 6.0 6.8 7.3 6.7 7.8 10.0 9.2

Joy vs. Fear 11.3 10.0 6.5 4.8 4.0 3.7 6.3 8.2 13.3

Joy vs. Sadness 10.2 7.0 6.2 4.7 4.2 4.3 5.7 10.3 11.7

Anger vs. Disgust 12.2 6.7 5.3 5.7 8.2 6.5 8.8 12.3 11.2

Anger vs. Fear 12.2 10.2 6.7 7.5 5.8 5.2 9.2 11.3 11.2

Anger vs. Sadness 10.5 9.3 6.7 6.0 7.3 7.7 10.2 10.8 11.5

Disgust vs. Fear 9.5 7.0 5.2 5.7 5.5 6.0 7.0 8.7 11.0

Disgust vs. Sadness 12.3 7.2 6.3 6.8 7.7 6.8 8.7 10.5 11.5

Fear vs. Sadness 10.3 8.5 9.0 8.3 7.7 8.5 11.0 12.2 11.3

Joy vs. any 10.9 8.2 5.5 5.1 4.8 4.6 6.3 9.8 11.4

Anger vs. any 11.3 8.4 5.5 5.8 6.2 5.8 8.4 11.3 11.3

Disgust vs. any 11.4 7.4 5.7 6.2 7.2 6.5 8.1 10.4 10.7

Fear vs. any 10.8 8.9 6.8 6.6 5.8 5.8 8.4 10.1 11.7

Sadness vs. any 10.8 8.0 7.0 6.5 6.7 6.8 8.9 11.0 11.5

any vs. any 11.1 8.2 6.1 6.0 6.1 5.9 8.0 10.5 11.3

Figure 6.15: Time slice-dependent number of features for pairwise emotion analysis and

leave-one-participant-out cross-validation. Shown are the average numbers

of obtained features for all emotion pairs and the averaged results for each

emotion and across all pairs.�e minimum number of features within each

row is highlighted in boldface.

4 times in a row.�us, they knew in advance which emotion to express. So in this phase, the

sfmmight extract information on how the brain prepares the expression of a�ective states.

Repetitive Support Feature Machine Finally, we used the repetitive sfm to further analyse

the time-dependent distribution of discriminative information. We used the spatially once

subsampled input data (joy vs. sadness, 5174 features) and trained the repetitive sfm for each
time slice in the leave-one-participant-out fashion.�e average number of relevant features

(see Figure 6.17) con�rms the behaviour of a single-run sfm:�roughout the whole sequence of

sfms the number of features is large in the pre-emotional phase, decreases to reach a minimum

at 14 to 18 s and increases again in the post-emotional phase (22 s). However, the slope is very

similar for all time slices — �rst, a steep increase within the �rst few repetitions, then, a slower
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Emotional phase/Time slice

Pre Intra Post

Emotion pair -2 s 2 s 6 s 10 s 14 s 18 s 22 s 26 s 30 s

Joy vs. Anger 0.30 0.36 0.14 0.20 0.17 0.18 0.23 0.51 0.51

Joy vs. Disgust 0.50 0.31 0.41 0.36 0.31 0.30 0.48 0.51 0.50

Joy vs. Fear 0.32 0.34 0.23 0.17 0.18 0.24 0.28 0.33 0.43

Joy vs. Sadness 0.41 0.32 0.28 0.25 0.18 0.23 0.24 0.44 0.50

Anger vs. Disgust 0.46 0.36 0.16 0.21 0.32 0.29 0.29 0.54 0.41

Anger vs. Fear 0.49 0.39 0.35 0.31 0.31 0.28 0.55 0.42 0.57

Anger vs. Sadness 0.36 0.38 0.28 0.22 0.32 0.36 0.50 0.41 0.66

Disgust vs. Fear 0.36 0.33 0.35 0.32 0.33 0.30 0.25 0.44 0.32

Disgust vs. Sadness 0.45 0.36 0.33 0.29 0.30 0.20 0.40 0.45 0.52

Fear vs. Sadness 0.41 0.27 0.29 0.47 0.44 0.48 0.45 0.39 0.49

Joy vs. any 0.38 0.34 0.26 0.24 0.21 0.24 0.31 0.45 0.48

Anger vs. any 0.40 0.37 0.23 0.23 0.28 0.28 0.39 0.47 0.54

Disgust vs. any 0.44 0.34 0.31 0.30 0.32 0.27 0.35 0.48 0.44

Fear vs. any 0.40 0.33 0.31 0.32 0.32 0.33 0.38 0.39 0.45

Sadness vs. any 0.41 0.33 0.30 0.31 0.31 0.32 0.40 0.42 0.54

any vs. any 0.41 0.34 0.28 0.28 0.29 0.29 0.37 0.44 0.49

Figure 6.16: Time slice-dependent leave-one-participant-out cross-validation error for

pairwise emotion analysis. Shown are the mean error rate for all emotion pairs,

the average error rate for each emotion, and the average rate across all pairs.

�e minimum error rate within each row is highlighted in boldface.

increase until approximately 2/3 of all features have been discarded, and �nally again a steeper

increase.

�e time slice-dependent test errors show how a�ective information evolves over time (see

Figure 6.18). In the pre-emotional slice (-2 s) the initial test error is slightly less than chance,

i.e. the data contains almost no discriminative information.�e very same behaviour is observed

in the �rst intra-emotional slice (2 s). A signi�cant amount of discriminative information seems

to be present from the second intra-emotional slice (6 s) onwards up to the �rst post-emotional

slice (22 s).�e errors get smaller in the beginning and reach a stable level.�e smallest initial

error rate is obtained at 18 s.�us, a�ective brain states are best separable approximately 18 s

a�er onset of the emotional period. Considering a latency of the bold response of 6 s, this

means that a�ective brain states are actually best separable a�er 12 s. Although the initial

error rate does not signi�cantly change from 14 s to 18 s, we observe that more features carry

133



6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

pre (-2 s)

intra (2 s)

intra (6 s)

intra (10 s)

intra (14 s)

intra (18 s)

post (22 s)

post (26 s)

post (30 s)

Discarded features [%]

N
u
m
b
e
r
o
f
o
b
ta
in
e
d
fe
a
tu
re
s

0 20 40 60 80 100
0

20

40

60

Discarded features [%]

N
u
m
b
e
r
o
f
o
b
ta
in
e
d
fe
a
tu
re
s

Figure 6.17: Average number of obtained features for each time slice (joy vs. sadness).

discriminative information, i.e. the error rate converges much slower to chance level. �us,

besides better separability we observe a higher degree of redundancy. A�ective information

spreads across larger regions but the accuracy does not further increase. At 18 s almost all

voxels of the brain carry emotion-speci�c information. In the next time slice, the amount of

information decreases, and in the second and third post-emotional slices almost no information

seems to be present.

However, this procedure also reveals some de�ciencies of our approach. In the second and

third post-emotional slices (26 s and 30 s) the test error is almost constant but slightly better

than chance (see Figure 6.18, bottom middle and bottom right). �is systematic deviation

from chance may have three reasons. First, the participants knew in advance which emotion

to express and the same emotion was to be expressed multiple times. �us, the input data

might be biased in the pre- and post-emotional phases.�is does not yet explain why a�ective

information is omnipresent at a constant level. Second, the sfm might in certain scenarios

be unable to identify the most informative features. Finally, accuracies better than chance

might be due to the bias of cross-validation. Such too optimistic cross-validation rates may

either be avoided by nested cross-validation [Varma and Simon, 2006] or the bias may be
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Figure 6.18: Time slice-dependent test error of an svm on the irrelevant features for joy
vs. sadness. Shown are the individual error curves and the �tted sigmoid curve.

corrected [Tibshirani and Tibshirani, 2009]. However, none of the proposed correction

mechanisms can be used for our approach. We do not use cross-validation to optimise a certain

parameter, but to obtain an estimate of the information content. Additionally, individual sfms

may not be compared across participants as they not necessarily use the same input data — for

some participants certain features may have been discarded earlier than for others. In total, the

obtained error curves are biased but convergence to chance level can be expected.

Finally, we visually compare the most discriminative time slice-dependent regions to those

obtained on the whole trial beta images (see Figure 6.19). Time slice-dependent regions (red)

and whole trial results (green) show the largest overlap (yellow) between 10 and 22 s. In the

pre-emotional slice (-2 s) and in the second and third post-emotional slices (26 s and 30 s) there

are almost no overlaps visible (only red or green regions, no yellow regions). With the onset of
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-2 s

2 s

6 s

10 s

14 s

18 s

22 s

26 s

30 s

Figure 6.19: Time slice-dependent distribution of the most relevant voxels. Shown are the

2.5% most relevant voxels for all time slices (rows) and di�erent brain views

(columns) for joy vs. sadness in red. Voxels obtained in the per-trial analysis
(see Chapter 6.4.1) are coloured in green, overlapping regions are yellow.

136



6.4 Emotional Brain States

the trial the regions start to converge, more and more regions overlap (become yellow). With

the end of the trial, the overlap again decreases.

In sum, we have shown how a�ective information in the human brain evolves over time.�e

separability — the largest achievable accuracy — as well as the redundancy increase over time.

We observe that redundancy may further increase even if the separability remains constant. It

seems that a�ective information is �rst present only in small brain regions but spreads out to

�nally involve almost the whole brain. However, the strength of this e�ect depends on which

emotions we compared. Some emotions are less well separable, so separability and redundancy

might be less well visible than for joy vs. sadness.

6.4.4 Downsampling Analysis

So far, we analysed brain activity data either on the complete voxel set or on the once down-

sampled data to improve runtime.�e relevant regions obtained from the buttonpress dataset
form two large clusters and only few minor regions.�us, we expect the information content

to be similarly present if the data is further downsampled. However, the minimum required

resolution to provide a certain accuracy is unknown. On the emotion dataset, the relevant
regions are distributed almost across the whole brain, but still they form clusters. Here, the

a�ective information content may degrade if the resolution is further reduced.�e following

analysis aims to �nd the minimum required resolution to still obtain meaningful results based

on the sfm. We did the same analysis for the buttonpress and the emotion dataset.�e input data
was downsampled three times (d = 50989, 6362, 791, 98 for buttonpress and d = 41642, 5222, 661,

80 for emotion). For the �rst level, the input data was simply subsampled as the input data had
already been low-pass �ltered in the preprocessing.�e second and third downsampled images

were obtained using the Gaussian pyramid based method with linear boundary extrapolation

as described in Chapter 5. We stopped at level 3, as further downsampling would make linear

separation infeasible.

Single-run Support Feature Machine For the buttonpress dataset, the number of obtained
features and the leave-one-participant-out cross-validation error was almost constant on the

�rst three pyramid levels but signi�cantly increased at level 3 (see Figure 6.20).�e behaviour

for the emotion dataset was more diverse. For joy vs. anger we observe the same increase on the
third level. Other emotion pairs showed a smooth performance decrease, e.g. joy vs. disgust
or fear vs. sadness.�e number of features may even remain almost constant, e.g. for disgust
vs. sadness.
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Pyramid level (relevant features / test error)

Dataset 0 1 2 3

buttonpress (d=50989) (d=6362) (d=791) (d=98)
le� vs. right 2.0 / 0.03 2.4 / 0.09 2.2 / 0.03 5.4 / 0.17

emotion (d = 41642) (d = 5222) (d = 661) (d = 80)
Joy vs. Anger 2.3 / 0.16 3.2 / 0.19 2.0 / 0.10 4.7 / 0.20

Joy vs. Disgust 4.8 / 0.33 6.2 / 0.29 6.5 / 0.29 8.2 / 0.38

Joy vs. Fear 3.5 / 0.19 4.3 / 0.27 3.0 / 0.14 4.5 / 0.14

Joy vs. Sadness 4.0 / 0.23 3.5 / 0.26 4.7 / 0.27 5.5 / 0.34

Anger vs. Disgust 5.3 / 0.25 5.7 / 0.23 4.3 / 0.12 6.8 / 0.23

Anger vs. Fear 7.5 / 0.24 6.7 / 0.24 6.8 / 0.23 8.2 / 0.24

Anger vs. Sadness 6.8 / 0.34 6.3 / 0.43 7.3 / 0.38 10.3 / 0.30

Disgust vs. Fear 4.7 / 0.28 5.2 / 0.31 5.3 / 0.17 6.5 / 0.22

Disgust vs. Sadness 8.0 / 0.32 7.0 / 0.31 7.2 / 0.23 7.2 / 0.25

Fear vs. Sadness 7.5 / 0.42 8.3 / 0.44 8.7 / 0.40 11.5 / 0.41

Figure 6.20: Performance of a single-run sfm from high to low resolution input data.

Shown are the number of obtained features and the leave-one-participant-out

cross-validation error for each scenario.

Repetitive Support Feature Machine We evaluated the repetitive approach on the but-
tonpress task and for the joy vs. sadness classi�cation task by successively training sfms and
discarding features for each of the pyramid levels.�e results show that the number of features

extracted on the original data (level 0) almost exactly matches the number of features obtained

on the once downsampled data (see Figure 6.21).�us, we conclude that the information content

is the same in level 0 and level 1. So, our approach to always use the once downsampled data in

all previous experiments was valid. Further downsampling changed the slope of the curves; the

number of obtained features becomes less on average.

For both tasks and four pyramid levels, we visualised the distribution of relevant voxels (see

Figures 6.22 and 6.23) by arranging them �rst in the downsampled brain and upsampling this

low-resolution brain again to full resolution. �is causes the borders between relevant and

irrelevant regions to slightly blur.

For the buttonpress dataset, the relevant regions almost exactly match for all resolution levels
except for some minor clusters on level 0 that are no longer represented by relevant voxels on

level 3 (see Figure 6.22). We had to include the 5% most relevant voxels to obtain reasonable

results — and could not only use 2.5% as in all previous experiments — because this is the lowest
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(b) joy vs. sadness

Figure 6.21: Number of obtained features for di�erent resolution levels for the buttonpress
task (a) and to distinguish joy vs. sadness (b).

percentage that is larger than the percentage of features obtained by a single-run sfm. Although

only 98 voxels were used on level 3, still the precentral and postcentral gyri are found to be

relevant. Note, the high-resolution brain volume shows the cerebrum but not the cerebellum.

However, relevant cerebellar regions are adjacent to the cerebrum, and, therefore, red regions

are visible on the surface of the cerebrum. We conclude that localised brain activity, such as in

motor tasks, may be decoded even on the thrice downsampled volume data. For such tasks, it

might be of interest to set up the fmri scanner to acquire images with a low spatial resolution

but with a higher temporal resolution.�us, we might be able to further analyse the temporal

evolution of brain activity data.

In the discrimination of joy vs. sadness we observe a large overlap of relevant voxels on the
original data and the once and twice downsampled volumes (see Figure 6.23). However, the

distribution changes signi�cantly on level 3 — more relevant voxels in the le� frontal lobe but

fewer relevant voxels in the orbital part of the inferior frontal gyrus.�us, we conclude that

a�ective information may be decoded on the twice downsampled data (661 voxels) almost

equally well as on the original data.
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level 0

level 1

level 2

level 3

Figure 6.22: Most relevant regions on downsampled brain volume data in the buttonpress
task. Shown are the 5% most relevant voxels for 4 pyramid levels.

level 0

level 1

level 2

level 3

Figure 6.23: Most relevant regions in downsampled brain volume data to discriminate joy
vs. sadness. Shown are the 7.5% most relevant voxels for 4 pyramid levels.
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6.5 Conclusions

To further demonstrate the practical relevance of the sfm, we evaluated its capability to decode

human brain states from fmri data. For localised brain activity, the repetitive sfm is able to

identify similar regions as mass univariate statistics and additionally provides an estimate of

the number of informative voxels. We assume that the remaining voxels do no longer carry

information if a linear svm trained on these voxels performs on chance level. According to

this measure, about 35% of all brain voxels carry information on whether a button was pressed

with the le� or the right thumb.�e most relevant regions are located in the precentral and the
postcentral gyri and in the cerebellum, which is in line with classical neuroscienti�c research.
�us, we conclude that the sfm is well suited to decode localised human brain states. But, as

it is an intrinsically multidimensional method it may also be suited to decode complex brain

activity such as a�ective states where mass univariate methods will fail.

A�ective states were adressed in a series of experiments starting with a randomised support

vector approach to select relevant features. We found that an svm trained on a few randomly

selected features — sometimes a single randomly selected feature — performs on average better

than chance in discriminating two emotions when evaluated with leave-one-participant-out

cross-validation. Further, with the repetitive sfm we identi�ed the smallest set of voxels that

allows decoding. In pairwise emotion analysis, the test errors di�ered signi�cantly, e.g. from 16%

with 2.3 features for joy vs. anger to 42% with 7.5 features for fear vs. sadness. In some cases, up to
80% of the brain carried discriminative information.�us, we conclude that a�ective states are

represented in whole brain activity patterns. However, some regions are more prominent than

others — especially the orbital part of the inferior frontal gyrus was consistently found to be

relevant for decoding across all emotion pairs. In a one-vs.-all emotions analysis, we observed

the same tendencies, however, more features were found to be relevant than in the pairwise

emotion analysis and the prediction accuracies were slightly worse.

�e emotion dataset even allows to address the time-dependent behaviour of a�ective states.
For a 20 s emotional phase, the repetitive sfm indicates that emotions may be best decoded

between 6 and 18 s a�er the onset of the emotion. During the emotional phase not only separa-

bility increases but also information redundancy.�us, a�er about 18 s almost the whole brain

carries information to discriminate two emotions. In the post-emotional phase the a�ective

information subsides and quickly reaches chance level again.

Finally, we assessed the location of the discriminative regions on di�erent spatial resolutions.

�e previously proposed Gaussian pyramid based technique was used to obtain downsampled

brain volumes. For localised brain activity, even the three times downsampled data contained

su�cient information to discriminate motor tasks — the relevant regions as obtained by the
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6 Mindreading: Classi�cation and Feature Selection for Brain Activity Data

repetitive sfm were consistently found throughout all pyramid levels. For a�ective states, the

data may be downsampled only twice to preserve the discriminative information. For both

tasks, it seems promising to analyse the volume data on a lower spatial resolution to allow for

fmri data acquisition with a higher temporal resolution.

All these �ndings qualify the support feature machine with all its extensions as a comprehen-

sive method for analysing brain activity data.
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To know that one does not know, is the gi�
of a superior spirit. Not to know and to
think that one does know, is a mistake. To
know that this is a mistake, keeps one from
making it.

From the movie

«Le mépris»

directed by Jean-Luc Godard

7 Conclusions

�is thesis addressed three major issues. We have provided novel insight into the behaviour of

high-dimensional small sample size data, we introduced the support feature machine as a novel

method for classi�cation with the least number of features, and we have applied this method in

the �eld of cognitive neuroscience to analyse human brain activity data. Finally, we want to

summarise the major �ndings, review the bene�ts of the proposed methods and address open

questions, issues and promising directions of further work.

Machine learning methods provide valid results as long as large sample sizes in connection

with comparatively low dimensionality are given. However, in practical applications such as

the analysis of biological or medical data, we o�en face an inverse situation: Extremely few

data points, for which it is impossible to signi�cantly increase the sample size, and a high-

dimensional feature space resulting from massively parallel data acquisition. Such data is prone

to artefacts such as distance concentration, hubness, and incidental separability. Machine

learning and validation methods may become unreliable. In the limit, for in�nite dimensional

data, very o�en all samples are located on the vertices of a regular simplex. Our evaluations

related to leave-one-out cross-validation for support vector machines provide characteristics to

decide whether a �nite dimensional dataset is prone to such in�nite-like unintuitive behaviour.

Although we did only focus on the support vector machine, any metric-based classi�er may

display the same weakness. However, there is some evidence that using the one-norm — or

even the zero-norm— instead of the standard Euclidean norm for measuring distances might

reduce high-dimensional artefacts.

�e main insight from all �ndings on high-dimensional small sample size experiments is

the necessity to reduce dimensionality signi�cantly wherever possible — best practise would

be to not include irrelevant features in the training data at all. As this is feasible only in rare

cases, feature selection mechanisms are necessary in a preprocessing phase or they may be

included into the entire learning procedure. However, we have shown that the expressive
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power — the vc-dimension — of combined feature selection and classi�cation is still larger

than the expressive power using only the intrinsically relevant features.�us, although we apply

feature selection we cannot expect to achieve the same prediction accuracy as if no irrelevant

features were included in the input data at all.

Inspired by the svm-based feature selection method of Weston et al., we proposed the

support feature machine with various extensions to deal with outliers, unbalanced datasets

and redundant features. Both theoretically and empirically, we showed that the sfm is better

suited — compared to Weston’s method — to identify the minimal set of relevant features.

Besides dimensionality reduction, the paradigm of iteratively minimising the weight vector’s

one-norm in order to minimise its zero-norm should reduce the in�uence of high-dimensional

artefacts as mentioned above.

�e sfmmay be implemented using commercial or publicly available linear programming

solvers, but runtime requirements di�er by orders of magnitude between solvers and alterna-

tive linear program formulations. We proposed an a-priori choice of formulation and solver

depending on sample size and dimensionality. However, a method explicitly tuned to the sfm

problem could outperform even the best general purpose solver. It will be bene�cial to design a

dedicated algorithm to reduce the overhead of general purpose solvers for data reorganisation,

preprocessing or convergence checks. An in-depth analysis of the solver-speci�c di�erences

might reveal why some are better suited than others and which linear program formulation is

best suited — maybe others than the two proposed exist.

�e experiments on arti�cial data and the real-world leukemia dataset showed that the sfm
can identify relevant features very e�ectively and may improve the generalisation performance

signi�cantly with respect to an svm without feature selection. Even an exponentially increasing

number of irrelevant features does not cause a signi�cant performance drop.

At this point, we shall also discuss why we exclusively focused on linear classi�ers and

whether the support feature machine may be extended to arbitrarily shaped decision borders.

First, we focused on linear classi�ers just because the data we address — biological, medical or

neuroscienti�c data with many dimensions but few samples — does barely provide su�cient

samples to determine all degrees of freedom of a linear decision surface. So, classi�ers with even

more expressive power that allow non-linear decision surfaces would be even less reliable.�us,

according to the principle of structural risk minimisation, we minimise the guaranteed risk

by limiting the expressive power. Second, non-linear classi�ers generally make use of kernel

functions that implicitly use linear classi�ers in a higher dimensional kernel space. It is o�en

hard to interprete the results obtained in the kernel space with respect to the original input

space. However, this is exactly what we aim for in real-world problems — to obtain meaningful

results that are interpretable with respect to the original measurements. Here, non-linearity
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would render interpretability unfeasible. Finally, the obtained results on real-world data suggest

that linear classi�ers have su�cient expressive power to obtain accuracies close to 100%. One

reason for this might be the large observed redundancy of real-world data, i.e. information o�en

seems to be encoded in several feature subsets.�us, compared to non-redundant datasets, the

probability is larger to �nd features that allow linear separation.

Besides the support feature machine as the main contribution of this thesis, we also proposed

a supplementary method to remove illumination inhomogeneities from texture images based

on the Gaussian pyramid. With standard �ltering using the replicate or circular boundary

condition, the resulting images would show artefacts at the image borders, mostly visible when

stitching images together. To avoid these artefacts we proposed a framework that allows arbitrary

boundary extrapolation with linear and polynomial extrapolation being the most promising to

remove typical illumination gradients, such as natural vignetting, from real-world images. At

�rst sight, both methods — the support feature machine and the Gaussian pyramid — seem to

be unrelated. However, the latter may be used as a preprocessing step when the sfm is applied to

images, i.e. where the input features are organised on a regular 2-dimensional or 3-dimensional

grid as it is the case for fmri data.

On such data, we used the sfm to decode human brain states. We found that the sfm identi�es

similar regions asmass univariatemethods do, and it allows to quantify task-speci�c information.

For a simple motor task, we observed up to 35% of all voxels of the brain to carry task-speci�c in-

formation. As the sfm is an intrinsically multivariate method, it is also quali�ed to analyse more

complex fmri data, such as a�ective brain states, where univariate methods are not appropriate.

�e decoding performance highly varies between emotions — joy seems to be best separable
from all other emotions. Additionally, we observed that a�ective information is encoded in

whole brain patterns with a large degree of redundancy. For some emotion pairs, almost the

whole brain contains discriminative information. In a time-dependent analysis, we found the

separability of emotions to improve over-time, but, besides, redundancy of the encoded infor-

mation increased.�us, at least two attributes characterise a�ective information — quantity

and redundancy. To assess redundancy, we decoded motor tasks and emotional brain states

on downsampled data as obtained by the aforementioned Gaussian pyramid-based method.

�e decoding accuracies remain almost the same for once and twice downsampled data; for

motor tasks the data may even be downsampled three times such that the brain is su�ciently

well represented by only 98 voxels.

�ese �ndings are even more impressing if we take into account the possible error sources

that would degrade prediction accuracy. First, the input data contained only very few samples

from a low number of participants (motor task: 12 participants, 2 classes, 4 samples per class;

a�ective information: 6 participants, 5 classes, 8 samples per class).�us, single outliers strongly
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a�ect the prediction performance. Second, preprocessing aims to spatially align the brain data

from di�erent participants. Yet, such corrections can never perfectly normalise the brain data,

i.e. the same voxel may still vary slightly in location across brains.�ird, the support feature

machine as a tool for decoding brain states and for measuring the amount and location of

discriminative information is not perfect and may be a�ected by outliers and artefacts. However,

even with all the above de�ciencies we were able to decode emotional brain states with high

accuracy and we found large regions of the brain to carry information.�us, we expect the true

information content to be even greater, wider distributed and more redundant than what we

obtained from our experiments.

In total, our �ndings quali�ed the support feature machine as a universal method for feature

selection especially suited in high-dimensional small sample size scenarios. Results obtained

with the sfm on human brain data support the hypothesis that a�ective information is encoded

in whole brain patterns with a large degree of redundancy.

Still, many open questions remain. How can the sfm be further improved with respect to

prediction accuracy, feature selection correctness and runtime performance? May the sfm

be implemented by a simple algorithm without the need of complicated linear programming

solvers? How does the sfm perform with respect to other feature selection methods and

benchmarks? Can we prove or disprove that the sfm is optimal according to any performance

measure? Howdoes a so� sfm performon brain activity data—we omitted elaborate evaluations

here due to runtime considerations? What other types of brain activity data may the sfm be

used for? Does the sfm indeed provide novel insight into how information is processed in

the human brain or does it only con�rm already known facts? Which are the alternatives to

independently verify the �ndings obtained by the sfm on fmri data? Is it possible to use the sfm

for more complex time-dependent mindreading tasks? Is mindreading a desirable technology at

all and shouldn’t we be more concerned about ethic issues of such a mentally invasive method?

What comes a�er the odyssey?
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Descended from the gods! Ulysses, cease;
O�end not Jove: obey, and give the peace.

«Odyssey», Homer,

translated by Alexander Pope





Bibliography

[Adelson et al., 1984] Adelson EH, Anderson CH, Bergen JR, Burt PJ, and Ogden JM.

Pyramid methods in image processing. RCA Engineer, 29(6):33–41, 1984.

[Adini et al., 1997] Adini Y, Moses Y, and Ullman S. Face recognition: the problem of com-
pensating for changes in illumination direction. IEEE TPAMI, 19:721–732, 1997.

[Aggarwal et al., 2001a] Aggarwal CC, Hinneburg A, and Keim DA. On the surprising be-
havior of distance metrics in high dimensional space. In Proceedings of the 8th International
Conference on Database�eory, pages 420–434. Springer, 2001a.

[Aggarwal et al., 2001b] AggarwalM,HuaH, andAhujaN.On cosine-fourth and vignetting
e�ects in real lenses. In Proceedings of the 8th International Conference on Computer Vision,
pages 472–479. 2001b.

[Ahn et al., 2007] Ahn J, Marron JS, Muller KM, and Chi YY. �e high-dimension, low-
sample-size geometric representation holds under mild conditions. Biometrika, 94(3):760–
766, 2007.

[Akbani et al., 2004] Akbani R, Kwek S, and JapkowiczN. Applying support vector machines
to imbalanced datasets. In In Proceedings of the 15th European Conference on Machine
Learning, pages 39–50. 2004.

[Anders et al., 2011] Anders S, Heinzle J, WeiskopfN, Ethofer T, and Haynes JD. Flow of
a�ective information between communicating brains. NeuroImage, 54(1):439 – 446, 2011.

[Andersen and Andersen, 2000] Andersen ED and Andersen KD. �e MOSEK interior
point optimizer for linear programming: an implementation of the homogeneous algorithm,
pages 197–232. Kluwer Academic Publishers, 2000.

149



Bibliography

[Bartels and Zeki, 2004] Bartels A and Zeki S. �e chronoarchitecture of the human brain–
natural viewing conditions reveal a time-based anatomy of the brain.NeuroImage, 22(1):419–
433, 2004.

[Bartlett and Shawe-Taylor, 1999] Bartlett P and Shawe-Taylor J. Generalization per-
formance of support vector machines and other pattern classi�ers. In Advances in Kernel
Methods: Support Vector Learning, pages 43–54. MIT Press, Cambridge, MA, USA, 1999.

[Baucom et al., 2012] Baucom LB, Wedell DH, Wang J, Blitzer DN, and Shinkareva SV.

Decoding the neural representation of a�ective states. NeuroImage, 59(1):718–727, 2012.

[Beer et al., 2006] Beer JS, Knight RT, and D’EspositoM. Controlling the integration of
emotion and cognition: �e role of frontal cortex in distinguishing helpful from hurtful
emotional information. Psychological Science, 17(5):448–453, 2006.

[Bellman, 1961] Bellman RE. Adaptive control processes — A guided tour. Princeton Univer-
sity Press, Princeton, New Jersey, USA, 1961.

[Beyer et al., 1999] Beyer K, Goldstein J, Ramakrishnan R, and ShaftU. When is “nearest
neighbor” meaningful? In Proceedings of the 7th International Conference on Database
�eory, ICDT ’99, pages 217–235. 1999.

[Bradley, 1997] Bradley AP. �e use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30:1145–1159, 1997.

[Bradley and Mangasarian, 1998] BradleyPS andMangasarianOL. Feature selection via
concave minimization and support vector machines. In Proceedings of the 15th International
Conference on Machine Learning, pages 82–90. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1998.

[Chaovalitwongse et al., 2007] ChaovalitwongseWA, Fan YJ, and Sachdeo RC. Support
feature machine for classi�cation of abnormal brain activity. In Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
113–122. ACM, New York, NY, USA, 2007.

[Chapelle et al., 2002] Chapelle O, Vapnik V, Bousquet O, and Mukherjee S. Choosing
multiple parameters for support. Machine Learning, 46(1):131–159, 2002.

[Charikar et al., 2000] CharikarM, Guruswami V, Kumar R, Rajagopalan S, and Sahai

A. Combinatorial feature selection problems. In Proceedings of the 41st Annual IEEE
Symposium on Foundations of Computer Science, pages 631–640. IEEE Computer Society,
Washington, DC, USA, 2000.

150



Bibliography

[Chawla et al., 2002] Chawla NV, Bowyer KW, Hall LO, and KegelmeyerWP. SMOTE:
Synthetic minority over-sampling technique. Journal of Arti�cial Intelligence Research,
16:321–357, 2002.

[Chawla et al., 2004] Chawla NV, Japkowicz N, and Kotcz A. Editorial: special issue on
learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6:1–6, 2004.

[Cover, 1965] Cover TM. Geometrical and statistical properties of systems of linear inequalities
with applications in pattern recognition. IEEE Transactions on Electronic Computers,
EC-14(3):326–334, 1965.

[Cristianini and Shawe-Taylor, 2000] CristianiniNand Shawe-Taylor J. Support Vector
Machines and other kernel-based learning methods. Cambridge University Press, 2000.

[Dantzig and Thapa, 2003] Dantzig G and Thapa M. Linear Programming, �eory and
Extensions. Springer series in operations research. Springer, 2003.

[Daubechies et al., 2009] Daubechies I, RoussosE, Takerkart S, BenharroshM,Golden

C, D’Ardenne K, RichterW, Cohen JD, and Haxby J. Independent component analysis
for brain fMRI does not select for independence. Proceedings of the National Academy of
Sciences, 106(26):10415–10422, 2009.

[Davatzikos et al., 2005] Davatzikos C, Ruparel K, Fan Y, ShenDG, AcharyyaM, Loug-

head JW, Gur RC, and LanglebenDD. Classifying spatial patterns of brain activity with
machine learning methods: Application to lie detection. Neuroimage, 28:663–668, 2005.

[Dehaene et al., 1998] Dehaene S, Clec’H GL, Cohen L, Poline JB, deMoortele PFV, and

LeBihanD. Inferring behavior from functional images. NatureNeuroscience, 1(7):549–550,
1998.

[Donoho and Elad, 2003] DonohoDandEladM. Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization. Proceedings of the National Academy
of Sciences of the United States of America, 100(5):2197–2202, 2003.

[Duda et al., 2001] Duda RO, Hart PE, and Stork DG. Pattern Classi�cation. Wiley-
Interscience, 2nd edition, 2001.

[Efron, 1979] Efron B. Bootstrap methods: Another look at the jackknife. �e Annals of
Statistics, 7(1):1–26, 1979.

[Efron and Tibshirani, 1993] Efron B and Tibshirani RJ. An Introduction to the Bootstrap.
Chapman & Hall, New York, 1993.

151



Bibliography

[Efros and Freeman, 2001] Efros AA and FreemanWT. Image quilting for texture synthesis
and transfer. In SIGGRAPH, pages 341–346. ACM, New York, NY, USA, 2001.

[Elizondo, 2006] Elizondo DA. �e linear separability problem: some testing methods. IEEE
Transactions on Neural Networks, 17(2):330–344, 2006.

[François et al., 2007] François D, Wertz V, and Verleysen M. �e concentration of
fractional distances. IEEE Transactions on Knowledge and Data Engineering, 19:873–886,
2007.

[Friston et al., 1995] Friston K, Holmes A, Worsley K, Poline J, Frith C, and Frack-

owiak R. Statistical parametric maps in functional imaging: A general linear approach.
Human Brain Mapping, 2:189–210, 1995.

[Furey et al., 2000] Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M,

and Haussler D. Support vector machine classi�cation and validation of cancer tissue
samples using microarray expression data. Bioinformatics, 16(10):906–914, 2000.

[Golub et al., 1999] Golub T, Slonim D, Tamayo P, Huard C, GaasenbeekM, Mesirov J,

CollerH, LohM, Downing J, CaligiuriM, Bloomfield C, and Lander E. Molecular
classi�cation of cancer: Class discovery and class prediction by gene expression monitoring.
Science, 286(5439):531–537, 1999.

[Guyon et al., 2002] Guyon I, Weston J, Barnhill S, and VapnikV. Gene selection for cancer
classi�cation using support vector machines. Machine Learning, 46:389–422, 2002.

[Hall et al., 2005] Hall P, Marron JS, and Neeman A. Geometric representation of high
dimension, low sample size data. Journal of the Royal Statistical Society, 67(3):427–444,
2005.

[Hand and Till, 2001] Hand DJ and Till RJ. A simple generalisation of the area under the roc
curve for multiple class classi�cation problems. Machine Learning, 45:171–186, 2001.

[Haykin, 1998] Haykin S. Neural Networks: A Comprehensive Foundation. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1998.

[Haynes, 2011] Haynes JD. Special issue on multivariate decoding and brain reading. NeuroIm-
age, 56, 2011.

[Haynes and Rees, 2005] Haynes JD and ReesG. Predicting the orientation of invisible stimuli
from activity in human primary visual cortex. Nature Neuroscience, 8(5):686–691, 2005.

152



Bibliography

[Haynes and Rees, 2006] Haynes JD and Rees G. Decoding mental states from brain activity
in humans. Nature Reviews Neuroscience, 7:523–534, 2006.

[Haynes et al., 2007] Haynes JDD, Sakai K, Rees G, Gilbert S, Frith C, and Passingham

RE. Reading hidden intentions in the human brain. Current Biology, 17(4):323–328, 2007.

[He and Garcia, 2009] HeH and Garcia EA. Learning from imbalanced data. IEEE Trans-
actions on Knowledge and Data Engineering, 21:1263–1284, 2009.

[Holmes et al., 1997] Holmes A, Poline J, and Friston K. Characterizing brain images with
the general linear model. In R Frackowiak, K Friston, C Frith, R Dolan, and J Mazz-

iotta, editors, Human Brain Function, pages 59–84. Academic Press USA, 1997.

[Hosseini et al., 2011] Hosseini SMH, Mano Y, RostamiM, TakahashiM, SugiuraM, and

Kawashima R. Decoding what one likes or dislikes from single-trial fNIRS measurements.
NeuroReport, 22(6):269–273, 2011.

[Japkowicz, 2000] JapkowiczN. Learning from imbalanced data sets: A comparison of various
strategies. In Learning from Imbalanced Data Sets, Papers from the AAAI Workshop,
Technical Report WS-00-05, pages 10–15. AAAI Press, 2000.

[Jebara and Jaakkola, 2000] Jebara T and Jaakkola T. Feature selection and dualities in
maximum entropy discrimination. In Proceedings of the 16th Conference on Uncertainty in
Arti�cial Intelligence, pages 291–300. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2000.

[Kearns and Ron, 1997] KearnsMJ and RonD. Algorithmic stability and sanity-check bounds
for leave-one-out cross-validation. Neural Computation, 11:152–162, 1997.

[Kim and Pollefeys, 2008] Kim SJ and Pollefeys M. Robust radiometric calibration and
vignetting correction. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(4):562–576, 2008.

[Kira and Rendell, 1992a] Kira K and Rendell LA. �e feature selection problem: Tradi-
tional methods and a new algorithm. In AAAI, pages 129–134. AAAI Press and MIT Press,
Cambridge, MA, USA, 1992a.

[Kira and Rendell, 1992b] Kira K and Rendell LA. A practical approach to feature selection.
In Proceedings of the 9th International Workshop on Machine Learning, pages 249–256.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992b.

153



Bibliography

[Klement and Martinetz, 2010a] Klement S and Martinetz T. A new approach to clas-
si�cation with the least number of features. In 9th International Conference on Machine
Learning and Applications, pages 141–146. IEEE Computer Society, 2010a.

[Klement and Martinetz, 2010b] Klement S and Martinetz T. �e support feature ma-
chine for classifying with the least number of features. In KI Diamantaras, W Duch, and
LS Iliadis, editors, ICANN (2), volume 6353 of Lecture Notes in Computer Science, pages
88–93. Springer, 2010b.

[Klement and Martinetz, 2011] Klement S and Martinetz T. On the problem of �nding
the least number of features by L1-normminimisation. In THonkela, editor, Proceedings of
the 21st International Conference on Arti�cial Neural Networks, Lecture Notes in Computer
Science 6791, pages 315–322. Springer, Heidelberg, 2011.

[Klement et al., 2008] Klement S, MadanyMamlouk A, and Martinetz T. Reliability of
cross-validation for SVMs in high-dimensional, low sample size scenarios. In Proceedings
of the 18th International Conference on Arti�cial Neural Networks, pages 41–50. Springer-
Verlag, Berlin, Heidelberg, 2008.

[Klement et al., 2011] Klement S, Timm F, and Barth E. Illumination correction for image
stitching. InProceedings of the International Conference on Imaging�eory andApplications,
volume 1, pages 81–86. INSTICC, 2011.

[Klement et al., 2013] Klement S, Anders S, andMartinetz T.�e support feature machine:
Classi�cation with the least number of features and its application to neuroimaging data,
2013. Accepted.

[Kohavi, 1995] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the 14th International Joint Conference on Arti�cial
Intelligence, pages 1137–1145. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1995.

[Kohavi and John, 1997] Kohavi R and John GH. Wrappers for feature subset selection. Arti-
�cial Intelligence, 97(1):273–323, 1997.

[Krauth and Mézard, 1987] KrauthW and MézardM. Learning algorithms with optimal
stability in neural networks. Journal of Physics A: Mathematical and General, 20(11):L745–
L752, 1987.

154



Bibliography

[Kringelbach and Rolls, 2004] Kringelbach ML and Rolls ET. �e functional neu-
roanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsy-
chology. Progress in Neurobiology, 72(5):341–372, 2004.

[Lavine et al., 1988] Lavine BK, Jurs PC, and Henry DR. Chance classi�cations by non-
parametric linear discriminant functions. Journal of Chemometrics, 2(1):1–10, 1988.

[LeCun et al., 1990] LeCun Y, Denker JS, and Solla SA. Optimal brain damage. In Advances
in Neural Information Processing Systems 2, pages 598–605. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1990.

[Levin et al., 2004] Levin A, Zomet A, Peleg S, and Weiss Y. Seamless image stitching in
the gradient domain. In Proceedings of the 8th European Conference on Computer Vision,
pages 377–389. Springer-Verlag, 2004.

[Likar et al., 2001] Likar B, ViergeverMA, and Pernus̆ F. Retrospective correction of MR
intensity inhomogeneity by information minimization. IEEE Transactions on Medical
Imaging, 20(12):1398–1410, 2001.

[Ling et al., 2003] Ling CX, Huang J, and Zhang H. AUC: a statistically consistent and
more discriminating measure than accuracy. In Proceedings of the 18th International Joint
Conference on Arti�cial Intelligence, pages 329–341. 2003.

[Lockhart and Winzeler, 2000] LockhartDJ andWinzeler E. Genomics, gene expression
and dna arrays. Nature, 405:827–36, 2000.

[MacKay, 2002] MacKay DJC. Information�eory, Inference & Learning Algorithms. Cam-
bridge University Press, 1st edition, 2002.

[Mangasarian, 1965] MangasarianOL. Linear and nonlinear separation of patterns by linear
programming. Operations Research, 13:444–452, 1965.

[Martinetz, 2004] Martinetz T. MinOver revisited for incremental support-vector-
classi�cation. In C Rasmussen, H Buelthoff, M Giese, and B Schoelkopf, editors,
DAGM 2004, volume 3175 of Lecture Notes in Computer Science, pages 187–194. Springer
Press, Heidelberg, 2004.

[Martinetz et al., 2005] MartinetzT, LabuschK, and SchneegassD. So�DoubleMinOver:
A simple procedure for maximum margin classi�cation. In Proceedings of the 15th Interna-
tional Conference on Arti�cial Neural Networks: Formal Models and their Applications,
Part II, pages 301–306. Springer-Verlag, Berlin, Heidelberg, 2005.

155



Bibliography

[Maszczyk and Duch, 2010a] Maszczyk T and DuchW. Support feature machine for DNA
microarray data. In M Szczuka, M Kryszkiewicz, S Ramanna, R Jensen, and Q Hu,

editors, Proceedings of the 7th International Conference on Rough Sets and Current Trends
in Computing, volume 6086 of Lecture Notes in Computer Science, pages 178–186. Springer
Press, Heidelberg, 2010a.

[Maszczyk and Duch, 2010b] Maszczyk T and DuchW. Support feature machines: Support
vectors are not enough. In International Joint Conference on Neural Networks, pages
3852–3859. IEEE, 2010b.

[McKeown et al., 1998] McKeownMJ, Makeig S, Brown GG, Jung TP, Kindermann SS,

Kindermann RS, Bell AJ, and Sejnowski TJ. Analysis of fMRI data by blind separation
into independent spatial components. Human Brain Mapping, 6:160–188, 1998.

[McPherson et al., 2007] McPherson R, Pertsemlidis A, Kavaslar N, Stewart A,

Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR,

Boerwinkle E, HobbsHH, and Cohen JC. A common allele on chromosome 9 associated
with coronary heart disease. Science, 316(5830):1488 –1491, 2007.

[Mehrotra, 1992] Mehrotra S. On the implementation of a primal-dual interior pointmethod.
SIAM Journal on Optimization, 2:575–601, 1992.

[MourãoMiranda et al., 2005] Mourão Miranda J, Bokde ALW, Born C, Hampel H,

and StetterM. Classifying brain states and determining the discriminating activation
patterns: Support vector machine on functional MRI data. NeuroImage, 28(4):980–995,
2005.

[Mitchell et al., 2008] MitchellTM, Shinkareva SV, CarlsonA, ChangKMM,Malave

VL, Mason RA, and Just MAA. Predicting human brain activity associated with the
meanings of nouns. Science, 320(5880):1191–1195, 2008.

[Mukherjee et al., 1998] Mukherjee S, Tamayo P, Slonim D, Verri A, Golub T, Mesirov

JP, and Poggio T. Support vector machine classi�cation of microarray data. Technical
report, AI Memo 1677, Massachusetts Institute of Technology, 1998.

[Ogden et al., 1985] Ogden JM, Adelson EH, Bergen JR, and Burt PJ. Pyramid-based
computer graphics. RCA Engineer, pages 4–15, 1985.

[Pessoa and Padmala, 2007] Pessoa L and Padmala S. Decoding near-threshold perception
of fear from distributed single-trial brain activation. Cerebral Cortex, 17:691–701, 2007.

156



Bibliography

[Platt, 1999] Platt JC. Fast training of support vector machines using sequential minimal
optimization, pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

[Provost, 2000] Provost F. Machine learning from imbalanced data sets 101. Proceedings of
the AAAI-2000 Workshop on Imbalanced Data Sets, 2000.

[Radovanović et al., 2010] RadovanovićM, Nanopoulos A, and IvanovićM. Hubs in
space: Popular nearest neighbors in high-dimensional data. Journal of Machine Learning
Research, 11:2487–2531, 2010.

[Raelson et al., 2007] Raelson JV, Little RD, Ruether A, Fournier H, Paquin B,

Van Eerdewegh P, BradleyWEC, Croteau P, Nguyen-Huu Q, Segal J, Debrus

S, Allard R, Rosenstiel P, Franke A, Jacobs G, Nikolaus S, Vidal JM, Szego P,

Laplante N, Clark HF, Paulussen RJ, Hooper JW, Keith TP, Belouchi A, and

Schreiber S. Genome-wide association study for crohn’s disease in the quebec founder
population identi�es multiple validated disease loci. Proceedings of the National Academy
of Sciences, 104(37):14747–14752, 2007.

[Raskutti and Kowalczyk, 2004] Raskutti B and Kowalczyk A. Extreme re-balancing for
SVMs: a case study. SIGKDD Explorations Newsletter, 6:60–69, 2004.

[Rolland et al., 2000] Rolland JP, Vo V, Bloss B, and Abbey CK. Fast algorithms for
histogram matching: Application to texture synthesis. Journal of Electronic Imaging,
9(1):39–45, 2000.

[Rosenblatt, 1958] Rosenblatt F. �e perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Reviews, 65(6):386–408, 1958.

[Saeys et al., 2007] SaeysY, Inza In, and LarrañagaP. A review of feature selection techniques
in bioinformatics. Bioinformatics, 23(19):2507–2517, 2007.

[Samani et al., 2007] Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M,

Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann H, Barrett JH, König

IR, Stevens SE, Szymczak S, Tregouet D, IlesMM, Pahlke F, PollardH, LiebW,

Cambien F, FischerM, OuwehandW, Blankenberg S, Balmforth AJ, Baessler

A, Ball SG, Strom TM, Brænne I, Gieger C, Deloukas P, TobinMD, Ziegler A,

Thompson JR, and SchunkertH. Genomewide association analysis of coronary artery
disease. �e New England Journal of Medicine, 357(5):443–453, 2007.

[Sauer, 1972] Sauer N. On the density of families of sets. Journal of Combinatorial�eory,
Series A, 13(1):145 – 147, 1972.

157



Bibliography

[Schmahmann et al., 1998] Schmahmann JD, Doyon J, Mcdonald D, Holmes C, Lavoie

K, Hurwitz AS, KabaniN, Toga A, Evans A, and PetridesM. �ree-dimensional MRI
atlas of the human cerebellum in proportional stereotaxic space. NeuroImage, 10:233–260,
1998.

[Slonim et al., 2000] Slonim DK, Tamayo P, Mesirov JP, Golub TR, and Lander ES. Class
prediction and discovery using gene expression data. In Proceedings of the 4th Annual
International Conference on Computational Molecular Biology, pages 263–272. ACM, New
York, NY, USA, 2000.

[Stephens et al., 2010] Stephens GJ, Silbert LJ, and Hasson U. Speaker–listener neural
coupling underlies successful communication. Proceedings of the National Academy of
Sciences, 107(32):14425–14430, 2010.

[Tibshirani, 1996] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, Series B, 58:267–288, 1996.

[Tibshirani and Tibshirani, 2009] Tibshirani RJ and Tibshirani R. A bias correction for
the minimum error rate in cross-validation. �e Annals of Applied Statistics, 3(2):822–829,
2009.

[Tzourio-Mazoyer et al., 2002] Tzourio-Mazoyer N, Landeau B, Papathanassiou D,

Crivello F, Etard O, Delcroix N, Mazoyer B, and JoliotM. Automated anatomical
labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI
single-subject brain. NeuroImage, 15(1):273–289, 2002.

[Vanderbei, 2008] Vanderbei R. Linear programming: foundations and extensions. Interna-
tional series in operations research & management science. Springer, 2008.

[Vapnik, 1982] VapnikV. Estimation of Dependences Based on Empirical Data. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1982.

[Vapnik, 1999] Vapnik VN. �e Nature of Statistical Learning�eory. Springer, 1999.

[Vapnik and Chervonenkis, 1971] Vapnik VN and Chervonenkis AY. On the uniform con-
vergence of relative frequencies of events to their probabilities. �eory of Probability and its
Applications, 16(2):264–280, 1971.

[Vapnik and Chervonenkis, 1982] Vapnik VN and Chervonenkis AY. Necessary and suf-
�cient conditions for the uniform convergence of means to their expectations. �eory of
Probability and its Applications, 26(3):532–553, 1982.

158



Bibliography

[Varma and Simon, 2006] Varma S and Simon R. Bias in error estimation when using cross-
validation for model selection. BMC Bioinformatics, 7(1):91, 2006.

[Veropoulos et al., 1999] Veropoulos K, Campbell C, and Cristianini N. Controlling
the sensitivity of support vector machines. In Proceedings of the 16th International Joint
Conference on Arti�cial Intelligence, pages 55–60. 1999.

[Vul et al., 2009] Vul E, Harris C, Winkielman P, and Pashler H. Puzzlingly high cor-
relations in fmri studies of emotion, personality, and social cognition. Perspectives on
Psychological Science, 4(3):274–290, 2009.

[Wendel, 1962] Wendel J. A problem in geometric probability. Mathematics Scandinavia,
11:109–111, 1962.

[Weston et al., 2000] Weston J, Mukherjee S, Chapelle O, Pontil M, Poggio T, and

Vapnik V. Feature selection for SVMs. In Advances in Neural Information Processing
Systems. 2000.

[Weston et al., 2003] Weston J, Elisseeff A, Schölkopf B, and TippingM. Use of the zero-
norm with linear models and kernel methods. Journal of Machine Learning Research,
3:1439–1461, 2003.

[Yogananda et al., 2007] Yogananda PA, MurthyMN, and Gopal L. A fast linear separabil-
ity test by projection of positive points on subspaces. In Proceedings of the 24th international
conference on Machine learning, pages 713–720. ACM, New York, NY, USA, 2007.

[Zheng et al., 2009] Zheng Y, Lin S, Kambhamettu C, Yu J, and Kang S. Single-image
vignetting correction. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(12):2243–2256, 2009.

[Zhu et al., 2004] Zhu J, Rosset S, Hastie T, and Tibshirani R. 1-norm support vector
machines. In S Thrun, L Saul, and B Schölkopf, editors,Advances in Neural Information
Processing Systems 16. MIT Press, Cambridge, MA, 2004.

159


	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	Machine Learning and High-dimensional Spaces
	Notations
	Basics in Statistical Learning Theory
	Support Vector Machines
	Validation Methods
	Geometry of High-Dimensional Small Sample Size Scenarios 
	Empty Space Phenomenon
	Distance Concentration 
	Hubness
	Incidental Separability 
	Reliability of Cross-Validation 

	Feature Selection 
	Combinatorial Aspects
	Categorisation
	Filter Methods 
	Wrapper Methods
	Embedded Methods

	Conclusions

	Support Feature Machine 
	Basic Algorithm
	Extensions
	Mathematical Considerations 
	On the VC-Dimension of the Support Feature Machine
	Implementation  using Linear Programming Solvers
	Conclusions

	Basic Experiments 
	Reliability of Cross-Validation
	Support Feature Machine on Artificial Data
	Basic Experiment
	Increasing the Dimensionality
	Non-separable Classes 

	Runtime Simulations 
	Evaluation on Microarray Data 
	Conclusions

	Image Processing Excursus: The Gaussian Pyramid for Illumination Correction 
	Illumination Correction Framework
	Evaluation on Artificial and Real-World Data
	Conclusions

	Mindreading: Classification and Feature Selection for Brain Activity Data 
	Data and Preprocessing
	Machine Learning Approaches
	Localised Brain Activity
	Emotional Brain States 
	Pairwise Emotion Analysis 
	One-vs.-All Emotions Analysis
	Time Slice Analysis
	Downsampling Analysis 

	Conclusions

	Conclusions
	Bibliography

