Contents

List of Contributors XI Preface XV

 Mechanisms of Metal-Mediated C-N Coupling Processes: A Synergistic

 Relationship between Gas-Phase Experiments and Computational

 Chemistry

Robert Kretschmer, Maria Schlangen, and Helmut Schwarz

1.1 Introduction 1

- 1.2 From Metal-Carbon to Carbon-Nitrogen Bonds 2
- 1.2.1 Thermal Reactions of Metal Carbide and Metal Methylidene Complexes with Ammonia 2
- 1.2.2 How Metals Control the C–N Bond-Making Step in the Coupling of CH₄ and NH₃ 4
- 1.2.3 C-N Coupling via S_N2 Reactions: Neutral Metal Atoms as a Novel Leaving Group 6
- 1.3 From Metal-Nitrogen to Carbon-Nitrogen Bonds 8
- 1.3.1 High-Valent Iron Nitride and Iron Imide Complexes 8
- 1.3.2 Metal-Mediated Hydroamination of an Unactivated Olefin by [Ni(NH₂)]⁺ 11
- 1.4 Conclusion and Perspectives 12 Acknowledgments 14 References 14
- 2 Fundamental Aspects of the Metal-Catalyzed C–H Bond Functionalization by Diazocarbenes: Guiding Principles for Design of Catalyst with Non-redox-Active Metal (Such as Ca) and Non-Innocent Ligand 17
 - Adrian Varela-Alvarez and Djamaladdin G. Musaev
- 2.1 Introduction 17
- 2.1.1 Electronic Structure of Free Carbenes 20
- 2.1.2 Electronic Structure of Metallocarbenes 22
- 2.2 Theoretical Models and Methods 25

VI Contents

2.3	Design of Catalyst with Non-redox-Active Metal and Non-Innocent Ligand 26
2.3.1	The Proposed Catalyst: a Coordinatively Saturated Ca(II) Complex 26
2.3.2	Potential Energy Surface of the [(PDI)Ca(THF) ₃] Catalyzed C–H Bond Alkylation of MeCH ₂ Ph by Unsubstituted N ₂ CH ₂ Diazocarbene 27
2.3.3	[(PDI)Ca(THF) ₃]-Catalyzed C – H Bond Alkylation of MeCH ₂ Ph by Donor – Donor (D/D) Diazocarbene N_2 CPh ₂ 32
2.4	Conclusions and Perspectives 35 Acknowledgment 37 References 37
3	Using Metal Vinylidene Complexes to Probe the Partnership Between Theory and Experiment 41 John M. Slattery, Jason M. Lynam, and Natalie Fey
3.1	Introduction 41
3.1.1	The Partnership between Theory and Experiment 41
3.1.2	Transition-Metal-Stabilized Vinylidenes 42
3.2	Project Planning in Organometallic Chemistry 44
3.2.1	Experimental Methodologies 44
3.2.2	Computational Methodologies 46
3.3	Case Studies 49
3.3.1	Mechanism of Rhodium-Mediated Alkyne to Vinylidene Transformation 50
3.3.2	Using Ligand Assistance to Form Ruthenium–Vinylidene Complexes 54
3.3.3	Vinylidenes in Gold Catalysis 58
3.3.4	Metal Effects on the Alkyne/Vinylidene Tautomer Preference 61
3.4	The Benefits of Synergy and Partnerships 63 References 64
4	Ligand, Additive, and Solvent Effects in Palladium Catalysis – Mechanistic Studies <i>En Route</i> to Catalyst Design 69 Franziska Schoenebeck
4.1	Introduction 69
4.2	The Effect of Solvent in Palladium-Catalyzed Cross Coupling and on the Nature of the Catalytically Active Species 71
4.3	Common Additives in Palladium-Catalyzed Cross-Coupling Reactions – Effect on (Pre)catalyst and Active Catalytic Species 75
4.4	Pd(I) Dimer: Only Precatalyst or Also Catalyst? 79
4.5	Investigation of Key Catalytic Intermediates in High-Oxidation-State Palladium Chemistry <i>81</i>
4.6	Concluding Remarks 87 References 88

5	Computational Studies on Sigmatropic Rearrangements via
	π -Activation by Palladium and Gold Catalysts 93
	Osvaldo Gutierrez and Marisa C. Kozlowski
5.1	Introduction 93
5.1.1	Sigmatropic Rearrangements 93
5.1.2	Metal-Catalyzed Sigmatropic Rearrangements 93
5.2	Palladium as a Catalyst 94
5.2.1	Palladium Alkene Activation 94
5.2.1.1	[3,3]-Sigmatropic Rearrangements 94
5.2.1.2	[2,3]-Sigmatropic Rearrangements 101
5.2.2	Palladium Alkyne Activation 103
5.3	Gold as a Catalyst 103
5.3.1	Gold Alkene Activation 103
5.3.1.1	[3,3]-Sigmatropic Rearrangements 103
5.3.2	Gold Alkyne Activation 108
5.3.2.1	[3,3]-Sigmatropic Rearrangements 108
5.4	Concluding Remarks 117
	References 117
6	Theoretical Insights into Transition Metal-Catalyzed Reactions
	of Carbon Dioxide 121
	Ting Fan and Zhenyang Lin
6.1	Introduction 121
6.2	Theoretical Methods 122
6.3	Hydrogenation of CO_2 with H ₂ 122
6.4	Coupling Reactions of CO ₂ and Epoxides 127
6.5	Reduction of CO_2 with Organoborons 131
6.6	Carboxylation of Olefins with CO_2 134
6.7	Hydrocarboxylation of Olefins with CO ₂ and H ₂ 134
6.8	Summary 137
	Acknowledgment 139
	References 139
7	Catalytically Enhanced NMR of Heterogeneously Catalyzed
	Hydrogenations 145
	Vladimir V. Zhivonitko, Kirill V. Kovtunov, Ivan V. Skovpin, Danila A. Barskiy,
	Oleg G. Salnikov, and Igor V. Koptyug
7.1	Introduction 145
7.2	Parahydrogen and PHIP Basics 146
7.3	PHIP as a Mechanistic Tool in Homogeneous Catalysis 149
7.3.1	PHIP-Enhanced NMR of Reaction Products 150
7.3.2	PHIP Studies of Reaction Intermediates 152
7.3.3	Activation of H_2 and Structure and Dynamics of Metal Dihydride
	Complexes 153

7.4 PHIP-Enhanced NMR and Heterogeneous Catalysis 155

VIII Contents

7.4.1	PHIP with Immobilized Metal Complexes 155
7.4.2	PHIP with Supported Metal Catalysts 164
7.4.3	Model Calculations Related to Underlying Chemistry in PHIP 173
7.5	Summary and Conclusions 180
	Acknowledgments 180
	References 181
8	Combined Use of Both Experimental and Theoretical Methods in the
	Exploration of Reaction Mechanisms in Catalysis by Transition
	Metals 187
0.1	Daniel Lupp, Niels Johan Christensen, and Peter Fristrup
8.1	Introduction 187
8.1.1	Hammett Methodology 187
8.1.2	Kinetic Isotope Effects 188
8.1.3	Competition Experiments 189
8.2	Recent DFT Developments of Relevance to Transition Metal Catalysis 190
8.2.1	Computational Efficiency 191
8.2.1	Dispersion Effects 193
8.2.2 8.2.3	Solvation 195
8.2.5 8.2.4	Effective Core Potentials 196
8.2.5	Connecting Theory with Experiment 197
8.3	Case Studies 197
8.3.1	Rhodium-Catalyzed Decarbonylation of Aldehydes 198
8.3.2	Iridium-Catalyzed Alkylation of Alcohols with Amines 203
8.3.3	Palladium-Catalyzed Allylic C–H Alkylation 205
8.3.4	Ruthenium-Catalyzed Amidation of Alcohols 209
8.4	Conclusions 213
	Acknowledgments 214
	References 214
9	Is There Something New Under the Sun? Myths and Facts in the
	Analysis of Catalytic Cycles 217
	Sebastian Kozuch
9.1	Introduction 217
9.1.1	Prologue 217
9.1.2	A Brief History of Catalysis 217
9.2	Kinetics Based on Rate Constants or Energies 218
9.2.1	Kinetic Graphs 220
9.2.2	TOF Calculation of Any Cycle 222
9.2.3	TOF in the E-Representation 225
9.3	Application: Cross-Coupling with a Bidentate Pd Complex 227
9.4 0.5	A Century of Sabatier's Genius Idea 230
9.5	Theory and Practice of Catalysis, Including Concentration
	Effects 232

Contents IX

	•
9.5.1	Application: Negishi Cross-Coupling with a Ni Complex 233
9.5.2	Can a Reaction Be Catalyzed in Both Directions? 236
9.5.3	The Power Law 239
9.6	RDStep 🗷, RDStates 🗹 239
9.6.1	Finding the RDStates 242
9.6.2	Finding the Irreversible Steps 243
9.7	Conclusion 244
9.7.1	The Last Myth: Defining the TOF 244
9.7.2	Final Words about the <i>E</i> -Representation 245
	References 246
	Activities 210
10	Computational Tools for Structure, Spectroscopy and
	Thermochemistry 249
	-
10.1	Vincenzo Barone, Malgorzata Biczysko, and Ivan Carnimeo
10.1	Introduction 249
10.2	Basic Concepts 251
10.2.1	Potential Energy Surface: Molecular Structure, Transition States, and
	Reaction Paths 251
10.2.2	DFT and Hybrid Approaches for Organometallic Systems 254
10.2.3	Description of Environment 257
10.3	Spectroscopic Techniques 260
10.3.1	Rotational Spectroscopy 261
10.3.1.1	Identification of Conformers/Tautomers 263
10.3.1.2	Accurate Equilibrium Structures 266
10.3.2	Vibrational Spectroscopy 267
10.3.2.1	Frequencies 267
10.3.2.2	Infrared and Raman Intensities 270
10.3.2.3 ·	Effective Treatment of Fermi Resonances 273
10.3.2.4	Thermochemistry 275
10.3.2.5	Approximate Methods: Hybrid Force Fields 277
10.3.2.6	Approximate Methods: Reduced Dimensionality VPT2 279
10.3.3	Electronic Spectroscopy 280
10.3.3.1	General Framework for Time-Independent and Time-Dependent
	Computations of Vibronic Spectra 280
10.3.3.2	Approximate Description of Excited State PES 283
10.4	Applications and Case Studies 287
10.4.1	Thermodynamics and Vibrational Spectroscopy Beyond Harmonic
	Approximation: Glycine and Its Metal Complexes 287
10.4.1.1	Accurate Results for Isolated Glycine from Hybrid CC/DFT
10.1111	Computations 287
10.4.1.2	Glycine Adsorbed on the (100) Silicon Surface 290
10.4.1.2	Glycine – Metal Binding 291
10.4.2	Optical Properties of Organometallic Systems 297
10.4.2.1	Metal Complexation effects on the Structure and UV – Vis Spectra
10.7.2.1	of Alizarin 297

X Contents

10.4.2.2	Luminescent Organometallic Complexes of Technological Interest 301
10.4.3 10.5	Interplay of Different Effects: The Case of Chlorophyll- <i>a</i> 302 Conclusions and Future Developments 308 Acknowledgments 309 References 309
11	Computational Modeling of Graphene Systems Containing Transition Metal Atoms and Clusters 321 Mikhail V. Polynski and Valentine P. Ananikov
11.1	Introduction 321
11.2	Quantum Chemical Modeling and Benchmarking 322
11.2.1	Electron Correlation Methods 322
11.2.1.1	Truncated Coupled Cluster Methods 322
11.2.1.2	Truncated Quadratic Configuration Interaction Methods 323
11.2.1.3	Methods of Møller – Plesset Perturbation Theory 323
11.2.2	Dispersion-Accounting DFT Methods 324
11.2.2.1	Empirically Corrected DFT Methods 325
11.2.2.2	Density Functionals with Nonlocal Correlation Term 330
11.2.3	Database and Benchmarking Considerations 334
11.2.3.1	S22, S66, and Related Databases 334
11.2.3.2	Databases of Relatively Large Intermolecular Systems 337
11.2.3.3	DFT Methods Benchmarking against Systems with Transition Metal
	Species 338
11.2.4	Outlook on Database and Benchmarking 340
11.3	Representative Studies of Graphene Systems with Transition
	Metals 341
11.3.1	Graphene Models 341
11.3.2	Pristine Graphene as a Substrate for Transition Metal Particles 342
11.3.2.1	Transition Metal Adatoms on Pristine Graphene 342
11.3.2.2	Metal Clusters or Nanoparticles on Pristine Graphene 343
11.3.3	Defective or Doped Graphene as a Support for Transition Metal
	Particles 347
11.3.3.1	Transition Metal Adatoms on Doped or Defective Graphene 347
11.3.3.2	Transition Metal Clusters on Doped or Defective Graphene 349
11.3.4	Studies of Complex Graphene Systems with Transition Metals 352
11.3.5	Modeling Chemical Transformations in Graphene/Transition Metal Systems 355
11.4	Conclusions 362
	Acknowledgments 363
	List of Abbreviations 363
	References 365

•

Index 375