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1. Introduction

1.1. Motivation

In 1965 Gordon E. Moore stated: ”The complexity for minimum component costs
has increased at a rate of roughly a factor of two per year.”[Moo65] Over the decades
this has been transformed to: ”The number of transistors per area will double every
18-24 months”. The well known Moore’s Law. An also well known deduction is:
”calculation performance doubles every 18-24 month”.

The implication ”calculation performance follows transistor density” was practically
achieved by using transistors for a variety of additional hardware features to increase
clock speeds of integrated circuits. This approach had been successfully used till the
very first years of the 21st century. Today modern processor systems perform with
clock speeds between one and up to four GHz. In Figure 1.1 the age before the
millenium change is labeled as Age of clock speed. Due to different physical effects
the clock speeds are facing the so called frequency wall.

To turn more and more transistors still delivered by the road maps of silicon
foundries into performance, the total of cores has been increased on processor de-
signs. This fact is considered as Age of parallelism in Figure 1.1. It is easy to predict
that the curve of the core will also face its wall due to Amdahls law. Assuming this
trend will be stable the next few years, a single chip might hold more than 256
processor cores in a few years. This might be beneficial for supercomputing needs,
but for the general purpose computer it is oversized.

Configurable circuits are a promising approach to turn increasing transistor totals
into performance. This is denoted in Figure 1.1 as Age of configuration. This re-
quires significant changes in operating systems, in the areas of software and system
engineering. Traditional approaches were focused on optimizing algorithms to per-
form on standard parallel hardware. The configware approach is vice versa in the
sense that hardware is now optimized to support algorithms in form of accelerator
units. Todays trend is to use configurable computing to add those accelerator units
to existing computer architectures.

Hence, it is expected that future (configuration age) processors contain a propor-
tionate amount of cores, whereas the remaining available transistors are used to
form reconfigurable areas. In those areas, the accelerator units can be placed on an

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1.: Moore’s Law and the consequences for computer architectures.
Memory capacities are scaling directly with Moore’s law. So did the clock speeds

until the very early 2000s. Then physical effects limited the clock speeds to
1-4Ghz. [Kla13] expects the same for the total of cores for the mid range future.
To take profit from a still increasing total of transistors configurable computing

seems to be a promising technology. (Figure source: [Kla13])

as needed basis [Kla13].

Another area of interest in computer science are virtual machines (VMs). For desk-
top computers, system virtual machines received renewed interest during the last
decade. Especially after x86 based processors of Intel and AMD were enabled to sup-
port native executed system virtual machines. A system virtual machine allows the
execution of one or more guest operating systems while the original host operating
system is still running. This approach has several advantages:

Robust systems: A failure of a guest machine doesn’t affect the overall system.

Enhanced security: System virtual machines are often called sandboxes in the area
of IT-security to emphasize the ability to separate the guest systems against
each other.

Resource utilization: Instead of running multiple computers, which are busy most
of the time, virtual machines provide a way to enhance the usage of one phys-
ical computer, presented as an illusion of being multiple, occasionally used
ones.

Mixed OS platforms If the user of a computer system wants to use different soft-
ware, only available for different operating systems, it’s much easier to switch
between several guest operating system instead of booting the necessary one
every time it is needed.
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Multi platform development For a software developer virtual machines provide
two advantages: Firstly, a VM can be used to emulate different hardware
configurations. The second advantage refers to the fact, that testing software
on different (virtualized) operating systems is faster as switching between them
by means of shutting one down and booting another one.

Migration Migrating to a new operating system can be tested step by step with-
out the need to remove the old operating system from a machine or use an
additional machine, only required for the migration period.

1.2. Purpose of this Work

This thesis presents the approach of taking advantage of reconfigurable logic by com-
bining it with the idea of virtual machines. This combination allows to instantiate
additional hardware resources for virtual machines, in opposition to the emulation
approach of conventional virtual machines.

In this thesis, the requirements and dependencies among reconfigurable logic and
operating systems are investigated to enable the use of virtual machine mechanisms
on systems, combining hard-wired (static logic) and reconfigurable logic. To proof
the feasibility of this idea, a proof of concept demonstrator is needed. To implement
such a proof of concept demonstrator a testing framework, the Partial Reconfigurable
Heterogeneous System (PRHS) framework has been developed. This framework is
also presented in this thesis. Finally, the benefits of those reconfigurable logic based
virtual machines are discussed in theory and in context of the proof of concept
demonstrator.

1.3. Structure of this Work

This thesis is structured as follows:

In chapter 2 a brief introduction on (re)configurable computing will be given.

Conventional virtual machines will be briefly introduced in chapter 3. This is neces-
sary to define a common terminology, as the term virtualization is extensively used
in computer science in different senses. Additionally, this chapter is the basis for
the theoretical and practical evaluation of the main idea of this thesis.

In chapter 4 the main idea of this thesis will be shown in detail. This includes the
deduction of requirements for reconfigurable logic based virtual machines and also
a discussion on the theoretical benefits.
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In chapter 5, 6 and 7 the developed PRHS framework will be presented. Due to
it’s complexity, the hardware, operating system and software parts of the PRHS
framework are presented in separate chapters.

The PRHS framework is used to implement a proof of concept demonstrator, as
will be shown in chapter 8. This demonstrator is used to show the applicability of
reconfigurable logic based system virtual machines.

Chapter 9 summarizes the results of this thesis and gives future prospects regarding
the main idea of this thesis.



2. Configurable Computing

According to [CH02] (re)configurable computing is intended to fill the gap between
hardware and software, achieving potentially much higher performance than soft-
ware, while maintaining a higher level of flexibility than hardware. Therefore, an
overview about the principle mechanisms of (re)configurable hardware is presented
in this chapter. Focus lies on Field Programmable Gate Arrays (FPGAs) because
they are todays most flexible reconfigurable devices and are in central scope of this
thesis.

2.1. Configurable Hardware

Without elaborating too much details, each piece of hardware can be classified into
storage elements, like Latches and Flip-Flops, as well as combinational circuits,like
gates. By combining those elementary elements, larger circuits with more compu-
tational functionality can be implemented.

Configurable hardware summarizes those circuits, whose functionality can be
changed after the circuits leave the silicon fabric.

2.1.1. Memory - Look Up Table

A boolean function is a transformation given by

Bm → Bn;B = {0, 1};m,n ∈ N

Each boolean function can be implemented by a dedicated combinational circuit.

A memory with an address width of m bits and a word width (number of bits per
addressable memory cell) of n can implement each of the 2m∗2n possible boolean
functions of the form given in the above equation. This can easily be achieved by
putting the truth table into the appropriate memory cells.

The following example illustrates this approach.

A boolean function of the form:

f(a, b)→ (w, x, y, z); a, b, w, x, y, z ∈ B = {0, 1}

5



6 CHAPTER 2. CONFIGURABLE COMPUTING

is given by the following truth table:

a b w x y z

0 0 0 0 0 0
0 1 0 1 1 1
1 0 0 0 1 1
1 1 1 1 1 0

Figure 2.1 shows, how the truth table is mapped into the bits of the memory.

0 0 0 0

0 1 1 1

0 0 1 1

1 1 1 0

a
d
d
re

ss
d
e
co

d
e
r

a
b

w x y z

0

1

2

3

Figure 2.1.: Truth table mapped into memory.

The contents of a RAM can be altered at runtime and most of today ROMs are also
(re)programmable (e.g. EEPROMs). Hence, a memory can be seen as the simplest
form of a (user) (re)configurable hardware circuit.

2.1.2. Multiplexers

Look Up Table

The key concept of using a memory as a (re)configurable hardware device is, to
put the truth table of the required boolean function into the memory cells. The
memories address decoder is used to select the corresponding line of the truth table.

This principle can also be achieved by using a multiplexer, where the select inputs
correspond to the address bits of the memory and the input lines are the corre-
sponding bits of the truth table. As a multiplexer usually only has one output, it is
necessary to use n multiplexers in parallel.

Regarding to the example of the previous section, the corresponding multiplexer
solution can be found in Figure 2.2.
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a
b

w x y z

0
0
0
1

0 0
0

0

1
0
1

1
1

0
1
1

Figure 2.2.: Truth table implemented by multiplexers.

If the data inputs of the multiplexers are connected to some kind of storing ele-
ment (e.g. a Flip-Flop or SRAM cell), this solution can be seen as another kind of
(re)configurable circuit for implementing a boolean function.

Shannon Expansion

Another way of utilizing Multiplexers in reconfigurable logic is to take advantage of
the Shannon expansion [Sha49] (in the following equation, expansion is about x0):

f(x0, x1, . . . , xn−1) = x0 ∧ f(1, x1, . . . , xn−1) ∨ x0 ∧ f(0, x1, . . . , xn−1)

Applying the Shannon expansion n times for the above equation will result in the
disjunctive normal form. This allows to implement the multiplexer look up table
solution presented above.

If it is applied only n− 1 times, the solution is still applicable to multiplexers. The
remaining nth literal, that has not been a subject to the Shannon expansion is used
as an input to the multiplexer. The other n− 1 signals are used as the multiplexer
select signals. This approach requires a programmable interconnection matrix, to
select the right literals as multiplexer input and select signals.

For the above given example, the results for the solution are given in Figure 2.3.

2.1.3. AND/OR Matrices

According to [HM04], a programmable two-stage AND/OR matrix is the essential
component of a Programmable Logic Device (PLD). Such an AND/OR matrix is
suitable for implementing boolean functions given in disjunctive normal form. An
example for such an AND/OR matrix, implementing the boolean function example
of the previous section, is shown in Figure 2.4.

The AND matrix and the OR matrix can be either programmable or are already
hard wired when the circuits are leaving the factory. Depending on the possible
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0
1

b

a

0 1 0 1 0 1 0 1

w x y z

programmable matrixprogrammed connection

Figure 2.3.: Shannon expansion results implemented by multiplexers.
Thereby, w is expanded about b; x, y and z are expanded about a.

&

&

&

&

a b

≥
1

≥
1

≥
1

≥
1

w

x

y

z

&

programmable
connection

and-matrix or-matrix

≥
1

programmed
connection

Figure 2.4.: Example for an AND/OR matrix implementation [HM04].

combinations of programmable/hard wired for the AND and OR matrices, there
are three different types of configurable device classes as shown in table 2.11. In-
terestingly, memories also fit into this categorization, when the address decoder is
interpreted as AND matrix and the memory cells as OR matrix.

2.1.4. Simple Programmable Logic Devices

All the programmable devices mentioned in the previous sections are suitable for
implementing boolean functions and therefore can replace dedicated combinational

1If neither AND nor OR matrix are programmable, the device isn’t regarded as configurable at
all
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device class PROM (Programmable
ROM), RAM

PLA (Programmable
Logic Array)

PAL (Programmable
Array Logic)

AND-matrix hard wired programmable programmable
OR-matrix programmable programmable hard wired

Table 2.1.: AND/OR matrix categorization for configurable devices [HM04], [Sca01].

circuits. Still missing is the feature of a storing element like a latch or Flip-Flop to
be able to implement finite state machines. In Figure 2.5 an AND/OR matrix is
combined with a Flip Flop, several multiplexers and a tri-state gate, forming a so
called (output logic) macro-cell (OLMC) of a Simple Programmable Logic Device
(SPLD). In addition to the programmable AND-matrix, the pins (1), (2) and (3)

&

≥1
&

&

&

=1 D Q

clk

(1)

(2)

&

(3)

I/O

OLMCp
ro

g
ra

m
m

a
b

le
 A

N
D

 m
a
tr

ix

Figure 2.5.: An OLMC example (notional).

are also used for configuring the behavior of a macro cell.

The combination of several such OLMCs with an appropriately sized AND-matrix
form a SPLD.

2.1.5. Complex Programmable Logic Devices

Connecting several SPLDs with an interconnection matrix and dedicated input/out-
put stages on one chip results in a complex Programmable Logic Device (CPLD) as
seen in Figure 2.6.
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Figure 2.6.: A CPLD example [HM04].

2.1.6. Programming Technologies

There exist several different programming technologies for CPLDs and FPGAs. (FP-
GAs will be introduced in the next section.) The main distinguishing feature for
the programming technology is reconfigurability. A programmable logic device is
one time configurable, if it can be programmed only once, after it has left the sili-
con factory. If it is (re)programmable several times, it is called reconfigurable. For
the reconfigurable programming technologies, there is an additional distinguishing
feature: programming persistence. The programming can either be volatile, if the
device has to be reprogrammed after every power down, or non-volatile, if the last
programming is still available after a power down of the device. Categorization
and corresponding programming technologies are summarized in the following table
[HM04]:

category one time configurable non-volatile volatile
technology Fuse, Anti-Fuse Flash, EEPROM SRAM

2.2. FPGAs

FPGAs further develop the idea of the CPLDs. Both device classes have an amount
of interconnected programmable blocks in common. For Field Programmable Gate
Array (FPGA)s this amount is some orders of magnitude higher compared with
CPLD. In addition the relation between boolean functions (LUTs) and storage el-
ements (Flip Flops) is different for FPGAs and CPLDs. In general, FPGAs have
more Flip-Flops in relation to the configurable combinational logic as CPLDs.

A FPGA consists of a number of three main elements:
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CLB A configurable logic block is the basic element of a FPGA and contains the
configurable logic.

I/O-blocks Input-/output-blocks connect the internals of a FPGA to the externals
of the chip.

interconnection system The interconnections system connects the CLBs and the
I/O blocks with each other. The interconnections are configurable.

The components will be described more detailed in the following subsections.

2.2.1. CLB - Configurable Logic Blocks

The basic element of a FPGA is a so called Configurable Logic Block (CLB). The
general structure of a CLB is shown in Figure 2.7.

LUT
i0
i1

in

D-FF

clk

sel

out

CLB

Figure 2.7.: General structure of a CLB.

A CLB consists of a Look-Up-Table (LUT) who’s output might be used as an input
to a Flop Flip or as direct output of the CLB. The size of a typical CLB-LUT
ranges up to a 6-input LUT on todays FPGAs. The programmable components of
the presented notional CLB are the LUT and the select-line of the output multiplexer
(marked red in Figure 2.7).

2.2.2. I/O-Blocks

The Input-/Output blocks connect the pins of FPGAs with the internals of the chip.
This provides the possibility to configure the pin as an input, as an output or as both
of them (tristate, pull-up or pull-down). Additionally, it provides the possibility to
wrap the Input/Output voltage levels and technologies (e.g. CMOS or TTL).
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2.2.3. Interconnection System

The interconnection system connects the CLBs and I/O blocks of FPGAs. Depend-
ing on the technologies, there are three principle possibilities to organize FPGAs as
shown in Figure 2.8.

a) b) c)

Figure 2.8.: Organizational structure of a FPGA, a) block oriented, b) line oriented,
c) cell oriented [HM04].

block oriented Horizontal and vertical lines connect arrays of CLBs.

line oriented The CLBs are arranged as rows. Between those rows are the horizon-
tal connections. Vertical connections are located in a layer above the CLBs.

cell oriented There is no CLB-interconnection in the CLB-layer. Horizontal and
vertical connections are located in layers above the CLB-layer.

2.2.4. Additional Elements

In addition to the three main FPGA elements, presented in the previous sections,
dedicated hardware components are possible. Common components, also available
on todays FPGAs, are Block RAM, Digital Signal Processors (DSPs) and even entire
processors (so called hard cores).

FPGA vendors also introduced chips, which include reconfigurable areas with an
entire system on chip. (e.g. Zynq[Xil12b])

2.2.5. Dynamic and Partial Reconfiguration Capabilities

Early FPGAs and the corresponding work-flows only allowed to (re)configure the
entire FPGA. As next development step, partial reconfiguration was developed, al-
lowing only parts of the FPGA to be reconfigured, without touching the remaining
parts.
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Concerning those remaining parts, two possibilities arise, in how they are handled
while the partial reconfiguration (PR) takes place. The static partial reconfigura-
tion approach ”freezes” the remaining parts of the FPGA, whereas the dynamic
partial reconfiguration approach allows the remaining parts to keep running when
the reconfiguration process takes place.

If the reconfiguration process is initiated and performed by the remaining part, a
in-system dynamic and partial reconfiguration takes place.

2.3. Reconfigurable Logic in Computer Architectures

Besides the solely usage of a FPGA (e.g. for rapid prototyping), it is usually used
within a computer architecture. Starting with the simplified system view of Figure
2.9 different possibilities exist, where to place reconfigurable logic and for what
purpose to use it.

CPU(s) Memory(ies)

Device(s)

Figure 2.9.: A simplified system overview on a computer architecture.

Figure 2.10 gives a summarized overview on the different possibilities how to use
reconfigurable logic in a computer architecture. Parts of a system, which are not
reconfigurable at all are summarized as static hardware. Further discussion will be
done in the subsequent sections.

2.3.1. CPUs and Reconfigurable Logic

This section is related to variant 1a and 1b of Figure 2.10. Variant 1a integrates
reconfigurable logic into a processor itself. This results in the possibility to change
the number of functional units (ALU, Multiplier, etc.) for super-scalar or VLIW
architectures at runtime. Another possibility is to change the ISA of the processor
itself at runtime. [Raz94], [NZ04] and [HK09] are academic examples for variant
1a).

Variant 1b provides mechanisms to reconfigure additional processing units (co-
processors or processors) besides the static processors. The Convey HC-1 series
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CPU MEM Dev CPU MEM DevCPU MEM Dev

CPU MEM Dev

static hardware reconfigurable hardware

explanation of symbols:

CPU DevMEM MEM

1a 1b 2

3 4

Figure 2.10.: Variants for including reconfigurable logic into a computer architecture.

(industrial), [HW97] and [Dal99] (academic) are examples, using the co-processor
extension mechanism.

Architecture variant 1b is also referenced in literature as tightly coupled reconfig-
urable logic.

2.3.2. Devices and Reconfigurable Logic

This section is related to variant 2 of Figure 2.10. The term device isn’t necessarily
limited to I/O devices. Also function units, that are accessible as memory mapped or
port mapped devices (in difference to variant 1b) are covered by this term. Convey
HC-2 series (industrial) and several academic examples (e.g [HH09] or [PP04]) are
based on this architecture variant.

This architecture variant is also referenced in literature as loosely coupled reconfig-
urable logic.
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2.3.3. Memories and Reconfigurable Logic

This section is related to variant 3 of Figure 2.10. As CPU and devices have been
investigated for their suitability to use reconfigurable logic among them, memories
are investigated in this section.

In general two possibilities arise. The first one is to use reconfigurable logic to im-
plement memory cells in it’s pure sense. The second one is to provide reconfigurable
logic besides the memory cells.

Reconfigurable Logic as Memory

CLBs, consisting of Flip-Flops and LUTs are presented as central element of FPGAs
in section 2.2. The Flip-Flops can be used to form memory cells, the LUTs can be
used to instantiate encoding and decoding logic. Hence, memory functionality can
be configured into reconfigurable logic.

This approach is extremely resource intensive and even the most modern FPGAs can
only form a size limited memory of just a few MByte.2 For this reason the FPGA
vendors started to include dedicated memories (Block RAM) into their FPGAs to
get on chip memory at low area costs.3 In summary, FPGAs are not suitable to
instantiate large amounts of memory.

Reconfigurable Logic as Memory Supporting Elements

If a memory shall not only hold data, but implement some kind of intelligence,
as it is for content addressable memory (CAM, also knwon as associative storage),
another possibility to take advantage of reconfigurable logic exists. For a RAM, one
ask for data at a given address. For a CAM, it’s the other way around, one asks
for the addresses, where specified data can be found. For this reason, CAMs are
more complex than RAMs, as they have to include pattern matching and search
algorithms in hardware. For a more detailed introduction on CAMs see [PS06].

It is imaginable to instantiate those pattern matching and search algorithms of
CAMs in reconfigurable logic and therefore reduce the corresponding area consump-
tion as those algorithms can be (re)configured as needed. The idea of implementing
CAMs on FPGAs has been described and implemented by several authors like in
[UKJCC12] or [GLD00].

2The current largest FPGA of Xilinx (XC7VX1140T) can form 2.2 MB of distributed RAM, if it
is used entirely as memory. (See current FPGA family product overviews)

3The current largest FPGA of Xilinx (XC7VX1140T) contains 8.5 MB of Block RAM. (See current
FPGA family product overviews)
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2.3.4. Static Islands beside Reconfigurable Logic

This section is related to variant 4 of Figure 2.10. In opposite to variants 1 to 3,
where reconfigurable logic is used to support static logic, variant 4 turns the principle
upside down. On a reconfigurable chip, dedicated (not reconfigurable) hardware is
added next to reconfigurable logic. Regarding processors, they are called hard-cores.
Examples are Xilinx FPGAs including a PowerPC core.

Additionally, dedicated I/O device logic can be added to the reconfigurable chip.
Zynq series of Xilinx [Xil12b] or Altera SoC-FPGAs [Cor13] are examples, where
hard-cores and dedicated I/O device logic are integrated onto a chip, who’s remain-
ing area is used as reconfigurable logic.

As already discussed in the previous section, reconfigurable logic is not suitable to
implement large amounts of memory. Therefore, these architectures usually provide
dedicated external memory. The memory controller itself may reside on the FPGA.

2.3.5. Extensions and Combinations

In the previous subsections different approaches of combining reconfigurable logic
with conventional computer architectures have been discussed. Combinations of
those variants are also possible. The presented variants are all limited to single
computers. Extension to multi-computer systems like clusters are also possible and
have already been implemented, like the Cray XD1 ([cra04] and [UHT]) (industrial)
or Axel Cluster [TL10] and RAMPSoC [GHSB08] (academic).



3. Virtual Machines

The concepts of virtualization and virtual machines are widely and extensively used
mechanisms in computer science as they provide platform independence, effective
resource sharing and security by isolation. They are also part of the main idea of
this thesis.

Before starting a discussion about virtual machines, the term machine has to be
defined. The meaning is dependent on the perspective.

From the perspective of a process, a machine consists of a logical memory address
space, assigned to that machine, along with user level-registers (of the processor) and
instructions that allow the execution of program code, associated with the process.
I/O is only visible for a process through an operating system. Therefore, for a
process a machine is constituted by the underlying hardware, the operating system
and additional software providing necessary interfaces for the process (see Figure
3.1a).

Hardware

OS

Virtualizing software

Application process

Process 
virtual machine

Application processGuest

Runtime

Host

Hardware

OS

Virtualizing software

Application process

Guest

VMM

Host

System
virtual machine

OS

Application process

a) b)

Figure 3.1.: Process and System virtual machines [SN05a].

From the perspective of an operating system, an entire system runs on an underlying
machine. The system is an execution environment for applications (processes), man-
aging the sharing of the available hardware resources between those applications.
Hence, the machine is defined by the underlying hardware characteristics alone (see
fig 3.1b).

For these given reasons, there are two types of virtual machines in general: process
virtual machines and system virtual machines. A process VM exists to execute a
process. The (process) machine is constituted by hardware, operating system and an
optional virtualization software. A system VM provides a complete environment to
execute a (guest) operating system. The system machine is constituted by hardware
and a virtualization software.

17
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The virtualizing software, that implements a process VM, is often termed runtime
software. The virtualizing software in a system VM is typically referred to as the
Virtual Machine Monitor (VMM).

This chapter is based on verbatim excerpts and summaries of [SN05b] and [SN05a].1

3.1. Process Virtual Machines

Process VMs provide a virtual programming interface (application programming
interface (API) and standard libraries) for user applications.

3.1.1. Operating Systems

Operating Systems (OS) are the oldest form of process virtual machines. They
give each process the illusion of having a complete machine for their own. The OS
supports this illusion by managing resources (processor(s), devices, memory) and
enforce time-sharing of theses resources among the different processes. In conse-
quence an operating system provides a replication of the underlying hardware for
each concurrently executed program. If the operating system is regarded as process
virtual machines host, there is no need for a dedicated virtualization software. The
OS itself is the virtualization software in this case.

3.1.2. Emulators and Dynamic Binary Translators

A challenging problem occurs, if a program shall be executed on machine that has a
different ISA than the intended ISA, this program was originally compiled for. The
ISA of the program has to be emulated by the process executing environment.

Interpretation is a straightforward way to implement this emulation. The interpreter
program fetches, decodes, and emulates (almost each single) instruction of the guest
ISA. This process is very slow, as emulating one instruction of the guest ISA might
require several host ISA instruction.

Dynamic binary translation is an approach to speed up the translation process by not
translating the guest program instruction by instruction, but on the basis of blocks
of consecutive instructions. By saving already translated blocks, and re-using them
if necessary, the relatively high overhead of translation can be reduced.

1[SN05a] is a summarizing article of [SN05b].
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3.1.3. Same-ISA Binary Optimization

Dynamic binary translation, as described above, can include code optimization to
reduce performance loss. This capability enables to implement VMs, wherein the
guest and host ISA are the same, with optimization of a program as a VM’s sole
purpose. Same ISA dynamic binary optimizers use profile information collected
during the interpretation or translation phase to optimize the binary executable
on-the-fly.

3.1.4. High-Level-Language VMs

A key object for process VMs is cross-platform portability. If m ∈ N programs have
to be used on n ∈ N different (operating) systems, several problems occur:

• Different operating systems use different system calls and application pro-
gramming interfaces (APIs). Therefore, the sources have to be prepared for
compiling them for different operating systems.

• m× n compilation steps are necessary to compile each of the m programs for
all n operating systems.

To solve these time consuming problems, high-level-language VMs have been intro-
duced. In summary a new intermediate application programming interface (API)
is defined which is used by programs. To allow those programs to be executed on
the different operating systems, a run-rime-environment is introduced. The run
time environment has to be compiled for each of the m targeted operating systems.
This is usually done by the run time environment developer, not necessarily the
software developers. Each of the n programs have to be compiled for the run time
environment without the necessity to differentiate between a lot of APIs.

Examples for Run Time Environments are the Java Virtual Machine or the .net
Framework Run Time Environment.

3.2. System Virtual Machines

In a system VM, the VMM primarily provides platform replication. The central
issue is dividing a set of hardware resources among multiple guest OS environments.
The VMM manages and has access to all the hardware resources. A guest OS and
it’s application processes are then managed under hidden control of the VMM.

For this reason, the relationship between the VMM and a guest OS is analogous to
the relationship between an operating system and an application in a conventional
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system. In the latter, the OS typically works in a privilege level higher than the one
of the applications (e.g. system-mode vs. user-mode of the processor), as shown in
Figure 3.2 b). A virtual machine system, in which the VMM operates in a privilege
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Figure 3.2.: Native and Hosted VM systems [SN05b].

mode higher than the mode of the guest virtual machine, is called native VM system.
In literature, native VM systems and especially the VMM are also known as Type 1
Hypervisor (see [Tan07]).

In a host VM system the VMM is built upon the already available functionalities of
a host operating system. Whether or not the VMM is allowed to run even parts of
it (e.g. in form of device drivers) in a more privileged mode, there’s a differentiation
into user-mode hosted VM systems and dual-mode hosted VM systems as given in
Figure 3.2 c) and d). Which one to choose mainly depends on the possibility to
modify host OS functionality. In literature hosted VM systems and especially the
VMM are also known as either Type 2 Hypervisor or Paravirtualization depending
on the applied virtualization techniques (see [Tan07]).

Which system VM type to choose, isn’t a question of preference. The choice mainly
depends on the ”features” of the used hardware and especially the used ISA which
itself is predominated by the processor. Hence, different virtualization aspects re-
lated to processor, memory and devices will be discussed in the following sections.
These aspects are important for the later discussion of the main idea of this thesis.

3.2.1. Processor Virtualization

The key aspect of virtualizing a processor lies in the execution of the guest operating
system instructions including both, system-level and user-level instructions. As
can be easily seen in Figure 3.2, the guest operating system runs entirely in non-
privileged mode, regardless if it is a native or a hosted VM. Therefore, system-level
instructions (also known as sensitive instruction) are of special interest, as the guest
OS can’t execute these, but needs to have the perception of doing so.
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There are two general ways to virtualize a processor:

Emulation The methods emulation and dynamic binary translation have already
been presented in the process VM section. However, they are the only appli-
cable methods, if the needed guest ISA is different to the ISA implemented by
the hardware.

Even if host and guest ISA would be the same, emulation and dynamic binary
translation can be used to replace the sensitive instruction of the guest system
with special calls to the VMM, emulating or interpreting these instructions.
This is the typical use case for hosted VM systems.

For Type-2 Hypervisors, the replacement is done at runtime. If the replace-
ment of sensitive instructions isn’t done at runtime of the guest system, but at
compile time, the technique is called paravirtualization. It is only applicable,
if the source code of the guest operating system is accessible and modifiable.

Direct Native Execution If host and guest ISA are the same, it is imaginable to
execute the guest OS directly ”as is” on the processor running in user mode.
However, the problem of dealing with the guest OS’s sensitive instruction
remains.

Popek and Goldberg ([PG74]) stated, that direct native execution is only pos-
sible, when the set of sensitive instructions is a subset of the privileged instruc-
tions. A privileged instruction is an instruction, that causes a trap if executed
in non-privileged mode. Under this assumption, each natively executed sensi-
tive guest instruction will trap to the VMM. The VMM will then emulate the
guests sensitive instruction, providing the guest OS the perception of running
in a privileged mode.

This ”simple” requirement for virtualizing a processors ISA was not fullfilled
for general purpose x86 based desktop computers till 2005, when AMD intro-
duced SVM (Secure Virtual Machine) and Intel VT (virtualization technology)
[Tan07]. Till this time some sensitive instruction had been just ignored by the
processor, when executed in user-mode. Direct native execution is used by
Type-1 Hypervisors.

3.2.2. Virtual Memory Virtualization

In a system VM environment, each of the guest VMs has its own set of virtual
memory tables. Address translation in each of the guest VMs transforms addresses
in its virtual address space to locations in real memory – this real memory would
correspond to the physical memory on a native platform; in a VM platform, however,
this is not the case. Rather, in a system VM environment, a guest’s real memory
address has to undergo a further mapping to determine the address in physical
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memory on the host hardware. Note that there is a clear distinction between real
memory and physical memory – terms often used interchangeable in other contexts.
Physical memory is the hardware memory. Real memory is a guests VMs illusion of
physical memory; an illusion supported by the VMM, when it maps a guest’s real
memory to physical memory. It is this real to physical mapping that implements
the virtualization of memory in a VM system. ([SN05b] section 8.3.1)

Regardless the type of system VM, native or hosted VMM, there are two methods
of virtualizing the virtual memory of a guest OS, which depend on the way the
corresponding Memory Management Unit (MMU) enforces the implementation of
virtual memory:

Virtualizing Architected Page Tables If the architecture of a page table is defined
by the ISA, and the operating system and underlying hardware (MMU) coop-
erate in maintaining and using it, we talk about architected page tables. In
this case, the TLB is maintained only by the hardware and not visible to the
OS. In the case of a TLB miss, the MMU ”walks” the page tables to get the
appropriate TLB entry, or signal a permission or page fault to the OS.

Virtualizing architected page tables is done by implementing so called shadow
page tables. Accesses to the page table areas of main memory are sensitive
instructions. Hence, each access to a page table has to trap to the VMM
(regardless if hosted or native). The VMM has to update the ”real” page
tables appropriately. See [SN05b] section 8.3.2 or [Tan07] section 8.3.5 for
details.

Virtualizing Architected TLBs On an architected TLB, the TLB is directly man-
aged by the operating system. This TLB has to be virtualized now. The VMM
has to hold a virtual TLB for each guest and also manage the ”real” TLB. So
each TLB access of a guest OS is sensitive now and has to be handled by the
VMM (regardless if hosted or native) to keep the virtual TLB copies up-to
date and set the real TLB correctly. See [SN05b] section 8.3.3 for details.

3.2.3. Input/Output Virtualization

The proliferation of I/O devices is also a problem for conventional operating systems,
which have developed abstractions to support a wide variety of devices and device
types. It is possible to adapt many of those techniques for use in system virtual
machines.

The virtualization strategy for a I/O device consists of

1. constructing a virtual version of the device and then

2. virtualizing the I/O activity directed at that device.
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When a guest system requests to use the virtual device, the request is intercepted by
the VMM. The VMM converts the request to a request of the underlying physical
device before it is finally carried out.

Virtualizing Devices

The technique used for virtualizing a device depends on whether it is shared and,
if so, the way in which it can be shared. Following are the common categories for
devices (see [SN05b] section 8.4.1 for more details):

Dedicated Devices Some I/O devices, by their very nature, must be dedicated to
a particular guest or at least switched from guest to host on a very long time scale.
Examples of dedicated I/O devices are the display, keyboard, mouse and speakers.
However, a guest VM request to such a device will trap to the VMM, which can
then issue the request. Interrupts of the device will always trap to the VMM, which
can hand them over to the dedicated guest VM.

Partitioned Devices For some devices, such as a disk, it is convenient to partition
the available resources among the virtual machines. A very large disk, for example,
can be partitioned into several smaller virtual disks that are made available to a
virtual machine as dedicated device. To emulate an I/O request for the virtual
device such as a disk, the VMM has to translate the parameters for the underlying
physical device.

Shared Devices Some devices, such as a network adapter, can be shared among
a number of guest VMs at a fine time granularity. A request by a guest VM to use
the device is translated by the VMM to a request for the physical device through a
virtual device driver.

Spooled Devices A spooled device is shared, but at a much higher granularity
than a device such as a network adapter. An example of a device that is often
spooled is a printer.

Nonexistent Physical Devices Virtualization makes it possible to provide support
for virtual devices ”attached” to a virtual machine for which there is no correspond-
ing physical device. The device itself is emulated by the VMM.
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Virtualizing I/O Activity

On conventional (non-virtualization) operating systems, I/O abstraction is layered,
resulting in different activities at the different layers. Therefore, the following levels,
where I/O vitualization can take place, exist.

Virtualizing at the I/O Operation Level The privileged nature of I/O operations
makes them easy for the VMM to intercept, because they trap in user mode. How-
ever, once intercepted, it may be difficult for the VMM to determine exactly, what
I/O action is being requested. The VMM has to ”reverse engineer” the multiple
issued requests and deduce the complete I/O action a guest VM wants to perform.

Virtualizing at the Device Driver Level If the VMM can intercept the call to
the virtual device driver, it can convert the virtual device information to the corre-
sponding physical device and redirect the call to a driver program for the physical
device. This scheme requires the VMM to have knowledge about the guest operating
systems internal device driver interfaces.

Virtualizing at the System Call Level This approach brings the previous one
to the boil. Instead intercepting device driver calls, I/O activity may be already
intercepted at system call level. The VMM would need system call routines, that
shadow the system call routines available to the user (of a guest VM). This is again,
a very guest OS specific task, which requires more guest OS internals understanding
than just device drivers.

3.2.4. Multiprocessor Virtualization

The previous system VM discussion focuses on uniprocessor system. Another inter-
esting area, where system virtual machines are of interest are large shared-memory
multiprocessors (SMP). Here, an important objective is to partition the large sys-
tem into multiple smaller (multi- or even uni-)processor systems by distributing
the hardware resources, available in the SMP system. Two general possibilities for
partitioning can be found:

Physical partitioning The physical resources of one VM are disjoint from the re-
sources of the others. This provides a high degree of isolation.

Logical partitioning The underlying hardware resources are time-multiplexed be-
tween different partitions and the associated virtual machines. Compared to
physical partitioning, resource utilization is enhanced at the cost of hardware
isolation benefits.



3.2. SYSTEM VIRTUAL MACHINES 25

Both partitioning techniques require software controlled hardware support to enforce
the partitioning.





4. FPGAs and Virtualization

In the previous chapters, (re)configurable computing and virtual machines are pre-
sented separately. In this chapter both ideas will be combined. First of all, related
work will be discussed. Finally, the main idea of this thesis will be presented, oc-
curring problems will be deduced and theoretical solutions for those problems will
be shown as well.

4.1. Related Work

This section is dedicated to related work in the area of combining virtualization
and configurable logic. For better understanding the differences of the systems
and to draw a clear distinction to the main idea of this thesis, it is necessary to
emphasize the different interpretations and meanings of the words virtualization
and (re)configuration among the different authors.

4.1.1. FPGA-Ressource Virtualization

A lot of publications (e.g. [HH09] [PP04]) were issued on using a FPGA as an addi-
tional hardware resource, such as general purpose I/O resources, but for acceleration
purposes. This technique is called virtualization because a device is virtualized by
an operating system (device driver), but has to be considered separately from virtual
machines.

Another area of interest for researchers is the virtualization of the FPGA itself. A
common idea in this field is to introduce an abstraction layer between the hardware
description and the targeted FPGAs to make the FPGA design flow more flexible,
faster and device independent. Examples are [FP98], [HSE+00] and [MK11].

4.1.2. JOP: A Java Optimized Processor

This section is based on [SKKR11] and [Sch03]. JOP is a hardware implementation
of the Java Virtual Machine (JVM) targeted for small embedded systems with real-
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time constraints. It is implemented as a soft core for usage in a FPGA. The main
features of JOP are as follows:

1. Fast execution of Java bytecode1 without the need for an Just-In-Time com-
piler.

2. Predictable execution time of Java bytecode. Small core, that fits in a low cost
FPGA.

3. Configurable resource usage through HW/SW co-design.

4. Flexibility for embedded systems through FPGA implementation.

Due to the variation in complexity of Java bytecode, not every JVM instruction
can be implemented in hardware (e.g. new or invokestatic). JOPs solution for this
problem is to execute only a subset of the bytecode native (on hardware) and trap
more complex ones. These complex instructions are then handled by micro programs
.

For the JOP project FPGAs have been used to implement a Java processor. It does
not use further (re)configuration capabilities of FPGAs as it will be proposed by the
main idea of this work. As Java is a process virtual machine (see previous section),
the JOP approach is different to the system virtual machine approach of this thesis.

4.1.3. SDVM - Self Distributing Virtual Machine.

The self distributing virtual machine (SDVM) is an adaptive, self configuring and
self distributing virtual machine for clusters of heterogeneous, dynamic computing
resources [HEW05]. It was designed to feature undisturbed parallel computation
while adding and removing processing units from computing clusters by implement-
ing a middleware operating system.

This OS provides a unified view of an application onto the underlying changing
hardware environment. The SDVM is therefore to be classified as a process virtu-
alization platform. This is different to the main idea of this thesis, where system
VMs are used.

In [HW08] the authors of the SDVM present the usage of FPGAs to implement a
changing hardware environment providing additional capabilities to SDVM. There-
fore, it is named SDVMr when used with FPGAs. The reconfigurable logic areas
are used in two ways within SDVMr:

• Adopt the available degree of parallelism (number of processing elements),
according to the needs of an application and the available FPGA resources.

1The instructions of the JVM
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The processing elements are a combination of a processor, Block RAM, a timer
and an interrupt controller. Such a single, reconfigurable logic based processing
element of SDVMr is not capable of running a full fledged operating system
as it doesn’t provide enough memory. This is an important difference to the
proposed main idea of this thesis, as will be presented in the remainder of this
chapter.

• Extent already available processing units with special functions (accelerator
units). This is just another FPGA resource virtualization method.

4.2. FPGAs as Dynamic Machine Instantiation
Facility

In this section, the main idea of this thesis is discussed. The main idea is to:

Exploit the possibilities of reconfigurable logic to instantiate hardware supported
system virtual machines.

This includes the following paradigms:

1. Reconfigurable logic is used on purpose and by principle to instantiate entire
machines with the option to run a full fledged operating system on each of
those machines. Those instantiated systems can be seen as a guest system in
terms of system virtual machine concepts. (instantiation paradigm)

2. All dedicated resources of the overall system are managed by the host oper-
ating system (Virtual Machine Manager), as is done by conventional virtual
machine managers. This is an essential requirement to see the overall system
as virtualization system. (virtualization paradigm)

If the first paradigm is not full filled, a conventional virtual machine is brought onto
a FPGA. If the second paradigm is not full filled, two separate and independent
systems reside on one FPGA; the only benefit would be the instantiation of one
system by the other.

Figure 4.1 gives a simplified overview on the presented idea:

The arising questions, problems and the corresponding possible solution are dis-
cussed in the following.
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Figure 4.1.: Simplified overview on the main idea.

4.2.1. Number of Guest Systems

The number of guest systems is generally not limited. Limitations arise from the
size of the available reconfigurable logic area and the area required for instantiating
a guest machine.

Additionally, the formulated idea is recursive by principle. Recursion depth also
depends on the available reconfigurable logic area.

4.2.2. Memory Issues

Concerning the memory of the guest machine, some questions/problems arise:

1. How much memory is needed by the guest system? Can this amount of memory
be provided by the reconfigurable area?

2. How is the virtualization paradigm of the main idea (all resources are managed
by the host operating system) enforced for the guest’s memory?

These questions and possible solutions are discussed in detail in the following.

Providing enough Physical Memory for the Guest System

In section 2.3.3 the instantiation of memory in reconfigurable areas has been dis-
cussed. It has been stated, that it isn’t reasonable to use reconfigurable logic to
instantiate memory, but use Block RAM, also provided by todays FPGAs. If the
Block RAM (or to be more precise, the resulting available amount of memory),
usable in the reconfigurable area is sufficient for the guest system, no additional
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memory resources have to be provided externally to the reconfigurable area.

For most embedded operating systems this assumption might hold. For full fledged
desktop or server operating system the few MBytes of Block RAM, embedded in
FPGAs, will not be sufficient to even hold the operating system in memory solely.

Therefore, it is recommended to provide the possibility of accessing the overall sys-
tems main memory to the guest system. From a traditional computer architectures
perspective, this can be regarded as a dedicated DMA channel of the reconfigurable
area.

A single shared memory controller can be a performance bottleneck for the host
and several instantiated guest machines. Hence, it would be beneficial if the over-
all system provides more than one memory controller. The specific number is an
engineering trade-off depending on the expected average number of guest systems
running simultaneously.

Relation between the Host Operating System and Guest Memory

After the guest hardware is instantiated, the guest operating system needs to be
started. Before it can be started, it has to be loaded to the appropriate position in
the guest systems memory. This can either be accomplished by the host operating
system or some kind of guest boot-loader executed on the guest processor.

Nevertheless, guest OS or boot-loader have to get into the guest machines mem-
ory, controlled by the host operating system (to fulfill the virtualization paradigm).
For this reason a connection between the host hardware and the guest memory is
necessary to enable the host system to load software into the guests memory.

1. In the case of a shared main memory, this connection exists by design.

2. In the case of Block RAM based memory, embedded in the reconfigurable area,
a dedicated connection between host system bus and this memory has to exist.

Guest Virtual Memory Virtualization

Up to now memory in it’s physical hardware representation has been investigated.
Operating systems support virtualization of physical memory for giving an applica-
tion the perception of having it’s own memory. This virtual memory concept has to
be supported by both - guest and host operating system.

Based on the above given arguments, a memory, accessible by both - the guest and
host system is assumed in the following. It doesn’t matter if this is the overall
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system memory or a memory, embedded in the reconfigurable logic area(s).2

Approaches to virtualize virtual memory are constituted in section 3.2.2 including
the differentiation of virtual, real and physical memory. On conventional system
virtual machines, the real to physical mapping for the guest VM is enforced by
the same Memory Management Unit(s), as host OS and guest OS are executed on
the same processor(s). (See [SN05b] chapter 8.3. for further details.) As opposed
to this, on virtualization systems, following the main idea of this thesis, host OS
and guest OS run on different processors (as a consequence of paradigm 1). Hence,
other mechanisms to implement real to physical memory mapping for guest systems
are necessary. To support this mapping, additional hardware, the Guest Memory
Management Unit (GMMU) is introduced, as shown in Figure 4.2.2.
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Figure 4.2.: Introducing a Guest Memory Management Unit (GMMU).

The memory can be the physical main memory of the overall system (a) or a memory
instantiated in the reconfigurable area itself (b). Memory c) is not accessible by the
host system, because it’s behind the GMMU from the host’s perspective. Therefore,
memory c) is not subject of virtual memory virtualization.

The newly introduced GMMU can either be given in the static hardware part of the
overall system (only if no reconfigurable logic based, host accessible memory is used;
Figure 4.2.2 b)), or be instantiated in reconfigurable logic. If instantiated in static
logic, the used interface and protocol for the guest machine’s system bus is fixed. If
the GMMU is instantiated in reconfigurable logic, the guest machine’s system bus
isn’t fixed at all, providing more flexibility for the guest machine’s characteristics.

The implementation complexity depends on the way, the real memory of the guest
system is constituted in physical memory. For the further discussion, the following

2The discussion is presented with one guest system. The presented solutions would also apply to
multiple guests.
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assumptions are made to rely on the essentials of the proposed solutions:

1. The real and the physical address space for the memory of a system is con-
tiguous.

2. The real and the physical address space for the memory of a system starts at
address 0.

Both assumption can easily be resolved. The latter one by introducing an offset for
the start address. The former one by replicating the presented solutions for each
separate memory area.

In general, there are two possibilities to solve the problem of translating a guest’s
real addresses to the physically associated ones, as shown in Figure 4.3 and further
explained in the following. Both solutions are adapted solutions of the real to
physical mapping problem for multiprocessor virtualization as presented in [SN05b]
chapter 9.
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Figure 4.3.: Options to solve the problem of translating a guest’s real addresses to
the physically associated addresses.

contiguous chunk of memory This solution assumes the physical memory associ-
ated with the guest system to be contiguous. This assumption allows the
GMMU to be very easy and straightforward. It just contains two registers,
defining the first (Guest Memory Base Register, GMBR) and last address
(Guest Memory Limit Register) of the physical memory area to be used by
the guest system. For its simplicity its convenient to be implemented in re-
configurable logic.

page based chunks of memory (non-contiguous) The contiguous chunk of mem-
ory solution lacks some problems because of it’s simplicity. There is no de-
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pendency regarding the MMU of the host system. Hence, the memory area,
associated with the guest system mustn’t be swappable by the host system.
Additionally, no differentiation regarding memory protection is possible, for
example to mark some regions of the guest’s memory as read only for the guest.
This would be possible by introducing a GMMU, that can be seen as an ex-
tension of the host’s MMU (part of the host machine’s CPU). Therefore, the
GMMU has to implement the same memory management mechanisms as the
host MMU. For this host ISA dependency and their complexity it is more suit-
able to implement this type of GMMU in the static hardware part of the overall
system. Nevertheless, it can also be implemented in reconfigurable logic. A
GMMU based on this solution operates similar to an Input/Output Memory
Management Unit (IOMMU) used in todays processors (see [ByMK+06] for
an introduction on IOMMUs).

4.2.3. Device Issues

In this section, device virtualization related questions are discussed. As a starting
point, devices are classified into two categories:

System vital, non sharable devices: These devices are essential for the function-
ality of the host or a guest system. Hence, sharing of such devices is usually
senseless, as for example for an interrupt management controller.

Sharable devices: All other devices.

For the presented main idea, only shareable devices are of interest for further discus-
sion. A discussion about devices is a discussion about interfaces. In the following,
a device is assumed to be physically structured as given in Figure 4.4.

device 
controller

glue
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pure I/O 
interface 

system bus 
interface 

controller 
interface 

Figure 4.4.: General structure of a device.

A device has three interfaces:

• A system bus interface for connecting a device to the processor (via the
system bus).

• A controller interface for providing a common interface and protocol for a
device on a logical level, that is independent to the system, a device shall be
connected to.

• A (pure) I/O interface, representing the ”analog” wires of a device. (For an
RS-232 device these are the Tx, Rx and control lines. For a hard disk, these
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are the wires connected to the mechanical parts (e.g. rotors)).

A device controller’s task is to transform and interpret the controller interface (and
protocol) to I/O interface signals. Glue Logic’s task is to transform the machine
specific system bus interface and protocol to the controller specific interface and
protocol.

At this point two questions arise:

1. Which interface should be shared between guest and host system?

2. How is this sharing implemented?

Interface Sharing

As a device has three different interfaces, three levels of device interface sharing are
imaginable, as explained by referencing Figure 4.5:
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Figure 4.5.: Levels of sharing device interfaces a) shared pure I/O interface; b)
shared controller interface; c) shared system bus interface.

shared pure I/O interface If the I/O interface itself is shared between host and
guest machine, two device controllers need to be instantiated, resulting in
unnecessary area consumption, whether or not these device controllers are
instantiated in static or reconfigurable logic. This possibility is therefore only
recommended for machines which use the same I/O interface but need different
device controllers.

shared controller interface This solution implies the instantiation of two glue logic
blocks. This is required, if guest and host machine implement different system
buses.

shared system bus interface This solution is recommended for architectures,
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where host and guest implement identical system buses to avoid unnecessary
duplication of glue logic.

All three levels of sharing are possible. For the main idea of this thesis, the shared
controller interface (Figure 4.5b)) variant is recommended due to the following rea-
sons:

1. Assuming that enough I/O lines are available, there is no need to use the same
lines in a different fashion (by using different device controllers). Additionally,
taken into care the virtualization paradigm, the device provided to the guest
should be the ”same” as used by the host machine. ”Same” is related to a
device’s behavior implemented by the device controller. Hence, the shared
pure I/O interface solution (Figure 4.5a) is not recommended. Furthermore,
most devices provide only the device controller interface. For those devices
the shared pure I/O interface solution isn’t applicable at all.

2. The main idea of this thesis strongly implies the possibility to instantiate a
guest system bus different to the host’s one. The shared system bus interface
solution (Figure 4.5c) doesn’t allow this, as there is only one glue logic element,
providing one system bus interface.

Organizing Device Sharing

Another question concerning device sharing is, where to place the different parts of
a device, in static or in reconfigurable logic?

The subsequent can be seen as a general rule:

1. All parts, that are used/needed by guest and host in the same way and there-
fore are physically identical, shall be implemented in static logic to reduce
reconfigurable area consumption.

2. All parts, that are not used the same way, and therefore are subject of be-
ing exchanged/replaced when a switch is necessary, shall be instantiated in
reconfigurable logic.

Following the recommendation of the previous section to prefer interface sharing at
the device controller interface level, this implicates:

1. The device controller, is part of the static logic.

2. The guest systems glue logic shall be instantiated in reconfigurable logic. This
prevents the necessity to have a guest system bus interface outside the recon-
figurable area. This is important, because guest’s system bus is variable as a
consequence of the instantiation paradigm.
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3. Hence, for each device controller, being potentially used by the guest system, a
device controller interface has to be provided to the reconfigurable logic area.

4. The switching mechanism and the host glue logic, together, can be either
static or preferably instantiated in reconfigurable logic. If they are instanti-
ated in reconfigurable logic, the host system bus needs an interface into the
reconfigurable area.

Implementing Interface Sharing

After having presented the different levels and organization of device interface shar-
ing, the possibilities to implement the sharing itself are discussed.

explicit hardware switch This solution (shown in Figure 4.6) allows to physically
switch between the host and guest machine. The switching itself has to be
controllable by the host operating system. It can contain a mechanism, that
allows the guest system to signal the need of accessing a device to the host.

device controller
interface

host system bus guest system bus

guest 
glue logic

host 
glue logic

switch
control

Figure 4.6.: Explicit hardware switch solution.

switching by reconfiguration Instead of physically switching between guest and
host machines, the connection between a guest and a device or the host and a
device can by instantiated by means of reconfiguration, as shown in Figure 4.7.
The reconfiguration is initiated and controlled by the host operating system.
This solution can also contain a mechanism, that allows the guest machine to
signal the need of accessing a device to the host.

Figure 4.7 emphasizes another benefit of this solution. Beside reconfiguring
only the connection to the guest or host system bus, the configuration stream
can also include the required glue logic.

hardware supported mutual exclusion The previous solutions only provided
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Figure 4.7.: Switching by reconfiguration solution.

mechanisms, where the guest and host machine can access a device exclusively
(device is physically connected to the system bus of exactly one machine at
time). The hardware supported mutual exclusion solution allows the device to
be attached to the guest’s and host’s system bus at the same time, as shown
in Figure 4.8. Mutual exclusion has to be enforced on a hardware supported
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host 
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Figure 4.8.: Hardware supported mutual exclusion solution.

base, by implementing some kind of a hardware semaphore inside the switch.
The host’s supervising policies can be strengthened by enabling the host to
suspend the mutex mechanisms.

Physically Supported Emulation

The solutions presented above try to physically share a device. For conventional
system virtual machines, a physical sharing is not required, as there is only one
physical system bus. On a conventional system virtualization environment, the host
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operating system provides mechanisms to enable the guest system to use devices:
A guest system, trying to access a device, traps to the host system, which itself
supervises and handles the device access for the guest.

The mechanisms of virtualizing a physical device or emulating virtual ones, can also
be applied to virtualization systems, covered by this thesis’s main idea, but require
adaptations.

A guest operating system cannot cause a trap to be taken on the host’s processor,
by means of privilege levels, because guest and host are not executed on the same
processor. For this reason additional hardware has to be introduced. This additional
hardware provides a physical interface to the guest system, which allows the guest
to signal a device request to the host system. This interface also has to be accessible
by the host system, to emulate the guest’s requests. This interface looks the same,
a conventional one looks like. It has to provide several addressable device register
and might include interrupt line(s) to avoid busy waiting.

For the guest system, this interface behaves just like a conventional one for the
interaction with a device controller. The host system (or more precisely the host
operating system) needs a driver for emulating a device controllers behavior for
physically non existing devices or translate the guest’s request to the physical device
it is associated with.

It’s recommended to instantiate those physically existing virtualization interfaces in
reconfigurable logic for the following reasons:

1. The guest’s interface side is specific to the guest’s system bus. By instantiating
the (device controller) interface in reconfigurable logic, it can be easily coupled
and instantiated with the necessary glue logic.

2. The number of such interfaces, required by a guest machine, is variable. A
variable number can only be instantiated in reconfigurable logic, as static logic
isn’t changeable.

Another benefit of this solution is the possibility to not only virtualize device activ-
ities at the I/O operation level, but also at the device driver and system call level.
(See page 3.2.3 for details on virtualizing I/O activity in conventional VMs.)

Virtualizing Devices

Which of the above introduces possibilities to share or provide an interface to a
device is the best? There can be no final decision, because this depends on the
device itself and especially on the needed time granularity of sharing. That is why
some time relating definitions are required:

treconfiguration - is the time needed to perform a reconfiguration process.
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Treconfiguration depends on the size of the area to be reconfigured and the un-
derlying technology.

tdriver - is the time needed by the OS, whenever a device is registered or unregis-
tered to an operating system. This action consumes OS’s processing time, as
management information related to this device has to be created or disposed.
The (un)registration is needed, whenever the connection between a device and
a system is established or cut.

tusage - is the average time a device is used by a system, before it is used by another
system and therefore has to be switched to the other system.

Usually, the relation tdriver << treconfiguration holds. Authors experience shows, that
for Xilinx FPGAs, treconfiguration is in the order of milliseconds and for Linux, tdriver
is in the order of microseconds.

In the following the reasonableness of using a specific sharing functionality is dis-
cussed.

switching by reconfiguration As this solution includes to do a reconfiguration; it
is only reasonable, if the relation tdriver << treconfiguration << tusage holds.

explicit hardware switch This solution requires registration and underregistration
of devices within the affected operating systems. Therefore, it is only a rea-
sonable solution, if the relation tdriver << tusage << treconfiguration holds.

hardware supported mutual exclusion If the relation tusage << tdriver <<
treconfiguration holds for a device, this solution is to be preferred as even de-
vice unregistration/registration would cost too much in terms of time.

physically supported emulation This sharing functionality has to be treated sepa-
rately, because it shares devices logically, not physically. This logical sharing
results in computational overhead for the host system, as it has to emulate
device controller behavior. , Nonexistent Physical Devices are not sharable at
a physical interface level at all. Therefore, their functionality has to be emu-
lated by the host system, strictly requiring the physically supported emulation
solution.

4.2.4. CPU and System related Questions

The host’s hardware is given as is and the host operating system is managing this
hardware resources as a conventional operating systems does. Concerning the guest,
two questions, as a consequence of the virtualization paradigm, arise:

1. How is the guest hardware managed and presented as a resource in the host
operating system?
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2. How is the guest operating system presented in the host operating system?

Host’s Representation of Guest Hardware

Regardless of what is currently configured inside a reconfigurable area, the host
operating system needs the possibility to start a initiate a reconfiguration process.
This is done by a reconfiguration device and an associated driver. If the reconfig-
urable area interfaces have to be controlled or supervised during a reconfiguration
process 3, the host operating system also needs to have a device representation for
controlling the reconfigurable area interfaces.

When instantiating a guest system, a lot of new interfaces might become available to
the host system (memory interfaces, interfaces for device switching). The summary
of those interfaces is anything the guest systems ”sees” or ”knows” about the guest
hardware. Those interfaces need to be represented as one or more devices in the
host operating system.

For engineering reasons it would be beneficial to summarize these reconfiguration
specific behaviors (reconfiguration process, device representation generation and dis-
posal after a reconfiguration) in an own OS subsystem which can be seen as virtual
machine instantiation manager.

Host’s Representation of Guest Operating System

In conventional virtual machine technologies, the guest operating system is repre-
sented as one (or more) processes of the host operating system (or to be more precise,
the virtual machine manager).

For the host operating system of a virtualization system, based on the main idea
of this thesis, the guest hardware is only a set of devices, as discussed above. For
this reason a process, representing the guest’s state is not suitable. Interpreting the
guest operating system as a firmware, executed on those devices, would be more
suitable.

Nevertheless, having a process running on the host operating system as a represen-
tation for the guest system can be beneficial. This process can acquire exclusive
access to all host system related device representations of the guest system and
thereby protect those devices from ”misuse” by other processes running on the host
operating system. Additionally, this representative process can serve as an interme-
diate layer between the physically supported emulation devices of the guest and the
drivers of the associated physical devices.

3The necessary controlling mechanisms depend on the underlying technology of the reconfigurable
device(s). For Xilinx related details see Xilinx Partial Reconfiguration User Guide [Xil10b].
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4.3. Requirements on a Reconfigurable Logic Area

In this section the interface requirements on a reconfigurable logic area to enable
the applicability of the proposed main idea are summarized. A reconfigurable area
needs to have:

1. The possibility to access main memory, if guest machines memory requirements
are not satisfiable by the reconfigurable area itself, e.g. by using Block RAM.

2. A device controller interface for each physical device, that can be subject of
being physically used by a guest machine.

3. An interface to the host machines system bus. Several different reasons are
given in the above sections.

4. At minimum one outgoing interrupt line to the host system, to enable anything
configured inside the reconfigurable area (e.g a guest machine or a device
sharing instance) sending interrupts to the host system.

4.4. Discussion of the Proposed Idea in Relation to
Conventional System VMs

This section evaluates the proposed idea of using FPGAs to implement a new type
of virtualization systems in theory. A practical evaluation of the proposed idea,
based on a proof of concept demonstrator, is presented in a subsequent chapter.

No special CPU requirements for Type-1 Hypervisors

The Popek and Goldberg theorem, stating that Type 1-Hypervisors are only possible
on processors, whose sensitive instructions are a subset of the privileged instructions
has been discussed in section 3.2.1.

By providing a dedicated processor for executing the guest operating system, it
can be executed also in privileged mode(s) of the guest processor. Therefore, the
Popek and Goldberg theorem doesn’t apply to reconfigurable logic based system
virtualization environments.

Different ISAs - no need for emulation/ binary translation

For a virtualization system, where host and guest systems ISA are different, there
is no other possibility to virtualize, as by emulation or binary translation. (See
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section 3.2.1 for details.) By providing a dedicated processor for executing the guest
operating system, it is possible to instantiate a processor implementing an ISA,
suitable to execute the guest operating system natively.

Computational Performance

In conventional virtual machines, the virtualization enforcing strategies (guests sen-
sitive instruction have to trap to the VMM) results in computational overhead, that
reduces the possible achievable computational performance of the guest system. By
providing a dedicated processor for executing the guest operating system, there is
no need for this computational overhead from the processors perspective.

Nevertheless, depending on the way, memory and devices are connected and shared
between host system and guest system(s), there also might be computational over-
head on system VMs, based on the main idea of this thesis. E.g the physically
supported emulation of devices requires host processor time to emulate a virtual
device. This overhead should be smaller than the computational overhead within
conventional system VMs.

The Computational Performance Problem of Soft-cores

The guest systems processor is a soft-core as a logical consequence of the proposed
main idea of this thesis. As a soft-core is instantiated in reconfigurable logic, it’s
maximum achievable clock frequency is smaller than compared to a hard-core im-
plementation. Hence, the achievable computational performance of a soft-core will
always be smaller than a hardcore implementation. This limitation has to be taken
into account for all of the above given computational performance discussions.

However, if the overall guest system computational performance isn’t the dominating
factor the proposed main idea is still recommended. Rather, when using virtual
machine technology, computational performance shouldn’t be the dominating factor
at all.

Security and Supervision

Conventional virtual machines provide security by separating different guest virtual
machines logically by software. Virtualization systems, following the main idea
of this thesis, enforce this separation even stronger as there is physically separate
hardware for the guest systems.

The introduction of the GMMU (see section 4.2.2) adds an additional hardware
mechanism for limiting a guests possibility to access the hosts memory.
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By using reconfigurable logic to instantiate a guest systems hardware, its possible to
add special devices supervising the guests hardware. It’s possible to implement those
supervision devices in a way, that they are only controllable by the host system.

4.5. The Need For a Testing Framework

The presented idea of exploiting the possibilities of reconfigurable logic to build
hardware based system virtual machines requires a general architecture as given in
Figure 4.9 a).
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Figure 4.9.: Architectures for implementing the main idea. a) FPGA(s) as exten-
sion of a conventional system b) FPGA as prototyping environment for the overall
virtualization system.

It is a conventional architecture, that is extended by reconfigurable logic. This
logic fulfills the requirements to configure one or more hardware based guest system
virtual machine into it (see section 4.3). The reconfigurable logic can be composed
by one or more FPGAs depending on the needed reconfigurable logic area.

However, to investigate systems, based on the main idea of this thesis, it is necessary
to have a testing framework, that also offers full flexibility regarding the host ma-
chines hardware. FPGAs are well suited for this purpose. The overall virtualization
system hardware is configured onto a FPGA. The reconfigurable area is provided to
the static part (host machine) of the overall system by means of a in-system partial
and dynamic reconfigurable area, as shown in Figure 4.9 b).

Several soft-core based frameworks to instantiate an entire machine on a FPGA
exist. Some of them include closed source components (especially processors, e.g.
Xilinx Microblase or Altera Nios2), others are fully open source (e.g. OpenSparc).
However, none of the frameworks, fulfilling all requirements to run a full fledged
operating system on it, is straightforward to use or easily adaptable.

The full flexibility requirement also applies to the operating system, running on the
hardware, which is another important part of a virtualization system.

For this reason, the Partial Reconfigurable Heterogeneous System (PRHS) frame-
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work has been build. It consists of a hardware part (chapter 5), an adapted Linux
kernel (L4PRHS, chapter 6) and software (chapter 7) to extent the kernel to a full
fledged operating system, that can be used as guest and/or host operating system.





5. PRHS Framework - Hardware

In this section, the hardware components for the Partial Reconfigurable Heteroge-
neous System (PRHS) are presented. A general overview is given in section 5.1.
The PRHS Bus, connecting all devices of PRHS framework, is defined in section
5.2. The PRHS Processor - ARM Instruction Set (PRHSp-A) as central processing
element of the PRHS framework hardware is presented in section 5.3.

The main memory subsystem devices of the PRHS framework hardware is given in
section 5.5. The different devices, available in PRHS framework, are shown as well.
They are differentiated as base system devices (section 5.4) and platform specific
devices (section 5.6). The partial reconfiguration extension as partial reconfiguration
enabler for the PRHS framework is given in section 5.7. Finally, composed hardware
modules that allow easy reuse are presented in section 5.8

5.1. General Overview on PRHS Hardware

The tasks of the PRHS hardware is to provide:

• All elements to build an entire system on chip in an easy and fast fashion.

• Different platforms should be supported. A FPGA and devices, combined on
a board are seen as a platform.

To achieve those goals PRHS framework has been designed with three fundamental
system levels:

1. small system
The small system combines the PRHSp-A with Block RAM as main mem-
ory and an UART for user interaction. It might serve as a starting point for
small embedded systems. It fits entirely onto a FPGA, enough area provided.
It should be the first step, to get this system level running on a new plat-
form, PRHS framework shall be ported to. Focus should lie on system clock
management in such a case.

2. base system
Extends the small system by a platform independent main memory subsys-
tems. This subsystem allows to include a platform specific memory controller

47
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and the associated memory into PRHS hardware. The base systems contains
all necessary devices to run a customized Linux (L4PRHS) on it.

3. reconfiguration system
Extends the base system with a partial reconfiguration extension. This enables
to use in-system partial and dynamic reconfiguration within PRHS hardware.

The particular components of the systems are explained in detail in the following
sections.

5.2. PRHS Bus Definition

The PRHS Bus interface is inferred by the requirements for the entire system itself.
These requirements are:

1. The system is a 32 bit system. Therefore, the data lines and the address lines
of the bus are 32 bit wide.

2. The PRHS Bus shall support pipelined processors. To entirely utilize the
performance benefits of pipelined processors, it is necessary to get an answer for
a memory request in the same clock cycle as the request occurs [HP07][PH09].
Therefore, a dedicated data line from processor to device (write data) and
from device to processor (read data) is implemented.

3. Three transfer modes shall be possible: read, write and swap. A swap is
a transaction that performs a read and a successive write, that mustn’t be
interruptible. It is a necessary hardware element to support mutexes and
semaphores in an operating system [Tan07][HP07][PH09].

4. A transfer width of 32 bits (word), 16 bits (halfword) or 8 bits (byte) shall be
supported.

5. The answer lines (output signals) of the different devices shall be connectible
as pull-up bus lines.

6. All PRHS Bus participants work on the same clock.
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5.2.1. PRHS Bus Interface

The above requirements result in the following PRHS Bus interface:

1 -- signals from master (processor) to slaves (device/memory)
signal sePRHSrequest : std_logic;
signal scPRHSWidth : prhsBusWidth;

4 signal scPRHSoperation : prhsBusOperation;
signal scPRHSaddress : ADDRESS;
signal sdPRHSdataMaster : DATA;

7

-- signals from slaves (devices/memories) to master (processor)
signal sdPRHSdataSlave : DATA;

10 signal senPRHSdone : std_logic;

Listing 5.1: Signal declaration for PRHS bus.

using the self-defined data types:

type prhsBusOperation is (OPread, OPwrite, OPswap);
2 type prhsBusWidth is (Width_Word, Width_HalfWord, Width_Byte);

subtype DATA is std_logic_vector(31 downto 0);
5 subtype ADDRESS is std_logic_vector(31 downto 0);

5.2.2. PRHS Bus Protocol

The following table explains the meanings of the above given signals in detail.
Name Driver Description

sePRHSrequest master enable signal asserted by master to initiate a
transfer

scPRHSWidth master control signal for data width: Width Word for all
32 bits of data lines, Width HalfWord for lower
16 bits of data, Width Byte for lower 8 bits of
data

scPRHSoperation master control signal for transaction type: OPread for
data transfer from device to master, OPwrite for
data transfer from master to device, OPswap for
data exchange between master and device

sdPRHSaddress master control signal for transfer to address the device
registers/ memory cells on a per byte basis; PRHS
framework only supports little endian data order-
ing

sdPRHSdataMaster master data signal: the data transfered from master to
device, value is irrelevant for read transfers; un-
used data bits (according to scPRHSWidth) shall
be set to ’0’
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sdPRHSdataSlave device data signal: the data transfered from device to
master, value is irrelevant on write transfers; sig-
nals of different devices can be connected on a
shared pull-up line; unused data bits (according to
scPRHSWidth) shall be set to ’0’

senPRHSdone device active-low enable signal of a device to signal transfer
completion to master; signals of different devices can
be connected on a shared pull-up line

Read Transfers

When initiating a read request, the PRHS Bus master sets scPRHSoperation to
OPread, scPRHSWidth and scPRHSaddress to the appropriate values. The value of
sdPRHSdataMaster doesn’t matter for a read transfer. The request itself is initiated
by the master when the sePRHSrequest signal is set to ’1’.

It is now up to the device, responsible for the address given with scPRHSaddress,
to set sdPRHSdataSlave to the right value and signal the end of transfer by setting
senPRHSdone to ’0’. On the next rising edge of the bus clock, the transfer is finished
for master and device and the next transfer can be initiated by the master instan-
taneously. If senPRHSdone is asserted to ’0’ by the device in the same clock cycle
as sePRHSrequest is asserted to ’1’ by the master, the transfer is called to be an
immediate transfer. If the device doesn’t immediately signal the end of the transfer
by asserting senPRHSdone to ’0’ in the same cycle the master sets sePRHSrequest to
’1’ the transfer is called non-immediate.

The master can change the values of scPRHSoperation, scPRHSWidth,
scPRHSaddress, sdPRHSdataMaster and also sePRHSrequest on a successive rising
edges of the bus clock. Nevertheless, as long as sePRHSrequest remains asserted,
the other signals will not change. This behavior mustn’t affect the already initiated
transfer of a device. Figure 5.1 and 5.2 give same examples for valid read transfers.

Devices not responsible for the requested address should not drive the signals
sdPRHSdataSlave and senPRHSdone.

Write Transfers

Write transfers turn around the direction data is transfered. Therefore, they are
almost the same like read transfers, except that sdPRHSdataMaster is now an im-
portant signal. It contains the data to be transfered from master to device. At the
same time, the value of sdPRHSdataSlave is meaningless if senPRHSdone is asserted
to ’0’ by the device, responsible for answering the request. Figure 5.3 gives examples
for write transfers.
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bus clock

sePRHSrequest

scPRHSaddress

scPRHSoperation

scPRHSWidth

sdPRHSdataMaster

sdPRHSdataSlave

senPRHSdone

ed56190b

HalfWord Byte Word

... read ...

00112232 0000edf3 d030ff0c...

... ... ... ...

... ... ... ... ...

0000003100004278

transfer 1 transfer 2 transfer 3

Figure 5.1.: PRHS Bus read transfers with immediate answer for 3 transfers.

bus clock

sePRHSrequest

scPRHSaddress

scPRHSoperation

scPRHSWidth

sdPRHSdataMaster

sdPRHSdataSlave

senPRHSdone

HalfWord Byte

read

... ... ... ...

07b43c78 08cb5603

read...

...

...

... ... ...0000ac00 000000f7

transfer 1 transfer 2

master signals 
for transfer 1

master signals 
for transfer 2

...

...

Figure 5.2.: PRHS Bus read transfer with non-immediate answer for 2 transfers and
changing master signals during transfer.

Swap Transfers

Swap transfers combine a read and write transfer to a given address that is not
interruptible. Therefore, the values of sdPRHSdataMaster and sdPRHSdataSlave are
relevant both. sdPRHSdataSlave contains the old value of the device register or
memory cell addressed by scPRHSaddress before the value of sdPRHSdataMaster

had been written into it. Figure 5.4 gives examples for 2 consecutive swap transfers
on the same device register/memory cell.
The same address and width is used among all transfers. Transfer 1 writes a value
to the addressed device register/memory cell. Second transfer is a non-immediate
swap, writing a new value to the same register/cell and getting back the value written
during the first transfer. The returned value of transfer 3 is the value written by
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bus clock

sePRHSrequest

scPRHSaddress

scPRHSoperation

scPRHSWidth

sdPRHSdataMaster

sdPRHSdataSlave

senPRHSdone

HalfWord Byte

...

05233c7b

write...

Word

transfer 1 transfer 3

master signals 
for transfer 1

master signals 
for transfer 3

...

transfer 2 transfer 4

... ... ... ... ... ... ... ... ...

Word

... ... 6297bc40 3594a40c

... 000045bb 4653addb

e61b6515

00000031 ce73b901

Figure 5.3.: PRHS Bus write transfer examples.

bus clock

sePRHSrequest

scPRHSaddress

scPRHSoperation

scPRHSWidth

sdPRHSdataMaster

sdPRHSdataSlave

senPRHSdone

Byte

...

write...

transfer 2

master signals 
for transfer 2

transfer 1 transfer 3

... 00000045 00000078 00000031

... ...05bd8745

...

swap read ...

transfer 4

000000310000007800000045 ... ............

Figure 5.4.: PRHS Bus swap transfer example.

transfer 2. The final read now gets the value written during transfer 3.

Primary and Secondary PRHS Bus

According to [HP07](page 390) and [Fur02](page 278) devices can be connected to
a master in several ways. Figure 5.5 shows the two possible extrema.

The first connection solution is a shared Bus (Figure 5.5 (a)). The main advantage of
this solution is the minimal hardware overhead for the devices. Their outputs should
be deactivatable to ensure that only one of the devices is driving the shared bus
lines on request. The main disadvantage of this solution is the shrinking maximum
achievable transfer rate (bus clock frequency), when more and more devices are
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master

device 1 device 2 device 3

(a) Shared Bus

master

device 1 device 2 device 3

CTRL

(b) Multiplexed Connection

Figure 5.5.: Schemes for connecting devices with a master.

connected to the shared bus lines.

The second connection solution is to multiplex the outputs of the several devices re-
sulting in point-to-point connections (Figure 5.5(b)). This solutions doesn’t lack the
problem of from shrinking transfer rates, when more and more devices are added.
However, as more and more devices are connected, the multiplexing logic and there-
fore area consumption increases.

For the PRHS framework a mix of the above presented solutions has been chosen
on the basis of the following statements:

• A systems processor is accessing the main memory most of the time. In com-
parison, device accesses are seldom.

• Hence, main memory access should be fast and therefore has to exploit the
possibility for immediate answers on PRHS Bus. This requires a low latency
connection, because a transfer might be accomplished at the same clock cycle
as it is requested (immediate transfer). For this reason, main memory gets is
own PRHS Bus (primary PRHS Bus).

• On the other hand, seldom devices accesses can be slow without affecting the
overall performance at all. Therefore, input/output devices are connected via
a shared bus (secondary PRHS Bus) only supporting non-immediate transfers.

• Primary and secondary PRHS Bus are connected to the processor using a
multiplexed scheme as explained above, resulting in the architecture as given
in Figure 5.6.

A detailed description of the PRHS BusCtrl is given in section 5.4.2

Transfer Aborts

As already mentioned, all device registers are memory mapped into the 32 bit phys-
ical address space of the processor.
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processor

PRHS BusCtrl

Main Memory/
Cache

device 1device n ...

secondary PRHS Bus

primary PRHS Bus

FSMD

Figure 5.6.: Primary and secondary PRHS Bus.

It might occur a PRHS Bus request to an address (using scPRHSaddress) that is not
used by the memory or any device. To prevent the processor from infinite blocking,
the PRHS BusCtrl will signal the processor a transfer abort, if no answer is given
(via asserting senPRHSdone) on a request after a predefined number of PRHS Bus
clock cycles.

5.3. PRHSpA - PRHS Processor ARM ISA

The PRHSp-A is the central processing element for PRHS framework. Its general
architecture is given in Figure 5.7.

PRHScA
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Data MMEU
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MMU status and 
control lines

MMU status and 
control lines

PRHS Bus (instruction)

PRHS Bus (data)

Figure 5.7.: General architecture of PRHSpA.

It is based on the information given in [Adv96] to implement a processor, that is in-
struction set compatible with the ARM8 ISA and is usable in the PRHS framework.
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To make adaptations of an operating system (see chapter 6) more easier, selected key
functionality to support memory management mechanisms, as described in [Adv96],
is implemented.

The different components are explained in more detail in the following sections.

In opposition to the original processor as presented in [Adv96], PRHSp-A doesn’t
implement an on-processor cache, a write buffer or a prefetch unit.

5.3.1. PRHScA - PRHS Core ARM ISA

The PRHS Core - ARM Instruction Set (PRHSc-A) is the central processing element
inside the PRHSp-A.1 It implements the ARM8 ISA as presented in detail in [Adv96]
and [Fur02]. It provides a dedicated instruction and data memory interface (based
on the PRHS Bus definition of section 5.2). In addition it provides a co-processor
interface and two interrupt lines (nFIQ - fast interrupt, higher priority than nIRQ
- normal interrupt).

The PRHSc-A is implemented as a 3 stage pipeline processor core, as given in Figure
5.8 (page 56).

A major challenge in designing a pipelined processor are pipeline hazards. For
PRHSc-A the different types of pipeline hazards and their solutions are discussed in
the following.

Structural hazards occur, when the hardware cannot support the combinations of
instructions that should be executed in one clock cycle. ARM ISA contains
multi cycle instructions2 by design. For example the block transfer instruc-
tions. These instruction type tries to copy a list of registers to or from main
memory via the data memory interface. However, the data memory interface
is not able to transfer more than one, on newer ARM architectures two, reg-
ister to or from main memory concurrently. Hence, a block transfer is a multi
cycle instruction.

ARM ISA includes complex addressing schemes, as for example:

LDR R0,[R1,R2,LSL#4]; load contents of R1 + R2 * 8 to R0

Implementing this instruction as a one cycle instruction would result in a very
long data path, as an immediate value is used to shift a register, add the result

1Acknowledgement: The current PRHSc-A is a redesigned implementation of a processor core,
that was originally implemented in cooperation of Klaus Hildebrandt and the author of this
thesis. The old version was an unpipelined processor implementation of the ARM7 instruction
set. Several parts of this old version have been re-used and re-engineered by the author of this
thesis for performance reasons. The current PRHSc-A was implemented by the author alone.

2Multi cycle instructions take more than one clock cycle per pipeline stage to be executed.
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Figure 5.8.: General architecture of the three stage pipelined PRHScA.
Gray boxes represent registers. Other elements are combinational logic or state
machines.
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to the value of another register and use this sum as address for accessing mem-
ory. A long data path results in a lower maximum achievable clock frequency.
Therefore, selected instructions have been implemented as multi cycle instruc-
tions in PRHSc-A, whereas the original ARM 810 provided them as single
cycle instructions. At this point, PRHSc-A offers room for improvement by
using more than 3 pipeline stages. However, overall performance is out of the
scope of this thesis.

Data hazards arise from from data dependencies between subsequent instructions.
For a three stage pipeline only two subsequent instructions can be affected.
For example, one of the two possible resulting registers of an instruction is
used as one of the four possible source registers of the next operation. These
data hazards are resolved by forwarding the resulting register values of an
instruction. This is implemented by the data hazard resolver (dhaz resolve)
modules.

Control hazards arise every time, the program counter is modified by an instruc-
tion. On ARM architectures, there are several instructions that affect the
program counter (e.g. branches or data processing instructions targeting the
program counter). To make matters worse, each ARM instruction can be con-
ditional by the design of the ARM ISA. In consequence, a prediction unit is
not straightforward to implement. For the current PRHSc-A implementation,
a modification of the program counter results in clearing the entire pipeline.
A further improvement of PRHSc-A clock cycles per instruction (CPI) rate is
possible here, but out of the scope of this thesis.

In the remainder of this section, the different parts of PRHSc-A are briefly described.

Fetch State Machine

The task of the fetch stage machine is to retrieve an instruction form memory, based
on the current program counter. The fetch state machine is given as state chart in
Figure 5.9. For better understanding, it is important to consider the following:

• The pipeline control signal (clear pipeline and pipeline progress) are mutual
exclusive.

• The done signal for a PRHS instruction bus request can be given immediate
(in the same clock cycle the request was issued) or non-immediate (number of
clock cycles is not predictable by PRHSc-A).

• The abort signal for a PRHS instruction bus request is non-immediate.

• The done signal for a successful PRHS instruction bus request and the abort
signal on a non-successful PRHS instruction bus request are mutual exclusive.
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• To keep the PRHS instruction bus in a clean state, each PRHS instruction bus
request has to be finished by a done or abort signal. Hence, a pipeline control
command (clear pipeline and pipeline progress) is ignored (not acknowledged)
by the fetch state machine until a done or abort signal is occurring for a
pending PRHS instruction bus request.

Fetch
send PRHS request, update PC;

wait for PRHS done, 
progress or invalidate;

on done and progress: next fetch
on invalidate: ack invalidate

Init
don't send PRHS request;

wait for progress or invalidate;
on  progress: create bubble;
on invalidate: ack invalidate

on progress

Bubble
progress requested, but
PRHS request pending;

wait for PRHS done or invalidate;
on (done or abort) and invalidate:

ack invalidate

Buffer
progress not requested, but

PRHS answer received;
wait for progress or invalidate;
on invalidate: ack invalidate

on PRHS done and !progress and !invalidate

Abort
PRHS abort received;

wait for progress or invalidate;
on progress: signal instruction abort;

on invalidate: ack invalidate

on invalidate

on abort and
!invalidate

on abort and
!invalidate

on invalidate

on invalidate

on progress and
! PRHS done

on PRHS done
 and progress

on progress and

on PRHS done 
and !progress

 and !invalidate

Figure 5.9.: State chart for the fetch state machine.

Fetch Decode Buffer

The task of the fetch decode buffer is to hold the next instruction to be decoded. In
addition it holds the corresponding program counter of the instruction. The contents
can be marked as a bubble by setting the valid bit (V) to ’0’. If instruction memory
signaled a data abort during the fetch stage (fetch state machine), the abort bit (A)
is set.

A clear pipeline request sets the valid bit to ’0’. Thus creating a bubble. On
a pipeline progress command, the incoming values, generated by the fetch state
machine, are registered.
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Decode Logic

The task of the decode logic is to decode the instruction to be executed next. This
includes the decoding of the instruction type, the calculation of the program counter
offset values (+4, +8 and +12) and the precalculation of immediate values, encoded
in the instruction.

In addition, the select values for the register bank are decoded and signaled to the
register bank to retrieve the register values needed by the instruction. This includes
up to four general purpose register (Rd, Rn, Rm and Rs).

Register Bank

The task of the register bank is to hold all 31 general purpose registers and six status
registers. For further details on the arm8 specific register set organization and the
processor mode dependencies see [Adv96] or [Fur02].

The register bank offers four register read ports (Rd, Rn, Rm and Rs) for the decode
phase to retrieve the required register values and send out the CPSR (current
program status register) and SPSR (special program status register).3

The register bank also offers write back ports for two general purpose registers
(RdWB, RnWB) and the PSR (program status register). The PSR write back port
allows to select whether CPSR or SPSR is the write back target.

For block transfer (BT) instructions the register bank provides a BT read and write
port to allow the execute stage to read and write the required registers directly.

Finally, the register bank also provides a dedicated PC (program counter) read and
write back port to be used by the fetch State machine.

Decode Execute Buffer

The task of the fetch decode buffer is to hold the next instruction to be executed.
In addition it holds the corresponding program counter of the instruction and off-
sets to the program counter (+4, +8 and +12) for usage during the execute stage.
The required input registers and immediate values, used by the instruction are also
buffered in the Decode Execute Buffer for the corresponding instruction. The con-
tents can be marked as a bubble by setting the valid bit (V) to ’0’. If instruction
memory signaled a data abort during the fetch stage (fetch state machine), the abort
bit (A) is set.

3In user and system mode, SPSR and CPSR are the same for PRHSc-A implementation.
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A clear pipeline request sets the valid bit to ’0’. Thus creating a bubble. On a
pipeline progress command, the incoming values, generated by the decode logic and
the register bank, are registered.

Execute Stage

The data path of the execute stage is presented in detail in Figure 5.8 (page 56).
The control signals for the execute stage and the clear pipeline and pipeline progress
control lines are generated by the Execute Control State Machine, which is given as
state chart in Figure 5.10.

5.3.2. System Co-processor

ARM ISA supports up to 16 co-processors, attached to a processor core and there-
fore defines special co-processor commands and an appropriate co-processor inter-
face. Co-processor 15 is recognized as a special one, the system co-processor. ARM
ISA based processors usually include a system co-processor, to control processor
functionality of dedicated devices. The registers interpretations for these system
co-processors vary from processor to processor for this reason.

The PRHSp-A system co-processor register interpretation is based in the system
co-processor described in [Adv96] (chapter 5), but only implements functionality
needed by PRHSp-A.

The following table gives a summary on the register interpretation of the system
co-processor of PRHSp-A.

Register Read Write
0 Processor ID Undefined
1 Control Control
2 Translation Table Base Translation Table Base
3 Domain Access Control Domain Access Control
4 Undefined Undefined
5 (Data) Fault Status Ignored
6 (Data) Fault Address Ignored
74 Ignored Ignored
8 Undefined TLB Control (flush TLBs)

9 - 15 Undefined Undefined
Each entry marked as Undefined will cause a data abort. Each entry marked as
Ignored will finish successfully, but has no effect (write)/results in zero (read).

4Cache Control on original processor[Adv96]
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SINGLE_DATA_LOAD/STORE_PREINDEX
precalculate memory address

SINGLE_DATA_LOAD/STORE
load/store data from memory (word or unsigned 
byte quantity)

SH_LOAD/STORE_PREINDEX
precalculate memory address

SH_LOAD/STORE
load/store data from memory (halfword or signed 
byte quantity)

DATA_PROCESSING
execute data processing instructions

REGISTER_SHIFT_OPERAND
do a register shift, if it is necessary for the instruction

Multiply
do multiply (first cycle)

Multiply_1
do multiply (second cycle)

Multiply_ACC
do addition on multiply result

Multiply_WB
writeback multiply result
to register bank

BT_INIT
initialize rdBlockBase
(block transfer base address)

BT_FINISH
write back base address
if necessary

BT_ABORT
restore initial base address

block transfer sub state machine
load/store register value to/from memory (depends on instruction contents; 1 to 16 transfers)
on each transfer an abort can occur
;

on data abort

on done

DABORT0
set processor mode to
ABORT

DABORT1
set programm counter to
data abort
exception address

CLEAR_PIPELINE
set invalidate pipeline signal;
wait for invalidate ack

SWI0
set processor mode to
SWI

SWI1
set programm counter to
software inerrupt
exception address

UNDI0
set processor mode to
UNDI

UNDI1
set programm counter to
undefined instruction
exception address

IABORT0
set processor mode to
ABORT

IABORT1
set programm counter to
instruction abort
exception address

IRQ0
set processor mode to
IRQ

IRQ1
set programm counter to
interrupt
exception address

FIQ0
set processor mode to
FIQ

FIQ1
set programm counter to
fast inerrupt
exception address BUBBLE

do nothing

on data abort

on program counter modified

BRANCH
set program counter to branch
target address; set R14 if
branch and link

BRANCH_EXCHANGE
set program counter to branch
target address

SWAP
atomically exchange data
with memory

GPRtoPSR
transfer general purpose 
register to program status 
register

PSRtoGPR
transfer program status
register to general purpose
register

COPROC_RT
do a co-processor register
transfer

on register transfer data abort

INIT
initialize execute stage

RESETING
set program counter to 
start address; set supervisor
mode 

the next state to be taken depends on the
type of the next instruction (result of 
decode stage) and pending nIRQ  or nFIQ signals

if this edge is taken and neither nIRQ nor nFIQ 
are pending (pending = asserted, but not disabled in CPSR), 
pipeline progress control signal is set

Figure 5.10.: State chart for the execute control state machine.
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A read access to the ID register (register 0) is answered with the processor ID
(0xff008100).

The following table shows the bit interpretation of the control register (register 1):
Bit Description

31:10 Ignored
9 ROM-protection-Bit: MMU related
8 System-protection-Bit: MMU related

7:1 Ignored
0 MMU-enable-Bit: ’0’ MMU disabled, ’1’ MMU enabled

5.3.3. MMU - Memory Management Unit

The PRHSp-A contains two Memory Management Entities (MMU), one for the data
interface and one for the instruction interface of the processor. Their primary task
is to translate virtual addresses into physical ones and enforce a protection strategy
related to this virtual address space. ARM based MMUs are architected page table
MMUs. This means, the operating system is responsible for placing page tables into
main memory. The MMU inspects those page tables on a TLB (Translation Look-
Aside Buffer) miss to fetch an appropriate TLB entry. For a detailed introduction
to MMUs see [HP07] or [SN05b].

The PRHSp-A MMUs implement the architected page table functionalities given in
[Adv96] (chapter 8), except the following:

Cache and Write Buffer behavior As PRHSp-A doesn’t have a cache or write
buffer, no functionality related to those devices is implemented in PRHSp-
A MMUs.

Fault generation PRHSp-A MMUs don’t generate vector, alignment or terminal
faults.

Taken the above statements as requirements results in the MMU state machine as
given in Figure 5.11.

5.4. Base System Devices

The PRHSpA processor presented in the previous section isn’t usable standalone to
run an operating system or even a small program on it. A minimum of additional
devices, summarized as base system devices, are required for this purpose. Those
devices are presented in the subsequent sections. They are independent from the
platform, a PRHS based system is running on.
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Figure 5.11.: State machine for the memory management unit.

5.4.1. I/O Devices Fundamentals

A lot of I/O devices are included in the PRHS framework. For the following reasons
an I/O device cannot be directly connected to the PRHS Bus:

1. PRHS Bus clock and I/O device clock may differ, resulting in necessary clock
domain crossing problems.

2. PRHS Bus can only address a limited number of up to 32 bits simultaneously.
I/O device inputs and outputs might implement another data width.

3. I/O operations might take a while till they are finished. The PRHS system
itself should not generally block further execution in those cases.

For this reasons, a general mechanism is implemented to connect I/O devices to
PRHS framework hardware as presented in Figure 5.12.

The clock domain management block is optional and responsible for solving clock
domain crossing issues. The register state machine provides memory mapped regis-
ters on the PRHS Bus. The contents of those registers are ”wired” to the control
and data signals of the I/O device itself.

Functionality, interfaces, protocols and clock domain management for I/O devices,
included in the PRHS framework, are given on a per device basis in the following
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Figure 5.12.: General structure of connecting I/O devices to PRHS Bus.

sections. The functionality of the register state machine is common and fundamental
to all I/O devices and therefore defined beforehand. In the I/O device specific
section, only the bit and byte meanings of the register state machine registers are
given.

Register State Machine Interface

A template for implementing the PRHS Bus interface of I/O register state machines
is included in the hardware part of PRHS framework as given in listing 5.2.

entity templateStateMachine is
2 generic (

GEN_BaseAddress : ADDRESS := X"c8000000";
GEN_AddressMask : ADDRESS := X"fffffff0"

5 );
port (

iSysClk : in std_logic;
8 iSysClkEn : in std_logic;

iReset : in std_logic;

11 -- PRHS Bus master signals
iePRHSrequest : in std_logic;
icPRHSWidth : in prhsBusWidth;

14 icPRHSoperation : in prhsBusOperation;
icPRHSaddress : in ADDRESS;
idPRHSdataMaster : in DATA;

17 -- PRHS Bus device signals
odPRHSdataSlave : out DATA;
oenPRHSdone : out std_logic

20

-- add I/O device control signals below this
);

23 end templateStateMachine;

Listing 5.2: Entity declaration for register state machine.
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As the I/O devices all reside on the secondary PRHS Bus, none of them is allowed
to support immediate PRHS Bus transfers (refer to page 52 for details). For this
reason the register state machine is implemented as a two state finite state machine
as shown in Figure 5.13.

wait4request

odPRHSdataSlave <= (others => 'Z');
oenPRHSdone       <= 'Z';

requestDone

odPRHSdataSlave <= sdPRHSdataSlave;
oenPRHSdone       <= '0';

scRequest4me = '1'

Figure 5.13.: State chart for I/O register state machine.

The signals scRequest4me and sdPRHSdataSlave are internal signals, where

scRequest4me <= ’1’ when iePRHSrequest = ’1’ and
((icPRHSaddress and GEN_AddressMask) = GEN_BaseAddress)

3 else ’0’;

and sdPRHSdataSlave is set to the appropriate value, when the state machine
switches from wait4request to requestDone. ”Appropriate” refers to icPRHSWidth,
icPRHSoperation and the masked (lower) bits of icPRHSaddress.

The generic GEN_BaseAddress contains the memory mapped start address of the
I/O device. The address range used for the device can be calculated using
GEN_AddressMask. Defining those values as generics and not as constants allows
multiple instantiations of a device with different memory mappings.

5.4.2. PRHS Bus Controller - Multiplexing primary and
secondary PRHS Bus

According to the information, given for the PRHS Bus in section 5.2.2 on page 52,
the PRHS Bus Controller device has two main functions:

1. Multiplex PRHS Bus transfers of a processor onto the corresponding primary
or secondary PRHS Bus.

2. Provide a timeout mechanism to prevent the system from trapping into infinite
waiting on transfer requests to unmapped memory/device register addresses.

The first is achieved by implementing a bus multiplexer state machine. The second
requirement is fulfilled by implementing a bus timeout state machine.

The general structure, including both state machines, is given in Figure 5.14.
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Figure 5.14.: General structure of the PRHS Bus Controller.

As can be seen in Figure 5.14, the PRHS Bus master signals are buffered in the
request signals buffer if a PRHS Bus transfer targets a peripheral device. A PRHS
Bus transfer is a peripheral request, if the requested address is greater or equal than
GEN_secondaryBusStart. GEN_secondaryBusStart is a generic to easily change the
split of address space into primary and secondary bus at synthesis time, where
all addresses less than GEN_secondaryBusStart reside on the primary bus and all
addresses greater or equal than GEN_secondaryBusStart on the secondary bus.

As a side effect of the request signal buffering, transfers requested on the primary bus
are not visible on the secondary bus. On the contrary, secondary bus transfers are
visible on the primary bus. This design decision results from the demand, that the
primary PRHS Bus shall support immediate transfers (refer to page 52 for details).
Adding any mechanism to make secondary bus transfers invisible to primary PRHS
bus would increase latency between request and answer of an immediate transfer
on primary bus and results in the reduction of the maximum achievable system
frequency.

The bus timeout state machine is independent of the bus multiplexer state machine.
It counts the number of clock cycles between the occurrence of a iePRHSrequest

signal and the corresponding oenPRHSdone. If the counter reaches a value given
with the generic GEN_TimeoutValue it signals a transfer abort to the processor.

The PRHS Bus Controller device doesn’t offer any I/O mapped registers accessible
by the processor. Therefore, it isn’t ”seen” by the operating system, except the
occurring aborts it signals.
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5.4.3. BusComponentStatus - Managing Device Discovering

BusComponentStatus device has two primary functions:
It provides a mechanism to enable software to identify,

1. on what kind of board or FPGA the system is running.

2. which devices are connected to PRHS Bus.

To make the first possible, BusComponentStatus offers the possibility to query for
the board/FPGA, the system is running on. The information is ”hardwired”’ into
BusComponentStatus at synthesis time using a generic.

As PRHS Bus (refer to definition given on page 52) doesn’t support some kind of
auto-discovering or hot-plugging functionality, another way to identify, which devices
are attached to PRHS Bus is implemented. The information is encoded on a one bit
per device scheme. It is currently limited to 32 bits (the width of the data signals
of PRHS Bus).

For the given reasons, BusComponentStatus is neither connected to an external nor
to an internal ”real” device. Therefore, it only implements a PRHS Bus interface
and a register state machine as described on page 64.

register interpretation

Each access to the BusComponentStatus registers is interpreted as a read word.
Therefore, icPRHSWidth and icPRHSoperation is ignored and idPRHSdataMaster is
meaningless.

system type Register (GEN_BaseAddress)
bit R/W description

[31:0] R Contains integer value for the corresponding boardFPGA.

attached devices register (GEN_BaseAddress + 0x4)

bit R/W description
[31:0] R Device present bit. See Appendix B for devices,

board/FPGA and bit association.

Access to any other register address than the above given, results in an unpredictable
answer of the device.

Usage of this device by Linux for PRHS (L4PRHS) will be presented on page 109.
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5.4.4. intchip4prhs - Interrupt Management Device

intchip4prhs device has two primary functions:

1. As PRHS processors only support a very limited number of external interrupts,
a mechanism to manage a large number of interrupts of connected devices is
required.

2. Each interrupt generating device should have an interrupt disable bit in one
of his state machine registers. Additionally it might be beneficial, if dedicated
interrupts can be masked out by the interrupt management system itself.

The intchip4prhs device offers the possibility to manage 32 incoming, active low
interrupt signals and bundle them into one outgoing active-low interrupt signal.
More than 32 interrupts can be handled by cascading several intchip4prhs devices.

The intchip4prhs device only implements a PRHS Bus interface and a register state
machine as described in on page 64.

Register Interpretation

Each access to the intchip4prhs registers is interpreted as word access. Therefore,
icPRHSWidth is ignored by the device.

interrupt status register (GEN_BaseAddress)
bit R/W description

[31:0] R Each bit represents the current status of the appropriate
incoming interrupt with respect to the corresponding bit of
the enable mask register. Bits have to be interpreted as
active high.

interrupt enable register (GEN_BaseAddress + 0x4)

bit R/W description
[31:0] R/W Each bit enables the usage of the appropriate incoming in-

terrupt. All interrupts are disabled (value ’0’) by default.

Access to any other register address than the above given, results in an unpredictable
answer of the device.

Device generates interrupt, if any incoming interrupt signal is asserted (’0’) and
it’s corresponding enable bit is set to ’1’. No kind of interrupt prioritization is
implemented in intchip4prhs.

Usage of this device by L4PRHS will be given on page 105.
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5.4.5. timer4prhs - Timing Measurement in the PRHS
Framework

The timer4prhs device provides the ability to measure time on a PRHS system. This
includes a simple ”how much time has been elapsed since ...” question and also the
possibility to get a wake up call (in form of an interrupt) at a programmable time
in future.

The basis for timing measurement is provided by a 32 bit wide soft-reset-able up
counter, that increments its value at each rising edge of the system clock.

This counter is controlled via the timer state machine, which itself is controllable
by a PRHS Bus attached register state machine.

Register Interpretation

Each access to the intchip4prhs registers is interpreted as word access. Therefore,
icPRHSWidth is ignored by the device.

counter/threshold value register (GEN_BaseAddress)
bit R/W description

[31:0] R Current counter value (counter), interpreted as 32 bit un-
signed integer.

[31:0] W Threshold value (threshold) for setting interrupt or wrap
around to zero, interpreted as 32 bit unsigned integer.

status/control register (GEN_BaseAddress + 0x4)

bit R/W description
[31:4] R all bits are set to ’0’

[3] R/W Interrupt Enable Bit (IntEn); Bit only controls signal-
ing interrupt; it enables the timer to change to INTER-
RUPT PENDING state whenever counter value reaches
threshold value.

[2] R/W Timer Mode bit (mode); is set to ’0’ for one-shot mode, is
set to ’1’ for periodic mode.

[1] R Timer Running bit (running); This bit is ’1’, if timer is in
IDLE state, else ’0’.

[1] W Start bit (start); If a ’0’ is written to this bit, timer enters
IDLE state, if ’1’ is written timer is (re)started (state set to
START ) by soft-resetting the counter.

[0] R Interrupt Pending bit (IntPen); This bit is ’1’, if timer is in
INTERRUPT PENDING state, else ’0’.
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interrupt acknowledge register (GEN_BaseAddress + 0x8)

bit R/W description
[31:0] R/W Any access will acknowledge a pending interrupt. Timer

then enters IDLE state if one-shot mode is selected. In case
of periodic mode it restarts counting.

Access to any other register address than the above given, results in an unpredictable
answer of the device.

Device generates interrupt, if interrupt enable bit is ’1’ and timer state machine is
in INTERRUPT PENDING state.

Timer State Machine

For better understanding of the functionality of the timer4prhs device and the in-
terpretation of the bits of the register state machine, the state chart of the timer
state machine is given in Figure 5.15.

INT PENDING
signal interrupt;

till acknowledged

START

on timer elapsed and
periodic mode and 
no interrupt generation

on write '0' to 
start bit

reset counter value
to 0

IDLE
timer is idle

(not counting)

RUNNING
count upwards;
till timer elapses

on timer elapsed and interrupt generation
(mode doesn't matter here)

on timer elapsed and
one-shot mode and 
no interrupt generation

on interrupt ack and
periodic mode

on interrupt ack and
one-shot mode on write '1' to 

start bit

timer elapses, if 
counter value > threshold 

Figure 5.15.: Simplified state chart of the timer state machine.

Signal sctimerelapsed is set when counter value matches threshold value.

Usage of this device by L4PRHS will be presented on page 107.
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5.4.6. uart4prhs - Basic User Interaction

The uart4prhs component connects an universal asynchronous receiver/transmitter
(UART) to the PRHS Bus. It offers an easy and straightforward connection for
user interaction over a serial line (RS232). The general structure of the uart4prhs
component is given in Figure 5.16.

receiverAndFifo

transmitterAndFifo

8

8

ClkEnableProgrammable ClkEnableProgrammable
UARTrsm
(register state 
 machine)

8

8

4

4

uart4prhs

32

UART

SerialIn

SerialOut

to/from
PRHS Bus

receiverFifo

transmitterFifo

receiver FSM

transmitter FSM

Figure 5.16.: General overview on uart4prhs device.

Interaction with the UART itself is done via a receiver and transmitter FIFO. Those
FIFOs also implement the clock domain crossing, as the UART receiver and trans-
mitter components work on low frequencies (refer to BAUD rate in RS232 specifi-
cations).

UART component is generating the needed BAUD rate by not using clock dividers
but by using clock enable signals. This approach allows to use uart4prhs component
in partial reconfigurable logic areas. Clock dividers would impose the need of taking
care about clock buffer limitations regarding partial reconfigurable logic areas (see
Xilinx partial reconfiguration user guide [Xil10b] for details).

Register Interpretation

Each access to the uart4prhs registers is interpreted as word access. Therefore,
icPRHSWidth is ignored by the device.

receive/transmit register (GEN_BaseAddress)
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bit R/W description
[31: 8] R all bits are set to ’0’
[ 7: 0] R Read next received byte from receiver FIFO. If FIFO is

empty, last received Byte is returned.
[ 7: 0] W Insert next Byte to send into transmit FIFO. If FIFO is full

write is ignored.

status/control register (GEN_BaseAddress + 0x4)

bit R/W description
[31:13] R all bits are set to ’0’

[12] R/W disable interrupt bit
[11: 8] R receiver FIFO status bits (empty, full, almost empty, almost

full)
[ 7: 4] R transmitter FIFO status bits (empty, full, almost empty,

almost full)
[ 3: 0] R all bits are set to ’0’

baud rate generation register (GEN_BaseAddress + 0x8)

bit R/W description
[31: 0] R/W valueis interpreted as unsigned integer to generate baud

rate for receiver/transmitter of UART according to:

baud = <GEN SysClockinHz>
value

;

initial value is <GEN SysClockinHz>
<GEN InitBaudrate>

Access to any other register address than the above given, results in an unpredictable
answer of the device.

The device generates an interrupt, if the interrupt disable bit is ’0’ and the receiver
FIFO is not empty.

Usage of this device by L4PRHS will be given on page 113.

5.4.7. bram4prhs - Block RAM based Memory

The bram4prhs component provides a bridge for attaching Block RAM to PRHS
Bus. It combines two bRAM bridge state machines with a dual port Block RAM as
given in Figure 5.17.

Bram4prhs resides on the secondary bus. Therefore, the bRAM bridge state ma-
chines have to handle non-immediate PRHS Bus transfers as first task. The second
task is to translate the PRHS Bus address to the appropriate Block RAM address.
The start address of the mapping of the memory address into the PRHS address
space and the memory size itself are synthesis time configurable by generics.
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Figure 5.17.: Overview on bram4prhs device.

Primary purpose of bram4prhs is to hold the stage 1 boot-loader as described in
section 7.2. For this reason, it is implemented as a dual port memory to connect it
to the data and instruction PRHS Buses of a PRHS processor without the need for
further (multiplexing) devices.

5.5. PRHS SD Bus Subsystem

External memory is required to provide enough memory to PRHS based systems.
PRHS hardware has to support different platforms and therefore different types of
external memory might be connected to a PRHS system. The following requirements
are given for these connections:

1. The memory connection has to be generally independent of the used memory
type. This offers flexibility and new memory types can be added easily.

2. Different PRHS hardware components should be able to access the external
memory. A mechanism (interconnection system) to share an interface to the
memory among those devices is needed.

The first requirement is fulfilled by defining a PRHS common, external memory
access interface and protocol (PRHS SD Bus5), which is mapped to the appropriate
protocol and interface of the board specific used external memory using a bridge.
The second requirement is fulfilled by introducing a PRHS SD Bus specific inter-
connections system. These solutions results in an architecture, called PRHS SD Bus

5The term SD is used, because most of the platforms are usually shipped with SD-RAM. However,
the external memory can also be of another type. PRHS SD Bus subsystem is designed to be
also portable to other memory types.
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subsystem as shown in Figure 5.18.
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Figure 5.18.: PRHS SD Bus subsystem - general architecture.
This architectural scheme is an example using three cache/bridge devices

communicating with the shared external memory.

The different aspects of the PRHS SD Bus subsystem are discussed in the following.
First of all, the PRHS SD Bus is defined in section 5.5.1. Afterwards, the PRHS
Bus to PRHS SD Bus Cache is presented in section 5.5.2. The PRHS SD Bus
interconnection system is further explained in section 5.5.3. Finally, PRHS SD Bus
bridges are presented in section 5.5.4.

5.5.1. PRHS SD Bus Definition

PRHS SD Bus Interface

PRHS SD Bus interface definition for Caches/Bridges, attachable to the PRHS SD
Bus, is given in the following listing:

port (
-- autogenerated interconnection system device ID

3 idSDdevID : in idType;

-- PRHS SD Bus request signals
6 oeSDreqRequest : out std_logic;

ieSDreqAck : in std_logic;

9 ocSDreqID : out idType;
ocSDreqAdr : out std_logic_vector(31 downto 0);
ocSDreqOperation : out prhsBusOperation;

12 odSDreqWData : out prhsSDdata;
ocSDreqWDataMask : out prhsSDmask;

15 -- PRHS SD Bus answer signals
ieSDanswerValid : in std_logic;
icSDanswerID : in idType;
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18 idSDanswerData : in prhsSDdata;
);

Listing 5.3: Interface declaration for PRHS SD Bus.

using the self-defined data types:

type prhsBusOperation is (OPread, OPwrite, OPswap);
2 subtype idType is std_logic_vector(4 downto 0);

subtype prhsSDdata is std_logic_vector((32 *(2 ** GEN_DSW))-1 downto 0);
5 subtype prhsSDmask is std_logic_vector((4 *(2 ** GEN_DSW))-1 downto 0);

PRHS SD Bus interface definition includes a generic, GEN DSW. This generic is
used for scaling the width of the data signals. As external memories differ in data
width and optionally support burst transfers, GEN DSW offers the possibility to
exploit the performance benefits of those features. The width of the data signals is
scaled, according to the following equation:

widthPRHS SD Bus data lines = 2GEN DSW ∗ widthPRHS Bus word

where widthPRHS Bus word = 32 as PRHS framework implements 32 bit systems.

PRHS SD Bus Protocol

The following table explains the meanings of the above given signals in detail.

Name Description

idSDdevID system-wide unique ID number for attached cache/mem-
ory; implicitly generated by the interconnection system

oeSDreqRequest signal send by cache/memory to signal transfer of a request
packet to attached interconnection system device (multi-
plexer or directly connected bridge block)

ieSDreqAck acknowledge of attached interconnection system device to
signal reception of request packet; acknowledge can be im-
mediate (same cycle oeSDreqRequest is asserted) or
non-immediate (see examples)

ocSDreqID ID for tagging request packet; has to be equal to
idSDdevID

ocSDreqAdr 32 bit wide address of request packet; address space is on a
per byte basis, address of a request should be aligned (im-
plemented by setting (2 + GEN DSW)lowest bits of address
to ’0’)
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ocSDreqOperation defines operation type of request packet; OPread for read,
no answer packet will be sent by bridge block; OPwrite for
write; OPswap for non-interruptible data exchange (read
old value from, write new value to memory)

odSDreqWData write data for request packet; content meaningless if
ocSDreqOperation is set to OPread

ocSDreqWDataMask mask appropriate bytes of odSDreqWData to exclude
them from being written to memory (’1’ means mask out,
’0’ means use for write)

ieSDanswerValid sent by bridge block to signal validity of the other answer
signals

icSDanswerID ID of attached cache/memory who originally send the re-
quest, this answer is the response for

idSDanswerData data that has been read by the bridge block from external
memory

Write Transfers

A PRHS SD Bus write transfer example is given in Figure 5.19.

bus clock

ocSDreqID

ocSDreqAdr

ocSDreqOperation

odSDreqWData

ocSDreqWDataMask

oeSDreqRequest

ieSDreqAck

...

45b78dc0

write... ...

... ... a40c3590

...

...

ab4581bc02334c89 ... 08627ca9b752bc9a

fc ... f0

04

transfer 1 transfer 2

Figure 5.19.: PRHS SD Bus write example
In this example, GEN_DSW is 2 and idSDdevID is 0x04. As write transfers do not
have an answer packet send back from the bridge block, the answer signals of

PRHS SD Bus are not included here.

Transfer 1 is a non-immediate transfer, whereas transfer 2 is an immediate one. Be
aware of the necessity to not alter any request signals until a request is acknowledged.
This is different to a PRHS Bus transfer.
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Read Transfers

An example read transfer and the appropriate answers is given in Figure 5.20.

bus clock

ocSDreqID

ocSDreqAdr
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ocSDreqWDataMask

oeSDreqRequest

ieSDreqAck
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... ca4b6710

...

04

...

...

...

...

..........

ieSDanswerValid

icSDanswerID

idSDanswerData...

... ...04 04

...

request of
transfer 1

request of
transfer 2

answer of
transfer 1

answer of
transfer 2

c35b7ac9265cd84efc2a44b567901cd37

Figure 5.20.: PRHS SD Bus write example
In this example, GEN_DSW is 2 and idSDdevID is 0x04.

The number of bus clock cycles between the acknowledgment of a request and receiv-
ing the appropriate answer (latency) is usually not predictable. It mainly depends
on the used external memory and is slightly influenced by the depth of the PRHS
SD bus interconnection system. Heavy load (a high number of request packets) on
the interconnection system will also raise latency.

The order of answers given by the bridge block is the same order as the requests
were issued by a cache/memory. All answers given by the bridge block are seen by
all bridges/memories attached to the PRHS SD Bus.

Swap Transfers

Swap transfers are also possible with PRHS SD Bus. It combines an atomic read
and write operation to the same address.
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5.5.2. PRHS Bus to PRHS SD Bus Cache

The PRHS Bus to PRHS SD Bus Cache (cache) is the key component to translate
PRHS Bus transfers to PRHS SD Bus transfers. Refer to page 52 for PRHS Bus
definition and to page 74 for PRHS SD Bus definition.

Before presenting a brief overview on the implementation, necessary information
regarding to data alignment is given.

Data Alignment Fundamentals

The data width of the PRHS Bus is limited to 32 bit (= widthPRHS bus word) and the
data width of RPHS SD Bus is scalable by a generic GEN DSW value according
to the equation:

widthPRHS SD Bus data lines = 2GEN DSW ∗ widthPRHS Bus word

In addition both buses have an address signal included in their definition. The con-
version mechanism of the PRHS Bus to PRHS SD Bus Cache between PRHS Bus
and PRHS SD Bus is explained in the following. This is essential to understand
where to find the appropriate place where data can be found. E.g. when it is neces-
sary to implement a device, that also connects to the PRHS SD Bus interconnection
system and accesses main memory data also accessed by the PRHS Bus to PRHS
SD Bus Cache.

A PRHS SD Bus data word (named cache-line in the following) can hold multiple
data words (32 bits wide, named data-word in the following) of PRHS Bus. How
much of those data-words depends on the value of GEN DSW according to the
equation given above. Without loss of generality, the following examples use a value
of 3 for GEN DSW . Therefore, an example cache-line can hold 8 data-words.

Figure 5.21 shows how data-words are arranged in a cache-line and also presents the
relation of the addresses used by the PRHS Bus and PRHS SD Bus.

data-word0

scPRHSaddress=(a31 a30...a6 a5 a4 a3 a2 a1 a0)

scSDreqAdr=(a31 a30...a50 0 0 0 0) 
data-wordi

i

cache-line

data-word1data-word2data-word3data-word4data-word5data-word6data-word7

Figure 5.21.: Data-words arranged in a cache-line and address conversion.
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The data-words are placed consecutively in a cache-line, starting with the least
significant data-word on the left side. This follows a big endian principle and makes
scaling the cache-line width easy to implement using GEN DSW . Furthermore
the PRHS Bus address (scPRHSaddress) is converted into the appropriate PRHS
SD Bus address (scSDreqAdr). The original address bits a1a0 are set to zero (and
should have been zero6) because PRHS Bus handles 4 byte words but addresses are
byte oriented. The address bits preceding a1a0 can be used as an index i to identify
data-wordi in a cache-line. For the given example GEN DSW is 3. These 3 bits
are used to identify the index (formed by a4a3a2).

Finding the right byte or halfword (16 bit) seems confusing at first glance, due to
the fact, that PRHS processors implement little-endian data ordering. Figure 5.22
is used to give a better understanding for this example.

data-word0

scPRHSaddress=(a31 a30...a6 a5 a4 a3 a2 a1 a0)

scSDreqAdr=(a31 a30...a50 0 0 0 0) 

data-word index

cache-line

data-word1data-word2data-word3data-word4data-word5data-word6data-word7

hw0 hw1hw2 hw3hw4 hw5hw6 hw7hw8 hw9hw10 hw11hw12 hw13hw14 hw15

half-word (hw) index

byte (b) index

b0 b1 b2 b3b4 b5 b6 b7b8 b9 b10b11b12b13b14b15b16b17b18b19b20b21b22b23b24b25b26b27b28b29b30b31

Figure 5.22.: Data-words, half-words and bytes arranged in a cache-line and address
conversion.

Implementation Overview

As the requirements to such a central element like the PRHS Bus to PRHS SD Bus
Cache may differ in terms of used area and performance (as this device might be a
bottleneck for main memory access), three different architectures are implemented,
simple Bridge, buffered Bridge and Cache.

Implementation details for the different architectures are given in the following. For
a detailed introduction on Caches and the appropriate terminology see [HP07] and
[PH09].

6Values other than zero indicate an alignment fault. Those faults have to be prevented/detected
by the processor (or a coprocessor like a MMU) itself.
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Simple Bridge

This implementation maps each PRHS Bus request to a corresponding PRHS SD
Bus request. No caching mechanism is implemented at all. Therefore, the benefits of
an immediate PRHS Bus answer cannot be achieved. Notably, performance benefits
through pipelined processors cannot be achieved.

Nevertheless, this implementation can help to identify just as to proof cache co-
herency problems, as they cannot occur by design when using this implementation.

For the necessary conversion of addresses and data, this architecture implements a
finite state machine as depicted in Figure 5.23.
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Wait4SDanswer
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SD requeston answer to SD reqeust

PRHSdone

give PRHS answer

on PRHS request

Figure 5.23.: Overview on simple bridge implementation.

Buffered Bridge

This implementation enhances the previous one by buffering (caching) the informa-
tion about the previous PRHS SD Bus read request. If the incoming PRHS Bus
read request would result in requesting the same PRHS SD Bus read request as
the previous one, the request is not issued. By buffering the previous SD Bus read
answer, an answer to the PRHS Bus request can be given immediately. A write
or swap request is always send to main memory as PRHS SD Bus request. As the
data of a PRHS SD Bus request is seen as a cache line, this implementation can be
considered as a direct mapped, write through cache holding only a singleton cache
line.. The enhancements results in the modification of the finite state machine as
given in Figure 5.24.

Cache

This architecture implementation enhances the buffered Bridge implementation by
adding a Block RAM based mechanism to cache more than on cache-line simulta-
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Figure 5.24.: Overview on buffered bridge implementation.

neously. The number of cached lines is configurable by a generic.

Block RAM lacks the problem7, that it provides requested data only at the next
rising(falling) edge of the system clock. Waiting an entire clock cycle to get the
requested data from Block RAM would make immediate PRHS Bus transfers im-
possible. Therefore, the Block RAM only forms the second Stage of the caching
mechanism, which takes two clock cycles for a read request. To support immediate
PRHS Bus read transfers the buffering mechanism of the buffered Bridge implemen-
tation is used as the first cache stage.

As Block RAM contents are not ”resettable”, the valid (V) bits of the cache lines
are not changed on reset. Therefore, an initialization sequence is necessary at reset
(or startup) to set the valid bits of all cache lines to ’0’.

Cache coherency is also a problem, occurring now. That is why this architecture
also implements a write invalidate protocol in it’s simplest form. A state machine is
implemented, that ”snoops” write transfers of another PRHS SD Bus component and
invalidates it’s own cache entry, if necessary to enforce a reload from main memory
on the next read access to this cache line. This mechanisms ensures coherency among
a data and an instruction cache attached to a PRHS-processor. The cache coherency
protocol is a simplification of the MSI-coherence protocol (as described for example
in [HP07].) It is more simpler than MSI as it has no Modified bit, because write
through is implemented in it’s pure sense and therefore doesn’t require a modified
bit for this implementation. In addition, it doesn’t even use a Shared bit, as the
protocol implicitly assumes a cache line as shared, even if it is only contained in one
cache.

For this reason, the implemented cache coherence protocol can be interpreted as I-
protocol. A cache line is either invalid or valid. This very simple protocol has been
chosen as cache coherency is not in the scope of this thesis, but has to be ensured.

7See [Xil12a] for details on describing Block RAM in a high level language and synthesizable
form.
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For a detailed introduction to cache coherency protocols see [HP07].

Taking the above considerations as given, the finite state machine again requires
modifications as given in Figure 5.25.
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Figure 5.25.: Overview on cache implementation.

The current cache coherency protocol is suitable to build uniprocessor systems. It is
sufficient to implement a virtualization system based on the main idea of this thesis.
For the implementation of a true multiprocessor system that requires concurrent
usage of shared main memory, a more sophisticated cache coherency mechanism
needs to be implemented (e.g. MSI, MESI, or more complex ones). This might also
require an adaptation of the entire PRHS SD Bus subsystem.

5.5.3. PRHS SD Bus Interconnection System

According to [RNP+] The two dominant architectural choices for implementing com-
munication fabrics for SoC’s are transaction-based buses and packet-based Networks-
on-Chip (NoC).

Transaction based buses interconnect several devices via a shared or segmented bus
line. A transfer between two devices is done on a transactional basis, meaning that
the sender locks the bus for himself, performs a series of requests (which form the
transaction) and then releases the bus. This is one of the main disadvantage of
transaction based buses, because this bus lock prevents other devices from using the
bus, which results in blocking those devices. Another big problem of transactional
buses is their poor scalability [RNP+][GG00] regarding to the achievable frequency.
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NoC’s solve these transaction based bus problems by sending request and answer
packets over a switchable network with routing functionality at the cost of area
consumption. Another main disadvantage of NoC’s is latency, because packets have
to ”hop” from on switch to another till the destination is reached.[GG00][BDM02].

For the PRHS SD Bus interconnection system scalability is a key factor. Therefore, a
shared bus is not a suitable solution. The area consumption of a full blown Network
on Chip would be excessive for the following reasons:

• A memory request is always directed from one of the attached caches/bridges
to the one and only bridge block. This makes routing easy to implement.

• A memory answer is always directed from the bridge block to the requesting
bridge/cache.

Hence, routing is only necessary from multiple sources to a singleton destination.
Adding a unique requester ID to a memory request will allow broadcasting the
corresponding answer to all caches/bridges, also including the original requester ID.
The appropriate cache/bridge can now identify answers addressed to himself based
on this ID.

Because of that, the resulting interconnection system solution is a combination of
the shared bus (for the answers) and network (for the requests) concepts.

Scalability for the interconnections system is achieved by introducing the intercon-
nection multiplexer. This device is used to build a cascading and scalable tree, with
the root node connected to the PRHS SD Bus to memory bridge as given as example
in Figure 5.26.
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Figure 5.26.: Example for a PRHS SD Bus interconnection system.

The interconnection multiplexers ensure a fair serialization on the occurrence of
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simultaneously arising requests on the inputs.

The answer lines of PRHS SD Bus are drawn outside the interconnection multi-
plexers for understanding reasons. For easier implementation needs, they are also
included in the VHDL implementation of the interconnection multiplexers, but nei-
ther multiplexing nor same kind of ”hopping” is implemented among them.

ID generation and assignment is implicitly done by the interconnection multiplexers.
Necessary lines for this feature are not contained in Figure 5.26.

The following rules have to be taken into care, when implementing a new
Cache/Bridge:

• Requests, send by the caches/bridges are ”hopping” from one interconnection
multiplexer to another. Therefore, the request is finished for a cache/bridge,
if the interconnection multiplexer acknowledges a request although it has not
been accomplished by the external memory.

• The tree architecture ensures that the order of request, issued by one of the
caches/bridges, is obeyed.

• No cache coherency or synchronization principles are enforced by the inter-
connection system itself.

prhsSDBusMux - PRHS SD Bus Interconnection System Multiplexer

The general structure of the PRHS SD Bus interconnection system multiplexer
(prhsSDBusMux ) is given in Figure 5.27.

To understand the functionality of the prhsSDBusMux it is necessary to differentiate
the PRHS SD Bus signals into request, answer and ID chain signals.

ID Chain Signals

The ID chain signals are for automatically generating and assigning device IDs
to devices attached to the PRHS SD Bus interconnections system. The top level
prhsSDBusMux gets ID 000002 and level 0 assigned as ID chain input. It will
generate ID 000002 and level 1 as outgoing ID chain signals of Port A. For Port B
this will be 000012 as ID and also 1 as level. In general, a prhsSDBusMux getting
level i and ID 0 . . . 00ai−1 . . . a0 as input, will generate ID 0 . . . 00ai−1 . . . a0 for port
A and ID 0 . . . 01ai−1 . . . a0 for port B. The level will be i + 1 for both ports. The
width of the ID is actually limited to 5, which will result in a maximum number of
25 = 32 devices to the PRHS SD interconnection system. A higher width can be
easily implemented, but might result in high latency, as all attached devices share
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Figure 5.27.: Overview on prhsSDBusMux.

one singleton memory controller. The current width of 5 can be seen as a trade off
value.

Answer Signals

As already discussed, all devices attached to the PRHS SD Bus interconnection
system ”see” all answers issued by the memory. Therefore, the prhsSDBusMux
just propagates the answer signals to both ports without further investigation or
buffering.

Request Signals

The request signals are the most interesting ones for the prhsSDBusMux. Each
request issued by a device on one of the input ports is buffered and acknowledged
(implemented by the input buffer state machine) first. So any attached device can
progress with its work as fast as possible. The input buffer state machine then tries to
push the request to the device connected at the multiplexed side of prhsSDBusMux
(This is either the bridge block or an input port of another prhsSDBusMux). To
ensure fairness and therefore enforce low latency for both devices, attached to the
input ports, a switch state machine, whose state chart is given in Figure 5.27 is
implemented.
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5.5.4. PRHS SD Bus Bridges

For same external memory devices, a memory controller might be available as IP-
core. Nevertheless, this memory controller and the PRHS SD Bus to memory bridge
can be seen as a logical block, called bridge block in the remainder of this work. The
tasks of this block are:

1. Map the common PRHS SD Bus protocol and interface to the external memory
specific one, as already mentioned above.

2. Implement clock domain crossing issues, if the PRHS SD bus clock is different
to the external memory interface clock.

3. Optionally implement some sort of buffering, if external memory latency is a
bottleneck for devices (caches/bridges) attached to the interconnection system.

Detailed descriptions for board specific memory controllers and PRHS SD Bus to
memory bridges can be found in the following.

ML505 PRHS SD Bus Bridge

The ML505 PRHS SD Bus Bridge translates PRHS SD Bus requests into requests for
the DDR2 SDRAM memory controller as described in [Xil10a] (called V5MC in the
following) and generated using CoreGen. It is used by PRHS framework on ML505
and XUPv5 Boards. The V5MC works on 64 bit words and implements a burst
length of 4. Therefore, on ML505 and XUPv5 boards widthPRHS SD Bus data lines =
64 ∗ 4 = 256 resulting in a GEN DSW value of 3.

The V5MC comes with an user interface for issuing commands and appropriate data
(command interface). It also provides an interface for data read from memory (read
data interface). As both interfaces include asynchronous FIFOs, ML505 PRHS SD
Bus Bridge doesn’t has to care about clock domain crossing issues.

ML505 PRHS SD Bus Bridge is structured as shown in Figure 5.28.

PRHS SD Bus requests are handled by the request state machine. Besides acknowl-
edging the request itself on the PRHS SD Bus, the request state machine translates
the incoming read, write and swap request (PRHS SD Bus) into load and store
operations of the V5MC command interface. A PRHS SD Bus read is transformed
into a V5MC load, a PRHS SD Bus write into a V5MC store and a PRHS SD Bus
swap into a V5MC load instantaneously followed by a store.

V5MC responds to load request on the command interface by giving the answer
data after a variable number of clock cycles8. The ordering of the answers is strictly

8for a detailed discussion see [Xil10a]
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Figure 5.28.: Overview on ML505 PRHS SD Bus Bridge.

the same as the corresponding load commands.

PRHS SD Bus includes the requesters ID in an answer response. Therefore, the ID
for requests which result in a PRHS SD Bus answer (load and swap requests) has
to be buffered in the ReqID FIFO till the corresponding answer data is returned by
the V5MC.

ML605 PRHS SD Bus Bridge

The ML605 PRHS SD Bus Bridge translates PRHS SD Bus request into requests
for the DDR3 SDRAM memory controller as described in [Xil10c] (called V6MC
in the following) and generated using CoreGen. It is used by PRHS framework on
ML605 Boards. The V6MC works on 64 bit words and implements a burst length
of 8. Therefore, on ML605 boards widthPRHS SD Bus data lines = 64 ∗ 8 = 512 resulting
in a GEN DSW value of 4.

The V6MC comes with an user interface for issuing commands and appropriate data
(command interface). It also provides an interface for data read from memory (read
data interface). In contrast to the user interface provided for memory controllers
for Virtex5 FPGAs (see previous section), both interfaces do not include FIFOs.
Hence, ML605 PRHS SD Bus Bridge has to care about clock domain crossing

The resulting structure for the ML605 PRHS SD Bus Bridge is an extended version
of the ML505 PRHS SD Bus Bridge as given in the previous section.

The structure of the ML605 PRHS SD Bus Bridge is presented in Figure 5.29.
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Figure 5.29.: Overview on ML605 PRHS SD Bus Bridge.
The state transition constraints and outputs are not given for readability reasons.

5.6. Platform Specific Devices

The devices presented in this section are platform specific. They can only be used,
when an appropriate interface and/or controller is available on the used platform.

5.6.1. pstwo4prhs - Mouse and Keyboard Interfaces

The pstwo4prhs component connects PS2 protocoll based devices like keyboards and
mice to the PRHS Bus. The general structure of the pstwo4prhs component is given
in Figure 5.30. It is based on the works [Loo13] and [Las13].

ps2withFifos

8
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ps2rsm
(register state 
 machine)

8

8

4

4

pstwo4prhs

PS2 Data

PS2 Clock

to/from
PRHS Bus

rxFifo

txFifo

ps2rx
(receiver FSM)

ps2tx
(transmitter FSM)

ps2txrx

Figure 5.30.: Overview on pstwo4prhs device

Interaction with the PS2-transmitter-receiver device itself is done via a receiver and
transmitter FIFO. All sub-devices of the pstwo4prhs component run on system clock.
Hence, they can be used in partial reconfigurable areas.
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Register Interpretation

Each access to the pstwo4prhs registers is interpreted as word access. Therefore,
icPRHSWidth is ignored by the device.

receive/transmit register (GEN_BaseAddress)
bit R/W description

[31: 8] R all bits are set to ’0’
[ 7: 0] R Read next received byte from receiver FIFO. If FIFO is

empty, last received Byte is returned.
[ 7: 0] W Insert next Byte to send into transmit FIFO. If FIFO is full

write is ignored.

status/control register (GEN_BaseAddress + 0x4)
bit R/W description

[31:9] R all bits are set to ’0’
[8] R/W disable interrupt bit

[7:4] R receiver FIFO status bits (empty, full, almost empty, almost
full)

[3:0] R transmitter FIFO status bits (empty, full, almost empty, al-
most full)

Access to any other register address than the above given, results in an unpredictable
answer of the device.

If interrupt disable bit is ’0’ and receiver FIFO is not empty, the device will generate
an interrupt.

Usage of this device by L4PRHS will be given on page 113.

5.6.2. sysace4prhs - Compact Flash Card Controller

The sysace4prhs device is based on the work of [Kab12]. It connects PRHS Frame-
work with a CF-Card controller. This CF-Card controller is a dedicated chip (Sys-
tem ACE CompactFlash solution [Xil08]). Sysace4prhs device provides CF-Card
based hard drive functionality on the boards providing a SystemAce chip (XUPv5,
ML505, ML605).

As the system ACE controller device already implements a command/register based
interface, the sysace4prhs device only has to bridge the PRHS Bus to the System
ACE controller device.

Unfortunately the system ACE controller device is hardwired to a 33 MHz clock
on the boards supported by PRHS framework. As PRHS system clock frequency
isn’t necessarily exactly 33 MHz. Therefore, the state machines, implementing the
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bridging mechanism between PRHS data bus and system ACE controller device,
also have to handle clock domain crossing issues.

For this reason the sysace4prhs state machine as described in [Kab12] has been
split into two.9 A (register) state machine, running on system clock, is connected
to PRHS Bus and is responsible for implementing PRHS Bus handshaking. The
SysAce (controller) state machine generates the signal sequences to interact with
the system ACE controller device as defined in [Xil08] and runs on the required
33 MHz clock. Between those two state machines, a request-done handshaking
mechanism is implemented. The corresponding control signals are used to solve
clock domain crossing issues by implementing a two-flipflop synchronizer solution
(see [?] for details).

The state machine dependencies and implementations are given in Figure 5.31.

Wait
set CFRequestDone = '0'

WriteFinish ReadPause

ReadFinish

Done

CFRequest

CFDone

Wait4Request

RequestDone

on PRHS request

System Clock Domain SysAce Clock Domain (33MHz)
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PRHS Bus

to/from
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on CFRequestDone='0'

on CFRequestDone='1'

on CFrequest = '1'

on CFrequest = '0'

Setup
setup sysAce for request

on write request on read request

Figure 5.31.: State machines of sysace4prhs device.

Register Interpretation

System ACE controller device offers two access modes. The first is byte (8 bit)
mode and the other word (16 bit) mode. As some boards (ML605) only support
the 8 bit mode for wiring reasons, only 8 bit mode is supported by sysace4prhs
device. Therefore, each PRHS Bus request is regarded as byte access. The registers

9The sysace4prhs device described in [Kab12] assumes the same 33MHz clock source for system
ACE controller and PRHS Bus.



5.6. PLATFORM SPECIFIC DEVICES 91

of System ACE controller device are directly mapped by the sysace4prhs device into
the address space of PRHS processors. For this reason no register interpretation
table is given here. See [Kab12] and especially [Xil08] for register interpretation of
system ACE controller.

Device doesn’t generate any interrupts.

Usage of this device by L4PRHS will be given on page 112.

5.6.3. v5emac4prhs - 10/100 Mbit Ethernet Controller for
Virtex5 FPGAs

The v5emac4prhs has been added to PRHS framework by [Gr13]. It provides the
connection to a 10/100 Mbit Ethernet controller for Virtex5 based boards (ML505
and XUPv5).

[Gr13] gives a detailed overview on the structure of v5emac4prhs. Therefore, only
the PRHS Bus register interpretation is given here, which is necessary to understand
the L4PRHS device driver implementation, which is not part of [Gr13].

Register Interpretation

Each access to the intchip4prhs registers is interpreted as word access. Therefore,
icPRHSWidth is ignored by the device.

read Rx data register (GEN_BaseAddress)
bit R/W description

[31:10] R all bits are set to ’0’
[9] R End of Frame bit (negative logic)
[8] R Start of Frame bit (negative logic)

[7:0] R data byte

write Tx data register (GEN_BaseAddress + 0x1)
bit R/W description

[31:10] W all bits are ignored
[9] W End of Frame bit (negative logic)
[8] W Start of Frame bit (negative logic)

[7:0] W data byte

interrupt disable register (GEN_BaseAddress + 0x6)
bit R/W description

[31:1] R all bits are set to ’0’
[0] R/W interrupt disable bit
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More registers are addressable regarding to [Gr13]. Only the given ones are used by
L4PRHS.

Device generates interrupt, if Rx data Fifo is not empty and interrupt disable bit is
not set.

Usage of this device by L4PRHS will be given on page 114.

5.7. Partial Reconfiguration Extension

The partial reconfiguration extension (PR extension) contains all devices to include
dynamic and partial in-system reconfiguration capabilities into the PRHS frame-
work.

Figure 5.32 gives an overview of the PR extension structure.
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Figure 5.32.: Overview on PR extension.

The different components of PR extension are described in the following.

5.7.1. Reconfigurable Module

The Reconfigurable Module is a block box interface for instantiating a partial recon-
figurable area, that can be used for dynamic and partial in-system reconfiguration
at runtime.
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The overall interface of the reconfigurable module is based on the requirements to
a reconfigurable logic area of section 4.3:

PRHS Bus interface This allows to add a new device to the secondary data bus of
the static system at runtime. This enables to dynamically exchange accelerator
units at runtime.

PRHS SD Bus interface This allows any device/component/system currently in-
stantiated in the reconfigurable module to access the system main memory.

Interrupt line This allows any device/component/system, instantiated at runtime
in the reconfigurable area, to signal an interrupt to the static system. Interpre-
tation of this interrupt is specific to the device/component/system currently
instantiated in the reconfigurable module.

RS232 Tx/Rx lines This enables a RS232 based direct data exchange/user inter-
action with the device/component/system currently instantiated in the recon-
figurable module, if necessary.

5.7.2. reconfIF4prhs - Reconfigurable Module Control Interface

The reconfIF4prhs provides a register state machine interface to the static system
part to control the device/component/system currently instantiated in the reconfig-
urable module and the reconfiguration guard of the PR extension.

Register Interpretation Each access to the reconfIF4prhs registers is interpreted
as word access. Therefore, icPRHSWidth is ignored by the device.

control register (GEN_BaseAddress)
bit R/W description

[31: 1] R/W ignored/unused
[0] R/W run reconfigurable module bit: This bit presents the in-

verted reset signal of the reconfigurable module. It also
controls the reconfiguration guard.

module ID register (GEN_BaseAddress + 0x4)
bit R/W description

[31: 0] R Identifier of the device/component/system currently in-
stantiated in the reconfigurable module.

guest memory base register (GEN_BaseAddress + 0x8)
bit R/W description

[31: 0] R/W Base register for main memory address space separation.
See section 4.2.2 for details on address space separation.
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guest memory limit register (GEN_BaseAddress + 0xc)
bit R/W description

[31: 0] R/W Limit register for main memory address space separation.
See section 4.2.2 for details on address space separation.

Access to any other register address than the above given, results in an unpredictable
answer of the device.

This register state machine doesn’t generate interrupts.

Usage of reconfIF4prhs by L4PRHS is given on page 116.

5.7.3. Reconfiguration Guard - Address Space Separation and
Sensitive Signals Gating

The Reconfiguration Guard (reconfGuard) has two tasks:

1. Gate sensitive signals: During an ongoing reconfiguration, performed via
icap4prhs, the outgoing signals of the reconfigurable module might dangle. (See
Xilinx PR user guide [Xil10b] for details.) To avoid, that those dangling sig-
nals affect other parts of the system, enable signals, the interrupt line and the
RS232 transmit line of the reconfigurable module are gated with respect to the
run reconfigurable module bit (see reconfIF4prhs above).

2. Implement address space separation between the static system part and the
device/component/system currently instantiated in the reconfigurable module
accessing main memory using PRHS SD Bus. This separation is done by using
the guest memory base (GMBR) and guest memory limit register (GMLR),
provided by reconfIF4prhs, as theoretically presented in section 4.2.2.

5.7.4. icap4prhs - internal configuration access port

The icap4prhs provides the ability to perform partial and dynamic configuration of
parts of a FPGA by the FPGA itself. Therefore, a dedicated ICAP device provided
by the FPGA is instantiated and connects to the PRHS Bus of the system. The
Internal Configuration Access Port (ICAP) is essentially an internal version of the
SelectMAP interface. For more information, see the (Xilinx) family-specific Con-
figuration User Guides.[Xil10b]. The icap4prhs device only supports writing (for
active reconfiguration) in 32 Bit mode. It doesn’t provide any kind of read-back
functionality to the PRHS framework (yet).
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register interpretation

Each access to the icap4prhs registers is interpreted as word access. Therefore,
icPRHSWidth is ignored by the device.

write to icap register (GEN_BaseAddress)
bit R/W description

[31: 0] W Data to write to ICAP. As PRHS implements little endian
data ordering and ICAP needs big-endian, the bytes of the
write-data are reordered. In addition, ICAP expects least
significant bit of a byte on the left most position. Hence,
the bytes also have to be mirrored bitwise

Access to any other register address than the above given, results in an unpredictable
answer of the device.

Device doesn’t generate interrupts.

Usage of this device by L4PRHS will be given on page 115.

5.8. Composed Hardware Modules

This section gives a brief overview of composed modules. Those modules purpose is
to summarize functional blocks for easy reuse and adaptation.

5.8.1. base - Basic System

The base module composes all FPGA and platform independent devices, which are
required to execute a full fledged operating system into a reusable module. It’s
general structure is given in Figure 5.33.
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Figure 5.33.: Overview on composed module base.
For each device, the instance name is given (see source code). The module type is
given in brackets.

It consists of:

• one processor and attached BusCtrl devices. One for the data bus and one for
the instruction bus.

• an instruction and a data cache, attachable to the PRHS SD Bus interconnec-
tion system using a prhsSDbusArbiter.

• a bram4prhs which contains the first stage bootloader.

• an intChip4prhs for interrupt management.

• two timers, one for timer event generation (based on interrupts) and one for
implementing continuous time measurement (clock source).

• a BusComponentStatus device to enable software to probe for devices attached
to the secondary data bus.

• an UART for basic user interaction over a serial line.

It provides the possibility to add additional devices to the secondary data bus.
This also includes the possibility to signal the presence of dedicated devices to the
BusComponentStatus device and provide interrupts to the intChip4prhs device.
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5.8.2. baseReconf - Extend Basic System with a PR extension
Module

The baseReconf module combines a base module with an PR extension module to
add partial reconfiguration capabilities (called ”option reconf”). If a system is not
build as a reconfigurable system, but as base system, the PR extension is replaced
by a uart4prhs module (called ”option base”).

Figure 5.34 gives a schematic overview for baseReconf including both options.

5.8.3. baseReconfTop modules - Board Specific Top Modules

The baseReconfTop modules are the top level modules for the specific boards. In
their simplest form, they only combine the baseReconf module with the appropriate
board specific PRHS SD Bus Bridge and clock management devices.

Optionally, board specific devices can be added to the secondary data bus (PRHS
Bus). Interrupt lines and BusComponentStatus lines for device probing are provided
for these board specific devices.

As the structure of each baseReconfTop is platform specific, no figure is given here.
See Appendix B for an overview on which devices are used on which platform.
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Figure 5.34.: Overview on composed module basereconf
For each device, the instance name is given (see source code). The module type is
given in brackets.



6. PRHS Framework - Linux Kernel
for PRHS - L4PRHS

As discussed in chapter 2, talking about (system) virtual machines includes talking
about operating systems. In the previous chapter, the PPRHS framework hardware
components have been presented. In this chapter, L4PRHS the operating system
running on this hardware will be presented.

L4PRHS is based on Linux, as this is an operating system that is continuously
developed further. It’s main advantage is the availability of it’s source code and
therefore the possibility to adapt it for own needs, as done with L4PRHS.

Section 6.1 systematizes the different aspects of the adaption of Linux and where
to find them in the sources. Section 6.2 presents processor specific adaptations
of Linux kernel, 6.3 presents machine specific adaptations and 6.4 presents PRHS
related device drivers in more detailed.

Version 3.8 of Linux has been used as starting point for adaptations, described in
the following sections.

6.1. General Overview on L4PRHS

Figure 6.1 gives an simplified overview on a computer system running Linux as
operating system. Operating system internals are shown more detailed than other
components.

Main purpose of the kernel of an operating system is to turn ugly hardware interfaces
into beautiful abstractions [Tan07], where beautiful abstractions is used as synonym
for System Call Interface.

To achieve this, the kernel includes the device drivers layer, that maps interfaces
of the kernel internal subsystems into appropriate device commands. For ”conven-
tional” devices, that fit into the categories network, character or block device, those
device drivers are written in the high level language C. The corresponding device
for the memory management and process management subsystem is the processor
and/or memory management unit. Those ”device drivers” are written in assembler,

99
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Figure 6.1.: Computer system running Linux.

as they have to be efficient for performance reasons. Additionally, some features
are not expressible in a high level language (an atomic swap operation or a con-
text switch are examples). Additionally, machine specific adaptations exist. They
are based on ”usual” devices, but are of fundamental importance for the overall
functionality of a system. On the one hand this is the hardware based interrupt
management. On the other hand, timers also fit into this category, as those are
required to enforce preemptive scheduling.

Taking this differentiation as starting point, this chapter provides adaption details
for ”usual” devices in a separate chapter compared with the processor specific and
machine specific adaptations.

6.2. Processor Specific Adaptations

As PRHSp-A is an ARM-ISA based processor, all kernel adaptations related to
PRHSp-A are located in the arch/arm subdirectory of the Linux sources.

The ARM ISA is subject to an ongoing development. Therefore, the Linux kernel has
to be adapted to the different ARM families and architecture versions. Those adap-
tations mainly focus on memory management, as there are processors without any
memory management functionality, only a limited memory protection management
(no virtual address space), or a full fledged memory management. Additionally, the
on processor cache management is also subject of different implementations among
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the different ARM families and architecture versions and therefore also subject to
Linux adaptations. It’s recommended to investigate some ARM processor manuals
to find the differences in detail.

Processor specific adaptations are rarely document, neither in the kernel documen-
tation nor in literature. Therefore, these adaptations are presented very detailed.

Defining PRHSpA as a New Processor

PRHSp-A is instruction set compatible with the arm8 ISA [Adv96] and therefore
supports ARM architecture version 4 (ARMv4) . PRHSp-A implements no processor
local cache, also managed by the memory management unit.

As this feature combination is not supported by any of the arm processors currently
supported by Linux, PRHSp-A has to be added as a new processor in mm/Kconfig :

config CPU_PRHSPA
bool "Support PRHSPA (ARM8) processor"

3 select CPU_32v4
select CPU_ABRT_NOMMU if !MMU
select CPU_ABRT_EV4

6 select CPU_PABRT_LEGACY
select CPU_CACHE_V4
select CPU_CP15

9 select CPU_CP15_MMU if MMU
select CPU_COPY_V4WT if MMU
select CPU_TLB_V4WT if MMU

12 help
A 32-bit RISC microprocessor based on the ARM8 Instruction set.
It has an onboard memory control unit but no onprocessor cache.

15

Say Y if you want support for the PRHSpA processor.
Otherwise, say N.

Listing 6.1: Adding PRHSpA as selectable option into Linux kernel.

MMU Usage Linux Kernel provides an option to configure kernel build for MMU-
less systems. This is a fundamental decision when building a new kernel, because
the decision MMU-less or not is a decision about whether taking advantage of/im-
plementing a separate address space for each process (virtual memory) or not. For
PRHS framework system, adapted Linux kernel provides both possibilities.

Developing new devices usually starts on the hardware side. MMU-less L4PRHS
provides a fast and straightforward way to debug those new devices without the need
to implement a basic device driver. This would be necessary on a MMU system to
include the memory mapped I/O registers of the new device to be handled correctly
by the MMU.
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On Processor Cache The ARM subtree of Linux kernel expects each processor to
have an on processor cache. As PRHSp-A doesn’t implement on processor cache,
two possibilities arise:

• Adapt the ARM subtree of Linux kernel to include processors with no on
processor cache.

• Use an on processor caching mechanism supported by Linux Kernel, who’s
commands are accepted by PRHSp-A but don’t execute them.

The second solution has been selected for L4PRHS, because this minimizes the need
of Linux adaption.

Abort Handling Register indirect addressing instructions can produce MMU TLB
misses resulting in an abort (a special type of interrupt). The different ARM families
and architectures implement different strategies, whether or not and how the base
register is modified in such a case. The right handling routines have to be selected
for PRHSp-A, which keeps the base register unchanged in any case.

Instruction Set Architecture Allocation

To instruct the kernel build system to use the arm8 ISA for PRHSp-A based systems,
it is necessary to add the appropriate information to Makefile:

tune-$(CONFIG_CPU_PRHSPA) :=-mtune=arm8

MMU Handling for PRHSpA

Almost every ARM families and architectures introduced a new register interpreta-
tion for the system co-processor (co-processor number 15), which is responsible for
holding the processor identifier, on processor cache management and MMU man-
agement. This requires a set of functions to be defined on a per processor bases in
the ARM subtree of Linux.

The naming convention for those functions requires to add a new entry in
include/asm/glue-proc.h to define a preamble on a per processor base:

#ifdef CONFIG_CPU_PRHSPA
2 # ifdef CPU_NAME

# undef MULTI_CPU
# define MULTI_CPU

5 # else
# define CPU_NAME cpu_prhspa
# endif
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8 #endif

Listing 6.2: Adding PRHSpA prefix definition into Linux kernel.

Finally the system co-processor specific functions have to be implemented in assem-
bler in mm/proc-prhspa.S. This file also includes the summarizing structure for all
PRHSp-A specific function to be handed over to the kernel.

The following list gives a brief overview on the purpose of the processor specific
co-processor functions (see mm/proc-prhspa.S for implementation details):

cpu prhspa proc init called at boot time, when a processor is initialized, important
for multiprocessor systems, unused for PRHSpA

cpu prhspa proc fin called, whenever a processor is going to be shut down, impor-
tant for multiprocessor systems, unused for PRHSpA

cpu prhspa do idle called before a system is going to switch to idle loop (process
with ID 0); This allows to take advantage processor specific functionalities for
energy saving, e.g. reducing the processors clock rate. Unused for PRHSpA.

cpu prhspa dcache clean area called whenever kernel wants to clean areas of on
processor cache, unused for PRHSpA

cpu prhspa switch mm called, on every context switch to modify translation table
base registers of the MMU, for PRHSpA, the TLB is entirely flushed.

cpu prhspa set pte ext called whenever a page table entry is to be created, wraps
to a common function as PRHSpA implements a common page translation
mechanism (ARM architecture specific)

cpu prhspa reset called whenever system is going to be reseted, has to set processor
into a state, as if it had been physically reseted

Functions marked as unused need to be implemented, but return to caller immedi-
ately.

Finally the Linux build system has to be instructed to compile mm/proc-prhspa.S
whenever PRHSp-A is used by modifying mm/Makefile:

obj-$(CONFIG_CPU_PRHSPA) += proc-prhspa.o

6.3. Machine Specific Adaptations

After adding all required functionality to support PRHSp-A to the Linux kernel as
presented in the previous section, it is now possible to add all information necessary
to support a PRHS based system to Linux.
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Adding a New Machine as Option to Kernel Build System

Firstly, a new machine has to be added to Linux kernel. As it utilizes PRHSp-A as
processor, which is ARM ISA based, this takes place in the arch/arm subdirectory
of the Linux sources.

A new sub-folder, named proc-prhs is added into arch/arm subdirectory. PRHS
based systems are made available as option for the kernel by adding the following
to Kconfig :

config ARCH_PRHS
2 bool "PRHS based SoC"

select CPU_PRHSPA
select GENERIC_CLOCKEVENTS

5 help
Support for PRHS framework systems

Listing 6.3: Adding PRHS as system option into Linux kernel.

and place the appropriate information into the kernel build system by including the
following in Makefile:

machine-$(CONFIG_ARCH_PRHS) += prhs

Additionally an entry in the machine types database tools/mach-types is required.
See this file for details.

Overview on Machine Specific Adaptations

To understand the functions to be provided by machine specific adaptions, the kernel
booting sequence (for ARM based systems) is given in Figure 6.2.

The boot-loaders task is to load the kernel image to main memory and start exe-
cuting it by setting the program counter to the start address of stext(), which is
found at the start of the kernel image. The boot-loader is not part of the kernel
boot sequence itself. Nevertheless, it has to provide information to the kernel. See
chapter 7.2 for further details on PRHS boot-loader.

Kernel boot sequence starts with some ARM specific functions. The first one is to
check if the used kernel is compatible with the used processor. The second function
is only used by kernels using MMU functionality: Linux for ARM systems expect
the kernel to reside on the upper part of the virtual address space. Main memory
usually starts at real address 0. Before starting the kernel booting sequence itself,
the MMU has to be set up by creating the appropriate page tables to map the kernel
into the virtual address space it expects. Afterwards, the kernel booting sequence
itself is started by calling the ISA independent kernel function start_kernel. The
bootstrapping of essential operating system subsystems, with main effort on the
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Figure 6.2.: Linux kernel boot sequence.

functions to be provided by machine specific adaptations are also given in Figure
6.2. Details are given in the following subsections.

At the end of start_kernel, a second process is created, the init process (Process
ID 1). The start_kernel finally becomes the idle loop. The idle loop (PID 0,
usually not seen on Linux system) is only executed, if no other process is ready to
be scheduled. The init process (PID 1) is the first non-kernel functionality to be
executed. At this point it is up to the program executed as init process to further
boot the system. The current L4PRHS implementation for the init based boot is
further explained in chapter 7.3.

The machine specific adaptations for PRHS based systems are summarized in the
mach-prhs folder of the arch/arm subtree of the Linux sources as given in the
following figure.

Interrupt Management

Interrupt management for PRHS systems is based on the intChip4prhs device pre-
sented at page 68.

Current PRHS hardware implementation supports up to 32 interrupt lines managed
by one intChip4prhs device. This information has to be provided to the kernel by
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mach-prhs...................................................machine folder
Kconfig............................machine specific configuration options
Makefile.......................................machine specific makefile
Makefile.boot......machine specific makefile for linking of kernel image
include

mach
debug-macro.S.....assembler macros required by early_printk()

entry-macro.S...........assembler macros for interrupt handling
irqs.h............................header file for interrupt handling
hardware.h............header file for IO base address management
timex.h....................header file containing clock information

init.c.............source file to summarize all machine specifc adaptions
irq.c....................................source file for interrupt handling
timer.c.................................source file for timer management
timer.h................................header file for timer management

Figure 6.3.: Folder structure for machine specific adaptations.

defining in include/mach/irqs.h:

#define NR_IRQS 32

Changing this macro results in the necessity to rebuild the entire kernel, as this
macro is of fundamental importance. Additionally the file include/mach/irqs.h con-
tains macro definitions for naming dedicated interrupt line numbers.

At next, the kernel needs a mechanism to identify which device caused an interrupt,
to hand the interrupt over to the responsible interrupt handler. This might in-
clude an prioritization mechanism. Machine specific kernel adaptations have to pro-
vide this mechanism by implementing an assembler macro in include/mach/entry-
macro.S of the machine folder. On PRHS hardware this macro reads the interrupt
status register of the intChip4prhs device. This register contains information about
all pending (enabled) interrupts. Prioritization is implemented by choosing the ”left
most” pending interrupt to be handled.

Linux kernel provides a generic subsystem for IRQ handling. See Documentation/-
DocBook/genericirq of the kernel sources for more details. For PRHS based systems,
all 32 interrupt lines are handled using the handle level irq irq-flow method, because
this fits the interrupt management philosophy of PRHS system (as described above)
best. The IRQ subsystem expects to get a struct irq_chip filled with appropriate
function callbacks as given in the following listing (for L4PRHS) for each interrupt
line:

static struct irq_chip PRHSSoC_irq_chip = {
.irq_mask = PRHSSoC_int_mask,

3 .irq_unmask = PRHSSoC_int_unmask,
};
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For L4PRHS all 32 interrupts use the same (above given) struct irq_chip. When-
ever an interrupt occurs at a specific interrupt line the sequence given in Figure 6.4
is executed.

PRHSSoC_int_mask() call to interrupt handler,
 registered for the associated device

PRHSSoC_int_unmask()

Figure 6.4.: Interrupt flow sequence.

The function PRHSSoC_int_mask(x) disables the signaling of an interrupt x by set-
ting the appropriate bit of the interrupt enable register of the intChip4prhs device
to ’0’. This doesn’t effect the interrupt enable/disable bit of the corresponding
I/O-device.

Kernel is now able to enable interrupt signaling at all, so higher prioritized interrupts
can be ”seen”. Afterwards it calls the interrupt specific handler of the device driver
of the device associated with interrupt x.

Finally, kernel (re)enables the signaling of an interrupt by setting the appropri-
ate bit of the interrupt enable register of the intChip4prhs device to ’1’ by calling
PRHSSoC_int_unmask(). This doesn’t effect the interrupt enable/disable bit of the
corresponding I/O-device.

The last function implemented in mach-prhs/irq.c is PRHSSoC_init_irq(). Task of
this function is to register PRHSSoC_irq_chip to all 32 interrupt lines. It is called,
when kernel boot sequence initializes the interrupt subsystem (refer to Figure 6.2).

Timer Management

For a detailed discussion about the importance of timers for operating systems,
see [Tan07] chapter 5.5 (page 386 et seq.). To enforce preemptive scheduling in
an operating system, a mechanism to interrupt a user process after a given time
is necessary. This is implemented using programmable timers. In Linux these are
called clock event devices.

Programmable timers lack one problem: They are programmed to set an inter-
rupt signal after a given time (in terms of timer clock ticks). If the interrupt oc-
curs, the timer doesn’t necessarily progress in counting timer ticks until it is repro-
grammed/restarted. When only event timers are used for timing measurement, a
system will ”loose” time.

To avoid this time loss, Linux kernel also offers the possibility to use clock source
devices. Those timers are started once, and count forward in time without inter-
rupting. If kernel wants to know how much time has been elapsed since the start of



108 CHAPTER 6. PRHS FRAMEWORK - L4PRHS

this source timer, it simply has to get the current counter value of the timer.

For this reason PRHS hardware implements two instance of the timer4prhs device
(refer to page 70). One for usage as event timer, the other one as source timer. Both
are implemented in mach-prhs/timer.c and mach-prhs/timer.h.

Event Timer PRHS event timer is instantiated by filling:

struct clock_event_device prhs_clock_event

with the appropriate data and callback functions. The callback func-
tion are prhsTimer_set_mode() and prhsTimer_set_next_event().
prhsTimer_set_mode() is called every time, when the kernel wants to change
the mode of the event timer. prhsTimer_set_next_event() is called every time,
when the kernel sets the event timer for the next event, it shall signal an interrupt.
By implementing both functions, it is possible to select the tickless system1 option
for L4PRHS.

Additionally an interrupt handler for the event timer has to be instantiated:

struct irqaction PRHSSoC_timer_irq

that is required to register the interrupt handler function
PRHSSoC_timer_interrupt() to the kernel. This interrupt handler function
has to inform the timer subsystem about the occurrence of the event timer
interrupt and acknowledge the interrupt to hardware.

Source Timer PRHS source timer is instantiated by filling:

struct clocksource prhs_clocksource

with the appropriate data and callback function. The callback function is
prhs_read_cycles(). It is called by kernel, whenever it needs the current value
of the source timer counter to calculate the elapsed time precisely. Implementing a
source timer allows to select the High resolution timer support option for L4PRHS.
High resolution timer support is required, when the tick based time resolution (10ms
or 1ms, depending on the HZ constant) is not sufficient.

Timer Initialization During kernel boot, also the timer subsystem is initialized
(refer to Figure 6.2 on page 105). This includes calling the PRHSSoC_timer_init()

function. Their task is to initialize the hardware timers and register the above
presented timer structures to the kernel.

1On a tickless system, the timer doesn’t interrupt periodically (Usually, Linux interrupts every
10ms or 1ms, depending on the HZ constant.). Instead, it is programmed to interrupt only
when there will be something to do for the kernel (or more precisely the scheduler).
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Machine Instantiation

Figure 6.2 on page 105 shows machine specific functions called during kernel boot
sequence. All those function are bundled into a struct machine_desc (found in
arch/arm/include/am/mach/arch.h) to be registered with Linux kernel for usage at
kernel boot time.

The definition of the machine descriptor is done in mach-prhs/init.c. All functions of
Figure 6.2 not presented in the previous sections, are defined there as well. Machine
descriptor instantiation is implemented as:

MACHINE_START(PRHS_SOC, "PRHS SoC")
.timer = &PRHSSoC_timer,

3 .map_io = PRHSSoC_map_io,
.init_irq = PRHSSoC_init_irq,
.init_early = PRHSSoC_early_init,

6 .init_machine = PRHSSoC_board_init,
.restart = PRHSSoC_reset,

MACHINE_END

MACHINE_START and MACHINE_END are macros to include machine name resolution
(’’PRHS SoC’’) and associated machine identifier (see tools/machtypes in arch/arch
subsystem of kernel for details on machine names and identifiers).

PRHSSoC_timer_init is a function pointer to PRHSSoC_timer_init. This timer ini-
tialization function is described in the previous section.

PRHSSoC_init_irq is the interrupt subsystem initialization function as described
above.

PRHSSoC_map_io is only used, when the memory management unit (virtual ad-
dresses) is utilized by L4PRHS. It registers the I/O device mappings to the memory
management subsystem of the kernel for all system devices, not using a device
driver. These system devices are both timer4prhs devices, intChip4prhs and Bus-
ComponentStatus device.

PRHSSoC_early_init checks for the used platform (FPGA and board) L4PRHS is
currently running on and printks it at kernel boot.

PRHSSoC_board_init checks BusComponentStatus device for platform type and at-
tached devices, to register the appropriate struct platform_device instances to
the platform bus subsystem. (See next section for details regarding platform bus
subsystem.)

PRHSSoC_reset is called every time, a soft reset is initiatied by L4PRHS. As there
is no special behavior at shut down for PRHS systems, this function calls the com-
mon architecture function soft_restart(RESTART_ADDRESS);. RESTART_ADDRESS is
a macro defining the start address of stage 1 boot-loader in bram4prhs device.
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6.4. PRHS Specific Device Drivers

For common I/O devices, Linux expects to handle them using a device driver. This
allows Linux to present an abstract representation of hardware to applications. The
device driver maps this abstract model to the needed command sequences of a
dedicated device.

As this work wouldn’t introduce device driver programming at all, only a brief
overview for the device drivers implemented for PRHS systems is given. For a
detailed introduction in Linux device driver programming see [CRKH05].

In subsection 6.4.1 a brief overview for understanding the principles of Linux device
model is given. Afterwards the PRHS specific device drivers are given, differentiated
as character, block and network drivers.

6.4.1. Overview on Linux Device Model

This section depends and uses information given in Documentation/driver-model file
of the kernel sources and [CRKH05](chapter 14).

Devices, Drivers and Buses

The Linux Device Modell knows three primary elements:

Devices In Linux, each device is presented by a struct device. This struct hold
all the necessary information to enable the kernel to interact with or to handle
the device.

Drivers Device Drivers can export information and configuration variables, that
are independent of any specific device. It’s primary task is to handle multiple
device instances and implement all the functions, that allow the kernel to
interact with the devices.

Buses For Linux, a bus is a channel between the processor and one or more devices.
For the purposes of the device model, all devices are connected via a bus,
even it is only ”virtual”. A Bus is the connecting element between drivers and
devices. Both register themselves to a bus but it’s the task of the bus to inform
the Driver about the change of a device (device is connected, or disconnected).

The general assumption of Linux is, that a bus is hot-pluggable and devices may be
connected to or disconnected from the system at any time. This is the case for most
of the common buses like PCI or USB today. Additionally, buses can be plugged
into each other, like USB that is usually connected via PCI to the processor on x86
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architectures.

Classes, Device Types and SysFS

Devices, Drivers and Buses can be used to model the physical (or a virtual) connec-
tion scheme for the devices present in a system. The class mechanism is a way to
organize the zoo of devices by functionality.

User-space of Linux traditionally knows three different types of devices:

Character devices can be accessed as a stream of bytes like a conventional files.

Block devices can host a file-system. The underlying devices (e.g. disks) can only
transfer entire blocks (usually 512 blocks of data today). Kernel provides
an abstraction mechanism, that those devices can be handled like character
devices from user-space, despite they have to be handled completely different
inside the kernel.

Network devices are used to interact and communicate with other hosts on the
basis of sending or receiving packets.

The SysFS (system filesystem) provides a way to get a filesystem view on the differ-
ent ordering mechanisms. It is used by programs like udev or mdev, that automati-
cally creates the file-system entries, associated with a device in the /dev/ directory
of a Linux file-system (only block and character devices).

Platform Bus

For all devices not residing on a physically existing bus as expected by the kernel, a
virtual bus exists: the platform bus. This bus is used by PRHS systems to get the
device and driver information into the kernel. The platform_device instantiation
and registration is done in the machine specific function PRHSSoC_board_init using
the BusComponentStatus device as presented in the previous section.

Therefore, each PRHS device driver module registers itself as a platform_driver to
the kernel, providing a probe callback function (called whenever a new device is reg-
istered). Selected devices also provide a remove callback function (called whenever
a device is unregistered).

6.4.2. Block Device Drivers

Block devices can be accessed in Linux in two different ways:
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raw by accessing the corresponding device file in /dev

mounted by accessing files of a file-system, residing on a block device

Block devices have to register themself to the block layer subsystem, which is re-
sponsible for block I/O scheduling. The block I/O scheduling re-orders, merges and
splits different requests to a block device for optimization reasons. The requests are
handed over to the block device using a block request queue (struct request_queue)
For a detailed overview on Linux block device drivers see [CRKH05] (chapter 16).

prhsace - Block Device Driver for sysace4prhs Device

This device driver was originally developed in [Kab12] and is located in driver-
s/block/prhsace.c of the kernel sources.

Device initialization is done with calling the PRHSace_assign function on a plat-
form driver probe. This function implements I/O address remapping (MMU re-
lated), allocates a struct gendisk, assigns major and minor number (241,0), sets
the capacity and name (PRHSaceCF, used for naming under /dev) to it and initializes
the device specific block request queue. This includes registering the device driver
specific request handling function(reqfn()). Reqfn() is invoked by Linux kernel
every time a block has to be read or written. Finally, the disk representation is
created with a call to add_disk.

Most work within prhsace driver is done in the reqfn() function. This function is
called by the kernel, every time it wants the associated sysace4prhs device (see page
90) to perform read or write accesses to the inserted Compact Flash Card.

As the used Compact Flash Card contains the root file system, prhsace driver doesn’t
implement any kind of media exchange.

The current version of prhsace driver enhances the original version given in [Kab12]
by adding the ability to retrieve the capacity of the inserted Compact Flash card and
set the appropriate value in the device driver. In the original version prhsace driver
assumed the CF Card to have a capacity of exactly 1GB resulting in occasional
system crashes, when the inserted CF-Card had a smaller capacity and kernel tried
to access a non-existing block.

6.4.3. Character Device Drivers

Character devices can be accessed as a stream of bytes like conventional files. For
this purpose they are presented as character device file in /dev in a Linux root file
system. As devices of different vendors often have the same purpose, but differ in
hardware details they can be summarized for abstraction purposes in subsystems
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(also known as frameworks). The device drivers can take advantage of the common
functionality of those subsystems and usually only have to implement the direct
hardware access (read and write a byte, device configuration). Therefore, they are
called Low-Level driver, whereas the framework that offer an abstract view to user
space are often called high-level driver. Examples can be found in the PRHS related
character device drivers given in this section.

prhs uart Driver

The prhs uart driver implements a low-level driver for the serial subsystem, which
itself is part of the tty core subsystem. Additionally it implements the necessary
functions for usage within the console subsystem of tty core. The driver is located
in drivers/tty/serial/prhs uart.c of the kernel sources.

The prhs uart driver is designed to support multiple instances of the uart4prhs
device (see page 71) as serial input and output interface. The first uart4prhs device
is used also used as console device to see each kernel message printed using the
printk() function.

prhs ps2 Driver

The prhs ps2 driver implements a low-level driver for the serio subsystem, which
itself is part of the input subsystem. The driver is located in drivers/input/seri-
o/prhs ps2.c of the kernel sources.

It was developed in [Las13] and [Loo13] to support multiple instances of pstwo4prhs
device (see page 88). The pstwo4prhs devices are used to connect a keyboard and a
mouse to the platforms were PS2 connectors are included and PRHS is running on.
The differentiation between keyboard and mouse is done in the serio subsystem as
the prhs ps2 driver is a low-level driver. Hence, the primary function of the driver
is to implement the ps2_write and ps2_rxint functions.

Ps2_write is called by the serio subsystem, whenever it wants to send a byte to
the attached PS2 device. Ps2_rxint is the interrupt handler, responsible for the
attached PS2 device, to hand over a received byte to the serio subsystem.

Additionally a ps2_close and ps2_open function are implemented, to disable inter-
rupt generation, if kernel isn’t using the attached PS2 device and enable interrupt
generation if it is used again.



114 CHAPTER 6. PRHS FRAMEWORK - L4PRHS

6.4.4. Network Device Drivers

The role of a network interface within the system is similar to that of a mounted
block device. A block device registers its disks and methods with the kernel, and
then ”transmits” and ”receives” blocks on request, by means of its request function.
Similarly a network interface must register itself within specific kernel data structures
in order to be invoked, when packets are exchanged with the outside world [CRKH05].

There are differences between block and network devices. The first one is, for a block
device, all communication is initiated by the kernel. (For this reason, the prhsace
driver doesn’t need an interrupt handler). In opposite, network communication
usually can also be initiated by other hosts residing on a communication channel.

Additionally, network devices are not represented as a file in /dev of the root file
system like cahracter or block device. Network devices can only be found in /sys/-
class/net if sysfs is mounted on a system.

prhsEnet Driver

The prhsEnet Driver implements an Ethernet based low-level network driver. The
driver is located in drivers/net/ethernet/prhs/prhsenet.c of the kernel sources. It
handles the v5emac4prhs device (see page 91) described in [Gr13] (the prhsEnet
driver is not part of [Gr13]).

At device probe time (call to platform bus probe function PRHSenet_probe) a new
Ethernet network device is registered to the network subsystem. This includes the
low-level driver callback functions as summarized in the following listing:

static struct net_device_ops prhs_netdev_ops = {
.ndo_open = prhsenet_open,

3 .ndo_stop = prhsenet_close,
.ndo_start_xmit = prhsenet_send,
.ndo_set_mac_address = prhsenet_set_mac_address,

6 .ndo_tx_timeout = prhsenet_tx_timeout,
};

Prhsenet_open is called, whenever the corresponding network device is upped. This
includes enabling interrupt generation and registering the interrupt handling routine
prhsenet_interrupt() with the interrupt line of the associated v5emac4prhs device.

Prhsenet_close is called, whenever the corresponding network device is downed.
This includes disabling interrupt generation and unregistering the interrupt han-
dling routine prhsenet_interrupt() with the interrupt line of the associated
v5emac4prhs device.

Prhsenet_set_mac_address is called, when the kernel wants to change the MAC-
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address of the network device.

Prhsenet_send and prhsenet_tx_timeout have to be regarded as a pair.
Prhsenet_send is called, whenever the network interface shall send a packet. The
network subsystem expects a device to signal success of transmission to the kernel.
For v5emac4prhs device this is done by setting an interrupt. If the deivce isn’t sig-
naling the transmission done interrupt in a given time (defined at device probe time),
a software timeout is generated, which results in calling prhsenet_tx_timeout.

prhsenet_interrupt(), registered during a call to prhsenet_open, is the inter-
rupt handler for managing packet reception and transmission done signaling (see
prhsenet_tx_timeout).

6.4.5. Partial Reconfiguration Extension related Device Drivers

The existence of a partial reconfiguration extension, implies the existence of two
things: an icap4prhs device to perform in-system reconfiguration and a reconfig-
urable module with the appropriate interfaces for controlling the reconfigurable
module. (See Figure 5.32 on page 92)

prhsicap Driver

This driver controls the icap4prhs device (see section 5.7.4), if a partial reconfigu-
ration extension is available in the system. It is a straightforward character device
driver, that is not part of any kernel driver subsystem. It contains the following file
operations definition:

struct file_operations prhsicap_fops = {
.open = prhsicap_open,

3 .release = prhsicap_release,
.read = prhsicap_read,
.write = prhsicap_write,

6 .llseek = noop_llseek,
};

The functions prhsicap_open and prhsicap_release are called, whenever the de-
vice file /dev/prhsicap0 is opened or closed. They are implemented in a way, to
only allow exclusive access to the device, as writing different configuration streams
simultaneously could result in a system crash.

For the same reason, seeking the device file (or more precisely the configuration
stream) is prevented by binding the special noop_llseek function as seek callback
function.
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Prhsicap_write is implemented in a way, that allows to initiate an active reconfig-
uration by sending a reconfiguration stream (stored in the file xy.bin) to the ICAP
by issuing the command:

echo xy.bin > /dev/prhsicap0

Prhsicap_read is implemented for completeness. It just returns a how-to banner
whenever the icap device file is read, as reading from the underlying icap4prhs device
is not implemented.

Reconfigurable Module Drivers

For the reconfigurable module, several device files are necessary, to represent the
different available interfaces of the reconfigurable area: the control interface (/de-
v/rm0ctrl) and the SD-RAM interface including the real to physical mapping reg-
isters (/dev/rm0sdmem).

The control interface /dev/rm0ctrl can be used to control the reset line of the
reconfigurable area. For example, by issuing on the command line:

echo on > /dev/rm0ctrl echo off > /dev/rm0ctrl

the reset is switched on and off. Reading from the control interface returns a status
banner, containing the following information:

1. Current reset line status (on/off).

2. Identifier (32 bit) of the current configuration placed in the reconfigurable logic
area.

3. GMBR and GMLR (physical addresses) of the physically contiguous mem-
ory area allocated for usage by the reconfigurable area. See address space
separation related section 4.2.2 on page 30 for details.

The memory area defined by the GMBR and GMLR is accessible through the SD-
RAM interface (/dev/rm0sdmem). This main memory area is shared between the
host system and the system configured in the reconfigurable logic area. By issuing:

dd if=datafile of=/dev/rm0sdmem bs=4k seek=4

the data of the file datafile is written to main memory, accessible by the reconfig-
urable area starting at (real) address 16384 (= 4k∗4 = 4096∗4) of the reconfigurable
logic area. For the host system, the corresponding real (and physical) address is
GMBR + 16384. The shared memory area is allocated as contiguous DMA area.
Therefore, it is part of the main memory, managed by L4PRHS. The size of the
contiguous memory is configurable at driver module compile time.
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It’s configurable at kernel compile time, to implement /dev/rm0sdmem either as
block or as character device. Own experience shows, that the character device
implementation allows faster access times, because block devices require more com-
putational overhead in kernel. In opposite the block device implementation also has
benefits. It allows to format a mountable file-system onto the underlying memory.





7. PRHS Framework - Software

7.1. C Compiler Toolchain

Software development and operating system compilation for a given system requires
a compiler toolchain. The C compiler toolchain used in PRHS framework is based on
gcc [FSF]. This section provides information, necessary to understand the difficulties
of generating a system specific compiler toolchain and can serve as starting point
for generating a new one. The information given in this section is based on [Bro]
and [FSF].

A minimal C compiler toolchain has to provide the following components:

Compiler: The compiler translates source code into executable code for the targeted
processor architecture.

Assembler: As essential parts of an operating system might be written in assembly
language (for linux and L4PRHS this is the case), an assembler is required to
convert it to processor specific bytecode.

Linker: The task of the linker is to combine one or several object-files into an ex-
ecutable program. The executable format depends on the targeted operating
system.

Standard C library: Core C functionalities (like a simple printf ) are provided by
a standard library. This library (or to be more precise: libraries) provide
object files to the compiler toolchain, which have to be compiled at toolchain
generation time. They strongly depend on the targeted processor (used ISA)
and operating system (system call interface, ABI version).

Assembler, linker and several other programs for manipulating binary executable
files are summarized as binary utilities (binutils).

For Linux, operating system specific informations, required for the toolchain gener-
ation, are given in form of Linux header files which may differ slightly among Linux
versions.

PRHS framework includes the PRHSp-A, which is based solely on the arm8 ISA.
A lot of prebuild toolchains targeting Linux as operating system are available for
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ARM processors. Choosing one of those prebuild toolchains is not possible for PRHS
framework for the following reasons:

1. The toolchains don’t support the most actual Linux version, as they are gen-
erated by using header files of older Linux versions. This may lead to strange
errors, as the system call interfaces may differ slightly between different Linux
versions.

2. The toolchains are targeting the most modern arm processors, which are not
necessarily limited to the arm8 ISA. Newer ARM ISA version introduced new
instructions and new arm processors also support additional ISAs like Thumb
or Jazelle1. This is not a problem for compiling the Linux kernel, as gcc offers
to change the targeted processor ISA at compile time. A problem occurs, when
standard libraries are used within programs. The standard libraries are com-
piled at toolchain generation time and therefore might contain instructions,
not implemented in PRHSp-A.

When generating a compiler toolchain, three different terms have to be taken care
of:

Build This specifies the system, the compiler toolchain is build/generated on.

Host This specifies the system, the compiler toolchain shall be used on.

Target This specifies the system, the code, generated by the compiler toolchain
shall be executed on.

As a consequence, many combinations are now possible:

1. Build=Host=Target: This is a native compiler, the common case for a com-
piler.

2. (Build=Host) 6=Target: This is a cross-compiler. Executables for the target
system are compiled on a development system. PRHS framework comes with
a cross compiler toolchain.

3. Build 6=(Host=Target): This is a cross-native compiler. The compiler toolchain
is generated on a development system. The toolchain itself works on the same
system it compiles executables for.

4. Build 6=Host6=Target: This is called a Canadian Cross toolchain. It is the most
complex and sophisticated way to generate a compiler toolchain.

More combinations are possible, but uncommon.

1Thumb and Jazelle are special ARM ISAs for generating smaller code. They present a subset of
the classic ARM ISA and are translated/expanded in the decode stage of a processor.
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7.2. PRHS Bootstrapping

In chapter 5 the components, constituting a system that can execute the L4PRHS
operating system (see chapter 6) has been presented.

An interesting problem arises in how to mange the starting of executing L4PRHS,
residing on a hard-disk. The task of loading an operating system from a hard-drive
into the main memory and start executing it is called bootstrapping. The mixture
of hardware and software, performing this task is called boot loader.

In this chapter, the bootstrapping process of PRHS framework will be presented.
At first, the formatting of the hard disk, as expected by the PRHS boot loader is
presented. Afterwards the two stages of the L4PRHS boot loader itself are briefly
described.

7.2.1. Expected Hard Disk Structure

Nowadays two schemes for addressing data on disks is usual, CHS (cylinder-head-
sector) addressing and LBA (logical block addressing). A brief introduction on the
differences can be found in [Tan07](page 358 et seqq). This section uses LBA, where
a disk is simply recognized as an array of data blocks, where the first block is at
address 0. PRHS boot loader expects a block size of 512 bytes.

Figure 7.1 gives an overview on the disk layout, PRHS boot loader expects for the
first blocks of a disk to operate correctly.

MBR

block 0 block 1 - 64

start block of 
first partition

block xblock 65 - (x-1)

Figure 7.1.: Expected disk layout for boot loader.

For compatibility reasons (especially for L4PRHS ), PRHS boot loader doesn’t care
about the first block (address 0). This block is called Master Boot Record (MBR)
and usually holds the partition table and other information, which are important
for an operating system working with file systems on base of disks.

Blocks 1 to 64 (holding 32kByte of data) is the data/program loaded by the first
stage boot-loader into memory.

Blocks 65 to the first block of the first partition can contain data/programs used by
the second stage boot-loader.
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7.2.2. First Stage Boot Loader

The first stage boot-loader consecutively copies the data from blocks 1 to 64 of
the disk to main memory starting at address 0. Afterwards, it sets the instruction
pointer to memory address 0. This results in executing anything that was located
in the disks blocks 1 to 64.

Those disk blocks usually hold the second stage boot-loader. Nevertheless, each
program, smaller than 32 kbytes can be placed in those blocks and will be executed
by PRHS after the first stage boot loader finished his job.

The first stage boot loader code itself is located in a Block RAM component
(bram4prhs, see page 72) as initial content. Therefore, modification of the first
stage boot loader requires re-synthesizing the hardware part of PRHS framework.2

7.2.3. Second Stage Boot Loader

The task of the second stage boot loader is to load the L4PRHS kernel image to
memory and start executing it after setting the right register values as expected by
L4PRHS (excerpt of Documentation/arm/Booting file of Linux kernel sources):

• register 0 has to be set to zero

• register 1 has to be set to 15000 (0x3a98); this is the machine identifier for
PRHS based systems, can be found in arch/arm/tools/mach-types file of the
Linux kernel sources

• register 2 has to contain the physical address of a tagged list (ATAG) or a
device tree block (dtb). ATAG or dtb can be used by the boot loader to
provide the Linux kernel with information about attached devices. PRHS
boot loader sets register 2 to zero, because device discovering is managed by
the L4PRHS kernel itself (see PRHSSoC board init function in section 6.3 on
page 109).

The L4PRHS kernel image has to be placed consecutively on the disk, starting at
block 65. Hence, the starting block of the first partition mustn’t be placed on a low
block address.

2Post-synthesis modification of Block RAM contents, as described in [Xil11], is not included in
the PRHS framework design flow, yet.
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7.3. System Base Software

Besides the kernel (L4PRHS) and libraries, specific applications are needed to get a
fully usable operating system like Linux. These applications are summarized by the
term system base applications. There is no clear definition among different Linux
distributions, which applications belong into this category. For some essential tools
like a shell, ls, cd or file system manipulating tools, there is no question, that they
belong to the essential tools as they are usually summarized as core utilities. For
other tools it’s debatable, if they are of fundamental importance for running and
using an operating system or not.

For Linux, adapted for usage with a PRHS based system, busybox [Vla] has been
used to provide a fundamental set of system base applications.

Another straightforward possibility would be to compile the sources (self imple-
mented or open source project based) for the needed base utilities entirely on your
own. The most complex solution would be a L4PRHS specific application package
manger, either newly implemented or an adapted version of an existing one.





8. Proof of Concept

In this chapter the proof of concept demonstrator for the main idea of this thesis is
presented. Firstly, the necessary hardware components, developed for the proof of
concept demonstrator, are presented. As next step, the software part of the proof of
concept demonstrator, which represent the Virtual Machine Monitor is introduced.
Finally, the result of the developed proof of concept demonstrator are evaluated
with regard to the main idea.

8.1. Hardware

As overall hardware system, the top level hardware entity of the reconfiguration
system, as presented in chapter 5, is used. For the proof of concept of the main
idea of this thesis, the reconfigurable module, embedded in this reconfiguration
system has to be used for system/device instantiation. Four different partial modules
have been implemented for the proof of concept demonstrator as presented in the
next subsections.

RS232 Tx/Rx
lines (unused)

PRHS Bus
(unused) PRHS SD Bus

(unused)

reconfigurableModule

interrupt
line (out, unused)

reconfuart
(uart4prhs)

RS232 Tx/Rx
lines

PRHS Bus
PRHS SD Bus

(unused)

reconfigurableModule

interrupt
line (out)

Figure 8.1.: Overview on idle and uart configuration.

8.1.1. Idle Configuration

The idle configuration sets the reconfigurable area into an ”empty” state. All out-
going sensitive signals are tied to a value, that an activation of the reconfigurable
area doesn’t effect the static system part. This is the difference between the idle
configuration and the blank configuration also generated by Xilinx partial reconfig-
uration design flow. In this blank configuration, the value of the outgoing sensitive
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signals would be unpredictable. The activation of the blank reconfiguration could
therefore affect the static system part.

8.1.2. UART Configuration

The UART configuration extends the static system part by another UART com-
ponent. The UART component is connected to the static systems PRHS Bus, the
reconfigurable area interrupt line and the Tx and Rx line of the RS232 interface of
the reconfigurable area.

8.1.3. Core Configuration
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Figure 8.2.: Overview on core configuration.

This configuration is used to instantiate an additional machine, capable of executing
an operating system. It instantiates a base system and extends it with devices (com-
mIF and IntReqReg) to enable hardware supported emulation (see section 4.2.3).

The commIF is a bram4prhs instance. The dual port capability of bram4prhs allows
to easily connect it to both, the guest and the host system simultaneously. The
register interpretation is solely defined by the device drivers, as the device registers
are just the memory cells of the Block RAM. There is one important requirement:
The register interpretation of the guest system device driver and the host system
emulation driver have to match.

IntReqReg - Interrupt Request Register Device

The IntReqReg device provides the possibility to the guest system (host system) to
set an interrupt in the host system (guest system).
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register interpretation Each access to the IntReqReg register is interpreted as
word access. Therefore, icPRHSWidth is ignored by the device.

set interrupt register (GEN_BaseAddress)
bit R/W description

[31: 1] R all bits are set to ’0’
[0] R/W Set interrupt bit. ’1’ sets an interrupt.

8.2. Device Drivers

8.2.1. Idle Configuration

The idle configuration doesn’t need any further device drivers.

8.2.2. UART Configuration

The hardware instance of the uart4prhs device in the reconfigurable logic requires
a device driver in the host operating system to work properly.

As uart4prhs devices are already used within L4PRHS, no additional driver is
needed, but the additional uart4prhs instance has to be registered as additional
device to the host operating system.

8.2.3. Core Configuration

The core configuration contains a hardware supported emulation interface. Based
on this interface, hard disk functionality shall be provided to the guest machine.

This requires a block device driver included in the guest operating system and an
emulation driver in the host operating system. Both drivers rely on the communi-
cation interface and the interrupt request registers. Inspect the drivers to find the
interpretation of communication interface addresses in detail.

PRHShd - Guest System Block Device Driver

A block device driver for sysace4prhs device already included in L4PRHS is presented
on page 112.

Block device drivers that are not part of a block device subsystem differ primarily
in one central function. This is the reqfn() function. Reqfn() is invoked by Linux
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kernel every time a block has to be read from or written to a disk.

Reasoned by this, the PRHShd looks almost the same as the sysace4prhs device
driver. They differ in two points:

1. The capacity of the virtual hard disk is handed over from host to guest machine
by using a register of the commIF device.

2. A block request (initialized by L4PRHS kernel with a call to the reqfn()

function) is send from guest to host by also using the commIF device. This
includes the direction of a request (read or write) and the block address of the
block to be transfered. The transfer is initiated by the guest system by setting
the associated interrupt line of the host system. Block data is also exchanged
by using the commIF device. PRHShd driver uses polling to query for the end
of a transfer.

Host System Emulation Driver

The task of the host system emulation driver is to transform the block transfer re-
quest of the guest system, issued by using the commIF device as explained in the
previous section. The target of a block transfer is just a simple file on the host sys-
tems file system, holding the virtual disk information provided to the guest system.
The host system emulation driver is controllable by the device file /dev/rm0vghd on
the host system.

8.3. Software

Virtual machine management is done by using the driver interfaces of the reconfig-
urable module area, which is presented in section 6.4.5.

The first step for setting up a new VM is to load the appropriate partial configuration
stream by using the ICAP device (/dev/prhsicap0 ). Care has to be taken, that
the reconfigurable area is in an active reset state (by using the control interface
/dev/rm0ctrlif ). This is necessary to prevent the outgoing sensitive signals of the
reconfigurable area from dangling during the reconfiguration process. The next steps
for setting up the VM depend on the used configuration as explained in the following
subsections.
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8.3.1. Idle Configuration

As this configuration is not doing anything except setting the reconfigurable area
into an ”empty” state, the reconfigurable area can be switch on and off using the
control interface /dev/rm0ctrlif.

8.3.2. UART Configuration

To make the UART physically usable by the host system, the reconfiguration in-
terface has to be switched on. As next step, the (host) operating system kernel
has to be informed about the presence of this new device. As PRHS Bus doesn’t
support any auto-discover or hotplug functionality this has to be done in software.
The most straightforward way is to load a kernel module, that registers the UART
as new platform_device, as it is done for all static devices at kernel boot (see
PRHSSoC_board_init function on page 109).

L4PRHS then will create an appropriate entry in /dev to use the configured UART.

To tear down the UART, the first step is to unregister the platform_device, as-
sociated with the configured UART. This is done by unloading the kernel module
mentioned above. The final tear down step is to switch the reconfigurable area off,
to physically disable the configured UART.

8.3.3. Core Configuration

For FPGA based system virtual machine investigations, this is the most interest-
ing configuration. After the configurable area has been configured with the core
configuration stream, the guest hardware is instantiated. Now the guest operating
system has to be started. Therefore, the guest kernel image is placed at the required
position in main memory.

A Linux kernel expects several processor registers set to defined values. Usually, this
is done by the boot loader, before it starts executing the kernel boot image. For this
reason an additional program (boot emulator), which sets the processor registers to
an appropriate value, has to be loaded into main memory.

To provide the guest machine the illusion of accessing a hard disk, the host system
emulation driver needs to be loaded. Afterwards the associated device needs to be
instructed which (host system) file contains the hard disk information, presented to
the guest machine.

After boot emulator and kernel Image are loaded into main memory and the host
system emulation driver is initialized, the reconfiguration interface is started. In
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consequence, the guest system is booting.

The guest system can be stopped by the host system by switching the reconfiguration
interface off. The guest system will not shut down correctly in this case.

8.4. Proof of Concept in Comparison to Main Idea

The proof of concept demonstrator presented above, was implemented to show the
following:

1. The proposed main idea of this thesis is applicable at all.

2. The usage of reconfigurable area to instantiate virtual machines is straightfor-
ward usable and combinable with the classical use of reconfigurable logic as
additional device resource for a system.

To show the latter the UART configuration has been implemented. To show the first,
the core configuration has been implemented. The core configuration implements
selected features of FPGA based system virtual machines which are discussed the-
oretically in chapter 4. The practical implementation of those features in the proof
of concept demonstrator and the results are presented in the following.

8.4.1. Processor related Results

Due to the lack of a second processor ISA in Partial Reconfigurable Heterogeneous
System (PRHS) framework, guest and host machines processor use the same ISA.
For this reason guest machine and host machine are the same from the architectural
perspective.

So the proof of concept demonstrator doesn’t implement the possibility of instanti-
ating a guest system, who’s ISA isn’t provided by emulation or binary translation.

However, the proof of concept demonstrator implementation allows to show another
benefit of reconfigurable logic based system virtual machines compared to conven-
tional virtual machines: the virtualization mechanisms result in a computational
performance loss for the guest system in comparison to the architectural same host
system (see page 43 for a brief computational performance discussion).

For performance comparison between guest and host system, two benchmarks are
used:

1. The BogoMips benchmark is compiled into the Linux kernel. At kernel boot
time, the BogoMips number of the system is calculated. It can be obtained
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by reading from the /proc/cpuinfo file.

2. The Dhrystone benchmark [Wei84], which is available as an open source soft-
ware.

Both benchmarks are regarded as suitable for comparing the computational perfor-
mance of systems based on the same architecture, but not for comparing systems
based on different architectures.

BogoMIPS values are identical (39.73 BogoMips1) for guest and host system.

For the Dhrystone benchmark different values are measured according to the fol-
lowing methods: Five different values were measured. Phost,off is the result for the
host system with reconfigurable area switched off. Phost,idle is the result for the host
system with reconfigurable area switched on, but an idle guest system.2 Pguest,idle is
the same for the benchmark running on the guest system with an idle host system.
Phost,both and Pguest,both are the performance values for a simultaneous benchmark
run on both, host and guest system. Relative values are given here, because the
discussion has to focus on performance differences between the host and the guest
system. The peak performance (100 %) was achieved with the host system running
and guest (reconfigurable area) switched off. The results are:

Phost,off = 100%

Phost,idle = 99.5% related to Phost,off

Pguest,idle = 99.5% related to Phost,off

Phost,both = 98.7% related to Phost,off

Pguest,both = 98.8% related to Phost,off

Comparing Phost,idle with Pguest,idle and Phost,both with Pguest,both shows, that the guest
system and the host system performances are identical. So there is no computational
performance loss for the virtual machine compared to the host machine.

The reason for the lesser performance values of Phost,idle, Pguest,idle, Phost,both and
Pguest,both is the shared memory controller. If both, the host and the guest system try
to access main memory simultaneously, one of the systems has to wait. To emphasize
this, the cache and memory performance for the proof of concept demonstrator
has also been measured, using the ramspeed benchmark [HB09]. This benchmark
measures the read and write cache/memory access performance in MegaBytes per
second based on an increasing blocksize for reads and writes.

The results are shown in Figure 8.3. R(x, y) is the read performance, W (x, y) is the
write performance. Performance is again given as a relative value. The reference

1System runs at 100MHz.
2Idle means, that the operating system only receives a timer interrupt every 10ms and is waiting

for shell input
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Figure 8.3.: Ramspeed benchmark results.

value is the mean value of R(host, off) over all results with a block size smaller or
equal than 16 kByte. This value is used as a reference for read and write performance
measurement. For the interpretation of the results, it necessary to mention, that
both machines use a 16 kB direct mapped cache with write-through strategy. The
cache size can be easily figured out in the read performance chart. The write through
strategy is the reason for the constant lines in the write performance chart. The
general conclusion for the cache/memory access performance measurement is: Both,
the host and the guest system, perform identical. Reduced performance for both
systems results from the shared memory controller. The amount of performance
reduction is the same for both.

8.4.2. Memory related Results

The proof of concept demonstrator uses a shared memory controller. It implements
an GMMU vor virtual memory virtualization of the guest system as presented in
section 4.2.2. In detail, it implements the contiguous chunk of physical memory
solution utilizing a GMBR and GMLR.

As the proof of concept demonstrator is working, the usability of this virtual memory
virtualization solution has been shown. The impacts of using a shared memory
controller on the overall computational performance has already been discussed in
the processor related section above.

8.4.3. Device Sharing related Results

The proof on concept demonstrator implements a physically support emulation in-
terface for guest device virtualization (see page 38). In detail, the demonstrators
uses this interface for providing hard disk functionality to the guest system, which
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itself has no hard disk at all.

As the proof of concept demonstrator is working, the usability of this device virtu-
alization approach has been shown.

On page 37, the possibility to physically share device interfaces between a guest and
host machine is discussed. None of the proposed possibilities has been implemented
by the proof of concept demonstrator, because the demonstrator has been developed
to show the overall usability of the main idea. Implementing all possibilities of device
sharing is not essential for this prove.

8.4.4. Machine related Results

FPGA Design Flow Limitations The proof of concept demonstrator implements
a singleton guest system inside the reconfigurable area. It would be possible to
instantiate a second guest system in parallel. However, the current partial reconfig-
uration design flow of Xilinx [Xil10b] only allows to change a partial reconfigurable
logic area entirely. Hence, both system can be brought into the reconfigurable area
only simultaneously. In consequence touching one system would therefore also af-
fect the other one. A solution would be the introduction of another reconfigurable
area, but instantiating another guest system there, is just the same as in the first
reconfigurable area.

The ”reconfigure a partial reconfigurable area only entirely” limitation is also the
reason for another feature, proposed by the main idea of this thesis, but not imple-
mented in the proof of concept demonstrator: adding additional devices to the guest
machine, when it is already configured and the guest operating system is running.

The ”reconfigure a partial reconfigurable area only entirely” limitation also applies
to an entire FPGA. The introduction of several partial reconfigurable areas is no
solution for the mentioned problem, as the interfaces of partial modules need to be
fixed at synthesis time. A dynamic device instantiation for a runtime defined guest
system bus, isn’t applicable for a synthesis time defined interface.

An additional limiting factor of the current partial reconfiguration design flow is the
necessity to pre-synthesize all configurations, that might be used by the virtualiza-
tion platform. An on demand assembling of a machine is therefore a time consuming
process, as the demanded machine has to be synthesized entirely ”as required”.

The Pause, Suspend and Resume problem. Another feature, not implemented in
the proof of concept demonstrator, but supported by ”conventional” virtualization
platforms is the possibility to pause, suspend and resume and a virtual machine. To
enable those features, it is necessary to save the state of a virtual machine entirely.
For virtual machines, following the main idea of this thesis, the ”state” of a guest



134 CHAPTER 8. PROOF OF CONCEPT

system is given by:

1. The contents of the guest systems main memory and the current state of all
guest related processes/drivers in the host system. Both are summarized as
the software state of a guest system.

2. The configuration of the partial reconfigurable area, the guest is instantiated
in. It is given by the configuration stream, and forms the statical part of a
systems hardware state.

3. The current state (value) of each storage element (Flip-Flop, Latches, Block
RAMs, Main Memory etc.) associated with the guest. This is regarded as the
dynamic part of a systems hardware state.

On a pause the dynamic part has to be ”frozen”. Additionally, on a suspend, the
dynamic part needs to be stored somewhere, so that it can be bought back onto
the static part and ”unfrozen” on a resume. The proof of concept demonstrator
doesn’t provide the possibility to retrieve the dynamic part entirely. It’s possible to
get the contents of main memory. The values of the Flip-Flops or Latches of the
configuration are not retrievable by the proof of concept demonstrator.



9. Conclusion

9.1. Summary

In this thesis, the idea of combining reconfigurable computing and virtualization to
build hardware supported system virtual machines has been presented.

Several aspects of the idea have been discussed in theory. This included the question,
how the overall virtualization system needs to be organized. Additionally, the in-
terface requirements for a reconfigurable logic device, used to instantiate hardware,
on which a guest operating can be executed have been investigated.

Main focus was direct on the requirements to adapt conventional virtualization meth-
ods on the different aspects of a machine. Therefore, the paradigm, that all resources
of the overall virtualization system have to be managed by the host operating sys-
tem, was a challenge. This included the question of how the guest systems virtual
memory can be mapped onto the physically available address space. Also, the ques-
tion, how access to I/O devices is provided for the guest systems has been discussed.

For testing purposes the Partial Reconfigurable Heterogeneous System (PRHS)
framework has been implemented. This framework includes anything necessary to
instantiate a virtualization system, based on the idea of combining reconfigurable
computing and system virtual machines. This includes hardware, entirely self imple-
mented in VHDL. The framework also includes an adapted Linux kernel (L4PRHS)
and additional software to be used as operating system, running on this hardware,
and a cross compiler toolchain.

The overall applicability of the idea has been proven by implementing a proof of
concept demonstrator based on the PRHS framework. The demonstrator includes
several key aspects of the presented theoretical discussion.

The benefits of a reconfigurable logic based virtualization system in relation to con-
ventional virtual machine systems have also been discussed in theory and evaluated
practically using the proof of concept demonstrator.

Those benefits are:

1. Lower computational performance loss for a guest system, caused by the vir-
tualization mechanisms itself.
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2. Native execution of a guest operating system, which is not ISA compatible
with the host system, is possible. This results in computational performance
gains compared to conventional system virtual machines, where different ISAs
can only be virtualized by emulation or binary translation.

3. Stronger security and supervision policies can be enforced as guest and host
separation is not only software, but also hardware based.

4. For type-1 hypervisors, no special requirements (Popek and Goldberg theorem)
have to be fulfilled by the host processor.

Nevertheless, the proof of concept demonstrator shows two main problems for hard-
ware supported virtualization systems:

1. The current demonstrator lacks the problem of being unable to pause, suspend
and resume a guest system as this requires the ability to get and set the state
of the guest system.

2. The current design flow for FPGAs or only partial reconfigurable areas results
in a time consuming synthesis process, every time a new type of guest machine,
is required. A straightforward add an additional device to an already running
guest machine (by reconfiguration) is not possible, yet.

9.2. Future Prospects

The problems presented above need to be solved in the future. This will significantly
enhance the applicability of the proposed idea to use reconfigurable logic to build
hardware supported virtual machines.

9.2.1. Thoughts on the Pause, Suspend and Resume Problem

Due to the pending pause, suspend and resume problem, a guest systems blocks
the reconfigurable logic area it is configured in, till the guest system is either hard-
reseted by the host system or explicitly shut down.

Solving the pause, suspend and resume problem would allow to time-share a recon-
figurable. This time-sharing has to be on coarse grained time-scale to be reasonable,
as a reconfiguration takes time (several ms).

The obstacle of the pause, suspend and resume problem is the inability to retrieve
and set the dynamic hardware state of the guest system. In the remainder of this
section two ideas to overcome this problem are presented.
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Scan Chain Techniques

Scan chain techniques are a well known approach in design testing. The main idea
behind scan chains is to introduce special testing circuits into a design. These circuits
allow to retrieve or manipulate the contents of all storing elements of a system. This
is achieved by connecting all storing elements in one or more chains, the contents
of the storing elements can be pushed through. This allows to bring a system into
a defined starting state. The system can then be run for a while. After it is paused
the scan chain can be used to retrieve the current system state. An introduction,
including a broad related work section, to scan chain techniques is given in [NM96].

The ability of retrieving and setting the dynamic state of a system, provided by scan
chain techniques, are well suited for solving the pause, suspend and resume problem
of the current proof of concept demonstrator implementation of this thesis.

The main problem of this solution would be the circuitry overhead to implement
the scan chain. This results in higher reconfigurable logic consumption for the guest
machine. Furthermore, the scan chain(s) have to be included into the whole guest
machine. This will require an extensive redesign of the PRHS framework hardware
sources. Another disadvantage will be the length of the chains, resulting in very
time consuming retrieve contents/ set contents processes.

ICAP Readback Capabilities

This idea only applies to Xilinx FPGAs (Virtex4 and later version) as it depends
on features of the embedded ICAP device. Presented information is based on the
version specific (Virtex4, Virtex5, Virtex6, Virtex7) configuration user guides of
Xilinx.

The ICAP device of Xilinx FPGAs is used to perform an in-system dynamic and
partial reconfiguration process. The ICAP device doesn’t even allow to write config-
uration data, as is done with the proof of concept demonstrator. ICAP also allows to
read back the configuration data. By additionally using a Capture VirtexN device,
also embedded in the Virtex FPGAs, the contents of Flip-Flops can be read back.
Thereby, the current dynamic state of the FPGA can be retrieved.

Initial register (Flip-Flop) values are included in the configuration stream. By using
the read back data of the Flip-Flop values to modify the configuration stream, a
retrieved system’s dynamic state can be brought back onto the FPGA or parts of it.

As it is FPGA vendor specific, the general applicability of this solution for the
pause, suspend and resume problem is questionable. Additionally, the process of
extracting the current state of Flip-Flops and modifying the configuration stream is
FPGA depended, as this process is based on placement information.
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9.2.2. Thoughts on FPGA Design Flows

The limitations of the current FPGA and PR design flows are summarized above.
This section presents an idea, that is worth further investigations in the future to
overcome the mentioned design flow limitations.

Current FPGA design flows map a system, written in a Hardware description lan-
guage, directly onto the FPGA, resulting in the mentioned limitations. A common
idea to overcome this problem is to introduce an abstraction layer between the
system HDL description and the FPGA. This provides flexibility as abstractions
generally simplifies and hides details. This approach allows to make the FPGA
design flow more flexible, faster and device independent.

This idea has already been presented by different authors (e.g. [FP98] [HSE+00]
[MK11]).

A dynamic guest system constitution (add and remove dedicated devices from/to a
machine by reconfiguration) would be possible if the idea of introducing a FPGA
abstraction layer is further developed and adopted for reconfigurable logic based
system virtual machines.

9.3. Application Areas for Reconfigurable Logic based
System VMs

In the final section of this thesis, application areas for the idea of combining re-
configurable logic and system virtual machines are briefly discussed. This shall also
initiate further investigations on reconfigurable logic based system virtual machines.

IT Security and Forensic

A guest system of a reconfigurable logic based virtualization system can be seen as
hardware sandbox. This strongly implies the use of the proposed idea of this thesis
in areas, where security is of important interest. For enhanced security the host
system needs to be strongly secure, as compromising the host system compromises
all guest systems. On the other hand, the security constraints for a guest system
can be relaxed. The impact of the available hardware based supervising possibilities
of the host system onto the degree of relaxing the security policies of a guest need
to be further investigated.

In the area of computer forensics, reconfigurable logic based system VMs can provide
new possibilities. On reason are again the new hardware based supervision policies.
Another reason is the possibility to monitor a compromised guest at runtime, with-
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out the need to time-share a singleton processor as on conventional virtualization
systems. This approach might be beneficial to analyze malware, that is able to
detect, whether or not, it is running in a guest system of a conventional virtual
machine.

Data Centers

The reconfigurable logic based virtualization system can provide several advantages
for data centers:

Replacement of old systems Some services, implemented several decades ago on
special hardware, need to be provided till today. Reconfigurable logic based
system VMs will allow to replace the old dedicated and energy consuming hard-
ware by instantiating the required hardware functionality in reconfigurable
logic and operate the old system as a guest VM of reconfigurable logic based
virtualization server.

Special Hardware Requirements Occasionally used computer architectures can be
provided as a guest VM on demand, instead of stockpiling them physically.

Application specific hardware Instead of providing general purpose hardware for
running software/services on it, hardware, specialized for the needs of the
software/service can be instantiated in reconfigurable logic.

Personal Computers

The benefits for data centers also apply to personal computers.
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A. VHDL Coding Conventions for
PRHS Framework

Coding conventions are a well known aspect of software engineering. As the Hard-
ware parts of the PRHS Framework should be easily reusable, it is necessary to
define a naming convention and general coding rules:

A.1. Signal Naming Conventions

The names of internal signals, inputs and outputs all follow the same scheme as
given in the following.

{i|o|z|s|r|v}{d|c|e}[n][union name]descriptive signal name

Figure A.1.: General structure of a signal name.

The meanings of the different components are explained in the following description:
i entity input

o entity output

z entity in- and output (tristate)

s internal signal

r internal register value

v internal variable

d data signal

c control signal (controls the flow of data sig-
nals)

e enable signal (special control signal, en-
abling register write or tristate output
enable)

n (optional) indicates an active-low signal
(active-high is regular)

union name for associated signals (e.g. different bus components) should have a
union name, to easily figure out the association

descriptive signal name the real signal name
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A.2. Component Instantiation Conventions

VHDL supports different types of component instantiation. The first and straight-
forward one is to skip the component declaration in the declarative part of an archi-
tecture and use work.<component_name> syntax to instantiate a component. This
introduces a big problem for Xilinx synthesis flow: the entity, corresponding to the
component, has to be compiled before the entity, the component is instantiated in.

Hence, for PRHS framework for each instantiated component, a corresponding com-
ponent declaration has to be included in the declarative part of an architecture.
Don’t us the work.<component_name> syntax.



B. Devices - Addressing, Detection
and Interrupts

The following table gives an overview on device present line (see PRHS Bus Con-
troller device), interrupt line and devices for the platfrom supporting the proof of
concept demonstrator of this work. The information is given on a device instance
name basis; device class is given in brackets; base address for memory mapped I/O
device registers are given as 32 bit hexadecimal values per device instance.

line int.1 ML505 / XUPv5 ML605

0 x ClockEventTimer (timer4prhs): f0000020
ClockSourceTimer (timer4prhs): f0000030

1 x uart0 (uart4prhs) : f0001000
2 x uart1 (uart4prhs) : f0001010
3 x reconfIF4prhs0 (reconfIF4prhs):

control interface : f1000000
SD RAM interface : dynamically allocated

4 SysAce4prhs0 (SysAce4prhs) : d0000000
5 x PS2 0 (pstwo4prhs) : f0002000 unused
6 x PS2 1 (pstwo4prhs) : f0002010 unused
7 x Ethernet Ctrl0 (v5emac4prhs) :

f0010000
unused

8-31 unused
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