## Contents

| Contents        |                                                     |                                             |           |                                               |     |  |  |  |  |
|-----------------|-----------------------------------------------------|---------------------------------------------|-----------|-----------------------------------------------|-----|--|--|--|--|
| List of Figures |                                                     |                                             |           |                                               |     |  |  |  |  |
| Lis             | st of T                                             | ables                                       |           |                                               | VII |  |  |  |  |
| 1               | Introduction and Motivation                         |                                             |           |                                               |     |  |  |  |  |
|                 | 1.1                                                 | Introdu                                     | action .  |                                               | 1   |  |  |  |  |
|                 | 1.2                                                 | Motiva                                      | tion      |                                               | 4   |  |  |  |  |
| 2               | Constitutive modeling of a polycrystalline material |                                             |           |                                               |     |  |  |  |  |
|                 | 2.1                                                 | Elasticity                                  |           |                                               |     |  |  |  |  |
|                 | 2.2                                                 | Variation of elastic properties in crystals |           |                                               |     |  |  |  |  |
|                 | 2.3                                                 | Creep                                       |           |                                               | 15  |  |  |  |  |
|                 |                                                     | 2.3.1                                       | General   | Remarks                                       | 15  |  |  |  |  |
|                 |                                                     | 2.3.2                                       | Constitu  | Itive Equations Based on Creep Potential      | 17  |  |  |  |  |
|                 |                                                     | 2.3.3                                       | Identific | ation of creep parameters                     | 22  |  |  |  |  |
|                 |                                                     | 2.3.4                                       | Crystall  | ographic approach                             | 24  |  |  |  |  |
|                 |                                                     | 2.3.5                                       | Compar    | ison of both approaches                       | 26  |  |  |  |  |
|                 |                                                     |                                             | 2.3.5.1   | Comparison by the predicted creep strain rate | 26  |  |  |  |  |
|                 |                                                     |                                             | 2.3.5.2   | Creep properties variation in single crystal  | 30  |  |  |  |  |
| 3               | Gra                                                 | in boun                                     | dary slid | ing                                           | 35  |  |  |  |  |
|                 | 3.1                                                 | Nature of the grain boundary sliding 3      |           |                                               |     |  |  |  |  |
|                 | 3.2                                                 | Grain boundary sliding modeling             |           |                                               |     |  |  |  |  |



| 4 | Creep cavitation |                                                         |                                                  |      |  |  |  |
|---|------------------|---------------------------------------------------------|--------------------------------------------------|------|--|--|--|
|   | 4.1              | 1 Overview of existing models                           |                                                  |      |  |  |  |
|   |                  | 4.1.1                                                   | Cavitation due to diffusion processes            | 43   |  |  |  |
|   |                  | 4.1.2                                                   | Cavitation models based on dislocation creep     | 44   |  |  |  |
|   |                  | 4.1.3                                                   | Cavitation due to various mechanisms             | 45   |  |  |  |
|   | 4.2              | aard's cavitation model                                 | 45                                               |      |  |  |  |
|   |                  | 4.2.1                                                   | Cavity nucleation and growth equations           | 45   |  |  |  |
|   |                  | 4.2.2                                                   | Creep strain rate evolution due to cavitation    | 47   |  |  |  |
|   | 4.3              | Influe                                                  | nce of cavities on the material behavior         | 48   |  |  |  |
| 5 | Nur              | nerical                                                 | Implementation                                   | 53   |  |  |  |
|   | 5.1              | Geom                                                    | etrical representation of polycrystal            | 53   |  |  |  |
|   | 5.2              | Mater                                                   | ial model implementation                         | 56   |  |  |  |
|   | 5.3              | Calcul                                                  | ation of averaged fields in the unit cell        | 57   |  |  |  |
|   | 5.4              | Statist                                                 | ical analysis of the unit cell                   | 58   |  |  |  |
|   | 5.5              | Choic                                                   | e of the representative number of grains         | 61   |  |  |  |
|   | 5.6              | Choic                                                   | e of the grain boundary region thickness         | 62   |  |  |  |
| 6 | Ten              | ensile creep tests for polycrystalline copper at 550 °C |                                                  |      |  |  |  |
|   | 6.1              | Choic                                                   | e of the specimen and test conditions            | 65   |  |  |  |
|   | 6.2              | Exper                                                   | imental procedure                                | 66   |  |  |  |
|   | 6.3              |                                                         |                                                  |      |  |  |  |
|   | 6.4              | Validation of the secondary creep stage                 |                                                  |      |  |  |  |
|   | 6.5              | Micrographs of copper under different applied stresses  |                                                  |      |  |  |  |
| 7 | Мо               | del appl                                                | lication                                         | 73   |  |  |  |
|   | 7.1              | cation of the model by the separate creep region        | 73                                               |      |  |  |  |
|   |                  | 7.1.1                                                   | Primary creep stage validation                   | 73   |  |  |  |
|   |                  | 7.1.2                                                   | Secondary creep stage verification               | 75   |  |  |  |
|   |                  | 7.1.3                                                   | Tertiary creep stage verification                | · 76 |  |  |  |
|   | 7.2              | Non-                                                    | proportional loading test                        | 78   |  |  |  |
|   |                  | 7.2.1                                                   | Continuum damage mechanics approach              | 78   |  |  |  |
|   |                  |                                                         | 7.2.1.1 Isotropic damage                         | 78   |  |  |  |
|   |                  |                                                         | 7.2.1.2 Anisotropic damage                       | 80   |  |  |  |
|   |                  | 7.2.2                                                   | Non-proportional loading experiments             | 82   |  |  |  |
|   |                  | 7.2.3                                                   | Non-proportional loading test of the unit cell   | 84   |  |  |  |
| 8 | Cor              | nclusior                                                | ns and outlook                                   | 87   |  |  |  |
| A | De               | rivation                                                | of elasticity equations in engineering constants | 91   |  |  |  |

| B            | Micrographs of the copper specimens                      | 95 |
|--------------|----------------------------------------------------------|----|
| С            | Crystallographic planes and directions in copper crystal | 99 |
| Bibliography |                                                          |    |

Ш

.