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AABBSSTTRRAACCTT  

The goals of this thesis were (i) to establish and improve organotypic liver cell culture 

techniques for long-term pharmacological studies and (ii) to develop and apply a metabolomics 

based approach for the assessment of drug-induced effects. 

As first model, a 3D bioreactor system was characterized in terms of cell physiology and 

functionality. Primary human hepatocytes could be kept viable and functional for more than 2 

weeks in this system. Optimization of the system allowed determination of oxygen uptake rates 

and viability. As second 3D system, a hanging drop method was successfully applied for the 

generation of organotypic cultures as high-throughput in vitro model for toxicity studies.  

For the investigation of drug-induced metabolic effects, a metabolomics approach based on 

GCTOF-MS combined with multivariate statistics was developed. In 2D cultures of primary 

human hepatocytes, both short-term (up to 4 days) and long-term (3 weeks) drug-induced 

effects were detected at clinically relevant concentrations, showing the sensitivity of the 

established method. 

Both 3D cultivation methods used in this thesis represent a step forward to organotypic cultures 

as in vitro alternatives to animals and are particularly suitable for the investigation of chronic 

toxicity. The established metabolomics approach is a sensitive tool to assess drug-induced 

changes even at subtoxic concentrations and can be applied to other cell types and cultivation 

systems in the future. 
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ZZUUSSAAMMMMEENNFFAASSSSUUNNGG  

Die Ziele dieser Arbeit waren (i) die Etablierung und Verbesserung von organotypischen 

Leberzellkulturtechniken für pharmakologische Studien und (ii) die Entwicklung und 

Anwendung einer Metabolomics-Methode zur Detektion von Wirkstoff-induzierten Effekten. 

Als erstes Modell wurde ein 3D Bioreaktor in Hinblick auf Zellphysiologie und –funktionalität 

untersucht. Primäre Hepatozyten konnten über mehr als 2 Wochen vital und funktionell in 

diesem System kultiviert werden. Eine Systemoptimierung erlaubte die Bestimmung von 

Sauerstoffaufnahmeraten und Viabilität. Als zweites 3D System wurde die Methode des 

hängenden Tropfens erfolgreich zur Herstellung von organotypischen Kulturen für 

Toxizitätsstudien eingesetzt. 

Zur Untersuchung von Wirkstoff-induzierten metabolischen Effekten wurde in dieser Arbeit 

eine Metabolomics-Methode entwickelt, basierend auf einer Kombination von GCTOF-MS und 

multivariater Statistik. In 2D Kulturen von primären Hepatozyten wurden sowohl Kurzzeit- (bis 

zu 4 Tagen) als auch Langzeit- (3 Wochen) Effekte bei klinisch relevanten Konzentrationen 

nachgewiesen, was die Sensitivität der Methode zeigt. 

Beide 3D Systeme, die in dieser Arbeit eingesetzt wurden, sind als organotypische  in vitro 

Alternativen zu Tierversuchen zur Untersuchung von chronischer Toxizität geeignet. Die 

etablierte Metabolomics-Methode ist eine sensitive Technik um Wirkstoff-induzierte, 

subtoxische Effekte zu detektieren und kann in Zukunft auf andere Zelltypen und -systeme 

angewendet werden. 
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1.1 The liver 

The liver is the central organ of drug and xenobiotic metabolism. All substances released from 

the gastrointestinal tract into the blood are entering the liver via the portal vein. The liver is 

divided into four liver lobes (two major and two minor), whereas each lobe is subdivided into 

lobules. Within these lobules, parenchymal cells (the hepatocytes) are the main cell type (70-

80% of total liver cell number) and are organized in unicellular liver plates. The liver plates are 

located around the central vein as depicted in figure 1-1. 

 

Figure 1-1: Architecture of the liver lobule (source: www.unifr.ch/anatomy) 

The sinusoids, vascular channels responsible for blood flow, are located between the liver 

plates. Bile-canaliculi between the hepatocytes collect the bile and flow into the bile duct. In the 

liver, hepatocytes are polar which means that two different domains can be distinguished. The 

apical domain (to the bile canaliculi) is morphological characterized by microvili and is 

enclosed by tight junctions (Depreter et al., 2002). The basolateral domain is directed to the 

sinusoids and has therefore contact to the blood flow (Bartles et al., 1985; Maurice et al., 1994). 

The polarity is not only morphological, but also protein distribution on the plasma membrane is 

strongly polarized. In the apical membrane, important transport proteins are located, such as the 

bile salt export pump (BSEP), multidrug resistance protein 1 (MDR-1) and multidrug 
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resistance-associated protein 2 (MRP-2), which are responsible for the transport of bile salts, 

non bile-acid organic anions, bilirubin and phosphatidylcholines (Kipp and Arias, 2000; Meier 

and Stieger, 2002). 

The hepatocytes are the site of biotransformation in the liver. Non-polar and lipophilic 

substances are converted to polar and hydrophilic metabolites which are then excreted via the 

renal pathway. The biotransformation consists of three pathways as schematically depicted in 

figure 1-2. 

 

Figure 1-2: Biotransformation pathways and metabolite formation in human hepatocytes. 

In the phase I, reactive and polar groups are introduced into the xenobiotics mainly by enzymes 

of the cytochrome P450 family. In further phase II reactions, the activated metabolites are 

conjugated with groups such as glutathione, glucuronic acid, sulfate or glycine. However, a 

direct phase II conjugation without previous phase I reaction is also possible. The subsequent 
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phase III metabolism includes the excretion of the conjugates from the cells via membrane 

transporters of the MRP family (Homolya et al., 2003). 

1.2 In vitro human liver cell culture 

In vitro liver cell culture models include the cultivation of primary hepatocytes as well as 

hepatic tumor cell lines. Primary human hepatocytes can be isolated during tumor resections. 

However, based on visual and physical check-up by experts, only tumor-free tissue should be 

used as done in this work. 

Primary human hepatocytes have short-term phase I and II activities comparable to in vivo 

situation, but are only limited available, the quality is donor dependent and they lose their 

functionality in vitro quite rapidly. Moreover, the polarity is rapidly lost in monolayer cultures. 

Morphologically, the primary human hepatocytes are mostly hexagonal and often have two 

nuclei (figure 1-3 a). 

HepG2 is a human hepatoma cell line derived from tissue of a 15 year old Caucasian American 

male (Aden et al., 1979). This cell line is of unlimited availability and easy to handle. However, 

CYP450 activity is very low or even absent (Wilkening et al., 2003). Moreover, the HepG2 

cells show an abnormal karyotype (chromosome number 55) and are epithelial in morphology 

(figure 1-3 b). Besides these disadvantages, HepG2 cells were reported being a suitable in vitro 

model for studying hepatocyte polarity (Hoekstra et al., 1999). 

The HepaRG cell line (figure 1-3 c) was more recently established from a hepatocarcinoma of a 

female patient and reported to be the first in vitro model for hepatitis B infection (Gripon et al., 

2002). These cells were shown to remain liver-specific functions including CYP450 activity, 

phase II metabolism as well as expression of MRP transporter proteins (Guillouzo et al., 2007; 

Marion et al., 2010; Lubberstedt et al., 2011). The cell line has further unique characteristics. It 

consists of two cell types in a 50:50 ratio. The first cell type forms clusters of granular epithelial 

cells resembling hepatocytes. The second cell type is more flattened, has a clear cytoplasm and 

resembles biliary cells (Guillouzo et al., 2007). Moreover, the cells show a normal human 

karyotype and are well-suited for genotoxicity studies (Josse et al., 2008). 
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Figure 1-3: Morphology of  a) primary human hepatocytes, b) HepG2 cell, c) HepaRG cells. Scale 

bars represent 100 µm. 

1.3 Cell culture in three dimensions 

Tissues are arranged in three dimensions. This architectures leads to intensive cell-cell contacts 

as well as contacts to the extracellular matrix. The interactions between cells and tissue 

environment induce and maintain cellular differentiation, functionality and viability (Godoy et 

al., 2009; Celebi et al., 2011; van der Smissen et al., 2011). Conventional cell culture systems 

are arranged in two dimensions which do not provide any physiological stimulus to the cells 

such as concentration gradients, blood flow, pressure or mechanical shear stress. Cell culture in 

three dimensions clearly improves the physiological relevance of cell based assays and the 

comparability between in vitro cultures and living organisms (Pampaloni et al., 2007).  

For liver cells, this is of special interest. Primary hepatocytes actively dedifferentiate in 2D 

cultures within several days (Godoy et al., 2009) and thereby lose the drug-metabolizing 

capacities which are essential for toxicity testing. Therefore, tissue engineering of liver cells in a 

three-dimensional cell culture system with concomitant maintenance of liver functionality will 

improve in vitro test methods in the preclinical phase of pharmaceutical drug development. 

Nowadays, a range of 3D liver cell culture systems are available. 

Whole perfused organs are the closest model to in vivo situation but are hardly available. They 

retain the complex 3D architecture including cell-cell and cell-matrix interactions, but they need 

strong technical expertise and the cell viability is limited to a few hours.  

Liver slices also retain at least parts of the complex 3D architecture and maintain viability and 

liver specific functions for a few days. However, studies for more than one week are not 

possible using this model. 

Different types of 3D bioreactors have been developed for liver cell cultivation, including small 

and large scale systems for primary cells of different species.  Dynamic systems such as the 

a b c
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rotating radial flow type bioreactor (RRFB) were developed inducing 3D aggregation and 

enhancement of liver-specific functionality (Miyazawa et al., 2007). Moreover, these rotating 

systems show high mass transfer capacities ensuring sufficient nutrient and oxygen supply 

(Anton et al., 2008). 

Perfused 3D hollow-fiber bioreactors enable convection-based mass transfer and maintain cell 

viability and liver-specific functions for several weeks. Such bioreactor systems were originally 

developed as bioartificial livers for extracorporeal liver support (Gerlach et al., 2008). Down-

scaled to laboratory sizes, they provide a physiological in vivo like environment, whereas the 

hollow-fibers serve as capillary network for nutrient and oxygen supply as well as surface for 

cell adhesion (De Bartolo et al., 2009). A 3D hollow-fiber bioreactor system, developed at the 

Charité Berlin, was used in this thesis for the cultivation of liver cells and was characterized and 

improved as shown in Chapters 2 and 3. 

The combination of high-throughput 2D microtiter plates and in vivo like environment of 3D 

bioreactors led to the development of perfused multiwell plates for 3D liver cell cultivation. 

Domansky and colleagues described a 24-well plate based perfusion system which is suitable 

for oxygen monitoring and which promotes 3D tissue formation of rat hepatocytes on scaffolds. 

This approach is even down-scalable e.g. to 96 well plate format and applicable to other cell 

types e.g. heart or kidney cells (Domansky et al., 2010). Further down-scaling leads to the 

body-on-a-chip approach, which applies microfluidic-based devices or also called micro cell 

culture analogs (µCCA), simulating the interactions of tissues under physiological-like 

conditions (Esch et al., 2011).  By cell encapsulation using hydrogels, the cells can be cultivated 

three-dimensional. Prototypic studies revealed the feasibility of these systems to assess drug 

efficacy and toxicity (Sung and Shuler, 2009; Sung et al., 2010; Sung and Shuler, 2010). The 

µCCAs can be equipped with different optical probes such as oxygen sensors or fluorescence 

sensors for real-time monitoring of CYP450 activity (Sin et al., 2004; Sung et al., 2009), 

indicating the immense potential to improve in vitro studies during pharmaceutical drug 

development.  

3D cultivation of liver cells is also possible using gel-based cultures with synthetic materials 

such as self-assembling peptides (Liebmann et al., 2007) or natural materials like alginate 

(Glicklis et al., 2000), collagen (Tuschl et al., 2009) or matrigel (Haouzi et al., 2005). 

Moreover, a range of synthetic polymers are used as scaffolds in 3D cell culture providing 

physical and structural support for tissue engineering applications (Kim et al., 1998). 

Organotypic cultures (OTC) of liver cells e.g. multicellular spheroids are produced scaffold-free 

in multiwell plates (Kelm et al., 2003) or also in bioreactors (Miranda et al., 2009). Due to the 
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low required cell number, high-throughput applications are easily performable. The OTC show 

liver-like structures and activities comparable to in vivo and are suitable for repeated dose 

testing during pharmaceutical drug development (Tostoes et al., 2011a). In this thesis, a high-

throughput, scaffold-free technology based on the hanging drop method was used to produce, 

characterize and test OTC of human liver cells (Chapter 4). 

1.4 Pharmaceutical drug development 

Drug development in the pharmaceutical industry includes the process of drug screening and 

discovery, the following preclinical and clinical studies, the marketing of the drug and 

postmarketing studies. As depicted in figure 1-4, the process starts with about 10.000 candidates 

of which 250 access the phase of in vitro and in vivo testing.  After this preclinical phase, about 

five compounds comply the requirements for the clinical phase with testing on humans. In the 

USA, this decision is made during the Food and Drug Administration’s (FDA) program of 

Investigational New Drug (IND). After the clinical trials, the manufacturer applies for New 

Drug Application (NDA) which is then proved and potentially approved by the FDA. In the 

post-marketing phase, the safety of the drug is further monitored and more accurate evaluations 

are possible by including information of a larger number of patients. 

 

Figure 1-4: Pharmaceutical drug development process in the USA. IND=investigational new drug; 

NDA=new drug application. Picture modified from http://cdn.pharmacologycorner.com/wp-

content. 
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Toxicity is one of the main reasons for the attrition of candidates in drug development and for 

the withdrawal of drugs from the market. Although every compound is toxic at high doses, there 

is an urgent need to detect toxicity and adverse drug reactions of a drug candidate at moderate, 

physiologically relevant concentrations in the very early phases of drug development. 

A systematic classification defines five classes of drug toxicity (Liebler and Guengerich, 2005): 

1.) On-target or mechanism based toxicity occurs due to interactions of the drug with its 

actual pharmacological target. This means that the binding of the drug to its target does not only 

cause the pharmacological effect but also produce toxicity. Adverse effects of statins belong to 

this class (Johnson et al., 2004). 

2.) Hypersensitive responses are mainly because of an activation of the immune response by 

protein binding of the drug, e.g. allergic reactions to penicillin (Torres and Blanca, 2010).  

3.) Off-target toxicity is defined as toxicity provoked by the binding of a drug to an alternate 

target. The most common cited example for this is the cardiac potassium channel (hERG) 

inhibiting effect of terfinadine, leading to fatal cardiac arrhythmias (Batey and Coker, 2002). 

4.) Bioactivation often leads to reactive metabolites which can cause toxicity. As a major 

example, acetaminophen is metabolized to the reactive product N-acetyl-p-benzoquinone imine 

(NAPQI), which covalently binds to cellular macromolecules (Jaeschke, 2005; Laine et al., 

2009). 

5.) Idiosyncratic toxicity is very difficult to predict since it is quite uncommon and individual, 

meaning that the toxic response is exerted in a few patients but in most of them not. The 

mechanism behind is not well-understood and the occasions are rather rare, however, for widely 

used drugs such as diclofenac (Aithal, 2004), it is a severe problem. 

The main sites affected by drug toxicity are the cardiovascular tract and the liver (Guengerich, 

2011). Therefore, it is of common interest to study drug-induced effects on these tissues with 

the aim to detect hepatotoxic and cardiotoxic events as early as possible during pharmaceutical 

development. Therefore, suitable in vitro test methods as well as predictive test methods have to 

be developed (Mandenius et al., 2011a; Mandenius et al., 2011b). 

State-of-the art analytical technologies such as modern mass spectrometry (MS) and nuclear 

magnetic resonance (NMR) applied in different –omics technologies and particularly systems 

biological approaches, combining different –omics fields and bioinformatics methods, are 

promising for the detection of biomarkers for the prediction of certain diseases (Herder et al., 

2011) and for the early detection of drug toxicity (Blomme et al., 2009; Harrill et al., 2009; 

Beger et al., 2010; Rodriguez et al., 2010; West et al., 2010; Van Summeren et al., 2011). 
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1.5 The omics era  

The neologism -omics refers to a wide field in modern biology. A schematic representation of 

the -omics hierarchy is shown in figure 1-5, which leave out some more recently defined -omics 

e.g. phenomics, miRNAomics or interactomics. 

 

Figure 1-5: Scheme of the -omics hierarchy: (epi)genomics, transcriptomics, proteomics, 

metabolomics, fluxomics. 

Genomics, the study of an organisms genes as well as non-coding DNA sequences (the 

genome), was strongly advanced in recent years due to modern DNA sequencing technologies 

and international initiatives such as the Human Genome project (Venter et al., 2001). As a 

newer, but immense promising technology, epigenomics provides information about the effects 

of chromatin structure on gene function (Gomase and Tagore, 2008), whereas DNA methylation 

and histone modifications are the major mechanisms.   

Transcriptomics, the study of the expression profile in a given cell population at certain 

conditions, give deep insights into cellular processes e.g. cell differentiation or signalling (Brien 

and Bracken, 2009; Theunissen et al., 2011). 

Proteomics is the qualitative and quantitative study of cellular proteins including their 

modifications at large scale. In contrast to the genome, the cellular proteome is dynamic and 

dependent on cell type, differentiation state, cellular environment, extracellular signals and 

other factors. There is a strong connection between transcriptomics and proteomics, however 

often no or only weak correlations are found between mRNA and protein amounts e.g. because 

of different dynamic profiles (Nie et al., 2006; Nie et al., 2007) or regulatory post-

transcriptional events. 



CCHHAAPPTTEERR  11::  GGEENNEERRAALL  IINNTTRROODDUUCCTTIIOONN    

1155    

  

Metabolomics is defined as the systematic study of the metabolites in a cell, fluid, tissue, organ 

or organism. In contrast to other -omics technologies, the study of the metabolome is a real 

snapshot of the cellular physiology of a cell at a specific time point under specific conditions. 

Therefore, it is interesting to study the metabolic response of an organism, tissue or cell to 

pathophysiological stimuli such as the exposure to a drug (Nicholson et al., 1999). 

Metabolomics was successfully applied to biomarker discovery in drug toxicity (Manna et al., 

2010; Kleinstreuer et al., 2011; Manna et al., 2011; Stewart and Bolt, 2011; Yang et al., 2011) 

and can improve preclinical and clinical phases in drug development (Robertson et al., 2011). 

Fluxomics or metabolic flux analysis (MFA) provides a quantitative description of the 

intracellular reaction rates in a certain metabolic network including regulation on (epi)genome, 

transcriptome, proteome and metabolome level (Niklas and Heinzle, 2011). The fluxes, defined 

as the turnover rate of metabolites through a metabolic pathway, can be quantified using 

metabolite balancing or 
13

C MFA, whereby a 
13

C isotope-labeled substrate is used and fractional 

labeling of certain metabolites is measured using gas chromatography–mass spectrometry (GC-

MS) or NMR (Bonarius et al., 2001). Besides applications like metabolic engineering, 

metabolic flux analysis can be applied for the detection of drug-induced effects in vitro (Strigun 

et al., 2011a) but also for the improvement of the production of pharmaceuticals by human cell 

lines (Niklas et al., 2011a; Niklas et al., 2011b; Niklas et al., 2011d). 

1.6 GCTOF-MS 

GC-MS is an analytical method that combines the features of gas chromatography and mass 

spectrometry.  Thereby, a wide range of small compounds with different chemical properties 

can be identified within a test sample.  

GCTOF-MS combines conventional GC with time-of-flight (TOF) mass spectrometry. In a 

TOF-MS, a compound is fragmented to ions (in GCTOF-MS typically positive) by electron 

impact (EI), which are then accelerated through an electric field (figure 1-6).  

 

 

http://en.wikipedia.org/wiki/Gas-liquid_chromatography
http://en.wikipedia.org/wiki/Mass_spectrometry
http://en.wikipedia.org/wiki/Mass_spectrometry
http://en.wikipedia.org/wiki/Electric_field
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Figure 1-6: Schematic assembly of the time-of-flight tube as component of a GC-TOFMS. 

 

The potential energy for an ion in an electric field is defined as: 

potE z U         [Eq 1-1] 

Whereas z is the charge of the ion and U is the electric voltage. Since the ions are accelerated 

into the drift region of the TOF tube, the potential energy is converted to kinetic energy, which 

is defined as: 

2
kin

1
E mv

2
  [Eq. 1-2] 

Whereas m is the ion mass and v the velocity, 

kin potE E   [Eq. 1-3] 
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mv zU

2
 

   [Eq. 1-4] 
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Since v is defined as:  

d
v

t
 

 

   [Eq. 1-5] 

Eq. 1-4 can be converted to:  
2

1 d
m z U

2 t
 

  [Eq. 1-6] 

Eq. 1-6 can be solved for t
2
: 

2
2 d m

t
2U z

 
  [Eq. 1-7] 

Eq 1-7 can be solved for t: 

d m
t

z2U  

[Eq. 1-8] 

This shows that the ion flight time in the TOF-tube depends on the mass to charge (m/z) ratio. 

Smaller ions (low m/z) reach higher velocities in the field-free drift region than larger fragments 

(figure 1-6). The time needed to reach the detector is measured for every ion and the mass 

spectrum is calculated. 

Generally, the compounds measured by GC-MS analysis have to be both volatile and thermally 

stable, because the mobile phase is gaseous and high temperatures >300°C are reached. 

However, most compounds in a biological sample are polar and non-volatile, so that they have 

to be chemically modified. This derivatization procedure is a key step in GC-MS analysis. N-

methyl-N-trimethylsilyltrifluoracetamid (MSTFA) is a widely used derivatisation reagent 

suitable for the silylation of primary amides and amines as well as of hydroxy- and carboxyl-

groups. Additionally, carbonyl- and keto- groups are usually methoximated using 

methylhydroxylamine prior to silylation. This causes the opening of ring sugars and results in 

two stereoisomers (the syn- and anti- isomers) which are separated during GC-MS analysis. For 

quantitative analysis, the derivatization step is one critical point since it is often done manually 

which could bring in imprecision. Moreover, for larger sample sets, the low stability of the 

derivatized compounds impairs the analysis. Therefore, automatized sample derivatization is 
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useful and improves the quality of the analysis. In this study, the automatized two-step chemical 

derivatization for the GCTOF-MS analysis was established. Thereby, exact volumes as well as 

constant incubation times for each sample are guaranteed. 

1.7 Analysis of chromatographic datasets 

Metabolomics analyses by modern state-of-the art techniques such as NMR or chromatography 

coupled to mass spectrometry generate huge amounts of datasets. Data acquisition, processing 

and analysis are highly important.  Data processing or pretreatment includes data scaling. 

Hereby, each variable is divided by the scaling factor. This scaling factor could be the standard 

deviation of each variable (auto-scaling) or the square root of the standard deviation (pareto-

scaling). The overall aim of scaling is to adjust for fold differences between the single 

metabolites (van den Berg et al., 2006). Peak normalization is also important in metabolomics 

since differences in sample preparation steps or experimental conditions lead to alterations in 

peak areas, retention times or derivatization efficiencies. The optimal internal standards would 

be isotopes (e.g. 
13

C labeled) of each analyzed metabolites, because of their identical chemical 

properties. However, this would drastically rise costs and increase experimental work. 

Moreover, the analyzed metabolites are often unknown such as in untargeted metabolomics. In 

this thesis, α-aminobutyric acid was used as internal standard, as far as known not existing in 

such biological samples. This amino acid has similar chemical properties as the proteinogenic 

amino acids analyzed in this study. Moreover, it could be shown that the relative standard 

deviations (RSD) are reduced after normalization to peak area of the predominant α-

aminobutyric peak (see chapter 4). 

Principal component analysis (PCA) is applied in metabolomics to reduce the dimensions in the 

dataset and to describe the variance in the dataset using a set of underlying orthogonal variables 

(the principal components). The number of principal components is less than or equal to the 

number of original variables. The first principal component describes the highest variance. The 

other components then have the highest variances possible under the constraint that they are 

uncorrelated with the respective preceding ones. This method is suitable to visualize differences 

in complete metabolomics datasets, to identify the variables which contribute mostly to the 

variance and also to detect experimental outliers.  

In this thesis, a work flow for metabolomics studies was developed and is depicted figure 1-7. 

Thereby, the aim was to identify drug-induced effects on different human liver cell models upon 

single or repeated exposure. 

http://en.wikipedia.org/wiki/Variance
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Figure 1-7: Schematic workflow of the developed metabolomics approach. 
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1.8 Aims of the BMBF-project “3D in vitro model for hepatic drug 

toxicity” 

The work presented in this thesis was carried within the project “3D in vitro model for hepatic 

drug toxicity”, which was funded by the Bundesministerium für Bildung und Forschung 

(BMBF) and lasts from February 2008 to December 2011. The project consortium deals with 

the problem that in vitro data for hepatic drug toxicity are only transferable to humans if the in 

vitro environment reflects human liver function. Therefore, the development and in-depth 

characterization of 3D in vitro cell culture models is the main project topic. Moreover, methods 

for the assessment of drug-induced effects should be established using defined reference 

substances. Both could lead to a reduction of animal testing in preclinical drug development. 

In detail, the project defined 5 major goals: 

1.  Establishment of methods for the isolation and cultivation of human liver cells  

2. Development of a 3D bioreactor perfusion technology for the assessment of drug-

induced hepatotoxicity 

3. Establishment of read-out parameters for the evaluation of drug-induced hepatotoxicity 

4. Investigation of drug-induced hepatotoxicity in 3D- and 2D-cultures using reference 

substances 

5.  Evaluation and inter-lab-application of the developed methods 
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The project consortium consists of five academic and industrial partners (figure 1-8): 

 

1. PHARMACELSUS GMBH, SAARBRUECKEN (PROJECT COORDINATOR) 

2. BIOCHEMICAL ENGINEERING INSTITUTE, SAARLAND UNIVERSITY 

3. BIOREACTOR GROUP, CHARITÉ UNIVERSITÄTSMEDIZIN BERLIN 

4. DEPARTMENT OF TRAUMATOLOGY, TU MUNICH 

5. ELEXOPHARM GMBH, SAARBRUECKEN 

 

 

Figure 1-8: Consortium of the BMBF project: “3D in vitro model for hepatic drug toxicity”. 
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1.9 Outline of this thesis 

Long-term maintenance of organotypic functional cultures of human liver cells is highly needed 

for the assessment of chronic toxicity and adverse drug reactions. 3D hollow-fiber bioreactors 

were shown to improve long-term maintenance of primary human hepatocytes (Zeilinger et al., 

2004) and to induce the formation of in vivo like structures (Gerlach et al., 2003b; Schmelzer et 

al., 2009). However, an in depth characterization of general and liver specific parameters would 

lead to a more detailed view on the cellular behavior as well as on long-term viability and 

functionality.  

In Chapter 2, primary human hepatocytes of three different donors were cultivated in 3D 

bioreactors and investigated in terms of liver specific functions (urea and albumin production) 

during two weeks of cultivation. One single bioreactor was characterized in terms of cell 

viability (AST, LDH), substrate consumption (glucose, galactose, sorbitol), lactate production, 

amino acid metabolism and drug metabolizing capacities (CYP450 activity). Moreover, the 3D 

bioreactor system was modified to allow direct determination of the oxygen uptake rates as 

indicator of cell viability. Different from 2D cultures, the accurate assessment of cellular 

viability in the 3D bioreactor is limited due to its black box character. Indirect viability 

measurements such as substrate consumption are helpful, but metabolic changes during 

cultivation restrict accurate determination of viable cells. The modifications done in this work 

permit oxygen uptake rate determination. Nevertheless, a further direct viability assay in the 3D 

bioreactor would be of high value particularly concerning pharmacological studies.  

In Chapter 3, the resazurine viability assay, which is well established in 2D cultures, was 

applied to HepG2 and primary human hepatocytes maintained in the 3D bioreactor system. The 

assay was proved to be non-invasive, fast and was applied to assess viability upon drug 

exposure.  

In pharmaceutical drug development, high throughput experiments are strongly required e.g. for 

the assessment of dose response relationships. Using in vitro systems, parallel studies are 

routinely designed in microtiter-plate format, ranging from 6-well to 1536-wells per plate. 

Three-dimensional cell cultures can be produced in multiwell plates using specific scaffolds, but 

also by the scaffold-free hanging drop method.  

In Chapter 4, we applied this method to the human liver cell line HepG2 using the 96 well plate 

based Gravity
Plus

 system (InSphero, Zurich, Switzerland). By this, 3D organotypic cultures of 

adjustable sizes can be produced which were analyzed including general cellular parameter and 

long term cultivation at very low serum concentrations.  Due to the high reproducibility and the 
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low amount of required cells, the system could be applied to pharmacological studies. The dose 

response relationship of the anti-cancer drug tamoxifen was assessed in the organotypic cultures 

and compared to 2D monolayer and collagen-sandwich cultures. CYP450 induction was 

investigated as well as toxicity of the anti-cancer drug tamoxifen. The activity of the membrane 

transporter MRP-2 was analyzed to study mechanisms of chemotherapy resistance. The 

possibility of high-throughput application and of spheroid size adjustment makes the system 

attractive for a wide range of research fields.  

Every chemical compound is toxic at high doses, but many drugs show adverse effects at low 

physiological relevant concentrations or only after repeated exposure.  

In Chapter 5 we established a metabolomics-based approach to detect drug-induced effects on 

primary human hepatocytes as well as on HepG2 cells at physiologically relevant, subtoxic 

concentrations. The reference drugs diclofenac and troglitazone were tested in single and 

repeated dose exposure experiments. The effects on the cellular exometabolome were assessed 

by a combination of GCTOF-MS and PCA. We found that this method is well-suited for the 

sensitive assessment of drug induced metabolic changes and concluded that it can also be 

applied to any other alternative testing system. 

The assessment of long-term, chronic drug toxicity is still a major hurdle in preclinical drug 

development using in vitro test systems since primary hepatocytes have limited viability and 

functionality of about one week after isolation. However, chronic toxicity does not occur until 

long-term repeated dose applications of a drug at low concentrations.  

In Chapter 6, we assessed chronic diclofenac effects upon repeated dose exposure to primary 

human hepatocytes which were maintained in long-term serum free cultivation medium. 

Physiology, viability and drug metabolizing capacities of the cells were analyzed and acute (24 

h) and chronic (3 weeks) toxicity of diclofenac in the serum-free medium was measured and 

compared. Biotransformation of diclofenac as well as chronic drug-induced effects on the 

exometabolome was investigated. Repeated dose testing using functional in vitro systems 

combined with the developed metabolomics approach can improve drug safety evaluation as 

alternative to in vivo animal based methods. 

At the end of this thesis (Chapter 7), the main results, achievements and developed methods are 

summarized and critically discussed in general, whereas the specific results are discussed at the 

end of each chapter. The outlook provides information about potential future studies and 

projects and how to further use the results and strategies of this thesis.   
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Abstract 

As major research focus is shifting to 3D cultivation techniques, hollow-fiber bioreactors, 

allowing the formation of tissue-like structures, show immense potential as they permit 

controlled in vitro cultivation while supporting in vivo environment. In this study, we carried 

out a systematic and detailed physiological characterization of human liver cells in a 3D-hollow 

fiber bioreactor system continuously run for longer than two weeks. Primary human hepatocytes 

were maintained viable and functional over the whole period of cultivation. Both general 

cellular functions such as oxygen uptake, amino acid metabolism, substrate consumption and 

liver-specific functions like drug-metabolizing capacities as well as production of liver-specific 

metabolites were found to be stable for over two weeks. As expected, donor to donor variability 

was observed in liver specific functions such as urea and albumin production. Moreover, we 

show the maintenance of primary human hepatocytes in serum-free conditions in this setup. The 

stable basal Cytochrome P450 activity three weeks after isolation of the cells demonstrates the 

potential of such a system for pharmacological applications. Liver cells in the presented 3D 

bioreactor system could be eventually used not only for long-term metabolic and toxicity studies 

but also for chronic repeated dose toxicity assessment.   



CCHHAAPPTTEERR  22::  IINN--DDEEPPTTHH  PPHHYYSSIIOOLLOOGGIICCAALL  CCHHAARRAACCTTEERRIIZZAATTIIOONN  OOFF  PPRRIIMMAARRYY  HHUUMMAANN  HHEEPPAATTOOCCYYTTEESS  IINN  AA  

33DD  HHOOLLLLOOWW  FFIIBBEERR  BBIIOORREEAACCTTOORR    

2266    

  

2.1 Introduction 

Liver is a complex organ which performs many vital functions including metabolism and 

detoxification. Hepatocytes are highly polarized cells and their functions depend on 

extracellular contacts within the tissue. Primary hepatocytes in conventional monolayer culture 

lose their differentiated state and functions (Kono et al., 1997; Tuschl et al., 2009) rendering 

them unsuitable for long-term in vitro use. Cellular cultivation systems that ensure adequate 

functioning of hepatocytes will have a tremendous potential for the study of not only 

pathophysiology of liver but also for toxicological studies especially those involving 

pharmacological toxicity screening. Such cellular systems must allow 3D maintenance of liver 

cells so that the rearrangement of cells leading to the formation of microtissues is possible 

thereby providing a functional in vitro test system. Various approaches have been lately 

reported. The 3D bioreactors, originally developed for extracorporeal liver support as 

bioartificial liver (BAL) are a step forward towards in vivo simulation of tissues and even 

organs. A hollow fiber cartridge bioreactor with primary rat hepatocytes to evaluate the 

detoxification properties was reported for clinical purposes (Rodriguez et al., 2008). Others 

such as the HepatAssist model used cryopreserved primary porcine hepatocytes as cell system 

(Demetriou et al., 1995). The human hepatoma derived cell line C3A was used in the 

Extracorporeal Liver Assist Device (ELAD) (Ellis et al., 1996). A further BAL approach, the 

AMC-BAL (Academic Medical), developed in Amsterdam, Netherlands was applied clinically 

using primary porcine hepatocytes (Flendrig et al., 1999; van de Kerkhove et al., 2002; van de 

Kerkhove et al., 2003). Another system, the MELS-BAL (Modular Extracorporeal Liver 

Support), was developed at Charité Virchow clinic, Berlin, Germany (Sauer et al., 2002). 

Primary human liver cells from donor organs were charged into the bioreactor and the system 

used as BAL to a patient after primary graft non-function (PNF) following liver transplantation 

(aSauer et al., 2003b). A similar system was applied in clinical phase I using primary porcine 

liver cells. The cell compartment had a volume of about 600 ml and was charged with 1.8-

4.4x10
10

 porcine liver cells (Sauer et al., 2003a). Histological studies on similar bioreactor 

systems have been reported. The cell morphology and ultrastructure showed that liver cells 

aggregate to three dimensional, tissue-like structures forming bile-duct like channels within the 

bioreactor (Gerlach et al., 2003a; Schmelzer et al., 2009).  

Obviously, for detailed analytical characterization of human liver cells cultivated in a three 

dimensional manner, this bioreactor system is limited due to its large volume, requirement for 

high cell numbers, capacity and closed design. In addition, most of these reported studies were 
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carried out using animal material. It is now well known that toxicity is species specific (Xu et 

al., 2004; Uehara et al., 2008; Lauer et al., 2009) due to differences in metabolism and 

bioactivation. Therefore, for any in vitro application, a human relevant cell system is extremely 

important. Nevertheless, in case of hepatic cells, donor to donor variability as well as limited 

availability of the primary human hepatocytes (PHH) in sufficient numbers hamper comparative 

experimental work and replicate measurements at least in commercial bioreactor systems. This 

bottleneck has lead to many studies focusing on alternative primary cells such as the stem cell 

derived hepatocyte like cells  (Snykers et al., 2006; Shiraki et al., 2008), hepatic progenitor cells 

(Schmelzer et al., 2009; Stachelscheid et al., 2009) as well as differentiation of embryonic stem 

cells in 3D bioreactors (Gerlach et al., 2010b). Yet no ideal solution for this problem exists 

currently. Stringent control of primary cells quality and set up parameters in such a bioreactor 

will give a stable system which is suitable for long-term maintenance of hepatic culture and its 

characterization. The choice of characterizing parameters, such as initial viability of cells, 

medium composition, extracellular environment and oxygen, is very important. Liver specific 

functions are highly dependent on optimum oxygen concentration for metabolic output 

(Kidambi et al., 2009). Oxygen uptake rate measurement in well-mixed mammalian cell 

bioreactors was previously reported using liquid or gas phase balances (Eyer et al., 1995; 

Oeggerli et al., 1995) and was applied for culture medium optimization purposes (Deshpande et 

al., 2004). Moreover, the on line monitoring of oxygen was also shown to be a promising tool in 

terms of toxicity testing in hepatocyte cultures (Niklas et al., 2009; Noor et al., 2009; Beckers et 

al., 2010). In a perfused multiwell plate designed for 3D cultivation on scaffolds, oxygen 

consumption as well as oxygen transport was modeled and consumption rates were measured 

using optical probes, showing the possibility of long-term maintenance of liver cells on the basis 

of viability and immunostaining for albumin (Domansky et al., 2010). 

Despite these diverse but important studies, there is yet a need for a detailed physiological 

characterization of liver cells in 3D-hollow fiber bioreactors for its subsequent in vitro 

application. For analytical purposes, we used a miniaturized 3D-hollow fiber bioreactor 

(purchased from Stem Cell Systems, Germany) with a cell compartment volume of 2 ml.  

In order to characterize and improve the bioreactor model, we systematically investigated a 

whole range of parameters such as the hepatic metabolic functionality as well as other metabolic 

parameters. To show long-term stability and functionality of the system, we show liver-specific 

parameters i.e. the production of urea and albumin in three bioreactor runs with PHH of 

different donors. Because of high donor to donor variability, we present one stable 3D 

bioreactor with cells from a single donor in detail. Consumption of different substrates, amino 
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acid metabolism and liver-specific urea and albumin production in the 3D bioreactor were 

monitored. Aspartate aminotransferase and lactate dehydrogenase activities as parameters for 

cell viability were measured. Drug metabolizing capacity was determined by CYP activity 

assay. Moreover, the miniaturized 3D bioreactor system was modified to allow on line 

respiration measurements as an additional indicator of viability in situ. Thus the viability and 

metabolic state of the PHH was monitored kinetically.  We carried out a detailed comprehensive 

physiological study for the evaluation and optimization of this promising 3D cell culture 

technique using the “gold standard” i.e. the primary human hepatocytes in an attempt to extend 

its use for other applications such as human relevant screening of drug candidates during 

preclinical drug development especially for long-term toxicity.  
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2.2 Materials and Methods 

2.2.1 Materials 

Williams medium E with Glutamax, HEPES, sodium pyruvate and MEM were purchased from 

Gibco (Paisley, Scotland, UK). Fortecortin was purchased from Merck (Darmstadt, Germany) 

and human Insulin from Sanofi Aventis (Frankfurt am Main, Germany). Percoll and fetal calf 

serum (FCS) was purchased from PAA (Pasching, Austria). Bovine serum Albumin (BSA) was 

from Sigma-Aldrich (St. Louis, USA). Rat tail collagen was prepared according to a published 

protocol (Rajan et al., 2006). Hepatocyte transport solution was purchased from Hepacult 

(Regensburg, Germany). Heparmed, a Williams medium E based, 3D cell culture medium, was 

from Biochrom AG, Berlin, Germany. This medium was supplemented with insulin (20 IU/l), 

transferrin (5 mg/l) and glucagon (3 µg/l), all from Biochrom AG, Berlin, Germany. For 

Cytochrome P450 activity assays, midazolam was purchased from Cerriliant (Wesel, Germany). 

Bupropion, phenacetin, diclofenac and all other chemicals and solvents of reagent grade were 

purchased from Sigma-Aldrich, Steinheim, Germany, unless otherwise specified. 

2.2.2 3D bioreactor system 

The 3D bioreactor (Stem Cell Systems GmbH Berlin, Germany) consists of three interwoven 

hollow fiber capillary bundles which form four different compartments integrated into a 

polyurethane housing. Two bundles are made of hydrophilic polyethersulfone membranes with 

a pore size of 0.5 µm (Membrana, Wuppertal, Germany) and serve for medium supply. These 

capillary bundles are perfused as depicted in figure 2-1b providing decentral convective mass 

exchange leading to small solute gradients in the cell compartment. The third bundle consists of 

hydrophobic multilaminate hollow fiber membranes (MHF, Mitsubishi, Tokyo, Japan) for gas 

supply. However, in this study, these fibers were filled with sterile water and the oxygen supply 

was ensured using a different system that allowed for controlled oxygen concentration in the 

medium. This was necessary for the measurement of oxygen uptake rates. In detail, a small, gas 

permeable silicone tubing (inner diameter 1.47 mm, wall thickness 0.5 mm; Helix Medical, 

Carpinteria, USA) was integrated into the system and placed into a gassing unit in front of the 

3D bioreactor. Incoming medium was saturated with oxygen by diffusion of air through the 

silicone tubing. Moreover, 5% CO2 was also adjusted using this gassing system. The tubing 

system was equipped with two oxygen sensors (PreSens, Regensburg, Germany), one in front of 

the bioreactor and one behind (figure 2-1a).   
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Figure 2-1: a) Schematic representation of 3D bioreactor system. Two pumps for recirculation and 

feed are integrated in the perfusion system. Sampling is possible via sample port and effluent 

medium. Medium gassing unit was added in the recirculation system allowing oxygenation of 

medium using gas-permeable silicone tubing. Oxygen sensors in front and behind the 3D bioreactor 

as indicated were used for the estimation of oxygen uptake rates. The bioreactor is divided into a 

capillary system for medium supply and removal and an extra-capillary system serving as cell 

compartment. cr = recirculation concentration; Fr = recirculation flow rate; cO2 = oxygen 

concentration; ce = effluent concentration; Fm= fresh medium flow; cm = fresh medium 

concentration b) Hollow-fibers arrangement within the 3D bioreactor, light grey: medium 

capillaries, dark grey: gas capillaries (not used in our study and filled with sterile water). The 

dashed line indicates cross-section for figure 2c c) Cross section of cell compartment and capillary 

layers of the 3D bioreactor showing nutrients and oxygen exchange locally. Cells are lodged 

between the capillaries. 

The bioreactor polyurethane housing is equipped with separate access ports for each individual 

capillary bundle. One additional port provides access to silicone rubber tubes (inner diameter 1 

mm, AMT, Düsseldorf, Germany) distributed throughout the extra-capillary compartment in 
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which cells are maintained. This port is used for cell inoculation. The cell compartment has a 

volume of 2 ml. Figure 1c depicts the cell compartment and capillary layers. The bioreactor is 

connected to a perfusion system and is enclosed in a Plexiglas chamber providing a constant 

external temperature of 37.5°C. The perfusion system consists of a recirculation pump for 

medium perfusion, a feed pump for fresh medium supply and a flow regulator for gas supply. 

The whole system including tubing and connections has a volume of about 30 ml. Bioreactor 

and tubing system were assembled in sterile conditions under a laminar flow workbench. After 

assembly, the bioreactor was connected to the perfusion system and rinsed with PBS. Schemes 

of the 3D bioreactor system, the capillaries and the cell compartment are shown in figure 1a, b 

and c respectively. Before cell inoculation, the PBS was replaced by culture medium 

supplemented with 2.5% FCS and equilibrated for 24 hours. 

2.2.3 Primary human hepatocytes and 3D bioreactor 

Hepatocytes from resected liver tissues from patients with primary and secondary tumors were 

used. Tissue collection was done according to the institutional guidelines and with the patient’s 

written consent. The liver tissues used for hepatocyte isolation were selected under stringent 

control with the surgical resection area left untouched. Chosen tissue material was regularly 

checked for small satellite tumors and the isolation was aborted upon finding these. Therefore, 

only tumor free tissue was used on the basis of visual and physical check up. Hepatocytes were 

isolated using a two-step collagenase P (from Clostridium histolyticum) perfusion technique, 

followed by a Percoll density gradient centrifugation (Nussler et al., 2009). The purity and 

viability was determined under light microscopy using trypan blue exclusion. The non-

parenchymal contribution was estimated to be 5-10% from cell size and shape under the 

microscope. 90-95% cells were large polygonal binucleated hepatocytes. 

Prior to inoculation into the bioreactor, cells were again counted and viability assessed using 

trypan blue exclusion method. 1.0-1.1x10
8
 viable PHH were re-suspended in 7 ml Heparmed 

medium supplemented with 2.5% FCS and transferred to a 10 ml syringe which was afterwards 

connected to the cell inoculation port of the bioreactor via Luer-Lok connection. Cell 

suspension was injected into cell compartment slowly and 5 ml culture medium was injected 

afterwards bringing all cells into the cell compartment. Heparmed was used as cultivation 

medium during the whole bioreactor run. After cell inoculation, medium was continuously 

circulated through the bioreactor system with a recirculation rate of 7 ml/min. This flow rate 

was chosen to ensure retention of the medium in the 3D bioreactor for the measurement of the 

oxygen differences between the bioreactor in- and outlet and at the same time avoiding oxygen 
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limitation. Fresh medium was fed into the system with a feed rate of 1.5 ml/h resulting in an 

identical effluent flow rate.  However, during Cytochrome P450 activity assays no fresh 

medium was supplied. The bioreactors were switched to serum free conditions after day 9-10. 

Daily samples were taken via sample port and effluent medium. 

2.2.4 Oxygen consumption 

Oxygen partial pressures were monitored and measured automatically using the oxygen sensors 

connected to a 4-channel fiber optic meter (OXY-4) with Oxy4v2-software (PreSens, 

Regensburg, Germany). During cultivation, measurements were carried out in time intervals of 

5 minutes. Data was obtained as % air saturation or dissolved oxygen values. Oxygen uptake 

rates were calculated using the following equation: 

, ,( – )
2 2 2r O in O out r OOUR F c c F c  

where OUR is the oxygen uptake rate, Fr represents the medium recycle flow rate through the 

bioreactor (7 ml/min), ,2O inc
 
and

  ,2O outc
 
are the dissolved oxygen concentrations in front and 

behind the bioreactor respectively (figure 1a). 

2.2.5 AST and LDH activities 

The activity of liver-specific aspartate aminotransferase (AST) in the culture supernatant was 

determined using a kinetic UV assay kit (Hitado, Möhnesee-Delecke, Germany) according to 

manufacturer’s instructions. The activity of lactate dehydrogenase (LDH) in the culture 

supernatant was determined using a colorimetric enzymatic assay kit (Cytotoxicity Detection 

Kit; Roche, Grenzach, Germany). For both a dilution series of standard serum (NobiCal-

MUlti, Hitado, Möhnesee-Delecke, Germany) was measured in parallel for quantification. 

2.2.6 Quantification of substrates, organic acids and amino acids 

D-glucose, D-galactose, D-sorbitol and L-lactate concentrations in recirculation and effluent 

samples were determined using routinely utilized enzymatic kits (R-Biopharm, Darmstadt, 

Germany). The assays were performed according to the instructions of the manufacturer. Amino 

acids were quantified by high performance liquid chromatography (HPLC, Agilent 1100, 

Agilent Technologies, Germany) equipped with a C18-RP-column (Gemini  5uC18 110°A, 

150x4.6mm, Phenomenex, Aschaffenburg, Germany) and with automated on line derivatization 

(Kromer et al., 2005). 40 mM NaH2PO4 (pH=7.8) was used as eluent A and a mixture of 
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acetonitril-methanol-water (45:45:10) was used as eluent B in a gradient elution. Flow rate was 

adjusted to 1 ml/min; the column temperature was set at 40°C. Peaks were detected using a 

fluorescence detector at 340 nm excitation and 450 nm emission wavelengths. -amino butyric 

acid was used as internal standard for quantification.  

2.2.7 Urea and albumin  

Urea was quantified in recirculation and effluent samples using a colorimetric enzymatic test kit 

(Hitado, Möhnesee-Delecke, Germany). Albumin concentration was determined via an enzyme-

linked immunosorbent assay (ELISA) (Albuwell II; Exocell, Philadelphia, USA). Both assays 

were performed according to manufacturer’s instructions. 

2.2.8 Cytochrome P450 activity assay 

The functional enzyme activity test for CYP1A2, CYP2B6, CYP2C9 and CYP3A4 was 

performed in a cassette approach based on probe reactions. Samples were taken until 6 hours 

after injection. The system was kept in recirculation mode without feeding during the CYP 

activity assays. After 6 hours feed mode was adjusted. The probe substrates, their test 

concentrations and the products used for the quantification of the enzyme reactions are 

summarized in table 2-1.  
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Table 2-1: Substrates, products and metabolizing enzymes used for Cytochrome P450 activity assay 

Substrate Product Enzyme 
c (Substrate) 

[µM] 

LC/MS-MS 

transition 

reaction 

[m/zm/z] 

Phenacetin Acetaminophen CYP1A2 26 152.1  65.0 

Bupropion OH-bupropion CYP2B6 100 256.2 139.0 

Diclofenac 4-OH-diclofenac CYP2C9 9 312.1  231.0 

Midazolam 1-OH-midazolam CYP3A4 3 342.1  203.0 

2.2.9 Quantification of metabolites by LC-MS/MS  

The HPLC system consisted of an MS Plus pump (Surveyor) and an AS Plus auto sampler 

(Surveyor). Mass spectrometry was performed on a TSQ Quantum Discovery Max triple 

quadrupole mass spectrometer equipped with either a heated electrospray (H-ESI) interface (for 

analysis of hydroxybupropion, 1-hydroxymidazolam and 4-hydroxydiclofenac) or an APCI 

probe (for analysis of acetaminophen), respectively, connected to a PC running the standard 

software Xcalibur 2.0.7 (Thermo Fisher Scientific, USA). The flow rate was set to 300 µl/min 

and the compounds were separated on an Uptisphere OBD, 3 µm, 100x2.1 mm (Interchim, 

France) analytical column with a pre-column (Uptisphere OBD, 3 µm, 10x2.0 mm, Interchim, 

France). Gradient elution with acetonitrile/0.1% formic acid as organic phase (A) and 10 mM 

ammonium formate/0.1% formic acid as aqueous phase (B) was performed using the following 

gradient: % A (t (min)): 5(0-0.2)-97(1.8-4.3)-5(4.5–7.0). The MS-MS identification of 

characteristic fragment ions was performed using a generic parameter set: ion source 

temperature 350°C, capillary voltage 3.8 kV, collision gas 0.8 mbar argon, spray and sheath gas, 

20 and 8 (arbitrary units), respectively. The stable product ions with the highest S/N ratio were 

used to quantify the analyte in the selected reaction monitoring mode (SRM). The transitions 

used for MS/MS analysis are given in table 2-1.  
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2.2.10 Calculation of metabolite consumption/production rates 

Following equation was used for the calculation of substrate consumption and product 

formation rates:  

( – )r
r m m e

dc
V F c c r

dt
 

, ,–
– ( )

r tx r tx 1
r m m e

c c
r V F c c

t
 

where r = specific production/consumption rate; Vr = recirculation volume; tx = timepoint x [d]; 

tx-1 = timepoint x – 1 [d]; Fm fresh medium inflow rate (1.5 ml/hr); cr, cm and ce represent the 

concentration of a respective metabolite in recirculation, fresh and effluent medium. 
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2.3 Results 

2.3.1 Long-term stability of the 3D bioreactor  

Viability of PHH before inoculation into the bioreactor was assessed by trypan blue exclusion 

method. The viability of the inoculated cells from three donors was 62, 72 and 81% for the 

respective bioreactor runs. 1.0 - 1.1×10
8
 viable cells were inoculated into the 3D bioreactor. The 

3D bioreactors were run for 3-4 weeks. Liver specific functions i.e. urea and albumin 

production were monitored and quantified for two weeks (figure 2-2a and b) to determine long-

term stability of the PHH within the bioreactor. The three time points day 1, 6-7 and 14 were 

chosen because no system disturbances such as CYP 450 activity assay were carried out around 

these days. 
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Figure 2-2: Liver specific parameters of primary human hepatocytes from three different donors 

cultivated in 3D bioreactors a) Urea production rates at days 1, 6-7 and 14 for BR 01–03, error bars 

indicate standard deviation (+SD, n=3) b) albumin production rates at days 1, 6-7 and 14 for BR 

01–03, error bars indicate standard deviation (+SD, n=2) c) mean urea production in three 

bioreactor runs during two weeks of cultivation, normalized to starting value (day 3-4). Error bars 

indicate standard deviation (+SD, N=3, n=3) d) mean albumin production in three bioreactor runs 

during two weeks of cultivation normalized to starting value (day1). Error bars indicate standard 

deviation (+SD, N=3, n=2). 

It was observed that the three bioreactors (BR 01-03) produced urea and albumin over two 

weeks of cultivation, but with high differences in absolute values between the single runs. The 

differences in viability of the inoculated cells, as well as the individual phenotypes and case 

history of the respective patient lead to high variance in cellular performance. Normalization to 

the starting values (day 3 and 4 for urea, day 1 for albumin), as seen in figure 2-2c and d, 

indicates long-term viability of PHH in the 3D bioreactors. For urea production, days 3 and 4 

were chosen as starting values for normalization since during first two days of inoculation high 

extracellular urea production was observed mostly due to cell death releasing enzymes in the 

medium. Because of high donor to donor differences, we present in detail a single bioreactor 

(BR 03) including measurements for oxygen uptake rates, viability parameters, 



CCHHAAPPTTEERR  22::  IINN--DDEEPPTTHH  PPHHYYSSIIOOLLOOGGIICCAALL  CCHHAARRAACCTTEERRIIZZAATTIIOONN  OOFF  PPRRIIMMAARRYY  HHUUMMAANN  HHEEPPAATTOOCCYYTTEESS  IINN  AA  

33DD  HHOOLLLLOOWW  FFIIBBEERR  BBIIOORREEAACCTTOORR    

3388    

  

consumption/production rates, amino acid metabolism and CYP activity in PHH in this 

bioreactor. 

 2.3.2 Viability parameters 

Oxygen measurements showed significant differences between bioreactor in- and outlet soon 

after inoculation indicating rapid oxygen consumption by the cells in the presented bioreactor 

(figure 2-3).  

 

Figure 2-3: Mean oxygen uptake rates in primary human hepatocytes in a 3D bioreactor system 

monitored for 21 days after inoculation. 1.1x10
8
 viable cells were inoculated in the bioreactor. 

Measurements were carried out at intervals of 5 minutes. Error bars indicate standard deviation of 

daily mean values (total of 288 measurements per day). 

 

At cultivation day 1, specific oxygen uptake rate reached a mean value of 9.4 µmol/h which 

stabilized to a nearly constant value of about 3 µmol/h at day 4 until day 21. 

 As further viability parameters, liver-specific AST activity as well as LDH activity in effluent 

samples was measured for two weeks (figure 2-4 a and b).  
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Figure 2-4: a) AST activity b) LDH activity, both measured in effluent samples during two weeks of 

cultivation of primary human hepatocytes in single 3D bioreactor inoculated with 1.1x10
8
 cells. M = 

medium w/o FCS; M* = medium supplemented with 2.5% FCS. Error bars indicate standard 

deviation of duplicate measurements. 

The culture medium shows an intrinsic AST activity of 14 U/l when supplemented with 2.5% 

FCS.  The AST activity was highest at cultivation day 1 (1053 U/l) after inoculation and 

decreased afterward. At day 8, basal activity levels due to FCS, were reached in the bioreactor.  

The LDH activity was highest (45 U/l) on the first day of cultivation which decreased 

continuously to the basal level (2.5% FCS) within a few days. Upon switching to FCS free 

conditions (day 9), both AST and LDH activities further decreased to non detectable levels 

(figure 2-4 a and b).  

2.3.3 General cellular parameters 

General cell functions including substrate consumption (medium contained glucose, galactose 

and sorbitol) and lactate production at day 1, 7 and 14 are depicted in figure 2-5.  
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Figure 2-5: General cellular parameters of primary human hepatocytes cultivated in single 3D 

bioreactor inoculated with 1.1x10
8
 cells a) glucose consumption rates b) galactose consumption 

rates c) sorbitol consumption rates d) lactate production rates; at cultivation days 1, 7 and 14 

respectively. Rates were calculated from recirculation and effluent samples. Error bars indicate 

standard deviation (+SD, n=3). 

At the first cultivation day, glucose was released by the cells with a secretion rate of 

110 µmol/d. At cultivation day 7, glucose was net consumed at a rate of 45 µmol/d which 

decreased to a value of 13 µmol/d at cultivation day 14. The glucose isomer galactose as well as 

sorbitol, the polyolform of glucose, were both consumed in the 3D bioreactor during cultivation. 

Concentrations of lactate were determined, showing a lactate production rate of 197 µmol/d at 

the first cultivation day, whereas 18 µmol and 70 µmol lactate were produced at day 7 and 14 

respectively. For the investigation of amino acid metabolism, 19 proteinogenic amino acids 

(contained in the culture medium) as well as ornithine were quantified in bioreactor 

recirculation samples. Table 2-2 summarizes the specific rates of all investigated general 

metabolites.  
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Table 2-2:  Metabolite uptake and secretion rates in µmol/d +SD (n=3). Negative values indicate net 

release.  

Metabolite day 1 day 7 day 14 

Arginine 302.40 ±0.55 24.68 ±4.96 16.63 ±1.13 

Histidine 70.75 ±3.47 15.93 ±2.16 13.77 ±0.79 

Aspartate 63.89 ±10.13 16.38 ±3.06 10.42 ±1.34 

Asparagine 28.71 ±5.33 11.71 ±3.98 10.52 ±1.22 

Glycine 26.89 ±5.45 8.65 ±1.10 4.56 ±0.11 

Proline 14.41 ±1.03 6.40 ±1.19 1.84 ±0.05 

Phenylalanine 12.00 ±1.44 5.97 ±1.90 2.76 ±0.46 

Leucine 6.85 ±2.66 3.76 ±1.86 4.76 ±0.85 

Glutamine 2.95 ±0.84 3.64 ±1.45 -2.36 ±0.60 

Tryptophan 0.20 ±1.28 0.82 ±0.55 1.70 ±0.42 

Lysine -0.11 ±1.85 0.07 ±1.23 -0.43 ±0.22 

Methionine -2.76 ±1.15 -0.85 ±0.72 -0.96 ±0.29 

Isoleucine -4.23 ±2.50 -0.49 ±1.73 -0.46 ±0.08 

Valine -7.66 ±3.80 -3.66 ±2.26 -3.25 ±0.17 

Threonine -8.50 ±4.22 -1.25 ±2.76 -1.27 ±0.16 

Serine -10.18 ±4.30 -2.51 ±2.07 -2.36 ±0.17 

Glutamate -22.34 ±8.13 6.04 ±2.14 5.32 ±0.87 

Alanine -22.48 ±2.06 -2.62 ±1.14 -0.41 ±0.06 

Tyrosine -53.48 ±9.28 -19.87 ±1.51 -28.10 ±3.24 

Ornithine -75.3 ±4.31 -5.15 ±1.32 -1.44 ±0.47 

Glucose -110.33 ±2.24 44.78 ±12.28  12.60 ±1.93 

Galactose 59.73 ±11.28 15.84 ±0.13 33.94 ±10.15 

Sorbitol 142.32 ±22.62 34.35 ±4.20 28.02 ±5.01 

Lactate -196.85 ±31.59 -17.93 ±0.59 -70.20 ±14.18 
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A net consumption of 9 proteinogenic amino acids from culture medium was found at 

cultivation day 1. Arginine was found to be consumed at a highest rate of 302 µmol/d. Ornithine 

was produced at a rate of 75 µmol/d. Aspartate, asparagine and histidine were also taken up 

whereas glutamate, alanine  and tyrosine were net produced at day 1. On day 7, arginine 

consumption decreased tremendously to a rate of 25 µmol/d. In parallel, ornithine production 

also decreased. Overall, a similar amino acid profile was observed from day 7 and onwards. For 

methionine and tryptophan, no significant net uptake or release could be detected during 

cultivation. 

2.3.4 Liver specific drug-metabolizing function 

To assess liver specific drug-metabolizing function, CYP 450 activity assay was performed at 

cultivation day 5 and 18, i.e. metabolizing capacities at the beginning and at the end of the 

culture. Activities of CYP2B6, CYP1A2, CYP2C9 and CYP3A4 in terms of product formation 

rates are shown in figure 2-6.  
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Figure 2-6: Activity of CYP 450 isoenzymes in a single 3D bioreactor a) at cultivation day 5 b) at 

cultivation day 18. Activity was determined by the formation rate of 1-OH-midazolam (CYP3A4), 

4-OH-diclofenac (CYP2C9), OH-bupropion (CYP2B6) and acetaminophen (CYP1A2). Assay 

duration was 6h. 

Rates of formation of the investigated CYP isoform products after 6 hours assay time and the 

comparison of activities between cultivation day 5 and 18 are shown in table 2-3.  

Table 2-3: Formation of specific CYP products at the end of assay (6h) at cultivation day 5 and 18 

showing % remaining activities. 

 pmol formation   

CYP 450 isoform day 5 day 18 remaining activity [%] 

CYP2C9 842 577 69 

CYP3A4 63 9 13 

CYP2B6 25 22 86 

CYP1A2 -* -* - 

*product substrate of CYP3A4 and CYP2C9 

The comparison between day 5 and day 18 shows remaining activities of 13%, 69% and 86% 

for the respective CYP isoforms almost 3 weeks after isolation. 
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2.4 Discussion 

In-depth characterization of PHH in a miniaturized 3D hollow fiber bioreactor was carried out 

in this study monitoring viability as well as general cellular and liver specific functions for long-

term cultivation. Three individual 3D bioreactors using cells from different donors were 

compared. Urea, as marker for intracellular ammonia detoxification, was steadily produced in 

the 3D bioreactors with highest rates at the start of the culture. The high urea production during 

first two days of cultivation is mainly due to the release of intracellular urea through damaged 

cell membranes during inoculation as well as the extracellular production of urea by arginase I 

which was accompanied by the production of ornithine. After this initial phase, the average urea 

production in three bioreactors was quite constant with donor to donor variability resulting in 

large standard deviations. Since the viability (ranging from 62% - 81%) at inoculation into the 

bioreactors was different for each run, it is quite difficult to compare all measured parameters 

due to high variations in values for each of the three bioreactors. We therefore focus on a single 

bioreactor with an initial viability of 72%, which was observed to be sufficient for a stable 

bioreactor run as shown by constant oxygen uptake rates. In this bioreactor constant urea 

production rates were observed during 2 weeks of cultivation. An in vivo urea production of 260 

µmol/d/10
8
 cells was previously reported (Bhatia et al., 1999). In an in vitro two-dimensional 

culture, a urea production of 15 ± 7.5 µmol/d/10
8
 cells after 3 days of isolation and 6 ± 8 

µmol/d/10
8
 cells after 17 days of isolation was recently reported using cells of 6 different donors 

(Lubberstedt et al., 2010). In the presented study, average urea production rates of 44 ±21 

µmol/d/10
8
 inoculated cells at cultivation day 4 and 18 ± 7 µmol/d/10

8
 inoculated cells at 

cultivation day 14 in the 3D bioreactor (N=3) lie between in vivo and 2D-in vitro values. 

However, the inoculated cell number in the 3D bioreactor system which was used for 

normalization does not represent the actual number of living cells within the bioreactor because 

of initial certain loss of cells due to inoculation. As such, specific urea production per cell is 

probably higher than the above calculated values and therefore even closer to physiological in 

vivo situation. Albumin is produced in vivo at a rate of 4.8 – 7.2 mg/d/10
8
 cells (Bhatia et al., 

1999). Compared to production rates in presented 3D bioreactor system, this in vivo rate is 30-

500 times higher, depending on cultivation time and cell performance. Again, the inoculated 

cell number used for normalization does not reflect actual number of viable cells. However, the 

low calculated albumin production rates is probably due to the binding of the protein to the 

capillaries within the 3D bioreactor resulting in its retention in the cell compartment, so that 

lower concentrations were observed in the ex-bioreactor samples. This inherent limitation of the 

presented bioreactor system poses a problem in proteomics based assays.  
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In addition, reported 3D bioreactor cultivation systems often lack a possibility of direct cell 

viability monitoring. Commonly, this is done by indirect methods such as calculation of 

substrate consumption or LDH release. Measuring oxygen concentrations with optodes is a 

sensitive and non-invasive tool not only for viability assessment but also for respiration studies 

in terms of metabolic state of the cells. We demonstrate the integration of oxygen concentration 

monitoring by modifying the system and establishing a method of on-line oxygen monitoring 

allowing in situ estimation of cell viability over the whole period of 3D bioreactor cultivation. 

Figure 3 depicts the oxygen uptake rate in a single bioreactor. At the first day of cultivation, the 

highest oxygen consumption was observed. This indicates a hypermetabolic state during culture 

equilibration phase. In this phase, cell attachment and spreading takes place which strongly 

depends on oxygen supply (Rotem et al., 1994). The energy required for this cellular process 

leads to high oxygen uptake rates in this phase. During cultivation, constant oxygen 

consumption was recorded from day 4 until day 21. Our results show that exact monitoring of 

oxygen is very important for gaining insights on the actual physiological state of the cells during 

different phases of cultivation and for identifying changes in metabolic activity due to 

physiological or environmental challenges, e.g. exposure to a drug or toxic compound. The 

continuous monitoring of oxygen upon and during exposure to a test compound will also allow 

determining the kinetics of a toxic response. This in turn is of extreme usefulness when a long-

term response is evaluated. As the presented bioreactor system can be run in recirculation and 

feed mode, this allows the possibility of repeated dose testing which more closely reflects the in 

vivo situation when compared with other systems. Moreover, since mitochondrial effects are 

one of the major causes of idiosyncratic hepatotoxicity (Labbe et al., 2008), the measurement of 

respiration is assumed to provide valuable help in identifying toxicity potential of test 

compounds that affect the mitochondria resulting in altered respiratory chain activity. Regarding 

AST and LDH enzyme activity, in the same bioreactor, as indicator of cell viability, inoculation 

of the liver cells into the bioreactor caused a certain loss of viable cells resulting in activity 

maxima at the first cultivation day. After the equilibration phase of 4-5 days, activities of both 

enzymes were at low levels corresponding to the basal activity of medium containing 2.5% 

FCS. The switch to serum-free conditions at cultivation day 9 further decreased these activities 

showing constant viability of the liver cells for the rest of the cultivation period. It was observed 

(data not shown) that complete removal of FCS from the bioreactor is gradual. The proteins in 

FCS seem to bind within the bioreactor system and could be detected days after the system is 

switched to serum free medium. This again poses a challenge to proteomics based studies. 
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As general cellular functional parameter, specific consumption rates of three substrates 

(glucose, galactose and sorbitol) as carbon sources were analyzed. Glucose was released 

extensively at the first cultivation day. A release of glucose soon after isolation has been 

previously reported (Pless et al., 2006). It can be explained by the release of intracellular 

glycogen in form of monomeric glucose. The other two substrate (galactose and sorbitol) 

consumption rates were highest at day 1. Correspondingly, lactate production reached its 

maximum on the first day. These high substrate consumption and product formation rates also 

indicate a hypermetabolic state at the beginning of the culture. At day 7 and 14, a low 

consumption of glucose as well as consumption of galactose and sorbitol as additional energy 

sources was observed. Hereby, the uptake of sorbitol is insulin-independent and it was recently 

shown that both galactose and sorbitol consumption could be used for the assessment of cell 

performance in liver bioreactors (Gerlach et al., 2010a). 

The quantification of amino acids reveals a net uptake of 9 proteinogenic amino acids by the 

PHH at cultivation day 1. Arginine showed the highest consumption rate of all amino acids. 

This can partly be explained by extracellular degradation of arginine by arginase I which 

converts arginine to urea and ornithine (Peters et al., 2008). The high ornithine production 

measured at day 1 supports this assumption. The enzyme is released into the extracellular 

environment after cell death during the inoculation procedure. This is further supported by AST 

and LDH activity measurements. The decrease in both enzyme activities to the basal-level of the 

medium control and finally to almost non-detectable values shows that after initial stress, the 

viability of the surviving inoculated cells is ensured during the investigated cultivation time of 

two weeks. However, arginine is an important precursor not only for protein synthesis but also 

for several intracellular pathways. It plays a major role in urea cycle as well as in creatine 

synthesis and can also be converted to nitric oxide (NO) by inducible NO synthase (iNOS). NO 

is a signaling molecule involved in a wide range of biological processes, both protective and 

toxic. In liver cells, NO can carry out a cytoprotective effect in vitro by the inhibition of 

caspases (Diesen and Kuo, 2009).  It was also reported that NO generation is stimulated by 

shear stress (Ulker et al., 2010), which also occurs during 3D bioreactor inoculation. This 

increased cellular need for arginine as precursor could also contribute to the high arginine 

uptake rate during equilibration phase. The high aspartate consumption at day 1 can be 

explained by AST activity in the 3D bioreactor after cell inoculation. For cultivation day 7 and 

14, the overall pattern of amino acid metabolism was constant. This shows again the 

functionality and stable phenotype of the PHH during longer cultivation times. Further analyses 
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focusing on metabolic flux analysis to get a more detailed insight into the amino acid 

metabolism in primary hepatocytes in the 3D bioreactor system is underway in our laboratory. 

CYP activity assay shows that all investigated CYP 450 isoforms were active at cultivation day 

5 including CYP3A4, the major isoform involved in the metabolism of a large number of 

xenobiotics in the liver. At cultivation day 18 (day 20 after cell isolation), CYP2C9, CYP3A4 

and CYP2B6 basal activities, i.e. without induction, could still be detected. Their respective 

activities compared to day 5 were 69% for CYP2C9 and 14% for CYP3A4 after 6 hours of 

assay. CYP2B6 activity after 6 h assay time at day 18 was 86% of day 5 activity. For CYP1A2, 

no activity could be detected after 18 days of cultivation. It should be noted that the product of 

the used substrate of CYP1A2 (Phenacetin) is itself a substrate for other multiple CYP enzymes. 

Figure 6 shows a rapid formation of the CYP1A2 product within 30 minutes of the assay. The 

product concentration goes down after one hour of incubation. It can be assumed that the 

product formed (Acetaminophen) is rapidly metabolized by other CYP enzymes as well as the 

phase II enzymes. If this is the case, then the CYP1A2 activity at day 18 of cultivation in the 

bioreactor is probably low and the product formed is rapidly metabolized resulting in 

undetectable level of CYP1A2 enzyme activity. Nonetheless, the possibility for long-term 

studies could be proved by showing CYP 450 activity even after 18 days of cultivation within 

the 3D bioreactor system. 

In this study, we have shown the long-term cultivation of PHH in a 3D hollow fiber bioreactor 

system. This is a useful alternative to conventional 2D culture ensuring hepatocyte functionality 

and therefore better assay system. General cellular and liver specific parameters were stable 

after equilibration phase for almost 3 weeks. Quantification of amino acids gave a good insight 

into cellular metabolism and extracellular events which could be further supported in future by 

metabolic flux analysis. On line oxygen measurements improved the estimation of system 

performance as well as gave an opportunity of in situ kinetic viability assessment. This could be 

very useful for kinetic toxicity studies in pharmacological screening. In addition, the possibility 

to precisely monitor and control oxygenation will be of use concerning the metabolizing 

capacity as well as the polarity of the hepatocytes.  Activity of CYP enzymes could be detected 

at cultivation day 18. The feasibility of using the 3D hollow fiber bioreactor for long-term 

cultivation and application is demonstrated in the presented study. The bioreactor is a closed 

system, therefore a modification allowing visual microscopic inspection of cells during 

cultivation would be an additional advantage. Further miniaturization of the bioreactor would 

allow working with lesser number of cells which is a critical issue with regard to availability of 

human primary material. This would also allow including replicates from a single donor for 
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comparison. Donor to donor variability could also be assessed when the initial viability of cells 

at inoculation is similar. In the presented study, the aim was to run the bioreactor for a 

maximum of time. The histological studies at the end of cultivation (more than 3 weeks) were 

not carried out since these do not reflect the fitness of cells during the first two weeks of 

cultivation when all characterizing assays were carried out. However, previous studies have 

shown the formation of tissue like structures within these 3D bioreactors. As suggested further 

miniaturization would allow running several parallel bioreactors of which some could be used 

for histological analyses after certain time points during cultivation. 

2.5 Conclusion 

The 3D bioreactor system described in this study could be used for 3D cultivation of liver cells 

allowing cultivation and maintenance of the cells for physiological, pharmacological and 

toxicological applications. Further miniaturization will improve the throughput. It can especially 

play an important role in the assessment of long-term and repeated dose toxicity. In addition, the 

system can be adapted to any other cell/organ type culture for characterization of biological 

and/or pathophysiological parameters.  
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Abstract 

Three-dimensional cultivation of human cells is promising especially for long-term maintenance 

of specific functions and mimicking in vivo tissue environment. However, direct viability 

assessment is very difficult in such systems. Commonly applied indirect methods such as 

glucose consumption, albumin or urea production are greatly affected by culture condition, 

stress and time of cultivation and may not reflect the viability of the cells. In this study we 

established a real-time in situ viability assay namely; resazurin assay, in a 3D hollow-fiber 

bioreactor using human liver cells. Resazurin assay is based on the conversion of resazurin to a 

fluorescent dye by cytoplasmatic and mitochondrial enzymes. We show that the resazurin 

reagent in concentrations used in this study is non-toxic and could be rapidly removed out of the 

system. We optimized the assay on HepG2 cells and tested it with primary human hepatocytes. 

Moreover, we maintained primary human hepatocytes in the 3D bioreactor system in serum-free 

conditions and also assessed viability before and after the exposure to amiodarone using the 

resazurin assay. It was shown that this approach is applicable during long-term cultivation of 

cells in bioreactors under different conditions and can moreover be applied to pharmacological 

studies, e.g. investigation of chronic drug effects in such 3D bioreactors.  



CCHHAAPPTTEERR  33::  RREEAALL--TTIIMMEE  IINN  SSIITTUU  VVIIAABBIILLIITTYY  AASSSSEESSSSMMEENNTT  IINN  33DD  BBIIOORREEAACCTTOORR  WWIITTHH  HHUUMMAANN  LLIIVVEERR  

CCEELLLLSS  UUSSIINNGG  RREESSAAZZUURRIINNEE  AASSSSAAYY  DDUURRIINNGG  DDRRUUGG  EEXXPPOOSSUURREE    

5511    

  

3.1 Introduction 

The cell viability is routinely assessed during maintenance and testing of cell culture systems. A 

palette of established and validated assays based on diverse endpoints is available. Examples 

include assays such as the MTT and WST-1 assays which are based on metabolic activity, 

Trypan-Blue exclusion method which relies on membrane integrity and Sulforhodamine B and 

crystal violet assays that quantify protein content among many others. Other non-invasive 

methods such as measurement of respiration in 2D multiwell plates equipped with oxygen 

sensors have been reported to show high correlations to other endpoint assays (Noor et al., 

2009). The resazurin assay, well-known under the trade name Alamar Blue®, is based on the 

reduction of the non-fluorescent substrate resazurin into the fluorescent dye resorufin by 

mitochondrial and cytosolic enzymes. The reduced form of the fluorescent dye is soluble and 

the cells can be further cultivated after the assay (O'Brien et al., 2000). 

Although 2D cultivation systems are easy to maintain and handle, these do not reflect the three-

dimensional in vivo tissue environment. Alternative cell culture systems are 3D cell culture 

techniques mimicking the microenvironment of tissues or organs. These include gel-based 

systems imitating extracellular matrix (Sodunke et al., 2007), spheroids (Abu-Absi et al., 2002), 

micro scaffolds (Bokhari et al., 2007) or various types of hollow fiber bioreactors (Schmitmeier 

et al., 2006; Schmelzer et al., 2010). Hollow fiber 3D bioreactors were applied as bioartificial 

liver for clinical application (Gerlach et al., 2003a) and were down-scaled for analytical 

purposes. Liver cells form three-dimensional aggregates around the hollow-fibers including the 

formation of liver-specific structures (Zeilinger et al., 2004). It was shown that the 3D 

bioreactors are suitable for long-term functional maintenance of primary human hepatocytes 

indicating high potential of these systems for the assessment of chronic drug-induced effects 

(Mueller et al., 2011). However, one main disadvantage of this hollow-fiber bioreactor is its 

black-box character, since direct cell counting methods as well as microscopic observation of 

cells is not possible and only indirect methods such as monitoring of substrate consumption 

rates are used so far for viability assessment. A real-time in situ viability assay would be very 

helpful for evaluating cellular state over extended periods of culture. Gloeckner and colleagues 

applied the resazurin assay to a miniaturized 3D hollow-fiber bioreactor monitoring 

proliferation of human leukemic cell lines (Gloeckner et al., 2001). Using suspension cell lines, 

they found a higher sensitivity of their method compared to indirect methods such as monitoring 

of glucose consumption. 
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In this study, we extended this method to adherent cells and used resazurin based assay for 

viability assessment of the HepG2 cell line as well as of primary human hepatocytes in a 3D-

hollow fiber bioreactor system. Moreover, we determined the concentration of the reagent that 

can be safely used in the bioreactor without causing toxicity and at the same time giving a 

measurable signal. We also assessed the retention of the reagent inside the bioreactor and 

determined the time needed to wash out the reagent from the system. In case of primary human 

hepatocytes, the cells were exposed to a clinically relevant concentration of amiodarone for 4-6 

days. Viability was assessed in the early and late phase of the cultivation (i.e. before and after 

drug exposure). Although we used human liver cells, other cell types like kidney cells (Iwahori 

et al., 2005) or cardiac cells (Hosseinkhani et al., 2009) could also be maintained in a 3D 

bioreactor system. In all cases, viability assessment is fundamental. The real time assay 

described in our study could be extended to these other cell types in various 3D bioreactor 

settings. This would additionally support studies on cell physiology and phenotype and can be 

also applied to drug toxicity assessment studies. 
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3.2 Materials and Methods 

3.2.1 Culture medium and cells 

The human hepatoblastoma cell line, HepG2, was obtained from the German collection of 

microorganisms and cell cultures (DMSZ, Braunschweig, Germany). Cells were routinely 

maintained in Williams Medium E (WME)(PAN Biotec, Aidenbach, Germany) supplemented 

with 100 U/ml penicillin, 100 µg/ml streptomycin and 10% fetal calf serum (FCS; PAN Biotec, 

Aidenbach, Germany) at 37°C in a cell incubator (Memmert GmbH, Schwabach, Germany) at 

95 % relative humidity with 5 % CO2 supply. 

Primary human hepatocytes were isolated from resected liver tissues from patients with primary 

and secondary tumors. Tissue collection was done according to the institutional guidelines and 

with the patient’s written consent. Isolation and purification of non-tumor cells was performed 

as described previously (Mueller et al., 2011). 

In the 3D bioreactor system, cells were maintained in Heparmed Vito 143 (Biochrom AG, 

Berlin) medium supplemented with insulin (20 IU/l), transferrin (5 mg/l) and glucagon (3 μg/l), 

all from Biochrom AG. 

3.2.2 3D bioreactor system 

The 3D bioreactors were purchased from Stem Cell Systems GmbH, Berlin, Germany (figure 3-

1b). They consist of three interwoven hollow fiber capillary bundles that form four different 

compartments which are integrated into a polyurethane housing as recently described (Mueller 

et al., 2011). 
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Figure 3-1: a) Perfusion system for 3D bioreactor: 1 pump control, 2 recirculation pump, 3 feed 

pump, 4 gas rotameters, 5 bioreactor and 6 sample port b) 3D bioreactor with tubing for medium 

in-  and outflow as well as cell inoculation. 

The bioreactor is kept in a chamber maintained at a temperature of 37.5°C and is connected to a 

perfusion system (figure 3-1a). The perfusion system includes a recirculation pump for medium 

perfusion, a feed pump for fresh medium supply and a flow regulation for gas supply. 

Recirculation flow rate was adjusted to 7 ml/min with a feed rate of 1.5-2 ml/h. The system can 

be easily kept in recirculation mode when the feed pump is switched off allowing recirculation 

of the medium in the system, e.g. during cell assays. Bioreactor and tubing system were 

assembled in sterile conditions under a laminar flow workbench. After assembly, the bioreactor 

was connected to the perfusion system. 

In case of HepG2 cells, 3 x 10
7
 viable cells were resuspended in 7 ml Heparmed Vito medium 

supplemented with 2.5% FCS and inoculated into the 3D bioreactor. Whereas in case of primary 

human hepatocytes (PHH), 10
8
 cells were inoculated using Heparmed Vito medium 

supplemented with 2.5% FCS. At day 10, serum-free conditions were adjusted in this system. 

3.2.3 Assessment of applicable resazurin concentrations  

Resazurin reagent was purchased as CellTiter-Blue® Cell Viability Assay from Promega 

GmbH, Mannheim, Germany. For the assessment of applicable resazurin concentrations giving 

1

2
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sufficient signals, 5*10
4
HepG2 cells per well were seeded in a 96 well plate in Williams 

Medium E with 10% FCS. After cell adhesion overnight, the cells were washed and 200 µl of 

serum free medium was added. Different resazurin concentrations, ranging from 0.1%-20% in 

triplicates were added. The plate was incubated at 37°C and fluorescence was measured every 

hour (in total 6 hours) at ex/em 540 / 590 nm using a Fluoroskan Ascent CF fluorescence reader 

(Thermo Labsystems, Vantaa, Finland). Medium samples without cells were used as 

background controls. 

3.2.4 Assessment of resazurin toxicity 

A dose-response curve of the resazurin reagent was generated to determine its toxicity. 5 x 

10
4
HepG2 cells were seeded per well in a 96 well plate in Williams Medium E containing 10% 

FCS and incubated over night for cell adhesion. Afterwards, cells were washed twice and 

serum-free medium was added. The cells were exposed to different concentrations of resazurin, 

ranging from 1% to 100% (v/v) culture medium in triplicates. After 24 hours (h), supernatant 

was aspirated off and cells were washed twice with PBS. 200 µl medium and resazurin reagent 

(20% v/v) was added to each well. The cells were incubated for 5 hours in the incubator. 

Fluorescence was measured as described above. Untreated cells were used as positive control 

while cells treated with 20% DMSO as negative control. Medium samples without cells were 

used as background controls. 

3.2.5 Resazurin assay in 3D bioreactor 

Resazurin reagent was slowly injected into the bioreactor system via sample port, resulting in a 

final concentration of 2% (v/v). A 1 ml syringe with Luer-Lok connections was used for 

injection. Recirculation mode without medium feeding was adjusted. Samples were taken using 

two 1 ml syringes at the same time, adapted to a 3-way stopcock using Luer-Lok connections. 

First, about 1 ml of dead volume was drawn using one syringe. After that, 0.5 ml of sample was 

collected with the other syringe and dead volume was put back into the system. Using this 

sampling technique, accurate sampling was guaranteed. 50 µl samples were transferred into 96-

well plates. Fluorescence was measured at ex/em 540 / 590 nm as described earlier. Medium 

samples without cells were used as background controls. 
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3.2.6 Investigation of artifacts due to extracellular components 

200 µl of medium and effluent sample taken from the 3Dbioreactor were transferred into a 96 

well plate. 40 µl of resazurin reagent were added and the plate was incubated at 37°C in a cell 

incubator for 24 hours. Fluorescence was measured at ex/em 540 / 590 nm. As positive control, 

a sample of the resazurin assay within the 3D HepG2 bioreactor (incubation time 6 hours) was 

used. 

3.2.7 Drug exposure in 3D bioreactor cultures 

Amiodarone was injected slowly in the 3D bioreactor system, in a similar way to resazurin, 

preventing oscillative overconcentration. End concentration was 1.2 µM. Resazurin assay was 

performed in the early and late phase of cultivation (i.e. before and after drug exposure) to 

investigate effects of the drug. 
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3.3 Results 

3.3.1 Assessment of applicable resazurin concentrations  

To determine the linearity between reagent concentration and fluorescence increase, different 

resazurin concentrations ranging from 0.5%-20% were added to HepG2 cells in 96 well plates 

and fluorescence was measured over 6 hours as shown in figure 3-2a.  

 

Figure 3-2: a) Signal intensity of different resazurin concentrations tested on Hep G2 cells. 5*10
4 

cells were seeded in 96-well plate format and incubated over night. Different resazurin 

concentrations were added, ranging from 0.5% - 20% (v/v) as indicated. Fluorescence was 

measured over 6 hours. Error bars indicate +standard deviations (n=3). RFU= relative fluorescence 

units. b) Concentration-response curve for resazurin reagent giving percentage viability of Hep G2 

cells. Cell viability was assessed relative to untreated control. Concentration of resazurin reagent in 

the medium (v/v) is given in percentage of culture medium. Error bars indicate +standard 

deviations (n=3). 

All tested resazurin concentrations show a significant increase of fluorescence during 6 hours of 

incubation. The highest correlation coefficients were found at concentrations between 1 % and 

2.5 % (v/v). The higher concentrations [≥ 5 % (v/v)] show a linear range at the first hours of 

incubation, whereas saturation was observed after 4 hours. Even the lowest concentration of 

resazurin reagent [(0.2% v/v)] showed significant increase of fluorescence over time. 

3.3.2 Assessment of the toxicity of resazurin  

For optimization of resazurin assay for its use in the 3D bioreactor, dose-response was assessed 

using HepG2 cells. As shown in figure 3-2b, cells exposed to higher concentrations of resazurin 

(i.e. > 10% v/v) for 24 h showed a lower viability as compared to control cells. It was also 
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observed that lower resazurin concentrations (≤ 2% v/v) had no effect on cell viability as the 

viability remained 100%. 

3.3.3 Resazurin assay for viability assessment in 3D bioreactor using HepG2 cells 

Based on the above results, we chose 2 % (v/v) resazurin concentration for viability assessment 

in the 3D bioreactor system. A direct injection of the Alamar Blue dye would lead to an 

oscillation of the concentration. To prevent this, reagent injection was carried out slowly via the 

sample port of the tubing system and slight mixing within the injection syringe was performed. 

The resazurin assay was performed at day 3 after cell inoculation (figure 3-3a). At the start of 

the assay, only background fluorescence was observed which was 21 (±1) RFU was observed. 

Over 6 hours, linear increase of fluorescence was detected (figure 3-3a), with regression 

coefficients of 0.992. After 6 hours of resazurin incubation maxima of 102 were reached and the 

slope of the straight line was 12.9. 
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Figure 3-3: a) Resazurin assay on Hep G2 cells in 3D bioreactor system at cultivation day 3 for 6h, 

b) Fluorescence measurements on effluent samples after resazurin application to determine the 

removal of the reagent product from the 3D bioreactor. Samples were transferred into 96 well 

plates and intrinsic fluorescence was measured at ex/em at 540 nm and 590 nm. Day 0 represents 

the day of the actual resazurin assay after medium change, day 1–5 after the resazurin assay. These 

samples were effluent samples collected over 24 hours. The dye was washed out with a flow rate of 

2 ml/h. RFU=relative fluorescence units, c) Fluorescence measurements on effluent sample of 3D-

bioreactor and fresh medium to exclude possible artifacts due to extracellular components. Samples 

were transferred into 96 well plates and incubated with resazurin reagent (20% v/v) at 37°C for 24 

hours. Fluorescence was measured at ex/em at 540 nm and 590 nm. Negative control represents 

fresh medium incubated with resazurin reagent, positive control represents a sample of the 

resazurin assay within the 3D-bioreactor at time point 6 hours. Error bars indicate +standard 

deviations (n=3). RFU=relative fluorescence units 
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3.3.4 Washout of resazurin assay product and investigation of artifacts 

Removal of the fluorescent product out of the 3D bioreactor system should occur as fast as 

possible to prevent any interference in other studies or assays. Effluent samples after wash out 

of the resazurin assay were collected and intrinsic fluorescence was measured. It was observed 

that the product could be washed out of the system just by feeding one reactor volume of the 

fresh medium and turning the system into feed mode, whereby 2 ml/h fresh medium was added. 

Effluent flowed out with the same rate. As depicted in figure 3-3b, only negligible fluorescence 

was observed at day 3 while at day 4 all resazurin assay product was washed out and removed 

from the bioreactor system. 

As mentioned before, resazurin reagent is reduced to a fluorescent dye by both, mitochondrial 

and cytosolic enzymes. Possible artifacts due to extracellular components would lead to false 

positive values. To exclude this, both effluent sample of the 3D bioreactor, which has been in 

contact with the cells before, and fresh medium as negative control were incubated with 

resazurin reagent for 24 h. As shown in figure 3-3c, both effluent sample as well as fresh 

medium (negative control) show only intrinsic reagent fluorescence (26±1). 

3.3.5 Resazurin assay for viability assessment in 3D bioreactor of PHH during 

drug exposure 

After optimization with HepG2 cells we proceeded with PHH in the 3D bioreactor. For primary 

human hepatocytes, viability was assessed in the early phase after adjusting serum-free 

conditions (figure 3-4a). Amiodarone was then injected into the 3D bioreactor system as 

described above. After exposure, amiodarone was washed-out by feeding fresh drug-free 

medium. Viability was again assessed in the late cultivation phase using the described resazurin 

method (figure 3-4b). 
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Figure 3-4: Resazurin assay on primary human hepatocytes in 3D bioreactor system at a) day 10 b) 

day 27. Resazurin concentration was 2 % (v/v). Samples were taken over 6 hours, transferred into 

96 well plates and fluorescence was measured at ex/em 540 nm and 590 nm. RFU=relative 

fluorescence units  

At both time points, increase of fluorescence was observed within the assay time. Fluorescence 

value at assay start was 27±4. After 6h, RFU was 105 (R
2
= 0.955) for the first assay in the early 

(day 11) and 108 (R
2
=0.959) for the second assay in the late cultivation phase (day 27) as 

shown in table 3-1. 

Table 3-1: Results of resazurin assay in the 3D bioreactor system. Table shows relative assay values 

after 6h, as well as linearity and slope of fluorescence over time. For both HepG2 cells as well as 

primary human hepatocytes, two assays were performed in the early and late cultivation phase, i.e. 

before and after drug exposure. 

 

 
Primary human hepatocytes 

 Early phase  (day 10) Late phase   (day 27) 

RFU after 6h  105 108 

Linearity (R
2
) 0.955 0.959 

slope 11.3 13.0 
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3.4 Discussion 

A variety of assays are used for viability assessment in two-dimensional cultures. The 2D 

systems and assays are adequate and sufficient for most in vitro applications. Nevertheless, 2D 

monolayer cultures differ in their architecture, in the environment and in the phenotype from the 

in vivo tissue. Various 3D bioreactors offer an alternative for maintenance of cells in a tissue 

like environment. This is especially important for long-term cultivation while maintaining the 

phenotype and the functionality of the test system. The possibility of long-term cultivation has 

an impact on the testing of compounds in preclinical screening as well as in safety 

pharmacology for e.g. chronic liver toxicity assessments. As a prerequisite to any study, cell 

viability must be assessed over extended culture periods without disturbing the cells. As such 

non-invasive and real time assay is required. We recently demonstrated long-term cultivation of 

primary human hepatocytes in a 3D bioreactor system (Mueller et al., 2011) for 3 weeks. We 

used biochemical parameters such as galactose consumption and lactate production as well as 

production of the liver-specific markers albumin and urea for an indirect estimation of cellular 

viability since a direct, microscopic observation of the cells is not possible in this bioreactor. 

We however, modified the system by incorporating an on-line respiration measurement device 

allowing the monitoring cell viability. However, a technically less challenging assay for 

viability assessment would be very useful. 

In this study, we used a resazurin based viability assay, to directly monitor cell viability within 

3D bioreactor. This method allows direct in situ real time monitoring of viability of cells despite 

the black-box character of the bioreactor system. Based on the results on 2D monolayer system 

using HepG2, we chose a concentration of 2% (v/v) of resazurin since this had no effects on the 

viability of the cells and gave linear signal for 6 hours. We assessed the viability of HepG2 cells 

maintained in the 3D bioreactor at day 3 of inoculation. Linear increase of the fluorescence 

signal was detected during 6 hours of incubation time. It was further demonstrated that wash-out 

of the product is possible and easy to carry out without perturbing the cells. The short 

incubation time is moreover helpful since the whole assay can be carried out within a few hours. 

Reduction of the substrate by medium compounds or released cellular enzymes due to cell 

death, which would lead to false-positive values was also excluded experimentally. It was 

concluded that the reagent reduction was exclusively caused by living cells in the 3D bioreactor.  

Future studies focusing on the proliferation profiles of HepG2 in the 3D bioreactor over time 

would be very useful to improve the functionality of the HepG2 cells. Some studies have shown 
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a more differentiated cellular phenotype for HepG2 cells when grown in a three-dimensional 

manner (Altmann et al., 2008; Lan and Starly, 2011). 

A step further, we investigated another 3D bioreactor with primary human hepatocytes. In this 

system, we started the cultivation using 2.5 % fetal calf serum and adjusted to serum-free 

conditions at day 10. Serum free cultivation is especially important regarding pharmacological 

as well as physiological studies such as proteomics. Use of serum limits pharmacological and “-

omics” relevant studies due to the non-defined composition, batch-to batch variations and high 

endogenous protein content of the serum. In our previous study, we showed the serum free 

cultivation of PHH in these 3D bioreactors for 11 days. Serum free cultivation of PHH is of 

particular interest since it was reported that FCS induces dedifferentiation and therefore loss of 

functionality of these cells (Tuschl et al., 2009). After adjusting to serum free conditions, we 

continuously exposed the PHH to therapeutic concentration of amiodarone for 4 days. The 

system was washed over 3 days. In the late cultivation phase (day 27), viability was again 

assessed using resazurin assay. By comparing fluorescence values at the end of both assays (105 

RFU and 108 RFU) it was observed that viability was maintained even after drug exposure in 

serum-free conditions. Therefore we could conclude that the exposure to clinically relevant 

concentrations of amiodarone did not affect cell viability in this experiment. This also proves 

the non-invasiveness of the assay. However, future studies should include determination of free 

drug concentration within the 3D bioreactor system since drug binding to the capillaries inside 

the bioreactor could occur. This may partly explain why we did not observe any toxic effects of 

the drug in our system. 

We show that the resazurin based assay is applicable to 3D bioreactor systems using adherent 

cells. This real time in situ assay will be of tremendous importance in monitoring long-term 

cultivation of cells. This will also facilitate the monitoring of drug/test compound induced 

effects on the cells. The application of this bioreactor system allowing tissue like environment 

and functionality for physiological and eventually pharmacological studies would be greatly 

enhanced. Serum free cultivation is an added advantage. 

The established assay in our 3D bioreactor would further support future cellular physiological as 

well as pharmacological studies in terms of the assessment of drug effects on cellular 

metabolome, fluxome, proteome or peptidome, where accurate assessment of viability is 

essential for qualitative and quantitative analyses. Moreover, toxic effects of drugs can be 

assessed and the assay could also be applied to any other cell type in 3D bioreactors supporting 

different research fields. 
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Abstract 

Tissue engineering of human liver cells in a three dimensional cell culture system could 

improve pharmacological studies in terms of drug metabolism, drug toxicity or adverse drug 

effects by mimicking the in vivo situation. In this study, we produced 3D organotypic cultures 

of HepG2 cells using the hanging drop method. 250 – 8000 seeded cells formed organotypic 

cultures within 2 – 3 days which increased in size during the first week. Viability and metabolic 

parameters (glucose, lactate) were analyzed during almost three weeks of cultivation. Liver 

specific albumin production was higher in the organotypic cultures as compared to both 

monolayer and collagen-sandwich cultures. Amino acid quantification revealed high production 

of glutamate as well as uptake of glutamine, alanine and branched-chain amino acids. CYP1A 

induction capacity was significantly improved by organotypic cultivation. The acute toxicity (24 

h) of tamoxifen, an anti-cancer drug, was lower in the 3D cultures as compared to monolayer 

and collagen-sandwich cultures. This could be explained by a higher drug efflux through 

membrane transporter (MRP-2). We conclude that the engineered HepG2 cultures could be used 

for the investigation of CYP450 induction, anti-cancer drug effects and for the study of 

chemotherapy resistance. Applied to other cell types such as the human primary cells these 3D 

organotypic cultures may have potential in toxicity screening of compounds. 
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4.1 Introduction  

The field of tissue engineering has advanced tremendously in recent years. In preclinical drug 

development the challenge remains the design and manufacturing of cellular structures which 

mimic the in vivo situation. In a tissue, cell-cell interactions as well as cell contacts to the 

extracellular matrix and extracellular factors like signal molecules are promoted. The 

interactions between the cells and the environment strongly influence the behavior and 

functionality of the whole tissue. Focal adhesions anchor the cytoskeleton to the plasma 

membrane and transport extracellular signals from the matrix into the cell (Cukierman et al., 

2001; Cukierman et al., 2002). In experimental 2D culture, this complex network is lost and an 

artificial cellular architecture is built up. Moreover, an unnatural polarity is formed since the 

upper cell side contacts the culture medium and the lower is attached to cell culture surfaces, 

resulting in a polar distribution of adhesion factors (Tibbitt and Anseth, 2009). 

Different 3D cell culture techniques show the improvement of function, differentiation and 

viability as compared to conventional 2D cultures (Godoy et al., 2009). Biodegradable polymers 

such as poly(glycolic acid), poly(lactic acid) or their copolymer poly (lactic-co-glycolic acid) 

were successfully used to enhance cellular function (Mikos et al., 1993) and were applied to 

tissue engineering (Temenoff and Mikos, 2000). Alternatively, hydrogels, a network of 

hydrophilic polymer chains dispersed in water, were used to setup a 3D environment for various 

cell types such as liver cell, bone and cartilage (Fisher et al., 2004; Park et al., 2005; Liebmann 

et al., 2007; Shim et al., 2011). Alginate microencapsulation of hepatocytes was recently shown 

to enhance long-term cultivation (Miranda et al., 2010) and continuous perfusion of these 

aggregates further improves liver-specific functions (Tostoes et al., 2011b). Matrigel-based 

systems are another alternative for 3D cultivation. Containing ingredients of the extracellular 

matrix such as collagen, laminin, fibronectin or elastin, they can at least partly replace its 

functions (Frisk et al., 2007). Although these gel-based systems are useful tools to facilitate a 

3D environment, gel preparation, storage, batch to batch differences and insufficient chemical 

composition for matrigels and xenogenic origin compromise their application.  

Complex systems such as 3D bioreactors were developed as extracorporeal liver support (Sauer 

et al., 2002; van de Kerkhove et al., 2002; Gerlach et al., 2003a; van de Kerkhove et al., 2003). 

These systems were down-scaled for experimental purposes and it was shown that primary 

hepatocytes form 3D tissue-like structures within the bioreactors and could be kept viable and 

functional for three weeks (Mueller et al., 2011). Moreover, the cultivation of spheroids in 

stirred bioreactors also improves liver-specific functionality compared to monolayers (Miranda 
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et al., 2009). Again these systems require high technical expertise and are not always 

reproducible. 

As a further 3D cell culture approach, multi-cellular spheroids represent a promising tool in 

tissue engineering since it was shown that cellular reorganization and 3D architecture in such 

spheroids better reflect in vivo situation but also mimic solid tumors in case of oncological 

studies (Li et al., 2008). Liver cells are of main interest for the investigation of drug-induced 

effects and drug metabolism and the improvement of in vitro test methods for hepatotoxicity is 

still needed (Mandenius et al., 2011a). The HepG2 cell line was successfully applied for the 

investigation of the effects of drugs in subtoxic concentrations in terms of respiration and cell 

metabolism (Niklas et al., 2009; Noor et al., 2009; Beckers et al., 2010). Moreover, when 

grown in 3D systems, HepG2 cells showed enhanced viability and functionality (Bazou et al., 

2008; Corstorphine and Sefton, 2011; Lang et al., 2011; Nakamura et al., 2011). In spheroid 

cultures, it was observed that HepG2 cells have higher drug efflux activity compared to 

monolayers (Oshikata et al., 2011). Multi drug resistance (MDR) is shown by tumor cells and 

leads to a high drug efflux via transporters such as MDR-1 or MRP.  

In general, the HepG2 cell line has the advantages of reproducibility, easy handling and 

availability, but is limited in its drug metabolism capacities. For example, CYP3A4 as the most 

important phase I enzyme is not expressed in HepG2 cells and only CYP1A1 and CYP2D6 

shows expression rates approximately in the range of primary human hepatocytes (Wilkening et 

al., 2003). Recently, it was proposed that engineering the cell culture environment for a better 

reflection of the in vivo situation would improve drug development at an early stage (Bhadriraju 

and Chen, 2002). HepG2 spheroid cultures therefore seem to be promising as in vitro assay 

system, at least for acute and parent compound toxicity screening. 

In this study, we used a commercially available 96 well plate system for the generation of 3D 

spheroids using the hanging drop method. We investigated the HepG2 spheroid formation over 

time including growth in size. We cultivated the spheroids in low-serum conditions for more 

than two weeks and assessed cell viability, albumin production and metabolism in the 3D 

cultures. Moreover, we investigated drug metabolism capacities by CYP1A induction and tested 

the effects of tamoxifen on the 3D HepG2 spheroids. Tamoxifen is a non-steroidal selective 

estrogen-receptor (ER) modulator applied in the therapy of ER-positive breast cancer. 

Tamoxifen is mainly  metabolized by CYP3A4 and CYP2D6 to active metabolites (Holmes and 

Liticker, 2005). However, it was reported that tamoxifen is cytotoxic in non-metabolizing cell 

lines, implicating parent compound toxicity (Petinari et al., 2004). We tested tamoxifen on the 
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HepG2 organotypic cultures and compared the results with those obtained with 2D monolayer 

and collagen-sandwich cultures. We also investigated the activity of MRP-2 transporters. Our 

results demonstrate the potential of engineered HepG2 spheroids as in vitro model to screen 

anti-cancer drugs and their effects on cancer tissue as well as for the investigation of MDR 

activity in chemotherapy resistance. In addition, such organotypic cultures of other cells 

(including co-cultures) such as primary human cells (e.g. liver) can also be used to develop 

micro-tissues which may be used in toxicological screening of compounds.  
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4.2 Material and methods 

4.2.1 Cell culture  

The human hepatoblastoma cell line (HepG2) was obtained from the German collection of 

microorganisms and cell cultures (DMSZ, Braunschweig, Germany). Cells were maintained in 

Williams Medium E supplemented with penicillin/streptomycin (100 U / 100 µg/ml) and 10% 

FCS. The cells were kept at 37°C in a cell incubator (Memmert GmbH, Schwabach, Germany) 

at 95% relative humidity with 5% CO2 supply. Viability was assessed by the trypan blue 

exclusion method. Cells were counted using an automated cell counter (Countess, Invitrogen, 

Karlsruhe, Germany). 

4.2.2 Monolayer / Collagen-Sandwich 

For monolayer culture, cells were seeded in conventional 96-multiwell plates. For collagen-

sandwich cultures, the plates were coated with collagen I solution (0.75 mg/ml) for 1 h at 37°C 

before being seeded. After 4 hours, medium was aspirated and the second collagen layer was 

added as before. In both cultures, 5*10
4
 cells / well were seeded. 

4.2.3 Organotypic cultures 

The organotypic cultures were produced using the GravityPlus system (InSphero, Zurich, 

Switzerland). According to the manufacturer’s instructions, 40 µl of cell suspension was given 

into each well of the plate for the formation of multi-cellular spheroids (250 – 8000 cells). For 

initial seeding, Williams Medium E supplemented with 10% FCS was used. It was changed by 

refreshing 50% of the culture volume every 2 -3 days. For the quantification of metabolites, the 

supernatants were collected, centrifuged and stored at -20°C until analysis. The spheroids were 

monitored using a 10 x long-working distance objective of an Olympus IX 70 microscope 

which was connected to an Olympus CC12 Soft Imaging System (Muenster, Germany).   

4.2.4 Maintenance in low-serum conditions 

The spheroids were produced using medium supplemented with 10% FCS. After spheroid 

formation, 50% medium volume was replaced three times.  This time point was set as day 1 in 

low-serum conditions. However, due to the fact that the medium cannot be replaced completely 

in the drop, a small amount of 1.25 % FCS was still present in the medium. After that, medium 
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was replaced at day 4 reducing the percentage of serum to below 1%. Medium drops without 

cells were used as controls for each time point. 

4.2.5 AST assay 

The activity of liver-specific aspartate aminotransferase (AST) in the culture supernatant as cell 

viability marker was determined using a kinetic UV assay kit (Hitado, Moehnesee- Delecke, 

Germany) according to the manufacturer’s instructions. A dilution series of standard serum 

(NobiCal-Multi, Hitado) was measured in parallel for quantification. 

4.2.6 Quantification of glucose, albumin and amino acids 

D-glucose and l-lactate concentrations in the supernatants were determined using routinely 

utilized enzymatic kits (R-Biopharm, Darmstadt, Germany). The assays were performed 

according to the instructions of the manufacturer.  

Albumin concentration was determined by an enzyme-linked immunosorbent assay (ELISA) 

(Albuwell II; Exocell, Philadelphia, PA) according to manufacturer`s instructions. 

Concentrations of amino acids in the supernatants were quantified by an high performance 

liquid chromatography (HPLC) method as previously reported (Mueller et al., 2011).  

Medium exchange was performed by refreshing 50 % of the drop volume. The metabolic rates 

in 3D spheroid cultures were determined using the following equation: 

m dx 1 dx
V

r (0.5 c 0.5 c ) c
t

 

 

Whereas 

cm   = c (metabolite) in medium w/o cells  

cdx   = c (metabolite) in supernatant at day x 

cdx-1 = c (metabolite) in supernatant at day x – 1 

V = hanging drop volume 
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4.2.7 Live/dead-assay 

Live/dead-assay was performed using fluoresceindiacetate/propidiumiodide staining (FDA/PI). 

Cells were incubated with FDA/PI staining solution (25 µM FDA / 40 µM PI in PBS)   for 1 

min. After PBS washing (2x), fluorescence was monitored using an Olympus IX70 fluorescence 

microscope (ex 488 nm).  

4.2.8 CYP450 induction assay 

For the induction of CYP1A, the HepG2 cells were incubated with 3-methylcholantren (5 µM) 

for 72 h. EROD assay, based on the conversion of 7-ethoxyresorufin to the fluorescent dye 

resorufin by CYP1A, was performed. For that, the cells were incubated with the substrate 7-

ethoxyresorufin (10 µM in serum-free medium) for 3 h. Fluorescence at ex/em 544/590 nm was 

measured. Fluorescence intensities were corrected for background fluorescence (substrate 

solution without cells). Fold changes compared to uninduced control were calculated.  

4.2.9 Dose response curves 

To assess dose-dependent toxic effects on the cells in the three different cultivation types, stock 

solution of tamoxifen was prepared in DMSO. Concentrations of 0.1 – 500 µM were tested in 

triplicates. For all experiments, the highest DMSO concentration did not exceed 2%. Cells were 

incubated with the respective drug concentrations in serum-free medium for 24 h. After 24 h 

drug exposure, alamar blue assay was performed. For this, alamar blue assay solution (20 % 

v/v) was added to the cells and incubated for 4 h. Fluorescence was measured using a 

Fluoroskan Ascent CF fluorescence reader (Thermo Labsystems, Vantaa, Finland) at ex/em 

544/590 nm. Three individual experiments were carried out for each cultivation system and 

mean values of viability related to the respective untreated control were calculated. Dose-

response curves were obtained by plotting the logs of the tested concentrations against the 

viability as percentage of untreated control. EC50 values and standard deviations were 

determined using the Boltzmann function (Origin 8.1G). 

4.2.10 MRP-2 transporter activity 

A fluorescence based assay was used for the investigation of MRP-2 transporter activity in 

organotypic cultures. Thereby, the membrane permeable and non-fluorescent substrate 5-

chloromethylfluorescein diacetate (CMFDA) was used as substrate. CMFDA is converted by 

cellular esterases to a membrane-impermeable compound, which then reacts with cellular 



CCHHAAPPTTEERR  44::  OORRGGAANNOOTTYYPPIICC  CCUULLTTUURREESS  OOFF  HHEEPPGG22  GGEENNEERRAATTEEDD  BBYY  HHAANNGGIINNGG  DDRROOPP  MMEETTHHOODD  AASS  IINN  

VVIITTRROO  MMOODDEELL  FFOORR  TTOOXXIICCIITTYY  SSTTUUDDIIEESS    

7733    

  

glutathione to glutathione-methylfluorescein (GSMF). GSMF is a substrate of the membrane 

transporter MRP-2 and is excreted out of the cell into canaliculi where it accumulates. The 

organotypic cultures were incubated at day 3 after seeding with 5 µM CMFDA for 30 min. 

Thereafter, dye solution was aspirated and the cells were incubated with dye-free medium for 45 

min. Fluorescence was monitored using an Olympus IX 70 fluorescence microscope (Muenster, 

Germany). 

4.2.11 Statistical analysis 

The fold induction in organotypic, monolayer and collagen sandwich cultures relative to 

respective uninduced controls were compared using student’s t-test (Matlab R2006a). The EC50 

values in OTC, ML and CS cultures were compared using student’s t-test (Matlab R2006a).  
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4.3 Results 

4.3.1 Spheroid formation and growth 

Spheroid formation and growth was investigated by seeding different cell numbers (250 – 

8000). Morphology was evaluated over seven days as shown in figure 4-1.  

 

Figure 4-1: Formation of HepG2 spheroids. Different cell numbers were (250 – 8000) were seeded 

and cluster formation was monitored over seven days as indicated. Scale bars represent 200 µm.  

Structure reorganization was observed already at day 1 after seeding. Compact organotypic 

cultures were observed at day 2-3. The used cell numbers all formed compact spheroids of 

reproducible diameters. Moreover, cell proliferation was observed by increasing cluster sizes. In 

the group of 250 seeded cells at day 1, diameters of 500 µm were achieved at day 7.  In case of 

8000 initial seeded cells, the spheroid diameters were around 900 µm at day 7. It was also 

apparent that the spheroids could freely move in the drop. 
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Organotypic cultures of 2000 seeded cells were further analyzed regarding time-dependent 

growth by measuring the diameters over 10 days (figure 4-2).  

 

Figure 4-2: Spheroid growth over time. 2000 cells were seeded (day 0) and the diameter was 

assessed during 10 days. Error bars represent ±SD (n=3). 

After initial seeding, the diameter decreased due to cell reorganization and tissue-like formation. 

The spheroids were then growing linearly (R
2
=0.98) to a diameter of 630 ±11 µm at day 6. After 

that, the cluster size then decreased until day 10 to 592 ±21 µm. For further experiments, 2000 

cells were chosen as initial cell number which gives sufficient signal in viability assay and can 

be cultivated with high viability for more than two weeks. 

4.3.2 Maintenance of the spheroids in low-serum conditions 

After structure reorganization, the HepG2 spheroids were maintained in very low-serum 

medium. For viability, AST release from HepG2 spheroids was measured (figure 4-3a).  



CCHHAAPPTTEERR  44::  OORRGGAANNOOTTYYPPIICC  CCUULLTTUURREESS  OOFF  HHEEPPGG22  GGEENNEERRAATTEEDD  BBYY  HHAANNGGIINNGG  DDRROOPP  MMEETTHHOODD  AASS  IINN  

VVIITTRROO  MMOODDEELL  FFOORR  TTOOXXIICCIITTYY  SSTTUUDDIIEESS    

7766    

  

 

Figure 4-3: Low-serum, long-term cultivation of HepG2 cells in organotypic cultures a) AST 

activity b) glucose consumption and lactate production rates c) morphology organotypic culture at 

day 18 d) viability of organotypic culture at day 18, assessed by Live-Dead staining. Error bars in 

a) and b) indicate ±SD (n=3, supernatants of 6 spheroids were pooled). Day 1 = 1
st
 day in low-serum 

medium. Scale bars represent 200 µm. 

The highest AST activity (0.67 mU/d) was found after adjusting low-serumconditions (day 3) 

and was constant until day 6 indicating highest cell death in this phase. Thereafter, AST release 

significantly decreased to stable values in the middle phase of cultivation. At day 18, the lowest 

AST activity (0.13 mU/d) was found in the spheroid supernatants. 

The spheroids consumed glucose with highest rate at day 3 (120 nmol/d). This rate decreased 

during low-serum maintenance to nearly constant values between day 4 and 18. Similarly, the 

highest lactate production (144 nmol/d) was measured at day 3 after adjusting serum-free 

conditions which decreased further on to values between 39 and 74 nmol/d. Lactate yield was 

highest between days 9 – 12, whereas at the beginning and at the end of the cultivation, lactate 

yields between 1.2 – 1.7 were observed.  
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Light microscopy revealed that the organotypic cultures still maintained their 3D structure at 

day 16 (figure 3c). Though high cell death rate was observed by live/dead staining (figure 3d), 

some outer parts of the spheroids showed high viability indicating high proliferation rates in 

these zones. 

Albumin production in HepG2 cells in the three cultivation systems was measured (figure 4-4). 

 

Figure 4-4: Albumin production rates of monolayer (ML), collagen sandwich (CS) and organotypic 

(OTC) cultures, expressed in pg/d/seeded cell. Error bars in indicate standard deviation (n=2, for 

OTC supernatants of 6 spheroids were pooled). 

It was observed that the organotypic cultures produced the highest amounts of albumin 

(normalized to the initial seeded cell number). The albumin production per seeded cell increased 

in both monolayer- and collagen sandwich cultures over 16 days indicating cell proliferation. 

The organotypic cultures produced the highest amount of albumin at day 3 (38 pg/d/seeded 

cell). Between day 6 and day 16 in low-serum medium, the production rates were almost 

constant (8 – 13 pg/d/seeded cell). Comparing the three cultivation systems, the albumin 

production rates were 17 or 38 fold higher in the organotypic cultures than in monolayer- or 

collagen sandwich cultures at day 3. At day 16, fold changes the production rates per seeded 

cell were more similar (fold changes 1.4 for ML and 1.6 for CS).  

Amino acid metabolism in the HepG2 spheroids in low-serum medium was analyzed as shown 

in figure 4-5.  
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Figure 4-5:  Amino acid metabolism of 3D spheroids during low-serum long-term cultivation at day 

6, 12 and 18 respectively. Positive vales indicate net uptake. Day 1 = 1
st
 day in serum-free 

conditions. Error bars indicate ±SD (n=3, supernatants of 6 spheroids were pooled, respectively). 

At day 6, glutamine (3.7 nmol/d), alanine (2.8 nmol/d), leucine (1.2 nmol/d) and arginine (1.1 

nmol/d) were consumed at highest rates. The spheroids produced high amounts of glutamate 

between day 6 and 18 (2.8 – 4.5 nmol/d). The consumption of serine increased after the first 

cultivation week as well as aspartate production decreased over time. For glycine and proline, 

we found low net production rates in the later phase. The branched-chain amino acids leucine, 

isoleucine and valine were constantly taken up until day 18. Glutamine was consumed over the 

whole serum-free cultivation at very stable rates (3.6 – 4.3 nmol/d) 

4.3.3 CYP450 induction 

We analyzed the CYP1A induction capacity of HepG2 cells in monolayer, collagen-sandwich 

and organotypic cultures using the EROD assay. The organotypic cultures clearly showed the 

highest fold change (44.6) upon 3-MC induction compared to the uninduced control (figure 4-

6).  
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Figure 4-6: CYP1A induction assessed by EROD assay. Induction fold change (compared to 

uninduced control) after 72 h induction with 3-MC is shown for HepG2 cells cultivated in 

monolayer (ML), collagen-sandwich (CS) or organotypic cultures (OTC). Error bars indicate ±SD 

(n=3). ** Significance at p < 0.01 

The induction capacity was significantly higher compared to the other two cultivation systems 

(p < 0.01). Monolayer- and collagen-sandwich-cultures showed similar induction capacities 

(fold changes 10.6 and 10.5, respectively). 

4.3.4 Toxicity of tamoxifen  

The toxicity of tamoxifen was assessed in monolayer-, collagen sandwich- and organotypic 

cultures. Dose-dependent effects of the drug were observed for all three cell culture systems 

(figure 4-7 a-c).  
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Figure 4-7: Dose response curves and EC50 values of tamoxifen (24 h exposure) for HepG2 cells 

cultivated in a) monolayer (ML), b) collagen-sandwich (CS), or c) organotypic cultures (OTC). 

EC50 values (d) were calculated using Boltzmann function. Viability was assessed by alamar blue 

assay and calculated relative to the respective untreated controls. Error bars indicate ±SD (N=3, 

n=3), ** significance at p < 0.01, *** significance at p < 0.001 

The EC50 value (figure 4-7 d) for monolayer cultures (13.9 µM) was significantly lower as 

compared to collagen-sandwich culture (19.1 µM). The organotypic cultures showed the highest 

EC50 value (56.8 µM) of the three models. The effects of tamoxifen on the HepG2 spheroids 

were further visualized by live-dead-staining. Untreated control, 50 µM (in the range of EC50) 

and 100 µM as positive control were tested (incubation time 24 h) as depicted in figure 4-7. The 

untreated spheroids (figure 4-8 a, d) were highly compact and showed only a low number of 

dead cells around the cluster. After exposure to 50 µM tamoxifen, a higher amount of dead cells 

were observed in the drop (figure 4-8 b) as well as on the cluster surface (figure 4-8 e).  
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Figure 4-8: Morphology and viability of HepG2 organotypic cultures upon 24h exposure to 

tamoxifen. Morphology: a) untreated control b) 50 µM tamoxifen c) 100 µM tamoxifen; Viability: 

d) untreated control e) 50 µM tamoxifen f) 100 µM tamoxifen. Scale bars represent 200 µm. 

Cell debris as shown by light microscopy in figure 4-8b was washed away during the staining 

procedure. The treatment with 100 µM tamoxifen degraded the spheroid structure and its 

compactness and induced cell death; both at the surface and within the organotypic culture 

(figure 4-8c, f). 

4.3.5 Investigation of MRP-2 activity 

The MRP-2 transporter activity was investigated using CMFDA-based assay. Monolayer 

cultures of HepG2 show strong intracellular fluorescence and almost no transport of the dye into 

canaliculi. Likewise high accumulation of the fluorescent dye within the cells was found for the 

collagen sandwich cultures. In contrast, the organotypic cultures show MRP-2 transporter 

activity all around the 3D structure. The fluorescent MRP-2 substrate was transported out of the 

cell. Accumulation within the canaliculi was clearly observed whereas no intracellular 

fluorescence was detected (Figure 4-9). 
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Figure 4-9: Investigation of MRP-2 transporter activity by CMFDA-based fluorescence assay a) 

HepG2 monolayer culture, b) HepG2 sandwich culture, c) light microscopy of HepG2 organotypic 

culture d) HepG2 organotypic culture.  
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4.4 Discussion 

In this study, 3D organotypic cultivation of HepG2 cells was performed in a scaffold-free 

system using hanging drop method. The method was already applied for the formation of 

organotypic cultures of different cell types and cell lines (Kelm et al., 2003; Kelm et al., 2004; 

Kelm and Fussenegger, 2004; Kelm et al., 2006). Tissue reorganization is facilitated by gravity 

and as shown in our study, organotypic cultures (OTC) of a wide range of initial cells numbers 

(250 – 8000) can be produced. Scaffold-free cellular reorganization was observed already at day 

1 after seeding and was completed at day 3. The scaffold-free system enables the microtissue 

formation without any force besides gravity and without xenogenic or synthetic materials. 

Therefore, biodegradability is not an issue and the produced organotypic cultures can be used as 

alternative to scaffold-based microtissue building blocks. 

Importantly, the sizes of microtissues are reproducible (< ±10 % of mean) and are exactly 

adjustable for each experiment.  In case of toxicity studies, lower cell numbers e.g. 250 – 500 

could be used for long-term, chronic experiments (> 3 weeks) in case of proliferating cells and 

higher numbers (2000 – 8000) could be applied in short-term toxicity studies for which a certain 

cell number is needed to perform endpoint assays. The low cell numbers required for these 

organotypic spheroids can moreover enhance throughput by allowing parallel studies in 

multiwell plates. This is especially advantageous in case of primary human cells which are 

limited by availability and other costly cell types. In case of hepatotoxicity, adequate replicates 

from same donor can be included. The change of culture medium is possible and therefore, 

different conditions are adjustable in the system e.g. the reduction of serum, the exposure to 

drugs, induction and other activity studies as shown in our study. Supernatant collection 

moreover allows studies such as metabolite profiling or protein analysis. Therefore, a detailed 

analysis of single spheroids is possible. If needed, high amounts of spheroids can rapidly be 

generated, harvested and used for further analysis. We maintained the HepG2 spheroids in low-

serum medium since reduction of serum is desirable due to its chemically undefined 

composition, batch to batch variations and possible interactions of serum components with drug 

or inducers. The spheroids could be kept viable for more than two weeks at very low-serum 

conditions. In the late cultivation phase, proliferation zones within the spheroids were detected. 

This was also confirmed by glucose uptake and lactate production rates, which increased at the 

end of the cultivation (day 16) probably due to cell proliferation. The activity of AST as marker 

of cell death was highest directly after adjusting to low-serum medium. This might be due to 

high cellular stress in this phase because of several medium change steps. Between day 3 -6, 
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AST release was at constant high level indicating constant number of dying cells during this 

time. However, growing size indicated proliferation of the cells at the same time which seemed 

to stop after day 6 and onwards. Thus, AST activity was at a low stable level between day 6 and 

16. Albumin production rates in the organotypic cultures were highest (38 pg/d/seeded cell) at 

day 3 in low-serum medium (representing day 6 after seeding), as seen before for glucose and 

lactate uptake/production rates. This rate is quite close to in vivo values of 48-72 

pg/d/hepatocyte (Bhatia et al., 1999). Albumin production in OTC was almost stable between 

day 6 and 16 and higher than in monolayer (ML) and collagen sandwich (CS) cultures for each 

time point. As observed by diameter measurements, the spheroids (2000 seeded cells) stopped 

increasing in size upon achieving diameters of about 625 µm. This is probably due to contact 

inhibition which usually does not occur in conventional 2D cultures (Maruyama et al., 2007). It 

was reported that three-dimensionally grown HepG2 cultures show higher cell cycle arrest and 

therefore lower proliferation than monolayer cultures (Li et al., 2008). This may explain stable 

albumin production between day 6 and 16 by OTC since HepG2 cells seems to have stopped 

proliferating. Whereas in case of ML and CS the cells are continuously proliferating and 

therefore the albumin production per seeded cell number is higher. 

Nevertheless, the increased serum protein production show enhanced liver-specific function of 

the organotypic cultures. The analysis of amino acid metabolism reveals that the spheroids 

consumed most of the proteinogenic amino acids over the whole low-serum cultivation of 3 

weeks. The highest rates were found for glutamine, acting as the main energy source for the 

spheroids besides glucose.  Moreover, mammalian cells use glutamine nitrogen to build 

nucleotides, amino acids and vitamins. On the other side, the spheroids steadily produced 

glutamate which plays an important role in the degradation and transamination of various amino 

acids. BCAAs were constantly consumed over time as additional energy source. Theses amino 

acids can be converted to acetyl-CoA or succinyl-CoA, which subsequently enter the TCA 

cycle. BCAAs moreover induce albumin production in hepatocytes through the mTOR signal 

pathway (Ijichi et al., 2003). Overall, the consumption and production rates for most of the 

amino acids were quite constant indicating stable metabolism and viability of the spheroids 

which is a prerequisite for chronic toxicity assessment. Therefore, these organotypic cultures are 

well-suited for investigations of long-term drug effects. Moreover, assessing the metabolic 

profile of the organotypic cultures would help define substrates for 
13

C metabolic flux analysis 

(MFA). This can further give deep insights into the cellular metabolism of the organotypic 

cultures and contribute to the analysis of drug-induced metabolic effects. The use of MFA in 

physiological characterization has been recently reviewed (Niklas and Heinzle, 2011; Niklas et 
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al., 2011b; Niklas et al., 2011c). Additionally, analyzing the influence of the initial cell number 

(250 – 8000) on cellular metabolism would be of high interest for future studies, since 

differences in nutrient supply, diffusion through the spheroid, oxygen concentration or pH could 

affect the metabolic rates in  the organotypic cultures. Further studies in these directions are 

underway in our laboratory. 

The assessment and prediction of CYP450 enzyme induction by xenobiotics is one of the main 

tasks in early drug development (LeCluyse, 2001). We tested the CYP1A induction capacity, as 

the predominant CYP450 isoform in HepG2 cells (Wilkening et al., 2003), and compared 

organotypic cultures to monolayer and collagen sandwich cultures. Enzyme induction was 

highest in the OTC and induction in ML and CS culture was similar at lower level. CYP1A 

enzymes catalyze the oxygenation of polycyclic aromatic hydrocarbons (PAHs) and 

heterocyclic aromatic amines /amides (HAAs) which can result in the formation of carcinogens 

(Jerina, 1983). Therefore, CYP1A induction is still of main interest in cancer research but also 

in drug development (Ma and Lu, 2007). The induction of CYP1A by a certain substrate can 

result in an enhanced metabolism of another substance. In drug development, the assessment of 

such drug-drug interactions is important, emphasizing the need of in vitro cell culture systems 

with functional CYP inducibility. The HepG2 organotypic cultures respond better to the CYP1A 

inducer 3-MC than conventional cultures and are therefore applicable as in vitro model for 

testing CYP1A induction by drug candidates. 

The short-term toxicity (24 h exposure) of tamoxifen was tested in the three culture systems. It 

was reported that tamoxifen causes cytotoxicity in tumor cell lines (Petinari et al., 2004) and 

human hepatocytes (Li et al., 2004). For HepG2 cells, it was shown that tamoxifen down 

regulates the expression of survivin gene thereby inhibits proliferation (Guo et al., 2009). 

Concentration-dependent toxic effects were assessed in our study for HepG2 cells in each of the 

three cultivation systems. The EC50 value assessed for conventional monolayer culture was 

similar to a recently reported value (Gerets et al., 2009). For the HepG2 cells cultivated in 

collagen-sandwich culture, we assessed a higher EC50 value showing indicating an influence of 

the extracellular matrix. However, the HepG2 spheroids clearly showed the highest EC50 value 

compared with the other two culture systems. This means that the cells in the organotypic 

cultures are less sensitive to the anti-cancer drug tamoxifen. Tamoxifen and its metabolites are 

substrates of ATP-binding cassette (ABC) superfamily members such as MDR-1 or MRP-2 

(Shin et al., 2006). It has been reported that HepG2 spheroids show higher MDR-1 activity 

compared to monolayer cultures (Oshikata et al., 2011). In our study, we show that MRP-2 

activity is also significantly higher in the organotypic cultures compared to conventional 
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cultures of HepG2. This could probably lead to an increased efflux of tamoxifen. Moreover, 

tamoxifen itself induces the expression of MDR-1 and MRP-2 (Kauffmann et al., 1998; 

Nagaoka et al., 2006) which furthermore contribute to the lower sensitivity of the spheroids to 

this drug.  

The monitoring of morphology and viability showed that mainly the cells on the spheroid 

surface were affected by exposure to a tamoxifen concentration in the range of the EC50 value 

(50 µM). This is probably due to the first contact of the drug to the outer cells. However, by 

exposure to a higher drug concentration (100 µM), it was clearly shown that also the inner parts 

of the organotypic cultures were impaired indicating complete diffusion of the drug through the 

spheroids. The transport of extracellular factors, signal molecules, or drugs through the liver 

spheroids as well as the formation of gap junctions or bile canaliculi is being further 

investigated in detail in our lab.   

We show that spheroids of different sizes could be produced and maintained viable for more 

than two weeks in low-serum conditions. The 3D tissue like structure enhanced liver-specific 

functions such as CYP450 enzyme induction. The assessment of tamoxifen toxicity clearly 

revealed higher EC50 values for the 3D cultures indicating that the spheroids are less sensitive to 

this anti-cancer drug. Moreover, we could show the formation of bile canaliculi in the 

organotypic cultures as well as the increased expression of MRP-2 membrane transporter 

compared to conventional cultures. 
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4.5 Conclusion  

We report the engineering of HepG2 organotypic cultures with adjustable sizes. The cells 

reorganize spontaneously and built organotypic cultures (OTC) in the hanging drop without any 

physical force except gravity. They were characterized including growth, long-term 

maintenance in low-serum medium, cellular metabolism and CYP450 induction. The toxic 

potential of tamoxifen was assessed and the results were compared to monolayer and collagen-

sandwich cultures. We show that the spheroid cultivation system could be applied to long-term 

studies.  The system has several advantages since both supernatant as well as spheroid sampling 

is possible, culture conditions can be changed easily, reproducible spheroid sizes are achieved 

and it is well-suited for high throughput experiments. The micro-tissues achieved represent a 

more in vivo like situation and can be used as in vitro model using cell lines to screen anti-

cancer drugs and to study tumor-specific mechanisms, e.g. chemotherapy resistance. Primary 

human cells can also be used for long-term studies especially in preclinical drug development. 
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Abstract 

Metabolomics approaches using highly sensitive and precise analytical methods such as LC- or 

GC-MS are finding important applications in toxicity assessment and safety pharmacology. In 

this study, we tested therapeutic concentrations of diclofenac (1.64µM) and troglitazone (1µM) 

on in vitro cultures of primary human hepatocytes and HepG2 cells. We compared single dose 

vs. repeated dose effects on the extracellular metabolome. Supernatant samples were analyzed 

using gas chromatography time-of-flight mass spectrometry (GC-TOFMS) and further 

evaluated by principal component analysis (PCA). Distinct separation of untreated control from 

the treated groups was observed on the basis of the measured metabolite profiles. Changes in 

levels of metabolites that are involved in metabolic pathways such as glycolysis and TCA cycle 

gave insights into adaptation of cellular metabolism in response to drug. This method is well-

suited for the sensitive assessment of drug induced changes in cellular metabolism even at 

therapeutic concentrations. It can be applied to any other alternative testing system using human 

relevant cells such as stem cells or stem cell derived functional cells, in addition to offering the 

possibility to be adapted to any other cultivation setups e.g. 3D cell cultures. 
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5.1  Introduction 

Hepatocytes as the main site of drug metabolism are commonly used for the prediction of drug-

induced effects. In vitro assays for drug toxicity assessment often make use of liver cell lines 

(e.g. HepG2) due to the ease of handling, reproducibility and their proliferation capacities. The 

main disadvantage of hepatic cell lines is the lack or reduced expression and activity of phase I 

drug metabolizing enzymes, primarily the cytochrome P450 (CYP450) enzymes. Therefore, 

primary human hepatocytes are still considered the best cell system in the fields of drug testing 

and toxicological studies, mainly because of the in vivo like CYP450 activity, at least just after 

isolation (Yuan et al., 2004). Hepatic cell lines are useful for the detection of parent compound 

toxicity (O'Brien et al., 2006; Noor et al., 2009).  

Metabolomics is defined as the systematic study of all metabolites in a cell, fluid, tissue, organ 

or organism. Many analytical techniques such as nuclear magnetic resonance (NMR), liquid 

chromatography, gas chromatography, mass spectrometry and combinations of these techniques 

are used in metabolomics (Villas-Boas et al., 2005).  Such approaches were reported recently 

for the detection of drug-induced metabolic changes (Strigun et al., 2011a; Strigun et al., 2011b; 

Strigun et al., 2011c).  

Gas chromatography (GC) in combination with time-of-flight mass spectrometry (TOFMS) 

offers new perspectives to diverse research fields e.g. forensic toxicology, doping substance 

screening and metabolomics/metabonomics. GC-TOFMS has several advantages compared to 

GC-quadrupole-MS including higher spectral scan rates and therefore unbiased 

chromatographic deconvolution (Weckwerth et al., 2004). Use of GC-TOFMS technique for the 

investigation of metabolic profiles in mammalian systems has been recently reported. Lu and 

colleagues reported a metabonomic approach to differentiate hypertension- and age-related 

metabolic variations in hypertensive rats (Lu et al., 2008). Other studies using GC-TOFMS 

show differences in metabolite pattern between different ovarian tumors (Denkert et al., 2006) 

and colon or colorectal cancer tissues (Denkert et al., 2008). Various statistical methods are 

used for data processing and analysis of GC-MS data depending on the application. Principal 

component analysis (PCA) as well as partial least squares-discriminant analysis (PLS-DA) and 

orthogonal PLS-DA (OPLS-DA) are widely used for GC-MS data analysis in metabolic 

profiling (Denkert et al., 2006; Wiklund et al., 2008; Schneider et al., 2009; Yan et al., 2009). 

Moreover, comprehensive computational approaches were used for the improved analysis of 

large metabonomic datasets (Bunk et al., 2006; Hiller et al., 2009). Such an approach was even 

extended to a non-targeted elucidation of metabolic pathways, in which all measurable 
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metabolites deriving from a single, isotope-labeled substrate were quantified (Hiller et al., 

2010). These advancements will be highly useful for comprehensive, global metabolic flux 

analyses in different metabolomics research fields. 

In this study, we applied a metabolomics technique for the assessment of drug induced 

metabolic effects on both primary human hepatocytes as well as HepG2 cells. We investigate 

the drug metabolizing capacities of the cells using LC-MS/MS. In parallel, we analyzed the 

exometabolome (extracellular metabolome) of primary human hepatocytes and HepG2 cells 

upon single or repeated exposure to subtoxic, therapeutic concentrations of two drugs, namely 

diclofenac and troglitazone. Diclofenac is a non-steroidal, anti-inflammatory drug (NSAID) 

which can cause severe adverse hepatic reactions. Troglitazone, a thiazolidinedione, anti-

diabetic drug, was withdrawn from the UK market in 1997 and in the USA in 2000. The EC50 

values for diclofenac and troglitazone upon 24 h exposure to primary human hepatocytes were 

in the range of 200 – 300 µM and 80 – 90 µM, respectively (Lauer et al., 2009). Commonly 

used cytotoxicity assays do not show toxicity of these drugs at these low concentrations. We 

investigated if the therapeutic concentrations of these drugs produce effects on the cellular 

metabolism and if these could be identified by exometabolome analysis. Supernatant samples 

from drug exposed and control cells were analyzed using GC-TOFMS. Principal component 

analysis (PCA) was applied to identify drug induced changes in the exometabolome of the liver 

cells. Quantitative differences in metabolite concentrations upon drug exposure at the tested 

therapeutic concentrations were detected. This shows the sensitivity and potential of the 

method, which can furthermore be applied to other test systems in pharmacological research. 
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5.2 Materials and Methods 

5.2.1 Chemicals 

Williams Medium E with Glutamax, fetal calf serum (FCS), HEPES, sodium pyruvate and 

minimal essential medium-nonessential amino acids (MEM-NEAA) were purchased from 

Gibco (Paisley, Scotland, UK). Fortecortin was from Merck (Darmstadt, Germany) and human 

Insulin from Sanofi Aventis (Frankfurt am Main, Germany). Percoll was purchased from PAA 

(Pasching, Austria). Bovine serum albumin (BSA) was obtained from Sigma-Aldrich (St. Louis, 

USA). Rat tail collagen was prepared as previously described (Rajan et al., 2006). Cold Storage 

Solution (CSS) was obtained from Hepacult (Regensburg, Germany). Heparmed, a Williams 

medium E based cell culture medium for the maintenance of primary human hepatocytes was 

from Biochrom AG (Berlin, Germany). Bufuralol was purchased from BD (Franklin Lakes, 

USA). Midazolam was from Cerriliant, (Wesel, Germany). Methanol, bupropion, phenacetin, 

diclofenac and troglitazone were all purchased from Sigma-Aldrich (Steinheim, Germany). N-

Methyl-N-(trimethylsilyl)trifluoro-acetamide (MSTFA) was obtained from Macherey-Nagel 

(Dueren, Germany). Pyridine was purchased from Fisher Scientific (Schwerte, Germany) and 

methoxyamine-HCl from Sigma-Aldrich (Steinheim, Germany). 

5.2.2 Isolation of primary human hepatocytes 

Primary human hepatocytes (PHH) were isolated from resected liver tissues from patients as 

explained in a previous study (Mueller et al., 2011). Tissue collection was done according to 

institutional guidelines and with each patient’s written consent. Hepatocytes were isolated using 

a two-step collagenase P (from Clostridium histolyticum) perfusion technique, followed by a 

Percoll density gradient centrifugation (Nussler et al., 2009). The purity and viability was 

determined under light microscopy using trypan blue exclusion.  

5.2.3 Cell culture  

Immediately after isolation, PHH were seeded in 6 well plates (BD Falcon) coated with rat tail 

collagen in Williams medium E, supplemented with penicillin/streptomycin (100 U / 100 

µg/ml), HEPES (15 mM), FCS (10%), insulin (1 mM), sodium pyruvate (1mM) and fortecortin 

(0.8 µg/ml). Cell number was 10
6
 cells / well as determined by trypan blue exclusion.  

The human hepatoblastoma cell line, HepG2, was obtained from the German collection of 

microorganisms and cell cultures (DMSZ, Braunschweig, Germany). Cells were maintained in 



CCHHAAPPTTEERR  55::  GGCCTTOOFF--MMSS  BBAASSEEDD  MMEETTAABBOOLLOOMMIICCSS  RREEVVEEAALLSS  MMEETTAABBOOLLIICC  EEFFFFEECCTTSS  OOFF  TTHHEERRAAPPEEUUTTIICC  

DDRRUUGG  CCOONNCCEENNTTRRAATTIIOONNSS  OONN  HHUUMMAANN  LLIIVVEERR  CCEELLLLSS    

9933    

  

Heparmed supplemented with penicillin/streptomycin (100 U / 100 µg/ml) and insulin (20 IU/l), 

transferrin (5 mg/l), glucagon (3 µg/l) (ITG, from Biochrom) as well as 10% FCS. 5*10
5
cells 

were seeded per well in a 6-well plate (Greiner Bio-One GmbH, Kremsmuenster, Austria). The 

cells (PHH and HepG2) were kept at 37°C in a cell incubator (Memmert GmbH, Schwabach, 

Germany) at 95 % relative humidity with 5 % CO2 supply. 

5.2.4 Drug treatment and sampling 

Stock solutions of diclofenac and troglitazone were prepared in DMSO. The final DMSO 

concentration in any test solution did not exceed 0.05 %. This concentration was shown to have 

no influence on the exometabolome of human liver cells in our lab (data not shown). Moreover, 

it was reported that DMSO concentrations up to 0.5% are tolerable for liver cells without 

toxicity or altered gene expression (Sumida et al., 2011). PHH from two donors were used in 

this study. Diclofenac (donor 1) and troglitazone (donor 2) were tested in triplicates. Respective 

untreated controls from each donor were run in parallel to the tests. 1 µM troglitazone and 1.64 

µM diclofenac were chosen as representative therapeutic concentrations based on literature 

(Emoto et al., 2001; Hinz et al., 2005). Cells were maintained in serum-free conditions during 

drug exposure and were treated with one dose (single-dose group) of the respective drug for 24 

hours (h) or with 4 repeated doses (repeated-dose group) with total exposure time of 96h. For 

the repeated dose groups, medium containing test drug was refreshed daily. Supernatant 

samples at 24 h and 96 h time points were analyzed and compared with the respective controls. 

5.2.5 Cytochrome P450 activity assay 

The functional enzyme activity test for CYP1A2, CYP2B6, CYP2C9 and CYP3A4 was 

performed in a cassette approach based on probe reactions as previously described (Mueller et 

al., 2011). CYP2D6 activity was tested separately prior to the addition of the CYP substrate 

cassette, since for CYP2D6, interaction was shown with the other substrates (Mueller et al., 

2011). The substrates used were bufuralol for CYP2D6, phenacetin for CYP1A2, bupropion for 

CYP2B6, diclofenac for CYP2C9 and midazolam for CYP3A4. Assay time was 1 hour for 

CYP2D6 and 2 hours for the CYP cassette. 

5.2.6 Quantification of the metabolites in CYP assay by LC-MS/MS 

The HPLC system consisted of an MS Plus pump (Surveyor) and an AS Plus auto sampler 

(Surveyor). Mass spectrometry was performed on a TSQ Quantum Discovery Max triple 
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quadrupole mass spectrometer equipped with either a heated electrospray (H-ESI) interface (for 

analysis of hydroxybupropion, 1-hydroxymidazolam and 4-hydroxydiclofenac) or an APCI 

probe (for analysis of acetaminophen), respectively, connected to a PC running the standard 

software Xcalibur 2.0.7 (Thermo Fisher Scientific, USA). The flow rate was set to 300 µl/min 

and the compounds were separated on an Uptisphere OBD, 3 µm, 100x2.1 mm (Interchim, 

France) analytical column with a pre-column (Uptisphere OBD, 3 µm, 10x2.0 mm, Interchim, 

France). Gradient elution with acetonitrile/0.1% formic acid as organic phase (A) and 10 mM 

ammonium formate/0.1% formic acid as aqueous phase (B) was performed using the following 

gradient: % A (t (min)): 5(0-0.2)-97(1.8-4.3)-5(4.5–7.0). The MS-MS identification of 

characteristic fragment ions was performed using a generic parameter set: ion source 

temperature 350°C, capillary voltage 3.8 kV, collision gas 0.8 mbar argon, spray and sheath gas, 

20 and 8 (arbitrary units), respectively. The stable product ions with the highest S/N ratio were 

used to quantify the analyte in the selected reaction monitoring mode (SRM).  

The transitions used for MS/MS analysis were as follows: 278.2  186.0 for 1-OH-bufuralol, 

152.1  65.0 for acetaminophen , 256.2  139.0 for OH-bupropion, 312.1  231.0 for 4-OH-

diclofenac and 342.1  203.0 for 1-OH-midazolam. 

5.2.7 Viability assays 

The activity of liver-specific aspartate aminotransferase (AST) in the culture supernatant was 

determined using a kinetic UV assay kit (HITADO, Möhnesee-Delecke, Germany) according to 

the manufacturer’s instructions. 

Sulforhodamin B (SRB) assay was carried out as previously described (Beckers et al., 2010). 

This colorimetric endpoint assay quantifies the total protein content which is directly correlated 

to the cell number.  

5.2.8 Sample preparation for GC-TOFMS 

200 µl methanol was added to 50 µl supernatant or medium samples for protein precipitation. 

The mixture was vortexed for 3 minutes and incubated for 1h on ice. Afterwards, samples were 

centrifuged (10 min, 13.000g, 4°C). Supernatant was transferred into glass vials and mixed with 

200 µl -aminobutyric acid (1 mM in H2O) used as internal standard. These samples were 

freeze dried prior to a two-step derivatization. Firstly, 50 µl of methoxyaminin pyridine (20 g/l) 

was added and the mixture stirred for 30 min at 80°C for methoximation. This was followed by 

derivatization with 50 µl of the reagent MSTFA (N-Methyl-N-(trimethylsilyl)trifluoro-
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acetamide) for 30 min at 80°C. Derivatization was automatically carried out using a MPS 2XL 

autosampler equipped with an agitator (both from Gerstel, Karlsruhe, and Germany). Each 

sample was measured in triplicate, resulting in both three biological and three technical 

replicates, i.e. 9 samples per test group. 

5.2.9 GC-TOFMS measurement 

The GC-TOFMS consisted of an Agilent 7890 gas chromatograph (Hewlett-Packard, Atlanta, 

USA) coupled to a Pegasus HT ToF mass spectrometer (Leco, Mönchengladbach, Germany). A 

HP5-ms capillary column of 60 m length, 0.25 mm inner diameter and 0.25 µm film thickness 

was used for separation. Splitless injection (volume 1 µl) was performed. The initial GC-oven 

temperature was set at 70°C with a ramp of 5°C/min and a final temperature of 320°C. Helium 

was used as carrier gas and a constant flow rate of 1 ml/min was adjusted.  The transfer line 

temperature was set at 250°C. Mass spectra were acquired within a range of 70 to 700 m/z and 

scan rate was 20 spectra per second. Ion source voltage was set at 70 eV and temperature at 

200°C.  

5.2.10 Data processing, normalization and multivariate statistical analysis 

Chromatogram acquisition, automated peak deconvolution, identification of suitable fragment 

mass to charge ratio for peak area determination and reference library search were carried out 

using ChromaTof 4.22 software (Leco). Similarity threshold, which determines the minimum 

similarity of the obtained spectrum with the reference library spectrum, was set at 600. 

Annotation of metabolites were performed using the reference library or by the assessment of 

retention time and mass spectra from standard substance measurements. Furthermore, the Golm 

Metabolome Database was used for mass spectra analysis of non-identified metabolites (NIMs) 

(Hummel et al., 2010). The database supports a decision-tree based prediction of functional 

groups allowing classification of the compounds. Known artifact peaks such as solvent 

contamination, column bleeding, plasticizers or reagent peaks were manually excluded. Peak 

areas of biologically relevant metabolites which were present in both drug-exposed and control 

samples were normalized to the respective peak area of the internal standard (m/z 130) for each 

sample. Peak areas of metabolites with more than one derivatization product (e.g. aspartate) 

were summed as well as peak areas of metabolites with several isomers upon methoximation 

such as glucose.  A range of 25 – 30 metabolites was analyzed by this method. Figure 5-1 shows 

a representative chromatogram with indicated numbered metabolites.  



CCHHAAPPTTEERR  55::  GGCCTTOOFF--MMSS  BBAASSEEDD  MMEETTAABBOOLLOOMMIICCSS  RREEVVEEAALLSS  MMEETTAABBOOLLIICC  EEFFFFEECCTTSS  OOFF  TTHHEERRAAPPEEUUTTIICC  

DDRRUUGG  CCOONNCCEENNTTRRAATTIIOONNSS  OONN  HHUUMMAANN  LLIIVVEERR  CCEELLLLSS    

9966    

  

 

Figure 5-1: Representative chromatogram of supernatant samples used in this study (m/z 73, 

characteristic for MSTFA derivatization). The predominant peaks were chosen and peaks of the 

indicated metabolites are numbered. 

To assess if a metabolite was released or taken up by the cells, fresh medium controls were 

prepared, measured and analyzed exactly as described and fresh medium peak areas were 

compared to peak areas of the cell samples. Normalized peak areas were auto-scaled using 

standard deviation and then used for PCA to reduce the dimensions of the dataset. The variance 

in dataset can be described using a set of underlying orthogonal variables (the principal 

components). Student’s t-test was used to identify significant quantitative changes in 

exometabolome of untreated control and drug exposed cells. Fold changes were calculated 

compared to the control (fold change > 1 indicates increased metabolite concentration in drug 

exposed group). A threshold of significance was defined as p-value <0.05 and fold change ≥ 

1.15 or ≤ 0.85. The methods were performed using Matlab R2006a (The MathWorks) software. 
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5.3 Results 

5.3.1 Precision and reproducibility of the method 

For the assessment of the precision and reproducibility of the method, fresh medium samples 

were prepared for GCTOF-MS analysis and measured in triplicates. 15 medium components 

were analyzed and relative standard deviations (RSD) were determined as shown in table 5-1.  
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Table 5-1: Precision of sample preparation and GCTOF-MS analysis assessed by %RSD (relative 

standard deviation) of 15 metabolites and IS from 3 technical replicates of control samples (pure 

medium). 

Metabolite %RSD %RSD 

 w/o normalization normalized to IS (m/z 130) 

Alanine (2TMS)  10.8 10.1 

Valine (2TMS) 7.5 6.9 

Threonine (3TMS) 9.3 8.6 

Serine (3TMS) 10.7 10.2 

Isoleucine (2TMS) 13.3 12.6 

Leucine (2TMS) 8.3 7.9 

Phenylalanine (2TMS) 8.6 7.9 

Ornithine (4TMS) 7.6 8.4 

Glycine (3TMS) 6.8 6.1 

Galactose (5TMS, 2 MEOX isomers) 8.0 7.2 

Glucose (5TMS, 2 MEOX isomers) 8.5 7.7 

Fructose (5TMS, 2 MEOX isomers) 9.6 8.9 

Sorbitol (6TMS) 6.8 6.0 

Tyrosine (2TMS+3TMS) 8.3 7.6 

Aspartate (2TMS+3TMS) 10.7 9.9 

α-Aminobutyric acid (IS; 2TMS) 0.8 - 

mean %RDS (w/o IS) 9.0 8.4 

 

Most of the analytes showed %RSD below 10%. Without peak area normalization, the lowest 

value was assessed for sorbitol and glycine (6.8%). Isoleucine showed the highest %RSD of 

13.3%. By normalization, the RSDs of all metabolites decreased except for ornithine. Peak areas 

of the internal standard α-aminobutyric acid were highly reproducible with RSD value of 0.8%. 
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5.3.2 Evaluation of liver-specific drug-metabolizing functions 

For the primary human hepatocytes used in this study, the activity of cytochrome P450 enzymes 

was assessed at day 6 after isolation as depicted in figure 5-2.  

 

Figure 5-2: CYP450 activities in isolated primary human hepatocytes (day 6 after isolation) from 2 

different donors. Activity was determined by quantifying the formation of metabolites which are 1-

OH-Midazolam (CYP3A4), 4-OH-Diclofenac (CYP2C9), OH-Bupropion (CYP2B6), 

Acetaminophen (CYP1A2) and 1-OH-Bufuralol (CYP2D6). Test duration was 1 hour (h) for 

CYP2D6 and 2 h for CYP cocktail containing substrates for CYP1A2, 3A4, 2B6 and 2C9. 

The investigated specific substrates were all transformed to their respective metabolites. Inter-

individual differences were observed between the two donors in the activities of CYP3A4 and 

2B6 which were higher in liver cells from donor 2. For HepG2 cells, no metabolite formation 

was detected. 

5.3.3 Viability assessment 

AST activity in supernatant samples was measured as indicator of cell viability. The respective 

activities for primary human hepatocytes and HepG2 cells after single dose exposure (24h) are 

shown in table 5-2. For repeated dose experiments, samples were taken every 24h and 

cumulative values are presented. 
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Table 5-2:  AST activities in drug-exposed primary human hepatocytes and HepG2 cells and their 

respective controls as indicator of cell viability. Values after single dose exposure (24h) as well as 

summed activities after repeated dose exposure (4 doses, 96h) are shown. Activities are given as 

mean values ±SD (n=3).  

PHH 
AST activity [U/l] 

Troglitazone (1 µM) 

AST activity [U/l] 

Diclofenac (1.64 µM) 

 control treated control treated 

24h 50 ±3 32 ±1** 61 ±2 56 ±2** 

96h 239 ±23 221 ±20 178 ±11 196 ±12 

HepG2 cells 
AST activity [U/l] 

Troglitazone (1 µM) 

AST activity [U/l] 

Diclofenac (1.64 µM) 

 control treated control treated 

24h 16 ±5 14 ±1 14 ±1 12 ±1 

96h 253 ±14 95 ±13*** 254 ±9 233 ±29 

 **:p < 0.01, ***:p < 0.001. 

 

Significant difference in AST activity was found upon single dose exposure to diclofenac and 

troglitazone, whereby the treated PHH showed lower extracellular enzyme activity compared to 

the untreated control. During repeated dose testing (96h) for both drugs, the treated primary 

human hepatocytes showed no significant differences as compared to their respective untreated 

controls. 

For HepG2 cells, single dose exposure to drugs and solvent resulted in low, comparable AST 

activities in all control and treated samples. However, significant differences upon repeated 

troglitazone exposure were observed. The respective control shows an enzyme activity of 253 

U/l whereas the activity in the troglitazone treated cells was significantly lower (95 U/l). 

Diclofenac repeated dose exposure did not affect cellular viability. 
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As further viability test, SRB staining was carried out at the end of the experiment, i.e. after 

repeated drug exposure (figure 5-3).  

 

Figure 5-3: Viability (as percentage of untreated control) of drug exposed primary human 

hepatocytes (PHH) and HepG2 cells after repeated drug exposure. Viability was assessed by SRB 

endpoint assay. Error bars indicate standard deviations (n=3), **: p < 0.01. 

No significant differences in viability were found for the drug exposed cells as compared to the 

respective untreated controls except for troglitazone treated HepG2 cells, whereby the viability 

was slightly higher than the control. However, again no cytotoxic effects of the therapeutic drug 

concentrations were detected by this endpoint assay.  

5.3.4 Effects of troglitazone on cellular exometabolome 

Primary human hepatocytes 

Effects of troglitazone on exometabolome of PHH were visualized with the score plots as 

depicted in figure 5-4.  
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Figure 5-4: PCA score plots of principal component 1 and 2 for troglitazone-treated (1 µM, open 

squares) and untreated samples (closed circles) with 24 h single dose and repeated doses for 96 h, 

N=3, n=3 a) Primary human hepatocytes at 24 h b) HepG2 cells at 24 h c) Primary human 

hepatocytes at 96 h d) HepG2 cells at 96 h. The respective classes are shown within 95% confidence 

ellipses. 

For PHH, a clear separation as seen by 95% confidence ellipses could be observed upon single 

dose exposure, whereby the first two principal components account for 89% of the total 

variance (figure 5-4a). Significant quantitative differences were found for 13 metabolites 

between the control and drug exposed cells (fold change ≥ 1.15 or ≤ 0.85, p-value <0.05) (table 

5-3). Concentrations of the amino acids phenylalanine, valine, serine, threonine and isoleucine 

were significantly reduced indicating higher uptake upon single troglitazone dose. As observed 

from loading coefficients, these metabolites contribute most to the separation along the first 

component. Glucose release and lactate production were reduced. The production of the ketone 

body 3-hydroxybutyric acid was reduced in addition to decreased urea and ornithine supernatant 

levels. 

Upon repeated troglitazone exposure, PCA score plot again shows clear grouping and PC1 and 

PC2 describe 85% of the total variance (figure 5-4c). Concentrations of 8 metabolites were 

significantly changed in exometabolome of PHH (table 5-4). Higher ornithine and urea levels 
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were measured. Galactose uptake was reduced. Highest fold change (2.04) was observed for a 

metabolite (NIM1) which could not be reliably identified. 
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Table 5-3: Fold changes in normalized metabolite peak areas of troglitazone (1 µM) exposed 

primary human hepatocytes and HepG2 cells (single dose for 24h) compared to untreated control 

(n = 9/group). Fold change is expressed in comparison to the control and a fold change > 1 indicates 

increased metabolite concentration in treated group as compared to the untreated control. The 

indicated m/z ratios were used for peak area determination. Last column shows if the respective 

metabolite is taken up (-) or released (+) by the cells as compared to medium control (blank). 

24 h Troglitazone (1 µM) 

Primary human hepatocytes HepG2 cells 

 

Identified  

metabolite 

 

 

m/z 

 

fc 

 

p 

 

net 

 

Identified  

metabolite 

 

m/z 

 

fc 

 

p 

 

net 

Valine  

(2 TMS) 

73 0.83 < 0.05 - Valine  

(2 TMS) 

 

73 1.24 < 0.05 
- 

Threonine  

(3 TMS) 

73 0.82 < 0.05 + Propanoic acid 

(TMS) 

73 1.23 < 0.05 
- 

Serine  

(3 TMS) 

73 0.81 < 0.05 + Aspartate  

(2 TMS+3 TMS) 

 

73;73 1.20 < 0.05 
- 

Isoleucine  

(2 TMS) 

 

73 0.80 < 0.05 - Leucine  

(2 TMS) 

158 1.19 < 0.05 
- 

Phenylalanine  

(2 TMS) 

73 0.80 < 0.05 + Phenylalanine  

(2 TMS) 

 

73 1.19 < 0.05 
- 

Glucose  

(5 TMS,2 MEOX) 

 

73, 73 0.78 < 0.01 + Serine  

(3 TMS) 

73 1.19 < 0.05 
+ 

Pyroglutamic 

acid (2 TMS) 

 

156 0.77 < 0.05 + Proline  

(2 TMS) 

142 1.18 < 0.05 
+ 

Glycine  

(3 TMS) 

 

73 0.68 < 0.001 - Threonine  

(3 TMS) 

73 1.18 < 0.05 
- 

Lactate  

(2 TMS) 

117 0.65 < 0.01 + Galactose  

(5 TMS, 2 MEOX) 

 

73; 73 1.16 < 0.05 
- 

3-

Hydroxybutyric 

acid (2 TMS) 

 

73 0.64 < 0.01 + Lactate  

(2 TMS) 

117 1.05 n.s. 
+ 

Urea  

(2 TMS) 

 

147 0.46 < 0.001 + Glucose 

(5 TMS, 2 MEOX) 

73; 73 1.03 n.s. 
- 

Ornithine  

(4 TMS) 

 

73 0.36 < 0.001 +     
 

Galactose 

(5 TMS,2 MEOX) 

73, 73 1.01 n.s. +     
 

Fc = fold change, p = p-value, NIM = non-identified metabolite (functional group prediction by Golm 

Metabolome Database), n.s. = non-significant, TMS=trimethylsilyl, MEOX=methoxyisomer. 
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HepG2 cells 

For HepG2 cells, low separation was observed after single, therapeutic troglitazone dose (figure 

4-4b), which was mainly determined by alterations in amino acid and galactose levels. After 

repeated troglitazone exposure, PCA shows a distinct clustering indicated by 95% confidence 

ellipses as seen in figure 4-4d. PC1 and PC2 describe 69% of the total variance and quantitative 

differences were found in concentrations of 13 metabolites. The production of urea, ornithine 

and lactate was significantly elevated (table 5-4). Moreover, the consumption of the sugars 

namely; fructose, glucose and galactose and of the amino acids; leucine and isoleucine, was 

significantly increased. 
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Table 5-4: Fold changes in normalized metabolite peak areas of troglitazone (1 µM) exposed 

primary human hepatocytes and HepG2 cells (4 doses, total exposure time 96h) compared to 

untreated control (n = 9/group). Fold change is expressed in comparison to the control and a fold 

change > 1 indicates increased metabolite concentration in treated group as compared to the 

untreated control. The indicated m/z ratios were used for peak area determination. Last column 

shows if the respective metabolite is taken up (-) or released (+) by the cells as compared to medium 

control (blank). NIM = non-identified metabolite (functional group prediction by Golm 

Metabolome Database). 

96 h Troglitazone (1 µM) 

Primary human hepatocytes HepG2 cells 

 

Identified  

metabolite 

 

 

m/z 

 

fc 

 

p 

 

net 

 

Identified  

metabolite 

 

m/z 

 

fc 

 

p 

 

net 

NIM1 

(primary amin) 

 

73 2.04 <0.001 - Urea 

(2 TMS) 

147 3.34 < 0.05 + 

Ornithine 

(4 TMS) 

73 1.76 <0.001 + Ornithine 

(4 TMS) 

73 2.29 < 0.01 + 

Galactose 

(5 TMS, 2 MEOX) 

 

73;147 1.33 <0.001 - Glutamine 

(3 TMS) 

73 1.51 < 0.05 - 

Urea 

(2 TMS) 

 

147 1.23 <0.05 + Lactate 

(2 TMS) 

117 1.28 < 0.01 

 

+ 

Glycine 

(3 TMS) 

 

73 1.20 <0.01 - Alanine 

(2 TMS) 

116 1.24 < 0.05 - 

Lactate 

(2 TMS) 

 

117 1.00 n.s. + Threonine 

(3 TMS) 

73 0.78 < 0.05 - 

Glucose 

(5 TMS, 2 MEOX) 

73;147 1.03 n.s. + Tryptophan 

(3 TMS) 

 

73 0.71 < 0.05 - 

     Serine 

(3 TMS) 

 

73 0.69 < 0.05 + 

     Galactose 

(5 TMS,2 MEOX) 

 

73;319 0.61 < 0.01 - 

     Isoleucine 

(2 TMS) 

 

73 0.59 < 0.05 - 

     Leucine 

(2 TMS) 

 

158 0.30 < 0.05 - 

     Fructose 

(5 TMS, 2 MEOX) 

 

73 0.24 < 0.01 - 

     Glucose 

(5 TMS, 2 MEOX) 

73;160 0.16 < 0.01 - 
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Fc = fold change, p = p-value, NIM = non-identified metabolite (functional group prediction by Golm 

Metabolome Database), n.s. = non-significant, TMS=trimethylsilyl, MEOX=methoxyisomer. 

 

5.3.5 Effects of diclofenac on cellular exometabolome 

Primary human hepatocytes 

Upon single dose treatment with diclofenac, PCA reveals a complete separation between the 

two groups for primary human hepatocytes (figure 5-5 a).  

 

Figure 5-5: PCA score plots of principal component 1 and 2 for diclofenac-exposed (1.64 µM, open 

squares) and untreated control samples (closed circles) with 24 h single dose and repeated doses for 

96 h, N=3, n=3 a) Primary human hepatocytes at 24 h b) HepG2 cells at 24 h c) Primary human 

hepatocytes at 96 h d) HepG2 cells at 96 h. The respective classes are shown within 95% confidence 

ellipses. 

79% of the total variance is explained by the two first principal components. Significant 

differences in metabolites between the two groups (fold change ≥ 1.15 or ≤ 0.85, p-value < 

0.05) for single dose exposure of primary human hepatocytes to diclofenac are shown in table 5-

5. Supernatant levels of 10 metabolites were significantly changed. Lactate production was 

increased with a fold change of 1.77. The amounts of valine, glycine, isoleucine and leucine in 
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culture supernatant indicated reduced consumptions. Tyrosine uptake was significantly 

increased. Although glucose was released by the cells, sorbitol concentration was tremendously 

decreased (fold change 0.35) in the supernatants of diclofenac exposed cells indicating its 

highly increased uptake by the cells. 

Regarding repeated dose exposure of primary human hepatocytes to diclofenac, PCA score plot 

shows less separation (figure 5-5c). 69% of the total variance is explained by the first two 

principal components. Again an increased lactate production (fold change 1.29) was observed as 

well as higher galactose and sorbitol uptake from culture medium (fold changes 0.82 and 0.68, 

respectively) compared to untreated control. Overall, ten metabolites were significantly changed 

upon repeated diclofenac exposure, the highest difference was found for a non-identified 

metabolite (NIM 3), which was released by the cells (table 5-6). 

  



CCHHAAPPTTEERR  55::  GGCCTTOOFF--MMSS  BBAASSEEDD  MMEETTAABBOOLLOOMMIICCSS  RREEVVEEAALLSS  MMEETTAABBOOLLIICC  EEFFFFEECCTTSS  OOFF  TTHHEERRAAPPEEUUTTIICC  

DDRRUUGG  CCOONNCCEENNTTRRAATTIIOONNSS  OONN  HHUUMMAANN  LLIIVVEERR  CCEELLLLSS    

110099    

  

Table 5-5: Fold changes in normalized metabolite peak areas of diclofenac (1.64 µM) exposed 

primary human hepatocytes and HepG2 cells (single dose for 24h) compared to untreated control 

(n = 9/group).Fold change is expressed in comparison to the control and a fold change > 1 indicates 

increased metabolite concentration in treated group as compared to the untreated control. The 

indicated m/z ratios were used for peak area determination. Last column shows if the respective 

metabolite is taken up (-) or released (+) by the cells as compared to medium control (blank).  

24 h Diclofenac (1.64 µM) 

Primary human hepatocytes HepG2 cells 

 

Identified  

metabolite 

 

 

m/z 

 

fc 

 

p 

 

net 

 

Identified  

metabolite 

 

m/z 

 

fc 

 

p 

 

net 

Lactate 

(2 TMS) 

 

117 1.77 < 0.001 + Lactate 

(2 TMS) 

117 0.88 n.s. + 

Valine 

(2 TMS) 

 

73 1.50 < 0.01 - Glucose  

(5 TMS, 2 MEOX) 

73;147 0.88 n.s. - 

Glucose 

(5 TMS,2 MEOX) 

 

73;147 1.47 < 0.001 + Galactose 

(5 TMS, 2 MEOX)  

73;147 0.99 n.s. - 

Glycine 

(3 TMS) 

 

73 1.42 < 0.01 -      

Isoleucine 

(2 TMS) 

 

73 1.31 < 0.05 -      

Leucine 

(2 TMS) 

 

158 1.24 < 0.01 -      

Galactose 

(5 TMS, 2 

MEOX) 

 

73;73 1.19 < 0.05 -      

Tyrosine 

(3 TMS, 4 TMS) 

 

179; 73 0.77 < 0.01 -      

NIM 2 

(fatty acid) 

 

73 0.72 < 0.05 +      

Sorbitol 

(6 TMS) 

 

73 0.35 < 0.01 -      

Urea 

(2 TMS) 

147 0.82 n.s. +      

Fc = fold change, p = p-value, NIM = non-identified metabolite (functional group prediction by Golm 

Metabolome Database), n.s. = non-significant, TMS=trimethylsilyl, MEOX=methoxyisomer. 
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HepG2 cells 

Single dose exposure of HepG2 cells to diclofenac did not affect cellular metabolome (figure 5-

5b). No significant, quantitative changes in any metabolite concentrations were found. 

In contrast, PCA score plot reveals a clear separation upon repeated diclofenac exposure 

between treated and untreated cells (figure 5-5d). Increased cellular lactate production (fold 

change 1.38) and alanine consumption (fold change 1.24) were observed as shown in table 5-6. 

Branched chain amino acids (BCAAs), sugars and lactate showed the highest loading 

coefficients responsible for separation along PC1. Moreover, the consumption of glucose was 

significantly increased (fold change 0.59,  p< 0.001). 
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Table 5-6: Fold changes in normalized metabolite peak areas of diclofenac (1.64 µM) exposed 

primary human hepatocytes and HepG2cells (4 doses, total exposure time 96h) compared to 

untreated control (n = 9/group).Fold change is expressed in comparison to the control and a fold 

change > 1 indicates increased metabolite concentration in treated group as compared to the 

untreated control. The indicated m/z ratios were used for peak area determination. Last column 

shows if the respective metabolite is taken up (-) or released (+) by the cells as compared to medium 

control (blank). 

96 h Diclofenac (1.64 µM) 

Primary human hepatocytes HepG2 cells 

 

Identified  

metabolite 

 

 

m/z 

 

fc 

 

p 

 

net 

 

Identified  

metabolite 

 

m/z 

 

fc 

 

p 

 

net 

NIM 3 

(sec. alcohol) 

 

73 1.58 < 0.001 + Lactate  

(2 TMS) 

117 1.38 <0.01 + 

Chlorogenic acid 

(6 TMS) 

 

73 1.56 < 0.01 + Alanine  

(2 TMS) 

116 1.24 < 0.001 - 

Lactate  

(2 TMS) 

 

73 1.29 < 0.01 + Tryptophan  

(3 TMS) 

73 0.83 < 0.05 - 

Pyroglutamic 

acid  

(2 TMS) 

 

73 1.28 < 0.01 + Pyroglutamic 

acid 

(2 TMS) 

156 0.68 < 0.001 + 

Alanine 

(2 TMS) 

 

116 1.23 < 0.01 - Glucose  

(5 TMS, 2 MEOX) 

73;147 0.59 < 0.001 - 

Galactose  

(5 TMS,2 MEOX) 

 

73;147 0.82 < 0.01 - Galactose  

(5TMS, 2 MEOX) 

73;73 0.93 n.s. - 

Threonine  

(3 TMS) 

 

73 0.77 < 0.05 -      

Sorbitol  

(6 TMS) 

 

73 0.68 < 0.01 -      

NIM 1  

(primary amin) 

 

73 0.66 < 0.05 -      

Urea  

(2 TMS) 

 

147 1.07 n.s. +      

Glucose  

(5 TMS,2 MEOX) 

73;147 0.98 n.s. +      

Fc = fold change, p = p-value, NIM = non-identified metabolite (functional group prediction by Golm 

Metabolome Database), n.s. = non-significant, TMS=trimethylsilyl, MEOX=methoxyisomer 
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5.4 Discussion 

The aim of this study was to apply a GCTOF-MS based metabolomics approach for the 

assessment of effects of subtoxic, therapeutic drug concentrations of diclofenac and troglitazone 

on the exometabolome of human liver cells. In this approach, sampling as well as measurements 

is rapid and easy to handle since the culture supernatants were analyzed. This avoids labour 

intensive intracellular metabolite extraction which is more complex for mammalian cells than 

for microorganism. The precision and reproducibility of the method was tested, showing low 

%RSD values and further improvement by peak area normalization to the internal standard. As 

such the method is suitable for the comparison of different sample groups. A threshold for 

significant metabolite differences was defined, which was p-value <0.05 and fold change ≥ 1.15 

or ≤ 0.85. 

Single dose exposure (24h) and repeated doses (96h, 4 doses) was carried out. For all 

experiments, no toxic effects (AST release; SRB staining) were caused by drug exposure. 

CYP450 activity assessed by LC-MS/MS showed that the primary human hepatocytes from the 

two tested donors were metabolically active at day 6 after isolation, albeit donor-to-donor 

variability. For HepG2 cells, no drug-metabolizing capacities were detected in this assay as no 

metabolite formation was observed. 

Single dose exposure to troglitazone resulted in higher consumption of amino acids by the 

primary human hepatocytes.  Moreover a decreased glucose release was noticed, an observation 

previously described (Rosa et al., 2004). Regarding AST activity, a higher enzyme release was 

observed in control cells after 24 hours, correlating with elevated urea and ornithine 

concentrations in the supernatants. This can be explained by the extracellular conversion of 

arginine to urea and ornithine by arginase 1 released into supernatant upon cell death (Peters et 

al., 2008). We also observed a reduced 3-hydroxybutyric acid secretion, a metabolite produced 

during fatty acid breakdown. This indicates an inhibition of fatty acid oxidation by troglitazone 

which is also previously reported (Fulgencio et al., 1996). Repeated troglitazone treatment also 

induced significant metabolic changes. However, fewer effects were observed as compared to 

single dose experiment. Troglitazone is mainly metabolized by CYP3A4 to a sulfate, a quinone 

(via CYP3A4) and a glucuronide via phase II enzymes (Loi et al., 1999; Kassahun et al., 2001). 

Moreover, it was reported that troglitazone induces CYP3A4 (Sahi et al., 2000) and that high 

CYP3A4 activity induces detoxification pathways.  
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HepG2 cells showed fewer changes in exometabolome upon single dose troglitazone exposure. 

However, after repeated troglitazone treatment, higher effects on HepG2 exometabolome were 

observed. These differences for the cell line could be explained by the limited drug-

metabolizing capacity of HepG2 cells leading to an intracellular accumulation of the drug and 

therefore to increased cellular effects upon repeated dose exposure.  

Single therapeutic dose exposure to diclofenac led to changes in supernatant levels of lactate, 

sugars and amino acids. Sorbitol consumption increased upon single exposure to a therapeutic 

diclofenac concentration. Previous studies show that diclofenac exerts uncoupling effects on 

mitochondrial respiratory chain (Petrescu and Tarba, 1997; Chan et al., 2005). Furthermore, it 

inhibits gluconeogenesis and stimulates glycolysis and glycogenolysis (Petrescu and Tarba, 

1997).The observed increased production of lactate is in concordance with these findings as 

well as the increased net release of glucose, which probably is due to the elevated breakdown of 

glycogen within the liver cells. After single dose diclofenac exposure, the branched-chained 

amino acids (valine, leucine and isoleucine) were consumed in lower amounts. BCAA can be 

converted to acetyl-CoA and fed into the TCA cycle for energy generation. The lower cellular 

capacity to use BCAAs as energy source may explain increased utilization of sugars to derive 

ATP via glycolysis. After repeated dose testing of diclofenac on PHH, lactate production was 

still increased, but by lower fold change (1.29) compared to single dose test. Again, sorbitol 

uptake was increased (fold change 0.68) but to a lesser extent. An increased galactose uptake 

was observed, indicating higher glycolytic activity after repeated dose exposure. However, these 

findings are just first indications for alterations in certain metabolic pathways which could be 

further explored by metabolic flux analysis. 

For HepG2 cells, no significant changes in exometabolome were observed at all after single 

dose diclofenac exposure. On the contrary, repeated dose treatment of HepG2 cells with 

therapeutic diclofenac concentrations led to significant changes in exometabolome, as shown by 

principal component analysis. Similar to PHH, diclofenac induced increased lactate production 

and sugar uptake (glucose), again indicating higher glycolytic rate. The changes in sugar uptake 

in both PHH and HepG2 cells in our study are probably linked to the uncoupling effect of 

diclofenac on oxidative phosphorylation.  

Diclofenac is mainly metabolized by CYP2C9 and CYP3A4 (Evans et al., 2004; Yan et al., 

2005), which were both active in the primary hepatocytes. Similar to troglitazone, the PHH 

show an adaptation to repeated dose exposure probably due to induced detoxification via 

metabolism. Metabolic flexibility is needed for adaptation of cells to medium components 
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including drugs. However in case of HepG2 cells, the lack of sufficient metabolism leads to 

accumulation of the drug upon repeated dose exposure resulting in higher metabolic changes. 

AST activity and SRB assays as viability parameters showed that diclofenac had no effects on 

viability of both cell types during the experiments. The observed effects on the exometabolome 

are therefore not identifiable by commonly used toxicity assays. This also means even 

therapeutic doses of drugs such as diclofenac result in subtle changes in cellular metabolism 

which may ultimately be responsible for adverse effects upon chronic use or even idiosyncratic 

toxicity. 

Taken together, this study presents a metabolomics approach for the detection of metabolic 

alterations in primary human hepatocytes and a hepatic cell line (HepG2) upon single and 

repeated dose drug exposure. In contrast to many other studies where high drug concentrations 

are used, we exposed the cells to physiologically relevant drug concentrations at which there is 

no decrease in the viability of cells. GC-TOFMS analysis and multivariate statistics were 

successfully applied to detect both overall metabolic changes and indications for specific 

alterations in certain pathways which could be further analyzed e.g. by using metabolic flux 

analysis (Niklas and Heinzle, 2011; Niklas et al., 2011c). The observed in vitro effects such as 

increased glycolytic activity upon diclofenac exposure were comparable to in vivo studies 

reported in literature. The analysis of 25-30 metabolites in the culture supernatants was 

sufficient to detect these metabolic alterations and to gain insights into the altered metabolic 

pathways. The method could contribute to the prediction of drug induced adverse effects and 

can also be applied to other pharmacologically relevant cells e.g. cardiomyocytes or stem cells 

derived differentiated functional cells. It therefore represents an alternative to in vivo animal 

based systems for preliminary drug screening. 
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Abstract 

In vitro repeated dose testing for the assessment of chronic drug-induced effects is a huge 

challenge in preclinical pharmaceutical drug development. Long term toxicity results in 

discontinuation of therapy or post-marketing withdrawal of drugs despite in vivo preclinical 

screening. In case of hepatotoxicity, due to limited long term viability and functionality of 

primary hepatocytes, chronic hepatic effects are difficult to detect. In this study, we maintained 

primary human hepatocytes in a serum-free cultivation medium for more than three weeks and 

analyzed physiology, viability and drug metabolizing capacities of the hepatocytes. Moreover, 

we assessed acute (24h) diclofenac toxicity in a range of concentrations. The chronic (9 

repeated doses) toxicity at one clinically relevant and another relatively higher concentration 

(6.4 µM and 100 µM) was also tested. We investigated phase I and II metabolism of diclofenac 

upon repeated dose exposure and analyzed changes in the cellular exometabolome. Acute 24h 

assessment revealed toxicity only for the highest tested concentration (1 mM). Upon repeated 

dose exposure toxicity was observed even at a low concentration (6.4 µM). Biotransformation 

pathways were active for three weeks and diclofenac-acylglucuronide was detected as the 

predominant metabolite. Dose dependent diclofenac-induced effects on exometabolome, such as 

on the production of lactate and 3-hydroxybutyric acid as well as glucose and galactose 

metabolism, were observed upon 9 repeated doses. Summarizing, we show that repeated dose 

testing on long-term functional cultures of primary human hepatocytes should be included for 

chronic drug induced effects for preclinical toxicity assessment and can potentially help 

replace/reduce in vivo animal testing.  
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6.1  Introduction 

Alternative in vitro methods based on the principle of the three R’s (reduction, refinement and 

replacement of animal tests) are highly needed for safety and risk assessment (Pauwels and 

Rogiers, 2010). Drug regulatory authorities are emphasizing for improved in vitro test methods 

(Collins et al., 2008). However, in vitro chronic toxicity prediction is a huge challenge to the 

pharmaceutical industry in preclinical drug development.  Even the consumer industry such as 

the cosmetics industry is facing this challenge with the upcoming total ban in 2013 on animal 

testing for cosmetics in Europe. The replacement of repeated dose in vivo testing to assess 

chronic long-term drug-induced effects by in vitro systems is urgently needed and is therefore a  

major focus of research.  

Since one of the main reasons for drug attrition and post marketing withdrawal is 

hepatotoxicity, liver cell culture systems are extensively used for the assessement of adverse 

effects. Standard in vitro test systems with primary human hepatocytes (PHH) are extensively 

used to predict acute toxicity but it is difficult to assess long-term chronic drug effects 

(Guillouzo, 1998). For repeated dose chronic toxicity, primary hepatocytes should show long-

term viability and maintain functionality, particularly drug-metabolizing activities.  

Several diverse and often complex approaches for long term maintenance of liver cells already 

exist including 3D cultivation systems. Such 3D cell culture (e.g. bioreactors, spheroids and 

sandwich cultures) is considered to improve cellular functionality (Abu-Absi et al., 2002; 

Bokhari et al., 2007; Mizumoto et al., 2008b; Miranda et al., 2009). Gel-based systems were 

applied to liver cell cultivation, e.g. matrigel (Sellaro et al., 2010), poly(lactic-co-glycolic) acid 

(PLGA) scaffolds (Zhu et al., 2009) or peptide-nanofibers (Mehta et al., 2010). Alginate 

microencapsulated hepatocytes show enhanced long-term viability as well as liver-specific 

functions compared to monolayers (Miranda et al., 2010; Tostoes et al., 2011b). Hollow-fiber 

bioreactors for 3D cultivation of primary liver cells allow in vivo tissue simulation and liver-

specific functions could be maintained for three weeks in these bioreactors (Mueller et al., 

2011). However, these improved cell cultivation methods require higher technical expertise, 

high amount of cells and costs. Conventional 2D culture is still the handiest method, requires 

less cell material and is extensively used. In addition such simple cultivation allows 

multiplexing of assays including application of state-of-the-art “omics” technologies which 

seem promising for pharmaceutical drug testing and toxicity studies (Amacher et al., 2005; 

Wishart, 2008). Besides membrane integrity, mitochondrial activity or ATP content, toxic 

effects are also reflected in modified cellular metabolic activities resulting in increased or 
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decreased metabolite levels (Kim et al., 2010). Therefore, metabolomics investigations as well 

as metabolic flux analysis are sensitive tools to detect drug-induced effects in cellular systems 

(Niklas et al., 2009; Strigun et al., 2011a; Strigun et al., 2011b; Strigun et al., 2011d). These 

techniques of systems biology are expected to play a significant role in the study and eventually 

prediction of repeated dose toxicity.  

We studied diclofenac which is a commonly used nonsteroidal antiinflammatory drug (NSAID) 

drug. Diclofenac causes rare but significant cases of serious hepatotoxicity including liver 

necrosis, jaundice, fulminant hepatitis with and without jaundice, and liver failure leading to 

liver transplant or death. Assessment of diclofenac toxicity and adverse effects is difficult 

because there is no simple dose relationship and hepatotoxic effects are not reproducible in 

current animal models, indicating idiosyncrasy of diclofenac (Boelsterli, 2003). In clinical 

practice the liver function should be monitored on long term therapy with diclofenac since 

increased AST/ALT levels are observed. Moreover, metabolism of diclofenac by CYP2C9 and 

CYP3A4 and UGT2B7 (Evans et al., 2004; Yan et al., 2005; Daly et al., 2007) is most critical 

in diclofenac toxicity assessment due to the formation of reactive metabolites (Bort et al., 1999). 

In vivo, delayed diclofenac induced hepatotoxicity usually occurs (Boelsterli, 2003). Previous 

studies showed that in vitro, only high concentrations of diclofenac (200 – 500 µM) induced 

acute toxicity (Bort et al., 1999; Lauer et al., 2009) in primary cultures of human hepatocytes. 

Therefore, assessment of long-term toxicity of diclofenac using functional in vitro models 

would be of high interest to study diclofenac related chronic toxicity.  

In this study, we tested diclofenac in a repeated dose study (9 doses, 3 weeks) on primary 

human hepatocytes cultivated in a serum free medium (Ullrich et al., 2009). Basal cellular 

metabolism and liver specific functions (CYP450 activity, urea production) were analyzed to 

prove stable cellular physiology, functionality and viability during repeated dose experiment. 

The acute and chronic toxicity as well as the effects on cellular exometabolome upon repeated 

dose exposure were analyzed. The elimination of diclofenac was also investigated in detail over 

time giving an in-depth overview on the drug metabolism during repeated dose testing. This 

integrated study of physiology, drug metabolism, toxicity and drug-induced effects on the 

extracellular metabolites shows that in vitro repeated dose testing using adequate cell system 

can improve preclinical toxicity assessment and can help minimize animal testing.  



CCHHAAPPTTEERR  66::  BBIIOOTTRRAANNSSFFOORRMMAATTIIOONN  OOFF  DDIICCLLOOFFEENNAACC  AANNDD  EEFFFFEECCTTSS  OONN  TTHHEE  MMEETTAABBOOLLOOMMEE  OOFF  PPRRIIMMAARRYY  

HHUUMMAANN  HHEEPPAATTOOCCYYTTEESS  UUPPOONN  RREEPPEEAATTEEDD  DDOOSSEE  EEXXPPOOSSUURREE    

111199    

  

6.2 Materials and Methods 

6.2.1 Materials 

Williams medium E with Glutamax, HEPES, sodium pyruvate and minimum essential medium-

non essential amino acids (MEM-NEAA) were purchased from Gibco (Paisley, Scotland, UK). 

Fortecortin was purchased from Merck (Darmstadt, Germany) and human insulin from Sanofi 

Aventis (Frankfurt am Main, Germany). Percoll and fetal calf serum (FCS) was purchased from 

PAA (Pasching, Austria). Bovine serum Albumin (BSA) was from Sigma-Aldrich (St. Louis, 

USA). Rat tail collagen was prepared according to a published protocol (Rajan et al., 2006).  

Human Hepatocyte Maintenance Medium (HHMM) was kindly provided by Primacyt Cell 

Culture Technology GmbH (Schwerin, Germany). 

For Cytochrome P450 activity assays, midazolam was purchased from Cerriliant (Wesel, 

Germany). Bupropion, phenacetin, diclofenac sodium and all other chemicals and solvents of 

reagent grade were purchased from Sigma-Aldrich (Steinheim, Germany) unless otherwise 

specified. 

6.2.2 Isolation of primary human hepatocytes 

The primary human hepatocytes (PHH) were isolated from resected liver tissues from patients 

with primary and secondary tumors at the Charité hospital, Berlin. Tissue collection was done 

according to institutional guidelines and with patient’s written consent. The liver tissues used 

for cell isolation were carefully selected and regularly checked for satellite tumors.  Only tumor 

free tissue was used on the basis of visual and physical checkup. Isolation was carried out as 

previously described (Nussler et al., 2006) using a two-step collagenase perfusion followed by a 

Percoll density gradient centrifugation. 

6.2.3 Cell culture  

After isolation, PHH were seeded on rat tail collagen coated 6 or 24 well plates (Falcon) in 

Williams medium E, supplemented with penicillin/streptomycin (100 U / 100 µg/ml), HEPES 

(15 mM), fetal calf serum (10%), insulin (1 mM), sodium pyruvate (1 mM) and fortecortin (0.8 

µg/ml). The cells were incubated in a humidified incubator with 95 % air and 5 % CO2 at 37°C. 

One day after seeding, the cells were shipped to our lab under standardized operating 

procedures. After arrival in our lab, cells were allowed to recover for 24 h before medium was 
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changed to Human Hepatocyte Maintenance Medium (HHMM; n=12). Medium was refreshed 

every 48 hours and supernatants were collected for analyses of extracellular metabolites.  

One plate (24 well plate) was used for the quantification of general cellular parameter as well as 

liver-specific urea production; one 24-well plate was used for repeated dose exposure to 

diclofenac and one 6-well plate was used for CYP450 activity assay. 

6.2.4 Quantification of substrates and products in culture supernatants 

To assess cellular viability and metabolism, D-glucose, D-galactose and L-lactate 

concentrations were determined in supernatant samples of primary human hepatocytes using 

routinely used enzymatic kits (R-Biopharm, Darmstadt, Germany). The assays were performed 

according to manufacturer’s instructions.  

Urea concentration in culture supernatants was quantified using a recently described HPLC 

method (Clark et al., 2007). Briefly, urea was automatically derivatized using xanthydrol and 

the soluble product N-9H-xanthen-9-ylurea was analyzed after chromatographic separation from 

interferences using an Eclipse XBD RP-18 column (150 x 4.6 mm I.D., 5 µm, Agilent 

Technologies). 20 mM Sodium acetate (pH 7.2) was used as eluent A and acetonitrile as eluent 

B in a gradient elution. The flow rate was adjusted to 1 ml / min.  Peaks were detected using a 

fluorescence detector (ex/em 213/308 nm). 

6.2.5 Cytochrome P450 activity assay 

The functional enzyme activity of CYP1A2, CYP2B6, CYP2C9 and CYP3A4 was performed in 

a cassette approach based on probe reactions. The probe substrates, their test concentrations and 

the products used for quantification of the enzyme reaction are recently reported (Mueller et al., 

2011). Assay duration was 2 hours. The assay was performed in 6 well plates (10
6
 cells / well). 

The quantification of the probe metabolites by LC-MS was performed as recently described 

(Mueller et al., 2011). 

6.2.6 Sulforhodamin B viability assay  

Sulforhodamin B (SRB) viability assay was carried out as previously described (Beckers et al., 

2010). This colorimetric endpoint assay allows quantification of the protein content which is 

directly correlated to the cell number. 
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6.2.7 LDH assay 

The activity of lactate dehydrogenase (LDH) in the culture supernatant was determined using a 

colorimetric enzymatic assay kit (Cytotoxicity Detection Kit; Roche, Grenzach, Germany). A 

dilution series of standard serum (NobiCal-MUlti, Hitado, Möhnesee-Delecke, Germany) was 

measured in parallel for quantification. 

6.2.8 Acute toxicity 

The PHH were tested for acute toxicity. Two days after isolation, the cells seeded in 24 well 

plates were exposed to 4 diclofenac concentrations (10-1000 µM) in triplicates for 24 h. 

Diclofenac stock solution (100 mM) was prepared in DMSO. Vehicle control (medium 

supplemented with 1% DMSO) was included and corresponds to the highest DMSO 

concentration i.e. used for 1 mM diclofenac. Cells were maintained in serum-free HHMM. 

Viability was assessed using Sulforhodamin B assay.  

6.2.9 Repeated doses toxicity  

For the assessment of long-term, repeated dose toxicity of diclofenac, the hepatocytes were 

exposed to two concentrations of diclofenac in triplicates. One of these concentrations 

represents the therapeutic serum concentration (Cmax) in patients (6.4 µM) (Hinz et al., 2005) 

and the other one a significantly higher concentration (100 µM). Diclofenac stock solution (100 

mM) was prepared in DMSO. Vehicle control (0.1% DMSO) was included. Serum free HHMM 

was used as cultivation medium during drug treatment. Repeated doses were given every 48 h 

upon medium change. Supernatant samples were collected and used for LC-MS and GC-

TOFMS analysis. Moreover, viability was assessed by LDH activity measurements in 

supernatants (upon 1, 4 and 9 doses) and by Sulforhodamine B endpoint assay upon 9 doses 

representing day 23 after isolation of the hepatocytes. 

6.2.10 Statistical analysis 

The control was compared with tests in SRB (figure 3) and LDH (figure 4) assays using 

students t- test (Matlab R2006a). Significance is reported at p < 0.05. Normalized peak areas for 

sugars and lactate (figure 7) from control and tests was similarly compared. 
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6.2.11 Quantification of phase I and II metabolites of diclofenac by LC-MS 

Proteins in the supernatants were precipitated by the addition of acetonitrile. After 

centrifugation, the supernatants (containing 10% acetonitrile) were subjected to LC/MS 

analysis. An HPLC system consisting of an Accela U-HPLC pump and an Accela auto sampler 

(Thermo Fisher Scientific, USA) was used. The LC was performed in the gradient mode using 

acetonitrile/0.1% formic acid as organic phase (eluent A), and 10 mM ammonium formate/0.1% 

formic acid (eluent B); the pump flow rate was set to 300 µl/min (% A (t (min), 5(0-0.1)-97(3.0-

4.6)-5(4.8–6.5). A Gemini C6-Phenyl, 3 µm, 50x2.0 mm (Phenomenex, Germany) analytical 

column with a pre-column (Gemini C6-Phenyl, 3 µm, 4x2.0 mm) was used. Mass spectrometry 

was performed on an Exactive mass spectrometer (Orbitrap technology with accurate mass) 

equipped with a heated electrospray interface (Thermo Fisher Scientific, USA) connected to a 

PC running the standard software Xcalibur 2.1.  

As MS tune file, a generic tune file was used, applying the positive ion mode. As lock mass for 

internal mass calibration the [M+H]
+
 ion of the Diisooctyl phthalate (m/z 391.28429), which is 

ubiquitously present in the solvent system, was used. The analytes were acquired by scanning 

+/- 1 Thomson around the expected mass of the monoisotopic [M+H]
+ 

peak. High-resolution 

mass measurement was performed in Orbitrap mode with a resolution of 50,000. The accurate 

mass of each metabolite was used for peak integration. Further instruments settings were as 

follows: HCD 20 eV, AGC high dynamic range, max. trap injection time 100 ms, sheath gas 30, 

aux gas 8, sweep gas 2, spray voltage 4 kV, capillary temperature 250°C, ESI 2 heater 

temperature 250°C. The data acquisition was performed on a Thermo Fisher Scientific mass 

spectrometer, consisting of a standalone Orbitrap mass analyser (Exactive). 

For the analysis of metabolites, the accurate masses of diclofenac and the metabolites are 

presented in table 6-1. 
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Table 6-1: Analysis of diclofenac metabolites by LC-MS/MS: theoretical and experimentally 

determined accurate masses of diclofenac and indicated metabolites. 

Metabolite 
M-H

-
, theoretical exact mass / 

experimentally determined exact mass 

M0 (Diclofenac) 294.0084 / 294.0099 

M1 (Diclofenac  +O) 310.0033 / 310.0052 

M2 (Diclofenac  +O2) 328.0138 / 325.9998 

M3 (Diclofenac  +C2H3NO) 351.0298 / 351.0318 

M4 (Diclofenac  +C3H5NOS)  397.0175 / 397.0186 

M5 (Diclofenac  +C3H5NO2S)  413.0125 / 413.0148 

M6 (Diclofenac  +SO4)  389.9601 / 389.9623 

M7 (Diclofenac  +C6H8O6)  470.0405 / 470.0426 

M8 (Diclofenac  +C6H8O7)  486.0354 / 486.0374 

6.2.12 Metabolic profiling using GC-TOFMS 

Sample preparation 

To assess effects of diclofenac on the exometabolome (extracellular metabolites) of PHH after 

repeated dose exposure (day 23), each supernatant sample was analyzed in triplicate, resulting 

in three biological and three technical replicates. 200 µl methanol was added to 50 µl 

supernatant for protein precipitation. The mixture was vortexed for 3 minutes and placed on ice 

for 1 h. Afterwards, samples were centrifuged (10 min, 13.000 g, 4°C). Supernatant was 

transferred into glass vials and mixed with 200 µl -aminobutyric acid (1 mM) used as internal 

standard. These samples were freeze dried prior to derivatization. A two-step derivatization was 

carried out. Firstly, 50 µl of methoxyamin in pyridine (20 g/l) was added and the mixture stirred 

for 30 min at 80 °C for methoximation. This was followed by derivatization with 50 µl of the 

reagent MSTFA (N-Methyl-N-(trimethylsilyl)trifluoroacetamide) for 30 min at 80 °C. This two-

step derivatization procedure was automatized using a MPS 2XL auto sampler equipped with an 

agitator (both from Gerstel, Karlsruhe, Germany).  
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GC-TOFMS measurements 

An Agilent 7890 gas chromatograph (Hewlett-Packard, Atlanta, USA) coupled to a Pegasus HT 

ToF mass spectrometer (Leco, Mönchengladbach, Germany) was used. An HP5-ms capillary 

column of 60 m length, 0.25 mm inner diameter and 0.25 µm film thickness was used for 

separation. Splitless injection was performed. Injection volume was 1 µl. The initial GC-oven 

temperature was set at 70°C with a ramp of 5°C/min and a final temperature of 320°C. Helium 

was used as carrier gas and a constant flow rate of 1 ml/min was adjusted.  The transfer line 

temperature was set at 250°C. Mass spectra were acquired within a range of 70 to 700 m/z and 

scan rate was 20 spectra per second. Ion source voltage was set at 70 eV and temperature at 

200°C.  

Data analysis and multivariate statistics 

For data processing, the obtained raw GC-TOFMS data were first analyzed by ChromaTof 4.22 

software (Leco). Chromatogram acquisition, automated peak deconvolution, identification of 

suitable fragment mass to charge ratio for peak area determination and reference library search 

were automatically carried out. Similarity threshold, which determines the minimum similarity 

of the obtained spectrum with the reference library spectrum, was set at 600. Known artifact 

peaks such as solvent contamination, column bleeding, plasticizers or reagent peaks were 

manually excluded. Peak areas of trimethylsilyl (TMS)-derivates were normalized to the 

respective peak area of the internal standard -aminobutyric acid-TMS (m/z 130). Averages of 

the respective three technical replicates were calculated. 17 metabolites were analyzed 

(galactose, glucose, lactate, urea, 3-hydroxybutyric acid and 12 amino acids). Peak areas of 

metabolites which form two or more isomers upon methoximation e.g. glucose were summed as 

well as of compounds with several TMS-derivates e.g. aspartate. Normalized peak areas were 

pareto-scaled. Principal component analysis (PCA), a multivariate data analysis method, was 

applied to reduce dimensions of the dataset. The variance in dataset can be described using a set 

of underlying orthogonal variables (the principal components). PCA was performed using 

Matlab R2006a (The MathWorks) software. 
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6.3 Results 

6.3.1 Physiological characterization 

For the investigation of cellular physiology and metabolism, glucose and galactose consumption 

as well as lactate and urea production were measured (figure 6-1).  

 

Figure 6-1: Metabolic activity of primary human hepatocytes for 25 days a) glucose consumption b) 

galactose consumption c) lactate production d) urea production. Rates are given as pmol/d/cell. 

Error bars indicate ±SD (n=3, total 12 wells and 4 wells were pooled). 

The primary hepatocytes released glucose at the first measurement day (day 5 after isolation). 

Secretion rate was 1.2 pmol/d/cell. Thereafter glucose was constantly consumed over a time 

period of more than three weeks (figure 6-1a). Galactose consumption rate (figure 6-1 b) was 

2.4-2.8 pmol/d/cell between day 5 and day 15 after isolation and decreased to 1.9 pmol/d/cell at 

day 25.  

The primary hepatocytes produced lactate (7.1 pmol/d/cell) at day 5 after isolation (figure 6-1c), 

which then increased and stayed constant around 10-12.5 pmol/d/cell over the whole cultivation 

period.  
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Urea production (figure 6-1d) was 2.7 pmol/d/cell at day 5 and decreased between day 5 and 

day 15. However, the cells still produced urea at a rate of 0.3 pmol/d/cell at day 25. 

6.3.2 CYP450 activity 

The basal activities (without induction) of four different CYP450 isoforms were assessed at 

days 7, 15 and 23 and are shown in figure 6-2.  

 

Figure 6-2: Activity of CYP450 enzymes at days 7, 15 and 23, expressed as pmol metabolite 

formation per hour.  

The activity of CYP1A2 was 62 pmol/h at day 7 and stayed constant until day 23. CYP3A4 

activity was 214 pmol/h at day 7 and increased to 328 pmol/h at day 23. CYP2B6 activity 

significantly decreased over time from 406 pmol/h to 67 pmol/h. CYP2C9 enzyme activity was 

highest at day 7 (127 pmol/h) and constant between day 15 and 23 (53-55 pmol/h). 

6.3.3 Acute and chronic repeated dose toxicity 

Acute toxicity (24 h) of diclofenac on the PHH is presented in figure 6-3 a. In this experiment, 

we observed a significant toxic effect only for the highest tested concentration (1 mM), whereby 

the cell viability significantly decreased to 77%. During repeated dose experiments, PHH were 

exposed to 9 diclofenac doses in two concentrations (6.4 and 100 µM). A dose-dependent toxic 
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effect was clearly observed (figure 6-3 b). At day 23, the cell viability decreased after repeated 

exposure to the therapeutic concentration (6.4 µM) to 78% of untreated vehicle control. The 

exposure to 100 µM diclofenac led to significantly higher decrease in viability (58% of control). 

 

Figure 6-3: a) Acute toxicity of diclofenac (24 h exposure) screened on PHH. Cell viability was 

assessed using SRB assay and is given as % of untreated control (1% DMSO). Error bars indicate 

±SD (n=3) b) Chronic toxicity of diclofenac (9 repeated doses): Viability of control (0.1 % DMSO) 

and repeated dose diclofenac treated cells (6.4 and 100 µM) in HHMM at day 23. Viability assessed 

by SRB assay is given as % of untreated controls. Error bars indicate ±SD (n=3). * p < 0.05, ** p < 

0.01, *** p < 0.001. 
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LDH release was measured upon single, 4 or 9 repeated doses (figure 6-4).  

 

Figure 6-4: LDH activities in supernatants of primary human hepatocytes exposed to the indicated 

diclofenac concentrations upon 1, 4 or 9 repeated doses. Error bars represent standard deviations 

(n=3). 

Upon single dose exposure, the highest activity was found for 100 µM diclofenac. No 

differences were found between control and 4 repeated 100 µM doses, whereas LDH release 

was lower in 6.4 µM exposed cells. 9 repeated diclofenac doses also resulted in higher LDH 

activity in culture supernatants for 100 µM treated cells compared to the untreated control. 

6.3.4 Formation of phase I / phase II metabolites during repeated dose testing 

Phase I and II metabolism was investigated during repeated diclofenac exposure. The remaining 

parent compound and 8 diclofenac metabolites were measured. The relative percentages of 

metabolites after a single dose, four and 9 repeated diclofenac doses are shown in table 6-2. 
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Table 6-2: Relative concentration of diclofenac and its metabolites (phase I and II) after 1, 4 and 9 

diclofenac dose(s) (6.4 µM or 100 µM). Concentrations are given as percentages of total peak areas 

of all compounds. 

   6.4 µM 100 µM 

 
  1x 4x 9x 1x 4x 9x 

M0 Diclofenac  44.8 69.1 72.4 25.7 66.8 63.6 

M1 Diclofenac +O  25.3 1.3 1.9 46.7 10.2 15.4 

M2 Diclofenac +O2 n.d. n.d. n.d. <1 n.d. <1 

M3 Diclofenac +C2H3NO n.d. n.d. n.d. n.d. <1 <1 

M4 Diclofenac +C3H5NOS n.d. n.d. n.d. n.d. n.d. n.d. 

M5 Diclofenac +C3H5NO2S n.d. n.d. n.d. <1 <1 <1 

M6 Diclofenac +SO4 2.6 <1 <1 4.2 <1 2.4 

M7 Diclofenac +C6H8O6 24.6 29.4 25.3 12.1 20.7 16.2 

M8 Diclofenac +C6H8O7  2.8 <1 <1 11.0 1.9 1.9 

n.d.: not detected 

 

After single diclofenac dose, the hepatocytes metabolized diclofenac, whereas 

monohydroxylated diclofenac (M1) was the main phase I metabolite. For phase II, diclofenac-

acylglucuronide (M7) and diclofenac glucuronide (M8) were the predominant metabolites. 

After 4 repeated doses of diclofenac, the predominant metabolite was again diclofenac-

acylglucuronide (29% and 21% for 6.4 µM and 100 µM respectively).  

The liver cells were still able to metabolize diclofenac even after 9 repeated doses. Both phase I 

and II metabolites were identified. Diclofenac-acylglucuronide was again detected at highest 

amounts (25% and 16% for 6.4 µM and 100 µM respectively). Moreover, monohydroxylated 

diclofenac derivatives (M1) as well as diclofenac glucuronide (M8) and sulfate (M6) conjugates 

were also detected after repeated exposure.  
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6.3.5 Diclofenac effects on exometabolome upon repeated dose testing 

The effects of repeated, long-term diclofenac exposure on the extracellular metabolome were 

analyzed by principal component analysis (PCA). Score plot is depicted in figure 6-5.  

 

 

Figure 6-5: PCA score plots of principal component 1 and 2 for diclofenac-treated (6.4 µM, open 

squares, 100 µM grey triangles) and control (0.1% DMSO, black circles). Metabolic profiling was 

performed on supernatant samples from primary human hepatocytes (n=3). The respective 3 

classes are shown within 95% confidence ellipses. 

A separation between untreated control and drug treated cells was observed. The therapeutic 

concentration was less separated from the control compared to the higher concentration, 

indicating a dose dependent effect on cellular metabolome. Untreated control samples and the 

samples exposed to the high diclofenac concentrations were completely separated as shown by 

95% confidence ellipses. The first two principal components described 90% of the total 

variance. As shown by loading coefficients (figure 6-6), the dose-dependent separation between 

control and the two drug concentrations along  PC1 was mainly caused by changes in the 

production of lactate and 3-hydroxybutyric acid as well as due to differences in glucose and 

galactose uptake.  
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Figure 6-6: Loading coefficients of 17 metabolites for the first principal component, obtained from 

PCA shown in Fig. 6-5. 

To assess diclofenac-induced effects independent of decrease in viability, the peak areas of 

lactate, glucose and galactose were normalized to the peak areas of the control, which was set as 

100% (figure 6-7).  
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Figure 6-7: Peak areas of a) lactate, b) glucose and c) galactose, normalized to the respective peak 

areas of the control which was set as 100% after repeated dose diclofenac exposure at day 23. Error 

bars indicate ±SD (n=3), * p < 0.05. 

As indicated, the production of lactate was increased upon diclofenac treatment (figure 6-7a) as 

well as glucose consumption (figure 6-7b). No significant differences were found for galactose 

consumption although lower galactose amounts were detected upon diclofenac exposure also 

indicating an increased consumption rate. 
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6.4 Discussion 

Chronic effects upon repeated dose exposures which correspond to pharmacologically relevant 

concentrations are difficult to detect using standardized in vitro test systems and common 

endpoint assays. In this study, we performed repeated dose testing of diclofenac on primary 

human hepatocytes. Thereby, the cells were maintained in serum-free medium for three weeks. 

To prove stable physiology and viability, general and liver specific parameter of untreated cells 

maintained in long-term hepatocyte medium were analyzed. 

The primary hepatocytes released glucose up to day 5 after isolation. Liver cells are the main 

site of gluconeogenesis, which results in glucose synthesis from lactate, glycerol or amino acids. 

Moreover, glycogenolysis, the catabolic pathway from glycogen to glucose monomers, also 

contributes to the net glucose synthesis by the hepatocytes. Beginning from day 7, the liver cells 

consumed glucose up to day 23 at high rates, probably because of exhausted intracellular 

glycogen pools during the first 5 days. Galactose, which is converted to glucose-6-phosphate via 

the Leloir-pathway and then used in glycolysis, was also constantly consumed by the cells at 

high rates up to day 23 (71% of day 5). Galactose contributes to replenishing of glycogen stores 

and also for the synthesis of membrane glycoproteins and extracellular matrix. In addition, 

under stress conditions, galactose may be incorporated into glycogen to slow down its 

degradation (Nordin and Hansen, 1963). Lactate, produced from pyruvate by lactate 

dehydrogenase as end product of glycolysis, was released by the PHH maintained at a stable 

rate during the whole cultivation. Release of urea, as liver-specific metabolite which is produced 

during amino acid catabolism, was also investigated in both cultivation media. A decrease of 

production rates was observed for both cultures. Nevertheless, the hepatocytes constantly 

produced urea. Though the average production rate of 0.33 ±0.15 pmol/d/seeded cell between 

day 15 and day 30 is lower than the in vivo urea production rate of 2.6 pmol/d/cell (Bhatia et al., 

1999), the urea production up to day 25 reflects long-term cell viability as well as liver-specific 

functionality. Taken together, the specific rates of glucose, galactose and lactate were quite 

stable during more than three weeks, showing stable cellular metabolism of the cells and 

maintained viability which is a prerequisite for long-term toxicity studies.  

As further liver-specific parameter, the activities of four CYP450 isoforms were investigated. 

CYP1A2 was shown to be active over the whole cultivation time. CYP2B6 activity rapidly 

decreased and a remaining metabolite formation of 17% was found at day 23 compared to day 

7. Basal activities for CYP3A4 and CYP2C9, the two CYP isoforms mainly responsible for 

diclofenac phase I metabolism, were detected during cultivation. CYP3A4 activity even slightly 
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increased and remaining activity for CYP2C9 was 42%. This shows that drug-metabolizing 

activities could partly be maintained during cultivation and that the cells were capable for 

diclofenac phase I metabolism during the whole repeated dose experiment. 

Acute toxicity assessment (24 h) of diclofenac was carried out on PHH from the same donor, 

showing that only the highest tested concentration of 1 mM was significantly toxic to the cells 

(survival rate 77%). Repeated dose testing was also carried out with diclofenac on PHH of the 

same donor. Concentration dependent cytotoxic effects were observed upon exposure to 9 

repeated diclofenac doses even at the therapeutic concentration (survival rate 78%). This 

chronic toxic effect of diclofenac was assessed on day 23 after cell isolation. LDH activity as 

further viability parameter was not increased at the investigated time points for the 

physiological relevant concentration of 6.4 µM, but even slightly decreased upon 4 doses.  In 

case of 100 µM diclofenac exposure, increased LDH activity was found upon single exposure as 

well as upon 9 repeated doses. This shows that commonly used viability assays based on 

different parameter (here: cellular protein content and membrane integrity) could give different 

results and that methods and results from in vitro assessment of cell viability have to be 

carefully evaluated. Obviously, the determination of such chronic effects is only possible if the 

PHH can be kept viable for several weeks. The long-term maintenance medium used in this 

study is enriched with growth factors and contains albumin, which affects free drug 

concentration. However, to compare our results of acute and chronic toxicity as well as cell 

functionality, all experiments were done with cells from the same donor maintained in the same 

medium batch. Regarding diclofenac metabolism, either the parent compound or the 

hydroxylated metabolites are conjugated by UGT2B7 and excreted (Tang, 2003; Daly et al., 

2007). The metabolites include 4'-hydroxy-, 5-hydroxy-, 3'-hydroxy-, 4',5-dihydroxy- and 

3'hydroxy-4'-methoxy-diclofenac. Both diclofenac and its oxidative metabolites undergo 

glucuronidation or sulfation followed by biliary excretion. Acylglucuronidation mediated by 

UGT2B7 and oxidation mediated by CYP2C9 may also play a role in diclofenac metabolism. 

CYP3A4 is responsible for the formation of minor metabolites, 5-hydroxy- and 3'-hydroxy-

diclofenac. Moreover, a reactive benzochinone imine could be generated by CYP450 enzyme 

system, which is then detoxified via  GSH conjugation and subsequent elimination (Lauer et al., 

2009). In our study, we show that phase I and II enzymes were active during the whole repeated 

dose experiment. The predominant phase II metabolite found in this study was diclofenac-

acylglucuronide which was reported to play an important role in diclofenac-mediated toxicity 

due to covalent protein binding (Kretz-Rommel and Boelsterli, 1993). This metabolite probably 

contributes to the toxicity upon repeated dose exposure observed in our study. About 20% of the 
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total administered doses of diclofenac were excreted as diclofenac-acylglucuronide which is in 

the range of in vivo values (Riess et al., 1978; Stierlin and Faigle, 1979). Diclofenac 

glucuronide and sulfate conjugates were also detected upon single and repeated dose exposure, 

both at lower but particularly for 100 µM diclofenac at constant relative concentrations. 

Hydroxydiclofenac was found at highest amounts upon single dose exposure as the predominant 

phase I metabolite. Upon repeated drug exposure, the relative concentration of this metabolite 

decreased, indicating reduced CYP2C9 activity over time but also induced conjugation of this 

metabolite since CYP2C9 was proved to be active during the whole experiment.  

In addition, diclofenac induced effects on cellular exometabolome of the PHH were also 

investigated after 9 repeated treatments (6.4 µM, 100 µM) and compared to the untreated 

control. Clear differences in profiles of 17 analyzed metabolites could be detected for the cells 

in a dose-dependent manner. The control was clearly separated from the 100 µM diclofenac 

exposed samples whereas the therapeutic concentration clustered in between. Lactate mainly 

contributed to the separation between control and drug exposed samples. Enhanced lactate 

production has recently been shown as a biomarker for cellular stress and toxicity (Limonciel et 

al., 2011). In our study, lactate showed a trend towards increased production which was 

significant in case of 100µM diclofenac when the decrease in viability is taken into account.  

This increased lactate production upon diclofenac exposure indicates higher glycolytic activity 

which was previously found in rat liver as well as inhibition of gluconeogenesis (Petrescu and 

Tarba, 1997). Accordingly, higher uptakes of glucose and galactose were found upon 9 repeated 

diclofenac doses. These alterations in metabolic pathways indicate diclofenac-induced 

uncoupling effect of oxidative phosphorylation and mitochondrial dysfunction resulting in an 

increased glycolysis which then serves as the main cellular energy source. Moreover, the ketone 

body 3-hydroxybutyric acid was also contributing to the separation along PC1 between control 

and drug-exposed samples, indicating effects of diclofenac on fatty acid metabolism as already 

reported (Baldwin et al., 1998). Therefore, we conclude that the analysis of the exometabolome 

gives an insight into changes in cellular metabolism upon exposure to test drug and can help to 

assess adverse drug reactions. 

Taken together, in vitro repeated dose testing using metabolically active cells combined with 

analysis of physiology, drug metabolism, toxicity and drug-induced effects on the extracellular 

metabolome shows correlations to in vivo studies and can improve preclinical toxicity 

assessment using human relevant systems and are an important step towards alternative in vitro 

methods for the replacement of animal testing.  
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7.1 Summary 

The work in this thesis focused on long-term cultivation human liver cells while maintaining 

functionality and viability (Chapter 2, 3, 4 and 6) as well as on the sensitive assessment of drug-

induced effects on the liver cell metabolome using a newly developed, GCTOF-MS based 

method (Chapter 5 and 6). 

In Chapter 2, primary human hepatocytes of three different donors were cultivated in 3D 

bioreactors and investigated in terms of liver specific functions (urea and albumin production). 

It could be shown that the cells could be maintained functional for two weeks in the 3D 

bioreactor. Moreover, the 3D bioreactor system was modified for the measurement of oxygen 

uptake rates. It was proved that the 3D bioreactor system can be used for long-term cultivation 

of liver cells allowing physiological, pharmacological and toxicological applications.  

In Chapter 3, a viability assay was established in the 3D bioreactor system to improve 

pharmacological long-term studies. It was shown that this assay can be performed within 6 

hours similar to 2D cultures. Moreover, the developed assay is non-invasive and can be 

routinely applied during 3D cultivation. Upon assay establishment by using HepG2 cells, 

primary human hepatocytes cultivated in the 3D bioreactor were exposed to a physiologically 

relevant amiodarone concentration for several days. Cell viability was assessed before and upon 

drug exposure. It was observed that the exposure to clinically relevant concentrations of 

amiodarone over 4 days did not affect cell viability in this experiment. This also proves the non-

invasiveness of the assay. The method can routinely be applied to long-term pharmacological 

studies in the future for the investigation of drug-induced effects on cells maintained in 3D 

culture. However, free drug concentrations should be measured in the future since drug binding 

to the hollow-fibers could occur and influence the experimental setup. 

In Chapter 4, the human liver cell line HepG2 was used for the production and investigation of 

three dimensional organotypic cultures. By using the hanging drop method, micro-organotypic 

cultures of adjustable sizes could be produced which were further analyzed including viability, 

cellular metabolism and long-term cultivation.  Liver specific albumin production of the 

organotypic cultures was higher than in monolayer- or collagen-sandwich cultures. Due to the 

high reproducibility and the low amount of required cells, the system could be applied to 

pharmacological studies. Induction capacity of CYP1A was also increased compared to 

monolayer- and collagen-sandwich cultures. The toxicity of the reference compound tamoxifen, 

an anti-cancer drug, was lower in the organotypic cultures. Concurrently, the activity of the 

membrane transporter MRP-2 was increased in the organotypic cultures, indicating increased 
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drug efflux across the cell membrane. We therefore concluded that the engineered HepG2 

organotypic cultures could be used for the investigation of CYP450 induction, anti-cancer drug 

effects and moreover for the study of chemotherapy resistance mechanisms. 

A metabolomics-based approach to detect drug-induced effects on primary human hepatocytes 

and HepG2 cell was developed and applied in Chapter 5. The reference drugs diclofenac and 

troglitazone were tested in single and repeated dose exposure experiments. Using physiological 

subtoxic concentrations, it was shown that exometabolome changes could significantly be 

detected for primary human hepatocytes, whereas the effect was decreased upon repeated 

exposure. In contrast, HepG2 cells showed higher metabolic alterations upon repeated drug 

exposure due to the different drug metabolizing capacities of the two cell types. Taken together, 

this method is well-suited for the sensitive assessment of drug induced metabolic changes at 

physiologically relevant concentrations and can also be applied to any other alternative testing 

system. 

The assessment of long-term, chronic drug toxicity is still a major hurdle in preclinical drug 

development using in vitro test systems since primary hepatocytes have limited viability and 

functionality of about one week at conventional culture conditions. However, chronic toxicity 

mostly occurs upon long-term repeated dose applications of a drug at low concentrations. In 

Chapter 6, primary human hepatocytes were maintained in a long-term serum free cultivation 

medium and physiology, viability and drug metabolizing capacities of the cells were analyzed. 

Moreover, we assessed acute (24 h) and chronic (3 weeks) toxicity of diclofenac. Acute toxicity 

(24 h) assessment revealed toxicity only for the highest tested diclofenac concentration (1 mM). 

In sharp contrast, we observed toxic effects even at a low concentration (6.4 µM) upon repeated 

dose exposure. In vitro biotransformation of diclofenac was comparable to in vivo data. 

Metabolomics showed dose dependent drug-induced effects on exometabolome, indicating 

increased glycolytic activity as again already reported in vivo.  Therefore, we conclude that in 

vitro testing of repeated dose effects is of high importance in drug safety evaluation and the 

combination of metabolically functional systems and sensitive detection methods will improve 

the assessment of long-term chronic drug effects. 

  



CCHHAAPPTTEERR  77::  SSUUMMMMAARRYY,,  CCOONNCCLLUUSSIIOONN  AANNDD  OOUUTTLLOOOOKK    

114400    

  

7.2 Conclusion and Outlook 

The 3D bioreactor presented and characterized in this thesis provides a liver like environment 

for the cultivation of primary human hepatocytes for about 3 weeks with maintained 

functionality. The system was improved in terms of respiration measurements. Cellular 

metabolism and liver-like parameters were analyzed (Chapter 2). The modified gas supply, i.e. 

oxygenation of the medium instead of direct gassing into the bioreactor cell compartment is 

thereby more physiological and allows the measurement of oxygen consumption rates, which is 

attractive for future studies using this bioreactor system.   

However, the high amount of required cells limits experimental setups such as parallel 

cultivation or testing different drug concentrations using cells from the same donor. Moreover, 

the required technical expertise and the high costs of the bioreactor and of the perfusion system 

(including pumps, heating units, gas supply etc.) restrict the throughput of the system. 

Therefore, a miniaturization and simplification of the 3D bioreactor system is highly needed to 

apply this technique for pharmaceutical studies. Smaller prototypes of an inner volume of 0.5 

ml (compared to 2 ml) and a required cell number of 2.5*10
7
 (compared to 1*10

8
) are already 

available. Nevertheless, a more simple construction, further miniaturization and therefore higher 

cost effectiveness should be achieved. For this, we constructed ourselves some simple 

prototypes as shown in figure7-1, where the bioreactor consists of a glass T-fitting packed with 

about 15 hollow-fibers (diameter: 500 µm). Connections to tubing are made via Luer-lock 

adapter as well as the cell inoculation port. The cell compartment is sealed so that the cells are 

kept within the bioreactor chamber. This miniaturized architecture will be tested and improved 

in future projects in our laboratory. It will allow parallel studies as well as easier access to the 

cell compartment. 

 

Figure 7-1: Design of a self-developed 3D minibioreactor. a) Schematic overview of glass tubing, 

Luer-lock adapter and hollow-fibers inside the glass tubing, b) cross section through glass tube and 

hollow-fibers. 
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Nevertheless, the closed character of these 3D bioreactors restricts important methods such as 

staining of liver-specific proteins e.g. phase III membrane transporters or structures such as bile-

canaliculi. Access to the cells is only possible by breaking up the device at the end of the 

cultivation. Therefore, the analysis of intracellular factors (proteins, metabolites) is also 

unfeasible. 

The 3D cultivation method developed by the Kajiwara group, where the cells are maintained 

within hollow-fibers instead of between them, is promising in terms of long-term functionality 

and also for hepatic differentiation of embryonic stem cells (Mizumoto et al., 2008a; Mizumoto 

et al., 2008b; Amimoto et al., 2011). For this, liver cell suspension is filled into hollow-fibers, 

centrifuged for dense packing and then cultivated in a rotating petri dish (figure 7-2). 

 

Figure 7-2: Inoculating hepatocytes into hollow-fibers by centrifugation, modified from (Mizumoto 

et al., 2008b). 

By this approach, parallel studies are possible since number and length of the hollow-fibers and 

therefore the required cell number is freely adjustable. Staining methods are easily performable 

by cutting the hollow-fibers in small slices and subsequent incubation with specific antibodies 

or dyes. Cell harvesting is also possible including the extraction of intracellular metabolites and 

proteins. 

Chapter 3 describes the development of a viability assay in the 3D bioreactor system. We show 

that this method is applicable to pharmacological long-term studies in the 3D bioreactor system. 
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However, we suggest that it is necessary to quantify the free drug concentration in the system 

because of the large hollow-fiber surface within the bioreactor on which drugs can bind. 

Furthermore, specific coating of the fibers with hydrophilic substances such as poly-lysine 

could prevent this binding, improve studies in this field and should be tested in future. 

Chapter 4 describes the production and characterization of organotypic cultures made of 

HepG2 cells. Therefore, the scaffold-free Gravity
Plus

 technology from InSphero (Zurich, 

Switzerland) was used. Drug testing indicated that the organotypic cultures are well-suited for 

high-throughput investigation of drug toxicity and of chemotherapy resistance related to 

increased drug efflux. Future studies using this system should include the production of 

organotypic cultures of primary hepatocytes or functional hepatic cell lines such as HepaRG. 

Preliminary experiments have already been done in our laboratory showing that these both cell 

types are also capable to form three-dimensional organotypic cultures in the hanging drop. 

Further studies will be performed in terms of metabolic characterization, functional analysis and 

investigation of drug toxicity and drug-induced effects. Moreover, microstructures of the 

spheroids could be investigated by electron microscopy and the formation of liver-specific 

function such as bile-canaliculi could be analyzed by fluorescence microscopy to get deeper 

insights into the 3D architecture of the organotypic cultures. 

The GCTOF-MS based metabolomics approach was successfully developed and applied as 

presented in Chapter 5. The method was shown to detect drug-induced effects more sensitive 

than other assays such as AST or SRB assay. The sampling is easy since the supernatants were 

measured and quantitative and qualitative information of 20-30 extracellular metabolites was 

sufficient to evaluate drug-induced metabolic effects. In future, this method can be applied to 

other cells such as stem cells, stem cell derived cells or cardiomyocytes due to their respective 

high potential in pharmacological research. Moreover, 3D systems can be investigated using 

this method and the assessed effects can be compared to 2D cultures. Quantification of 

intracellular metabolites would further give a more detailed view on the drug’s effects, however 

methods for metabolite extraction have to be chosen carefully and to be developed for the 

respective cell types and cultivation systems. Metabolic flux analysis can furthermore provide 

valuable information about drug-induced effects on certain metabolic pathways. Finally, an 

integrated approach including transcriptomics, proteomics and metabolomics would lead to a 

global assessment of adverse drug effects, indicating the potential of systems biology in terms 

of pharmacological and toxicological research. 

The repeated dose testing described in Chapter 6 indicates the importance of chronic toxicity 

assessment in the process of drug development. Metabolically active long-term cell cultures are 
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thereby essential, particularly during studies of drug metabolism and for the assessment of drug 

metabolite toxicity. In this study, we used a commercially available serum free medium 

(enriched with growth factors) for long-term cultivation of primary liver cells. Future studies 

could include repeated dose exposure on long-term cultures HepaRG cells, which were shown 

to maintain their biotransformation capacities for more than 3 weeks. Moreover, serum-free 

cultivation offers the possibility to include quantitative proteomics analyses upon drug exposure 

to get a more detailed view on drug induced effects. 
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