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Zusammenfassung

Die in dieser Dissertation zusammengefassten Arbeiten befassen sich mit der In-

tegration audiovisueller Reizinformation. Von entscheidendem Interesse war dabei

die Frage, wie Information aus verschiedenen Modalitäten zu einem Perzept inte-

griert werden.

Dazu wurde ein Reaktionszeitmodell untersucht, dem eine explizite Annah-

me zur Art und Weise der Integration zugrunde liegt – das Prinzip der additiven

Superposition von Reizinformation. Das Modell trifft Aussagen über beobachtba-

res Verhalten in einem Redundanzexperiment, bei dem einer Testperson unimo-

dale oder bimodale Reize dargeboten werden. Dieses Modell, und damit die An-

nahme der additiven Superposition, wurde im Rahmen dieser Dissertation einer

eingehenden empirischen Überprüfung unterzogen, wobei zentrale Fragestellungen

bezüglich der Integration multisensorischer Reize untersucht wurden.

Dies wären zum einen Redundanzeffekte unter verschiedenen Aufgabenan-

forderungen. Bisherige Untersuchungen stützten sich vor allem auf Ergebnisse zu

Einfachreaktionsaufgaben. Wie aber läuft die Integration redundanter Reizinfor-

mation bei komplexeren Aufgaben ab? Die reine Stimulusdetektion beschreibt le-

diglich einen Aspekt menschlichen Erlebens; oft ist entscheidend, in angemessener

Weise auf distale Reize zu reagieren. In der ersten Arbeit (Blurton, Greenlee &

Gondan, 2014) wurden die bei einer Go/No-go-Aufgabe und einer Wahlreaktions-

aufgabe anfallenden Redundanzgewinne untersucht. Die Ergebnisse weisen in viel-

facher Weise darauf hin, dass die Integration redundanter Reizinformation ähnlich

abläuft, wie bei Einfachreaktionsaufgaben.

Im Rahmen dieser Untersuchung wurde das Reaktionszeitmodell derart er-

weitert, dass es auch auf komplexere Aufgabenstellungen angewendet werden kann.

In einem weiteren Artikel wurden mathematische Eigenschaften dieses und ver-

wandter Modelle untersucht (Blurton, Kesselmeier & Gondan, 2012).

Eine weitere in diesem Kontext interessante Fragestellung ist der Einfluss
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von Aufmerksamkeit auf die Integration redundanter Reizinformation. Dieser Fra-

gestellung wurde in zwei weiteren Arbeiten nachgegangen. In einer Arbeit wurde

die Ausrichtung räumlicher Aufmerksamkeit mit Hinweisreizen manipuliert und

der Effekt dieser Manipulationen auf die Detektion von multisensorischen Reizen

untersucht (Blurton, Greenlee & Gondan, in Begutachtung). Die Ergebnisse legen

nahe, dass der Mechanismus der Integration multisensorischer Reizinformation un-

abhängig von der Ausrichtung räumlicher Aufmerksamkeit ist: Die Verarbeitung –

und damit die Stimulusdetektion – ist zwar effektiver, wenn die Aufmerksamkeit

auf die Reizposition gerichtet ist, die Ergebnisse lassen jedoch darauf schließen,

dass die Art und Weise der Informationsintegration unabhängig von Aufmerksam-

keitsverschiebungen ist.

In einer weiteren Arbeit wurde der Einfluss selektiver und räumlicher Dau-

eraufmerksamkeit untersucht (Gondan, Blurton, Hughes & Greenlee, 2011). Auch

die Ergebnisse dieser Experimente unterstützen die Auffassung, dass die Stimulus-

detektion zwar von einer dauerhaften Ausrichtung der Aufmerksamkeit profitieren

kann, die Art und Weise der Informationsintegration jedoch nicht davon abhängt.

Zusammenfassend lässt sich feststellen, dass das Prinzip der additiven Su-

perposition multisensorischer Reizinformation ein eher generelles Integrationsprin-

zip darstellt, das unabhängig vom Aufgabentyp und der Ausrichtung von Aufmerk-

samkeit zu sein scheint.

Im folgenden Kapitel werden die theoretischen Grundlagen eingehender dar-

gelegt; anschließend folgt ein kurzer Überblick über die erwähnten Arbeiten, die

dieser Dissertation zugrunde liegen. Der Rest der Dissertation sind Nachdrucke von

veröffentlichten Zeitschriftsartikeln sowie ein Manuskript, das zur Veröffentlichung

eingereicht wurde.
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1 Einleitung

1.1 Multisensorische Integration

Die Untersuchung multisensorischer Wahrnehmungsleistungen beschäftigt sich mit

der Frage, wie Sinneseindrücke der verschiedenen Sinnessystems zu einem ein-

heitlichen Perzept integriert werden (Welch & Warren, 1986). Die Integration ist

notwendig, um von redundanten Reizinformationen zu profitieren, aber auch um

widersprüchliche Informationen in Einklang zu bringen. Es ist bekannt, dass Reiz-

information verschiedener Sinnessysteme in verschiedenen neuronalen Strukturen

verarbeitet wird, daher stellt sich die Frage, wie und wo Information einzelner

Sinnessysteme integriert werden. Als Zentren multisensorischer Integration wur-

den wiederholt die Colliculi superiores diskutiert (Meredith & Stein, 1986), jedoch

scheinen auch kortikale Strukturen bei der Integration von multimodalen Sinnes-

eindrücken eine Rolle zu spielen (Farah, Wong, Monheit & Morrow, 1989; Maca-

luso, Frith & Driver, 2000; McDonald, Teder-Sälejärvi, Di Russo & Hillyard, 2003;

McDonald, Teder-Sälejärvi, Di Russo & Hillyard, 2005; Beer, Plank & Greenlee,

2011). In der Vergangenheit sind bei diesen Arbeiten zur multisensorischen Integra-

tion vor allem superadditive Zellantworten untersucht worden (Meredith & Stein,

1986), neuere Publikationen zu diesem Thema heben jedoch die Bedeutung ad-

ditiver Zellantworten auf Informationen aus verschiedenen Sinnessystemen hervor

(Stanford, Quessy & Stein 2005).

In der vorliegenden Arbeit wurde die Annahme der additiven Integration

von sinnesspezifischer Aktivierung einer eingehenden empirischen Prüfung unter-

zogen. Dazu wurde mehrere Experimente zur Integration audiovisueller Reizin-

formation durchgeführt. Von visuell-vestibulären Interaktionen abgesehen, ist die

Integration audiovisueller Reizinformation die mit Abstand am häufigsten unter-

suchte Form multisensorischer Wahrnehmung (z.B. Hershenson, 1962; Miller, 1982,

1986; Diederich & Colonius, 1987; Giray & Ulrich, 1993). Dies dürfte zum einen
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daran liegen, dass auditive und visuelle Stimulation im Labor relativ einfach zu

realisieren sind. Zum anderen dürfte auch ausschlaggebend sein, dass audiovisuelle

Integration vielen kognitiven Funktionen des täglichen Lebens zugrunde liegt, zum

Beispiel Sprache (McGurk & MacDonald, 1976; Sumby & Pollack, 1954).

Die Integration audiovisueller Reizformation wird häufig anhand des Re-

dundanzeffektes untersucht. In dieser Versuchsanordnung werden in verschiedenen

Bedingungen entweder Reize einer Sinnesmodalität (unimodale Bedingungen) oder

redundante Zielreize verschiedener Sinnesmodalitäten dargeboten. Die Aufgabe ist

meist, so schnell wie möglich auf alle Reize zu reagieren, es kommen jedoch auch

Aufgaben des Go/No-go Typs zum Einsatz, bei der nur auf Zielreize reagiert wer-

den soll, nicht aber auf Distraktoren. Dies ist vor allem bei Experimenten mit

Ableitung des Elektroenzephalogramms (EEG) der Fall (z.B. bei Talsma, Doty &

Woldorff, 2007). Unabhängig vom Aufgabentyp beobachtet man in der Regel, dass

Reaktionen auf redundante Reize im Mittel schneller sind als in den unimoda-

len Bedingungen (Redundanzeffekt, engl.: redundant signals effect oder redundant

target effect). Der Redundanzeffekt sagt zunächst noch nicht viel über den Me-

chanismus der Reizintegration aus; es ist seit langem bekannt, dass auch Modelle,

die keine Integration im eigentlichen Sinne annehmen, Redundanzeffekte allein

anhand stochastischer Gegebenheiten erklären können (Raab, 1962). Mit der For-

mulierung der als Wettlaufmodelle (race model) bezeichneten Modelle erschienen

Redundanzexperimente zunächst als ungeeignet, um Fragestellungen zur multisen-

sorischen Integration zu untersuchen.

Es gelang Miller (1982, 1986) jedoch, eine empirisch testbare Vorhersage

für Wettlaufmodelle herzuleiten. Diese Vorhersage gibt eine obere Grenze für den

Redundanzeffekt an, den Wettlaufmodelle (bzw. allgemeiner, Modelle mit sepa-

rater Reizaktivierung in beiden Sinneskanälen) erklären können. Ist sie verletzt,

scheiden Modelle separater Aktivierung als Erklärung aus, Miller (1982) sprach

in diesem Fall von Koaktivierung. Koaktivierung sagt nichts über die genaue Art
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der Integration aus; sie liegt dann vor, wenn der Redundanzeffekt größer ist, als

von Modellen separater Aktivierung erklärt werden kann. Wenn separate Aktivie-

rung ausgeschlossen wird, muss die Information aus den sinnesspezifischen Kanälen

demnach an einer Stelle in einem gemeinsamen Kanal integriert werden. Auch

wenn in zahlreichen Arbeiten belegt werden konnte, dass die Redundanzgewinne

nur durch Koaktivierung erklärt werden können, und obwohl zahlreiche explizi-

te Modelle zur Erklärung des Redundanzeffektes bei Koaktivierung vorgeschlagen

wurden, beschränken sich die meisten empirischen Arbeiten im Bereich multisen-

sorischer Integration auf eine Testung der Vorhersage des Wettlaufmodells (Ab-

schnitt 1.2).

An dieser Stelle setzen die hier beschriebenen Experimente an: Um die Art

und Weise der Integration genauer zu analysieren, wurde ein Reaktionszeitmodell

mit einem explizit formulierten Integrationsmechanismus an die erhobenen Daten

angepasst. Diesem in Abschnitt 1.3 genauer beschriebenen Koaktivierungsmodell

liegt die Annahme einer additiven Superposition

XAV(t) = XA(t) +XV(t)

der sinnesspezifischen Aktivierung im auditiven Verarbeitungskanal XA bzw. im

visuellen Kanal XV zugrunde (Schwarz, 1994). Das Modell konnte die Daten unter

verschiedenen Aufgabenstellungen (Kapitel 3) und auch unter verschiedenen Auf-

merksamkeitsbedingungen (Kapitel 5 und 6) gut erklären. Im Folgenden werden

zunächst die theoretischen Grundlagen der Arbeiten dargelegt – die Wettlaufun-

gleichung und das verwendete Reaktionszeitmodell (Diffusions-Superpositionsmodell).

Anschließend folgt eine kurze Übersicht über die Arbeiten, um sie in einen gemein-

samen Zusammenhang zu setzen.
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1.2 Das Wettlaufmodell

Der Redundanzeffekt kann durch eine Reihe von Modellen beschrieben werden,

diese lassen sich in zwei Klassen unterteilen: Modelle separater Aktivierung und

Koaktivierungsmodelle (Miller, 1982). Bei Modellen separater Aktivierung wird

angenommen, dass die Reizinformation in sinnesspezifischen Kanälen verarbeitet

wird und dass die Aktivitäten dieser Kanäle nicht integriert werden. In diese Klas-

se fällt unter anderen das Wettlaufmodell. Beim Wettlaufmodell wird parallele

Verarbeitung der Reizinformationen angenommen. Sobald ein Kanal die Verarbei-

tung abgeschlossen hat, erfolgt eine Reaktion (first-terminating processing). Der

Redundanzeffekt ergibt sich in diesem Modell als statistische Erleichterung (sta-

tistical facilitation): bei bimodalen Reizen sind im Gegensatz zu unimodalen Rei-

zen zwei Sinneskanäle aktiv, so dass langsame Detektionszeiten in einem Kanal

durch schnellere Detektionszeiten im anderen Kanal kompensiert werden können.

InWettlaufmodell wird die Reizinformation nicht integriert, allein die stochastische

Annahme sich überlappender Dichtefunktionen der sinnesspezifischen Detektions-

zeiten genügt, um den Redundanzeffekt erklären zu können.

Allerdings ist das Ausmaß des Redundanzeffektes begrenzt, das durch die-

ses Modell erklärt werden kann. Dadurch, dass der Redundanzeffekt durch statis-

tische Erleichterung zustande kommen muss, muss die folgende Ungleichung bei

separaten Aktivierungsmodellen immer gelten (Miller, 1982):

FR(t) ≤ FS1(t) + FS2(t), für alle t. (1)

Der Wert der Verteilungsfunktion FR(t) der Reaktionszeiten auf redundante Reize

(R) darf nach Ungleichung 1 für keinen Zeitpunkt t größer sein, als die Summe der

Verteilungsfunktionen der Reaktionszeiten auf die Einzelreize (S1 und S2). Da für

t → ∞ der rechte Teil von Ungleichung (1) gegen zwei und der linke Teil gegen

eins geht, sind Verletzungen nur für kleine t zu erwarten (Abbildung 1.1).
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Abbildung 1.1: Theoretischer Redundanzeffekt auf Ebene der Verteilungsfunktionen.
Die Verteilungsfunktion der Redundanzbedingung FR(t) ist für kleine
t größer als die Summe der Verteilungsfunktionen FS1(t) + FS2(t) – ei-
ne Verletzung der Vorhersage für Wettlaufmodelle. Für große t strebt
die Summe gegen 2 (nicht dargestellt). Die Verteilungsfunktionen sind
theoretische Vorhersagen eines Koaktivierungsmodells (Schwarz, 1994,
Tabelle 1), angepasst an die Daten von Miller (1986, Proband BD).

Ungleichung (1) wird allgemein als Wettlaufungleichung bezeichnet (race-

model-inequality, Miller, 1982, 1986). Ist sie verletzt, dann ist der beobachtete

Redundanzeffekt größer, als von Modellen separater Aktivierung erklärt werden

kann. Die Verteilungsfunktionen in (1) werden durch die beobachteten Reaktio-

nen geschätzt, deswegen können Verletzungen durch zufällige Stichprobenvaria-

tion zustande kommen. Um sich dagegen abzusichern, wurden zahlreiche (non-

parametrische) Tests vorgeschlagen (Miller, 1986), denen unterschiedliche Annah-

men zugrunde liegen (Maris & Maris, 2003) und die zum Teil unterschiedliche Hy-

pothesen testen (Colonius & Diederich, 2006; Gondan, 2010). Es konnte außerdem

gezeigt werden, dass Antizipationen die Tests der Wettlaufungleichung konserva-

tiver machen (Gondan & Heckel, 2008). Deswegen wurde vorgeschlagen, eine sog.
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”
Kill-the-twin“ Prozedur (KTT, Eriksen, 1988) vor dem Test der Wettlaufunglei-

chung durchzuführen. Durch die KTT-Prozedur wird für jede Reaktion auf einen

Durchgang ohne Zielreiz (catch-trial) eine Reaktion aus der Reaktionzeitvertei-

lung der Zielreize entfernt, das heißt auf unendlich gesetzt. Dabei wird diejenige

Reaktion auf einen Zielreiz gewählt, die von der Latenz her der Antizipation am

nächsten ist. Die Reaktionszeitverteilungen werden dadurch von Antizipationen

annähernd gesäubert; formal betrachtet ergibt sich die Wettlaufungleichung in

diesem Fall zu

FR(t) + FC(t) ≤ FS1(t) + FS2(t), für alle t, (2)

wobei als Antizipationen C alle Reaktionen auf Catch-trials gewertet werden. Vor-

hersage (2) wurde in den drei empirischen Arbeiten getestet.

Verletzungen der Wettlaufungleichung wurden oft berichtet, vor allem in

Experimenten mit audiovisuellen Reizen und Einfachreaktionsaufgaben oder Go/

No-go Aufgaben. Interessant in diesem Zusammenhang ist die Beziehung zur feature-

integration-Theorie (Treisman & Gelade, 1980; Treisman, 1986). So konnte belegt

werden, dass Koaktivierung nur unter bestimmten Bedingungen auftritt: Fein-

tuch und Cohen (2002) untersuchten Redundanzeffekte bei visuellen Reizen unter

verschiedenen Aufmerksamkeitsbedingungen. Nur wenn es sich um Eigenschaften

eines gemeinsamen Objekts handelte, wurde die Wettlaufungleichung verletzt, an-

sonsten lagen die Redundanzgewinne im Geltungsbereich des Wettlaufmodells. Es

konnte außerdem belegt werden, dass ein Zusammenfassen zweier separater vi-

sueller Reize durch eine Umrahmung wiederum Redundanzgewinne erbrachte, die

die Wettlaufungleichung verletzten. Was den Reaktionsmodus betrifft, wurden von

Grice, Canham und Boroughs (1984) bzw. von Mordkoff und Miller (1993, Exp. 2)

Verletzungen der Wettlaufungleichung bei Wahlreaktionen bzw. Go/No-go Aufga-

ben berichtet. Weitgehend unklar ist dagegen, welche Rolle Aufmerksamkeit bei
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der Bearbeitung multisensorischer redundanter Reize zukommt. Studien zur Loka-

lisation von auditiven Reizen in Anwesenheit von visuellen Reizen (ventriloquism)

weisen darauf hin, dass diese Form der Integration unabhängig von der Aufmerk-

samkeit der Testperson stattfindet (Bertelson, Vroomen, de Gelder & Driver, 2000,

Vroomen, Bertelson & de Gelder, 2001). Es stellt sich die Frage, ob die Integration

audiovisueller Reizinformation ebenfalls unabhängig von der Aufmerksamkeit der

Testperson ist. Ist dies der Fall, müssten Verletzungen der Wettlaufungleichung un-

abhängig von der Ausrichtung der Aufmerksamkeit nachweisbar sein. Ist Aufmerk-

samkeit dagegen für eine effektive Integration notwendig, so wäre zu erwarten, dass

Koaktivierungseffekte nur unter Beachtung der audiovisuellen Reize zu finden sind

(vgl. Feintuch & Cohen, 2002). Dieser Frage wurde in zwei Arbeiten nachgegangen,

in denen die Wettlaufungleichung unter verschiedenen Aufmerksamkeitsbedingun-

gen überprüft wurde. In einer weiteren Arbeit wurden Redundanzgewinne unter

verschiedenen Aufgabenstellungen (Go/No-go und Wahlreaktionsaufgabe) unter-

sucht. In allen Arbeiten wurde außerdem ein Koaktivierungsmodell an die Daten

angepasst und getestet, um den Integrationsmechanismus explizit zu untersuchen.

1.3 Das Diffusions-Superpositionsmodell

Wie bereits dargelegt, sind Koaktivierungsmodelle als Gegensatz zu Modellen se-

parater Aktivierung zu verstehen. Kennzeichnend für alle Koaktivierungsmodelle

ist, dass die Aktivität der sinnesspezifischen Kanäle in einem gemeinsamen Ka-

nal integriert wird (vgl. Miller, 1982; Schwarz, 1989, 1994; Miller & Ulrich, 2003).

Grundlage der vorliegenden Arbeit ist das Diffusions-Superpositionsmodell (DSM)

von Schwarz (1994). Als Integrationsmechanismus wird in diesem Modell der wohl

einfachste gewählt – laut Modell wird die Aktivität der sinnesspezifischen Känale in

einem gemeinsamen Kanal aufaddiert. Im Folgenden soll, wie bei Schwarz (1994),

der Redundanzeffekt im Kontext auditiver und visueller Reize betrachtet werden.

Laut Modell kann das Aktivierungsniveau des auditiven (A) und des vi-
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suellen (V) Kanals als latente Variable durch Wiener Prozesse XA(t) bzw. XV(t)

[X(0) = 0] beschrieben werden. Diese besitzen die Parameter µA und σ2
A bzw.

µV und σ2
V und beschreiben die Informationsakkumulation nach Darbietung ei-

nes (unimodalen) Reizes. Der Wiener Prozess ist ein zeitstetiger Markov-Prozess

mit stationären Inkrementen, seine Zuwächse dx bestehen aus normalverteilten

N [µ dt, σ2 dt] und unabhängigen Inkrementen. Der Parameter µ ≥ 0 repräsentiert

die Drift im Diffusionsprozess und der Parameter σ > 0 das zufällige Ausmaß der

Diffusion (Diffusionskonstante). Die Partikeldichte P (x, t) des Wiener Prozesses er-

gibt sich als Lösung der partiellen Differenzialgleichung (Fokker-Planck-Gleichung)

∂

∂t
P (x, t) =

1

2
σ2 ∂2

∂x2
P (x, t)− µ

∂

∂x
P (x, t) (3)

Ursprünglich wurde der Wiener-Prozess als Modell zur Beschreibung der Brown-

schen Molekularbewegung entwickelt (Einstein, 1905), fand in der Folgezeit je-

doch Eingang in viele weitere Naturwissenschaften, u.a. in die Neurowissenschaften

(Brunel & Wang, 2001).

Gemäß der Annahme additiver Superposition sinnesspezifischer Aktivie-

rung kann die Aktivität des gemeinsamen Kanals XAV(t) als Summe der Aktivität

des auditiven Kanals und des visuellen Kanals beschrieben werden: XAV(t) =

XA(t) +XV(t). Dadurch ergibt sich die Aktivität des gemeinsamen Kanals eben-

falls zu einem Wiener Prozess mit den Parametern µAV = µA + µV und σ2
AV =

σ2
A+σ2

V+2ρAVσAσV. Dieser Prozess beschreibt die Informationsakkumulation nach

Präsentation eines redundanten Reizes (AV). Eine weitere zentrale Annahme dieses

Modells ist, dass dieser Prozess andauert, bis ein Antwortkriterium c > 0 erreicht

ist. Erreicht der Prozess dieses Kriterium, ist die Reizdetektion abgeschlossen und

es erfolgt eine Reaktion. Formal betrachtet handelt es sich bei c um einen absor-

bierenden Zustand, d.h. der Prozess verlässt diesen nicht mehr, wenn er ihn einmal
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erreicht hat. Dazu muss die Fokker-Planck-Gleichung (3) zusätzlich unter der Ne-

benbedingung P (c, t) = 0 gelöst werden. Die in diesem Zusammenhang relevante

Lösung lautet

P (x, t) =
1

σ
√
2πt


exp


−(x− µt)2

2σ2t


− exp


2µc

σ2
− (x− 2c− µt)2

2σ2t


. (4)

Die Zeit, die es dauert, bis das Kriterium c zum ersten Mal erreicht und der Prozess

absorbiert wird, lässt sich durch die Erstpassagezeit (first-passage time) T angeben

(Schrödinger, 1915; von Smoluchowski, 1915; Fürth, 1917). Eine Möglichkeit, die

Dichte- und Verteilungsfunktion für T zu berechnen, ist über

F (t | c, µ, σ2) = 1−
 c

−∞
P (x, t) dx (5)

die Verteilungsfunktion zu bestimmen (Schrödinger, 1915, Gl. 17–19), und über

die Ableitung nach t die Dichtefunktion zu errechnen. Sie lautet (z.B. in Cox &

Miller, 1965, S. 221):

f(t | c, µ, σ2) =
c

σ
√
2πt3

exp


−(c− µt)2

2σ2t


. (6)

Alternativ berechnet man die Dichtefunktion f(t | c, µ, σ2) aus 1
2
σ2


∂P (x,t)

∂x


x=c

und

die Verteilungsfunktion anschließend durch Integration der Dichtefunktion über t

(vgl. von Smoluchowski, 1915, Gl. 7 & 8; Fürth, 1917, S. 180).

Ist der Driftparameter darüber hinaus positiv (µ > 0), lautet der Erwar-

tungswert E(T) = c/µ und die Varianz Var(T) = c · σ2/µ3 (z.B. in Cox & Miller,

1965, S. 221–222). Diese Verteilung ist auch als inverse Normalverteilung (oder

inverse Gauß-Verteilung oder Wald-Verteilung) bekannt.

Im Falle unimodaler oder synchroner bimodaler Reizdarbietung können die

Modellvorhersagen für Mittelwerte und Varianz direkt aus diesen Beziehungen ab-

geleitet werden. Werden die bimodalen Reizkomponenten zeitversetzt dargeboten,
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Abbildung 1.2: Additive Superposition der Diffusionsprozesse. Bis zum Zeitpunkt
τ = 100 ist lediglich ein Kanal aktiv. Nach der Präsentation des zweiten
Reizes zum Zeitpunkt t = τ ist auch der zweite Kanal aktiv. Der Beitrag
von beiden aktiven Kanäle (hier beide: µ = 0.4, σ = 3.0) wird addiert, so
dass das Kriterium c im Mittel schneller erreicht wird. Dies ist vor allem
an der mittleren Position eines Prozesses ersichtlich (gestrichelte Linie).
Zum Zeitpunkt t = τ hat der Prozess einen Zustand x < c erreicht,
die Wahrscheinlichkeitsdichte P (x, τ) ist durch die vertikale Verteilung
gekennzeichnet (vgl. Gleichung 4). Die resultierende Dichtefunktion f(t)
ist im oberen Abschnitt dargestellt.

gestaltet sich die Herleitung der Modellvorhersagen erheblich schwieriger. In die-

sem Fall ist zunächst nur ein Kanal aktiv, der zweite ist bis zur Präsentation der

zweiten Reizkomponente inaktiv. Nach Präsentation der zweiten Reizkomponente

zum Zeitpunkt τ sind wiederum beide Kanäle aktiv und die Aktivität des gemein-

samen KanalsXAV(t) soll durch den oben beschriebenen Prozess repräsentiert wer-

den (Abbildung 1.2). Dadurch verliert der Wiener Prozess eine seiner komfortablen

Eigenschaften: die Stationarität. Es müssen daher die zwei Fälle D ≤ τ und D > τ

getrennt betrachtet werden; der gemeinsame Erwartungswert E(D) ergibt sich als
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Summe dieser Erwartungswerte. Für den ersten Fall lautet der Erwartungswert

E(D|D ≤ τ) · P (D ≤ τ) =

 τ

0

t× f(t | c, µ, σ2) dt.

Nach der Zeit τ ist der Prozess entweder absorbiert, oder befindet sich in einem

Zustand X(τ) = x < c. Von diesem Zustand aus benötigt der Prozess im Mittel

E[D|X(τ) = x] = c−x
µ
, um das Kriterium c zu erreichen. Die Wahrscheinlichkeit

P [(X(τ) = x] wird durch P (x, τ) [vgl. (4)] repräsentiert. Für den zweiten Fall

D > τ berechnet sich der Erwartungswert nach

E(D|D > τ) · P (D > τ) =

 c

−∞
P (x, τ) ·


τ +

c− x

µ


dx.

In seiner Arbeit hat Schwarz (1994, Gl. 10, Anhang A) analytische Lösungen für

beide Ausdrücke hergeleitet, neben denen für die Erwartungswerte auch die ent-

sprechenden Vorhersagen für die Varianz Var(D) (Schwarz, 1994, Anhang B).

Das Modell für die Detektionszeit D besitzt 4 Parameter, denn das Kri-

terium c dient lediglich als Skalierungsfaktor. Für die Vorhersage der mittleren

Reaktionszeit T (T = D + M) muss mit µM für die mittlere Latenz der restli-

chen Prozesse M (
”
motorische Prozesse“, vgl. Luce, 1986) ein weiterer Parameter

geschätzt werden. Für die Vorhersage der Mittelwerte müssen folglich fünf freie

Parameter aus den Daten geschätzt werden: µA, σ
2
A, µV, σ

2
V und µM. Soll zudem

die Varianz der Reaktionszeiten vorhergesagt werden, kommt mit σ2
M ein weite-

rer Parameter hinzu. Nimmt man korrelierte Reizkanäle an, muss außerdem ρAV

geschätzt werden; mit der Korrelation zwischen Detektionszeit und Latenz der

residualen Prozessen zusätzlich der Parameter ρDM. Für das Gesamtmodell mit

Varianzvorhersage müssen zusätzlich zu den fünf oben genannten Parametern σ2
M

und ggf. ρAV sowie ρDM, insgesamt sechs bis maximal acht freie Parameter geschätzt

werden.

Das DSM sagt Mittelwerte und Varianzen von Einfachreaktionen auf redun-
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dante Reize voraus. Es konnte zum Beispiel die von Miller (1986) berichteten Daten

sehr gut erklären. Eine deutliche Erweiterung dieses Modells zur Beschreiung der

Integration trimodaler multisensorischer Reize wurde von Diederich (1995) vor-

geschlagen. Dieses Modell umfasst neben einem dritten Aktivierungskanal ferner

eine zweite, reflektierende Barriere, so dass der Informationskumulationsprozess

im Gegensatz zum Schwarz-DSM nicht ins Negative abdriften kann (vgl. Abbil-

dung 1.2). Zudem wird in diesem Modell nicht der Wiener Prozess, sondern der

flexiblere Ohrnstein-Uhlenbeck-Prozess (Uhlenbeck & Ornstein, 1930) verwendet.

Der Ohrnstein-Uhlenbeck-Prosss ist ebenfalls ein Diffusionsprozess, er beschriebt

wiederum die Aktivierung der sinnesspezifischen Kanäle. Allerdings sind die in-

volvierten Zustandsgleichungen derart komplex, dass für dieses Modell nur eine

numerische Näherung gegeben werden konnte.

Eine weitere Verallgemeinerung auf komplexere Aufgabentypen als Ein-

fachreaktionsaufgaben wurde im Zuge dieser Dissertation erarbeitet (s. Kapitel 3).

Bei dieser Verallgemeinerung kommt eine zweite, absorbierende Barriere hinzu,

so dass beispielsweise auch die Daten von Wahlreaktionsexperimenten mit zwei

Antwortalternativen durch das DSM erklärt werden können (Abbildung 1.3). Dies

ist inbesondere deswegen reizvoll, weil dieses Modell nicht nur an Erwartungs-

werte und Varianzen beider Antwortalternativen angepasst werden kann, sondern

gleichzeitig an den Anteil korrekter Antworten. Im Gegensatz zum Wiener Pro-

zess mit Drift und einer absorbierenden Barriere, bei der die Absorption an dieser

Barriere ein sicheres Ereignis ist, ist das Erreichen einer der beiden Barrieren im

Zwei-Barrieren-Fall eine (binäre) Zufallsvariable. Die Wahrscheinlichkeit für die

Absorption an einer der Barrieren hängt von den Parametern µ, σ und der Plat-

zierung der Barrieren u und −ℓ ab. Die Wahrscheinlichkeit für die Absorption an

der oberen Barriere u ist durch

Pu = 1− exp(−2µℓ/σ2)/[exp(−2µu/σ2)− exp(2µℓ/σ2)]
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Abbildung 1.3: Der Wiener Prozess (µ = 0.4;σ = 9) zwischen zwei absorbierenden Bar-
rieren u und ℓ. Diese beiden Zustände können ebenfalls als Antwortkri-
terien für zwei Antwortalternativen aufgefasst werden. An den beiden
Kriterien sind die respektiven Dichtefunktionen der Erstpassagezeit dar-
gestellt. Die Wahrscheinlichkeit für die Absorption an der jeweiligen Bar-
riere und damit die Wahrscheinlichkeit für die jeweilige Antwortalterna-
tive entspricht der Fläche unterhalb der jeweiligen Dichtefunktion. Dieser
Prozess ist die Grundlage des Diffusionsmodells von Ratcliff (1978); das
Superpositionsprinzip lässt sich auch auf diesen Wiener Prozess mit zwei
Antwortkriterien anwenden.

gegeben. Dadurch, dass die Absorption an der unteren oder der oberen Barriere

stattfinden kann, werden für die Vorhersage der Erwartungswerte und Varian-

zen der Detektionszeit die bedingten Erwartungswerte (Horrocks & Thompson,

2004) und Varianzen (Grasman, Wagenmakers & van der Maas, 2009) benötigt.

Abgesehen davon kann das Superpositionsprinzip analog zum Ein-Barrieren-Fall

angewendet werden, auch für den komplizierteren Fall zeitversetzter Reizdarbie-

tung. Numerisch gestaltet sich die Berechnung der Modellvorhersagen in diesem

Fall erheblich schwieriger, da für keine der benötigten Funktionsgleichungen (vgl.

Gleichung 4, 5 und 6) geschlossene Ausdrücke bekannt sind.
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Das DSM von Schwarz (1994) und die hier beschriebene Erweiterung stel-

len den theoretischen Rahmen dieser Arbeit dar. In bisherigen Arbeiten wurde

lediglich das Wettlaufmodell als Erklärung für die beobachteten Redundanzeffek-

te ausgeschlossen; der genaue Integrationsmechanismus war bisher selten Gegen-

stand wissenschaftlicher Forschung (siehe aber Diederich, 1995). In den wenigen

Arbeiten, in denen die Art der Integration genauer untersucht wurde, wurden Ex-

perimente zu Einfachreaktionen durchgeführt. Auch ist unklar, welche Rolle der

Aufmerksamkeit bei der Integration zukommt. Im Zuge dieser Dissertation wur-

de das Integrationsprinzip auch bei komplexeren Aufgaben sowie der Einfluss von

Aufmerksamkeit auf die Integration mulitsensorischer Reizinformation untersucht.
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2 Übersicht der Originalarbeiten

Diese Dissertation ist als kumulative Dissertation ausgelegt; die zugrunde lie-

genden Arbeiten wurden in internationalen Zeitschriften veröffentlicht oder zur

Veröffentlichung eingereicht. Im Folgenden sollen die Arbeiten kurz vorgestellt und

insbesondere auf Untersuchungsgegenstand und Ergebnisse eingegangen werden,

um einen Überblick über deren Zusammenhang geben zu können.

Multisensory processing of redundant information in go/no-go and choice

responses

In der ersten Arbeit (S. 27–86) ging es um die Frage, inwiefern Reaktionszeiten

bei Aufgaben, die komplexer sind als Einfachreaktionen, durch das Diffusions-

Superpositionsmodell (vgl. Abschnitt 1.3) beschrieben werden können. Dazu wur-

den zwei Experimente durchgeführt: In Experiment 1 sollten die Probanden so

schnell wie möglich auf bestimmte Zielreize reagieren und bei Distraktoren die Re-

aktion unterdrücken (Go/No-go-Aufgabe). In Experiment 2 sollten die Probanden

auf bestimmte Reize so schnell und so genau wie möglich mit einer Antwortalter-

native, auf andere mit einer zweiten Antwortalternative reagieren (Wahlreaktions-

aufgabe).

Das Design wurde in beiden Experimenten so gewählt, dass eine Unter-

scheidung von Reizenergie und Reizinformation möglich war. In klassischen Un-

tersuchungen zum Redundanzeffekt war diese Unterscheidung nicht möglich, da

Reizinformation und -energie konfundiert waren: in unimodalen Reizdurchgängen

wurden stets weniger Informationen und Reizenergie präsentiert als in redundan-

ten Reizdurchgängen (Miller, 1986). Die Erweiterung bestand darin, auditive und

visuelle Neutralreize (oder: nicht-informative Reize; A0 und V0) zu verwenden, die

mit keiner Antwort assoziiert waren und zusammen mit Go-Reizen sowie No-go-

Reizen (A+, V+, A−, V−, Experiment 1) oder zusammen mit Zielreizen einer der

beiden Antwortalternativen (AL, VL, AR, VR, Experiment 2) präsentiert wurden.
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So wurden zum Beispiel auditive Go-Reize mit visuellen Neutralreizen kombiniert

(A+V0); die korrekte Entscheidung hing in diesem Fall allein vom auditiven Ziel-

reiz ab (vgl. Grice et al., 1984). Während sich die Reize hinsichtlich ihrer physi-

kalischen Eigenschaften kaum voneinander unterschieden (z.B. Gabor-Reize leicht

unterschiedlicher Ortsfrequenz), war die Relevanz für die Aufgabenstellung sehr

unterschiedlich. Es ließen sich damit Rückschlüsse ziehen, ob der Diffusionsprozess

im DSM tatsächlich die Antworttendenz repräsentiert, oder aber, wie von Schwarz

(1994) vorgeschlagen, Stimulusenergie darstellen. In diesem Fall sollten die physi-

kalisch recht ähnlichen Neutral- und Zielreize (bzw. Distraktoren in Experiment 1)

im Modell sehr unterschiedliche Driftparameter besitzen. Die Neutralreize besaßen

geringe Evidenz für die Entscheidung, die Driftparameter wären demnach eben-

falls gering. Für die Zielreize bzw. die Distraktoren wären (betragsmäßig) deutlich

höhere Driftraten zu erwarten, die sich je nach Antwortalternative im Vorzeichen

unterscheiden.

Dazu wurde das Modell von Schwarz (1994) zunächst um ein zweites Ant-

wortkriterium erweitert (vgl. Abbildung 1.3). Diese Erweiterung folgt im Wesent-

lichen der Herleitung des Originalmodells, nur dass in diesem Fall die entsprechen-

den Ausdrücke für einen Wiener Prozess zwischen zwei absorbierenden Barrieren

verwendet wurden. Das resultierende Modell wurde an die mittleren Reaktionszei-

ten, die Standardabweichungen der Reaktionszeiten der Reaktionen auf Go-Reize

(Experiment 1) bzw. beider Antwortalternativen (Experiment 2) und an den Anteil

korrekter Antworten angepasst. Die entsprechenden Ausdrücke sind deutlich kom-

plexer als im Fall eines Antwortkriteriums. Eine Darstellung des Modells, auch von

dessen Vorhersagen für zeitversetzt präsentierte Reize, ist im Anhang A (S. 69 ff)

der hier beschriebenen Veröffentlichung zu finden.

Die Ergebnisse beider Experimente legen nahe, dass durch das Modell

tatsächlich die Antworttendenz beschrieben wird. Das DSM konnte die mittle-

ren Reaktionszeiten, die Reaktionszeitvarianz und den Anteil korrekter Antworten
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in beiden Experimenten sehr genau vorhersagen und zwar nicht nur in den klassi-

schen Bedingungen aus unimodalen und redundanten Zielreizen, sondern auch in

den bimodalen, nicht-redundanten Bedingungen mit einer Neutralreizkomponente.

Dies stützt zum einen die Annahme der additiven Superposition, zum anderen un-

terstützten die geschätzten Driftparameter des Modells die Annahme, dass durch

diese tatsächlich der Beitrag der präsentierten Reize zum Entscheidungsprozess

repräsentiert wurde. Sie war für die Neutralreize betragsmäßig deutlich geringer

als für die Zielreize (Experiment 1 und 2) oder die Distraktoren (Experiment 1).

Zudem wurde die Annahme paralleler Verarbeitung nach dem Wettlaufmodell auf

verschiedene Weise widerlegt. Sowohl die klassische Analyse der Verteilungsfunk-

tionen (race model inequality), als auch Kapazitätsüberlegungen (capacity coeffi-

cient : C(t), Townsend & Nozawa, 1995) und eine explizite Modellierung durch ein

Diffusions-Wettlaufmodell wiesen darauf hin, dass das Wettlaufmodell die Daten

nicht oder nur unzureichend erklären konnte.

Der Beitrag der Koautoren bei dieser Veröffentlichung umfasst Überarbei-

tungen des ursprünglichen Manuskripts bis hin zum endgültigen, publizierten Ar-

tikel. Bei der Datenerhebung wurde ich von zwei studentischen Hilfskräften un-

terstützt.

Fast and accurate calculations for cumulative first-passage distributions in

Wiener diffusion models

In dieser theoretischen Arbeit (S. 87–112) untersuchten wir mathematische Eigen-

schaften der Verteilungsfunktionen F (t) der Erstpassage im Wiener Diffusionsmo-

dell mit zwei absorbierenden Barrieren. Deren theoretische Form ist seit langer

Zeit bekannt (z.B. bei Feller, 1968), darüber hinaus existieren zwei äquivalente

Repräsentation dieser Funktion (Feller, 1968). Beide Repräsentationen basieren je-

doch auf einer unendlichen Reihe. In der Vergangenheit wurden beide Repräsenta-

tionen verwendet (Ratcliff, 1978; Van Zandt, Colonius & Proctor, 2000), da keine

19



generell bessere Konvergenzeigenschaften besitzt. Allerdings unterscheiden sich die

beiden Repräsentationen systematisch in ihrer Konvergenzeigenschaft bezüglich

der Variable t: die eine konvergiert sehr gut für kleine Werte von t, die andere sehr

gut für große Werte t.

Die Berechnung erfordert demnach die Auswertung einer unendlichen Rei-

he. Für die konkrete Anwendung in einem Diffusionsmodell muss die Berechnung

an einer Stelle abgebrochen werden. Der Fehler, der durch den Abbruch entsteht,

ist unbekannt. In dieser Arbeit konnte gezeigt werden, dass sich eine obere Grenze

für diesen Fehler angeben lässt, wenn die Summation nach K Summmanden ab-

gebrochen wird.

In der Arbeit wurden für beide Repräsentationen Abschätzungen des maxi-

malen Fehlers hergeleitet, der sich durch den vorzeitigen Abbruch der Auswertung

der jeweiligen Reihe bei Abbruch nachK Summanden ergibt. Durch Auflösen nach

K ermöglicht diese Abschätzung eine Bestimmung der Anzahl der Summanden, die

benötigt werden, um eine vorher definierte Genauigkeit zu erreichen. Dadurch war

es außerdem möglich, die auf diese Weise bestimmte Anzahl von benötigten Sum-

manden dazu heranzuziehen, diejenige der beiden Repräsentationen zu wählen, die

bei einer gegebenen Parametrisierung für geforderte t die besseren Konvergenzei-

genschaften besitzt. Eine derartige Vorgehensweise ermöglicht demnach nicht nur

eine effektive Kontrolle des Berechnungsfehlers, sondern auch eine komputatio-

nal effiziente Berechnung der Erstpassagezeit im Wiener Diffusionsmodell. Diese

beiden Vorteile sind vor allem dann wichtig, wenn die Berechnung von Modellvor-

hersagen mittels numerischer Integration erfolgt (Ratcliff, 1978), was eine häufige

Auswertung der Zielfunktionen erforderlich macht, und die Parameterschätzung

mittels iterativer Verfahren durchgeführt wird, für die eine möglichst glatte Ober-

fläche der Zielfunktion hilfreich ist. Bei der Schätzung der Modellparameter des

Zwei-Barrieren-Modells (siehe oben) wurde diese Berechnungsmethode angewen-

det. Die Veröffentlichung umfasste zudem einsatzbereiten Quelltext, der mittler-
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weile in der Skriptsprache R zu einem Gesamtpaket zusammengefasst wurde und

so für alle Benutzer zur Verfügung gestellt worden ist.

Der Beitrag der Koautoren dieser Veröffentlichung ist wie folgt: Der Artikel

wurde von mir und Matthias Gondan verfasst; Miriam Kesselmeier wirkte bei allen

Überarbeitungen bis hin zum publizierten Artikel mit. Die zugrunde liegenden Be-

rechnungen wurden von allen drei Autoren durchgeführt, die Skripten im Anhang

wurden von Matthias Gondan (R-Skript) und mir (MATLAB-Skript) angefertigt.

Cross-modal cueing effects on multisensory integration

In dieser Arbeit (S. 113–147) wurde der Einfluss visuell-räumlicher Hinweisreize

auf die Integration redundanter Zielreize untersucht. Die zu erwartenden Cueing-

Effekte sollten in einem gemeinsamen Modell mit einem zusätzlichen Parameter

beschrieben werden. In wiederum zwei Experimenten wurden zum einen endoge-

ne räumliche Hinweisreize (Experiment 1) und zum anderen exogene räumliche

Hinweisreize verwendet (Experiment 2). Endogene Hinweisreize zeichnen sich da-

durch aus, dass sie symbolisch (z.B. durch Pfeile) den zu erwartenden Zielreizort

anzeigen. Der darauf folgende Zielreiz muss anschließend mit größerer Wahrschein-

lichkeit dort erscheinen, damit der Hinweisreiz effektiv ist; erscheint der Zielreiz

an anderer Stelle, so ist die Reaktion im Mittel langsamer (Posner, 1980). Der

Zugewinn eines gültigen Hinweisreizes und die Kosten eines ungültigen Hinweis-

reizes werden als Aufmerksamkeitseffekte ausgelegt (Posner, Snyder & Davidson,

1980; Bashinski & Bacharach, 1980): im Fall gültiger Hinweisreize erwartet der

Proband den Reiz an dieser Stelle und richtet seinen Aufmerksamkeitsfokus auf

diesen Ort aus. Erscheint der Reiz anschließend tatsächlich an dieser Stelle, ist

die Reizverarbeitung effizient, d.h. die Extraktion der Reizinformation geschieht

schneller. Erscheint der Zielreiz nach einem ungültigen Hinweisreiz dagegen an

einer anderen Stelle, die nicht im Aufmerksamkeitsfokus liegt, ist die Verarbei-
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tung dementsprechend ineffizienter. Diese Unterschiede führen zu Differenzen in

der mittleren Reaktionszeit und werden als Cueing-Effekte bezeichnet.

Im Modell dieser Arbeit sollten die Cueing-Effekte auf die Integration au-

diovisueller Reize in einem gemeinsamen Modell dargestellt werden. Eine inter-

essante Frage in diesem Zusammenhang war jedoch auch, ob beide Modalitäten

gleichermaßen auf die Aufmerksamkeitsmanipulation ansprechen. Ist dies der Fall,

spricht dies für ein supramodales Aufmerksamkeitssystem, in dem die räumliche

Aufmerksamkeit modalitätsunabhängig ausgerichtet werden kann (Farah et al.,

1989). Um diese Vorhersage empirisch zu testen, spezifizierten wir ein restrikti-

ves Modell mit einem Skalierungsfaktor g ≥ 1 für modalitätsinvariante Aufmerk-

samkeitseffekte. Dieser Skalierungsfaktor wurde mit den Drifts und Diffusionspa-

rametern µA, σA, µV und σV multipliziert. Er beschreibt somit die effizientere

Informationsverarbeitung im auditiven und zugleich im visuellen Kanal. Dies ist

eine starke Annahme, deren Plausibilität durch ein alternatives, liberaleres Modell

mit modalitätsspezifischen Aufmerksamkeitseffekten untersucht wurde. Um moda-

litätsspezifische Aufmerksamkeitseffekte darstellen zu können, wurde ein zweiter

Skalierungsfaktor als freier Parameter eingeführt. In diesem Modell wurde die Dif-

fusionsparameter µA und σA bzw. µV und σV mit zwei separaten Skalierungsfakto-

ren gA und gV multipliziert. Die beiden Modelle waren hierarchisch geschachtelt,

denn das restriktivere, modalitätsinvariante Modell ergibt sich aus dem liberaleren,

modalitätsspezifischen Modell, wenn man im letzteren die Restriktion einführt,

dass die beiden Skalierungsfakoren gA und gV gleich sein sollen. In diesem Fall

ergibt sich das modalitätsinvariante Modell als Spezialfall. Diese Verschachtelung

nutzten wir für die empirische Überprüfung beider Modelle gegeneinander mittels

χ2-Tests. Die Ergebnisse dieses Tests waren sehr aufschlussreich und zeigten einen

deutlichen Unterschied zwischen den Aufmerksamkeitseffekten bei endogenen und

exogenen Hinweisreizen. Die Verhaltensdaten bei endogenen Hinweisweizen ließen

sich sehr gut mit dem Modell für modalitätsinvariante Aufmerksamkeitseffekte be-
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schreiben und die Hinzunahme eines weiteren Parameters für modalitätsspezifische

Aufmerksamkeitseffekte brachte keine substanzielle Verbesserung der Anpassung

an die Daten. Ein gänzlich anderes Bild ergab sich bei der Anpassung des DSM

an die Daten des Experimentes mit exogenen Hinweisreizen. Hier war die Anpas-

sung des Modells mit modalitätsinvarianten Aufmerksamkeitseffekten nicht nur

signifikant schlechter als jenes mit modalitätsinvarianten Aufmerksamkeitseffek-

ten, es zeigte sich außerdem, dass die modalitätsspezifischen Effekte der Hinweis-

reize hauptsächlich darauf zurückzuführen waren, dass die Verarbeitung auditiver

Reize im Gegensatz zur visuellen Reizverarbeitung nahezu unbeeinflusst von der

Gültigkeit der Hinweisreize war (gA ≈ 1).

Die Ergebnisse bei willentlicher Aufmerksamkeitsverschiebung mit endoge-

nen Hinweisreizen (Experiment 1) standen damit im Einklang mit der Annahme

eines supramodalen Aufmerksamkeitssystems, in dem beide Modalitäten gleicher-

maßen von der Gültigkeit des (visuellen) Hinweisreizes profitierten. Die Ergebnisse

des Experimentes mit exogenen Hinweisreizen (Experiment 2) erweitern dagegen

die Erkenntnisse aus Studien zur Aufmerksamkeitsmanipulation bei denen wieder-

holt Nulleffekte bei auditiven Zielreizen durch visuelle exogene Hinweisreize berich-

tet wurden (z.B. bei Spence & Driver, 1997). Dies weist auf eine Asymmetrie bei

auditiven und visuellen Hinweisreizen hin, denn auditive Hinweisreize können sehr

wohl die Verarbeitung von visuellen Zielreizen beschleunigen (Spence & Driver,

1994) – eine klare Verletzung der Supramodalitätsannahme. Mit der Anwendung

von Reaktionszeitmodellen, denen unterschiedliche Annahmen bezüglich des Auf-

merksamkeitsmechanismus zugrunde lagen, erbrachten wir starke empirische Be-

lege für supramodale Aufmerksamkeitssteuerung im Falle endogener Hinweisreize

und einer hauptsächlich visuell gesteuerten räumlichen Aufmerksamkeitsverschie-

bung im Falle exogener Hinweisreize. Diese Erkenntnis erweitert nicht nur bisherige

Ergebnisse, sondern sie ist auch empirisch gefestigter, da bisherige Ergebnisse und
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deren Interpretation oftmals auf den signifikanten oder nicht-signifikanten statis-

tischen Testergebnissen einer einzigen experimentellen Bedingung fußten.

Die Koautoren dieses Manuskripts überarbeiteten frühere Versionen bis hin

zum eingereichten Manuskript. Bei der Datenerhebung wurde ich von einer stu-

dentischen Hilfskraft unterstützt.

Effects of spatial and selective attention on basic multisensory integration

In der letzten Arbeit (S. 149–175) wurde untersucht, inwiefern das DSM Effekte

einer dauerhaften Aufmerksamkeitsausrichtung abbilden kann. In Experimenten

zur räumlichen Aufmerksamkeit (Experiment 1) und selektiven Aufmerksamkeit

(Experiment 2) wurde der Frage nachgegangen, ob identische Zielreize, die an

identischen Positionen präsentiert werden, unterschiedlich effizient wahrgenommen

werden, und zwar abhängig davon, ob zusätzlich Reize an weiteren Positionen dar-

geboten werden (räumliche Aufmerksamkeit), oder abhängig davon, ob auf diese

Zielreize nur reagiert werden soll, wenn sie alleine erscheinen, nicht jedoch wenn

an alternativen Positionen weitere Distraktoren dargeboten werden (selektive Auf-

merksamkeit).

Die Effekte der unterschiedlichen Aufmerksamkeitsbedingungen wurden –

analog zur vorherigen Studie – durch eine Skalierung der Diffusionsparameter

berücksichtigt. Diese Skalierung wurde anders als in der vorherigen Arbeit je-

doch nicht durch einen expliziten Faktor modelliert, sondern implizit durch ein

variables Antwortkriterium. Wie bereits erwähnt, ist das Antwortkriterium c im

DSM kein freier Parameter, sondern ein fester Skalierungsfaktor. Dieser Umstand

wurde in dieser Arbeit genutzt, um unterschiedliche Verarbeitungseffizienz in den

experimentellen Bedingungen zu erfassen. Eine effizientere Verarbeitung ist ma-

thematisch äquivalent mit einem geringeren Antwortkriterium, eine ineffizientere

Verarbeitung mit einem höheren Antwortkriterium. Im ersten Experiment dieser

Arbeit erwarteten wir, dass in der Bedingung mit nur einer Reizposition ein en-
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gerer Aufmerksamkeitsfokus gewählt wurde, als wenn Reize an mehreren Stellen

präsentiert werden. Unterschiedlich große Aufmerksamkeitsfoci sind in der Lite-

ratur mit unterschiedlicher Effizienz belegt, je größer der Aufmerksamkeitsfocus

desto ineffizienter die Reizverarbeitung. Genau dies konnte in dieser Arbeit ex-

perimentell bestätigt werden: in der Bedingung, in der nur Reize in der Mitte

präsentiert wurden, waren die mittleren Reaktionszeiten niedriger, als auf identi-

sche Reize in der anderen Bedingung, in der zusätzlich an zwei weiteren Positionen

Reize erschienen, auf die ebenfalls reagiert werden sollte. Dieser Unterschied sollte

durch ein gemeinsames Modell mit variablem Antwortkriterium beschrieben wer-

den. Bei der Schätzung der Modellparameter des gemeinsamen Modells für beide

Bedingungen erhielten wir tatsächlich unterschiedliche Antwortkriterien, die resi-

dualen Prozesse waren dagegen kaum betroffen. Wir interpretierten diese Ergeb-

nisse als Aufmerksamkeitseffekte: in der Bedingung, in der ein engerer Aufmerk-

samkeitsfokus gewählt werden konnte, fokussierten die Probanden ihre Aufmerk-

samkeit auf die einzige Zielposition und die Verarbeitung der dort präsentierten

Reize war effektiver, als wenn die Probanden ihre Aufmerksamkeit auf mehrere

Positionen aufteilen mussten. Wie im ersten Experiment der dritten Arbeit waren

die Aufmerksamkeitseffekte supramodal, d.h. beide Sinnesmodalitäten profitierten

gleichermaßen von einer effizienteren Verarbeitung in der Bedingung mit engem

Aufmerksamkeitsfokus.

Im zweiten Experiment unterschieden sich die beiden Bedingungen nicht

nur in den Anforderungen an die Steuerung der Aufmerksamkeit, sondern auch

in der Aufgabe der Probanden: in einer Bedingung sollte auf alle Reize reagiert

werden, die, wie im ersten Experiment, lediglich an einer Position erschienen. In

der zweiten Bedingung sollten die Probanden nur auf diese Reize reagieren und bei

begleitenden Distraktoren ihre Antwort unterdrücken. Auch hier stellten sich die

erwarteten Aufmerksamkeitseffekte ein: das Antwortkriterium war höher, d.h. die

Reizverarbeitung weniger effektiv, wenn mehrere Reizpositionen beachtet werden
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mussten, als wenn die Aufmerksamkeit selektiv auf die zentrale Position gerichtet

werden konnte. Der Unterschied im Reaktionsmodus zwischen beiden Bedingungen

führte außerdem zu einer vergrößerten Latenz der Residualprozesse bei der Go/No-

go-Aufgabe (Gondan, Götze & Greenlee, 2010).

Die Veröffentlichung wurde von Matthias Gondan und mir erstellt und von

allen Koautoren überarbeitet. Die Auswertung stammt zum überwiegenden Teil

von Matthias Gondan. Die Datenerhebung wurde von Flavia Hughes, sowie einer

studentischen Hilfskraft und mir durchgeführt.
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Abstract1

In multisensory research, faster responses are commonly observed when multimodal stimuli

are presented, as compared to unimodal target presentations. This so-called redundant-

signals effect can be explained by several frameworks, including separate-activation and

coactivation models. The redundant-signals effect has been investigated in a large number

of studies; however, most of those studies have been limited to the rejection of separate-

activation models. Coactivation models have been analyzed in only a few studies, primarily

using simple response tasks. Here, we investigated the mechanism of multisensory integra-

tion underlying go/no-go and choice responses to redundant auditory–visual stimuli. In

the present study, the mean and variance of response times, as well as the accuracy rates of

go/no-go and choice responses, were used to test a coactivation model based on the linear

superposition of diffusion processes (Schwarz, 1994) within two absorbing barriers. The

diffusion superposition model accurately describes the means and variances of response

times as well as the proportions of correct responses observed in the two tasks. Linear

superposition thus seems to be a general principle in the integration of redundant infor-

mation provided by different sensory channels, and is not restricted to simple responses.

The results connect existing theories of multisensory integration with theories on choice

behavior.

Keywords : Multisensory processing; Math modeling; Decision making
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Everyday perception simultaneously involves several senses. The sensory informa-

tion relayed by different perceptual subsystems has to be integrated in order to

take advantage of redundant and ancillary multisensory information, as well as to

solve the problem of contradictory information. In speech perception, for exam-

ple, lip reading can substantially improve the intelligibility of speech, especially in

a noisy environment (Sumby & Pollack, 1954). Contradictory information from

audition and vision, on the other hand, can evoke a percept presented neither

verbally nor visually (McGurk & MacDonald, 1976).

Elementary multisensory perception is often studied with redundant signals

from different senses—mostly audition, vision, and/or touch (Diederich, 1995; Gi-

ray & Ulrich, 1993; Miller, 1982, 1986). In redundant-signals experiments, the

stimuli are presented either alone (unimodal conditions) or together (bimodal con-

dition), and observers are usually asked to respond as quickly as possible to either

signal (simple response task). A common observation is that response times (RTs)

are, on average, lower in bimodal than in unimodal conditions. Different the-

oretical accounts can explain this so-called redundant-signals effect ; these make

different assumptions about the possible mechanism of integration of information

from the different senses. The simplest form of multisensory “integration” for re-

dundant signals is the separate- or parallel-activation account: Information from

different sensory modalities is processed in separate channels, and the channel

that first detects the stimulus triggers the response. According to this model, the

redundant-signals effect is due to statistical facilitation; that is, RTs to redundant

signals are, on average, lower because prolonged detection times in one channel

are compensated for by the other channel (Raab, 1962).

Miller (1982, 1986) derived an upper bound for the redundancy gains that

can be explained by separate-activation models. If the channel-specific process-

ing time distributions are invariant across experimental conditions (i.e., context
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invariance; see, e.g., Luce, 1986), Miller showed that the cumulative response time

distribution [CDF; F (t) = P (T ≤ t)] for redundant audiovisual (AV) stimuli can

never exceed the sum of the CDFs for the unimodal auditory (A) and visual (V)

stimuli:

FAV(t) ≤ FA(t) + FV(t), for all t. (1)

If Inequality 1 (the “race model inequality”) is violated for any t, context-

invariant separate processing is ruled out (see, e.g., Mordkoff & Yantis, 1991;

Townsend & Nozawa, 1995, for a thorough discussion of alternatives). In mul-

tisensory studies on the redundant-signals effect, violations of Inequality 1 have

often been reported (e.g., Diederich & Colonius, 1987; Miller, 1982, 1986; Mordkoff

& Yantis, 1993).

In contrast to separate-activation models, coactivation models assume that

information from different sensory systems is pooled into a common channel (e.g.,

Diederich, 1995; Miller, 1982, Appx. A; Miller, 1986; Miller & Ulrich, 2003;

Schwarz, 1989, 1994). Detection is finished when activation in this common chan-

nel exceeds a certain level. Because coactivation models assume true intersensory

facilitation rather than statistical facilitation, they can explain redundancy gains

that exceed the upper bound imposed by the race model inequality (see Colonius

& Townsend, 1997, for a theoretical framework of coactivation models).

A prominent framework of coactivation models is based on diffusion pro-

cesses. The basic idea of diffusion models is that information accrual following

stimulus presentation can be described by a noisy stochastic (diffusion) process in

the presence of one absorbing barrier (Diederich, 1995; Schwarz, 1994). As soon

as this barrier is reached, a response is initiated (Fig. 3.1a). Diffusion models are

also used to describe human two-choice decisions (e.g., Busemeyer & Townsend,

1993; Diederich, 1997). To this end, diffusion processes between two absorbing
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barriers are assumed, and absorption at one barrier corresponds to the choice of

one of two alternatives (Fig. 3.1b). An important feature of diffusion models is

that they predict not only the choice probability, but also the time that it takes

to reach that decision. Also, trial-to-trial variability can be elegantly explained,

because the accumulation process is inherently noisy. Diffusion models have been

successfully demonstrated to explain data from experiments on memory retrieval

(Ratcliff, 1978), lexical-decision tasks (Gomez, Ratcliff, & Perea, 2007), temporal-

order judgments (Schwarz, 2006), numerical distance effects (Schwarz & Ischebeck,

2003), and decision making (Ratcliff & McKoon, 2008).

In the present study, we examined the performance of a two-choice diffusion

model to explain choice behavior in a redundant-signals task. To this end, we com-

bined the modeling approaches for the redundant-signals experiment (Diederich,

1995; Schwarz, 1994) with two diffusion models that have been proposed to de-

scribe human two-choice decisions (Busemeyer & Townsend, 1993; Diederich, 1997;

Ratcliff, 1978). We present a model that can explain multisensory integration in

tasks that are more complex than simple responses, but also, more generally, be-

havior in two-choice decisions, if stimuli are presented with an onset asynchrony.

In two ways, this is a generalization of existing models for choice behavior and the

processing of redundant targets. First, choice models are generalized by adding a

second stimulus component that is relevant for the decision and that is possibly

presented with a stimulus asynchrony. Second, existing models of multisensory

integration with redundant signals are generalized for two response alternatives,

so that multisensory integration can be tested with more complex, and arguably

more ecologically valid, tasks than the mere detection of a stimulus.

Diffusion superposition model

The existing diffusion superposition models (DSM) for the redundant-signals ef-

fect have been used to explain data from simple response tasks (Diederich, 1995;
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Schwarz, 1994), and, more precisely, tasks with one response alternative (Gondan,

Götze, & Greenlee, 2010). In this model, the information accrual process is as-

sumed to be a time-homogeneous diffusion process (i.e., a Wiener process). In a

diffusion model for a binary choice response task, the absorbing barriers u and −ℓ

represent the response criteria for the two response alternatives (Diederich, 1997;

Ratcliff, 1978). Reaching one of the barriers corresponds to the choice between

the possible alternatives (Busemeyer & Townsend, 1993).

In the context of the multisensory integration of audiovisual redundant sig-

nals, the channel-specific activity is described by diffusion processes with the pa-

rameters µA, σ
2
A and µV, σ

2
V for the auditory and the visual channels, respectively.

Those parameters denote the drift and variance of both processes. This process

evolves within two absorbing barriers that represent the response criteria for the

two response alternatives. In the unimodal conditions, only one modality con-

tributes to the accumulation of evidence. In the bimodal condition, the contribu-

tions of both stimuli superimpose additively; thus, when stimuli are simultaneously

presented, the drift is µAV = µA+µV, and the variance is σ2
AV = σ2

A+σ2
V+2ρAVσAσV.

The parameter ρAV represents the correlation between activation in the sensory

channels (Miller, 1991). In bimodal conditions, the drift is thus increased, so that

the absorbing barrier u > 0 is, on average, reached earlier than in the unimodal

case. This is most obvious in the case of simultaneously presented redundant sig-

nals, but the same principle applies to redundant signals presented with a stimulus

onset asynchrony (SOA). If the targets are presented asynchronously, the process

changes to a Wiener process with a new drift and new variance when the second

stimulus is presented (Ratcliff, 1980; Schwarz, 1994). Again, the new drift is the

sum of the single stimulus drifts (additive superposition). The process is then a

compound of a first part, in which only the first stimulus is active, and a second

part, in which the underlying buildup of evidence is governed by both stimuli (Fig.

3.1b), as in the case of simultaneous presentation. A detailed description of the
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a b

Figure 3.1: a Wiener process (µ = 0.6, σ2 = 81) between two absorbing barriers
(u = 100, −ℓ = −100) starting at X(0) = 0. The curves at the top and
bottomrepresent the first-passage densities fu(t) and f−ℓ(t) for these param-
eters (on same arbitrary scale, for the purpose of comparison). The curves
between the barriers represent random instances of the process. Due to pos-
itive drift, the probability of reaching the upper criterion first is greater than
that of reaching the lower criterion. Absorption at either criterion corre-
sponds to one of two response alternatives. b Wiener process (µ = 0.6, σ2

= 81) between two absorbing barriers (u = 100, −ℓ = −100) starting at
X(0) = 0, with changing drift (µ = 1.8) after time τ . The average position
of a random process is displayed as a straight line to illustrate the increasing
drift after τ . At time τ , a process may have already been absorbed or may
still continue. The increasing drift affects the first-passage densities fu(t) and
f−ℓ(t) after time τ . The position density for processes that are not absorbed
prior to time τ is displayed vertically.

model is given in the Method section, and explicit expressions are provided in

Appendix A.

Most publications on the redundant-signals effect have used complex tasks

but tested for violations of the race model inequality only. For example, neu-

rophysiological studies have made frequent use of more-complex tasks, such as

the go/no-go task (e.g., “oddball detection”; Senkowski, Talsma, Grigutsch, Her-

rmann, & Woldorff, 2007; Teder-Sälejärvi, McDonald, Di Russo, & Hillyard, 2002),

and demonstrated that the race model cannot explain the redundancy gain, but

they have not tested alternative models that could explain the redundancy gains
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observed in the data. The limited number of studies that have actually tested

alternative models have focused on simple response tasks (e.g., Diederich, 1995;

Miller, 1982, Appx. A; Miller, 1986; Miller & Ulrich, 2003; Schwarz, 1994; but see

Gondan et al., 2010).

In the present study, we investigated redundancy gains in choice and go/no-

go tasks, and explicitly tested whether a coactivation model can account for the

RTs and accuracy observed in these tasks. We then present a DSM with two

absorbing barriers to test whether this model can account for the RTs and response

accuracy observed in redundant-signals experiments with a go/no-go task (Exp.

1) and a two-alternative choice RT task (Exp. 2).

3.1 Method

In Experiment 1, participants made speeded responses in an audiovisual go/no-go

task; in Experiment 2, they made speeded responses in a perceptual choice task.

The visual stimuli were three different Gabor patches; the auditory stimuli were

tones of three different frequencies. In addition to our go and no-go stimuli, we

employed noninformative stimuli that contained no task-relevant information, but

allowed for bimodal combinations of the stimuli without response conflicts. In Ex-

periment 2, the experimental setup was largely the same as in Experiment 1, with

a slight modification of the visual stimuli: The participants were given the task to

choose between two response alternatives instead of refraining from responding on

some trials.

Participants. Eight right-handed students from the University of Regensburg

(all female; mean age 23.3 years) and one author participated in Experiment 1.

Seven students (six female, one male; mean age 22.5 years) of the University of

Regensburg and one author participated in Experiment 2. All of the participants

had normal or corrected-to-normal vision and reported normal hearing. Students
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were naive with respect to the purpose of the experiment and the employed stim-

ulus conditions, and they were either paid (7e/h) or received course credit for

participation. Prior to the start of the experiment, the participants gave their

informed consent, and the experiment was conducted according to the Declaration

of Helsinki.

Apparatus and stimuli. The experiments took place in a light- and sound-

attenuated room (Industrial Acoustics Company GmbH, Niederkrüchten, Ger-

many), which was dimly illuminated from behind and above. The participants

sat on a chair in front of the computer screen, which was placed on a desk at a

distance of 60 cm. Loudspeakers were placed at the left and right of the screen.

Stimulus presentation was controlled with a standard IBM-compatible PC running

Presentation software (Neurobehavioral Systems, Albany, California).

In Experiment 1, the visual stimuli were Gabor patches (sigma = 0.8 deg,

1.8 cycles/deg) presented centrally on a gray background (18 cd/m2). These Gabor

patches (26 cd/m2) were either horizontal (left-to-right grating) or tilted by 45 deg

to the left or the right. In Experiment 2, we used three Gabor patches (sigma =

0.8 deg) with different spatial frequencies (1.1, 1.8, and 2.5 cycles/deg). Tones

of three different frequencies were employed as auditory stimuli [370, 392, and

415.3 Hz at 35 dB(A), representing the tones F4#, G4, and G4# on a chromatic

scale]. The Gabor patches and tones were presented alone (V, A) or together

(AV). The intertrial interval (ITI) between two successive trials was randomly

chosen from an exponential distribution with an expected value of 1,000 ms. To

avoid either too-short or too-long ITIs, a fixed time interval (600 ms) was added

to each randomly assigned ITI and the longest 5 % of intervals in the exponential

distribution were truncated, respectively. Participants responded to these stimuli

by pressing a response button placed at their dominant hand (Exp. 1) or buttons

at both hands (Exp. 2).
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Experimental tasks. In Experiment 1, the participants were asked to respond as

quickly as possible if the high-frequency tone (A+), the right-tilted Gabor patch

(V+), or both together (A+V+) were presented (go stimuli). The participants

had 1.5 s to respond before the program proceeded with the next trial. Alterna-

tively, the participants were asked to withhold a response if the low-frequency tone

(A−), the left-tilted Gabor-patch (V−), or both together (A−V−) were presented

(no-go stimuli). To avoid response conflicts in the bimodal stimulus conditions,

the go-stimulus components were never presented together with no-go compo-

nents (Table 1). Instead, we combined go and no-go components only with an

intermediate-frequency tone (A0) or a horizontal Gabor patch (V0). These were

regarded as noninformative or neutral stimuli, since they contained no information

for the decision of whether to press the button or withhold a response in a given

trial (see Grice et al., 1984, for a similar experimental setup). Critically, non-

informative stimuli with go targets were presented with the same probability as

noninformative stimuli paired with no-go stimuli (Table 1). All bimodal go stimuli

were therefore either redundant (e.g., high-pitch tone and right-tilted Gabor patch)

or nonredundant (a visual or auditory noninformative stimulus together with an

auditory or visual go stimulus: A+V0 or A0V+). Together with the corresponding

no-go trials (A−V−, A−V0, and A0V−) and four unimodal conditions (A+, V+,

A−, and V−) there were ten different target conditions (cf. Table 3.1). Regardless

of redundancy, bimodal stimuli consisted of one visual and one auditory stimulus

component. All bimodal combinations V(τ)A were presented with the following

SOAs: V33A, V67A, V100A, AV, A33V, A67V, and A100V (e.g., A67V means

that the tone preceded the Gabor patch by 67 ms). In the following presentation,

negative τ shall denote conditions A(τ)V.

In Experiment 2, participants were asked to choose as quickly as possible

which of two buttons to press, depending on the stimulus. They should press

the left button if a low-spatial-frequency Gabor patch (VL) or a low-frequency
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Table 3.1: Experiment 1—Trial number of experimental con-
ditions

Auditory

Go Neutral No-go Null

Visual Go 7 7 – 1

Neutral 7 – 7 –

No-go – 7 7 1

Null 1 – 1 –

Six bimodal conditions (bold numbers, each with seven
SOAs) and four unimodal conditions were created. Each
condition was employed once per block so that trial frequen-
cies can be directly derived from the number of conditions.
Trial frequencies with neutral stimuli were equal across tar-
gets (go) and nontargets (no-go). This scheme also applies
to Experiment 2 if one replaces “go” and “no-go” with the
two response alternatives.

tone (AL) was presented. If the high-spatial-frequency Gabor patch (VR) or the

high-frequency tone (AR) was presented, the participant should press the right

response button. As in Experiment 1, left-response stimulus components were

never combined with right-response stimulus components, but on some trials with

noninformative stimulus components instead. The target stimuli (AL, VL, AR,

and VR) were combined with Gabor patches (V0) or tones (A0) of intermediate

frequency that were not associated with any alternative, and all combinations

were equally likely. Bimodal stimuli for each side were either redundant (ALVL or

ARVR) or contained either a noninformative auditory stimulus (A0VL or A0VR)

or a noninformative visual stimulus (ALV0 or ARV0). Together with the unimodal

conditions, we thus had ten different response relevance classes, five for each re-

sponse alternative. Again, the intermediate stimuli (A0, V0) were regarded as

noninformative, since they contained no information about the required response

and were uncorrelated with the correct response. Due to SOA variation, bimodal
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stimulus trials were more frequent than unimodal stimulus trials, but the frequen-

cies of trials with bimodal stimuli were the same for all possible combinations of

response relevance (Table 3.1). The same SOA variation as in Experiment 1 was

used for the bimodal stimuli.

Procedure. Each participant was tested in nine sessions, each of which lasted

about an hour. At the beginning of each session, all six stimulus components were

presented, and the participants were reminded of the relevance of the stimuli for

the respective tasks. A single session consisted of 12 blocks, with a break after

the first six blocks. Each block was preceded by a task instruction and contained

one trial of each bimodal condition [V(τ)A in the go and no-go combinations] and

one trial of each of the unimodal conditions, resulting in a total of 46 trials. For

Experiment 1, each participant was tested in 102 blocks, so that the number of

replications was 102 in all 46 stimulus conditions.

The procedure in Experiment 2 was roughly the same as in Experiment

1. Each block comprised one repetition of each condition [VL(τ)AL, VL(τ)A0,

V0(τ)AL, VR(τ)AR, VR(τ)A0, V0(τ)AR, AL, VL, AR, and VR], and thus, also 46

trials. The trial frequencies can be deduced from Table 1, if one replaces “go” and

“no-go” with “left” and “right”, respectively. Each condition had 108 replications.

We ran a test block at the beginning of each experiment to ensure that the required

task had been understood, especially the response relevance of our bimodal targets.

In this test block, participants had more time to respond and were given visual

feedback (“correct” or “false” displayed on the screen). The data from this block

were discarded.

Tests of race model predictions. We tested the race model predictions on two

grounds: the race model inequality (Eq. 1) and capacity considerations. The latter

involved testing an index for process capacity C(t) that had been introduced by

Townsend and colleagues (e.g., Houpt & Townsend, 2012; Townsend & Altieri,
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2012; Townsend & Nozawa, 1995). The capacity index is a measure that provides

a time-dependent assessment of processing capacity and can be calculated from

the estimated cumulative hazard function H(t),

C(t) = HAV(t)/[HA(t) +HV(t)]. (2)

If the assumption of parallel first-terminating processing with unlimited

capacity and independent racers holds, this measure (Eq. 2) equals unity. In other

words, the independent race model serves as a benchmark to which the observed

performance is compared. If C(t) > 1 (supercapacity), capacity increases with

increasing load. According to the same reasoning, Townsend and Altieri (2012)

recently generalized the capacity index for more-complex tasks, such as the two-

choice task used in Experiment 2. Hence, this generalized assessment index A(t)

was used as the capacity measure in Experiment 2.

In both experiments, erroneous responses might occur because the parti-

cipant made guesses instead of informed responses. The test of the race model

has been shown to be refined if the “twins” of these guessing times are subtracted

from the RT distribution (Eriksen, 1988; Gondan & Heckel, 2008). We determined

the “twins” separately for each SOA and response condition. For Experiment 1,

this meant that for each response to a redundant V(τ)A no-go trial (guess), one

response to a redundant V(τ)A go was cancelled out (set to infinity). The corre-

spondence was established by choosing the response that was as close as possible to

that of the guess, regarding its latency. For auditory unimodal targets, twins were

determined by the auditory no-go condition, and for the visual unimodal target

condition by the visual unimodal no-go condition. For condition V(τ)A, the race

model then predicts

[FV+(τ)A+(t)−FV–(τ)A–(t)] ≤ [FV+(t)−FV–(t)]+[FA+(t−τ)−FA–(t−τ)], for all t. (3)

38



In Experiment 2, the RT distributions of one alternative were corrected

by incorrect responses to the other alternative. Thus, for example, “left” RT

distributions were corrected for (incorrect) “left” responses to stimuli for which a

“right” response would have been correct.

Miller (1986) suggested quantifying the amount of violation of this inequal-

ity by the positive area ∆τ enclosed by the observed AV distribution and the sum

of the observed A and V distributions. We pooled data from all sessions so that

responses were included in each CDF. The violation areas of all SOA conditions

were measured and aggregated to a single violation area ∆ by a weighted sum.

The weights denote a triangular weighting function; we assigned weights of 1, 2, 3,

4, 3, 2, and 1 to conditions A100V, A67V, A33V, AV, V33A, V67A, and V100A,

respectively (a “symmetric umbrella”; Gondan, 2009). This means, for example,

that the violation area in condition A33V was weighted three times as much as

that of condition A100V. Though many studies have reported redundancy gains to

be most pronounced when the visual precedes the auditory signal by some moder-

ate SOA (e.g., Miller, 1986; Senkowski et al., 2007), we used a symmetric function

because according to the average RTs to unimodal A and V trials, we expected

violations of the race model inequality to be most pronounced in the synchronous

stimulus presentation condition. We then applied Miller’s (1986) bootstrap test

to assess whether the violation area for a given participant reflected coactivation

or was due to sampling error. Bootstrap samples of the unimodal RTs were drawn

from the observed RT distributions; bimodal RTs were bootstrapped from the

distribution of minima of the unimodal RTs, adjusted for SOA and assuming a

maximally negative channel correlation between A and V (Ulrich & Giray, 1986).

In each simulation, the aggregate violation area ∆* was determined, and this sim-

ulation was repeated 10,001 times, resulting in a reference distribution of ∆ under

the race model assumption. The race model is significantly violated at α = .05

(one-tailed) if the observed ∆ is greater than 95 % of the simulated ∆*.
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The average amount of race model violation (supercapacity) was quantified

by the capacity index (Exp. 1) and the assessment index (Exp. 2). The statistical

significance of race model violations and supercapacity was tested at the group

level using a permutation test (Gondan, 2010). For these tests, we used the 5th

through 30th RT percentiles, in steps of 5 %. Since the respective indices should

be one for all time points, under standard race model assumptions, the capacity

estimates of the RT percentiles were aggregated using a Tmax statistic (cf. Gondan,

2010).

The diffusion superposition model with two absorbing barriers. Standard dif-

fusion models on choice behavior assume that the information accumulation pro-

cess can be described by a time-homogeneous diffusion process (i.e., Wiener pro-

cess) X(t) between two absorbing barriers u and −ℓ. The process has drift µ and

variance σ2 > 0 and starts at X(0) = 0. In the following discussion, absorption

at the upper barrier and the lower barrier corresponds to the mutually exclusive

events C = 1 and C = 0, respectively. For redundant signals, additive superposi-

tion of channel activity is assumed: XAV(t) = XA(t) +XV(t), resulting in a new

Wiener process with drift µAV = µA+µV and variance σ2
AV = σ2

A+σ2
V+2ρAVσAσV.

The decision time D corresponds to the first-passage time; that is, as soon as

either barrier is reached, a response is produced. To predict the mean detec-

tion times and response accuracy, thus, six parameters are needed (−ℓ, µA, σ
2
A,

µV, σ
2
V , and ρAV). The upper barrier u can be fixed (e.g., at 100) because it

is only a scaling parameter. Model predictions for mean and variance of detec-

tion time can be derived from the first-passage distributions and moments of a

Wiener process between two absorbing barriers (e.g., Cox & Miller, 1965). Ex-

pressions for the expected values of D are summarized in Horrocks and Thompson

(2004, their Eqs 6–10), and those for the variance in Grasman et al. (2009, their

Eq. 14). Reaching the upper criterion occurs with some probability P (C = 1),
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and the complementary event—that is, reaching the lower criterion—occurs with

a probability of P (C = 0) = 1 – P (C = 1). Expressions for the probabilities

of reaching the lower and upper criteria are also summarized in Horrocks and

Thompson (2004, their Eqs. 5 and 9). It is commonly assumed (Luce, 1986) that

the observed response time T is the sum of the signal detection D and condition-

invariant residual processes M (e.g., finger movement). Thus, another parameter

(µM) is necessary, which represents the mean latency of all residual processes M

(Townsend & Honey, 2007). The prediction of the RT variance requires two addi-

tional parameters—namely, the variance of the latency of residual processes (σ2
M)

and the correlation between residual processes latency M and detection time D

(ρDM). The correlation parameter ρDM did not substantially improve the model

fits, so it was fixed at zero in the models presented.

With all parameters specified, the two-barrier model predicts mean RTs

(i.e., E[T|C = 1] and E[T|C = 0]), variance (V ar[T|C = 1] and V ar[T|C = 0])

and response probabilities (P [C = 1] and P [C = 0]) in a go/no-go or a binary

choice RT task. For stimuli presented with onset asynchrony τ , the probability

of reaching the upper criterion first, P (C = 1|τ), the expected value of the time

of first passage E(T|C = 1, τ) and its variance V ar(T|C = 1, τ), have to be

calculated conditional on the SOA. The derivations of SOA-dependent expected

values E(T|C = 1, τ) and E(T|C = 0, τ), of the variances V ar(T|C = 1, τ) and

V ar(T|C = 0, τ) of the first-passage times, and of the probabilities P (C = 1|τ)

and P (C = 0|τ) of reaching either barrier first are described in Appendix A. This

two-choice diffusion model, even though it is able to predict also response accuracy,

needs only one parameter more than the original DSM (Schwarz, 1994)—namely,

the second absorbing barrier −ℓ. In the case of an unbiased model, the barriers

are equidistant from the origin. On the other hand, by setting this parameter far

apart from the origin (ℓ >> u), the probability of absorption at the upper barrier

tends to unity, and the two-barrier model predictions for the expected value and
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variance of D correspond to those of the one-barrier DSM.

Test of the diffusion model. We employed the two-barrier model to predict

mean and variance of go trials and the amount of incorrect responses observed in

the no-go stimulus conditions of Experiment 1 and both response alternatives of

Experiment 2. In a go/no-go task, the lower barrier is assumed to be implicit,

because absorption at the lower barrier does not lead to an observable response.

An observable response is only initiated if the upper barrier is hit. On this note,

a false-positive response to a no-go stimulus corresponds to reaching the upper

barrier u in a no-go trial (i.e., π = P [C = 1|u,−ℓ, µA–, σ
2
A–, µV–, σ

2
V–, ρAV]). To

predict the mean and standard deviation of RTs of the nonredundant stimuli with

a noninformative auditory or visual component, additional diffusion parameters

were necessary for the noninformative components (µA0, σ
2
A0 and µV0, σ

2
V0 for the

noninformative auditory and visual components, respectively). In order to obtain

predictions for the number of false alarms in (redundant and nonredundant) no-go

trials, diffusion parameters for these stimuli were also needed: µA−, σ
2
A− for the

auditory no-go component, and µV−, σ
2
V− for the visual no-go component. Note

that, contrary to the test of the race model inequality, no false alarms were removed

from the set of observed RTs, because false alarms can be explicitly predicted by

the model. This is a direct consequence of the noise in the diffusion processes,

which is also responsible for trial-to-trial variation. With ρDM set to zero, 16

parameters are needed to derive 69 predictions for the mean and variance of RTs

of all go trials and the percentage of responses to no-go trials.

The model fit for Experiment 2 was analogous, except that we added two

parameters for the residual process mean latency and its variance of the second re-

sponse alternative (µML, σ
2
ML). The parameter for the lower criterion turned out to

be approximately the same as that for the fixed upper barrier in most participants

of Experiment 2, so it was also fixed at −ℓ = −100, yielding equal decision crite-

ria for left and right responses (unbiased model; Wagenmakers, van der Maas, &
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Grasman, 2007). This resulted in a model with 17 parameters to predict the mean

and variance of RTs and the response accuracy of both response alternatives—that

is, 138 predictions in total.

The model fits were assessed by a goodness-of-fit statistic that was the sum

of squares of the normalized differences between the DSM model predictions and

the observed data—that is, the observed mean and variance of RTs, as well as

the observed response frequencies in no-go trials (Exp. 1) and for both response

alternatives (Exp. 2):

X2
m =


τ

{mV(τ)A − E[TV(τ)A]}2/[ŝ2V(τ)A/NV(τ)A], (4)

X2
s =


τ

{ŝV(τ)A −


V ar[TV(τ)A]}2/{ŝ2V(τ)A/[2×NV(τ)A]}, (5)

X2
p =


τ

NV(τ)A ×

pV(τ)A − πV(τ)A

2
/{pV(τ)A × [1− pV(τ)A]}, (6)

τ ∈ {0,± 33,± 67,± 100,±∞}.

Negative τ denotes conditions A(τ)V, and τ = ±∞ denotes the unimodal visual

and auditory stimuli. Thus, the goodness-of-fit statistic X2 = X2
m + X2

s + X2
p

was the unweighted sum of normalized differences between predicted and observed

means and the standard deviations of RTs for go trials (Eqs. 4 and 5), plus the

normalized differences between the predicted and observed response probabilities

(Eq. 6). We fitted the model to the means and standard deviations of RTs and

not to the complete distribution, because the distribution of residual processes M

was not known. Fitting the first moments of this distribution, on the other hand,

only required the first moments of the base time distribution, which we included

as free parameters.

If the model holds, the goodness-of-fit statistics (Eqs. 4–6) asymptotically

follow χ2 distributions. Note that the distribution of the sum of Eqs. 4–6, though
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it is a sum of squared normalized differences, does not correspond to a standard χ2

statistic, because the means (Eq. 4), variances (Eq. 5), and response accuracy (Eq.

6) are not independent. For Experiment 1, using the proportion of responses to no-

go stimuli extracted the best information available from go and no-go trials, since

the accuracy rate in go trials was at 100 % in most participants. However, in order

to prevent implausible predictions for the numbers of correct responses in go trials,

we included the percentage of responses in go trials as a side condition. Though the

percentages of responses to go trials do not contribute to the X2 statistics reported

in Table 3.3 below, they were added as a further constraint in the fitting procedure.

In order to fit the model to response frequencies predicted to be one or zero, the

variance was calculated as if the response frequency were .01 or .99, respectively.

In this way, we prevented the variance from becoming zero in the extreme cases.

The functions were implemented in MATLAB (MathWorks, Natick, MA), and the

parameters were estimated using the optimizer fminsearchbnd (downloadable from

MATLAB Central) to search for the minimum X2 value.

The diffusion race model with two absorbing barriers. The DSM can be di-

rectly compared to a diffusion race model (DRM). In the DRM, the assumption of

time-homogeneous channel-specific diffusion processes is kept, but the combined

activity XAV(t) does not correspond to XA(t)+XV(t). Rather, it is assumed that

the first process to reach the criterion initiates the response—that is, a parallel

independent race model. The resulting RT distribution is then a mixture distri-

bution determined partly by the auditory and partly by the visual channel. The

derivation is outlined in Appendix B. The DRM was fitted analogously to the

DSM by minimizing the same goodness-of-fit statistic X2—that is, the sum of

Eqs. 4 to 6.
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3.2 Experiment 1

In Experiment 1, participants made speeded responses in an audiovisual go/no-go

task with redundant signals. Response latencies and task performance weremea-

sured and used to test whether separate-activation models or the diffusion super-

position model could better account for the observed data.

3.2.1 Results

Response times and task performance. The SOA-dependent mean RTs exhib-

ited the typical wing-shaped pattern, with the mean RTs to synchronous stimuli

being lower than those to any stimuli presented with an SOA (Fig. 2, upper panel).

Task performance, as measured by false alarms to no-go stimuli, varied substan-

tially between participants. Four participants (i.e., 2, 3, 4, and 9) made very

few errors. Responses to no-go stimuli were less than 10 % in these participants,

regardless of the stimulus combination (redundant or nonredundant no-go) and

SOA. In the remaining participants, we observed effects of SOA and the modal-

ity of the target stimulus component (A+V+, A0V+,A+V0) on the observed error

rates in bimodal nonredundant trials (for participant-specific results, please see

Supplemental Fig. 3.1 in the online supplemental materials). If the noninforma-

tive stimulus preceded the no-go stimulus, higher SOAs led to higher response

frequencies. Error rates were also lower for bimodal redundant signals than for

nonredundant signals, with no visible effect of SOA. The observed standard de-

viations were largely independent of SOA, but they differed between response

conditions (bimodal redundant, bimodal nonredundant). A speed–accuracy trade-

off was also evident: Regarding their mean RTs, Participants 1 and 8 were fastest,

and both showed the highest error rates, which amounted to 30 % and more in

some conditions. On the other hand, four participants (2, 3, 4, and 9) did not

show any, or only very few, errors, and three of those four participants have the

slowest mean RTs of all participants (i.e., Participants 2, 3, and 4). Participant 9
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made very few errors together with relatively fast mean RTs. Errors (lapses) in go

trials were rare, amounting to about 2 % for all participants, with the exception of

Participants 2, who missed 9 % of the targets in one condition, and 4, who shows

frequent misses (up to 15 %) in the auditory go conditions (unimodal and bimodal

nonredundant targets).

Tests of race model predictions. In a first analysis, we calculated the violation

area ∆ as the weighted sum of the violation areas of all SOA conditions (Gondan,

2009) and determined the participant-specific p values by the bootstrap procedure

described in Miller (1986). The race model inequality was significantly violated in

every single participant, thereby ruling out the classical race model (i.e., context-

invariant parallel processing) as an explanation of the redundancy gains in the

go/no-go task (Table 3.2).

Table 3.2: Experiment 1—Result of race model inequality tests

Participant

1 2 3 4 5 6 7 8 9

∆ 96.8 103.2 146.1 62.8 60.4 151.6 138.0 72.7 75.8

p value < .001 < .001 < .001 .039 .035 < .001 < .001 < .001 < .001

∆: violation area up to the 20th percentile; p value: proportion of simulations (under
race model assumptions) that showed violation areas greater than the observed violation
area ∆.

In line with this finding, the capacity coefficient C(t) indicated supercapac-

ity over a large range of t (Supplemental Fig. 3.2A). The group test for the capacity

index C(t) at early t yielded significant supercapacity (Tmax = 7.96, T0.95 = 2.27;

p < .001). The individual time courses of processing capacity are available in the

supplemental material (Supplemental Fig. 3.2A). Average violations of the stan-

dard race model inequality across all participants (cf. Mordkoff & Danek, 2011)

are displayed in Supplemental Fig. 3.2B.

46



Table 3.3: Experiment 1—Parameter estimates and model fit of the diffusion superposi-
tion model with two criteria for mean and variance of response times of go
trials together with amount of responses to no-go trials

Participant

Parameter 1 2 3 4 5 6 7 8 9

Go µV+ 0.56 0.76 0.77 0.85 0.69 0.48 0.48 0.54 0.81

responses σ2
V+ 4.4 11.3 1.0 1.6 14.3 1.2 1.0 16.5 12.5

µA+ 0.78 0.47 0.66 0.55 1.08 0.45 0.44 0.39 0.76

σ2
A+ 9.7 6.3 1.0 15.9 49.1 4.3 1.8 3.0 12.6

µM 293.4 448.8 642.0 530.1 416.8 360.4 350.0 238.6 354.3

σ2
M 2,339 3,472 11,917 11,271 1,451 6,466 11,457 1,380 5,448

ρDM (0) (0) (0) (0) (0) (0) (0) (0) (0)

u (100) (100) (100) (100) (100) (100) (100) (100) (100)

Noninfor- µV0 0.15 0.09 0.24 0.13 0.11 0.12 0.16 0.16 0.01

mative σ2
V0 9.3 8.4 14.4 3.3 6.1 6.1 5.4 12.1 4.4

Stimli µA0 0.18 0.15 0.21 0.14 0.29 0.19 0.15 0.29 0.07

σ2
A0 8.3 5.8 1.0 1.3 7.9 8.3 6.5 2.7 9.1

No-go µV– –1.07 –0.28 –1.68 –1.43 –2.31 –1.83 –0.60 –1.42 –2.00

responses σ2
V– 80.3 1.0 64.9 59.5 95.6 82.4 25.4 69.0 66.9

µA– –0.39 –5.35 –3.55 –0.22 –0.30 –0.26 –0.49 –0.50 –2.00

σ2
A– 4.9 243.9 2.8 1.0 1.0 1.1 25.7 36.2 72.4

−ℓ –111 –69 –63 –64 –512 –88 –401 –76 –101

ρAV 0.95 0.26 0.20 0.83 0.81 0.90 0.04 0.15 0.18

GOF X2 DSM 128.0 110.5 90.7 104.4 87.9 89.0 79.7 84.4 144.7

DRM 148.3 113.9 102.0 115.5 93.0 124.8 91.3 98.5 147.6

µ*, σ
2
*: drift and variance for visual (auditory) diffusion process for go stimuli (µV+,

σ2
V+, µA+, σ

2
A+), noninformative stimuli (µV0, σ

2
V0, µA0, σ

2
A0), and no-go stimuli (µV–,

σ2
V–, µA–, σ

2
A–); u: evidence criterion for response; −ℓ: evidence criterion for no response;

ρAV: correlation betweenDA andDV; µM, σ2
M: mean and variance of residual component

duration M; ρDM: correlation between D (detection time) and M (residual component
duration). Parameters in parentheses are fixed parameters. GOF X2 : goodness-of-fit
statistic (higher results indicate worse fit).
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Diffusion superposition model. A diffusion superposition model with two ab-

sorbing barriers (u fixed at 100) and 16 free parameters was fitted to the mean

RTs and variances of RTs in a go/no-go task (69 predictions in total). Figures

that display participant-specific performance and DSM predictions are available

as supplemental materials (Supplemental Fig. 3.1). Except for one participant,

the model fit was acceptable to excellent in all participants. The diffusion super-

position model captured all aspects of the go/no-go data well. This was primarily

the wing-shaped pattern of the SOA-dependent mean RTs (Fig. 3.2; circles) in

the redundant-signals conditions. Additionally, the model had to explain the data

of the nonredundant bimodal conditions with a noninformative stimulus. This

included the rising mean RTs in the nonredundant noninformative stimulus-first

conditions (Fig. 3.2; auditory targets shown by upward pointing triangles, visual

targets by downward pointing triangles). Responses to redundant no-go stimuli

were rare (lower panel of Fig. 3.2; circles). Responses to no-go stimuli accom-

panied by noninformative stimuli were more frequent in most participants (e.g.,

Participants 1, 4, 5, 6, 7, and 8; see Supplemental Fig. 3.1) and were generally

increased with the delay of the no-go stimulus (Fig. 3.2; auditory no-go stimuli

shown by upward pointing triangles, visual no-go stimuli by downward pointing

triangles). Standard deviations, which were rather constant across all conditions,

were also predicted well by the model. This was also true for the numbers of

correct responses in all go conditions, which attained 100 % in most participants

and conditions (Fig. 3.2, top of the lower panel). Only the model fit for the data

of Participant 9 exhibited frequent deviations from the observed mean RTs and

standard deviations, especially in the bimodal nonredundant conditions V+(τ)A0

and V0(τ)A+.

As can be seen in Table 3.3, the drifts of both noninformative stimulus

components (µA0, µV0) were generally lower than those of the target stimulus

components (µA+, µV+). The reverse is true for the drifts of the no-go stimuli
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Figure 3.2: Averaged mean response times and standard deviations of go trials (upper
panel), as well as proportions of responses to go and no-go trials (lower
panel), together with model predictions from the diffusion superposition
model for all nine participants in Experiment 1. The curves represent av-
eraged model predictions for unimodal/bimodal redundant, nonredundant
auditory-target, and nonredundant visual-target stimulus conditions. Data
from the redundant bimodal conditions and unimodal conditions are dis-
played as circles, and data from the bimodal nonredundant conditions with
either visual or auditory noninformative stimuli are displayed as upward-
pointing triangles or downward-pointing triangles, respectively. On the x-
axis, conditions are ordered from left to right according to stimulus onset
asynchrony, and error bars denote 95% confidence interval based on aver-
aged standard errors. Participant-specific data and model fits are available
as online supplemental materials (Supplemental Fig. 3.1).
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(µA−, µV−), which were negative in all participants and generally below the non-

informative target drifts. The parameter estimates for the lower barrier differed

considerably from those for the upper barrier (100) in most participants, suggest-

ing a response bias in those participants. This is also evident in estimates for

drifts of the noninformative stimuli; when these were fixed to zero, the model fit

was considerably worse. In three participants, the estimate for the lower barrier

is farther away from the origin than that for the upper barrier (Participants 1, 5,

and 7), and in five participants, the estimated lower barrier is closer to the origin

than the upper barrier (Participants 2, 3, 4, 6, and 8).

Diffusion race model. The diffusion race model (DRM) failed to explain the

mean and standard deviation of the observed RT (Fig. 3.3). This is evident in

the conditions with noninformative stimuli, and especially in the comparison of

redundant and unimodal conditions. One theoretical premise is that redundant

targets’ mean RTs approach the unimodal RT means when the SOA becomes

infinite. This is the case for both models, and the DSM nicely fits the observed

mean RTs. However, the DRM clearly cannot explain the observed redundancy

gain, even on the level of mean RTs.

Like those for mean RTs, the DRM predictions for response frequencies in

the nonredundant no-go conditions were overestimated (Fig. 3.3, lower panel).

Thus, the observed mean RTs in go conditions with noninformative stimuli and

the response frequency to no-go stimuli with the same noninformative stimuli were

faster and more accurate, respectively, than those predicted by the DRM.
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Figure 3.3: Averaged mean response times and standard deviations of go trials (upper
panel) and proportions of error responses on no-go trials (lower panel), to-
gether with averaged model predictions from the diffusion racemodel, for all
nine participants in Experiment 1. The data are the same as in Fig. 3.2,
but the model predictions are derived from the diffusion race model. The
coding of conditions is the same as in Fig. 3.2.
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3.2.2 Discussion

The goal of Experiment 1 was to investigate the mechanism of integration in a

redundant-signals experiment with a task more complex than a simple response

task (e.g., Miller, 1986). For this purpose, we tested nine participants in a go/no-go

task and asked them to respond as quickly as possible to predefined audiovisual

target stimuli and to refrain from responding to no-go stimuli (Miller, 1982). A

diffusion superposition model with two absorbing barriers was fitted to the means

and variances of the RTs of 23 go conditions, as well as to the accuracy rates of

23 no-go conditions. The race model inequality was significantly violated in all

participants; thus, the standard race model with independent channels and unlim-

ited capacity does not seem to be a plausible candidate to explain the observed

data. Likewise, the capacity coefficient (Townsend & Nozawa, 1995) indicated

supercapacity across multiple time points in all participants. Processing was con-

siderably faster than was predicted by standard parallel processing (race model),

suggesting interactive channels or coactive processing. On the other hand, the

diffusion superposition model with two absorbing barriers could explain the mean

RTs, standard deviations, and accuracy rates well in all but one participant; the

fit of the model was acceptable to excellent in most participants (Table 3.3). The

parameter estimates for the lower barrier suggest that the participants adopted

two different strategies in the go/no-go task. This is indicated by a response bias,

represented by the relative distances of the upper and lower barriers from the ori-

gin. In Participants 5 and 7, the lower criterion is farther away from the origin

than the (fixed) upper criterion. This, in turn, implies that those participants were

prepared to respond and withheld the response if a no-go stimulus was presented.

Participants 2, 3, 4, 6, and 8 seem to have chosen a different strategy: These

participants expected a no-go stimulus and, thus, tended not to respond. The

parameter estimates for the lower barrier lie closer to the origin than the upper
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criterion. The other two participants do not seem to have adopted a strategy with

any response bias at all.

That the model explained the observed data has two interesting implica-

tions. First, we provided evidence that the same principles that govern multisen-

sory integration in simple RTs also apply to a more complex task, such as the

go/no-go task. To this end, we not only tested separate-activation models, but

also an alternative model. This has been done before (Gondan et al., 2010), but

the results of that study were subject to response conflicts that participants might

have had problems resolving. We avoided response conflicts by adding nontargets:

Rather than directly combining go and no-go audiovisual stimulus components,

we used a third class of noninformative stimulus that could be presented with go

and no-go stimulus components (Grice et al., 1984). Whereas in Gondan et al.

(2010) it seemed that some participants resolved possible response conflicts by se-

rial processing of the stimuli, the present results suggest coactive processing of the

bimodal information when the provided information is free of response conflicts.

Second, using a DSM with two absorbing barriers allowed for description

not only of the mean RTs and variance, but also of response accuracy in the

go/no-go task (Rach, Diederich, & Colonius, 2011). This approach is not new

(Gomez et al., 2007), but for the first time we used it to model the data of a

go/no-go task in an experiment with redundant signals presented with an SOA.

There is also a conceptual difference between our diffusion-modeling approach and

that based on Ratcliff’s (1978) diffusion model. The models based on Ratcliff’s

diffusion model allow for different modulations of the parameters for example, a

randomly distributed starting point or trial-to-trial variations in drift rates. The

diffusion superposition models for the redundant-signals effect (Diederich, 1995;

Schwarz, 1994) and the model that we outlined here currently do not allow for

these variations. Instead, the diffusion process is divided into two (or possibly

more) parts that may have different drifts and variances (see Fig. 3.1b). This
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approach is analytically tedious for two parts (Ratcliff, 1980; Schwarz, 1994) and

requires numerical approximation for three or more subdivisions (Diederich, 1995),

but it has proven to be successful in modeling the mean RTs and variances of a

redundant-signals task with stimuli presented with onset asynchronies. Therefore,

we followed the same approach in the derivation of the diffusion model with two

absorbing barriers. Note that the application of such a compound model is not

restricted to the redundant-signals task. Similar models have been used to explain

temporal-order judgments (Schwarz, 2006) and could be applied to data from any

experimental setup inwhich the rate of accumulation of information is expected

to change at some time. This includes not only stimuli presented with an onset

asynchrony, but any experimental setup with an interstimulus interval (e.g., a

sequential comparison task or cueing tasks).

3.3 Experiment 2

In Experiment 2, participants made choice responses to audiovisual redundant tar-

gets in a speeded response task with two alternatives. Analogously to Experiment

1, we compared the model fits of the two diffusion models to the two-choice data

and investigated process capacity in a two-choice task.

3.3.1 Results

RTs and task performance. The mean RTs of redundant stimuli exhibited a

roughly symmetric wing-shaped pattern for both alternatives and in all partici-

pants (Fig. 3.4; circles in upper panels). Responses to the bimodal redundant

targets (A+V+) were the fastest in all conditions. For the bimodal nonredundant

stimuli (A+V0 and A0V+), a similar pattern was observed, but the shape was

clearly asymmetric: The mean RTs of the conditions in which the noninformative

stimulus followed the target stimulus were nearly constant across SOA conditions

(Fig. 3.4; left half of upward-pointed triangles and right half of downward trian-
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gles). If the noninformative stimulus preceded the target by some SOA, we found

an increase in mean RTs that was dependent on the SOA (right half of upward

triangles and left half of downward triangles). Similar patterns can be observed

for the numbers of correct responses. The frequency of correct responses was high-

est for the bimodal redundant and unimodal conditions (lower panels of Fig. 3.4,

same condition-coding as above) and lower for the bimodal nonredundant signals.

This was especially evident in conditions in which the noninformative stimulus

was presented before the target stimulus. In some participants, task performance

approached chance level with increasing SOAs between the noninformative and tar-

get stimuli. That is, some participants tended to guess the correct response, but

nevertheless, the mean response latency increased with decreasing performance.

Standard deviations, on the other hand, were largely constant across all condi-

tions in all observers (Fig. 3.4, upper panels). Figures of the participant-specific

results are available as supplemental materials (Supplemental Fig. 3.3).

Tests of the race model predictions. The race model was tested for the redundant-

stimulus conditions of both response alternatives by calculating the observed vi-

olation areas for each response alternative. The race model inequality for the

redundant-stimulus conditions was significantly violated in six participants (i.e.,

1, 3, 4, 5, 6, and 8), for either left or right responses. The remaining two partici-

pants do not show significant violations of the race model inequality in either left

or right responses (Table 3.4). In Experiment 2, the generalized assessment index

(Townsend & Altieri, 2012) was used to estimate processing capacity. Again, under

the canonical parallel independent race model A(t) = 1, we tested the assessment

index against unity and focused on the correct and fast case. Contrary to the

capacity index and standard race model tests, the generalized capacity index A(t)

also explicitly takes into account the observed erroneous responses. This yields four

cases, depending on response correctness (correct/incorrect) and response speed
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Figure 3.4: Averaged mean response times and standard deviations of choice responses
(upper panels) and the corresponding proportions of correct responses (lower
panels), together with averaged model predictions from the diffusion super-
position model for all eight participants in Experiment 2. For each observer,
the left panels display the data and model predictions from one response
alternative (left buttonpress), and the right panels display the data and
model predictions from the other response alternative (right buttonpress).
The curves represent the averaged model predictions for unimodal/bimodal
redundant, nonredundant auditory-target, and nonredundant visual-target
stimulus conditions. Data from the redundant bimodal conditions and uni-
modal conditions are displayed as circles, and data from the bimodal nonre-
dundant conditions with either visual or auditory noninformative stimuli
are displayed in contrasting ways (auditory target: upward-pointing trian-
gles; visual target: downward-pointing triangles). On the x-axis, conditions
are ordered from left to right according to stimulus onset asynchrony, and
error bars denote 95 % confidence interval based on averaged standard er-
rors. Participant-specific data and model fits are displayed in Supplemental
Fig. 3.3.
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Table 3.4: Experiment 2—Result of race model inequality tests for both response alterna-
tives

Participant

1 2 3 4 5 6 7 8

Left ∆ 50.1 0.4 77.6 57.1 14.9 45.3 24.0 6.6

responses p value .350 .986 .127 < .001 .678 .025 .511 .799

Right ∆ 107.6 27.1 106.4 32.1 35.6 39.5 27.5 42.8

responses p value < .001 .617 < .001 .040 .040 .064 .141 .007

∆: violation area up to the 20th percentile; p value: proportion of simulations (under
race model assumptions) that showed violation areas greater than the observed violation
area ∆.

(fast/slow). In the correct and fast case, capacity was significantly greater than

was predicted by parallel independent processing in the right-response conditions

(Tmax = 5.66, T0.95 = 2.26, p < .001), and, to a similar extent in the left-response

conditions (Tmax = 5.69, T0.95 = 3.05, p = .003). The assessment index showed su-

percapacity for either left or right responses in all but one participant (Participant

5), whose data for both response alternatives were largely consistent with parallel

independent processing (Supplemental Fig. 4A). The lower boundary was violated

only in Participant 3, whose left responses showed severely limited capacity. The

time course of A(t), together with the upper and lower capacity bounds, are dis-

played in Supplemental Fig. 3.4A. Violations of the race model inequality for all

participants are shown in Supplemental Fig. 3.4B. In general, race model inequal-

ity tests seem to be less sensitive than capacity analyses regarding violations of

race model predictions for two-choice response data.

Diffusion superposition model. A two-barrier DSM was fitted to the mean RTs

and proportions of correct responses for both alternatives. Except for Participant

5, the model fit was acceptable in all participants (see Fig. 3.4 and Table 3.5); some
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Table 3.5: Experiment 2—Parameter estimates and model fits of the two-barrier diffu-
sion superposition model for the mean and variance of response times of both
response alternatives, together with the respective proportions of correct re-
sponses

Participant

Parameter 1 2 3 4 5 6 7 8

Left µV 0.76 0.63 1.01 0.85 0.97 0.71 0.77 0.73

responses σ2
V 74.5 56.1 115.0 67.9 33.4 54.6 15.7 43.7

µA 0.71 0.74 1.59 0.87 0.86 0.70 0.73 0.88

σ2
A 75.3 73.0 106.5 66.1 30.1 43.3 43.3 40.6

µM 438.5 441.8 427.0 455.7 471.1 371.3 436.8 331.1

σ2
M 9,764 10,886 4,342 2,605 4,257 2,202 5,413 7,520

ρDM (0) (0) (0) (0) (0) (0) (0) (0)

u (100) (100) (100) (100) (100) (100) (100) (100)

Noninfor- µV0 0.05 –0.08 –0.10 –0.03 –0.07 0.05 –0.08 –0.02

mative σ2
V0 64.9 35.6 94.7 65.3 6.1 33.5 19.6 46.9

Stimli µA0 0.05 0.05 –0.08 0.08 –0.01 0.05 0.04 0.20

σ2
A0 73.6 68.8 82.7 59.2 23.7 55.7 52.1 49.0

Right µV –0.41 –0.70 –1.02 –1.00 –0.77 –0.64 –0.77 –1.19

responses σ2
V 75.0 74.9 95.3 79.7 19.9 61.7 17.9 70.3

µA –0.78 –0.78 –2.13 –0.97 –0.86 –1.10 –0.73 –1.26

σ2
A 100.6 90.6 111.1 59.8 37.3 59.0 50.3 77.2

µM 482.5 434.3 385.8 437.9 444.7 385.3 420.2 364.2

σ2
M 7,297 6,359 3,029 2,611 2,424 3,070 3,976 9,511

ρDM (0) (0) (0) (0) (0) (0) (0) (0)

−ℓ (–100) (–100) –144 (–100) (–100) (–100) (–100) (–100)

ρAV –0.33 –0.22 –0.27 –0.49 0.28 –0.24 –0.04 –0.41

GOF X2 DSM 156.1 268.3 255.6 204.9 445.6 214.0 206.8 127.2

DRM 376.1 195.6 357.0 339.1 429.9 284.0 253.2 180.0

µ*, σ
2
*: drift and variance for visual (auditory) diffusion process for target (µV, σ

2
V, µA,

σ2
A) and noninformative (µV0, σ

2
V0, µA0, σ

2
A0) stimuli; u: evidence criterion for “left”

response; −ℓ: evidence criterion for “right” response; ρAV: correlation between DA and
DV; µM, σ2

M: mean and variance of residual process latency; ρDM: correlation between
D (detection time) and M (residual component duration). Parameters in parentheses
are fixed parameters. GOF X2: goodness-of-fit statistic (higher results indicate worse
fit).
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participants (i.e., 1 and 8) showed excellent model fit. Again, drift estimates are

ordered; thus, drifts for stimuli requiring a left buttonpress direct the process to the

upper barrier associated with this response. By contrast, drifts for stimuli requiring

a right buttonpress tend toward the lower barrier, and parameter estimates for

drifts for the noninformative stimuli are intermediate and vary around zero. The

estimates for the lower barrier were very close to those for the upper barrier, so

we fitted a model to the data in which the parameter −ℓ was fixed to −100. This

unbiased model (Wagenmakers et al., 2007) fit approximately as well as the more

liberal model in all but one participant (Participant 3). In this participant, the

model fit of the more restrictive model was considerably worse, so we kept the

liberal model. In the remaining participants (i.e., 2, 4, 6, and 7), the model fit

well to the observed means and standard deviations of RTs and the proportions

of correct responses. Systematic deviations between model predictions and the

data were obtained in only one participant (Participant 5). This is evident in

the proportion of correct responses, which are systematically overestimated by the

model, and in the mean RTs of the unimodal stimuli, which are also overestimated

(Supplemental Fig. 3.4). Further systematic deviations are observable in standard

deviations; thus, for this participant the model had to be rejected. In the majority

of participants, however, the model yielded a good approximation of the mean and

variance of their RTs and numbers of correct responses in the perceptual-choice

task.
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Figure 3.5: Averaged mean response times and standard deviations of both response
alternatives (upper panels) and proportions of correct responses for both re-
sponse alternatives (lower panels), together with averaged model predictions
from the diffusion race model (curves), for all eight participants in Exper-
iment 2. The data are the same as in Fig. 3.4, and the same coding of
conditions was used as in that figure.

Diffusion race model. By contrast, a race of independent diffusion processes

(DRM) again failed to make adequate predictions in most participants (Table 3.5).

Interestingly, the deviations were most pronounced in the response accuracy of

the unimodal and redundant conditions, whereas predictions of the means and

standard deviations of RTs were generally acceptable (Fig. 3.5, lower panel). In

particular, the model was not able to explain response accuracy in the unimodal

and redundant conditions for the right response alternative. The decrease in the

accuracy rate of the unimodal visual-target condition (Fig. 3.5, lower panels) is not

captured by the model, and the accuracy rates in the right-response redundant-

target conditions are generally overestimated (Fig. 3.5, lower right panel). Because
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the mean RT and response accuracy for the right response alternative share the

same parameters (µA−, σ
2
A−, µV−, and σ2

V−), the responses are again either faster

or more accurate than the DRM would predict. On a quantitative basis, the DRM

fit worse than the DSM in all but one participant (Table 3.5), if one disregards

Participant 5, whose data were not explained satisfactorily by either model. But

in Participant 2, the model fit is better than that of the DSM, and in line with

this observation, this is also the participant with the fewest violations of the race

model inequality (Table 3.4). So, although the DRM is certainly only one instance

of all possible race models, the fact that the same assumptions, differing only with

respect to how information is integrated across channels, lead to such differences

in quantitative and qualitative model comparisons further endorses the DSM.

3.3.2 Discussion

The goal of Experiment 2 was to test separate-activation models and to test

whether a diffusion superposition model with two absorbing barriers can also be

applied to the mean and variance of RTs and the proportions of correct responses

from a perceptual-choice task with redundant stimuli. To this end, we fitted the

DSM to the data of eight participants. For the first time, we demonstrated that a

DSM can describe well the mean RTs observed in a redundant-signals experiment

with a perceptual-choice task. The DSM itself is rather restrictive; with only two

additional parameters (relative to the model for the go/no-go task), we were able

to derive accurate predictions for the mean and variance of RTs and the response

accuracy of both response alternatives. Each diffusion parameter contributed to

the predictions of mean RTs, standard deviations, and proportions correct, and,

albeit using different stimulus parameters, the data from both response alterna-

tives could be explained by a single model. This includes the observed decrease

in performance with increasing SOAs in the nonredundant distractor-first condi-

tions, which is also captured well by the model. Apart from one participant, the
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model fit was acceptable to excellent; thus, the model fits support the idea of an

additive superposition of channel-specific activity also in a perceptual two-choice

RT task. Given the stimulus materials and parameter estimates, it seems safe to

conclude that the diffusion process in the DSM represents stimulus information,

not stimulus energy. Hence, the same principles that underlie models for human

decision making (Busemeyer & Townsend, 1993; Diederich, 1997) can be applied

to a multisensory choice RT task in a redundant-signals experiment.

As an alternative model, we used a diffusion race model so as to compare

the model fits of very similar models that differ with respect to the type of channel

integration (parallel first-terminating vs. parallel coactive). With that in mind, it

is striking to see the differences in the abilities of both models to make predictions

for the observed data. We are aware that the DRM is just one of many possible

race models, but it is in closest correspondence to the DSM, which in turn pro-

vides an adequate model fit. Apart from small deviations, both mean RTs and

choice probabilities could be explained well by the DSM. The observed standard

deviations of some conditions deviated from model predictions, probably because

the estimate for standard deviation was highly susceptible to outliers. We also

tested for violations of the race model inequality and found frequent violations,

which seemed to be less pronounced in Experiment 2 than in Experiment 1. This

result is in line with previous studies on the redundant-signals effect with choice

RT tasks (e.g., Grice et al., 1984; Grice & Reed, 1992; Grice & Canham, 1990). For

instance, the base time seems to be increased and more variable in the two-choice

task (Townsend & Honey, 2007), as can be inferred from the DSM parameter esti-

mates (Table 3.5). It has been demonstrated that base time can play a critical role

in tests of race model violations (Townsend & Honey, 2007). However, using the

assessment index as a benchmark for parallel independent processing, we found

strong evidence for supercapacity—that is, violations of the parallel-independent-

processing assumption. A tentative explanation would be that by taking response
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accuracy into account, the assessment index provided a more sensitive measure of

parallel independent processing in a two-choice task than did the race model in-

equality. At any rate, erroneous responses seem to play a critical role when testing

race model assumptions in a choice RT task. This can be seen in both the results

of our capacity analysis and the model comparison of the DSM with the DRM,

which differed mostly in their ability to explain the observed response accuracy.

Altogether, parallel race models did not seem to provide a good explanation for

the observed results in the majority of participants.

3.4 General discussion

3.4.1 Multisensory integration

The question of which cognitive architecture underlies the processing of redundant

multisensory signals has been thoroughly addressed, sometimes with mixed results,

and often on theoretical grounds. Although the empirical evidence seems to favor

the coactivation account if tests of the race model inequality are used, ongoing

discussion concerns whether the race model inequality is an appropriate tool to

decide this question at all. Specifically, the validity of race model tests relies

on the assumption of selective influence,whichmight or might not hold in a given

experiment (e.g., Luce, 1986; Townsend & Nozawa, 1995). Alternative measures

have been proposed to decide this question, but selective influence is a silent or

explicit assumption in all of these measures.

In this study, we tested whether a model with a simple additive superposi-

tion of diffusion processes could also be applied to data from a redundant-signals

experiment with tasks more complex than simple RT. For this purpose, we con-

ducted two experiments with different response requirements: In Experiment 1,

participants were asked to perform an audiovisual go/no-go task, and in Experi-

ment 2, a multisensory choice task. So far, most studies on multisensory integration
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with go/no-go (Miller, 1982) and choice RT tasks have only tested for violations of

the race model inequality (and frequently found them), but have not tested alter-

native models. On the other hand, explicit models for the redundant-signals effect

have been presented and tested mainly using data from simple response experi-

ments (Diederich, 1995; Miller, 1986; Schwarz, 1994). By contrast, most neuro-

physiological studies have made use of the go/no-go, or oddball, task and of choice

RT tasks (e.g., Talsma, Kok, Slagter, & Cipriani, 2008; Woldorff et al., 1993). It

has also been put into question whether the simple RT task is suitable to study

certain multisensory aspects at all (Spence & Driver, 1997). We provided explicit

model predictions for diffusion models based on channel superposition (DSM) or

the race-type integration of information (DRM) for two-choice data obtained in

multisensory redundant-signals experiments. The integration mechanism accord-

ing to the DSM is the additive superposition of modality-specific activation. This

is in line with studies that have reported approximately additive neural responses

to bimodal stimuli (Stanford, Quessy, & Stein, 2005).

In the two experiments reported here, we not only employed unimodal and

bimodal audiovisual stimuli, but also used noninformative (“neutral”) stimuli to

combine the two tasks with a redundant-signals experiment (Grice et al., 1984).

Apart from solving possible response conflicts, the noninformative stimuli gave rise

to additional bimodal conditions. The bimodal conditions could therefore be ei-

ther redundant or nonredundant, depending onwhether a noninformative stimulus

was presented in one channel or both channels contained targets. The results show

that the DSM can make adequate predictions for those conditions, also under the

assumption of additive superposition, if the respective stimuli are modeled with

separate parameters (Tables 3.3 and 3.5). The estimates suggest that these stim-

uli were indeed conceived as neutral, since the drift rates for the noninformative

stimuli were approximately zero in all participants. In general, the estimates were

smaller in absolute values than the estimates for the two response-relevant stimuli
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(Exp. 2) or the go/no-go stimuli (Exp. 1). Therefore, the diffusion process of the

DSM is likely to represent the response tendency associated with a stimulus, and

not simply stimulus energy. This distinction is hard to make in simple RT tasks.

3.4.2 RT and response accuracy

One major advantage of two-choice diffusion models is the joint analysis of RT data

(mean, variance, or distribution) and response accuracy (e.g., Rach et al., 2011).

Most publications on the redundant-signals effect have involved testing the race

model inequality—that is, RT distributions. But comparing the results of the two

experiments reported here, we can observe a striking difference regarding response

accuracy: In the choice experiment, the numbers of correct responses were roughly

symmetric across the two response alternatives in all participants (Fig. 3.4 and

Supplemental Fig. 3.3). In the go/no-go task, however, omissions in go stimuli

(i.e., lapses) were far less frequent than false alarms to no-go stimuli (Fig. 3.2

and Supplemental Fig. 3.1). This could be explained by differences between the

estimates for the lower barrier in both experiments. In the choice response task,

the estimates for the lower barrier are identical or roughly identical to the fixed

value of the upper barrier. Therefore, we further restricted the model so that both

barriers had to be equally distant from the origin (i.e., u = ℓ = 100). This model

fit nearly as well as the model with the lower barrier as a free parameter in all

but one participant (Participant 3). However, in the go/no-go task, the estimates

differed considerably in most participants. Therefore, a considerable response bias

seemed to be present in Experiment 1 (go/no-go task), but not in Experiment 2

(binary choice task). Note that slightly different visual stimuli were used in the two

experiments, which could confound comparison of the two experiments. However,

a response bias in go/no-go but not in two-choice tasks as a reason for the different

results in the two tasks has also been discussed earlier (Gomez et al., 2007). Also

note the clear difference between the estimates for the channel correlation ρAV in
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both experiments (Tables 3.3 and 3.5). In the DSM, the ρAV parameter reflects

the correlation of the buildup of evidence in the two modality-specific channels.

Overall, fluctuations of attention might result in a positive ρAV (Exp. 1) because

the buildup of evidence in both channels is then either high in both channels (if the

participant concentrates on the task) or low in both channels (if the participant is

distracted). On the other hand, attentional fluctuations between channels might

result in a negative channel correlation and negative ρAV (see, e.g., the discussion

in Miller, 1982): In certain trials, attention might be focused on the auditory

modality, so that the buildup of evidence occurs faster in the auditory channel

but slower in the visual channel, and vice versa when attention is focused on the

visual channel. Especially in the more-demanding task of Experiment 2, the latter

fluctuations might be prompted by unimodal stimuli (including bimodal stimuli

with long SOAs) that lead to a single percept and direct attention to a certain

modality. Except for the response criterion in Experiment 1, the estimates of

most parameters for the DSM are largely consistent within each data set, even

though the participants’ data varied considerably in both response latency and

response accuracy (Tables 3.3 and 3.5, Supplemental Figs. 3.1 and 3.3). The

greatest variations of parameter estimates are consequently found in the estimates

of µM and σ2
M. This implies that the variability between our participants (e.g.,

motivation) largely affected the residual, or motor, component.

Apart from the aforementioned asymmetry, error rates seem to be generally

lower in the go/no-go task than in the two-choice task (Perea, Rosa, & Gómez,

2002). The DRM exhibited difficulties in explaining the error rate of Experiment 2,

whereas the mean RTs were relatively well predicted by the model. As opposed to

Experiment 1, responses were less correct (or slower) than the DRM predicted. In

Experiment 2, lesser violations of the race model inequality were observed, and the

DRM showed considerably better fits to the RT data. Response accuracy, how-

ever, could not be explained by the model. This fits nicely with the results of the
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test of the assessment index for supercapacity (Townsend & Altieri, 2012). The

assessment index explicitly takes errors into account and reveals strong evidence

for violations of parallel-independent-processing assumptions. In Experiment 1,

on the other hand, frequent violations of standard parallel-processing assumptions

were observed, and the DRM largely failed to predict RT measures. The DSM, on

the other hand, could adequately describe both RTs and response accuracy and

allowed for interesting implications. According to our data, a considerable increase

in mean RTs and a decrease in response accuracy take place between bimodal re-

dundant and bimodal nonredundant-signal trials, and the decrease is clearly more

pronounced in the choice RT task. All of these aspects are captured well by the

DSM. This demonstrates the necessity to analyze and, in this case, model response

accuracy along with response latency (Rach et al., 2011; Townsend & Altieri, 2012).

3.4.3 Possible applications of the two-choice diffusion model

Using go/no-go and two-choice RT tasks, we demonstrated that the scope of the

DSM (Schwarz, 1994) is not restricted to simple response tasks. This is not only

interesting for modeling purposes; rather, two important implications arise from

this result. First, many studies on multisensory perception make frequent use

of the tasks that we used here—that is, the go/no-go, or oddball, task and the

choice RT task. Second, and more importantly, the results of the bimodal response

conditions support the notion that not energy summation, but the coactivation of

response tendencies, accounts for the observed redundancy gains. According to

recent neuroscience studies (e.g., Angelaki, Gu, & DeAngelis, 2009; Ma, Beck,

Lantham, & Pouget, 2006; Stanford et al., 2005), the additive superposition of

channel-specific activation seems to be a more general principle in the human brain.

With purely visual stimuli, several studies have also successfully linked behavioral

diffusion models to neuropsychological data (e.g., Ratcliff, Cherian, & Segraves,
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2003; Ratcliff, Philiastides, & Sajda, 2009). On this note, an accumulation of

evidence in the prefrontal cortex seems to be consistent with the predictions of the

two-barrier diffusion model, as has been confirmed with electroencephalographic

data (Ratcliff et al., 2009).

Diffusion processes, thus, seem to be a promising approach to model a

variety of human behaviors (Smith, 2000). This encompasses not only the in-

tegration of evidence from multisensory sources (Diederich, 1995; Gondan et al.,

2010), but also attentional effects (Gondan et al., 2011), memory retrieval (Ratcliff,

1978), masking effects (Ratcliff & Rouder, 2000), and simple two-choice decisions

(e.g., Krajbich, Armel, & Rangel, 2010; Usher & McClelland, 2001). Here, we

showed that the abundant research on diffusion models of decision making might

be connected to diffusion models that account for the redundant-signals effect

(Diederich, 1995; Schwarz, 1994). The same principles that underlie models for

decision making in other experimental tasks, such as the numerical-distance effect

or perceptual masking, are also applicable to model the redundant-signals effect

with more-complex tasks than the simple RT task. Even more general, the model

itself can be applied to any experimental data from a decision task in which the

rate of information processing is assumed to change after some time τ .
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3.5 Appendix A. Predictions of the diffusion superposition

model with two barriers

In order to derive predictions for the mean and the variance of RTs and the amount

of responses in the SOA-condition, these have to be conditioned on the casesD ≤ τ

and D > τ (cf. Diederich, 1995; Ratcliff, 1980; Schwarz, 1994). Technically, this

model is a generalization of the model with one absorbing barrier (Schwarz, 1994).

Schwarz derived analytical solutions for mean RTs and standard deviations of

asynchronously presented stimuli. Here, we outline the derivation of the prediction

functions for expected time, variance and amount of passages at the upper barrier

(C = 1) only, however, predictions for absorption at the lower barrier can be readily

obtained using the same functions by changing the sign of µ and interchanging the

barriers. It is assumed that for t ≤ τ , drift and variance of the process correspond

either to µA and σ2
A or to µV and σ2

V, depending on which stimulus has been

presented first. This process can reach one of the barriers within the interval

0 < t ≤ τ . If this has not happened before the onset of the second stimulus,

both stimuli contribute to the process that then has drift µA + µV and variance

σ2
A + σ2

V + 2ρAVσAσV. For the probability of a first passage of the upper criterion

P (C = 1), one has to calculate the sum of the first-passage probabilities of both

cases:

P (C = 1) = P (C = 1 ∩D ≤ τ) + P (C = 1 ∩D > τ). (A1)

The first summand can be easily obtained using the subsurvivor function

Su(t|u,−ℓ, µ, σ2) of passages through the upper barrier, which is presented by

Horrocks and Thompson (2004):

P (C = 1 ∩D ≤ τ) = Pu − Su(τ),
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where Pu is the well-known probability of absorption at the upper barrier (e.g.,

Horrocks & Thompson, 2004, their Eq. 9; Ratcliff, 1978, his Eq. A8). There exist

two representations for the subsurvivor function Su, both involving infinite series,

but with different convergence behaviors. For speed reasons and effective control

of the error tolerance, we calculate the terms needed to achieve a predefined error

tolerance in advance and used whichever representation converged faster (Blurton

et al., 2012). For the second summand of Eq. A1, one has to consider that at

time τ the process starts anywhere within the range −ℓ < x < u. The density

of x at the start of the second part of the process is given by an infinite series

g(x, τ |u,−ℓ, µ, σ2), which is the density of a Wiener process between two absorbing

barriers (Cox & Miller, 1965, p. 222, their Eq. 78). A second representation of this

function is also an infinite series (Cox & Miller, 1965, p. 222, their Eq. 81). Again,

we implement both representations and use the representation that converge faster

for any given x, τ , parameters and specified error tolerance. Then,

P (C = 1 ∩D > τ) =

 u

−ℓ

Px(C = 1)× g(x, τ |u,−ℓ, µ, σ2)dx

is the probability of a first passage at the upper barrier, given that no absorption

occurred before τ . Px(C = 1) indicates that barriers u and −ℓ are replaced by the

modified barriers (u− x) and −(ℓ+ x) in Pu = P (C = 1), making the expression

dependent on x.

Likewise, the expected time of a first passage of a Wiener process between

two barriers, given that absorption occurs at the upper barrier, is

E(D|C = 1) =
E(D|C = 1,D ≤ τ)× P (C = 1|D ≤ τ)

P (C = 1)
+

+
E(D|C = 1,D > τ)× P (C = 1|D > τ)

P (C = 1)
.

(A2)

The first part of the numerator in Eq. A2 is the expected value for the first
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passage of the upper barrier, given that the upper barrier is reached first and that

this occurs before the second stimulus is presented. This is

E(D|D ≤ τ)× P (C = 1,D ≤ τ) =

 τ

0

t× fu(t|u,−ℓ, µ, σ2)dt, (A3)

where fu(t|u,−ℓ, µ, σ2) is the subdensity of first passage times at the upper barrier,

a computationally efficient MATLAB implementation of which can be found in

Navarro and Fuss (2009). The integral can then be determined numerically.

For the second summand of the numerator in Eq. A3, one needs the ex-

pected value of D, conditioned on a first passage at the upper barrier. This term,

E(D|C = 1), is also given in Horrocks and Thompson (2004, their Eq. 10). Again,

the process does not necessarily start at the origin, but rather at any value within

the interval −ℓ < x < u. Thus, one has to insert (u− x) and −(ℓ + x) instead of

u and −ℓ, respectively, making E(D|C = 1) dependent on x. Then,

E(D|C = 1,D > τ)× P (C = 1,D > τ) =

=

 u

−ℓ

[τ + Ex(D|C = 1)]× g(x, τ |u,−ℓ, µ, σ2)dx (A4)

represents the second part of the numerator in Eq. A3. Again, Ex(D|C = 1)

denotes that E(D|C = 1) is used with the modified barriers (u− x), and −(ℓ+ x)

and represents the expected value of D for the second part of the process (t > τ).

Thus, adding τ and numerically integrating over x from −ℓ to u yields the expected

value of first-passage times for the case D > τ .

The variance predictions of RT are derived as follows: The variance is the

second (central) moment minus the squared first moment, so only the derivation

of the former is needed. Again, we condition of the two cases D ≤ τ and D > τ :
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E(D2|C = 1) =
E(D2|C = 1,D ≤ τ)× P (C = 1|D ≤ τ)

P (C = 1)

+
E(D2|C = 1,D > τ)× P (C = 1|D > τ)

P (C = 1)
(A5)

The first summand is derived similar to the first moment (Eq. A3), except

that t2 is multiplied with f(t) before numerical integration. The second summand

of Eq. A5 is more problematic, but the derivation follows that for the first central

moment (Eq. A4). Thus, the second central moment conditioned on a particular

value of x is needed. Differentiating between the overall decision time D and the

decision time D∗ for the second part after τ —that is, after the onset of the second

stimulus—we obtain

E(D2|C = 1,X(τ) = x) = Ex[(τ +D*)2] = τ 2 + 2τEx(D
*) +Ex[(D

*)2] (A6)

The second moment E[(D*)2] can be derived from Grasman et al. (2009,

their Eq. 14). As for the first central moment, Expression A6 with the modified

barriers (u−x) and −(ℓ+x) instead of u and −ℓ, respectively, has to be multiplied

with the density g(x, τ |u,−ℓ, µ, σ2) and integrated over all values of x for −ℓ <

x < u. Finally, the response time T is conceived as the sum of the decision time

D and residual processes M, so the model predictions for the mean and variance

of response time T are

E(T) = E(D+M) = E(D) + µM (A7)

V ar(T) = V ar(D) + σ2
M + 2ρDMσDσM. (A8)

Altogether, seven free parameters (µA, σ
2
A, µV, σ

2
V, ρAV, −ℓ , and µM) are

needed to derive the predictions for mean RTs E(T), and nine parameters (i.e.,
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ρDM and σ2
M added) are necessary for variance predictions V ar(T). In the case of

an unbiased model, the numbers of parameters reduce to six and eight parameters

for mean RT and the variance of RT, respectively.

3.6 Appendix B. Predictions of a diffusion race model with two

barriers

In this appendix, we outline the derivation of the diffusion race model tested in

this study. This model is based on two diffusion processes (for auditory and visual

channels), which are again assumed to be Wiener processes between two absorbing

barriers. In accordance with standard race model assumptions, and in contrast to

the DSM, processing is complete when either racer has finished, irrespective of the

place of absorption. We assume independent racers (ρAV = 0) because, for the

general case with correlated processes A and V, the two-dimensional distribution

of the first-passage time of a Wiener process between two absorbing barriers is

needed, which we believe is yet unknown. For the special case of two uncorrelated

racers, the density of the minimum of absorption time fD(t) [D = min(DA,DV)]

is derived. This is a mixture distribution of the first-passage times of either racer,

given that this racer finished first. Also, we have to consider two cases for each

racer—that is, being absorbed at either the upper or lower barrier. Thus, we

have four cases (cf. Townsend & Altieri, 2012). We consider one case (racer A

finishes first at the upper barrier), and the remaining cases are treated analogously.

The probability that racer A, denoted by the process XA(t), will win the race

against racer V, denoted by the process XV(t), by absorption at the upper barrier

(A ∩C = 1) is

PAV(A ∩C = 1) =

 ∞

0

P [XA(t) ≥ u]× P [−ℓ < XV(t) < u]dt,
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which reduces to

 ∞

0

fu,A(t)× SV(t)dt. (B1)

Given that processes XA(t) and XV(t) are terminated at first passage, there

must not be a prior passage of either u or −ℓ. Therefore, the appropriate density

function fu,A(t) is used for racer A, and the survivor function SV(t) for racer V in

Eq. B1. This yields the probability that racer A finishes the race in the case of

two synchronously presented targets. For the mean RT prediction, one is usually

not interested in which racer produced the response, but whether a response was a

correct response. We therefore add the probabilities that either A or V produced

a response at the upper barrier, whatever the assignment of the barriers is (correct

or incorrect):

PAV(C = 1) = P (A ∩C = 1) + P (V ∩C = 1)

=

 ∞

0

fu,A(t)× SV(t)dt+

 ∞

0

fu,V(t)× SA(t)dt. (B2)

Addition is valid here, because we have mutually exclusive events. Then the

expected value of D, conditional on upper absorption is

EAV(D|C = 1) =
E(D|A ∩C = 1)× P (A ∩C = 1)

PAV(C = 1)

+
E(D|V ∩C = 1)× P (V ∩C = 1)

PAV(C = 1)

=

∞
0

t× fu,A(t)× SV(t)dt+
∞
0

t× fu,V(t)× SA(t)dt

PAV(C = 1)
(B3)

For variance predictions, we calculate the second central moment, which is

the expression above, but with t in the integrals of Eq. B3 replaced by t2. These

expressions are the predictions of redundant signals without onset asynchrony. For

SOA-dependent predictions, one simply has to shift the time scale of that process

74



by some time τ . We define positive SOAs τ > 0 as the cases in which V is presented

before A. Then, the expressions B2 and B3 above generalize to

PAV(C = 1) = P (A ∩C = 1) + P (V ∩C = 1)

=

 ∞

0

fu,A(t− τ)× SV(t)dt+

 ∞

0

fu,V × SA(t− τ)dt (B4)

and

E(D|C = 1) =

∞
0

t× fu,A(t− τ)× SV(t)dt+
∞
0

t× fu,V(t)× SA(t− τ)dt

PAV(C = 1)
(B5)

The case of τ < 0 is derived likewise; in that case, all functions in Eqs. B4 and B5

with subscript V are delayed by τ . Clearly, predictions for response accuracy, mean

RTs and variance in the unimodal cases are derived from the same expressions as

in the coactivation model (DSM). Like the coactivation model, these results are

moments of D, not T, so that residual parameters µM and σ2
M are added to mean

detection time and variance predictions, respectively (cf. Eqs. A7 and A8).
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3.7 Supplemental Material
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Supplemental Figure 3.1: Participant-specific mean and standard devia-

tions of response times together with percent correct response observed in Exper-

iment 1 with model predictions of the diffusion superposition model (DSM). Data

(circles) and model predictions (curves) for the unimodal and bimodal redundant

go conditions are displayed in blue, non-redundant stimulus conditions with non-

informative visual or non-informative auditory stimulus are displayed in green or

red, respectively. The same color coding was used for response frequency to no-go

trials. The average of these data and predictions is shown in Figure 3.2 of the

main text.
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Supplemental Figure 3.2: a: Estimated capacity index C(t) of Experiment 1 (blue

lines) together with the Miller bound (red), indicative of supercapacity and Grice

bound (green), indicative of very limited processing capacity (Townsend & Nozawa,

1995). The estimation of C(t) is based on unimodal and bimodal redundant tar-

gets (no SOA). In every single participant, the Miller bound is violated at low t,

suggesting supercapacity at those time points. The group test showed significant

violations for these time points. b: Amount of violation of the RMI observed in

unimodal and bimodal redundant (no SOA) conditions for all participants. Error

bars represent 95 % confidence intervals and are only displayed for race model

inequality violations (see Mordkoff & Danek, 2011).
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Supplemental Figure 3.3: Participant-specific mean and standard deviations of

response times together with percent correct response observed in Experiment 2

with model predictions of the diffusion superposition model (DSM). Data (circles)

and model predictions (curves) for the unimodal and bimodal redundant conditions

are displayed in blue, non-redundant stimulus conditions with auditory target or

visual target are displayed in green or red, respectively. The averages of these

predictions and data are displayed in Figure 3.4 of the main text.
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Supplemental Figure 3.4: a: Estimated assessment index A(t) (Townsend & Al-

tieri, 2012) of Experiment 2 for left response conditions (green circles) and right

response conditions (red circles). The estimation of A(t) is based on unimodal

and bimodal redundant targets (no SOA) for the correct and fast case. Again, the

respective upper bound (solid lines), indicative of super capacity, and the lower

bound (dashed lines), indicative of very limited capacity, are shown for compar-

ison. In all participants except Participant 5, capacity exceeds the upper bound

(supercapacity) at low t for right correct and fast responses (red dots). For left

responses, the upper bound is exceeded only by 5 participants and to a lesser

amount compared to right responses. b: Amount of violation of the RMI observed

in unimodal and bimodal redundant (no SOA) conditions for all participants and

both response alternatives. Error bars represent 95% confidence intervals and are

only displayed for race model inequality violations (Mordkoff & Danek, 2011) that

were only found for right responses.
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4 Fast and accurate calculations for cumulative

first-passage time distributions in Wiener diffusion

models
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Abstract2

We propose an improved method for calculating the cumulative first-passage time distribu-

tion in Wiener diffusion models with two absorbing barriers. This distribution function is

frequently used to describe responses and error probabilities in choice reaction time tasks.

The present work extends related work on the density of first-passage times [Navarro, D.J.,

Fuss, I.G. (2009). Fast and accurate calculations for first-passage times in Wiener diffusion

models. Journal of Mathematical Psychology, 53, 222–230]. Two representations exist for

the distribution, both including infinite series. We derive upper bounds for the approxi-

mation error resulting from finite truncation of the series, and we determine the number

of iterations required to limit the error below a pre-specified tolerance. For a given set of

parameters, the representation can then be chosen which requires the least computational

effort
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4.1 Introduction

In the presence of two mutually exclusive competing risks, event times can of-

ten be described by a stochastic process drifting between two absorbing barriers.

Typical examples include sequential sampling models of human decision making

(e.g., Busemeyer & Townsend, 1993; Diederich, 1997; Ratcliff, 1978; Ratcliff &

McKoon, 2008), or length of stay in hospital (with the two outcomes death and

healthy discharge, e.g., Horrocks and Thompson (2004)). The central assumption

of these models is that a hidden underlying state randomly moves between two

alternatives until eventually one of two criteria is reached (so called absorbing bar-

riers). The appeal in those models lies in the possibility to derive predictions not

only for the probabilities for the two outcomes, but also for the time it takes until

the barrier is hit. Often, this process is assumed to be continuous, resulting in the

well-known diffusion models for which the time-homogeneous Brownian motion

process (Wiener process, Fig. 4.1) is most popular.

The Wiener process X(t|v, σ2) is described by two parameters v and σ2 > 0

representing the drift and variance (noise) of the process. The process is tempo-

rally and spatially homogeneous, that is, drift and variance neither depend on the

current state nor the time elapsed (e.g., Smith, 2000). In the two-alternative choice

model, the process is assumed to start at X(0) = z, and two absorbing barriers

are assumed at zero and a, representing the two outcomes, 0 < z < a. Despite the

relative simplicity of the process, it is hard to derive expressions for the density

and distribution of the firstpassage times in the two-barrier situation. One must

rather rely on infinite series (Wald, 1947). Of course, the evaluation of infinite

series can only involve a finite number of terms. The series, however, are known

to converge, and it is possible to estimate the error that results when calculation

is stopped at a certain number of steps. The usual approach is to terminate the

calculation when a desired level of accuracy is met, for example, if the absolute

error is lower than some tolerance ε > 0. This limit can be reached after evalua-
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tion of very few terms when convergence is good at the point where the function

is evaluated. On the other side, at critical points, sufficient accuracy requires the

calculation of several hundred terms or even more.

t
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Figure 4.1: Realizations of a Wiener process with variance σ2 = 3.0 and drift v = −0.05
(dashed line) starting at z = 80 between two absorbing barriers at a =
110 and zero. The black curves indicate the cumulative first-passage
time distributions F (t|v/σ, a/σ,w), w = z/a, at the lower barrier and
at the upper barrier [the latter is determined via Fupper(t | v/σ, a/σ,w) =
F (t | − v/σ, a/σ, 1− w)]. The gray lines show the approximation error re-
sulting from early truncation at K = 2.

Two representations exist for the first-passage time density of a Wiener

process between two absorbing barriers. These representations show different con-

vergence behavior: While one representation converges quickly for small values of

t, the other representation converges quickly for large values of t. Navarro and

Fuss (2009) exploited these properties and provided a decision rule when to use

the one or the other representation. The decision rule depends on the number of
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terms needed to achieve a predefined level of accuracy. Based on this idea, we

propose a computationally efficient way to compute the cumulative first-passage

time distribution of a Wiener process between two absorbing barriers.

4.2 First-passage time density and distribution

We consider a Wiener Process with drift v, starting at X(0) = z. Without loss

of generality, the variability can be fixed at σ2 = 1, since it only scales the other

parameters. A lower and an upper absorbing barrier is fixed at zero and a, with

0 < z < a. Setting, for convenience, w = z/a, the density f(t) of first absorption

at the lower barrier is described by the two series (e.g., Feller, 1968, p. 359 and p.

370),

f ℓ(t | v, a, w) = π

a2
exp


−vaw − v2t

2


×

∞
k=1

k sin(πkw) exp


−1

2


kπ

a

2
t


,

f s(t | v, a, w) = a√
t3

exp


−vaw − v2t

2


×

∞
k=−∞

(2k + w)φ


2k + w√

t
a


,

with φ(x) denoting the standard normal density. Because absorption can occur at

both the upper and the lower barrier, f ℓ and f s are, in fact, subdensities and do

not fully integrate to one. Whereas f ℓ converges quickly for large t, f s converges

quickly for small t (Horrocks & Thompson, 2004; Van Zandt, Colonius, & Proctor,

2000). First absorption at the upper barrier is described by f(t | − v, a, 1 − w);

the lower density is given by f(t | v/σ, a/σ, w).

Navarro and Fuss (2009) investigated the numerical properties of the two

representations truncated at some K. In particular, they provide upper bounds for

the error which results when the series f ℓ, f s are evaluated for k = 1, . . . , K and

k = −K, . . . ,K, respectively. They derived expressions for the required number

of summands K which limit the truncation error |f(t) − fK(t)| below a certain

90



criterion ε > 0 for each representation. For a prespecified set of parameters, the

representation which is computationally least demanding can then be chosen.

In the present note we consider the cumulative first-passage time distribu-

tion, that is, the probability of absorption between time zero and some t, which is

given by the integral of the density between zero and t. This distribution is again

described by two alternative series with different convergence properties. Similar

to Navarro and Fuss (2009) we derive upper bounds for the number of iterations

K required to limit the truncation error below a certain tolerance ε > 0 for both

representations. For a given set of parameters, the distribution is then determined

using the representation which requires least computational effort. The decision

is, thus, based on the number of iterations K, multiplied by the time it takes for

each iteration.

4.3 Large-time representation

The large-time representation of the subdistribution of firstpassage times (e.g.,

Ratcliff and Tuerlinckx (2002), Eq. B1; Ratcliff (1978), Eq. A12) is obtained by

integration of the large-time density f ℓ(t) over [0, t]. Equivalently, the integral of

f ℓ(t) over [t,∞] is subtracted from the total probability P of absorption at the

lower barrier

F ℓ(t) = P − 2π

a2
exp


−vaw − v2t

2


×

∞
k=1

k sin(πkw)

v2 + (kπ/a)2
exp


−1

2


kπ

a

2

t


(1)

with

P =


1−exp[−2va(1−w)]

exp(2vaw)−exp[−2va(1−w)]
, for v ̸= 0

1− w, for v = 0.

This workaround is necessary because term-wise integration of the infinite series
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f ℓ(t) over [0, t] requires uniform convergence of f ℓ(t) within the range of integra-

tion, which can be demonstrated for positive t only (Appendix A).

When determining F ℓ(t), the series must be truncated at some K ≥ 1.

The number of summands K should be chosen such that the truncation error

|F ℓ(t)− F ℓ
K(t)| is below some tolerance ε > 0, that is,2πa2 exp


−vaw − v2t

2


×

∞
k=K+1

k sin(πkw)

v2 + (kπ/a)2
exp


−1

2


kπ

a

2

t

 ≤ ε. (2)

To this end, two conditions for K must be satisfied,

K2 ≥ 1

t

a
π

2

, and

K2 ≥ −2

t

a
π

2

log


επt

2


v2 +

π2

a2


+ vaw +

v2t

2


. (3)

A detailed derivation is found in Appendix A. Briefly, the expression in (2)

is simplified by omitting the sine and limiting k at 1 in the denominator of the

fraction behind the Σ. The exponential series is then replaced by an integral rep-

resenting its upper bound and solved for K. As expected, the number of required

terms increases monotonically with ε and decreases with t—hence the name of (1),

“large-time representation”. For small t, K tends to infinity (Fig. 4.2).

92



1 10 100 1000 10000

0
5
0

1
0
0

1
5
0

t

A
d
ju

s
te

d
 n

u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

L1

L2

S1

S2

S3

S4

Figure 4.2: Convergence of the two representations of the cumulative first-passage time
distribution for v = −0.06, a = 63.2, w = 0.5, and ε = 1.5 × 10−8 which
is the square root of floating point precision with doubles. L1, L2: Criteria
for the large-time representation (3), with the subscripts denoting the square
root of the criteria given in Appendix A. The required number of iterations
is given by the ceiling of the maximum of L1 and L2. S1, S2, S3, S4:
Criteria for the small-time representation (5). The subscripts denote the
respective expressions of Appendix B. The adjusted computational effort is
again given by the ceiling of the maximum of S1, S2, S3 and S4, multiplied
by 10 to account for the increased computing demands of the small-time
representation.

4.4 Small-time representation

The second representation of the cumulative first-passage time distribution is ob-

tained by integration of the small-time density (e.g., Horrocks & Thompson, 2004):

F s(t) = P − sgn v ·
∞

k=−∞


exp(−2vak − 2vaw)× Φ


sgn v

2ak + aw − vt√
t


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− exp(2vak)Φ


sgn v

−2ak − aw − vt√
t


, (4)

with P defined as in (1) and Φ(x) denoting the cumulative standard normal dis-

tribution. As before, the series in (4) describes the survivor function, that is,

the probability for absorption between t and infinity, such that the result is again

subtracted from the probability P of absorption at the lower barrier. Although

this representation is undefined for t = 0, limt→0F
s(t) can be shown to be zero,

and the series shows good convergence for small t > 0. Despite the name, conver-

gence is acceptable for large t; the series is computationally expensive, however,

for drift rates near zero. We first consider negative drift v < 0 (denoted by an

additional superscript), that is, we are interested in a process with drift towards

the lower barrier. Truncation of F s.(t) at some K ≥ 1 yields a truncation error

|F s−(t)− F s−(t)K | which should again be below ε > 0,
∞

|k|=K+1


exp(2vak)Φ


2ak + aw + vt√

t



− exp(−2vak − 2vaw)Φ


−2ak − aw + vt√

t

 ≤ ε.

As shown in Appendix B, three conditions must be satisfied for K,

K ≥ w − 1 +
1

2va
log

ε

2
[1− exp(2va)]


,

K ≥ 0.535
√
2t+ vt+ aw

2a
, and

K ≥ w

2
−

√
t

2a
Φ−1


εa

0.3
√
2πt

exp


v2t

2
+ vaw


. (5)
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As illustrated in Fig. 4.2, the first requirement dominates the criteria over a large

range of t. Expression (4) is computationally more complex than the large-time

representation (2). For a fixed K, repeated evaluation with different parameters

showed F s(t) to be about ten times slower than F ℓ(t).

For positive drift,

F s+(t) = P −
∞

k=−∞


exp(−2vaw − 2vak)Φ


2ak + aw − vt√

t


− exp(2vak)Φ


−2ak − aw − vt√

t


.

As shown in Appendix B, the number of required summands can be determined

using the criteria (5), with v′ = v instead of v and a modified tolerance criterion

ε′ = ε exp(−2vaw). In the zero drift case, the series simplifies to

F s0(t) = 2
∞
k=0


Φ


−2ak − aw√

t


− Φ


−2ak − 2a+ aw√

t


,

and evaluation of K ≥ w
2
−

√
t

2a
Φ−1


ε

2−2w


terms guarantees a finite truncation error

below ε.

4.5 Discussion

The present paper provides finite approximations of the cumulative first-passage

times in the two-barrier diffusion model that controls the approximation error

below a pre-specified tolerance. By comparing the required number of iterations

in the two representations (2) and (4), and adjusting for the time necessary to

evaluate a single summand of the series, the representation which requires least

computational effort can be chosen. The present approach is to be preferred over

ad hoc methods in which evaluation of the series is stopped when a single term is

below the tolerance: When truncation is based on the absolute value of a single
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summand, the truncation error might be larger than expected because an infinite

number of summands is dropped. To overcome this limitation, current implemen-

tations of the method sometimes evaluate a much larger number of summands

than necessary. Here we propose to control the truncation error of the entire

set of truncated summands. Precision is, therefore, controlled uniformly for all

parameter combinations, which yields a smooth surface for numerical likelihood

maximization (e.g., Horrocks & Thompson, 2004).

In some applications, other parameter estimation procedures might be more

suitable. For example, for the well known diffusion model (Ratcliff, 1978), an al-

gorithm for calculation of the distribution function has been proposed by Voss and

colleagues (Voss, Rothermund, & Voss, 2004; Voss & Voss, 20073, Eq. A9). The

approach of Voss and colleagues is similar to ours, but they derive an expression

for the required number of steps using the large-time representation (1) only. In

the general case, this threshold is far too conservative, especially for small error

bounds. Alternatively, discrete approximations (e.g., random walks) to continu-

ous diffusion processes offer more complex, yet more flexible implementations of

diffusion processes (Diederich & Busemeyer, 2003).

Applications of the proposed method arise in fitting Ratcliff’s (1978) diffu-

sion model to observed response times, for example, from two-alternative choice

tasks. Several methods have been proposed for this purpose, none of which can be

said to be uniformly superior to the other methods (Ratcliff & Tuerlinckx, 2002,

pp. 443f). The so-called chi-square fitting method and the weighted least squares

fitting method make heavy use of the cumulative first-passage time distribution

F (t). In contrast, likelihood maximization primarily uses the density f(t) of the

absorption times. In the latter approach, the distribution F (t) is still needed in the

presence of censored observations. Censoring occurs, for example, when the ob-

server is unable to decide between two alternatives within a reasonable amount of

3Die Referenz in der Originalarbeit ist nicht korrekt; die korrekte Referenz lautet:
Voss & Voss (2008)
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time, or when responses are registered during a short time window in fixed stimu-

lation protocols (e.g., in fMRI experiments). Then, absorption might be known to

have occurred at the upper barrier, but it is only known to have occurred later than

some t (“misses”). A diffusion model with a deadline parameter could account for

this, making use of the distribution F (t), because the likelihood contribution then

corresponds to the upper subsurvivor function at t. If absorption is only known to

have occurred later than some t, and the outcome is unknown because no response

has been given, the likelihood contribution corresponds to the sum of the upper

and the lower subsurvivor function at t. The present method, thus, complements

Navarro and Fuss’ (2009) work on the density representation and will allow for the

efficient parameter adjustment of diffusion models of competing risks even in the

presence of censored observations.

4.6 Appendix A. Integral and convergence of the large-time

representation

By collapsing the two exponentials, the density f ℓ(t) is restated as a series of ex-

ponentials of t,

f ℓ(t) =
π

a2
exp(−vaw)×

∞
k=1

k sin(πkw) exp


−1

2


v2 +


kπ

a

2

t


.

Summand-wise integration of f ℓ(t) over the interval [τ,∞], τ > 0 requires uniform

convergence of f ℓ(t) within that interval. This can be shown, for example, by the

so-called majorant criterion (Weierstrass M -test). To this end, we define an upper

bound Mτ for f ℓ(t) with a small τ > 0, and drop the sine. Because sin x cannot

exceed 1 and exp(−ct), c > 0, monotonically decreases in t,
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f ℓ(t)
 ≤ Mτ =

π

a2
exp(−vaw)×

∞
k=1

k exp


−1

2


v2 +


kπ

a

2

τ


, for t ≥ τ .

The series f ℓ(t) then converges if Mτ converges. Convergence of Mτ can be shown

by the integral test because Mτ is positive-valued and strictly monotonically de-

creasing in k. As the integral
∞
1

k exp

− τ

2


π
a

2
k2

dk exists and is finite, Mτ

converges, such that f ℓ(t) is uniformly convergent within [τ,∞]. Because all sum-

mands are exponentials of t, the antiderivative of f ℓ(t), t ≥ 0, is easily found:

 t

τ

f ℓ(s)ds = −2π

a2
exp(−vaw)×

∞
k=1

k sin(πkw)

v2 +

kπ
a

2 exp


−1

2


v2 +


kπ

a

2

t


t

τ

.

The distribution function F ℓ(t) is then obtained by subtracting the integral of

f ℓ(t) for [τ,∞] from the total proportion P of absorptions at the upper barrier,

F ℓ(t) = P − 2π

a2
exp


−vaw − v2t

2


×

∞
k=1

k sin(πkw)

v2 +

kπ
a

2 exp


−1

2


kπ

a

2

t


. (A1)

What happens if the series in (A1) is truncated after evaluations of K terms? In

order to guarantee that the approximation error is below a certain tolerance ε > 0,

the absolute difference between the full series F ℓ(t) and the truncated series F ℓ
K(t)

must be kept below the tolerance,

F ℓ(t)− F ℓ
K(t)

 =
2πa2 exp


−vaw − v2t

2


×

∞
k=K+1

k sin(πkw)

v2 + (kπ
a
)2

exp


−1

2


kπ

a

2

t

 ≤ ε.
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To determine the conditions for K some estimations have to be carried out. A

first upper bound for
F ℓ(t)− F ℓ

K(t)
 is obtained by noting that 0 ≤ | sinx| ≤ 1

and by setting k = 1 in the denominator as a lower bound for the fraction before

the exponential. Thus,
F ℓ(t)− F ℓ

K(t)
 ≤ ε if

2π

a2
exp


−vaw − v2t

2


×

∞
k=K+1

k

v2 +

1·π
a

2 exp

−1

2


kπ

a

2

t


≤ ε.

The factor before the sum is positive. Truncation of the series should, thus, be

limited to those K for which the elements decrease in k. The first derivative

of the function h(k) = k exp

−1

2


kπ
a

2
t

must, therefore, be negative, which is

guaranteed if K2 is greater than

L1 =
1

t


a

π

2

. (A2)

Since the elements decrease, an upper bound for the error series
∞

k=K+1 h(k) is

given by the integral of h(k) within K and infinity, so that

F ℓ(t)− F ℓ
K(t)

 ≤ 2π

a2
exp


−vaw − v2t

2


× 1

v2 + (π/a)2

 ∞

K

h(k)dk,

which is below ε if K2 ≥ L2 with

L2 = −2

t

a
π

2

log


επt

2


v2 +

π2

a2


+ vaw +

v2t

2


. (A3)

For large t, the condition silently holds. In the other cases, K is set to the ceiling

of max(
√
L1,

√
L2).

In the zero drift case v = 0, Expression (A1) simplifies to

F ℓ0(t) = P − 2

π

∞
k=1

sin(πkw)

k
exp


−1

2


kπ

a

2

t


.
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The truncation error is controlled if the series is evaluated until K2 is above L0
1 =

L1 and

L0
2 = −2

t

a
π


log


επ3t

2a2


.

4.7 Appendix B. Convergence of the small-time representation

We first consider negative drift (v < 0), denoted by an additional superscript.

The truncation error of the small-time version of the subdistribution is most easily

controlled by decomposing F s−(t) (which is known to be finite) into three distinct

series:

F s−(t) = P −
∞
k=0


exp(2vak)Φ


2ak + aw + vt√

t


− exp(−2vak − 2vaw)Φ


−2ak − aw + vt√

t


−

∞
k=1

exp(−2vak)Φ


−2ak + aw + vt√

t


+

∞
k=1

exp(2vak − 2vaw)Φ


2ak − aw + vt√

t


. (B1)

All series are positive, the truncation error of the sum is, thus, guaranteed

to be below the error tolerance ε if the approximation error of each summand is

controlled at ε/2.

Denoting the inverse Gaussian distribution by W (t | c, µ) = Φ


µt−c√
t


+

exp(2cµ)Φ


−µt−c√
t


, the first series in Expression (B1) can be rewritten as∞

k=0 exp(2vak)[1−W (t | 2ak + aw,−v)]. Again, we truncate after K summands

have been evaluated. Because W (t) is bounded between 0 and 1, and v is negative,
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exp(2vak) is recognized as a decreasing geometric series:

∞
k=K+1

exp(2vak)[1−W (t | 2ak+aw,−v)] ≤
∞

k=K+1

exp(2vak) =
exp[2va(K + 1)]

1− exp(2va)
.

The result is below the tolerance ε/2 for K greater than

S1 = −1 +
1

2va
log

ε

2
[1− exp(2va)]


,

independent of t. Similarly, the last series in (B1) has converged for K above

S2 = w + S1,

which, of course, includes S1.

In the second series in (B1), large exponentials are multiplied with tiny

Φ(−x), such that the product is finite. An upper bound for Φ(−x) is given by

Ermolova and Haggman (2004),

Φ(−x) =
1

2
erfc


x√
2


≤ 0.3 exp


−1.01

x2

2


≤ 0.3 exp


−x2

2


.

The Ermolowa–Haggman bound requires the argument of erfc(·) to be greater than

0.535, which is satisfied if K is greater than

S3 =
0.535

√
2t+ vt+ aw

2a
.

Application of the bound to the second series in (B1) yields exponentials decreasing

in k, for which an upper bound is given by their integral. This integral is then

recognized as a normal distribution:
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∞
k=K+1

exp(−2vak)Φ


−2ak + aw + vt√

t



≤ 0.3 exp


−vaw − v2t

2

 ∞
k=K+1

exp


−(2ak − aw)2

2t


≤ 0.3 exp


−vaw − v2t

2

 ∞

K

exp


−(2ak − aw)2

2t


dk

=
0.3

2a

√
2πt exp


−vaw − v2t

2


Φ


aw − 2aK√

t


.

The result is below ε/2 if

Φ


aw − 2aK√

t


≤ εa

0.3
√
2πt

exp


v2t

2
+ vaw


.

If the right hand side is larger than one, the condition silently holds. In the other

cases, standard approximations for the quantile function of the normal distribution

can be used to solve for K which must be greater than

S4 =
w

2
−

√
t

2a
Φ−1


εa

0.3
√
2πt

exp


v2t

2
+ vaw


.

For positive drift v > 0,

F s+(t) =P −
∞

k=−∞


exp(−2vak − 2vaw)× Φ


2ak + aw − vt√

t


− exp(2vak)Φ


−2ak − aw − vt√

t


,
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with truncation error

F s+(t)− F s+
K (t)

 = ∞
k=K+1


exp(−2vak − 2vaw)× Φ


2ak + aw − vt√

t



− exp(2vak)Φ


−2ak − aw − vt√

t


.

The truncation error for positive drift, thus, corresponds to exp(2vaw) times the

error for negative drift, exp(2vaw) |F s+(t | v, a, w)− F s+
K (t | v, a, w)| =

|F s−(t | −v, a, w)−F s−
K (t | −v, a, w)|. The required number of iterations for v > 0

can, therefore, be determined using the expressions for v′ = −v with a stricter

criterion ε′ = ε exp(−2vaw).

In the special case of zero drift, the series reduces to

F s0(t) = 2
∞
k=0


Φ


−2ak − a+ a(1− w)√

t


− Φ


−2ak − a− a(1− w)√

t


.

The expression can be illustrated as series of bands of width 2(1 − w) along the

negative tail of a normal distribution (e.g., Fig 2.2 in Horrocks, 1999) with mean

zero and variance t/a2,

F s0(t) = 2
∞
k=0

 −2k−1+(1−w)

−2k−1−(1−w)

φ


x

 0, t

a2


dx,

such that the truncation error |F s0(t)− F s0
K (t)| is below 2(1 − w) × Φ(−2K +

w | 0, t/a2). The latter expression fulfills the tolerance criterion ε if K ≥ w
2
−

√
t

2a
·

Φ−1


ε
2−2w


.

4.8 Appendix C. Supplementary data

Supplementary material related to this article can be found online at http://

dx.doi.org/10.1016/j.jmp.2012.09.002. This online supplementary material
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contains scripts written in R statistical language (R core team, 2012) and Matlab

which contain seven helper functions and a main function:

• exp pnorm(a, b): In F s(t), large positive a coincide with large negative b in

exp(a) · Φ(b). This raises numerical issues because values near infinity are

multiplied with values near zero. In such cases, we approximated the normal

distribution by an exponential (Kiani, Panaretos, Psarakis & Saleem, 2008)

such that the product is determined via exp(a + b) which is numerically

feasible.

• K large(t, v, a, w, epsilon): number of summands needed for the large-time

representation of the upper subdistribution F ℓ(t|v, a, w). The parameters

denote the time, the drift of the process, the upper barrier a, the relative

start point w and the tolerance bound epsilon, respectively. Time t can be

a vector.

• K small(t, v, a, w, epsilon): same for small-time representation F s(t|v, a, w).

• Pu(v, a, w): calculates the probability of absorption at the lower barrier.

• Fl lower(t, v, a, w, K): calculates the lower subdistribution using the large-

time representation F ℓ(t|v, a, w). The number of summands is given by K.

• Fs lower(t, v, a, w, K): same for small-time representation F s(t|v, a, w).

• Fs0 lower(t, a, w, K): same for small-time representation F s(t|v = 0, a, w).

• F lower(t, v, a, w, sigma2, epsilon): This is the main function for determin-

ing the cumulative first-passage time distribution at the lower barrier for a

Wiener process with drift mu and variance sigma2 between two absorbing

barriers at 0 and a > 0. The function invokes K small and K large to deter-

mine the number of summands required to attain precision epsilon > 0. The

time points t and parameters can be given as vectors. For each element of
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the vectors t and the parameters, the function automatically selects the rep-

resentation which requires less terms. Negative drifts and non-unit variances

sigma2 are handled.

• F upper(t, v, a, w, sigma2, epsilon): First-passage time distribution at the

upper barrier a.

Example usage

The cumulative first-passage time distributions shown in Figure 4.1 of the main

article have been determined by F lower(t=1:1000, v=-0.05, a=110, w=80/110,

sigma2=3, epsilon=1.5e-8) and F upper(. . . ) with the same arguments.

R script

# Calculates exp(a) * pnorm(b) using an approximation by Kiani et al. (2008)

exp pnorm = function(a, b)

{

r = exp(a) * pnorm(b)

d = is.nan(r) & b < -5.5

r[d] = 1/sqrt(2) * exp(a - b[d]*b[d]/2) * (0.5641882/b[d]/b[d]/b[d] - 1/b[d]/sqrt(pi))

r

}

# Number of terms required for large time representation

K large = function(t, v, a, w, epsilon)

{

sqrtL1 = sqrt(1/t) * a/pi

sqrtL2 = sqrt(pmax(1, -2/t*a*a/pi/pi * (log(epsilon*pi*t/2 * (v*v + pi*pi/a/a)) +

v*a*w + v*v*t/2)))

ceiling(pmax(sqrtL1, sqrtL2))

}
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# Number of terms required for small time representation

K small = function(t, v, a, w, epsilon)

{

if(abs(v) < sqrt(.Machine$double.eps)) # zero drift case

return(ceiling(pmax(0, w/2 - sqrt(t)/2/a * qnorm(pmax(0, pmin(1, epsilon/(2-2*w)))))))

if(v > 0) # positive drift

return(K small(t, -v, a, w, exp(-2*a*w*v)*epsilon))

S2 = w - 1 + 1/2/v/a * log(epsilon/2 * (1-exp(2*v*a)))

S3 = (0.535 * sqrt(2*t) + v*t + a*w)/2/a

S4 = w/2 - sqrt(t)/2/a * qnorm(pmax(0, pmin(1, epsilon * a / 0.3 / sqrt(2*pi*t) *

exp(v*v*t/2 + v*a*w))))

ceiling(pmax(S2, S3, S4, 0))

}

# Probability for absorption at upper barrier

Pu4 = function(v, a, w)

{

e = exp(-2 * v * a * (1-w))

if(e == Inf)

return(1)

if(abs(e - 1) < sqrt(.Machine$double.eps)) # drift near zero or w near 1

return(1 - w)

(1 - e) / (exp(2*v*a*w) - e) # standard case

}

4Die Beschreibung lässt darauf schließen, dass die Funktion die Wahrscheinlichkeit der Absorp-
tion an der oberen Barriere zurückgibt, tatsächlich gibt sie (korrekterweise) die Wahrschein-
lichkeit der Absorption an der unteren Barriere zurück (vgl. Beschreibung auf Seite 104).

106



# Large time representation of lower subdistribution

Fl lower = function(t, v, a, w, K)

{

F = numeric(length(t))

for(k in K:1)

F = F - k / (v*v + k*k*pi*pi/a/a) * exp(-v*a*w - 1/2*v*v*t - 1/2*k*k*pi*pi/a/a*t)

* sin(pi*k*w)

Pu(v, a, w) + 2*pi/a/a * F

}

# Small time representation of the upper subdistribution

Fs lower = function(t, v, a, w, K)

{

if(abs(v) < sqrt(.Machine$double.eps)) # zero drift case

return(Fs0 lower(t, a, w, K))

S1 = S2 = numeric(length(t))

sqt = sqrt(t)

for(k in K:1)

{

S1 = S1 + exp pnorm(2*v*a*k, -sign(v)*(2*a*k+a*w+v*t)/sqt) -

exp pnorm(-2*v*a*k - 2*v*a*w, sign(v)*(2*a*k+a*w-v*t)/sqt)

S2 = S2 + exp pnorm(-2*v*a*k, sign(v)*(2*a*k-a*w-v*t)/sqt) -

exp pnorm(2*v*a*k - 2*v*a*w, -sign(v)*(2*a*k-a*w+v*t)/sqt)

}

Pu(v, a, w) + sign(v) * ((pnorm(-sign(v) * (a*w+v*t)/sqt) -

exp pnorm(-2*v*a*w, sign(v) * (a*w-v*t)/sqt)) + S1 + S2)

}
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# Zero drift version

Fs0 lower = function(t, a, w, K)

{

F = numeric(length(t))

for(k in K:0)

F = F - pnorm((-2*k - 2 + w)*a/sqrt(t)) + pnorm((-2*k - w)*a/sqrt(t))

2*F

}

# Lower subdistribution

F lower = function(t, v, a, w, sigma2, epsilon)

{

a = a / sqrt(sigma2)

v = v / sqrt(sigma2)

K l = K large(t, v, a, w, epsilon)

K s = K small(t, v, a, w, epsilon)

F = numeric(length(t))

i = (K l < 10*K s)

if(any(i)) F[i] = Fl lower(t[i], v, a, w, max(K l[i]))

if(any(!i)) F[!i] = Fs lower(t[!i], v, a, w, max(K s[!i]))

F

}

# Upper subdistribution

F upper = function(t, v, a, w, sigma2, epsilon)

{

F lower(t, -v, a, 1-w, sigma2, epsilon)

}
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Matlab script

% Calculates exp(a) * pnorm(b) using an approximation by Kiani et al. (2008)

function res = exp pnorm(a, b)

res = exp(a) .* erfc(-b/sqrt(2))/2;

d = isnan(res) & b < -5.5;

if(any(d))

res(d) = 1 ./ sqrt(2) .* exp(a - b(d) .* b(d) ./ 2) .* (0.5641882 ./ b(d) ./ b(d)

./ b(d) - 1 ./ b(d) / sqrt(pi));

end

return

% Number of terms required for large time representation

function K = K large(t, v, a, w, epsilon)

sqrtL1 = sqrt(1./t) * a / pi;

sqrtL2 = sqrt(max(1, -2./t*a*a/pi/pi .* (log(epsilon*pi*t/2.* (v*v + pi*pi/a/a))

+ v*a*w + v*v*t/2)));

K = ceil(max(sqrtL1, sqrtL2));

return

% Number of terms required for small time representation

function K = K small(t, v, a, w, epsilon)

if((abs(v) < sqrt(eps))) % drift near zero

K = ceil(max(0, w/2 + sqrt(t/2) / a * erfcinv(2*max(0, min(1,epsilon / (2-2*w))))));

return

end

if(v > 0) % positive drift

K = K small(t, -v, a, w, exp(-2*a*w*v)*epsilon);

return

end
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S2 = zeros(1, length(t))+w - 1 + 1/2/v/a * log(epsilon/2 * (1-exp(2*v*a)));

S3 = (0.535 * sqrt(2*t) + v*t + a*w)/2/a;

S4 = w/2 + sqrt(t/2)/a .* erfcinv(2*max(0, min(1, epsilon * a / 0.3 ./ sqrt(2*pi*t)

.* ...

exp(v*v*t/2 + v*a*w))));

K = ceil(max(0, max(vertcat(S2, S3, S4))));

return

% Probability for absorption at upper barrier5

function P = Pu(v, a, w)

e = exp(-2*v*a*(1-w));

if(e == Inf)

P = 1;

elseif(abs(e - 1) < sqrt(eps))

P = 1 - w; % drift near zero or w near 1

else

P = (1 - e) / (exp(2*v*a*w) - e); % standard case

end

return

% Large time representation of lower subdistribution

function Fl = Fl lower(t, v, a, w, K)

Fl = zeros(1, length(t));

for k = K : -1 : 1

Fl = Fl - (k ./ (v*v + pi*pi*k*k/a/a) * exp(-v*a*w - 1/2*v*v*t - 1/2*pi*pi*k*k/a/a*t)

* sin(pi*k*w));

end

Fl = Pu(v, a, w) + 2*pi/a/a * Fl;

return

5siehe oben.
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% Small time representation of the upper subdistribution

function Fl = Fs lower(t, v, a, w, K)

if(abs(v) < sqrt(eps))

Fl = Fs0 lower(t, a, w, K);

return

end

S1 = zeros(1, length(t));

S2 = zeros(1, length(t));

sqt = sqrt(t);

for k = K : -1 : 1

S1 = S1 + exp pnorm(2*v*a*k, -sign(v)*(2*a*k+a*w+v*t)./sqt) - ...

exp pnorm(-2*v*a*k - 2*v*a*w, sign(v)*(2*a*k+a*w-v*t)./sqt);

S2 = S2 + exp pnorm(-2*v*a*k, sign(v)*(2*a*k-a*w-v*t)./sqt) - ...

exp pnorm(2*v*a*k - 2*v*a*w, -sign(v)*(2*a*k-a*w+v*t)./sqt);

end

Fl = Pu(v, a, w) + sign(v) * ((1/2 * erfc(sign(v) * (a*w+v*t)./sqt/sqrt(2)) - ...

exp pnorm(-2*v*a*w, sign(v) * (a*w-v*t)./sqt)) + S1 + S2);

return

% Small time representation of the upper subdistribution (zero drift)

function Fl = Fs0 lower(t, a, w, K)

Fl = zeros(1, length(t));

for k = K : -1 : 0

Fl = Fl - erfc((2*k + 2 - w)*a./sqrt(2*t)) + erfc((2*k + w)*a./sqrt(2*t));

end

return
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% Lower subdistribution

function Fl = F lower(t, v, a, w, sigma2, epsilon)

a = a / sqrt(sigma2);

v = v / sqrt(sigma2);

K l = K large(t, v, a, w, epsilon);

K s = K small(t, v, a, w, epsilon);

Fl = zeros(1,length(t));

i = (K l < 10*K s);

if(any(i)); Fl(i) = Fl lower(t(i), v, a, w, max(K l(i))); end

if(any( i)); Fl( i) = Fs lower(t( i), v, a, w, max(K s( i))); end

return

% Upper subdistribution

function Fu = F upper (t, v, a, w, sigma2, epsilon)

Fu = F lower(t, -v, a, 1-w, sigma2, epsilon);

return
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5 Cross-modal cueing effects on audiovisual spatial

attention
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Abstract6

Previous research with visuospatial cues has demonstrated that we can shift our focus

of visuospatial attention without overt eye movements. The shift can be stimulus-driven

(exogenous cues), or voluntarily (endogenous cues). In both cases, visual processing is fa-

cilitated at the location of the attentional focus. Visual cues can also effectively influence

auditory target detection. This type of cross-modal cueing, however, seems to depend on

the type of the employed visual cue: facilitation effects have been frequently reported for

endogenous visual cues while exogenous cues seem to be mostly ineffective. In two exper-

iments, we investigated cueing effects on the processing of audiovisual redundant signals.

In Experiment 1 we used endogenous cues to investigate their effect on the detection of

auditory, visual, and audiovisual targets presented with onset asynchrony. Consistent cue-

ing effects were found in all target conditions. In Experiment 2 we used exogenous cues

and found only small effects of cue validity, not only in unimodal auditory targets, but in

all audiovisual targets. We adjusted a response time model to the data of both experi-

ments and tested whether the observed cueing effects were modality-dependent. While the

results observed with endogenous cues imply that the integration of multisensory signals

is modulated by a single system operating in a top-down manner, bottom-up control of

attention, as observed in the exogenous cueing task, mainly exerts its influence through

modality-specific subsystems.

Keywords: multisensory processes; math modeling; spatial attention; cross-modal cueing

6Dieses Manuskript ist zur Veröffentlichung im Journal of Experimental Psychology: Human
Perception and Performance eingereicht worden und wird zur Zeit begutachtet.
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5.1 Introduction

Everyday perception commonly involves several senses (Welch & Warren, 1986).

Multisensory research deals with their interplay, how information obtained by the

senses is integrated and how attention can be directed to an object of interest, ir-

respective of whether we see or hear it. Attention can be directed overtly (e.g., by

eye, head or body movements) or covertly, that is, without directing the peripheral

receptors to the object of interest. Covert orienting of visuo-spatial attention has

been investigated in a large number of studies with spatial cues (e.g., Posner, Nis-

sen, & Ogden, 1978; Posner, Snyder, & Davidson, 1980; Jonides, 1981; Theeuwes,

1991; Carrasco, Ling, & Read, 2004; Talsma, Senkowski, Soto-Faraco, & Woldorff,

2010).

Two main classes of cues and their effect on attention are distinguished in

the research on covert attention shifts with the spatial cueing setup: endogenous

and exogenous cues (e.g., Jonides, 1981; Theeuwes, 1991). The properties of the

cues play a key role in the modulation of attention. An endogenous cue, that

is, a central, symbolic cue (e.g., an arrowhead) is supposed to influence attention

in a top-down manner. The cued location has to be derived indirectly from the

direction of the arrow, and attention is then deliberately directed to the cued

location. For effective voluntary attentional control the cue must be predictive,

that is, the (posterior) probability that a target appears at the cued location

must be greater than the (prior) probability that a target appears at that location

anyway.

Beside this voluntary control of attention, there is a simpler, automated

form of attentional modulation. If a cue suddenly appears in the periphery, it au-

tomatically attracts visuospatial attention. This is a form of bottom-up control of

attention; effective cues are therefore, in general, non-symbolic and are presented

in the periphery at or near the possible location of a subsequent target. Such

peripheral cues do not even have to be predictive; those cues can direct attention
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without any validity (Yantis & Jonides, 1984). Both types of cues can effectively

draw attention to the cued location. If a subsequent target is presented at that lo-

cation, responses are faster and more accurate than responses to targets at uncued

locations. These cueing effects are typically interpreted as attention effects, that

is, spatial attention facilitates the perception of stimuli presented at the attended

location. While some studies focused on response speed (Posner, 1980; Posner et

al., 1980; Jonides, 1981), other studies used perceptual decision tasks to test re-

sponse accuracy (e.g., Bashinski & Bacharach, 1980; Dosher & Lu, 2000; Carrasco

et al., 2004; Liu, Fuller, & Carrasco, 2006; Fairhall & Macaluso, 2009).

The initial studies on the spatial cueing task focused on the visual modality

(but see Lansman, Farr, & Hunt, 1984). Subsequent research also investigated the

effects of secondary tasks such as language processing (Posner, Inhoff, Friedrich,

& Cohen, 1987) on detection times in the spatial cueing task. After links between

audition and vision had been established, multisensory attention was further inves-

tigated to identify the extent of links between attention of the different senses and

whether there is a supramodal attentional system (Farah, Wong, Monheit, & Mor-

row, 1989; Eimer & Schröger, 1998; Eimer, 2001; Eimer & Driver, 2001; Talsma

& Kok, 2002; Talsma et al., 2010). For example, Buchtel and Butter (1988) used

visual and auditory exogenous cues and measured the response time to visual and

auditory targets in a simple reaction time task. The main finding of their study

was that visual—but not auditory—targets were affected by the preceding visual

cues. Using a perceptual two-choice task, Spence and Driver (1996) thoroughly in-

vestigated the effects of endogenous visual cues on visual and auditory perception.

Critically, they used an orthogonal cueing technique (Spence & Driver, 1994); an

improved method for cueing in perceptual decision tasks that precludes response

priming (Ward, 1994; Spence & Driver, 1997). Spence and Driver (1996) reported

cueing effects on both visual and auditory targets, that is, visual cues directed

cross-modal attention and thus also speeded up the perceptual decision in pure
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auditory targets. Response accuracy was less affected by the attentional manip-

ulation in either modality (Spence & Driver, 1996, Table 1). Spence and Driver

(1996) argued that auditory perception is affected by attentional mechanisms, but

only through late processes that do contribute to perceptual decisions but not to

simple reaction time. Several EEG studies, however, found that very early pro-

cesses were equally affected by attentional manipulations (Eimer, 2001; Talsma &

Woldorff, 2005).

The results of cross-modal cueing in exogenous attention were different:

Spence and Driver (1997) conducted a series of experiments in which they demon-

strated that exogenous visual cues did not influence the perception of auditory

signals (cf. Buchtel & Butter, 1988). The relationship between audition and vi-

sion in exogenous spatial attention is asymmetric—that is, exogenous auditory cues

influence visual perception (Spence & Driver, 1994) but visual cues do not seem to

affect auditory perception (Driver & Spence, 1998). These results are challenged

by those of Ward (1994) and of Ward, McDonald, and Lin (2000) who reported

exactly the opposite asymmetry, albeit in different experimental setup with rather

complex cueing and a non-spatial go/no-go task. The non-spatial response task

was subsequently identified as the important difference between those two studies

(Spence, McDonald, & Driver, 2004; Koelewijn, Bronkhorst, & Theeuwes, 2010).

Although these studies investigated cross-modal cueing effects, they provide

little insight into the interplay between the processing of multisensory information

and attention shifts—unless one takes up the position that multisensory integra-

tion is cross-modal attention (cf. Spence, McDonald, & Driver, 2004, p. 306ff).

Like in spatial cueing experiments, it has been demonstrated that exogenous and

endogenous multisensory cues have quite different effects on multisensory integra-

tion (see Talsma et al., 2010, for a review). Endogenous cues seem to facilitate

multisensory integration of subsequent percepts (Fairhall & Macaluso, 2009), es-

pecially if the perceptual load is high (Talsma & Woldorff, 2005). Studies with
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exogenous cues, on the other hand, support the notion that those cues induce a

spread of spatial attention across modalities that seems to be location unspecific

(Talsma et al., 2010). For example, a spatially uninformative auditory cue can

enhance target detection in a visual search task, whereas temporal, but spatially

uninformative visual cues had no effect on performance in the visual search task

(Van der Burg, Olivers, Bronkhorst, & Theeuwes, 2008). It remains open, though,

if this cross-modal spread of attention is symmetric, that is, if visual cues without

spatial information can facilitate performance in an auditory task (e.g., auditory

discrimination task). The results from Spence and Driver (1997) would suggest

that this is not generally the case.

A common experimental paradigm to study multisensory integration is the

redundant signals setup. In this setup, participants are provided with information

in different modalities, for example, vision and audition. Participants are usually

given the task to respond as quickly as possible to any stimulus. The participants

have to divide their attention across the modalities, this task has therefore also

been called divided attention task (Miller, 1982; Diederich & Colonius, 1987). The

typical finding is that if signals from both modalities are present (redundant sig-

nals, AV), responses are faster than to targets from any single modality (unimodal

targets), that is, faster than responses to auditory (A) or visual (V) targets. A

more precise analysis of the integration of redundant signals requires the exten-

sion of this basic setup to redundant stimuli presented with onset asynchrony

(e.g., Miller, 1986). Then, one can not only investigate the presence or absence

of redundancy gains, but rather the mechanism of multisensory integration with

fine-grained resolution (e.g., Miller, 1986, Eq. 3). The unimodal conditions A and

V can then be considered as end points of a continuum where the second stimulus

follows with infinite SOA. Whereas attentional effects on visual perception have

been investigated with redundant signals (Mordkoff & Yantis, 1993; Feintuch &

Cohen, 2002; Miller, Beutinger, & Ulrich, 2009; Mordkoff & Danek, 2011), the
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effects of spatial cues on the integration of multisensory redundant signals are

largely unknown. There is only one study that investigated differences in multi-

sensory processing of redundant signals under different spatial attention conditions

(Gondan, Blurton, Hughes, & Greenlee, 2011). In that study, the effect of a dif-

ferent attention focus size was compared in two conditions (wide focus vs. narrow

focus of sustained attention). As one would expect, a narrow focus facilitated the

detection of audiovisual signals and their integration into a single percept. How-

ever, the question of cross-modal interactions in spatial attention is left open in

that study. It remains also unclear, whether transient attention exerts the same

influence on multisensory processing as sustained attention (Eimer, 1996).

In this study, we investigated the effect of visual spatial cues on multisensory

perception of auditory, visual and audiovisual targets at different peripheral loca-

tions. In Experiment 1, we used central, symbolic, and informative (endogenous)

visual cues and in Experiment 2 we employed peripheral and non-informative (ex-

ogenous) visual cues. A diffusion superposition model (Schwarz, 1994; Diederich,

1995) was fitted to observed response times to assess the effects of those cues on

multisensory integration of redundant signals. Using comparisons of hierarchically

nested models we tested (i) for the presence of cueing effects at all and (ii) whether

these effects were modality-invariant or modality-specific.

5.2 Experiment 1

5.2.1 Methods

In Experiment 1, participants made speeded responses in an audiovisual detection

task with central visual predictive cues. In addition to unimodal auditory and

visual target conditions, we employed bimodal target conditions in which bimodal

stimuli were presented with onset asynchrony.
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Participants Sixteen students (mean age: 23.9 years, four male, and one left-

handed) of the University of Regensburg participated in the first experiment. All

had normal or corrected-to-normal visual acuity and were näıve with regards to the

purpose of the experiment. They were either paid for participation (7e per hour)

or received course credit. Before participation, they gave written informed consent

and the study was conducted in accordance with the Declaration of Helsinki.

Apparatus and stimuli The experiment took place in a light and sound attenu-

ated room, that was dimly illuminated from behind and above (Industrial Acous-

tics GmbH, Niederkrüchten). The participants viewed the screen with their head

resting on a chin rest 70 cm in front of the screen that had a size of 57 cm × 72 cm

(54.4 deg) and was projected on by a projector (NEC V230X, NEC Corporation,

Minato) from outside the cabin. The loudspeakers were mounted adjacent to the

screen right at the left and right edges of the screen inside the cabin. The visual

target was a Gabor patch (sigma = 0.8 deg, 1.8 cycles/deg, Michelson contrast:

LM = 0.969, size: 6 deg) presented either in the left or right periphery (24 deg

eccentricity) on a uniform gray background with a white fixation cross (0.8 deg) at

the center of the screen. The auditory target was white noise (45 dBA), presented

over loudspeakers placed left and right to the screen. The speakers were connected

to a low-latency sound card (Soundblaster Audigy 2 ZS, Creative Technology, Sin-

gapore) that was installed in a standard IBM-compatible PC running Presentation

(Neurobehavioral Systems, Berkeley, CA). The target stimuli were generated with

MATLAB (MathWorks, Natik, MA). The spatial cues were arrowheads (1 deg)

presented adjacent to the central fixation cross. The arrows were presented for 67

ms and directed either to the left side or to the right side. The cueing interval,

that is, the time between cue offset and target onset was 300 ms. Each trial started

with a cue followed by a single target (unimodal visual or auditory condition), by

an audiovisual target (redundant visual-auditory condition) or no target (catch
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trials). To discourage from anticipatory responses we used a rate of one catch trial

for six target trials. In target trials, targets were presented at the cued location in

75% of the trials (cue validity). Between two trials we used a variable inter-trial-

interval that had a base time of 600 ms, plus an exponentially distributed random

duration. To avoid too long intervals, the exponential distribution was truncated

at 95%. Participants should press a response button placed at their dominant

hand.

Experimental tasks Participants were instructed to respond as fast as possible

when a target appeared either at the expected (cued) location or at the unexpected

(uncued) location and to withhold responses in trials with only cues but no targets

(simple speeded response). They were instructed to fixate the central position

of the screen which was marked by a cross during the whole experiment. On

each trial they had one second to respond before the trial ended and stimulation

resumed with the next trial. The redundant targets were presented with stimulus

onset asynchrony (SOA). The auditory target preceded the visual target by 33 ms,

67 ms, or 100 ms, or followed the visual target by the same amount of time.

Thus, redundant targets were presented with seven SOAs: A33V, A67V, A100V,

V33A, V67A, V100A, and the synchronous target condition, AV. Together with

the unimodal conditions A and V we thus had nine SOA conditions.

Procedure Each participant was tested in three separate sessions and each ses-

sion lasted about one hour. In each session, participants were tested with two

blocks of 336 trials each. A short break was given between the blocks. For each

participant we obtained data from 48 trials with an invalid cue from 144 trials with

a valid cue. These numbers are pooled for left/right target locations but apply

to all SOA conditions employed. Thus we have tested each participant in 1,728

cue/target trials and 288 catch trials.
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Analysis of response times The high number of catch trials allows for a detailed

analysis of empirical response time (RT) distributions. We used the so called “kill-

the-twin procedure” (Eriksen, 1988) combined with the Kaplan-Meier estimate to

retrieve the RT distribution swept from anticipations (Koch et al., 2013). The

reasoning behind this procedure is that the real empirical distributions of target

RTs are contaminated by guesses and anticipatory responses. In a first step, we

determined those guesses by eliminating responses from the target RT distribution

for each response to a catch trial. In the kill-the-twin procedure this is done by

right-censoring six responses in closest temporal correspondence to a given catch

trial response, thereby accounting for the fact that for each catch trial 4.5 valid

and 1.5 invalid trials were presented, respectively. With this procedure we aimed

at controlling for anticipations. In an analogous manner, we also censored all RTs

greater than 1000 ms (less than 0.5 % of RT in all participants) to correct for

attentional lapses (“misses”). No further correction was applied to the RT data.

Thus, no response was removed from RT distribution and it can be argued that the

assumption of an uninformative censoring mechanism yields a conservative bound

for correction of the response time distribution (Gondan & Fimm, 2013). After

pooling responses from left and right targets, the Kaplan-Meier estimate Ĝ(t)was

used to estimate the response time distribution; the area under 1 − Ĝ(t) was

then used to calculate mean RT. Afterwards, we fitted the Diffusion Superposition

Model (DSM, Schwarz, 1994) to the mean reaction times of all conditions.

The race model inequality Several models have been proposed to account for

the redundant signals effect; the most prominent model classes are the race models

(Raab, 1962) and coactivation models (Miller, 1982). In the former, it is assumed

that detection of signals can be conceived as a race between active channels in

which the winner of the race determines the detection time. The redundant signals

effect is then a consequence of statistical facilitation: if the latency distributions
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of detection times of the two channels overlap, detection of redundant signals is,

on average, faster, because in that case slow detection times in one channel are

compensated by faster detection in the other channel. It has been shown that,

under certain assumptions, the redundancy gain by the race model has an upper

bound (Miller, 1982, 1986). Because information is never integrated in the sense

that it is pooled into a common channel, the response time distribution function

of redundant target, GAV(t), cannot exceed the sum of the distribution functions

of the unimodal targets:

GAV(t) ≤ GA(t) +GV(t) , for all t. (B1)

Violations of this upper bound have often been reported and are usually

interpreted as evidence for coactivation (e.g., Miller, 1982, 1986; Schröter, Ulrich,

& Miller, 2007) but it should be noted that the above inequality only holds un-

der the assumption that channel-specific processing times are invariant across the

experimental conditions (Luce, 1986). We tested the race model inequality with

the permutation test described by (Gondan, 2010). For the permutation test, we

used an aggregated test statistic, which was the weighted sum Στwτ∆τ of SOA-

dependent violations ∆τ of the race model inequality (Gondan, 2009), for example

∆τ = max[0, ĜA(τ)V(t)–ĜA(t)–ĜV(t–τ)] for auditory-first stimuli. The weighting

function had the form of a shifted umbrella; specifically, we assigned weights wτ

= 2, 3, 4, 3, 2, 1, and 1 to conditions V100A, V67A, V33A, AV, A33V, A67V

and A100V, respectively. The weight function was shifted, because from the dif-

ference in mean reaction time of single target conditions we expected race model

violations to be most pronounced when the visual stimulus preceded the auditory

stimulus by moderate SOA (psychological synchrony)—that is, V33A. For each

condition, we calculated violation statistics for six RT percentiles (5th, 10th, . . . ,

30th percentile) and standard T -statistics for each percentile across participants.
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To avoid multiple tests, the six T -statistics were aggregated into a Tmax statistic

using the max function across the six percentiles. The distribution of this Tmax

statistic under the null hypothesis (i.e., the race model holds) was retrieved by a

permutation procedure: Under the null hypothesis, observed deviations from in-

equality (1) should be random. Therefore, we randomly (p = 1/2) assigned signs

to the observed violation statistics of each participant and calculated the resulting

T statistic. This permutation procedure was repeated 10,001 times to obtain the

reference distribution under the null hypothesis. The p values were then calculated

as the proportion of permutations that yielded greater T than the observed Tmax.

The race model assumptions were conceived as significantly violated, if the p value

was less than 5%—that is, if Tmax was greater than T0.95.

Diffusion Superposition Model We used the Diffusion Superposition Model

(DSM Schwarz, 1994) to assess redundancy gains and attention effects on response

times. This computational model describes response times of a redundant signals

experiment and can readily be applied to data from two or more experimental ma-

nipulations, like spatial cueing. The DSM assumes an information accumulation

process that can be described by a time-homogenous diffusion process (Wiener

process) with two parameters, drift µ > 0 and variance σ2 > 0. In a redundant

signals task, each channel is assumed to represent such a process, that is, a Wiener

process with parameters µA and σ2
A for the auditory processing channel and pa-

rameters µV and σ2
V for the visual processing channel. This process describes the

detection process as an information accumulation process (sequential sampling).

The process continues until a certain response criterion c is reached for the first

time. The detection time D is the first passage time to c, it follows an inverse

Gaussian distribution and with expected value E(D) = c/µ (cf. Cox & Miller,

1965, p. 222). When redundant (audiovisual) targets are presented, both channels

are active and it is assumed that the information of both channels is pooled
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Figure 5.1: The signal detection process in the common channel according to the Dif-
fusion Superposition Model. At stimulus onset, a Wiener process with drift
starts at X(0) = 0 and evolves over time, until the criterion c is hit for the
first time. Displayed are ten realizations of a Wiener processes with param-
eters µ = 0.53 and σ = 4.3 and response criterion c = 100. When redundant
targets are presented with some SOA (here: τ = 67), the process contains
two parts: at the beginning, only one channel contributes to the activity of
the common channel. At the onset of the second stimulus component the
process has attained a state X(t = τ) < c, if the criterion has not already
been reached. Afterwards, the second channel (here: µ = 0.53 and σ = 4.3)
is also active and its contribution is added into the common channel. The
effects of the additive superposition can be seen in the average position of a
process (i.e., the solid linear trend) and in the solid upper curve that rep-
resents the resulting first-passage time density f(t|c, µ, σ) that is arbitrarily
scaled for display purposes. The dashed linear trend and the dashed first-
passage time f(t|c, µ × g, σ × g) are displayed to demonstrate the influence
of the attention scaling factor g (g = 1.5).
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into a common channel (additive superposition). The DSM is thus an

instance of a coactivation model; the redundant signals effect is explained to be

due to the faster buildup of evidence in the case of both channels being active.

The contributions of both processes are additively superimposed, so that the drift

of the common process is µAV = µA + µV. Because the drifts are added, the

response criterion c is reached faster when two signals are present than when only

one signal was presented (Figure 1, solid lines). This is evident in the expressions

for the expected time of D, which are given by E(DA) = c/µA and E(DV) = c/µV

for the auditory and visual channel, respectively, and the expected time in case

of redundant targets, E(DAV) = c/(µA + µV). From these expressions it is easily

seen that the expected value for D decreases, if either the criterion c is decreased

or, equivalently, the modality-specific drifts are multiplied by a constant g > 1.

This decrease affects the mean detection times of all conditions, including those of

redundant signals presented with SOA (see Schwarz, 1994, Eq. 10 for details).

Because the diffusion process is supposed to describe only the detection

time and response time is usually assumed to be compound of an information

accumulation part and residual process (“motor processes”, Luce, 1986), the mean

latency of all those processes (µM) is added to the above expression to derive

predictions for the observed mean response times. The response criterion c is fixed

at 100 because it is only a scaling factor. The DSM has therefore 5 free parameters

(µA, σ
2
A, µV, σ

2
V, µM) that need to be estimated from data in order to fit the model

to a set of observed mean response times.

The model fit was assessed by a X2-statistic that was the sum of nor-

malized differences between observed and predicted mean response times. This

statistic is asymptotically χ2–distributed with df determined by the number of

predicted experimental conditions minus the number of free parameters. We fit-

ted three models to the data that differed only with respect to the assumptions

of spatial cueing effects. The first and most restrictive model had five parame-
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ters: four diffusion parameters (µA, σ
2
A, µV, σ

2
V) and the mean latency of residual

processes µM. This model served as a null-model, because it contained no free

parameter for cueing effects and, thus, did not predict any effects of attention

shifts. The second and more plausible model had one additional free parameter,

a separate attention factor gvalid for the processing of validly cued targets (i.e.,

µA,valid = gvalid × µA, same for σA, µV, σV). With this additional parameter, cue-

ing effects could be modelled by an increase in spatial attention (gvalid) for validly

cued trials. This model was still rather restrictive, because the experimental ma-

nipulation of cue validity of all nine target conditions was allowed to affect only

this parameter. If gvalid is unity, the predictions for targets at expected locations

are identical to those presented at unexpected locations (i.e., the null-model).

If gvalid is greater than unity than it follows for the RT model predictions that

c/µ = E(D|invalid cue) > E(D|valid cue) = c/(µ × gvalid) for both auditory and

visual targets (Figure 1, dashed lines). Thus, this model captures possible atten-

tion effects in a single parameter, which is modality invariant as it equally affects

all conditions of validly cued trials. To test whether this assumption was justified

by the data, we fitted a third model with an additional free parameter to allow

for modality-specific cueing effects (gA,valid and gV,valid). If, for example, auditory

targets are presented at expected locations, gA,valid should be greater than unity

and the model predicts an decreased processing time in the auditory channel due

to more efficient information retrieval. This is again best seen in the predictions

for the detection of unimodal targets, for example, auditory targets, which is given

by E(DA|valid cue) = c/(µA × gA,valid). The same holds for the processing of vi-

sual targets at expected and unexpected locations. In that case, the respective

parameters µV and gV,valid for the visual channel must be used instead of µA and

gA,valid.

In both experiments, we fitted the model to response times observed in 18

experimental conditions. The degrees of freedom for each participant’s model fit
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was df = 18 – 5 = 13 for the null-model (predicting no cueing effects), df = 12

for the model with modality-invariant cueing effects and df = 11 for the model

with modality-specific cueing effects. Thus, the DSM for modality-invariant cueing

effects needs one additional parameter (gvalid) compared to the null-model. The

necessity for this parameter was tested by a nested model comparison. The ob-

served difference ∆X2 of the X2 goodness-of-fit statistics for the null-model and

the model with modality-invariant cueing effects is asymptotically χ2–distributed

with one degree of freedom. Thus, the attention factor gvalid was deemed to be sig-

nificantly different from unity, if the observed difference ∆X2 was greater than the

95 %-percentile of the χ2(1) distribution. This test represents a test for an overall

cueing effect. The same test was used to test for possible modality-specific cueing

effects. As noted above, the assumption of modality-specific effects of cueing adds

another free parameter to the model. The effects of spatial cueing were deemed

to be significantly different across auditory (gA,valid) and visual (gV,valid) modality,

if the observed difference ∆X2 was greater than the 95%-percentile of the χ2(1)

distribution.

For clarity, we mainly focus on the aggregate model fits of all participants.

The aggregate model fit of the null-model with five free parameters contained

N × 18 = 234 mean response times of N = 13 participants from which N × 5 = 65

free parameters were estimated, resulting in 234 – 65 = 169 degrees of freedom

(df). The aggregate model fit of the modality-invariant cueing effect model had

234 – 78 = 156 degrees of freedom and the fit of the modality-specific cueing ef-

fects model had 234 – 91 = 143 degrees of freedom. Likewise, the influence of the

additional parameters were judged to be significant on group-level, if the observed

difference ∆X2 was greater than the 95 %-percentile of the χ2(13) distribution for

each parameter added.
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5.2.2 Results

Analysis of response times and anticipations Despite the high number of catch

trials, responses to catch trials were quite frequent. Most participants responded

on 5 % up to 20 % of the catch trials. Three participants (i.e., Participants 1, 2

and 7) were removed from further analyses because they responded in more than

25 % of catch trials, which would have required us to censor a large amount of

the RT distributions of correct responses. As expected, responses in all target

conditions were faster, on average, if the target was preceded by a valid spatial

cue than by an invalid cue. This cueing effect was found in the unimodal auditory

and visual targets as well as all audiovisual targets (Table 5.1). Validly cued

auditory targets (M = 227 ± SD = 20.0 ms) were not only faster than invalidly

cued auditory targets (M = 246 ± 28.6 ms), but also faster than validly cued

visual targets (M = 269 ± 28.9 ms; modality effect). Invalidly cued auditory

(M = 246 ± 28.6 ms) and visual targets (M = 324 ± 30.1 ms) showed the same

modality effect. Regarding the redundant targets, we found the typical wing-

shaped patterns of mean RT in both the valid cue condition and the invalid cue

condition. Irrespective of cue validity condition, responses were fastest in the

(synchronous) redundant target condition 5.1. With increasing delay of either

target component, mean response times approached the respective mean response

time of the unimodal targets.

Race model inequality The race model inequality was significantly violated on

group level in the invalid cue condition (Tmax = 2.60; T0.95 = 2.38; p = .032) but

not in the valid cue condition (Tmax = 0.543; T0.95 = 2.41; p = .523). Redundancy

gains were therefore greater than predicted by the race model in the invalid cue

conditions. In the valid cue condition, observed redundancy gains were smaller

and compatible with race model assumptions.
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Table 5.1: Experiment 1—Mean RT (in ms) to auditory (A), visual (V), and audiovisual
(AV) targets presented with onset asynchrony after valid cues and invalid cues
(N=13 Participants).

Target condition

Cue condition A A100V A67V A33V AV V33A V67A V100A V

valid 227 219 216 211 206 229 244 255 269

invalid 246 241 233 235 225 248 270 290 324

Note—Participant specific mean RTs were retrieved from RT distributions corrected for
anticipations (see Methods). For valid cues, these distributions included 144 responses
per participant; for invalid cues 48 responses (75 % cue validity). This data corresponds
to the circles (valid cues) and squares (invalid cues) in Figure 2.

Response time model All response conditions were used to fit the diffusion

superposition model to the observed mean response times. Different model as-

sumptions were made to account for different cueing effects. On group level, the

null-model, assuming no effects of spatial cueing, was clearly rejected (X2 = 1481;

df = 169; p < .001). By contrast, both the model with modality-independent

cueing effects (X2 = 169.2; df = 156; p = .222; Figure 2) and the model with

modality-dependent cueing effects (X2 = 157.0; df = 143; p = .200) both pro-

vided good fits to the observed data. The comparison of the null-model with

the modality-invariant cueing effect model yielded a significant difference (∆X2 =

1311; df = 13; p =< .001) that is, we obtained significant cueing effects. However,

the additional parameter for modality specific attention effects increased the fit

only marginally (∆X2 = 12.26; df = 13; p = .506). In other words, the attention

scaling factors gA,valid and gV,valid were not significantly different from each other.

With the attention scaling factors fixed to be equal in both modalities, the model

very well predicted the observed patterns of response times (Figure 5.2). Consis-

tent with faster responses to auditory targets, drifts and variance of the auditory

processing channel were somewhat greater than drift and variance of the visual
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Figure 5.2: Experiment 1—Mean response times observed in valid (dots) and invalid
(squares) cue trials averaged across all participants with error bars denoting
estimates of the 95% confidence intervals. The lines represent model predic-
tions of the DSM with a modality-invariant cueing effect for the valid (solid
line) and invalid (dashed line) cueing condition. Model predictions are also
averaged across all participants. On group level and in most participants,
the model predictions are in very close agreement with the observed data.

processing channel (Table 5.2), which largely resembled results that were reported

earlier in simple-response divided attention tasks (cf. Schwarz, 1994).

The model fits for single participants provided similar results. With the

attention facilitation factor fixed to be unity in both cue validity conditions (null-

model), the model was rejected in all but one participant. When this constraint

was dropped, the model fit was considerably better in all participants. Thus, the

cueing parameter gvalid for invalidly cued targets was significantly smaller than for

validly cued targets (i.e., unity) in all participants. Finally, adding a parameter

for modality-specific attention effects did not significantly improve the model fit

in any participant. The DSM predictions with a modality-invariant cueing effect

were in very good agreement with the observed data. This model produced the

same wing-shaped pattern as observed in the data and, more importantly, predicts

a decrease of response times for targets presented at expected locations (valid cue).
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Table 5.2: Experiment 1—Mean (± S.D.) parameter esti-
mates and model fit of the Diffusion Superposition
Model with modality invariant cueing effect.

µA 1.60 (± 0.81)

σA 26.5 (± 25.8)

µV 0.71 (± 0.17)

σV 3.6 (± 2.0)

µM 175.5 (± 15.7)

gvalid 1.71 (± 0.61)

Overall fit

X2(156) 169.2

p value .222

∆X2(13) 12.26

p value .506

Note—µA, σ
2
A, µV, σ

2
V: drift and variance for auditory and

visual diffusion processes, µM: mean latency of residual pro-
cesses, gvalid: attention factor for validly cued targets. Over-
all fit X2: goodness-of-fit statistic (higher results indicate
worse fit), ∆X2: difference in GOF compared to the model
with modality-specific cueing effects (gA,valid ̸= gV,valid).

5.2.3 Discussion

In Experiment 1, we extended the cross-modal spatial attention setup (Spence &

Driver, 1996) to a redundant signals setup with visual spatial cues. This provided

a more detailed picture of the effects of those types of cues on multisensory per-

ception. The motivation for this extension was two-fold: firstly, on empirical side,

we obtained information about multimodal targets and, on this note, unimodal

targets can be viewed as extremes of the continuum of bimodal targets (namely,

with SOA = ∞). The redundant signals setup is then a natural extension of pre-

vious experimental designs investigating cross-modal attention. In this way we

could also test race model predictions and found significant violations of the race
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model inequality, at least for invalidly cued targets. The redundancy gain ob-

served in the valid cue condition was smaller and not significant. Besides general

issues of power in testing the race model inequality we do not have a straight-

forward explanation of this finding. However, it seems implausible that the cue

validity changed the mode of processing between parallel coactive (invalid cues)

and parallel first-terminating (valid cues). Rather, the facilitation effects observed

with valid cues could have led to such increased processing speed that the second

stimulus component itself could not have substantially sped up the response. By

analogy, if targets are presented at different eccentricities, the redundancy gain is

smaller for targets presented at more central locations (i.e., if the target falls into

the small receptive fields of the fovea) than for targets presented at more periph-

eral locations (see, e.g., Schwarz, 2006). Therefore, the more efficiently a signal is

processed the smaller is the expected redundancy gain.

Sophisticated response time models are available that can explain the re-

dundant signals effect (e.g. Schwarz, 1994; Diederich, 1995). These models provide

further insights that cannot be obtained by standard analyses of mean RT (i.e.,

ANOVA). By application of this model we demonstrated that endogenous spatial

cues not only affected response times to visual and auditory targets but rather

to the whole SOA-dependent mean RT curve of multisensory integration (Table

5.1 and Figure 5.2). Regarding the unimodal targets, we replicated findings that

were reported earlier. On the one hand, this was the effect of visual cues on visual

targets, as described by (Posner, 1980). On the other hand, we found an effect of

cue validity on auditory targets (Spence & Driver, 1996). These results were in

line with previous studies (Farah et al., 1989), but by fitting a diffusion model to

data, we revealed that the observed cueing effects could be modeled by a single

parameter to describe the effects of attention in both modalities. The validity of

this assumption was indicated by the good to excellent agreement of model predic-

tions and data. Under the assumption of modality-invariant cueing, the cue was
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allowed to affect an attentional scaling factor which in turn affected processing in

both modalities to an equal extent. The model with modality-specific attention

effects did not provide a better account for the observed data, so, by parsimony,

the results from Experiment 1 support the assumption of a modality invariant

attention effect1.

The attention factor describes the increased efficiency for targets presented

at expected locations, that is, when they fall into the spatial attention focus in

the valid cue conditions. This leads to faster responses, as less time is needed,

on average, to reach the response criterion. Alternatively, the higher efficiency

could reflect a lower response criterion because, a lower response criterion is math-

ematically equivalent to increased drifts and variance of both auditory and visual

stimuli, hence the modality-invariance. The interpretation of information sampling

efficiency fits well with the notion of attention as a signal-to-noise modulator: If

the cue pointed to the correct location, participants had enough time to shift their

attention to that location so that upon stimulus onset information about the stim-

ulus was extracted more efficiently. Vice versa, if the stimulus appeared at the

unexpected location, information about that stimulus would have been obtained

less efficiently, as indicated by the estimate of the attention factor. Different effi-

ciency could also be the reason for better performance and increased sensitivity,

for example, in detection tasks (Bashinski & Bacharach, 1980; Dosher & Lu, 2000;

Carrasco et al., 2004). The interpretation that mainly perceptual processes were

facilitated was further supported by the results that indicate that the model could

well explain the observed data with constant residual processes latency. The in-

spection of parameter estimates leads to interesting implications: if endogenous

attention is shifted by cues in a way that perceptual processes are modulated inde-

pendent of modality, this is indicative of a single, a supramodal spatial attention

1Of course, non-significant results should not be taken as evidence for the absence of an effect,
it might also be the case that there were modality-specific effects that were just too weak to
reach statistical significance.
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system (Farah et al., 1989). Even more, if objects appear within this focus, all

its features benefit from the increased efficiency, independent of their modality.

This is exactly what we observed in Experiment 1. However, pre-attentive (early)

integration of the auditory and visual targets could also explain the observed

modality-invariant attention shift. According to this view, multisensory objects

are integrated into a single percept at an early stage so that the whole percept

benefits from attentional resources. This distinction between pre-attentive inte-

gration and cross-modal attention (Spence et al., 2004) is not possible by means

of the applied response time model. Either way, the results demonstrate that the

integration of audiovisual stimuli seems to follow the principle of additive super-

position and that, if the stimuli fall into the attention focus, all features benefit

from attention in the same manner; not only qualitatively, but also quantitatively.

5.3 Experiment 2

In Experiment 2, we studied the effect of exogenous cues on multisensory integra-

tion, using the same experimental setup. Unlike Experiment 1 we used peripheral,

non-predictive cues with a shorter cueing interval.

5.3.1 Methods

Nine new participants (mean age: 29.6 years, six female, and two left-handed) were

tested in Experiment 2. Before participation, they gave written informed consent

and all were näıve regarding the purpose of the experiment.

Apparatus and Stimuli The experiment was performed with the same appara-

tus as Experiment 1. The target stimuli were also identical. In Experiment 2, we

used red square frame (6 deg) as cues that were presented at the possible target

locations. After cue presentation, the target followed after 100 ms. The cueing

interval was shorter than in Experiment 1 to avoid so-called inhibition of return
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effects (Posner & Cohen, 1984). Contrary to Experiment 1, these cues were non-

informative, that is, in about 43 % (3/7) of the trials the subsequent target was

presented at the cued location and with the same frequency at the opposite lo-

cation. In about 14 % (1/7) of cued trials there was no subsequent target (catch

trial). The frequency of catch trials was the same as in Experiment 1.

Experimental task Participants were instructed to respond as fast as possible

when a target appeared at either location and to avoid anticipations, that is,

responding to the cue alone. Again, participants were instructed to maintain their

fixation which was indicated by a cross at the center of the screen.

Procedure As in Experiment 1, each participant was tested in three separate

sessions and each session lasted about one hour. The total number of trials for

each participant is 1,728 target trials and 288 catch trials. The number of trials

is thus the same as in Experiment 1; however, due to the change in cue validity

we obtained 96 replications for each condition, regardless of whether the cue was

valid or invalid. In one half of the trials a cue in the left periphery was displayed,

in the other half of trials a cue appeared in the right periphery. Target location

was also split evenly between left and right peripheral positions.

Statistical analyses We employed the same guessing correction as in Experi-

ment 1, that is, we determined contaminants in the RT distribution by the kill-

the-twin procedure and obtained estimates of RT mean and variance with the

Kaplan-Meier estimate. The only difference is that due to the changed cue valid-

ity we censored three responses for every response to a catch trial for both valid

and invalid cue conditions. Attentional lapses (RT > 1000) were also censored, this

affected less than 1 % of all RT in all but one participant (Participant 4: 4.2 %).

The analysis was analogous to Experiment 1: We tested fits of the diffusion su-

perposition model with different underlying assumptions to the data. This was
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(i) the null-model, (ii) the model with modality invariant cueing effects, and (iii)

the model with modality-specific cueing effects. Thus, we fitted the same models

with the same parameters as before by using a X2 goodness-of-fit statistic. This

statistic is again asymptotically χ2–distributed with the degrees of freedom given

in Experiment 1. For the aggregate-model statistics (N = 9 participants), the de-

grees of freedom were df = 117 for the null-model (i), df = 108 for the model with

modality-invariant attention effects (ii) and df = 99 for the model with modality-

specific attention effects (iii). The permutation test of the race model inequality

was analogous to Experiment 1.

5.3.2 Results

Response times and anticipations In line with previous studies we found a

cueing effect of visual exogenous cues on the mean response times of visual targets

(Table 5.3): mean response time (± SD) in the visual target condition decreased

from 328 (± 36.7) ms to 291 (± 33.4) ms, if targets were presented at the cued

location rather than the opposite location. However, unlike Experiment 1, there

was no cueing effect for the auditory targets: the mean RT from validly cued

auditory targets (M = 305 ± 34.9 ms) was slightly higher than from invalidly cues

auditory targets (M = 300 ± 33.5 ms). In general, the mean RT curve of SOA-

dependent targets followed again a wing-shaped pattern in both validity conditions.

Responses to synchronous redundant targets were the fastest, irrespective of cue

condition (Table 5.3). With increasing SOA, mean RT increased and approached

the unimodal target mean RT at both ends. Unlike Experiment 1, the cueing

effects were not smallest in the redundant synchronous condition with cueing effects

increasing with SOA. Here, the cueing effect varied systematically with the onset

of the visual target: The cueing effect was most pronounced in the visual unimodal

condition and became smaller, the more the visual target component was delayed
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(with respect to the auditory target component) and completely disappeared in

the auditory unimodal condition.

Table 5.3: Experiment 2–Mean RT (in ms) to auditory (A), visual (V), and audiovisual
(AV) targets presented with onset asynchrony after valid cues and invalid cues
(N = 9 Participants).

Target condition

Cue condition A A100V A67V A33V AV V33A V67A V100A V

valid 305 265 256 246 233 246 256 267 291

invalid 300 271 268 251 241 257 271 288 328

Note–Participant specific mean RTs were retrieved from RT distributions corrected for
anticipations (see Methods). For valid cues, these distributions included 96 responses per
participant; for invalid cues also 96 responses (50 % cue validity). This data corresponds
to the circles (valid cues) and squares (invalid cues) in Figures 5.3a and 5.3b.

Race model inequality The observed redundancy gains were again significantly

greater than a race model would predict in the invalid cue conditions (Tmax = 2.71;

T0.95 = 2.19; p = .027), but in Experiment 2 also in the valid cue conditions

(Tmax = 2.75; T0.95 = 2.67; p = .028). Thus, unlike Experiment 1, significant

violations of race model predictions were obtained for both valid and invalid cue

conditions.

Diffusion Superposition Model The aggregate model fit on group level revealed

that the modality-specific attention model fitted best to data (X2 = 92.36; df = 99;

p = .668, Figure 5.3a). But in clear contrast to Experiment 1, the restriction

that the attention effect is modality-independent lead to considerably increased

X2, that is, worse model fits (X2 = 143.3; df = 108; p = .013, Figure 5.3b).

Both models correctly described the asymmetric wing-shaped pattern of mean RT

in both the valid and the invalid cue condition, but it became evident that the

modality-invariant model systematically underestimated cueing effects in visual
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Figure 5.3: Experiment 2—a: Mean response times observed in valid and invalid cue
trials averaged across all participants together with the DSM predictions of
the model with modality-specific cueing effects. Coding of valid and invalid
cue conditions is the same as in Figure 5.2. Error bars denote estimates
of the 95% confidence intervals. This was the only model which was able
to explain the observed patterns of results in Experiment 2. Note that not
only there was no cueing effect in the auditory unimodal condition (A),
but that the cueing effect systematically varies with the SOA: the more the
visual target is delayed (negative SOA) the less effect of cue validity was
observed. b: Same data as in a, but with averaged model predictions from
the more restrictive modality-invariant cueing model that very well explained
observed data in Experiment 1. The model fit was poor on quantitative
grounds, it is easily seen that cueing effects are systematically underestimated
in the visual unimodal (V) and overestimated in the auditory unimodal (A)
condition. The model was also violated on group level (p < .001) and in
most participants.
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targets and overestimated cueing effects in auditory targets (Figure 5.3b). By

contrast, the modality-specific attention model well captured the difference in the

cueing effect between auditory and visual unimodal target trials (Figure 5.3a).

The model comparison thus yielded a significant difference (∆X2 = 50.97; df = 10;

p < .001), that is, the attention factors were significantly different across modalities

(Table 5.4): the effect of valid cues on auditory processing (gA,valid = 1.03) was

much lower than on visual processing (gV,valid = 1.31). Post-hoc we tested the

auditory attention parameter gA,valid against unity and obtained non-significant

results (∆X2 = 4.03; df = 9; p = .909). This implies that there was a negligible

cueing effect on processing in the auditory channel. Unlike Experiment 1 the

estimated drift for processing in the auditory channel was similar to that for visual

processing (Table 5.4).

Therefore, we report the results of the model with modality-specific cueing

effects for participant-specific model assessment. The fit of this model was good in

all participants. In line with the averaged modality-specific attention parameters,

the factor to describe the processing facilitation in the auditory modality was

close to unity in about half of participants, the maximum estimate for gA,valid

was 1.13. The difference between the modality-specific cueing effects model fit

and the modality-specific cueing effects model fit was significant in about one half

of the participants. More importantly, the modality-invariant model produced

the same bias in predicted cueing effects in the unimodal conditions as reported

above: cueing effects for auditory targets were over-estimated and cueing effects

for visual targets were underestimated by the model for modality-invariant cueing

effects. The effect of cueing on the latency of non-perceptual processes was again

negligible. The ability of the modality-invariant model to explain the observed

data was rather poor and the model was rejected based on both qualitative and

quantitative assessment. Therefore, the observed data in Experiment 2 was best

described by the model, which assumes modality-specific cueing effects.
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Table 5.4: Experiment 2—Mean (± S.D.) parameter esti-
mates and model fit of the Diffusion Superposi-
tion Model with modality-specific cueing effect for
mean reaction times in valid and invalid cue con-
ditions.

µA 0.76 (± 0.16)

σA 12.7 (± 8.8)

µV 0.64 (± 0.12)

σV 7.0 (± 3.1)

µM 166.5 (± 21.0)

gvalid
auditory 1.03 (± 0.05)

visual 1.31 (± 0.15)

Overall fit

X2(99) 92.4

p value .668

∆X2(9) 50.97

p value < .001

Note—µA, σ
2
A, µV, σ

2
V: drift and variance for auditory and

visual diffusion processes, µM: mean latency of residual pro-
cesses, gvalid: scale factor (facilitation) for validly cued tar-
gets. Overall fit X2: goodness-of-fit statistic (higher re-
sults indicate worse fit), ∆X2: difference in GOF compared
to the base model with modality-invariant cueing effects
(gA,valid = gV,valid).

5.3.3 Discussion

In Experiment 2 we investigated the effects of exogenous cues on the performance

in a multisensory redundant signals task. The effects were similar to endogenous

cueing effects, but also differed in several important aspects. As expected, the cues

produced significant cueing effects in the visual unimodal targets (Jonides, 1981;

Müller & Rabbitt, 1989) and non-significant cueing effects for auditory targets

(Buchtel & Butter, 1988; Spence & Driver, 1997). Here, we also extended the
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cross-modal cueing setup to a redundant signals setup and used a computational

model to assess redundancy gains and cue validity effects in a single model. The

race model was rejected because redundancy gains in both the valid and the invalid

cue condition was greater than predicted by parallel-first terminating processing.

Therefore, we applied a coactivation model to the data and tested for different

assumptions regarding the mechanism of attentional modulation by exogenous

cues. In Experiment 1, the modality-invariant cueing model best described both

redundancy gains and cueing effects. By contrast, in Experiment 2, the modality-

specific cueing model accounted much better for the observed patterns of results.

Smallest cue validity effects were found in the auditory single target condition.

Considering the parameter estimates and data, the attention effects on the

processing in the auditory channel were rather small. This becomes evident in the

comparison of validly and invalidly cued auditory targets that showed no cueing

effect. Even more, if one compares the model parameters estimated from the data

of Experiment 2 with those obtained in Experiment 1, it is striking to see how

inefficient auditory processing became with the same targets. The only difference

is that exogenous instead of endogenous cues were used in Experiment 2. The per-

ception of both the auditory stimuli (unimodal targets) and the auditory stimulus

components (bimodal targets) did hardly benefit from being attended to. To some

extent, this is quite the opposite of what we observed in Experiment 1. Whereas

endogenous cues lead to facilitation effects of the whole multisensory percept, ex-

ogenous cues facilitate only visual targets or the visual target component. The

perception of an accompanying auditory target component is not facilitated (or

attenuated). Therefore, in stimulus-driven attention visual cues seem to facilitate

mainly, or, even exclusively, the visual perception of audiovisual signals and their

integration into a common percept. Alternatively, the spatial properties of visual

exogenous cues do not seem to play a significant role in auditory perception. So

while auditory cues can facilitate visual processing (Van der Burg et al., 2008) even
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if they are location-unspecific through a cross-modal spreading of spatial attention

(Talsma et al., 2010), this seemingly does not apply to visual cues in an auditory

target detection task. This interpretation would explain the reported null-effects of

visual cues on auditory targets (Buchtel & Butter, 1988; Spence & Driver, 1997).

However, in addition to these studies that reported null-effects of visual exogenous

cues on auditory target detection (Buchtel & Butter, 1988) or auditory target ele-

vation discrimination (Spence & Driver, 1997), here we demonstrated that this is

also the case for auditory target components in redundant bimodal targets. This

point is critical because the interpretation of similar results obtained so far often

hinges on the non-significant test result of a single experimental condition. The

model parameters on which we base our interpretation incorporate data of not less

than 8 conditions (all invalid conditions but the visual unimodal target condition

that is independent of the auditory attention factor).

It is also worth noting that in all models the mean latency of residual

processes was kept constant, irrespective of modality, redundancy, and cue validity.

Thus, we conclude that exogenous cues influence (visual) perception, at least much

more than non-perceptual processes, in the integration of audiovisual signals.

5.4 General Discussion

While many studies have reported cross-modal cueing effects of visual cues on au-

ditory perception in endogenous cueing experiments (Farah et al., 1989; Spence

& Driver, 1996; Eimer & Schröger, 1998), the results of studies involving exoge-

nous cross-modal cueing are rather inconclusive (Buchtel & Butter, 1988; Spence

& Driver, 1997; Ward et al., 2000). In two experiments we employed both types

of cues in an audiovisual redundant signals task. This extension aimed at investi-

gating the effects of spatial attention on the integration of audiovisual signals (e.g.

Bertelson et al., 2000; Vroomen et al., 2001). With redundant audiovisual signals

one cannot only investigate cross-modal cueing effects but also how the processing
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of auditory and visual stimulus component of a redundant signal takes place and

how this processing is modulated by varying attention conditions. We addressed

this question with the application of a diffusion model to test explicitly for different

cross-modal cueing effects. The model has repeatedly shown to successfully predict

redundancy gains in bimodal divided attention tasks (Schwarz, 1994; Diederich,

1995; Gondan et al., 2010, 2011; Blurton et al., 2014). The inspection of the model

parameters on the one hand supports previous interpretations and extends results

in endogenous cueing tasks, but, on the other hand, allows for interesting new

interpretations of exogenous cross-modal cueing.

As expected, we observed robust cueing effects under voluntary control of

attention. The interesting point in this case is that this applies not only for au-

ditory targets. Rather, all audiovisual redundant targets exhibited effects of valid

and invalid cueing. Across all experimental conditions, cueing effects were accord-

ing to the assumptions of a modality-invariant influence of (supramodal) atten-

tion: They were not only cross-modal in nature, but even equal in strength across

modalities. This notion of attentional cueing effects is compatible with modality-

specific differences in mean RTs for unimodal auditory and visual targets. This

modality effect could be interpreted as modality-specific attention effects. The ap-

plication of the diffusion model and the interpretation of its parameter estimates

suggest otherwise. In this model, perceptual facilitation is operationalized by at-

tention parameters that were chosen to capture the more efficient processing in

both channels for target stimuli that fall into the focus of attention. According to

this model assumption, the difference in cueing effects between audition and vision

can be explained quite easily due to the fact that auditory signals are processed

faster than visual signals. Corresponding to the model prediction, this simply

attenuates the effect of increased efficiency in the auditory channel compared to

the visual channel. Top-down control of spatial attention seems therefore largely

compatible with a common, supramodal attention system (Talsma et al., 2010;
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Koelewijn et al., 2010). The current finding of a modality-invariant cueing effect

is in line with previous studies on voluntarily controlled attention and its effect

on multisensory processing (Farah et al., 1989; Talsma et al., 2010). The results

thereby add to those of sustained spatial attention effects on multisensory inte-

gration of audiovisual signals (Gondan et al., 2011). In that study, redundancy

gains were investigated under two conditions, one with a single (central) possi-

ble target location and one with multiple (central and two peripheral) possible

target locations. Both conditions were presented block-wise (sustained attention)

and participants were a priori informed about the condition. The comparison of

centrally presented targets in both conditions demonstrated that targets are more

efficiently (i.e., faster) processed in the condition with a single target location (i.e.,

narrow attention focus) as compared to targets that appeared at the same location

but could also have appeared at other locations (i.e., wide attention focus). Most

notably, this facilitation effect was also modality-invariant and residual processes

latency was also not affected, only perceptual processes (Gondan et al., 2011).

Based on the data of this study it cannot be decided whether voluntarily

controlled attention facilitates the perception of already integrated multisensory

objects (early integration), or, if attention facilitates the integration of unimodal

percepts into a single object (late integration). Neurophysiological studies support

both notions: If one interprets the effects of attention on early processes as a

consequence of pre-attentive integration, a number of studies provide evidence for

early integration (Eimer, 2001). But it has also been demonstrated, that attention

modulates event-related scalp potentials of redundant signals at various stages,

including late processes (Talsma & Woldorff, 2005). Given that we employed

a simple response task and observed rather short response latencies, one could

interpret the results of the first experiment as evidence for early integration.

It has been argued (Spence & Driver, 1997) that cross-modal attention of

visual cues on auditory targets depends on late processes that are not available in
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simple response tasks. This argument addresses the representation of auditory and

visual information in the brain. Vision is spatiotopic from the beginning; different

neuronal populations encode information of different spatial locations. Audition,

on the other hand, is not spatiotopic but tonotopically organized. Spatial location

has to be extracted from different cues, for example, the interaural-time or level

differences, the latter related to sound attenuation caused by the skull, whereas

the former by different distance between the sound source and the left or right

ears. This extraction takes place at a rather late stage of auditory processing

and that this information might therefore not be available in a simple response

task. This difference seems not to be crucial for endogenous cross-modal cueing

effects, though, as endogenous visual-on-auditory cueing effect have been reported

in a perceptual decision tasks (Spence & Driver, 1996), a detection task (Farah

et al., 1989) and now in a redundant signals task. For stimulus-driven attention,

this difference in perceptual latency could be a critical point and is discussed

below. The results of the present study demonstrate that the facilitation effects

of attention on the processing of objects with features from different senses are

largely independent of modality.

The results of Experiment 2, with stimulus driven control of attention sug-

gest quite the contrary and, at first glance, rather add to the ambiguity created by

results of studies on exogenous cross-modal (i.e., visual-to-auditory) cueing. Some

have found a cueing effect while others do not and methodical differences in those

studies make it hard to draw a clear cut conclusion (see Spence et al., 2004, for

a review). The consensus is that visual cues can influence auditory perception,

but only under certain conditions that are not yet fully understood. A number of

arguments have been put forward that aimed at explaining the conditions under

which cross-modal cueing occurs. The arguments include response task, differ-

ences in spatial resolution between modalities, and criterion shifts, amongst others

(Spence et al., 2004; Koelewijn et al., 2010). It has been argued, for example, that
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criterion shifts rather than facilitation by attention account for the faster responses

to targets presented at the pre-cued location. This concern applies not specifically

to cross-modal attention studies, but to all studies that are based upon the original

spatial cueing task (Posner et al., 1978; Posner, 1980; Jonides, 1981). A percep-

tual decision task can help to distinguish criterion shifts from attention effects,

for example, by application of the signal detection model (Green & Swets, 1966).

Here, we applied an alternative, but related model (Wagenmakers et al., 2007) and

obtained evidence that it was indeed perceptual processes that were facilitated or

attenuated, depending on the validity of the cue. If criterion shifts accounted for

the results, one would expect that also the latency of non-perceptual processes

were affected by cue validity. Rather, the redundancy gains observed with exoge-

nous cues indicate that it was the processing of visual features that was facilitated

when they were attended. The processing of auditory features was largely the

same, irrespective of the preceding cue. In a recent review, Talsma et al. (2010)

integrated the diverse literature of cross-modal cueing effects on multisensory in-

tegration into a common framework. They reviewed studies involving top-down as

well as bottom-up control of cross-modal attention and propose models for both

forms of attentional control. According to this model, exogenous cues lead to a

spatial unspecific spread of attention across the senses, at least in the audition-

to-vision-direction. This conclusion was based on the finding that auditory cues

can produce location unspecific facilitation effects on visual processing (Van der

Burg et al., 2008). On this note, the observed data in Experiment 2 could be

the result of visual cues leading to cross-modal facilitation of (auditory) percep-

tion, irrespective of the location of the subsequent (auditory) target. This would

not only explain the null effects of visual cues on the latency of auditory target

perception, but also the null effect on all audiovisual targets that we observed

in the redundant signals conditions. The comparison of response times and the

estimated model parameter from that data suggest an alternative interpretation.
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Both mean response times as well as parameter estimates support the notion that

auditory targets were never attended to, regardless of whether the preceding vi-

sual cue was pointing to the correct location or the opposite location. On this

note, the visual modality became dominant during the integration of redundant

signals. This dominance could have been induced by the preceding visual cue.

However, if one considers visual dominance as a consequence of visual cues, this

also leads to another implication. If visual processing dominated the perception

of redundant signals after exogenous (but not endogenous) cues, the greater reso-

lution of the visual system might have facilitated the effects of spatially separated

visual targets and auditory targets (Spence et al., 2004; Koelewijn et al., 2010).

This would explain why the processing of the same auditory targets presented at

the same locations was effectively facilitated in Experiment 1, but not in Exper-

iment 2. Of course, this interpretation needs to be confirmed by data as, to our

knowledge, the criticality of spatial separation of auditory and visual targets in

stimulus-driven (but not voluntary attention) has often been discussed, but never

been directly investigated. The results from the redundant audiovisual conditions

support existing theories on endogenous cross-modal interactions and shed new

light on exogenous cross-modal interactions. Upcoming studies on exogenous links

between vision and audition can help to further refine the relationship between

the two systems.
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Abstract7

When participants respond to auditory and visual stimuli, responses to audiovisual stimuli

are substantially faster than to unimodal stimuli (redundant signals effect, RSE). In such

tasks, the RSE is usually higher than probability summation predicts, suggestive of spe-

cific integration mechanisms underlying the RSE. We investigated the role of spatial and

selective attention on the RSE in audiovisual redundant signals tasks. In Experiment 1,

stimuli were presented either centrally (narrow attentional focus) or at 1 of 3 unpredictable

locations (wide focus). The RSE was accurately described by a coactivation model assum-

ing linear superposition of modality-specific activation. Effects of spatial attention were

explained by a shift of the evidence criterion. In Experiment 2, stimuli were presented at

3 locations; participants had to respond either to all signals regardless of location (simple

response task) or to central stimuli only (selective attention task). The RSE was consistent

with task-specific coactivation models; accumulation of evidence, however, differed between

the 2 tasks.
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Visuospatial attention is often seen in an analogy to a spotlight which means that

stimuli falling into this spotlight are processed more efficiently at the cost of those

that do not (Posner et al., 1980; Cave & Bichot, 1999). When attention is zoomed

in, perception of stimuli at the center of focus becomes more efficient; the greater

the distance to this focus, the less efficient perception becomes (Castiello & Umiltà,

1990). Traditionally, selective spatial attention has been studied with auditory

stimuli (e.g., Broadbent, 1952) or with visual stimuli (Posner, 1980). However,

everyday perception is mostly multisensory in nature. As different sensory systems

provide complementary, redundant, or conflicting information (Welch & Warren,

1986), effective behavior requires integration of the sensory signals provided by

the different senses. Thus, research effort has been directed to investigate the

role of attention in multisensory, especially audiovisual (Driver, 1996; Spence &

Driver, 1997) and visuotactile perception (Macaluso et al., 2000). One of the most

fundamental questions that arise with spatial attention is whether there exists

a common, supramodal attentional system or several, independent subsystems.

With cueing paradigms, (Spence & Driver, 1997) demonstrated that visuospatial

attention can be directed by auditory cues. On the other hand, some degree of

independence has also been found between attentional resources of different sensory

systems (Alais, Morrone, & Burr, 2006). While it is widely accepted that spatial

attention is a multisensory phenomenon, the exact role of attention in multisensory

perception still remains unclear.

In research on multisensory processes, the most basic experimental setup is

the bimodal redundant signals paradigm: Participants are asked to respond in the

same way to stimuli of two different modalities (e.g., auditory and visual, A, V).

In some trials, both stimuli are presented (AV), and this stimulus combination is

referred to as the redundant signals condition. In the redundant signals condition,

responses are usually substantially faster than in the single target conditions (e.g.,

Raab, 1962). At first glance, this so-called redundant signals effect (RSE, e.g.,
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Kinchla, 1974) might be taken as sufficient evidence for the existence of genuine

multisensory integration mechanisms. However, different processing architectures

can account for redundancy gains in such tasks; the most important model classes

are race models (or, more generally, separate activation models, e.g., Raab (1962)

and coactivation models (Miller, 1982). In the race model, both components of a

bimodal stimulus are processed in parallel channels; the overall processing time is

determined by the channel which has first finished processing (e.g., having reached

a threshold first). This mechanism eliminates slow processing times from the

modality-specific distributions, which, on average, results in faster responses to

bimodal events. The redundancy gain of the race model has an upper limit, though;

this upper limit is known as the race model inequality (Miller, 1982):

FAV(t) ≤ FA(t) + FV(t), for all t, (1)

with F (t) = P (T ≤ t) denoting the probability for a response latency T within t

ms. In bimodal divided attention, response times for AV have often been observed

to violate Inequality 1.

Instead, coactivation models have been proposed which specify a more or

less explicit integration mechanism (Miller, 1982, App. A; Miller, 1986, Eq. 3;

Schwarz, 1989, 1994; Diederich, 1995; Miller & Ulrich, 2003). Several coactiva-

tion models assume linear superposition of modality-specific information (Schwarz,

1989, 1994; Diederich, 1995; Miller & Ulrich, 2003). Let XA(t), XV(t) denote the

stochastic processes describing the buildup of evidence in the auditory and vi-

sual channel, respectively. Superposition models assume that the activation of the

combined channels corresponds to the sum of the two sensory-specific channels,

XAV(t) = XA(t) + XV(t). Detection occurs whenever an evidence criterion c is

surpassed for the first time. For time-homogenous diffusion processes underlying

the channel-specific buildup of evidence XA(t), XV(t), Schwarz (1994) derived pre-
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dictions for the mean and the variance of the detection time D for unimodal and

bimodal stimuli presented simultaneously, or with onset asynchrony τ :

E[DA] = c/µA,

E[DV] = c/µV,

E[DAV] = c/(µA + µV),

E

DA(τ)V


, E


DV(τ)A


: see Schwarz (1994, Eq. 10), (2)

with µA, µV denoting the drift rates of the modality-specific diffusion pro-

cesses, and c > 0 denoting an absorbing barrier (i.e., the evidence criterion).

Assuming a SOA invariant µM summarizing the mean duration of processes not

described by the model, Schwarz (1994, Figure 1) demonstrated that the diffusion

superposition model well described the mean response Times E(T) = E(D) + µM

observed by Miller (1986) in a simple speeded response task with audiovisual

stimuli presented at different onset asynchronies (for the standard deviations, see

Schwarz, 1994, Figure 2).

The present study investigates the integration of redundant signals under

different attentional conditions on the basis of the diffusion superposition model.

It is usually assumed that “integration” requires spatial attention; for example, to

solve the binding problem in visual object perception as posited by the feature in-

tegration theory (Treisman & Gelade, 1980; Treisman, 1986). In the dimensional

action model, which incorporates many ideas of the feature integration theory,

attention plays a central role (Cohen & Shoup, 1997). The model assumes that

properties of a visual stimulus are decomposed into a number of dimensional mod-

ules (e.g., for form, color, orientation, etc.). Each dimensional module detects the

presence or absence of features in its respective dimension. The activation elicited

by these features is then transmitted to dimension-specific response selection pro-

cessors (Cohen & Feintuch, 2002). For redundant signals of the same dimension,
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the model predicts only limited redundancy gains, because both stimuli activate

only a single response selector (e.g., Miller et al., 2009). In redundant signals of

different dimensions, however, two response selectors are simultaneously active,

yielding especially fast responses. Indeed, Feintuch and Cohen (2002) observed

that response time distributions for redundant color orientation targets violate the

race model inequality (1), however, only if the stimulus components were presented

in close spatial proximity such that participants could direct spatial attention to

the location of the target.

By analogy, one would expect that spatial attention is necessary for mul-

tisensory coactivation, as well. However, the role of attention in multisensory

integration remains controversial (e.g., Navarra, Alsius, Soto-Faraco, & Spence,

2010). It has been argued that connections between auditory and visual cortices

are so abundant that multisensory integration processes do not require spatial at-

tention (Bertelson et al., 2000). Moreover, multisensory processing can precede

attentional allocation (Driver, 1996). On the other hand, spatial attention has

been shown to affect the earliest multisensory components of the event-related po-

tential (Talsma et al., 2007), which at least suggests that attention is involved in

multisensory integration processes.

Concerning the redundant signals effect, the exact role of attention in effec-

tive integration is not yet fully understood (Miller et al., 2009). It is known that

under some circumstances, attention can be assigned to more than one location at

a time (Castiello & Umiltà, 1992; McCormick, Klein, & Johnston, 1998; Dubois,

Hamker, & VanRullen, 2009). This split of spatial attention is advantageous in the

sense that a series of locations do not have to be attended to in a serial manner.

The advantage comes at a cost; however, splitting spatial attention means divid-

ing resources, leaving less beneficial effects of attention the more locations one

is assigning attention to (Castiello & Umiltà, 1992). It remains unclear whether

the attentional spot is enlarged or simply fewer focused to encompass all target
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locations (e.g., those indicated by cues), or if the attentional system is capable of

dividing the attentional focus to several locations simultaneously (Bichot, Cave,

& Pashler, 1999).

In the present study, we directly compared two conditions of spatial atten-

tion (narrow focus, wide focus) in a redundant signals experiment using audiovisual

stimuli with varying onset asynchronies between the auditory and visual stimu-

lus components (Experiment 1). The obtained mean response times were then

modeled with a diffusion model of the redundant signals effect (Schwarz, 1994),

separately for both attentional conditions. In line with earlier results, we expected

that the diffusion superposition model can describe the redundancy gains in the

narrow focus condition. We additionally applied a common model to identify sim-

ilarities and differences in audiovisual perception for the different levels of spatial

attention. Whereas elementary modality-specific perception to the same stimuli

can be expected to be similar, it is unclear whether the same superposition mech-

anism holds for the two attentional conditions.

In a second experiment, we used the same diffusion model approach to

compare mean reaction times of simple responses with those of selective attention.

In this experiment, stimulation was exactly the same under both conditions, but for

the selective attention condition, observers were instructed to attend to only one

location and to disregard stimuli at the other locations. Earlier results (Gondan

et al., 2010) obtained from a Go/No-go task indicate that coactivation cannot

be taken for granted in tasks more complex than speeded responses. The main

question addressed by Experiment 2 was, therefore, whether the superposition

model can explain redundancy gains in a selective attention task, and if so, whether

modality-specific processing is qualitatively the same for the different tasks.
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6.1 Experiment 1

In Experiment 1, participants made speeded responses to auditory, visual, and

audiovisual signals presented with onset asynchrony. In the narrow focus condition,

stimuli were presented at a single central position only; here participants could

concentrate on the source of stimulation. In the wide focus condition, stimuli were

presented randomly at one of three possible locations (left, right, center), such

that participants had to enlarge their attentional spotlight in order to attend to

all three locations.

6.1.1 Methods

Participants. Four right-handed volunteers (3 students from the University of

Regensburg, one male, two female, mean age 22 years, and one author) partici-

pated in the experiment. All reported normal hearing and normal or corrected-

to-normal visual acuity with an intact field of view. Except for the coauthor, the

participants were naive regarding the purpose of the experiment and the stimulus

conditions employed. Informed consent was obtained from all participants prior

to participation. Results were stored in anonymous form. Participants received

course credit or payment (7e per hour) for their participation. The experiment

was conducted in accordance to the standards laid down in the Declaration of

Helsinki.

Apparatus. The experiment was conducted in a light- and sound-proof room (In-

dustrial Acoustics Company GmbH, Niederkrüchten, Germany), which was dimly

illuminated from behind and above. The participants were directly facing the

stimulation device, which was placed on a desk at a distance of 60 cm. The device

consisted of a projection screen for the visual stimuli and three mobile loudspeak-

ers for the auditory stimuli, which had been placed on elevated platforms in the

central position and the outer left and outer right side of the desk. Stimulus
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presentation and response time recording was controlled by a standard personal

computer running “Presentation” (Neurobehavioral Systems, Albany, California).

Stimuli. A Gabor-patch was projected at three different positions on a uniform

gray background using a luminance-calibrated liquid crystal display projector: the

center, the outer left, and the outer right (angle 30° each) side of the screen. White

noise (50 dB) served as the auditory stimulus and was emitted via three loudspeak-

ers in the same central, left, and right positions (not visible to the participant).

Audiovisual signals were presented in spatial correspondence, at 13 stimulus on-

set asynchronies (SOAs, cf. Miller, 1986)(SOAs, cf. Miller, 1986): A, A167V,

A133V, A100V, A67V, A33V, AV, V33A, V67A, V100A, V133A, V167A, and V

(SOA in ms). Catch trials (C, i.e., trials in which no stimulus appeared at the

usual stimulus onset) were embedded in the experimental procedure to discourage

anticipatory guesses. The interstimulus interval varied uniformly between 2100 ms

and 3000 ms. Participants had to respond to the stimuli by pressing a response

button with their dominant hand.

Experimental tasks. In the wide focus condition (WID), the participants were

told to respond as quickly as possible to any detected signal at any possible po-

sition (left, center, right). Because the participants did not know the position

at which the stimulus would appear, they had to spread their attention over all

three locations. In the narrow focus condition (NAR), stimuli appeared only in

the center of the screen or from the central loudspeaker. Here, participants knew

the position at which the stimuli would appear, so they could concentrate on this

position.

Procedure. Each participant was tested in three sessions of about 3 hours each.

At the start of the experiment, the participants were instructed and a training

block was run with the same stimulus protocol as used in the main session. The
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main session was divided into 13 blocks of 10 min each. Breaks were made on

request of the participants; usually participants requested a break of 20 to 30 min

at the middle of the session. Each block comprised both experimental tasks, so

each block started with a screen indicating the current experimental condition,

the WID or NAR. The participants had to fixate a plus (+) sign which appeared

at the center of the screen during the interstimulus intervals. In both tasks, the

stimuli were presented in a randomized sequence. Each of the 3 (WID)/1 (NAR)

locations SOA stimulus conditions appeared three times within each block, yielding

a maximum of 110 replications per experimental condition.

Test of the race model. The race model inequality was tested after cleaning

the response time distributions of the different conditions using the “kill-the-twin”

procedure (Eriksen, 1988). In the kill-the-twin procedure, the response time dis-

tribution for catch trials FC(t) = P (TC ≤ t) is subtracted from the response

time distributions of all SOA-specific conditions (Gondan & Heckel, 2008). For

Condition V(τ)A, the modified inequality, thus, reads as


FV(τ)A(t)− FC(t)


≤ [FV(t)− FC(t)] + [FA(t− τ)− FC(t− τ)] , for all t. (3)

Miller (1986) suggested to measure the amount of violation of Inequality 3

by the positive area enclosed by the AV curve and the summed A and V curves.

We used a nonparametric variant of this area based on the rank-transformed data,

∆τ =
N
i=1

max{0, [FV(τ)A(ti)−FC(ti)]− [FV(ti)−FC(ti)]− [F(τ)A(ti)−F(τ)C(ti)]},

with FτA denoting the shifted response time distribution for auditory stimuli. This

measure is scale-invariant and robust with regard to outliers. The violation area

was measured in all SOA conditions and collapsed into an aggregate violation

area by a weighted sum ∆ =


τ λ(τ) ×∆τ , with λ(τ) > 0 denoting a triangular
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weighting function assigning weights 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1 to Conditions

A167V, A133V, A100V, A67V, A33V, AV, V33A, V67A, V100A, V133A, V167A,

respectively (“symmetric umbrella,” Gondan, 2009). To test whether ∆ > 0 ob-

served in a given participant reflects true coactivation or is due to sampling error,

10,000 computer simulations were performed (Miller, 1986). In each simulation,

bootstrap samples of the unimodal response times were drawn from the observed

response time distributions, bimodal response times were bootstrapped from the

distribution of minima of the unimodal response times, adjusted for SOA and

assuming a maximally negative channel correlation between A and V (Ulrich &

Giray, 1986). In each simulation, the aggregate violation area ∆∗ was determined,

resulting in 10,000 simulated ∆∗. The race model is rejected at p < .05, if the

observed ∆ is greater than 95% of the ∆∗ values under the race model assumption.

Diffusion superposition model. The diffusion superposition model predicts the

mean response times for audiovisual stimuli with given SOA τ using five free

parameters: drift and variance of the auditory (µA, σ
2
A) and the visual process

(µV, σ
2
V), and a mean residual µM summarizing everything not described by the

model. In the task-specific models, the barrier c was fixed at 100, since it only

scales the other parameters.

For the model fit, trimmed mean response times were used, excluding the

upper and the lower 2% of the response times, separately for each condition.

Goodness-of-fit χ2 was calculated by adding up the squared standardized differ-

ences χ2
τ between model prediction E[TV(τ)A] and observed mean response time

mV(τ)A for each SOA:

χ2 =

τ

X2
τ =


τ

{mV(τ)A − E[TV(τ)A]}2/{ŝ2V(τ)A/nV(τ)A}, (4)

with ŝ2V(τ)A/nV(τ)A denoting the square of the observed standard error. If the model

holds, the meansmV(τ)A are approximately normally distributed around E[TV(τ)A],
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and, thus, for large nV(τ)A, the squared standardized means converge to an approx-

imate χ2
1 distribution. As the five model parameters are adjusted to the means

observed in 13 SOAs, the sum of the SOA-specific χ2
τ values approximately follows

a χ2 distribution with 13 − 5 = 8 degrees of freedom. The model was adjusted

to the observed mean response times by minimizing 4(4) using the constrOptim

command of the R statistical language (R Development Core Team, 2010) with

restrictions 0.1 ≤ µA, µV ≤ 4, 10 ≤ σ2
A, σ

2
V ≤ 10, 000, 100 ≤ µM ≤ 1000.

In a first step, separate models were adjusted to the mean response times

observed in the two tasks. As stated above, for the WID, only the responses to

central stimuli were analyzed. In a second step, an aggregate model was adjusted

to mean response times of both the NAR and the WID (central stimuli only).

In this aggregate model, diffusion parameters were assumed to be equal for both

tasks; task-specific processing and attentional demands were taken into account by

allowing different evidence criteria cWID and cNAR for the two tasks (cWID = 100,

cNAR: variable).

6.1.2 Results

In the NAR, participants knew that stimuli were presented at the central location

only; whereas in the WID, stimulus presentation was randomized, with one third

of the stimuli presented left or right or at the central position. Direct comparison

of the response times in the two tasks is, thus, most informative for centrally pre-

sented stimuli. For these stimuli, mean response times for Participants 1, 2, 3, and 4

were lower in the NAR than in the WID (averaged over SOA, 17, 31, 14, 13 ms for

Participant 1, 2, 3, and 4, respectively). Within both tasks, mean response times

showed a wing-shaped pattern (see Figure 6.1), replicating the usual relationship

between SOA and mean response time observed in redundant signals tasks with

asynchronous targets (Ulrich & Miller, 1997; Schwarz, 1994). Omissions and re-
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sponses to catch trials were extremely rare (false alarm rate 0 %, omission rate

around 1 %) and were, thus, not further analyzed.

Race model. After correction for fast guesses using the kill-the-twin procedure

(Eriksen, 1988), violation areas of the race model inequality were obtained for

each SOA and added up using a symmetric umbrella weighting function (Gondan,

2009). These observed summed violation areas were compared with their bootstrap

distribution under the race model assumption (Miller, 1986). Consistent violations

of the race model inequality were observed for the WID (p values of bootstrap test

.026, .040, .014, < .001 for Participants 1, 2, 3, and 4, respectively). In the

NAR, violations of the race model inequality reached statistical significance for

three participants (p = .003, .180, < .001, < .001 for Participants 1, 2, 3, and 4,

respectively).

Diffusion superposition model. In a first step, task-specific diffusion superposi-

tion models were adjusted to the mean response times observed in the WID and

NAR. Fitted parameters for these models are shown in Table 6.1. In line with the

substantially lower mean reaction times for auditory stimuli, the drift rates for the

auditory process are higher than for the visual process. The task-specific mod-

els show acceptable goodness-of-fit in all participants (summarized goodness-of-fit

statistic for the WID: χ2 = 44.92, df = 32, p = .064; for NAR: χ2 = 20.98, df = 32,

p = .932). In a second step, an aggregate model was adjusted to the mean response

times for both tasks, with common parameters describing the diffusion processes

and the residual, but different evidence barriers (cWID = 100 fixed, cNAR < 100)

for the two tasks. Figure 6.1 illustrates the good agreement between predicted and

observed mean response times in the two tasks. The aggregate model adequately

describes the observed mean response times (χ2 = 106.55, df = 80, p = .025);

however, model fit is poor in one participant (right panel of Figure 6.1).
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6.1.3 Discussion

Our goal of the first experiment was to investigate whether and how redundancy

gains are affected by spatial attention. Abstract artificial stimuli were used which

are known to be very effective in their respective modalities. Participants had to

perform a simple response task to audiovisual target stimuli under two attentional

conditions. In the NAR (narrow focus), stimuli were presented at a constant

predictable location in the center of fixation. In the WID (wide focus), stimuli

were presented randomly at one of three different locations. The central stimuli

used in the two attentional conditions had the same physical properties. In the

NAR, participants could concentrate on the central location, whereas in the WID,

participants had to attend to all three locations simultaneously.

Indeed, mean response times were lower in the NAR as compared with the

same stimuli in WID. The magnitude of the attention effect was, however, small

in terms of absolute reaction times (see Figure 6.1). Although the attentional

requirements differed for the NAR and the WID, the participants were asked to

fixate the central location in both conditions. Therefore, it cannot be ruled out that

participants actually concentrated more on the central position in the WID than

on the two peripheral positions. This would explain the rather small attention

effect in Experiment 1. Except for one participant, the test of the race model

inequality revealed significant violations of the race model inequality in both the

NAR and the WID, indicative of coactive processing of the redundant information.

In the first step of the main analysis, task-specific diffusion superposition

models (Schwarz, 1994) were adjusted to the mean

response times observed in the two tasks. Good agreement between model and data

is evident in Figure 6.1 and Table 6.1. Replicating earlier results by Schwarz (1994),

Diederich (1995), and Gondan et al. (2010), mean response times for asynchronous

audiovisual stimuli can be well described by a model assuming linear superposition

of channel-specific activity. In simple tasks, multisensory “integration” can thus be
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reduced to a simplistic additive channel summation mechanism, without necessity

of superadditive neural circuitry (e.g., Stanford et al., 2005).

In summary, Experiment 1 supports the superposition model for simple

responses to audiovisual stimuli for different levels of spatial attention. What

then is the role of attention in multisensory integration? Does integration occur

in a basic bottom-up manner, or is it necessary to direct spatial attention to the

location of the stimuli in order to effectively integrate them (e.g., Feintuch &

Cohen, 2002)? We addressed this question by fitting an aggregate superposition

model to the response times observed for the central stimuli common to both

tasks. Assuming that the stimulus-specific diffusion processes describe elementary

perceptual processes common to the two conditions, the diffusion parameters µA,

σ2
A, µV, σ

2
V, were constrained to be equal in the two tasks. Moreover, as both

tasks were simple response tasks (Type A, Donders, 1868/1969), residual processes

described by µM were assumed to be equal in the two tasks as well. Goodness-of-fit

of this aggregate model was acceptable in three participants. Different evidence

barriers were allowed in the two tasks: An increased absorbing barrier in the

WID, or, equivalently, a reduced criterion in the NAR, reflecting the improvement

in stimulus detection when spatial attention is directed to the source of stimulation

(e.g., Eimer & Driver, 2000, Figure 1; Hillyard, Hink, Schwendt, & Picton, 1973).

In Participant 3, fit of the common model was poor, although the results

were qualitatively similar to the other participants. Closer inspection of Figure 6.1

suggests that in Participant 3, the attentional effect is limited to the visual modal-

ity—in the left (auditory) wing of the SOA-mean curve, an attentional effect is

virtually absent. In the aggregate model, the barrier c corresponds to the evidence

criterion common to both modalities. An increased barrier, thus, affects both

modalities simultaneously (recall that the mean detection time for auditory and

visual stimuli corresponds to c/µA and c/µV, respectively). This model prediction

is in line with the supramodal nature of attentional effects observed in crossmodal
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Figure 6.1: Experiment 1—SOA specific mean response times observed (dots) in the
NAR and the WID (central stimuli only). Lines: Model prediction including
95% confidence intervals based on the observed standard deviation. Left:
Task-specific models. Right: Common aggregate model with task-specific
evidence barrier.
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attention tasks (e.g., Eimer & Driver, 2000). Participant 3’s results are incompat-

ible with this supramodal notion of spatial attention: In this participant, effects

of spatial attention were limited to the visual modality only (cf. Driver & Spence,

1998, Box 1).

6.2 Experiment 2

In Experiment 2, we introduced a Go/Nogo feature in order to investigate if the

superposition model can describe the redundancy gains in selective attention tasks.

6.2.1 Methods

Participants. Seven new students from the University of Regensburg (one male,

six female, mean age 24.2 years, one left-handed) participated in Experiment 2.

All reported normal hearing and normal or corrected-to-normal visual acuity with

an intact field of view. The participants were naive regarding the purpose of the

experiment and the stimulus conditions employed. Informed consent was obtained

from all participants prior to participation. They received course credit or payment

for participation.

Experimental tasks. The apparatus and the stimulus conditions employed were

identical to Experiment 1. The simple response task was the same as in the WID

of Experiment 1: The participants were told to respond as quickly as possible with

their dominant hand to any detected signal at any possible location (left, center,

right).

The second task was a selective attention task (SEL): Stimuli were pre-

sented, in randomized order, at three locations, but participants were instructed

to respond to the central stimuli only (Go trials), and refrain from responding to

peripheral stimuli (Nogo).
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Procedure. Due to the additional peripheral stimuli in the SEL, the entire ex-

periment prolonged to about 12 hours per participant. Data acquisition was split

again into three sessions. In each session, 10 blocks of about 15 min duration

were conducted; each block comprised both attentional conditions. Again, the

first block served as a training block and the data were not analyzed. Breaks were

made on request of the participant. Each of the three locations × SOA stimu-

lus conditions appeared three times within each block, yielding a maximum of 87

replications per experimental condition.

Race model test. For the WID, the race model inequality was tested in the same

way as described for Experiment 1. For the SEL, a kill-the-twin correction was

applied using the erroneous responses to peripheral stimuli:


FV(τ)A(t)− Fv(τ)a(t)


≤ [FV(t)− Fv] + [FA(t− τ)− Fa(t− τ)] , for all t, (5)

with Fv(τ)a(t) = max

Fv(τ)a(t|left),Fv(τ)a(t|right)


, Fv(t) = min [Fv(t|left),Fv(t|right)],

Fa(t) = min [Fa(t|left),Fa(t|right)] denoting the false alarm distribution recorded

for peripheral stimuli presented to the left and to the right location (see Gondan

et al., 2010, for a similar procedure).

Superposition model. Again, separate diffusion superposition models were fit-

ted to the mean response times observed in the WID and the SEL. In a second

step, we tried to adjust a common model to the two tasks, with identical diffusion

parameters describing perception of the same stimuli used in the two tasks, but dif-

ferent evidence barriers cWID and cSEL accounting for different attentional demands

in the WID and the SEL. Whereas in Experiment 1, both tasks required simple

responses, the SEL task of Experiment 2 requires Go/Nogo discrimination (Type

C response, Donders, 1868/1969). This additional requirement was accounted for

by allowing different residuals µM,WID and µM,SEL in the two tasks.
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6.2.2 Results

As for Experiment 1, direct comparison of the response times observed in the

WID and the SEL is most informative for centrally presented stimuli. Reflecting

the increased control demands of the Go/Nogo responses, mean response times

for Participants 1, 2, 3, 4, 5, 6, and 7 were substantially higher in the SEL than

in the WID (130, 168, 157, 125, 507, 304, and 140 ms, respectively, see Figure

2). The relationship between SOA and mean response time followed the usual

wing shape. Omission rate was below 1 % in the WID and below 2 % in the

SEL (Participant 5: 5 %). In the SEL, responses to peripheral stimuli occurred

in maximally 2 % of the stimuli. Misses and false alarms were, thus, not further

analyzed (except for the kill-the-twin-correction).

Race model inequality. In the WID, violations of the race model inequality were

observed for Participants 2, 3, 4, 6, and 7 (Part. 7: p = .001, others p < .001),

whereas redundancy gains observed for Participants 1 and 5 were consistent with

parallel processing (p = .365, .111, respectively). In SEL, coactivation effects were

observed in all participants (all p < .01).

Diffusion superposition model. We first tried to adjust an aggregate model with

identical diffusion parameters to the two tasks (Table 6.2, “Common Model”).

The fit of this aggregate model was poor in all participants, and the model sys-

tematically underestimated the mean response times for auditory stimuli in the

SEL, while auditory response times in the WID were systematically overestimated

(summarized goodness-of-fit statistic: χ2 = 1192, df = 133, p < .001). Task-

specific diffusion superposition models, however, can describe the mean response

times recorded for the two tasks (see Figure 6.2). Parameters and goodness-of-

fit statistics are summarized in Table 6.2 (columns WID and SEL). The model
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fit is acceptable for the WID (χ2 = 70.62, df = 56, p = .090) and for the SEL

(χ2 = 74.08, df = 56, p = .053).
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Figure 6.2: Experiment 2—Separate superposition models for the WID and SEL. A com-
mon model cannot be adjusted to the response times observed in the two
tasks (lower right).
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Table 6.2: Diffusion Superposition Model for the WID and the SEL, and the Common
Model for Both Tasks of Experiment 2

WID

Participant 1 2 3 4 5 6 7

µV 1.04 0.88 0.66 1.33 0.63 0.88 1.04

σ2
V 126.9 10.0 33.2 62.9 94.1 27.5 10.0

µA 3.80 2.16 1.46 2.42 0.94 2.33 2.14

σ2
A 1997 10.0 10.0 1412 36.5 821.2 10.0

cWID (100) (100) (100) (100) (100) (100) (100)

cSEL — — — — — — —

µM,WID 230.1 192.4 153.8 155.5 214.5 159.6 156.9

µM,SEL — — — — — — —

GOF χ2 7.33 8.35 9.04 9.89 7.84 15.91 12.26

df 8 8 8 8 8 8 8

P .502 .400 .339 .273 .450 .044 .140

Summary χ2
(56) = 70.62, p = .090

SEL

µV 0.58 0.60 0.53 0.51 0.38 0.41 0.63

σ2
V 59.5 17.1 20.4 10.0 10.0 10.0 10.0

µA 0.70 0.50 0.50 0.32 0.17 0.29 0.64

σ2
A 61.1 54.4 28.4 30.6 113.8 34.6 18.4

cWID — — — — — — —

cSEL (100) (100) (100) (100) (100) (100) (100)

µM,WID — — — — — — —

µM,SEL 245.0 198.0 189.6 142.2 223.6 127.6 191.6

GOF χ2 3.85 4.48 7.45 10.57 15.21 25.34 7.18

df 8 8 8 8 8 8 8

P .871 .811 .489 .227 .055 .001 .518

Summary χ2
(56) = 74.08, p = .053

Note. µV (µA), σ
2
V (σ2

A): drift and variance for visual (auditory) diffusion process, c:
evidence barrier for the WID and the SEL (fixed values in parentheses), µM,WID, µM,SEL:
mean duration of residual component in the WID and SEL. GOF χ2, df , p: goodness-of-
fit statistic (significant results indicate bad fit). Summary is based on participant-specific
GOF statistics.
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Table 6.2 (continued): Diffusion Superposition Model for the WID and the SEL, and the
Common Model for Both Tasks of Experiment 2

Common model

Participant 1 2 3 4 5 6 7

µV 0.83 0.83 0.76 1.31 3.14 0.77 1.00

σ2
V 88.4 10.0 10.0 40.7 408.2 33.2 10.0

µA 1.83 1.30 1.18 1.74 1.69 1.61 1.45

σ2
A 337.4 10.0 56.1 10.0 8670 157.9 10.0

cWID (100) (100) (100) (100) (100) (100) (100)

cSEL 75.5 150.1 143.4 215.2 999 78.1 147.1

µM,WID 209.3 176.3 148.6 144.7 282.1 145.9 145.7

µM,SEL 308.2 219.2 215.3 192.6 196.8 252.6 211.1

GOF χ2 59.84 252.8 97.17 252.3 70.28 336.7 122.8

df 19 19 19 19 19 19 19

P < .001 < .001 < .001 < .001 < .001 < .001 < .001

Summary χ2
(133) = 1192, p < .001

Note. µV (µA), σ
2
V (σ2

A): drift and variance for visual (auditory) diffusion process, c:
evidence barrier for the WID and the SEL (fixed values in parentheses), µM,WID, µM,SEL:
mean duration of residual component in the WID and SEL. GOF χ2, df , p: goodness-of-
fit statistic (significant results indicate bad fit). Summary is based on participant-specific
GOF statistics.

6.2.3 Discussion

In Experiment 2, we investigated the role of selective attention in a speeded re-

sponse task with audiovisual stimuli presented at three different locations. In the

first condition (WID), participants had to respond to stimuli presented at any of

three locations, whereas in the second condition (SEL) they were asked to respond

selectively to stimuli presented at the central location. Thus, the two conditions

comprised the same stimulation but required different response types (simple vs.

Go/Nogo). As for Experiment 1, response times in the two conditions were com-

pared only for centrally presented stimuli. In line with the increased requirements

of the Go/Nogo task, mean reaction times for the SEL were higher compared with

the WID. Redundancy gains in the WID significantly violated the race model
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inequality in only one participant, whereas clear evidence for coactivation was

obtained in the SEL.

Task-specific superposition models for the mean reaction times showed an

excellent fit for all participants, suggesting that linear superposition of channel

specific diffusion processes (Schwarz, 1994) may well explain behavior in simple and

more complex response paradigms (Figure 6.2, left column). Parameter estimates

(see Table 2) for task-specific models indicate that selective attention affects both

the diffusion and residual processes: (A) In the WID, drift rates turned out to be

higher than in the SEL, whereas the mean residual turned out to be lower for the

WID than for the SEL. Assuming that the overall response time T = D+M (Luce,

1986, ch. 3) decomposes into perception-related processesD being described by the

diffusion model, whereas M summarizes everything else (e.g., motor preparation

and execution), the manipulation of selective attention affects processing stages

related to both D and M: Increased drift rates estimated for the WID might

reflect an increased buildup of evidence in this condition, but can, at the same

time, indicate a lower amount of evidence necessary for stimulus detection. The

higher µM observed in the SEL for Participants 1–5 and 7 is, presumably, due to

the increased control demands of the Go/Nogo response selection processes.

The aggregate model incorporates responses of centrally presented stimuli

in both tasks; it clearly fails to give a valid description of the mean reaction times in

the two tasks. Model fit was poor in all participants (p < .001). A single scaling

factor c is, thus, insufficient to describe the buildup of evidence under the two

attentional conditions. Visual and auditory processing seems to be differentially

affected when spatial attention is selectively assigned to one location as compared

with the control condition with simple responses. Whereas auditory drift rates are

about 2 or even 3 times greater than visual drift rates in the WID task, both drift

rates are quite similar in the SEL task. Compared with the simple detection task,

location discrimination might be substantially more difficult for auditory compared
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with visual stimuli. This is reflected by the asymmetric effects of the attentional

manipulation on the mean response times (see Figure 6.2). This differential effect

cannot be accounted for by the aggregate model, which assumes that the auditory

and the visual channels are both equally affected by the attentional manipulation.

Interestingly, the task-specific models show good fit.

6.3 General Discussion

The goal of the present study was to investigate effects of different attentional

conditions on mean response times in two redundant signals experiments. In Ex-

periment 1 we compared two conditions of narrow and wide spatial attention; in

Experiment 2 participants had to attend either selectively to a single spatial lo-

cation or to three locations simultaneously. Crossmodal attention studies have

provided abundant evidence for attentional mechanisms common to vision and

audition (e.g., Spence & Driver, 1997) and vision and touch (e.g., Eimer & Driver,

2000), though there seems to exist some degree of independence between the dif-

ferent modalities (Alais et al., 2006).

What effect does attention have on audiovisual integration? While atten-

tion seems to be critical for early multisensory eventrelated potential interactions

(Talsma et al., 2007), little is known about the effects of spatial attention on behav-

ior, for example, audiovisual redundancy gains. In all conditions of the present ex-

periments, mean response times were well described by a diffusion model based on

linear superposition of modality-specific activation in the two channels (Schwarz,

1994). In Experiment 1, attentional modulation involved a change of the size of

the attentional focus and the expected results were obtained. Attention specific

benefits of focused spatial attention were observed (as compared with a control

condition with a wide attentional focus); these benefits were well described by a

model that asserts different evidence criteria for the two attentional conditions.

The lower evidence criterion in the focused attention condition can be interpreted
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in two ways: On one hand, it might reflect a lower amount of evidence necessary

for stimulus detection; on the other hand it might reflect more effective accumu-

lation of evidence in the focused attention condition. The diffusion superposition

model is mute in this respect; neurophysiological evidence, however, suggests the

latter interpretation (Hillyard et al., 1973; Talsma et al., 2007).

What effect does attention have on audiovisual integration? While atten-

tion seems to be critical for early multisensory eventrelated potential interactions

(Talsma et al., 2007), little is known about the effects of spatial attention on behav-

ior, for example, audiovisual redundancy gains. In all conditions of the present ex-

periments, mean response times were well described by a diffusion model based on

linear superposition of modality-specific activation in the two channels (Schwarz,

1994). In Experiment 1, attentional modulation involved a change of the size of

the attentional focus and the expected results were obtained. Attentionspecific

benefits of focused spatial attention were observed (as compared with a control

condition with a wide attentional focus); these benefits were well described by a

model that asserts different evidence criteria for the two attentional conditions.

The lower evidence criterion in the focused attention condition can be interpreted

in two ways: On one hand, it might reflect a lower amount of evidence necessary

for stimulus detection; on the other hand it might reflect more effective accumu-

lation of evidence in the focused attention condition. The diffusion superposition

model is mute in this respect; neurophysiological evidence, however, suggests the

latter interpretation (Hillyard et al., 1973; Talsma et al., 2007).

The spatial Go/Nogo task used in Experiment 2 of the present study dif-

fers from the discrimination task used in Gondan et al. (2010, Experiment 2).

In Gondan et al. (2010), participants received combinations of audiovisual stim-

uli (both either targets or distractors). A response was required when either of

the stimulus components was a target. For some participants, model fit returned

seemingly implausible estimates for some parameters (namely, σ2
A and σ2

V were
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close to zero, suggestive of a deterministic buildup of evidence). It turned out that

such a special case of the diffusion superposition model mimics the predictions of

a serial self-terminating model of information processing. We argued that these

participants might have processed the redundant information serially, as a conse-

quence of response competition induced by combinations of targets in one modality

and nontargets in the other modality. In the selective attention task used in the

present study, only conflict-free stimulus combinations were used, thereby avoid-

ing response competition effects. The good agreement between model and data

(Figure 6.2, Table 6.2) demonstrates that the superposition model can actually

describe behavior in conflict-free audiovisual redundant signals experiments, even

for the more demanding Go/Nogo task.

The two experiments, thus, show that the superposition model (Schwarz,

1989, 1994) can explain redundancy gains under different attentional conditions.

Spatial attention, in our experimental setup, could be fully described by a shift of

the evidence barrier (which we think is related to more efficient processing in the

two sensory channels; Hillyard et al., 1973). Manipulations of selective attention

affect the two modalities differentially, but audiovisual integration still follows the

principle of linear, additive superposition of modality-specific activation (Stanford

et al., 2005; Ma et al., 2006). The present study focuses on basic mechanisms

of multisensory integration observable in rather simple experimental tasks. The

stimuli used in the present study are, thus, rather abstract and somehow artificial,

and we have chosen white noise and Gabor patches mainly because these stimuli

are known to be effective in their respective modality (e.g., Watson, Barlow, &

Robson, 1983). There is a growing number of studies using the redundant signals

paradigm (e.g., about 400 citations of Miller, 1982, in Google Scholar in Febru-

ary, 2011), most of these studies limit their analysis to the test of the race model

inequality. If the race model fails, separate activation is ruled out (Miller, 1982).

However, without testing a specific coactivation model, little is known about the
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specific mechanisms underlying the integration of the redundant information. The

limited number of studies of formal coactivation models (e.g. Diederich, 1995;

Miller & Ulrich, 2003; Schwarz, 1989, 1994) mainly describe redundancy gains

observed in simple response tasks with beeps and flashes presented from a sin-

gle source of stimulation (e.g., the setup used by Miller, 1986). We have shown

that for the Go/Nogo task (i.e., a slightly more complex task than just simple re-

sponses) coactivation effects cannot be taken for granted and linear superposition

does not always describe the observed redundancy gains (Gondan et al., 2010). Al-

though the experimental setup is still far from being ecologically valid, the present

study sheds light on the basic principles of multisensory processing and the role

of attention therein.
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Psychology: Human Perception and Performance, 24 , 350–357. doi: 10.1037/

0096-1523.24.1.350
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