## Contents

Preface ----- V

## General introduction ----- 1

| 1       | Cosmetics and personal care 17                             |
|---------|------------------------------------------------------------|
| 1.1     | Introduction — 17                                          |
| 1.2     | Surfactants used in cosmetic formulations — 20             |
| 1.3     | Interaction forces and their combination — 23              |
| 1.4     | Cosmetic emulsions — 29                                    |
| 1.5     | Self-assembly structures in cosmetic formulations — 40     |
| 1.5.1   | Structure of liquid crystalline phases 40                  |
| 1.5.2   | Hexagonal phase — 40                                       |
| 1.5.3   | Micellar cubic phase — 41                                  |
| 1.5.4   | Lamellar phase —— 42                                       |
| 1.5.5   | Discontinuous cubic phases — 42                            |
| 1.5.6   | Reversed structures — 43                                   |
| 1.6     | Driving force for liquid crystalline phases formation — 43 |
| 1.7     | Polymeric surfactants in cosmetic formulations — 44        |
| 1.8     | Nanoemulsions in cosmetics — 48                            |
| 1.9     | Multiple emulsions in cosmetics — 55                       |
| 1.10    | Liposomes and vesicles in cosmetics — 62                   |
| 1.11    | Shampoos and gels — 64                                     |
| 1.12    | Hair conditioners — 71                                     |
| 1.12.1  | Surface properties of hair — 72                            |
| 1.13    | Sunscreen dispersions for UV protection — 76               |
| 1.14    | Color cosmetics — 78                                       |
| 1.15    | Industrial examples of cosmetics and personal care         |
|         | formulations —— 85                                         |
| 1.15.1  | Shaving formulations 85                                    |
| 1.15.2  | Bar soaps — 87                                             |
| 1.15.3  | Liquid hand soaps —— 88                                    |
| 1.15.4  | Bath oils —— 88                                            |
| 1.15.5  | Foam (or bubble) baths —— 89                               |
| 1.15.6  | After bath preparations 89                                 |
| 1.15.7  | Skin care products — 89                                    |
| 1.15.8  | Hair care formulations 91                                  |
| 1.15.9  | Sunscreens — 94                                            |
| 1.15.10 | Make-up products — 96                                      |



| 2              | Interfacial aspects of pharmaceutical systems —— 101                     |
|----------------|--------------------------------------------------------------------------|
| 2.1            | Introduction —— 101                                                      |
| 2.2            | Disperse systems —— 101                                                  |
| 2.2.1          | Thermodynamic considerations — 101                                       |
| 2.2.2          | Kinetic stability of disperse systems and the general stabilization      |
|                | mechanisms —— 102                                                        |
| 2.2.3          | Steric stabilization —— 106                                              |
| 2.3            | Nanodispersions —— 110                                                   |
| 2.3.1          | Nanoemulsions —— 110                                                     |
| 2.3.2          | Nanosuspensions —— 118                                                   |
| 2.4            | Surface activity and colloidal properties of drugs —— 126                |
| 2.5            | Naturally occurring micelle forming systems — 130                        |
| 2.6            | Biological implications of the presence of surfactants in pharmaceutical |
|                | formulations —— 133                                                      |
| 2.7            | Solubilized systems —— 135                                               |
| 2.7.1          | Experimental methods of studying solubilization —— 136                   |
| 2.7.2          | Mobility of solubilizate molecules — 140                                 |
| 2.7.3          | Factors affecting solubilization — 140                                   |
| 2.8            | Liposomes and vesicles in pharmacy — 141                                 |
| 2.8.1          | Stabilization of liposomes by incorporation of block                     |
|                | copolymers — 143                                                         |
| 2.9            | Liquid Crystalline Phases and Microemulsions — 143                       |
| 2.10           | Solid lipid nanoparticles (SLN) —— 147                                   |
| 2.11           | Polymer gels, microgels, and capsules — 147                              |
| 2.12           | Solid polymer nanoparticles —— 150                                       |
| 2.13           | Nanoparticles, drug delivery and drug targeting — 152                    |
| 2.13.1         | The reticuloendothelial system (RES) 152                                 |
| 2.13.2         | Influence of particle characteristics — 153                              |
| 2.13.3         | Surface modified polystyrene particles as model carriers — 153           |
| 2.13.4         | Biodegradable polymeric carriers — 154                                   |
| 3              | Interfacial aspects of agrochemical formulations — 165                   |
| 3.1            | Introduction — 165                                                       |
| 3.2            | Surfactants used in agrochemical formulations — 168                      |
| 3.2.1          | Anionic surfactants — 168                                                |
| 3.2.2          | Cationic surfactants 169                                                 |
| 3.2.3          | Amphoteric (zwitterionic) surfactants — 169                              |
| 3.2.4          | Nonionic surfactants — 170                                               |
| 3.2.5          | Alcohol ethoxylates 171                                                  |
| 3.2.6          | Alkyl phenol ethoxylates — 171                                           |
| <b>3.2.7</b> ູ | Fatty acid ethoxylates — 172                                             |
|                |                                                                          |

~

| 3.2.8  | Sorbitan esters and their ethoxylated derivatives                   |
|--------|---------------------------------------------------------------------|
|        | (Spans and Tweens) — 172                                            |
| 3.2.9  | Ethoxylated fats and oils 173                                       |
| 3.2.10 | Amine ethoxylates — 173                                             |
| 3.2.11 | Surfactants derived from mono- and polysaccharides 174              |
| 3.2.12 | Specialty surfactants – Fluorocarbon and silicone surfactants — 174 |
| 3.2.13 | Polymeric surfactants: Ethylene oxide-propylene oxide co-polymers   |
|        | (EO/PO) — 175                                                       |
| 3.3    | Properties of surfactant solutions — 176                            |
| 3.3.1  | Solubility-temperature relationship for surfactants 178             |
| 3.4    | Interfacial aspects of agrochemical formulations — 179              |
| 3.4.1  | Equilibrium adsorption of surfactants at the air/liquid             |
|        | and liquid/liquid interface — 180                                   |
| 3.4.2  | Dynamic processes of adsorption — 182                               |
| 3.5    | Adsorption of surfactants and polymeric surfactants                 |
|        | at the solid/liquid interface 187                                   |
| 3.6    | Interaction forces between particles or droplets in agrochemical    |
|        | dispersions (suspension concentrates or emulsions, EW's) and their  |
|        | role in colloid stability — 201                                     |
| 3.7    | Emulsion concentrates (EW's) 209                                    |
| 3.7.1  | Formation of emulsions — 209                                        |
| 3.7.2  | Selection of emulsifiers — 213                                      |
| 3.7.3  | Emulsion stability — 217                                            |
| 3.7.4  | Experimental methods for assessment of emulsion stability 224       |
| 3.8    | Suspension concentrates — 227                                       |
| 3.8.1  | Preparation of suspension concentrates and the role of surfactants/ |
|        | dispersing agents — 227                                             |
| 3.8.2  | Control of the physical stability of suspension concentrates — 232  |
| 3.8.3  | Characterization of suspension concentrates and assessment          |
|        | of their long-term physical stability —— 244                        |
| 3.9    | Microemulsions in agrochemical formulations 257                     |
| 3.10   | Controlled-release formulations — 261                               |
| 3.11   | Adjuvants in agrochemicals — 266                                    |
| 4      | Interfacial aspects of paints and coatings — 283                    |
| 4.1    | Introduction — 283                                                  |
| 4.2    | Emulsion, dispersion and suspension polymerization — 290            |
| 4.2.1  | Emulsion polymerization — 290                                       |
| 4.2.2  | Dispersion polymerization — 299                                     |
| 4.3    | Pigment dispersion — 303                                            |
| 4.3.1  | Wetting of powder aggregates and agglomerates 303                   |

4.3.2 Breaking of aggregates and agglomerates (deagglomeration) ----- 311 4.3.3 Assessment and selection of dispersants ----- 314 4.4 4.4.1 Adsorption isotherms ----- 314 4.4.2 Measurement of dispersion and particle size distribution — 316 Wet milling (Comminution) ----- 321 4.5 Bead mills ---- 323 4.5.1 4.5.2 Principle of operation of bead mills — 324 Rheology of paints ----- 324 4.6 Examples of the flow properties of some commercial paints ----- 346 4.7 Interfacial aspects of food colloids ----- 351 5 5.1 Introduction ----- 351 5.2 Interaction between food-grade surfactants and water ----- 352 Liquid crystalline structures ----- 352 5.2.1 5.2.2 Binary phase diagrams ----- 354 1 Ternary phase diagrams ----- 358 5.2.3 • 5.3 Monolaver formation ----- 358 Liquid crystalline phases and emulsion stability ----- 363 5.4 5.5 Proteins ----- 364 Interfacial properties of proteins at the liquid/liquid interface ----- 366 5.5.1 Proteins as emulsifiers ----- 367 5.5.2 Protein-polysaccharide interactions in food colloids ----- 368 5.6 Polysaccharide-surfactant interactions ----- 369 5.7 Surfactant association structures, microemulsions and emulsions 5.8 in food ----- 370 5.9 Rheology of food emulsions ----- 373 Interfacial rheology ----- 373 5.9.1 5.9.2 Bulk rheology of emulsions ----- 378 Rheology of microgel dispersions ----- 381 5.9.3 Fractal nature of the aggregated network ----- 382 5.9.4 5.10 Food rheology and mouth feel ----- 383 Mouth feel of foods - role of rheology ----- 386 5.10.1 Break-up of Newtonian liquids ----- 388 5.10.2 Break-up of non-Newtonian liquids ----- 388 5.10.3 5.10.4 Complexity of flow in the oral cavity ----- 389 5.10.5 Rheology-texture relationship ----- 389 Practical applications of food colloids ----- 392 5.11