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Abstract

The bassoon is a conical woodwind instrument blown with a double-reed mouthpiece. The sound
is generated by the periodic oscillation of the mouthpiece which excites the air column. The
fundamental frequency of this oscillation is determined to a large extent by the resonances of
the air column. These can be varied by opening or closing tone-holes. For any given tone hole
setting a fine-tuning in pitch is necessary during playing. Musicians adjust the slit opening of the
double-reed by pressing their lips against the opposing reed blades. These so-called embouchure
corrections are required to tune the pitch, loudness and sound color of single notes. They may
be tedious, especially if successive notes require inverse corrections. However, such corrections
are essential: Due to the very high frequency sensitivity of the human ear playing in tune is the
paramount requirement when playing music. This implies, that embouchure actions provide an
important insight into a subjective quality assessment of reed wind instruments from the viewpoint
of the musician: An instrument requiring only small corrections will be comfortable to play.

Theoretical investigations of the whole system of resonator, reed, and musician by use of a physical
model nowadays still seem insufficient with respect to the required precision [129]. Therefore
the path of well-described artificial mouth measurements has been chosen here. For the separate
treatment of the resonator and the double-reed, existing classical models have been used. Modifica-
tions to these models are suggested and verified experimentally. The influence of the musician is
incorporated by the lip force-dependent initial reed slit height. For this investigation a measurement
setup has been built that allows precise adjustment of lip force during playing. With measurements
of the artificial mouth parameters blowing pressure, mouthpiece pressure, volume-flow rate and
axial lip position on reed, the experiment is fully described for a given resonator setting represented
by an input impedance curve. By use of the suggested empirical model the adjustment parameters
can be turned into model parameters. A large data set from blowing experiments covering the
full tonal and dynamical range on five modern German bassoons of different make is given and
interpreted.

The experimental data presented with this work can be a basis for extending the knowledge and
understanding of the interaction of instrument, mouthpiece and player. On the one hand, they
provide an objective insight into tuning aspects of the studied bassoons. On the other hand the
experiments define working points of the coupled system by means of quasi-static model parameters.
These may be useful to validate dynamical physical models in further studies.
The experimental data provide an important prerequisite for scientific proposals of optimizations of
the bassoon and other reed wind instruments. It can further serve as a fundament for the interdisci-
plinary communication between musicians, musical instrument makers and scientists [174].
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ᾱ [-] Effective acoustic boundary layer loss coefficient
α̃, α̃ f , α̃g [-] Loss coefficients defined in section 2.1.4
α′ [m] Equivalent acoustic boundary layer thickness
α [-] Global quasi-static flow parameter defined in section 4.1.2
β Loss parameter defined in [125]
γ [-] Ratio of heat capacities under isobaric and isochoric conditions
γ [-] Dimensionless blowing pressure
γE Euler-Mascheroni-constant
δ [-] Radius ratio in section 2.1.2
δt [s] Time Step
δv [m] Viscous boundary layer thickness
δt [m] Thermal boundary layer thickness
εv Loss parameter defined in [125]
ε [-] Squared ratio of cross sections
ζ [-] Hydraulic loss coefficient
ζ [-] Dimensionless embouchure parameter
η [N s/m2] Dynamic viscosity
θ Trigonometric term defined in section 2.1.2
κ [-] Reed stiffness exponent
κ [J/s /(m K)] Thermal conductivity
λ [m] Wavelength
µ Mean value
µr [kg/m2] Effective mass
ν [m2/s] kinematic viscosity
ξ [-] Dimensionless length correction section 2.1.4
ρ [kg/m3] Density
τ [s] Periodic time
σ Standard devi-

ation
Φ [-] Rotation angle
Ψ [-] Dimensionless length correction defined in [128]
ω [1/s] Angular frequnecy
ωr [1/s] Reed angular resonance frequency

Operators

˙(·) First time derivative
¨(·) Second time derivative
∂(·) Partial derivative
d(·) Infinitesimal variation
ˆ(·) Amplitude value

∆(·) Differential value
¯(·) Mean value
˜(·) Non-dimensional value
|(·)| Modulus



x List of Symbols

Subscripts

(·)0 Offset value at zero frequency
(·)∞ Initial, time independent value
(·)1 Input end
(·)2 Output end
(·)A Depending on the axial position
(·)a Re-attachment point
(·)av Average
(·)adp Adapater
(·)cyl Cylindrical
(·)con Conical
(·)circ Circular
(·)c Closed
(·)o Open
(·)d Dynamic
(·)decr. Decreasing
(·)incr. Increasing
(·)e Elliptic
(·)p Parabolic
(·)F , (·)B given by Fletcher, Benade, respectively
(·)h Associated with the reed slit height h
(·)hole Tone hole
(·)in Intake
(·) j Jet
(·)m Mouth
(·)r Reed
(·)max Maximum value
(·)min Minimum value
(·)meas Measurement value
(·)model Model estimate
(·)nom Nominal
(·)pM associated with the pressure parameter pM

(·)qA associated with the flow parameter qA

(·)res Residual
(·)read Reading
(·)RMS Root-Mean-Square
(·)s Sound
(·)sat Saturation

Other symbols

F Periodic function
< Real part
N Numerator
D Denominator



1 Introduction

1.1 Motivation

The bassoon is a woodwind instrument blown with a double-reed mouthpiece. The conical air
column is sharply bent inside the instrument, at the bottom of the wooden corpus. At its small end
a thin curved metal tube, the so-called bocal (or crook), connects the corpus and the mouthpiece.

Figure 1.1 Corpus and bocal of a modern German bassoon. Picture taken from [171]

The stimulus for this thesis was the question of how the bocal of a bassoon affects its sound. Many
bassoonists report a life-time spent searching for the optimal bocal, yet their requirements are
simple: It should just complement their instrument. That means that the bocal should be suited to
their playing and reed-making habits and provide perfect intonation together with an even, pleasant
tone colour throughout the playing range. It should not itself have any bad notes, and it should
compensate for any bad notes in the body of the bassoon. Musical instrument makers, who are able
to manufacture nominally identical bocals within very small geometrical tolerances, find it hard to
understand the large variation in bocal quality that musicians apparently are able to detect.

Against this complex background, the work of Grundmann et al. generated much interest. By
carrying out purely numerical studies based on fluid dynamics, they proposed a new design for the
bassoon bocal [82, 83, 81]. This development, once put into practice by an associated woodwind
instrument maker, raised many questions regarding the correlation between the design of a wind
instrument and its acoustical performance, and on the consequences and relevance of subtle geo-
metric changes for its playability. The quest for answers or partial explanations to these kinds of
questions is one of the major fascinations in the research discipline of musical acoustics, and it has
been an inspiration to highly gifted scientists for many decades.
It seems paradoxical, however, that the greatest achievements have undoubtedly been made by
craftsmen. The tremendous degree of maturity in today’s orchestral musical instruments has been
reached predominantly without scientific assistance, and rather through experience and intuition.
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The present author is strongly aware of this fact and it is far beyond the scope of this thesis to try to
develop a new theory or a new musical instrument design. The general objective is to provide an
inventory of performance characteristics as observed on bassoons of given design under controlled
and realistic conditions, using state-of-the-art measuring equipment. This inventory, together
with a suited experimental apparatus and the measurement strategies may be used as tools for the
suggestion and validation of modifications on the reed wind instruments.
As an introduction to the complexity of this task, a brief overview of the construction of the
bassoon and its playing technique will be given here1 to point to the acoustical peculiarities of this
instrument.
Like most musical instruments, the bassoon has undergone a development process over several
decades, mainly by trial and error. The design of today’s modern German bassoon was developed
in the workshop of Wilhelm Heckel in the late 19th century and has barely changed since then.
The bassoon’s body consists of four joints: the wing joint; the butt; the bass joint; and the bell.
The main bore generally is conical with a gradient in diameter of approximately 1/70. At the foot
of the butt joint this bore is turned through 180 degrees by means of a U-bend in order to make
an instrument with an acoustic length of more than 2.5 meters easier to handle. The bocal is a
narrow curved metal tube connecting the body of the instrument with the double-reed mouthpiece
held between the lips of the player. Depending on construction, the body of the instrument has
about 30 tone holes. The chromatically playable standard tonal range covers the notes between B[1
( f0 = 58 Hz) and D5 ( f0 = 622 Hz)2; skilled bassoonists can play even higher notes.
It is a historical hangover that the first five tone holes in the wing and butt joints are stopped directly
by fingers. Acoustics however demand greater distances between the holes than fingers can stretch.
For that reason these holes are bored at an angle to the main bore-axis of the instrument. Their
length in turn necessitates greater thickness of the instrument wall, giving rise to the characteristic
form of the wing joint and hence to its name. These long, narrow tone holes are an important reason
for the bassoon’s acoustic unevenness, with far-reaching consequences regarding the location of the
remaining tone holes, the way they are operated by means of the keywork, the special fingering
system, and lastly also for the player’s fingering and breath techniques.

When a current of air is blown through the narrow double-reed channel, the mouthpiece pressure
decreases and the two reed-blades deflect until they touch. Inertia in the flow arising from this
complete interruption causes a negative pressure pulse to travel down the air column of the instrument.
It is reflected back at an opening in the bore and returns to the reed as a positive pressure impulse. The
time of flight depends mostly on the position and size of that opening. However, in passing both ways
through the irregular bassoon bore with local variations in taper and closed tone holes, the reflected
pressure contains information about the complete bore when arriving back at the reed. Taking this
into account, it is evident that any of the tone holes to some extent influences every single fingering
to some extent, not only those resonator opening(s) which determine the effective acoustic length.
In the light of this complexity, the reform of the acoustical design of the resonator which the
bassoonist Carl Almenräder initiated in 1825, and which came to fruition in the late 19th century
in the workshop of Wilhelm Heckel [85], cannot be valued highly enough. These two master
instrument makers developed a system of tone holes which retains the historic construction of
the body of the bassoon and, taking account of its ergonomic limitations, makes it possible to
play chromatically. Inspired by the discoveries of Gottfried Weber [165, 166], a compromise was
worked out which rests extensively on empirical experience and works reasonably well for all
notes. This compromise consists of localized adjustments to the taper of the main bore, and of a
multiplicity of large and small, long and short, vertical and diagonal tone holes, which are operated
through a complex keywork system. Despite some attempts at new and experimental designs, the

1Parts of this overview have been published by the author in [74, 76]. The translation into English is courtesy of
Michael Johnson.

2In this thesis, the note scale is referenced to A4 = 443 Hz, adopting the convention that is, to the knowledge of the
author, currently agreed along German bassoonists.
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acoustic concept of the modern German bassoon has barely changed since then [170, 105].
Its fingering system mirrors the complicated and acoustically irregular construction. To play
some notes, in particular in the upper, but also in the lower register, additional holes downstream
the “active” open tone hole must be opened or closed, to correct the tone for tuning, stability or
sound color. Some of those additional holes are included in what is called a standard fingering
pattern [53], others are fingered involuntarily, because they are operated automatically by clutches
in the keywork. Many players even use individual “helper holes”, required according to their skills
and habits, in special dynamic regimes or to correct the tuning of individual notes on an individual
instrument. These peculiarities obscure the underlying logic [104] in the bassoon fingering system,
which requires intensive practice and a high degree of finger dexterity.

So far, the reed has not been considered. From the point of view of the musician, it is the most
important part of the story. The fingering sets up a blend of air column modes which favors an
oscillation in a certain frequency range that is small with respect to the tonal range of the instrument.
In the light of the extreme sensitivity of the human ears in frequency detection, however, a deviation
of 0.5 % may be unacceptably large in a musical context. As a consequence, intonation has to be
corrected during performance. The player must use his embouchure and fine-tune the slit height of
the vibrating reed with his lips to adjust the pitch of each note individually. The required tightness
of embouchure is far from being static like the fingering pattern. It largely depends on the desired
dynamic level and further on the properties of the reed, such as the shape, the material properties,
the age and so on.

In the light of the engineering scope of this thesis, the main objectives are the following:

• Create experimental environments featuring repeatability and precision in proper degrees.

• Identify parameters describing realistic experimental situations in the context of basic existing
models.

• Characterize the system by the totality of musically relevant regimes, i.e. covering the tonal
and dynamic range.

• Reveal underlying systematics where possible.

• Find indications for the relevance of the results with regard to experiences reported by
practitioners.

Model parameters derived from such experiments might be a valuable contribution to further
investigations into the physical modeling of self-sustained oscillations in reed wind instruments. A
long-term goal could then be to develop suggestions for targeted modifications of the instrument.
Following the presented methodology, this goal can be reached subsequent to proving the relevance
of laboratory results in the artistic and musical context.

1.2 Scientific Approaches to Woodwind Musical Instruments
Early scientific descriptions of musical woodwind instruments date back to 1816, when the mu-
sicologist Gottfried Weber published a comprehensive set of four articles entitled “Versuch einer
praktischen Akustik der Blasinstrumente” (An Attempt at Functional Wind Instruments Acous-
tics) [164]. From phenomenological observations, he identified of the fundamental differences in
the excitation mechanism of flue, free reed and beating reed organ pipes, and he further describes
the basic principles of woodwind tone-hole design. Interestingly, it was his work that inspired
the pioneering bassoonist Carl Almenräder who proposed his new, and at that time revolutionary,
bassoon design just a few years later [165, 166, 7]. In principle, this is the bassoon design which
has subsisted until today.
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One may speculate whether Weber’s treatise served also as an inspiration to his namesake, the
physicist Wilhelm Weber. However, it was the latter who investigated free reed organ pipes and
ten years later, in 1829, presented a theory concerning the coupled motion of reed and air-column.
This led him to a “pitch compensating” design of a reed for a reed organ pipe whose fundamental
frequency does not change with the blowing pressure3 [168]. In this study Wilhelm Weber is fully
aware of the greatly increased complexity of reed wind instrument mouthpieces (namely clarinet,
bassoon and oboe), but he attributes this complexity to their geometry, material properties and
clamping, rather than to the fundamental difference, that those reeds are usually beating.
Weber concludes his treatise with a very remarkable note, which is pragmatic and clear-sighted at
the same time:

”As soon as one fixes the reeds of clarinet, oboe or bassoon in the same manner as a
free reed in the lingual organ pipe, the same theory (...) applies and one could fairly
hope to solve one of the most complex and useful tasks that one can imagine when
applying a theory to experience, namely to build a large number of musical instruments
according to well-established theoretical rules, as is possible for optical instruments.”

Another forty years later it was the pioneering acoustician Hermann von Helmholtz who presented
a full description of a beating reed coupled to a resonating air column, in an appendix of his
classic book “Die Lehre von Tonempfindungen” (On the Sensation of Tone) [163], added to the
fourth edition in 1877 [15]. The application of scientific results in instrument making was at that
time advanced by Theobald Böhm who invented a new, systematic design for flute, oboe and
clarinet4 [22]
Based on the results of Weber and von Helmholtz, Henri Bouasse presented a set of fundamental
studies in his two volume book “Instruments à Vent” (Wind Instruments) [24, 25].

In the middle of the 20th century, when bassoon design apparently reached the mature status of what
is known today as the modern German bassoon (Heckel-type), wind instrument research started to
go increasingly into detail.
A pioneering comprehensive study of woodwind acoustics has been presented by Nederveen [125],
who, based on analytical considerations, provided a framework for tone hole calculations taking
into account bore perturbation and the flow induced by the reed motion. Considering many practical
issues of woodwind instrument design and performance, his study, supported and validated by
detailed measurements of woodwind geometries, is still a classic today.
Refinements of theories for calculations on the resonator were proposed out at the same time by
Benade, who derived an analytic model of woodwind tone holes [14] and exploited the electro-
acoustical analogy to model woodwind air columns as a network of lumped impedances [19].
Simultaneously, the basis for research into the action of the reed, and its interaction with the
resonator, was elaborated. Backus presented one of the first detailed experimental studies of the
coupled oscillations in a clarinet [8], and refined the theory for small amplitude non-beating regimes.
With the incorporation of this in an experimental apparatus [169] by Backus, the measurement of
input impedance of musical wind instruments and thus quantitative studies of resonators became
possible [9, 30]. These inspired fundamental physical models of the coupled reed-resonator, like
those by Wilson and Beavers in the frequency domain [172] and by Schumacher [147] in the time
domain.
The research of Benade and his co-workers yielded many important results especially in reed
wind instruments [178, 156, 96, 17, 20], most of which are collected in his comprehensive classic
textbook “Fundamentals of Musical Acoustics” [16].
A basic non-dimensional model of the reed-resonator interaction, along with a profound theoretical

3Wilhelm Weber in the same year published an abridged comprehensive version of his article in Gottfried Weber’s
musical journal, preceded by a foreword by the latter [167].

4A bassoon design of his based on the same acoustic principles, and being more systematic than the classical
Almenäder/Heckel layout, was however rejected by practitioners because of its inbeautiful timbre [105].
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analysis of the aeroacoustics of the flow in the reed channel is elaborated by Kergomard [102] and
Hirschberg [86] in the book Mechanics of Musical Instruments, jointly edited with Weinreich.
Since then, many important works have contributed to the present state of the art in musical acoustics
research. Portable input impedance measurement systems for wind instruments are nowadays
available [138, 48], with commercial software for musical instrument makers’ workshops.
Methodologies to use simple air-column models for woodwind design have been proposed [100,
109] and applied [122, 132, 76] with some success.
Fundamental experiments on the valve characteristics of the reed exciter have been carried out[40,
161, 4] which have confirmed earlier analytical predictions [89]. The classic single-reed model
has been proven to be useful in general also for double-reeds under quasi-static conditions [4],
and has been applied in sound synthesis physical models [1]. With time-domain modeling it has
been possible to show mode-locking effects [129] on a clarinet. Periodic steady-state solutions for
the non-linearly coupled reed-resonator system can be obtained from hybrid modeling techniques
such as the harmonic balance method [72]. Other researchers have set up two-dimensional models
for detailed numerical investigations in the fluid-structure interaction at the single reed [39]. The
present state of the art in modeling the complete system is to use an extended analytical model [152]
to predict a static solution and apply a numerical continuation technique [94], to explore the
blowing pressure ranges for a given resonator setting. Applications which are ready to use are
freely available online.
Experimental research on wind instruments in playing conditions has developed greatly, in two
directions: the in vitro approach using artificial mouths [11, 150, 119, 42, 3, 115, 75, 2] on the
one hand, and the in vivo approach on the other, which encompasses measurements at the reed or
player’s mouth during musical performances [68, 32, 84, 113]. The first approach has revealed
many fundamental aspects of the reed excitation mechanism, e.g. detailed knowledge of the
flow-field inside a saxophone mouthpiece [115], but the imitation of realistic embouchures by a
technical device is still problematic. With the latter approach, enlightening observations on the
interaction of musician and musical instruments have been made, e.g. on the role of the vocal tract
in saxophone playing [32], but it is very difficult to set up experiments in which the interaction
between musicians and sensors does not disturb their performance.
Quite a number of questions remain open, especially on the respective roles of resonator, reed and
embouchure in the settling of a fundamental frequency. Even though numerical physical models do
generally explain the coupling process, fundamental frequency estimates often match the expected
pitch poorly. In vivo measurements at the reed, e.g. flow field measurements or reed motion
measurements, are still extremely difficult and their repeatability may be biased by large geometric
differences between reeds and, in addition, changes in material properties in the course of the
experiment, in particular due to changes in the moisture content.

More than 150 years ago, Weber was already aware of this complexity and very pessimistic about it:

“There is such a great amount of indeterminacy in the manufacture of those instru-
ments, namely, that (...) the reed blades (...) are simply tied together, that a detailed
investigation of the reed’s influence is impossible, unless its assembly is changed.”
[168]

Even though Weber was not completely correct in that point, most researchers interested in double-
reeds may indeed agree, that investigations into these most delicate parts are intricate and tedious.
It is the sincere hope of the author, that this present work will provide valuable steps on the way for
anyone aspiring to go further.



6 1 Introduction

1.3 Organization of the Thesis

The thesis is organized in six parts:

Chapter 1 is an introduction.

In Chapter 2 the acoustic properties of the bassoon’s resonator are investigated. A résumé of a
one-dimensional air column model is presented, along with measurements of acoustic impedance
spectra including estimations of experimental uncertainty.

Chapter 3 is dedicated to the double-reed mouthpiece, which is described in a simplistic way as
a harmonic oscillator with the tip displacement as a single degree of freedom and a non-linear
pressure-flow characteristic. An experimental setup is presented to measure the corresponding
parameters according to this model in relation to real reeds.

In Chapter 4, the influence of a lip force exerted on the reed-blade is investigated, by use of an
adapted analytical model and measurements of characteristics in a set of realistic embouchure
situations. An empirical model is derived to assign reed model parameters to any embouchure
situation given by a pair of values of lip force and blowing pressure.

The behavior of the coupled system of resonator, reed and embouchure under playing conditions
is discussed in Chapter 5, by analyzing a set of experiments with an artificial mouth. For the
tonal and dynamical range of the bassoon, benchmarking values are given and the performance
characteristics are analyzed in view of the harmonicity of the resonator.

Each of these chapters is presented with a short introduction and a concluding summary.
Finally Chapter 6 summarizes the main results and provides some possible directions for future
research.



2 Acoustical Properties of the Bassoon Air
Column

2.1 Wave propagation in tubes

The aim of this Chapter is to introduce a basic analytic model of the air-column of a woodwind
instrument. The discussion starts from the fundamentals of plane-wave propagation in a duct
with the one-dimensional wave equation [141]. The transmission-line terminology to calculate
air-column resonances from impedance networks models is presented, formula of most relevant
elements are revisited and wall losses are introduced. Model calculations and measurements
are juxtaposed and practical aspects of the measurement, such as repeatability and accuracy are
discussed. A rescaled graphical representation of measurement results is introduced. This helps
to understand the acoustical layout of the bassoon and to relate the harmonic properties of the
resonator to aspects of bassoon performance, which will be the focus of Chapter 5.

2.1.1 Theory

The propagation of sound waves in air in absence of wall losses is described by the wave equation.
The case of a sound wave propagating in a tube of uniform cross section can be treated at low
frequencies as a one-dimensional problem. In this case, the wave equation reads

∂2 p
∂t2 = c2 ∂

2 p
∂x2 , (2.1)

where p(x, t) is the pressure, at the time t at the location x. The D’Alembert general solution to this
equation is a superposition of two arbitrary functions F1 and F2 of the argument (ct ± x)

p(x, t) = F1(ct − x) + F2(ct + x). (2.2)

A harmonic motion in the complex notation of the type

F = <{e jω(t± x
c )} (2.3)

satisfies Eq. (2.1) [103]. This expression can be interpreted as a pressure wave traveling at the
speed c forward (+) or backward (-) in x- direction, oscillating with the angular frequency ω.
Consequently, the superposition of these waves is also a solution to Eq. (2.1)

p(x, t) = A e jωt− jkx + B e jωt+ jkx (2.4)

where k = ω/c is the wave number and A and B are the pressure amplitudes of the waves depending
on ω. The physically relevant solution is the real part of Eq. (2.4).
The velocity u is linked to the pressure p by the one-dimensional equation of motion

−
∂p
∂x

= ρ
∂u
∂t
, (2.5)
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where ρ is the density. Thus the velocity u in space and time becomes

u(x, t) = −
1
ρ c

(
−A e jωt− jkx + B e jωt+ jkx

)
. (2.6)

The quantities of interest are the resonance frequencies, therefore it is most useful to treat the tube
problem in the frequency domain as a function of ω and examine the acoustic impedance Z, which
is for any location x defined as the ratio of pressure p to volume flow u S

Z(x, ω) =
ρ c
S

A e− jkx + B e jkx

A e− jkx − B e jkx (2.7)

where S is the cross section of the tube.
A tubular element of length L is defined, whose impedances at the input Z1 = Z(0, ω) and output
end Z2 = Z(L, ω) are

Z1 = Zc
A + B
A − B

(2.8a)

Z2 = Zc
A e− jkL + B e jkL

A e− jkL − B e jkL , (2.8b)

where Zc is the characteristic impedance of the tube1.
For the modeling of acoustical ducts it will be very useful to relate the input impedance Z1 of the
duct to its output impedance Z2. Rearranging Eqs.(2.8) yields [103, 59]

Z1 = Zc
j Z2 cos(kL) + j Zc sin(kL)
j Z2 sin(kL) + j Zc cos(kL)

. (2.9)

The basic example of an open cylindrical tube with radius r and length L with characteristic
impedance Zc = ρc/(πr2) and output impedance Z2 = 0 yields

Z1,cyl,open,ideal = j Zc tan(kL). (2.10)

This is the analytical solution for the input impedance of a circular tube with an ideally open
termination.

2.1.2 Transmission Line Modeling

Applying the electro-acoustical analogy, the one-dimensional plane-wave propagation in a duct can
be represented as an equivalent electrical circuit. The transmission of waves through the elements
of such a circuit can formally be described by a series of 4-pole elements, a so-called transmission
line.
It will be shown here, how the elementary equation Eq. (2.9) can be rewritten in the transmission-
line formalism in order to calculate plane-wave propagation in musical wind instruments.
First of all, the unbranched one-dimensional waveguide with a varying cross section is separated
into a sequence of uniform tubular elements. Starting with the output impedance of the last el-
ement at the far end of such a compound model geometry, by successive solving of Eq. (2.9)
the input impedance of the first element at the input can be calculated. In wind instrument re-
search, this approach has been proposed first by Plitnik [142] to calculate the input impedance
spectrum of an oboe and many modifications and extensions have been documented since then
[30, 96, 118, 130, 46, 108].
For the numerical concatenation of acoustical elements to model a complex waveguide, the trans-

1The characteristic impedance of the tube Zc is the specific characteristic impedance of air ρc divided by the cross
section S of the tube
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mission line formalism [
p1
U1

]
= T12

[
p2
U2

]
, (2.11)

is useful, where a (2x2) matrix T12 links the pressure amplitude p and the acoustical volume flow
amplitude U at the input (·)1 and output (·)2 end of the duct.
The matrix T12 is called transmission matrix and is given by

T12 =

[
A12 B12
C12 D12

]
, (2.12)

which represents the sound transmission behavior of the duct by means of the matrix coefficients
A12, B12, C12 and D12, whose values depend upon the physical boundaries.
In analogy to electrical network engineering, an acoustical waveguide can be treated as a lumped
element model represented by a series of perfectly joined duct segments, each of which is described
by Eq. (2.12). The transfer matrix of a waveguide separated into n duct segments between input (·)1
and output (·)n writes

T1n =
∏n

i=1
Ti,i+1 =

[
A1n B1n

C1n D1n

]
(2.13)

In duct acoustics, the formalism introduced with Eqs.(2.11),(2.12),(2.13) is referred to as the
Transfer Matrix Method [124] (TMM). It is useful in musical acoustics to model the plane-wave
propagation in tubular resonators of wind instruments and obtain their resonance frequencies from
the calculated input impedance spectrum.
Given the output impedance Zn of the nth element of a composed waveguide characterized by the
transmission matrix T1n, the input impedance Z1 can be calculated from

Z1 =
A1n Zn + B1n

C1n Zn + D1n
. (2.14)

It should be noticed, that the resulting input impedance Z1 obtained from solving Eq. (2.14) with
Eq. (2.13) is numerically identical to the input impedance Z1 obtained from n-times successive
solving of Eq. (2.9), starting from the nth elementwise backwards to the first element, as proposed
by Plitnik [142]. This approach is called the Transmission Line Method.

The transmission matrix formulation Eq. (2.11) is generally very convenient, since any waveguide
segment whose transmission behavior can be represented by matrix coefficients according to
Eq. (2.11) can be included into Eq. (2.13). Therefore the approach allows to model the wave
propagation in a complex composite waveguide, by segmenting it into basic elements.
For the case of a woodwind resonator, which is schematically shown in Fig.2.1, there are four
aspects that have to be considered for the modeling:

duct: waveguide element of main bore

radiation: duct termination, closed or open to the ambiance

tone hole: side branch to the main bore, open or closed

losses: visco-thermal losses at the wall
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radiation

duct

tonehole

radiation

losses

Figure 2.1 Schematic view of a conical woodwind instrument

Cylindrical Duct Element

A basic lumped element is a cylindrical duct segment with length L and radius r. The matrix
formulation is derived from Eq. (2.9), by replacing Z1,2 by the ratios (p/U)1,2, at the input and
output end, respectively

p1

U1
= Zc

j p2
U2

cos(kL) + j Zc sin(kL)

j p2
U2

sin(kL) + j Zc cos(kL)
, (2.15)

where U is the volume flow u S . Separating nominator and denominator yields a set of equations

p1 = p2 cos(kL) + U2 Zc j sin(kL),
U1 = p2

1
Zc

j sin(kL) + U2 cos(kL). (2.16)

Bringing this equation into the TMM formalism, the coefficients of the transmission matrix Tcyl of
the cylindrical acoustical duct segment

Tcyl =

[
Acyl Bcyl

Ccyl Dcyl

]
(2.17)

are found to be
Acyl = j cos (kL)
Bcyl = Zc j sin (kL)
Ccyl = 1

Zc
j sin (kL)

Dcyl = j cos (kL) .

(2.18)

With the cylindrical duct element, it is possible to approximate a cone, if the taper is small enough
that the bulging height s of the wavefront (Fig. 2.2) can be neglected. In that case an equivalent
cylindrical element with mean radius is a good first order approximation, although the pressure
iso-surfaces are spherical, not planar. A tubular waveguide with smoothly varying taper along
the main axis can be approximated by a stepped tube concatenated of cylindrical duct segments
described by Eq. (2.18).

Conical Duct Element

A duct segment which is better suited to model a tapered waveguide is a conical frustum, described
by the input and output radii r1 and r2, and length L, as shown in Fig. 2.2. By using elements of this
type, the number of segments needed to model the plane-wave propagation in a tapered waveguide
can be reduced.
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duct equivalent circuit

Figure 2.2 Schematic view of a conical duct element

Analogous to the above derivation of transfer matrix coefficients for the plane-wave propagation in
a cylindrical element from the wave equation (Eq. (2.1)), the transfer matrix coefficients for the
spherical wave propagation in a conical element can be derived with some calculus [61] from the
one-dimensional Webster-equation

∂2 p
∂t2 = c2 ∂

2 p
∂x2 +

c2

S
dS
dx

∂p
∂x
, (2.19)

where S is the surface area of an isophase surface that crosses the duct center axis at x.
The solution for the input impedance from this equation is given in the literature [137, 59]. Rear-
ranged to match the TMM formalism, the coefficients of the transmission matrix Tcon of the conical
acoustical duct segment

Tcon =

[
Acon Bcon

Ccon Dcon

]
(2.20)

are found to be
Acon =

r2
r1

j cos
(
k L −

(
θ2 −

π
2

))
(sin θ2)−1

Bcon = Zc2
r2
r1

j sin (k L)
Ccon = 1

Zc1

r2
r1

j sin (k L + θ1 − θ2) (sin θ1 sin θ2)−1

Dcon =
Zc2
Zc1

r2
r1

j cos
(
k L +

(
θ1 −

π
2

))
(sin θ1)−1.

(2.21)

where θ1 = arctan(k x1) and θ2 = arctan(k x2).
The analogy to the formulation of the cylinder (Eq. (2.18)) is obvious. The effect of taper is
represented by the terms in θ1,2 and the duct radius ratio r2/r1 (Zc1/Zc2 = r2

2/r
2
1).

It can be seen, that the cylindrical duct segment is a special case of the conical segment with
vanishing taper:
As r2/r1 → 1, for a fixed segment length L, it follows x1, x2 → ∞, 1/(k x1)→ 0, and θ1, θ2 → π/2
and therefore Eq. (2.18) is part of Eq. (2.21), for vanishing taper.
No distinction between conical and cylindrical waveguides is necessary, and the TMM-formulation
for the conical waveguide Eq. (2.21) can be used universally.

Whereas the duct segment is a distributed element, whose transmission characteristics depend upon
its length, radiation boundaries and tone-holes can be modeled as lumped acoustic elements[96].
These have no physical length, although the term correction length will be used to model the
effective lengthening of the bore at a termination [130].
Previous to the discussion of tone-holes, the representation of duct openings as zero-dimensional
radiation impedances will be outlined.
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radiation equivalent circuit

Figure 2.3 Schematic representation of a radiation boundary

Radiation at a duct termination

At the termination of a duct, the air-flow from the duct is suddenly expanded. A part of the energy
is radiated, as the pressure wave-front travels away from the termination. Another part of the energy
is reflected and a pressure wave travels back into the pipe. This behavior can be represented in
terms of the transmission-line theory by a lumped element representing the radiation impedance Zr

of the duct
Zr = j Zctan(ktr), (2.22)

where tr is an equivalent length accounting for the inertia of the flow outside the tube by a
hypothetical effective prolongation of the tube. The analogy to Eq. (2.10) is obvious, and the
impedance of the non-ideally terminated pipe of length L is simply Zcyl.open,real = j Zc tan(k(L + tr)).
Therefore tr is called a length correction. Details of the geometry of the termination are important in
the determination of tr. A broad variety of configurations has been studied experimentally in detail
[47], but here the focus is only on five termination configurations typically found in woodwind
instrument resonators. For a tube of radius r the length corrections are [47]

tr =



r
(
0.613 1+0.044(kr)2

1+0.19(kr)2 − 0.012 sin2(2kr)
)

open, unflanged (R→ r)

r
(
0.822 1+0.77kr

1+0.77kr+(0.77kr)2

)
open, infinitely flanged (R→ ∞)

r
(
0.822 − 0.156

(
r

Rcirc

)
− 0.057

(
r

Rcirc

)6
)

open, circularly flanged (Rcirc = R)

r
(
0.822 − 0.47

(
r

Rcyl

)0.8
)

open, cylindrically flanged

π
2 k closed,

(2.23)

where Rcirc and Rcyl are the outer flange radius and the radius of the cylindrical flange of the
termination (Fig. 2.3). The cylindrical flange corresponds to situation where a hole is perpendicular
to the main bore, and Rcyl is the outer radius of the main bore.
For the closed termination tr is not a length correction. The above formulation uses the symmetry
tan

(
x + π

2

)
= − cot(x) to assure the ideal pressure reflection at a closed boundary.

Tone holes

A tone hole is a side branch of the main bore that can be interpreted as a shunt pathway for the
oscillating pressure. In terms of TMM, this can be modeled by the transmission matrix of a lumped
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Figure 2.4 Schematic representation of a tone-hole in a woodwind instrument and its
equivalent circuit.

element T-circuit2 including additional equivalent shunt and series impedances [96, 97]. A sketch
of the tone hole its equivalent circuit is shown in Fig. 2.4 The oscillation of pressure into the tone
hole chimney effectively acts as an acoustic compliance in the main duct, represented by a shunt
impedance Zh. The effective widening of the duct at the perforation leads to an apparent shortening
[130] of the main duct, which is represented by the series impedances Za1,2.
Using the Kirchhoff’s circuit laws, the set of equations for the equivalent T-circuit is

p1 = p2
(
1 +

Za1
Zh

)
+ U2

(
Za1 + Za2 +

Za1Za2
Zh

)
,

U1 = p2
(

1
Zh

)
+ U2

(
1 +

Za2
Zh

)
.

(2.24)

Considerations on the equivalent T-circuit of a tone hole are based on the assumption of the
symmetry Za1 = Za2 = Za/2 [96]. The transmission matrix for the tone-hole then becomes

Thole =

[
Ahole Bhole

Chole Dhole

]
(2.25)

with the elements
Ahole = 1 +

Za
2Zh

Bhole = Za +
Z2

a
4Zh

Chole = 1
Zh

Dhole = 1 +
Za
2Zh
.

(2.26)

The series and shunt impedances for the tone hole of radius b and height t are given by [46]

Za = j Zc (k ta) (2.27a)

Zh = j Zch (k ti + tan(k(tm + t + tr)) (2.27b)

where Zc = πr2 and Zch = πb2 are the characteristic impedances of the main duct and the tone hole
chimney and

ta = −b 0.282δ2

ti = −b(0.75δ2.7 − 1.4δ2 + 0.82)
tm = −b(0.026δ3 + 0.125δ)

(2.28)

2In contrast to the tone hole, the main bore is represented as a distributed transmission line element, whose parameters
depend on the physical length of the duct segment
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are length corrections to include the effects of the penetration of the pressure field into the hole
(ta), the increased inertia of the air entering the hole (ti), the underestimation of the duct volume at
the tone hole junction (tm) [130],[46]. The ratio of the tone hole radius b at the tone-hole position
and the main duct radius r is δ = b/r. The radiation length correction tr is given by Eq. (2.23), by
replacing the pipe radius r in this equation by the tone hole radius b.
The matrices of lumped (tone hole) and distributed (main duct) elements can be multiplied to
characterize the transmission of a perforated duct [96, 124].
Note that open and closed tone holes can be modeled analogously. In the case of the closed tone hole,
the radiation parameter tr is set to π/(2 k), such that the tangent in the tone hole shunt impedance
(Eq.( 2.27b)) becomes a negative cotangent. Then, tr is not a length correction: The inversion
models a pressure antinode at the reflecting closed end of the chimney instead of representing an
effectively prolongation to the chimney with a pressure node reflection at the open boundary.
This seemingly simplistic approach of converting an essentially three-dimensional acoustical situa-
tion into a one-dimensional impedance model has been theoretically proven to be valid, as long as
the tone hole radius is small compared to the main duct radius, which must also be small compared
to the spacing between the tone holes [112]. This is indeed the case for the majority of tone holes
on the bassoon.

At this point, all basic3 elements to model woodwind bores of small taper with tone-holes have
been introduced. So far, ideal boundaries for the fluid at the wall have been assumed. In the next
section, an approach to include the effect of wall losses is outlined.

Visco-thermal losses at the wall

Friction and heat exchange between wall and fluid lead to velocity and temperature gradients along
the duct radius. A simplified approach to account for these effects has been derived from acoustical
boundary layer theory [114, 141].

losses

r

u

\d
e

lt
a

x

lossesδ(
ω

)

ρ, η, κ, C , C  
p              v       

c, ω

Figure 2.5 Schematic representation of velocity profile and boundary layer in a conical
duct

The existence of boundary layers reduces the effective radius of the duct (Fig. 2.5). Due to mass
conservation, the apparent density of the fluid is then increased and the wave propagation speed is
lowered. Besides this, energy is dissipated in the boundary layers and the pressure amplitude of

3For more complex geometrical elements such as rapidly flaring sections, expansion chambers, or bends of the main
duct, in which the plane-wave approximation is questionable, approximate 1-D descriptions are given in the literature
(e.g. [128, 159, 62]).
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the wave is reduced. These effects can be directly included into the solution of the wave-equation
Eq. (2.4) by replacing the wavenumber k with the complex quantity kc defined as

kc = k (1 + α1 − jα2) , (2.29)

where α1,2 are dimensionless loss coefficients related to the viscous and thermal boundary layer
thickness. This dispersion relation [114, 141] can be interpreted as follows: The real part of kc

lowers the wave-propagation speed by the factor 1/(1 + α1) to account for the increased effective
inertia and the additional imaginary term in α2 introduces wave attenuation4 due to frictional
resistance.
The magnitude of the loss coefficients α1,2 depends on the impact of the boundary layer effects on
the wave propagation in the duct, which can be quantified through the ratios δv/r and δt/r, with r
being the duct radius and δv and δt being the viscous and thermal boundary layer thicknesses

δv =
√

η
ω ρ ,

δr =
√

η
ω ρ

√
κ

ηCp
,

(2.30)

where η, ρ, Cp, and κ are the dynamic viscosity, density, isobaric specific heat and thermal conduc-
tivity of the fluid, and ω = 2π f is the angular frequency [19].

For the loss coefficients α1,2 approximation formula are given in the literature which stem from
series expansions to approximate Bessel functions [99]. The validity and accuracy of these
approximations depends upon the frequency-dependent ratio δv/r.
For the case of the small diameter duct with r ≤ 2 δv approximations for the loss coefficients are
[99]5

α1 = 2
√
γ
[
δv
r + r

δv

(
1

12 −
1
16 Pr γ−1

γ

)]
− 1,

α2 = 2
√
γ
[
δv
r −

r
δv

(
1
12 −

1
16 Pr γ−1

γ

)]
,

(2.31)

where Pr is the Prandtl Number Pr = (ηCp)/κ, and γ is the ratio of the specific heat in isobaric
and isochoric conditions γ = Cp/Cv.

For the case of the large diameter duct with r > 2 δv approximations for the loss coefficients are
[99]6

α1 = 1
2

√
2 δv

r

(
1 +

γ−1
√

Pr

)
+ O(3),

α2 = 1
2

√
2 δv

r

(
1 +

γ−1
√

Pr

)
+

(
δv
r

)2
(
1 +

γ−1
√

Pr
− 1

2
γ−1
Pr −

1
2

(γ−1)2

Pr

)
+ O(3),

(2.32)

to second order accuracy7. Within the scope of the present work, first order accuracy is sufficient,
which leads to some simplifications outlined subsequently.

Effective Loss Coefficient for any tubular Duct

Since the loss coefficients depend upon the radius, α1,2 = α1,2(r), for the case of a duct segment
with varying radius along its main axis, integral mean values over the segment length [18, 157, 108]

4The solutions to the wave-equations have the form p(x, t) = A e jω t− jk x which, by replacing k with kc, becomes
p(x, t) = e−α2 A e jω t− j ωc (1+α1) x. Here, e−α2 is an attenuation coefficient scaling the pressure amplitude A.

5Eqs. (11.h) and (11.g) in [99] correspond to α1 and α2, respectively.
6Eqs. (12.h) and (12.g) in [99] correspond to α1 and α2, respectively
7Third order terms are given in [99]. Considering higher order effects would consequently require to take viscous

dissipation in the main flow into account, which is clearly beyond the scope of this work.
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can be used as effective loss coefficients ᾱ1,2

ᾱ1,2 =
1

x2 − x1

∫ x2

x1

α1,2(x) dx. (2.33)

In most waveguides considered in music acoustics, in the frequency range of interest, δv is small
compared to the duct radius: In case of a bassoon bore, at the fundamental frequency of the lowest
note f0 = 58 Hz, the smallest radius8 at the bocal tip (r ≈ 2 mm) is about ten times larger than the
viscous boundary layer thickness. Therefore it is justified to use the approximation for the large
diameter duct Eq. (2.31) and neglect the terms in (δv/r)2.
To first order accuracy the loss coefficients are then

α1 = α2 = α ≈
α′(ω)

r
, (2.34)

where α′(ω) is an frequency dependent thickness accounting for both viscous and thermal boundary
layer effects. This equivalent boundary layer thickness α′ is about 5% larger than the viscous
boundary layer thickness δv at 20◦C and atmospheric pressure [99, 31].

With respect to lumped element modeling, an effective boundary layer thickness of a tubular duct
segment with constant taper can be calculated, according to Eq. (2.33), from the integral mean of
the local equivalent boundary layer thickness α′, as

ᾱ =
1
L

∫ x2

x1

α′

z
1
x

dx =
α′

L z
ln

x2

x1
=

α′

r2 − r1
ln

r2

r1
(2.35)

where x1 = r1/z and x2 = r2/z are the apical distances of input and output cross sections of the
duct, L = x2 − x1 is the length and z = (r2 − r1)/L is the taper.

Now the effective complex wavenumber for any tubular duct segment with constant taper can be
written

k̄c =

k
(
1 + α′

r2−r1
ln r2

r1
(1 − j)

)
, for r2 , r1

k
(
1 + α′

r (1 − j)
)
. for r2 = r1

(2.36)

In standard music acoustics literature [59] another formulation for effective wavenumber of the
cylindrical duct is given9, which assumes that (α′)2 can be neglected.
The formulation Eq. (2.36) is valid for any waveguide segment with constant taper. For vanishing
taper (z→ 0) the function smoothly approaches the singularity which characterizes the cylindrical
case. This can be proven by evaluating the limit r2 → r1 by use of l’Hospital’s rule:

lim
r2→r1

ln
(

r2
r1

)
r2 − r1

= lim
r2→r1

∂
∂ r2

ln
(

r2
r1

)
∂
∂ r2

(r2 − r1)
=

1
r1

1
=

1
r1
. (2.37)

Although elsewhere stated [108], the effective wavenumber of the cone does not depend upon the
segment length.

8Exceptions are the register holes, which may have radii down to r = 0.4 mm. The boundary layer thickness is then
comparable to the duct radius at low frequencies and these holes appear to be closed.

9Fletcher and Rossing give kc ≈ k
(

1
1−α′ − jα′

)
(Eqs.(8.14),(8.15) in [59]), repeating an approximation by Benade [19]

which is based on the assumption 1/(1 − ε) ≈ 1 + ε. This assumption appears to be needless to the present author, as
it does not lead to any helpful simplification.
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It should be noted here, that the integrand in Eq. (2.33) has been derived explicitly for ducts with
uniform cross section [141]. A more sophisticated approach to incorporate wall losses in conical
waveguides has been presented by Nederveen [125] (see section 2.1.4).

Approximations for the Loss Coefficient

If a first order accuracy is sufficient, both loss coefficients α1,2 = α can be approximated by α′/r,
with

α′(ω) =
1
2

√
2 δv

(
1 +

γ − 1
√

Pr

)
=

1
2

√
2

√
η

ω ρ

(
1 +

(
Cp

Cv
− 1

) √
κ

ηCp

)
. (2.38)

The first term 1/2
√

2 δv accounts for viscous losses10, the second term (1 + (γ − 1)/
√

Pr) accounts
for thermal losses.
In the temperature range of T = 300 ±10 K and atmospheric pressure Benade [19] gives linear
approximations for the physical properties of air which are repeated here:

c = 347.23 (1 + 0.00166 1
◦C∆T) m

s
η = 1.8460 (1 + 0.00250 1

◦C∆T)) N s
m2 · 10−5

ρ = 1.1769 (1 − 0.00335 1
◦C∆T)) kg

m3

γ =
Cp
Cv

= 1.4017 (1 − 0.00002 1
◦C∆T))

√
Pr =

√
ηCp
κ = 0.8410 (1 − 0.00002 1

◦C∆T)),

(2.39)

where ∆T = T−T0 is the temperature difference between the actual temperature T and the reference
temperature T0 = 300 K.
The temperature dependent constants in expression Eq. (2.38) can be lumped into a factor v to give

α′ =
v(∆T)√

f
, (2.40)

where v is

v =
1
2

√
η

π ρ

(
1 +

(
Cp

Cv
− 1

) √
κ

ηCp

)
(2.41)

At 20◦C, v = 1.617 · 10−3. In the literature α′ is often expressed in terms of the loss free wave
number k = ω/c. Near 20◦C, as a rule of thumb, the following expressions are given [46, 59, 31]

α′ ≈ 2.96 · 10−5

√
f

Hz
1
k
≈ 3 · 10−5

√
f

Hz
1
k
. (2.42)

The approach outlined above provides a simple method to include the effect of wall-losses in the
one-dimensional model of sound propagation in a tubular waveguide. All boundary layer effects are
lumped in one non-dimensional, frequency-dependent parameter in an expression for the effective
wavenumber, which becomes complex. To model the lossy case, the formula derived for the ideal,
loss-free case can be used straightforward by replacing the occurrences of the free-space wave
number k with the effective wavenumber k̄c of the duct segment.
The approach is very convenient, as the calculus remains the same for both cases. Replacing k by
the effective, complex wavenumber kc, the originally loss-free theory can be used to model the real
situation11. This approach has been successfully used, and it applies for the main duct, as well as
for tone holes [130, 46].
10Lighthill presents a derivation of this coefficient from an energy balance, stating that the mean rate of a pressure

force per unit volume does an amount of work to the fluid per unit area, which must equal the mean rate of viscous
dissipation energy [114],p.128-136

11This aproach implies that also the characteristic impedance Zc becomes a complex quantity. Formula are given e.g. in
[19, 99, 30, 31]
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2.1.3 Implementation

In musical instruments research, the input impedance spectrum of a duct with known geometry and
radiation impedance can be obtained by successive solving of Eq. (2.9) for each element starting
from the radiating boundary at the output end [142, 130, 149] or, equivalently, by multiplying the
transmission matrices of the segments Eq. (2.13) and solve Eq. (2.14) [96, 118, 111].
When studying the interactions of the musical instruments geometry and its resonance frequencies,
it is interesting to obtain the distributed pressure amplitude along the main axis of the duct. This
information can generally be obtained by the transmission-line approach, but in the case of a
perforated duct, both classical methods of solving include numerical problems, as the tone-hole
matrices are usually badly conditioned. To overcome this, an alternative implementation will
be used here12. The basic transfer matrix formulation Eq. (2.11) of an arbitrary element can be
rearranged as follows [

p1
U1

]
= T12

[
p2
U2

]
⇒

[
p1
p2

]
= S 12

[
U1
U2

]
. (2.43)

The transfer matrix T12 is transformed into a stiffness matrix S 12 [36]

T12 =

[
A12 B12
C12 D12

]
⇒ S 12 =

[
E12 F12
G12 H12

]
, (2.44)

with
E12 =

A12
C12
,

F12 = B12 −
A12 D12

C12
,

G12 = 1
C12
,

H12 = −
D12
C12

.

(2.45)

Equivalently to T12, the stiffness matrix S 12 characterizes an acoustical duct element, with input
pressure p1 and output pressure p2. The conjunction of n elements requires the balance of forces at
the joining cross sections. Assuring mass conservation at the connections, i.e. Ui−,i = -Ui,i+1, a set
of n linear equations is obtained, that can be written as a matrix equation

p1
0
0
...

0
0


=



−E12 F12 0 0 · · · 0
−G12 H12 − E23 F23 0 0

0 −G23 H23 − E34 F34 0
...

. . .
...

0 0 0 −Gn-1,n Hn-1,n − En,n+1 Fn,n+1
0 0 0 0 −Gn,n+1 Hn,n+1 − Zr


·



U1
U2
U3
...

Un−1
Un


, (2.46)

where the boundary conditions at the input and output are given by an input volume velocity U1 and
an output impedance Zr. This equation can be solved for the input pressure p1 and the unknown
volume velocities U2,U3 · · ·Un. The input impedance is then given by Z1 = p1/U1.
This approach is equivalent to classical transmission line assembly Eq. (2.13) and the subsequent
solving of Eq. (2.14).
The advantage of this implementation, however, is that in the post-processing the unknown pressures
p2, p3 · · · pn at the junctions can be calculated13 from the volume velocities U1,U2 · · ·Un according

12This approach has been proposed to the author by Johannes Baumgart
13The condition number of the tone hole transmission matrix is small, and numerical errors grow rapidly when

multiplying inverse matrices to calculate the pressures at the intersections using the classical transmission line
approach Eq. (2.13)
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to the law of conservation of energy. This can be written as a matrix equation to give


p2
p3
...

pn

 =


−G12 H12 0 · · · 0

0 −G23 H23 0
...

...

0 0 · · · −Gn-1,n Hn-1,n

 ·


U1
U2
U3
...

Un


. (2.47)

The numerical problems of badly conditioned (2x2) tone hole transfer matrices can be avoided by
solving this matrix equation. The pressure distribution along a duct with sideholes can be shown
for the complete length, in particular downstream of the first open tone hole.

Summary

The brief overview provided in this sections illustrates a simple and robust method to model the
sound wave propagation in tubular ducts with slowly varying cross section along the main axis and
an arbitrary number of side branches. Resonators of woodwind instruments can be modeled as such
ducts.
This theory has been proven to be useful to calculate the input impedance of woodwind resonators,
and the effect of geometry changes of the resonator on the air column resonances [125, 142, 100].
The well-known theory has been restructured and a simplified notation is given here.
The calculus of the transmission-line model based on one stiffness matrix for the complete system,
as presented here, allows to compute standing pressure wave patterns in a duct with tone holes,
over the complete length.

2.1.4 Remarks on Modeling Wall Losses in a Conical Waveguide

The inclusion of losses by means of an effective wavenumber deserves some discussion for the case
of a conical duct.
A derivation for the modified, complex wavenumber to consider viscous and thermal effects at the
walls of a cylindrical waveguide is given by Pierce [141]. It is not obvious, that this formulation of
a complex wavenumber can be used for the case of the conical duct with varying cross section. In
contrast to the cylindrical duct segment, for the case of the cone loss-dependent pressure gradient
in propagation direction occur.
Many authors (e.g. [30, 20, 118, 55] have used this approximation for conical waveguides to model
them with the Transmission Line Method with the equations given in the preceding sections. They
used an average radius r̄ to calculate an effective wavenumber for a conical duct segment with
r1 , r2.
Instead of modifying the wavenumber in the solution of the ideal case, it appears to be more
elaborate to include loss terms in the wave-equation, and derive solutions to satisfy this modified
equation. This path has been followed by Nederveen, who scaled flow and pressure in the equation
of motion and continuity by means of loss coefficients [125]. The result is a modified Webster-
equation, extended by loss terms. From solving this, an explicit formula for the input impedance of
the conical waveguide is obtained, based on several assumptions.
Nederveen [128] gives a formula14 for the admittance Y = 1/Z of a cross section within a conical
duct for the loss-free case. Rearranging this to match the notation of present work his can be

14(Eq.(8) in [128])
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rewritten for the input impedance of the loss-free cone

Z1 =

 1
j Zc1

 1
k x1
−

(
1

k x2
− j Zc2

Z2

)
+ tan(k L)

1 −
(

1
k x2
− j Zc2

Z2

)
tan(k L)



−1

, (2.48)

This equation can be further rearranged to match the transmission-line formalism for the cone
(Eq. (2.21) in the present work), so both approaches are mathematically identical. The rearrange-
ment15 is shown in Appendix A1.
Including loss terms into the Webster-equation, Nederveen [125] derived an explicit analytical
formula for the lossy cone16 which after some rearrangement to match the notation of the present
work can be written for the input impedance of the lossy cone

Z1 =

 1
j Zc1

1 − α̃g1

k x1
−

(
1 + α̃ f 1

) (1−α̃g2
k x2
− j Zc2

Z2

)
+

(
1 + α̃ f 1

) (
1 + α̃ f 2

)
tan(k L + α̃2 ∆ξ)(

1 + α̃ f 2
)
−

(1−α̃g2
k x2
− j Zc2

Z2

)
tan(k L + α̃2 ∆ξ)



−1

,

(2.49)
where ∆ξ = ξ2 − ξ1 = ln(r2/r1) + g2 − g1 (see Appendix A1 for details)Here, α̃ are frequency and
position dependent loss terms given by

α̃(r) = k x α′

r

α̃ f (r, x) = k x
α′f
r (1 − j),

α̃g(r, x) = (k x)2 α′g
r (1 − j)

and
ξ = ln(k x) + g.

(2.50)

There are three loss parameters α′ which analogously to Eq. (2.38) represent effective boundary
layer thicknesses

α′(ω) = 1
2

√
2 δv (1 +

γ−1
√

Pr

)
,

α′f (ω, x) = f
√

2 δv
(
1 + 1

f ·(kx) +
γ−1
√

Pr

)
,

α′g(ω, x) = g
√

2 δv

(
1 + 1

2g·(kx)2 +
γ−1
√

Pr

)
,

(2.51)

where f and g are factors from a combination of with sinus cardinalis and Cosine integral17

functions evaluated at the position 2 kx given by

f = Ci(2 kx) sin(2 kx) − si(2 kx) cos(2 kx),
g = − Ci(2 kx) cos(2 kx) − si(2 kx) sin(2 kx),

(2.52)

which stem from approximations to solutions of the extended wave-equation.
It can be shown that for the loss free case with δv = 0 the loss terms α̃, α̃ f , α̃g become zero and
Eq. (2.49) becomes Eq. (2.48)

Discussion

Rearranging the well-known formula by Nederveen [125] reveals the analogy of Eq. (2.38) and the
loss parameters α̃ in Eq. (18) which represent boundary layer thicknesses [114]. In the line of this

15An interesting side product of this rearrangement is a reconsideration of the transmission matrix coefficients that
Benade gave to describe the transmission characteristics of an “equivalent circuit for conical waveguides” [19].
Although Benades approach and his equations are sometimes regarded as an approximate solution [59], they are in
fact mathematically identical with the analytic solution Eq. (2.21) given by Fletcher [61].

16(Eq.(23.36) in [125])
17si(x) = sin x

x and Ci(x) = γE + ln x +
∫ x

0
cos t−1

t dt, with γE = 0.57721 being the Euler-Mascheroni-constant.
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argumentation Eq. (2.29) compares with the loss terms Eq. (17).
It becomes obvious, that in Nederveens derivation, due to the extension of the Webster-equation by
loss terms, additional derivatives occur which lead to linear and quadratic terms in (kx), to scale the
losses. The difference to Eq. (2.29) is obvious.
From the formal analogy observed here between the loss-free and the lossy case, Nederveens
formula Eq. (2.49) may be used as a reference solution, as his derivation of the loss terms from
the wave-equation is certainly more elaborate, than using the corrective terms to the wavenumber
originally derived for a cylindrical duct18. The latter approach, which is often used [157, 108, 110],
may be straightforward for cylindrical ducts, but the application to conical ducts is not obvious.

Kulik [108] claimed, that increased precision in the modeling of conical ducts could be achieved
by regarding the wavenumber as a local complex quantity k = kc(x). This argumentation leads to
two consequences in his transmission-line formulation. The integral mean of k̄c(x) along the duct
element is used as an effective wavenumber (compare Eq. (2.33)), and for the terms in θ, which
represents the widening of the duct, different wave-numbers kc,1,2 = kc(x1,2) are used within one
equation, as is

θ1 = arctan(kc,1 x1)
θ2 = arctan(kc,2 x2)

(2.53)

Under this assumption, Kulik showed that the segmentation of a macroscopical conical waveguide
of input radius rin, output radius rout and length L according to (Eq.2.13) into n conical segments

i, with input radius
i
r1, output radius

i
r2 and length

i
L12 does not affect the global transfer matrix

Tin,out. This is a consequence of Eq. (2.53) according to which

i
kc2 =

i+1
kc 1. (2.54)

All conicity terms at the junctions between segments i and i+1 cancel each other out for i = 1 . . . n−1.

The only remaining terms are
1
θ1 = θin and

n
θ2 = θout.

This is mathematically elegant and seems to make the segmentation of a cone unnecessary.
However, one may argue, that Eq. (2.53) is a misinterpretation, as it causes a spatial dependence of
the wave-propagation speed, which is by definition a constant in the wave-equation Eq. (2.2).
To include the effect of wall losses into the transmission matrix of a cone, it is possible to regard
the effective wavenumber k̄c as an elementwise constant property, thus

θ1 = arctan(k̄c x1)
θ2 = arctan(k̄c x2),

(2.55)

where the effective wavenumber k̄c is based on an integral mean of the effective boundary layer
thickness, but itself is constant within the element. This is justified as it is the intrinsic character of
the TMM approach to elementwise convert the physical problem into the model domain.
In this case, as

i
k̄c ,

i+1
k̄c , (2.56)

the corrective terms at the junctions do not cancel out and consequently, the segmentation does
affect the global transfer matrix Tin,out.
The conformance of the problem and the model depends upon the model assumptions, i.e. the coni-
cal segments should be chosen small enough, that the assumption of a constant wave-propagation
speed within the element is met. Consequently, the model can only be improved by segmenting the
duct into segments with a smaller ratio r2/r1 where the model assumptions are met better.

Generally, as
i
r2 →

i
r1 or

i
L12 → 0, the model geometry approaches the real geometry and the

18see Pierce [141], p. 533 ff
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conicity terms cancel out. Therefore the results of piecewise modeling with cylindrical and conical
elements converge with decreasing element length. Kuliks approach is insensitive to segmentation,
but his result does not equal the result of the piecewise approach for vanishing element lengths.

Summary

The results of three different approaches to model the wave propagation in a cone will be compared.
One approach requires segmentation of the macroscopical conical waveguide into smaller conical
segments, the other two are direct solutions independent of segment length. While being identical
for the loss free case, there are significant differences assuming wall-losses. For comparison, results
are given for the cone modeled as a sequence of short cylindrical segments.
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Figure 2.6 Deviation of fundamental frequency of the air column predicted by 4 plane-
wave approximations. Conical waveguides with bassoon-like taper z = 140 and
input radius r = 2 mm, and lengths L within 100 mm < L < 3000 mm.

Fig. 2.6 shows the deviation of fundamental frequencies of lossy cones of varying length, as
predicted by four different plane-wave approximations: Nederveens approach without segmentation
Eq. (2.49), piecewise modeling with short cylinders (pw cyl. (5 mm))and with cones (pw con. (100
mm)), both calculated from Eq. (2.21) with Eq. (2.55), and Kuliks approach without segmentation
calculated from Eq. (2.21) with Eq. (2.53).
From this plot and the above considerations, the discussion of the plane-wave propagation modeling
in conical waveguides with respect to wall losses can be summarized in three statements:

• Nederveens approach to include loss terms into the Webster equation is the most promising
to provide a correct model of the physics, and is therefore regarded as a reference solution. It
provides a direct solution without the need of segmentation.

• A good approximation to the reference solution is provided by piecewise modeling. Cylindri-
cal or conical duct elements may be used as for sufficiently small elements, both approaches
converge. With conical elements, convergence is achieved faster, but a systematic deviation
remains.

• Kuliks suggestion of a “Transfer matrix of conical waveguides with any geometric parameters
for increased precision in computer modeling” is perfectly consistent in the mathematical
sense, but the results differ largely from the reference solution.

Concerning the frequency of the fundamental air column mode, for a cone of small input radius
and slight taper, comparable to a bassoon (r1 = 2 mm, m = 1/140), discrepancies between the three
approaches are found, which are large enough to be relevant in the context of musical instruments
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[41] and require further investigations (Fig. 2.6).
These should be carried out using precise impedance measurement setups [50, 41], and very
accurately manufactured conical waveguides with small input diameter, where the boundary layer
effects become important.
An analytical approach to address the cone problem would be to derive a formula for the complex
wave-number taking friction into account from a modified Webster equation19.
A alternative, promising approach for a numerical verification is the Finite-Element Modeling with
visco-acoustic elements [13].
Given a geometry with tone holes, such a model would allow to investigate viscous effects due to
local losses at the sharp edges, which are expected to be crucial [88].

2.2 Input Impedance Measurement

2.2.1 Principle

The input impedance measurement of the resonator is a standard technique in wind instruments
acoustics. Peaks in the input impedance spectrum correspond to frequencies, at which a high
pressure amplitude can be obtained by a small volume velocity excitation.
Beginning in the 1960s, several experimental setups have been developed. As the impedance is
the ratio of pressure and volume flow at a given cross section of the duct, both quantities are to
be measured simultaneously. In contrast to the sound pressure, the acoustical volume flow cannot
easily be measured and various setups have been developed to overcome this problem. In the
following, only a very short review of the main principles is given, a thorough discussion can be
found in the literature, [17] and more recently [50].
While few researchers have accepted the challenge of measuring both sound pressure and acoustical
volume flow at the time [52], most struggles have been put into the development a reflection-free
volume velocity source to sinusoidally excite the air column. A measurement of the resulting
sound pressure is then sufficient, since it will be proportional to the impedance. Successful
realizations of such a source have been constructed from a loudspeaker driven pressure chamber
with a very narrow outflow channel [173, 9, 30, 138, 149]. However, these setups require an efficient
mechanical decoupling of loudspeaker and measurement object, because otherwise wall vibrations
can dramatically influence the results. The latter must be long and thin enough to acoustically
decouple pressures at the outflow end and inside the pressure chamber by means of wall friction.
Alternatively, the air column can be excited by a piezo-electric element, which can be designed to
work as a reflection free source [17, 41].
Another method, which does not require a decoupling from the source, consists of an connection
duct that is equipped with two or more spaced microphones. By the use of calibration geometries
with a known acoustical response, the volume velocity information can be obtained from the
pressure signals and their delays [71, 93, 50]. The connection duct must have the same input cross
section as the calibration objects and the object under test.

2.2.2 Device

For the impedance measurements in this study, the commercially available impedance measurement
system “BIAS” [138] has been used. The impedance head uses the principle of a constant volume
flow source. A bundle of capillaries provides the high acoustical resistance that decouples the
pressure chamber from the measurement object. The setup comprises two microphones, one in the
pressure chamber and one at the measurement cross section20. The measurement software uses

19E.g. Eq. (10-5.6) in [141]
20For details on the BIAS measurement head see http://www.bias.at/ (last viewed Nov. 23rd 2013)
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Figure 2.7 Sketch the adapter to connect a bassoon bocal to the BIAS measurement
head.

a factory calibration on two cylindrical calibration cavities with different lengths, the calibration
procedure is described in [149]. For this study, the factory calibration has been successfully verified
on cylindrical tubes of various lengths in an anechoic chamber.
The impedance measurement system has recently been used several scientific studies on brass wind
instruments [29, 27, 95, 26], and woodwinds [149, 117].
As it is designed for brass instruments, the cross section where input impedance is measured is 12
mm in diameter. In order to measure bassoons with an input diameter of approximately 4 mm, an
adapter has been built.

2.2.3 Calibration and Correction

All impedance data shown in this study rely on the factory calibration of the “BIAS” software.
However, in the post-processing of the obtained impedance curves an additional correction proce-
dure has been performed, to numerically eliminate the acoustical effect of the adapter.
As seen from the bocal, the adapter be must be a diverging duct to match the impedance head’s
diameter. Such an enlargement acts as an acoustical compliance in parallel to the measurement
object and introduces additional damping. As the volume is critical the adapter should be a short
stepped tube, rather than a long conical waveguide with a smooth diameter transition.
The adapter was designed to have a very short cylindrical section of 13.8 mm diameter and 2 mm
length, that merges abruptly into a second smaller cylindrical section of 4.2 mm diameter and 18
mm length (Fig. 2.7).

To correct for the errors introduced by a diameter mismatch Fletcher [60] proposed to subtract
an impedance correction of the form Ā

√
ω + j B̄ω from the measurement result of a calibrated

setup. In contrast to the cases discussed there, in this study the diameter of the impedance head is
larger than that of the measurement object. To correct for the errors introduced by this situation,
a similar approach of using an empirical impedance correction has been chosen. Instead of a
series impedance Zser = j B̄ω, a parallel impedance Zpar = − j B̃/ω was used to correct for the
discrepancies between measured and theoretical impedance peak frequencies.
Adding a negative impedance Zpar in parallel eliminates the compliant effect of a cavity with a
volume Vadp and an acoustic compliance Vadp/(ρc2) = 1/B̃. This correction is used to remove the
effect of the first wide and short section from the measurement.
The second thin and long section is modeled as a cylindrical duct segment with radius radp and
length ladp characterized by the transmission matrix Tadp according to Eq. (2.17). By rearranging
Eq. (2.9), the effect of this second section is subsequently removed from the measurement result.
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The two step correction procedure is written

Z′ =
Zmeas · (-Zpar)
Zmeas + (-Zpar)

(2.57a)

Zcorr =
Badp − Z′Dadp

Z′Cadp − Aadp
, (2.57b)

where Zmeas is the measured impedance of the object with attached adapter as obtained by the
“BIAS” system, and Zcorr is the corrected impedance, that is assumed to be equal to the input
impedance of the object alone.
According to the above considerations, the correction is completely defined by a corrective volume
Vadp and the radius and length radp, ladp of the equivalent connector. Assuming radp to equal the
actual physical radius of the adapter, the other two parameters Vadp and ladp have been determined
by fitting theoretical impedance curves to measurement data of simple well-defined reference
objects. The trial and error procedure that Fletcher proposed [60] has been used and the calibration
objects were cylindrical tubes with an inner diameter of 4.2 mm. This is very close to the actual
input diameter of a bassoon bocal. The steps of the correction procedure for a tube of 1 m length is
illustrated in Fig. 2.8. Using open tubes of different lengths, the correction parameters Vadp and ladp
have been determined to be Vadp = 213.7 mm3 ± 8% and ladp15.7 mm ± 9%.
After the correction with these parameters, the discrepancy of the impedance peak frequencies
was ±15 Cent in frequency range from 70 Hz to 2.5 kHz (Fig. 2.9). This is a small, but certainly
significant discrepancy which is critical in the estimation of the fundamental frequency of a musical
instrument. A way to overcome this problem might be the design of an impedance probe with
a smaller or no diameter mismatch [101], or probably to employ a more elaborate technique
[159, 128, 110] in the modeling of the adapter in the correction procedure.
Nevertheless, the impedance measurement setup used here is suited to study general characteristics
of the bassoons air column, to show differences between instruments and to monitor relative changes
in the impedance spectrum due to geometrical modifications. Practical issues of the measurement
with respect to possible causes of error are discussed in the next section.
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Figure 2.8 Steps of the Calibration Procedure

500 1000 1500 2000 2500
−25

−20

−15

−10

−5

0

5

10

15

20

25

f [Hz]

∆ 
f pe

ak
 [C

en
t]

 

 

peaks
dips
l = 1002 mm
l = 239 mm
l = 135 mm
l = 51.5 mm

Figure 2.9 Deviation between measured and theoretical impedance extrema, from four
cylindrical open tubes with radius r = 2.1 mm and varying length l.



2.3 Comparison of Theory and Experiment 27

2.3 Comparison of Theory and Experiment

This section is dedicated to compare theoretical and measured acoustic impedance spectra of several
duct geometries.
First, the accuracy of the measurement is addressed, with respect to real woodwind geometries.
With the knowledge of experimental uncertainty, numerical calculations of the input impedance
basing on precise measurements are juxtaposed and the discrepancies are discussed.

2.3.1 Repeatability and Measurement Uncertainty

In a practical situation the result of an input impedance measurement is influenced by many factors.
Regarding a bassoon measurement important influencing factors are

tiny leaks : imprecisely fitted joints, badly closed keypads

mounting offsets : joint of measurement device and measurement object

climate : temperature and humidity of the air column

noise : acoustical noise in the ambiance

Noise can easily be avoided in a laboratory measurement. Furthermore, the “BIAS” impedance
head is a system designed for the use in musical instrument workshops. It features a high excitation
level and low sensitivity of the measured impedance to moderate acoustic noise above 40 Hz outside
of the instrument.

Avoiding Temperature Gradients in the Air Column

The temperature, moisture content and gas composition of the air column have an effect on the
speed of sound and thus on the peak frequencies in the impedance measurement. The moisture
content of the air has a small effect on the plane wave attenuation in a tube [159]. The O2 content
in exhaled air varies between 20 to 15 %, while the CO2 content varies from 2.5 to 8.5 % during
exhaling, which introduces a frequency decrease around 20 % [67]. However, these effects occuring
during the performance are not studied here. In fact, the temperature is of interest here mainly to
avoid systematic errors in measurements of acoustic impedance peak frequencies, due variations in
the speed of sound, and to estimate times of acclimatization for an instrument air column after a
climate change. If the radius of the duct is about ten times larger than the viscous boundary layer
thickness δv, this effect can be neglected.
The air temperature, on the other hand, is important. As the wavelength λ = c/ f is constant, the
frequency shift due to a temperature change is given by f (T1) = f0 · (c(T1)/c0), where f0, c0 are
frequency and speed of sound in an arbitrary reference condition. This relation must be used to
rescale the frequency axis when comparing impedance curves measured at different temperatures.
Benades linear approximations [19] for the speed of sound (see Eq. (2.39)) predict a relative pitch
change of 2.85 Cent/◦C.
As the viscous boundary layer thickness increases with temperature, damping of the impedance
peaks increases as well. By means of transmission line simulation, the relative change in impedance
magnitude is estimated to be approximately -0.3%/◦C, for impedance maxima at low frequencies21.
To assure consistency in repeated measurements, there should be no temperature gradients within
the air column. As a bassoon is typically manufactured from wood and thin metal sheets, it will take
some time, until the instrument and air column are in temperature equilibrium with the surrounding

21On a simple cone of l = 2.56 m, r1 = 2.6 mm and r2 = 20.2 mm, the deviation from linearity in the impedance
magnitude is ±0.01% within the frequency range from 50 to 3000 Hz.
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ture jump of the ambient temperature from 12 to 27 C◦

air. For a quite drastic temperature change of 15 ◦C, from 12 to 27 ◦C, the temperature 100% rise
time has been estimated to be about 7 hours, based on measurements of the first 60 minutes after
the temperature jump (Fig.2.10). This experiment was performed twice, on a bassoon with all holes
open (fingering F3) and all holes closed (fingering B[1), with sensors at different locations inside
the air column, and one reference measurement in the room. The temperature inside the instrument
was measured using small PT-100 resistance temperature detectors hanging into the air column.
Compared to the reference temperature change in the room, the temperature in the bell is only
slightly retarded, whereas inside the bocal, the temperature change time constant is approximately
doubled. In the butt, at the position of the u-shaped bend, the temperature changed even slower
than in the bocal, for the closed-holes fingering.

Any mounting offsets will have a large effect on the consistency of the measurement. Especially for
high impedance objects with a small diameter, such as a bassoon bocal, it is critical to place the
object precisely at the same position relative to the reference plane, to which the impedance head
is calibrated. Another typical problem in bassoon impedance measurements associated with the
mounting, is the occurrence of tiny leaks at the junction of bocal and measurement head.
To minimize these possible causes of error, the impedance adapter used here has a dead stop for
the bocal tip and a squeeze-type gasket to seal the joint, assure a centered position and air-tight
mounting (Fig. 2.7).

Influence of Temperature on the Input Impedance

The influence of temperature on the impedance peaks has been tested by a study of repeated
measurements [135].
Throughout a period of two months, impedance measurements of five fingerings (B[1, E[3, E[3
+ E[-Key, F3, and F4) on four bassoons were carried out at random temperatures between 19.3
◦C and 24.8 ◦C. All instruments were stored in the measurement room throughout the complete
study. The room climate changed slowly, such that temperature equilibrium in the air column was
assumed for each single measurement.
From 50 independent measurements on each bassoon and fingering, the impedance peaks were
analyzed. A binning routine was used to concatenate the scattered measurement values of each
impedance peak and subsequently the linear correlation of peak frequency and magnitude with
the air temperature in the room was calculated. Averaged over the observed frequency range from
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50 Hz to 3 kHz, the pitch shift per ◦C temperature change was 2.85 Cent/ ◦C (σ = 0.54 Cent/ ◦C),
which is in very good agreement with theory (see Fig 2.11(a)).
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Figure 2.11 Influence of Temperature on the Input Impedance of Bassoons

With the same procedure, an influence of temperature on the impedance peak magnitudes has been
observed (Fig 2.11(b)). In the lowest frequency range, up to 1 kHz, the correlation coefficient
was preponderantly observed to be negative, which means that the peak magnitudes decrease with
increasing temperature. This is generally in agreement with theory, but the observed correlation is
much larger. On the other hand, some peak magnitudes above 1 kHz were observed to increase with
temperature. A frequency dependent pattern was especially apparent for two bassoons, indepen-
dently of the fingering, whereas the other two did not show this behavior. A possible superimposing
or masking effect is unclear. Ignoring the obviously non-random effects and averaging over all
measurements, the mean peak magnitude change is -1.14 % /◦C (σ = 1.41 % /◦C).

In any case, the measured correlation of impedance peak magnitude is significantly stronger than
predicted by transmission line theory.

Study of Repeatability

A measure for the repeatability is the observed dispersion of peak frequencies. To verify this, all
measured peak frequencies have been related to a reference temperature of 21.7 ◦C, which was
the median from 50 measurements within a range of 19.3 ◦C to 24.8 ◦C. After this correction
procedure, most of the observed peak frequencies and magnitudes were normally distributed. The
maximum standard deviation observed is 6.5 Cent for the peak frequencies and 13 % for the
peak magnitudes. Concerning the peak frequencies, a frequency dependence is clearly observed
(Fig. 2.12): The dispersion decays with frequency. The decay however, seems to be related with
the ordinal number of the resonances, rather than with the absolute frequency, as can be seen from
comparison Figs. 2.12(a) and 2.12(b), which show measurement results of bassoon bores with
different acoustic lengths. At frequencies above 500 Hz, the standard deviation is < 3 Cent.
The frequency dependence of the magnitude dispersion is similar to that of the frequency dispersion,
but much larger: Averaging over frequencies the standard deviation is 4.60 % (σ = 2.18 %).
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Figure 2.12 Dispersion of Input Impedance Peak Data (Frequency (·), Magnitude (x))

Variance between Instruments

In the light of this measurement uncertainty, it is interesting to compare the variability of impedance
curves measured on bassoons of the same type made by different manufacturers. Since the acoustic
impedance spectra of musical wind instrument’s resonators provide an objective measure of the
instrument alone, it is tempting to relate the produced sound or performance characteristics to
the measured input impedance and try to obtain objective measures for the “quality” of a musical
instrument from it. Many researchers have tried and still try to tackle this topic, as a progress in
this problem would provide specific guidance how to build good instruments.
This however seems to be very difficult, as it has been observed, that musical wind instruments of
the same type, which greatly differ in their musical performance, seem to have very similar acoustic
properties [9].
Although the measurement and calculation of input impedance is a standard technique in the
research of musical wind instruments, only very little experimental data were published the
literature, and discussed with respect to the inherent measurement uncertainty.
The aim of this subsection is to give an idea about the order magnitude of variability found in
the acoustical design of bassoons from different manufacturers. This comparison further allows
to estimate the reliability of the complete experiment, as a combination of measurement device,
mounting, measurement object and measurement conditions with respect to the frequency dependent
standard deviations.

Scientific studies focusing on the measurement technique provide some discussion of measurement
errors [148, 50, 41], but are mostly focused on simple calibration objects, such as cylindrical tubes.
This may be sufficient when measuring simple unbranched wind instrument resonators. For wood-
wind instruments with tone-holes, the measurement uncertainty may be significantly larger.
Keefe [96] and Dalmont et. al [46] have carried out careful experimental studies on single tone-hole
configurations in a cylindrical main duct and determined correction parameters for a simplified
tone-hole representation in a one-dimensional model of plane-wave propagation. Their results
have been verified to some extent by Lefebvre [110], by use of a three-dimensional Finite-Element
Model.
Papers with a detailed discussion of impedance measurements on real woodwind instruments are
relatively rare.
In a pioneering study, Backus [9] compared three bassoons and stated that the impedance “curves
for the three instruments were quite similar for a given note” and the differences “may be musically
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significant, but at this time we cannot say”. Cronin and Keefe [37] have carried out measurements
on bassoons to investigate the role of auxiliary fingerings. Although not focusing on differences
between specific instruments, their work is interesting as it provides experimental evidence of the
general functioning of auxiliary fingerings, which shift dedicated higher air column modes such
that a change in the oscillating regimes of reed and resonator is favored and a desired pitch and/ or
tone-color change is achieved.
Wolfe et. al [177] provide a comparison of flute impedance spectra together with sound files [175].
They explicitly mention the limited possibilities to interpret impedance spectra with respect to
details in instrument performance or sound characteristics. In this context, their data has informative
character.
Later, Wolfe and Smith [176] have extended their investigation of flute impedance spectra to a
discussion of cut-off frequencies of several flute designs and point out possible causes for timbre
differences. They give impedance curves with standard deviations, but their work does not aim to
reveal sensitive differences between individual instruments of the same type, due to their making.
This objective has been tackled in an excellent comprehensive study on didjeridoos by Smith et. al
[154], who were able to relate acoustical properties of the resonator to a subjective quality ranking
by a broad panel of musicians. This complex task was facilitated by the largely differing design of
individual didjeridoos which are usually shaped in a natural process.
Macaluso and Dalmont have reviewed acoustic design principles for wind instruments and presented
a trumpet air column design featuring near-perfect harmonicity [116].
For air columns in case of the modern German bassoons, regardless of which manufacturer, only
subtle differences are found. The generic acoustic design of this instrument has not changed since
1920 [10, 170].
In this context, the consistency of woodwind instrument manufacturing has been studied by Mamou-
Mani et. al [117], who compared the impedance curves of five nominally identical oboes and stated
that these differed by 2% in peak frequency and 30 % in impedance peak magnitude. In this paper,
however, an analysis of experimental uncertainty is missing.

From the set of 50 repeated measurements recorded over a period of two months within the
present work, the impedance peaks mean values and standard deviations are plotted in Fig. 2.13.
As mentioned above, all measurements were obtained at various temperatures and subsequently
rescaled to the same reference temperature.
The plot reveals that all curves are generally similar and the fundamental air column mode is well
aligned for all four bassoons. In detail, however, differences are observed, as single peaks deviate
largely from the mean curve. These large individual discrepancies are for most peaks greater
than the standard deviation, which implies that only a few measurement repetitions are needed to
confirm the peak magnitude, whereas the measured peak frequency is quite consistent, apart from
the temperature effect.
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(b) Fingering F3, f0 = 175 Hz

Figure 2.13 Comparison of Input Impedance curves of 4 different Bassoons

2.3.2 Comparison of numerical and experimental Impedance Curves

For narrow cylindrical tubes of various lengths, the discrepancy between measured resonance
frequencies and those predicted by plane-wave theory has been determined to be ±15 Cent with
the setup used in this study. The random error of the experiment has been verified in a study of
repeated measurements (n=50) to be < 5 Cent for the peak frequencies and < 15% for the peak
magnitudes. In this section, the discrepancy between theoretical and measured impedance curves is
discussed, for few selected fingerings on a modern german bassoon.

Geometrical measurements

The theoretical approach requires a precise information on the geometry of the duct, which is
difficult to obtain for real musical instruments. The numerical bassoon impedance curves that
will be presented in this section are based on precision measurements of the inner diameter of the
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Figure 2.14 Comparison of numerical and experimental input impedance spectra of (a,b)
a thin tube (r = 2.1 mm, l = 1002 mm), (c,d) a straight bocal (r1 = 2.1 mm,
r2 = 4.4 mm l = 328 mm), (e,f) a bassoon with all holes closed (B[1, f0 = 58 Hz),
(g,h) a bassoon with all holes open (F3, f0 = 175 Hz), and (i,j) a bassoon with
a fork fingering (F4, f0 = 353 Hz). The impedance modulus is shown in the left
column of graphs (a),(c),(d),(g),(i), the frequency deviation in Cent between
the numerical and experimental impedance extrema is shown in the right
column of graphs (b),(d),(f),(h),(j), for the respective cases.



34 2 Acoustical Properties of the Bassoon Air Column

bore with a spatial resolution of 5 mm along the main axis. Precision split-ball probes22 with a
repeatability of 1 µm, have been used to measure the diameter d of the bassoon bore in the range of
4 mm < d < 20 mm. This corresponds to the bocal (a straight bocal was measured), the wing and
half of the butt down to the u-bend. The accuracy of the split-ball measurement is estimated to be
±5 µm. To estimate the diameter of rest of the bore down to the bell, a bassoon of the same type23

was sawn into two halves and the diameter has been obtained from a laser surface scan [146].
The tone-hole dimensions were determined by diameter gages. If the tone-hole axis was not
perpendicular to the main axis of the bore, the average chimney height has been used for the TMM
model. The bore and all holes were assumed to be cylindrical, although this does not hold true,
strictly speaking: The measurements revealed discrepancies from the circular cross sections in the
bocal, due to the soldered seam and in the wooden parts, due to warping. Some hole chimneys are
rather cones than cylinders. All these discrepancies were neglected here, for reasons of simplicity.
However, their influence may be non-negligible: A measurement error of 50 µm in diameter near
the bocal tip with a diameter of 4 mm introduces a local error of 1.25 % which corresponds to
22 Cent.

A juxtaposition of measured and calculated results is provided in Fig. 2.14, for geometries with
increasing complexity. Starting with a narrow cylindrical tube (Fig. 2.14(a)), which was used as
a calibration object (see section 2.2.3), results for a bocal (Fig. 2.14(c)), a bassoon with all holes
closed (Fig. 2.14(e)), all holes opened (Fig. 2.14(g)) and with a fork fingering (Fig. 2.14(i)) are
presented.

For simple geometries without side-branches, the agreement between numerical and experimental
impedance maxima is fairly good Fig. 2.14(a) and 2.14(c). For more complex geometries with
toneholes, the observed discrepancies are much larger than the measurement uncertainty, especially
in the low frequency range, below 500 Hz. A possible reason might be the simplistic approach of
tone-hole modelling: At the junctions of main bore and tone-holes, the air is suddenly expanded.
Details such as oblique tone-hole chimneys and interactions of open tone-holes are not modeled,
but may be important as well [98]. At the junctions of main bore and tone-holes, the air is suddenly
expanded. Details such as oblique tone-hole chimneys and interactions of open tone-holes are not
modelled, but may be important as well [98]. At higher frequencies, in particular, the damping of
the air-column modes appears to be underestimated in the model. This may be due to the fact that
the viscous effects have been estimated by use of acoustic boundary layer theory which assumes
perfectly smooth walls. For the case of the bassoon, this assumption is clearly not met in all parts
of the bore. Whereas the wing and upper butt usually have a very smooth, polished surface, the
bocal, the wooden parts of the butt, the long joint and bell, as well as most tone-holes have rather
rough surfaces. This might be taken into account by increased effective boundary layer thicknesses.
Apart from that, the humidified air from the players lungs will condense at the walls in playing
conditions. Further sources of error might be viscous losses at sharp edges where the tone hole
chimneys penetrate the main bore.
However, a general family resemblance is observed for a broad frequency range, and the envelopes
of the curves are similar. This gives confidence in using the simple modeling approach to predict
relative changes in the air column resonances due to geometrical changes of the bore. With some
efforts in calibration, the technique can be successfully used for the design of woodwind instruments
[100, 74]. Due to its low computational complexity it is very well suited for the use in optimization
routines [143, 140, 26, 110].

22DIATEST M2-T, courtesy of DIATEST Herrmann Koeltgen GmbH, Darmstadt, Germany
23Standard Model Wolf S2000
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2.4 Harmonicity Analysis of the Resonator

In the previous sections it has been shown, that the impedance curve obtained from measurements
and a simple one-dimensional waveguide model match well. The importance of the acoustical prop-
erties of resonator for the sound generation depends strongly on the harmonicity of the air-column
resonances. These will be crucial for the resulting pitch and spectral coloration of the stationary
sound. Furthermore, very subtle differences in resonance frequencies may play a crucial role for
the transient evolvement of a stationary sound.

In this section attempts are made to analyze the “harmonic content” of the bassoon air column.
This will be helpful in subsequent discussions of the interplay of musician, reed and resonator in
Chapter 5.

2.4.1 The Role of the Resonator

The effective acoustic length of the air-column of woodwinds is shortened by opening sideholes
in the main bore. For cylindrical woodwinds, it is attractive to describe the air-column as one or
more harmonic oscillators, depending only on the effective length. This however fails for conical
woodwinds, and especially for the bassoon which has an irregular bore profile, and various tone
holes of very different shape. The composition of air-column resonances is therefore quite complex
and the system behind the fingering is difficult to comprehend in the higher registers [104].
In Fig. 2.13 measured impedance spectra are shown in which the air-column resonances appear as
peaks. The resonance frequencies clearly visible in these plots, however, do not provide a precise
estimation of the sound fundamental frequency, for two reasons. Firstly the reed has been taken off

the bocal to measure the impedance at the input cross section of the tube. As an approximation, a
reed-equivalent volume is taken into account, which is larger than the geometrical volume [125, 43].
This shifts the resonances downward in frequency.
Secondly it is not necessarily one resonance, that determines the fundamental frequency, but it is
the result of a compromise between a few resonances. If there are pronounced, nearly harmonic,
damped resonances present in a linear oscillator which is coupled to a highly nonlinear excitation,
the complete system settles in a stable phase-locked periodic oscillation [58] with a contribution of
all resonances. Benade called this mode-locked case a regime of oscillation.
Many attempts have been made for a frequency domain based estimation of the sounding frequency
of a wind instruments [125, 173, 43, 101], but these two aspects are still not well established. On
the other hand, more elaborate numerical techniques used for sound synthesis also fail to model
the excitation with the precision required for the determination of the fundamental frequency
[172, 147, 72, 102, 153].

2.4.2 The reed equivalent Volume

The discussion of harmonicity based on impedance measurements starts with the proper choice of a
reed equivalent volume. For the case of the bassoon, an equivalent volume of 1.9 cm3 is reasonable
[125, 107, 55]. This volume is approximately twice its geometric volume. The increase accounts to
the fact that the reed blades are not rigid boundaries, their motion induces an additional air-flow,
which can be considered an additional effective volume.
A reed equivalent cylindrical volume of 3.6 mm in diameter and 47 mm length is “added” numeri-
cally to the measured input impedance in the bocal cross section by use of Eq. 2.9. This volume
prolongs the air column and lowers the resonances. Further it damps the higher resonances above
500 Hz (Fig. 2.15). Due to this correction for the reed equivalent volume, not only the fundamental
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Figure 2.15 Effect of the reed equivalent volume Veq.
gray: measured input impedance at the bocal tip;
black: measurement corrected by a reed equivalent volume.
The vertical dashed lines mark the harmonic frequencies for B[2, f0 =

117.3 Hz

resonance frequency fits better the nominal24 sounding frequency f0, but also the harmonicity of
the air-column is increased for the first three resonances.

2.4.3 Harmonicity Map

To represent the resonance properties of a woodwind over its tonal range, i.e. for all standard
fingerings corresponding to notes of the equally tempered scale, it is useful, to rescale the frequency
axis. A good overview gives a contourplot plot of impedance modulus |Z| over non-dimensional
harmonic frequencies f̃ over the logarithmic nominal sounding frequency f0, corresponding to this
fingering. The harmonic frequencies f̃ = f / f0 are the measured frequencies f normalized by the
fundamental frequency f0. The magnitude of the impedance is plotted in a grayscale. The dark
regions in this plot indicate the impedance peaks and their alignment with the harmonic frequencies
n f0. Air-column resonances close to harmonics can support the regime of oscillation. Another
condition for this so-called mode-locking is, that the impedance magnitudes of these modes must
be sufficiently large [58].
The resulting graphical representation (Fig. 2.16) is called “impedance map” here. It gives a
qualitative overview on how many impedance peaks are potentially contributing to the regime of

24This is the expected frequency corresponding to the fingering
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Figure 2.16 Impedance map. The gray scale provides information about the magnitude of
the impedance |Z|

oscillation at a given frequency f0. Harmonicity is usually measured as the logarithm of a frequency
ratio. To better display the deviations of the impedance peak frequencies from the integer harmonic
frequencies, the impedance map is rescaled, such that only the range of ± 100 Cent 25 around
each harmonic frequency is shown. In the light of another condition for mode-locking, that the
modes involved must be “nearly harmonically related” [58], this provides a zoomed view into each
harmonic and visualizes more clearly the inharmonicity of the impedance peaks. To qualitatively
meet the previous condition that the mode amplitudes must be large, the dynamic range of the plot
in |Z|-dimension is limited to 6 dB. In a work on bore optimization of brasses, a similar plot has
been proposed by Braden et al. [26], which was called an inharmonicity plot26. In line with this
idea, the plot in fig. 2.17 is called a harmonicity map here, because it maps the harmonicity of all
fingerings corresponding to the chromatic tonal range of the woodwind.
In Chapter 5 will be shown, that the harmonicity map is useful to understand several aspects of
bassoon performance by the analysis of detailed and comprehensive artificial mouth measurements.

25Cent is the unit of the logarithm of a frequency ratio ∆ f = 1200 log2
f

fre f
. It is used in musical terms to describe a

pitch difference between a sounding frequency f and a nominal frequency fre f . 1200 Cent correspond to an octave
(frequency doubling), 100 Cent corresponds to one semitone. For trained listeners pitch differences of 5..10 Cent are
perceivable.

26There, the ordinal number of air column modes is plotted vs their tuning discrepancy in Cent



38 2 Acoustical Properties of the Bassoon Air Column

Figure 2.17 Harmonicity map. The vertical gray lines margin a frequency range of ± 100
Cent left and right to each harmonic. The white dots mark the impedance
peak frequencies and the grayscale provide information on the quality of the
resonances. The dynamic range of the |Z|-axis is limited to 6 dB.

2.5 Summary

In this chapter the elementary theory of plane-wave propagation in wind instruments has been pre-
sented. Formulations well-known from the literature have been rearranged, compared and formally
simplified. A consistent formulation is presented for the basic model elements to compose a musical
woodwind resonator, in the formalism of an acoustical transmission-line. An implementation that
allows to calculate the pressure standing wave patterns in a woodwind with tone-holes is presented.
Experiments have been performed with a commercial impedance measurement system for brass
instruments. A connection adapter constricting the measurement cross section to match the bocal of
bassoons was constructed, and a correction procedure was applied to compensate for the effect of
the adapter on the measured impedance curve in the post-processing. Comparing with theoretical
impedance spectra of narrow calibration tubes, the setup with adapter is accurate within ±15 Cent
in peak frequencies. In a study of repeated measurements on bassoons, the repeatability of the setup
has been determined to be < 5 Cent in the peak frequencies and < 15% in the peak magnitude.
The random variation decreases with the ordinal number of the air column modes. The variability
between measurements on bassoons of four different manufacturers has been observed to be fairly
small in general, some specific peaks, however, reveal differences both in peak frequency and
magnitude which are much larger than the random error.
The dimensions of one bassoon bore were determined accurately (±5 µm) and impedance measure-
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ments on this bassoon were compared with predictions by the theory. A good agreement is found
concerning the general shape of the curve, but the discrepancies in impedance peak positions are
still in the range of ±20 Cent and may reach up to over 50 Cent for single peaks.
The strong point of the numerical approach is its simple, fast, and robust concept, making it suitable
for relative comparisons and optimization tasks.
In Chapter 5, relations between playing characteristics and the acoustical properties of the air-
column will be shown. These performance-related aspects may be used to define optimization
targets for woodwind instrument design. A first step into this direction has been undertaken with
partial contribution of the present author [80].





3 Characterization of the Double Reed
Mouthpiece

3.1 Physical Model of the Double-Reed

A short introduction on the general functioning of the double-reed is given in this section. Subse-
quently, the derivation of the basic physical model for the pressure induced reed motion will be
presented. This introduces model parameters, that allow to characterize the experimental situations
in this study.
The apparatus which has been constructed for this study, and two setups for experimental parameter
estimation of the double-reed with this device are presented. Typical model parameters from
measurements on bassoon double-reeds will be given.

3.1.1 Working Principle

The double reed mouthpiece consists of two blades of reed cane that are tied up with wires at one
end, to form a tubular channel. At this end, the reed is connected to the acoustic resonator of the
musical instrument. At the other end, the reed tip, the opposing blades form a narrow oval slit
through which the air flow from the musician enters the instrument. A bassoon reed is usually about

butt

tip   

1 wire 
st

2 wire
nd

blade

Figure 3.1 Terms used to describe double reeds

55 – 60 mm long and tied up by three wires, the last one of which at the butt is usually wrapped by
yarn. The inner diameter at this rear end is approximately 5 mm. At the reed tip, the dimensions
are typically a channel width of 12 – 15 mm and a height of 1 – 1.5 mm. From the first wire to the
reed tip, the blades are progressively thinned out. In this part, the musician clasps his lips around
the double-reed.
The interaction of the player and the mouthpiece is called the embouchure. This term encompasses
the position of the lips, jaw and oral cavity, and the blowing pressure. The embouchure plays a
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key-role in musical performance of double-reed instruments. During playing, the musician is able
and advised to adjust the mechanical response of the reed with his embouchure in order to produce
notes of proper tuning, dynamic level and sound color.
During this musical performance, the double-reed acts as a pressure controlled valve. The pressure
difference between the blowing pressure in the mouth of the player and the pressure inside the
mouthpiece acts on the reed blades. An air-flow through the narrow mouthpiece channel reduces
the static pressure and results in a deflection of its elastic bounding walls. Consequently, the intake
cross section will be reduced. At a certain threshold pressure, the reed blades touch each other
and block the air-flow. Due to inertia, this sudden interruption induces a negative pressure pulse to
travel downstream from the reed tip into the pipe. If a resonating pipe is attached to the mouthpiece,
this pressure pulse will be reflected and self-sustained oscillations can occur.

In order to study the performance characteristics of the bassoon, an introduction of the physical
characteristics of the double-reed is useful to provide a description of experiments in a model
domain.
Although there are many differences between single and double-reeds, the classical model elaborated
for a clarinet reed oscillations will be employed here to introduce the governing quantities and
equations. As shown in recent literature [4], this model is suited for double-reeds oscillations as
well, with minor modifications.
Throughout the study, synthetic bassoon reeds were used. These are made from non-hygroscopic
materials and therefore yield a better reproducibility of the experiments, compared to bassoon
reeds from natural reed cane (Giant Cane, Arundo Donax (L.)), which are most widely used by
bassoonists.

3.1.2 Structural Mechanical Characteristics

In the following, the derivation of the classical physical model [144, 8, 172, 147, 102] for the
excitation mechanism of reed woodwind instruments will be presented.

The balance of forces on a segment of the reed blade with the mass m and surface Sr yields,
according to Fig. 3.2:

Fl + pm S r = Fi + Fd + Fs + pr Sr, (3.1)

where Fl is an external force, in particular a contact force applied by a lip, Fi is the inertial force of
the accelerated mass, Fd is a damping force proportional to the velocity and Fs is a restoring force
proportional to the displacement. pm and pr are pressure in the mouth of the player and inside the
reed, respectively.
The equation of motion for the reed tip as a function of the pressures and forces acting on it writes:

Fl(t) + pm(t) Sr = m ẍ(t) + d ẋ(t) + k x(t) + pr(t) Sr. (3.2)

where d and k are constants for reed damping and reed stiffness.
By assuming that the spatially distributed reed/mouthpiece system is represented by a discrete
model in which the reed tip displacement x(t) is the only degree of freedom, Eq. (3.2) is a lumped
model of the reed. It should be noticed, that Sr, m, d, and k then become equivalent quantities
representing the whole reed mouthpiece assembly. This concept of modeling the reed had already
been suggested by Helmholtz [163] in 1877, and about 100 years later Wilson and Beavers first
presented a numerical model [172].

Assuming that stiffness and damping are constant, and neglecting the external contact forces at
reed closing allows to linearize the reed model: The reed blade is thought to oscillate periodically
around a rest position, which is the result of a constant mouth pressure and lip force acting on it.
The motion is driven by the reed pressure with an oscillation frequency ω well below the reeds
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Figure 3.2 Notation of variables and balance of forces on a mass segment of a reed blade

natural frequency
√

k/m. The reed pressure fluctuations pr(t) are therefore almost in phase with
the reed tip displacement x(t). Using the superposition principle, this is written:

• x(t) = x0 + x̂ e jωt

• pr(t) = pr,0 + p̂r e jωt

where j is the imaginary unit ( j2 = −1) and ω the angular frequency. One furthermore neglects
fluctuations in the mouth pressure pm(t) and lip force Fl(t):

• pm(t) = pm,0 = const.

• Fl(t) = Fl,∞ = const.

With ẋ = ( jω)x̂ e jωt and ẍ = ( jω)2 x̂ e jωt, the linearized form of Eq. (3.2) writes:

Fl,∞ + pm,0 Sr = (( jω)2m + ( jω)d + k) x̂ e jωt + k x0 + p̂re jωt Sr + pr,0 Sr. (3.3)

This motion can be separated into the steady and oscillatory parts, writing

Fl,∞ = kx0 − (pm − pr)0 Sr, (3.4)

and, in the frequency domain, dividing by e jωt,

(( jω)2m + ( jω)d + k) x̂ = −p̂r Sr. (3.5)
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It is useful to normalize Eq. (3.5) with the equivalent mass m and simplify the expression using the
following notation [102, 43]:

ωr =

√
k
m ,

gr = d
m ,

µr = m
Sr
,

K = k
Sr

= ωr
2 µr,

(3.6)

where ωr, gr, µr and K are the reed natural angular frequency, damping factor, effective mass and
equivalent stiffness per unit area of the reed, respectively.

The tip displacement ranges1 from x = 0 (reed equilibrium rest position in absence of a lip force)
to x = hmax/2 (reed closed), (see Fig. 4.11). The constant lip force Fl,∞ on the reed blade with the
static stiffness k yields, in absence of a pressure difference across the reed (i.e. before starting to
play a note), to an initial displacement x∞. With Fl,∞ = k x∞ and introducing ∆p = pm − pr as the
pressure difference between the outer (mouth) and inner surface of the reed, the Eqs.(3.4) and (3.5)
can be written

x0 = x∞ +
∆p0

K
, (3.7)

for the rest position x0, and

x̂ =
p̂r

µr(−ω2 + jωgr + ωr
2)

(3.8)

for the oscillation amplitude x̂.

The separation of the displacement x into a steady and oscillatory portion is helpful in order to
determine the reed’s static and dynamic parameters from separate experiments.
By use of Eqs.(3.6) and (3.8) the reed transfer function D is

x̂
p̂r

(ω) =
1

µr(−ω2 + jωgr + ωr
2)

=

1
K

1 − ( ωωr
)2 + j( ωωr

) 1
Qr

= D(ω) (3.9)

where Qr =
ωr
gr

is the quality factor of the reed resonance.

To summarize, the reed is described as a damped harmonic oscillator, with the reed blade displace-
ment at the tip as single degree of freedom. In the context of this lumped model description, the
structural mechanical parameters of the reed are [172, 102]:

K: Reed stiffness per unit area

ωr: Reed natural angular frequency

Qr: Reed quality factor.

These parameters are related to the material properties, as well as to the geometry of the reed blade.

3.1.3 Fluid Mechanical Characteristics

In the discussion above, the interaction between the fluid and the structure is implicitly included in
terms of the pressure. A pressure difference acting on the surfaces of the elastic reed blades results
in a deflection of the bounding surface and a change of the volume of the double-reed channel.

1In dynamic regimes x < 0 is theoretically possible. Note that the equilibrium rest position with regard to a lip force
Fl,∞ is denoted x∞ here, and x∞ > 0.
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Analogously to the largely simplified description of the structural mechanics, the fluid mechanical
characteristics are treated separately in the static and in the dynamic domain. Generally, the reed
deformation has two consequences for the flow:

• A relative displacement of the two opposing reed tips changes the area of the intake cross
section (see Fig. 4.11).

• The moving reed blades induce a flow transversal to the main flow direction.

According to this simplified model, the pressure induced static reed deflection (Eq. (3.7)) dominates
the quasi-stationary flow-rate q, and the dynamic reed blade motion (Eq. (3.8)) induces a superim-
posed portion of “pumped flow” of alternating sign with the frequency dependent amplitude q̂.

Quasistatic regime

To a first approximation, the pressure induced change of intake cross section of the double-reed
assumed linearly proportional to the reed displacement x [4].
Using the symmetry of the opposing reed blades, and assuming their curvature to be parabolic, the
actual intake area S in of the reed is

S in =
2
3

w h (3.10)

where w and h are the width and height of the reed channel at the tip. According to Fig. 4.11, the
reed slit height at rest h can be divided into two parts

h = h∞(Fl,∞) − ∆h(∆p), (3.11)

where h∞ is the initial slit height due to the action of the lip force in absence of pressure and ∆h is
the additional narrowing of the slit if a static pressure difference is present.
With Eq. (3.7) the pressure induced area change can be written

S in =
2
3

w (h∞ − 2(x − x∞)) =
2
3

w
(
h∞ − 2

∆p
K

)
. (3.12)

From Eq. (3.12) the stiffness parameter Ks

Ks =
3

4 w
K (3.13)

can be introduced as a stiffness constant per unit volume, and Eq. (3.12) writes with the initial cross
section S∞ = 2/3 w h∞

S in = S∞ −
∆p
Ks

= S∞

(
1 −

∆p
pM

)
(3.14)

where pM = Ks S∞ is the mouth pressure needed to close the reed completely (∆h = h∞).
Denoting the velocities u in the mouth and in the reed with subscripts (·)r and (·)m, respectively,
and assuming incompressibility of the fluid (ρ = const.), a uniform velocity profile in the duct
(ur(y) = ūr = const.), and a very large mouth cavity (ūr � um ≈ 0), the air flow-rate q through the
reed open area S in can, in a first approximation, be deduced from the dynamic pressure term in the
quasi-static Bernoulli equation ∆p =

ρū2
r

2 . Thus

q = ūr S in =

√
2∆p
ρ

S in (3.15)
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Combining Eqs.(3.14) and (3.15) leads to a nonlinear relation between any pressure difference
∆p ≤ pM and the flow through the reed:

q = S∞

(
1 −

∆p
pM

) √
2∆p
ρ

= qA

(
1 −

∆p
pM

) √
∆p
pM

, (3.16)

where qA = S∞
√

2pM
ρ is a flow-rate [102, 4].

This function reaches its maximum qmax at the saturation pressure pm,s which are given by

pm,s = 1
3 pM,

qmax = 2
3
√

3
qA.

(3.17)

Dynamic regime

An expression for the flow induced by an oscillating reverberant boundary with respect to its
displacement will be derived for the double-reed mouthpiece in a dynamic regime [125, 156].
Again, the discussion is based on the balance of forces sketched in Fig. 4.11. Note, that in the
following equations, m and S r are equivalent properties representing the reed in a the context of a
lumped model.
The volumetric displacement dV of air inside the double-reed mouthpiece due to a displacement dx
of the reed blade segment with surface S r writes

dV = 2Sr dx. (3.18)

Consequently,
dV
dt

= 2 Sr
dx
dt

= qd, (3.19)

is volume flow-rate2 induced by a dynamic motion of the boundary. For harmonic fluctuations of
the flow qd = q̂ e jωt and the of reed velocity ẋ = jω x̂ e jωt this can be written:

q̂ = 2 Sr jω x̂. (3.20)

Inserting the ratio of reed tip displacement and reed pressure in the dynamic regime Eq. (3.9) into
Eq. (3.20) yields

q̂ = 2 Sr jω p̂rD(ω). (3.21)

With Eq. (3.9) the amplitude ratio of the motion induced flow and the pressure inside the mouthpiece is

q̂
p̂r

(ω) = 2 Sr jω
1
K

1 − ( ωωr
)2 + j( ωωr

) 1
Qr

= Yr, (3.22)

which can be called the reed’s acoustic admittance Yr.
For weak damping, the modulus of this function reaches its maximum |q̂/p̂r |max near the reed’s
resonance frequency fr, the corresponding function value is∣∣∣∣∣ q̂

p̂r

∣∣∣∣∣
max

= 4πSr fr
Qr

K
(3.23)

2subscript (·)d stands for dynamic
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The reed admittance Yr is sometimes interpreted as an acoustic compliance of an equivalent volume
Veq. With Yr = 1/Zcav, where Zcav = − j ρc2/(Veq ω) is the acoustic impedance of a cavity, the
equivalent volume Veq becomes

Veq = 2 Sr ρ c2
1
K

1 − ( ωωr
)2 + j( ωωr

) 1
Qr

. (3.24)

Veq obviously is a frequency dependent quantity. However, its offset value Veq,0 = 2 Srρc2 Qr/K is
often used to calculate a frequency independent length correction ∆L = Veq,0/S [125, 43], where S
is a cross section of the bore. This, however, implicitly assumes an inertial nature of the equivalent
volume, which seems to be in contradiction with the statement that led to Eq. (3.24)3.

To summarize, the quasi-static and dynamic fluid-mechanical characteristics of a reed blade
according to the basic model [102, 125] are:

pM: Static pressure to close the reed,

qmax: Maximum flow through the maximally open reed,

Sr: Reed effective surface.

Additionally, the width of the reed channel w as a constant geometrical parameters is necessary to
link the tip displacement x to the intake cross section S in.

The set of equations given in this section and the assumptions which they are based on is referred
to as the “Raman-Model” [42], after a pioneering treatise by Raman [144].
In Table 3.1 an overview on the model functions, the characteristical curve points and related reed
parameters is given for typical values of a bassoon double reed. In contrast to the derivation above,
the equations in this table for the reed displacement are written in terms of the reed slit height h,
instead of reed tip position x, and in terms of frequency f in Hertz, instead of angular frequency ω.

3The concept of a reed equivalent volume has recently been adapted by Dalmont et al. [45] for the non-linear beating-
reed regime. The authors discriminate a displaced volume, corresponding to the reed motion, and an equivalent
volume as a inertial correction to be applied to the resonator, which is sought to explain the discrepancy between its
fundamental air column mode and the sounding frequency of the reed-resonator system in playing conditions.
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Table 3.1 An elementary physical model for the double-reed (“Raman-Model” [102])
Model parameters h∞ = 1 mm, w = 14 mm, pM = 9.5 kPa, fr = 1300 Hz, Qr = 3.
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r

∣ ∣ ∣[
m

m
k
P
a
]

fr

(
ĥ
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3.2 Measurement of Reed Parameters

The measurement of the reed’s behavior in the static and dynamic domain allows to estimate model
parameters according to Table 3.1 by matching the specific model function to experimental data.
Two experiments have been performed:
From the first experiment the mechanical and flow-related parameters in the quasistatic regime can
be obtained. In this basic experiment, the pressure difference across the reed and the resulting flow
through it is measured in absence of reed oscillations [40, 4].
The second experiment is a measurement of the frequency dependent acoustic impedance of the
reed taken off the bocal. This allows for a rough estimation of dynamic mechanical properties of
the reed blades [101].

3.2.1 Quasi-stationary Measurement

The principle of this experiment is to measure the pressure difference ∆p = pm − pr between the
mouth and the inside of the reed channel, and the flow q through the reed, simultaneously. The reed
blades will deflect due a pressure difference acting on them and the reed slit is narrowed. By a
simultaneous optical measurement of the intake area S in, slit height h and width w, it is possible to
obtain the reed’s static structural mechanical parameters in the same measurement run. To assure
quasi-static conditions, auto-oscillations of the reed blades must be prevented.

Experimental Setup

p

camera

S

q

q

in r

mp

Figure 3.3 Schematic representation of the experimental setup of the artificial mouth (not
to scale)

The experimental setup is shown schematically in Fig. 3.3. In contrast to other measurement setups
reported in the literature [40, 4], the volume flow is here measured with a thermal mass-flow meter
in the air supply at the inlet of the artificial mouth. This setup was chosen since it allows for a
direct measurement of the mean flow-rate in both quasi-static and oscillating regime. The leakage
volume-flow rate of the setup is small enough to be neglected4.

As for the volume of the mouth cavity downstream of the flow-meter, the practical measurement
procedure requires to adjust several steady-state regimes of constant mouth pressure. With the
present setup, a steady flow regime was achieved approximately 2 seconds after a readjustment of
the pressure-relief valve. At each of these states, a picture of the intake area was taken by use of a

4The leakage has been determined from a pressure decay measurement. The slope of the log-pressure decay vs. time is
-0.002 1/s. From the bulk modulus of air 1.43 Pa and a mouth cavity volume of 3.5 litre, this yields a leak coefficient
of 5 ·10−11 (m3/s)Pa. That is, the leak flow-rate at ∆p = 10 kPa is qleak < 5 · 10−4 litre

s , which is about 1% of the
residual flow-rate which is measured, when the reed appears to be completely closed
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camera equipped with a macro lens. A piece of reusable plastic sealing material (Bostik Blu-Tack)
was sticked to the reed blade, to considerably increase its effective mass and damping to prevent
auto-oscillations during the experiments.
From the characteristical curves obtained by plotting the flow-rate q and the reed slit height h versus
the differential pressure ∆p, the reed parameters pm,s, qmax, h∞, and pM can be read. Subsequently,
the reed parameters qA, S∞, Ks and K can be calculated. Alternatively, S∞ can be directly read
from a respective curves, and pM can be estimated from the pressure-flow characteristic, although
the saturation pressure pm,s may be more easily indentified in practice.
An overview on the measured curves, the reading of characteristic values and the related reed
parameters is provided in Table 3.2.

3.2.2 Dynamic Measurement

The principle of this measurement is an acoustical excitation of a reed blade motion and a measure-
ment of the resulting air flow. This can be done with the acoustic impedance measurement setup
introduced in the previous chapter. The impedance spectrum measured by a swept-sine pressure
excitation will reveal a dip near the mechanical resonance of the double-reed assembly due to the
additional “pumped flow” induced by the moving reed blades [101].

Experimental Setup
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Figure 3.4 Schematic representation of the reed admittance measurement (not to scale)

The experimental setup consists of a narrow cylindrical tube of 139 mm length5 and 4.2 mm
diameter, which corresponds to the diameter of a bassoon bocal. The reed is stuck to this adapter
tube like it were a bocal, and the impedance of the reed seen from the butt is measured (Fig. 3.4).
The dip in the measured impedance spectrum corresponds to an admittance maximum of the reed
assembly. It can be clearly detected in the spectrum when comparing two configurations with free
and strongly damped reed blades.
As the admittance measured in this way is a superposition of the admittance Ycav of the air enclosed
in the reed channel cavity, and the admittance due to the reed motion Yr, the latter can be obtained
by subtracting Ycav = 1/(− j ρ c2/(Vrω)) from the measured admittance. Vr is the volume of the
reed channel.
From the characteristical points of this curve fr, ∆ f , and |q̂/p̂r |max can be read. This allows to
determine the reed parameters Qr and Sr, if the reed’s stiffness K is known. As an estimate, the
value for K obtained from the static measurement can be used.

It must be mentioned, that for this procedure to determine Sr and Qr the correct measurement of the
acoustic impedance magnitude is crucial. With the present setup, this aspect may be critical, as the
damping in the measurement appears to be much larger than predicted by theory. The impedance
peak magnitudes are measured smaller by up to 50%. The measured values for Sr and Qr should be
regarded as rough estimates, which may be greater (Sr) or smaller (Qr) by factor 2. However, the

5This length has been chosen for practical reasons of the artificial mouth, in which the double-reed is rigidly mounted.
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Table 3.2 Parameter estimation for the “Raman-Model” [102] on the basis of measure-
ments on the double-reed
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method will give a reasonable estimate for the resonance frequency fr, and is probably still useful
to provide a qualitative idea of the relative change of these parameters as the embouchure situation
is varied.

An overview on the measured curves, the reading of characteristic values and the related reed
parameters is provided in Table 3.2.
As can be seen in this table, some of reed parameters are have been determined by different
methods. The differences between the values for one and the same parameter obtained from
different measurements are interesting. They allow for the estimation of the importance of flow
effects in the double-reed. These aspects will be addressed in detail in the next chapter.
Previous to that, the next section gives an overview on the artificial mouth setup used in the
experiments.

3.3 Construction of an Artificial Mouth

The performance characteristics of reed woodwind instruments are influenced by the player to a
great extent. A musician can turn the output of a coupled oscillating system into a piece of art:
music.
In reed woodwind this “conversion” requires delicate actions of the player by using his facial
muscles to influence the double-reeds operation conditions.
It is not easy to observe this interaction in a real performance, since the excitation mechanism is very
sensitive, and is most easily disturbed by the sensors. However, recent studies with instrumented
mouthpieces were able to demonstrate the importance of in vivo experiments in understanding
advanced playing techniques with single reed instruments [84, 33, 69]. To the authors knowledge,
such studies have not been carried out for double-reed instruments, so far.
Here, a different approach has been chosen. The human player is replaced by a technical device,
that is supposed to interact with the excitation mechanism in a very similar way as a musician does.
This in vitro approach facilitates measurements describing the interaction player and instrument
and has been widely used in the field of wind instruments musical acoustics. Experimental devices
constructed for this purpose are called artificial mouths.
Being far from music, an artificial mouth is helpful to study the interaction of the player and
instrument and provides some basic insight into the performance characteristics of the sounding
instrument.

For this thesis, an artificial mouth for double-reed instruments has been constructed, which allows
for both characteristic experiments describing the embouchure-reed system by model parameters,
as well as for blowing experiments with a complete instrument in realistic playing conditions. A
description of this device is given in the following.

3.3.1 Requirements Profile

The approach of studying musical wind instruments by use of an artificial mouth has a long tradition.
Several devices have been developed starting from about the 40s of the last century [120] and
refined versions have been used for recent studies of various wind instruments (see, e.g. for brass
instruments: [38, 131, 28]; flute: [12, 155, 57]; single-reed instruments: [92, 40, 119, 153, 3, 115,
21]; double-reed instruments: [150, 106, 6, 77, 75]). According to the specific subject of interest,
each of these devices meets different demands.
In the present study, the main objective is to study the performance characteristics of bassoons with
respect to the embouchure action of player, who, in a musical context, has to comply with one
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paramount condition: playing in tune. The artificial mouth developed for this study should allow
for a quantification of the efforts, a musician has to make to play in tune with a given instrument,
i.e. a combination of double-reed, bocal and bassoon.
Such a device should allow for:

• Measurement of lip force, reed blade displacement, blowing pressure, mouth pressure and
mean flow,

• Precise adjustment of lip position, lip force and blowing pressure,

• Individual adjustability of lip position, lip force and blowing pressure during playing,

• Optical access to the reeds front view, and

• Robust design for the possibility to swap between instruments without affecting the em-
bouchure.

In order to ensure a reasonable repeatability of the experiments, it was chosen to use synthetic
bassoon double-reeds, exclusively. These are made from non-hygroscopic materials and their
dynamic properties are not affected by the humidity of the air. This facilitates the design of the
experimental setup, since the artificial mouth can then be operated with dry air.

3.3.2 Generic Design

In musical acoustics, various attempts have been made to imitate human lips, and the different
implementations according to different types of wind instruments reflect the broad range of me-
chanical function, that musicians lips can provide: Whereas in brass instruments playing the lips
directly form an “outward-striking” valve, in reed-woodwinds each of the lips is pinched between
the players teeth and the oscillating reed blades. This damps the “inward-striking” valve and avoids
oscillations at the reed’s natural frequency.
During the present study, two lip-configurations have been successfully used to mimic a double-reed
embouchure.

Prototype I - fixed lip, adjustable reed

The first prototype is similar to artificial mouths used in brass instruments research (e.g. [131]).
The lips are thin water filled silicon tubes enclosed by two adjoining bores in a rigid lip block. A
thin sealing lip is glued to each of these tubes. If a double-reed is positioned between the tubes and
the mouth cavity is pressurized, these thin sealing lips will lies against the reed blades and tighten
the mouth cavity (see Fig. 3.5(b)). A few drips of silicone oil can be used additionally. This setup
has the following advantages:

• Like in a human mouth, the lip assembly separates the mouth cavity and the ambiance. The
mouth pressure acts only on the surfaces of the reed blades protruding from the lips into the
mouth cavity.

• A cavity of arbitrary size and wall stiffness can be attached to the lip block to mimic the
vocal tract.

• The clamping of the double reed between the lips can be varied in a simple and robust manner
by adjusting the water pressure inside the lips.

The characteristic details of Prototype I are shown in Fig. 3.5.
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(a) Lip block with water-filled silicon tubes and double
reed mounted in an axially shiftable support

(b) Double-reed between the silicon tubes as seen from
the mouth cavity (removed for the picture)

Figure 3.5 Prototype I: Front perspective (a) and rear view (b)

Yet, the main disadvantage of the setup is the incapability to precisely control the embouchure:

• The position of the reed-mouthpiece relative to the lips cannot be adjusted accurately, since
the lips may stick or slip in case of transversal movement of the lip.

• The lip-force acting on the reed blades cannot be measured directly.

• A “biting” of the reed mouthpiece is not possible, whereas reed-woodwind players usually
make use of their jaw and teeth control the reed.

To overcome these drawbacks, a second device has been developed.

Prototype II - fixed reed, adjustable lips

The key feature of this setup is the precise adjustability of an exchangeable lip element relative to
a rigidly fixed double-reed mouthpiece. The lip element is mounted on a load cell, which can be
positioned by micrometer screws in two directions, longitudinal and perpendicular to the main axis
of the double-reed (see Figs. 3.6 and 3.7).

In contrast to a real embouchure, the artificial lip does not provide an air-tight separation of the
mouth cavity from the ambiance. The artificial jaw is mounted inside a housing, which consequently
is considerably larger than the human mouth cavity. Furthermore, for practical reasons, the housing
is made of acrylic glass (PPMA) which is a hard-walled boundary of the mouth cavity. Compared
to a real mouth cavity, these aspects are significant drawbacks, since it has been shown that the
vocal tract can play a role in extended playing techniques in single reed instruments [33].
Nevertheless, the unrealistically large volume of the present artificial mouth does not affect its
general function. Regarding this aspect, the claim to mimic the human mouth cavity has been
released here for the sake of a precise adjustment of lip relative to the reed, which undoubtedly is
very sensitive to mechanical interaction.

3.3.3 The artificial Lip

In reed instrument performance, the lips are the interface by which the player can control the
excitation of the instrument. Generally, they serve two important functions: On the one hand, the
lips are clasped around the reed providing an air-tight sealing of the mouth and thus enable the
buildup of mouth pressure. On the other hand, the lips are the medium of force transmission from
the jaw to the reed.
The lip-reed interaction is complex since a number of facial muscles are employed, allowing
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linear stage

micrometer screw

friction hinge

load cell

artificial lip fixture

return spring

Figure 3.6 Setup of the adjustable artificial lip module for Prototype II

for great variation of the situation in terms of geometrical and mechanical characteristics: The
human lip mainly consists of a very thin layer of skin that covers a circular muscle (musculus
orbicularis oris). The lip rests on the reed blade like a cushion. The teeth are positioned on top of
this lip cushion. The muscles of mastication (musculus masseter, musculus temporalis, musculus
pterygoideus medialis, musculus pterygoideus lateralis) are used to press the teeth into the lip
cushion and therefore exert force on the reed blade. Some of these muscles are also used to shift
upper and lower jaw versus each other to adjust the position of interaction relative to the blade. The
elasticity of the lip cushion can be adjusted by the tension of the circular muscle.
Recently, attempts have been made to characterize dynamical mechanical parameters of the
human lip from the viewpoint of wind instrument performance [65, 70, 131]. It was found that
their characteristics are represented best by a compound of an air balloon filled with foam and
glycerin [70].
Inspired by this concept an artificial lip module has been created for the present study. It consists of
a rigid rib, imitating the teeth, which is sheathed by a piece of 3 mm cellular rubber. On top of this,
a glycerin filled air balloon is overlayed. This compound is fixed in a short steel tube which can be
clamped onto the artificial jaw module by use of centering bolts (see Fig. 3.8).
This lip module can be positioned with micrometer screws in two dimensions to axially adjust the

contact region of the lip on the reed as well as the forces exerted to the blades. The micrometer
screws are actuated by 2 mm hex-wrenches, which are revolvably mounted in air-tight fittings in
the housing of the artificial mouth. This makes it possible to independently adjust the lips in both
dimensions during the experiment.

3.3.4 Air Supply

An important practical feature of the artificial mouth is the concept of air supply and pressure
regulation. The pressure in the mouth of a performing bassoonist ranges approximately from 1
to 9 kPa [68]. Typically, the mean volume flow-rate into the instrument is in the range of 0.03 to
0.4 l/s during playing. In medical research it is common to use membrane pumps and control the
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Figure 3.7 Front and side view of the lip module with possibility to adjust the lip position
in 2 directions. Dimensions are in mm.

air-flow to imitate the human respiratory system. In the present study, for practical reasons, it was
decided to use a high overpressure reservoir and control the pressure in the mouth by means of a
pressure-relief valve. This principle can lead to problems if the valve mechanism interacts with the
double-reed which itself is a highly dynamic pressure regulated valve.

Starting the oscillation

A delicate aspect of the air supply is the strategy to start the oscillations. The musician usually
blocks the airflow by closing the reed with his tongue to build up the mouth pressure and then
quickly releases the tongue to start the vibration of the reed. A mechanism providing the same
function has recently been included in an artificial mouth for clarinets [3]. Yet, it is also possible,
to start the oscillation by simply increasing the mouth pressure [21].
When a certain threshold pressure, depending on the reed and embouchure, is exceeded, the reed
will close, and the mouth pressure will increase rapidly, depending on the mouth cavity volume.
The delay6 of the mouth pressure regulating system determines if the reed remains in this blocked
position, or if it opens again and the system settles in an oscillating regime. In the present work, a
large diaphragm pressure regulator has been used.

Pressure Control

The computer aided control of the air supply of an artificial mouth is a demanding task7 in terms
of control technology and precision engineering [56, 57, 151]. For the focus of this work which

6The characteristic time of the pressure regulating system (mouth cavity, inlet pipe and valve) has to be short enough
to release the mouth-pressure, once the reed has beaten. On the other hand, the inertia of the system must be large
enough to prevent a coupling with double-reed valve.

7A direct control of the mouth-pressure at the inlet of the mouth cavity is delicate. Unlike the human mouth cavity the
artificial mouth is hard-walled and acoustic reflections are likely to influence the control mechanism. Piezo-operated
proportional pressure regulating valves in the given pressure range are available, but their maximum flow-rates are
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Figure 3.8 Assembling steps of the artificial lip. The air-balloon is subsequently filled
with glycerin through tiny brass capillaries fitted in the PVC caps.

is a detailed monitoring of the sounding bassoon in various configurations, a manual control of
the artificial mouth is sufficient. The air supply chain which was used is schematically shown in
Fig. 3.3. The mouth cavity has outer dimensions of 200 mm × 180 mm ×80 mm and with respect
to the equipment a cavity with a volume of approximately 2 l. A pipe of 6.5 m length and 12 mm
diameter connects the artificial mouth and the valve. The mouth pressure is controlled by a manual
precision pressure regulator without constant bleed (AirCom Type R216-0E). This device has a
diaphragm of approximately 80 mm diameter and the pressure can be controlled in range from 100
Pa to 60 kPa, at maximum flows of 700 l/min. With this setup, it is possible to sound the bassoon
throughout the complete playing range from 58 to 622 Hz.

3.3.5 Sensors and Data Acquisition

This section gives a brief overview on the measurement devices used in the artificial mouth.

Mouth pressure

The mouth pressure is sensed with an amplified differential pressure transducer (sensortechnics
Type HDIM200DBP5) in a range of 0 to 20 kPa within an accuracy of 0.1% full scale output.
The pressure sensor has been calibrated with a hydraulic deadweight tester in the range of -2 to
2 kPa, with an accuracy of 10 Pa. Assuming a constant mouth pressure, only the RMS-value of the
measured pressure signal has been used in the postprocessing.

Reed pressure

The reed pressure is probed with a differential piezoresistive miniature transducer (kulite Type
XCQ-093), with a maximum pressure amplitude of 35 kPa, a sensitivity of 2.85 mV/kPa and a
natural frequency of 150 kHz. The sensor is mounted flush to the outer surface of the reed blade
approximately 30 mm downstream of the reed tip. Access to the reed channel is given by a small,
centered hole of 0.5 mm diameter in the blade. The reed pressure transducer is pre-amplified by a

small. For large cavities like the present artificial mouth, the pressurization times may be too long to maintain the
double-reed oscillation, once it was started.
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DC-coupled differential amplifier (Brüel&Kjær Type 2697A) and with a flat frequency response
(+/- 10%) from DC to 100 kHz. The pressure sensor has been calibrated with a hydraulic deadweight
tester in the range of -2 to 2 kPa, with an accuracy of 10 Pa.

Sound pressure

The sound pressure was measured with an externally polarized 1/2” free-field microphone
(Brüel&Kjær Type 4190) with a sensitivity of 52.7 mV/Pa. The frequency response is flat within a
tolerance of 0.2 dB, for the frequency range of 10 Hz to 10 kHz. The micropone was placed at a
distance of 1.5 m from the instrument. The experiments have been carried out in a laboratory room
acoustically modified to suit musical instrument rehearsal (reverberation times around 0.8 s above
200 Hz).

Volume flow-rate

The volume flow-rate is measured in the air supply at the entrance of the mouth cavity with a
thermal mass-flow meter (Voegtlin Type GSM-D9TA) within a range of 0.3-30 nl/min with an
accuracy of ±0.5 % of the measured value plus a tolerance of 0.09 nl/min. The factory calibration
of the flow-meter is in standard litres (nl STP), that is a volume of 1 l at standard state (1.013
×105 Pa, 0 ◦C). The reading has to be corrected for actual pressure and temperature to give the
actual volume flow. Using Boyle’s law, the actual volume flow is calculated from the sensor reading
qread in nl/min, the pressure p in Pa and the temperature T in K by following relation:

q =
1.013 × 105hPa

p
T

273.15 K
qread

nl
min

l
min

. (3.25)

In the airway, the absolute pressure is measured with an amplified barometric pressure transducer
(sensortechnics Type HDI0811AR) with a measurement range of 0.8 to 1.1 ×105 Pa and an
accuracy of ± 0.01 ×105Pa. The temperature is measured by a resistance temperature detector
(heräus Type M310Pt100), which was operated by a 3-wire input module (dataforth Type SCM5B34-
01) yielding an accuracy of ±0.12 ◦C. These measurement uncertainties have been used to estimate
the uncertainty in the volume flow-rate.

Lip Force

To measure the lip force, the lip module described in section 3.3.3 is mounted on a precision
load cell (AST Type KAP-S/10N/0,1) featuring a measurement range of 0-10 N and an accuracy
of ±0.01 N. The signal is conditioned and amplified by a 4.8 kHz carrier frequency amplifier system
HBM-MGC (Modules HBM Type AP14, Type MC55).

Lip Position

The position of the lip module in axial direction of the reed can be adjusted by means of a manual
linear stage (owis Type VT-45-25) within a range of 25 mm. The accuracy of the adjustment screw
is approximately 10 µm; a full spindle turn of 50 digits corresponds to an axial displacement of
0.5 mm.

Reed opening area

A conventional digital single lens reflex camera (Nikon D3000, sensor size 23.6 mm × 15.8 mm,
effective pixels 10.2 M) with macro optics (lens Nikkor AF-S DX 18-55 1:3,5-5,6 with 14 mm
extension tube) was mounted on a positioning slide outside of the transparent housing of the
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artificial mouth, facing the reeds front view. The reed - lens distance is approximately 20 mm. In
this configuration a distance of 1 mm is corresponds to 120 pixels approximately. This setup is
used to record the reed open area during steady-state flow regimes. The infrared remote control
of the camera was triggered by the measurement software. An algorithm has been implemented
to extract geometrical measures of the reed front view from a JPEG-grayscale image. A subpixel
resolution is achieved by fitting third order polynomials to the detected edges of the reed blades.

Data Interfacing

The measurement data (except for the optical data) is interfaced by means of two DAQ-systems.
For highly dynamical data, i.e. the reed pressure and sound pressure measurements, a Brüel&Kjær
PULSE measurement system (Type 3109) was used. The data was sampled at 65.536 Hz.
The quasi-stationary data was interfaced with a 8 channel digital I/O board National Instruments
Type NI 6601 PCI with a maximum sampling rate of 2 MHz. A pulse-train trigger signal from this
unit was recorded by the PULSE - frontend to synchronize the time series recorded with different
systems in the postprocessing. The data acquisition from the PCI-board was controlled by use of
the software environment MATLAB (Data Acquistion Toolbox). In the post processing, the time
series of both measurement systems and, where required, the image data were concatenated in one
result file for subsequent data visualization.

3.3.6 Experimental setup

(a) Overview (b) Detail (Top View)

Figure 3.9 Bassoon artificial mouth setup

A picture of the experimental setup is shown in Figs. 3.9(a) and 3.9(b). The bassoon is mounted
in a fixture, such that the main axis of the instrument is oriented horizontally. In this way, the
instrument may be fingered easily with the typical handling used in musical performance.

3.4 Summary

In this chapter, an overview has been given on the basic physical model describing the pressure
controlled reed motion in reed wind instruments. This single-degree of freedom model assumes,
that the reed motion is governed by the reed displacement at its tip. Five independent parameters
need to be determined for this lumped model description.



60 3 Characterization of the Double Reed Mouthpiece

Two measurements are described to obtain the model parameters in the static and dynamic domain,
and typical values are given.
A detailed overview is presented on the experimental setup constructed for this study. This artificial
mouth allows to carry out characteristics measurements to determine the reed parameters, as well
as blowing experiments with the sounding instrument. A key feature of the setup is the rigid fixture
of the double-reed mouthpiece and a precisely adjustable lip block (±10 µm) to imitate realistic
embouchures.

In the next chapter, details of the flow model will be discussed, and the effect of a pre-deflection of
the reed due to the action of a lip force is investigated.



4 Modeling Realistic Embouchures with
Reed Parameters

4.1 Reed Channel Geometry and Flow Characteristics

4.1.1 The Double-Reed as a Flow Duct

Unlike in single-reeds, the cross section of the double-reed channel varies greatly along the main
flow direction. This section addresses the reed’s geometry in order to estimate some characteristic
values of the flow, i.e. the mean velocity and Reynolds number along the main axis.

Geometry of the reed channel

To describe the cross section and perimeter change of the double-reed channel along the flow
direction, a parametrized geometric model of the bassoon reed is introduced. It is based on several
measures at characteristic cross sections of various bassoon double-reeds with a veneer caliper and
does not claim to give a precise description of a specific bassoon reed.
For this representative model it is assumed that the cross section of a bassoon reed blade at any
point along the reed’s longitudinal axis is well approximated by either a parabolic or elliptic curve,
or a linear combination of both. Thus, at any axial distance x from the reed tip, the cross section of
the reed channel is described by three parameters:
The channels lateral and vertical elevation, wA(x) and hA(x) respectively, and a shape factor s f (x),
which determines if the curve is parabola (s f = 1) or an ellipse (s f = 0) or a weighted average of
both.
With this linear combination, the elevation h(x, y) perpendicular to the reed’s longitudinal axis is
given by

h(x, y) = s f (x) hp(x, y) + (1 − k(x)) he(x, y), (4.1a)

where

hp(x, y) =

1 − (
y

wA(x)

)2 hA(x) (4.1b)

and

he(x, y) =

√
1 −

(
y

wA(x)

)2

hA(x) (4.1c)

describe a parabolic and elliptic curve within a rectangular bounding box of dimensions hA and wA.
A picture of a bassoon reed is given in Fig. 4.1. To model its geometry, the reed is divided into
three sections

front: The reed blades, from tip (a) to the first wire (b), which have a parabolic shape (s f = 1);

intermediate: The section between first (b) and second wire (c), in which the curve is smoothly
changed from parabolic to elliptical shape (1 < s f < 0);

rear: The lower part of the reed from the second wire (d) to the outlet end (d), where the reed
halves have a elliptical shape (s f = 0).
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Figure 4.2 Model parameters wA, hA, s f for a Bassoon Double-Reed

The following measures correspond to a synthetic bassoon reed (Selmer Premium Plastic Medium 270M)
used in this study (in mm):

(a) x = 0 wA = 14.4 hA = 1.6
(b) x = 26.5 wA = 7.2 hA = 4.4
(c) x = 34 wA = 5.6 hA = 4.6
(d) x = 55 wA = 5.3 hA = 5.3

Using this data for the geometrical model introduced above yields an estimation of the cross section
and of the perimeter along its longitudinal axis, as shown in Fig. 4.2. Note, that in the first region
the reed’s cross section has a local maximum, while the width and height of the reed channel are
linear functions. The reed channel is subsequently constricted by the wires, between which the
pressure sensor is mounted. A mesh plot of the bassoon reed blade corresponding to the above data
is shown in Fig. 4.3, where the sensor position between the wires (b) and (c) is marked by a black
dot.
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Figure 4.3 Geometrical Model of a Bassoon Reed Blade
(measures taken from Selmer Premium Plastic Medium 270M)

The rear section of the reed ((c)-(d)) has a slightly widening cross section along the flow direction,
steadily approaching a circular cross section at the outlet end (x = 55 mm).

Mean velocity and Reynolds number

The geometrical model can be used in order to estimate the change of the reed channel cross section
while the blades are deflected. Here it is assumed, that the line of maximum elevation (y = 0) of the
reed can be described by the cubic function of a Bernoulli-Euler beam. The beam is clamped at xcl

and a force is acting on it at xl yielding a deflection ∆h at the tip. For the purpose of estimating
the change of the flow duct dimensions the reed is closed at its tip, any intermediate state during
the closure is defined simply by given values of xcl, xl and h, instead of modeling load situation in
terms of its physical properties. It is assumed further, that the reed’s width y = f (x) is not affected
by a change in the inlet cross section of the reed channel.
This model and the resulting cross section change of the closing reed defined in Fig. 4.2 is plotted
in Fig. 4.4 for xcl = (3/4) x(a)(b) and xl = (1/4) x(a)(b) and 0.1 mm < h < 1.6 mm. The measure
(a)(b) is the axial distance between the section (a) and (b). With this approach, the volume and
cross section along the main flow axis of the duct can be estimated roughly for any state of closure
during a measurement of the reed’s quasi-stationary flow characteristics.
In the following, a typical measurement run will be illustrated on the basis of Fig. 4.4: The
unstressed situation is marked by the dashed line. Next, the reed is pre-deflected to a slit height
h = 0.9 mm by means of a force F imitating the embouchure of the player. The mouth pressure in
this initial state is zero; this situation is marked by the dark solid line. As the mouth pressure is
increased, the reed’s blades deflect and the tip height decreases to zero (line colors change from
dark to light). Once the critical pressure difference pM has been reached, the reed closes completely
(h = 0). If the reed is maximally open (the dashed line), the cross section is nearly of the same size
at any position along the main flow axis. For small slit heights h, however, the geometric model
predicts a large change in cross section along the first 10 mm of the reed duct. To characterize the
flow during the process of pressure driven reed closure in a quasi-stationary regime, the Reynolds
number is calculated. It is the ratio of inertial and viscous forces in the flow and can be used to
categorize flow regimes. The Reynolds number is calculated at three characteristic cross sections:
Tip (a), pressure sensor position (halfway between (b) and (c)), and the outflow end (d), as shown
in Fig. 4.5(a). At the tip (a), the cross section is variable, the other control points are assumed to be
invariant.
The equivalent slit height heq used for the calculation of the Reynolds number Re, is the height
of a rectangle with the same area S and aspect ratio htip/wtip as the reed cross section measured
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Figure 4.4 Reed channel height and cross section profiles for several reed slit heights in
the range 0.1 mm < h < 1.6 mm.

optically. As a characteristic velocity, the mean velocity v̄ = q/S is calculated from the measured
mean flow-rate and the respective cross section at the three control points. In Fig. 4.5 the Reynolds
number and mean velocity are plotted versus the equivalent reed tip height heq, for values measured
during the pressure driven quasi-stationary closure of the reed.

Throughout the closure of the reed, the velocities in the slit increase, whereas the Reynolds number
has a maximum at heq ≈ 0.5 mm, at the maximum flow rate, reaching a value of 3500 at the sensor
position and the reed outlet (d).
The mean flow velocity v̄ = q/S in the reed channel is estimated from the lower plot in Fig. 4.5 to be
in the order of 10 m/s, whereas in the slit (a) the values cover a broad range from 20 to 180 m/s. In
the quasi-stationary regime, the flow is laminar in the slit and in a transitional or turbulent regime at
the sensor position, for mean velocities v̄ corresponding to reed slit heights larger than heq ≈ 0.3 mm.

Under these conditions, the following phenomena can appear in the quasi stationary flow [86]:

• flow separation at the sharp edges of the reed duct inlet forming a free jet

• turbulent mixing of the jet with the surrounding air in the reed duct on the way from the tip
(a) to the sensor position (halfway between (b) and (c))

• detachment from the walls due to the change in taper of the reed duct

• friction at the channel walls

These phenomena incorporate energy dissipation that will be present as a flow-rate dependent
pressure loss inside the reed, which can globally be taken into account. In the following sections, a
model approach with respect to flow induced energy dissipation is derived to predict the flow-rate q
from the pressure difference ∆p measured inside and outside of the reed duct. Energy dissipation
will be included in terms of coefficients scaling with the dynamic pressure and with the inlet cross
section at the tip, respectively.
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Figure 4.5 Reynolds number Re and mean velocity v̄ =
q
S at three cross sections of the

reed duct, as a function of the equivalent reed slit height heq at the tip. The
corresponding mouth pressure pm and reed pressure pr are given in the lower
plot.

4.1.2 Bernoulli Flow-Model with Pressure Losses

The flow phenomena given above are likely to occur in the quasi-stationary flow. As it is very
difficult to directly measure the flow field inside the reed channel without disturbing it, a heuristic
approach is used. The flow-related effects are included into a theoretical model for the pressure-
dependence of the quasi-stationary flow-rate in a duct of a given, static geometry.
In this section, an analytical model for this duct flow based on the conservation of mass, energy,
and momentum will be used and extended by including two coefficients accounting for flow-effects

Cc: A constriction coefficient scaling with the duct inlet cross section accounting for flow separation
at a sharp duct edges, which is referred to as the vena contracta effect [86].

ζ: A global pressure loss coefficient scaling with the dynamic pressure accounting for any dissipa-
tive effects such as detachment of the flow from the walls, and friction of the flow at the walls as
it travels through the duct
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Figure 4.6 Sketch of the experimental setup

Overview of the Measurement Setup

The measurement setup is shown in fig. 4.6. The quantities that are directly measured in the
experiment are marked by a box. For practical reasons, the pressure transducer sensing the pressure
inside the reed is placed some centimeters downstream of the reed tip1 For the bassoon reeds in this
study the sensor is mounted approximately 30 mm from the reed tip, between the wires (b) and (c)
as shown in Fig. 4.3. Through a small2 perpendicular hole in the channel wall about 30 mm from
the reed tip , the static pressure is measured. In the following, this pressure will be denoted as the
reed pressure pr.

Equations

As can be seen from Fig. 4.3, the reed channel is straight and has a smoothly diverging cross section.
The flow entering the channel through the narrow intake cross section separates at the sharp edges
of the reed to form a jet. At a short distance from the tip in the order of the reed tip height the flow
expands and reattaches [160]. With the assumption that in the quasi-stationary regime the flow is
uniform at the sensor position and that the air can be regarded as incompressible here, the flow can
be treated as a stream tube in which Bernoulli’s principle is applied.

According to energy conservation along the stream tube passing from the reed tip through the
reed channel, Bernoulli’s principle writes for the control sections S m, S j, S a and S r, as shown in
Fig. 4.6:

pm +
ρ

2
u2

m = p j +
ρ

2
u2

j = pa +
ρ

2
u2

a = pr +
ρ

2
u2

r . (4.2)

where um, u j, ua and ur are the velocities along the stream tube in the mouth (·)m, in the jet (·) j, in
the reed inlet after reattachment (·)a and at the measurement point (·)r, respectively. The optically
measured intake cross section S in is implicitly included in the energy balance, in the jet cross
section S j. To account for possible flow separation S j is written as a fraction of S in.
The law of conservation of mass for the stream tube under the assumption of incompressibility
yields

umS m = u jS j = uaS a = urS r = q. (4.3)
1Here the channel walls are stiff enough that the dynamical properties of the reed are not influenced by the presence of

the sensor. Thus it is possible to carry out dynamical measurements on the blown reed with the same setup.
2The diameter is 0.5 mm
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The velocity in the mouth um is assumed to be negligible, as S m � S r. To account for the flow
separation at the intake, the constriction coefficient Cc is introduced

Cc =
S j

S in
, (4.4)

as the ratio of the jet cross section S j and actual cross section S in. Through the transparent housing
of the artificial mouth, S in is measured optically.
Since the flow reattaches shortly behind the intake, the duct cross section S a is assumed to be equal
to the intake cross section S in:

S a = S in. (4.5)

Whereas friction is neglected in the intake region due to the flow separation, a dissipative pressure
drop ∆ploss is introduced to account for any pressure losses along the way from S a to S r, where
the pressure is measured. The reed duct between these control sections is regarded as a non-ideal
diffuser with the pressure loss

∆ploss = ζ
ρ

2
u2

a. (4.6)

where ζ is a dimensionless loss coefficient3, which is zero in the loss-free case.
Implementing the dissipative term Eq. (4.6) in Eq. (4.2), and using the assumptions made above
yields

pm = p j +
ρ

2 (Cc S in)2 q2 = pr + m2 ρ

2 S 2
in

q2 + ζ
ρ

2 S 2
in

q2, (4.7)

where m is the cross section ratio
m =

S in

S r
(4.8)

between inlet and outlet of the diffuser-equivalent part of the reed duct.

For the mixing zone of the jet between the intake (·)in and the reattachment point (·)a the conservation
of momentum in the fluid is written as

p j S a + ρ u2
j S j = pa S a + ρ u2

a S a. (4.9)

According to Eq. (4.7), the pressure p1 at the far end of the mixing zone is the static reed pressure
pr reduced by a term representing losses of kinetic energy. This pressure pa therefore depends on
the diffuser geometry and duct losses, represented by the coefficients m and ζ, respectively, and
writes

pa = pr +
ρ

2 S 2
in

q2
(
m2 − 1 + ζ

)
. (4.10)

Inserting Eq. (4.10) into Eq. (4.9) and solving for the pressure in the jet p j yields

p j = pa + ρ
q2

S 2
in

− ρ
q2

S 2
j

Cc, (4.11)

and with Eq. (4.10), the expression becomes

p j = pr +
ρ

2 S 2
in

q2
(
m2 + 1 −

2
Cc

+ ζ

)
. (4.12)

3The diffuser converts kinetic energy into potential energy. The ideal diffuser has a vanishing mean velocity at the
output, which means that the kinetic energy of the flow at the entrance is completely converted to potential energy. In
practice, it is therefore useful to express the dissipative pressure drop as a fraction of the dynamic pressure at the
intake, as it corresponds to the maximum amount of energy that can be converted to suite the purpose of the diffuser.
Thus, ζ = 1 is the upper limit for complete dissipation and the lower limit ζ = 0 corresponds to complete conversion
of kinetic energy in the ideal loss-free case
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To express pm as a function of pr Eq. (4.12) is used to eliminate p j from Eq. (4.7) and a relation
between the quantities determined in the experiment (marked by a box in Fig. 4.6) is obtained

pm = pr +
ρ

2 S 2
in

q2
(
m2 + 1 −

2
Cc

+
1

C2
c

+ ζ

)
. (4.13)

For conciseness, the coefficients Cc and ζ representing the vena contracta effect and the duct loss,
respectively are lumped into one scalar parameter

α = 1 −
2

Cc
+

1
C2

c
+ ζ, (4.14)

and the pressure difference ∆p = pm − pr is introduced to give

q = S in

√
2 ∆p

ρ
(
m2 + α

) . (4.15)

An interesting finding from this model is, that both the vena contracta coefficient Cc and the loss
coefficient ζ mainly scale the flow-curve q(∆p, S in), but have only a small effect on its generic shape.
In particular the saturation pressure is not lowered. For typical values of ∆p, S in and q measured in
a double-reed, the influence of the parameters m, Cc and, ζ is shown in the Appendix A2.

4.1.3 Discussion of the Model

Other authors have used the modified Bernoulli equation in the form

q = C f it S in

√
2∆p
ρ

(4.16)

with the empirical fit parameter C f it to fit their measurements of the flow-rate q to the measured
intake cross section S in and pressure difference ∆p [40, 4]. Adopting this strategy and applying
it to measurements on a bassoon double-reed, we roughly find C f it ≈ 1 for a wide range of reed
openings (Fig.4.7(a)). In this figure C f it is plotted versus the centerline reed slit-height hmax, which
was obtained from image analysis of the reed opening in various quasi-static regimes. Although the
flow-curve q(∆p, S in) has a pronounced hysteresis4, no difference can be observed in C f it between
the increasing (incr.) and decreasing (decr.) pressure regime. If hmax becomes smaller than 0.3 mm,
C f it increases rapidly. Combining Eqs. 4.14, 4.15, and 4.16 the global fit parameter C f it becomes

C f it =
1√

m2 + 1 − 2
Cc

+ 1
C2

c
+ ζ

. (4.17)

This equation points out, that according to the model presented here, C f it does not equal the jet
contraction coefficient Cc. Besides the vena-contracta effect, also a change of the cross sectional
area along the duct (m) as well as other energy dissipating effects in the flow (ζ) are to be taken into
account; the latter two are inversely related to C f it.
From a measurement of the intake cross section, the parameter m is known and and by fitting the
parameter C f it the coefficient α for global energy dissipation (α = (1/C2

f it) − m2) is obtained. For
slit heights smaller than 0.3 mm α increases (Fig. 4.7(b)), indicating a change in the flow regime.

4 Values of q(∆p) depend on the pressure history. The measurement run with a positive pressure gradient pm = 0→ pM

is called the increasing regime, the measurement run with a negative pressure gradient pm = pM → 0 is called the
decreasing regime.



4.1 Reed Channel Geometry and Flow Characteristics 69

0 0.2 0.4 0.6 0.8 1 1.2

1

1.5

2

2.5

3

C
fit

h
max

 [mm]

 

 
incr.
decr

(a) empirical fit parameter C f it

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

α

h
max

 [mm]

 

 

incr.
decr

(b) dissipation parameter α

Figure 4.7 Fit parameters for two writings of modified Bernoulli-equation describing the

double-reed flow (Eqs. 4.15, 4.16). α = 1
C2

f it
−

S 2
in

S 2
r

.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

ζ 
[−

]

α [−]

 C
c
 = 0.5

 0.6

 0.7
 0.8

 0.9

 1

Figure 4.8 Relations between global fit parameter α, duct losses ζ and vena contracta-
effect Cc in double-reed flow. ζ = α − 1 + 2

Cc
− 1

C2
c
. Colors correspond to a

variation of Cc.

Possible combinations of the unknown parameters Cc and ζ for a measured value of α can be read
from the graph in Fig. 4.8. The relevant range for the vena contracta effect is 0 < Cc < 0.5 [89]
and the loss coefficient is valid within the range 0 < ζ < 1.
For α→ 0, which is observed for slit heights hmax smaller than 0.3 mm, the model predicts, that
both the jet contraction and the duct losses decrease (Cc → 1, ζ → 0).
This is due to the fact that the the vena contracta effect vanishes, as the slit height h becomes
comparable to the edge-radius R of the reed: Idelchik gives Cc = 0.96 for R/d ≈ 0.5 [91].
For a circular intake of diameter d, Nurick [133] suggests the approximation

Cc(R/d) =

 1
C2

c,Re f

− 11.4
R
d

−
1
2

, (4.18)

where Cc,Re f is the sharp edge value Cc(R/d = 0).
Regarding d as a characteristical length and inserting the critical slit height h = 0.3 mm, the jet
contraction would vanish if the edge radius of the reed blade R were larger than 0.08 mm. According
to Nurick, other authors state that for R/d ≥ 0.14, no vena contracta can form [133], so that Cc = 1.
For slit heights hmax larger than 0.3 mm, the edge of the reed blade can be considered sharp and
flow separation occurs. For the case of reed woodwinds, Hirschberg et al. give 0.5 < Cc < 0.61
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in quasi-stationary regimes [89] based on theoretical considerations. This has been confirmed
experimentally by measurements of van Zon et al. [160]. For single-reeds in operating conditions,
this range of values for Cc has recently been confirmed numerically [39] and experimentally [115].
For the case of a sharp-edged slit-like orifice in an plate mounted perpendicular to the flow direction
in a tube, Durrieu et al. [51] found 0.65 < Cc < 0.75.
A simple approach is to assume independently of the slit height Cc = 0.5 for the jet contraction
coefficient and neglecting further duct losses ζ = 0. This yields α = 1.

Comparison of Measurement with Model

It is remarkable, that for the simple assumption Cc = 0.5, ζ = 0 the experimental data is in very
good qualitative and quantitative agreement with the model Eq. (4.15). This applies to both the
increasing4 and (Fig. 4.9(a)) and decreasing4 (Fig. 4.9(b)) regime (Fig. 4.9). The fitting has been
separately for increasing and decreasing regime, yielding a set of fit parameters (·)incr., (·)decr. for
both regimes.
Note, that the ticks on the upper x-axis are not equidistant with respect to S in, but indicate the
instantaneous measurement value of S in corresponding to the respective measurement point.

0 12
0

0.1

0.2

0.3

∆ p [kPa]

q 
[m

3 /s
] x

 1
0−

3

 

 
  8 5.5 2.8 0.9   0

 2  4  6  8 10

meas
model

C
c
 = 0.5, ζ = 0

S
in

 [mm2]

(a) increasing

0 12
0

0.1

0.2

0.3

∆ p [kPa]

q 
[m

3 /s
] x

 1
0−

3

 

 
7.7 4.7 2.4 0.8   0

 2  4  6  8 10

meas
model

C
c
 = 0.5, ζ = 0

S
in

 [mm2]

(b) decreasing

Figure 4.9 Volume flow through a double-reed channel as a function of pressure differ-
ence ∆p and inlet cross section S in. Comparison of measurement and model
Eq. (4.15), with α = 1. Increasing (a) and decreasing (b) pressure regime.

The saturation pressure pm,sat and the flow maximum qmax match well with the values predicted
by the model. Expectedly, the assumption that α is independent of the slit height results in a quite
drastic underestimation of the flow as the pressures ∆p exceed the saturation pressure and approach
the reed closing pressure pM (pM,incr. = 9.8 kPa, pM,decr. = 8.9 kPa). Here, also the measurement
accuracy in S in should be taken into account, estimations for the uncertainty will be given in the
next section.
In the non-dimensional plot in Fig. 4.10 it can be seen that the flow-characteristics in the increasing
and decreasing pressure regime do not reveal qualitative differences. The distinct hysteresis in the
flow-curve is directly related to the hysteresis in the reed intake cross section (S∞,incr. = 8 mm2,
S∞,decr. = 7.7 mm2). Other authors have related the hysteresis to a viscoelasticity in the reed
material [1]. This creeping however is a long-term effect, and its role is not clear in the short
time scale (minutes) of a quasi-static experimental run in which the hysteresis is observed. For a
double-reed friction at the lateral contact areas of the reed blades seems to be a possible explanation
as well.
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Figure 4.10 Non-dimensionalized representation of the pressure-flow characteristics.
The displayed measurement and model data correspond to Fig. 4.9
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Comparison with an Oboe Double-Reed

It is remarkable, that there are distinct qualitative differences between the data obtained in this
study for a bassoon double-reed and the data by Almeida et al. [4] for an oboe double-reed.
When comparing their data with the classical Bernoulli flow-model, they found that the measured
saturation pressure was significantly lower (pm,sat/pM = 1/4) than the theoretical prediction of the
classical single-reed model (pm,sat/pM = 1/3). Adhering to the assumption of a linear dependence
of the intake cross section upon the pressure difference, they concluded, that the recovery of static
pressure in the diffuser-like staple would introduce a change in the flow-curve, such that the location
of the maximum is shifted to the lower pressure differences ∆p.
In the present study of the bassoon reed, pm,sat/pM was also close to (1/4). That is in good
agreement with the presented model under the assumption of a constant vena contracta (Cc = 0.5)
and no additional friction losses (ζ =0).
Besides the differences in the model that was used to predict pM, differences in between the reeds
and also some practical aspects measurement setup may further account for the discrepancy with
the oboe study:

Mean velocity: As the intake cross section of an oboe reed is much smaller than that of a bassoon
reed, and the pressure pM needed to close the reed is about 5 times higher in the oboe. The
mean velocities in the slit scales with

√
2∆p/ρ and thus are considerably larger. Besides the

vanishing contraction for large ratios of edge radius to slit height, the constriction coefficient Cc

also increases with the mean velocity [51]. This might be another reason for the less prominent
jet constriction in the oboe reed.

Sensing position: The pressure sensor in the oboe-study [4] is mounted at the end of the staple,
70 mm behind the reed intake, where the cross section S r is approximately 3 times larger than
at the staple input; the staple itself is stiff. Here the sensor is mounted 30 mm behind the inlet.
What is considered the diffuser input cross section here, is in the delectable front part of the
reed. Therefore the taper of the “diffuser” depends upon the pressure.

Flow measurement principle: In the oboe study [4], the flow is decelerated by a diaphragm at
the reed output end. Here, the reed pressure pr is measured to determine the flow-rate from
the pressure difference across the diaphragm. Here, in contrast, the flow-rate is measured by
means of a thermal mass-flow meter and no diaphragm is used. Therefore, the situation is almost
identical to the playing situation, as no significant resistances have been added to the flow path5.

5A conical resonator of 830 mm length (a bassoon bocal and wing) was connected to the reed during the characteristics
measurement. A small resistance (∆p ≈ 50 Pa) is incorporated by piece of foam, that has been loosely attached to
the far end of the cone to prevent auto-oscillations of the reed.
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With the setup presented in this study, the experiment and a model with a constant value α are in
good agreement, except for the systematic underestimation of the flow-rate when the slit height
becomes very narrow.

Conclusion

A quasi-static model for the flow-rate through a double-reed channel as a function of differential
pressure and intake cross section has been derived. It is based on the Bernoulli-Equation, extended
by two coefficients accounting for the constricted effective intake cross section (Cc), due to flow
separation at the sharp inlet-edges, and for pressure losses in the duct flow (ζ), due to dissipation.
The existence of both effects increases the pressure inside the reed channel, but their respective
fraction to the increase cannot be identified from a single point pressure measurement.
In the model Eq. (4.15), the coefficients Cc and ζ are lumped into one global parameter α, according
to Eq. (4.14). Values for α have been determined by fitting the model to experimental data, and
for α ≈ 1 a reasonably good fit is be obtained for slit heights larger than 0.3 mm. For smaller
slit heights, α decreases which can be explained by the vanishing vena contracta effect as the slit
height becomes comparable to the edge radius at the reed blade. Provided a reasonable guess on
one of the two parameters in Eq. 4.14, the contribution of the jet contraction (Cc) or other energy
dissipating flow effects (ζ) can be estimated. Possible parameter combinations of ζ and Cc for a
given α are shown in Fig. 4.8. The model presented here considers explicitly, that the reed pressure
is measured at a distance from the reed tip. The possible occurrence of energy dissipating effects in
the flow traveling into and through the reed channel are included. There are two key findings from
this model:

1) The empirical fit factor C f it in a model

q = C f it S in

√
2∆p
ρ

is not identical with the jet contraction coefficient Cc, also contributions of a change in the reed
duct’s cross sectional area and other energy dissipating effects have to be considered.

2) A pressure recovery in the duct does not significantly change the shape of the reed’s quasi-static
pressure vs. flow characteristics.

4.2 Quasi-static Interaction of Flow and Reed-Channel

4.2.1 Pressure-driven Deformation of the Duct Intake

The previous sections have dealt with the governing effects in the double-reed flow and an analytic
description of the latter. For every quasi-stationary working point, the reed intake cross section S in

was assumed to be known from a measurement. However, since the mouth pressure driving the
flow deflects the reed blades, the reed intake cross section of the duct can be expressed a a function
of the differential pressure ∆p across the reed. This interaction will qualitatively be analyzed in this
section, based on optical measurements of the intake cross sectionS in during quasi-static closure of
the reed.
The double-reed reed intake cross section is formed by two opposing reed blades which have a
parabolic shape, as shown in Fig. 4.11. Since the action of a lip force Fl will be taken into account
in the next section, the following nomenclature is introduced here for to describe the deformation
of the reed intake:
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Figure 4.11 Schematic of the reed intake and characterisitical measures of the reed-slit
height. Three different deformation stadia: h0: Fl = 0, ∆p = 0; h∞: Fl > 0,
∆p = 0; h: Fl > 0, ∆p > 0.

h: is the instantaneous reed slit height which is a result of both lip force and pressure difference
(h = f (∆p, Fl))

h∞: is the reed slit height as adjusted by the mechanical action of lips, in absence of pressure
difference (h∞ = h(0, Fl))

h0: is the maximum reed slit height in absence of differential pressure and lip force.

x: is the instantaneous reed tip position which is a result of both lip force and pressure difference
(x = f (∆p, Fl) = 1

2 (h0 − h(∆p, Fl))).
In absence of lip force and differential pressure x = 0.

Assuming that the reed blades at the tip are described by a parabola (Eq. 4.1b), the intake cross
section S in is

S in =
2
3

w h, (4.19)

where w is the reed channel width (Fig. 4.11), which is assumed to be constant as a first approxima-
tion.

In the classical model of single-reed flow, a linear relationship is assumed between the pressure
and the position of the reed tip x(∆p). In the double-reed case, however, there are some reasons to
question the linearity: Firstly, double-reed blade has a convex surface and it is not obvious, that
such a shape has a linear mechanical stiffness. Secondly, the reed-pressure pr depends on the reed
channel geometry and duct losses increase as the reed closes, which was adressed in the above
section. The model proposed can be applied to any single or double-reed instrument. Practical
issues of mounting pressure sensors on the reed and the reed dimensions, may be problematic when
comparing the present results with that of an oboe reed. On the other hand, the linear relation
between the deflection x at the reed tip and the input cross section S in is questionable, as it is based
on the assumption of a constant width W of the reed channel. This has been used in previous works
on double-reeds [125, 101, 1], where the cross section has been estimated to be S in = (1/2) wh
(diamond-shaped) or S in = (2/3) wh (parabola-shaped). The present experiments, however, reveal
a non-linear relationship between the reed-slit height h and the reed’s cross sectional area S in:
As the reed closes, the contact points between upper and lower reed blade converge and the width w
of the reed channel diminishes. In Fig. 4.12 a slight linear decrease of the equivalent reed channel
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width w̄ can be observed as the slit height decreases from its initial value. For slit-heights smaller
than 0.4 mm the curve progressively steepens. Since the value for the reed width w as determined by
image analysis is most sensitive to lighting conditions, the hypothetical reed width w̄ = (3/2) S in/h
as calculated from measured values for S in and h, is shown in Fig. 4.12.
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Figure 4.12 Hypothetical reed width w̄ = 3
2

S in,meas
hmeas

versus measured reed slit height hmeas.
Data from 12 independent measurements

In light of these uncertainties, a heuristic investigation of the double-reed behavior through fitting
models to experimental data is a reasonable approach. Three models are employed to fit the
measured data pairs {S in,∆p}, where ∆p = pm − pr according to Fig. 4.6.

S in = S∞

(
1 −

∆p
pM

)
(4.20a)

S in = S∞

(
1 −

∆p
pM

)
+ C (∆p)2 (4.20b)

S in = S∞

(
1 −

∆p
pM

)κ
(4.20c)

The linear model Eq. (4.20a) assumes a direct analogy to the single-reed flow [102] (see also
Eq. (3.14)).
Model Eq. (4.20b) corrects the linear model Eq. (4.20a) by introducing a quadratic term. This
reflects a stiffening of the reed as it approaches the complete closure. Model Eq. (4.20c) is a
three-parameter (S∞, pM, κ) rational function, corresponding to a non-linear stiffness law. This
approach has been used by Almeida et al. [5] in modelling an oboe reed.
Other approaches to considers the stiffening of the reed near closure have been used by Ned-
erveen6 [125, 127, 126, 129] and van Walstijn et al. [158].
When fitting these models to experimental data, the lower limit min(S in) = 0 has been forced. The
results of the fit are shown in Fig. 4.13(a).

6In contrast to Eq. (4.20b) Nederveen proposes a non-linear factor proportional to 1
h/2−x for the reed stiffness. It then

becomes infinitely large as the reed approaches complete closure (x → h
2 ), which is advantageous for physical

dynamical modeling: S in cannot become negative.
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Figure 4.13 Intake cross section S in of a bassoon double-reed, as a function of a mea-
sured pressure difference ∆p. Measurement and fit models
Eq. (4.20a), with S∞ = 8.18 mm2, pM = 7.9 kPa
Eq. (4.20b), with S∞ = 8.40 mm2, pM = 6.6 kPa and C = 0.0336 (mm/kPa)2

Eq. (4.20c), with S∞ = 8.44 mm2, pM = 9.5 kPa and κ = 1.47

Note that for both models Eq. (4.20a) and Eq. (4.20b), S in becomes negative for ∆p > pM. This
range is indicated in Fig. 4.13(a) by dashed lines. For model Eq. (4.20c) S in becomes complex due
to the square-root in this pressure range. Fig. 4.13(a) shows the real part only7.
As illustrated in Fig. 4.13(b), the model Eq. (4.20c) provides the best overall fit to the experimental
data, with κ ≈ 1.5. With this model, analogously to the linear model Eq. (4.20a) and in contrast to
the quadratic model Eq. (4.20b), the interpretation of the fit-parameter pM is straightforward, as it
denotes the pressure difference ∆p, where the reed is completely closed.
The model parameter κ can be interpreted as a constant characterizing the progressive characteristics
of a reed-blade equivalent spring.

4.2.2 Reed-Flow Model including Channel Deformation

Two models have been derived in the previous sections 4.1.2 and 4.2.1, respectively.

Eq. (4.15): depicts the relation of the flow-rate q through a reed channel of known geometry
(S in, S r) as a function of differential pressure ∆p.

Eq. (4.20c): characterizes the dependence of the intake cross section S in upon the differential
pressure ∆p.

With these two equations, an explicit expression can be given for the flow-rate q through the
double-reed channel, as a function of differential pressure ∆p and invariant scalars. Inserting
Eq. (4.20c) into Eq. (4.15), yields

q = S∞

(
1 −

∆p
pM

)κ √√√ 2 ∆p

ρ
((

S∞
S r

)2 (
1 − ∆p

pM

)2κ
+ α

) , (4.21)

7For physical modeling purposes it would be useful to implement S in = <{S∞
(
1 − ∆p

pM

)κ
} and further adopt Nederveens

implicit approach [129] of using a 1
S in

-proportional term for the reed stiffness.
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where S r is the reed cross section at the sensor position. With the substitutions

qA = S∞

√
2 pM

ρ
, (4.22)

and

ε =

(
S∞
S r

)2

, (4.23)

this can be simplified to give

q = qA

(
1 −

∆p
pM

)κ (
∆p
pM

) 1
2
ε (1 − ∆p

pM

)2κ

+ α

−
1
2

. (4.24)

. This model is a generalization of the classical reed model. Besides the critical pressure to close
the reed pM and the flow parameter qA, it includes three additional non-dimensional parameters

Flow parameter α, accounting globally for energy dissipation in the flow (Eq. (4.14)),

Stiffness parameter κ, representing the spring-characteristics of the reed (Eq. (4.20c)), and

Geometrical parameter ε, regarding the pressure-recovery in the tapering reed channel.

Note, that the parameter m =
S in
S r

introduced in Eq. (4.15) does not appear here. The taper of
the duct is represented here by the parameter ε. In contrast to m = f (∆p), which depends on the
instantaneous value of the reed intake cross section S in, the parameter ε = const. represents the
pre-deflection of the reed in absence of pressure.8

The single-reed flow model [102, 40], based on the assumption of Bernoulli-flow and a linear
relationship between differential pressure and reed-intake cross section is part of this formulation,
if α = κ = 1 and ε = 0 are selected. Note that, to avoid q become complex, a distinction of cases
should be made in Eq. (4.24), such that q = 0 for complete closure pm > pM.

4.2.3 Influence of Model Parameters

The discussion of the qualitative influence of the additional parameters α, ε and κ on the shape of
the pressure-flow characteristics starts with considerations on their limiting values:

Flow parameter α: From a curve-fitting problem, where α is the only free fit parameter (using
Eq. (4.15) and experimental data), a range of 0.8 < α < 1.2 has been determined experimentally.
An exemplary juxtaposition of experimentally determined flow-rates and theoretical prediction
for α = 1 is shown in Fig. 4.9; other confirming examples will be discussed last section of this
chapter (Fig. 4.20).

Stiffness parameter κ: In the same manner, the spring parameter κ has been estimated to be
κ ≈ 1.5 in section 4.2.1. A linear stiffness, which is often assumed for the single-reed corresponds
to κ = 1.

Geometrical parameter ε: The geometrical parameter ε maps the role of the pre-constriction
of the reed intake by the embouchure, as the musician presses his lips against the blades. The
upper limit for ε corresponds to a complete retraction of the lips from the reed. The reed is
in its initial position, with a maximum slit height h0 (see Fig. 4.11). The lower limit is given
by the smallest intake cross section, where oscillations of the reed are still possible. From

8Similar to the geometrical parameter m =
S in
S r

defined in section 4.1.2, the geometrical parameter ε maps the role of the
diffuser-like double-reed geometry. In contrast to m, which depends upon the instantaneous value of the reed intake
cross section S in, the parameter ε is constant during reed closure.
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blowing experiments with realistic embouchures the limits regarding the reed slit height are
found to be 0.2 mm < h∞ < 1.6 mm = h0 which corresponds to an intake cross section ratio
0.2 < S in/S r < 0.8 and therefore 0.04 < ε < 0.64.

To illustrate the impact of these model parameters on the pressure-flow characteristics Eq. (4.24) is
written in a non-dimensional form, using qA and pM to normalize q and ∆pmeas:

q̃ = (1 − p̃)κ p̃
1
2
(
ε (1 − p̃)2κ + α

)− 1
2 , (4.25)

where the numeric values in the case of a bassoon reed may vary within the following limits

0.7 < α < 1.3 for the flow parameter,

1 < κ < 2.5 for the stiffness parameter, and

0.04 < ε < 0.64 for the geometrical parameter,

according to the considerations above.

The impact of these parameters on the non-dimensional pressure-flow characteristics are plotted in
Fig. 4.14, for typical channel dimensions of a bassoon double reed (S∞ = 8.2 mm2, S r = 21 mm2).
For comparison, the plot also shows the characteristical curve of the classical single-reed model
(α = κ = 1 and ε = 0) and all curves are normalized to the maximum flow-rate q̃max of the
single-reed, which is q̃max = 2/(3

√
3).
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Figure 4.14 Impact of the model parameters α, κ and ε on the non-dimensional pressure-
flow characteristics according to a general model for the reed-flow Eq. (4.25).
The classical single-reed flow curve corresponds to α = κ = 1 and ε = 0
(dashed line)

It can be seen, that κ has the greatest qualitative influence on the pressure-flow characteristics.
For κ > 1, the saturation pressure p̃m,sat and corresponding flow-rate q̃max are lowered. Further, a
smooth decay of the flow-rate is introduced as the differential pressure approaches the reed-closing
pressure threshold. In this region, the uncertainty in the measurement of the intake cross section
S in is a large source of error for the pressure-flow characteristic. It has been observed earlier,
that κ ≈ 1.5 is a reasonable estimate for the non-linearity of the S in vs. ∆p characteristics (see
section 4.2.1, Fig. 4.13). For that reason, the curve for κ = 1.5 is printed with a thick linewidth in
Fig. 4.14(b).
Another observation from Fig. 4.14 is, that the neither the flow parameter α nor the geometrical pa-
rameter ε lowers the saturation pressure p̃m,sat, compared to the single reed curve with p̃m,sat = 1/3.
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Within its limits valid for the bassoon double-reed, the geometrical parameter scales the maximum
flow q̃max within 0.9 · 2/(3

√
3) < q̃max < 0.99 · 2/(3

√
3), with a slight increase of the saturation

pressure p̃m,sat for increasing ε.
On the other hand, the flow parameter α scales the maximum flow q̃max within 0.85 · 2/(3

√
3) <

q̃max < 1.15 · 2/(3
√

3), with negligible impact on the saturation pressure p̃m,sat.

The model predicts, that flow-related phenomena, such as the vena-contracta effect at the inlet,
kinetic energy loss due to friction and and kinetic energy conversion in the diffuser-like double-reed
have a very small impact on the shape of the flow-characteristics.
In fact significant qualitative changes in the flow-curve can be ascribed to the non-linear stiffness of
the reed blades. The conclusion of these observations is, that for curve fitting purposes α and ε
can be lumped into one parameter scaling the flow maximum q̃max, and only κ has to be retained to
qualitatively change the flow-characteristics.

4.2.4 Experimental Verification

The quantities governing the reed-flow are measured directly and independently in the experiment
(see Fig. 4.6). To verify the theory, the experimental results will be discussed with respect to the
measurement uncertainty.

Measurement Uncertainties

The sensor for the reed pressure measurement is accurate within 0.1 % of the full-scale measurement
range. The uncertainty corresponds to ± 35 Pa, which is very small compared to the measurement
values in the range of several kPa and will be neglected in the following.
The accuracy of the flow meter is within 0.09 nl/min ± 0.3 % of the reading, which corresponds to
a fairly large relative error at small flow-rates9.
The largest uncertainty, however, is due in the measurement of the reed intake cross section. Though
the spatial resolution of the image is as large as 100 pixels per mm, the algorithm to determine the
cross section from a gray-scale image of the reeds front view is very sensitive to lighting conditions.
As discussed in the previous section, precise information on the intake cross section is crucial, when
estimating the flow in a coupled reed-model from the differential pressure, solely: A non-linear
dependence of intake cross section and differential pressure greatly influences the pressure-flow
characteristics of the reed-valve.
To estimate the inherent uncertainty in the cross section analysis, for each gray-scale image of
the reed’s front view the edge-detection algorithm was run several times at different black/white
binarization thresholds between zero and unity. After removal of outliers by means of Grubbs’ test,
the median of the remaining threshold dependent values of S in is presumed to be the actual physical
value of the intake cross section. The measurement uncertainty can be estimated from the 25th

and 75th percentiles of the empirical distribution function. This procedure has been performed for
each single image, which represents one measurement point in the quasi-stationary pressure-flow
characteristics.

With the knowledge of these uncertainties, the validity of the models introduced in the above
sections can be discussed.

91 nl is 1 litre at standard normal conditions T = 273.15 K, pabs = 1013.25 mbar (DIN 1343).
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Figure 4.15 Experimental data and fitted models for the intake cross section S in. Model
parameters obtained by least-squares fitting are S∞ = 6.90 mm2, pM = 8.66 kPa
and κ = 1.48. The points S in,meas are measured values (crosses), vertical lines
show the uncertainty in S in (25th and 75th percentiles). S in,model(∆p) is calcu-
lated with identified model parameters for the range 0 < ∆p < 10.8 kPa (green
solid line). Data from the increasing pressure regime.
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Figure 4.16 Experimental data and fitted models for the flow-rate q. The points qmeas are
measured values (crosses), vertical lines show the measurement uncertainty
of the flow-meter. The model parameter obtained by least-squares fitting is
α = 1.016. qmodel(S in,∆p) is calculated with measured values for S in and ∆p
(crosses), vertical lines show propagated uncertainty in q due the uncertainty
in S in. qmodel(∆p) is calculated with the model parameters S∞ = 6.90 mm2,
pM = 8.66 kPa, κ = 1.48, α = 1.016 for the range 0 < ∆p < 10.8 kPa (green solid
line). Data from the increasing pressure regime.

Comparison of Experiment and Model

Both models Eq. (4.20c) for the intake cross section and Eq. (4.15) for the flow-rate are fitted to mea-
sured experimental data, in separate fitting routines. The fit-results are shown in Figs. 4.15 and 4.16,
in comparison with the directly measured values and the respective measurement error estimates.
The plot in Fig. 4.15 shows the data for the intake cross section S in, obtained from evaluation of
Eq. (4.20c) and the measurement uncertainties due to the image analysis procedure. From this
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Figure 4.17 Relative deviation of measurement and model prediction versus reed-slit
height h for (a) the reed cross section S and (b) the quasi stationary flow q.
The dashed lines mark the a 3% deviation, vertical gray lines in (a) mark the
relative uncertainty incorporated in the measurement of S in,meas due to the
area detection algorithm. Data from 12 independent measurement series

fit, the model parameters S∞, pM and κ are determined to be S∞ = 6.90 mm2, pM = 8.66 kPa,
κ = 1.48.
The plots in Fig.4.16 show the measured and predicted values for the flow-rate q. Measured values
for q are marked by diamonds with gray errorbars depicting the uncertainty of the flow-meter. The
flow parameter α was adjusted to be α = 1.016 by fitting Eq. (4.15) with measured data for ∆p, S in

to the measured flow-rate q. The predicted values for q are plotted as crosses for each measurement
point; the errorbars mark the propagated uncertainty in the flow-prediction due to the measurement
uncertainty of S in.
After two separate fitting procedures, the parameters S∞, pM, κ and α are known. By use of these
parameters, Eq. (4.21) provides an explicit formulation for the flow-rate q depending solely on the
differential pressure ∆p. For comparison, the data predicted by Eq. (4.21) are shown as a continuous
green line by use of the previously identified model parameters. This comparison reveals, that the
model systematically underpredicts the flow-rate, for pressures the above the saturation pressure.
In Fig. 4.17, the relative deviation of model prediction and measured values for the intake cross
section S in (Eq. (4.20c)) and the flow-rate q (Eq. (4.15)) are plotted versus the slit height h. In
general, the model predictions are in reasonably good agreement with experimental data for large
slit heights h.
The deviation for the cross section is within +/- 3 %, as long as the slight height were larger than
0.15 mm. The measurement uncertainty in the intake cross section due to lighting conditions
is within +/-0.15 mm2, which is comparable to the measurement value at small reed openings:
The smallest detectable cross section is about 0.2 mm2. In Fig. 4.17 no errorbars are shown for
measurements where the area detection algorithm failed, here S in = 0 has been assumed.
Concerning the prediction of the flow-rate, the deviation is within +/- 3 % if the slit height h is
larger than 0.75 mm. For 0.25 < h < 0.75mm, the model tends to a slight overprediction, with a
maximum at h ≈ 0.4mm. The systematic underprediction of q mentioned above occurs for reed-slit
heights smaller than 0.25 mm and becomes dramatic as h approaches the detection threshold10,
which is about 0.03 mm.

10undetectable slight heights have been assumed to be zero
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Discussion

The conclusion to be drawn from Fig. 4.16 is, that the observed underprediction cannot be accounted
to a measurement error of the intake cross section, despite the relatively large uncertainties in the
determination of this property. The fit-model to estimate S in from ∆p tends to overpredict the
intake cross section at pressures above saturation, but even this overprediction does not compensate
for the underestimation of the flow-rate.
This confirms the statements of the previous section, that for small slit heights h<0.3 mm the edge
radius becomes large, the Reynolds number is significantly lowered (Fig.4.5) and the vena contracta
effect vanishes. According to the presented model, in the case of no jet contraction (Cc → 1) and
a very small input cross section (m→ 0), the duct losses represented by ζ must gain importance,
otherwise the model would be undetermined as α in Eq. (4.14) becomes zero. The loss coefficient
ζ for the double-reed channel can be compared to that of an equivalent cylindrical tube of 5 mm
diameter and of 58 mm length (see section 4.1.1). For the case of a fully developed turbulent flow
the loss coefficient according to the Blasius approximation at Reynolds numbers Re ≈ 4000 is
ζ ≈ 0.5.
For the small slit heights observed at pressure differences ∆p > 0.5pM a Poiseuille-flow model
[160, 89], or a model taking Reynolds lubrification into account [49] might be more adequate to
model the gap-flow.

Another explanation for the underestimation of the flow at small slit heights might be a misinterpre-
tation of the term “intake cross section”. It has been assumed, that the latter is equivalent to the gap
between the reed blades, as seen from the reeds front view. There might, however, be lateral gaps at
the sides of the reed blades, which are not detectable in the front view, which effectively increase
the intake cross section: The measured integral flow-rate then incorporates a portion of gap flow
through this lateral leaks.
To be more general, it can be said that the existence of any non-deformable set of capillaries
introduces a rest-leakage, whose contribution is not incorporated in the model. An indication for the
existence of leaks is the fact that a residual flow can be measured well above the closing pressure
threshold pM , where the reed appears to be completely closed. This is in agreement with previous
experiments [40, 4] on single- and double-reeds. The measurements carried out in the present study
suggest a linear relation of this gap flow on the driving pressure difference.

4.3 Effect of the Embouchure on the Reed-Flow

4.3.1 Adjustment of the Initial Slit Height

In a realistic situation, the reed-channel is pre-deformed. The musician presses his lips to the reed
which results in a narrowing of the reed slit height.
The artificial mouth setup used in this experiments aims to mimic this situation in a controlled way.
The double-reed is rigidly clamped at its tail, and the slit height h can be adjusted by moving a lip
module against each of the opposing reed blades.

Artificial embouchure configuration

In the practice of blowing experiments to be discussed in detail in the next chapter, evidence has
been found for the hypothesis, that for a fixed axial position11 xl of the lips and a given blowing

11 xl is defined as the distance of the lips center axis from the reed tip (Fig. 4.18)
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pressure pm, the sounding frequency depends only on the slit height h, but not on the respective
contribution of each of the two lip modules on the adjustment of h.
This observation lead to a fundamental simplification of the experimental procedures by using an
asymmetrical embouchure situation, with only one lip pressed to one of the reed blades.
The two configurations with one and two lips pressed to the reed, which result in the same initial
slit height h are shown in Fig. 4.18.
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(b) asymmetric embouchure: one lip, clamped reed

Figure 4.18 Schematic representation of lip forces in a double-reed embouchure (longitu-
dinal section)

This configuration might look unrealistic and improper at first glance. A real bassoon embouchure,
however, is not so far from this situation: Bassoonists have an overbite on the reed. The upper
jaw is used as a support against the action of the lower jaw on the double-reed. The contact point
of upper and lower teeth on the reed have an offset with respect to the reed tip, and bassoonists
even exaggerate the natural overbite by drawing back the lower jaw. The resulting offset of 10-15
mm provides a finer control of the reed slit height at the tip. This embouchure configuration is
schematically shown in Fig. 4.18(a).
In the artificial mouth, the support against the action of the lower jaw is provided to the reed by
means of a rigid frame at its rear end, and the upper lip can be released. This changes the mechanical
configuration, as the support provided by the frame is shifted about 25 mm downstream, compared
to the position of the upper teeth of a player, as shown in Fig. 4.18(b). The basic functioning of the
reed in playing conditions, however, is not affected. Therefore this configuration is very useful for
experimental studies: A well defined double-reed configuration can be adjusted with only one lip.
The fact that all notes were actually playable at reasonable sound pressure levels confirms that this
is a proper way to imitate a real double-reed embouchure12, at least for the purpose of a scientific
study.
For the following, the embouchure configurations in Fig. 4.18 are considered to be equivalent,
and all experiments (except stated otherwise) are performed with “asymmetrical embouchures”
(Fig. 4.18(b)), for five different lip positions xl, within the range of 7 mm < xl < 12 mm.

12Obviously, the dynamical properties, most notably damping, of the upper lip play a role in fine-tuning of the sound
color. Although the upper reed-blade is not in contact with a lip, it is also not “free”. The bending of the whole reed
assembly due to the asymmetry of the embouchure configuration will provide damping to the upper reed blade as
well.
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Reed Deflection

The asymmetrical situation with one lip force Fl exerted to a reed clamped at its tail has two effects:
A shift s of the center axis of the reed assembly13, and a narrowing of the reed slit inlet height
h∞. Both can be characterized by effective stiffnesses, as obtained from the force vs displacement
characteristics.
Due to the construction and wall thickness of the double-reed, the axial position xl of the lip force
relative to the reed tip obviously has a great influence on the characteristics. With a synthetic
bassoon reed (Selmer Premium Plastic 270M), it could be shown that the centerline shift s depends
linearly upon the applied lip force Fl, at least for the moderate range of forces, which is of interest
here (Fig. 4.19(a)). The maximum force is the force needed to close the reed completely, which
is smaller than 12 N depending on the lip position xl. The equivalent stiffness of the double-reed
assembly increases with xl and range from 2.5 (xl = 7 mm) to 4.5 N/mm (xl = 12 mm).
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Figure 4.19 Effect of a static lip-force Fl,∞ exerted to the reed in 5 different axial positions
xl (measured from the reed-tip)

The dependence of the initial slit height h∞ on the applied lip force Fl is weakly non-linear. For
small slit heights, approaching the reed closure, a significant increase in the equivalent stiffness is
observed (Fig. 4.19(b)). The linear part of the equivalent reed-slit stiffness increases with xl and
ranges from 2.5 (xl = 7 mm) to 6.5 N/mm (xl = 12 mm).
The equivalent reed-slit stiffness is not the same as the stiffness of the reed-blade in the context of
the one-parameter lumped reed model discussed in the previous chapter. This reed parameter is
obtained from the quasi-stationary pressure-flow characteristics.
The purpose of the static reed deflection measurement is to characterize the embouchure situation.
The governing parameter here is the initial reed slit-height h∞. Using a characteristic such as
shown in Fig. 4.19(b), the slit-height can be monitored, by means of measuring the lip-force Fl and
lip-position xl.

4.3.2 Quasi-static Flow in the Deformed Reed-Channel

The artificial embouchure situation is characterized by an axial lip position xl and an initial slit
height h∞. The position xl of the lip might not only affect the lever arm and lip force needed to
adjust the slit. One might guess, that the deformation of the blades’ curvature could affect the flow

13comparable to the neutral axis of an Euler-Bernoulli beam
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inside the reed channel. To test this, several quasi-stationary pressure-flow characteristics have
been recorded for each of five axial lip positions, with varying initial slit heights between 1.6 an
0.2 mm. To each of these measurement curves, the models from the previous sections for the reed
cross section and for the flow were fitted: In the first step, from fitting Eq. (4.20c) to measured data
∆p, S in, the parameters S∞, pM and κ were obtained. In the second step the flow parameter α is
determined from fitting Eq. (4.15) to measured data ∆p, S in, q. In Fig. 4.20, these fitting parameters
are plotted in versus the initial slit height h∞, where markers correspond to the lip position xl and
colors mark the increasing (red) and decreasing (green) pressure regime, respectively.
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Figure 4.20 Fitted model parameters S∞, pM , α and κ versus the initial reed-slit height
h∞. Experiments were performed with an axially and vertically adjustable
artificial lip. Markers depict the axial lip positions xl with respect to the reed
tip, vertical positions correspond to the initial slit height h∞.

A realistic embouchure situation is characterized by a pre-deflection of the reed blades. The effect
of this initial reed deformation on the quasi-stationary pressure-flow characteristics can be discussed
by means of the dependence of the reed model parameters upon h∞.

S∞: The initial open area S∞ depends approximately linearly14 on the slit height h∞. The lip
position has no influence.

14In detail, a slightly non-linear relation is observed (Fig. 4.12). Only for reed-slits smaller than 0.3 mm, the nonlinearity
becomes drastic. However, a pre-deflection to such small slits is not reasonable, as it will be impossible to start and
sustain an oscillation. These small slits occur during the pressure-induced closure of the reed.



4.3 Effect of the Embouchure on the Reed-Flow 85

S∞ is a measure limiting the maximum flow through the reed, and therefore the pressure
amplitude and the dynamic level of a sounded note. Tight embouchures, with small slit heights
h∞, are required to play softly.

pM: The pressure pM to close the reed is proportional to the initial slit height h∞, but independent
of the lip position xl, where the force is applied. The observed values for the increasing and
decreasing pressure regime differ from each other. This hysteresis is possibly due to friction
between the lateral contact areas of the reed blades15. The present study reveals no significant
relation between the magnitude of this hysteresis and the initial slit height. The discrepancy
between the pM,incr. and pM,decr. is for any embouchure approximately 1 kPa.

κ: The parameter κ appears to be a constant of the reed, as it is independent of the initial slit-height
and the same for most lip positions. In this study, a value of 1.5 +/-0.05 is obtained, except for
the lip position which is closest to the reed tip (xl = 7 mm).
This parameter stands for the mechanical spring characteristics of the reed. It appears as an
exponent, any value greater than unity represents a non-linear continuous stiffening of the reed
blade as the slit height decreases.

α: The parameter α lumps flow induced pressure losses due to the vena contracta effect (Cc) and
dissipation inside the reed channel (ζ), according to α = 1 − 1/Cc + 1/C2

c + ζ derived in section
6.2. This flow coefficient α is the only parameter of the model which apparently depends on
the axial lip position xl. The vena contracta coefficient Cc is constant, for any slit height large
compared to the edge-radius of the blade [87]. Consequently ζ increases with the lip position
xl. Increased dissipation can be understood by the different deformations of the reed channel,
to result in a given slit height change by lip force application at various positions xl. The reed
is very thin and soft at its tip and for small xl the flow channel will be deflected only near the
intake, leaving the rear end of the channel unchanged. Shifting the lip in flow axis towards the
bocal and thus increasing xl, the effective stiffness increases Fig. 4.19 and the reed channel will
be narrowed over a longer distance. This may be the reason for increased dissipation.

These results give some insight into the change of reed model parameters, as lips interact with the
double-reed to form embouchure configurations typical for a musical performance. A convenient
one-lip asymmetrical embouchure has been introduced for the double-reed and any embouchure
configuration has been characterized by the initial slight height h∞ and the lip position xl, so far.
In the operating regime, however, it is difficult to measure h∞, as it assumes the absence of pressure.
Therefore, in the next section a minimalistic heuristic model will be proposed, which allows, for
a given lip-position xl, to estimate the reed model parameters corresponding to any embouchure
configuration from the actual values of lip force Fl and the differential pressure ∆p, which are
easily captured state-variables of the artificial mouth.

4.3.3 Simplified empirical Model including a Lip Force

In the previous section, the details of the reed-flow where characterized by model parameters κ,
α and ε. In order to model realistic embouchures, this section aims to further reduce the general
five parameter reed-model Eq. (4.24) and to empirically include a lip force Fl narrowing the slit at
the reed channel intake. The result will be a three-parameter model similar to classical single-reed
model with the parameters qA and pM, into which the lip force Fl is included by means of empiri-
cally obtained polynomials qA = qA(Fl,∆p) and pM = pM(Fl,∆p).

15Other authors have attributed the hysteresis to viscoelastic effects they found in single [40] and double-reeds [6]
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Pressure induced Lip Force Reduction

In the artificial mouth the lip force Fl is exerted to the reed by a shift of the lip module perpendicular
to the reeds main axis. In the absence of pressure, the static deflection-force characteristic describes
the interaction (see Fig. 4.19). However, a pressure difference acting on the reed blades causes a
reed deflection and the initially exerted force is reduced significantly.
This can be illustrated by means of a set of measurements with various embouchures: In each of
five lip positions xl, in absence of pressure difference, the initial reed slit height has been adjusted
to several values within the range 0.3 < h∞ < 1.4 mm by means of a lip force Fl,∞. The force
change ∆Fl = Fl(∆p) − Fl,∞ as the mouth pressure is increased is shown in Fig. 4.21, where ∆Fl is
plotted versus the pressure difference ∆p.
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Figure 4.21 Lip force change ∆Fl due to the pressure induced reed blade deflection, for
several embouchure configurations. Markers correspond to the lip position xl,
colors correspond to the initial slit height h∞.

From the slope ∆p/∆Fl, the effective area S r of the double-reed can be estimated to be S r ≈

140 mm2, indicated by the dashed line. This value should be handled with care, however, due to the
asymmetric embouchure configuration, where the artificial lip covers a broad region on the one
reed-blade, while the surface of the other blade is completely free. Furthermore, due to the elasiticy
of the lip, the contact area of reed and lip module increases with Fl and the surface, on which the
differential pressure ∆p acts, is decreased. Hence, the estimate of S r through the slope ∆p/∆Fl

apparently increases for tight embouchures with small h∞. This observation would deserve a more
detailed description of the elastic properties and the three-dimensional geometry of the interaction
of lip and reed, which is beyond the scope of this work.
Another observation is, that the slope ∆p/∆Fl of the characteristics appears to be independent of
the lip position xl.
For very loose embouchures, where h∞ → h0 = 1.4 mm, a kink in the characteristics marks the
retraction of the blade from the spatially fixed lip module.
The lip force significantly changes with the mouth pressure, and therefore both lip force and mouth
pressure are needed to describe the embouchure configuration.

Simplified Three-Parameter Model for the reed-flow

As was shown theoretically (Fig. 4.14), the parameters α and ε in the general reed model Eq. (4.24)
have a negligible impact on the shape of the pressure-flow characteristics and mainly scale the
curve. Whereas these parameters were important to discuss a possible impact of the corresponding
effects on the flow-curve, they can be neglected in the context of a fitting model, in which another
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scaling parameter (qA) is already included. Settingε (1 − ∆pmeas

pM

)2κ

+ α

−
1
2

= 1. (4.26)

in Eq. (4.24) eliminates the influence of parameters α and ε.
Concerning the stiffness parameter κ, Fig. 4.20 implies that κ = 1.5 provides a good fit for the
utmost embouchure configurations. Using this as a fixed value and with Eq. (4.26) the general
model Eq. (4.24) can be written

q = qA

(
1 −

∆pmeas

pM

) 3
2
(
∆pmeas

pM

) 1
2

, (4.27)

which is similar to the classical single-reed model, except for a non-linear spring characteristics
expressed in the exponent 3/2.
The general shape of the curve is determined by this fixed exponent, and the free parameters pM

and qA stretch and scale the curve along the abscissa and the ordinate, respectively. Pressure-flow
characteristics of this type have their flow-rate maximum q̃max = 3/16

√
3 ≈ 0.32 at the saturation

pressure p̃m,sat = 1/4, in normalized coordinates q̃ = q/qA, p̃ = p/pM.
Note that, to avoid q become complex, a distinction of cases should be made in Eq. (4.27), such
that q = 0 for complete closure pm > pM.

Inclusion of the Lip Force into the Reed Model

In Fig. 4.20 the relation between model parameters and the initial slit height h∞ for a broad variety
of embouchures has been shown. In particular, the model parameters pM and qA are linear functions
of h∞. Introducing a relation for h∞ as a function of the lip force Fl and position xl is a suitable
way to include the lip force into the reed model16.
Any details of the quasi-static lip-reed interaction like the size of the contact area and the stiffness
of the lip material are excluded by this simplicistic approach. Only a calibration is needed to link
the measured value of the integral lip force to the geometric measures at the reed intake, depending
on the differential pressure acting on the reed.
For the asymmetric embouchure used in this study, all relevant information is found in the static
characteristics of slit height versus lip force (see Fig. 4.19), the reduction of lip force due to pressure
induced reed deformation (see Fig. 4.21) and the dependence of the reed parameters upon the initial
slit height h∞ (see Fig. 4.20).
Instead of separately evaluating these three relationships, the coefficients for a linear regression
model will be derived directly from experimental data.

Determination of Regression Coefficients

First, for each of five different lip positions xl the pressure-flow characteristics have been measured,
starting from various initial slit heights h∞ within 0.3 mm < h∞ < 1 .4 mm. During the character-
istics measurement, the lip force Fl was recorded. The raw data of the measurement is shown in
Fig. 4.22.

16This approach has been proposed by Nederveen [125], but quantitative data for double-reeds is missing.
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Figure 4.22 Quasi stationary flow q through a bassoon double-reed as a function of dif-
ferential pressure ∆p and lip force Flip for several initial slit heights h∞. Lip
position xl = 10.75 mm. Only the decreasing branch of the characteristics is
shown.

The quasi-stationary flow curve is a trace on a surface in the three-dimensional space with a
pressure-, flow- and lip force-dimension of the form

q(∆p, Fl) = qA(∆p, Fl)
(
1 −

∆p
pM(∆p, Fl)

) 3
2
(

∆p
pM(∆p, Fl)

) 1
2

, (4.28)

which is shown in Fig.4.22(d).
The functions qA(∆p, Fl) and pM(∆p, Fl) are found by fitting the simplified reed model Eq. (4.27)
to the experimental data.
Previous to this second step, the model is extended by an empirical term to account for a phe-
nomenon that has been deliberately excluded in the considerations on theoretical flow models:
So far, it has been assumed that the flow is completely stopped when the reed is closed. The
measurements reveal, however, the existence of a residual flow in the case of complete reed closure
(Fig. 4.22(a)). This is in agreement with previous studies in this field, e.g. [40, 4]. A detailed view
of the residual flow qres observed in the present experiments provides Fig. 4.23 for several arbitrary
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Figure 4.23 Residual flow qres as a function of mouth pressure. For the data shown here,
the reed is assumed to be closed, i.e the image analysis algorithm failed to
detect an intake area from the reeds front view.

values of h∞ in five different lip positions xl. The empirical linear relation

qres = 1.138 10−9 m3

s Pa
∆p + 0.289 10−5 m3

s
(4.29)

describes the residual flow as a function of the differential pressure ∆p, independently of the
embouchure adjustment. This is represented by the fit straight line in Fig. 4.23. Note, that ∆p in
Fig. 4.29 actually is the mouth pressure pm because the reed is closed, and pr = 0. To account for
this effect, the simplified model Eq. (4.27) is extended by the correction term Eq. (4.29), thus

qcorr. = qmodel + qres. (4.30)

For simplicity this equation can be used for any value ∆p > 0, such that also for the open reed
∆p < pM a (very small) residual flow is added. Indeed, it can be assumed, that what is called S in

here is smaller that the real intake cross section, because the lateral contact area of the reed blade
most probably is not air-tight and a gap flow from the sides may also play a role. For double-reeds
however, this effect might be regarded less important than for single reeds.
The fitting procedure is now performed with the corrected two parameter model and for each

embouchure configuration defined by xl and h∞ a pair of fit parameters qA, f it, pM, f it is obtained.
In the last step, the empirical functions qA(∆p, Fl) and pM(∆p, Fl) are determined by multiple
linear regression of the measurement values for ∆p and Fl on the fit parameters qA, f it and pM, f it.
For this regression, the linear models

qA(∆p, Fl) = a0,qA + a1,qA ∆p + a2,qA Fl + a3,qA (∆p)2 + a4,qA F2
l (4.31a)

pM(∆p, Fl) = a0,pM + a1,pM ∆p + a2,pM Fl + a3,pM (∆p)2 + a4,pM F2
l (4.31b)

have been used. The coefficients thus obtained for five different axial lip positions are listed in
tables 4.1 and 4.2.
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Table 4.1 Regression coefficients for qA; Eq. (4.31a)

Lip distance from reed tip
qA 7 mm 8.25 mm 9.5 mm 10.75 mm 12 mm

a0[l/s] 1.633 1.667 1.591 1.588 1.558
a1[(l/s)/kPa)] -0.032 -0.026 -0.022 -0.019 -0.017
a2[(l/s)/N)] -0.734 -0.639 -0.462 -0.383 -0.301
a3[(l/s)/kPa2)] · 10−3 -0.336 -0.583 -0.316 -0.236 0.012
a4[(l/s)/N2)] 0.081 0.064 0.035 0.025 0.017

Table 4.2 Regression coefficients for pM; Eq. (4.31b)

Lip distance from reed tip
pM 7 mm 8.25 mm 9.5 mm 10.75 mm 12 mm

a0[kPa] 13.245 12.696 12.325 12.284 12.189
a1[kPa/kPa] -0.197 -0.192 -0.148 -0.131 -0.097
a2[kPa/N] -3.469 -2.402 -1.801 -1.483 -1.333
a3[kPa/kPa2] · 10−3 0.923 3.151 2.314 2.561 1.115
a4[kPa/N2] 0.259 0.073 0.045 0.037 0.053

Residuals

The quality of the empirical reed model Eq. (4.28) can be assessed by means of the residual plot
in Fig. 4.24, where the normalized residuals (qmodel − qmeas)/qmeas are plotted. This reveals a
significant systematic deviation depending on the normalized differential pressure p̃ = ∆p/pM:

0 < p̃ < 0.25: The deviation between measurement and model is smaller than 5% below the
saturation pressure p̃m,sat = 0.25. The model accurately predicts the volume-flow maximum and
the saturation pressure.

0.25 < p̃ < 0.75: Above saturation, the model tends to systematically overpredict the flow-rate by
up to 15 %.

0.75 < p̃ < 1: Approaching the reed closure, the model drastically underestimates the flow by
up to -80 %. It has been previously discussed in section 4.2.4, that this systematic deviation
is possibly due to the fact that for small slits the vena contracta effect is overestimated in the
model.

p̃ > 1: As the reed is closed, the normalized residuals decrease, due to the correction for the
residual flow. As the measured values for q are small and comparable to the measurement
uncertainty, the normalized residuals are quite large (± 20% for p̃ > 1.2).
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Figure 4.24 Deviation of empirical flow model and experimental data. The model is given
by Eqs.(4.28),(4.31a),(4.31b) with Eq. (4.29) and tables 4.1, 4.2. Normalized
residuals are plotted versus the normalized differential pressure p̃ = ∆p/pM .
The dashed horizontal lines mark a 5% deviation, the vertical dashed line
marks the saturation pressure p̃m,sat.

A systematic influence is found neither for the lip position xl, depicted by different markers in
Fig. 4.24, nor for the slit height h∞. This leads to two conclusions:

• The quality of this empirical model is constant for the broad variety of
embouchure configurations investigated here
(lip position 7 mm < xl < 12 mm, initial slit height 0.3 mm < h∞ < 1 .4 mm).

• The flow-curves obtained for different embouchures scale with the slit height h∞ but do not
show qualitative differences in their shape

Simplified Three-Parameter Model for the Reed-Slit Height

In analogy to the steps that led to an empirical model for the quasi-static reed flow, an empirical
model for the reed-slit height can be defined:
The quasi-stationary slit-height h∞ is, in analogy to Eq. (4.28), given by

h0(∆p, Fl) = h∞(∆p, Fl)
(
1 −

∆p
pM,h(∆p, Fl)

) 3
2

. (4.32)

This model has the parameters h∞ and pM,h, which are the initial slit height in absence of a pressure
difference (due to the pre-load applied to the reed by the lip), and the pressure to close the reed17

respectively.
These two parameters are determined from the experimental slit-height vs. pressure characteristics
using regression models analogous to Eq. (4.31)

h∞(∆p, Fl) = a0,h∞ + a1,h∞ ∆p + a2,h∞ Fl + a3,h∞ (∆p)2 + a4,h∞ F2
l (4.33a)

pM,h(∆p, Fl) = a0,pM,h + a1,pM,h ∆p + a2,pM,h Fl + a3,pM,h (∆p)2 + a4,pM,h F2
l (4.33b)

with the following regression coefficients, depending on the position xl of the lip with respect to the
reed tip
17Note, that pM is obtained from a fit to the flow vs. pressure-characteristics, while pM,h is obtained from a fit to the

slit-height vs. pressure-characteristics. Theoretically it should be pM = pM,h, but the fit parameter pM,h is by 10 %
larger than pM .
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Table 4.3 Regression coefficients for h∞; Eq. (4.33a)

Lip distance xl from reed tip
h∞ 7 mm 8.25 mm 9.5 mm 10.75 mm 12 mm

a0[] 1.633 1.667 1.591 1.588 1.558
a1[(l/s)/kPa)] -0.032 -0.026 -0.022 -0.019 -0.017
a2[(l/s)/N)] -0.734 -0.639 -0.462 -0.383 -0.301
a3[(l/s)/kPa2)] · 10−3 -0.336 -0.583 -0.316 -0.236 0.012
a4[(l/s)/N2)] 0.081 0.064 0.035 0.025 0.017

Table 4.4 Regression coefficients for pM,h; Eq. (4.33b)

Lip distance xl from reed tip
pM,h 7 mm 8.25 mm 9.5 mm 10.75 mm 12 mm

a0[mm] 1.239 1.391 1.452 1.466 1.462
a1[mm/kPa] -0.020 -0.025 -0.019 -0.018 -0.015
a2[mm/N] -0.522 -0.390 -0.346 -0.275 -0.224
a3[mm/kPa2] · 10−3 -0.413 0.163 -0.061 0.086 0.167
a4[mm/N2] 0.065 0.231 0.021 0.014 0.010

Discussion

An empirical model for the double-reed flow with respect to the embouchure configuration is
presented. The embouchure is defined by the axial and perpendicular position of the lip module
relative to the fixed reed. The axial position xl is directly measured as the distance from the reed
tip, the vertical position is monitored by measurement of the lip force Fl, which, in combination
with the actual differential pressure ∆p, determines the reed slit inlet height.

The model is given is given by Eqs.(4.28), (4.31a) and (4.31b).
The regression coefficients (4.31a) and (4.31b) for this model are valid for this specific double-reed
used in the presented measurements of the quasi-stationary pressure-flow characteristics during
which the lip force Fl is monitored. This set of experiments can be regarded as a “calibration
procedure” of a reed to obtain its model parameters.
For the residual flow qres when the reed is closed, a correction term scaling linearly with the mouth
pressure is proposed.
For the reed used in this study values are given in Eq. (4.29) and tables 4.1 and 4.2.

With the calibrated model, the quasi-stationary flow-rate through the double-reed channel can be
determined from the the artificial mouth’s state variables xl, Fl and ∆p = pm − pr with an accuracy
of +/-5 % within a range of normalized pressures 0 < p̃ < 0.4.
The model further allows to assign reed-model parameters qA and pM to an embouchure configura-
tion directly from the actual setting of the experiment.
Thus, any working point of the artificial mouth can now be interpreted in the context of the reed
model. This is useful for investigations on the bassoon in operating conditions as it allows measure
subtle embouchure adjustments of the bassoonist needed to correct the intonation.
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4.4 Summary

In this chapter, a model for the quasi-stationary flow-rate through the double-reed channel has been
presented.
The double reed channel is a narrow, slightly diverging duct with sharp edges at the intake, which
protrude into a large volume: the mouth cavity. If the steady pressure in the mouth is larger than in
the reed, a quasi-stationary flow develops. This is described by the Bernoulli-equation extended by
two pressure-loss terms accounting for energy losses related to flow phenomena in this type of duct:
Flow separation at the sharp-edged intake and dissipation in the duct. Both terms are lumped into
one global flow parameter.
The pressure difference between inside and outside of the reed channel does not only drives a flow,
but also leads to a deflection of the reed blades. For the use in a lumped parameter model it is
convenient to consider the displacement of the reed at its tip. The reed intake area is introduced
as a scalar model variable dependent on the reed tip displacement, and the equivalent spring
characteristics of the pressurized double-reed blade is experimentally obtained.
Including this simplified description into the flow-relation leads to a simple model for the reed. It
has five parameters with respect to the flow-phenomena in the duct, the spring characteristics of
the reed blade and the area ratio of input and output cross section in the diverging reed duct. This
analytical model is used in a fitting procedure to estimate the influence of the respective phenomena
on the global flow-rate and on the shape of the reed’s valve-characteristics.
A simplified form of this model is further extended by an empirical relation to include a pre-
deformation of the reed-duct, which occurs when the musician presses his lips against the reed
blades to form an embouchure. The musician’s embouchure is mimicked by use of a lip module in
the artificial mouth, where an asymmetric configuration with only one lip pressed to the double-reed
is practical. By measuring the axial lip position relative to the reed and the force exerted to it by the
lip, realistic and well-defined embouchures can be precisely imposed.
The lip force, as a second control parameter of the artificial mouth, has been included into the
reed model, by means of empirical relations obtained experimentally by a calibration procedure.
This comprises for each reed a set of quasi-stationary flow measurements in several embouchure
configurations. The necessary data has been obtained for a particular synthetic bassoon reed. With
this calibrated model any embouchure configuration and working point of the artificial mouth can
be expressed by reed parameters. This approach is validated for quasi-stationary regimes, but it
may also provide an important link between experimental observations and physical models in the
dynamical case.





5 Survey of Performance Characteristics of
the Modern German Bassoon

5.1 Experimental Procedure and Data Analysis

The artificial mouth described in Chapter 3, makes possible the characterization of the double
reed in quasi-stationary conditions as described in Chapter 4. This provides a framework to derive
parameters from experimental configurations resembling realistic embouchures of a player.
Furthermore, the construction of the artificial mouth, and the precise adjustability of the lips in
particular, is suited to carry out repeatable measurements on the bassoon under playing conditions.
The experiments cover the complete playing range of the bassoon in frequency (notes) and dynamics
(loudness). This chapter presents the experiment, a comprehensive overview on the parameter
ranges and a discussion of some aspects of interaction between resonator and exciter under realistic
playing conditions.

5.1.1 Description of the Experiment

When a reed wind instrument produces a sound, the periodic closing of the reed valve is triggered
by reflections of pressure waves from the air column. In detail, the produced sound depends on the
vibrational properties of the reed. The range of possible oscillatory states is very broad; depending
on the player’s interaction with the reed, many different sounds can be produced for one and the
same air column.
While it is relatively intuitive even for a completely untrained person to start and maintain single
notes on a bassoon, it is problematic to imitate this process with an artificial mouth: Even if such
a device provides control over the relevant parameters, it is still demanding to determine ranges of
these parameters, for which the whole system of blowing machine and instrument produces a sound.
One systematic approach to study the operating regimes is to keep one playing parameter constant,
while varying others. Scanning through the parameters in this way, the broad range of oscillatory
and non-oscillatory states are explored, and the limits of the working range of the reed can be found.
It should be noticed, that the playing regime for one set of parameters is not necessarily unique.
Due to hysteresis effects, dependence on the history, different regimes can be established for one
and the same set of playing parameters [150, 92]. This does not only involve instantaneous values
of control parameters but also the rates of change in these parameters. These regime changes are
found well within the playing range, but mostly for unusually high blowing pressures as will be
shown later. Other more or less periodic and more or less stable regimes are found at the borders
of the playing range, that is near the upper or lower threshold of oscillation. In modern playing
styles, some musicians1 explore these limits to achieve a special artistic expression. However, these
unusual regimes and the playing range limits are not the focus of this study.
The aim is to investigate sustained notes in the usual playing range of the bassoon. These are the
result of a periodic motion of the reed, having a stable fundamental frequency determining the
perceived pitch. Transients like attacks, decays, note changes, vibrato, trills, note bendings as well
as dynamical changes like diminuendi and crescendi are not studied here.

1E.g. the German bassoonist Johannes Schwarz, Ensemble Modern, Frankfurt a.M., Germany
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Figure 5.1 Sketch of the experimental setup. Measured quantities in boxes (pm, pr, Fl, q,
ps) are recorded instantaneously during the experiment.

For the artificial mouth in this study, the adjustment parameters are (see Fig. 5.1):

xl the position of the lip along the reed

Fl the force of the lip

pm the blowing pressure in the “mouth” cavity.

Furthermore the resulting output data are

pr the unsteady reed pressure in the reed,

ps the sound pressure in the surrounding of the setup2

q the mean volume flow-rate through the reed

Together with a given reed and resonator (which in case of the bassoon is set by the choice of a
bocal fixed to the wooden corpus, and a fingering applied to the bassoon) the experimental situation
is completely defined3 Here, in contrast to previous studies [119, 3], only those oscillatory states
have been studied, which produce the pitch, that a bassoonist expects when applying a fingering on
the bassoon. This simplifying constraint is based on the assumption, that these operating regimes
are the most relevant for the musical performance.
The experimental procedure was as follows: After initiating the tone, the blowing pressure pm in
the mouth and the lip force Fl were carefully balanced to play the note in tune at the softest possible
dynamic level. The tuning was controlled by an electronic tuner, to be within ± 5 Cent around
the fundamental frequency f0 corresponding to the fingering4. Subsequently, the blowing pressure
was increased, followed by a readjustment of the lip force to maintain the tuning. This procedure
was repeated to explore the complete parameter range for blowing pressure pm and lip force Fl

for which this note on the instrument could be sounded in tune. For each note the experiment was
ended if the reed overblew (a sudden jump into a new stable regime with higher pitch), switched
to another mode (a smooth and reversible turnover to a higher or lower pitch as the pressure is
increased) or produced a multiphonic sound (a superposition of two non-harmonic sounds). In

2The external microphone was placed about 1.5 m perpendicular to the instruments longitudinal axis pointing to the
“butt” end of the bassoon.

3Except for the acoustic surrounding, which certainly influences the sound pressure ps
4The tuning reference is the equally tempered scale for A4, f0 = 443 Hz. To the knowledge of the author, this is

todayâĂŹs convention among German orchestral musicians.
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rare cases, the upper pressure threshold was reached and the reed closed permanently, or, to the
other extreme, the lip was completely retracted from the reed blade. Some notes on the instrument
could be still be sounded in tune at very high blowing pressures pm > 12 kPa. Without technical
constraints of the experimental setup, these ranges were not studied, as the normal range of blowing
pressures in bassoon playing is 1 kPa < pm < 9 kPa [68]. In this way, the complete musically
relevant dynamical range of a note, available for the specific fingering at a fixed lip position, has
been obtained experimentally.
For each of the intermediate steps in one experimental run, the parameters were held constant for
several seconds to meet the assumption of quasi-stationarity for the recorded data5. The acquisition
time was 1 second, sampled at fs = 65.536 kHz for the unsteady data (the reed pressure pr and
the sound pressure ps in the measurement room), and fs = 1 kHz for the quasi-stationary data (the
blowing pressure pm, the flow-rate6 q and the lip force Fl), on two different measurement systems,
which where synchronized by a pulse-train trigger signal. The lip position xl = 10.75 mm from the
reed tip was adjusted7 previous to the experiment and held constant in all measurements presented
in this section.
For each acquired data set on a given configuration a meta-analysis has been performed, to extract
additional features from the raw data.

5.1.2 Time Domain Analysis

In the normal playing regimes on the bassoon, the reed closes once per period8. Schematically, the
reed performs a two-step motion, with an open and a closed episode. During one part of the period
(duration τo), the reed remains open, pr > 0; in the subsequent part (duration τc) the reed is closed
pr < 0. The subscripts (.)o and (.)c mark respectively the open and closed period during one cycle.
For a typical bassoon reed configuration, the measured reed pressure waveform (pr) is shown in
Fig. 5.2. Within the two episodes of the pressure waveform pr which are determined by the zero
crossing of the reed pressure signal, the integral mean pressures are po and pc, respectively. These
pressures and the corresponding times τo and τc graphically represent the schematized two step
motion of the reed predicted by analytical models [102, 125, 44, 136]. Note that in the ideal case
described in these models the reed pressure mean value p̄r during one cycle must be zero. In a
measurement, it is found that p̄r = ∆p > 0. Hypothetically, this difference of several hundreds of
Pascals indicates a pressure loss within the resonator. The determination of the episode durations τo

and τc is done by an analysis of zero-crossings with subsample resolution, by linear interpolation
between the measured samples before and after the zero crossing. Assuming, that the motion of the
reed tip is nearly in phase with the reed pressure pr and proportional to it [44, 102], the analysis of
the pressure waveform in the time-domain introduces five more output data describing the operation
point of the reed valve, which are:

τo,c the duration of reed opening and closure during one cycle,

po,c the integral mean pressure in the reed during the opened and closed episode,

∆p the pressure difference between the actual and ideal9 mean reed pressure p̄r,meas − p̄r,ideal

5After a mouth pressure change, a settling time was necessary for the volume-flow due to the large mouth cavity volume
6The flow rate has been determined from the output signal of a calibrated thermal mass-flow meter, a PT100 temperature

sensor, and a sensor for the static pressure in line with the air supply system, close to the mouth cavity
7The offset lip position xl = 0 was adjusted by the eye, such that the center of the lip was flush with the reed tip. The frame

carrying the lip was then moved downstream towards the bocal by a manual linear positioning stage for optical measurements.
Millimeter-values for xl are obtained from counting the turns of the spindle, a full turn corresponds to 0.5 mm.

8For cylindrical reed wind instruments, non-beating regimes can be obtained at low blowing pressures for standard
playing techniques. Theoretically, in conical reed wind instruments a non-beating regime is also possible, but the
range between the threshold pressures of these regimes is very small [44]. Another exception are multiphonics,
where the reed closes two or more times during the (fundamental) cycle duration.

9In the ideal, loss-free case, the mean value p̄r = 0, since the zero-frequency impedance is zero [44]
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Figure 5.2 Reed pressure (solid) and the corresponding simplified Helmholtz-pattern
(dashed), and integral mean reed pressure p̄r > 0, for the note B2 ( f0 = 116 Hz).

5.1.3 Spectral Analysis – Period Synchronized Sampling

The precise determination of zero-crossings carried out for the reed pressure waveform analysis is
also useful for a harmonic spectral analysis of the reed pressure. The Discrete Fourier Transform
(DFT) of a single pressure waveform, resampled in an odd number of equal time steps δt between
the three zero crossings demarcating the cycle duration τ = τo + τc results in a harmonic spectrum,
where each spectral line corresponds to an integer harmonic n f0, with n = 0, 1, 2, . . . , 1/(2δt f0) +1.
This harmonic spectrum has a very low frequency resolution and assumes that all signal components
are harmonic, which is a reasonable approximation for wind instruments [58]. Any inharmonic
“noise” components in the signal are distributed over the harmonic spectral amplitudes. Despite
the low frequency resolution, the pitch information is preserved with greatest possible accuracy10,
thanks to the cumbersome analysis of zero crossings and resampling in the pre-processing. In this
step subsample precision is needed, as a time step δt of 1/(65536 Hz) corresponds to a tuning
difference of 1.5 Cent < ∆ fcent < 15 Cent in the tonal range of the bassoon 58 Hz < f0 < 622 Hz.
The analysis procedure11 is called period-synchronized sampling in the following. This pre-
processing to adapt the time signal to the inherent properties of the DFT is attractive for nearly
perfectly harmonic signals as in the sustained part of a bassoon note: The fundamental frequency
and the magnitudes of the harmonics are immediately available. The application of time-domain
windowing, pitch detection and peak-picking algorithms to evaluate the spectral data become
obsolete.
To characterize a single working point of the reed, the first eight magnitudes of the harmonic
spectrum are used:

f0 the fundamental frequency of the oscillation,

|Pr,i| i = 1..8, the magnitudes of the first eight harmonics12 in the reed pressure spectrum

|Ps,i| i = 1..8, the corresponding magnitudes in the sound pressure spectrum

10This refers to “pitch” in a mathematical sense. The perceived pitch of a complex tone may be different.
11This analysis method has been proposed to the author by Johannes Baumgart
12including the fundamental
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Figure 5.3 Effect of period synchronized sampling on the DFT, demonstrated
for a sampling duration of 0.5 seconds of the sine y = sin(2π f0); ( f0 = 2 Hz),
sampled at fs = 200 Hz.
Left: tstart = − 1

2 f s s (nsamples = 101); Right: tstart = 0 (nsamples = 100)

5.1.4 Spectral Centroid and Formants

Characteristics of the spectrum of a sound are correlated with the perception of timbre, in the
context of Music Information Retrieval, these spectral meta-data often are called timbre descriptors
or audio descriptors [139]. Many acoustical parameters and “features” can be extracted from sound
files, to certain aspects of timbre. The present work focuses only on a very basic, but standardized
method of timbre description.
The international standard MPEG-713 defines so-called low-levels descriptors (LLD), some of
which are used to characterize the timbral spectral characteristics of a sound. Three of those are
purely spectral, they are calculated as one scalar per frame to be analyzed, and do not depend upon
the evolution of the spectrum over time. Therefore they are useful within this study to characterize
quasi-stationary states of the operating bassoon reed.
The three parameters are called the harmonic spectral centroid (hsc) in Hertz, the harmonic spectral
spread (hss) and the harmonic spectral deviation (hsd). They are defined as the amplitude-weighted
mean of the harmonic peaks of the spectrum (hsc), and the amplitude-weighted standard deviation
of the harmonic peaks divided by the harmonic spectral centroid hsc (hss). The harmonic spectral
deviation (hsd) is a measure for the deviation of the amplitudes of the partials from a global
(smoothed) spectral envelope [139]. The algorithms to calculate these descriptors from a time-

13ISO Standard (ISO/IEC 15938)
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domain signal of at least 125 ms is standardized, and the code is freely accessible [123]. Among
those parameters the spectral centroid has been proven to correlate with the impression of brightness
of a sound [145].
A similar spectral analysis method is the detection of formants. Formants are regions of higher
amplitudes of the harmonics in the spectral envelope. The formant positions along the frequency
axis are independent of the pitch. In speech, formants originate form the vocal tract which acts as
a linear filter to the fluctuating air pressure. The shape of the vocal tract determines the formant
frequencies. The relative frequencies of formants determine the vowels produced. Thus it is
possible to recognize vowels independently of pitch14.
Formants are not only found in voice sounds, but also in the sound of conical wind instruments
[121, 162]. The approach is largely similar to the spectral centroid, but has more subtlety, as a
spectrum can exhibit more than one formant. Their relative position on the frequency axis is also
relevant to the impression of timbre. Formants can be obtained by linear predictive coding (LPC)
or from long-term averaged spectra (LTAS). Each formant is characterized by a center frequency
F i and a bandwidth Bi, where i is the ordinal number of the formant. In this study, the phonetics
software praat [23] has been used to detect four formants for frequencies up to 5 kHz with the
Burg-Algorithm from the recorded time-domain data of one second duration.
Theses spectral timbral descriptors are calculated for both the pressure inside the reed and the
sound pressure in the surrounding of the instrument, as indicated by the subscripts (.)r and (.)s,
respectively.

hscr,s the harmonic spectral centroid

hssr,s the harmonic spectral spread,

hsdr,s the harmonic spectral deviation,

F ir,s (i = 1..4), the center frequencies of the first four formants

Bir,s (i = i..4), the band widths of the first four formants

5.1.5 Embouchure parameters

The quasi-static double-reed model introduced in Chapter 4 predicts the parameters pM and qA of
the reed valve characteristics for any quasi-static working point of the reed defined by differential
pressure ∆p = pm − pr and lip force Fl. From the estimated values of pM and qA, the flow-rate q
and the corresponding reed slit height h can be calculated.
Despite being based on many simplifications, the quasi-static model [172, 89, 102] of the reed is
commonly used for the dynamic modeling of oscillating reed woodwinds up to now, for modeling
in the time and frequency domain. As was recently proven that the models explains mode locking
effects in the clarinet [129], it can be concluded that its application to dynamic cases is reasonable,
to a large extent. Details of the unsteady flow at the reed intake have been quantified in recent
studies, e.g. the change of the constriction coefficient (vena contracta) within one duty cycle [115]
depending on the Reynolds number and reed intake geometry [39].
In this study, it will be shown experimentally, that the quasi-static model can provide useful
information to characterize the operating point of the reed under playing conditions. In this quasi-
stationary case, the model input ∆p is a differential pressure calculated from pr − p̄m, where pr is
the unsteady reed pressure measured inside the mouthpiece, and p̄m is the mouth pressure measured
at a wall of the mouth cavity, averaged over one period. Similar to the mouth pressure, the lip force
is assumed to be constant over one period Fl(t) = F̄l = constant. The averaging is obtained by the
inertance of the artificial lip and the force sensor. F̄l is the sensor output.

14At very high pitches there is not a sufficient number of harmonics in each formant and the vowels cannot be
distinguished
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(a) quasi-static model (R2 = 0.96)
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Figure 5.4 Deviation between the measured mean flow-rate qmeas and the flow rate
predicted by the quasi-static model. (a) before and (b) after correction
for effects of the pressure efficiency and the non-dimensional lip force,
by linear regression.

The applicability of the quasi-static model to dynamic cases can be assessed by using these two
monitored mean values during playing and using them as input parameters to predict the mean-flow
rate and the mean slit height. The empirical parameters for the models (Eq. 4.28) have been
determined previously as described in Chapter 4, for the same lip position xl used in the blowing
experiment.
In Fig. 5.4(b) the model prediction qs,model = f (F̄l,∆p) is compared with measured values. It
is noticeable, that the quasi-static model applied in the dynamic case explains about 80% of the
experimentally observed mean flow-rate (R2 = 0.96). For the residuals of the model a weak
correlation with the ratio of mouth pressure over RMS reed pressure (R2 = 0.18) is observed
(Fig. 5.5(a)). Although the correlation is weak, it can be observed, that the model tends to
underpredict the flow-rate for “efficient” regimes, where pm/pr,RMS is larger than unity. Generally,
for higher frequencies, the spread of residuals is significantly larger.
Another observation is, that the residuals correlate weakly with a non-dimensional lip force
parameter Fl/(pmw2) (Fig. 5.5(b)). This can be seen for low oscillation frequencies, but globally
the correlation is quite small (R2 = 0.04).
Surprisingly, no correlation could be found between the residuals and parameters such as the
Reynolds or Strouhal number (R2 < 0.001, data not shown.)15.
This analysis is based on a large number of independent experiments (n = 2212), covering the
complete tonal and dynamical range of three different bassoon-bocal combinations, using the same
reed. It is remarkable, that for some notes in the middle register the model fails significantly by up
to -50 %.

15One would have expected such a dependency because the model considers a limit for high Reynolds numbers and
vanishing Strouhal number [88]. The Reynolds and Strouhal number are calculated here as quasi-stationary quantities

Re( ho
w ) =

uBernoulli ho
ν

( h
w ) and S r =

f0 w
ho

, respectively, where uBernoulli =

√
2 pm
ρ

is an estimate of the flow velocity,
ho(Fl,∆p) is embouchure dependent reed slit height during open episode (estimated from Fl and ∆p = p̄m − po by
use of the model), w = 14 mm is the width of the reed channel (assumedly constant), and ν =

η

ρ
is the kinematic

viscosity.
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Figure 5.5 Correlation of the residuals of the flow-model on (a) pressure efficiency
pm/pr,RMS and (b) on the non-dimensional lip-force Fl/(pm w2).

Applying a linear regression to correct for the two statistically weak effects, that the pressure
efficiency and the non-dimensional lip force have on the model, improves the fit marginally by 5 %
(fig. 5.4(b)). Reasons for the remaining discrepancy might be

• a change in the effective reed width for a change in the reed slit height (Fig. 4.12),

• an overestimation of the vena-contracta effect for very narrow slits (Fig. 4.24),

• an additional, lateral opening of the double-reed for high pressure regimes (and loose
embouchures)

• a difference in quasi-static and dynamic reed blade movement.

These aspects should be studied more in detail by using time-resolved geometrical information of
the oscillating reed slit.

Considering that the reed performs a two-step motion [136], an estimation of the reed slit height
can be deduced from the monitored values of blowing pressure and lip force. The approach bases
on an empirical model hmodel = f (F̄l,∆p) (Eq.(4.33a)). Here, in contrast to the flow-rate estimation,
the model input ∆p is the differential pressure pm − po, where po is the integral mean value of
the reed pressure during the open phase of the oscillation cycle. Accordingly, the model then
predicts the reed slit height ho during the open episode. For the lowest notes of the bassoon, the
open episode is up to ten times longer than the closed episode (more details are given below in
section 5.2.3. This makes it easy to measure ho optically, using a camera with a long shutter time
to integrate over some periods (e.g. 1/30 sec). In this way, the averaging is performed directly in
the image acquisition, as the amount of light on the sensor is integrated over some periods of the
oscillation. Measurement and model show a reasonable agreement for the ho of those notes, where
the assumption of a rectangular two-step motion is met (Fig. 5.6).
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Figure 5.6 Deviation between the measured slit height ho,meas and the slit height predicted
by the quasi-static model ho,model. (a) absolute, (b) relative, plotted vs. the RMS-
value of the reed pressure pr,RMS . The dashed horizontal lines mark the 5%
deviation.

For both mean flow-rate q and slit height ho, the models underestimates the measurements, at low
RMS-pressure This is especially noticeable for the flow-rate, and is probably due to the reed motion
induced flow. However, a general agreement is found, the most extreme outliers are still the within
± 20 % for the flow-rate and less for the slit height.
In light of the considerable simplifications used in the quasi-static model, and the pronounced
dynamics of the operating reed valve, the agreement is quite reasonable. Therefore it can be
concluded, that the application of this model to characterize the quasi-stationary process at a single
working point of the reed is acceptable.
Applying the model leads with the empirical relations Eq. 4.31b and Eq. 4.31a to an estimation
of the reed closing pressure pM, the flow parameter qA and with Eq. 4.33a to an estimation of the
reed slit height in the open episode. Especially pM and qA are important, as they can be used to
characterize the working point with respect to an analytic model [102, 153]. The non-dimensional
blowing pressure γ and non-dimensional embouchure parameter ζ are defined as

γ =
pm

pM
, (5.1)

and
ζ = Zc

qA

pM
, (5.2)

where Zc is the characteristic impedance of the air in the cross section at the bocal tip, where the
reed is attached to the resonator.
The applicability of this analytic single-reed model to the case of the double-reed has been proven
[4]. From pM and qA a reed equivalent stiffness Ks per unit area can be deduced as

Ks =
pM

qA

√
2 pM

ρ
, (5.3)

where ρ is the air density16.

16ρ ≈ 1.2kg/m3
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Figure 5.7 Lip force Fl,initial vs. mouth pressure change ∆p

Pressure-induced lip force change

If the artificial lip block is fixed in one position and the artificial mouth is pressurized, the reed
blades deflect and the lip force is reduced. The gradient of Fl with respect to ∆p has the dimension
of an area. The pressure difference ∆p is ∆p = pm − p̄r, where pm is the (constant) mouth pressure
and p̄r is the time averaged pressure inside the reed. It was measured in both static (with blocked
reed vibrations) and quasi-stationary (with vibrating reed) conditions, where p̄r is only a few dozens
of Pascals.
The first case refers to the measurement of the reed-valve characteristics (see Chapter 4), the
second case to a measurement under playing conditions with a resonator attached, where the mouth
pressure is increased, without changing the lip position. This measurement is similar to artificial
mouth measurements on the clarinet [42]. Interestingly, in the dynamic case investigated here, the
relationship between force change and mouth pressure is linear (R2 = 0.90 . . . 0.99) and independent
of both the initial lip force, and the frequency of oscillation (Fig. 5.7(b)).
As shown in Fig. 5.8, for the quasi-static measurement, the value clearly decreases with increasing
initial lip force, probably as a consequence of the increased contact area between artificial lip and
reed for higher lip forces. For the quasi-static case (infinitely slow reed deformation), the slope
(F. l/d∆p) is in the range between -1.1 and -0.2 cm2. In the quasi-stationary case (reed blades beat
with constant amplitude), the same pressure difference leads to less reduction of the lip force. In
this case, the slope is -0.78 ± 0.12 cm2 (mean value ± standard deviation for several configurations
0.5N < Fl < 7 N).

The empirical, lip-position-dependent static model introduced in Chapter 4 is useful to interpret the
artificial mouth adjustment parameters Fl and pm together with the resulting reed pressure pr(t) as
non-dimensional parameters of an analytic reed model within reasonable accuracy.Furthermore,
some equivalent physical properties such as the reed slit height and the reed stiffness can be derived.
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Figure 5.8 Gradient (dFl/d∆p) for several embouchure configurations characterized by
the initial lip force Fl,initial

These parameters describing a single working point are summarized below as

γ the non-dimensional blowing pressure

ζ the non-dimensional embouchure parameter

pM the pressure to close the reed [Pa]

qA the reed flow-rate parameter [ m3

s ]

Ks the reed equivalent stiffness per unit area [ Pa
m2 ]

ho the reed slit height during the open episode [m]

Artificial mouth adjustment parameters, which are relatively easy to obtain with the present setup,
can be used to characterize an experimental situation in the context of the elementary single-reed
model [102].

5.2 Observations on the Bassoon under Operating Conditions

In this section an overview will be given on the ranges of input parameters of the artificial mouth to
produce musically relevant operating regimes, as well as the output parameters characterizing those
regimes. The study covers the full tonal and dynamical range. The tested bassoons were modern
German Bassoons from the manufacturers Adler, Hüller, and Heckel. From the latter manufacturer,
a student model and a professional model have been used. One of the bassoons has been measured
twice with two bocals of different length. The corresponding five bassoon-bocal combinations were
excited with the same synthetic bassoon reed for fixed lip position (xl = 10.75 mm).
In the following plots of results and the observed ranges of parameters are plotted versus log-
frequency. For better readability, this axis is labeled with the corresponding note names. The gray
bars indicate the range of values observed for minimum and maximum dynamic level, at which
the note was playable in tune. To display the variation between instruments, the corresponding
mean values for each of the five the bassoon-bocal combinations are marked with different symbols
◦,�,×, ·, and C.
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Figure 5.9 Input parameters pm and Fl

5.2.1 Excitation Parameter Ranges

The artificial mouth adjustment parameters mouth pressure pm and lip force Fl are regarded as
input parameters to the coupled oscillatory system, to excite it at a fixed nominal frequency f0,nom

corresponding to the fingering applied to the resonator.

Artificial Mouth Input Parameters

The mouth pressures pm range from 1.5 kPa to more than 10 kPa (Fig. 5.9(a)). Blowing pressures
larger than 10 kPa are unrealistically high [68]. Therefore, the vertical axis in Fig. 5.9(a) is cropped
at this value, although notes could be played for even higher mouth pressures.
Ascending the scale, the minimum mouth pressure to sound a note in tune increases approximately
linear with log-frequency: Lower notes require less blowing pressure than higher notes.
In general, two regions can be identified in Fig. 5.9(a): The lower notes (from B[1 to A3) offer
a smaller blowing pressure range (1 kPa<∆pm<5.5 kPa) and are played at lower mean value of
p̄m ≈ 2.5 kPa; the higher notes (A3-D5) have a larger blowing pressure range (4.5 kPa<∆pm<9 kPa)
and a higher blowing pressure offset. Compared to the mouth pressure, the lip force characteristics
to sound the notes in tune is irregular, no simple dependence on the log-frequency scale can be
observed (Fig. 5.9(b)). Very generally speaking, the mean values F̄l are smaller at the lower and
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Figure 5.10 Reed Model Input Parameters γ =
pm
pM

and ζ = Zc
qA
pM

.

upper limit of the tonal range, and larger in between. Adjacent notes may require a very different Fl

offset. For each single note, the lip force range ∆Fl indicates the adjustments needed to compensate
for tuning when changing the dynamic level. This value reaches up to several Newtons and largely
depends on the tuning properties of each instrument, and, naturally, on the position xl of the lip on
the reed, which was constant in all measurements presented here. Apparently the bassoon-bocal
combination bsn1 (open circles in the graphs) was tuned flat compared to the other bassoons and
thus required globally a higher lip force, whereas for the combination bsn5 (triangles in the graphs)
the opposite trend is observed in Fig. 5.9(b).

Reed Model Input Parameters

Using the quasi-static pressure-flow characteristics of the reed, the instantaneous lip force Fl, and
blowing pressure pm, each working point of the setup can be characterized by non-dimensional
reed model parameters (see section 5.1.5), which are the non-dimensional blowing pressure γ
(Fig. 5.10(a)) and an embouchure parameter ζ (Fig. 5.10(b)) [102].
Both γ and ζ-characteristics resemble the pm and Fl characteristic in Fig. 5.16. A benchmarking
value for bassoon embouchures is ζ = 1.5 ± 0.5. Regarding the spread of values with changes in
the dynamic level, and the comparison of the five bassoons, the same observation as for the lip
force qualitatively apply (see above paragraph). Note that ζ is inversely related to the lip force
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Figure 5.11 Reed stiffness Ks according to the quasi-static reed model.

Fl. Large lip-forces correspond to a small slit-heights and thus small ζ, because the pressure-flow
characteristics (Fig. 4.22, Eq. (4.31)) is downscaled and shifted to lower values.
An interesting observation regarding the non-dimensional mouth pressure is, that for notes higher
than A3, γ is larger than 1/3 (Fig. 5.10(a)). This means that those notes are played at mouth
pressures above saturation pm,s of the pressure-flow characteristics of the reed-valve (Tab. 3.1). On
the other hand, the playing pressure range of the notes below G2 does hardly exceed saturation.
Further it can be seen that in the upper tonal range oscillations are possible for γ > 1, for which
the reed would be blocked under quasi-static conditions. Note, that γ > 1 does not necessarily
correspond to extremely high mouth pressures: For large lip force Fl > 6 N, the pressure pM to
close the reed completely is smaller than 4 kPa (Fig. 4.22).
For each working point characterized by γ and ζ, the corresponding reed effective stiffness Ks =

pM/qA
√

(2pM)/ρ can be calculated. It is a measure in Pa/m2 indicating the pressure difference ∆p
in Pascal needed to reduce the reed’s intake cross section S in by one square meter. Typical values
for the bassoon reed under playing conditions are Ks = (1.6 ± 0.35) 109 Pa/m2 (Fig. 5.11). The
reed stiffness Ks is related to the lip force Fl: large lip forces indicate a large pre-deflection and
therefore an effective stiffening17 of the reed.
The change in Ks with the dynamic level, and the observed spread in Ks between instruments is
therefore mostly due to the tuning properties of the specific fingering, and the lip force applied to
compensate for it. The presented measurement values of reed parameters under operating conditions
provide ranges and limits for realistic embouchures on the reed, in which the sounding frequency
of the coupled reed-resonator system is the desired fundamental frequency corresponding to the
fingering on the resonator.
This information may be helpful for physical modeling, which has not been the scope of this work.

Output Parameters

For each note, the oscillatory regime established for a combination of pm and Fl is characterized
by the output parameters RMS-value of the reed pressure pr,RMS and the time-averaged volume
flow-rate q. These may be called primary output parameters, because they are distinct measures at
the operating reed, directly measurable without further analysis.
The RMS reed pressure pr,RMS for musically relevant regimes ranges from 1 to 9 kPa, equivalent to
154 to 173 dB SPL (Fig. 5.12(a)). The minimum value for the softest regimes is p̄m,min = 2±0.5 kPa,
the differences on one note comparing between instruments exceed 1 kPa. This observation is

17Another possible explanation for the observed stiffness increase at high lip forces is, that an increasing extent of the
reed area is covered by the lip when increasing the force.
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Figure 5.12 Output parameters pr,RMS and q

largely influenced by the tuning of the instrument. Ascending the scale, the mean RMS reed
pressure pr,RMS tends to increase slightly. The notes of the lower register have a large fluctuation
in p̄r,RMS across the log-frequency axis. This fluctuation is decreased for higher notes; apart from
some outliers, p̄r,RMS is here around 4.2 kPa. The time-averaged volume flow-rate q ranges from
up to 4.5×10−4 m3/s for C2 at the lower end of the tonal range, to less than a tenth of this value at
F4 in the medium high register (0.25×10−4 m3/s). The notes B[1 to E2 require the most volume
flow (q̄ = 2×10−4 m3/s). From F2 to G4, the mean flow q̄ decreases from 2 to 1×10−4 m3/s. From
A4 upwards in the note scale q̄ tends to increase again (Fig. 5.12(b)). These general trends in the
flow-characteristics resemble the inverted lip force characteristics (Fig. 5.9(b)). The flow-rate tends
to be increased for notes which are played at lower lip forces.

An interesting observation concerning the playing dynamics is, that the RMS reed pressure pr,RMS

scales with the mouth-pressure pm in the highest register, independently of the mean flow q. On
the contrary, the RMS reed pressure scales with the mean flow q in the lowest register, indepen-
dently of the mouth pressure. The constant scaling factors are pr,RMS /pm = 0.75 kPa/kPa and
pr,RMS/q=18 kPa/(l/s), for the notes of the highest (above C4) and lowest register (below E2),
respectively, as indicated by the light and dark dashed lines in Fig. 5.13. This leads to the conclusion,
that the dynamics of low notes are flow-controlled, while being pressure controlled in the high
notes. For the notes in the middle of the tonal range, pr,RMS depends on both pm and q.
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Figure 5.13 Dependence of the dynamic level, characterized by the RMS mouthpiece pres-
sure pr,RMS , on the mouth pressure pm and the time-averaged volume-flow rate
q. Each dot is one working point of the reed, represented by one second of a
sustained bassoon tone played with the artificial mouth. The color indicates
the sounding frequency f0, according to the colorbar to the right of the plot.

5.2.2 Characteristics of the radiated Sound

The radiated sound was recorded at a fixed position at about 1.5 m from the instrument, in a lab room
with sound-reflecting walls. Thus, the measurements presented in this section are affected by the
room acoustics, which in particular influence the absolute values of sound pressure level and loud-
ness, to a lesser extent also the global spectral metrics like formant frequencies and harmonic spec-
tral centroid. However, the results are comparable between measurements, because both positions of
the microphone and the experimental setup with respect to the room were not changed. Even if not
well-defined, this recording situation corresponds to realistic conditions of musical performance.
In the blowing experiments, the external sound pressure levels ranged from around 71 dB SPL
(notes A2, F]4) to 95 dB SPL (B3) at 1.5 m distance from the bassoon (Fig. 5.14(a)). The sound
pressure level is very irregular over the semitones: Comparing the minimum SPL of single notes,
the differences reach up to 15 dB SPL, which is more than the maximum dynamic range of a single
note, 9 dB SPL. The general characteristics of SPL vs. log-frequency is approximately the same
for all instruments, but some very large differences in SPL and dynamical range can be seen for
a few individual notes when comparing between instruments (e.g. A2, C]3, F3, F]3, F]4, C]5).
Despite the pronounced irregularity, which certainly is affected by the radiation pattern and room
reflections, a general trend is observed that the dynamic range is doubled over the tonal range from
3 dB for low notes to 6 dB for the high notes. The characteristic of loudness18 N vs. log-frequency
(Fig. 5.14(b)) is very similar to the characteristic of S PL vs. log-frequency (Fig. 5.14(a)). Both
curves are, however, very different compared to the reed internal pressure fluctuation amplitude
pr,RMS characteristic Fig. 5.12(a). This means that the radiated sound level does not scale directly
with the sound pressure level near the sound source (in the reed mouthpiece). A more detailed
insight by a study of the radiation characteristics (e.g. [121, 79] would be helpful here. Roughly
speaking, moderate bassoon playing produces sounds of 44±12 Sone at 1.5 m distance. The
Sone-scale is linear with respect to the human perception; a doubling in Sone corresponds to a
doubling in perceived loudness. In this light, the dynamical range of single notes in the blowing
experiments was very small: Expressed in terms of loudness the fortissimo tones were only 30 to
50 % louder than the pianissimo tones. In general, the loudness follows the same trend as the SPL,

18Loudness is a psychoacoustical metrics to be calculated from a time series of sound pressure taking into account the
signal processing in the human auditory system [54]. In contrast to the sound pressure level it characterizes the
impression of loudness as perceived by a human. It is measured in Sone (according to the German standard DIN
45631), and a doubling in Sone corresponds to a doubling in perceived loudness.
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Figure 5.14 Dynamic levels of the radiated sound in sound pressure level S PL and loud-
ness N.

so the low notes have a smaller dynamic range than the higher notes. The largest dynamic range
is observed for D4, for which the loudness could be doubled by blowing harder.
Note that the statements above on the dynamical limits refer to playing each of the notes at constant
pitch.
The harmonic spectral centroid hscs of the sound radiated from the artificially blown bassoons
is around 800 Hz for all notes up to D4 (Fig. 5.15(a)). Ascending the scale from D4, hscs tends
to increase from 800 to 1100 Hz. The deviation from these global trends may be ± 150 Hz for
individual notes. Regarding one single note, the differences in hsc between instruments is smaller
than 100 Hz below D4 (except for B[2), and slightly larger for higher notes. The range in which
hscs varies with the dynamic level is 150 Hz at maximum.
In contrast, the harmonic spectral centroid in the reed pressure hscr has a very narrow distribution
of a few tens of Hertz only. The mean value is constant at 450 Hz for B[1 to C3. For higher notes,
hscr increases smoothly to reach 1 kHz at D5. Comparing spectral centroids measured in the reed
and the surrounding (Fig. 5.15(a)) shows, that hscs is approximately twice as large as hscr. The
vertical gray bars in this figure indicate, that the spectral centroid of the radiated sound hscs is
largely influenced by the playing dynamics. In contrast to that, the centroid of the reed pressure
spectrum hscr depends mostly on the fundamental frequency.
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Figure 5.15 Spectral metrics of the bassoon sound.

There are four formants below 5 kHz in the sounds radiated from the artificially blown bassoon at the
following mean values ± standard deviation of center frequency: F 1 = 540 ± 110 Hz, F 2 = 1.2 ±
0.18 kHz, F 3 = 1.9 ± 0.20 kHz and F 4 = 3.0 ± 0.60 kHz (Fig. 5.15(b)). The center frequencies of
second and third formant, F 2 andF 3, respectively, appear to be mostly independent on the sounding
frequency. The first and fourth formant, F 1 andF 4, respectively, have quite irregular characteristics.
The first formant changes at the acoustical register margins between second and third and, in partic-
ular, at the jump from the third to the fourth register. Except for some individual notes (e.g. E[3, A3,
D4) for who the F 1 formant differs largely when comparing different instruments, the general F 1
vs. log-frequency characteristic is the same for all five bassoon-bocal combinations under test. The
effect of the dynamic level on the formant center frequencies increases with their ordinal number:
F 1 is for most notes unaffected by the dynamic level, F 4 differs by several hundreds of Hertz.
A further aspect of interest is the change in brightness of the sound due to adjustment of the dynamic
level.
To evaluate the spectral enrichment of the sound with dynamics, the ratio (hscs/hscr)/γ is ad-
dressed, where the non-dimensional blowing pressure γ = pm/pM (Fig. 5.10(a)) characterizes the
dynamic level. Thus, a large value in the dimensionless number (hscs/hscr)/γ indicates, that the
spectral composition of radiated sound changes largely when increasing the blowing pressure.
The sound color of the lower notes does change much more with the dynamics, than for the higher
notes: Having a significantly larger range of blowing pressures (see Figs. 5.9(a) and 5.10(a)). For
the notes above A3 the spectral enrichment with dynamics given by the parameter (hscs/hscr)/γ
settles near 2 (Fig. 5.16(a)).
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Figure 5.16 Spectral metrics of the bassoon sound

As indicated by Fig. 5.15(a), the spectral characteristics of the pressure near the sound source in the
reed mouthpiece and the acoustic sound pressure outside of the instrument are quite different. A
more detailed view is provided by the harmonic sound spectra presented in Fig. 5.17.
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(b) Sound pressure spectra at 1.5 m distance

Figure 5.17 Comparison of harmonic pressure spectra inside the mouthpiece (a) and in
the radiated pressure spectra (b) of a modern German bassoon. The curved
black lines indicate the formant center frequencies. The color indicates the
relative spectral pressure magnitudes in dB according to the colorbar left to
the plots. The dB reference of each note is the strongest partial, marked with
a white cross; the dynamic range is limited to -24. . . 0 dB.
Each of the notes were blown with an artificial mouth at a moderate dynamic
level, pm ≈ 0.5 (pm,max + pm,min)

For most of the tonal range, the spectral power in the mouthpiece pressure is concentrated below
the first formant frequency. Usually, the first harmonic is the strongest, exceptions are found only
for notes lower than G2.
Since the reed motion and the mouthpiece pressure resemble a rectangular two-step signal, some
authors have related the presence of formants in the radiated sound of woodwinds to spectral “gaps”
in the source spectrum [66]. These gaps stem from the fact that the amplitude spectrum of a periodic
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(b) Relative reed closed episode duration

Figure 5.18 Analysis of the duration τc of the closed episode in one cycle of the reed tip
oscillation

rectangular pulse train with a pulse duration τc and a periodic time τ is the modulus of a sinus
cardinalis function. The amplitudes Pi of the harmonics with ordinal numbers i near n τc/τ are
strongly attenuated (n integer).
Fransson has performed measurements on a bassoon excited by ionophone-generated sound pressure
pulses, and found a good agreement in the radiated sound19 with that of the instrument blown by a
musician [63, 64]. Fricke and his co-workers have used this approach for analogue [66] and later
digital pulse-forming techniques [134] to synthesize woodwind instrument sounds. Following their
argumentation, the formants are already present in the reed pressure spectrum, halfway between the
spectral gaps at 1/τc Hz.
According to their hypothesis, one would expect spectral gaps in the reed pressure spectrum at 360
and 720 Hz, which cannot be observed in the present measurements (Fig. 5.17(a)). Instead, the
peaks in reed pressure spectrum decay monotonic by -24 dB up to 1.2 kHz. Only in the plot of
radiated sound spectra (Fig. 5.17(b)), strong spectral peaks appear as dark shaded dots near the
curved iso-frequency lines that mark the first three formant center frequencies (540 Hz, 1.2 kHz,
1.9 kHz): For many notes, the strongest partial coincides with the 540 Hz isoline indicating the main
formant F 1. The third formant F3 is for most notes close to 1.9 kHz. Also, the larger fluctuations
of the second formant F 2 around the 1.2 kHz isoline can be seen.

19The amplitudes of the ionophone-generated pressure pulses are however much smaller than in real blowing
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(b) ratio of reed pressures

Figure 5.19 Analysis of average reed pressures during the open (po) and closed (pc)
episode of one cycle of the reed tip oscillation. The straight black line indi-
cates the minimum peak pressure pc,min during the one period (mean value of
five bassoons). The black errorbars on this curve indicate the spread of pc,min

observed on the five bassoons (standard deviation).

5.2.3 Reed Pressure Waveform Analysis

During one oscillation cycle, the reed closes once. The mouthpiece pressure pr is approximately in
phase with the reed tip motion [102, 44], so the durations of the open and closed episode can be
estimated from the reed pressure waveform (see section 5.1.2).
Ascending the note scale, the reed closing time τc is approximately constant in the lowest register
(B[1-F3) at a value of 2 ms (Fig. 5.18(a)). For higher notes, τc tends to decrease with log-frequency,
down to a value of 0.75 ms. The dynamic level has a slight influence of 10 % on τc, for notes lower
than D4. The same applies for the differences between instruments. For the higher notes in the
third and fourth acoustical register20, the differences between instruments vanish, as well as the
change in τc with dynamics. This observation is especially interesting, because those notes have
the largest playing range in which the instrument could be sounded in tune. A plausible explanation
for this behaviour is, that the inertia of the reed blade becomes dominant in determining the reed
motion. The relative duration of the closed episode, τc/τ ranges from 0.1 to 0.45 (Fig. 5.18(b)).
Values higher than 0.5 indicate a mode-switch from standard to inverted Helmholtz motion pattern

20Acoustical register borders are marked by vertical straight lines in the plots
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Figure 5.20 Independence of the pressure waveform on the dynamic level.
(a) Measured reed pressure signals pr(t) during one oscillation cycle, normal-
ized in pressure by the RMS-value pr,RMS (τ), and in time by the periodic time τ.
The plot shows in 4 octaves the case of the note D at two dynamic pressure
levels (gray: piano, black: forte).
(b) Ratio of open-close episode duration τo

τc
versus the integral mean reed

pressure ratio |pc |
po

. The slope of the dashed gray line is 0.84 ± 0.0027.

[44, 136], and are not observed in the standard playing range of the bassoon21. For most notes, the
change of τc/τ with dynamic level is smaller than 10%, except for some individual notes in the
middle of the tonal range (B2 to D4), where the variation can reach up to 40%. The spread in τc/τ

is an indication for the frequency-stability of an oscillatory regime.
The two-step motion of the reed is further characterized by the average pressures po and pc during
the open and closed episode, respectively (see section 5.1.2). Sudden reed closure induces a
negative pressure pulse due to the inertia of the flow. The integral mean pressure pc during this
episode ranges from -12 to -1 kPa; the corresponding pressure during the open episode po ranges
from 0.2 to 8 kPa (Fig. 5.19(a)). Naturally, both averaged pressures depend strongly on the dynamic
level and increase with the blowing pressure.
The change of both po and pc with the mouth pressure pm is linear, such that the ratio |pc/po| does
not change with the dynamics (Fig. 5.19(b)), which has analogously been observed for the relative
reed closing duration τc/τ (Fig. 5.18(b)). Thus, increasing dynamic level affects the reed pressure,
but the general shape of the wave pattern is preserved. As the fundamental frequency increases, the
asymmetry in the waveform diminishes and point symmetry (τc/τ = 0.5, po/pc = 1) with respect to
the zero-crossing is approached. Besides these observations on the averaged reed pressures po and
pc, the independence of the general waveform on the dynamic level is directly evident in the time
domain: Even for a doubling of the RMS reed pressure pr,RMS subtle details in the reed pressure
are preserved (Fig. 5.20). This confirms experimentally under realistic conditions, that the coupled
non-linear system of reed and resonator has a linear adjustment range. This has been analytically
predicted for ideal resonators [44].
For a lossless resonator, energy conservation states that τo po = τc pc [136]. Therefore, the ratio
τo po/(τc pc) < 1 indicates losses. In the experiments, this value22 has been observed to be
0.84 ±0.0027 (Fig. 5.20(b)).

21Sudden regimes switch can be forced at the far end of the dynamic range for high blowing pressures on notes higher
than C3, accompanied by a remarkable change in pitch, level and timbre. Apparently these regimes are not relevant
for musical performance.

22The 95% confidence interval for the regression coefficient a1 of a model |pc |
po

= a0 + a1
τo
τc

is [0.8370,0.8397],
(R2 = 0.9984, N = 3226)
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Figure 5.21 Influence of the impulse duration τc on the reed pressure spectral centroid
(a)relative open-close duration τo/τc versus normalized spectral centroid
hscr/ f0 of the mouthpiece pressure.
(b)impulse duration τc versus spectral centroid hscr. The dashed black line
has a slope of 1.81.

In general, the asymmetry in the reed pressure waveform determines the spectral centroid (Fig. 5.21(a)).
For lower notes, the impulse duration τc correlates with the spectral centroid in the reed (Fig. 5.21(b));
i.e. hscr/ · τc ≈ 1. For those notes, the harmonic spectral centroid in the reed coincides with the
main formant. This experimental finding is in contradiction with the hypothesis on which the
“pulse-forming theory” is based [66]. A significant deviation is found for the notes above A3, where
hscr · τc ≈ 1.8.
Ascending the note scale, the change of the reed pressure waveform with sounding frequency
is due to the shortening of the resonator’s effective acoustic length. The shortening reduces the
number of harmonic air column modes, nmodes, which contribute to the oscillation. Theoretically,
these aspects have been discussed in detail for non-linearly excited ideal cylindrical and conical
resonators [44, 136].
For real air-columns with tone holes, many air column modes largely varying in magnitude and
harmonicity are present, and their possible contribution to the regime of oscillation is unclear at
first glance.
To experimentally determine the number of relevant air-column modes nmodes for a real bassoon and
to show its change with the fingering, a rescaling of the magnitude of the input impedance curve is
helpful. Following Fletcher’s postulation [58], that air column modes must be strong to participate
in a mode-locked regime of oscillation, the impedance peaks -6 dB lower than the maximum peak
of each fingering are neglected. The second constraint, that the modes must be nearly harmonic is
met by excluding all modes which are more than 100 Cent (one semitone) off the nearby harmonic
frequency. The result looks very similar to the harmonicity map (Fig. 2.17), except for a modified
color shading. For each fingering, the remaining peaks fulfilling the two criteria are added for each
note to give nmodes.
The comparison of |pc/po| from blowing experiments and nmodes obtained from the above analysis,
shows their close relationship (Fig. 5.22). This very good agreement with the theoretical predictions
[44, 136] indicates the proper choice of the thresholds ± 100 Cent for the harmonicity and -6 dB
for the impedance magnitude, to determine the number of relevant air-column modes. Accordingly,
in the subsequent analysis nmodes will be called the number of supporting air column-modes.
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Figure 5.22 Relation between the mouthpiece pressure waveform (|pc/po|) and the number
of supporting resonator modes (nmodes). The pressure waveform pr(t) resem-
bles a two step open-close function with the integral mean values po and pc

during the opening (pr(t) > 0) and closing (pr(t) < 0) episode, respectively.

5.2.4 Summarizing Overview

Characteristic values of input and output parameters from the artificial mouth blowing experiments
covering the tonal and dynamical range of the bassoon are given in Table 5.1. This table summarizes
the results of the above sections, obtained for one synthetic bassoon reed on five different bassoon-
bocal combinations. The lip was in an intermediate position xl = 10.75 mm from the reed tip. This
distance was not changed during all measurements.
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Table 5.1 Overview on typical values of input and output parameters in artificial mouth blowing experiments on a modern German
bassoon. The values are given as a range (·)min . . . (·)max or as a mean value ¯(·) ± σ, where σ is the standard deviation. The
right column gives references to figures with plots of the respective properties.

Symbol Measure Unit Range Reference

artificial mouth

di
re

ct
ly

m
ea

su
re

dadjustment pm mouth pressurea [kPa] 1.1 . . . 12 Fig. 5.9(a)
parameters Fl1,2 lip forcea [N] 0 . . . 7 Fig. 5.9(b)

xl lip positionb [mm] 0 . . . 15
working point

of the reed q averaged volume flow-ratea [l/s] 0.02 . . . 0.42 Fig. 5.12(b)
pr(t) reed pressure inside mouthpiecec [kPa] −24 · · · + 8 Fig. 5.20(a)
ps(t) sound pressure at 1.5 m distancec [Pa] arbitrary not shown

m
et

a-
an

al
ys

is

f0 sounding frequencyd [Hz] 58. . . 592 not shown
pr,RMS RMS reed pressured [kPa] 1 . . . 9 Fig. 5.12(a)
ps,RMS RMS sound pressuree [dB SPL] 72 . . . 95 Fig. 5.14(a)

hscr harmonic spectral centroidd,f [Hz] 380 . . . 1000 Fig. 5.15(a)
reed pressure

waveform τc duration of closed episodea [ms] 2.8 . . . 0.75 Fig. 5.18(a)
parameters τo/τ normalized duration of open episoded [-] 0.9 . . . 0.55 not shown

τc/τ normalized duration of closed episoded [-] 0.1 . . . 0.45 Fig. 5.18
po integral mean pressure, open episoded [kPa] 0.2 . . . 8 Fig. 5.19(a)
pc integral mean pressure, closed episoded [kPa] −12 · · · − 2 Fig. 5.19(a)

pc,min minimum pressure, closed episoded [kPa] −24 · · · − 5 Fig. 5.19(a)
timbral spectral

parameters hscs harmonic spectral centroide,f [Hz] 580 . . . 1500 Fig. 5.15(a)
hss harmonic spectral spreade,f [-] 0.2 . . . 0.7 not shown
hsd harmonic spectral deviatione,f [-] 0.1 . . . 0.3 not shown
F 1 1st formant center frequencye,f [Hz] 540 ± 110 Fig. 5.15(b)
F 2 2nd formant center frequencye,f [kHz] 1.2 ± 0.18 Fig. 5.15(b)
F 3 3rd formant center frequencye,f [kHz] 1.9 ± 0.2 Fig. 5.15(b)
F 4 4th formant center frequencye,f [kHz] 3.1 ± 0.6 Fig. 5.15(b)
B1 1st formant bandwidthe,h [Hz] 220 ± 160 not shown
B2 2nd formant bandwidthe,h [Hz] 470 ± 280 not shown
B3 3rd formant bandwidthe,h [Hz] 730 ± 450 not shown
B4 4th formant bandwidthe,h [Hz] 890 ± 470 not shown
N Loudness at 1.5 m distancee,i [Sone] 44 ± 12 Fig. 5.14(b)

quasi-static reed
model parameters pM pressure needed to close the reedj [kPa] 7.4 ± 1.8 not shown

qA flow parameterk [m3/s] (0.6 ± 0.3) 10−3 not shown
Ks reed stiffness per unit areal [Pa/m2] (1.6 ± 0.35) 109 Fig. 5.11
γ dimensionless blowing pressurem [-] 0.16 . . . 1.4 Fig. 5.10(a)
ζ embouchure parameterm [-] 0.6 . . . 2.7 Fig. 5.10(b)

qmodel flow-rate predicted by modeln [m3/s] see: q Fig. 5.4
ho,model max. slit height in open episodeo [mm] 0.1 . . . 1.2 not shown

a stationary measure
b constant in all experiments (10.75 mm)
c dynamic measure
d from unsteady reed pressure
e from unsteady sound pressure
f MPEG7 (ISO/IEC15938)
h praat (Burgers algorithm)

i Zwicker (DIN 45631)
j from quasi-static characteristics, Eq. (4.31b)
k from quasi-static characteristics, Eq. (4.31a)
l pM

qA

√
2pM
ρ

m elementary clarinet reed model [102]
n estimate from empirical model; Eq. (4.28)
o estimate from empirical model; Eq. (4.32)
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5.3 Performance Control with the Embouchure

With the use of an artificial mouth, it is possible to independently adjust and measure the parameters
lip force Fl and mouth pressure pm. Within the standard playing range, for a given resonator setting,
a steady-state regime of oscillation is fully set by a choice of these two23 input parameters. This
regime is further characterized by the resulting mean volume flow-rate q, the RMS-reed pressure
pr,RMS and the sounding frequency f0 = 1/τ, which are called output parameters.
In contrast to the artificial mouth experiments, where the input parameters are static, the musician
adjusts the input parameters to achieve the desired output, so the output parameters are implicitly
controlled by the embouchure.
In this section, the interplay of input and output parameters will be discussed with respect to some
musician-related aspects of bassoon performance. In a concluding section, these findings will be
reconsidered in light of the acoustical properties of the resonator.

5.3.1 Register-dependent Embouchure Characteristics

The balance of input and output parameters characterizes the interplay of the resonator and em-
bouchure and therefore provides information on the interaction of the resonator with the musician
and his way of embouchure control. In the experiments, working points of the reed were adjusted
to keep the output parameter f0 constant for each resonator setting.
As response variable pr,RMS is chosen, which characterizes the dynamic level. Two controlled
variables are proposed to describe the embouchure. The first is the blowing pressure pm. The
second is the logarithm of a non-dimensional lip force F̃l defined as

F̃l =
Fl

qρ 2 h f0
(5.4)

where qρ is the mass flow-rate and 2 h f0 is the average velocity of the reed blade at the tip. The
term in the denominator has the dimension of a force. For typical playing conditions F̃l is 102 to
106, for loose and tight embouchures, respectively.
It was shown by pressure waveform analysis in section 5.2.3, that the musically relevant oscillation
regimes of the reed-resonator system in the time domain scale linearly with the dynamic level.
The measurement results in Fig.5.23 reveal, that under playing conditions the response variable
pr,RMS is a linear combination of the controlled variables pm and log10 F̃l. This analysis further
indicates, that the slope ∆pr,RMS vs the controlled variables pm and log10 F̃l depend on the sounding
frequency f0. By classification lines with a slope of unity and -3.27 kPa/decade, respectively, both
plots can be split into two regions.
Both classification lines represent characteristics to discriminate the respective data into two groups,
left and right to the vertical dashed line in Figs. 5.23(a) and 5.23(b). This classification will be
interpreted in terms of two dimensions, which are orthogonal to the dashed lines and characterize
the bassoon’s blowing characteristics:

i) the pressure efficiency dimension and

ii) the embouchure tightness dimension

With the classification line pr,RMS /pm = 1 in the first dimension pr,RMS /pm divides the notes into
two groups according with a pressure efficiency smaller or larger than unity. The notes at the low
end of the tonal range are efficient (pr,RMS /pm > 1) whereas the higher notes are less efficient
(pr,RMS /pm < 1): To produce the same pr,RMS the notes with a higher pitch require a larger mouth
pressures.
The interpretation of the second dimension first requires a discussion of the non-dimensional

23For a given reed and a fixed lip position xl
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(b) Non-dimensional lip force

Figure 5.23 Blowing characteristics of a modern German bassoon. Dependence of the
response variable pr,RMS on the controlled variables (a) pm and (b) log10 F̃l

(Eq.5.4) characterizing the embouchure. Each of the small dots marks one
operation point, the large dots mark the centroids of several realizations
of each note, with different dynamic levels, on all five bassoons under test
(bsn1 to bsn5). The data are covering the full dynamical and tonal range, and
stem from artificial mouth experiments (Ntotal = 3326). The color indicates the
sounding frequency, according to the colorbar to the right of the plots.
The black dotted classification line has a slope of unity (a) and -
3.27 kPa/decade (b).

lip force F̃l. For a fixed fundamental frequency, low values of F̃l correspond to low lip force
and high flow rate. Following this interpretation F̃l can be related to an effective slit height, in
other words to the embouchure tightness. In this second dimension, the classification24 line is
pr,RMS / log10 F̃l = −3.27 kPa/decade. To produce tuned sounds of equal pr,RMS , the notes in the
middle of the playing range require a tighter embouchure (pr,RMS / log10 F̃l > −3.27 kPa/decade)
compared to the notes in the lowest and highest registers which are played with a loose embouchure
(pr,RMS / log10 F̃l < −3.27 kPa/decade). Contrary to the first pressure efficiency dimension, the
second embouchure tightness dimension groups the lowest and highest notes.
The blowing characteristics of a modern German bassoon can be described by a scatterplot of
∆pr,RMS / log10 F̃l vs. pr,RMS /pm, where each point marks one operation regime of the reed
(Fig. 5.24(a)). The classification lines of both dimensions divide this map of working points
into four regions, according to their pressure efficiency and embouchure tightness (Fig. 5.24(b)).
The proposed classification divides the playing range of notes into four regions, according to their
blowing characteristics:

group 1 (B[1→E2): high pressure efficiency, loose embouchure

group 2 (F2→G]3): high pressure efficiency, tight embouchure

group 3 (A3→A4): low pressure efficiency, tight embouchure

group 4 (B[4→D5): low pressure efficiency, loose embouchure

24The classification line is obtained from statistical considerations, with the aim to obtain of a symmetric density
function with a local minimum at the median. Half of all observed operating points have a lower value.
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Figure 5.24 (a) Grouping of operating regimes of a bassoon double-reed into four regions.
Each of the small dots marks one operation point, the large dots mark the
centroids of each note. The data are covering the full dynamical and tonal
range, and stem from artificial mouth experiments on 5 German bassoons
(n = 3326). The colors indicate the fundamental frequency according to the
colorbar to the right of the plot.
(b) Mean centered and rescaled map showing only the centroids of operating
regimes for each note, and their grouping (�,�,N,H). The first dimension is
the pressure efficiency pr,RMS /pm (horizontal axis), the second dimension
∆pr,RMS / log10 F̃l (vertical axis) is related to the embouchure tightness.

The quality of classification can be quantified by the effect size. A measure for the effect size is
Cohen’s D25. The border in the pressure efficiency dimension (between groups 1,2 and groups 3,4)
is quite clear (D = 3.82). The border in the embouchure tightness dimension (between groups 1,4,
and groups 2,3) is less pronounced (D = 1.66) (see Fig. 5.24(a).
The above regime margins obtained from the analysis of blowing characteristics agree to some
extent with the subjective judgements of bassoonists:
8 professional bassoonists, being asked to divide the tonal range on the bassoon into 4 regions
according to their blowing characteristics, and to describe them in their own words26 , gave the
following responses

low (B[1→E2): “loose support”, “large oscillation”, “much controlled air”, “loose embouchure”,
“large opening”, “open embouchure”

mid-low (F2→G3): “medium support”, “medium embouchure”, “guided air”, “less loose em-
bouchure”, “natural”, “convenient to play”, “medium blowing pressure”

mid-high (G]3→F]4): “much support”, “much embouchure”, “narrow blowing pressure”, “harder
embouchure”, “fast air”, “straining, high blowing pressure”, “high lip tension”

high (G4→D5): “good support”, “little embouchure”, “loosened embouchure”, “free blowing
pressure”, “very fast air”, “mouth is not narrow”, “medium-high tension”, “irregular”

25Assuming two independent observations X1, X2, normally distributed with mean values µ1,µ2 and standard deviations
σ2

1,σ2
2, Cohen’s D is given by D =

µ2−µ1√
(σ2

1+σ2
2)/2

.
26The test persons were completely unaware of the objective of the study. A questionnaire was given to them showing

a score of a chromatic scale of B[1 to D5. The bar-less score switched from bass to tenor clef after B3. The
questionnaire asked for two tasks: i) Divide the range into 4 groups A,B,C,D by making 3 vertical lines in the score!
ii) How would you describe the four groups A,B,C,D in terms of blowing characteristics, embouchure and sound
color? The test persons were 6 bassoon students and their teacher from a German university of music. They filled the
questionnaire individually and simultaneously. The questionnaire was further handed out to one professional bassoon
soloist who had graduated from a different school years ago.
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Figure 5.25 Grouping of notes according to their embouchure characteristics. For each
note, the ratio nnote,i/nnote is shown, where nnote,i is the number of operating
points classified into the ith group (i = 1, 2, 3, 4: �,�,N,H), and nnote is the total
number of operating points on that note. For each note, only the marker of
the dominating group (ni/n > 0.5) is plotted. The data are covering the full
dynamical range and stem from artificial mouth experiments on German 5
bassoons.
Markers © correspond to the median of regime margins as perceived by mu-
sician (according to a survey among 8 professional bassoonists).
The vertical straight black lines indicate the acoustical register margins.

The standard deviation of the regime margins in the responses of the musicians were 2.0, 2.7 and
3.5 semitones. Interestingly the regime margins observed under playing conditions, both with
musicians and artificial mouth do not coincide with the acoustical register borders of the resonator
(Fig.5.25).

One possibly would expect to see a change in blowing characteristics at the acoustical borders, e.g.
at between F3 and F]3, which is the first overblown note, where the reed vibrates with a frequency
near the second air column mode, but this is not the case.
The conclusion is, that careful artificial mouth experiments make some aspects of the embouchure
control as perceived by musician comprehensible. Possible reasons for regime changes perceivable
in the musicians embouchure can be found in the reed-resonator interaction. These aspects will be
discussed in section 5.3.4.

5.3.2 Intonation Corrections

In the above section a classification of notes has been made, according to pressure efficiency and
embouchure tightness. This classification bases on an analysis of blowing characteristics from the
parameters lip force, mean flow-rate, mouth pressure and RMS reed pressure.
The rough classification into loose and tight embouchures needs to be reconsidered: Bassoonists
report, that delicate embouchure corrections have to be made for each individual note. These
nuanced adjustments of lip force to correct individual notes for their tuning are addressed in this
section27.
The blowing pressure pm is strongly correlated with the dynamic level of the sound, which, for the
musician is an artistic constraint during the performance. For this reason, the lip force Fl is the free

27The results presented here have partly been published by the author in [75]
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Figure 5.26 Range of input parameters for bassoon playing to achieve clean tuning at
small and large dynamic level (piano and forte). (a) measured values of lip
force Fl and blowing pressure pm; (b) corresponding model parameters γ =

pm/pM and ζ = Zc qA/pM of an elementary clarinet reed model [102].
Data from artificial mouth experiments on on bassoon (bsn4) with the same
synthetic double-reed. Markers ◦, • correspond to the low and high refer-
ence level, respectively. Horizontal gray bars mark the maximum and min-
imum values on this bassoons. Markers �, � on the vertical axis indicate
those notes that could not be sounded in tune at the low and high reference
level, respectively.

parameter used to adjust to the frequency. Actually, both parameters influence the tuning: Learning
to play the bassoon means to train the blowing pressure dependent lip force correction for each
note at each dynamic level.
To report the required embouchure corrections for playing each note in tune at a high and low
dynamic level, values of mouth pressure and lip force are provided in Fig. 5.26. These two dynamic
levels are given by the reference values of pr,RMS = 2.2 and 4.4 kPa, denoted as piano and forte in
the plot. The RMS reed pressure might not be proportional neither to the radiated sound level nor
to the perceived loudness (see Figs. 5.14 and 5.12(a)), but it is suited to compare the embouchures
of adjacent notes and is independent of the room acoustics. The plots in Fig. 5.26 show, that
the parameter ranges of some notes (e.g. B1,G]2, G4), are considerably small compared to their
neighbors. To a player, these notes may appear to be sharp, as they cannot be played loudly without
changing their pitch. When blowing harder, the pitch increases, but a further reduction of lip force
would let the tone break away.
In the higher registers, notes are found which cannot be played softly (e.g. C]3,B[, B4) at their
nominal sounding frequency. Those notes appear to be flat. Playing them at low blowing pressure
requires a high lip force to “push up” their tuning. Below a certain threshold of reed slit height28 it
is not possible to build up or maintain reed oscillations. Generally, the plot of lip forces indicates,
that the notes in the low register have smaller and more demarcated ranges of playing parameters,
compared to higher notes, whose pitches are more easy to bend as musicians report. Higher notes
can be played at very high blowing pressures. Due to the observed generic irregularity, upwards

28The smallest initial slit height at which oscillations were still possible, was 0.1 mm
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Figure 5.27 Input parameters for bassoon playing to achieve clean tuning at the softest
dynamic playing level (pianissimo).
a) lip force Fl,max and
b) blowing pressure pm,min.
Data from artificial mouth experiments on five bassoons with the same syn-
thetic double-reed. Markers are the median, vertical gray bars mark the maxi-
mum and minimum values from the five bassoons.

octave jumps may require a remarkable tightening (e.g. B1-B2, D2-D3) or loosening of (e.g.
A3-A4, B3-B4) of the embouchure.
Although the lip force characteristics look similar for soft and loud playing in principle it differs in
details. This indicates the need of incessant embouchure corrections not only between adjacent
notes (e.g. E2-F2, C3-C]3, C4-C]4, F4-F]4), but also between different dynamic levels played on
the same note.
As articulation and speed are excluded in this experiment, it can be guessed that in a real musical
performance the proper dynamic adjustment of the embouchure is even more complicated.
The embouchure correction curves presented in Fig. 5.26 depend on the characteristics of the
resonator. On each of the five bassoons some individual notes with tuning problems could be
identified as outliers in the Fl-curve. However, the general lip force characteristics was the same for
all bassoons, which range from instruments for students to instruments for professionals. Fig. 5.27
shows that the spread of values for maximum lip force Fl,max and minimum blowing pressure pm,min

needed to play the softest dynamic level on each note, is small compared to the absolute value.
Note, that the terms minimum and maximum do not refer to oscillation thresholds for one em-
bouchure configuration as in previous studies [42]. Here the embouchure is readjusted for each
working point, to find the lowest and highest pressures, where the respective note could be sounded
in tune. At the lower limit of playing dynamics shown in Fig. 5.27, the artificial mouth parameters
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Figure 5.28 Tuning discrepancy Imusician as perceived by one musician (black dots with
gray errorbars). The markers (4, 5) denote the tuning tendency (sharp, flat) of
“some critical notes regarding special attendance”[34].

observed on all five bassoons have a relatively small spread and thus reveal the same general
characteristics. This applies in particular to the blowing pressure. For the lip force, the variations
are larger; they are most probably biased by a lip force offset compensating for the overall tuning.
Nevertheless, it can be concluded that all five bassoons studied have quite similar playing character-
istics, however a few outlier notes are observed on each instrument.
The lip force that needs to be applied to achieve the correct pitch can be regarded as an indirect
measure of the intonation of a reed wind instrument as perceived by a player. The relation of lip
force and tuning is inverse: notes which appear to be flat have to be adjusted by tightening the
embouchure, while notes appearing to be sharp are played with a loose embouchure. The curve of
the highest lip force Fl,max( f0) at which each note could be sounded in its nominal frequency f0,nom

can be regarded as a characteristic curve revealing the intonation properties of the bassoon29 under
playing conditions.
To investigate the perceived tuning discrepancy, a blowing experiment with a musician has been
carried out: A professional bassoonist was asked to play all notes on a bassoon without embouchure
corrections. All combinations of 3 bassoons, 3 bocals and 2 reeds (”hard” and “soft”, from natural
cane) have been used in this investigation, the resulting sounding frequencies were obtained by
autocorrelation from recorded audiodata of sustained notes [78]. The perceived tuning is then
characterized by the interval Imusician = 1200 log2( f0/ f0,nom) Cent, where f0 is the actual sound-
ing frequency, and f0,nom is the nominal sounding frequency for that fingering, according to the
equally tempered scale30. Comparing the mean values from this study (Fig. 5.28) with the lip
force offset from the artificial blowing (Fig. 5.27(b)) a general agreement is found. The inverse
proportionality of lip force and perceived tuning is examined by means of a regression model
Fl,max = a0 + a1 Imusician (Fig. 5.29). The regression coefficient31 is a1 = −0.37 ± 0.16 N/(10 Cent).
The coefficient of determination is R2 = 0.37, which means that 20 % of the of the observed tuning
discrepancy can be explained by assuming a simple linear correlation with the lip force offset.
Air columns, which are tuned flat32 have to be played at higher lip forces. The choice of a bocal
with proper dimension and the variation of its insertion length can be used to adjust the mean tuning
in certain limits.
The observed correlation between Fl and Imusician is quite remarkable, taking into account that the
measurements have been carried out on different bassoons, bocals and reeds; by real blowing and
artificial mouth excitation.

29The term describes here the entity of a bassoon, bocal, and reed
30referenced to A4: 443 Hz
31The 95% confidence interval for the a1 estimate is [-0.53,-0.21] N/(10 Cent)
32Note “the tuning” is considered to be a property of the air-column, i.e. the entity of bocal and bassoon.
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Figure 5.29 Correlation between lip force Fl,max in artificial mouth blowing experiments
and the tuning discrepancy Imusician as perceived by a musician. In the artificial
mouth experiment the tuning was held constant and the adjusted lip force Fl

was measured; in musician experiment, the embouchure was held constant
by the musician and the resulting tuning Imusician was measured.
Each of the 41 markers corresponds to a note within the chromatic playing
range from B[1 to D5, the color indicates the sounding frequency f0 accord-
ing to the colorbar on the left. Vertical errorbars mark the 25th and 75th per-
centiles of 18 measurements (full permutation of 3 bassoons, 3 bocals and
2 cane-reeds). Horizontal errorbars mark the maximum and minimum values
from measurements on five bassoon-bocal combinations. Dashed lines corre-
spond to the 95% confidence interval of the fit coefficients.

5.3.3 Sound Color Adjustments

According to the experience of woodwind players, the greatest influencing factor on the sound
color are they themselves. For reed making players, which many bassoonists actually are, this
may in particular be a firm conviction. Certainly, the complex of reed, lips and mouth is crucial in
fine-tuning the sound color.
The setup used in the present study makes it is possible to study one aspect of this complex sepa-
rately: The influence of the embouchure configuration on the sound color, for a fixed reed and lip
position xl.
To quantify the term sound color, the spectral metrics harmonic spectral centroid hsc, harmonic
spectral spread hss and the center-frequencies F 1, F 2 and F 3 of the formants, as well as their
ratios are analyzed from the acoustical sound pressure recorded outside of the instrument. An
embouchure configuration is given by the lip force Fl and the blowing pressure pm, further, the
RMS reed pressure pr,RMS and the non-dimensional lip force Fl/(qρ 2h f0) are analyzed. The lip
position xl is the distance of the lip from the reed tip.
The influence of the dynamical level (pr,RMS ) on the harmonic spectral centroid hscs and the
harmonic spectral spread hsss can be observed in the plot of standardized of output (sound) versus
input (embouchure) data (Fig. 5.30). The standardization is z(X) =

X−µ
σ , where µ, σ are the mean

and standard deviation, respectively, of the observations on X for each note.
Both spectral parameters hss and hsc increase with the dynamic level, which leads to the interpreta-
tion, that these sounds are perceived to be brighter [73, 145] and richer in overtones, when they are
played louder.
The inverse effect is observed for the lip force Fl. This effect supposedly is a consequence of the
observation that playing a note softer requires a raise in lip force to prevent a pitch change. The
change in these spectral parameters with the blowing pressure is linear over most of the playing
range, except near the upper and lower limits.
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Figure 5.30 Change of sound color related parameters with a change in the embouchure.
Output data of the radiated sound are plotted versus input data of the artifi-
cial mouth.
Input data pm: mouth pressure, Fl: lip force, pr,RMS : root-mean-square reed
pressure, Fl/(qρ h f0): non-dimensional lip force;
Output data: hsc: harmonic spectral centroid, hss: harmonic spectral spread,
F 1,F 2,F 3: center frequencies of first, second and third formant, respec-
tively.
For each note, measurement values have been standardized (z(X) =

X−µ
σ

). The
data shown covers the tonal and dynamical range of five different bassoons.
The total number of experimental runs was n = 3226.

Formant analysis is a sound description concept similar to that of the global spectral centroid,
but with a greater level of detail. An indication for a change in sound color with a change in the
embouchure would be a shift in formant frequencies or a shift of their ratios. Both cannot clearly be
observed in Fig. 5.30. In the low register notes, for the first two formant center frequencies F 1 and
F 2, an opposite trend can be observed: F 1 tends to increase, while F 2 tends to decrease with the
dynamic level. An stronger indication for this weak trend is the plot of F 2/F 1. For higher notes,
the trend is not visible, or even seems to be inverted.
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The evidence for these global trends is not very strong. Reasons for the large spreading of the
data may be generic differences in the overtone structure of single notes, and, to a smaller extent,
influences of the room acoustics.
In general, the spectral centroid hsc is much more affected by the playing dynamics, than the
formant center frequencies F 1, F 2 and F 3.

To conclude, from the present experimental results the influence of embouchure on the sound color
cannot be discussed independently of the playing dynamics. The generic sound color of a note as
characterized by the formants does not depend strongly on the lip force applied at a fixed position
relative to the reed tip. A superposed effect is, that the sounds become brighter as the dynamic level
increases. These findings are evidence for the hypothesis, that the main influencing factors for the
sound color are the acoustical properties of the resonator and the playing dynamics, for a given
reed and a fixed lip position.
To investigate the remaining subtleties of sound color adjustments, which are certainly of great
importance for the woodwind players, also the effect of the mouth cavity should be addressed. For
the case of the bassoon, interesting experiments have been carried out by Hoekje [90].
The vocal tract influence has been proven to be relevant for the radiated sound in the saxophone, in
a frequency range where the impedance amplitudes of the vocal tract and an air column mode are
comparable [113].
Even if formant analysis has successfully been used to describe general aspects of timbre in station-
ary musical sounds [162, 121, 80], other global sound parameters such as sharpness, roughness
and the harmonics to noise ratio and their relation to loudness, or more detailed concepts like an
analysis of single complex partials should be taken into account. A crucial aspect to be studied
further is the influence of the lip position on the reed.

5.3.4 Relation to the acoustical Properties of the Resonator

Intonation

In the previous sections, the input parameters to achieve a desired set of output parameters have
been outlined. These provide some insight into how the musician controls his performance on
single notes, namely intonation and dynamics, with his embouchure. His actions are consequences
of the resonator’s acoustics, namely the harmonicity and impedance peak magnitude of the air
column modes.
This section links the previous performance-related results from the blowing experiments to the
acoustical properties of the resonator. The discussion covers the aspects intonation, ease of playing,
and sound color.

The harmonicity map (Fig. 2.17) introduced in section 2.4 is a contour plot of acoustic impedance
curves, rescaled in frequency and magnitude.
Choosing a dB-threshold of -6 dB for the magnitude relative to the highest impedance peaks, and a
tuning threshold of |100| Cent relative to the harmonic frequencies n f0 produces a plot focusing only
on the strong nearly harmonic modes and their deviation in Cent from the corresponding harmonics
(see Fig.2.17). The choice of these thresholds is based on general statements of Fletcher [58] on
conditions for mode-locking in non-linearly excited oscillators. Thresholding leads to a disregard
of modes which are either out of tune or too weak, or both. The remaining modes are called
“supporting modes”. The observations on the reed pressure waveform in section 5.2.3, confirms that
these thresholds are reasonable (see Fig. 5.22).
Assuming the proper selection of supporting modes, the favored sounding frequency can be thought
to be a compromise of their peak frequencies fn.
To account also their impedance magnitude |Zn| in estimating the sounding frequency, the averaged
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Figure 5.31 Tuning discrepancy estimate from harmonicity considerations. Dots mark
In, the intervals in Cent between supporting air-column modes n and the har-
monic series n f0,nom, the shading decreases with the ordinal number n. The
marker size corresponds to the magnitude of |Z|. The black line Iav is the |Z|-
weighted average of In.

tuning interval Iav is proposed as the weighted sum

Iav =
1∑

n |Zn|

N∑
n=1

In |Zn|, (5.5)

where In = 1200 log2( fn/(n f0,nom)) is the interval in Cent between the nth supporting air column
resonance frequency fn and the nth harmonic, and Zn = |Z( fn)| are the corresponding impedance
peak magnitudes. Note that |Z| is the measured impedance at the bocal tip, corrected for the
mouthpiece effect.
This approach is similar to the “sum function” proposed by Wogram [173], but regards only
strong modes and puts a strong emphasis on their harmonicity. This kind of approach is certainly
simplistic in the light of the complexity of the coupling of the resonator to the non-linear excitation
mechanism. However, it will be shown in the following that the approach provides reasonable
results which deserve further discussions. Fig. 5.31 shows the |Z|-weighted average interval Iav

versus the log-frequency corresponding to standard fingerings on the resonator. The vertical gray
bars in this plot mark the range between these intervals, which may be related to the bending range:
Fingerings with spread resonances would be easier to modulate in frequency than those with strictly
aligned resonances. Following this argument, the latter would have a very stable tuning while others
have a larger “bending range”. The term bending accounts for pitch changes by embouchure action.
A bending range can be useful for a bassoonist for slight fine-tunings of their intonation while
playing along with others. A stable, frequency-locked regime is only comfortable to the player, if
the locked frequency corresponds to the desired tuning. The need for bending depends upon the
mean value Iav. In this sense, also the number of participating air-column modes influences the
bending behavior of a note, making it easier to bend a note between “competing” modes.
These hypotheses will be discussed for some characteristic notes which are known to bassoonists
for being problematic in tuning: For example, D2 is a note which is commonly regarded to be sharp
[34]. For this note, Fig. 5.31 reveals, that all harmonics are about 25 Cent too high, which is an
indication for a strongly locked regime, which is uncomfortable to be bend.
Another example is the note E[3 which is played with a fork fingering. The air column mode
supporting the fundamental actually corresponds to the note D3 and is therefore more than 50 Cent
sharp (the first open tone hole of E[3 would produce D3 without the forked fingering). The second
harmonic however, gets strong support from a mode which is about 10 Cent flat (Fig. 5.31). This
widespread configuration of modes allows to play the note in tune (with some effort, as bassoonists
know), and also offers a huge bending range for this fingering.
A further statement commonly agreed upon bassoonists is, that the lowest notes in the first register
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Figure 5.32 Comparison of tuning estimates from a blowing test and from the harmonic-
ity analysis. Black dots with gray errorbars mark the intonation discrep-
ancy Imusician if the instrument is played by a musician advised not to use em-
bouchure corrections. Squares mark the |Z|- weighted average Iav in Cent
from the harmonicity analysis of measured impedance curves; the errorbars
indicate the spread of measurements on Iav over five bassoons. The markers
(4, 5) denote the tuning tendency (sharp, flat) reported in bassoonist litera-
ture [34].

tend to be sharp and are not comfortably flattened with the embouchure (the D2 discussed above is
a very pronounced example). Ascending the scale, the notes are better in tune, and are more easily
adjusted. The notes of the upper half of the first register are the most comfortable to be played. In
the middle of the second register (notes above the half-holed) to the middle of the third register,
notes are rather flat and it is strenuous to bend them up.
All these statements are supported by Fig. 5.31: In the low register, up to five participating modes
tend to be sharp and have a relatively small spreading being an indication for the difficulty in
down-bending, that musicians report. From E2 to A3 the number of participating modes decreases
from 4 to 2. Their spreading is relatively large, and for many fingerings the 0 Cent mark is within
their range. For notes higher than A3, only one mode contributes to the regime of oscillations, and
their frequency is rather flat, up to A4. This indicates the reported need of tight embouchures in
this tonal region (see 5.3.1).
Another indication for the explanatory power of Iav can be found, when comparing this to intonation
measurements with a player:
In the previously mentioned subjective study [78], the resulting sounding frequencies were obtained
from a blowing experiment with a musician, advised to “blow straight” into several bassoons, i.e.
to avoid any note-specific embouchure corrections. Comparing the mean values Imusician from
this study with the intonation tendency estimate Iav from the harmonicity analysis of impedance
curves, a good overall agreement is found (Fig. 5.32). The general agreement is quite remarkable,
considering that Iav is only a scalar quantity of the passive linear behavior of the resonator, where
as in the perceptional investigation of intonation the results are strongly influenced by the reed, the
players abilities, preferences and also by the familiarization with his own instrument.

Influence of the reed equivalent volume Veq

Assuming a reed equivalent volume attached to the bore considers the effect that air is displaced by
the vibrating reed blades. Thus, Veq has a strong influence on the intonation tendency estimate Iav.
Prolonging the resonator lowers the fundamental resonance and influences the inharmonicity of
higher resonances. In the previous discussions, the reed equivalent volume Veq has been taken to be
2.3 times the actual geometric volume of the reed (Vreed). This is a reasonable guess, as will be
shown in the following.
A correlation between the intonation tendency estimate Iav(Veq) and the subjective intonation
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(b) Relation between Imusician and Iav

Figure 5.33 Influence of the reed equivalent volume Veq on the correlation between the
perceived tuning Imusician and the intonation tendency estimate Iav.
a) Residual sum of squares as a function of the reed equivalent volume Veq

for five different bassoons.
b) Measurements and regression model Imusician = a0 + a1Iav(Veq), for
Veq = 2.3Vreed (a0 = −5.8 Cent, a1 = 0.42 ± 0.18, R2 = 0.37). Each of the 41
markers corresponds to the median of measurements of one note within the
chromatic playing range from B[1 to D5, the color indicates the sounding fre-
quency f0, according to the colorbar at the right of the plot. Vertical errorbars
mark the 25th and 75th percentiles of 18 measurements of Imusician (full permu-
tation of 3 bassoons, 3 bocals and 2 cane-reeds). Horizontal errorbars mark
the maximum and minimum values of Iav deduced from impedance measure-
ments on five bassoon-bocal combinations.

discrepancy Imusician (Fig. 5.32) would indicate the proper choice of Veq. In a parameter study,
Iav(Veq) has been determined from a set of measured impedance curves of five bassoons using
values of the reed equivalent volume ranging from 1 to 3 times the geometric reed volume Vreed.
Evaluating the residual sum of squares S S resid(Veq) =

∑
(Iav(Veq) − Imusician)2 minima are observed

within the range 2 ≤ Veq/Vreed ≤ 2.5 (Fig. 5.33). The observed correlation is moderate (a1 = 0.42)
and in general, a model explaining 20 % of the total variation (R2 = 0.37) may not be regarded
strong. However, it should be noticed that Veq is introduced here as a constant, embouchure
independent property, which is a very drastic simplification. The action of a lip force on the reed
reduces the volume, and the mobility of the reed blades may be influences by the elasticity of the
lip cushions pressed to it. In the light of these effects, the significant dip in S S resid (Fig. 5.33) is an
indication for an optimum average size of Veq ≈ 2.3 to observe a general similarity between the
intonation perceived by a musician and the intonation estimate from the harmonicity analysis of the
resonator, expressed in Imusician and Iav, respectively.

In the previous section 5.3.2, it has been found, that the lip force Fl correlates with the perceived
tuning Imusician (Fig.5.29). To further validate the guess made for the equivalent reed volume, the
dependence of the correlation between Fl and the intonation estimate Iav on Veq is examined in
the following. To each equivalent volume on one of the five measured bassoon impedance curves,
a linear regression analysis has been performed to relate the maximum lip force Fl,max to the
intonation tendency estimate Iav(Veq). For each regression model, the quality of fit is quantified by
the coefficient of determination R2. The plot of R2 versus Veq clearly shows a sudden rise in R2 for
values of Veq > 2Vreed (Fig.5.34(a)). The linear regression coefficient R2 as a function of Veq has
a maximum absolute value of -0.3 N/(10 Cent) near Veq ≈ 2.5 for all the bassoons (Fig. 5.34(b)).
The agreement between the Fl,max and Iav is qualitatively the same as for Imusician and Iav. For the
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Figure 5.34 Influence of Veq on a regression model Fl max = a0 + a1Iav(Veq), for five different
bassoons.

chosen value Veq = 2.3Vreed, the regression model parameters are a1 = −0.24 ± 0.11 N/(10 Cent)33

with R2 = 0.34 (Fig. 5.35). To sum up: The harmonic properties of an air-column are related to
its tuning properties under playing conditions. Both assessments with a musician and an artificial
mouth give qualitatively the same results, using a different methodology.
To quantify the intonation discrepancy estimate, a scalar value Iav is proposed, which lumps both
peak frequency and peak magnitude information from the input impedance curve. . The contribution
of each peak to Iav is determined by its relative position a) in frequency with respect to the nearest
harmonic frequency and b) in magnitude with respect to the strongest mode in the spectrum. To
the knowledge of the author, this proposal is new, though similar to the “sum function” proposed
by Wogram [173]. Iav explains about 20% of both the musicians perception of tuning and of the
lip force needed to correct for tuning discrepancy, in artificial mouth experiments. In both cases,
the dependence of Iav on the reed equivalent volume Veq has been examined in terms of statistical
determination, leading to the conclusion, that Veq ≈ 2.3Vreed = 2.2 cm3 is a reasonable guess for
the bassoon reed. A very similar value has been proposed in a previous study on the bassoon [107].
Due to the embouchure actions, Veq might be quite different from note to note, depending on
the mobility of the reed blade. The flow induced by the moving reed blade has been proven in
numerical models as a property having a significant contribution to the sounding pitch [153, 35].

Ease of playing

As shown in section 5.2.3, the acoustical properties of the resonator influences the reed pressure
waveform and thus the spectral composition in the sound spectra. In this context the number of
supporting air-column modes has been addressed (see Fig.5.22), but as hypothesized above, also
their amplitude play a role.
This information is provided by the harmonicity map introduced in section 2.4. To show relations
between the acoustics of the resonator, the reed pressure spectrum and the radiated sound, three
contourplots of spectra are juxtaposed (Fig. 5.37). The reed- and sound pressure spectra shown
here are obtained from experiments with a medium blowing pressure for the respective fingering to
obtain a mezzoforte sound. For comparison reasons, the three plots have the same dynamic range of
6 dB. For each fingering (vertical axis), the strongest partial, or air column mode, respectively, is
the 0 dB reference, which corresponds to the darkest color in the plot. To discriminate the strongest

33The 95% confidence interval for the a1 estimate is [-0.35,-0.12] N/(10 Cent)
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Figure 5.35 Applied lip force Fl,max to achieve pure tuning in artificial mouth experi-
ments on 5 bassoons with one synthetic double-reed as compared to the
|Z|- weighted average tuning interval Iav of impedance peaks. Each of the 41
markers corresponds to the median of measurements on one note within the
chromatic playing range from B[1 to D5. The color indicates the sounding fre-
quency f0, according to the colorbar to the right of the plot. Vertical and hori-
zontal errorbars mark the maximum and minimum values from measurements
on the same five bassoon-bocal combinations. Dashed lines correspond to
the 95% confidence interval of the fit coefficients. In the calculation of Iav, the
reed equivalent volume was assumed to be Veq = 2.3 Vreed = 2.2cm3 for all
bassoons.

partial, or air column mode, they are marked with a white cross.
The comparison of Figs. 5.37(a) and 5.37(c) shows, that the harmonic content of the resonator
impedance spectra is mirrored directly in the reed pressure spectra.
The ordinal number of the strongest air column mode decreases with increasing pitch, and a similar,
but less pronounced effect is observed in the reed pressure spectrum. If the strongest mode in the
resonator is the third or fourth, the strongest partial in the reed pressure signal is the second. If
the strongest resonator mode is the first or second, the strongest partial is the fundamental. Note
that in the highest register above G4, the strongest air column mode is lower than the fundamental
frequency.

In section 5.3.1 a grouping of notes according to their the blowing characteristics has been pro-
posed. The dimensions underlying the classification are the pressure efficiency pr,RMS /pm and a
non-dimensional parameter Fl/(qρ 2h f0), named embouchure tightness. The grouping of notes
from this artificial mouth embouchure analysis matches well the responses of musicians, being
asked to divide the tonal range into four groups.
Possible reasons for the different behavior of the notes in these groups can be found in the acoustic
resonance properties of the air-column. Not the ordinal number of the air column modes, but
their count, strength and harmonic relation are important. This information is provided by the
harmonicity map introduced in section 2.4. The harmonicity map (Fig. 5.37(a)) and the rescaled
reed pressure spectra (Fig. 5.37(c)) allow for an interpretation of the observed classification into
four groups with respect to the acoustics of the resonator:

group 1 (B[1→ E2) Very weak fundamental mode. Number of supporting modes: > 4.
Strongest partial: 2nd

group 2 (F2→ G]3) Increasingly strong fundamental mode. Number of supporting modes: 4 to 2.
Strongest partial: 1st
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Figure 5.36 Harmonicity map of the modern German Bassoon. Contourplot of impedance
curves, rescaled in frequency and magnitude to show a range of ±100 Cent
around each harmonic in frequency and -6 dB smaller than 10×106 Pa s/m3 in
magnitude, respectively.
Markers �,�,N,H on the left vertical axis mark the grouping of notes according
to the analysis in section 5.3.1.
White circles mark the strongest partial of each fingering.

group 3 (A3→ G]4) Strong fundamental, tends to be flat. No supporting modes.
Strongest partial: 1st

group 4 (A4→ D5) Weak fundamental, tends to be sharp. No supporting modes.
Strongest partial: 1st

Aided by the harmonicity information from Fig. 5.36 and Fig. 5.31, the playing characteristics can
be interpreted to a a large extent:
In the low register (B[1→E2) , many higher harmonics support a stable and efficient oscillation
pr,RMS /pm > 1. The fundamental mode is very weak, and the strongest partial is the second. The
tuning estimate Iav predicts a sharp tuning, which makes downbending difficult and necessitates a
loose embouchure.
In the mid-low register (F2→G3), the fundamental mode is present (not lower than -6 dB compared
to the strongest mode). The tuning In of the participating air column modes have a large spread
embracing the desired tuning (0 Cent) in most cases. These notes are most comfortable to play,
with a tighter but comfortable embouchure. The relatively widespread supporting modes provide a
efficient regimes of oscillation with easy frequency adjustment and large bending ranges.
The notes in the mid-high (G]3→F]4) and high (G4→D5) register lack the support of the second or
higher air column modes and are played at low pressure efficiency (pr,RMS < 1). The reed pressure
waveform becomes symmetrical τc/τ ≈ 0.5 and |pc|/p0 ≈ 1, see Figs. 5.19(b) and 5.18(b). For the
modern German Bassoon this border between low and high register is clearly found at the note
A3, in both the harmonicity map (Fig. 5.37(a)) and and the analysis of blowing characteristics
(Fig. 5.24). With an accuracy of three semitones, this border is also confirmed by musicians. In the
mid-high register, the remaining air-column mode is tuned rather flat for most notes, which requires
tight embouchures to bend them up. Given the low pressure efficiency the musicians rating can be
well understood, that the mid-high register is the most difficult to play.
The notes of the highest register have the same characteristics in general, but the embouchure can
be released, because the one remaining mode is tuned sharp.
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(b) radiated sound pressure spectra
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Figure 5.37 Comparison of acoustic properties of the resonator and sound characteris-
tics of a modern German bassoon. Measurements of acoustic impedance
spectra corrected for mouthpiece volume (a), and pressure spectra inside the
mouthpiece (c) and in the ambiance (b), for standard fingerings played at a
medium dynamic level (mouth pressure pm ≈ 1/2(pm,max + pm,min)). The color
indicates the relative impedance magnitude (a) or relative spectral intensity
(b,c) according to the colorscale left to the plots. For each note, the maxima
are marked with a white cross. For all three plots, the dynamic range is lim-
ited to 0..-6 dB
Markers �,�,N,H on the left vertical axis mark the grouping of notes according
to the analysis in section 5.3.1.
Solid curved lines are iso-frequency lines indicating the first three formants
in the bassoon sound. Solid horizontal lines indicate the register limits of the
resonator [104]. black
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Sound
From the previous considerations, the importance of the resonator for the tuning and the reed
pressure waveform can be understood. Also for the discussion of the radiated sound characteristics,
the acoustics of the resonator play an important role. It has been shown, that the general spectral
characteristics of the radiated sound are fundamentally different compared to the pressure inside the
mouthpiece. The formants in particular are not present in the reed pressure spectrum. By blowing
harder, the spectral centroid increases, and the sounds become brighter but the formants center
frequencies remain. The role of the embouchure seems to be mainly the adjustment of the correct
frequency according to the desired dynamic level.
With these findings it can be concluded, that the spectral energy distribution in the radiated sound is
a mostly invariant property of the resonator: The comparison of Figs. 5.37(a) and 5.37(b) reveals
the importance of the cutoff frequency for the radiated sound. This frequency marks the limit of the
harmonic alignment of the air column resonances, due to the open downstream tone-holes. It is
clearly observed in Fig. 5.37(a) near the 540 Hz isoline. The sound pressure spectra appear inverse
compared to the harmonicity map: The partials in the sound rise above the 6 dB threshold, where
the air column modes are attenuated by this amount.
For almost all fingerings in the first, second and fourth register, the strongest partial is the one which
is closest to the 540 Hz isoline. This is the reason for the main formant F 1 in the bassoon sound
which is located at 540 Hz in the present measurements (Fig. 5.15(b)). Exceptional are only some
notes in the third register, where the partials are nearly half-way between the 540 and 1200 Hz
isolines.

5.4 Summary
In this section it was shown, that the experimental apparatus developed for this thesis is suited to
investigate the bassoon under realistic playing conditions. The possibility to precisely adjust the
artificial lip and to measure the force it exerts to the reed allowed to carry out blowing experiments
covering the full tonal and dynamical range of this instrument. A large set of benchmarking data
describing the bassoon under quasi-stationary operation conditions was presented.
In particular, the lip adjustments during playing to correct the tuning with respect to the desired
dynamic level became measurable. The quasi-static, lip force dependent model of the double-reed
presented in Chapter 4 has been proven to explain to a surprisingly large extent the measured mean
volume flow-rate under playing conditions. The applicability of this model makes it possible to
“translate” artificial mouth adjustment parameters characterizing realistic embouchure configurations
into reed model parameters in relevant playing regimes.
Furthermore, attempts have been made to relate aspects of the bassoon performance to the acoustics
of the resonator. The presented experimental data confirmed, that the reed pressure waveform is
determined by the number of supporting air column modes of the resonator, which ranges up to
seven for the lowest notes. A method to estimate tuning tendencies for the sounding frequency of
single notes from the impedance peaks of the resonator is presented. Being of purely empirical
nature, it is yet supported by the presented experimental observations.
Investigation on the sound color of the bassoon were based on formant analysis. The main formant
in the bassoon sound around 540 Hz is not present in the pressure spectrum measured near the
sound source (inside the reed mouthpiece). It is a characteristics of the radiated sound, which
depends to a large extent on the resonator. The analysis of artificial mouth parameters under
playing conditions suggests a classification of the notes of a bassoon into four groups, according to
their embouchure and blowing pressure characteristics. The classification fits well to subjective
judgments of players. This is an indication that the blowing experiments carried out within the
present work are quite close to the musical performance. Lacking a precise physical model, this
experimental methodology can be helpful for user-centered design processes in musical instrument
design. In a research cooperation with musical instrument makers and scientists, promising attempts
have been made [174].
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6.1 Summary

The general objective of this thesis is a quantitative, physical description of sound generation and
radiation of a bassoon.
The scope ranges from an assessment of the acoustics of the resonator to a characterization of
the mouthpiece and the interaction of both under realistic playing conditions, with respect to
embouchure actions controlling the sounding frequency and dynamic level.
With a strong focus on experiments in the respective fields, the work relates experimental results
to the existing, elementary models. Parameters describing the delicate situation at the double-
reed, where the musician interacts with the instrument, have been derived from measurements
covering the full tonal and dynamic range of the bassoon. The parameters link the experiment and
the model domain and furthermore provide some insight into the embouchure control of the bassoon.

A description of the resonator based on a one-dimensional waveguide model in the transmission
matrix notation is presented in Chapter 2. The derivation of the method is summarized and
compact implementations to model the relevant acoustic elements are given. The incorporation
of dissipation and dispersion at the walls of a conical frustum is discussed with respect to the
formulation of a transfer matrix for a universal conical duct element (section 2.1.4). Given a known
geometry, the resonance characteristics in woodwind air columns can be predicted by calculation
of acoustic impedance spectra.
For the complementing experiments a commercial measurement system has been modified and
recalibrated. Subsequent to a study of repeatability, the acoustic impedance spectra of five mod-
ern German bassoons from several makers are compared (section 2.3.1). The random errors
observed in the measurements are ± 5 Cent in peak frequency and ± 15 % in peak magni-
tude. The differences between several individual instruments are larger. The comparison of
measured and calculated impedance curves (section 2.3.2) shows a general family resemblance,
but reveals discrepancies in peak frequency and magnitude that are large enough to be signifi-
cant.
The graphical representation of impedance curves in a harmonicity map as suggested in sec-
tion 2.4.3, provides a comprehensive overview on the resonance characteristics of an air-column.
This representation may be very helpful in quantifying the global acoustical effect of geometrical
modification of the air-column, e.g. in optimization routines.
At the beginning of Chapter 3 the simplest analytical model for a single-reed is discussed, because
it is commonly applied to double-reeds. It assumes harmonic oscillations for the pressure induced
structural motion, quasi-stationary flow and the validity of the Bernoulli principle along a streamline
in the flow.
To characterize the double-reed by a few scalar parameters in the context of this model, an artificial
mouth has been constructed. It is equipped with a rigidly fixed commercial (synthetic) bassoon
reed, accurately adjustable artificial lips, and force sensors to measure the force exerted to the reed
(section 3.3.2). The design of this device makes the resonator interchangeable without affecting
the embouchure. In its present and final design state, the artificial mouth permits to repeatably
carry out both quasi-static experiments to characterize the reed with lips pressed on it, and blowing
experiments with the same embouchure configuration.
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In Chapter 4 measurements of the quasi-static pressure-flow valve characteristic of a double-reed
are presented. A simple, but more general analytic model is proposed, taking account of sepa-
rate parameters for i) flow effects like vena contracta, flow separation, and reattachment, ii) the
non-linearity of the reed stiffness, and iii) the diffuser-like widening of the flow channel from reed
tip to bocal tip (section 4.2.2). Varying these parameters within their physically relevant limits, it
was shown, that the only parameter lowering the saturation pressure in the valve characteristics is
the non-linearity of the stiffness of the reed. The proposed model agrees well with experimental
observations for both the pressure dependent inlet slit height from optical measurements and the
volume-flow rate as measured by a thermal flow meter (section 4.2.4).
The bassoon has been observed to be fully playable with an oblique embouchure, i.e. only one lip
is pressed on the double-reed to adjust its inlet slit height (section 4.3.1). This finding constituted a
major and crucial simplification of the experimental procedure in both dynamic and quasi-static
measurements:
Modified only by a non-linear reed stiffness, the quasi-static single-reed model has been fitted to
a set of characteristics’ measurements with varying lip force applied to the reed (section 4.1.1).
This yields an empirical relation between the artificial mouth parameters of lip force and blowing
pressure, as well as the corresponding reed model parameters.

Chapter 5 aims to bring the previous results together in steady blowing experiments with realistic
embouchures. At first it is shown, that the empirical, lip-force dependent reed model presented
in Chapter 4 applies under playing conditions as well. Despite its simplicity, the predicted mean
flow-rate according to the quasi-static model matches surprisingly well the measurements. For a
large number of experiments (N=2212) one finds a good correlation (R2=0.96). The remaining
discrepancy does not correlate with the Reynolds nor Strouhal number (section 5.1.5) and points
rather to imperfections in the measurements.
Secondly, a comprehensive overview of the experimental data is given in order to benchmark the
parameter ranges, at which the bassoon could be sounded at the expected nominal pitch corre-
sponding to the fingering. This survey depicts the musically relevant dynamic range of each of the
notes and the required lip force to correct for tuning. Providing the non-dimensional reed model
parameters assigned to each of experimental situations, it may serve as a database for research in
physical modeling of double-reed instruments.
Using one and the same reed, a variety of five bassoons of different quality and manufacture have
been compared, revealing a generic similarity (section 5.2.1). In principle, the same has been
observed in Chapter 2 concerning the acoustical properties of the resonator.
A meta-analysis of the mouthpiece pressure waveform confirmed, under realistic playing conditions,
analytical predictions made by other authors for an idealized reed-resonator model: The reed
pressure waveform depends on the number of air column modes supporting the reed oscillation
(section 5.2.3). Ascending the scale, their count reduces: Above A3 ( f0 = 222 Hz) the reed
oscillation is mainly locked onto a single air-column mode.
The change in quantity and tuning of the supporting resonator modes leads to perceptible changes
in the embouchure.
Analyzing measured artificial mouth data, a classification of notes into four groups according to
their embouchure characteristics can be seen. Professional bassoonists asked independently from
our measurements to classify the tonal range into four registers according to their blowing sensation
chose nearly the same margins (section 5.3.1).
For a given reed the timbre of the radiated sound is to a large extent determined by the resonator,
and secondly by the dynamic level: The formants around 0.5 and 1.2 kHz which are characteristic
for the bassoon sound, do not vary notably with dynamics. However, a superposed effect is the rise
in the spectral centroid when blowing harder (section 5.2.2). Whereas the reed pressure spectrum is
determined mainly by the number of air-column modes and thus varies across the tonal range, the
cut-off frequency of the resonator remains constant near 600 Hz. The data presented support the
hypothesis, that the pressure inside the mouthpiece is determined by the harmonic resonator modes,
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while the radiated sound is mostly influenced by the cut-off frequency.
The role of the lips on the mouthpiece is mainly to adjust the reed’s inlet slit height to fine-tune the
sounding frequency in accordance with the blowing pressure. The lip-force characteristics match
the intonation rating of musicians, such that high levels of lip force are needed to bend up notes
which appear to be flat (section 5.3.2). The intonation curve perceived by a musician furthermore
correlates with a harmonicity indicator calculated from the impedance amplitude weighted tuning
interval of the supporting impedance peaks (section 5.3.4).
This observation links the acoustics of the resonator, the sensation of the musician and the measure-
ment data obtained with the artificial mouth. On the one hand, this demonstrates the usefulness of
the artificial mouth presented in Chapter 3 for investigations on the bassoon which are of musical
relevance; on the other hand, it supports the usefulness of the presented data and their interrelations
to postulate user-centered optimization targets for woodwind design.

6.2 Outlook

The results in this thesis inspire many directions deserving further research:

Concerning the acoustics of the resonator, a careful investigation of losses in the waveguide is
interesting. On the one hand, the limits of the one-dimensional waveguide approach should be
investigated i) experimentally using accurately manufactured cones with small input diameter, and
ii) numerically by a Finite-Element Model with visco-acoustic elements. On the other hand, losses
at the sharp edges at the junctions of tone hole and main duct deserve further research, especially
for small tone hole diameters. A high model accuracy certainly is crucial for the calculation based
design of woodwind air-columns. Despite using a state-of-the-art input impedance measurement
system validated with simple geometries, the agreement between theory and experiment for the
case of the complex air column of a bassoon was not yet optimal. The reasons for that should be
investigated.

The artificial mouth presented can be modified relatively easy to excite other reed wind instruments
such as the oboe, or clarinet and saxophone. Once proven to be a powerful and versatile experi-
mental tool in manual operation, further developments to automate the control of lip position, lip
force and blowing pressure can speed up the experimental time significantly. To measure the reed’s
effective surface with respect to the embouchure, and generally in order to understand better the
mechanics of the double-reed, displacement measurements at the reed tip using external acoustic
excitation can be carried out. Furthermore, experiments with natural cane reeds at different stages
of manufacture are interesting for both researchers and reed-making practitioners.

The thesis has provided experimental evidence that quasi-static valve characteristics can be applied
in the dynamic case of the beating reed to predict the time-averaged volume-flow rate. The time-
resolved simultaneous measurements of i) the reed blade using a high-speed camera, and ii) of the
mean flow velocity inside the reed channel with a hot wire anemometer can provide further detailed
insights into the fluid-structure interaction at the reed. In particular, a study of the influence of the
edge radius at the reed blade tip on flow characteristics is interesting in order to investigate the role
of the vena contracta in quasi-static and dynamic regimes.

Some aspects pointing to the interaction of musician and instrument have been investigated in this
thesis through the analysis of careful artificial mouth measurements. Further studies can focus on
details such as the functioning of auxiliary fingerings, reed pressure transients when switching the
fingering or the appearance of multiphonic regimes. The possibility of measuring the mean flow
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would allow an investigation of energy conversion in woodwinds in a reverberant chamber. Aiming
at a detailed understanding of the reed-resonator interaction, and the role of the musician controlling
the system with his or her embouchure, those measurements will help understanding of musicians’
quality judgments. Such eludiciation of the intersection between physics and performing arts is
certainly demanding, but nonetheless essential in order to apply engineering methods in musical
instrument research. Only multidisciplinarity and communication between fields can provide a
basis for suggesting improvements and postulate optimization targets for a systematic, customer
specific redesign of woodwind instruments.
198 years after Weber’s “Akustik der Blasinstrumente” and 43 years after the publication of his
comprehensive book “Acoustical Aspects of Woodwind Instruments”, Nederveen summarizes:

“One has to stand in awe of builders of musical instruments, who have, by trial-and-
error, designed optimally functioning instruments. Designing an instrument with the
acoustic laws having perfect tuning, perfect flexibility and perfect sound quality still
seems unattainable at the present state of the art.” [129].

These words of the distinguished expert may be both an encouragement and a consolation to
scientists in the field.
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Appendix

A1: Remarks on Modeling Wall Losses in a Conical Waveguide

The inclusion of losses by means of an effective wavenumber deserves some discussion.
It is not obvious, that the approach of modifying the wave-number in the solution of the wave-
equation is correct for the case of the conical duct with varying cross section. Though this is
straightforward for the cylindrical duct segment, for the case of the cone it is not, due to the
occurrence of a loss-dependent pressure gradient in propagation direction.
Instead of modifying the wavenumber in the solution of the ideal case, it appears to be more
elaborate to include loss terms in the wave-equation, and derive solutions to satisfy this modified
equation. This path has been followed by Nederveen, who scaled flow and pressure in the equation
of motion and continuity by means of loss coefficients [125]. The result is a modified Webster-
equation, extended by loss terms. From solving this, an explicit formula for the input impedance of
the conical waveguide is obtained, based on several assumptions.
In two steps this approach will be outlined, with the notation introduced here, to make it comparable.
First, Nederveens formula for the loss-free cone is rearranged to match the transmission-line
formalism. The rearrangement shows, that both approaches are mathematically identical.
Second, Nederveens formula for the lossy cone, which he derived from extending the Webster-
equation by loss-terms, is rearranged. Written in the same notation, the simple loss-modeling by
the effective, complex wavenumber can be compared to Nederveens more elaborate approach, and
discrepancies will be discussed. Numerical examples are given for several configurations.

Loss-free Cone

Derived from the Webster Horn equation, Nederveen [128] gives a formulation for the admittance
Y = 1/Z of a cross section within a conical duct with apical distance x, for the loss-free case. In the
notation used in the present work ((·)a,b = (·)1,2; R = x; Lba = L), this formulation1 can be written

Y =
1

j Zc

[
1

k x
−

1
tan (kx + Ψ)

]
(1)

The impedance Z1 at the input cross section (·)1 of a conical duct segment with input and output
radii r1,2 at apical distances x1,2 and length L = x2 − x1 (see Fig. 2.2) is found from relating Eq.(1)
at input and output. With some calculus [128] it can be written for the input impedance

Z1 =

 1
j Zc1

 1
k x1
−

(
1

k x2
− j Zc2

Z2

)
+ tan(k L)

1 −
(

1
k x2
− j Zc2

Z2

)
tan(k L)



−1

, (2)

where Z2 is the load impedance at the output end of the cone (1/Yb in Nederveens nomenclature).
With the substitution

a =

(
1

k x2
− j

Zc2

Z2

)
(3)

1(Eq.(8) in [128])
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this becomes

Z1 = j Zc1
1 − a tan(k L)

1
k x1
− a

k x1
tan(k L) − a − tan(k L)

=
cos(k L) − a sin(k L)

1
k x1

cos(k L) − a
k x1

sin(k L) − a cos(k L) − sin(k L)
.

(4)
Inserting Eq.(3), the numerator N of Z1 = N/D becomes

N =
1
Z2

(
Z2 cos(k L) − Z2

1
k x2

sin(k L) + j Zc2 sin(k L)
)
. (5)

Inserting Eq.(3), the denominatorD of Z1 = N/D becomes

D =
k x2 − k x1

k x1 k x2
cos(k L) −

1
k x1 k x2

sin(k L) + j
Zc2

Z2

(
cos(k L) +

1
k x1

sin(k L)
)
− sin(k L), (6)

which can be further rearranged, with L = x2 − x1

D = −
1

j Z2

(
j Z2 sin(k L) + j Z2

1
k x2

(
1

k x1
sin(k L) −

L
x1

cos(k L)
)

+ Zc2

(
cos(k L) +

1
k x1

sin(k L)
))
.

(7)
Using x2/r2 = x1/r1 and Zc2/Zc1 = r2

1/r
2
2 for some further rearrangement in N and D, the input

impedance of the cone can be written

Z1 =
Z2

(
r2
r1

cos(k L) − 1
k x1

sin(k L)
)

+ j Zc1
r1
r2

sin(k L)

Z2
1

Zc1

[
r2
r1

j sin(k L) + j 1
k x1

(
1

k x1
sin(k L) − L

x1
cos(k L)

)]
+

r1
r2

[
cos(k L) + 1

k x1
sin(k L)

] , (8)

which has the form
Z1 =

Z2 A + B
Z2 C + D

(9)

where
A =

r2
r1

j cos (k L) − 1
kx1

sin (k L)
B = Zc1

r1
r2

j sin (k L)
C = 1

Zc1

[
r2
r1

j sin (k L) + j 1
k x1

(
1

kx1
sin (k L) − L

x1
cos (k L)

)]
D =

r1
r2

j
[
cos (k L) + 1

kx1
sin (k L)

]
.

(10)

This is identical with the transmission matrix coefficients that Benade gave to describe the transmis-
sion characteristics of an “equivalent circuit for conical waveguides“ [19].
Although Benades approach and his equations are sometimes regarded as an approximate solution
[59], they are in fact mathematically identical with the analytic solution Eq.(2.21) given by Fletcher
[61], as will be shown here: By use of the identities

r1
r2

=
x1
x2

x2 − x1 = L
Zc2
Zc1

=
(

r1
r2

)2

sin(arctan(k x)) = k x√
1+(k x)2

cos(arctan(k x)) = 1√
1+(k x)2

,

(11)

the cosine-terms in Eq.(2.21)

cos
(
k L −

(
θ −

π

2

))
= − sin (k L) cos (θ) + sin (θ) cos (k L) (12)

can be written
− sin (k L)

1√
1 + (k x)2

+
k x√

1 + (k x)2
cos (k L) . (13)
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Thus, denoting the transmission coefficients in Fletchers Eq.(2.21) and Benades Eq.(10) with (·)F

and (·)B, respectively, it follows:

AF =
r2
r1

(
− sin (k L) 1√

1+(k x2)2
+

k x2√
1+(k x2)2

cos (k L)
) √

1+(k x2)2

k x2

=
r2
r1

(
cos (k L) − 1

kx2
sin (k L)

)
=

r2
r1

cos (k L) − 1
kx1

sin (k L) = AB

(14)

In analogy to this rearrangement, it can be shown that BF = BB, CF = CB and DF = DB.

The conclusion of this rearrangement is, that three well-known formulations for the input impedance
of the cone provided by Nederveen Eq.(2), Benade Eq.(10) and Fletcher Eq.(10) are identical.
All three are different writings for the analytic solution to the Webster-equation for the sound
propagation in a conical horn, which is probably not obvious at first glance.

Lossy Cone

To include losses into his formulation for the wave propagation, Nederveen [125] modified the
Webster-equation to introduce two dimensionless loss parameters εv and β, which can be written in
the nomenclature used in the present work as

εv = 1

1+

(
γ−1
√

Pr

) ,
β = (1 − j) k x 1

2

√
2 δv

r

(
1 +

γ−1
√

Pr

)
,

= (1 − j) k x 1
2

√
2 δv

r
1
εv

= (1 − j) k x α′

r ,

(15)

where δv, γ, Pr, α′ have been introduced above.
The solution for the admittance, that Nederveen derived from the modifying the Webster-equation
to add additional loss terms in β and εv can be written

Y =
1

j Zc

[
1 − α̃g

k x
−

1 + α̃ f

tan (kx + Ψ + α̃ξ)

]
(16)

for a cross section with apical distance x in conical duct. Here, α̃ are frequency and position
dependent loss terms given by

α̃(r) = k x α′

r

α̃ f (r, x) = k x
α′f
r (1 − j),

α̃g(r, x) = (k x)2 α′g
r (1 − j)

and
ξ = ln(k x) + g.

(17)

There are three loss parameters α′ which analogously to Eq.(2.38) represent effective boundary
layer thicknesses

α′(ω) = 1
2

√
2 δv (1 +

γ−1
√

Pr

)
,

α′f (ω, x) = f
√

2 δv
(
1 + 1

f ·(kx) +
γ−1
√

Pr

)
,

α′g(ω, x) = g
√

2 δv

(
1 + 1

2g·(kx)2 +
γ−1
√

Pr

)
,

(18)
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where f and g are factors from a combination of with sinus cardinalis and Cosine integral2 functions
evaluated at the position 2 kx given by

f = Ci(2 kx) sin(2 kx) − si(2 kx) cos(2 kx),
g = − Ci(2 kx) cos(2 kx) − si(2 kx) sin(2 kx),

(19)

which stem from approximations to solutions of the extended wave-equation.
After some rearrangement, to eliminate Ψ from Eq.(16) [128], for the input impedance of the lossy
cone it can be written

Z1 =

 1
j Zc1

1 − α̃g1

k x1
−

(
1 + α̃ f 1

) (1−α̃g2
k x2
− j Zc2

Z2

)
+

(
1 + α̃ f 1

) (
1 + α̃ f 2

)
tan(k L + α̃2 ∆ξ)(

1 + α̃ f 2
)
−

(1−α̃g2
k x2
− j Zc2

Z2

)
tan(k L + α̃2 ∆ξ)



−1

,

(20)
where ∆ξ = ξ2 − ξ1 = ln(r2/r1) + g2 − g1. The subscripts (·)1,2 in the loss terms α̃ stand for input
and output cross section, thus α̃ f 1 = α̃ f (r1, x1).
It is obvious, that for the loss free case with δv = 0 the loss terms α̃, α̃ f , α̃g become zero and Eq.(20)
becomes Eq.(2).

2si(x) = sin x
x and Ci(x) = γE + ln x +

∫ x

0
cos t−1

t dt, with γE = 0.57721 being the Euler-Mascheroni-constant.
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A2: Influence of Model Parameters

The model Eq.(4.15) derived above provides a general expression for the flow-rate in any lossy duct
with different cross sections at inlet and outlet, given that the preceding assumptions remain valid.
In this equation, there are two parameters

m: A geometrical parameter given by the cross section ratio S in/S r, which expresses the conicity
in a tubular duct of fixed length.

α: A global flow parameter representing phenomena as flow separation and dissipation of kinetic
energy at the intake and in the duct flow, respectively.

For the cases of interest here, S in ≤ S r is given, hence the limits of m are 0 < m < 1.
The limits for the parameter α are 0 ≤ α < ∞, where the lower limit corresponds to the ideal case
(Cc = 1, ζ = 0), where Eq.(4.15) equals the Bernoulli Equation Eq.(4.2), and α→ ∞ corresponds
to a hypothectical case with infinitely large losses in the duct.
Both cases will be examined for a given pressure difference ∆p between the output cross section S r

and the constant pressure pm in a large reservoir to which the duct is attached.

Geometrical parameter m

First the ideal case α = 0 is discussed:
If in this loss-free case the reed channel were uniform, i.e. m = 1, the pressures p1 and pr would be
the same. This corresponds to the case of an ideal tube, in other words to neglecting the existence
of the reed channel. This situation is equivalent to a large pressure reservoir with an opening of size
S in, through which the mean flow-rate is given by q = S in

√
2∆p/ρ.

On the other hand, if the reed channel were not uniform, i.e. m < 1, the duct is an ideal diffuser,
where the pressures at input and output are different p1 < pr. For a given pressure difference
∆p = pm − pr, the flow is then completely governed by the conditions at the duct output and the
duct geometry, in particular the input cross section S in, has no effect on the flow-rate. The mean
flow-rate is then given by q = S r

√
2∆p/ρ.

For these two idealized cases the flow-rate q as predicted by Eq.(4.15) is plotted in Fig. 1, where
experimental data for ∆p, pM , S∞, and S r from a measurement of a typical bassoon reed have been
used. The intake cross section S in is here assumed to scale linearly with the pressure difference,
according to S in = S∞ (1 − (∆pmeas/pM)) (Eq. 3.14, where pM = 8.2 kPa is the pressure needed to
close the reed and S∞ = 8 mm2 is the initial cross section in absence of mouth pressure.

The cross section ratio m = S in/S r has a constant value m = 1 for the tube case (dashed line), and
varies with ∆p for the diffuser case (solid line). In this loss free case, S in vanishes from Eq.( 4.15),
the flow depends only on S r and the pressure difference ∆p. S r is the cross section at the sensor
position, here S r = 21 mm2.
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Figure 1 Flow-rate q through a loss-free reed channel neglecting the vena contracta ef-
fect (dashed: tube, solid: diffuser), according to Eq.(4.15) for typical measure-
ment values of ∆pmeas, pM , S∞, and S r

It is obvious, that both idealized models with α = 0 are not reasonable to calculate the flow through
the reed channel. On the one hand, the mean flow-rate in fact is certainly related to the intake cross
section in the real reed flow. On the other hand, the assumption of m = 1 assuring this relation
is clearly not met for the bassoon reed, as the reed blades are deformed at the tip, but not at the
outflow end. From S in = S in(∆p) and S r = const. it follows that m = m(∆p) < 1 (see Fig. 4.4). As
stressed by Hirschberg [86], a key finding from this basic analytic model is, that the intake cross
section controls the flow if, and only if, the energy dissipating flow phenomena are present, thus
α > 0.

This in turn means that the existence of either the vena contracta effect or duct losses, or a combina-
tion of both is essential in the double-reed flow.

Flow Parameter α

Both the constriction coefficient Cc and the loss coefficient ζ contribute to the flow parameter α
according to Eq.(4.14). As shown above, only for values of α > 0, the flow predicted by the model
Eq.(4.15) is linked to the intake cross section. This condition is satisfied for 0 < Cc < 1 and
0 < ζ < 1. The change of the mean flow-rate predicted by the model when varying these model
parameters separately is shown in Fig. 2(a) and Fig. 2(b). A qualitative and quantitative change
is observed, as the flow-curve is downscaled and its maximum shifted to the left for Cc → 0 and
ζ → 1, which means that the saturation pressure pm,sat, where the flow reaches its maximum qmax,
is lowered.
As both Cc and ζ contribute to the flow parameter α, the change of the flow-curve predicted by the

model Eq.(4.15) due to a variation of one coefficient within its limits depends upon the respective
value of the other coefficient.

Cc: For ζ = 0 , a variation of the constriction coefficient within 1 > Cc > 0 shifts the flow-curve
between three theoretical cases: The loss-free diffuser case is given for Cc = 1. For Cc → 0.5
the flow-characteristics approaches the loss-free tube case. For a decrease 0.5 > Cc → 0, the
curve is further downscaled with a very small shift of the saturation pressure pm,sat and the
hypothetical limit Cc = 0 a corresponds to a completely blocked flow (Fig. 2(a)).

ζ: For Cc = 0.5, which is given as a typical value in the literature [89, 160, 39, 115], the variation
of the loss parameter within 0 < ζ < 1 downscales the flow-maximum, but has a negligible
impact on location of the flow curves maxmimum (Fig. 2(b)).
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(a) Variation of the constriction coefficient Cc
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(b) Variation of the loss parameter ζ

Figure 2 Influence of the constriction coefficient (a) and the loss parameter (b) on the
flow-rate q predicted by the model Eq.(4.15) for the same experimental data used
in Fig. 1. Dots mark the flow maximum. The colours of the lines indicate the
value of the variable parameter, according to the colorbar right of the graph

The relative position of the maximum of the flow-curve {pm,s, qmax} with respect to Cc and ζ within
their limits is shown in Fig. 3. Here, non-dimensionalized data are plotted, referenced to pM and
qtube,max, the pressure to close the reed and the maximum flow-rate for the loss-free tube case,
respectively.

There are two key findings in the plots of Figs. 3(a) and 3(b) which characterize the quasi-stationary
flow model Eq.(4.15) as derived above:

a) The maximum of the flow curve is located in the range 0.34 < pm,sat
pM

< 0.37 for any value 0 < ζ <
1 within the limits 0.5 < Cc < 0.61. For very sharp edges, these limits are given as theoretical
limits in the literature [89] and have been confirmed numerically [39] and experimentally [115].
Moreover, the normalized saturation pressure pm,sat

pM
is never lower than 1

3 within the limits
1 > Cc > 0.

b) The scaling range of the flow curve indicated by the maximum flow rate qmax is within 0.69 <
qmax

qmax,tube
< 1.43 for any parameter combination within 0.5 < Cc < 0.61, 0 < ζ < 1.

The experimental setup used here employs only one pressure measurement inside the duct, and thus
the global flow parameter α can be estimated by fitting the model Eq.(4.15) to experimental data.
It is not possible to distinguish the contributions of the vena contracta effect and the dissipative
pressure loss. However, since the limits of Cc can be narrowed down [89], from Eq.(4.14) pairs of
values for Cc and ζ within their respective range of validity can be identified to meet the obtained
value for α.
A juxtaposition of model and measurement data is given in section 4.1.3.
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Figure 3 Influence of model parameters Cc, ζ on the general shape of the flow curve in-
dicated by the flow-maximum at saturation. This characteristical point given in
normalized coordinates (pm,sat(Cc, ζ)/pM , qmax(Cc, ζ)/qmax,tube).
The variation of parameters Cc, ζ is carried out for a typical bassoon reed config-
uration (pM = 8 kPa, qmax,tube = 0.33 · 10−3 m3/s). The shaded region 0 < Cc < 0.5 is
marks the physically not relevant parameter range.



Selbständigkeitserklärung

Hiermit erkläre ich, dass ich die am heutigen Tage eingereichte Schrift zum Thema Experimental
Investigations of Bassoon Acoustics unter Betreuung von Prof. (em) Dr.-Ing Roger Grundmann
selbstständig erarbeit, verfasst und Zitate kenntlich gemacht habe.
Dr.-Ing. Johannes Baumgart wies mich auf die Methode des periodensynchronen Samplens hin
und schlug die Steifigkeitsmatrix-Methode zur Berechnung des Druckverlaufs im Wellenleiter mit
Seitenabzweigen vor.
Prof. Dr. Ir. A. (Mico) Hirschberg diskutierte mit mir die Details des vorgestellten Rohrblattmod-
ells.
Teile der Einleitung stammen aus einem von mir verfassten Artikel, welcher von Michael Johnson
ins Englische übersetzt wurde [76]. Andere Hilfsmittel als die genannten wurden von mir nicht
benutzt.

Dresden, 25.November2013

Timo Grothe



176 Appendix

This “wordcloud” is a graphical representation of the words that make up my thesis.
Generated on http://www.wordle.net/create


	Abstract
	Introduction
	Motivation
	Scientific Approaches to Woodwind Musical Instruments
	Organization of the Thesis

	Acoustical Properties of the Bassoon Air Column
	Wave propagation in tubes
	Theory
	Transmission Line Modeling
	Implementation
	Remarks on Modeling Wall Losses in a Conical Waveguide

	Input Impedance Measurement
	Principle
	Device
	Calibration and Correction

	Comparison of Theory and Experiment
	Repeatability and Measurement Uncertainty
	Comparison of numerical and experimental Impedance Curves

	Harmonicity Analysis of the Resonator
	The Role of the Resonator
	The reed equivalent Volume
	Harmonicity Map

	Summary

	Characterization of the Double Reed Mouthpiece
	Physical Model of the Double-Reed
	Working Principle
	Structural Mechanical Characteristics
	Fluid Mechanical Characteristics

	Measurement of Reed Parameters
	Quasi-stationary Measurement
	Dynamic Measurement

	Construction of an Artificial Mouth
	Requirements Profile
	Generic Design
	The artificial Lip
	Air Supply
	Sensors and Data Acquisition
	Experimental setup

	Summary

	Modeling Realistic Embouchures with Reed Parameters
	Reed Channel Geometry and Flow Characteristics
	The Double-Reed as a Flow Duct
	Bernoulli Flow-Model with Pressure Losses
	Discussion of the Model

	Quasi-static Interaction of Flow and Reed-Channel
	Pressure-driven Deformation of the Duct Intake
	Reed-Flow Model including Channel Deformation
	Influence of Model Parameters
	Experimental Verification

	Effect of the Embouchure on the Reed-Flow
	Adjustment of the Initial Slit Height
	Quasi-static Flow in the Deformed Reed-Channel
	Simplified empirical Model including a Lip Force

	Summary

	Survey of Performance Characteristics of the Modern German Bassoon
	Experimental Procedure and Data Analysis
	Description of the Experiment
	Time Domain Analysis
	Spectral Analysis – Period Synchronized Sampling
	Spectral Centroid and Formants
	Embouchure parameters

	Observations on the Bassoon under Operating Conditions
	Excitation Parameter Ranges
	Characteristics of the radiated Sound
	Reed Pressure Waveform Analysis
	Summarizing Overview

	Performance Control with the Embouchure
	Register-dependent Embouchure Characteristics
	Intonation Corrections
	Sound Color Adjustments
	Relation to the acoustical Properties of the Resonator

	Summary

	Conclusion
	Summary
	Outlook

	Acknowledgements
	Bibliography
	List of Figures
	List of Tables
	Appendix
	A1: Remarks on Modeling Wall Losses in a Conical Waveguide
	A2: Influence of Model Parameters


