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Chapter 1 

1 The photocatalyzed Meerwein arylation: classic reaction of aryl 

diazonium salts in a new light 

 

The use of diazonium salts for aryl radical generation and C-H arylation processes has 

been known since 1896 when Pschorr first used the reaction for intramolecular cyclizations. 

Meerwein developed it further in the early 1900s into a general arylation method. However, 

this reaction could not compete with the transition-metal-mediated formation of C(sp
2
)-C(sp

2
) 

bonds. The replacement of the copper catalyst with iron and titanium compounds improved 

the situation, but the use of photocatalysis to induce the one-electron reduction and activation 

of the diazonium salts is even more advantageous. The first photocatalyzed Pschorr 

cyclization was published in 1984, and just last year a series of papers described applications 

of photocatalytic Meerwein arylations leading to aryl-alkene coupling products. In this 

chapter we summarize the origins of this reaction and its scope and applications. 

 
 

This chapter has been published: 

D. P. Hari and B. König, Angew. Chem., Int. Ed., 2013, 52, 4734-4743 (Review Article). 

Author contributions: 

DP wrote the manuscript. 

 



The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts 

in a new light 1 

 

2  

 

1.1 Introduction 

Aryl diazonium salts have, in addition to its classical applications as reagents in aromatic 

substitutions, always attracted chemists being an important source for aryl radicals
1
 and an 

alternative to aryl halides and triflates in transition metal mediated coupling reactions.
1g,2

 Aryl 

diazonium salts combine several advantages as starting materials in organic synthesis and 

have been therefore used extensively in preparative chemistry: 1) They are easily prepared in 

large quantities from aniline derivatives 2) their reactions take place at ambient conditions 3) 

the leaving group N2 does not interfere with the reaction mixture and 4) the chemoselectivity 

of the coupling reactions can be high. Reactions of diazonium salts include either homolytic 

or heterolytic bond cleavage or the formation of aryne intermediates.
3
 Aryl diazonium salts 

take up an electron from reducing reagents leading to aryl radicals and liberation of 

dinitrogen.
3a

 This aryl radical chemistry is the basis for classic name reactions in organic 

chemistry: The Sandmeyer reaction, Pschorr cyclization, Gomberg and Bachmann reaction, 

and the Meerwein arylation.
1d,4

 In 1896, Pschorr first reported the synthesis of phenanthrenes 

from the corresponding aryl diazonium salts and the extension of this reaction was reviewed 

by Leake and DeTar.
3a,5

 

In 1939, Meerwein reported the arylation of olefins by aryl diazonium salts catalyzed by 

copper (II) salts.
6
 The original arylation reaction was limited to alkenes with electron 

withdrawing groups such as in coumarin, cinnamic or acrylic acid, but its scope later 

expanded to electron rich olefins (Scheme 1a).
1f,7

 An important application of the Meerwein 

arylation is the decarboxylative cross coupling, but the reaction has not been used frequently 

in organic synthesis.
8
  

Even though the early Meerwein arylation has disadvantages such as limited substrate 

scope and many side products, examples giving aryl-alkene coupling serve as the foundation 

of sp
2
-sp

2
 cross coupling reactions. Several research groups contributed excellent new and 

improved variants for the Meerwein arylation and the Pschorr cyclization and their 

applications to the synthesis of privileged organic molecules. In 1985, Giuseppe Zanardi and 

his coworkers described the synthesis of benzothiophenes from corresponding o-methylthio 

arenediazonium salts with alkynes through a radical annulations process in the presence of 

freshly prepared copper powder or NaI or FeSO4.
9
 Recently, Heinrich et al. reported 

Meerwein type arylation reactions using stoichiometric amounts of TiCl3 or FeSO4 as 

reducing agents (Scheme 1b).
10

 Shortly after, Schiesser et al. reported a synthesis of 
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benzoselenophene and benzothiophene analogues of eprosartan and milfasartan through a 

cyclization process involving the reaction of o-thioalkyl or o-selenoalkyl phenyl radicals with 

alkynes using iron (II) sulfate heptahydrate.
11

 

(a) Classic Meerwein arylation reactions yielding aryl-alkene coupling products 

 

(b) Meerwein type arylation reactions using TiCl3 and FeSO4 as mediators for diazonium 

salt activation 

 

Scheme 1. Meerwein type arylation cross coupling reactions and improved new variants. 

The generation of aryl radicals from diazonium salts requires in the classical protocols a 

catalytic or stoichiometric amount of a redox active transition metal salt. Visible light can 

provide the required redox energy as well and has been considered as an ideal reagent for 

organic synthesis because it is abundant, inexpensive, renewable and innocuous. The 

photochemistry of diazonium salts has already been studied from the early 19
th

 century by 

noticing the change of the colour of benzenediazonium turning to red on exposure to 

sunlight.
12

 The principle of photodecomposition of diazonium salts by loosing nitrogen on 

exposure to light has been utilized in industrial techniques such as processes for printing on 

silk or cotton, diazo copying, and photolithography, but photochemical reactions of 

diazonium salts and related systems have been explored only since 1959.
3a,12

 Typical aryl 

diazonium salts (ArN2
+
X

-
) absorb in the ultraviolet region of light. Direct photolysis of 

diazonium salts in aqueous solution leads to phenol 7 as the main product of a heterolytic 
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bond cleavage (Scheme 2). In addition to the photolytic hydro-dediazotization product the 

replacement of the diazo group by anions X
- 

is observed giving the homolytic Schiemann 

reaction product  8 (Scheme 2).
13

 Solvents, counter ion, nucleophilic additives, and reducing 

agents are the important factors, which influence the cleavage of diazonium group either in 

homolytic or in heterolytic fashion.
3a,14

 

 

Scheme 2. Direct photolysis of diazonium salts. 

However, the inability of most aryl diazonium salts to absorb visible light has limited the 

number of photochemical applications of aryl diazonium salts to organic synthesis. Recently, 

many groups have utilized visible light absorbing photoredox catalysts to sensitize organic 

molecules by electron or energy transfer processes.
15

 We will discuss in the following the 

photoredox chemistry of aryl diazonium salts using visible light and cover pioneering 

examples from the 20
th

 century as well as the recent reports to summarize this fast developing 

area of research. So far, the photoredox versions of the Meerwein arylation led exclusively to 

the formation of cross coupling products and the valuable alkene addition products that can be 

obtained under classic Meerwein arylation conditions have not been reported. 

 

Scheme 3. Reaction pathways of the Meerwein arylation addition and cross coupling and photoredox reactions. 
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Scheme 3 summarises the different pathways: Electron transfer, either from the chemical 

reductant or the photocatalysts to the diazonium cation yields the aryl radical, which adds to a 

double bond. Scavenging of the alkyl radical give Meerwein alkene addition products that 

may eliminate HX yielding the unsaturated cross coupling products. Oxidation of the alkyl 

radical regenerating the photoredox catalyst yields a carbenium ion, which eliminates a proton 

giving the cross coupled compounds.  

1.2 Aryl diazonium salts in visible light 

In 1984, Cano-Yelo and Deronzier reported the photocatalyzed Pschorr reaction using 

[Ru(bpy)3]
2+

 as photoredox catalyst under irradiation with blue light.
16

 The Pschorr reaction 

typically involves the reduction of diazonium salts followed by an intramolecular cyclization. 

The authors synthesized phenanthrene carboxylic acid 10 quantitatively from the 

corresponding stilbene diazonium salt 9 in acetonitrile under visible light irradiation (Scheme 

4). Noteworthy, the direct photolysis (λ > 360 nm) of diazonium salts in the absence of the 

photocatalyst provided the corresponding acetamide 11 as the major product and 

phenanthrene only as minor product (Scheme 4a). 

Following their success in photocatalytic Pschorr reaction, Cano-Yelo and Deronzier 

further extended their methodology to synthesize fluorenone, fluorene and dibenzofuran from 

the corresponding diazonium salts (Scheme 4b).
17

 Visible light (λ > 410 nm) irradiation of 

[Ru(bpy)3]
2+ 

and aryl diazonium salt 12 in dry CH3CN gave mainly the non-cyclized product 

14 (75-100%) and only small amounts of the cyclized product 13 (0-25%). The low reaction 

yield of cyclized product 13 in this reaction compare to the previously reported Pschorr 

reaction of stilbene diazonium salts was attributed by the authors to the less rigid structure of 

12 and smaller gain in aromatic stabilization energy of compound 13 compared to compound 

10. To accelerate the slow photoreaction, 0.5 equivalents of 4-methoxy benzyl alcohol and 

collidine were added to the reaction mixture.  The product distribution does not improve, but 

the reaction times are significantly shorter. 
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(a) Photocatalytic Pschorr reaction with [Ru(bpy)3]
2+

 and direct photolysis in absence of 

[Ru(bpy)3]
2+

 

 

(b) Photocatalytic Pschorr reaction for synthesis of fluorenone, fluorene and dibenzofuran 

 

Scheme 4. Photocatalytic Pschorr reactions. 

The proposed mechanism shown in Scheme 5 starts with the oxidative quenching of the 

excited state of [Ru(bpy)3]
2+*

 by the aryl diazonium salt 9 generating aryl radical 15 and the 

strong oxidant [Ru(bpy)3]
3+

. Intramolecular cyclization of 15 furnishes radical 16, which is 

then oxidized by [Ru(bpy)3]
3+

 and undergoes subsequent deprotonation to give compound 10 

and regenerate the photocatalyst. Direct photolysis of aryldiazonium salt 9 produces the 

corresponding aryl cation 17, which further reacts with the solvent CH3CN to give the aryl 

cation adduct 18. The hydrolysis of the intermediate aryl cation 18 produces acetamide 11. 

The authors also provided an indirect proof of the electron transfer mechanism by quenching 

experiments.
16,18

 Irradiation of 4-bromobenzene diazonium salt and [Ru(bpy)3]
2+

 in dry 

CH3CN generates [Ru(bpy)3]
3+

, which is verified by its characteristic absorption in the spectra 

evolving during photolysis. The back electron transfer from the diazonium salt to [Ru(bpy)3]
3+ 

is suppressed by the fast, irreversible decomposition of diazonium salt. 
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Scheme 5. Proposed mechanism for photocatalytic Pschorr reaction and direct photolysis. 

Later, Cano-Yelo and Deronzier reported the oxidation of carbinols to aldehydes using aryl 

diazonium salts as oxidative quenchers.
19

 Blue light irradiation of a mixture of carbinols 20, 

the ruthenium complex, aryl diazonium salt 19, and 2, 4, 6 trimethylpyridine (collidine) in dry 

CH3CN provided the corresponding aldehyde 21 in moderate to good yields (Scheme 6). The 

aryl radical of 19 undergoes intramolecular cyclization to provide fluorenone (like in the 

Pschorr reaction) or the aryl radical of 19 abstracts a hydrogen atom from the benzylic 

position of the carbinol giving benzophenone. Benzophenone and fluorenone were observed 

as byproducts in the ratio of 3:1.The reaction yields were improved by adding a base in case 

of easily oxidizable carbinols, but lower yields were observed with less oxidizable carbinols. 

The lower yields with carbinols having higher oxidation potentials are explained by the 

oxidation of the base by the ruthenium complex. The same authors reported the oxidation of 

phenylated primary and secondary alcohols to the corresponding carbonyl derivatives in the 

presence of aryl diazonium salts and a basic agent in MeCN and compared the results with 

electrochemical redox catalysis.
20

 They propose a mechanism involving the oxidative 

quenching of the excited state of [Ru(L3)]
2+* 

by
 
the aryl diazonium salt leading to [Ru(L3)]

3+
. 

A single electron transfer from carbinols to Ru(L3)]
3+ 

regenerates the catalytic cycle while 

producing the aldehyde. The photoreaction is significantly improved by adding collidine, 

because the oxidation of carbinols to the aldehyde requires two-electron and two-proton 

exchanges. 



The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts 

in a new light 1 

 

8  

 

 

Scheme 6. Oxidation of carbinols to aldehydes by photoredox catalysis. 

25 years after the first application of photoredox catalysis with diazonium salts from Cano-

Yelo and Deronzier, Sanford and coworkers utilized the aryl radical for ligand-directed C-H 

arylation reactions with aryl diazonium salts by combining palladium catalysis with 

photoredox catalysis.
21

  

 

Scheme 7. Ligand directed C-H arylation at room temperature by dual catalysis. 
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Blue light irradiation of diazonium salt 23, substrate 22, Pd(OAc)2, and Ru(bpy)3Cl2.6H2O 

in MeOH at room temperature afforded the corresponding products in good to excellent yields 

(Scheme 7). Addition of the aryl radical to the Pd species is very fast, that is why MeOH can 

be used as the solvent. Advantages of this strategy are mild reaction conditions, broad scope 

of aryl diazonium salts, and tolerance to a wide range of functional groups. Amides, 

pyrazoles, pyrimidines, and oxime ethers are suitable directing groups for this photoreaction. 

The proposed mechanism of the reaction starts with a single electron transfer to aryl 

diazonium salts 23 from the excited state of [Ru(bpy)3]
2*

, giving an aryl radical and 

[Ru(bpy)3]
3+

. Addition of the aryl radical 25 to the palladacycle 26, which is generated by C-

H activation of the substrate, affords the Pd
III 

intermediate 27. A single electron oxidation of 

the Pd
III 

intermediate 27 by [Ru(bpy)3]
3+ 

 regenerates the photocatalyst while producing the 

Pd
IV

 intermediate 28, which then undergoes reductive elimination to give the arylated product  

24 and Pd
II 

catalyst 26 (Scheme 8). 

 

Scheme 8. Proposed mechanism for the arylation by Pd/Ru catalysis. 

Our group recently developed a method for the direct C-H arylation of heteroarenes with 

aryl diazonium salts using an organic dye eosin Y as photoredox catalyst in green light 

irradiation.
22

 The reaction requires, compare to other C-H arylation methods, no metal 

catalyst, works at ambient temperature, and has a high functional group tolerance. Aryl 

diazonium salts bearing both electron-neutral or -withdrawing groups and a variety of 

heterocyclic compounds were shown to be efficient substrates for this photoreaction (Scheme 

9). The methodology was applied to construct dithiophenes, which have found applications in 

material chemistry. Control experiments in the absence of catalyst or light confirmed the 
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photocatalytic nature of the reaction. In addition to heteroarenes, nitrobenzene was subjected 

to the photoreaction conditions giving the expected cross coupling products in 50% yield. 

 

Scheme 9. Direct C-H arylation of heteroarenes with eosin Y as the photoredox catalyst. 

The suggested mechanism of the direct C-H arylation of heteroarenes is depicted in 

Scheme 10. First, green light irradiation of eosin Y initiates a single electron transfer to 

aryldiazonium salt 23 to produce aryl radical 25 and the cation radical of eosin Y. Then the 

aryl radical 25 adds to the heteroarene 31 to give the radical intermediate 32, which then 

further oxidized either by the eosin Y cation radical to produce carbocation intermediate 33 

and closing the catalytic cycle or it is oxidized by aryl diazonium salt 23 in a radical chain 

transfer mechanism. Finally, the carbocation intermediate 33 is deprotonated yielding product 

30. The authors were able to trap the radical intermediates 25 and 32 with TEMPO supporting 

the presence of radical intermediates during the photoreaction. 

Next the photocatalyzed arylation reactions of heteroarenes were applied to synthesize 

privileged benzothiophene moieties, but unfortunately only poor yields and regioisomeric 

product mixtures were observed. The recently reported photocatalytic synthesis of 

benzothiophenes through a radical annulation process using eosin Y as photoredox catalyst in 

green light overcomes the problem.
23
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Scheme 10. Suggested mechanism for photocatalytic C-H arylation of heteroarenes. 

A mixture of o-methylthio benzenediazonium salt 36, alkyne 37 in dry DMSO is subjected 

to irradiation at 530 nm for 14 h providing only the required regioisomer in moderate to good 

yields (Scheme 11). Diazonium salts containing either electron donating or electron neutral 

substituents are compatible with this photoreaction. The annulations reaction proceeds well 

with different alkynes. 

 

Scheme 11. Radical annulations for the synthesis of benzothiophenes by visible light photocatalysis using 

eosin Y. 
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The photoannulation reaction was used to prepare the key intermediate 41 in the synthesis 

of the commercialized drug Raloxifene 42. A mixture of 4-methoxy-2-(methylthio)benzene-

diazonium salt 39 and 1-ethynyl-4-methoxybenzene 40 in dry DMSO was subjected to the 

standard photoreaction conditions providing the Raloxifene intermediate 41 in 70% yield 

(Scheme 12).  

 

Scheme 12. Visible light photocatalyzed preparation of a key intermediate of synthesis of the antiulcer drug 

Raloxifene. 

 

Scheme 13. Proposed mechanism for the photoannulation reaction. 

The proposed mechanism of the photoannulation reaction starts with a single electron 

transfer (SET) from the excited state of eosin Y to o-methylthio benzenediazonium salt 36 to 

generate aryl radical 43 and the radical cation of eosin Y. The highly reactive aryl radical 43 

adds to alkyne 37 to produce a vinyl radical intermediate 44, which then undergoes homolytic 
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substitution at the sulfur atom to give the sulphuranyl radical intermediate 45. Oxidation of 

intermediate 45 by the eosin Y cation radical regenerates the photocatalyst while affording the 

cation 46. Noteworthy, oxidation of the intermediate 45 could also proceed with diazonium 

salts in a chain transfer mechanism. Finally, cation 46 transfers a methyl group to the solvent 

DMSO by an SN2 process to afford product 38.  TEMPO trapped adducts 47 and 48 suggest 

the likely presence of radical intermediates in the reaction mechanism (Scheme 13). 

All of the examples discussed so far address C-C bond forming reactions utilizing 

oxidative quenching of the photocatalysts. Very recently, Guobing Yan and coworkers 

reported C-B borylation reactions via photoredox catalysis under visible light irradiation with 

eosin Y.
24

 The authors investigated the scope of the photoreaction by employing different 

diazonium salts. It was found that aryl diazonium salts bearing various electron-donating and 

withdrawing substituents smoothly gave the corresponding borylated products in moderate to 

good yields (Scheme 14). The borylation with heteroaromatic diazonium salts does not 

proceed as well compared to the aryl diazonium salts. 

 

Scheme 14. Borylation of aryldiazonium salts via photoredox catalysis. 

The authors proposed a reaction mechanism depicted in Scheme 15. After visible light 

excitation of eosin Y a single electron transfer to diazonium salt 23 gives aryl radical 25. The 

aryl radical adds to complex 52, which is formed in situ by the interaction between B2pin2 and 

the tetrafluoroborate anion, to afford the radical anion intermediate 53 and the borylated 

product 50. Oxidation of the reaction intermediate 53 by the eosin Y cation radical closes the 

catalytic cycle. 
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Scheme 15. Proposed mechanism for the borylation of aryl diazonium salts. 

The Meerwein arylation protocol has been used to arylate various unsaturated compounds 

with metallic copper, iron (II), and iodine, but earlier reaction conditions suffered from low 

yields and side products. These drawbacks prevented the broader application of the Meerwein 

arylation reaction in organic synthesis. Improved reaction conditions, such as the use of 

chloride based ionic liquids as promoting agents allowed Meerwein arylations in satisfactory 

yields.
25

 The recently reported photocatalytic version of the intermolecular Meerwein reaction 

for the arylation of alkenes, alkynes and enones with aryl diazonium salts using [Ru(bpy)3]
2+

 

or eosin Y as photoredox catalysts further improves the process.
26

 Photocatalyst and light 

were found to be essential for the useful conversion to the arylated products. A mixture of aryl 

diazonium salt 23, unsaturated compound 55, and the photocatalyst in dry DMSO was 

irradiated by blue light for 2 h yielding the corresponding coupling products in good to 

excellent yields. Halogen substituted diazonium salts have been employed in the 

photoreaction leaving the carbon-halogen bond intact and allowing further functionalization 

of the cross coupling products by transition metal catalyzed or organometallic 

transformations. However, the reaction is limited to activated unsaturated compounds 

including coumarins, styrenes, quinones, and phenyl acetylenes (Scheme 16a). 

Shortly after, the Shouyun Yu group extended the photo Meerwein arylation to enamides 

and enecarbamates using aryl diazonium salts in blue light.
27

 The photocatalysts 

[Ir(ppy)2(dtbbpy)PF6] (1 mol%), aryl diazonium salt 23 and substrate 57 were irradiated 

overnight by visible light with a 3 W blue LED strip to afford the corresponding products in 

moderate to good yields (Scheme 16b). The mechanism of the photoreaction is initiated by 

oxidative quenching of photocatalyst by the aryl daizonium salt to form aryl radical. The 
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generated aryl radical adds to the unsaturated compound to give a radical intermediate, which 

then undergoes oxidation, followed by deprotonation yielding the desired product. 

 

Scheme 16. Photo-Meerwein arylation of unsaturated compounds. 

ɑ-Aryl carbonyl compounds are important substructures of pharmaceutical and biological 

active molecules. Typical synthetic routes include transition metal and base catalyzed
28

 steps, 

but an alternative approach is the use of photoredox catalysis utilizing aryl diazonium salts as 

radical source and enol acetates as coupling partners (Scheme 17).
29

 Different photoredox 

catalysts and solvents were screened; the reaction proceeds best in DMF and DMSO with 

[Ru(bpy)2]Cl2 as the photocatalyst. The scope of the reaction was investigated for diazonium 

salts and enol acetates: Aryl diazonium salts containing electron withdrawing or, neutral 

groups and terminal enol acetates are suitable substrates. A synthetic application of the 
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photoredox catalysis was demonstrated, the preparation of compound 62, which is reduced by 

iron to give the corresponding substituted indoles 63 in good to excellent yields without 

isolation of intermediates (Scheme 18).
30

 

 

Scheme 17. ɑ-Arylation of enol acetates by photoredox catalysis. 

 

Scheme 18. Synthesis of substituted indols precursors by photoredox catalysis. 

Similar to the previously discussed mechanisms the oxidative quenching of [Ru(bpy)3]
2* 

by 

aryl diazonium salt 23 gives aryl radical 25 and the strong oxidant [Ru(bpy)3]
3+

. An addition 

of the aryl radical to enol acetate 59 generates radical intermediate 64. Re-oxidation of the 

intermediate 64 by the oxidant [Ru(bpy)3]
3+

 forms a carbocation intermediate 65 and 

regenerates the catalyst [Ru(bpy)3]
2
. The desired product 60 is obtained by transfer of an acyl 

cation from the intermediate carbocation 65 to a nucleophile present in the reaction mixture 

such as DMF giving the stable salt 66, which is one of the likely intermediates in the first step 

of the Vilsmeier-Haack reaction. However, alternative pathways for the oxidation of the 

radical intermediate 64 by aryl diazonium salts cannot be excluded at this time (Scheme 19). 



The photocatalyzed Meerwein arylation: classic reaction of aryl diazonium salts 

in a new light 1 

 

 17 

 

 

Scheme 19. Proposed mechanism for α-arylation of enol acetates with aryl diazonium salts in visible light. 

A common synthetic approach to phenanthrenes is the photocyclization of stilbenes by UV 

light irradiation followed by oxidation. Lei Zhou and coworkers recently reported the 

synthesis of phenanthrenes from diazonium salts and alkynes using visible light and the 

organic dye eosin Y as photoredox catalyst.
31

  Irradiation of mixtures of biphenyl diazonium 

salt 67, 10 equiv of alkyne and 1 mol% eosin Y in CH3CN under green light for 12 h afforded 

the corresponding products 68 in good to excellent yields (Scheme 20). It is important to note 

that the addition of base to the reaction mixture causes a decrease in the yield, presumably due 

to the direct reaction between the base and the diazonium salt. The photoreaction proceeds 

smoothly with a series of diazonium salts and alkynes. A range of functional groups including 

ketones, nitro, methoxy, halogen and ester groups do not interfere with this photoreaction. A 

SET from eosin Y* to the biaryl diazonium salt produces a biaryl radical. The generated 

radical adds to the alkyne  to form a vinyl radical intermediate followed by intramolecular 

addition to the aromatic ring yielding the cyclic radical intermediate, which then further 

undergoes oxidation followed by deprotonation to give the final product.  
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Scheme 20. Visible light induced synthesis of phenanthrenes. 

Functionalization of surfaces has found many applications from analytical and biochemical 

sensors to microelectronics and biomedical industrial applications. UV photochemical 

methods have been used for grafting of surfaces, but they are mainly restricted to alkenes and 

arylazides. Recently, Jean Pinson et al. described a photochemical method for gold surface 

modification with diazonium salts in visible light using either [Ru(bpy)3]
2 

or eosin Y as photo 

sensitizers (Scheme 21).
32

 

 

Scheme 21. Functionalization of surface with diazonium salts via photoredox catalysis. 

In addition to diazonium salts, aryl sulfonyl chlorides and aryl iodonium salts can also be 

used as aryl radical source in visible light catalysis. Recently, Li and co-workers reported the 

synthesis of functionalized indenes from aryl alkynes and arylsulfonyl chlorides through 

photoredox catalysis
33

. Sanford et al. developed a C-H arylation method with diaryliodonium 

reagents merging photoredox and transition metal catalysis.
34
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1.3 Conclusion 

Visible-light photoredox catalysis utilizing diazonium salts as aryl radical source has 

become a powerful and efficient method in synthetic organic chemistry to form carbon-carbon 

and carbon-heteroatom bonds. The oxidative quenching of photocatalysts by diazonium salts 

allows for inter- and intramolecular cyclization reactions with regioselective formation of 

products and the method has already been applied to the synthesis of biologically active 

compounds and drug intermediates. Although the photocatalytic versions of the classic 

Meerwein arylation protocol gave so far only access to cross coupling and not to alkene 

addition products, the method significantly improves applications in organic synthesis. 

Despite excellent progress has been made in the area, many challenges and opportunities still 

remain. 

Photocatalysis allows reactions at low temperatures, which may be beneficial for the 

development of stereoselective variants in particular if the scope is expanded to Meerwein 

alkene addition products.  Aryl radical chemistry in combination with visible photocatalysis 

has not been broadly applied to carbonylation reactions, although two out of three industrial 

processes use aryldiazonium salts in carbonylation processes.
2b,35

 While there is already good 

evidence for some of the radical intermediates, a more detailed mechanistic investigation is 

highly desirable to improve our understanding of the mechanisms and allow for a better 

design of new photocatalytic reactions of diazonium salts. 
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Chapter 2 

2 Metal-Free, Visible-Light-Mediated Direct C–H Arylation of Hetero-

arenes with Aryl Diazonium Salts 

 

Visible light and 1 mol% of eosin Y catalyzes the direct C-H bond arylation of 

heteroarenes with aryl diazonium salts by a photoredox process. We have investigated the 

scope of the reaction for several aryl diazonium salts and heteroarenes. The general and easy 

procedure provides a transition metal free alternative for the formation of aryl-heteroaryl 

bonds. 
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2.1  Introduction 

Arylated heteroarenes are widely used in material science due to their interesting optical 

and electronic properties,
1
 but they also find biomedical applications as peptide mimetic

2
 or 

drugs.
3 

The most efficient synthesis of aryl-aryl bonds is the direct arylation of heteroarenes 

by C-H bond activation. In contrast to the well-known cross-coupling reactions, such C-H 

activation methods do not require preactivation of the heteroarene and a variety of transition 

metal catalyzed processes using aryl halides, arylboronic acids, aryl tin reagents, and 

diazonium salts as coupling partners (Figure 1) have been developed.
4
 However, photo-

catalysis may provide a valuable alternative avoiding transition metals, ligands, base, or 

elevated temperatures. Recent reports have demonstrated the formation of C-C,
5 

C-P,
5m,6

 and 

C-N
7 

bonds using visible light and ruthenium or iridium complexes or organic dyes as 

photoredox catalysts. 

Metal-catalyzed direct C-H arylation of heteroarenes 

 

Eosin Y catalyzed direct C-H arylation of heteroarenes (this work) 

 

Figure 1.  Metal-catalyzed and photocatalytic approaches for direct C-H arylation of heteroarenes.    

Aryl diazonium salts are an excellent source of aryl radicals due to their relatively high 

reduction potential.
8
 The long known Meerwein arylation uses this in a copper mediated 

redox process for the coupling of aryl diazonium salts to alkenes or heteroarenes. However, 

the reaction suffers from low yields typically in the range of 20-40%, high catalyst loadings 
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and restriction to aqueous reaction media. The Meerwein arylation has therefore not widely 

been used in synthesis.
9
 Heinrich et al. reported the direct arylation of phenols, anilines, and 

furans with aryl diazonium salts using TiCl3 catalysis; the reaction possibly proceeds through 

a radical mechanism.
10

 Recently, Sanford et al. merged palladium catalysis with 

photocatalysis for C-H arylation.
11

 Aryl diazonium salts are well known oxidative quenchers 

in photoredox chemistry,
5k,12 

which was
 
first applied by Cano-Yelo et al. in the visible light 

mediated Pschorr cyclization converting stilbene diazonium salts into the corresponding phen-

anthrene derivatives with [Ru(bpy)3]
2+

 as photoredox catalyst.
13 

The same authors also used a 

ruthenium complex in an oxidative quenching cycle for the transformation of benzyl alcohol 

to aldehyde with aryl diazonium salts as oxidative quenchers.
14 

We report now the 

photocatalyzed single electron transfer mediated direct C-H bond arylation of heteroarenes 

with aryl diazonium salts requiring only green light and the organic dye eosin Y as catalyst. 

2.2 Results and Discussion 

First, the reaction conditions were optimized for the direct arylation of furan 2a with 

diazonium salt 1a, 530 nm LED irradiation and 1 mol% eosin Y as photoredox catalyst. 

Various solvents, additives, and different equivalents of furan were examined at room 

temperature and the desired product was obtained in all cases. DMSO was found to be a good 

solvent for the photoreaction. The arylated product was obtained in good yield using an 

excess of 10 equivalents of furan (Table 1, entry 2). Excess of base decreased the product 

yields (Table 1, entries 10, 11, and 12), which was attributed to direct reaction of the base with 

1a. Control reactions confirmed that both light and eosin Y are required for a significant 

conversion to the product (Table 1, entries 13 and 14). 

Having optimized the reaction conditions, we examined the scope of the reaction towards 

different aryl diazonium salts with furan. Among the aryl diazonium salts used for direct 

arylation of furan, electron-acceptor (Table 2, entries 2, 3, 4, 5, and 6) and neutral (Table 2, 

entries 1 and 7) substituted salts were found to be more efficient for product formation than 

donor substituted diazonium salts (Table 2, entries 8, 9, and 10). Moreover, a range of 

functional groups, such as nitro, ester, cyano, and hydroxyl groups were tolerated in this 

photoreaction. Notably, halogen-substituted aryl diazonium salts underwent successfully C-H 

bond arylation leaving the C-halogen bond intact, which is useful for further synthetic 

elaboration. 
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Table 1. Optimization of the reaction conditions. 

 

Entry Conditions Yield [%]
a
 

1 2a (5 equiv),   DMSO 73 

2 2a (10 equiv), DMSO 80 

3 2a (15 equiv), DMSO 80 

4 2a (10 equiv), DMF 48 

5 2a (10 equiv), MeOH 55 

6 2a (10 equiv), CH3CN 12 

7 2a (10 equiv), EtOAc 17 

8 2a (10 equiv), THF 10 

9 2a (10 equiv), DMSO/H2O (3:1) 73 

10 2a (10 equiv), DMSO, pyridine (2 equiv) 66 

11 2a (10 equiv), DMSO, NaOAc (2 equiv) 54 

12 2a (10 equiv), DMSO,  
t
BuOK (2 equiv) 45 

13 2a (10 equiv), DMSO, no light, 72 h 14 

14 2a (10 equiv), DMSO,  no catalyst, 72 h 19 

                 
 
a
Yieds were determined by 1H NMR. 

The metal free, photocatalyzed C-H arylation was also effective for other heteroarenes, 

such as thiophene and pyrrole and the corresponding products were obtained in moderate to 

good yields (Table 3). 

Thienyl diazonium salt 6 led to heterobiaryls 7 and 8, which are typical structural motifs of 

organic semiconductors (Scheme 1a). In addition to heteroarenes, nitrobenzene is converted in 

50% yield into compound 10 and other regioisomers (10%) after 20 h of irradiation by green 

light (Scheme 1b). 
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Table 2. Scope of aryl diazonium salts
a
. 

 

Entry substrate Product Yield [%]
b
 

1 

      

74 

2 

    

85 

3 

                 

86 

4 

    

65 

5 

      

72 

6 

      

78 

7 

      

84 

8 

       

54 

9 

       

40 

10 

       

58 

11 

                          

60 

 a
The reaction was performed with 1 (0.23 mmol), furan (10 equiv) and eosin Y (0.01 equiv) 

 in 1.0 mL of DMSO.  
b
Isolated yield after purification on SiO2. 
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Table 3. Scope of heteroarenes
a
. 

 

Entry R 
 

t  [h] Product Yield  [% ]
b
 

1 NO2 

 

4 

 

70 

2 CO2Et 

 

14 

 

60 

3 CN 

 

16 

 

52 

4 NO2 

 

14 

 

61 

5 CO2Et 

 

18 

 

51 

6 CN 

 

16 

 

55 

7 NO2 

 

16 

 

53 

8 NO2 

 

24 

 

67 
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9 NO2 

 

24 

 

60 

 
a
Reactions were carried out using 1 (0.23 mmol), heteroarene (5 equiv in case of thiophene 

derivatives, 2 equiv in case of pyrrole derivatives) and eosin Y (0.01 equiv) in 1.0 mL of DMSO.  
b
Isolated yield after purification on SiO2. 

 

 

 

Scheme 1. Photo C-H arylation of (a) heteroarenes with thienyl diazonium salt. (b) nitrobenzene with aryl 

diazonium salts.  

The C-H arylation of heteroarenes with aryl diazonium salts using eosin Y is expected to 

proceed through a radical mechanism and preliminary mechanistic investigation supported 

this assumption. When the reaction of aryl diazonium salts was conducted in absence of furan, 

but with added TEMPO compound 11 was obtained. Furthermore, addition of TEMPO to the 

reaction mixture of aryl diazonium salts, furan, and eosin Y stops the arylation process and 

the TEMPO-trapped intermediate 12 was detected. The identified compounds suggest that the 

photoreaction proceeds via a radical pathway (see experimental part for more details). 

 

Figure 2. TEMPO-trapped reaction intermediates. 
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On the basis of the above observations and literature reports,
10,11,13,15

 a plausible 

mechanism for this photoreaction is proposed (Scheme 2). Initially, aryl radical 13 is formed 

by SET from the excited state of eosin Y to aryl diazonium salt 1. Addition of aryl radical 13 

to heteroarene 2 gives radical intermediate 14, which is further transformed to carbocation 

intermediate 15 by two possible pathways: (a) the oxidation of the radical intermediate 14 by 

the eosin Y radical cation giving 15; (b) the oxidation of 14 by aryl diazonium salt 1 in a 

radical chain transfer  mechanism. Finally, the intermediate 15 is deprotonated regenerating 

the aromatic system and leading to the desired coupling product 16. 

 

Scheme 2. Suggested mechanism for photocatalytic direct C-H arylation of heteroarenes. 

2.3 Conclusion 

    In summary, we have reported a metal-free intermolecular direct C-H arylation of 

heteroarenes by photoredox catalysis with green light. The reaction proceeds smoothly at 

room temperature, does not require transition metal catalysts or bases and displays a broad 

scope towards diazonium salts and heterocycles with a wide range of functional group 

tolerance. This SET cross coupling represents an efficient alternative to the known transition 

metal catalyzed (Pd, Ru, Ir, Rh, and Ti) and 
t
BuOK promoted strategies for C-H arylation and 
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it overcomes the significant drawbacks of the Meerwein arylation that prevented its broader 

application in organic synthesis. The induction of the reaction by visible light may find 

applications beyond synthesis, e.g. in the chemical patterning of surfaces. Further 

investigations on the mechanism of the reaction and its application are ongoing in our 

laboratory. 

2.4 Experimental Part  

General Information 

Proton NMR spectra were recorded on a Bruker Avance 300 MHz spectrometer in CDCl3 

solution with internal solvent signal peak at 7.26 ppm.
 13

C NMR were recorded at 75 MHz 

spectrometer in CDCl3 solution and referenced to the internal solvent signal at 77.00 ppm. 

Proton NMR data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = 

doublet, t = triplet, q = quartet, quint = quintet, dd = doublet of doublets, ddd = doublet of 

doublet of doublets, td = triplet of doublets, qd = quartet of doublets, m = multiplet, br. s. = 

broad singlet), and coupling constants (Hz). All reactions were monitored by thin-layer 

chromatography using Merck silica gel plates 60 F254; visualization was accomplished with 

short wave UV light (254 nm) and/or staining with appropriate stains (anisaldehyde 

orthophosphomolybdic acid). Standard flash chromatography was performed using silica gel 

of particle size 40−63 μm. Eosin Y (spirit soluble, 99% dye content) was purchased from 

Sigma Aldrich. All other commercially available reagents and solvents were used without 

further purification. The green light irradiation was performed using high-power LEDs Philips 

LUXEON
®
 Rebel (1W, λ = 530±10 nm, 145 lm @700mA). 

General Procedures 

General procedure for the preparation of aryl diazonium tetrafluoroborates
16 

The appropriate aniline (10 mmol) was dissolved in a mixture of 4 mL of distilled water 

and 3.4 mL of 50% hydrofluoroboric acid. After cooling the reaction mixture to 0 °C using 

ice bath, a solution of sodium nitrite (0.69 g in 1.5 mL) was added dropwise in 5 min interval 

of time. The resulting mixture was stirred for 40 min and the precipitate was collected by 

filtration and re-dissolved in minimum amount of acetone. Diethyl ether was added until 

precipitation of diazonium tetrafluoroborate, which is filtered, washed several times with 

diethyl ether and dried under vacuum. 
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General procedure for the reaction of aryl diazonium tetrafluoroborates with furan 

In a 5 mL snap vial equipped with magnetic stirring bar the Eosin Y (0.01 equiv), aryl 

diazonium tetrafluoroborate (1 equiv) and furan (10 equiv) were dissolved in dry DMSO 

(0.23 mmol/mL) and the resulting mixture was degassed by “pump-freeze-thaw” cycles (×2) 

via a syringe needle. The vial was irradiated through the vial’s plane bottom side using green 

LEDs. After 2 h of irradiation the reaction mixture was transferred to separating funnel, 

diluted with diethyl ether and washed with 15 mL of water. The aqueous layer was washed 

three times with diethyl ether. The combined organic layers were dried over MgSO4, filtered 

and concentrated in vacuum. Purification of the crude product was achieved by flash column 

chromatography using petrol ether/ethyl acetate as eluent. 

2-(4-Chloro-phenyl)-furan (4a)
17

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.60(d, J = 8.6 Hz,  2H), 7.47(d, J = 1.6 Hz, 1H), 7.35(d, J = 8.6 Hz, 2H), 6.64(d, J = 

3.4 Hz, 1H), 6.48(dd, J = 3.4, 1.8 Hz, 1H ) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  152.9, 142.3, 132.9, 129.3, 128.8, 124.9, 111.7, 105.4 

 

2-(4-Nitro-phenyl)-furan (4b)
17

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.24(d, J = 9.0 Hz,  2H), 7.78(d, J = 9.0 Hz, 2H), 7.57(d, J = 1.3 Hz, 1H), 6.87(d, J = 

3.3 Hz, 1H), 6.55(dd, J = 3.4, 1.8 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  151.6, 146.3, 144.1, 136.4, 124.3, 123.9, 112.4, 108.9 

 

2-(2-Nitro-phenyl)-furan (4c)
20

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.72(dd, J = 7.9, 1.3 Hz, 1H), 7.68(dd, J = 8.1, 1.1 Hz, 1H), 7.57(dt, J = 7.7, 1.3 Hz, 

1H), 7.51(d, J = 1.7 Hz, 1H), 7.41(dt, J = 7.8, 1.4 Hz, 1H), 6.67(dd, J = 3.5, 0.4 Hz, 1H), 

6.50(dd, J = 3.5, 1.8 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  148.3, 143.7, 131.8, 128.8, 128.2, 124.0, 123.8, 111.8, 109.7 
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2-(3-Nitro-phenyl)-furan (4d)
21 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.49-8.48(m, 1H), 8.09(ddd, J = 8.2, 2.2, 0.8 Hz, 1H), 7..97-7.94(m, 1H), 7.57-7.51(m, 

2H), 6.81(d, J = 3.4 Hz, 1H),  6.53(dd, J = 3.4, 1.8 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  151.5, 148.6, 143.3, 132.3, 129.6, 129.2, 121.6, 118.5, 112.0, 107.2 

 

2-(4-Cyano-phenyl)-furan (4e)
18 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.74(d, J = 8.6 Hz, 2H), 7.65(d, J = 8.7 Hz, 2H), 7.54(d, J = 1.4 Hz, 1H), 6.81(d, J = 

3.2 Hz, 1H), 6.53(dd, J = 3.5, 1.8 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  151.9, 143.6, 134.6, 132.5, 123.9, 118.9, 112.2, 110.2, 108.1  

  

2-(4-Ethoxycarbonyl-phenyl)-furan (4f)
18

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.06(d, J = 8.6 Hz, 2H), 7.72(d, J = 8.6 Hz, 2H), 7.52(d, J = 1.5 Hz, 1H), 6.79(d, J = 

3.3 Hz, 1H), 6.51(dd, J = 3.4, 1.8 Hz, 1H), 4.38(q, J = 7.1 Hz, 2H), 1.40(t, J = 7.1 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  166.3, 152.9, 143.0, 134.6, 130.0, 128.8, 123.3, 111.9, 107.1, 60.9, 14.3 

 

2-(4-Bromo-phenyl)-furan (4g)
17 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.58-7.47(m, 5H), 6.65(d, J = 3.0 Hz, 1H), 6.48(dd, J = 3.4, 1.8 Hz, 1H)
 

13
C NMR (75 MHz, CDCl3): 

δ ppm  152.9, 142.3, 131.7, 129.7, 125.2, 121.0, 11.7, 105.5 

 

2-(4-Methoxy-phenyl)-furan (4h)
17 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.61(d, J = 8.9 Hz, 2H), 7.43(d, J = 1.2 Hz, 1H), 6.93(d, J = 8.9 Hz, 2H), 6.52(d, J = 

3.3 Hz, 1H), 6.45(dd, J = 3.3, 1.8 Hz, 1H), 3.83(s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  158.9, 154.0, 141.3, 125.2, 124.0, 114.0, 111.5, 103.3, 55.3 
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2-(4-Hydroxy-phenyl)-furan (4i)
 

 

1
H NMR (300 MHz, CDCl3):  

δ ppm  7.56(d, J = 8.7 Hz, 2H), 7.43(d, J = 1.0 Hz, 1H), 6.86(d, J = 8.7 Hz, 2H), 6.51(d, J = 

3.2 Hz, 1H), 6.45(dd, J = 3.2, 1.8 Hz, 1H), 4.86(br. s, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  154.8, 153.9, 141.3, 125.4, 124.2, 115.5, 111.5, 103.3 

 

2-(4-Methyl-phenyl)-furan (4j)
17 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.57(d, J = 8.2 Hz, 2H), 7.45(d, J = 1.8 Hz, 1H), 7.19(d, J = 8.0 Hz, 2H), 6.59(d, J = 

3.3 Hz, 1H), 6.46(dd, J = 3.3, 1.8 Hz, 1H), 2.36(s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  154.2, 141.6, 137.1, 129.3, 128.2, 123.7, 111.5, 104.1, 21.2 

 

2-phenyl-furan (4k)
17 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.69(d, J = 7.9 Hz, 2H), 7.48(d, J = 1.6 Hz, 1H), 7.39(t, J = 7.6 Hz, 2H), 7.29-7.24(m, 

1H), 6.66(d, J = 3.4 Hz, 1H),  6.48(dd, J = 3.3, 1.8 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  153.9, 142.0, 130.8, 128.6, 127.3, 123.7, 111.6, 104.9 

General procedure for the reaction of aryl diazonium tetrafluoroborates with thiophene  

In a 5 mL snap vial equipped with magnetic stirring bar the Eosin Y (0.01 equiv), aryl 

diazonium tetrafluoroborate (1 equiv) and thiophene (5 equiv) were dissolved in dry DMSO 

(0.23 mmol/mL) and the resulting mixture was degassed by “pump-freeze-thaw” cycles (×2) 

via a syringe needle. The vial was irradiated through the vial’s plane bottom side using green 

LEDs. After certain time of irradiation the reaction mixture was transferred to separating 

funnel, diluted with diethyl ether and washed with 15 mL of water. The aqueous layer was 

washed three times with diethyl ether. The combined organic layers were dried over MgSO4, 

filtered and concentrated in vacuum. Purification of the crude product was achieved by flash 

column chromatography using petrol ether/ethyl acetate as eluent. 
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2-(4-Nitro-phenyl)-thiophene (5a)
22

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.23(d, J = 8.9 Hz, 2H), 7.74(d, J = 8.9 Hz, 2H), 7.48(dd, J = 3.7, 1.0 Hz, 1H), 

7.44(dd, J = 5.1, 1.0 Hz, 1H), 7.15(dd, J = 5.1, 3.7Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  146.6, 141.6, 140.6, 128.7, 127.6, 126.0, 125.7, 124.4 

 

2-(4-Ethoxycarbonyl-phenyl)-thiophene (5b)
18

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.05(d, J = 8.4 Hz, 2H), 7.67(d, J = 8.5 Hz, 2H), 7.42(dd, J = 3.7, 1.0 Hz, 1H), 

7.36(dd, J = 5.1, 1.0 Hz, 1H), 7.11(dd, J = 5.1, 3.7Hz, 1H), 4.39(q, J = 7.1 Hz, 2H), 1.41(t, J 

= 7.1 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  166.2, 143.1, 138.5, 130.2, 129.1, 128.2, 126.2, 125.4, 124.4, 60.1, 14.3 

 

2-(4-Cyano-phenyl)-thiophene (5c)
19

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.70(d, J = 8.7 Hz, 2H), 7.65 (d, J = 8.7 Hz, 2H), 7.42(dd, J = 3.7, 1.1 Hz, 1H), 

7.40(dd, J = 5.2, 1.1 Hz, 1H), 7.13(dd, J = 5.1, 3.7Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  142.0, 138.6, 132.7, 128.5, 127.0, 126.0, 125.0, 118.8, 110.5 

General procedure for the reaction of aryl diazonium tetrafluoroborates with N-Boc  

pyrrole 

In a 5 mL snap vial equipped with magnetic stirring bar the Eosin Y (0.01 equiv), aryl 

diazonium tetrafluoroborate (1 equiv) and pyrrole (5 equiv) were dissolved in dry DMSO 

(0.23 mmol/mL) and the resulting mixture was degassed by “pump-freeze-thaw” cycles (×2) 

via a syringe needle. The vial was irradiated through the vial’s plane bottom side using green 

LEDs. After certain time of irradiation the reaction mixture was transferred to separating 

funnel, diluted with diethyl ether and washed with 15 mL of water. The aqueous layer was 

washed three times with diethyl ether. The combined organic layers were dried over MgSO4, 

filtered and concentrated in vacuum. Purification of the crude product was achieved by flash 

column chromatography using petrol ether/ethyl acetate as eluent. 
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2-(4-Nitro-phenyl)-pyrrole-1-carboxylic acid tert-butyl ester (5d)
23 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.22(d, J = 8.9 Hz, 2H), 7.51(d, J = 8.9 Hz, 2H), 7.41(dd, J = 3.3, 1.8 Hz, 1H), 

6.33(dd, J = 3.4, 1.8 Hz, 1H), 6.27(t, J = 3.3Hz, 1H), 1.43(s, 9H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  148.8, 146.5, 140.6, 132.7, 129.5, 124.3, 122.9, 116.4, 111.1, 84.5, 27.7 

 

2-(4- Ethoxycarbonyl -phenyl)-pyrrole-1-carboxylic acid tert-butyl ester (5e)
18 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.03(d, J = 8.4 Hz, 2H), 7.41(d, J = 8.4 Hz, 2H), 7.38(dd, J = 3.0, 2.1 Hz, 1H), 6.25-

6.23(m, 2H), 4.39(q, J = 7.1 Hz, 2H), 1.41(t, J = 7.1 Hz, 3H), 1.38(s, 9H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  166.4, 149.1, 138.7, 134.0, 128.9, 128.8, 128.8, 123.4, 115.3, 110.8, 84.0, 60.9, 27.6, 

14.3 

 

2-(4-Cyano-phenyl)-pyrrole-1-carboxylic acid tert-butyl ester (5f)
19

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.63(d, J = 8.4 Hz, 2H), 7.45(d, J = 8.4 Hz, 2H), 7.39(dd, J = 3.1, 1.9 Hz, 1H), 6.28-

6.24(m, 2H), 1.41(s, 9H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  148.9, 138.7, 133.0, 131.3, 129.5, 123.9, 118.9, 116.0, 111.0, 110.4, 84.3, 27.6 

General procedure for the reaction of aryl diazonium tetrafluoroborates with thiophene 

derivatives 

In a 5 mL snap vial equipped with magnetic stirring bar the Eosin Y (0.01 equiv), aryl 

diazonium tetrafluoroborate (1 equiv) and thiophene derivative (5 equiv) were dissolved in 

dry DMSO (0.23 mmol/mL) and the resulting mixture was degassed by “pump-freeze-thaw” 

cycles (×2) via a syringe needle. The vial was irradiated through the vial’s plane bottom side 

using green LEDs. After certain time of irradiation the reaction mixture was transferred to 

separating funnel, diluted with diethyl ether and washed with 15 mL of water. The aqueous 

layer was washed three times with diethyl ether. The combined organic layers were dried over 

MgSO4, filtered and concentrated in vacuum. Purification of the crude product was achieved 

by flash column chromatography using petrol ether/ethyl acetate as eluent. 
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2-Methyl-5-(4-nitro-phenyl)-thiophene (5g)
4d

 

Major regioisomer 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.20(d, J = 9.0 Hz, 2H), 7.65(d, J = 9.0 Hz, 2H), 7.28(d, J = 3.6 Hz, 1H), 6.80(dd, J = 

3.6, 1.0 Hz, 1H), 2.54(s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  146.1, 142.9, 140.8, 139.0, 127.0, 125.7, 125.3, 124.3, 15.5 

 

Minor regioisomer 

2-Methyl-3-(4-nitro-phenyl)-thiophene (5g
1
) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.27(d, J = 8.9 Hz, 2H), 7.55(d, J = 8.9 Hz, 2H), 7.17(d, J = 5.3 Hz, 1H), 7.07(d, J = 

5.3 Hz, 1H), 2.54(s, 3H) 

 

3-Methyl-2-(4-nitro-phenyl)-thiophene (5h)
4c 

Major regioisomer 

 
1
H NMR (300 MHz, CDCl3):    

δ ppm  8.26(d, J = 8.9 Hz, 2H), 7.62(d, J = 8.9 Hz, 2H), 7.33(d, J = 5.1 Hz, 1H), 6.98(d, J = 

5.1 Hz, 1H), 2.38(s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  146.4, 141.5, 140.7, 139.3, 131.8, 129.1, 125.5, 123.8, 15.5 

 

Minor regioisomer 

4-Methyl-2-(4-nitro-phenyl)-thiophene (5h
1
) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.22(d, J = 8.9 Hz, 2H), 7.70(d, J = 8.9 Hz, 2H), 7.29-7.28(m, 1H), 7.02-7.01(m, 1H), 

2.31(s, 3H) 
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3-Bromo-2-(4-nitro-phenyl)-thiophene (5i)
4c 

Major regioisomer 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.28(d, J = 8.9 Hz, 2H), 7.85(d, J = 8.9 Hz, 2H), 7.41(d, J = 5.3 Hz, 1H), 7.12(d, J = 

5.3 Hz, 1H)
 

13
C NMR (75 MHz, CDCl3): 

δ ppm  147.1, 139.3, 135.5, 132.4, 129.6, 126.9, 123.8, 109.5 

 

Minor regioisomer 

4-Bromo-2-(4-nitro-phenyl)-thiophene (5i
1
) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.20(d, J = 8.9 Hz, 2H), 7.65(d, J = 8.9 Hz, 2H), 7.32(d, J = 1.4 Hz, 1H), 7.28 (d, J = 

1.3 Hz, 1H) 

Procedure for synthesis of 3-furan-2-yl-thiophene-2-carboxylic acid methyl ester (7)
 

In a 5 mL snap vial equipped with magnetic stirring bar the Eosin Y (0.01 equiv), thienyl 

diazonium tetrafluoroborate (1 equiv) and furan (10 equiv) were dissolved in dry DMSO 

(0.23 mmol/mL) and the resulting mixture was degassed by “pump-freeze-thaw” cycles (×2) 

via a syringe needle. The vial was irradiated through the vial’s plane bottom side using green 

LEDs. After 2 h of irradiation the reaction mixture was transferred to separating funnel, 

diluted with diethyl ether and washed with 15 mL of water. The aqueous layer was washed 

three times with diethyl ether. The combined organic layers were dried over MgSO4, filtered 

and concentrated in vacuum. Purification of the crude product was achieved by flash column 

chromatography using petrol ether/ethyl acetate as eluent. 

3-Furan-2-yl-thiophene-2-carboxylic acid methyl ester (7) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.55-7.53(m, 2H), 7.47-7.45(m, 2H), 6.52(dd, J = 3.5, 1.8 Hz, 1H), 3.89(s, 3H)
 

13
C NMR (75 MHz, CDCl3): 

δ ppm  162.2, 148.9, 142.1, 136.6, 130.2, 128.7, 124.0, 112.7, 111.9, 52.0 

HRMS: 

Calculated: 208.0194 



Metal-Free, Visible-Light-Mediated Direct C–H Arylation of Heteroarenes with 

Aryl Diazonium Salts 2 

 

 39 
 

Found: 208.0191 

Procedure for synthesis of [2,3']bis-thiophenyl-2'-carboxylic acid methyl ester (8)
 

In a 5 mL snap vial equipped with magnetic stirring bar the Eosin Y (0.01 equiv), thienyl 

diazonium tetrafluoroborate (1 equiv) and thiophene (10 equiv) were dissolved in dry DMSO 

(0.23 mmol/mL) and the resulting mixture was degassed by “pump-freeze-thaw” cycles (×2) 

via a syringe needle. The vial was irradiated through the vial’s plane bottom side using green 

LEDs. After 14 h of irradiation the reaction mixture was transferred to separating funnel, 

diluted with diethyl ether and washed with 15 mL of water. The aqueous layer was washed 

three times with diethyl ether. The combined organic layers were dried over MgSO4, filtered 

and concentrated in vacuum. Purification of the crude product was achieved by flash column 

chromatography using petrol ether/ethyl acetate as eluent. 

[2,3']Bis-thiophenyl-2'-carboxylic acid methyl ester (8) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.59(dd, J = 3.6, 1.1 Hz, 1H), 7.48(d, J = 5.2 Hz, 1H), 7.38(dd, J = 5.1, 1.1 Hz, 1H), 

7.25(d, J = 5.2 Hz, 1H), 7.10(dd, J = 5.1, 3.7Hz, 1H), 3.85(s, 3H)
 

13
C NMR (75 MHz, CDCl3): 

δ ppm  162.3, 140.1, 136.2, 131.4, 130.1, 128.8,127.1, 126.5,124.4,52.0 

Procedure for synthesis of 2,4'-dinitro-biphenyl (10)
 

In a 5 mL snap vial equipped with magnetic stirring bar the Eosin Y (0.01 equiv), aryl 

diazonium tetrafluoroborate (1 equiv) and nitrobenzene (5 equiv) were dissolved in dry 

DMSO (0.23 mmol/mL) and the resulting mixture was degassed by “pump-freeze-thaw” 

cycles (×2) via a syringe needle. The vial was irradiated through the vial’s plane bottom side 

using green LEDs. After 24 h of irradiation the reaction mixture was transferred to separating 

funnel, diluted with diethyl ether and washed with 15 mL of water. The aqueous layer was 

washed three times with diethyl ether. The combined organic layers were dried over MgSO4, 

filtered and concentrated in vacuum. Purification of the crude product was achieved by flash 

column chromatography using petrol ether/ethyl acetate as eluent. 
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2,4'-Dinitro-biphenyl (10)
24

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.30(d, J = 8.8 Hz,  2H), 8.01(dd, J = 8.1, 1.2 Hz, 1H)), 7.71(td, J = 7.5, 1.3 Hz, 1H) 

7.60(td, J = 7.8, 1.5 Hz, 1H) 7.49(d, J = 8.8 Hz, 2H), 7.44(dd, J=7.6, 1.5 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 
δ ppm  148.5, 147.6, 144.3, 134.5, 132.9, 131.6, 129.5, 128.9, 124.7, 123.8 

Radical Capturing Experiments 

The experimental procedure for capturing radicals with TEMPO 

1)  In a 5 mL snap vial equipped with magnetic stirring bar the Eosin Y (0.2 equiv), aryl 

diazonium tetrafluoroborate (1 equiv) and TEMPO (2 equiv) were dissolved in dry DMSO 

(0.23 mmol/mL) and the resulting mixture was degassed by “pump-freeze-thaw” cycles (×2) 

via a syringe needle. The vial was irradiated through the vial’s plane bottom side using green 

LEDs. After 2 h of irradiation, a TEMPO trapped compound 11 was detected by mass 

spectrometry. 

 

 

2,2,6,6-Tetramethyl-1-(4-nitrophenoxy)piperidine (11) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.14(d, J = 9.5 Hz,  2H), 7.4-7.1(m, 2H), 1.67-1.56(m, 5H), 1.46-1.42(m, 1H), 1.23(s, 

6H), 0.98(s, 6H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  168.6, 141.0, 125.5, 114.1, 60.8, 39.6, 32.2, 20.4, 16.8 
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2)  In a 5 mL snap vial equipped with magnetic stirring bar the Eosin Y (0.2 equiv), aryl 

diazonium tetrafluoroborate (1 equiv), furan (10 equiv) and TEMPO (2 equiv) were dissolved 

in dry DMSO (0.23 mmol/mL) and the resulting mixture was degassed by “pump-freeze-

thaw” cycles (×2) via a syringe needle. The vial was irradiated through the vial’s plane 

bottom side using green LEDs. After 2 h of irradiation, a TEMPO trapped compound 12 was 

detected by mass spectrometry. 
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1
H and 

13
C NMR spectra of selected compounds 

1
H NMR (300MHz, CDCl3) 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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Chapter 3 

3 Visible Light Photocatalytic Synthesis of Benzothiophenes 

 

The photocatalytic reaction of o-methylthio-arenediazonium salts with alkynes yields 

substituted benzothiophenes regioselectively through a radical annulation process. Green light 

irradiation of eosin Y initiates the photoredox catalysis. The scope of the reaction was 

investigated by using various substituted diazonium salts and different alkynes. 
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3.1 Introduction 

The synthesis of benzothiophene derivatives has attracted much attention in recent years 

due to their wide application in biology,
1
 pharmacy,

2
 catalysis,

3
 and material science.

4
 Several 

active drugs on the market contain the benzothiophene core: Zileuton is a potent and selective 

inhibitor of 5-lipoxygenase,
5
 while raloxifene

6
 and arzoxifene

7
 are selective estrogen receptor 

modulators, and antitubulin agents. 

Many elegant methods have been reported for the synthesis of substituted 

benzothiophenes.
8
 Most of these methodologies rely on two approaches: (a) direct arylation of 

the benzothiophene moiety, (b) electrophilic cyclization and coupling cyclization reactions to 

construct the benzothiophene ring.
8a,9

 Cyclization reactions are of more interest since they 

yield only the desired regioisomer. Typically, cyclization reactions are catalyzed by transition 

metals, such as palladium-catalyzed iodocyclizations,
10

 copper-mediated halocyclizations,
11

 

and gold promoted annulation reactions.
12

 Recently, we have reported a methodology for the 

arylation of heteroarenes using aryl diazonium salts in visible light photocatalysis.
13

 We used 

the reaction for the synthesis of 2-substituted benzothiophenes, but unfortunately mixtures of 

regioisomers were obtained in rather low yields (Scheme 1a). 

To overcome such disadvantages in the direct arylation of benzothiophene, we decided to 

explore an annulation method to construct the benzothiophene ring. Giuseppe Zanardi and his 

co-workers first reported the synthesis of benzothiophenes from the reaction of o-methyllthio-

arenediazonium salts with alkynes using transition metals as catalysts.
14

 In 2000, Larry G. 

Huffman, Jr et al. reported the synthesis of benzothiophenes from diazonium salts with 

stoichiometric amounts of FeSO4 and TiCl3.
15

 Recently Carl H. Schiesser et al. prepared a 

potent AT1 receptor antagonist through a cyclization process involving the addition of aryl 

radicals to alkynes, followed by intramolecular homolytic substitution at a sulfur or selenium 

heteroatom.
16

 

All of these annulation reactions typically require stoichiometric amounts of transition 

metals and rather harsh reaction conditions. Visible light photocatalysis is emerging as 

powerful tool for mild and selective organic transformations.
17

 We report here the visible light 

mediated synthesis of privileged benzothiophenes through a radical annulation process 

catalyzed by eosin Y at ambient conditions. 
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    (a) Photocatalytic direct arylation of benzothiophene yields a mixture of regioisomers 

 

    (b) Photocatalytic cyclization gives the benzothiophene ring as single isomer in good yield     

(this work) 

 

Scheme 1. Photocatalytic approaches to benzothiophenes. 

3.2 Results and Discussion 

Our initial studies focused on the reaction of the o-methylthio-benzenediazonium salt 1a 

with phenyl acetylene using eosin Y (3) as photoredox catalyst by irradiating at 530 nm. We 

examined the amount of catalyst loading (Table 1, entries 2 and 5) and different equivalents 

of alkyne (Table 1, entries 4, 5, and 6) on this photoreaction. To our delight, when 5 mol % of 

eosin Y and 5 equiv of alkyne were used in DMSO, the desired product was obtained in good 

yield (Table 1, entry 5). We also examined rose bengal as photocatalyst, giving the expected 

product in 59% yield (Table 1, entry 7). To prove the essential role of photocatalysis for the 

annulation reaction, experiments without green light irradiation or without dye under 

irradiation were performed. As expected, we observed only 15 and 12% product yield, 

respectively, after 36 h at 20 °C (Table 1, entries 8 and 9). 
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Table 1. Optimizing reaction conditions. 

 

Entry Conditions Yield
a
 

1 3 (1 mol %), 2a (2 equiv), DMSO 58 

2 3 (1 mol %), 2a (5 equiv), DMSO 64 

3 3 (1 mol %), 2a (5 equiv), DMF 56 

4 3 (5 mol %), 2a (2 equiv), DMSO 68 

5 3 (5 mol %), 2a (5 equiv), DMSO 75 

6 3 (5 mol %), 2a (10 equiv), DMSO 75 

7 rose bengal (5 mol %), 2a (5 equiv), DMSO 59 

8 3 (5 mol %), 2a (5 equiv), DMSO. no light 15
b 

9 no catalyst, 2a (5 equiv), DMSO 12
b 

a
Isolated yields after purification by flash column chromatography using 

silica gel. 
b
36 h irradiation time. 

 

Table 2. Photocatalyzed annulation of o-methylthio-arenediazonium salts with phenyl acetylene
a
. 

 

Entry Substrate R
1
 Alkyne Product Yield

b
 

1 1a H 2a 4a 75 

2 1b 4-Cl 2a 4b 70 

3 1c 4-Me 2a 4c 72 

4 1d 5-Cl 2a 4d 65 

5 1e 4-OMe 2a 4e 63 

6 1f 4-Br 2a 4f 72 

7 1g 4-OEt 2a 4g 76 

8 1h 4-F 2a 4h 62 

a
The reaction was performed with 1 (0.25 mmol), phenyl acetylene (5 equiv) 

and eosin Y (0.05 equiv) in 1.0 mL of DMSO. 
 b

Isolated yields after 

purification by flash column chromatography using silica gel. 
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Having optimized reaction conditions in hand, we investigated the reaction scope for o-

methylthio-arenediazonium salts with phenyl acetylene for the photo annulation reaction. All 

diazonium salts were prepared according to literature described procedures.
15

 O-methylthio-

arenediazonium salts bearing electron donating substituents (Table 2, entries 3, 5 and 7) 

reacted well in the photoreaction to afford the corresponding benzothiophenes in good yields. 

Diazonium salts bearing halogen substituents (Table 2, entries 2, 4, 6 and 8) gave the 

corresponding benzothiophenes with intact carbon-halogen bond. Such molecules are difficult 

to synthesize using conventional methods and very useful for further synthetic elaborations. 

Next we investigated the reaction scope of terminal alkynes in this photoreaction and the 

results are summarized in Table 3. Aromatic alkynes react smoothly and afford good yields 

(Table 3, entries 1-5). 3-Ethynylthiophene also reacted with 1a to give the corresponding 

product in 62% yield (Table 3, entry 9). Molecules of this type find applications in the 

synthesis of optoelectronic materials.  With ester, TMS, and n-butyl substituents on the 

alkynes good to moderate yields (Table 3, entries 6, 7, 8, and 10) were obtained. 

Table 3. Photocatalyzed annulation of o-methylthio-benzenediazonium salt with terminal alkynes
a
. 

 

Entry Substrate Alkyne R Product Yield
b
 

1 1a 2a Ph 4a 75 

2 1a 2b 4-NO2-C6H4 4i 81 

3 1a 2c 4-OMe-C6H4 4j 72 

4 1a 2d 3-CF3-C6H4 4k 62 

5 1a 2e 4-F-C6H4 4l 64 

6 1a 2f CO2Me 4m 60 

7 1a 2g TMS 4n 45 

8 1a 2h CO2Et 4o 65 

9 1a 2i 3-C6H3S 4p 62 

10 1a 2j n-butyl 4q 30 

a
The reaction was performed with 1a (0.25 mmol), terminal alkyne (5 equiv) 

and eosin Y (0.05 equiv) in 1.0 mL of DMSO. 
 b

Isolated yields after 

purification by flash column chromatography using silica gel. 
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Thionaphthene-2, 3-dialkyl esters are precursors for the synthesis of the corresponding 

cyclohydrazides of thionapthene, which are useful as indicators.
18

 The synthesis of 

thionapthene-2, 3-dialkyl esters is largely unexplored compared to other benzothiophene 

derivatives and only a few literature reports exist including a recent paper by P. G. Jones et al. 

describing an approach using palladium chemistry.
19

 We synthesized thionapthene 2, 3-

dialkyl esters by simply reacting dialkyl but-2-ynedioate with o-methylthio-arenediazonium 

salts using eosin Y in visible light. The results are summarized in Table 4. Different 

diazonium salts were converted with dialkyl but-2-ynedioate affording thionapthene-2, 3-

dialkyl esters in good to moderate yield. 

Table 4. Photocatalyzed annulation of o-methylthio-arenediazonium salts with dialkyl but-2-ynedioates
a
 

 

Entry Substrate R
1
 Alkyne R

2
 Product Yield

b
 

1 1a H 5a CO2Me 6a 61 

2 1a H 5b CO2Et 6b 50 

3 1h 4-F 5a CO2Me 6c 55 

4 1h 4-F 5b CO2Et 6d 42 

5 1g 
4-

OEt 
5a CO2Me 6e 53 

6 1f 4-Br 5a CO2Me 6f 55 

7 1f 4-Br 5b CO2Et 6g 40 

8 1d 5-Cl 5a CO2Me 6h 40 

9 1d 5-Cl 5b CO2Et 6i 51 

a
The reaction was performed with 1 (0.25 mmol), internal alkyne (5 equiv) 

and eosin Y (0.05 equiv) in 1.0 mL of DMSO. 
b
Isolated yields after 

purification by flash column chromatography using silica gel. 

Finally, we employed our methodology to prepare the key intermediate 7 of the raloxifene 

synthesis by excluding metal catalysts.
15

 We prepared 1e from the corresponding amine and 

reacted it with 2c using standard photocatalysis conditions to furnish 7 in 70% isolated yield 

(Scheme 2). 
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Scheme 2. Photocatalytic synthesis of the key intermediate 7 of Raloxifene. 

To investigate the mechanism of the photoreaction, we performed radical trapping 

experiments. TEMPO adducts 13 and 14 were identified by mass spectrometry supporting the 

radical pathway. In accordance to literature reports
13-14,20

 and the radical trapping experiments 

we propose a tentative mechanism in Scheme 3. Initially aryl radical 8 is formed by SET from 

the excited state of the photocatalyst to diazonium salt 1. Addition of 8 to the alkyne yields 

the corresponding vinyl radical 9, which then further cyclizes, to give sulphuranyl radical 10. 

Radical 10 is oxidized to cation 11 that transfers a methyl group to nucleophiles present in the 

reaction mixture by an SN2 process giving product 12. Radical 10 is either oxidized by the 

cation radical of the photocatalyst to complete the electron transfer cycle or it is oxidized by 

the diazonium salt in a chain transfer mechanism. Investigations to elucidate the reaction 

mechanism in more detail are ongoing. 

 

Scheme 3. Proposed reaction mechanism. 
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3.3 Conclusion 

In conclusion, the first photocatalytic synthesis of benzothiophenes from diazonium salts 

has been accomplished. The method provides mild and efficient access to different types of 

benzothiophenes in a manner that avoids metal catalysts and high temperatures. Instead, only 

green light and a catalytic amount of organic dye as a catalyst are required. The substrate 

scope is large and many products have the potential for further synthetic transformations as 

demonstrated by the synthesis of the key intermediate of the drug raloxifene. Experiments to 

investigate the mechanism of the reaction, to expand the scope of the reaction and apply it to 

the synthesis of other biologically active molecules are ongoing in our laboratory. 

3.4 Experimental Part 

General Information 

Proton NMR spectra were recorded on a Bruker Avance 300 MHz spectrometer in CDCl3 

solution with internal solvent signal peak at 7.26 ppm. Carbon NMR were recorded at 75 

MHz spectrometer in CDCl3 solution and referenced to the internal solvent signal at 77.00 

ppm. Proton NMR data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, 

d = doublet, t = triplet, q = quartet, quint = quintet, dd = doublet of doublets, ddd = doublet of 

doublet of doublets, td = triplet of doublets, qd = quartet of doublets, m = multiplet, br. s. = 

broad singlet), and coupling constants (Hz). All reactions were monitored by thin-layer 

chromatography using Merck silica gel plates 60 F254; visualization was accomplished with 

short wave UV light (254 nm) and/or staining with appropriate stains (anisaldehyde 

orthophosphomolybdic acid). Standard flash chromatography was performed using silica gel 

of particle size 40−63 μm. Eosin Y (spirit soluble, 99% dye content) was purchased from 

Sigma Aldrich. All other commercially available reagents and solvents were used without 

further purification. The green light irradiation was performed using high-power LEDs Philips 

LUXEON
®
 Rebel (1W, λ = 530±10 nm, 145 lm @700mA). 

General Procedures 

Procedure for synthesis of 6-substituted-1, 3-benzothiazol-2-amine
22 

A mixture of aromatic aniline (0.01 mol) and KSCN
 
(0.01 mol) in glacial acetic acid (10%) 

was stirred and cooled to 10 °C using ice cooled bath.
 
To this stirred solution bromine (0.01 

mol) was added drop wise at
 
such a rate to keep the temperature about 10 °C. After the 

addition of bromine stirring was continued for an additional 3 h
 
and then filtered, washed

 
with 
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acetic acid and dried. The precipitate obtained was dissolved in hot water and
 
neutralized with 

aqueous ammonia solution (25%) and then filtered,
 

washed with water and dried, 

recrystallized with benzene to
 
obtain 6-substituted-1, 3-benzothiazol-2-amine or purified by 

column chromatography using ethyl acetate/petrol ether (1:2) as eluent.  

 

Procedure for synthesis of 2-Thiomethyl-4-substituted aniline
23 

To the stirred solution of KOH (6 g) in 24 mL of water, benzothioazole (3 mmol) was 

added and refluxed for 17 h. After cooling to room temperature, MeI (3 mmol) was added 

drop wise and stirring was continued for an additional 1 h. The resultant reaction mixture 

extracted with diethyl ether (3 x 25 mL) combined organic layers dried over MgSO4, filtered 

and concentrated in vacuum. Purification of the crude product was achieved by flash column 

chromatography using petrol ether/ethyl acetate (15:1) as eluent. 

Procedure for the preparation of o-methylthio-arenediazonium tetrafluoroborates
24

 

The o-methylthio aniline (10 mmol) was dissolved in a mixture of 4 mL of distilled water 

and 3.4 mL of 50% hydrofluoroboric acid. The reaction mixture was cooled to 0 °C using ice-

water bath, and then sodium nitrite solution (0.69 g in 1.5 mL) was added drop wise. The 

resulting mixture was stirred for 40 min at 0-5 °C and the precipitate was collected by 

filtration and re-dissolved in minimum amount of acetone. Diethyl ether was added until 

precipitation of diazonium tetrafluoroborate, which is filtered, washed several times with 

diethyl ether and dried under vacuum. 

Photocatalytic reactions: 

General procedure for the reaction of o-methylthio-arenediazonium tetrafluoroborates 

with terminal alkynes 

 In a 5 mL snap vial equipped with magnetic stirring bar the eosin Y (0.05 equiv), o-

methylthio-arenediazonium tetrafluoroborate (1 equiv) and alkyne (5 equiv) were dissolved in 

dry DMSO (0.25 mmol/mL), and the resulting mixture was degassed by “pump-freeze-thaw” 

cycles (×3) via a syringe needle. The snap vial was irradiated through the vial’s plane bottom 

side using 530 nm LEDs. After 14 h of irradiation, the reaction mixture was transferred to 

separating funnel, diluted with diethyl ether and washed with 15 mL of water. The aqueous 
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layer was washed three times (3 x 15 mL) with diethyl ether. The combined organic phases 

were dried over MgSO4, filtered and concentrated in vacuum. Purification of the crude 

product was achieved by flash column chromatography using petrol ether/ethyl acetate as 

eluent. 

2-Phenylbenzo[b]thiophene (4a)
9a

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.84 (d, J = 7.4 Hz, 1H), 7.79 (dd, J = 7.0, 1.7 Hz, 1H), 7.73 (d, J = 7.2 Hz, 2H), 7.56 

(s, 1H), 7.49 – 7.40 (m, 2H), 7.40 – 7.28 (m, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 144.2, 140.6, 139.5, 134.3, 128.9, 128.2, 126.5, 124.5, 124.3, 123.5, 122.2, 119.4 

 

6-Chloro-2-phenylbenzo[b]thiophene (4b)
9a

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.81 (d, J = 1.8 Hz, 1H), 7.73 – 7.62 (m, 3H), 7.50 (s, 1H), 7.48 – 7.39 (m, 2H), 7.37 

(dt, J = 5.2, 2.1 Hz, 1H), 7.32 (dd, J = 8.5, 1.9 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  144.8, 140.4, 139.1, 133.8, 130.2, 129.0, 128.5, 126.4, 125.3, 124.3, 121.8, 118.9 

 

6-Methyl-2-phenylbenzo[b]thiophene (4c)
9a

 

 
1
H NMR (300 MHz, CDCl3):  
δ ppm  7.68 (d, J = 7.1 Hz, 2H), 7.63 (d, J = 8.1 Hz, 1H), 7.60 (s, 1H), 7.48 (s, 1H),   

7.44 - 7.35 (m, 2H), 7.34 – 7.25 (m, 1H), 7.15 (dd, J = 8.1, 1.0 Hz, 1H), 2.45 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  143.0, 139.8, 138.4, 134.4, 134.3, 128.9, 128.0, 126.3, 126.2, 123.2, 122.1, 119.2, 21.6 

 

5-Chloro-2-phenylbenzo[b]thiophene (4d) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.81 – 7.63 (m, 4H), 7.50 – 7.33 (m, 4H), 7.30 – 7.25 (m, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  146.3, 141.7, 137.5, 133.8, 130.7, 129.0, 128.9, 128.6, 126.5, 126.4, 124.7, 123.2, 

123.0, 118.6 
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6-Methoxy-2-phenylbenzo[b]thiophene (4e)
25

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.74 – 7.62 (m, 3H), 7.47 (s, 1H), 7.46 – 7.38 (m, 2H), 7.37 – 7.27 (m, 2H), 6.99 (dd, 

J = 8.7, 2.4 Hz, 1H), 3.89 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  141.5, 140.9, 134.7, 134.4, 128.9, 127.8, 126.1, 124.2, 118.9, 114.5, 104.8, 55.5 

 

6-Bromo-2-phenylbenzo[b]thiophene (4f) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.96 (d, J = 1.6 Hz, 1H), 7.70 (d, J = 7.0 Hz, 2H), 7.62 (d, J = 8.5 Hz, 1H), 7.49 (s, 

1H), 7.45 (dd, J = 12.7, 4.5 Hz, 3H), 7.40 – 7.32 (m, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  144.9, 140.9, 139.4, 133.7, 129.0, 128.5, 127.9, 126.4, 124.7, 124.6, 118.9, 118.0 

HRMS: 

Calculated: 287.9608 

Found: 287.9610 

 

6-Ethoxy-2-phenylbenzo[b]thiophene (4g) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.78 – 7.54 (m, 3H), 7.46 (s, 1H), 7.45 – 7.38 (m, 2H), 7.36 – 7.27 (m, 2H), 6.99 (dd, 

J = 8.7, 2.3 Hz, 1H), 4.11 (q, J = 7.0 Hz, 2H), 1.47 (t, J = 7.0 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  156.7, 141.4, 140.9, 134.6, 134.5, 128.9, 127.7, 126.1, 124.2, 119.0, 114.9, 105.5, 

63.8, 14.8 

HRMS: 

Calculated: 254.0765 

Found: 254.0769 

 

6-Fluoro-2-phenylbenzo[b]thiophene (4h)
9a

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.77 – 7.62 (m, 3H), 7.56 – 7.47 (m, 2H), 7.48 – 7.39 (m, 2H), 7.39 – 7.31 (m, 1H),  

7.11 (td, J = 8.9, 2.4 Hz, 1H) 
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13
C NMR (75 MHz, CDCl3): 

δ ppm  160.4 (d, J = 244.2 Hz), 143.9 (d, J = 4.1 Hz), 140.4 (d, J = 10.2 Hz), 137.1, 134.0, 

129.0, 128.3, 126.3, 124.5 (d, J = 8.9 Hz), 118.8, 113.5 (d, J = 24.2 Hz), 108.4 (d, J = 25.6 

Hz) 

 

2-(4-Nitrophenyl)benzo[b]thiophene (4i)
26

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.23 (d, J = 8.9 Hz, 2H), 7.87 – 7.73 (m, 4H), 7.66 (s, 1H), 7.43 – 7.28 (m, 2H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  147.1, 141.1, 140.5, 140.2, 140.2, 126.7, 125.5, 125.0, 124.3, 124.2, 122.4. 122.4 

 

2-(4-Methoxyphenyl)benzo[b]thiophene (4j)
26

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.81 (d, J = 7.8 Hz, 1H), 7.78 – 7.70 (m, 1H), 7.65 (d, J = 8.8 Hz, 2H), 7.43 (s, 1H), 

7.39 – 7.26 (m, 2H), 6.96 (d, J = 8.8 Hz, 2H), 3.86 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  159.8, 144.0, 140.9, 139.2, 127.7, 127.0, 124.4, 123.9, 123.2, 122.2, 118.2, 114.3, 55.4 
 

2-(3-(Trifluoromethyl)phenyl)benzo[b]thiophene (4k)
9a

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm   7.96 (s, 1H), 7.91 – 7.83 (m, 2H), 7.81 (dd, J = 6.0, 2.1 Hz, 1H), 7.66 – 7.50 (m, 3H), 

7.46 – 7.30 (m, 2H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  142.3, 140.5, 139.6, 135.1, 131.5(q, J = 32.5 Hz), 129.6, 129.5, 124.9, 124.8, 124.7 (q, 

J = 3.7 Hz), 123.9, 123.1 (q, J = 3.7 Hz), 122.3, 120.6 

 

2-(4-Fluorophenyl)benzo[b]thiophene (4l)
27

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.83 (dd, J = 8.1, 0.9 Hz, 1H), 7.78 (dd, J = 6.9, 1.9 Hz, 1H), 7.73 – 7.60 (m, 2H), 7.47 

(s, 1H), 7.35 (m, 2H), 7.13 (t, J = 8.7 Hz, 2H) 
 13

C NMR (75 MHz, CDCl3):
 

δ ppm  162.7 (d, J = 251.6 Hz), 143.0, 140.6, 139.4, 130.5 (d, J = 3.5 Hz), 128.1 (d, J = 8.1 

Hz), 124.6, 124.4, 123.5, 122.2, 119.4 (d, J = 1.1 Hz), 115.9 (d, J = 21.9 Hz) 
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Methyl benzo[b]thiophene-2-carboxylate (4m)
28

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.07 (s, 1H), 7.87 (ddd, J = 7.8, 3.6, 1.6 Hz, 2H), 7.56 – 7.34 (m, 2H), 3.95 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  163.2, 142.2, 138.7, 133.3, 130.6, 126.9, 125.5, 124.9, 122.7, 52.5 

 

Benzo[b]thiophen-2-yltrimethylsilane (4n)
29

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.89 (dd, J = 6.8, 2.1 Hz, 1H), 7.82 (dd, J = 6.5, 2.5 Hz, 1H), 7.48 (s, 1H), 7.39 – 7.27 

(m, 2H), 0.39 (s, 9H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  143.5, 142.2, 141.0, 130.8, 124.1, 124.0, 123.4, 122.2, -0.3 

 

Ethyl benzo[b]thiophene-2-carboxylate (4o)
30

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.06 (s, 1H), 7.94 – 7.80 (m, 2H), 7.56 – 7.34 (m, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.42 

(t, J = 7.1 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  162.8, 142.1, 138.7, 133.8, 130.3, 126.8, 125.5, 124.8, 122.7, 61.6, 14.3 
 

2-(Thiophen-3-yl)benzo[b]thiophene (4p)
30

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm   7.81 (d, J = 7.3 Hz, 1H), 7.76 (dd, J = 6.9, 1.8 Hz, 1H), 7.52 (dd, J = 2.8, 1.4 Hz, 1H), 

7.42 (qd, J = 5.1, 2.2 Hz, 3H), 7.33 (tt, J = 8.7, 3.6 Hz, 2H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  140.4, 139.0, 138.9, 135.7, 126.5, 126.1, 124.5, 124.2, 123.4, 122.2, 121.3, 119.3 

 

2-Butylbenzo[b]thiophene (4q)
31
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1
H NMR (300 MHz, CDCl3):  

δ ppm   7.76 (d, J = 9.0 Hz, 1H), 7.66 (d, J = 7.3 Hz, 1H), 7.33-7.22 (m, 1H), 7.27 – 7.21 (m, 

1H), 7.00 (s, 1H), 2.91 (t, J = 8.0 Hz, 2H), 1.88 – 1.63 (m, 2H), 1.50-1.37 (dq, J = 14.5, 7.3 

Hz, 2H), 0.96 (t, J = 7.3 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  146.8, 140.2, 139.3, 124.0, 123.3, 122.6, 122.1, 120.4, 33.3, 30.5, 22.2, 13.8 

General procedure for the reaction of o-methylthio-arenediazonium tetrafluoroborates 

with internal alkynes 

In a 5 mL snap vial equipped with magnetic stirring bar the eosin Y (0.05 equiv), o-

methylthio-arenediazonium tetrafluoroborate (1 equiv) and internal alkyne (5 equiv) were 

dissolved in dry DMSO (0.25 mmol/mL), and the resulting mixture was degassed by “pump-

freeze-thaw” cycles (×3) via a syringe needle. The snap vial was irradiated through the vial’s 

plane bottom side using 530 nm LEDs. After 14 h of irradiation, the reaction mixture was 

transferred to separating funnel, diluted with diethyl ether and washed with 15 mL of water. 

The aqueous layer was washed three times (3 x 15 mL) with diethyl ether. The combined 

organic phases were dried over MgSO4, filtered and concentrated in vacuum. Purification of 

the crude product was achieved by flash column chromatography using petrol ether/ethyl 

acetate (30:1) as eluent. 

Dimethyl benzo[b]thiophene-2, 3-dicarboxylate (6a)
32

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.93 (dd, J = 6.5, 2.4 Hz, 1H), 7.85 (dd, J = 6.7, 2.4 Hz, 1H), 7.56 – 7.40 (m, 2H), 4.03 

(s, 3H), 3.95 (s, 3H) 
 13

C NMR (75 MHz, CDCl3): 

δ ppm 164.9, 162.2, 140.3, 136.7, 133.2, 133.1, 127.4, 125.6, 124.5, 122.5, 52.9, 52.8 

HRMS: 

Calculated: 250.030 

Found: 250.0299 

 

Diethyl benzo[b]thiophene-2, 3-dicarboxylate (6b) 
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1
H NMR (300 MHz, CDCl3):  

δ ppm  7.98 – 7.89 (m, 1H), 7.89 – 7.79 (m, 1H), 7.54 – 7.38 (m, 2H), 4.50 (q, J = 7.2 Hz, 

2H), 4.41 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 5.7 Hz, 3H), 1.40 (t, J = 5.7 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  164.53 , 161.8, 140.3, 136.8, 133.4, 133.2, 127.3, 125.5, 124.4, 122.5, 62.1, 61.9, 14.1 

HRMS: 

Calculated: 278.0613 

Found: 278.0615 

 

Dimethyl 6-fluorobenzo[b]thiophene-2, 3-dicarboxylate (6c) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.90 (dd, J = 9.0, 5.1 Hz, 1H), 7.53 (dd, J = 8.4, 2.3 Hz, 1H), 7.22 (td, J = 8.9, 2.4 Hz, 

1H), 4.02 (s, 3H), 3.94 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  164.2 (d, J = 61.8 Hz), 161.1 (d, J = 98.5 Hz), 141.3 (d, J = 4.6 Hz), 133.3 (d, J = 1.4 

Hz), 132.9 (d, J = 3.6 Hz), 132.7, 126.1 (d, J = 9.5 Hz), 115.4, 115.1, 108.5 (d, J = 25.7 Hz), 

53.0, 52.9 
HRMS: 

Calculated: 268.0206 

Found: 268.0203 

 

Diethyl 6-fluorobenzo[b]thiophene-2, 3-dicarboxylate (6d) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.90 (dd, J = 9.0, 5.1 Hz, 1H), 7.52 (dd, J = 8.4, 2.3 Hz, 1H), 7.21 (td, J = 8.9, 2.4 Hz, 

1H), 4.49 (q, J = 7.2 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 5.5 Hz, 3H), 1.39 (t, J = 

5.5 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  164.0 (d, J = 39.1 Hz), 160.9 (d, J = 74.9 Hz), 141.4 (d, J = 10.6 Hz), 133.4 (d, J = 1.4 

Hz), 133.3 (d, J = 4.3 Hz), 132.8, 126.0 (d, J = 9.5 Hz), 115.3, 115.0, 108.5 (d, J = 25.6 Hz), 

62.2, 62.1, 14.1 

HRMS: 

Calculated: 296.0519 

Found: 296.0517 

 

Dimethyl 6-ethoxybenzo[b]thiophene-2, 3-dicarboxylate (6e) 
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1
H NMR (300 MHz, CDCl3):  

δ ppm   7.75 (d, J = 9.0 Hz, 1H), 7.23 (d, J = 2.3 Hz, 1H), 7.05 (dd, J = 9.0, 2.3 Hz, 1H), 4.09 

(q, J = 7.0 Hz, 2H), 4.01 (s, 3H), 3.91 (s, 3H), 1.45 (t, J = 7.0 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 165.2, 162.1, 159.1, 142.4, 133.4, 130.6, 129.5, 125.2, 116.9, 104.5, 63.9, 52.8, 52.7, 

14.6 
HRMS: 

Calculated: 294.0562 

Found: 294.0567 

 

Dimethyl 6-bromobenzo[b]thiophene-2, 3-dicarboxylate (6f) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.00 (d, J = 1.7 Hz, 1H), 7.80 (d, J = 8.7 Hz, 1H), 7.56 (dd, J = 8.7, 1.7 Hz, 1H), 4.01 

(s, 3H), 3.95 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  164.3, 161.8, 141.4, 135.5, 133.8, 132.6, 129.3, 125.6, 125.0, 121.8, 53.1, 53.0 

HRMS: 

Calculated: 327.9405 

Found: 327.9408 

 

Diethyl 6-bromobenzo[b]thiophene-2, 3-dicarboxylate (6g) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.00 (d, J = 1.7 Hz, 1H), 7.80 (d, J = 8.7 Hz, 1H), 7.56 (dd, J = 8.7, 1.7 Hz, 1H), 4.48 

(q, J = 7.2 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 4.6 Hz, 3H), 1.39 (t, J = 4.6 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  164.0, 161.4, 141.4, 135.6, 134.1, 132.7, 129.2, 125.6, 125.0, 121.6, 62.3, 62.1, 14.1 
HRMS: 

Calculated: 355.9718 

Found: 355.9722 

 

Dimethyl 5-chlorobenzo[b]thiophene-2, 3-dicarboxylate (6h) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.96 (d, J = 2.0 Hz, 1H), 7.77 (d, J = 8.6 Hz, 1H), 7.45 (dd, J = 8.7, 2.0 Hz, 1H), 4.02 

(s, 3H), 3.95 (s, 3H) 
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13
C NMR (75 MHz, CDCl3): 

δ ppm  164.1, 161.8, 138.1, 137.7, 135.5, 132.2, 131.8, 128.0, 124.1, 123.6, 53.1, 52.9 

HRMS: 

Calculated: 283.9910 

Found: 283.9914 

 

Diethyl 5-chlorobenzo[b]thiophene-2, 3-dicarboxylate (6i) 

 
1
H NMR (300 MHz, CDCl3):  
δ ppm  7.96 (d, J = 1.9 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.44 (dd, J = 8.7, 2.0 Hz, 1H), 4.49 

(q, J = 7.1 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 5.5 Hz, 3H), 1.39 (t, J = 5.5 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  163.8, 161.5, 138.1, 137.9, 135.9, 132.1, 131.9, 127.9, 124.1, 123.5, 62.4, 62.1, 14.1 

HRMS: 

Calculated: 312.0223 

Found: 312.0222 

Procedure for synthesis of core molecule for Raloxifene 

In a 5 mL snap vial equipped with magnetic stirring bar the eosin Y (0.05 equiv), 4-

methoxy-2-(methylthio)-benzenediazonium salt (1 equiv) and 1-ethynyl-4-methoxybenzene 

(5 equiv) were dissolved in dry DMSO (0.25 mmol/mL), and the resulting mixture was 

degassed by “pump-freeze-thaw” cycles (×3) via a syringe needle. The snap vial was 

irradiated through the vial’s plane bottom side using 530 nm LEDs. After 14 h of irradiation, 

the reaction mixture was transferred to separating funnel, diluted with diethyl ether and 

washed with 15 mL of water. The aqueous layer was washed three times (3 x 15 mL) with 

diethyl ether. The combined organic phases were dried over MgSO4, filtered and concentrated 

in vacuum. Purification of the crude product was achieved by flash column chromatography 

using petrol ether/ethyl acetate (80:1) as eluent. 

6-Methoxy-2-(4-methoxyphenyl)benzo[b]thiophene (7)
15

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.67 – 7.52 (m, 3H), 7.34 (s, 1H), 7.29 (d, J = 2.3 Hz, 1H), 7.02 – 6.84 (m, 3H), 3.88 

(s, 3H), 3.85 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  159.4, 157.2, 141.5, 140.6, 134.9, 127.4, 127.3, 123.9, 117.7, 114.3, 114.3, 104.9, 

55.6, 55.4 
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Radical Capturing Experiments 

The experimental procedure for capturing radicals with TEMPO 

1)  In a 5 mL snap vial equipped with magnetic stirring bar the eosin Y (0.5 equiv), o-

methylthio-arenediazonium tetrafluoroborate (1 equiv) and TEMPO (2 equiv) were dissolved 

in dry DMSO (0.25 mmol/mL) and the resulting mixture was degassed by “pump-freeze-

thaw” cycles (×2) via a syringe needle. The vial was irradiated through the vial’s plane 

bottom side using green LEDs. After 4 h of irradiation, a TEMPO trapped compound 13 was 

detected by mass spectra. 

 

 

2)   In a 5 mL snap vial equipped with magnetic stirring bar the eosin Y (0.5 equiv), o-

methylthio-arenediazonium tetrafluoroborate (1 equiv), phenyl acetylene (5 equiv) and 

TEMPO (2 equiv) were dissolved in dry DMSO (0.25 mmol/mL) and the resulting mixture 

was degassed by “pump-freeze-thaw” cycles (×2) via a syringe needle. The vial was irradiated 

through the vial’s plane bottom side using green LEDs. After 4 h of irradiation, a TEMPO 

trapped compound 14 was detected by mass spectra. 
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1
H and 

13
C NMR spectra of selected compounds 

1
H NMR (300MHz, CDCl3) 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3) 

 



Visible Light Photocatalytic Synthesis of Benzothiophenes 3 

 

 75 
 

3.5  References 

(1) (a) Gai, Z.; Yu, B.; Wang, X.; Deng, Z.; Xu, P. Microbiology 2008, 154, 3804. (b) 

Konishi, J.; Onaka, T.; Ishii, Y.; Suzuki, M. FEMS Microbiol. Lett. 2000, 187, 151. (c) Yun, 

C.; You, J.; Kim, J.; Huh, J.; Kim, E. J. Photochem. Photobiol., C 2009, 10, 111. 

(2) (a) Malamas, M. S.; Sredy, J.; Moxham, C.; Katz, A.; Xu, W.; McDevitt, R.; Adebayo, 

F. O.; Sawicki, D. R.; Seestaller, L.; Sullivan, D.; Taylor, J. R. J. Med. Chem. 2000, 43, 1293. 

(b) Ellingboe, J. W.; Alessi, T. R.; Dolak, T. M.; Nguyen, T. T.; Tomer, J. D.; Guzzo, F.; 

Bagli, J. F.; McCaleb, M. L. J. Med. Chem. 1992, 35, 1176. 

(3) (a) Tietze, L. F.; Lohmann, J. K.; Stadler, C. Synlett 2004, 2004, 1113. (b) Tietze, L. 

F.; Thede, K.; Schimpf, R.; Sannicolo, F. Chem. Commun. 2000, 583. (c) F. Tietze, L.; Thede, 

K. Chem. Commun. 1999, 1811. 

(4) (a) Fouad, I.; Mechbal, Z.; Chane-Ching, K. I.; Adenier, A.; Maurel, F.; Aaron, J.-J.; 

Vodicka, P.; Cernovska, K.; Kozmik, V.; Svoboda, J. J. Mater. Chem. 2004, 14, 1711. (b) 

Seed, A. J.; Toyne, K. J.; Goodby, J. W.; Hird, M. J. Mater. Chem. 2000, 10, 2069. (c) Pu, S.; 

Li, M.; Fan, C.; Liu, G.; Shen, L. J. Mol. Struct. 2009, 919, 100. (d) Jung, K. H.; Kim, K. H.; 

Lee, D. H.; Jung, D. S.; Park, C. E.; Choi, D. H. Org. Electron. 2010, 11, 1584. 

(5) (a) Hsiao, C.-N.; Kolasa, T. Tetrahedron Lett. 1992, 33, 2629. (b) Rossi, A.; Pergola, 

C.; Koeberle, A.; Hoffmann, M.; Dehm, F.; Bramanti, P.; Cuzzocrea, S.; Werz, O.; Sautebin, 

L. Br. J. Pharmacol. 2010, 161, 555. 

(6)  (a) Qin, Z.; Kastrati, I.; Chandrasena, R. E. P.; Liu, H.; Yao, P.; Petukhov, P. A.; 

Bolton, J. L.; Thatcher, G. R. J. J. Med. Chem. 2007, 50, 2682. (b) Schopfer, U.; Schoeffter, 

P.; Bischoff, S. F.; Nozulak, J.; Feuerbach, D.; Floersheim, P. J. Med. Chem. 2002, 45, 1399. 

(7)  (a) Liu, H.; Liu, J.; van Breemen, R. B.; Thatcher, G. R.; Bolton, J. L. Chem. Res. 

Toxicol. 2005, 18, 162. (b) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45, 

2670. 

(8)  (a) Godoi, B.; Schumacher, R. F.; Zeni, G. Chem. Rev. 2011, 111, 2937. (b) Lyons, T. 

W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (c) Alberico, D.; Scott, M. E.; Lautens, M. 

Chem. Rev. 2007, 107, 174. (d) Zhang, T. Y.; O'Toole, J.; Proctor, C. S. Sulfur reports 1999, 

22, 1. 

(9)  (a) Sun, L.-L.; Deng, C.-L.; Tang, R.-Y.; Zhang, X.-G. J. Org. Chem. 2011, 76, 7546. 

(b) Gabriele, B.; Mancuso, R.; Lupinacci, E.; Veltri, L.; Salerno, G.; Carfagna, C. J. Org. 

Chem. 2011, 76, 8277. 



Visible Light Photocatalytic Synthesis of Benzothiophenes 3 
 

76  

 

(10)  (a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127. (b) Hessian, K. O.; 

Flynn, B. L. Org. Lett. 2003, 5, 4377. 

(11) Lu, W.-D.; Wu, M.-J. Tetrahedron 2007, 63, 356. 

(12) Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem., Int. Ed. 2006, 45, 4473. 

(13) Hari, D. P.; Schroll, P.; König, B. J. Am. Chem. Soc. 2012, 134, 2958. 

(14) Leardini, R.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Chem. Soc., Chem. Commun. 

1985, 1390. 

(15) McDonald, F. E.; Burova, S. A.; Huffman Jr, L. G. Synthesis 2000, 2000, 970. 

(16) Staples, M. K.; Grange, R. L.; Angus, J. A.; Ziogas, J.; Tan, N. P. H.; Taylor, M. K.; 

Schiesser, C. H. Org. Biomol. Chem. 2011, 9, 473. 

(17) (a) Rueping, M.; Zhu, S.; Koenig, R. M. Chem. Commun. 2011, 47, 8679. (b) Cano-

Yelo, H.; Deronzier, A. J. Chem. SOC., Faraday Trans. 1 1984, 80, 3011. (c) Cano-Yelo, H.; 

Deronzier, A. J.  Chem.  Soc.  Perkin  Trans.  2 1984, 1093. (d) Hari, D. P.; Konig, B. Org. 

Lett. 2011, 13, 3852. (e) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. 

Am. Chem. Soc. 2011, 133, 18566. (f) Larraufie, M.-H.; Pellet, R.; Fensterbank, L.; Goddard, 

J.-P.; Lacote, E.; Malacria, M.; Ollivier, C. Angew. Chem. Int. Ed. 2011, 50, 4463. (g) 

McNally, A.; Prier, C. K.; MacMillan, D. W. C. Science 2011, 334, 1114. (h) Neumann, M.; 

Földner, S.; König, B.; Zeitler, K. Angew. Chem. Int. Ed. 2011, 50, 951. (i) Nicewicz, D. A.; 

MacMillan, D. W. C. Science 2008, 322, 77. (j) Shih, H.-W.; Wal, M. N. V.; Grange, R. L.; 

MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 13600. (k) Schroll, P.; Hari, D. P.; König, 

B. ChemistryOpen 2012, 1, 130. (l) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 

6828. (m) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.  (n) 

Teply, F. Collect. Czech. Chem. Commun. 2011, 76, 859. (o) Ye, Y.; Sanford, M. S. J. Am. 

Chem. Soc. 2012, 134, 9034. (p) Lu, Z.; Shen, M.; Yoon, T. P. J. Am. Chem. Soc. 2011, 133, 

1162. (q) Ischay, M. A.; Lu, Z.; Yoon, T. P. J. Am. Chem. Soc. 2010, 132, 8572. (r) yoon, T. 

P.; ischay, M. A.; Du, J. Nature Chem. 2010, 2, 527. 

(18) Huntress, E. H.; Hearon, W. M. J. Am. Chem. Soc. 1941, 63, 2762. 

(19)  icente,  .  Abad,  . A.  L pez- icol s, R.-M. a.; Jones, P. G. Organometallics 2011, 

30, 4983. 

(20) (a) Islam, S. D.-M.; Konishi, T.; Fujitsuka, M.; Ito, O.; Nakamura, Y.; Usui, Y. 

Photochemistry and Photobiology 2000, 71, 675. (b) Padon, K. S.; Scraton, A. B. J. Polym. 

Sci., Part A: Polym. Chem. 2001, 39, 715. (c) Tehfe, M.-A.; Lalevée, J.; Telitel, S.; Contal E.; 

Dumur, F.; Gigmes, D.; Bertin, D.; Nechab, M.; Graff, B.; Morlet-Savary, F.; Fouassier, J.-P. 

Macromolecules 2012, 45, 4454. 



Visible Light Photocatalytic Synthesis of Benzothiophenes 3 

 

 77 
 

(21) Shinde, P. S.; Shinde, S. S.; Renge, A. S.; Patil, G. H.; Rode, A. B.; Pawar, R. R. Lett. 

Org. Chem. 2009, 6, 8. 

(22) Rana, A.; Siddiqui, N.; Khan, S. A.; Ehtaishamul Haque, S.; Bhat, M. A. Eur. J. Med. 

Chem. 2008, 43, 1114. 

(23) Hanson, P.; Jones, J. R.; Taylor, A. B.; Walton, P. H.; Timms, A. W. J. Chem. Soc., 

Perkin Trans. 2 2002, 1135. 

(24) Jiang, Y.; Qin, Y.; Xie, S.; Zhang, X.; Dong, J.; Ma, D. Org. Lett. 2009, 11, 5250. 

(25) Albertazzi, A.; Leardini, R.; Pedulli, G. F.; Tundo, A.; Zanardi, G. J. Org. Chem. 

1984, 49, 4482. 

(26) Baghbanzadeh, M.; Pilger, C.; Kappe, C. O. J. Org. Chem. 2011, 76, 8138. 

(27) Li gault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. J. Org. Chem. 2009, 

74, 1826. 

(28) Pessoa-Mahana, H.; Johann, K. C.; Nadia, R. H.; Recabarren-Gajardo, G.; Claudio, S. 

B.; Araya-Maturana, R.; Pessoa-Mahana, C. D. Heterocycles 2008, 75, 1913. 

(29) Muranaka, A.; Yasuike, S.; Liu, C.-Y.; Kurita, J.; Kakusawa, N.; Tsuchiya, T.; Okuda, 

M.; Kobayashi, N.; Matsumoto, Y.; Yoshida, K.; Hashizume, D.; Uchiyama, M. J. Phys. 

Chem. A 2008, 113, 464. 

(30) Guilarte, V.; Fernández-Rodríguez, M. A.; García-García, P.; Hernando, E.; Sanz, R. 

Org. Lett. 2011, 13, 5100. 

(31) Vechorkin, O.; Proust, V.; Hu, X. Angew. Chem., Int. Ed. 2010, 49, 3061. 

(32) Montevecchi, P. C.; Navacchia, M. L. Phosphorus, Sulfur Silicon Relat. Elem. 2000, 

166, 201. 

 

 

 

 

 

 

 

 

 

 

 

 



Visible Light Photocatalytic Synthesis of Benzothiophenes 3 
 

78  

 

 

 



Synthesis of Phenanthrene Derivatives by Visible Light Photocatalysis 4 

 

 79 
 

Chapter 4 

4 Synthesis of Phenanthrene Derivatives by Visible Light Photocatalysis 

 

Phenanthrenes have been synthesized from their corresponding biaryl diazonium salts and 

alkynes using 2 mol% eosin Y as photocatalyst under green light irradiation via a cascade 

radical addition and cyclization sequence. This reaction exhibits a wide range of functional 

group tolerance, broad substrate scope and is an attractive alternative to the transition metal 

mediated [4+2] benzannulation reaction. 
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4.1 Introduction 

Phenanthrenes are important structural motifs in organic chemistry and they are found in 

natural products, in drugs and organic materials.
1
 Many methods have been developed for the 

synthesis of phenanthrenes, which can be divided into three types: Carbocyclic ring 

expansion, intramolecular cycloaddition, and intermolecular cycloaddition.
2
 A common 

synthetic approach to phenanthrenes is the photocyclization of stilbenes by UV light 

irradiation followed by oxidation.
3
 The use of visible light to induce the reaction has 

advantages, such as easier available light sources and was demonstrated by several research 

groups.
4
 

Cano-Yelo and Deronzier first reported the synthesis of phenanthrenes using an 

intramolecular Pschorr reaction.
5
 Zanardi and co-workers synthesized phenanthrenes from the 

corresponding diazonum salts in pyridine at 0 °C.
6
 Recently, Nakamura and co-workers 

reported the synthesis of phenanthrenes by an iron-catalysed [4+2] benzannulation reaction of 

alkynes with biaryl Grignard reagent.
7
 However, all of these methods still require the use of 

transition metal catalyst to mediate the reaction. We report now the synthesis of 

phenanthrenes from biaryl diazonium salts and alkynes using visible light and the organic dye 

eosin Y as photoredox catalyst.
8
 

4.2 Results and Discussion 

The reaction between diazonium salt 1a and phenyl acetylene 2a was conducted to 

optimize the reaction conditions, and the obtained results are summarized in Table 1. We 

examined a set of photoredox catalysts (Table 1, entries 1-5), different equivalents of phenyl 

acetylene (Table 1, entries 1, 6, and 7), and different solvents (Table 1, entries 7, 11, 12, and 

13).  Furthermore, we also varied the catalyst loading (Table 1, entries 1 and 8) and the 

reaction times (Table 1, entries 7 and 10). Finally, using 2 mol % of eosin Y, 10 equiv. of 

phenyl acetylene in DMSO gave optimal results after 2 h of green light irradiation. To show 

the significance of the photoreaction, we carried out control experiments without eosin Y and 

without green light. As expected, we observed 7 and 2 % of product yield, respectively (Table 

1, entries 14 and 15). 
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Table 1. Optimisation of the reaction conditions. 

 

Entry Conditions Yield (%)
a
 

1 3a (2 mol%), 2a (5 equiv), DMSO, 2 h 73 

2 3b (2 mol%), 2a (5 equiv), DMSO, 2 h 73 

3 3c (2 mol%), 2a (5 equiv), DMSO, 2 h 73 

4 3d (2 mol%), 2a (5 equiv), DMSO, 2 h 71 

5 3e (2 mol%), 2a (5 equiv), DMSO, 2 h 71 

6 3a (2 mol%), 2a (2 equiv), DMSO, 2 h 55 

7 3a (2 mol%), 2a (10 equiv), DMSO, 2 h 82 

8 3a (5 mol%), 2a (5 equiv), DMSO, 2 h 73 

9 3a (2 mol%), 2a (5 equiv), DMSO, 4 h 71 

10 3a (2 mol%), 2a (10 equiv), DMSO, 4 h 82 

11 3a (2 mol%), 2a (10 equiv), DMF, 2 h 52 

12 3a (2 mol%), 2a (10 equiv), CH3CN, 2 h 38 

13 3a (2 mol%), 2a (10 equiv), MeOH, 2 h 66 

14 without 3a, 2a (10 equiv), DMSO, 2 h 7 

15 3a (2 mol%), without light, 2a (10 equiv), DMSO, 2 h 2 

           a
GC yields. 
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Having optimized reaction conditions in hand, the scope of the reaction towards biaryl 

diazonium salts was studied and the obtained results are summarized in Table 2. Biaryl 

diazonium salts bearing electron withdrawing and donating groups under went smoothly in 

this reaction to afford the corresponding products in good to excellent yields (Table 1, entries 

3, 5, and 8). Notably, biaryl diazonium salts bearing chloro, bromo substitutents gave the 

corresponding phenanthrenes with an intact carbon-halogen bond (Table 1, entries 4 and 9). 

Such moieties are difficult to prepare using traditional methods and useful for further 

synthesis.
7
  

Table 2. Scope of biaryl diazonium salts
a
. 

 

Entry Substrate Product Yield (%)
b
 

 

1 

 

  

 

82 

 

2 

 

  

 

92 

 

3 

 

  

 

85 

 

4 
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5 

 

  

 

90 

 

6 

 

  

 

61 

 

7 

 

  

 

75 

 

8 

 

  

74 

 

9 

 

  

 

93 

 a
The reaction was performed with 1 (0.25 mmol), phenyl acetylene 2a (10 

equiv), and eosin Y (0.02 equiv) in DMSO (0.25 M). 
b
Isolated yields after 

purification by flash column chromatography using silica gel. 

Next we investigated the scope of the reaction towards terminal alkynes in this 

photoreaction and the results are shown in Table 3. Aromatic alkynes bearing electron 

withdrawing and neutral groups are reacted well to afford the corresponding phenanthrenes in 

good to excellent yields (Table 3, entries 2 and 3). 3-Ethynylthiophene 2d also reacted with 1i 

to give the corresponding product 4l in 82% yield (Table 3, entry 4). Such molecules find 

important applications in the synthesis of optoelectronic materials.
9
 In addition to aromatic 

and hetero aromatic alkynes, aliphatic alkynes also reacted well in this reaction (Table 3, 

entries 5-7). Moreover, internal alkynes were converted successfully to give highly substituted 

phenanthrenes in moderate yields (Scheme 1). 
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Table 3. Scope of  Terminal alkynes
a
. 

 

Entry Substrate Product Yield (%)
b
 

1 

 

 
 

93 

2 

 

 

 

90 

3 

 

 
 

87 

4 

 

 
 

82 

5 

 

 
 

85 
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6 

 

 
 

90 

7 

 

 
 

90 

a
The reaction was performed with 1i (0.25 mmol), alkyne 2 (10 equiv), 

and eosin Y (0.02 equiv) in DMSO (0.25 M). 
b
Isolated yields after 

purification by flash column chromatography using silica gel. 

 

Scheme 1. Reaction of biaryl diazonium salts with internal alkynes. 

The proposed mechanism of the reaction is depicted in Scheme 2. Initially, the excited 

state of eosin Y is oxidatively quenched by biaryl diazonium salt 1a to generate the reactive 

biaryl radical 6 and the radical cation of eosin Y.
4a

 An addition of radical 6 to alkyne 5 gives 

vinyl radical intermediate 7, which undergoes intramolecular cyclization to give the cyclized 

radical intermediate 8. Oxidation of 8 by the radical cation of eosin Y closes the catalytic 

cycle while generating the carbenium ion 9. Finally, carbenium ion 9 undergoes deprotonation 

to afford the desired product 4. Biaryl diazonium salt 1a could also oxidize the intermediate 8 

in a chain transfer mechanism. 
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Scheme 2. Proposed mechanism for the synthesis of phenanthrenes. 

4.3 Conclusion 

In summary, we have developed a metal free, visible light induced method for the 

synthesis of phenanthrenes via photoredox catalysis with green light. The method provides 

efficient access to a variety of phenanthrenes at ambient conditions and many products have 

potential for further synthetic elaboration. The present reaction displays a broad scope 

towards diazonium salts and alkynes with a wide range of functional group tolerance. The 

visible light mediated cascade radical addition and cyclization sequence represents an 

attractive alternative to known base - or transition metal catalyzed reactions. 

4.4 Experimental Part 

General Information 

Proton NMR spectra were recorded on a Bruker Avance 300 MHz spectrometer in CDCl3 

with internal solvent signal peak at 7.26 ppm. Carbon NMR were recorded at 75 MHz 

spectrometer in CDCl3 referenced to the internal solvent signal at 77.00 ppm. Proton NMR 

data are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = 

triplet, q = quartet, quint = quintet, dd = doublet of doublets, ddd = doublet of doublet of 

doublets, td = triplet of doublets, qd = quartet of doublets, m = multiplet, br. s. = broad 
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singlet), and coupling constants (Hz). All reactions were monitored by thin-layer 

chromatography using Merck silica gel plates 60 F254; visualization was accomplished with 

short wave UV light (254 nm). Flash chromatography was performed using silica gel of 

particle size 40−63 μm. All other commercially available solvents and reagents were used 

without any further purification. 

General Procedures 

Syntheses of 2-aminobiphenyls
10

 

In a dry 100 mL round bottom flask, phenylboronic acid (768.16 mg, 6.3 mmol), K2CO3 

(2.07 g, 15 mmol) and Pd(OAc)2 (70 mg, 0.324 mmol) were added and dissolved in 14 mL of 

acetone and 17 mL of H2O. To the reaction mixture, 2-bromoaniline (1.013 g, 5.96 mmol) 

was added and heated to 95 °C for 16 hours. After cooling, the reaction mixture was diluted 

with 100 mL of saturated aqueous NH4Cl and 100 mL of CH2Cl2 and separated. The aqueous 

phase was extracted two times with DCM. The combined organic layers were washed with 

100 mL of water and 100 mL of saturated aqueous NaHCO3. The organic phase was dried 

over Na2SO4, filtered and the solvent was removed under reduced pressure and further 

purified by column chromatography using ethyl acetate and petrol ether. 

Procedure for the preparation of biaryl diazonium tetrafluoroborates
11

 

The appropriate 2-aminobiphenyl (10 mmol) was dissolved in a mixture of 3.4 mL of 

hydrofluoroboric acid (50%) and 4 mL of distilled water. The mixture was cooled down to 

0 °C using an ice-water bath and then sodium nitrite (NaNO2) solution (0.69 g in 1.5 mL) was 

added drop wise over 10 min. The resulting reaction mixture was stirred for 40 min at 0-5 °C 

and the obtained precipitate was collected by filtration, dried and re-dissolved in a minimum 

amount of acetone. Diethyl ether was added until precipitation of diazonium salt, which is 

filtered, washed several times with diethyl ether and dried under vacuum. 

Photocatalytic reaction 

General procedure for the reaction of biaryl diazonium tetrafluoroborates with alkynes 

In a 5 mL snap vial equipped with magnetic stirring bar the catalyst eosin Y (0.02 equiv), 

biaryl diazonium tetrafluoroborate (1 equiv, 0.25 mmol), alkyne (10 equiv) dissolved in dry 

DMSO (0.25 M) and the resulting reaction mixture was degassed by 3x“pump-freeze-thaw” 

cycles via a syringe needle. The vial was irradiated through the vial’s plane bottom side using 

530 nm green LEDs with cooling device maintaining a temperature around 20 °C. After 2 h of 
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irradiation, the reaction mixture was transferred to a separating funnel, diluted with diethyl 

ether and washed with 15 mL of water. The aqueous layer was washed three times (3 x 15 

mL) with diethyl ether. The combined organic phases were dried over Na2SO4, filtered and 

concentrated in vacuum. Purification of the crude product was achieved by flash column 

chromatography using petrol ether/ethyl acetate as eluent. 

9-Phenylphenanthrene (4a)
12

 

 

1
H NMR (300 MHz, CDCl3): 

δ ppm  8.79 (d, J = 8.3 Hz, 1H), 8.74 (d, J = 8.2 Hz, 1H), 7.91 (dd, J = 11.4, 4.9 Hz, 2H), 7.75 

– 7.42 (m, 10H) 
13

C NMR (75 MHz, CDCl3):  
δ ppm 140.8, 138.7, 131.5, 131.1, 130.6, 130.0, 129.9, 128.6, 128.3, 127.5, 127.3, 126.9, 

126.8, 126.6, 126.5, 126.4, 122.9, 122.5 

HR: EI-MS [M
+.

] 

Calculated: 254.1096 

Found: 254.1095 

 

3-Fluoro-9-phenylphenanthrene (4b) 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 8.64 (d, J = 8.1 Hz, 1H), 8.34 (dd, J = 11.2, 2.4 Hz, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.88 

(dd, J = 8.8, 5.9 Hz, 1H), 7.74 – 7.64 (m, 2H), 7.63 – 7.43 (m, 6H), 7.38 (td, J = 8.5, 2.5 Hz, 

1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 161.6 (d, J = 245.3 Hz), 140.5, 138.0 (d, J = 2.7 Hz), 131.4 (d, J = 8.4 Hz), 131.3, 

130.7 (d, J = 8.9 Hz), 130.0, 130.0, 128.3, 128.2 (d, J = 1.5 Hz), 127.4, 127.1, 127.0, 126.8, 

126.5, 123.1, 115.9 (d, J = 23.9 Hz), 107.6 (d, J = 22.3 Hz) 
HR: EI-MS [M

+.
] 

Calculated: 272.1001 

Found: 272.1003 
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3-Methyl-9-phenylphenanthrene (4c)
13

 

 

1
H NMR (300 MHz, CDCl3): 

δ 8.79 (d, J = 8.3 Hz, 1H), 8.54 (s, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 

7.73 – 7.62 (m, 2H), 7.63 – 7.40 (m, 7H), 2.67 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

 δ ppm 140.9, 137.7, 136.3, 131.2, 130.3, 130.1, 130.0, 129.5, 128.6, 128.5, 128.2, 127.3, 

127.2, 126.8, 126.3, 126.2, 122.8, 122.2, 22.2 
HR: EI-MS [M

+.
] 

Calculated: 268.1252 

Found: 268.1246 

 

2-Bromo-10-phenylphenanthrene (4d) 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 8.64 (dd, J = 11.0, 8.4 Hz, 2H), 8.05 (d, J = 2.0 Hz, 1H), 7.90 (dd, J = 7.6, 1.5 Hz, 1H), 

7.79 – 7.60 (m, 4H), 7.58 – 7.45 (m, 5H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 140.0, 137.9, 132.6, 131.4, 129.9, 129.6, 129.5, 129.3, 129.1, 128.8, 128.7, 128.5, 

127.7, 127.2, 127.0, 124.7, 122.4, 120.9 

HR: EI-MS [M
+.

] 

Calculated: 332.0201 

Found: 332.0196 

 

Ethyl 9-phenylphenanthrene-3-carboxylate (4e) 

 

1
H NMR (300 MHz, CDCl3): 

δ ppm 9.48 (s, 1H), 8.89 (d, J = 8.2 Hz, 1H), 8.24 (dd, J = 8.3, 1.5 Hz, 1H), 7.93 (t, J = 8.7 

Hz, 2H), 7.81 – 7.66 (m, 2H), 7.67 – 7.41 (m, 6H), 4.52 (q, J = 7.1 Hz, 2H), 1.52 (t, J = 7.1 

Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 166.9, 141.2, 140.3, 134.3, 131.2, 130.9, 129.9, 129.3, 128.6, 128.3, 128.0, 127.6, 

127.1, 127.0, 127.0, 126.9, 126.7, 125.0, 123.1, 61.2, 14.4 
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HR: EI-MS [M
+.

] 

Calculated: 326.1307 

Found: 326.1303 

 

2,4-Difluoro-10-phenylphenanthrene (4f)
14

 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 9.08 (d, J = 8.0 Hz, 1H), 7.91 (dd, J = 7.7, 1.7 Hz, 1H), 7.74 (s, 1H), 7.73 – 7.60 (m, 

2H), 7.59 – 7.44 (m, 5H), 7.40 (ddd, J = 10.2, 2.6, 1.2 Hz, 1H), 7.19 (ddd, J = 13.9, 8.3, 2.7 

Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 162.6 (dd, J = 161.4, 13.5 Hz), 159.3 (dd, J = 152.2, 13.5 Hz), 140.0, 137.7 – 137.6 

(m), 134.6 (dd, J = 9.7, 5.9 Hz), 131.5, 130.0, 129.8, 128.7, 128.5, 127.8, 127.7, 127.5, 127.5, 

127.1, 126.9, 126.9, 126.7, 116.8 (dd, J = 9.0, 2.9 Hz), 107.9 (dd, J = 21.8, 3.8 Hz), 103.2 (dd, 

J = 28.9, 27.2 Hz) 

HR: EI-MS [M
+.

] 

Calculated: 290.0907 

Found: 290.0901 

 

1,3-Difluoro-10-phenylphenanthrene (4g)
15

 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 8.55 (dd, J = 8.0, 5.0 Hz, 1H), 8.22 (ddd, J = 10.6, 2.3, 1.4 Hz, 1H), 7.94 – 7.81 (m, 

1H), 7.74 – 7.63 (m, 2H), 7.57 (s, 1H), 7.53 – 7.37 (m, 5H), 7.02 (ddd, J = 12.1, 8.4, 2.5 Hz, 

1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 162.2 (dd, J = 23.3, 13.0 Hz), 158.8 (dd, J = 34.1, 13.0 Hz), 142.82 (d, J = 4.1 Hz), 

134.8, 133.8 (dd, J = 9.7, 4.9 Hz), 131.7 (d, J = 0.5 Hz), 129.3 (d, J = 2.5 Hz), 128.7, 128.7, 

128.6, 128.1, 127.5, 127.1, 126.9, 123.0, 117.4 (dd, J = 9.6, 2.6 Hz), 104.3 (dd, J = 21.8, 4.2 

Hz), 103.1 (t, J = 26.9 Hz) 

HR: EI-MS [M
+.

] 

Calculated: 290.0907 

Found: 290.0905 
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2-Methyl-10-phenylphenanthrene (4h) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.70 (dd, J = 8.2, 5.0 Hz, 2H), 7.89 (d, J = 8.0 Hz, 1H), 7.80 – 7.40 (m,10) 
13

C NMR (75 MHz, CDCl3): 
δ ppm 140.9, 138.5, 136.3, 131.2, 131.1, 130.0, 130.0, 128.6, 128.4, 128.3, 128.2, 127.6, 

127.3, 126.5, 126.4, 122.8, 122.3, 21.7 

HR: EI-MS [M
+.

] 

Calculated: 268.1252 

Found: 268.1253 

 

3-Chloro-9-phenylphenanthrene (4i)
6
 

 

1
H NMR (300 MHz, CDCl3):  

δ ppm 8.79 – 8.58 (m, 1H), 7.94 (d, J = 8.2 Hz, 1H), 7.82 (d, J = 8.6 Hz, 1H), 7.73 – 7.62 (m, 

1H), 7.61 – 7.43 (m, 1H) 
13

C NMR (75 MHz, CDCl3):  

δ ppm 140.4, 139.1, 132.5, 131.3, 131.0, 130.0, 129.9, 129.8, 129.6, 128.3, 127.5, 127.3, 

127.1, 127.0, 126.7, 126.7, 122.9, 122.2 

HR: EI-MS [M
+.

] 

Calculated: 288.0706 

Found: 288.0705 

 

3-Chloro-9-(4-fluorophenyl)phenanthrene (4j) 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 8.67 (t, J = 3.9 Hz, 2H), 7.84 (dd, J = 19.5, 8.3 Hz, 2H), 7.69 (t, J = 7.6 Hz, 1H), 7.64 – 

7.53 (m, 3H), 7.49 (dd, J = 8.1, 5.6 Hz, 2H), 7.23 (dd, J = 14.8, 6.2 Hz, 2H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 162.4 (d, J = 246.5 Hz), 138.0, 136.3 (d, J = 3.4 Hz), 131.5 (d, J = 8.0 Hz), 131.3, 

131.0, 130.0, 129.7, 129.6, 127.4, 127.2, 126.9, 126.8, 126.7, 123.0, 122.3, 115.30 (d, J = 

21.4 Hz) 
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HR: EI-MS [M
+.

] 

Calculated: 306.0612 

Found: 306.0612 

 

3-Chloro-9-(3-(trifluoromethyl)phenyl)phenanthrene (4k) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.74 – 8.66 (m, 2H), 7.87 – 7.77 (m, 3H), 7.77 – 7.54 (m, 7H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 141.2, 137.5, 133.3, 133.0, 131.2, 130.9, 130.1, 129.7, 129.6, 128.8, 127.6, 127.4, 

127.2, 127.0, 126.7 (m), 126.5, 124.4 (m), 123.1, 122.3 

HR: EI-MS [M
+.

] 

Calculated: 356.0580 

Found: 356.0577 

 

3-(3-Chlorophenanthren-9-yl)thiophene (4l) 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 8.66 (m, 2H), 8.06 (dd, J = 8.2, 1.2 Hz, 1H), 7.80 (d, J = 8.5 Hz, 1H), 7.76 – 7.64 (m, 

2H), 7.65 – 7.41 (m, 4H), 7.34 (dd, J = 4.8, 1.3 Hz, 1H) 
13

C NMR (75 MHz, CDCl3):  

δ ppm 140.7, 133.9, 132.6, 131.4, 131.0, 129.9, 129.8, 129.6, 129.5, 127.3, 127.2, 126.8, 

126.8, 126.7, 125.5, 123.8, 122.9, 122.3 

HR: EI-MS [M
+.

] 

Calculated: 294.0270 

Found: 294.0269 

 

2-(3-Chlorophenanthren-9-yl)propan-2-ol (4m)
6
 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.95 – 8.84 (m, 1H), 8.67 – 8.60 (m, 1H), 8.59 (d, J = 1.8 Hz, 1H), 7.81 – 7.73 (m, 

2H), 7.69 – 7.59 (m, 2H), 7.52 (dd, J = 8.5, 2.0 Hz, 1H), 1.91 (s, 6H) 
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13
C NMR (75 MHz, CDCl3):  

δ ppm 141.7, 132.7, 131.3, 130.6, 130.3, 130.2, 129.3, 128.2, 127.2, 126.5, 126.2, 123.3, 

123.0, 122.0, 73.9, 31.5 

HR: EI-MS [M
+.

] 

Calculated: 270.0811 

Found: 270.0810 

 

Methyl 3-chlorophenanthrene-9-carboxylate (4n) 

 
1
H NMR (300 MHz, CDCl3): 

 δ ppm 8.97 – 8.84 (m, 1H), 8.64 – 8.51 (m, 2H), 8.38 (s, 1H), 7.84 (d, J = 8.5 Hz, 1H), 7.76 – 

7.61 (m, 2H), 7.55 (dd, J = 8.5, 2.0 Hz, 1H), 4.04 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

 δ ppm 167.7, 135.1, 133.1, 131.5, 131.2, 129.6, 129.2, 128.2, 128.0, 127.6, 127.1, 126.6, 

126.3, 122.8, 122.4, 52.3 

HR: EI-MS [M
+.

] 

Calculated: 270.0448 

Found: 270.0444 

 

Ethyl 3-chlorophenanthrene-9-carboxylate (4o)
6
 

 
1
H NMR (300 MHz, CDCl3): 

 δ ppm 9.01 – 8.82 (m, 1H), 8.70 – 8.51 (m, 2H), 8.38 (s, 1H), 7.86 (d, J = 8.5 Hz, 1H), 7.76 – 

7.64 (m, 2H), 7.56 (dd, J = 8.5, 2.0 Hz, 1H), 4.52 (q, J = 7.1 Hz, 2H), 1.51 (t, J = 7.1 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

 δ ppm 167.4, 135.0, 133.1, 131.2, 131.2, 129.6, 129.3, 128.3, 128.0, 127.6, 127.1, 126.8, 

126.7, 122.8, 122.4, 61.3, 14.4 

HR: EI-MS [M
+.

] 

Calculated: 284.0604 

Found: 284.0603 
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Dimethyl 3-chlorophenanthrene-9,10-dicarboxylate (4p) 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 8.67 (d, J = 2.1 Hz, 1H), 8.62 (d, J = 7.8 Hz, 1H), 8.14 (d, J = 8.8 Hz, 2H), 7.81 – 7.65 

(m, 2H), 7.61 (dd, J = 8.9, 2.1 Hz, 1H), 4.04 (s, 3H), 4.03 (s, 3H) 
13

C NMR (75 MHz, CDCl3):  

δ ppm 168.1, 167.9, 134.9, 132.2, 130.4, 130.0, 129.0, 128.8, 128.5, 128.3, 128.2, 127.3, 

126.9, 125.4, 122.9, 122.6, 52.9, 52.9 

HR: EI-MS [M
+.

] 

Calculated: 328.0502 

Found: 328.0498 
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1
H and 

13
C NMR spectra of selected compounds 

1
H NMR (300MHz, CDCl3) 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  

 



Synthesis of Phenanthrene Derivatives by Visible Light Photocatalysis 4 

 

100  

 

4.5 References 

(1) (a) Wang, Y.-Y.; Taniguchi, T.; Baba, T.; Li, Y.-Y.; Ishibashi, H.; Mukaida, N. 

Cancer Sci. 2012, 103, 107. (b) Li, S.; Han, L.; Sun, L.; Zheng, D.; Liu, J.; Fu, Y.; Huang, X.; 

Wang, Z. Molecules 2009, 14, 5042. (c) Wang, Y.-C.; Lin, C.-H.; Chen, C.-M.; Liou, J.-P. 

Tetrahedron Lett. 2005, 46, 8103. (d) Li, Z.; Jin, Z.; Huang, R. Synthesis 2001, 2001, 2365. 

(e) Wang, K.; Hu, Y.; Liu, Y.; Mi, N.; Fan, Z.; Liu, Y.; Wang, Q. J. Agric. Food Chem. 2010, 

58, 12337. 

(2) (a) Floyd, A. J.; Dyke, S. F.; Ward, S. E. Chem. Rev. 1976, 76, 509. (b) Alberico, D.; 

Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (c) Wang, C.; Rakshit, S.; Glorius, F. J. 

Am. Chem. Soc. 2010, 132, 14006. (d) Ye, F.; Shi, Y.; Zhou, L.; Xiao, Q.; Zhang, Y.; Wang, 

J. Org. Lett. 2011, 13, 5020. (e) Xiao, T.; Dong, X.; Tang, Y.; Zhou, L. Adv. Synth. Catal. 

2012, 354, 3195. 

(3) (a) Giles, R. G. F.; Sargent, M. V. J. Chem. Soc., Perkin Trans. 1 1974, 2447. (b) 

Antelo, B.; Castedo, L.; Delamano, J.; Gómez, A.; López, C.; Tojo, G. J. Org. Chem. 1996, 

61, 1188. 

(4) (a) Hari, D. P.; Konig, B. Angew. Chem., Int. Ed. 2013, 52, 4734. (b) Hari, D. P.; 

Hering, T.; König, B. Angew. Chem., Int. Ed. 2014, 53, 725. (c) Hari, D. P.; Schroll, P.; 

König, B. J. Am. Chem. Soc. 2012, 134, 2958. (d) Prier, C. K.; Rankic, D. A.; Macmillan, D. 

W. Chem Rev 2013, 113, 5322. (e) Hari, D. P.; Hering, T.; König, B. Chemistry Today 2013, 

31, 59.  (f) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. (g) 

Ravelli, D.; Fagnoni, M.; Albini, A. Chem. Soc. Rev. 2013, 42, 97. 

(5) (a) Cano-Yelo, H.; Deronzier, A. J. Chem. Soc., Perkin Trans. 2 1984, 0, 1093. (b) 

Cano-Yelo, H.; Deronzier, A. J. Photochem. 1987, 37, 315. (c) Cano-Yelo, H.; Deronzier, A. 

Tetrahedron Lett. 1984, 25, 5517. (d) Cano-Yelo, H.; Deronzier, A. New J. Chem. 1987, 11, 

479. 

(6) Leardini, R.; Nanni, D.; Tundo, A.; Zanardi, G. Synthesis 1988, 1988, 333. 

(7) Matsumoto, A.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 6557. 

(8) While we were writing manuscript similar results have been published; Xiao, T.; 

Dong, X.; Tang, Y.; Zhou, L. Adv. Synth. Catal. 2012, 354, 3195. 

(9) Chen, Z.; Cai, P.; Zhang, L.; Zhu, Y.; Xu, X.; Sun, J.; Huang, J.; Liu, X.; Chen, J.; 

Chen, H.; Cao, Y. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4966. 

(10) Sto es,  .  .   ovanovi , B.; Dong, H.; Richert, K. J.; Riell, R. D.; Driver, T. G. J. 

Org. Chem. 2009, 74, 3225. 



Synthesis of Phenanthrene Derivatives by Visible Light Photocatalysis 4 

 

 101 
 

(11) Hanson, P.; Jones, J. R.; Taylor, A. B.; Walton, P. H.; Timms, A. W. J. Chem. Soc., 

Perkin Trans. 2 2002, 1135. 

(12) Kanno, K.-i.; Liu, Y.; Iesato, A.; Nakajima, K.; Takahashi, T. Org. Lett. 2005, 7, 5453. 

(13) Lewis, F. D.; Karagiannis, P. C.; Sajimon, M. C.; Lovejoy, K. S.; Zuo, X.; Rubin, M.; 

Gevorgyan, V. Photochem. Photobiol. Sci. 2006, 5, 369. 

(14) García-Cuadrado, D.; de Mendoza, P.; Braga, A. A. C.; Maseras, F.; Echavarren, A. 

M. J. Am. Chem. Soc. 2007, 129, 6880. 

(15) Komeyama, K.; Igawa, R.; Takaki, K. Chem. Commun. 2010, 46, 1748. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Synthesis of Phenanthrene Derivatives by Visible Light Photocatalysis 4 

 

102  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The Photoredox Catalyzed Meerwein Addition Reaction: Intermolecular Amino-

Arylation of Alkenes 5 

 

 103 

 

Chapter 5 

5 The Photoredox Catalyzed Meerwein Addition Reaction: 

Intermolecular Amino-Arylation of Alkenes 

 

A variety of amides are efficiently accessible at mild conditions by intermolecular amino-

arylation using a visible light photo Meerwein addition. The protocol has a broad substrate 

scope, tolerates a large range of functional groups and was applied to the synthesis of 3-aryl-

3,4 dihydroisoquinoline. 
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5.1 Introduction 

The Meerwein arylation is a valuable synthetic transformation based on aryl radical 

chemistry.
1
 The classic Meerwein arylation has two alternative reaction pathways: 

(a) Meerwein arylation-elimination, in which aryl-alkene cross coupling products are formed 

exclusively, and (b) Meerwein arylation-addition, in which the aryl radical and a halogen 

atom add to an olefinic substrate.
1b

 The addition of other atoms instead of halogen has also 

been reported.
1b

 However, photo Meerwein arylations were so far only applied for the 

formation of aryl-alkene coupling products and not extended to the valuable alkene addition 

products
2
 obtainable under classical Meerwein arylation conditions.

3
 The challenge in 

obtaining the addition product is the competing reaction of the trapping reagent or nucleophile 

with the diazonium salt leading to undesired products.
1b

 

 

Scheme 1. Types of photo Meerwein arylation reactions: (a) photo Meerwein arylation-elimination, (b) photo 

Meerwein arylation-addition. 

The Ritter-type amination reaction is a most useful transformation for the formation of C-

N bonds and has been used in industrial processes for the synthesis of the anti-HIV drug 

Crixivan, the alkaloid aristotelone, and Amantadine.
2d,4

 We utilize the Ritter reaction 

conditions to trap the carbenium ion, which is generated during the photoredox Meerwein 

arylation reaction leading to a photoredox catalyzed Meerwein arylation-addition process 

allowing the intermolecular amino-arylation of alkenes mediated by visible light. 

 

 

http://en.wikipedia.org/wiki/Crixivan
http://en.wikipedia.org/wiki/Alkaloid
http://en.wikipedia.org/wiki/Amantadine
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5.2 Results and Discussion 

Our initial studies began with an attempted reaction of diazonium salt 1a (0.25 mmol) with 

5 equiv of styrene 2a using 2 mol% of [Ru(bpy)3]Cl2 in 1.0 mL of CH3CN containing 10 

equiv of water under visible light irradiation for 4 h at 20 °C; the desired product 3a was 

obtained in 42% yield (Table 1, entry 1) along with 1,2-diphenylethanol as a byproduct.  

Table 1. Optimizing reaction conditions. 

 

Entry Conditions Yield (%)
a
 

1 [Ru(bpy)3]Cl2  (2 mol%), 2a (5 equiv)  42
b
 

2 [Ru(bpy)3]Cl2  (2 mol%), 2a (5 equiv) 75 

3 [Ru(bpy)3]Cl2  (2 mol%), 2a (5 equiv) 65
c
 

4 [Ru(bpy)3]Cl2  (2 mol%), 2a (5 equiv) 74
d
 

5 [Ru(bpy)3]Cl2  (0.5 mol%), 2a (5 equiv) 75 

6 [Ru(bpy)3]Cl2  (0.5 mol%), 2a (2 equiv) 88 

7 [Ru(bpy)3]Cl2  (0.5 mol%), 2a (1.1 equiv) 72 

9 Eosin Y (0.5 mol%), 2a (2 equiv) 38 

10 Ir(ppy)3 (0.5 mol%), 2a (2 equiv) 76 

11 Rhodamine B (0.5 mol%), 2a (2 equiv)  5 

12 Rose bengal (0.5 mol%), 2a (2 equiv) 37 

13 C50H40CuF6N2OP3 (0.5 mol%), 2a (2 equiv) 21 

14 no photocatalyst, 2a (2 equiv) 5 

15 [Ru(bpy)3]Cl2 (0.5 mol%), 2a  (2 equiv), no light 0 

a
GC yield determined by using a calibrated internal standard. 

b
The reaction was carried out 

with 10 equiv of H2O. 
c
The reaction was carried out in 0.5 mL of CH3CN.  

d
The reaction 

was carried out in 2.0 mL of  CH3CN. Unless otherwise mentioned in all other cases the 

reactions were carried out in 1.0 mL of CH3CN using 1 equiv of H2O. 
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We examined the amount of water, catalyst loading and different equiv of styrene on this 

multi-component photoreaction. To our delight the desired product 3a was obtained in 88% 

yield (Table 1, entry 6) when diazonium salt 1a (0.25 mmol), 0.5 mol% of [Ru(bpy)3]Cl2, 2 

equiv of styrene 2a and 1 equiv of water were used in 1.0 mL of CH3CN. The reaction yields 

of 3a are significantly affected by the amount of water: a larger amount of water results in the 

formation of the 1,2-diphenylethanol (Table 1, entry 1 vs. 2). 

After having optimized the reaction conditions we screened different photocatalysts (Table 

1, entries 6, 9-13).[Ru(bpy)3]Cl2 was found to be the best one for this transformation. To 

prove the significance of the photoreaction, we carried out control experiments without light 

and without photocatalyst [Ru(bpy)3]Cl2. As expected, we observed 0 and 5 % of product 

yield, respectively (Table 1, entries 15 and 14). When we employed dichloromethane as a 

solvent and 10 equiv of acetonitrile in this photoreaction, product 3a was obtained in 70% 

yield.
5
 This shows that the use of the organic nitrile as a solvent is not required. In addition, 

we also replaced the photocatalyst and visible light by copper catalysts, which are commonly 

employed in Meerwein arylations. However, under these conditions the reaction does not 

proceed showing that the photoredox system is essential.
5
 

Furthermore, we investigated the scope of the diazonium salts for this photoreaction and 

the results were summarized in Table 2. Aryl diazonium salts bearing electron withdrawing, 

neutral and donating substituents react smoothly affording the corresponding products in good 

to excellent yields. Several functional groups including ester, nitro, halide, ether, alkyl groups 

are tolerated in the photoreaction. In addition to aryl diazonium salts, heteroaryl diazonium 

salt 1j was used in this reaction to giving the corresponding product 3j in 75% yield (Table 2, 

entry 10). Carbon-halogen bonds remain intact during the photoreaction providing access to 

halogen substituted amides in a single step (Table 2, entries 5 and 9). The halide functional 

groups can be used for further transformations by transition metal catalyzed or organometallic 

reactions.   
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Table 2. Scope of the aryl diazonium salts
a
. 

 

Entry Substrate Product Yield (%)
b
 

1 

                       

82 

2 

  

92 

3 

     

70 

4 

 
 

82 

5 

               

76 

6 

         

70 

7 

      

73 

8 

           
                 

87 

9 

        

50 
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10 

         
         

75 

11 

      

70 

a
The reaction was performed with 1 (0.25 mmol), styrene 2a  (2 equiv), 

[Ru(bpy)3]Cl2 (0.005 equiv) and 1 equiv of water in 1.0 mL of CH3CN. 
 b

Isolated 

yields after purification by flash column chromatography using silica gel. 

We then expanded the scope of the reaction by varying the nitrile, which proved to be of 

general applicability in the photoreaction. The products obtained from the reactions of 

diazonium salt 1b and styrenes 2a with different nitriles are shown in Table 3. The results 

demonstrate that primary, secondary, and tertiary alkyl nitriles undergo cleanly the 

transformation providing the corresponding products in good to excellent yields. We were 

also pleased to find that cyclopropane carbonitrile was tolerated well affording the 

corresponding product 3m in 65% yield after 4 h blue light irradiation at room temperature 

(Table 3, entry 3). 

Table 3. Scope of nitriles
a
. 

 

Entry Nitrile Product Yield (%)
b
 

 

1 

 

 
 

 

92 

 

2 

 

   
 

 

84 

 

3 

 

   
 

 

65 

 

4 

 

 
 

 

71 
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5 

 

 
 

 

80 

 

6 

 

  

 

72 

 

7 

 

 
 

 

60 

a
The reaction was performed with 1b (0.25 mmol), styrene  2a (2 equiv), 

[Ru(bpy)3]Cl2 (0.005 equiv) and 1 equiv of water in 1.0 mL of nitrile. 
b
Isolated 

yields after purification by flash column chromatography using silica gel. 

Having established the scope towards both diazonium salts and nitriles in this 

photoreaction, we investigated various alkenes. The results are summarized in the Table 4. 

Styrenes with electron withdrawing, neutral and donating substitution at para position 

smoothly give the corresponding products in moderate to excellent yields upon irradiation for 

4 h (Table 4, entries 1, 3, 6, and 7). In addition, this photoreaction could also be applied to 

internal alkenes. The reaction of diaznoium salt 1b with trans-β-methylstyrene 

regioselectively provided the corresponding product 3u in 75% yield (dr 65:35).
2d Notably, 

trans-stilbene, cinnamic acid ester, and benzalacetone can be used in this multi-component 

photoreaction and afford the corresponding products as single regioisomers in moderate yields 

(Table 4, entries 2, 4, and 8). 

The photoreaction product 3a was used for the synthesis of 3-aryl-3,4-dihydroisoquinoline 

to demonstrate its application by adopting a previously reported method by Larsen and co-

workers (Scheme 2).
6
 The reaction of diazonium salt 1a with styrene 2a under standard 

photoreaction conditions provided the corresponding product 3a, which was then further 

converted into 3-aryl-3,4-dihydroisoquinoline 4 using oxalyl chloride and FeCl3.
6a

 

The suggested mechanism of the photoreaction based on trapping of intermediates and 

related literature reports is depicted in scheme 3.
2d,3a,7

 Aryl radical 5 is formed initially by a 

single electron transfer from the excited state of the photocatalyst Ru(bpy)3
2+

* to diazonium 

salt 1a. Addition of aryl radical 5 to alkene 2 yields the corresponding radical intermediate 6, 

which is then further oxidized to give carbenium intermediate 7.
3e

 Finally, the intermediate 7 

is attacked by a nitrile (R
3
CN), followed by hydrolysis to give the amino-arylated product 

3a.
2d
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Table 4. Scope of alkenes
a
. 

 

Entry R
1
 R

2
 Product Yield (%)

b
 

1 H H 

 

 

92 

2 Ph H 

 

 

53 

3 H Cl 

 

 

87 

4 COOMe H 

 

 

20 

5 Me H 

 

75
c
 

6 H COOH 

 

 

97 

7 H Me 

 

 

55 

8 COMe H 

 

 

43 

a
The reaction was performed with 1b (0.25 mmol), alkene 2 (2 equiv), [Ru(bpy)3]Cl2 (0.005 

equiv) and 1 equiv of water in 1.0 mL of CH3CN. 
 b

Isolated yields after purification by 

flash column chromatography using silica gel. 
c
dr (65:35). 
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Scheme 2. Application of the photoreaction in the synthesis of 3-aryl-3,4-dihydroisoquinoline. 

Radical intermediate 6 is either oxidized by the strong oxidant Ru(bpy)3
3+

 to complete the 

photocatalytic cycle or by the diazonium salt 1a in a chain transfer mechanism. Radical 

intermediates 5 and 6 were trapped with TEMPO, which supports radical intermediates during 

the photoreaction.
3c-e,5

 In addition, the carbenium ion intermediate was also trapped with 

water and methanol, these results indicate the formation of intermediate 7 in the reaction.
5
 

 

Scheme 3. Proposed mechanism for the Photo-Meerwein addition reaction. 
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5.3 Conclusion 

In conclusion, the reported protocol allows the formation of Calkyl-N bonds by an 

intermolecular amino-arylation of alkenes mediated by visible light. It is, to the best of our 

knowledge, the first example of a photocatalytic Meerwein addition reaction. The multi-

component reaction gives efficient access to different types of amides under mild reaction 

conditions tolerating a broad range of functional groups. The substrate scopes of diazonium 

salts, nitriles, and alkenes are large. Many products of the photoreaction are not easily 

accessible by other methods and have due to the presence of halide functional groups the 

potential for further synthetic elaboration. Exemplarily, one photoreaction product was used 

for the synthesis of a 3-aryl-3,4-dihydroisoquinoline. Experiments to elucidate the mechanism 

of the reaction in detail, and applications of the reaction to the synthesis of other potential 

biologically active molecules are ongoing in our laboratory.  

5.4 Experimental Part 

General Information 

Proton NMR spectra were recorded on a Bruker Avance 300 MHz spectrometer in CDCl3 

and dimethyl sulfoxide-d6 solutions with internal solvent signal peak at 7.26 ppm and 2.50 

ppm respectively. Carbon NMR were recorded at 75 MHz spectrometer in CDCl3 and 

dimethyl sulfoxide-d6 solutions and referenced to the internal solvent signal at 77.0 ppm and 

39.52 ppm respectively. Proton NMR data are reported as follows: chemical shift (ppm), 

multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, dd = doublet of 

doublets, ddd = doublet of doublet of doublets, td = triplet of doublets, qd = quartet of 

doublets, m = multiplet, br. s. = broad singlet), and coupling constants (Hz). All reactions 

were monitored by thin-layer chromatography (TLC) using Merck silica gel plates 60 F254; 

visualization was accomplished with short wave UV light (254 nm). Standard flash 

chromatography was performed using silica gel of particle size 40−63 μm. All other 

commercially available reagents and solvents were used without any further purification. 

Irradiation Sources:  

High Power LEDs of different wavelengths were used for irradiation of the reaction mixtures: 

Philips LUXEON
® 

Rebel (purple, max = 400 ± 10 nm, 1000 mA, 1.2 W) 
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Philips LUXEON
® 

Rebel LXML-TRo1-0225 (blue, max = 440 ± 10 nm, 700 mA, 3.0 W) 

and Philips LUXEON
® 

Rebel (green, λmax = 520 ± 15 nm, 145 lm @700mA, 1.0 W) 

General Procedures 

Procedure for the preparation of aryl diazonium tetrafluoroborates
8
 

The appropriate aniline (10 mmol) was dissolved in a mixture of 3.4 mL of 

hydrofluoroboric acid (50%) and 4 mL of distilled water. The reaction mixture was cooled 

down to 0 °C using an ice-water bath, and then sodium nitrite (NaNO2) solution (0.69 g in 1.5 

mL) was added drop wise. The resulting reaction mixture was stirred for 40 min at 0-5 °C and 

the obtained precipitate was collected by filtration, dried and re-dissolved in a minimum 

amount of acetone. Diethyl ether was added until precipitation of diazonium tetrafluoroborate, 

which is filtered, washed several times with small portions of diethyl ether and dried under 

vacuum. 

Photocatalytic reactions 

General procedure for the reaction of arenediazonium tetrafluoroborates with alkenes 

In a 5 mL snap vial equipped with magnetic stirring bar the catalyst [Ru(bpy)3]Cl2 

(0.005 equiv), arenediazonium tetrafluoroborate 1 (1 equiv, 0.25 mmol), alkene 2 (2 equiv), 

and water (1 equiv) were dissolved in 1 mL of CH3CN, and the resulting reaction mixture was 

degassed by three “pump-freeze-thaw” cycles via a syringe needle. The vial was irradiated 

through the vial’s plane bottom side using 440 nm blue LEDs with cooling device 

maintaining a temperature around 20 °C. After 4 h of irradiation, the reaction mixture was 

transferred to a separating funnel, diluted with dichloromethane and washed with 15 mL of 

water. The aqueous layer was washed three times (3 x 15 mL) with dichloromethane. The 

combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. 

Purification of the crude product was achieved by flash column chromatography using petrol 

ether/ethyl acetate (1:1 to 1:3) as eluent. 
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Photocatalysts 

 

Screening of Copper catalysts and Solvents
a
 

 

Entry Conditions Yield (%)
b
 

1 20 mol% Cu powder, no photocatalyst, no light, 1.0 mL CH3CN 0 

2 20 mol% CuCl, no photocatalyst, no light,1.0 mL CH3CN                0 

3 20 mol% CuCl2, no photocatalyst, no light, 1.0 mL CH3CN 0 

4 
[Ru(bpy)3]Cl2 (0.5 mol%), 10 equiv of CH3CN,  

DMSO (0.850 mL), 440 nm 
0

c
 

5 
[Ru(bpy)3]Cl2 (0.5 mol%), 20 equiv of CH3CN,  

DMSO (0.700 mL), 440 nm 
0

c
 

6 
[Ru(bpy)3]Cl2(0.5 mol%), 30 equiv of CH3CN,  

DMSO (0.550 mL), 440 nm 
0

c
 

7 
[Ru(bpy)3]Cl2 (0.5 mol%), 10 equiv of CH3CN,  

DCM (0.850 mL), 440 nm 
68 

8 
[Ru(bpy)3]Cl2 (0.5 mol%), 20 equiv of CH3CN,  

DCM (0.700 mL), 440 nm 
77 

9 
[Ru(bpy)3]Cl2 (0.5 mol%). 30 equiv of CH3CN,  

DCM (0.550 mL), 440 nm 
82 

a
The reaction was performed with 1a (0.25 mmol), styrene 2a  (2 equiv), and 1 equiv of water. 

b
GC yield determined by using a calibrated internal standard.

c
Obtained more than 80% of stilbene. 



The Photoredox Catalyzed Meerwein Addition Reaction: Intermolecular Amino-

Arylation of Alkenes 5 

 

 115 

 

N-(1,2-Diphenylethyl)acetamide (3a)
6a

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.48 – 7.12 (m, 8H), 7.13 – 6.92 (m, 2H), 5.81 (s, 1H), 5.28 (q, J = 7.3 Hz, 1H), 3.11 

(d, J = 7.1 Hz, 2H), 1.93 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.4, 141.6, 137.4, 129.4, 128.7, 128.5, 127.5, 126.8, 126.7, 54.5, 42.6, 23.5 

ESI-MS: [M+H
+
]: 

Calculated: 241.1416 

Found: 241.1416 

Mp: 150-152 °C 

 

N-(2-(4-Nitrophenyl)-1-phenylethyl)acetamide (3b) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.06 (d, J = 8.7 Hz, 2H), 7.37 – 7.24 (m, 3H), 7.24 – 7.14 (m, 4H), 5.83 (d, J = 7.5 Hz, 

1H), 5.25 (dd, J = 14.5, 7.8 Hz, 1H), 3.34 (dd, J = 13.5, 6.5 Hz, 1H), 3.16 (dd, J = 13.5, 8.1 

Hz, 1H), 1.97 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.4, 146.7, 145.4, 140.2, 130.2, 129.0, 128.1, 126.8, 123.5, 54.7, 42.2, 23.4 

ESI-MS: [M+H
+
]: 

Calculated: 285.1234 

Found: 285.1234 

Mp: 158-160 °C 

 

N-(2-(4-Methoxyphenyl)-1-phenylethyl)acetamide (3c) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.35 – 7.23 (m, 3H), 7.22 – 7.16 (m, 2H), 6.94 (d, J = 8.7 Hz, 2H), 6.76 (d, J = 8.7 Hz, 

2H), 5.83 (s, 1H), 5.22 (q, J = 7.2 Hz, 1H), 3.76 (s, 3H), 3.04 (d, J = 7.0 Hz, 2H), 1.93 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.4, 158.3, 141.7, 130.4, 129.3, 128.6, 127.5, 126.8, 113.8, 55.3, 54.6, 41.7, 23.5 

ESI-MS: [M+H
+
]: 

Calculated: 270.1489 

Found: 270.1490 

Mp: 143-146 °C 
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Ethyl 4-(2-acetamido-2-phenylethyl)benzoate (3d) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.89 (d, J = 8.3 Hz, 2H), 7.35 – 7.24 (m, 3H), 7.21 – 7.15 (m, 2H), 7.11 (d, J = 8.3 Hz, 

2H), 5.81 (d, J = 7.1 Hz, 1H), 5.27 (q, J = 7.5 Hz, 1H), 4.34 (q, J = 7.1 Hz, 2H), 3.17 (qd, J = 

13.6, 7.2 Hz, 2H), 1.94 (s, 3H), 1.37 (t, J = 7.1 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.4, 166.7, 142.8, 140.9, 129.7, 129.4, 128.9, 128.8, 127.8, 126.8, 61.0, 54.6, 42.5, 

23.5, 14.7 

ESI-MS: [M+H
+
]: 

Calculated: 312.1594 

Found: 312.1597 

Mp: 144-146 °C 

 

N-(2-(4-Bromophenyl)-1-phenylethyl)acetamide (3e) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.36 – 7.24 (m, 5H), 7.22 – 7.13 (m, 2H), 6.90 (d, J = 8.3 Hz, 2H), 5.78 (d, J = 7.7 Hz, 

1H), 5.22 (dd, J = 14.8, 7.5 Hz, 1H), 3.20 – 2.85 (m, 2H), 1.95 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.4, 140.9, 136.5, 131.5, 131.2, 128.8, 127.8, 126.8, 120.6, 54.6, 41.9, 23.6 

ESI-MS: [M+H
+
]: 

Calculated: 318.0488 

Found: 318.0488 

Mp: 187-189 °C 

 

N-(1-Phenyl-2-(p-tolyl)ethyl)acetamide (3f) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.34 – 7.19 (m, 5H), 7.03 (d, J = 7.8 Hz, 2H), 6.93 (d, J = 8.0 Hz, 2H), 5.89 (d, J = 7.7 

Hz, 1H), 5.25 (q, J = 7.3 Hz, 1H), 3.06 (d, J = 7.1 Hz, 2H), 2.29 (s, 3H), 1.92 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.4, 141.8, 136.2, 134.2, 129.3, 129.1, 128.6, 127.4, 126.7, 54.5, 42.2, 23.5, 21.1 

ESI-MS: [M+H
+
]: 

Calculated: 254.1539 

Found: 254.1542 

Mp: 134-136 °C 

 
 

 

 



The Photoredox Catalyzed Meerwein Addition Reaction: Intermolecular Amino-

Arylation of Alkenes 5 

 

 117 

 

N-(1-Phenyl-2-(4-(trifluoromethyl)phenyl)ethyl)acetamide (3g) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.46 (d, J = 8.1 Hz, 2H), 7.37 – 7.24 (m, 3H), 7.24 – 7.11 (m, 4H), 5.83 (d, J = 7.8 Hz, 

1H), 5.27 (q, J = 7.5 Hz, 1H), 3.24 (dd, J = 13.6, 6.8 Hz, 1H), 3.13 (dd, J = 13.6, 7.7 Hz, 1H), 

1.95 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.4, 141.7, 140.8, 129.7, 128.9, 127.9, 126.8, 125.3 (q, J = 3.6 Hz), 54.6, 42.3, 23.5 

ESI-MS: [M+H
+
]: 

Calculated: 308.1257 

Found: 308.1259 

Mp: 177-179 °C 

 

N-(2-(2-Nitrophenyl)-1-phenylethyl)acetamide (3h) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.86 (dd, J = 8.1, 1.1 Hz, 1H), 7.54 (td, J = 7.6, 1.2 Hz, 1H), 7.47 – 7.26 (m, 7H), 6.38 

(d, J = 8.2 Hz, 1H), 5.35 (ddd, J = 10.0, 8.5, 5.5 Hz, 1H), 3.43 (dd, J = 13.9, 10.2 Hz, 1H), 

3.30 (dd, J = 13.9, 5.4 Hz, 1H), 1.84 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.5, 150.1, 141.6, 133.3, 133.0, 132.5, 128.9, 128.0, 127.9, 126.5, 124.8, 54.6, 38.6, 

23.4 

ESI-MS: [M+H
+
]: 

Calculated: 285.1234 

Found: 285.1236 

Mp: 170-172 °C 

 

N-(1-Phenyl-2-(2,4,5-trichlorophenyl)ethyl)acetamide (3i) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.44 (s, 1H), 7.39 – 7.23 (m, 6H), 5.89 (d, J = 8.0 Hz, 1H), 5.30 (dd, J = 15.0, 8.2 Hz, 

1H), 3.26 – 3.09 (m, 2H), 1.94 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.4, 140.9, 135.9, 133.1, 132.5, 131.6, 131.1, 130.8, 129.0, 128.1, 126.6, 53.7, 39.2, 

23.5 

ESI-MS: [M+H
+
]: 

Calculated: 342.0214 

Found: 342.0218 

Mp: 170-172 °C 
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Methyl 3-(2-acetamido-2-phenylethyl)thiophene-2-carboxylate (3j) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.44 (d, J = 5.1 Hz, 1H), 7.41 – 7.29 (m, 5H), 6.98 (m, 2H), 5.34 – 5.02 (m, 1H), 3.91 

(s, 3H), 3.64 (dd, J = 13.7, 11.0 Hz, 1H), 3.19 (dd, J = 13.7, 4.3 Hz, 1H), 1.85 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.5, 164.5, 147.1, 142.7, 131.3, 131.2, 128.7, 127.5, 126.4, 55.3, 52.4, 35.9, 23.4 

ESI-MS: [M+H
+
]: 

Calculated: 304.1002 

Found: 304.1003 

Mp: 199-201 °C 

 

N-(2-(3-Nitrophenyl)-1-phenylethyl)acetamide (3k) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.03 (dt, J = 7.4, 2.1 Hz, 1H), 7.89 (d, J = 1.8 Hz, 1H), 7.45 – 7.37 (m, 2H), 7.37 – 

7.24 (m, 3H), 7.23 – 7.14 (m, 2H), 5.95 (d, J = 7.6 Hz, 1H), 5.25 (q, J = 7.6 Hz, 1H), 3.30 (dd, 

J = 13.6, 7.0 Hz, 1H), 3.16 (dd, J = 13.6, 7.6 Hz, 1H), 1.95 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.5, 148.2, 140.4, 139.8, 135.6, 129.3, 129.0, 128.2, 126.8, 124.4, 121.8, 54.8, 42.1, 

23.5 

ESI-MS: [M+H
+
]: 

Calculated: 285.1234 

Found: 285.1236 

Mp: 172-174 °C 

 

N-(2-(4-Nitrophenyl)-1-phenylethyl)propionamide (3l) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.05 (d, J = 8.7 Hz, 2H), 7.38 – 7.23 (m, 3H), 7.24 – 7.12 (m, 4H), 5.88 (d, J = 7.6 Hz, 

1H), 5.25 (dd, J = 14.6, 7.7 Hz, 1H), 3.33 (dd, J = 13.5, 6.6 Hz, 1H), 3.16 (dd, J = 13.5, 8.0 

Hz, 1H), 2.18 (q, J = 7.6 Hz, 2H), 1.10 (t, J = 7.6 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 173.2, 146.9, 145.6, 140.4, 130.3, 129.0, 128.1, 126.8, 123.6, 54.6, 42.4, 29.8, 9.8 

ESI-MS: [M+H
+
]: 

Calculated: 299.1390 

Found: 299.1391 

Mp: 163-165 °C 
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N-(2-(4-Nitrophenyl)-1-phenylethyl)cyclopropanecarboxamide (3m) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.05 (d, J = 8.7 Hz, 2H), 7.36 – 7.27 (m, 3H), 7.24 – 7.14 (m, 4H), 5.98 (s, 1H), 5.23 

(dd, J = 14.2, 7.9 Hz, 1H), 3.37 (dd, J = 13.4, 6.2 Hz, 1H), 3.16 (dd, J = 13.4, 8.3 Hz, 1H), 

1.41 – 1.27 (m, 1H), 0.98 – 0.85 (m, 2H), 0.84 – 0.57 (m, 2H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 173.1, 146.8, 145.6, 140.3, 130.3, 129.0, 128.2, 126.9, 123.6, 55.1, 42.5, 14.9, 7.6, 7.5 

ESI-MS: [M+H
+
]: 

Calculated: 310.1317 

Found: 310.1315 

Mp: 180-182 °C 

 

N-(2-(4-Nitrophenyl)-1-phenylethyl)isobutyramide (3n) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.06 (d, J = 8.8 Hz, 2H), 7.37 – 7.27 (m, 3H), 7.24 – 7.15 (m, 4H), 5.78 (d, J = 7.1 Hz, 

1H), 5.25 (dd, J = 14.6, 7.6 Hz, 1H), 3.32 (dd, J = 13.5, 6.7 Hz, 1H), 3.18 (dd, J = 13.5, 7.8 

Hz, 1H), 2.42 – 2.13 (m, 1H), 1.10 (t, J = 2.0 Hz, 3H), 1.08 (t, J = 3.5 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 176.4, 146.8, 145.6, 140.4, 130.3, 129.0, 128.1, 126.8, 123.6, 54.4, 42.4, 35.8, 19.8, 

19.5 

ESI-MS: [M+H
+
]: 

Calculated: 313.1547 

Found: 313.1550 

Mp: 178-180 °C 

 

N-(2-(4-nitrophenyl)-1-phenylethyl)butyramide (3o) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.05 (d, J = 11.0 Hz, 2H), 7.36 – 7.26 (m, 3H), 7.24 – 7.13 (m, 4H), 5.81 (d, J = 7.5 

Hz, 1H), 5.27 (dd, J = 14.7, 7.7 Hz, 1H), 3.33 (dd, J = 13.5, 6.7 Hz, 1H), 3.16 (dd, J = 13.5, 

7.9 Hz, 1H), 2.13 (t, J = 7.4 Hz, 2H), 1.61 (td, J = 14.4, 7.0 Hz, 2H), 0.87 (t, J = 7.4 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 172.4, 146.8, 145.6, 140.4, 130.3, 128.9, 128.1, 126.7, 123.6, 54.6, 42.4, 38.8, 19.2, 

13.8 

ESI-MS: [M+H
+
]: 

Calculated: 312.1474 

Found: 312.1475 

Mp: 162-164 °C 
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N-(2-(4-nitrophenyl)-1-phenylethyl)pivalamide (3p) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm δ 8.07 (d, J = 8.7 Hz, 2H), 7.37 – 7.26 (m, 3H), 7.25 – 7.12 (m, 4H), 5.91 (d, J = 7.4 

Hz, 1H), 5.24 (q, J = 7.4 Hz, 1H), 3.30 (dd, J = 13.5, 6.7 Hz, 1H), 3.18 (dd, J = 13.5, 7.7 Hz, 

1H), 1.14 (s, 9H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 177.9, 146.9, 145.6, 140.5, 130.3, 129.1, 128.1, 126.7, 123.6, 54.4, 42.4, 38.9, 27.6 

ESI-MS: [M+H
+
]: 

Calculated: 327.1703 

Found: 327.1709 

Mp: 163-165 °C 

 

2-Chloro-N-(2-(4-nitrophenyl)-1-phenylethyl)acetamide (3q) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.08 (d, J = 8.7 Hz, 2H), 7.40 – 7.27 (m, 3H), 7.25 – 7.13 (m, 4H), 6.92 (d, J = 7.9 Hz, 

1H), 5.26 (dd, J = 15.1, 7.5 Hz, 1H), 4.02 (s, 2H), 3.33 (dd, J = 13.5, 6.9 Hz, 1H), 3.22 (dd, J 

= 13.5, 7.6 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 165.3, 147.0, 144.8, 139.5, 130.3, 129.2, 128.4, 126.7, 123.7, 54.9, 42.7, 42.4 

ESI-MS: [M+H
+
]: 

Calculated: 319.0844 

Found: 319.0848 

Mp: 158-160 °C 

 

N-(2-(4-Nitrophenyl)-1,2-diphenylethyl)acetamide (3r) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.16 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 7.25 – 6.99 (m, 10H), 6.04 – 5.84 

(m, 1H), 5.77 (d, J = 9.4 Hz, 1H), 4.44 (d, J = 10.9 Hz, 1H), 1.80 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.1, 149.3, 146.9, 140.3, 139.9, 129.4, 128.8, 128.7, 128.4, 127.7, 127.3, 127.2, 

123.9, 57.6, 55.6, 23.4 

ESI-MS: [M+H
+
]: 

Calculated: 361.1547 

Found: 361.1551 

Mp: 210-212 °C 
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N-(1-(4-Chlorophenyl)-2-(4-nitrophenyl)ethyl)acetamide (3s) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.07 (d, J = 8.8 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.7 Hz, 2H), 7.12 (d, J = 

8.4 Hz, 2H), 5.96 (d, J = 7.8 Hz, 1H), 5.23 (q, J = 7.6 Hz, 1H), 3.28 (dd, J = 13.6, 6.9 Hz, 

1H), 3.12 (dd, J = 13.6, 7.9 Hz, 1H), 1.95 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.5, 146.9, 145.1, 139.0, 133.9, 130.2, 129.1, 128.2, 123.7, 54.1, 42.1, 23.4 

ESI-MS: [M+H
+
]: 

Calculated: 319.0844 

Found: 319.0848 

Mp: 190-192 °C 

 

Methyl 3-acetamido-2-(4-nitrophenyl)-3-phenylpropanoate (3t) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.18 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 8.8 Hz, 2H), 7.41 – 7.27 (m, 5H), 5.88 (d, J = 9.4 

Hz, 1H), 5.77 (t, J = 9.7 Hz, 1H), 4.25 (d, J = 9.9 Hz, 1H), 3.52 (s, 3H), 1.76 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 170.8, 169.1, 147.8, 142.6, 139.1, 130.1, 129.0, 128.5, 127.4, 123.8, 57.2, 55.0, 52.6, 

23.3 

ESI-MS: [M+H
+
]: 

Calculated: 343.1288 

Found: 343.1291 

Mp: 191-193 °C 

 

N-(2-(4-nitrophenyl)-1-phenylpropyl)acetamide (3u) 

 
Major Isomer: 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.15 (d, J = 8.8 Hz, 2H), 7.42 – 7.28 (m, 5H), 7.25 – 7.17 (m, 2H), 5.66 (d, J = 9.1 Hz, 

1H), 5.24 (t, J = 9.0 Hz, 1H), 3.29 (dq, J = 14.0, 7.0 Hz, 1H), 1.78 (s, 3H), 1.18 (d, J = 7.0 Hz, 

3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.0, 151.1, 147.0, 140.3, 128.9, 128.8, 128.0, 127.2, 123.8, 58.1, 45.7, 23.4, 19.2 
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ESI-MS: [M+H
+
]: 

Calculated: 298.1301 

Found: 298.1302 

Mp: 195-196 °C 

 

Minor Isomer: 
1
H NMR (300 MHz, CDCl3):  

δ ppm  8.03 (d, J = 8.8 Hz, 2H), 7.24 – 7.12 (m, 5H), 7.05 – 6.91 (m, 2H), 5.85 (d, J = 8.7 Hz, 

1H), 5.23 (t, J = 8.8 Hz, 1H), 3.47 – 3.10 (dq, J = 14.1, 7.0 Hz, 1H), 2.02 (s, 3H), 1.39 (d, J = 

7.0 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.6, 150.8, 146.7, 139.6, 129.1, 128.7, 127.9, 127.3, 123.5, 58.6, 45.5, 23.6, 18.4 

 

4-(1-Acetamido-2-(4-nitrophenyl)ethyl)benzoic acid (3v) 

 
1
H NMR (300 MHz, DMSO-d6):  

δ ppm 12.91 (s, 1H), 8.51 (d, J = 8.7 Hz, 1H), 8.14 (d, J = 8.7 Hz, 2H), 7.90 (d, J = 8.3 Hz, 

2H), 7.51 (dd, J = 13.5, 8.5 Hz, 4H), 5.17 (td, J = 9.1, 6.0 Hz, 1H), 3.11 (qd, J = 13.6, 7.8 Hz, 

2H), 1.76 (s, 3H) 
13

C NMR (75 MHz, DMSO-d6): 

δ ppm 168.6, 167.1, 147.8 146.8, 146.2, 130.5, 129.5, 129.4, 126.8, 123.2, 53.4, 41.9, 22.5 

ESI-MS: [M+H
+
]: 

Calculated: 329.1132 

Found: 329.1136 

Mp: 248-250 °C 

 

N-(2-(4-nitrophenyl)-1-(p-tolyl)ethyl)acetamide (3w) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.01 (d, J = 8.8 Hz, 2H), 7.16 (d, J = 8.7 Hz, 2H), 7.12 – 6.98 (m, 4H), 5.75 (d, J = 7.7 

Hz, 1H), 5.15 (dd, J = 14.3, 8.0 Hz, 1H), 3.29 (dd, J = 13.5, 6.3 Hz, 1H), 3.09 (dd, J = 13.5, 

8.2 Hz, 1H), 2.28 (s, 3H), 1.91 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 169.4, 146.8, 145.7, 138.0, 137.2, 130.3, 129.7, 126.8, 123.6, 54.6, 42.4, 23.5, 21.2 

ESI-MS: [M+H
+
]: 

Calculated: 299.1390 

Found: 299.1391 

Mp: 197-199 °C 
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N-(2-(4-Nitrophenyl)-3-oxo-1-phenylbutyl)acetamide (3x) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 8.16 (d, J = 8.8 Hz, 2H), 7.42 (d, J = 8.7 Hz, 2H), 7.34 – 7.16 (m, 5H), 7.03 (d, J = 9.2 

Hz, 1H), 5.51 (dd, J = 9.2, 6.0 Hz, 1H), 4.55 (d, J = 6.0 Hz, 1H), 2.05 (s, 3H), 1.95 (s, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 208.0, 169.6, 147.6, 142.5, 139.6, 129.7, 128.9, 127.9, 126.8, 124.2, 62.3, 55.8, 31.1, 

23.5 

Mp: 84-86 °C 

Synthesis of 3-aryl-3,4-dihydroisoquinoline
6a

 

 

1-Methyl-3-phenyl-3,4-dihydroisoquinoline (4)
6a

  

 
1
H NMR (400 MHz, CDCl3):  

δ ppm 7.57 (dd, J = 7.5, 1.2 Hz, 1H), 7.51 – 7.43 (m, 2H), 7.43 – 7.31 (m, 4H), 7.32 – 7.24 

(m, 1H), 7.20 (d, J = 7.2 Hz, 1H), 4.57 (ddd, J = 13.8, 5.3, 2.2 Hz, 1H), 3.02 – 2.78 (m, 2H), 

2.51 (d, J = 2.2 Hz, 3H) 

Radical Capturing Experiments 

Experimental procedure for capturing intermediate radicals with TEMPO
3d,3e

 

1)  In a 5 mL snap vial equipped with magnetic stirring bar the catalyst [Ru(bpy)3]Cl2 (0.2 

equiv), aryl diazonium tetrafluoroborate 1a (0.25 mmol, 1 equiv) and TEMPO (2 equiv) were 

dissolved in CH3CN containing 1 equiv of water and the resulting mixture was degassed by 

three “pump-freeze-thaw” cycles via a syringe needle. The vial was irradiated through the 
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vial’s plane bottom side using 440 nm LEDs. After 4 h of irradiation, a TEMPO trapped 

compound 9 was detected by mass spectra. 

 

 
MS (CI): [MH

+
]: 234.2 

2)  In a 5 mL snap vial equipped with magnetic stirring bar the catalyst [Ru(bpy)3]Cl2 (0.2 

equiv), aryl diazonium tetrafluoroborate 1a (0.25 mmol, 1 equiv), styrene 2a (2 equiv) and 

TEMPO (2 equiv) were dissolved in CH3CN containing 1 equiv of water and the resulting 

mixture was degassed by three “pump-freeze-thaw” cycles via a syringe needle. The vial was 

irradiated through the vial’s plane bottom side using 440 nm LEDs. After 4 h of irradiation, a 

TEMPO trapped compound 10 was detected by mass spectra. 

 

 
MS (ESI): [MH

+
]: 338.2 

Carbenium Ion Trapping Experiments 

Experimental procedure for tapping carbenium intermediate with water 

1) In a 5 mL snap vial equipped with magnetic stirring bar the catalyst [Ru(bpy)3]Cl2 

(0.005 equiv), arenediazonium tetrafluoroborate (1 equiv, 0.25 mmol), alkene (2 equiv), and 

water (20 equiv) were dissolved in 1 mL CH3CN, and the resulting reaction mixture was 

degassed by three “pump-freeze-thaw” cycles via a syringe needle. The vial was irradiated 

through the vial’s plane bottom side using 440 nm blue LEDs. After 4 h of irradiation, the 

reaction mixture was transferred to a separating funnel, diluted with dichloromethane and 

washed with 15 mL of water. The aqueous layer was washed three times (3 x 15 mL) with 
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dichloromethane. The combined organic phases were dried over Na2SO4, filtered and 

concentrated in vacuum. 

 

1,2-Diphenylethanol (11a) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.46 – 7.12 (m, 10H), 4.91 (dd, J = 8.3, 5.1 Hz, 1H), 3.15 – 2.81 (m, 2H), 1.89 (s, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 143.9, 138.7, 129.6, 128.7, 128.6, 127.8, 126.8, 126.0, 75.5, 46.2 

2) In a 5 mL snap vial equipped with magnetic stirring bar the catalyst [Ru(bpy)3]Cl2 

(0.005 equiv), arenediazonium tetrafluoroborate (1 equiv, 0.25 mmol), alkene (2 equiv), were 

dissolved in 1 mL CH3OH, and the resulting reaction mixture was degassed by three “pump-

freeze-thaw” cycles via a syringe needle. The vial was irradiated through the vial’s plane 

bottom side using 440 nm blue LEDs. After 4 h of irradiation, the reaction mixture was 

transferred to a separating funnel, diluted with dichloromethane and washed with 15 mL of 

water. The aqueous layer was washed three times (3 x 15 mL) with dichloromethane. The 

combined organic phases were dried over Na2SO4, filtered and concentrated in vacuum. 

 

(1-Methoxyethane-1,2-diyl)dibenzene (11b)
2b,3e

  

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.34 – 7.14 (m, 10H), 4.32 (dd, J = 6.5, 5.9 Hz, 1H), 3.19 (s, 3H), 3.10 (dd, J = 13.9, 

6.3 Hz, 1H), 2.89 (dd, J = 13.8, 5.8 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 141.8, 138.6, 129.6, 128.5, 128.2, 127.8, 126.9, 126.2, 85.2, 56.9, 44.9 
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1
H and 

13
C NMR spectra of selected compounds 

1
H NMR (300MHz, CDCl3) 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3 

 

 

13
C NMR (75 MHz, CDCl3)  

 

 



The Photoredox Catalyzed Meerwein Addition Reaction: Intermolecular Amino-

Arylation of Alkenes 5 

 

 129 

 

1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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Chapter 6a 

6a Synthetic Applications of Eosin Y in Photoredox Catalysis 

 

Eosin Y, a long known dye molecule, has recently been widely applied as a photoredox 

catalyst in organic synthesis. Low cost and good availability make eosin Y an attractive 

alternative to typical inorganic transition metal photocatalysts. In this chapter, we summarize 

the key photophysical properties of the dye and the recent synthetic applications in 

photoredox catalysis. 
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6a.1 Introduction 

Visible light photoredox processes have recently found many applications in organic 

synthesis,
1
 but the general interest in the field started much earlier.

2
 Unlike thermal reactions, 

photoredox processes occur under mild conditions and do not require radical initiators or 

stoichiometric chemical oxidants or reductants. Typical irradiation sources are LEDs or 

household lamps, which are cheaper and easier to apply than specialized UV reactors used in 

classical photochemistry. Ruthenium and iridium polypyridyl complexes are commonly 

employed visible light photocatalysts and their chemistry and application in organic synthesis 

has recently been summarized.
2-3

  

Despite the excellent photophysical properties of ruthenium and iridium polypyridyl 

complexes in visible light photocatalysis, the compounds are expensive and potential toxic, 

causing disadvantages on larger scale.
4
 Organic dyes have been used as an attractive 

alternative to transition metal complexes in photoredox catalysis. They are typically less 

expensive and less toxic, easy to handle and even outperform organometallic and inorganic 

catalysts in some cases.
4-5

 Particularly eosin Y was widely used as organo-photocatalyst in 

synthetic transformations. The classic dye is known for a long time and found use in cell 

staining,
6
 as pH indicator,

7
 as indicator in the analytical halide determination by Fajans

8
 and 

as dye pigment, e.g. in lip sticks.
9
 In this Chapter, we discuss recent applications of eosin Y as 

visible light photocatalyst in organic synthesis. 

6a.2 Photochemistry of Eosin Y 

The photochemistry of eosin Y is well investigated: upon excitation by visible light, eosin 

Y undergoes rapid intersystem crossing to the lowest energy triplet state, which has a life time 

of 2 ps in water.
10

 By excitation eosin Y becomes more reducing and more oxidizing 

compared to its ground state. The redox potentials of the excited state can be estimated from 

the standard redox potentials of the ground state, determined by cyclic voltammetry, and the 

triplet excited state energy. The measured ground state and the estimated excited state 

oxidation and reduction potentials are given in Scheme 1.
11

 In addition, the photo excited state 

of eosin Y may also undergo energy transfer.
12
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Scheme 1. Different forms of eosin Y and the redox potentials of eosin Y in CH3CN/H2O (1:1) in ground and 

corresponding excited states. 

6a.3 Reduction reactions 

The first reaction demonstrating the use of eosin Y photocatalysis in organic synthesis was 

the photoreduction of sulfonium salts. 

6a.3.1  Reduction of phenacyl sulfonium salt 

In 1978, Kellogg and co-workers reported the visible light induced reduction of phenacyl 

sulfonium salts by 1,4 dihydropyridines (Scheme 2).
13

 Irradiation of a mixture of 1 and 2 in 

CD3CN or CD3COCD3 without any photosensitizer provided the reduced product 3 in 

quantitative yield after 48 h using normal room light (neon fluorescent lamp at ca. 2 m 

distance) at 25 °C. Addition of 1 mol% of Na2-eosin Y accelerated the reaction resulting in 

complete conversion within 1 h of irradiation. The authors speculated that light induced single 

electron transfer (SET) steps are responsible for the formation of the reduced product and 

suggested an acceleration effect upon addition of the photocatalyst. However, the exact role of 

the photocatalyst in the reaction mechanism remains undisclosed. 

 

Scheme 2. Visible light mediated reduction of phenacyl sulfonium salt. 
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6a.3.2 Reduction of nitrobenzene 

Tung and co-workers utilized eosin Y as photocatalyst and TEOA as sacrificial reducing 

agent for the efficient photocatalytic reduction of nitrobenzene under green light irradiation 

(Scheme 3).
14

 The reaction is chemoselective and tolerates the presence of other functional 

groups, such as carbonyls, halogen atoms, and nitriles. The nitro group is the better electron 

acceptor. Important factors to achieve the optimal reaction yield are the pH value of the 

reaction mixture in deoxygenated ethanol-water (3:2, v/v) mixture and the amount of added 

TEOA. Nitro groups of substrates bearing either electron donating or electron withdrawing 

substituents are smoothly reduced.  

 

Scheme 3. Photoreduction of substituted nitrobenzenes to anilines. 

Based on quenching experiments and a flash photolysis study, the authors proposed a 

tentative mechanism for the photocatalytic reduction of nitrobenzene as shown in Scheme 4. 

A SET from eosin Y* to nitrobenzene generates 6 and the radical cation of eosin Y, which is 

reduced by TEOA to close the catalytic cycle and produce the radical cation of TEOA. The 

reaction of the radical anion 6 with the TEOA cation radical in the presence of water gives 

glycolaldehyde, diethanolamine and the further reduced intermediates, which are again 

reduced in a similar fashion to finally yield aniline. 
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Scheme 4. A plausible mechanism for the reduction of nitrobenzene to aniline via visible light photocatalysis. 

6a.3.3 Desulfonylation 

The use of sulfones as auxiliary groups is an efficient synthetic strategy to generate a wide 

range of important products. Commonly the sulfone group is removed using metal containing 

reducing agents, such as Bu3SnH, Al (Hg), or Sm/HgCl2. Recently an environmental friendly 

desulfonylation reaction was reported by Wu and co-workers  using TBA-eosin Y as photo-

catalyst and diisopropylethylamine (iPr2EtN) as a reducing agent (Scheme 5).
15

 Irradiation of 

a mixture of 7, TBA-eosin Y, and diisopropylethylamine under inert atmosphere using a 3 W 

blue LED in CH3CN furnishes the desired product 8 in good yields. Sulfonylated aliphatic 

ketones give no reaction yield due to their very negative reduction potential of -1.94 V vs 

SCE not accessible by the excited state of TBA-eosin Y. 

 

Scheme 5. Desulfonylation using TBA-eosin Y as a photocatalyst. 

The mechanism for the desulfonylation reaction is proposed in Scheme 6. Irradiation of 

TBA-eosin Y generates its excited state, which is oxidatively quenched by β-arylketosulfones 

resulting in the formation of the cation radical of TBA-eosin Y and the radical anion of 9. A 
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SET from diisopropylethylamine to the radical cation of TBA-eosin Y regenerates the 

photocatalyst and closes the cycle. Finally, the radical anion 10 undergoes desulfonylation to 

produce a ketone radical which abstracts a hydrogen atom from the cation radical of 

diisopropylethylamine affording the desired ketone 11. The radical cation of the TBA-eosin Y 

was identified in the presence of β-arylketosulfones by laser-flash photolysis. The observed 

absorption at 460 nm corresponds to the reported value for the eosin Y radical cation. 

 

Scheme 6. Proposed mechanism for the photo-desulfonylation reaction. 

6a.4 Oxidation reactions 

Eosin Y has been used to mediate photooxidation reactions in the presence of 

stochiometric amounts of electron acceptors. The reported reactions include the oxidation of 

amines, thioamides, and enol ethers. 

6a.4.1 Oxidative iminium ion formation 

The construction of C-C and C-P bonds by C-H activation is an emerging research area in 

organic synthesis. Our group reported an efficient visible light mediated method for the 

formation of C-C and C-P bonds using eosin Y as photoredox catalyst in visible light 

(Scheme 7).
16

 Nitroalkanes, dialkyl phosphonates, dialkyl malonates, and malononitrile were 

used as nucleophiles to trap the iminium ion leading to new bond formation at the α-position 

of tetrahydroisoquinolines. The reaction does not require the addition of stoichiometric 

oxidants and uses molecular oxygen from air as the terminal oxidant. 

The proposed mechanism of the reaction is depicted in Scheme 8. A single electron 

transfer from tetrahydroisoquinoline 12 to the excited state of eosin Y furnishes the aminyl 

radical cation 14 and the radical anion of eosin Y, which then transfers an electron to the 

oxidant present in the reaction. The radical anion of the oxidant may abstract a hydrogen atom 

from 14 to generate the iminium ion 15, which is finally trapped by a nucleophile resulting in 
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the desired product 13. 

 

Scheme 7. Oxidative C-C and C-P bond formation.  

 

Scheme 8. Proposed mechanism for the photocatalytic oxidative coupling reaction of tetrahydroisoquinolines. 

Later, Wu and co-workers reported the photocatalytic oxidative Mannich reaction under 

aerobic condition using molecular oxygen (Scheme 9).
17

 Irradiation of TBA-eosin Y, L-

proline, tetrahydroisoquinoline 16, and acetone produce the synthetically important product 

17 in moderate yields. The catalyst system consists only of organic compounds, which can be 

an advantage. 

Wu and co-workers combined eosin Y as a photosenestizer with graphene-supported RuO2 

nanocomposites as catalyst for C-C bond formation without external oxidants. Hydrogen is 

generated in good to excellent yield as the only byproduct (Scheme 10).
18

 Eosin Y initiates 

the coupling reaction of the tetrahydroisoquinoline with the nucleophile via visible light 

photoredox catalysis and at the same time RuO2 is used to capture the excess electron and 

proton from the C-H bonds of the substrates.  
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Scheme 9. The photocatalytic oxidative Mannich reaction. 

Irradiation of eosin Y, grapheme-RuO2, tetrahydroisoquinoline 12, and indole 18 at room 

temperature affords the desired cross coupling product 19 in good yield. The products 

containing halogen atoms may serve as important intermediates for further synthetic 

transformations. The cross coupling reaction occurs exclusively at the 3-position of indole 18 

irrespective to the substitution on the indole moiety. 

 

Scheme 10. Oxidative coupling between tetrahydroisoquinoline and indole with dihydrogen as second product. 

In the reactions described so far, the iminium ion and the nucleophile react 

intermolecularly. Recently, Xiao and co-workers reported the synthesis of isoquino[2,1-

a]pyrimidine 21 via intramolecular trapping of the iminium ion with a pendant N-tosyl moiety 

using Na2-eosin Y as photoredox catalyst (Scheme 11).
19

 Irradiation of Na2-eosin Y, tBuOK, 

4-methyl-N-(2-(7-methyl-3,4-dihydroisoquinolin-2(1H)-yl)benzyl)benzenesulfonamide 20 in 

MeOH/DCM affords 3-methyl-5-tosyl-4b,5,12,13-tetrahydro-6H-isoquinolino[2,1-a] 

quinazoline 21 in 85% yield after 25 h. 
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Scheme 11. Intramolecular trapping of a photogenerated iminium ion with an N-tosyl moiety. 

6a.4.2 Bromination 

Selective bromination of C-H bonds under ambient conditions is an important synthetic 

method in organic synthesis. Recently, Tan and co-workers reported a selective method for 

the bromination of aliphatic and benzylic C-H bonds with visible light photoredox catalysis 

using eosin Y (Scheme 12).
20

 The reaction was performed at mild conditions using CBr4 as 

the bromine source and morpholine as reducing agent. The amount of water is essential for 

the reaction: a higher ratio of water to DCM is important for the formation of the brominated 

product 23. The authors conducted experimental and computational studies on the mechanism 

and suggest that an N-morpholino radical is responsible for the C-H activation step during the 

reaction. The reaction tolerates ester, ether, and ketone functional groups. Synthetic 

applications of the method are the selective bromination of (+)-sclareolide and of acetate 

protected estrone. 

 

Scheme 12. Selective bromination of aliphatic and benzylic C-H bonds. 

6a.4.3 Hydroxylation 

Xiao and co-workers reported a highly efficient method for the hydroxylation of 

arylboronic acids to aryl alcohols using visible light photoredox catalysis under aerobic 
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oxidative conditions (Scheme 13).
21

 Typical reaction conditions used transition metal 

photocatalysts, but in a single example Na2-eosin Y was successfully adopted.  Irradiation of a 

mixture of 2 mol% Na2-eosin Y, arylboronic acid 24 (0.5 mmol), iPr2NEt (2.0 equiv) in DMF 

provided the hydroxylated product 25 in 90% yield after 96 h. The superoxide radical anion, 

which is generated in the photoredox cycle, reacts with arylboronic acid 24. Its Lewis acidity 

arises from the vacant boron p-orbital. A subsequent series of rearrangements and hydrolysis 

affords the desired aryl alcohol 25. 

 

Scheme 13. Hydroxylation of arylboronic acids via visible light catalysis using Na2-eosin Y. 

6a.4.4 Cyclization of thioamides 

1,2,4-Thiadiazoles have found applications in biology and pharmaceutical sciences. An 

example is the clinically used antibiotic cefozopram, which contains a 1,2,4-thiadiazole 

moiety. Elegant methods have been reported for synthesis of the privileged structure, but most 

of them require oxidizing agents. Yadav and co-workers  reported recently a metal free 

synthesis of 1,2,4-thiadiazole avoiding stoichiometric oxidants and using instead visible light 

and molecular oxygen in the presence of eosin Y as a photoredox catalyst.
22

  

 

Scheme 14. Photocyclization of thioamides giving 1,2,4-thiadiazoles. 

 



Synthetic Applications of Eosin Y in Photoredox Catalysis 6a 
 

 143 
 

This reaction involves the oxidative cyclization of thioamides via the sequential formation 

of C-N and C-S bonds to afford the 1,2,4-thiadiazole in very good yields. Irradiation of 

benzothioamide 26 under aerobic conditions in the presence of 2 mol% eosin Y in DMF gave 

the desired product 27 in good yield (Scheme 14). A wide range of aliphatic, aromatic, and 

heteroaromatic primary amides underwent in this reaction smoothly. 

The suggested mechanism for the formation of 1,2,4-thiadiazole is depicted in Scheme 15. 

A single electron transfer from the thiolic form 28 to eosin Y* generates the radical anion of 

eosin Y and the radical cation 29, which undergoes deprotonation to give a sulfur radical 

intermediate 30. The cyclodesulfurization of intermediate 30 furnishes 31, which gives 

another sulfur radical 32 by photooxidation as described before. The intermediate radical 32 is 

further oxidized by anion radical of O2, which is produced in the photocatalytic cycle of eosin 

Y, to give peroxysulfenate 33. Finally, an intermolecular nucleophilic attack of the imino 

nitrogen on the SO2
- 
substituted

 
carbon affords the desired product 27 with loss of SO2

2-
.
23

 

 

Scheme 15. Proposed mechanism of the cyclization of thioamides. 

6a.4.5 Desulfurization  

Aerobic desulfurization of thioamides to amides has been achieved by Yadav and co-

workers under visible light photoredox catalysis using eosin Y as a photocatalyst (Scheme 

16).
24

 Green light irradiation of 2 mol% eosin Y, thioamide 34 in DMF under air atmosphere 
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affords the desired product 35 in very good yield. Control experiments demonstrated that 

there was no significant product formation in the absence of either light or eosin Y. The 

photoreaction tolerates a wide range of functional groups including nitro, bromo, and 

methoxy groups. Thioamides bearing electron donating groups on the aromatic ring reacted 

faster and gave higher yields in comparison to those bearing electron withdrawing groups. 

The reaction was not applicable to primary thioamides; which form dimers under identical 

reaction conditions. 

 

Scheme 16. Desulfurization of thioamides using eosin Y photocatalysis. 

The mechanism for the desulfurization of thioamides to amides is shown in Scheme 17. 

Initial SET from 34 to eosin Y* produces the radical anion of eosin Y and the radical cation 

36, which is oxidized to the intermediate 37 which converts to the desired product 35 along 

with the formation of elemental sulfur as byproduct. 

 

Scheme 17. Suggested mechanism for the desulfurization of thioamides into the amides. 
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The authors ruled out a singlet oxygen mechanism for this reaction by performing several 

control experiments. The use of O2 (balloon) instead of open air did not increase the reaction 

yield and the reaction was not affected by singlet oxygen quenchers like DABCO or 2,3 

dimethyl-2-butene. 

6a.4.6 Aldoximes and primary amides into nitriles 

An efficient method for the transformation of aldoximes and primary amides into nitriles 

has been reported by Yadav and co-workers  (Scheme 18).
25

 The photoreaction involves the 

visible light initiated in situ generation of the Vilsmeier Haack reagent from DMF and CBr4, 

which is the electrophilic reagent responsible for the conversion of primary amides and 

aldoximes into the corresponding nitriles.  

 

Scheme 18. Conversion of aldoximes and primary amides into nitriles. 
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A mixture of aldoxime 38 (1 mmol), 2 mol% eosin Y, 2 equiv of CBr4, and 20 mol% DMF 

was irradiated in CH3CN for 14-18 h affording the desired product 40 in good yields. A wide 

range of aromatic, heteroaromatic, aliphatic aldoximes, and primary amides 39 reacted 

smoothly under these conditions. The reaction yield was higher in the presence of electron 

donating groups in the aryl moiety of the oxime. 

6a.4.7 Oxidation of silyl enol ethers 

α, β-Unsaturated carbonyl compounds are essential structural motifs for the construction of 

a variety of natural products. Elegant methods have been reported for their synthesis, but most 

of them require either metal catalysts or stoichiometric oxidants. Huang and co-workers  

utilized the photoredox chemistry of Na2-eosin Y in visible light for the synthesis of α, β-

unsaturated aldehydes and ketones from silyl enol ethers under aerobic oxidation conditions 

(Scheme 19).
12

 Polar protic solvents like MeOH, EtOH as well as the polar aprotic solvent 

DMSO were identified as suitable for this reaction. The major side product of the reaction 

was the oxidative cleavage of the enol ether double bond. 

 

Scheme 19. Preparation of α, β-unsaturated aldehydes and ketones from silyl enol ethers. 

The authors proposed a singlet oxygen mechanism for this transformation based on radical 

clock experiments and literature reports (Scheme 20). First, singlet oxygen is generated from 

sensitization by Na2-eosin Y*. An ene reaction between the silyl enol ether 41 and singlet 

oxygen produces the intermediate 43, which is further converted in to a hydroperoxy silyl 

hemiacetal 44. The intermediate 44 could undergoes an intramolecular silyl transfer to afford 

the desired product 42 along with hydroperoxysilane 45, which further undergoes 

decomposition to give O2 and silanol.  
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Scheme 20. Proposed reaction mechanism for the singlet oxygen mediated oxidation of silyl enol ethers. 

6a.5 Arylation reactions 

Aryl radicals can be generated from aryl diazonium salts via visible light photocatalysis. 

The method is an efficient alternative to reported procedures. We have used eosin Y as a 

photoredox catalyst for the direct arylation of heteroarenes with aryl diazonium salts in green 

light (Scheme 21).
26

  

 

Scheme 21. Direct photocatalytic C-H arylation of heteroarenes. 
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The reaction tolerates a wide range of functional groups, such as nitro, ester, cyano, and 

hydroxyl groups and has a broad scope with respect to both aryl diazonium salts and the 

heteroarenes. In addition to aryl diazonium salt 46, thienyl diazonium salts also reacts 

providing the corresponding products in good yields. External base decreased the reaction 

yield due to direct reaction between the aryl diazonium salt and the base. This metal free 

reaction represents an efficient alternative to transition metal catalyzed C-H arylation 

reactions and avoids the use of copper salts required in the classical Meerwein arylation 

protocol. 

 

Scheme 22. Proposed mechanism for the direct photocatalytic C-H arylation of heteroarenes. 

The proposed mechanism of the photocatalytic direct C-H arylation reaction is shown in 

Scheme 22. Initial reduction of the aryl diazonium salt 46 by eosin Y* gives aryl radical 49 

and the radical cation of eosin Y. The aryl radical 49 adds to heteroarene 47 yielding radical 

intermediate 50, which is oxidized by the radical cation of eosin Y to carbenium ion 51 while 

regenerating the neutral form of the photocatalyst eosin Y. Finally, carbenium ion 51 is 

deprotonated to the desired product 48. The oxidation of intermediate 50 is also possible by 

the aryl diazonium salt 46 directly via a radical chain mechanism. However, monitoring of the 

reaction progress after shutting off the irradiation indicates that the radical chains undergo 

only few turnovers. The radical intermediates 49, 50 were trapped with TEMPO and the 
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corresponding adducts 52, 53 were confirmed by mass spectrometry. 

Substituted benzothiophenes find applications in biology, pharmaceutical and material 

science. We applied the direct C-H arylation method for the arylation of benzothiophenes, but 

unfortunately a mixture of regioisomers were obtained in low yields. To obtain a single 

regioisomer, we decided to explore a radical annulation to obtain the benzothiophene moiety 

(Scheme 23).
27

 Irradiation of a mixture of 5 mol% eosin Y, o-methylthio-benzenediazonium 

salt 54 (0.25 mmol), and alkyne 55 (5 equiv) in DMSO afforded the desired product 56 in 

moderate to good yield after 14 h using a 530 nm LED. The scope of the reaction is wide and 

halogen substituted benzothiophenes are available by this route. We utilized the reaction for 

the synthesis of the drug intermediate Raloxifene 57. 

 

Scheme 23. Synthesis of substituted benzothiophenes via a photocatalytic radical annulation route. 

The proposed mechanism of the radical annulation is shown in Scheme 24. Initially, 

eosin Y* is oxidatively quenched by the diazonium salt 54 to generate the reactive aryl radical 

57 and the radical cation of eosin Y. Upon addition of the aryl radical 57 to alkyne 55 the 

radical intermediate 58 is obtained, which undergoes cyclization to give sulphuranyl radical 

59. Subsequent oxidation of 59 by the cation radical of eosin Y followed by transferring of the 

methyl group to nucleophiles present in the reaction, e.g. the solvent DMSO, yields the 

product 56. The radical intermediate 59 may also be oxidized by the diazonium salt 54 in a 

radical chain transfer mechanism. TEMPO adducts of radical intermediates 57 and 58 were 

identified, which supports the proposed reaction mechanism. 
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Scheme 24. Proposed mechanism of the photocatalytic radical annulation synthesis of benzothiophenes. 

A visible light induced [4+2] benzannulation method for the synthesis of phenanthrenes 

was reported by Zhou et al. using eosin Y as photocatalyst under mild conditions (Scheme 

25).
28

  Eosin Y (1 mol%), biphenyl diazonium salt 61 (0.2 mmol), and an alkyne (3 equiv) 

were dissolved in CH3CN and irradiated with a 24 W fluorescent bulb at room temperature 

giving the corresponding product 62 in very good yield. The reaction proceeds smoothly in 

polar solvents. In non-polar solvents the solubility of the diazonium salt 61 is poor. Addition 

of bases, such as tBuOLi or NEt3 decrease the yield due to the direct reaction of the 

diazonium salt 61 and the base. The photoreaction tolerates many functional groups and has a 

broad scope of alkynes and biphenyldiazonium salts. 

 

Scheme 25. Photocatalytic synthesis of phenanthrenes via a [4+2] benzannulation method. 
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The proposed reaction mechanism of the [4+2] photo-benzannulation is similar to the other 

diazonium salt reactions (Scheme 26). Initial SET from eosin Y* to biphenyl diazonium salt 

61 generates the radical cation of eosin Y and biphenyl radical 63, which upon addition to 

alkyne 55 furnishes vinyl radical 64. Subsequent intramolecular radical cyclization affords the 

cyclized radical intermediate 65. Oxidation of 65 by the eosin Y radical cation closes the 

catalytic cycle and produces the carbenium intermediate 66. Finally, cation 66 is deprotonated 

to afford the desired phenanthrene 62. 

 

Scheme 26. Proposed mechanism for the synthesis of phenanthrenes. 

Photoredox catalysis with eosin Y has been discussed so far, for the formation of C-C and 

C-P bonds. Recently, the Yan group utilized eosin Y for the borylation of aryl diazonium salts 

(Scheme 27).
29

 Acetonitrile was found to be a suitable solvent to promote the reaction in good 

yields. Irradiation of a mixture of 5 mol% eosin Y, B2Pin2 67 (0.3 mmol), and aryl diazonium 

salt 46 (1.5 equiv) in acetonitrile at room temperature affords the desired product 68 in good 

yields. Aryl diazonium salts bearing electron withdrawing groups showed higher reactivity 

than those bearing electron donating groups. The photoreaction tolerates a range of functional 

groups including acetyl, nitro, alkyl, halo, and alkoxy groups. Heteroaromatic diazonium salts 

are not suitable substrates for this reaction. 
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Scheme 27. Borylation of aryl diazonium salts. 

The proposed mechanism for the borylation of aryl diazonium salts is depicted in Scheme 

28. Initially, a SET from eosin Y* to the aryl diazonium salt 46 gives the aryl radical 49 and 

the radical cation of eosin Y. Addition of the aryl radical 49 to the tetracoordinated complex 

69, which was generated in situ from the interaction between B2Pin2 and the counter anion 

BF4
-
, affords the target borylated product 68 and the radical anion intermediate 70. Finally, 

intermediate 70 was oxidized by the radical cation of eosin Y to complete the catalytic cycle. 

 

Scheme 28. A plausible mechanism for the borylation of aryl diazonium salts. 

Arylsulfides are important structural motifs in synthetic and natural molecules and they are 

usually prepared by treatment of aryl diazonium salts with thiols under basic or neutral 

conditions. The intermediate diazosulfide, which is formed during the reaction, is a potent 

explosive. The recently reported method by Jacobi and co-workers  avoids the risk by 
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utilizing eosin Y as a photoredox catalyst for the synthesis of arylsulfide 73 from aryl 

diazonium salt 46 and disulfide 72 under green light irradiation (Scheme 29).
30

 DMSO was 

found to be a very good solvent for this reaction. Without eosin Y and without irradiation no 

product formation is observed, but irradiating the reaction mixture without eosin Y gave very 

low product yields. The observation is explained by a charge transfer complex between 

DMSO and the aryl diazonium salt, which absorbs in the visible range. In addition, the 

authors also prepared unsymmetrical diarylselenides from aryl diazonium salts and 

diphenyldiselenide.  

 

Scheme 29. Synthesis of arylsulfides from diazonium salts and disulfides. 

The suggested mechanism for the photocatalytic thiolation reaction as shown in Scheme 

30. A SET reduction of aryl diazonium salt 46 by eosin Y* generates aryl radical 49 and the 

radical cation of eosin Y. The nucleophilic disulfide 72 attacks the aryl radical giving a 

trivalent sulfur radical 74, which is stabilized by the adjacent aryl and sulfur groups. 

Oxidation of the intermediate 74 by the radical cation of eosin Y furnishes an electrophilic 

species 75 and completes the photocatalytic cycle. Finally, the cation intermediate 75 

undergoes substitution with DMSO to give the desired product 73. 
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Scheme 30. Suggested reaction mechanism for the photocatalytic thiolation reaction. 

6a.6 Cooperative catalysis 

A dual catalytic combination of photocatalysis with organocatalysis was reported by 

Zeitler and co-workers for the enantioselective α-alkylation of aldehydes.
11b

 Eosin Y and 

imidazolidinone were found to be capable of alkylating aldehydes with electron deficient 

alkyl halides to provide the corresponding products in good yields with high enantiomeric 

excess (Scheme 31).  

 

Scheme 31. Asymmetric α-alkylation of aldehydes. 
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Eosin Y catalyzed reactions require a little longer reaction times compared to the 

ruthenium-trisbipyridine catalyzed MacMillan reaction,
31

 but did not give any product 

racemization.  The photoreaction allows the stereospecific incorporation of fluorinated alkyl 

moieties, which are important structural units in drug to modulate their properties. 

Following mainly the mechanism proposed by MacMillan and co-workers,
31

 the authors 

suggested a mechanism for the eosin Y reaction, which is shown in Scheme 32. Initially, a 

catalytic amount of enamine is oxidized by eosin Y* to generate the radical anion of eosin Y 

that reduces the halide 79 to give the electron deficient radical species 80. Addition of radical 

80 to the enamine 81 furnishes α-amino radical 82. Subsequent oxidation of the amino radical 

82 to the iminium ion 83 provides the electron for the reductive quenching of eosin Y*. 

Finally, iminium ion 83 undergoes hydrolysis to afford the desired alkylated product 84.  

 

Scheme 32. Mechanism for the asymmetric alkylation of aldehydes. 

Another dual catalytic mode of hydrogen bond promoted organophotoredox catalysis was 

applied for highly diastereoselctive reductive enone cyclization by Zeitler et al.
32

 These 

reactions proceed smoothly at ambient temperature using Na2-eosin Y as a photocatalyst and 

thiourea, TADDOL as organocatalysts (Scheme 33). The combination of Hantzsch ester and 

DIPEA was found to be a very good reductive quencher as well as hydrogen donor. Aryl 

bisenones bearing electron donating and electron withdrawing substituents undergo reductive 

enone cyclization to give the desired trans-cyclopentanes in good yields. However, aliphatic 
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enones are not converted in this reaction due to their more negative potential compared to the 

eosin Y radical anion. In addition, heterocycles and cyclohexanes were also obtained in good 

yields, while cycloheptanes were not accessible. 

 

Scheme 33.  Reductive enone cyclization using eosin Y. 

 

Scheme 34. Suggested mechanism for the reductive enone cyclization. 
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The proposed mechanism of the reaction starts with the reductive quenching of Na2-

eosin Y* by either the Hantzsch ester 90 or DIPEA to generate the radical anion of Na2-eosin 

Y and 91 (Scheme 34). Subsequent reduction of 87 by the radical anion of Na2-eosin Y closes 

the photocatalytic cycle and yields the 1,4-distonic radical anion 88, which undergoes a 5-

exo-trig cyclization to give α-carbonyl radical 89. The radical abstracts a hydrogen atom from 

the radical cation 91 to give the final product 92. An alternative mechanism is the oxidation of 

radical 89 followed by hydride transfer to give compound 92. 

6a.7 Trifluoromethylation 

α-Trifluoromethylation of ketones has been reported by Kappe and co-workers  using a 

continuous flow visible light photoredox catalysis with eosin Y (Scheme 35).
5d

 The reaction 

proceeds in two steps: in the first step the ketones are converted into their respective silyl enol 

ethers by reaction with TMSOTf and iPr2NEt. The in situ formed silyl enol ethers are then 

converted in a visible light mediated trifluoromethylation process. The two step procedure is 

faster compared to reported reactions.
33

 Several ketones including acetophenones, 

heteroaromatic ketones, and aliphatic ketones were successfully trifluoromethylated. 

 

Scheme 35. α-Trifluoromethylation of ketones. 

6a.8 Conclusion 

Visible light photoredox catalysis with metal complexes, such as Ru(bpy)3
2+

 or Ir(ppy)3, 

has already received a lot of attention as tool for organic synthetic transformations. For 

several applications eosin Y serves as an attractive alternative to redox active metal 
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complexes and even outperform them in some cases.
5d

 Eosin Y photocatalysis has been 

applied to generate reactive intermediates including electrophilic α-carbonyl radicals, aryl 

radicals, iminium ions, trifluoromethyl radicals, and enone radical anions, which are utilized 

in arene C-H functionalization, [2+2] cyclo addition, amine α-functionalization, 

hydroxylation, reduction, and oxidation reactions.  

In addition, eosin Y catalysis has been merged with other modes of catalysis, such as 

enamine catalysis and hydrogen bond promoted catalysis to achieve enantioselective 

reactions. The use of eosin Y photocatalysis in continuous flow technology has been 

described.
5d,34

 Overall, the good availability, strong absorption in the visible part of the 

spectrum and suitable redox potential values for a variety of organic transformations make 

eosin Y appealing and green photocatalysts for organic synthesis. 
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Chapter 6b 

6b Eosin Y Catalyzed Visible Light Oxidative C-C and C-P bond 

Formation 

 

Eosin Y catalyzes efficiently the visible light mediated coupling of sp
3
 C-H bonds adjacent 

to the nitrogen atom in tetrahydroisoquinoline derivatives in the absence of an external 

oxidant. Nitroalkanes, dialkyl malonates, malononitrile, and dialkyl phosphonates were used 

as pronucleophiles in this metal free, visible light oxidative coupling reaction. 
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6b.1 Introduction 

Sunlight is an abundant, renewable and clean energy resource for chemistry.
1
 Visible light 

accounts for the major part of the incoming solar radiation and therefore visible light should 

be used to drive chemical transformations. However, most organic molecules do not absorb 

light in the visible region of light. This restricts the application of photochemical reactions, 

and thus, motivates the development of efficient visible light photocatalysts for chemical 

transformations in organic synthesis.
2  

Such photoredox catalysts absorb visible light and 

utilize the collected energy for electron transfer to or from organic molecules to initiate 

chemical reactions. 

In the last decade tris(bipyridine) ruthenium and iridium complexes have been used as 

visible light photoredox catalysts in dehalogenation,
2d,3 

reduction,
4
 oxidation

5 
and asymmetric 

alkylation reactions.
6 

Yoon and co-workers have used the same ruthenium complex as 

photocatalyst in inter- and intramolecular [2+2] enone cycloadditions.
2b,7

 Currently, 

Stephenson used these catalysts for oxidative coupling reaction of nitroalkanes with N-

arylamines in visible light.
8 

 However, the iridium and ruthenium catalysts are expensive and 

toxic. The use of organic dyes, which are environmentally friendly, inexpensive and easy to 

handle as photoredox catalysts would be a superior alternative to inorganic transition metal 

photocatalysts. 

Direct formation of C-C and C-P  bonds by C-H activation is a challenging research area in 

organic synthesis. In the past years many elegant methodologies were developed,
9
 but those 

required transition metal catalysts and harsh conditions. We reported here the metal free 

visible light photoredox catalysis for C-C and C-P  bond formation using the organic dye 

eosin Y to initiate a single electron transfer processes without exclusion of moisture or air in 

visible light. 

6b.2 Results and discussion 

We focused our initial studies on the oxidative coupling reaction of 1 with nitromethane 

using the reaction conditions reported by Stephenson and co-workers,
8
 but replacing  the 

tris(bipyridine) ruthenium complex as visible light photoredox catalyst by the organic dye 

eosin Y (2 mol %). The desired product 3 was obtained in 80% isolated yield after 8 h of 

irradiation with green LED light (Table 1, entry 2). Under these conditions (2 mol % of 2, 530 

nm) we also examined other pronucleophiles, such as dialkyl malonates, malononitrile and 
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dialkyl phosphonates at room temperature (Table 1, entries 4, 5, 6 and 7). In all cases, we 

obtained the desired products in good yields and found that for efficient conversion both light 

and catalyst are required (Table 1, entries 8 and 9). 

Table 1. Oxidative trapping of iminium ion with different pronucleophiles. 

 

Entry Conditions
a
 Yield

b
 (%) 

1 2 (1 mol %), CH3NO2, 12 h; X = CH2NO2 74 

2 2 (2 mol %), CH3NO2, 8 h; X = CH2NO2 80 

3 2 (5 mol %), CH3NO2, 8 h; X = CH2NO2 80 

4 2 (2 mol %), C7H12O4 , 10 h; X = C7H11O4 92
c
 

5 2 (2 mol %), C5H8O4 , 10 h; X = C5H7O4 88
c
 

6 2 (2 mol %), DMF , 6 h; X = CN 62 

7 2 (2 mol %), DMF, 3 h; X = C4H10O3P 86 

8 No catalyst, CH3NO2, 180 h;  X = CH2NO2 78 

9 2 (2 mol %), no light, CH3NO2, 72 h;   X = CH2NO2 0 

a
With the exception of entry 6 and 7, in all cases nucleophiles were used as solvents. 

b
Isolated 

yields after purification by chromatography. 
c
Isolated yields after removal of the excess solvent by 

distillation. 

Various N-aryl tetrahydroisoquinoline derivatives were reacted with nitromethane, 

nitroethane or 1-nitropropane and gave the desired coupling products in good yields (66-80%; 

Table 2). Nitromethane always gave better results than other nitroalkanes (6a vs 6e and 6f) 

and the reaction was insensitive to electronic effects on the aromatic rings (6a, 6b and 6c). In 

the case of non-activated amine (Scheme 1), a low yield was obtained after 96 h irradiation. 

Dialkyl m lo  tes   ve β-diester amines in excellent yields from the reaction with 

tetrahydroisoquinoline derivatives using 2 mol % of eosin Y as photocatalyst and green light 

irradiation at 530 nm at room temperature. Excellent product yields (86-92%; Table 3) were 

obtained when dialkyl malonates were used as solvents. After the reaction excess dialkyl 

malonates were distilled off using Kugelrohr distillation
10 

yielding the analytically pure 
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reaction products. These results compare favorably with literature reported results by Li and 

co-workers
11

 and  Liang et al.
12 

Table 2. Oxidative coupling reaction of tetrahydroisoquinolines with nitroalkanes
a
. 

 

Entry R
1
 Ar R

2
 Product Time (h) Yield

b
 (%) 

1 H Ph H 6a 8 80 

2 H 4-BrC6H4 H 6b 10 76 

3 H 4-MeOC6H4 H 6c 10 78 

4 OMe Ph H 6d 8 74 

5 H Ph Me 6e 12 75 

6 H Ph Et 6f 14 66 

a
The reaction was performed with 4 (0.25 mmol) and eosin Y (0.02 equiv) in 1.0 mL of 5.  

b
Isolated yield after purification on SiO2. 

c
dr = 2:1. 

d
dr = 1.4:1. 

 

Scheme 1. Reaction of 1-phenylpyrrolidine with nitromethane. 

In addition to nitroalkanes, dialkyl malonates,  the photocatalytic reaction was applied to 

m lo o  t  le  Su p  s   ly  α-amino nitriles were obtained as the sole products instead of the 

expected β-dicyano substituted derivatives when malononitrile was treated with 

tetrahydroisoquinolines in DMF at room temperature (Table 4). Amino nitriles are 

synthetically useful intermediates. The nitrile functionality can be hydrolyzed to give α-amino 

acids or can be converted into α-amino aldehydes or α-amino alcohols. The photocatalytic 

reaction, which we report is an alternative sy thet c  oute to α-amino nitriles avoiding toxic 

cyanides
 
 and expensive metals.

12,13 
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Table 3. Oxidative coupling reaction of tetrahydroisoquinolines with dialkyl malonates
a
. 

 

Entry Ar R Product Time (h) Yield
b
 (%) 

1 Ph Et 8a 10 92 

2 Ph Me 8b 10 88 

3 4-MeOC6H4 Et 8c 12 91 

4 4-MeOC6H4 Me 8d 12 90 

5 2-MeOC6H4 Et 8e 14 89 

6 2-MeOC6H4 Me 8f 14 86 

a
The reaction was performed with 4 (0.25 mmol) and eosin Y (0.02 equiv) in 1.0 mL of 7. 

b
Isolated yield after distillation of excess solvent.. 

Table 4. Oxidative synthesis of α-amino nitriles
a
. 

 

Entry Ar Product Time (h) Yield
b
 (%) 

1 Ph 10a 10 62 

2 4-BrC6H4 10b 12 56 

3 4-MeOC6H4 10c 10 60 

4 2-MeOC6H4 10d 10 58 

a
The reaction was run with 4 (0.25 mmol), malononitrile (1.5 equiv), eosin Y 

(0.02 equiv) in 1.0 mL DMF. 
b
Isolated yield after purification on SiO2. 

The success of C-C bond formation by using eosin Y encouraged us to investigate  C-P 

bond reactions. A v   ety of methods h ve bee  desc  bed fo  the sy thes s of α-amino 

phosphonates,
9r-9w

 but those typically require  metal catalysts and expensive reagents. To 

avoid these catalysts, we applied ou  methodolo y fo  the sy thes s of  α-amino phophonates. 



Eosin Y Catalyzed Visible Light Oxidative C-C and C-P bond Formation 6b 
 

166  

 

Various tetrahydoisoquinolines were reacted with dialkyl phosphonates, and representative 

results are listed in Table 5. The desired products were obtained in good to excellent yields. 

Table 5. Oxidative synthesis of α-amino phosphonates
a
. 

 

Entry Ar R Product Time (h) Yield
b
 (%) 

1 Ph Et 12a 3 86 

2 Ph Bn 12b 4 92 

3 4-BrC6H4 Et 12c 2 82 

4 4-BrC6H4 Bn 12d 3 88 

5 4-MeOC6H4 Et 12e 3 93 

6 4-MeOC6H4 Bn 12f 3 91 

7 2-MeOC6H4 Et 12g 3 91 

8 2-MeOC6H4 Bn 12h 3 90 

a
The reaction was run with 4 (0.25 mmol), dialkyl phosphonate (4 equiv), eosin Y 

(0.02 equiv) in 1.0 mL DMF.
 b

Isolated yield after purification on SiO2. 

The mechanism of the eosin Y photocatalysis has not been investigated in detail at this 

stage. However, on the basis of our results using nitroalkanes, dialkyl malonates, dialkyl 

phosphonates as pronucleophiles in the photoreaction and the litreature reports
8,14  

the 

following mechanism can be suggested (Scheme 2). A single electron transfer from 4 to 

excited state of eosin Y gave an aminyl cation radical 13, which then lost a hydrogen atom by 

radical anion
 
to generate iminium ion 14.

15 
Subsequently, trapping of 14 with pronucleophiles 

resulted in the desired product 15. The fo m t o  of α-amino nitriles may result from cyanide 

ion addition to the iminium ion 14, whereby cyanide ions may be formed by oxidative 

cleavage of the malononitrile C-CN bond.
11,12a,16
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Scheme 2. Proposed reaction mechanism. 

6b.3 Conclusion 

Iridium- and ruthenium based photocatalysts mediate the visible light oxidative coupling of 

tetrahydroisoquinoline derivatives with nitroalkanes, as recently disclosed by Stephenson et 

al. Our experiments have shown that the transition metal catalysts can be replace by the redox 

active organic dye eosin Y yielding comparable yields. Using these organic photocatalysts, 

the scope of the reaction was extended to dialkyl malonate, malononitrile and dialkyl 

phosphonates as pronucleophiles. Continuing from these results we successfully replaced 

other reagents PhI(OAc)2 (for cyanation) and CuBr-O2 (for phosphonation). Due to the similar 

redox properties of eosin Y and the previously used Ru(bpy)3
2+

 complexes we propose a 

similar mechanism of the reaction. However, alternative mechanistic pathways are equally 

likely and ongoing investigations must prove the correct mechanistic picture.  

6b.4 Experimental Part 

General information 

1
H NMR spectra were recorded on a Bruker Avance 300 MHz spectrometer in CDCl3 

solut o    d the chem c l sh fts we e  epo ted    p  ts pe  m ll o  (δ)  efe e ced to the 

internal solvent signal peak at 7.26 ppm. Multiplicities are indicated, s (singlet), d (doublet), t 

(triplet), q (quartet), quint (quintet), sept (septet), m (multiplet)); coupling constants (J) are in 

Hertz (Hz). 
13

C NMR were obtained at 75 MHz spectrometer in CDCl3 solution and 

referenced to the internal solvent signal (central peak is 77.00 ppm). 
31

P NMR were obtained 

at 121 MHz and calibrated with peak at 0.00 ppm. All reactions were monitored by thin-layer 

chromatography using Merck silica gel plates 60 F254; visualization was accomplished with 

UV light and/or staining with appropriate stains (anisaldehyde, orphosphomolybdic acid). 

St  d  d fl sh ch om to   phy p ocedu es we e followed (p  t cle s ze 40−63 μm)  
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Commercially available reagents and solvents were used without further purification. 

Irradiation with green light was performed using high-power LEDs Philips LUXEON
®
 Rebel 

(1W  λ = 530±10  m  145 lm @700mA). 

General Procedures 

General procedure for the preparation of 2-aryl-1,2,3,4-tetrahydroisoquinolines
9h,17

 

Copper (I) iodide (200 mg, 1.0 mmol) and potassium phosphate (4.25 g, 20.0 mmol) were 

put into a Schlenk-tube. The Schlenk-tube was evacuated and back filled with nitrogen. 2-

Propanol (10.0 mL), ethylene glycol (1.11 mL, 20.0 mmol), 1,2,3,4-tetrahydro-isoquinoline 

(2.0 mL, 15.0 mmol) and iodobenzene (1.12 mL, 10.0 mmol) were added successively at 

room temperature. The reaction mixture was heated at 85-90 °C and kept for 24 h and then 

allowed to cool to room temperature. Diethyl ether (20 mL) and water (20 mL) were then 

added to the reaction mixture. The organic layer was extracted with diethyl ether (2 × 20 mL). 

The combined organic phases were washed with brine and dried over sodium sulfate. The 

solvent was removed by rotary evaporation and purified by column chromatography on silica 

gel using hexane/ethyl acetate as eluent. 

General procedure for the preparation of β-nitro amine derivatives  

In a 5 mL snap vial equipped with magnetic stirring bar the tetrahydroisoquinoline 

derivative (1 eq) and eosin Y (0.02 eq) were dissolved in nitroalkane (0.25 mmol/mL) and the 

 esult     m xtu e  w s     d  ted th ou h the v  l’s pl  e bottom s de us      ee  LE s  

After the reaction was completed (monitored by TLC), the reaction mixture was filtered and 

evaporated under reduced pressure. The residue was purified by flash chromatography on 

silica gel using hexane/ethyl acetate as eluent. 

1-Nitromethyl-2-phenyl-1,2,3,4-tetrahydroisoquinoline (6a)
12b

 

 
1
H NMR (300 MHz, CDCl3): 
δ ppm 7 33-7.13(m, 6H), 7.01-6.98(m, 2H), 6.87(t, J = 7.3 Hz, 1H), 5.57(t, J = 7.2 Hz, 1H), 

4.88(dd,  J = 11.8, 7.8 Hz, 1H), 4.57(dd, J = 11.8, 6.6 Hz, 1H), 3.70-3.58(m, 2H), 3.15-

3.05(m, 1H), 2.84-2.76(m, 1H) 
13

C NMR (75 MHz, CDCl3):  
δ ppm 148 4  135 3  132.9, 129.5, 129.2, 128.1, 127.0, 126.6, 119.4, 115.1, 78.8, 58.2, 42.0, 

26.4 
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2-(4-Bromophenyl)-1-nitromethyl-1,2,3,4-tetrahydroisoquinoline (6b)
12a

 

 
1
H NMR (300 MHz, CDCl3): 
δ ppm 7 34(d  J = 9.1 Hz, 2H), 7.27-7.12(m, 4H), 6.85(d,  J = 8.8 Hz, 2H), 5.49(t,  J = 7.6 Hz, 

1H), 4.87-4.80(m, 1H), 4.59-4.53(m, 1H), 3.63-3.59(m, 2H), 3.09-3.04(m, 1H), 2.83-

2.74(m, 1H) 
13

C NMR (75 MHz, CDCl3):  
δ ppm 147 5  135 0  132 6  132 2  129 3  128 3  126 8  126.8, 116.7, 111.5, 78.6, 58.1, 42.1, 

26.2 

 

2-(4-Methoxyphenyl)-1-nitromethyl-1,2,3,4-tetrahydroisoquinoline (6c)
11

 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 7 26-7.22(m, 2H), 7.19-7.14(m, 2H), 6.94(d, J = 9.1 Hz, 2H), 6.83(d, J = 9.1 Hz,  2H), 

5.41(dd, J = 8.6, 5.8 Hz, 1H), 4.83(dd, J = 11.9, 8.6 Hz, 1H), 4.57(dd, J = 11.9, 5.8 Hz, 1H), 

3.76(s, 3H), 3.50-3.55(m, 2H), 3.08-2.97(m, 1H), 2.74-2.67(m, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 153 9  143 0  135 4  132 9  129 5  127 9  126 9  126.6, 118.8, 114.7, 78.9, 58.9, 55.6, 

43.1, 25.8 

 

6,7-Dimethoxy-1-nitromethyl-2-phenyl-1,2,3,4-tetrahydroisoquinoline (6d)
8
 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 7 29-7.23(m, 2H), 6.98(d, J = 8.1 Hz, 2H), 6.85(t, J = 7.3 Hz, 1H), 6.65(s, 1H), 6.61(s, 

1H), 5.47(dd,  J = 8.0, 6.3 Hz, 1H), 4.85(dd, J = 11.8, 8.1 Hz, 1H), 4.57(dd,  J = 11.8, 6.3 Hz, 

1H), 3.86(s, 3H), 3.85(s, 3H), 3.67-3.64(m, 1H), 3.57(m, 1H), 3.00(ddd, J = 15.4, 9.4, 5.6 Hz, 

1H), 2.67(dt, J = 16.2, 4.5 Hz, 1H)
 

13
C NMR (75 MHz, CDCl3):  

δ ppm 148 8  148 6  147 7  129 4  127 4  124 5  119 5  115 5  111 7  109 6  78 8, 58.0, 56.1, 

55.9, 42.0, 25.8 

 

1-(1-Nitro-ethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (6e)
11

 

 
1
H NMR (300 MHz, CDCl3): 

The m jo   some : δ ppm 5 23(d  J = 6.7 Hz, 1H), 5.10-5.00(m, 1H), 3.65-3.55(m, 2H), 

1.55(d, J = 6 8  z  3 ); The m  o   some : δ ppm 5 24(d  J = 7.0 Hz, 1H), 4.91-4.86(m, 1H), 

3.84(ddd, J = 13.6, 8.1, 5.7 Hz, 2H), 1.71(d, J = 6.8 Hz, 3H). Other overlapped peaks:  δ ppm 

7.30-7.21(m), 7.18-7.09(m), 7.02-6.98(m), 6.86-6.79(m), 3.11-3.00(m), 2.95-2.85(m) 
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13
C NMR (75 MHz, CDCl3):  

The major isomer: δ ppm 148.8, 135.5, 131.9, 129.4, 129.2, 128.3, 128.1, 126.1, 119.3, 115.3, 

85.4, 62.7, 42.6, 26.3, 16.3; The minor isomer: δ ppm 149.1, 134.7, 133.8, 129.2, 129.0, 

128.6, 127.2, 126.5, 118.7, 114.4, 88.9, 61.1, 43.5, 26.7, 17.4 

 

1-(1-Nitro-propyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (6f)
18

 

 
1
H NMR (300 MHz, CDCl3): 

The major isomer:  δ ppm  5.18(d, J = 9.6 Hz, 1H), 4.95-4.87(m, 1H), 3.93-3.84(m, 1H); The 

minor isomer:  δ ppm  5.29(d, J = 9.3 Hz, 1H), 4.76-4.68(m, 1H); Other overlapped peaks: δ 

ppm  7.34-7.15(m), 7.04-6.97(m), 6.88-6.80(m), 3.74-3.50(m), 3.16-2.85(m), 2.30-2.09(m), 

1.90-1.82(m), 1.00-0.94(m) 
13

C NMR (75 MHz, CDCl3):  
The major isomer: δ ppm 149.0, 135.4, 132.4, 129.3, 129.1, 128.6, 128.1, 125.8, 119.2, 115.7, 

92.9, 62.1, 42.1; The minor isomer: δ ppm 148.9, 134.6, 133.8, 129.2, 128.6, 128.1, 127.1, 

126.5, 118.4, 114.0, 96.0, 60.6, 43.4, 26.7, 24.9, 10.6; Other overlapped peaks:  δ ppm 129.5, 

129.5, 129.1, 128.5, 128.5, 128.1, 128.1, 127.1, 126.5, 125.8, 26.7, 25.6, 24.9, 24.5, 10.6 

 

2-Nitromethyl-1-phenyl-pyrrolidine (6g)
9h 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 7 30-7.22(m, 2H), 6.81-6.76(m, 1H), 6.72-6.69(m, 2H), 4.64(dd, J = 11.3, 3.0 Hz,  

1H), 4.45-4.37(m, 1H), 4.19(dd, J = 11.4, 9.8 Hz, 1H), 3.54-3.47(m, 1H), 3.26-3.17(m, 1H), 

2.20-2.08(m, 4H) 
13

C NMR (75 MHz, CDCl3):  
δ ppm 145 7  129 6  117 2  111 9, 75.8, 57.5, 48.2, 29.4, 22.9 

General procedure for the preparation of β-diester amine derivatives 

In a 5 mL snap vial equipped with magnetic stirring bar the tetrahydroisoquinoline 

derivative (1 eq) and eosin Y (0.02 eq) were dissolved in dialkyl malonates (0.25 mmol/mL) 

  d the  esult     m xtu e  w s     d  ted th ou h the v  l’s pl  e bottom s de us      ee  

LEDs. After the reaction was completed (monitored by TLC), the reaction mixture was 

filtered and distilled off excess dialkyl malonates using a Kugelrohr apparatus yielding the 

analytically pure reaction products. 
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2-(2-Phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-malonic acid diethyl ester (8a)
11

 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 7 35-7.08(m, 6H), 7.02(d, J = 8.0 Hz, 2H), 6.78(t, J = 7.3 Hz, 1H), 5.78(d, J = 9.2 Hz, 

1H), 4.23- 3.98(m, 4H), 3.95(d, J = 9.2 Hz, 1H), 3.81-3.61(m, 2H), 3.14-3.04(m, 1H), 2.87(dt, 

J = 16.4, 5.2 Hz, 1H), 1.20(t, J = 7.1 Hz, 3H), 1.12(t, J = 7.1 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 167.9, 167.1, 148.8, 135.9, 134.8, 129.0, 128.8, 127.5, 127.1, 126.0, 118.4, 115.0, 61.5, 

59.5, 57.8, 42.2, 26.1, 13.9, 13.8 

 

2-(2-Phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-malonic acid dimethyl ester (8b)
12b

 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 7 30-7.10(m, 6 H), 7.03(d, J = 8.1 Hz, 2H), 6.80(t, J = 7.3 Hz, 1H), 5.76(d, J = 9.4 Hz, 

1H), 4.00(d, J = 9.4 Hz, 1H), 3.78-3.66(m, 5H), 3.58(s, 3H), 3.15-3.03(m, 1H), 2.85(dt, J = 

16.5, 5.2 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 168 2  167.4, 148.7, 135.6, 134.7, 129.1, 128.9, 127.6, 126.9, 126.0, 118.6, 115.1, 59.0, 

58.1, 52.5, 42.1, 26.0 

 

2-[2-(4-Methoxy-phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]-malonic acid diethyl ester 

(8c)
11 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 7 28-7.22(m, 1H), 7.19-7.09(m, 3H), 6.92(d, J = 9.1 Hz, 2H), 6.78(d, J = 9.1 Hz, 2H), 

5.52(d, J = 9.2 Hz, 2H), 4.15-4.01(m, 4H), 3.91(d, J = 9.2 Hz, 2H), 3.72(s, 3H), 3.69-3.63(m, 

1H), 3.59- 3.53(m, 1H), 3.06-2.95(m, 1H), 2.76(dt, J = 16.6, 4.3 Hz, 1H), 1.17-1.10(m, 6H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 167 9  167 1  153 0  143 4  135 5  134 7  129 0  127 2  127 1  125 8  117 9  114 3  61 3  

61.3, 59.4, 58.8, 55.4, 42.9, 25.5, 13.9, 13.8 

 

2-[2-(4-Methoxy-phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]-malonic acid dimethyl ester 

(8d)
11 
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1
H NMR (300 MHz, CDCl3): 
δ ppm 7 22-7.15(m, 2H), 7.13-7.08(m, 2H), 6.92(d, J = 9.1 Hz, 2H), 6.78(d, J = 9.1 Hz, 2H), 

5.50(d, J = 9.4 Hz, 2H), 3.97(d, J = 9.4 Hz, 2H), 3.72(s, 3H), 3.69-3.63(m, 4H), 3.61(s, 3H), 

3.58-3.53(m, 1H), 3.01(ddd, J = 16.6, 10.2, 6.3 Hz, 1H), 2.74(dt, J = 16.7, 4.4 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 168 2  167 4  153 2  143 3  135 3  134 7  129 1  127 4  127 0  125 9  118 2  114.3, 59.1, 

55.5, 52.4, 52.4, 43.0, 25.5 

 

2-[2-(2-Methoxy-phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]-malonic acid diethyl ester 

(8e)
11 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 7 29-7.08(m, 4H), 7.01-6.95(m, 1H), 6.83-6.77(m, 3H), 5.47(d, J = 8.5 Hz, 1H), 4.10-

3.97(m, 4H), 3.95(d, J = 8.5 Hz, 1H), 3.81(s, 3H), 3.52-3.34(m, 2H), 2.94-2.83(m, 1H), 2.71-

2.64(m, 1H), 1.13(t, J = 5.7 Hz, 3H), 1.08(t, J = 5.7 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 168 0  167 3  152 6  141 0  139 4  135 6  135 0  129 0  127 0  125 6  123 2  121 7  

120.6, 111.4, 61.2, 61.1, 58.9, 55.3, 42.7, 26.2, 13.7 

 

2-[2-(2-Methoxy-phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]-malonic acid dimethyl ester 

(8f)
11 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 7.24-7.09(m, 4H), 7.01-6.94(m, 1H), 6.85-6.77(m, 3H), 5.43(d, J = 8.9 Hz, 1H), 

4.01(d, J = 8.9 Hz, 1H), 3.82(s, 3H), 3.66-3.51(m, 2H), 3.58(s, 3H), 3.56(s, 3H), 2.93-2.82(m, 

1H), 2.72-2.64(m, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 168 3  167 5  152 8  139 3  135 5  135 0  129 2  127 1  126 7  125 7  123 3  121 9  

120.6, 111.5, 59.2, 58.7, 55.3, 52.3, 52.2, 42.8, 26.1 

General procedure for the preparation of α-amino nitriles  

In a 5 mL snap vial equipped with magnetic stirring bar the tetrahydroisoquinoline 

derivative (1 eq) and eosin Y (0.02 eq) were dissolved in DMF (0.25 mmol/mL). Then 

m lo o  t  le (1 5 eq) w s  dded   d the  esult    m xtu e w s     d  ted th ou h the v  l’s 

plane bottom side using green LEDs. After the reaction was completed (monitored by TLC), 

the mixture was transferred to the separating funnel, diluted with diethyl ether and washed 

with water. The aqueous phase was extracted three times with diethyl ether. The combined 

organic layers were dried over MgSO4, filtered and concentrated in vacuum. Purification of 
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the crude product was achieved by flash column chromatography using hexane/ethyl acetate 

as eluent. 

2-Phenyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (10a)
9v

 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm  7.42-7.24(m, 6H), 7.12-7.02(m, 3H), 5.54(s, 1H), 3.83-3.76(m, 1H), 3.55-3.46(m, 1H),  

3.23-3.12(m, 1H),  2.96(td, J = 16.3, 3.6 Hz, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm  148.4, 134.6, 129.6, 129.4, 128.8, 127.1, 126.9, 121.9, 117.6, 117.6, 53.2, 44.2, 28.6 

 

2-(4-Bromo-phenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (10b)
12a 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7 46(d  J = 9.0 Hz, 2H), 7.34-7.23(m, 4H), 6.96(d, J = 9.0 Hz, 2H), 5.46(s, 1H), 3.69-

3.75(m, 1H), 3.51-3.42(m, 1H), 3.21-3.10(m, 1H), 3.02-2.94(m, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 147 4  134 4  132 54  129 3  129 2  128 9  127 0  127 0  119 1  117 4  114 4  52 9, 44.2, 

28.4 

 

2-(4-Methoxy-phenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (10c)
9v

 

 
1
H NMR (300 MHz, CDCl3):  
δ ppm 7.34-7.22(m, 4H), 7.10(d, J = 9.0 Hz, 2H), 6.93(d, J = 9.0 Hz, 2H), 5.37(s, 1H), 3.80(s, 

3H), 3.62-3.56(m, 1H), 3.48-3.39(m, 1H), 3.23-3.11(m, 1H), 2.97-2.90(m, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 155.7, 142.6, 134.3, 129.7, 129.5, 128.6, 127.1, 126.7, 121.0, 117.6, 114.8, 55.6, 55.5, 

44.9, 28.7 

 

2-(2-Methoxy-phenyl)-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (10d) 

 
1
H NMR (300 MHz, CDCl3):  

δ ppm 7.34-7.13(m, 6H), 7.07-7.01(m, 1H), 6.96-6.93(m, 1H), 5.76(s, 1H), 3.87(s, 3H), 3.55-

3.51(m, 2H), 3.31-3.20(m, 1H), 2.97-2.90(m, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 155.7, 137.6, 133.9, 129.8, 129.4, 128.4, 127.1, 126.4, 125.0, 121.3, 120.8, 117.6, 

111.3, 55.5, 53.0, 44.6, 28.6 

mp: 162-164°C 



Eosin Y Catalyzed Visible Light Oxidative C-C and C-P bond Formation 6b 
 

174  

 

IR: νmax /cm
-1

 2979  2929  2844  2225 (C≡N)  1657  1588  1494  1388  1289  1246  1161, 

1021, 966, 829, 806, 741 

MS (EI, 70 eV): m/z = 120.1 (39.25), 233.1 (95.19), 264.2 (100.00) [M
+
] 

General procedure for the preparation of α-amino phosphonates  

In a 5 mL snap vial equipped with magnetic stirring bar the tetrahydroisoquinoline 

derivative (1 eq) and eosin Y (0.02 eq) were dissolved in DMF (0.238 mmol/mL). Then 

dialkyl phosphonate (4 eq) was added and the resulting mixture was irradiated through the 

v  l’s pl  e bottom s de us      ee  LE s  Afte  the  e ct o  w s completed (mo  to ed by 

TLC), the mixture was transferred to the separating funnel, diluted with ethyl acetate and 

washed with water. The aqueous phase was extracted three times with ethyl acetate. The 

combined organic layers were dried over MgSO4, filtered and concentrated in vacuum. 

Purification of the crude product was achieved by silica gel column chromatography using 

hexane/ethyl acetate as eluent. 

1-Phenyl-2-diethylphosphonate-1,2,3,4-tetrahydroisoquinoline (12a)
9s

 

 
1
H NMR (300MHz, CDCl3): 

δ ppm 7.39-7.36(m, 1H), 7.29-7.13(m, 5H), 6.99(d, J = 8.3 Hz, 2H), 6.80(t, J = 7.3 Hz, 1H), 

5.20(d, J = 20.0 Hz, 1H), 4.14-3.86(m, 5H), 3.65-3.61(m, 1H), 3.07-3.02(m, 2H), 1.25(t, J = 

7.1 Hz, 3H), 1.15(t,  J = 7.1 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 149.4(d, J = 5.7 Hz), 136.4(d, J = 5.4 Hz), 130.7, 129.1, 128.7(d, J = 2.4 Hz), 128.1(d, 

J = 4.5 Hz), 127.4(d, J = 3.5 Hz), 125.9(d, J = 2.7 Hz), 118.4, 114.6, 63.3(d, J = 7.3 Hz), 

62.3(d, J = 7.6 Hz), 58.8(d, J = 159.2 Hz), 43.5, 26.7, 16.4(d, J = 6.3 Hz), 16.4(d, J = 6.4 Hz) 

 

1-Phenyl-2-dibenzylphosphonate-1,2,3,4-tetrahydroisoquinoline (12b)
9s

 

 
1
H NMR (300MHz, CDCl3): 

δ ppm 7 38-7.11(m, 16H), 6.98(d, J = 8.3 Hz, 2H), 6.81(t, J = 7.2 Hz, 1H), 5.30(d, J = 19.6 

Hz, 1H), 5.05-4.69(m, 4H), 4.07- 3.99(m, 1H), 3.67-3.59(m, 1H), 3.08- 2.99(m, 2H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 149 2(d  J = 5.4 Hz), 136.5(d, J = 5.5 Hz), 136.3(d, J = 6.1 Hz), 136.2(d,  J = 6 Hz), 

130.4, 129.2, 128.8(d, J = 2.4 Hz), 128.4(d, J = 6.4 Hz), 128.2, 128.2, 128.1, 128.0(d, J = 3.7 

Hz), 127.5(d, J = 3.6 Hz), 126.0(d, J = 2.9 Hz), 118.6, 114.8, 68.6(d, J = 7.3 Hz), 67.7(d, J = 

7.7 Hz), 59.0(d, J = 158.1 Hz), 43.5, 26.8 
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1-(4-Bromophenyl)-2-diethylphosphonate-1,2,3,4-tetrahydroisoquinoline (12c) 

 
1
H NMR (300MHz, CDCl3): 
δ ppm 7 39-7.29(m, 3H), 7.22-7.14(m, 3H), 6.84(d, J = 9.1 Hz, 2H), 6.83-6.79(m, 2H), 

5.10(d, J = 19.2 Hz, 1H), 4.20-3.73(m, 5H), 3.57-3.49(m, 1H), 3.20- 3.10(m, 2H), 1.23(t, J = 

7.0 Hz, 3H), 1.14(t, J = 7.1 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 148 3(d  J = 5.0 Hz), 136.3(d, J = 5.6 Hz), 131.8, 130.3, 128.6(d, J =2.7 Hz), 128.1(d, J 

= 4.6 Hz), 127.6(d, J = 3.4 Hz), 126.0(d, J = 2.7 Hz), 116.1, 110.3, 63.3(d, J = 7.3 Hz), 

62.4(d, J = 7.7 Hz), 58.7(d, J = 159.6 Hz), 43.6, 26.9, 16.4(d, J = 5.5 Hz), 16.4(d, J = 5.5 Hz) 
31

P NMR (121 MHz, CDCl3): 

δ ppm 22.41(s) 

IR: νmax /cm
-1

 3065, 3028, 2929, 2906, 1594, 1588, 1504, 1493, 1389, 1245, 1048, 1022, 964 

HRMS: 

Calculated for C19H23BrNO3P (M
+.

): 423.0599; Found: 423.0604 

 

1-(4-Bromophenyl)-2-dibenzylphosphonate-1,2,3,4-tetrahydroisoquinoline (12d) 

 
1
H NMR (300MHz, CDCl3): 

δ ppm 7 32-7.14(m, 14H), 7.11-7.08(m, 2H), 6.81(d, J = 9.1 Hz, 2H), 5.19(d, J = 18.7 Hz, 

1H), 5.02-4.70(m, 4H), 3.98-3.89(m, 1H), 3.55-3.47(m, 1H), 3.12-2.96(m, 2H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 148 1(d  J = 4.6 Hz), 136.3(d, J = 5.3 Hz), 136.1(d, J = 3.0 Hz), 136.0(d, J = 3.1 Hz),  

131.8, 130.1,  128.7(d, J = 2.7 Hz), 128.6, 128.5, 128.4, 128.4, 128.3,  128.2(d, J = 5.0 Hz), 

128.0, 127.9, 127.8(d, J = 3.5 Hz), 126.1(d, J = 2.9 Hz), 116.2, 110.4, 68.6(d, J = 7.4 Hz), 

67.8(d, J = 7.9 Hz), 58.9(d, J = 158 Hz), 43.6, 27.0 
31

P NMR (121 MHz, CDCl3): 

δ ppm 23.5(s) 

mp: 172-173°C 

IR: νmax /cm
-1

 3031, 2946, 2895, 1508, 1495, 1259, 988, 994, 917, 764, 747 

HRMS: 

Calculated for C29H27BrNO3P (M
+.

): 547.0912; Found: 547.0919 

 

1-(4-Methoxyphenyl)-2-diethylphosphonate-1,2,3,4-tetrahydroisoquinoline (12e)
9s

 

 
1
H NMR (300MHz, CDCl3): 

δ ppm 7 40-7.30(m, 1H), 7.18-7.10(m, 3H), 6.94-6.89(m, 2H), 6.81-6.78(m, 2H), 5.02(d, 1H, 

J = 21.5 Hz), 4.19-3.87(m, 5H), 3.73(s, 3H), 3.57-3.49(m, 1H), 2.94- 2.89(m, 2H), 1.25(t, J = 

7.1 Hz, 3H), 1.15(t, J = 7.1 Hz, 3H) 
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13
C NMR (75 MHz, CDCl3): 

δ ppm 153 1  144 1(d  J = 8.2 Hz), 136.4(d, J = 5.8 Hz), 130.5, 128.9(d, J = 2.4 Hz), 128.1(d, 

J = 4.4 Hz), 127.2(d, J = 3.5 Hz), 125.8(d, J = 2.9 Hz), 117.5, 114.5, 63.3(d, J = 7.3 Hz), 

62.2(d, J = 7.6 Hz), 59.4(d, J = 158.6 Hz), 55.6, 44.6, 26.1, 16.5(d, J = 5.6 Hz), 16.4(d, J = 

5.7 Hz) 

 

1-(4-Methoxyphenyl)-2-dibenzylphosphonate-1,2,3,4-tetrahydroisoquinoline (12f)
9s

 

 
1
H NMR (300 MHz, CDCl3): 

δ ppm 7 39-7.13(m, 14H), 6.93(d, J = 9.1 Hz, 2H), 6.81(d, J = 9.1 Hz, 2H), 5.16(d, J = 22.1 

Hz, 1H), 5.08-4.82(m, 4H), 4.10-4.02(m, 1H), 3.75(s, 3H), 3.59-3.51(m, 1H), 3.02-2.88(m, 

2H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 153 2  144 0(d  J = 8.1 Hz), 136.5(d, J = 5.8 Hz), 136.3(d, J = 6.0 Hz), 130.2, 129.0(d, 

J = 2.7 Hz), 128.4(d, J = 5.8 Hz), 128.3, 128.2, 128.1, 128.0, 127.9, 127.4(d, J = 3.0 Hz), 

125.9(d, J = 2.9 Hz), 117.7, 114.5, 68.7(d, J = 7.3 Hz), 67.7(d, J = 7.9 Hz), 59.7(d, J = 157.2 

Hz), 55.6, 44.7, 26.2 

 

1-(2-Methoxyphenyl)-2-diethylphosphonate-1,2,3,4-tetrahydroisoquinoline (12g)
9s

 

 
1
H NMR (300MHz, CDCl3): 

δ ppm 7 46-7.43(m, 1H), 7.20-7-16(m, 2H), 7.12-7.09(m, 1H), 6.99-6.93(m, 1H), 6.91-

6.81(m, 3H), 5.16(d, J = 21.8 Hz, 1H), 4.04- 3.80(m, 5H), 3.81(s, 3H), 3.61-3.54(m, 1H), 

2.97-2.84(m, 1H), 2.75-2.69(m, 1H), 1.18(t, J =7.1 Hz, 3H), 1.07 (t, J = 7.1 Hz, 3H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 152 5  140 1(d  J = 7.8 Hz), 135.8(d, J = 6.0 Hz), 130.7, 129.2(d, J = 2.5 Hz), 128.1(d, 

J = 4.0 Hz), 127.0(d, J = 3.6 Hz), 125.5(d, J = 3.1 Hz), 123.0, 121.7, 120.8, 111.6, 63.0(d, J = 

7.3 Hz), 61.9(d, J = 7.3 Hz), 58.7(d, J = 146.9 Hz), 55.4, 44.3, 26.5, 16.3(d, J = 6.0 Hz) 

 

1-(2-Methoxyphenyl)-2-dibenzylphosphonate-1,2,3,4-tetrahydroisoquinoline (12h)
9s

 

 
1
H NMR (300MHz, CDCl3): 

δ ppm 7 47(d  J = 7.4 Hz, 1H), 7.37-7.09(m, 12H), 7.03-6.97(m, 1H), 6.92- 6.79(m, 3H), 

5.29(d, J = 22.5 Hz, 1H), 5.06-4.90(m, 3H), 4.85-4.78(m, 1H), 4.16-4.10(m, 1H), 3.77(s, 3H), 

3.67-3.60(m, 1H), 2.95-2.80(m, 1H), 2.74- 2.69(m, 1H) 
13

C NMR (75 MHz, CDCl3): 

δ ppm 152 6  141 3  139 9(d  J = 8.5 Hz), 136.9(d, J = 6.8 Hz), 136.5(d, J = 6.1 Hz), 136.0(d, 

J = 6.3 Hz), 130.4, 129.4(d, J = 2.5 Hz), 128.6, 128.4, 128.3, 128.1, 128.0, 127.9, 127.6, 

127.4, 127.2(d, J = 3.7 Hz), 125.7(d, J = 3.2 Hz), 123.3, 121.8, 120.9, 111.6, 68.5(d, J = 7.2 

Hz), 67.4(d, J = 7.5 Hz), 59.3(d, J = 149.6 Hz), 55.3, 44.6, 26.3 
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Starch-Iodine test for the detection of H2O2 

After the reaction was completed (monitored by TLC), aqueous potassium iodide was 

added. The aqueous layer turned to light brown-blue color and the color was enhanced by 

addition of starch. To the same aqueous layer, aqueous sodium thiosulfate was added and the 

solution immediately turned colorless. 

The chemical equations involved in this reaction: 

 

 

ΔG values for electron transfer calculated from Rehm-Weller equation 

 

Singlet excited state energy of eosin Y
19 

E00 (
1
S) = 2.31 V 

Oxidation and reduction potentials of eosin Y
19, 2f 

Eosin Y Eosin YEosin Y
+0.80 V -1.06 V.+ . -

 

 

Tetrahydroisoquinoline Oxidation potential / V ΔG / kcal.mol
-1

 

 

0.82 -11.3 

0.82 -11.3 

0.88 -7.6 

0.62 -15.9 

0.81 -11.5 

Eosin Y potentials are in reference to SCE in acetonitrile. All oxidation potentials of 

tetrahydroisoquinoline derivatives are reported in reference to the SCE in 

acetonitrile (the potentials were measured in reference to ferrocene/ferrocenium and 

then converted in to SCE according to Pavlishchuk, V. V.; Addison, A. W. 

Inorganica. Chimica. Acta  2000, 298, 97-102.) 
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For rough estimation of excited state redox potentials we use the following equation
20

 

E
0
 (D

.+
/D*) = E

0
 (D

.+
/D) – E00 

E
0
 (A*/A

.-
) = E

0
 (A/A

.-
) + E00 

Gibbs free energy of the electron transfer from tetrahydroisoquinoline to the excited eosin Y 

in acetonitrile can be calculated using Rehm-Weller equation
21

 

ΔG (kcal/mol) = 23.06(Eox – Ered – e0
2
/aε – E00) 

Where Eox and Ered are the oxidation potential of tetrahydroisoquinoline and reduction 

potential of eosin Y respectively, e
2
/εa is Coulombic term (0.06 kcal mol

-1
; lit.

21
). 
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1
H and 

13
C NMR spectra of selected compounds 

1
H NMR (300MHz, CDCl3) 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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1
H NMR (300MHz, CDCl3) 

 

 

13
C NMR (75 MHz, CDCl3)  
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7 Summary 

This thesis describes the applications of visible light photoredox catalysis with aryl 

diazonium salts and tetrahydroisoquinolines in organic synthesis.  

Chapter 1 summarizes the origins of aryl radical chemistry using aryl diazonium salts and 

recent developments with their scope and applications in organic chemistry. 

In chapter 2, a novel approach for the direct C-H arylation of heteroarenes with aryl 

diazonium salts in green light using organic dye eosin Y as a photoredox catalyst is described. 

Furan, thiophene, protected pyrroles, and nitro benzene are suitable substrates in this reaction. 

In addition, electron-neutral or -withdrawing groups bearing diazonium salts also reacted well 

in this reaction. Noteworthy, the addition of base to the reaction decreases the yield, which is 

attributed to the direct reaction of diazonium salt and base. Control experiments confirmed 

that for an efficient conversion both catalyst and light are necessary. The reaction mechanism 

is supported by trapping of the key radical intermediates with TEMPO. 

In chapter 3, we describe a visible light mediated radical annulation process for the 

synthesis of benzothiophenes. Eosin Y was found to be a good catalyst for this transformation 

and terminal and internal alkynes are smoothly converted. A plausible single electron transfer 

mechanism was proposed for this reaction. Furthermore, the synthetic application of the 

photocatalytic annulations reaction was demonstrated by preparing the key intermediate in the 

synthesis of the drug molecule Raloxifene.  

In chapter 4, we describe an efficient method for the synthesis of phenanthrenes from 

diazonium salts in visible light. We screened a set of photocatalysts and found that eosin Y 

was best for an efficient conversion. Aliphatic, aromatic, and hetero aromatic alkynes are 

suitable substrates in this reaction. A single electron transfer mechanism has been proposed 

for the reaction involving a cascade radical addition and cyclization sequence.  

In chapter 5, we utilized the Ritter reaction conditions to trap the carbenium ion, which is 

generated during the photoredox Meerwein arylation reaction leading to the first photoredox 

catalyzed Meerwein arylation-addition reaction for the intermolecular amino-arylation of 

alkenes mediated by visible light. Different amides are synthesized in good to excellent 

yields. To further demonstrate the applicability of the reaction we applied it to the synthesis of 

3-aryl-3,4-dihydroisoquinolines. Unfortunately, aliphatic alkenes were not suitable substrates 

in this multicomponent reaction. 
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The photochemical properties and applications of eosin Y as photoredox catalyst for 

organic transformations including oxidation, reduction, C-H functionalization and asymmetric 

reactions are summarized in the first part of chapter 6. 

A metal-free visible light photoredox catalysis for C-C and C-P bond formation using the 

organic dye eosinY is then reported in the second part of chapter 6. Nitroalkanes, dialkyl 

malonates, malononitrile, and dialkyl phosphonates were used as pronucleophiles in this 

metal-free, visible light oxidative coupling reaction. Our experiments have shown that 

transition metal catalysts and stoichiometric oxidants can be replaced by the redox active 

organic dye eosin Y and green light yielding comparable coupling yields. 
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8 Zusammenfassung 

Diese Arbeit beschäftigt sich mit der Anwendung von Photoredoxkatalyse mit sichtbarem 

Licht in organischen Synthesen. Als Substrate wurden hierbei Aryldiazoniumsalze und Tetra-

hydrochinoline eingesetzt.  

Das erste Kapitel fasst die Ursprünge der Nutzung von Aryldiazoniumsalzen als 

Arylradikalquelle zusammen und diskutiert die neueren Entwicklungen auf diesem Gebiet 

sowie deren Anwendung in der organischen Chemie. 

Im zweiten Kapitel wird ein neues, durch grünes Licht vermitteltes Verfahren zur direkten 

C–H- Arylierung von Heteroarenen unter Verwendung von Aryldiazoniumsalzen und dem 

organischen Farbstoff Eosin Y beschrieben. Dabei können Furan, Thiophen, geschützte 

Pyrrole sowie Nitrobenzol als Substrate in dieser Reaktion eingesetzt werden. Zudem zeigt 

die Reaktion eine hohe Toleranz gegenüber Aryldiazoniumsalzen mit elektronenziehenden 

sowie –neutralen Substituenten. Bemerkenswert ist, dass die Zugabe einer Base zu der 

Reaktionsmischung einen drastischen Rückgang der Ausbeute zur Folge hat, was auf eine 

direkte Reaktion des Diazoniumsalzes mit der Base zurückzuführen ist. Des Weiteren konnte 

durch Kontrollexperimente gezeigt werden, dass sowohl Licht als auch Katalysator für eine 

effizienten Umsatz zum Produkt erforderlich sind. Der postulierte Reaktionsmechanismus 

wurde durch TEMPO-Abfang der radikalischen Intermediate untermauert. 

Kapitel 3 beschreibt eine durch sichtbares Licht vermittelte, radikalische 

Annelierungsreaktion zur Synthese von Benzothiophenen. Es konnte gezeigt werden, dass 

sich Eosin Y als Photokatalysator für diese Umsetzung eignet und so terminale und interne 

Alkine erfolgreich zur Reaktion gebracht werden konnten. Ein plausibler über Ein-

Elektronenübertragung ablaufender Mechanismus wurde vorgeschlagen. Zudem konnte die 

synthetische Relevanz der beschriebenen photokatalytischen Annelierungsreaktion durch die 

Darstellung des Schlüsselproduktes in der Synthese des Wirkstoffes Raloxifene gezeigt 

werden.  

In Kapitel 4 wird eine effiziente, photokatalytische Methode zur Synthese von 

Phenanthrenen aus Diazoniumsalzen beschrieben. Nach einem Screening verschiedener 

Photokatalysatoren erwies sich Eosin Y als am geeignetsten für diese Umsetzung. 

Aliphatische, aromatische sowie heteroaromatische Alkine können in dieser Reaktion 

umgesetzt werden. Der postulierte Reaktionsmechanismus läuft über zwei Ein-
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Elektronenübertragungen ab und beinhaltet eine Radikalkaskade sowie einen 

Zyklisierungsschritt. 

In Kapitel 5 wurden die Bedingungen der Ritter Reaktion auf unser System übertragen, um 

so das in der Photo-Meerwein Reaktion entstehende Carbeniumion abzufangen. So konnte die 

erste photo-redoxkatalysierte additive Meerweinarylierung zur intermolekularen 

Aminoarylierung von Alkenen entwickelt werden. Unterschiedliche Amide werden in guten 

bis exzellenten Ausbeuten erhalten. Um die Anwendbarkeit der Reaktion aufzuzeigen, nutzten 

wir sie für die Synthese von 3-Aryl-3,4-dihydroisochinolinen. Leider konnte diese Reaktion 

aber nicht auf aliphatische Alkene angewendet werden. 

Die photochemischen Eigenschaften von Eosin Y, sowie dessen Nutzung als Photo-

redoxkatalysator für organische Transformationen, wie Oxidationen, Reduktionen, C–H-

Funktionalisierungen und enantioselektive Reaktionen, sind im ersten Teil von Kapitel 6 

zusammengefasst. 

Der zweite Teil von Kapitel 6 beschäftigt sich dann mit der metallfreien durch Eosin Y 

katalysierten C–C- und C–P-Bindungsknüpfung in sichtbarem Licht. Dabei wurden 

Nitroalkane, Dialkylmalonate, Malonitril sowie Dialkylphosphonate als Pronucleophile in 

dieser photokatalytischen, oxidativen Kupplung eingesetzt. Unsere Untersuchungen konnten 

zeigen, dass Übergangsmetallkatalysatoren und stöchiometrische Oxidationsmittel durch den 

redoxaktiven organischen Farbstoff Eosin Y und Bestrahlung mit grünem Licht ersetzt 

werden können und unter diesen Bedingungen vergleichbare Ausbeuten erhalten werden.  
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9 Abbreviations  

ACN Acetonitrile 

CDCl3 Deuterated chloroform 

DCM Dichloromethane 

DMF Dimethylformamide 

DMSO Dimethyl sulfoxide 

DMSO-d6 Deuterated dimethyl 

sulfoxide 

equiv Equivalent 

ee Enantiomeric excess 

ES Electrospray 

ESI Electrospray ionization 

Et2O Diethyl ether 

EtOAc Ethyl acetate 

EtOH Ethanol 

EY Eosin Y 

eV Electron volts 

GC Gas chromatography 

h Hour 

H
+
 Proton 

HR-MS High resolution mass 

spectrometry 

ISC Inter system crossing 

M Molar concentration 

MeNO2 Nitromethane 

MeOD Deuterated methanol, 

MeOH-d4 

MeOH Methanol 

 

 

 

 

MgSO4 Magnesium sulfate 

MHz Mega hertz 

min Minute 

mL Milli liter 

mm Milli meter 

mmol Milli mole 

mol% Mole percent 

Mp Melting point 

MS Mass spectrometry 

nm Nanometer 

NMR Nuclear magnetic 

resonance 

Nu Nucleophile 

PC Photocatalyst 

PE petroleum ether 

ppm Parts per million 

SCE Saturated calomel 

electrode 

SET Single electron transfer 

TEMPO (2,2,6,6-Tetramethyl-

piperidin-1-yl)oxyl 

TLC Thin layer 

chromatography 

TMS Tetramethylsilane 

UV Ultra violet 

V Volt 

W Watt 
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