Table of Contents

	edgements	
List of Fi	gures	vi
List of Ta	bles	xi
Abstract		xiii
1. Intro	duction	1
1.1.	Objectives	1
1.2.	State-of-the-art	
1.3.	Thesis subjects	
2. Mod	els to calculate a suitable mud window	
2.1.	Coupled effects governing the stress distributions around wellbore	
2.2.	Wellbore stability evaluation criteria	
2.2.1.	Criterion to determine RTFG	
2.2.2.	Criterion to determine FG	
2.2.3.	Criterion to determine SFG	18
3. Sens	itivity analysis	23
3.1.	Introduction	
3.2.	Methods	24
3.3.	Results	
3.3.1.	The "must-have" group	
3.3.2.	The "high-sensitive" group	
3.3.3.	The "low-sensitive" group	
3.4.	Conclusions	
4. Met	hods to determine UCS, IFA and PPG	
4.1.	Introduction	
4.2.	Determination of uniaxial compressive strength (UCS)	
4.3.	Determination of internal friction angle (IFA)	
4.4.	Determination of formation pore pressure	
5. Dete mea	ermination of primary in-situ stresses using borehole breakout and acoustic surements.	41
5.1.	Introduction	
5.2.	Estimation of primary in-situ stresses from borehole breakout	41
5.2.1.	Definition of Borehole Breakout	41
5.2.2.	Building mechanisms of borehole breakout	
5.2.3.	Calculation of in-situ stresses based on breakout shape	44
5.2.4.	Case study: calculation of in-situ stresses based on breakout shape	45
5.3.	Estimation of primary in-situ stresses from sonic logging	
5.3.1.	Sonic logging and shear wave splitting	
5.3.2.	Relationship between wave velocity and loading conditions	50
5.3.3.	Methods to calculate the horizontal stresses based on shear wave splitting	
5.3.4.	Determination of coupling coefficients	
5.3.5.	Case study: calculation of in-situ stresses based on shear wave splitting	
5.4.	Conclusions	61

6.	Calcul	ation of Biot's coefficient from well logs	62
	6.1.	Introduction	62
	6.2.	Existing correlation methods to calculate of Biot's coefficient (Method 1)	63
	6.3.	Calculation of Biot's coefficient with dynamic rock and solid compressibility	
	6.3.1.	Calculation of solid wave velocities using own developed empirical equation	
		(Method 2)	64
	6.3.2.	Calculation of solid wave velocities using V_p/V_s ratio (Method 3)	
	6.4.	Case study	
	6.4.1.	Method 1	
	6.4.2.	Method 2	
	6.4.3.	Method 3	
	6.5.	Comparison of the three methods	
	6.6.	Conclusions	
_			
7.	Simul	ation of the temperature profiles	78
	7.1.	Introduction	78
	7.2.	Semi-analytical calculation method	79
	7.2.1.	Finite differential calculation of temperature distribution in rock formation	
	7.2.2.	Calculation of heat exchange between annulus, tubing and formation	
	7.2.3.	Simulation of the circulation process	
	7.2.4.	Calculation of thermal stress using numerical integration	
	7.3.	Model verification	
	7.3.1.	Comparison with analytical solution after Ramey (1962)	
	7.3.2.	Comparison with the measured outlet temperature	86
	7.4.	Principle of the injected mud temperature	
	7.5.	Scenario simulation	
	7.5.1.	Temperature profile for Case B	
	7.5.2.	Temperature profile for Case C	
	7.5.3.	Influence of parameter a^{T} and the initial mud temperature on bottomhole temperature	
		(Case C)	
	7.6.	Calculation of thermal stress.	
	7.7.	Conclusions	
_			
8	. Case	studies	. 108
	8.1.	Mud window considering HM-coupled effects	. 110
	8.2.	Mud window considering THM-coupled effects	. 112
0	Conc	lusions and outlook	
-			
R	References		
A	Appendix		
	••		
Ν	Nomenclature		. 136