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RIGHT UNIMODAL AND BIMODAL SINGULARITIES IN POSITIVE

CHARACTERISTIC

NGUYEN HONG DUC

Abstract. The problem of classification of real and complex singularities was initiated by Arnol’d
in the sixties who classified simple, unimodal and bimodal w.r.t. right equivalence. The classification

of right simple singularities in positive characteristic was achieved by Greuel and the author in 2014.

In the present paper we classify right unimodal and bimodal singularities in positive characteristic
by giving explicit normal forms. Moreover we completely determine all possible adjacency diagrams

of simple, unimodal and bimodal singularities. As an application we prove that, for singularities of
right modality at most 2, the µ-constant stratum is smooth and its dimension is equal to the right

modality. In contrast to the complex analytic case, there are, for any positive characteristic, only

finitely many 1-dimensional (resp. 2-dimensional) families of right class of unimodal (resp. bimodal)
singularities. We show that for fixed characteristic p > 0 of the ground field, the Milnor number of

f satisfies µ(f) ≤ 4p, if the right modality of f is at most 2.

1. Introduction

We classify hypersurface singularities f ∈ K[[x1, . . . , xn]] which are unimodal and bimodal w.r.t.
right equivalence, where K is an algebraically closed field of positive characteristic. That is, the
singularities have modality 1 resp. 2 up to the change of coordinates (or right equivalence, see Section
2.1). The notion of modality was introduced by Arnol’d in the seventies [2], [3], [5] into singularity
theory for real and complex singularities. He classified simple, unimodal and bimodal hypersurface
singularities w.r.t. right equivalence. He showed that the simple singularities are exactly the ADE-
singularities, i.e. the two infinite series Ak, k ≥ 1, Dk, k ≥ 4, and the three exceptional singularities
E6, E7, E8. The right simple singularities in positive characteristic were recently classified by Greuel
and the author in [13].

The main result of the present paper is the classification of unimodal and bimodal singularities
w.r.t. right equivalence with tables of normal forms. Recall that a normal form is a modular family
F (x, t) ∈ O(T )[[x]] (see §2), i.e. for each t ∈ T there are only finitely many t′ ∈ T such that ft′ ∼r ft.
Notice that, if F (x, t) is a normal form, then rmod(F (x, t)) ≥ dimT for all t ∈ T (see Section §2 for the
definition of right modality, rmod). Our lists of normal forms for unimodal and bimodal singularities
are given in §3. In contrast to the complex analytic case, there exist only finitely many r-dimensional
normal forms for r-modal singularities for r ≤ 2. Moreover, we obtain that for a singularity f with
modality at most 2, it Milnor number is bounded by a function of the characteristic. Precisely, we
show in Corollary 3.7 that

µ(f) ≤ 4p.

Another surprising fact is that, an ADE-singularity can have an arbitrary high right modality for each
positive characteristic (see [20]). That is, an ADE-singularity is not necessary right simple. On the
other hand, we show in Corollary 3.7 that, if p = 2 or 3 and rmod(f) ≤ 2, then f must be of type
A,D or E.

As an application of the classification, we obtain that if f is simple, unimodal or bimodal singularity,
then its µ-constant stratum is smooth. Consequently, we prove that right modality and proper modality
coincide (see §2 for definitions). We conjecture that the equality holds in general, see Conjecture 2.2.

Section 4 is an outline of the proofs of the main results. The proofs are organized in the form of
a singularity determinator, finding for every given singularities its place in the list of § 3, similar to
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2 NGUYEN HONG DUC

Arnold’s classification in [5]. We present an algorithm for determining the right class of a singularity
in the form of 152 theorems. The main results are proved in Section 5.

Note that, for contact equivalence and for K = C, it was proved by Giusti in [10] that ADE-
singularities are contact simple. The classification of contact unimodal singularities was achieved by
Wall in [22]. Greuel and Kröning showed in [11] that the contact simple singularities over a field of
positive characteristic are again exactly the ADE-singularities or the rational double points of Artin’s
list [6].

Acknowledgement. The author would like to thank Gert-Martin Greuel for the numerous fruitful
discussions and for many useful comments on this text. This research project was partially supported
by Vietnam National Foundation for Science and Technology Development(NAFOSTED) grant 101.04-
2014.23, and the Oberwolfach Leibniz Fellows programme of the Mathematisches Forschungsinstitut
Oberwolfach (Germany).

2. Modality

Modality was introduced by Arnol’d in connection with the classification of singularities of functions
under right equivalence. It has been generalized to arbitrary actions of algebraic groups by Vinberg [18].
Wall [20] described two possible generalizations for use in other classification problems in singularity
theory. Both geeralization are developed in detail by Greuel and the author ([13]) for any characteristic
and it was proved that they coincide.

2.1. Right modality. Consider an action of algebraic group G on a variety X (over a given alge-
braically closed field K) and a Rosenlicht stratification {(Xi, pi), i = 1, . . . , s} of X w.r.t. G. That
is, a stratification X = ∪si=1Xi, where the stratum Xi is a locally closed G-invariant subvariety of X
such that the projection pi : Xi → Xi/G is a geometric quotient. For each open subset U ⊂ X the
modality of U , G-mod(U), is the maximal dimension of the images of U ∩Xi in Xi/G. The modality
G-mod(x) of a point x ∈ X is the minimum of G-mod(U) over all open neighbourhoods U of x.

Let K[[x]] = K[[x1, . . . , xn]] the formal power series ring and let the right group, R := Aut(K[[x]]),
act on K[[x]] by (Φ, f) 7→ Φ(f). Two elements f, g ∈ K[[x]] are called right equivalent, f ∼r g, if they
belong to the same R-orbit, or equivalently, there exists a coordinate change Φ ∈ Aut(K[[x]]) such
that g = Φ(f).

Recall that for f ∈ m ⊂ K[[x]], µ(f) := dimK[[x]]/j(f), j(f) = 〈fx1
, . . . , fxn〉, denotes the Milnor

number of f and that f is isolated if µ(f) <∞. The k-jet of f , jk(f), is the image of f in the jet space
Jk := m/mk+1. We call f to be right k-determined if each singularity having the same k-jet with f , is
right equivalent to f . A number k is called right sufficiently large for f , if there exists a neighbourhood
U of the jkf in Jk such that every g ∈ K[[x]] with jkg ∈ U is right k-determined. The right modality
of f , R-mod(f), is defined to be the Rk-modality of jkf in Jk with k right sufficiently large for f ,
where Rk the k-jet of R. A singularity f ∈ K[[x]] is called (right) simple, uni-modal, bi-modal and
r-modal if its (right) modality is equal to 0,1,2 and r respectively. These notions are independent of
the right sufficiently large k.

The second description is in relation with versal or complete deformation. Let T be an affine
variety with its algebra of global section O(T ). Then a family ft(x) := F (x, t) ∈ O(T )[[x]] is called an
unfolding (deformation with trivial section) of f over a pointed space T, t0 if F (x, t0) = f and ft ∈ m
for all t ∈ T . A semiuniversal unfolding is given by

F (x, λ) := f(x) +

N∑
i=1

λix
αi ,

with λ = (λ1, . . . , λN ) is the coordinate of λ ∈ AN and {xα1 , . . . ,xαN } is a basis of m/m · j(f). Note
that from the exact sequence

0→ j(f)/m · j(f)→ m/m · j(f)→ m/j(f)→ 0
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we get N = µ+ n− 1. Since m · j(f) is the tangent space of the orbit of the right group R at f ([8]),
N is the codimension of the orbit in m.

An unfolding F (x, t) over T, t0 is called right complete if any unfolding H(x, s) over S, s0 is isomor-
phic to a pullback of F after passing to some étale neighbourhood of S, s0, see [13]. An important
property of the complete unfoldings is that they are sufficient to determine the modality, i.e. if F is a
complete unfolding of f , then modality of f w.r.t. F ([13, Def. 2.5]) equals to modality of f , see [13,
Prop. 2.12(ii)]. A semiuniversal unfolding of an isolated hypersurface singularity is right complete (see
[14] for the analytic case and [13] for the general case). Consequently, we may define modality of f as
follows: “Let fλ be a semiuniversal unfolding of f over AN , 0. If the set of singularities fλ ∈ K[[x]]
(λ in some Zariski neighbourhood of 0 ∈ AN ) falls into finitely many families of right classes, each
depending on r parameters (at most) then f is right (resp. contact) r-modal (at most).”

Remark 2.1. (1) For convergent power series over the complex numbers it does not make any differ-
ence wheter we consider the semiuniversal deformation (without section) given by the Milnor algebra
C{x1, . . . , xn}/j(f) or the semiuniversal deformation with section given by m/m · j(f). However, in
positive characteristic we have to consider the latter (cf. [13] and 2.2).

(2) The difference between the classical versal and our complete deformation is twofold. First, we
consider deformations over algebraic varieties and not just of the spectrum of a complete local ring (as
for versal deformations). Second, we do not require the lifting property for induced deformations over
small extensions (cf. [12, Ch.2]).

2.2. Proper modality. In [9] Gabrielov showed in the complex analytic case that the right modality
is equal to the dimension of the µ-constant stratum in a semi-universal deformation of f . This is not
true in positive characteristic since f = x2 + y4 ∈ A3 ⊂ K[[x, y]] with char(K) = 3, is unimodal, but
the dimension of the stratum µ = 3 into the semiuniversal deformation f + a0 + a1y + a2y

2, is equal
to 0. In positive characteristic we need to consider deformations with section. Let fλ(x) := F (x, λ)
be the semiuniversal unfolding of f with trivial section over affine variety AN , 0 with N = µ + n − 1
as above. We define the proper modality of f , denoted by pmod(f), to be the dimension at 0 of the
µ-constant stratum in AN :

∆µ := {λ ∈ AN | µ(fλ) = µ}.

Conjecture 2.2. pmod(f) = rmod(f).

See Corollary 3.9 for a partial result of the conjecture. Namely, if rmod(f) ≤ 2 then pmod(f) =
rmod(f).

3. Right unimodal, bimodal singularities and adjacency diagrams

In this section we present the result of our classification, the adjacency diagrams of simple, unimodal
and bimodal singularities, and their applications.

3.1. Right unimodal singularities.

Theorem 3.1. Let p = char(K) > 2. A hypersurface singularity f ∈ m2 is right unimodal if and only
if it is right equivalent to one of the following forms:

I. n = 1 (f ∈ K[[x]]). The classification is given in Table 1.
II. n = 2 (f ∈ K[[x, y]]). The classification is given in Table 2.
III. n = 3 (f ∈ K[[x, y, z]]). The classification is given in Table 3.
IV. n > 3. The classification is given in Table 4.

Theorem 3.2. Let p = char(K) = 2. A hypersurface singularity f ∈ m2 is right unimodal if and only
if n is odd and f is right equivalent to one of singularities in the Table 5.
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Name Normal form Conditions µ
Ak xp + axk+1 p ≤ k ≤ 2p− 2 k

Table 1.

Name Normal form Conditions µ
Ak x2 + ayp + yk+1 p ≤ k ≤ 2p− 2 k
Dp x2y + yp−1 3 < p p
Dk x2y + ayp + yk−1 3 ≤ p < k − 1 ≤ 2p− 2 k
E12 x3 + y7 + axy5 7 < p 12
E13 x3 + xy5 + ay8 7 < p 13
E14 x3 + y8 + axy6 7 < p 14

J10 = J2,0 = T2,3,6 x3 + y6 + ax2y2 5 < p 10
J2,q x3 + ax2y2 + y6+q 6 < 6 + q < p q + 10
W12 x4 + y5 + ax2y3 p > 5 12
W13 x4 + xy4 + ay6 p > 5 13

X9 = X1,0 = T2,4,4 x4 + y4 + ax2y2 3 < p 9
X1,q = T2,4,4+q x4 + x2y2 + ay4+q 4 < 4 + q < p q + 9

Yr,s = T2,4+r,4+s x4+r + ax2y2 + y4+s 4 < 4 + r ≤ 4 + s < p 9 + r + s
Z11 x3y + y5 + axy4 5 < p 11
Z12 x3y + xy4 + ax2y3 5 < p 12
Z13 x3y + y6 + axy5 5 < p 13

Table 2.

Name Normal form Conditions µ
g(x, y) + z2 g one of the series in Table 2 µ(g)

P8 = T3,3,3 x3 + y3 + z3 + axyz 3 < p 8
Q10 x3 + y4 + yz2 + axy3 3 < p 10
Q11 x3 + yz2 + xz3 + az5 3 < p 11
Q12 x3 + y5 + yz2 + axy4 5 < p 12
S11 x4 + y2z + xz2 + ax3z 3 < p 11
S12 x2y + y2z + xz3 + az5 3 < p 12

Tq,r,s xq + yr + zs + axyz 3 ≤ q ≤ r ≤ s < p, 1
q + 1

r + 1
s < 1, q + r + s− 1

U12 x3 + y3 + z4 + axyz2 3 < p 12

Table 3.

Normal form
g(x1, x2, x3) + x2

4 + . . .+ x2
n g is one of the singularities in Table 3

Table 4.

3.2. Right bimodal singularities.

Theorem 3.3. Let p = char(K) > 2. A hypersurface singularity f ∈ m2 is right bimodal if and only
if it is right equivalent to one of the following forms

I. n = 1 (f ∈ K[[x]]). The list is given in Table 6.
II. n = 2 (f ∈ K[[x, y]]). The list is given in Table 7.
III. n = 3 (f ∈ K[[x, y, z]]). The list is given in Table 8.
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Name Normal form Conditions µ
A2 ax2

1 + x3
1 + x2x3 + . . .+ xn−1xn a ∈ K 2

Table 5.

IV. n > 3. The list is given in Table 9.

Theorem 3.4. Let p = char(K) = 2. A hypersurface singularity f ∈ m2 is right bimodal if and only
if it is right equivalent to one of the following forms

I. n odd: The list is given in the Table 10.
II. n even: The list is given in the Table 11.

Name Normal form Conditions µ
Ak a1x

p + a2x
2p + xk+1 2p ≤ k ≤ 3p− 2 k

Table 6.

Name Normal form (a = a0 + a1y) Conditions µ
Ak x2 + a1y

p + a2y
2p + yk+1 2p ≤ k ≤ 3p− 2 k

D2p x2y + ayp + y2p−1 3 ≤ p 2p
Dk x2y + a1y

p + a2y
2p + yk−1 2p < k − 1 ≤ 3p− 1 k

E12 x3 + ay5 + y7 + bxy5 p = 5 12
E13 x3 + xy5 + ay7 p = 7 13
E14 x3 + y8 + ay7 + bxy6 p = 7 14
E18 x3 + y10 + axy7 7 < p 18
E19 x3 + xy7 + ay11 7 < p 19
E20 x3 + y11 + axy8 11 < p 20

J10 = J2,0 = T2,3,6 x3 + bx2y2 + y6 + ay5 4b3 + 27 6= 0, p = 5 10
J2,q = T2,3,6+q x3 + x2y2 + ayp + by6+q p < 6 + q < 2p, b 6= 0, p ≥ 5 q + 10

J3,0 x3 + bx2y3 + cxy7 + y9 4b3 + 27 6= 0, 7 < p 16
J3,q x3 + x2y3 + ay9+q a0 6= 0, 9 < 9 + q < p q + 16
W17 x4 + xy5 + ay7 7 < p 17
W18 x4 + y7 + ax2y4 7 < p 18
W1,0 x4 + ax2y3 + y6 a2

0 6= 4, 5 < p 15
W1,q x4 + x2y3 + ay6+q a0 6= 0, 7 ≤ 6 + q < p q + 15

W]
1,2q−1 (x2 + y3)2 + axy4+q a0 6= 0, 5 ≤ 4 + q < p 2q + 14

W]
1,2q (x2 + y3)2 + ax2y3+q a0 6= 0, 4 ≤ 3 + q < p > 5 2q + 15

Z12 x3y + xy4 + ay5 + bx2y3 p = 5 12
Z13 x3y + y6 + ay5 + bxy5 p = 5 13
Z17 x3y + axy6 + y8 7 < p 17
Z18 x3y + xy6 + ay9 7 < p 18
Z19 x3y + y9 + axy7 7 < p 19
Z1,0 x3y + bx2y3 + cxy6 + y7 4b3 + 27 6= 0, 7 < p 15
Z1,q x3y + x2y3 + ay7+q a0 6= 0, 7 < 7 + q < p q + 15

Table 7.
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Name Normal form (a = a0 + a1y) Conditions µ
g(x, y) + z2 g one of the series in Table 7 µ(g)

Q16 x3 + yz2 + y7 + axy5 7 < p 16
Q17 x3 + yz2 + y7 + ay8 7 < p 17
Q18 x3 + yz2 + y8 + axy6 7 < p 18
Q2,0 x3 + yz2 + ax2y2 + xy4 a2

0 6= 4, 3 < p 14
Q2,q x3 + yz2 + x2y2 + ay6+q a0 6= 0, 7 ≤ 6 + q < p q + 14
S16 x2z + yz2 + xy4 + ay6 5 < p 16
S17 x2z + yz2 + y6 + azy4 5 < p 17
S1,0 x2y + yz2 + y5 + azy3 a2

0 6= 4, 3 < p 14
S1,q x2y + yz2 + x2y2 + ay5+q a0 6= 0, 5 < 5 + q < p q + 14

S]1,2q−1 x2y + yz2 + zy3 + axy3+q a0 6= 0, 3 < 3 + q < p 2q + 13

S]1,2q x2y + yz2 + zy3 + ax2y2+q a0 6= 0, 3 ≤ 2 + q < p 2q + 14

Tq,r,s xq + yr + zs + axyz + bzp 3 ≤ q ≤ r < p < s < 2p q + r + s− 1
U16 x3 + xz2 + y5 + ax2y2 5 < p 16
U1,0 x3 + xz2 + xy3 + ay3z a0(a2

0 + 1) 6= 0, 5 < p 14
U1,2q−1 x3 + xz2 + xy3 + ay1+qz2 a0 6= 0, 2 ≤ 1 + q < p > 3 2q + 13
U1,2q x3 + xz2 + xy3 + ay3+qz a0 6= 0, 3 < 3 + q < p 2q + 14

Table 8.

Normal form
g(x1, x2, x3) + x2

4 + . . .+ x2
n g is one of the singularities in Table 8

Table 9.

Name Normal form
A4 a1x

2
1 + a2x

4
1 + x5

1 + x2x3 + . . .+ xn−1xn a1, a2 ∈ K

Table 10.

Name Normal form µ
D4 a1x

2
1 + a2x

2
2 + x3

1 + x3
2 + x3x4 + . . .+ xn−1xn 4

D6 a1x
2
1 + a2x

2
2 + x2

1x2 + x1x
3
2 + x3x4 + . . .+ xn−1xn 6

E7 a1x
2
1 + a2x

2
2 + x3

1 + x1x
3
2 + x3x4 + . . .+ xn−1xn 7

E8 a1x
2
1 + a2x

2
2 + x3

1 + x5
2 + x3x4 + . . .+ xn−1xn 8

Table 11.

3.3. Adjacencies of simple, unimodal and bimodal singularities. In the following we give di-
agrams of adjacencies for all class of simple singularities and singularities in Tables 1–11. Moreover
a singularity in these tables deforms only into classes listed in the diagrams. Recall that a class D of
singularities is adjacent to class C, C ← D, if every f ∈ D can be deformed into an element in C by a
deformation. That is, there exists an unfolding ft of f = ft0 over an affine variety T, t0 and a Zariski
open subset V ⊂ T such that ft ∈ C for all t ∈ V .

Theorem 3.5. Any singularity in Tables 1–11 deforms only into singularities given in the following
adjacency diagrams 1–13:
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Adjacency diagrams (T2,3,6+q = J2,q,T2,4,4+q = X1,q,T2,4+r,4+s = Yr,s):

1,2,3. Ak−1
oo

OO Dk
oo
OO Ek+1OO Ap ooOO

DpOO
Dk+6

oo
OO J2,k−1

oo
OO

J3,k−4OO

Ak oo Dk+1
oo Ek+2 A2p

oo D2p Dk+7
oo J2,k

oo J3,k−3

4,5,6. E8 ← J2,0; E14 ← J3,0; Js,k ← E6s+k−1; s = 2, 3; k = 1, 2, 3.
7. Tq′,r′,s′ ← Tq,r,s if (q′, r′, s′) ≤ (q, r, s), i.e. q′ ≤ q, r′ ≤ r, s′ ≤ s.
8. Q12

oo Q2,0
oo Q2,1

oo
OO

Q2,2
oo

OO
Q2,3

oo
OO

· · ·

Q16
oo Q17

oo Q18

9,10. S1,1
oo

}}

aa
S1,2
oo · · · W1,1

oo

||

bb
W1,2

oo · · ·

S1,0 aa
S16
oo

}}

S17 W1,0 bb
W17

oo

||

W18

S]1,1
oo S]1,2

oo · · · W ]
1,1
oo W ]

1,2
oo · · ·

11. E6
oo T3,3,3

oo T3,3,4
oo

OO
Q10
oo

OO Q11
oo

OO Q12OO

T3,4,4
oo

OO
S11
oo

OO S12
oo

OO S1,0 U16

��
T4,4,4

oo U12
oo U1,0

oo U1,1
oo · · ·

12. Z13
oo Z1,0

oo Z1,1
oo

OO
Z1,2

oo
OO

Z1,3
oo

OO
· · ·

Z17
oo Z18

oo Z19

13. E7
oo T2,4,4

oo T2,4,5
oo

OO
Z11
oo

OO Z12
oo

OO Z13OO

T2,5,5
oo W12

oo W13
oo W1,0

3.4. Milnor number, µ-contant stratum and proper modality. In this section we give several
applications of the classification of unimodal and bimodal singularities. The first two corollaries below
follow from the classification of right simple, unimodal and bimodal singularities ([13], and Theorems
3.1-3.4).

Let f ∈ K[[x]], with p = char(K) > 0 such that rmod(f) ≤ 2. Then

Corollary 3.6. If p ≤ 3, then f is of type A,D or E.

In [13], using the classification of right simple singularities, we showed that, if f is right simple,
then µ(f) ≤ p. We also conjectured ([13], Conjecture 3.5) that, for any sequence fk ∈ K[[x1, . . . , xn]]
of isolated singularities, if µ(fk) goes to infinity as k →∞, then so does rmod(fk). In this section we
give an affirmative answer for the conjecture, namely

Corollary 3.7.
µ(f) ≤ 4p.
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Corollary 3.8. The µ-constant stratum of f is a linear space, and hence smooth.

Note that this is not true in general as shown by Luengo in [15].

Corollary 3.9.

rmod(f) = pmod(f).

4. Singularity Determinator

In [5] Arnol’d supplied lists of normal forms which contain all the singularities with the modality
number mod = 0, 1, 2, all the singularities with Milnor number µ ≤ 16, all the singularities of corank 2
with nonzero 4-jet, all the singularities of corank 3 with a 3-jet, which determine an irreducible cubic,
and some other singularities. The proof of Arnol’d is organized as a determinator consisting of 105
theorems. We follow this scheme and organize our proof a singularity determinator of 152 theorems.
This gives an algorithm finding for every given sigularity its place in the list of § 3.

Notations:
⇒ “implies”.
7→ “see”.
crk the corank of the Hessian of f at the origin, which is used to reduce the number of

variables, see 5.
∆ discriminant, in Theorems 71, 72; ∆ = 4(a3 + b3) + 27− a2b2 − 18ab.
j{xαi}f(x) quasijet of f determined by {xαi}, defined as follows.

Here {αi} is a system of n points defining an affine hyperplane H in Rn. Let v : Rn → R be the
linear form defining H with v(αi) = 1 for all i. Then j{xαi}f is the image of f in K[[x]] modulo the
ideal generated by xα, v(α) > 1.

4.1. Singularity determinator in characteristic ≥ 5.

1. µ(f) <∞⇒ one of the four possibilities holds:
crk(f) ≤ 1 7→ 2,

= 2 7→ 4− 73,
= 3 7→ 74− 119,
> 3 7→ 120.

2. crk(f) ≤ 1, µ < 3p⇒ rmod(f) = bµ/pc and f ∈ Aµ.
3. crk(f) ≤ 1, µ ≥ 3p⇒ rmod(f) ≥ 3.

Corank 2 Singularities

Through theorems 4–73, f ∈ K[[x, y]].
4. j2(f) = 0⇒ one of the four possibilities holds:

j3f ∼r x2y + y3 7→ 5,
∼r x2y 7→ 6,
∼r x3 7→ 9–30,
= 0 7→ 31–73.

5. j3(f) = x2y + y3 ⇒ f ∈ D4.
6. j3(f) = x2y ⇒ f ∼r x2y + α(y), j3(α) = 0 7→ 7–8.
7. f = x2y + α(y), j3(α) = 0, k := µ(α) ≤ 3p− 1⇒ f ∈ Dk+2.
8. f = x2y + α(y), j3(α) = 0, µ(α) ≥ 3p⇒ rmod(f) ≥ 3.

Through theorems 9–12, k = 1, 2, 3 for p > 7, k = 1, 2 for p = 7,k = 1 for p = 5.
9. jx3,y3kf(x, y) = x3 ⇒ one of the four possibilities holds:

jx3,y3k+1f(x, y) ∼r x3 + y3k+1 7→ 10,
jx3,xy2k+1f(x, y) ∼r x3 + xy2k+1 7→ 11,
jx3,y3k+2f(x, y) ∼r x3 + y3k+2 7→ 12,13,
jx3,y3k+2f(x, y) = x3 7→ 13,26.

10. jx3,y3k+1f(x, y) = x3 + y3k+1 and 3k + 1 < p ⇒ f ∈ E6k.

11. jx3,xy2k+1f(x, y) = x3 + xy2k+1 and 3k + 1 < p ⇒ f ∈ E6k+1.
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12. jx3,y3k+2f(x, y) = x3 + y3k+2 and 3k + 2 < p ⇒ f ∈ E6k+2.

13. p = 5 and jx3,y5f(x, y) = x3 + ay5 ⇒ one of the three possibilities holds:

jx3,y6f(x, y) ∼r x3 + bx2y2 + y6 + ay5, 4b3 + 27 6= 0 7→ 14,
∼r x3 + x2y2 + ay5 7→ 15,16,
∼r x3 + ay5 7→ 17.

14. p = 5 and jx3,y6f = x3 + bx2y2 + y6 + ay5, 4b3 + 27 6= 0⇒ f ∈ J2,0.
15. p = 5, jx3,y6f = x3 + x2y2 + ay5 and µ < 14⇒ f ∈ J2,q with q = µ− 10 > 0.
16. p = 5, jx3,y6f = x3 + x2y2 + ay5 and µ ≥ 14⇒ rmod(f) ≥ 3.
17. p = 5, jx3,y6f = x3 + ay5 ⇒ one of the two possibilities holds:

jx3,y7f(x, y) ∼r x3 + ay5 + y7 7→ 18,
jx3,y7f(x, y) = x3 + ay5 7→ 19.

18. p = 5, jx3,y7f = x3 + ay5 + y7 ⇒ f ∈ E12.
19. p = 5, jx3,y7f = x3 + ay5 ⇒ rmod(f) ≥ 3.
20. p = 7 and jx3,y7f = x3 + ay7 ⇒ one of the three possibilities holds:

jx3,xy5f(x, y) ∼r x3 + xy5 + ay7 7→ 21,
jx3,y8f(x, y) ∼r x3 + y8 + ay7 7→ 22,
jx3,y8f(x, y) = x3 + ay7 7→ 23.

21. p = 7 and jx3,xy5f = x3 + xy5 + ay7 ⇒ f ∈ E13.
22. p = 7 and jx3,y8f = x3 + y8 + ay7 ⇒ f ∈ E14.
23. p = 7 and jx3,y8f = x3 + ay7 ⇒ rmod(f) ≥ 3.
24. p = 11 and jx3,y11f = x3 + y11 ⇒ rmod(f) ≥ 3.
25. jx3,y11f(x, y) = x3 ⇒ f ∈ 〈x, y4〉3 ⇒ rmod(f) ≥ 3.

Through theorems 26–29, k = 2, 3.
26. jx3,y3k−1f(x, y) = x3 ⇒ one of the three possibilities holds:

jx3,y3kf(x, y) ∼r x3 + ax2yk + y3k, 4a3 + 27 6= 0 7→ 27,
∼r x3 + x2yk 7→ 28,29,
∼r x3 7→ 9,30.

27. jx3,y3kf(x, y) = x3 + ax2yk + y3k, 4a3 + 27 6= 0 and 3k < p ⇒ f ∈ Jk,0
28. jx3,y3kf(x, y) = x3 + x2yk, 3k < p and µ− 3k + 2 < 2p⇒ f ∈ Jk,q with q = µ− 6k + 2.

29. jx3,y3kf(x, y) = x3 + x2yk, 3k < p and µ− 3k + 2 ≥ 2p⇒ rmod(f) ≥ 3.

30. p = 7 and jx3,y6f(x, y) = x3 + x2y2 and µ < 18⇒ f ∈ J2,q with q = µ− 10 > 0.

Series X

31. j3f = 0⇒ one of the six possibilities holds:
j4f ∼r x4 + ax2y2 + y4, a2 + 4 6= 0 7→ 32,

∼r x4 + x2y2 7→ 33,34,
∼r x2y2 7→ 35–38,
∼r x3y 7→ 39,
∼r x4 7→ 54,
= 0 7→ 71.

32. j4(f) = x4 + ax2y2 + y4, a2 + 4 6= 0⇒ f ∈ X9.
33. j4(f) = x4 + x2y2 and µ(f) < 2p+ 5 ⇒ f ∈ X1,q.
34. j4(f) = x4 + x2y2 and µ(f) ≥ 2p+ 5 ⇒ rmod(f) ≥ 3.
35. j4(f) = x2y2 ⇒ f = f1 · f2 with mt(f1) = mt(f2) = 2 and 2 ≤ µ(f1) ≤ µ(f2)⇒ 36.

Through theorems 36–39, 1 ≤ r := µ(f1)− 1 ≤ s := µ(f2)− 1.
36. µ(f1) ≥ p or µ(f2) ≥ 2p⇒ rmod(f) ≥ 3.
37. µ(f2) < p⇒ rmod(f) = 1 and f ∈ Yr,s.
38. µ(f1) < p and p ≤ µ(f2) < 2p⇒ rmod(f) = 2 and f ∈ Yr,s.
39. j4(f) = x3y ⇒ jx3y,y4f = x3y 7→ 40,44.

Series Z

Through theorems 40–43, 5 < p and q = 1, 2.
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40. jx3y,y3q+1f = x3y ⇒ one of the four possibilities holds:

jx3y,y3q+2f ∼r x3y + y3q+2 7→ 41,
jx3y,xy2q+2f ∼r x3y + xy2q+2 7→ 42,
jx3y,y3q+3f ∼r x3y + y3q+3 7→ 43,
jx3y,y3q+3f = x3y 7→ 49–53.

41. jx3y,y3q+2f = x3y + y3q+2, 3q + 2 < p⇒ f ∈ Z6q+5.
42. jx3y,xy2q+2f = x3y + xy2q+2, 3q + 3 < p⇒ f ∈ Z6q+6.
43. jx3y,y3q+3f = x3y + y3q+3, 3q + 3 < p⇒ f ∈ Z6q+7.
44. p = 5 and jx3y,y4f = x3y ⇒ one of the three possibilities holds:

jx3y,xy4f ∼r x3y + xy4 + ay5 7→ 45,
jx3y,y6f ∼r x3y + y6 + ay5 7→ 46,
jx3y,y6f = x3y + ay5 7→ 47.

45. p = 5 and jx3y,xy4f = x3y + xy4 + ay5 ⇒ f ∈ Z12.
46. p = 5 and jx3y,xy4f = x3y + y6 + ay5 ⇒ f ∈ Z13.
47. p = 5 and jx3y,xy4f = x3y + ay5 ⇒ rmod(f) ≥ 3.
48. p = 7 and jx3y,y7f = x3y ⇒ rmod(f) ≥ 3.
49. jx3y,y6f = x3y ⇒ one of the three possibilities holds:

jx3y,y7f = y(x3 + bx2y2 + y9), 4b3 + 27 6= 0 7→ 50
= y(x3 + x2y2) 7→ 51,52
= x3y 7→ 53.

50. jx3y,y7f = y(x3 + bx2y2 + y9), 4b3 + 27 6= 0⇒ f ∈ Z1,0.
51. jx3y,y7f = y(x3 + x2y2) and µ− 8 < p⇒ f ∈ Z1,r with r = µ− 15 > 0.
52. jx3y,y7f = y(x3 + x2y2) and µ− 8 ≥ p⇒ rmod(f) ≥ 3.
53. jx3y,y9f = x3y ⇒ f ∈ 〈y〉 · 〈x, y3〉3 ⇒ rmod(f) ≥ 3.

Series W

Through theorems 54–56, 5 < p.
54. j4f = x4 ⇒ jx4,y4f = x4 ⇒ one of the three possibilities holds:

jx4,y5f ∼r x4 + y5 7→ 55,
jx4,xy4f ∼r x4 + xy4 7→ 56,
jx4,xy4f = x4 7→ 57,60.

55. jx4,y5f = x4 + y5 ⇒ f ∈W12.
56. jx4,xy4f = x4 + xy4 ⇒ f ∈W13.
57. p = 5 and jx4,y4f = x4 ⇒ one of the two possibilities holds:

jx4,xy4f ∼r x4 + xy4 + ay5 7→ 58,
jx4,xy4f = x4 + ay5 7→ 59.

58. p = 5 and jx4,xy4f = x4 + xy4 + ay5 ⇒ f ∈W13.
59. p = 5 and jx4,xy4f = x4 + ay5 ⇒ rmod(f) ≥ 3.

Through theorems 60–70, 5 < p.
60. jx4,xy4f = x4 ⇒ one of the four possibilities holds:

jx4,y6f ∼r x4 + bx2y3 + y6, b2 6= 4 7→ 61,
∼r x4 + x2y3 7→ 62,63,
∼r (x2 + y3)2 7→ 64,65
= x4 7→ 66.

61. jx4,y6f = x4 + bx2y3 + y6, b2 6= 4⇒ f ∈W1,0.
62. jx4,y6f = x4 + x2y3 and µ− 8 < p⇒ f ∈W1,q(q = µ− 15 > 0).
63. jx4,y6f = x4 + x2y3 and µ− 8 ≥ p⇒ rmod(f) ≥ 3.

64. jx4,y6f = (x2 + y3)2 and µ− 8 < p⇒ f ∈W ]
k,q(q = µ− 15 > 0).

65. jx4,y6f = (x2 + y3)2 and µ− 8 ≥ p⇒ rmod(f) ≥ 3.
66. jx4,y6f = x4 ⇒ one of the three possibilities holds:
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jx4,xy5f ∼r x4 + xy5 7→ 67,
jx4,y7f ∼r x4 + y7 7→ 68,69,

= x4 7→ 70.

67. jx4,xy5f = x4 + xy5 ⇒ f ∈W17.
68. jx4,y7f = x4 + y7 and p > 7⇒ f ∈W18.
69. p = 7 and jx4,y7f = x4 + y7 ⇒ rmod(f) ≥ 3.
70. jx4,y7f = x4 ⇒ rmod(f) ≥ 3.

Through theorems 53–55, 5 < p.
71. j4f = 0⇒ one of the two possibilities holds:

j5f ∼r x4y + ax3y2 + bx2y3 + xy4, ∆ 6= 0, ab 6= 9 7→ 54,
j5f is degenerate 7→ 55.

72. j5f = x4y + ax3y2 + bx2y3 + xy4, ∆ 6= 0, ab 6= 9 ⇒ f ∼r x4y + ax3y2 + bx2y3 + xy4 + cx3y3

with ∆ 6= 0, ab 6= 9 and therefore rmod(f) ≥ 3.
73. If j5f is degenerate ⇒ rmod(f) ≥ 3.

Corank 3 Singularities

Through theorems 74–120, f ∈ K[[x, y, z]].
74. j2f(x, y, z) = 0⇒ one of the ten possibilities holds:

j3f ∼r x3 + y3 + z3 + axyz, a3 + 27 6= 0 7→ 75,
∼r x3 + y3 + xyz 7→ 76,
∼r x3 + xyz 7→ 79,
∼r xyz 7→ 80,
∼r x3 + yz2 7→ 81− 91,
∼r x2z + yz2 7→ 92− 106,
∼r x3 + xz2 7→ 107− 117,
∼r x2y 7→ 118,
∼r x3 7→ 119,
= 0 7→ 120.

Series T

75. j3f(x, y, z) = x3 + y3 + z3 + axyz, a3 + 27 6= 0⇒ f ∈ P8.
76. j3f(x, y, z) = x3 + y3 + xyz ⇒ f ∼r x3 + y3 + xyz + α(z), j3α = 0 7→ 77,78.
77. f = x3 + y3 + xyz + α(z), j3α = 0, q := µ(α) + 1 < 2p⇒ f ∈ Pq+5 = T3,3,q(q > 3).
78. f = x3 + y3 + xyz + α(z), j3α = 0, µ(α) + 1 ≥ 2p⇒ rmod(f) ≥ 3.
79. j3f(x, y, z) = x3 + xyz ⇒ f = x3 + xyz + α(y) + β(z), j3(α, β) = 0 and q := µ(α) + 1 ≤ r :=

µ(β) + 1 ⇒ one of the three possibilities holds:
(i) r < p ⇒ rmod(f) = 1 and f ∈ T3,q,r,
(ii) q < p ≤ r < 2p ⇒ rmod(f) = 2 and f ∈ T3,q,r,
(iii) otherwise ⇒ rmod(f) ≥ 3.

80. j3f(x, y, z) = xyz ⇒ f ∼r xyz + α(x) + β(y) + γ(z), j3(α, β, γ) = 0 and
q := µ(α) + 1 ≤ r := µ(β) + 1 ≤ s := µ(γ) + 1 ⇒ one of the three possibilities holds:
(i) s < p ⇒ rmod(f) = 1 and f ∈ Tq,r,s,
(ii) r < p ≤ s < 2p ⇒ rmod(f) = 2 and f ∈ Tq,r,s,
(iii) otherwise ⇒ rmod(f) ≥ 3.

.

Series Q

Through theorems 81–91, ϕ = x3 + yz2, j∗λ = jyz2,x3,λ, (λ is a polynomial).
81. j3f = ϕ⇒ f ∼r ϕ+ α(y) + xβ(y), j3(α, xβ) = 0 7→ 82.

Through theorems 82–85, k = 1, 2.
82. f = ϕ+ α(y) + xβ(y), j∗y3kf = ϕ⇒ one of the four possibilities holds:
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j∗y3k+1f ∼r ϕ+ y3k+1 7→ 83,

j∗xy2k+1f ∼r ϕ+ xy2k+1 7→ 84,

j∗y3k+2f ∼r ϕ+ y3k+2 7→ 85,86,

j∗y3k+2f ∼r ϕ 7→ 87.

83. j∗y3k+1f = ϕ+ y3k+1 and 3k + 1 < p⇒ f ∈ Q6k+4.

84. j∗xy2k+1f = ϕ+ xy2k+1 and 3k + 1 < p⇒ f ∈ Q6k+5.

85. j∗y3k+2f = ϕ+ y3k+2 and 3k + 2 < p⇒ f ∈ Q6k+6.

86. p = 5 and j∗xy3f = ϕ⇒ rmod(f) ≥ 3.

87. f = ϕ+ α(y) + xβ(y), j∗y5f = ϕ⇒ one of the three possibilities holds:

j∗y6f ∼r ϕ+ ax2y2 + xy4, a2 6= 4 7→ 88,

∼r ϕ+ x2y2 7→ 89,90,
= ϕ 7→ 91.

88. j∗y6f = ϕ+ ax2y2 + xy4, a2 6= 4⇒ f ∈ Q2,0.

89. j∗y6f = ϕ+ x2y2 and µ− 5 < p⇒ f ∈ Q2,q(q = µ− 12 > 0).

90. j∗y6f = ϕ+ x2y2 and µ− 5 ≥ p⇒ rmod(f) ≥ 3.

91. p = 7 and j∗y6f = ϕ⇒ rmod(f) ≥ 3.

Series S

Through theorems 92–106, ϕ = x2z + yz2, j∗λ = jx2y,yz2,λ, (λ is a polynomial).
92. j3f = ϕ⇒ f = ϕ+ α(y) + xβ(y) + zγ(y), j3(α, xβ, zγ) = 0 7→ 93.
93. f = ϕ+ α(y) + xβ(y) + zγ(y), j∗y3f = ϕ⇒ one of the three possibilities holds:

j∗y4f ∼r ϕ+ y4 7→ 94,

j∗xy3f ∼r ϕ+ xy3 7→ 95,

j∗xy3f = ϕ 7→ 96,106.

94. j∗y4f = ϕ+ y4 ⇒ f ∈ S11.

95. j∗xy3f = ϕ+ xy3 ⇒ f ∈ S12.
Through theorems 96–105, p > 5.

96. f = ϕ+ α(y) + xβ(y) + zγ(y), j∗xy3f = ϕ⇒ one of the four possibilities holds:

j∗y5f ∼r ϕ+ y5 + bzy3, b2 6= 4 7→ 97,

∼r ϕ+ x2y2 7→ 98,99,
∼r ϕ+ zy3 7→ 100,101,
= ϕ 7→ 102.

97. j∗y5f = ϕ+ y5 + bzy3, b2 6= 4⇒ f ∈ S1,0.

98. j∗y5f = ϕ+ x2y2 and µ− 9 < p⇒ f ∈ S1,q(q := µ− 14 > 0).

99. j∗y5f = ϕ+ x2y2 and µ− 9 ≥ p⇒ rmod(f) ≥ 3.

100. j∗y5f = ϕ+ zy3 and µ− 9 < p⇒ f ∈ S]1,q(q := µ− 14 > 0).

101. j∗y5f = ϕ+ zy3 and µ− 9 ≥ p⇒ rmod(f) ≥ 3.

102. f = ϕ+ α(y) + xβ(y) + zγ(y), j∗y5f = ϕ⇒ one of the three possibilities holds:

j∗xy4f ∼r ϕ+ xy4 7→ 103,

j∗y6f ∼r ϕ+ y6 7→ 104,

j∗y6f = ϕ 7→ 105.

103. j∗xy4f = ϕ+ xy4 ⇒ f ∈ S16.

104. j∗y6f = ϕ+ y6 ⇒ f ∈ S17.

105. j∗y6f = ϕ⇒ rmod(f) ≥ 3.

106. f = ϕ+ α(y) + xβ(y) + zγ(y), j∗xy3f = ϕ and p = 5⇒ rmod(f) ≥ 3.

Series U

Through theorems 107–117, ϕ = x3 + xz2, j∗λ = jx3,z3,λ, (λ is a polynomial).
107. j3f = ϕ⇒ f ∼r ϕ+ α(y) + xβ(y) + zγ(y) + x2δ(y), j3(α, xβ, zγ, x2δ) = 0 7→ 108.
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108. f = ϕ+ α(y) + xβ(y) + zγ(y) + x2δ(y), j∗y3kf = ϕ⇒ one of the two possibilities holds:

j∗y4f ∼r ϕ+ y4 7→ 109,

= ϕ 7→ 110.

109. j∗y4f = ϕ+ y4 ⇒ f ∈ U12.

110. f = ϕ+ α(y) + xβ(y) + zγ(y) + x2δ(y), j∗y4f = ϕ⇒ one of the three possibilities holds:

j∗xy3f ∼r ϕ+ xy3 + czy3, c(c2 + 1) 6= 0 7→ 111,

∼r ϕ+ xy3 7→ 112,113,
= ϕ 7→ 114.

111. j∗xy3f = ϕ+ xy3 + czy3, c(c2 + 1) 6= 0⇒ f ∈ U1,0.

112. j∗xy3f = ϕ+ xy3 and µ− 13 < p⇒ f ∈ U1,q(q := µ− 14 ≥ 0).

113. j∗xy3f = ϕ+ xy3 and µ− 13 ≥ p⇒ rmod(f) ≥ 3.

114. f = ϕ+ α(y) + xβ(y) + zγ(y) + x2δ(y), j∗xy3f = ϕ⇒ one of the two possibilities holds:

j∗y5f ∼r ϕ+ y5 7→ 115,116,

= ϕ 7→ 116,117.

115. j∗y5f = ϕ+ y5 and p > 5⇒ f ∈ U16.

116. p = 5, f = ϕ+ α(y) + xβ(y) + zγ(y) + x2δ(y) and j∗xy3f = ϕ⇒ rmod(f) ≥ 3.

117. j∗y5f = ϕ⇒ rmod(f) ≥ 3.

118. j3f = x2y ⇒ f ∼r x2y + α(y, z) + xβ(z) and then rmod(f) ≥ 3.
119. j3f = x3 ⇒ rmod(f) ≥ 4.
120. j3f = 0⇒ rmod(f) ≥ 6.

Corank > 3 Singularities

121. crk(f) > 3⇒ rmod(f) ≥ 4.

4.2. Singularity determinator in characteristic 2.

122. µ(f) <∞⇒ one of the three possibilities holds:
crk(f) ≤ 1 7→ 123,

= 2 7→ 124,
≥ 3 7→ 136.

123. crk(f) ≤ 1⇒ f ∈ Ak (1 ≤ k ≤ 5).
Through theorems , f ∈ K[[x, y]].

124. crk(f) = 2⇒ one of the four possibilities holds:
j3f ∼r ax2 + by2 + x3 + y3 7→ 125,

∼r ax2 + by2 + x2y 7→ 126,
∼r ax2 + by2 + x3 7→ 131,
= ax2 + by2 7→ 134,135.

125. j3f = ax2 + by2 + x3 + y3 ⇒ f ∈ D4.
126. j3f = ax2 + by2 + x2y ⇒ one of the two possibilities holds:

j4f ∼r ax2 + by2 + x2y + xy3 7→ 127,
= ax2 + by2 + x2y 7→ 128,130.

127. j4f = ax2 + by2 + x2y + xy3 ⇒ f ∈ D6.
128. j4f = ax2 + by2 + x2y ⇒ one of the two possibilities holds:

j5f ∼r ax2 + by2 + x2y + xy4 7→ 129,
= ax2 + by2 + x2y 7→ 130.

129. j5f = ax2 + by2 + x2y + xy4 ⇒ one of the two possibilities holds:
j5f ∼r ax2 + by2 + x2y + xy4 + cxy5 7→ 130,

= ax2 + by2 + x2y 7→ 130.

130. j4f = ax2 + by2 + x2y ⇒ rmod(f) ≥ 3, µ(f) ≥ 8.
131. j3f = ax2 + by2 + x3 ⇒ one of the two possibilities holds:

j4f ∼r ax2 + by2 + x3 + xy3 7→ 132,
= ax2 + by2 + x3 7→ 133.
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132. j4f = ax2 + by2 + x3 + xy3 ⇒ f ∈ E7.
133. j4f = ax2 + by2 + x3 ⇒ rmod(f) ≥ 3.
134. j3f = ax2 + by2, (a, b) 6= (0, 0)⇒ one of the two possibilities holds:

j4f ∼r ax2 + by2 + x3y 7→ 135,
= ax2 + by2 7→ 135.

135. j3f = ax2 + by2 ⇒ rmod(f) ≥ 4, µ(f) ≥ 10.
136. crk(f) ≥ 3⇒ rmod(f) ≥ 4, µ(f) ≥ 8.

4.3. Singularity determinator in characteristic 3.

137. µ(f) <∞⇒ one of the four possibilities holds:
crk(f) ≤ 1 7→ 138,

= 2 7→ 139–146,
= 3 7→ 147–151,
> 3 7→ 152.

138. crk(f) ≤ 1⇒ f ∈ Ak (1 ≤ k ≤ 8).

Corank 2 Singularities

Through theorems 139–146, f ∈ K[[x, y]].
139. j2(f) = 0⇒ one of the three possibilities holds:

j3f ∼r x2y + εy3, ε ∈ {0, 1} 7→ 140,
∼r x3 7→ 145,
= 0 7→ 146.

140. j3(f) = x2y + εy3, ε ∈ {0, 1} ⇒ f ∼r x2y + g(y), j2g = 0 7→ 141.
141. j4f = x2y + g(y), j2g = 0⇒ one of the three possibilities holds:

2 < µ(g) < 5 7→ 142,
5 < µ(g) < 8 7→ 143,
8 < µ(g) 7→ 144.

142. 2 < µ(g) < 5⇒ f ∈ D5, D6.
143. 5 < µ(g) < 8⇒ f ∈ D8, D9.
144. 8 < µ(g)⇒ rmod(f) ≥ 3, µ(f) ≥ 11.
145. j3(f) = x3 ⇒ rmod(f) ≥ 3, µ(f) ≥ 9.
146. j3(f) = 0⇒ rmod(f) ≥ 3, µ(f) ≥ 9.

Corank 3 Singularities

Through theorems 147–151, f ∈ K[[x, y, z]].
147. j2f(x, y, z) = 0⇒ one of the eleven possibilities holds:

j3f ∼r x3 + ax2z + z3 + y2z, a 6= 0 7→ 148,
∼r x3 + axz2 + z3 + y2z, a 6= 0 7→ 149,
∼r x3 + y3 + xyz 7→ 150,
∼r x3 + xyz 7→ 150,
∼r xyz 7→ 150,
∼r x3 + yz2 7→ 150,
∼r x2z + yz2 7→ 150,
∼r x3 + xz2 7→ 150,
∼r x2y 7→ 150,
∼r x3 7→ 150,
= 0 7→ 151.

148. j3(f) = x3 + ax2z + z3 + y2z, a 6= 0⇒ rmod(f) ≥ 4, µ(f) ≥ 11.
149. j3(f) = x3 + axz2 + z3 + y2z, a 6= 0⇒ rmod(f) ≥ 4, µ(f) ≥ 11.
150. j3(f) is degenerate ⇒ rmod(f) ≥ 4, µ(f) ≥ 11.
151. j3f = 0⇒ rmod(f) ≥ 6.

Corank > 3 Singularities

152. crk(f) > 3⇒ rmod(f) ≥ 4.



RIGHT UNIMODAL AND BIMODAL SINGULARITIES IN POSITIVE CHARACTERISTIC 15

5. Proof of the main results

We first use the splitting lemma to reduce the number of variables. Namely, if f ∈ m2 ⊂ K[[x]] has
corank, crk(f) = k ≥ 0, then

f ∼r g(x1, . . . , xk) +Q(xk+1, . . . , xn)

with g ∈ m3 and Q is a nondegenerate quadratic singularity (cf. [13, Lemma 3.9, 3.12]). One has
moreover that rmod(f) in K[[x]] is equal to rmod(g) in K[[x1, . . . , xk]], cf. [13, Lemma 3.11, 3.13].

Theorems 1, 92, 122, 137 and 141 are obvious. Theorems 9, 17, 20, 25, 39, 40, 44, 54, 57, 66,
82, 93, 102, 108, 114 are proved by the Newton method [18] of a moving ruler (line, plane). This
method reduces the proof to the counting of the integer points in triangles resp. polyhedrones on the
exponent plane (resp. in the space).

Theorems concerning the geometrical classification problems: The proofs of theorems 4, 13, 26, 31,
49, 60, 72, 74, 96, 110, 124, 139, 147 can be reduced to the classifications of orbits of the actions
of some quasihomogenous diffeomorphism groups on the spaces of quasihomenous polynomials, see
Section 5.1 for a proof of Theorem 147.

Theorems on normal forms: Theorems 2, 123, 138 follow from [20, Thm 2.11]. The proofs of
theorems 5, 6, 7, 10, 11, 12, 14, 15, 18, 21, 22, 27, 28, 30, 32, 33, 37, 38, 41, 42,43, 45, 46,
50, 51, 55, 56, 58, 61, 62, 64, 67, 68, 72, 75, 76, 77, 79, 80, 81, 83, 84, 85, 88, 89, 94, 95, 97,
98, 100, 103, 104, 107, 109, 111, 112, 115, 125, 127, 132, 142, 143 are based on the techniques
introduced in [2] and generalized in [8], see Section 5.2 for a proof of Theorem 14.

Theorems on low bound of modality: Theorems 121, 151, 152 are consequences of [13, Prop. 2.18].
Theorems 3, 8, 16, 19, 23, 24, 25, 29, 34, 36, 47, 48, 52, 53, 59, 63, 65, 69, 70, 72, 73, 78, 79(iii),
80(iii), 86, 90, 99, 105, 106, 113, 116–120, 130, 133, 135, 136, 144, 145, 146, 148, 149, 150 are
proved by using the theory in [13] ([19]), see Section 5.3 for a proof of 25 and 70.

Theorems on adjacencies: Theorem 3.5 is proved inductively by applying Theorems 1, 2, 4–7, 8–
15, 17, 18, 20, 21, 22, 26, 27, 28, 30–33, 35, 37–46, 49–51, 54–58, 60–62, 64, 66–68, 74–77,
79–85, 87–89, 91–98, 100–104, 107–112, 114–117, 122–127, 131, 132, 137–143.

Classification of unimodal and bimodal singularities (Theorems 3.1-3.4): Applying Theorems 1-153
and the spliting lemma (cf. [13]) we obtain the list of families of singularities in Tables 1–11. The
modularity of these families follows from simple caculations. To prove these singularities are unimodal
resp. bimodal we use the theory of modality in [13]. See Section 5.4 for a proof that E12 with p > 7,
is a class of unimodal singularities.

Smoothness of µ-constant stratum and proper modality (Corollaries 3.8, 3.9): are proved by using
adjacency diagrams (Theorem 3.5). See Section 5.4 for a proof that if f is of type Tq,r,s as in Table 8,
then µ-constant stratum ∆µ of f is isomorphic to A2. This also show that rmod(f) = pmod(f) = 2.

5.1. Proof of Theorem 147. The theorem is obtained by combining the following lemmas (5.1, 5.2,
5.3). Let 0 6= f ∈ K[x, y, z], with char(K) = 3, be a homogeneous polynomial of degree 3.

Lemma 5.1. If f is nonsingular, then f is right equivalent to one of the following forms

x3 + ax2z + z3 + y2z, a 6= 0, x3 + axz2 + z3 + y2z, a 6= 0.

Proof. cf. [16, Chap. II, Prop.1.2] �

Lemma 5.2. If f is singular in P2
K and irreducible, then it is right equivalent to one of the following

forms

x3 + y3 + xyz, x3 + y2z.

Proof. Let C be the curve in P2 defined by f . Take P ∈ Sing(C) and P 6= Q ∈ C. Let L be the line
in P2 connecting P,Q. Applying Bézout theorem we obtain that

3 = deg(C) · deg(L) ≥ mtP (C) + mtQ(C).
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Hence mtP (C) = 2 and mtQ(C) = 1. We may assume P = (0 : 0 : 1) and set g(x, y) := f(x, y, 1).
Then mt(g) = 2 since mtP (C) = 2. It yields that g is right equivalent to one of the following forms

xy + h(x, y), y2 + h(x, y)

with h(x, y) is a homogeneous polynomial of degree 3. That is, f is right equivalent to either

xyz + h(x, y) or y2z + h(x, y).

It hence follows by simple calculations that f is right equivalent to one of the two forms

x3 + y3 + xyz, x3 + y2z.

�

Lemma 5.3. If f is reducible, then it is right equivalent to one of the following forms

x3, x2y, x2z + yz2, x3 + xyz, x3 + xz2, xyz.

Proof. Let f = g1 · g2 with mt(g1) = 1, mt(g2) = 2. By the splitting lemma (cf. [13])

g2 ∼r ax2 + byz

with a, b ∈ {0, 1}. That is f ∼r g1 · (ax2 + byz). Consider the following cases:
• a = 1, b = 0: Then f is right equivalent to x3 or x2y.
• a = 1, b = 1: Then f ∼r g1 · (x2 + yz). Without loss of generality we may assume moreover that

{(0 : 1 : 0)} ∈ {g1 = 0} ∩ {x2 + yz = 0},

i.e. g1 has the form g1 = αx+ βz.

- If α = 0, then f ∼r z(x2 + yz),
- if α 6= 0, then f ∼ x(x2 + yz).

• a = 0, b = 1: Then f ∼r g1 · yz. It yields that f is right equivalent to one of the forms

y2z, xyz, (y + z)yz.

Hence f is right equivalent to one of the forms: x2y, xyz, x3 + xz2. �

5.2. Proof of Theorem 14. Let f ∈ K[[x, y]] with p = char(K) = 5 and jx3,y6f = x3 + bx2y2 + y6 +
ay5. We will show that f is right equivalent to f0 := x3 + bx2y2 + y6 + ay5, i.e. f is of type J2,0.

In fact, put g := f − ay5, then jx3,y6g = x3 + bx2y2 + y6. Applying [7, Thm. 4.4] we obtain that
g ∼r x3 + bx2y2 + y6. We can see moreover that there exists a coordinate change of the form

x 7→ x+ ϕ1(x, y), y 7→ y + ϕ2(x, y)

with mt(ϕi) ≥ 2 such that

g(x+ ϕ1, y + ϕ2) = x3 + bx2y2 + y6.

It yields

f1 := f(x+ ϕ1, y + ϕ2) = x3 + bx2y2 + y6 + a(y + ϕ2)5 = x3 + bx2y2 + y6 + ay5 + aϕ5
2.

It is easy to see that m7 ⊂ m2 · j(f1). By [8, Thm. 2.1], f1 is right 9-determined and hence f1 ∼r f0

since mt(ϕ5
2) ≥ 10. This completes the proof.
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5.3. Proof of theorems on lower bound of modality. For the proof of these theorems we need
the following lemma which is deduced from Corollaries A.4, A.9, A.10 of [13] (see [19, Prop. 3.2.4,
Cor. 3.3.4 and Cor. 3.3.6] for more details).

Lemma 5.4. Let the algebraic groups G resp. G′ act on the varieties X resp. X ′. Let h : Y → X a
morphism of varieties and let h′ : Y → X ′ an open morphism such that

(5.1) h−1(G · h(y)) ⊂ h′−1(G′ · h′(y)),∀y ∈ Y.
Then for all y ∈ Y we have

G-mod(h(y)) ≥ G′-mod(h′(y)) ≥ dimX ′ − dimG′.

Lemma 5.5. Let f ∈ K[[x, y]] with char(K) > 3. Then rmod(f) ≥ 2 + l with l ≥ 0, if either

(i) f ∈ 〈x, y3+l〉3; or
(ii) f ∈ 〈x2, y3+l〉2.

Proof. We prove only for (i) since the proof for (ii) is similar. Let k be sufficiently large for f , i.e.
rmod(f) = Rk-mod(f). We denote

∆ := {(3; s), (2; 3 + s), (1; 6 + s), (0; 9 + s) | 0 ≤ s ≤ l + 1} ⊂ N2,

∆1 := {(1; s), (0; 3 + l + s) | 0 ≤ s ≤ l + 1} and ∆2 := {(0; 1 + s) | 0 ≤ s ≤ l + 1}} ⊂ N2

and define
X := {

∑
(i,j)∈∆

ai,jx
iyj ∈ K[[x, y]] | ai,j ∈ K} ∼= A4(l+2),

G := X1 ×X2
∼= A3(l+2),

where
X1 := {

∑
(i,j)∈∆1

ai,jx
iyj ∈ K[[x, y]] | ai,j ∈ K, a10 6= 0},

X2 := {
∑

(i,j)∈∆2

bi,jx
iyj ∈ K[[x, y]] | bi,j ∈ K, b01 6= 0}.

Using the projections

π1 : Jk → X1,
∑
(i,j)

ai,jx
iyj 7→

∑
(i,j)∈∆1

ai,jx
iyj ,

π2 : Jk → X2,
∑
(i,j)

ai,jx
iyj 7→

∑
(i,j)∈∆2

ai,jx
iyj ,

π : Jk → X,
∑
(i,j)

ai,jx
iyj 7→

∑
(i,j)∈∆

ai,jx
iyj

and

π̄ : Rk → G = X1 ×X2

Φ = (Φ1,Φ2) 7→
(
π1(Φ1), π2(Φ2)

)
we may define a multiplication on G, resp. an action map of G on X as follows

• : G×G → G

(φ, φ′) 7→ π̄(φ ◦ φ′),
resp.

G×X → X

(φ, g) 7→ π (φ(g)) .

By a simple calculation we can verify that the morphisms ι : Y := 〈x, y3+l〉3/mk+1 ↪→ Jk and π : Y → X
satisfy

ι−1(Rk · ι(g)) ⊂ π−1(G · π(g)),∀g ∈ Y.
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Hence applying Lemma 5.4 we obtain that

rmod(f) = Rk-mod(ι(f)) ≥ dimX − dimG = 2 + l.

�

5.4. Computing the modality of E12. We shall show that E12 is a class of unimodal singularities.
To compute the modality of a singularity we use the general argument in [13], in particular, the
following lemma.

Lemma 5.6. Assume that f ∈ K[[x]] deforms only into finitely many families h
(i)
t (x) over varieties

T (i), i ∈ I. Then

rmod(f) ≤ max
i∈I

dimT (i).

Assume further that the families h
(i)
t (x) are all modular. Then

rmod(f) = max
i∈I

dimT (i).

Proof. cf. [13], Prop. 2.15. �

Proof for E12. Assume that f = x3 + y7 + axy5 ∈ K[[x, y]] with p = char(K) > 7 and a ∈ K, is of
type E12. We will show that

rmod(f) = 1.

In fact, by Theorem 3.5 (or, Theorems 1–9, 26, 27, 28), f deforms only into the following modular
families

E12, Ak(k ≤ 6), Dk(k ≤ 8), E6, E7, E8, J2,0, J2,1.

Hence it follows from Lemma 5.6 that f is right unimodal singularities. �

5.5. Smoothness of µ-constant stratum and proper modality. Let f = xq+yr+zs+axyz+bzp

be of type Tq,r,s with 3 ≤ q ≤ r < p ≤ s < 2p as in Table 8. Then

m/m · j(f) = {x, . . . , xq−1, y, . . . , yr−1, z, . . . , zs−1, xy, yz, zx, xyz}

and the semiuniversal unfolding fλ of f over Aq+r+s+1, 0 is given by

fλ = f +

q−1∑
i=1

aix
i +

r−1∑
j=1

bjy
j +

s−1∑
l=1

alz
l + d1xy + d2yz + d3zx+ d4xyz

with λ = (a1, . . . , aq−1, b1 . . . , br−1, c1 . . . , cs−1, d1, d2, d3, d4) the coordinate of λ ∈ Aq+r+s+1.
Consider the µ-constant stratum ∆µ of f , and assume that λ ∈ ∆µ. It follows Theorem 3.5 that

a1 = · · · = aq−1 = b1 = · · · = br−1 = c1 = · · · = cp−1 = cp+1 = · · · = cs−1 = d1 = d2 = d3 = 0.

Moreover Theorems 76, 77, 79, 80 yield that, cp, d4 can be arbitrary, and hence ∆µ
∼= A2. This implies

that rmod(f) = pmod(f) = 2.
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