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EULER REFLEXION FORMULAS FOR MOTIVIC MULTIPLE ZETA

FUNCTIONS

LÊ QUY THUONG AND NGUYEN HONG DUC

Abstract. We introduce a new notion of �-product of two integrable series with coeffi-
cients in distinct Grothendieck rings of algebraic varieties, preserving the integrability and
commuting with the limit of rational series. In the same context, we define a motivic multiple
zeta function with respect to an ordered family of regular functions, which is integrable and
connects closely to Denef-Loeser’s motivic zeta functions. We also show that the �-product
is associative in the class of motivic multiple zeta functions.

Furthermore, a version of the Euler reflexion formula for motivic zeta functions is nicely
formulated to deal with the �-product and motivic multiple zeta functions, and it is proved for
both univariate and multivariate cases by using the theory of arc spaces. As an application,
taking the limit for the motivic Euler reflexion formula we recover the well known motivic
Thom-Sebastiani theorem.

1. Introduction

We study extensions of Denef-Loeser’s motivic zeta functions under motivations from a
nice simple formula concerning multiple zeta values ζ and from a problem on poles of the
Igusa local zeta function of a Thom-Sebastiani type function. The latter may involve the
monodromy conjecture, the highest interest of ours so that the present work is just a start.
The relation between real numbers s1, s2 ≥ 2 presented through the single and double zeta
values as

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s2, s1) + ζ(s1 + s2)

is widely known as the Euler reflexion formula, whose further important generalizations can
be found in Zagier’s works, such as [15]. This beauty partially inspires us to consider an
analogous phenomenon in the framework of motivic zeta functions, which probably provides
more profound relations than the motivic Thom-Sebastiani theorem does.

In [2] and [8], Denef and Denef-Veys discuss poles of the Igusa local zeta function ZΦ(s, χ, f)
of a polynomial f with respect to a Schwartz-Bruhat function Φ and to a character χ. It is
proved that there exists a function A(s, χ) depending on a character such that, for polynomials
f and g and Schwartz-Bruhat functions Φ and Ψ, the poles of A(s, χ)ZΦΨ(s, χ, f(x)+g(y)) are
of the form s1 + s2, where s1 and s2 are poles of A(s, χ1)ZΦ(s, χ1, f) and A(s, χ2)ZΨ(s, χ2, g),
respectively, for some χ1χ2 = χ. Naturally, we can ask whether a similar result still holds for
motivic zeta functions, and, hopefully, a motivic Euler reflexion formula may be the first step
to answer it.

The motivic zeta function of a regular function was developed in the background of Denef-
Loeser’s motivic integration [3, 4, 5]. Afterwards, a version for a family of regular functions
was also discussed in [9] and [11]. Such a motivic zeta function for r regular functions fi on a
smooth algebraic variety X is a formal series Zf1,...,fr(T1, . . . , Tr) with coefficients in a certain

monodromic Grothendieck ring M
µ̂
X0

, where X0 is the common zero set of the family of fi.
1



2 LÊ QUY THUONG AND NGUYEN HONG DUC

Originally, it is defined as follows

Zf1,...,fr(T1, . . . , Tr) =
∑

[Xn1,...,nr ]L−d
∑
ni Tn1

1 · · ·T
nr
r ,

where the sum is taken over Nr>0 and Xn1,...,nr is the set of arcs ϕ ∈ L∑
ni(X) such that

fi(ϕ) = tni modulo tni+1. When looking for a motivic analogue of the Euler reflexion formula,
we recognize that Zf1,...,fr is still rather far to be an appropriate one, even letting the sum
run over the “optimal” subset ∆ of Nr>0 defined by 1 ≤ n1 < · · · < nr. This requires a solid
improvement in many aspects, including motivic zeta functions and products of them. In
our approach, we replace the conditions fi(ϕ) = tni modulo tni+1 by ordfi > ni for every
2 ≤ i ≤ r, and take the sum over ∆, where the resulting motivic zeta function will be denoted
by ζf1,...,fr(T1, . . . , Tr). This new notation still covers classical motivic zeta functions Zf1(T1),
thus from now on we shall write ζf1(T1) in stead of Zf1(T1) for the coherence in literature.
The integrability of ζf1,...,fr(T1, . . . , Tr) will be proved in Corollary 5.9.

We introduce a new product of two integrable series (e.g., motivic zeta functions) in different

rings of formal series. More precisely, if a(T) ∈ M
µ̂
X [[T]] and b(U) ∈ M

µ̂
Y [[U]] are integrable

series in several variables, we define a reasonable element a(T)�b(U) in M
µ̂
X×Y [[T,U]] which

is also an integrable series (Definitions 3.1 and 5.10, Corollary 5.9). Here, for a technical

reason, we work in an appropriate localization M
µ̂
X of Mµ̂

X for any base X. Roughly speaking,
the �-product is an object lying in the middle of the external product and the convolution.
When T and U reduce to univariates T and U , the commuting of � with limT=U→∞ will be
stated in Theorem 3.2 and given a complete proof. This product allows us to describe the
motivic zeta function of a Thom-Sebastiani type regular function in terms of motivic multiple
zeta functions.

The following is the statement of the most important results of the present article, the
motivic Euler reflexion formulas. Let X and Y be smooth algebraic k-varieties, on which it
admits regular functions f and g with the zero loci X0 and Y0, respectively. Let f ⊕ g be the
function on X × Y defined by the sum f(x) + g(y). Denote by ι the inclusion of X0 × Y0 in
X × Y . The motivic Euler reflexion formula in this case states that the identity

ζf (T ) � ζg(U) = ζf,g(T,U) + ζg,f (U, T ) + ι∗ζf⊕g(TU),

holds in M
µ̂
X0×Y0 [[T,U ]]. This formula is given in Theorem 4.1. As an application, taking

T = U and using the fact that � and limT→∞ commute, we can deduce from the motivic
Euler reflexion formula the motivic Thom-Sebastiani theorem, which was proved previously
in [5], [14] and [12].

More generally, we also consider ordered families of regular functions f = (f1, . . . , fr) and
g = (g1, . . . , gs) on algebraic k-varieties X1, . . . , Xr and Y1, . . . , Ys, with common zero loci X0

and Y0, respectively, and formulate the general motivic Euler reflexion formula as follows

ζf (T) � ζg(U) =
∑

ι∗ζp1,...,pη(T a1α1
U b1β1 , . . . , T

aη
αηU

bη
βη

),

where the context of the identity is M
µ̂
X0×Y0 [[T,U]], and the sum is taken over all the ordered

families of regular functions (p1, . . . , pη) satisfying

pi = aifαi ⊕ bigβi , 1 ≤ i ≤ η,
with (ai, bi) ∈ {0, 1}2 \ {(0, 0)},

∑
(ai + bi) = r + s, and {αi}ai=1 and {βi}bi=1 being strictly

monotonic increasing sequences, and ι is the inclusion of X0 × Y0 in
∏r
i=1Xi ×

∏s
j=1 Yj (see

Theorem 5.12). An direct corollary of this formula is the associativity of the �-product in
the class of motivic multiple zeta functions (see Corollaries 5.13 and 5.14).
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2. Preliminaries

2.1. Grothendieck rings and rings of formal series. Let k be a field of characteristic
zero, X an algebraic k-variety and VarX the category of X-varieties. The Grothendieck group
K0(VarX) of X-varieties is an abelian group generated by symbols [Y → X] for objects
Y → X in VarX modulo the following relations

[Y → X] = [V → X]

if Y → X and V → X are isomorphic in VarX , and

[Y → X] = [V → X] + [Y \ V → X]

if V is Zariski closed in Y . Furthermore, K0(VarX) has structure of a ring with unit with
product induced by fiber product of X-varieties and the unit being the class of the identity
morphism X → X. Let MX be the localization of K0(VarX) with respect to the multiplicative
system of Li with i ∈ N, where L := [A1

X ] = [A1
k ×X → X]. In this situation and from now

on, whenever writing X ×X ′ for k-schemes X and X ′ we means the fiber product X ×k X ′.
Let µn = µn(k) be the group scheme of nth roots of unity in k, Spec(k[t]/(tn − 1)). The

family of all µn, n ∈ N>0, forms a projective system with respect to morphisms µnm → µn
given by ξ 7→ ξm, we denote its projective limit by µ̂. By definition, a good µn-action on an
X-variety Y is a group action µn × Y → Y , which is a morphism of X-varieties, such that
each orbit is contained in an affine k-subvariety of Y ; a good µ̂-action on Y is an action of µ̂
on Y factoring through a good µn-action.

The monodromic Grothendieck group K µ̂
0 (VarX) of X-varieties endowed with good µ̂-action

is an abelian group generated by the µ̂-equivariant isomorphism classes [Y → X,σ], σ being
a good µ̂-action on X-variety Y , modulo the following conditions

[Y → X,σ] = [V → X,σ|V ] + [Y \ V → X,σ|Y \V ]

if V is Zariski closed in Y and

[Y × Ank → X,σ] = [Y × Ank → X,σ′]

if σ, σ′ lift the same µ̂-action on Y → X to an affine action on Y × Ank → X. When no
confusion may happen, we write [Y, σ] for [Y → X,σ] for simplicity. Thanks to fiber product

of X-varieties, K µ̂
0 (VarX) has the natural structure of a ring. Define

M
µ̂
X := K µ̂

0 (VarX)[L−1],

the µ̂-equivariant version of the ring MX . We also consider the ring M
µ̂r

X when working with

good µ̂r-actions. Let M
µ̂
X be the localization of Mµ̂

X with respect to the multiplicative family

generated by the elements 1−Ln with n ∈ N>0. There is a natural morphism loc : Mµ̂
X →M

µ̂
X ,

which has not been proved or disproved to be injective; however, for simplicity of notation, if

necessary, we shall identify a with loc(a), that is, consider a ∈M
µ̂
X as an element of M

µ̂
X .

For a morphism of k-varieties f : X → X ′, one defines group morphisms f! : Mµ̂
X → M

µ̂
X′

and f! : M
µ̂
X → M

µ̂
X′ by composition, also defines ring morphisms f∗ : M

µ̂
X′ → M

µ̂
X and

f∗ : M
µ̂
X′ →M

µ̂
X by fiber product. If X ′ = Speck, f! is usually denoted by

∫
X .
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Let M be a Z[L,L−1]-module, and let T = (T1, . . . , Tr) be a multivariate. We shall consider
M[[T]] and the following sub-Z[L,L−1]-modules

M[[T]]sr := M[T]
[
(1− LmTn)−1

]
(m,n)∈Z×(Nr\{(0,...,0)}) ,

M[[T]]ssr := M[T]
[
(1− LmTn)−1

]
(m,n)∈Z≤0×(Nr\{(0,...,0)}) , and

M[[T]]int := M[T]
[
(1− LmTn)−1

]
(m,n)∈Z<0×(Nr\{(0,...,0)}) .

The identity
1

1− LmTn
=
∑
l≥0

(LmTn)l

induces canonical embeddings of the previous modules in M[[T]]. Elements of M[[T]]sr are
called rational series, elements of M[[T]]ssr are called strongly rational series, and elements
of M[[T]]int are called integrable series, over M. It is immediate that an integrable series
is also a strongly rational series and a strongly rational series is also a rational series. The
terminology “integrable” is inspired from the discussions of Cluckers and Loeser on integrable
constructible functions in Section 4, especially Theorem 4.5.4, of their article [1].

In particular, if we fix a k-variety X and let M be one of two rings M
µ̂
X and M

µ̂
X , then the

previous rings can be obviously viewed as M-modules. If this is the case, and if T reduces
to a univariate T , we get that every integrable series is also of finite mass in the sense of

Looijenga [14]. Moreover, as shown in [3], there exists a unique M
µ̂
X -linear morphism

lim
T→∞

: M[[T ]]sr →M

such that limT→∞
LmTn

1−LmTn = −1 for any (m,n) ∈ Z× N>0.

2.2. Arc spaces and motivic zeta functions. Let X be an algebraic k-variety. For any
n ∈ N>0, let Ln(X) be the space of n-jet schemes of X, which is a k-scheme representing the
functor sending a k-algebra A to the set of morphisms of k-schemes Spec(A[t]/(tn+1))→ X.
For any pair n ≤ m, the truncation defines a morphism of k-schemes

πmn : Lm(X)→ Ln(X)

and this is an affine morphism. If X is smooth of dimension d, the morphism πmn is a locally

trivial fibration with fiber A(m−n)d
k . The n-jet schemes and the morphisms πmn form in a

natural way a projective system of k-schemes, we denote its limit by L(X) and call this
space the arc space of X. For any field extension k ⊂ K, the K-points of L(X) correspond
one-to-one to the K[[t]]-points of X.

Furthermore, the schemes Ln(X) and L(X) are endowed with a natural action of µn given
by ξϕ(t) := ϕ(ξt). The profinite group scheme µ̂ acts on these schemes via µn’s.

Assume in the rest of this section that X is a smooth k-variety of pure dimension d. Let
f : X → A1

k be a regular function with the zero locus X0. For n ∈ N>0, let Xn(f) be the set of
arcs ϕ ∈ Ln(X) such that f(ϕ) = tn mod tn+1. Since the image of Xn(f) under the canonical
morphism Ln(X) → X is contained in X0, it is also an X0-variety. Furthermore, Xn(f) is
stable for the action of µn on Ln(X), thus it defines a motivic class [Xn(f)] := [Xn(f)→ X0]

in M
µ̂
X0

. The motivic zeta function of f is defined as follows

Zf (T ) :=
∑
n≥1

[Xn(f)]L−ndTn,
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which lives in M
µ̂
X0

[[T ]]. If x is a closed point in X0, we define the local motivic zeta function

Zf,x(T ) to be x∗Zf (T ), where x∗ stands for the pullback of the inclusion of x in X0. Clearly,

the series Zf,x(T ) is an element of Mµ̂
k [[T ]].

The following theorem is proved by Denef and Loeser by an explicit description using a
resolution of singularities of (X,X0).

Theorem 2.1 (Denef-Loeser). The motivic zeta function Zf (T ) is an integrable series.

The quantity Sf := − limT→∞ Zf (T ) in M
µ̂
X0

is called the motivic nearby cycles of f . Also,

the element Sf,x := x∗Sf of Mµ̂
k is called the motivic Milnor fiber of f at x. Recently, Sf and

Sf,x have been getting more important in singularity theory because of their relations with
various classical invariants, such as Euler characteristic, Hodge spectrum, monodromy zeta
functions (cf. [6, 7], [9], [10]).

More generally, we also consider motivic zeta functions in several variables. Let us consider
an ordered family f of r regular functions fi : X → A1

k. For simplicity of notation, we also
write X0 for X0(f), the common zeros of the family f . Let C be the rational polyhedral
convex cone in Nr>0, let ∆ be the special one among C’s which consists of n = (n1, . . . , nr)
such that 1 ≤ n1 < · · · < nr. For any n ∈ Nr>0, let |n| =

∑r
i=1 ni, and let define

Xn(f) :=
{
ϕ ∈ L|n|(X) | fi(ϕ) = tni mod tni+1, 1 ≤ i ≤ r

}
and

Dn(f) :=
{
ϕ ∈ L|n|(X) | f1(ϕ) = tn1 mod tn1+1, ordfi(ϕ) > ni, 2 ≤ i ≤ r

}
.

It is clear that, for any n ∈ Nr>0, Xn(f) (resp. Dn(f)) is stable under the µgcd(n)-action
(resp. µn1-action) on L|n|(X) given by ξϕ(t) := ϕ(ξt), and that Xn(f) (resp. Dn(f)) admits
a morphism to X0. This fact thus gives rise to an element [Xn(f)] := [Xn(f) → X0] (resp.

[Dn(f)] := [Dn(f)→ X0]) in M
µ̂
X0

.

We are going to study a modification (with respect to C) of the motivic zeta function of
the family f in several variables in Guibert [9]. The version with the cone C was actually
studied by Guibert-Loeser-Merle [11] for one variable concerning a linear form positive on the
closure of C except at the origin. Let T denote the r-tuple (T1, . . . , Tr) of variables.

Definition 2.2. The motivic zeta function ZCf (T) and the motivic multiple zeta function
ζf (T) of an ordered family f are the following formal series

ZCf (T) :=
∑
n∈C

[Xn(f)]L−|n|dTn

and
ζf (T) :=

∑
n∈∆

[Dn(f)]L−|n|dTn

in M
µ̂
X0

[[T]]. For a closed point x ∈ X0, we define the local motivic and local motivic multiple

zeta functions as ZCf ,x(T) := x∗ZCf (T) and ζf ,x(T) := x∗ζf (T), which are elements of Mµ̂
k [[T]].

We refer to [11, Section 2.9] and [4, Lemma 3.4] to see that ZCf (T) is a rational series.

Indeed, we can obtain the motivic zeta function ZC,`f (T ) in [11], which depends on a linear

form ` positive on the closure C of C in Rr≥0 except at the origin, in terms of replacing Tn in

ZCf (T) by T `(n). There, Guibert, Loeser and Merle deduce the rationality of ZC,`f (T ) thanks to
[4, Lemma 3.4], and, fortunately, their arguments are definitely applicable to the rationality
of ZCf (T). By observing the explicit formula of this function in terms of a resolution of
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singularity we may find that, in fact, ZCf (T) is an integrable series. Furthermore, also by

[11], the element − limT→∞ Z
C,`
f (T ) of Mµ̂

X0
is independent of the choice of ` linear on Zr and

positive on C \ {(0, . . . , 0)}, therefore one usually writes SCf for it. For a closed point x ∈ X0,

we define Sf ,x to be x∗Sf , which evidently equals the limit − limT→∞ x
∗ZC,`f (T ).

To obtain the integrability (thus the rationality) of the motivic multiple zeta function ζf (T),
we now consider the following situation (which is important throughout the present article).
For 1 ≤ i ≤ r, let Xi be a smooth k-variety of pure dimension di, and let X := X1× · · ·×Xr,
d := d1 + · · · + dr. We consider regular functions fi on Xi, and, by composing with the ith
projection of X, we may regard fi as a regular function on X. Denote f = (f1, . . . , fr). Let
X0 be the common zero locus of f .

Proposition 2.3. With the previous hypothesis ζf (T) viewed as in M
µ̂
X0

[[T]] is an integrable

series, i.e, ζf (T) ∈M
µ̂
X0

[[T]]int.

This proposition will be proved in Corollary 5.9.

Definition 2.4. The motivic multiple nearby cycles of the family f in Proposition 2.3, denoted

by Sf , is defined to be the element − limT→∞ ζf (T, . . . , T ) of the ring M
µ̂
X0

. For a closed point
x ∈ X0, we set

Sf ,x := ({x} ↪→ X0)∗Sf

and call it the local motivic multiple nearby cycles of f at x.

3. Hadamard products and �-product

3.1. Convolution and Hadamard products. The standard concept of convolution prod-
uct on the monodromic Grothendieck rings of algebraic varieties was given earlier in [5], [14]
and [10]. To recall it explicitly, let us consider the Fermat varieties Fn0 and Fn1 in G2

m,k defined
by the equations un + vn = 0 and un + vn = 1, respectively. Note that the varieties Fn0 and
Fn1 admit the obvious action of µn × µn.

Let X, Y and Z be algebraic k-varieties endowed with good µn-action. Assume that there
are µn-equivariant morphisms Y → X and Z → X. Define operations in M

µn
X as follows

[Y → X] ∗0 [Z → X] := [Fn0 ×µn×µn (Y ×X Z)],

[Y → X] ∗1 [Z → X] := [Fn1 ×µn×µn (Y ×X Z)],

[Y → X] ∗ [Z → X] := [Y → X] ∗0 [Z → X]− [Y → X] ∗1 [Z → X],

where, for i ∈ {0, 1}, Fni ×µn×µn (Y ×XZ) is the quotient of Fni ×(Y ×XZ) with respect to the
equivalence relation by which any two elements (ξu, ηv, x, y) and (u, v, ξx, ηy) are equivalent,
for ξ, η ∈ µn. The group scheme µn acts diagonally on Fni ×µn×µn (Y ×X Z). Then passing
through the projective limit with respect to n ∈ N>0 we get the (standard) convolution product

∗ on M
µ̂
X . We can also extend the ∗-product to M

µ̂
X in a natural way. By [10, Proposition

5.2], the convolution product ∗ is commutative and associative.
Let X, Y , Z and W be algebraic k-varieties which are endowed with good µ̂-action and

admit µ̂-equivariant morphisms Z → X and W → Y (we may choose the trivial action of µ̂ on

the bases X and Y ). The cartesian product induces a morphism of rings Mµ̂
X×M

µ̂
Y →M

µ̂2

X×Y ,

by which the diagonal action induces naturally a canonical morphism M
µ̂2

X×Y →M
µ̂
X×Y . Then

the composition of these morphisms yields an external product

M
µ̂
X ×M

µ̂
Y →M

µ̂
X×Y ,(3.1)
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where, by abuse of notation, we also denote it by ×. As previous, we let T be an r-tuple
of variables. The (external) Hadamard ×H-product of two series a(T) =

∑
n∈Nr anTn in

M
µ̂
X [[T]] and b(T) =

∑
n∈Nr bnTn in M

µ̂
Y [[T]] is the series

a(T)×H b(T) :=
∑
n∈Nr

an × bnTn(3.2)

in M
µ̂
X×Y [[T]]. This product is commutative, and it is also associative in the following sense,

where the verification is straightforward. If a(T) is in M
µ̂
X [[T]], b(T) is in M

µ̂
Y [[T]] and c(T)

is in M
µ̂
Z [[T]], then the identity

(a(T)×H b(T))×H c(T) = a(T)×H (b(T)×H c(T))(3.3)

holds in M
µ̂
X×Y×Z [[T]]. It is stated similarly as in Lemma 7.6 of [14] that, in the univariate

case (i.e., r = 1), the ×-product is “anti-compatible” with the Hadamard ×H-product via the

morphism limT→∞. Namely, if a(T ) is in M
µ̂
X [[T ]]sr and b(T ) is in M

µ̂
Y [[T ]]sr, then a(T )×Hb(T )

is in M
µ̂
X×Y [[T ]]sr and the identity

lim
T→∞

(a(T )×H b(T )) = −
(

lim
T→∞

a(T )
)
×
(

lim
T→∞

b(T )
)

(3.4)

holds in M
µ̂
X×Y . An analogous assertion for an arbitrary r is also true when we replace the

morphism limT→∞ by the morphism limT1=···=Tr→∞, the composition of limT→∞ and the
assignment T = T1 = · · · = Tr.

The previous external product also deduces naturally the following external product, which
we again denote by ×,

M
µ̂
X ×M

µ̂
Y →M

µ̂
X×Y .

This product has the same properties as the previous ones that we have mentioned.
Let us now introduce a generalized (external) convolution product of the previous standard

one. Using the external product, the generalized (external) convolution product

∗ : Mµ̂
X ×M

µ̂
Y →M

µ̂
X×Y

(again by abuse of notation) is defined as follows

[Z → X] ∗0 [W → Y ] := ([Z → X]× [Y → Y ]) ∗0 ([X → X]× [W → Y ]) ,

[Z → X] ∗1 [W → Y ] := ([Z → X]× [Y → Y ]) ∗1 ([X → X]× [W → Y ]) ,

[Z → X] ∗ [W → Y ] :=[Z → X] ∗0 [W → Y ]− [Z → X] ∗1 [W → Y ].

The Hadamard ∗H-product of two formal series a(T) =
∑

n∈Nr anTn ∈ M
µ̂
X [[T]] and b(T) =∑

n∈Nr bnTn ∈M
µ̂
Y [[T]] is the formal series

(3.5) a(T) ∗H b(T) :=
∑
n∈Nr

an ∗ bnTn

in M
µ̂
X×Y [[T]]. The associativity of the Hadamard product ∗H is obtained from that of the

convolution product ∗. Similarly to [14, Lemma 7.6], the ∗-product is anti-compatible with
the Hadamard product ∗H-product via the morphism limT1=···=Tr→∞. Namely, for r = 1 for

instance, if a(T ) is in M
µ̂
X [[T ]]sr and b(T ) is in M

µ̂
Y [[T ]]sr, then a(T )∗H b(T ) is in M

µ̂
X×Y [[T ]]sr,

and moreover,

lim
T→∞

(a(T ) ∗H b(T )) = −
(

lim
T→∞

a(T )
)
∗
(

lim
T→∞

b(T )(3.6)
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The external convolution product can be extended to the following

∗ : M
µ̂
X ×M

µ̂
Y →M

µ̂
X×Y ,

which remains the properties mentioned previously.

3.2. The �-product of integrable univariate series. Let X and Y be two algebraic k-
varieties, and let T and U be univariates. In this paragraph, we introduce a new product

of two integrable series a(T ) ∈ M
µ̂
X [[T ]]int and b(U) ∈ M

µ̂
Y [[U ]]int, which is an element of

M
µ̂
X [[T,U ]]int and commutes with the morphism limT=U→∞.

Definition 3.1. The �-product of the series a(T ) =
∑

n≥1 anT
n and b(U) =

∑
m≥1 bmU

m is
defined as follows

a(T ) � b(U) :=
∑
n,m≥1

cn,mT
nUm ∈M

µ̂
X×Y [[T,U ]],

where

cn,m =


(L− 1)

∑
l>m an × bl if n < m,

(L− 1)
∑

l>n al × bm if n > m,

−an ∗ bn +
∑

l≤n Ll−nal ∗0 bl + (L− 1)
∑

l>n(an × bl + al × bn) if n = m.

Remark that the integrability of a(T ) and b(U) implies that a(T ) � b(U) is well defined.
Indeed, since a(T ) and b(U) are integrable, they are of finite mass, a condition guarantees

that
∑

l>n al and
∑

l>m bl make sense and belong to M
µ̂
X and M

µ̂
Y , respectively.

Theorem 3.2. The �-product preserves the integrability and commutes with the limit of

integrable series. More precisely, if a(T ) is in M
µ̂
X [[T ]]int and b(U) is in M

µ̂
Y [[U ]]int, then

a(T ) � b(U) is in M
µ̂
X×Y [[T,U ]]int, and

lim
T=U→∞

(a(T ) � b(U)) = lim
T→∞

a(T ) ∗ lim
U→∞

b(U).

Proof. The first statement that a(T ) � b(U) is in M
µ̂
X×Y [[T,U ]]int if a(T ) is in M

µ̂
X [[T ]]int and

b(U) is in M
µ̂
Y [[U ]]int will be proved in the general case for several variables in Theorem 5.11.

Let us prove the second one. Write the series a(T ), b(U) and a(T ) � b(U) as
∑

n≥1 anT
n,∑

m≥1 bmU
m and

∑
n,m cn,mT

nUm, respectively. Take T = U in a(T ) � b(U) so that the
resulting series can be written as∑

n,m

cn,mT
n+m = A1 +A2 + (L− 1)(B1 +B2),

where, by definition,

A1 = −
∑
n≥1

an ∗ bnT 2n, A2 =
∑
n≥1

∑
l≤n

Ll−nal ∗0 bl

T 2n,

B1 =
∑

1≤n≤m

(
an ×

∑
l>m

bl

)
Tn+m, B2 =

∑
1≤m≤n

(∑
l>n

al × bm

)
Tn+m.

Here the integrability of a(T ) and b(U) implies that
∑

l>n al converges in M
µ̂
X and

∑
l>m bl

converges in M
µ̂
Y . The first limit is computed to be

lim
T→∞

A1 = lim
T→∞

a(T 2) ∗ lim
T→∞

b(T 2) = lim
T→∞

a(T ) ∗ lim
T→∞

b(T )
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by means of (3.6). It is quite easy to obtain that limT→∞A2 equals

lim
T→∞

∑
n≥1

(
n∑
l=1

(L−1)n−lal ∗0 bl

)
T 2n =

 lim
T→∞

∑
n≥0

L−nT 2n

 ·
 lim
T→∞

∑
n≥1

an ∗0 bnT 2n


which vanishes in M

µ̂
X×Y , since limT→∞

∑
n≥0 L−nT 2n vanishes in M

µ̂
X×Y . The limits of B1

and B2 require more computations. It is verified in M
µ̂
X×Y [[T ]]int that

B1 =
∑

1≤n≤m
(an × b(1))Tn+m −

∑
1≤n≤m

an × ∑
1≤l≤m

bl

Tn+m

=
∑
n≥1

an × b(1)
∑

1≤m≤n
Tn+m −

∑
1≤n≤m

an × ∑
1≤l≤m

bl

Tn+m

=
a(T 2)

1− T
× b(1)−

∑
1≤n≤m

an × ∑
1≤l≤m

bl

Tn+m,

and, similarly, that

B2 =

 a(1)

1− T
∑
n≥1

T 2n

×H
b(T 2)

1− T
−

∑
1≤m≤n

∑
l≤n

al × bm

Tn+m.

Moreover, for each κ ≥ 1, by combinatoric computation we obtain the following identity

∑
n+m=κ

 ∑
1≤n,j≤m

an × bj +
∑

1≤m,i≤n
ai × bm

 =
∑

n+m=κ

∑
j≤m

an × bj +
∑
i≤bκ

2
c

ai ×
∑
j≤bκ

2
c

bj ,

where bκ2 c is the integer part of κ
2 . It implies that

B1 +B2 =
a(T 2)

1− T
× b(1) + a(1)× b(T 2)

1− T
−
∑
l≥1

alT
l ×
∑
l≥1

(∑
m≤l

bm
)
T l

− (1 + T )
∑
l≥1

(∑
n≤l

an
)
T 2l ×H

∑
l≥1

(∑
m≤l

bm
)
T 2l

=
a(T 2)

1− T
× b(1) + a(1)× b(T 2)

1− T
− a(T )× b(T )

1− T
− (1 + T )

(
a(T 2)

1− T 2
×H

b(T 2)

1− T 2

)
,

since ∑
κ≥1

( ∑
i≤bκ

2
c

ai ×
∑
j≤bκ

2
c

bj
)
T κ = (1 + T )

∑
l≥1

(∑
n≤l

an ×
∑
m≤l

bm
)
T 2l.

Here, for any two series α(T ) ∈ M
µ̂
X [[T ]] and β(T ) ∈ M

µ̂
Y [[T ]], by α(T ) × β(T ) we mean the

usual product of formal series in which the multiplication for the coefficients uses the external

product ×. Now it is easy to obtain the vanishing of limT→∞(B1 + B2) in M
µ̂
X×Y , and the

theorem is proved. �
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4. A motivic analogue of the Euler reflexion formula

4.1. Main theorem. In this paragraph we state and prove an analogue of the Euler reflexion
formula for motivic zeta functions, the most important result of the present article.

Theorem 4.1. Let X and Y be smooth algebraic k-varieties, let f and g be regular functions
on X and Y with the zero loci X0 and Y0, respectively. Define a function f ⊕ g on X × Y by
f ⊕ g(x, y) = f(x) + g(y). Let ι be the inclusion of X0 × Y0 in X × Y . Then the following
identity

ζf (T ) � ζg(U) = ζf,g(T,U) + ζg,f (U, T ) + ι∗ζf⊕g(TU)

holds in M
µ̂
X0×Y0 [[T,U ]]. It will be called the motivic Euler reflexion formula for (f, g).

Proof. Let d1 and d2 be the pure k-dimensions of X and Y , respectively, and let d := d1 + d2.

For brevity of notation, we write an for [Xn(f)]L−nd1 in M
µ̂
X0

and bn for [Xn(g)]L−nd2 in M
µ̂
Y0

,
we also ignore writing arrows to base for relative objects when they are clearly understood,
e.g., let [Xn(f)] simply stand for [Xn(f)→ X0]. The motivic zeta functions of f and g can be
rewritten as follows

ζf (T ) =
∑
n≥1

anT
n ∈M

µ̂
X0

[[T ]] and ζg(U) =
∑
n≥1

bnU
n ∈M

µ̂
Y0

[[U ]].

Let us consider the coefficients of the series ι∗ζf⊕g(TU). For any n ∈ N>0, we have

[ι∗Xn(f ⊕ g)] =
[{

(ϕ,ψ) ∈ Ln(X × Y ) | f(ϕ) + g(ψ) = tn mod tn+1
}]

that equals the sum A
(n)
1 +A

(n)
2 +A

(n)
3 , where A

(n)
1 , A

(n)
2 and A

(n)
3 are given by the expressions

A
(n)
1 =

[{
(ϕ,ψ) ∈ Ln(X × Y )

f(ϕ) + g(ψ) = tn mod tn+1

ordf(ϕ) = ordg(ψ) = n

}]
,

A
(n)
2 =

[{
(ϕ,ψ) ∈ Ln(X × Y )

f(ϕ) + g(ψ) = tn mod tn+1

ordf(ϕ) 6= ordg(ψ)

}]
,

A
(n)
3 =

∑
1≤l<n

[{
(ϕ,ψ) ∈ Ln(X × Y )

f(ϕ) + g(ψ) = tn mod tn+1

ordf(ϕ) = ordg(ψ) = l

}]
.

It is useful for the rest of the proof to introduce another notation, Bn, so that

Bn = (L− 1)
[{

(ϕ,ψ) ∈ Ln(X × Y ) | f(ϕ) = −g(ψ) = tn mod tn+1
}]
.

Lemma 4.2. The identities an ∗1 bn = A
(n)
1 L−nd and an ∗0 bn = BnL−nd hold in M

µn
X0×Y0.

Proof of Lemma 4.2. We shall prove the first identity, that an ∗1 bn = A
(n)
1 L−nd, proving the

second one can be done in the same way. The mapping from the k-variety Xn(f)×Xn(g)×Fn1
toward the k-variety

E :=

{
(ϕ,ψ) ∈ Ln(X × Y )

ordf(ϕ) = ordg(ψ) = n
f(ϕ) + g(ψ) = tn mod tn+1

}
that sends (ϕ(t), ψ(t); ξ, η) to (ϕ(ξt), ψ(ηt)) gives rise to a morphism θ of k-varieties

Xn(f)× Xn(g)×µn×µn Fn1 → E.

It is clear that the source and the target of θ are endowed with the natural action of µn,
and that θ is µn-equivariant. Moreover, the morphism θ is an isomorphism, whose inversion
E → Xn(f)× Xn(g)×µn×µn Fn1 is well defined and µn-equivariant by

(ϕ(t), ψ(t)) 7→ (ϕ((acfϕ)−1/nt), ψ((acgψ)−1/nt); (acfϕ)1/n, (acgψ)1/n).
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The desired identity an ∗1 bn = A
(n)
1 L−nd is now proved. The reader may also find in the proof

of Lemma 5.2 in [12] to obtain more detailed arguments. �

Lemma 4.3. The identity (L− 1)
∑

l>n (an × bl + al × bn) = A
(n)
2 L−nd holds in M

µn
X0×Y0.

Proof of Lemma 4.3. Note that the condition ordf(ϕ) 6= ordg(ψ) in the definition of A
(n)
2 may

be presented as
(ordf(ϕ) < ordg(ψ)) ∨ (ordf(ϕ) > ordg(ψ)) ,

so we can write A
(n)
2 as follows

A
(n)
2 =

[{
ϕ ∈ Ln(X) | f(ϕ) = tn mod tn+1

}]
× [{ψ ∈ Ln(Y ) | ordg(ψ) > n}]

+ [{ϕ ∈ Ln(X) | ordf(ϕ) > n}]×
[{
ψ ∈ Ln(Y ) | g(ψ) = tn mod tn+1

}]
.

Let us denote by D the constructible subset {ϕ ∈ Ln(X) | ordf(ϕ) > n} of Ln(X). Then
µ(π−1

n (D)) = [D]L−d1 , with µ being the motivic measure. Putting

Dl := {ϕ ∈ L(X) | ordf(ϕ) = l} ,
for any l > n, we get π−1

n (D) =
⋃
l>nDl, and, by σ-additivity of µ, we have

[D] = Ld1µ(π−1
n (D)) = Ld1

∑
l>n

µ(Dl) =
∑
l>n

[πl(Dl)]L−ld1 .

Since the mapping

acf : πl(Dl) = {ϕ ∈ Ll(X) | ordf(ϕ) = l} → Gm,k

is a locally trivial fibration, we have [πl(Dl)]L−ld1 = (L− 1)al, thus we get

[D] = (L− 1)
∑
l>n

al,

and in the same way, [{ψ ∈ Ln(Y ) | ordg(ψ) > n}] is equal to (L− 1)
∑

l>n bl. The lemma is
then proved. �

Lemma 4.4. The equality
∑

l<n al ∗0 blLl−n = A
(n)
3 L−nd holds in M

µn
X0×Y0.

Proof of Lemma 4.4. For any l < n, let us consider the k-varieties

Ul :=

{
(ϕ,ψ) ∈ Ln(X × Y )

f(ϕ) + g(ψ) = tn mod tn+1

ordf(ϕ) = ordg(ψ) = l

}
and

Wl :=

{
(ϕ,ψ) ∈ Ln(X × Y )

ord (f(ϕ) + g(ψ)) = n
f(ϕ) = −g(ψ) = tl mod tl+1

}
,

which admit evidently the natural action of µl. Here, the class of Ul is nothing else than the

lth term of the sum A
(n)
3 . It is immediate that the mappings from Ul and Wl toward Gm,k

induced respectively by the functions acf(ϕ) and ac(f(ϕ)+g(ψ)) are locally trivial fibrations.
Since the fibers over 1 ∈ Gm,k of these fibrations coincide, it implies that [Ul] = [Wl] in

M
µ̂
X0×Y0 . We can present [Wl] = [W≥nl ]− [W≥n+1

l ]L−d, where

W≥nl :=

{
(ϕ,ψ) ∈ Ln(X × Y )

ord (f(ϕ) + g(ψ)) ≥ n
f(ϕ) = −g(ψ) = tl mod tl+1

}
.

Because the projection ρ of

En,l :=
{

(ϕ,ψ) ∈ Ln(X × Y ) | f(ϕ) ≡ −g(ψ) = tl mod tl+1
}
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onto A := {ξ ∈ Ln−1(A1
k) | ord(ξ) > l}, defined by

(ϕ,ψ) 7→ πn−1(f(ϕ) + g(ψ))− πl(f(ϕ) + g(ψ)),

is a locally trivial fibration whose fiber over 0 ∈ A is W≥nl . Thus [W≥nl ] = [En,l]Ll+1−n. Since

[En,l] = Bl(L − 1)−1L(n−l)d, it follows from Lemma 4.2 that [En,l] = al ∗0 bl(L − 1)−1Lnd,
therefore

[W≥nl ] = al ∗0 bl(L− 1)−1Lnd+l+1−n.

Consequently,

[Wl] = [W≥nl ]− [W≥n+1
l ]L−d = al ∗0 blLnd+l−n.

Then we get the identity A
(n)
3 L−nd =

∑
l<n[Wl]L−nd =

∑
l<n al ∗0 blLl−n as desired. �

Let us continue of the proof of Theorem 4.1. Using Lemmas 4.2, 4.3 and 4.4 gives the
coefficient of TnUn in ι∗ζf⊕g(TU), also the coefficient of TnUn in the right hand side of the
Euler reflexion formula, as follows

[ι∗Xn(f ⊕ g)]L−nd = an ∗1 bn +
∑
l<n

Ll−nal ∗0 bl + (L− 1)
∑
l>n

(an × bl + al × bn)

= −an ∗ bn +
∑
l≤n

Ll−nal ∗0 bl + (L− 1)
∑
l>n

(an × bl + al × bn) .

This quantity agrees with the coefficient of TnUn in the left hand side, according to the
�-product of the motivic zeta functions ζf (T ) and ζg(U) (see Section 3.2).

On the other hand, for n < m, the coefficient of TnUm in the right hand side of the Euler
reflexion formula is nothing else than [Dn,m(f, g)]L−(n+m)d, which equals

[Xn(f)]L−nd1 ×
∑
l>m

[{(ψ ∈ Ll(Y ) | ordg(ψ) = l}]L−ld2 = (L− 1)
∑
l>m

an × bl,

definitely coinciding the coefficient of TnUm in the left hand side of the Euler reflexion formula.
For the detail in proving these identities, see the proof of Lemma 4.3. The previous arguments
obviously run for the case n > m, and Theorem 4.1 is now proved. �

4.2. Motivic multiple nearby cycles and motivic Thom-Sebastiani theorem. Let X,
Y , f and g be as in Theorem 4.1. We now compute the motivic multiple zeta functions Sf,g and
Sg,f , which are the limit of the series −ζf,g(T, T ) and −ζg,f (T, T ), respectively. Afterward,
together with the commuting of �-product and limT→∞, and the motivic Euler reflexion
formula, we deduce the motivic Thom-Sebastiani theorem.

Proposition 4.5. The identities Sf,g = −Sf × [Y0] and Sg,f = −[X0]× Sg hold in M
µ̂
X0×Y0.

Proof. It suffices to check for the first identity. As in the proof of Theorem 4.1, for brevity of
notation, let an and bn stand for [Xn(f)]L−nd1 and [Xn(g)]L−nd2 , respectively. By definition,

Sf,g = − lim
T→∞

ζf,g(T, T ),
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we get the following

−Sf,g = (L− 1) lim
T→∞

∑
1≤n<m

an ×
∑
l>m

blT
n+m

= (L− 1) lim
T→∞

∑
1≤n<m

an ×
∑
l≥1

blT
n+m − (L− 1) lim

T→∞

∑
1≤n<m

an ×
∑
l≤m

blT
n+m

= lim
T→∞

∑
1≤n<m

anT
n+m × [Y0]− (L− 1) lim

T→∞

∑
1≤n<m

an ×
∑
l≤m

blT
n+m

= lim
T→∞

∑
n≥1

an
T 2n+1

1− T
× [Y0]− (L− 1) lim

T→∞

∑
1≤n<m

∑
l≤m

an × blTn+m

= lim
T→∞

Tζf (T 2)

1− T
× [Y0] + (L− 1) lim

T→∞
ZC,`f,id,g

= Sf × [Y0] + (L− 1)SC,`f,id,g,

where C is the rational polyhedral convex cone{
(n, l,m) ∈ N3 | 1 ≤ n < m, 1 ≤ l ≤ m

}
,

`(n,m, l) = n + m, for (n,m, l) ∈ R3, and id is the identity morphism on A1
k. According to

[11, Section 2.9], in fact, SC,`f,id,g is independent of the choice of ` provided ` is linear on R3

and positive on the closure of C in R3 outside the origin. By this, we may replace ` by `′

defined by `′(n,m, l) = m to get ZC,`
′

f,id,g(T ) so that ZC,`
′

f,id,g(T ) has the same limit limT→∞ as

ZC,`f,id,g(T ). More precisely,

−SC,`f,id,g = −SC,`
′

f,id,g = lim
T→∞

ZC,`
′

f,id,g = lim
T→∞

∑
1≤n<m

∑
1≤l≤m

an × blTm.

By applying Lemma 7.6 of [14] to the external product ×, which was already recalled in
Section 3.1, together with the previous identity, we obtain equals

−SC,`f,id,g = lim
T→∞

∑
m≥1

( ∑
n<m

an ×
∑
l≤m

bl
)
Tm

= − lim
T→∞

∑
m≥1

( ∑
n<m

an
)
Tm × lim

T→∞

∑
m≥1

(∑
l≤m

bl
)
Tm

= − lim
T→∞

∑
m≥1

amT
m+1 × lim

T→∞

∑
m≥1

bmT
m

= lim
T→∞

∑
m≥1

am
Tm+1

1− T
× lim
T→∞

∑
m≥1

bm
Tm

1− T
,

which vanishes because of the vanishing of the second factor of the last expression, completing
the proof of Proposition 4.5. �

Theorem 4.6 (Motivic Thom-Sebastiani theorem). Using the assumption as in Theorem 4.1,
the following identity

ι∗Sf⊕g = −Sf ∗ Sg + Sf × [Y0] + [X0]× Sg

holds in M
µ̂
X0×Y0.

Proof. The theorem is a direct corollary of Theorems 4.1, 3.2 and Proposition 4.5. �
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5. Generalization of �-product and motivic Euler reflexion formula

5.1. Integrable series. First of all, let us recall some basic results on integrability of formal
series. We define

Z[L]loc := Z[L,L−1, (1− Ln)−1, n ≥ 1].

Let M and N be Z[L]loc-modules, and let M⊗N denote M⊗Z[L]loc N for short.

Lemma 5.1. If a(T) ∈M[[T]]int and b(T) ∈ N[[T]]ssr, then a(T)⊗H b(T) ∈M⊗N[[T]]int.

Proof. Looijenga gave a similar statement for the univariate case in [14, Lemma 7.6], which
claims that the Hadamard product corresponding to tensor product on coefficients of two
rational series is again rational. His arguments in fact still work in our situation. Moreover,
there are methods more direct to prove this lemma, such as combinatorics or Cluckers-Loeser’s
computations for the constructible motivic functions in [1, Section 4] together with the version
with action in [13]. �

Lemma 5.2. Let M be Z[L]loc-modules, and T and U separated multivariates. Then

M[[T]]int[[U]]int ⊂M[[T,U]]int ⊂M[[T]]int[[U]],

where M[[T]int[[U]] is the set of formal series in U over M[[T]]int.

Proof of Lemma 5.2 is elementary and left to the readers.
For any pair of formal series with some variables mixed, namely, a(T,V) =

∑
n,l an,lT

nVl

in M[[T,V]] and b(U,V) =
∑

m,l bm,lU
mVl in N[[U,V]], their V-Hadamard product is an

element of M⊗N[[T,U,V]] given by

a(T,V)⊗H b(U,V) :=
∑
n,m,l

an,l ⊗ bm,lT
nUmVl.(5.1)

Lemma 5.3. If a(T,V) is in M[[T,V]]int and b(U,V) is in N[[U]]int[[V]]ssr, then the V-
Hadamard product a(T,V)⊗H b(U,V) is in M⊗N[[T,U,V]]int.

Proof. It is easy to see that the series c(T,U,V) := a(T,V)⊗H b(U,V) can be presented as
the Hadamard product of two elements of M⊗N[[T,U,V]] as follows

c(T,U,V) =
a(T,V)∏
(1− Uj)

⊗H
b(U,V)∏
(1− Ti)

,(5.2)

where
∏

(1 − Ti) := (1 − T1) · · · (1 − Tr) and
∏

(1 − Uj) := (1 − U1) · · · (1 − Us). By setting
b(U,V) =

∑
m bm(V)Um, we may write the factors in (5.2) as follows

a(T,V)∏
(1− Uj)

=
∑
m

a(T,V)Um ∈M⊗N[[T,V]]int[[U]]ssr, and

b(U,V)∏
(1− Ti)

=
∑
m

b′m(T,V)Um ∈M⊗N[[T,V]]ssr[[U]]int,

where

b′m(T,V) :=
bm(V)∏
(1− Ti)

.

This together with Lemma 5.1 implies that c(T,U,V) ∈M⊗N[[T,V]]ssr[[U]]int. Moreover,
we have

c(T,U,V) =
∑
m

a(T,V)⊗H b′m(T,V)Um,
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which belongs to M⊗N[[T,V]]int[[U]], by Lemma 5.1. It follows that c(T,U,V) is an element
of M⊗N[[T,V]]int[[U]]int, hence an element of M⊗N[[T,U,V]]int. �

Let Xi, 1 ≤ i ≤ r, be algebraic k-varieties, and let X := X1 × · · · ×Xr. As usual we use
the multivariate T = (T1, . . . , Tr). To an 1 ≤ i ≤ r and a formal series a(T) =

∑
n anTn in

M
µ̂
X [[T]] associate a unique formal series ai(T) :=

∑
n a

(i)
n Tn in M

µ̂
Xi

[[T]] in such a way that

a
(i)
n = (pri)!an ∈M

µ̂
Xi

, where pri is the natural projection of X onto Xi.

Lemma 5.4. If the series a(T) is integrable, so are the series ai(T) for all 1 ≤ i ≤ r.

Proof of this lemma is straightforward.

Definition 5.5. For any r ∈ N>0 and 1 ≤ i ≤ r, a r-tuple n = (n1, . . . , nr) ∈ Nr is said to
have the ∆i,<-property (resp. the ∆<-property), written as n ∈ ∆i,<-property (resp. n ∈ ∆<-
property) or simply as n ∈ ∆i,< (resp. n ∈ ∆<), if

n1 < · · · < ni = ni+1 = · · · = nr (resp. n1 < · · · < nr).

Denote by M
i,<
X [[T]] (resp. M<

X [[T]]) the subset of M
µ̂
X [[T]] consisting of formal series

of the form
∑

n∈∆i,<
anTn (resp.

∑
n∈∆<

anTn). We also have analogous definition for

M
i,<
X [[T]] and M

<
X [[T]] as subset of M

µ̂
X [[T]]. By definition, for any a(T) in M

i,<
X [[T]] (resp.

in M
i,<
X [[T]]), there exists a series a′(T1, . . . , Ti) in M<

X [[T1, . . . , Ti]] (resp. in M
<
X [[T1, . . . , Ti]])

such that a(T) = a′(T1, . . . , Ti−1, Ti · · ·Tr).
Let us now introduce a new notion of ordered cells. For an increasing sequence of positive

integers 0 = r0 < r1 < · · · < ri = r we define the basic ordered cell ∆(r0,...,ri) to be the set{
(n1, . . . , nr) ∈ Nr | nrj−1+1 = · · · = nrj and nrj−1 < nrj , 2 ≤ j ≤ i

}
.

A subset ∆ of Nr is called an ordered cell if it is the image of a basic ordered cell ∆(r0,...,ri)

under a permutation map ρ : Nr → Nr that sends (n1, . . . , nr) to (nρ(1), . . . , nρ(r)). It is easy
to see that Nr can be partitioned into all the ordered cells ∆. This implies that any formal

series a(T) ∈M
µ̂
X [[T]] can be uniquely decomposed as a finite sum of formal series

a(T) =
∑
∆

a∆ (T) =
∑
∆

a<∆
( r1∏
l=1

Tρ(l), . . . ,

ri∏
l=ri−1+1

Tρ(l)

)
,(5.3)

where a∆(T) :=
∑

n∈∆ anTn and a<∆ ∈M
<
X [[T1, . . . , Ti]] in viewing X as

r1∏
l=1

Xρ(l) × · · · ×
ri∏

l=ri−1

Xρ(l).

Lemma 5.6. If the series a(T) is integrable, so are the series a∆(T) for all ordered cells ∆.

Remark 5.7. Actually, in view of Cluckers-Loeser’s theory on constructible motivic functions
one can show that the lemma also works for any definable subset of Nr, cf. [1, Lemma 4.5.8].

Proof of Lemma 5.6. It suffices to prove that a∆ (T) is integrable for ∆ = ∆(r0,...,ri) being a
basic ordered cell. We can check easily that

a∆ (T) = ε(T) ·H a(T),
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where, be definition,

ε(T) :=

∏i
j=2

(∏r
l=rj−1+1 Tl

)
∏i
j=1

(
1−

∏r
l=rj−1+1 Tl

) ,
which is a strongly rational series. Then the present lemma follows from Lemma 5.1. �

Let us now consider the morphism of M
µ̂
X -modules

Φ: M
<
X [[T]]→M

<
X [[T]]

given by

Φ
(∑

n

anTn
)

= (L− 1)1−r
∑
n

a
(1)
n ×

r∏
i=2

(a
(i)
n−ei − a

(i)
n )Tn,

where a
(i)
n := (pri)!an ∈ M

µ̂
Xi , pri is the natural projection of X onto Xi, and ei is the i-th

standard vector in Zr, 1 ≤ i ≤ r. Here by
∏r
i=2 we mean temporarily the external products.

It is clear that Φ can be extended to an endomorphism of M
µ̂
X [[T]],

Φ : M
µ̂
X [[T]]→M

µ̂
X [[T]],(5.4)

by linearity, namely,

Φ(a(T)) :=
∑
∆

Φ
(
a∆

( r1∏
l=1

Tρ(l), . . . ,

ri∏
l=ri−1+1

Tρ(l)

))
,

in terms of the decomposition of a(T) ∈M
µ̂
X [[T]] into finitely many terms of the form (5.3).

Now we work with the restriction of Φ to the sub-M
µ̂
X -module M

µ̂
X [[T]]int of M

µ̂
X [[T]].

Lemma 5.8. The restriction of Φ to M
µ̂
X [[T]]int is an automorphism.

Proof. Define the morphism Φ−1 : M
<
X [[T]]int →M

<
X [[T]]int as follows

a(T) =
∑

n∈∆<

anTn 7→ (L− 1)r−1
∑

n∈∆<

a
(1)
n ×

r∏
i=2

(∑
l>1

a
(i)
n+lei

)
Tn,

with
∏r
i=2 being the external products at the moment. Let us show that Φ−1(a(T)) is an

integrable series. We first prove that, for any 2 ≤ i ≤ r,

(L− 1)
∑

n∈∆<

∑
l>1

a
(i)
n+lei

Tn =
γi(T)

1− Ti
,

for some γi(T) ∈ M
µ̂
Xi [[T]]int. Indeed, by setting n̂i := n − niei and T̂i := T − (Ti − 1)ei,

2 ≤ i ≤ r, we have

(L− 1)
∑

n∈∆<

∑
l>1

a
(i)
n+lei

Tn = (L− 1)
∑
l>1

∑
n̂i∈∆<

a
(i)
n̂i+lei

T̂n̂i
i

∑
i≤ni<l

Ti
ni

= (L− 1)
∑
l>1

∑
n̂i∈∆<

a
(i)
n̂i+lei

T̂n̂i
i

Ti
i − T li

1− Ti

=
(L− 1)Ti

i

1− Ti
ai(T̂i)−

(L− 1)ai(T)

1− Ti
,
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which has the form as desired. It therefore follows that

Φ−1(a(T)) = a1(T) ·H
γ2(T)

1− T2
·H · · · ·H

γr(T)

1− Tr
,

which is obviously integrable due to Lemma 5.1. By the decomposition (5.3), the morphism

Φ−1 may be extended to M
µ̂
X [[T]]int. It is easily checked that Φ◦Φ−1 = Φ−1 ◦Φ = id

M
µ̂
X [[T]]int

.

The lemma is thus proved. �

Corollary 5.9. Let f = (f1, . . . , fr) be an ordered family of regular functions on X1, . . . , Xr.

Then the multiple motivic zeta function ζf (T) is an integrable series, i.e., ζf (T) ∈M
µ̂
X [[T]]int.

Proof. Let a(T) = Z
Nr>0

f (T) be the motivic zeta function with respect to the trivial cone Nr>0

defined as in Definition 2.2. Then we have

a(T) = Zf1(T1)×H . . .×H Zfr(Tr),

it is therefore integrable due to Lemma 5.3. On the other hand, we deduce from Lemma 5.6

that the series a∆<(T) = Z∆<

f (T) is integrable. Since the identity Φ−1
(
Z∆<

f (T)
)

= ζf (T)

holds in M
<
X [[T]], Lemma 5.8 gives us the integrability of the series ζf (T). �

5.2. Generalized �-product. Let Xi and Yj , 1 ≤ i ≤ r, 1 ≤ j ≤ s, be algebraic k-varieties,
and let

X := X1 × · · · ×Xr and Y := Y1 × · · · × Ys.(5.5)

As usual we also use the multivariates T = (T1, . . . , Tr) and U = (U1, . . . , Us). Now for tuples
n = (n1, . . . , nr) and m = (m1, . . . ,ms) having the ∆<-property, we let

I := In,m := {(i, j) ∈ N2 | ni = mj},

and let I1 (resp. I2) be the image of I under the projection on the first component (resp.

the second component). Then, to define the �-product of a series in M
µ̂
X [[T]] and a series in

M
µ̂
Y [[U]] it suffices to define the �-product of a series in M

<
X [[T]] and a series in M

<
Y [[U]].

Definition 5.10. Let a(T) =
∑
anTn and b(U) =

∑
bmUm be formal series in M

<
X [[T]]

and M
<
Y [[U]], respectively. We define the product a(T) � b(U) in two steps as follows.

(i) Put

a(T) �0 b(U) :=
∑

n∈∆<,m∈∆<

cn,mTnUm,

where

cn,m =
∏
i 6∈I1

a
(i)
n ×

∏
j 6∈I2

b
(j)
m ×

∏
(i,j)∈I

c̃
(i,j)
n,m,

and, for any (i, j) ∈ I, the quantity c̃
(i,j)
n,m is defined to be

−a(i)
n ∗ b(j)m +

∑
0≤l<ni

L−la(i)
n−lei ∗0 b

(j)
m−lej + (L− 1)

∑
l>0

(a
(i)
n × b(j)m+lej

+ a
(i)
n+lei

× b(j)m ).

(ii) Put

a(T) � b(U) := Φ−1 (Φ(a(T)) �0 Φ(b(U))) ,

where Φ is defined previously in (5.4).
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It is clear that the �-product in Definition 5.10 is well defined since Φ is well defined.
Moreover, when reduced to the univariate case, i.e., r = s = 1, this product is nothing else
than the one defined in Definition 3.1.

Theorem 5.11. With previous notation and hypotheses, if a(T) is in M
µ̂
X [[T]]int and b(U)

is in M
µ̂
Y [[U]]int, then a(T) � b(U) is in M

µ̂
X×Y [[T,U]]int.

Proof. We first assume that a(T) and b(U) are in M
<
X [[T]]int and M

<
Y [[U]]int, respectively. It

follows from the proof of Lemma 5.8 that

(L− 1)
∑

n∈∆<

∑
l>0

a
(i)
n+lei

Tn =
αi(T)

1− Ti
,

and that

(L− 1)
∑

m∈∆<

∑
l>0

b
(j)
m+lej

Um =
βj(U)

1− Uj
,

for some integrable series αi(T) and βj(U). Then, by simple computation, we deduce that

a(T) �0 b(U) =
∏
i 6∈I1

ai(T)×H

∏
j 6∈I2

bj(U)×H

∏
(i,j)∈I

cij(T,U),

where for each (i, j) ∈ I, the series cij(T,U) is equal to

−ai(Ti) ∗H bj(Uj) +
ai(Ti)∗0Hbj(Uj)

1− L−1TiUj
+ ai(Ti)×H

βj(Uj)

1− Uj
+
αi(Ti)

1− Ti
×H bj(Uj),

where Ti := (T1, . . . , Ti−1, TiUj , Ti+1, . . . , Tr) and Uj := (U1, . . . , Uj−1, TiUj , Uj+1, . . . , Us).
By using Lemma 5.3, we get the integrability of the series a(T)�0 b(U). The theorem is then
follows from Lemma 5.6 and 5.8. �

5.3. Motivic reflexion formulas. In this paragraph, we formulate the motivic reflexion
formulas for the multivariate case that generalizes the motivic Euler reflexion formula. As a
consequence, we show that the �-product is associative in the class of motivic multiple zeta
functions defined in Definition 2.2. A corollary of the associativity will be also given.

Theorem 5.12. Let f = (f1, . . . , fr) and g = (g1, . . . , gs) be ordered families of regular
functions on algebraic k-varieties X1, . . . , Xr and Y1, . . . , Ys, respectively. Then

ζf (T) � ζg(U) =
∑

ι∗ζp1,...,pη(T a1α1
U b1β1 , . . . , T

aη
αηU

bη
βη

),

where the sum is taken over all the ordered families of regular functions (p1, . . . , pη) satisfying

pi = aifαi ⊕ bigβi , 1 ≤ i ≤ η,

with (ai, bi) ∈ {0, 1}2 \ {(0, 0)},
∑

(ai + bi) = r + s, and {αi}ai=1 and {βi}bi=1 being strictly
monotonic increasing sequences; ι is the inclusion of X0 × Y0 in X × Y (cf. (5.5)).

Proof. First, we note that ζf (T) and ζg(U) are elements of M
<
X0

[[T]] and M
<
Y0 [[U]], respec-

tively. By definition, it suffices to show that

Φ(ζf (T)) �0 Φ(ζg(U)) =
∑
p

Φ(ι∗ζ̃p),(5.6)
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where p = (p1, . . . , pη), ζ̃p = ζp(T a1α1
U b1β1 , . . . , T

aη
αηU

bη
βη

), and the sum is taken over all the p in

the theorem. Writing Φ(ζf (T)) =
∑

n∈∆<
anTn and Φ(ζg(U)) =

∑
m∈∆<

bmUm we get

a
(i)
n =

[{
ϕ ∈ Lni(Xi) | fi(ϕ) = tni mod tni+1

}
→ Xi,0

]
L−dini ,

b
(j)
m =

[{
ψ ∈ Lmj (Yj) | gj(ψ) = tmj mod tmj+1

}
→ Yj,0

]
L−ejmj ,

with di = dimkXi and ej = dimk Yj .
Observe that the coefficients of TnUm in both sides of (5.6) are zero for n 6∈ ∆< or m 6∈ ∆<.

In this case, indeed, the statement for the left hand side comes from Definition 5.10 (i), and
that for the right hand side is due to the hypothesis that the sequences {αi}ai=1 and {βi}bi=1

are strictly monotonic increasing. For n ∈ ∆< and m ∈ ∆<, since the supports of the ζ̃p are

distinct, it suffices to show that there exists p such that the coefficient of TnUm in Φ(ι∗ζ̃p)
equals the one in Φ(ζf (T)) �0 Φ(ζg(U)). To prove this, we set

{l1 < · · · < lη} := {n} ∪ {m} = {n1, . . . , nr,m1, . . . ,ms}

and set

pi = aifαi ⊕ bigβi , 1 ≤ i ≤ η,

with ai = 1 (resp. bi = 1) if li = nαi ∈ {n} (resp. li = mβi ∈ {m}), otherwise ai = 0 (resp.

bi = 0). Define l := (l1, . . . , lη). It is easily checked that the coefficient cl of TnUm in Φ(ι∗ζ̃p)

equals c
(1)
l × · · · × c

(η)
l , where

c
(i)
l :=

[{
ω ∈ Lli(Zi) | pi(ω) = tli mod tli+1

}
→ Zi,0

]
L−δili

with Zi := (Xαi)
ai × (Yβi)

bi and δi = dimk Zi. It follows from the proof of Theorem 4.1 and
direct calculations that

c
(i)
l =


a

(αi)
n if bi = 0,

b
(βi)
m if ai = 0,

a
(αi)
n ∗ b(βi)m if ai = bi = 1.

This proves the theorem. �

The following corollaries are direct consequences of Theorem 5.12.

Corollary 5.13. Let f = (f1, . . . , fr), g = (g1, . . . , gs) and h = (h1, . . . , hτ ) be ordered
families of regular functions on X1, . . . , Xr, Y1, . . . , Ys and Z1, . . . , Zτ , respectively. Then

(ζf (T) � ζg(U)) � ζh(V) =
∑

ι∗ζp1,...,pτ (T a1α1
Sb1β1U

c1
γ1 , . . . , T

aτ
ατ S

bτ
βτ
U cτγτ ),

where the sum is taken over all the ordered families of regular functions (p1, . . . , pη) satisfying

pi = aifαi ⊕ bigβi ⊕ cihγi , 1 ≤ i ≤ η,

with (ai, bi, ci) ∈ {0, 1}3 \ {(0, 0, 0)},
∑

(ai + bi + ci) = r + s+ τ , and {αi}ai=1, {βi}bi=1 and
{γi}ci=1 being strictly monotonic increasing sequences.

In particular, the �-product is associative in the class of motivic multiple zeta functions.

Corollary 5.14. Let f , g and h be regular functions on algebraic k-varieties X, Y and Z,
respectively. Then, up to the pullback of an inclusion of X0 × Y0 × Z0 in a Zariski closed
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subset of X × Y × Z, the following identity holds in M
µ̂
X0×Y0×Z0

[[T,U, V ]]:

ζf (T ) � ζg(U) � ζh(V ) = ζf,g,h(T,U, V ) + ζf,h,g(T, V, U) + ζg,h,f (U, V, T )

+ ζg,f,h(U, T, V ) + ζh,f,g(V, T, U) + ζh,g,f (V,U, T )

+ ζf⊕g,h(TU, V ) + ζh,f⊕g(V, TU) + ζf,g⊕h(T,UV )

+ ζg⊕h,f (UV, T ) + ζg,f⊕h(U, TV ) + ζf⊕h,g(TV,U)

+ ζf⊕g⊕h(TUV ).

Remark 5.15. After many attempts we still do not know whether the �-product is associative
in the class of integrable series over monodromic Grothendieck rings of algebraic varieties.
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