Contents

Foreword		III
Acknowledg	ments	VII
Contents		IX
List of Figure	es	XVII
List of Table	S	XXXI
Kurzfassung		XXXIII
Abstract		xxxv
1 Introdue	stion	1
1.1 Motiv	ation	1
1.1.1	Landslides due to rainfall in the past and present	1
1.1.2	Landslides induced by rainfall in future	2
1.2 Obje	ctives of the project	3
1.3 Meth	odology and layout of the thesis	4
2 Literatu	re review	7
2.1 Unsa	turated soil mechanics	7
2.1.1	Matric suction in the soil	7
2.1.2	Water Retention Curve	8
2.1.3	Unsaturated hydraulic conductivity function	10
2.1.4	Transient flow in unsaturated soil	11
2.1.5	Effective stresses in unsaturated soils	12
2.1.6	Constitutive models for unsaturated soils	13
2.1.7	Barcelona Basic model	15
Volu	metric behaviour of unsaturated soils and yielding	15
Shea	r strength	18
2.2 Trigg	ering mechanisms of landslides due to rainfall	21
2.2.1	Decrease in suction within the unsaturated soil profile (top-down and bottom-up saturation)	22
Mode	elling of slope failure in unsaturated slopes due to rainfall using BBM	22
2.2.2	Exfiltration from the bedrock	24
2.2.3	Static liquefaction and drained collapse behaviour	24
2.2.4	Drained collapse behaviour	25

	2.	.2.5	Slide to flow mechanism due to restricted seepage conditions	26
	2.3	Previo	ous field tests	26
	2.4	Centr	ifuge modelling	29
	2.	.4.1	Effect of initial conditions of slopes on the failure mechanism	29
	2.	.4.2	Static liquefaction mechanism	31
	2.	.4.3	Slip to flow mechanism due to restricted seepage	32
	2.5	Concl	uding remarks	33
3	R	uedling	gen experiment field	35
	3.1	Test s	slope	35
	3.	.1.1	Location	35
	3.	.1.2	Meteorological records of the region and natural hazards	35
	3.2	Chara	acterisation	40
	3.	.2.1	Geology	40
	3.	.2.2	Hydrology	45
	3.	.2.3	Vegetation (based on Schwarz, 2011)	45
	3.3	Field	instrumentation	47
	3.	.3.1	Tensiometers	49
		Calib	ation	49
		Instal	ation	50
	3.	.3.2	TDRs	50
		Calib	ation	.52
		Instal	lation	52
	3.	.3.3	Decagons	52
		Calib	ration	53
		Instal	lation	53
	3	.3.4	Piezometers	54
		Calib	ration	.54
		Instal	lation	.54
	3	.3.5	Stress and pore pressure sensors (Gloetzl cells)	55
	3	.3.6	Strain Inclinometers (SI)	55
		Introd	luction	.55
		Subs	urface motion monitoring by strain and tilt measurements	56
		The s	tructure of Strain Inclinometers (SI)	57

		Principles of deformation measurement		
	External bending work Laboratory testing of the Strain Inclinometer			62
				63
		Strair	Inclinometers installed in Ruedlingen slope	66
	3	.3.7	Surface movements monitoring (based on Akca et al., 2011)	67
4	R	Ruedling	gen soil characterisation	69
	4.1	Grain	size distribution and Atterberg limits	70
	4.2	Volun	netric properties of the soil in saturated and unsaturated conditions	70
	4	.2.1	Results	71
	4.3	Shea	r properties of Ruedlingen soil	76
	4	.3.1	Constant Shear Drained-Undrained (CSD-U) triaxial test	76
		Speci	men preparation	77
	Test procedure Determination of the deviator and cell pressures			77
				77
		Cons	olidation	
		Increa	ase of pore water pressure	80
		Cons	tant shear undrained (CSU) triaxial test	
	4	.3.2	CSD triaxial tests on loose and compacted specimens	
	4.4	Hydra	aulic properties of Ruedlingen soil	
4		.4.1	Water Retention Curves (WRC)	
	4	.4.2	Saturated hydraulic conductivity	90
	4	.4.3	Unsaturated hydraulic conductivity	93
		Instar	ntaneous Profile Method (IPM)	93
		Hydra	aulic conductivity functions derived from IPM	96
		Hydra	aulic conductivity functions based on the WRCs	97
	4.5	Comp	paction test	
5	S	Slope m	onitoring and landslide triggering experiments	101
	5.1	Slope	e monitoring experiment (October 2008)	
	5	.1.1	Rainfall	
	5	.1.2	Pore water pressure (PWP) and volumetric water content (VWC)	102
		Clust	er 1	
		Clust	er 2	
		Clust	er 3	

	5.	1.3	Insitu Water Retention Curve (WRC) (based on Askarinejad et al., 2010a)	108
	5.	1.4	Water table	.110
	5.	1.5	Surface and subsurface movements	.112
	5.	1.6	Horizontal soil pressure and external bending work	.117
5	2	Slope	monitoring under natural atmospheric conditions	.120
	5.	2.1	Pore water pressure	.120
		Pore	water pressure at a depth of 120 cm of three instrumentation clusters	.121
	5.	2.2	Groundwater table	.122
5	.3	Lands	slide triggering experiment	.123
	5.	3.1	Rainfall	.123
	5.	3.2	Decrease of the lateral root reinforcement along the sides	.125
	5.	3.3	Landslide	. 125
	5.	3.4	Changes in the pore water pressure	.127
	5.	3.5	Changes in the volumetric water content	.128
	5.	3.6	Water table	.129
	5.	3.7	Integrated analysis of the landslide event	.130
	5.	3.8	Depth of the failure surface and profile of the subsurface movements	.133
	5.3.9		Movements during the failure	.135
	5.	3.10	Photogrammetrical analysis (based on Akca et al., 2011)	. 142
5	.4	Comp	parison between the slope monitoring and landslide triggering experiments	
	5.	4.1	Initial condition	.145
	5.	4.2	Drilling rig	. 146
	5.4.3		Rainfall pattern and cutting the roots along the longitudinal borders	. 147
	5.	4.4	Hypotheses	. 147
6	Ρ	hysica	I modelling in a geotechnical drum centrifuge	. 149
6	.1	Scalir	ng laws	.150
	6.	1.1	Scaling law for the infiltration and rainfall specifications	.150
	6.	1.2	Scaling laws for the static liquefaction mechanism (microscopic)	.151
6	.2	The b	pasic concept of the climate chamber	.153
6	.3	Rain	simulator and the tool table	.154
6	.4	Bedro	ock	.156
6	.5	Instru	mentation and monitoring	.157
	6.5.1		Pore water pressure measurements	.157

6.5.2	Slope monitoring	159
6.6 Centr	rifuge tests	161
6.6.1	General setting and instrumentation	161
6.7 Effec	t of bedrock shape on the stability of slopes	166
6.7.1	Slope with a buttress on the bedrock (Test T9_1)	166
Slope	e without a buttress on the bedrock (Test T10_2)	167
6.7.2	Comparison of tests T9_1 and T10_2 (effect of the bedrock shape)	169
6.8 Drain	nage into the bedrock with buttress (test T10_1)	170
6.8.1	Comparison between the tests with and without drainage in the bedrock	171
6.9 Discu	ussion: the effects of bedrock shape and drainage on slope stability	172
6.10 Exfilt	ration from bedrock	175
6.10.1	Comparison between failure mechanisms due to exfiltration from the bed	
	Itration of rainfall	
	t of vegetation on slope stabilisation	
6.11.1	Introduction	
6.11.2	Root specifications	
6.11.3	Estimation of the root reinforcement	
6.11.4	Centrifuge model preparation	
6.11.5	Direct shear test	
6.11.6	Stability of the vegetated slope (2D infinite slope method)	184
6.11.7	Centrifuge test to investigate the root reinforcement effects (T11_1&2)	186
6.12 Statio	c liquefaction	188
6.12.1	Introduction	
6.12.2	Centrifuge tests to investigate the static liquefaction	188
6.12.3	Slope with viscous solution as pore fluid (Test 13_2, no buttress)	
6.12.4	Slope with water as pore fluid	191
6.12.5	Comparison between the behaviour of models with water and a viscous solution as pore fluids	192
6.13 Sum	mary	192
7 Analytic	cal and numerical simulations	193
7.1 Analy	ytical modelling (based on Askarinejad et al., 2012b)	193
7.1.1	Analytical limit equilibrium simulations	193
7.1.2	Prediction of potential depth of failure surface	197

	7	.1.3	Effect of variability of root reinforcement with depth	.198		
	7.2		upled 2D simulations of Ruedlingen experiments d on Bischof, 2010 and Askarinejad et al., 2012b)	.200		
	7	.2.1	Effect of the fissures in the first experiment (slope monitoring experiment, October 2008)	.203		
	7	.2.2	Simulation of the landslide triggering experiment	.204		
	7	.2.3	Parametric study of the landslide triggering experiment	.206		
	7.3	Coup	led hydro-mechanical simulations of the behaviour of slope during rainfall	.207		
	7	.3.1	Introduction to Code Bright	.207		
		Nonlii	near elasticity	.208		
		Visco	plascticity	.208		
		Hydra	aulic inputs	209		
	7	.3.2	Input parameters	209		
		Nonlii	near elasticity	.210		
		Visco	plasticity	210		
		Water retention parameters2				
		Hydra	aulic conductivity function	.212		
		Intrine	sic permeability	.212		
	7	.3.3	2D simulation of the Ruedlingen triggering experiment	.213		
		Geom	netry of the models	213		
		Force	boundary conditions	214		
		Applie	ed rainfall and exfiltration	214		
		Evolu	tion of pore water pressure	215		
		Displa	acements	219		
	7	.3.4	3D simulation of the Ruedlingen triggering experiment	.219		
		Geon	netry, material and applied rainfall	220		
		Resu	Its of the 3D simulations	222		
	7.4	Conc	lusions of the hydro-mechanical simulations	226		
8	S	Summa	ry, conclusions and outlook	229		
	8.1	Sumr	nary and conclusions	229		
	8	.1.1	Experimental field, instrumentation and soil characterisation	229		
	8	.1.2	Slope monitoring experiment (October 2008)	231		
	8	.1.3	Landslide triggering experiment (March 2009)	232		

	8.1. 4	Physical modelling in a geotechnical drum centrifuge	.233	
	8.1.5	Analytical and numerical simulations	.233	
8	.2 Sugg	estions for future work	.234	
9	Referer	nces	.237	
App	endix A.		A1	
Арр	endix B.		. B1	
App	Appendix C C1			
Арр	endix D.		. D1	
Арр	endix E.		. E1	
App	endix F.		. F1	
App	endix G.		. G1	
Арр	endix H.		. H1	
Арр	endix I		11	
Арр	oendix J		J1	