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Abbreviation 

bp  base pairs 

°C  degree Celsius 

cm  centimeter 

CTAB  hexadecyltrimethylammoniumbromid 

Ct  threshold cycle 

cv.  cultivar 

DNA  deoxyribonucleic acid 

dNTP  deoxyribonucleoside triphosphate   

dpi  days post inoculation 

ddH2O double distilled water 

EDTA  ethylene diamine tetra acetic acid 

et al.  et alii (and others) 

g  gram 

g gravitational acceleration 

GS  growth stage 

h  hour 

H2O  water 

L  litre 

M  mol per litre 

m  milli 

mg milligram 

mL millilitre 

μ  micro 

μL microlitre 

μmol  micromole 

mM  millimolar 

mm  millimetre 

min  minute 

ng  nanogram 

PCR  polymerase chain reaction 

pg  picogram 

pH  a measure of the acidity or basicity of an 

aqueous solution 

qPCR  quantitative real-time PCR 

r  correlation coefficient 

ROS  reactive oxygen species 

RNA  ribonucleic acid 

RNAse  ribonuclease 

RPM revolutions per minute 

SDS sodium dodecyl sulfate 

SD standard deviation 

TE tris-EDTA buffer 

Tm Primer Melting Temperature  
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1. Introduction 

1.1 Wheat (Triticum aestivum L) 

Wheat (Triticum aestivum L.) is one of the first domesticated food crops and has a long 

cultivation history of about 8,000 years in Europe, Asia and Africa. Today, wheat is one of the 

most important grain foods for humans. It is estimated that 715 million tons will be produced 

in 2013/14 globally (WASDE, 2014). 

Wheat grows well in a wide range of temperatures, ranging from 3-32°C, with 25°C being the 

optimum (Briggle and Curtis, 1987). Although the wheat cropping systems are well 

developed, abiotic and biotic stresses are challenges for wheat yield. Among the biotic 

threats, diseases caused by pathogens are the main constraints to wheat production (William 

et al., 2011). 

1.2 Wheat blast (Magnaporthe grisea) 

1.2.1 Occurrence and significance 

Wheat blast “brusone” caused by Magnaporthe grisea (Hebert) Barr [anamorph Pyricularia 

grisea (Cooke) Sacc.] is a relatively new disease on wheat (Igarashi et al., 1986). The disease 

was first reported in Brazil from the northern region of the State of Paraná in 1985 (Igarashi et 

al., 1986). Subsequently, it rapidly spread to a number of major wheat producing regions of 

Brazil and the neighbouring wheat growing countries, including Paraguay, Uruguay, 

Argentina and Bolivia (Prabhu et al., 1992; Goulart and Paiva, 2000). At present, it is one of 

the major diseases of wheat in Brazil (Urashima et al., 2004). 

Due to its widespread distribution, blast is becoming a limiting factor for wheat production of 

subtropical and tropical regions in South America. Depending on environmental conditions, 

the extent of yield damage may vary from low to complete loss (100%) (Picinini and 

Fernandez, 1990; Maciel, 2012). For instance, in 1991/92, 51% yield loss due to a mean 

disease incidence of 86% was reported in Brazil (Igarashi, 1990; Urashima et al., 1993). 
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There is a concern that wheat blast may be distributed to other wheat growing areas in the 

world with elevated temperatures and humidity similar to South America.  

1.2.2 Host range and taxonomy 

Magnaporthe grisea can infect many small cereal grain crops including barley (Hordeum 

vulgare L.), foxtail millet (Setaria italica), triticale (X. triticosecale Wittmack) and black oat 

(Avena strigosa). Additionally, several grass weeds, including Digitaria sanguinalis, 

Pennisetum setosum, Brachiaria plantaginea, Eleusine indica, Cenchrus echinatus and 

Hyparrhenia rufa, can be alternative hosts in or near wheat fields (Urashima et al., 1993; Oh 

et al., 2002; Urashima et al., 2004). Besides, rice (Oryza sativa L.) is an important traditional 

host for Magnaporthe. It was previously assumed that both rice and wheat were infected by 

one species, M. oryzae (Rossman et al., 1990). However, subsequent studies have shown that 

wheat infecting strains are different from rice infecting strains, and therefore they were 

renamed to M. grisea (Couch & Kohn, 2002). DNA fingerprinting studies have shown that 

M. grisea strains infecting triticale and barley descended from wheat strains, which probably 

originate from a weed, Digitaria insularis (Urashima et al., 2004a). Prabhu et al. (1992) 

tested the pathogenicity of seventeen Magnaporthe isolates from wheat and grass and found 

that they were pathogenic on wheat and barley, but none of the same isolates infected rice 

cultivars. It was therefore proposed that rice strains should be considered as a separate 

species, M. oryzae, based on the aforementioned pathogenicity and tracked hosts studies 

(Couch et al., 2005). It was proved that Magnaporthe isolates from triticale, wheat and barley 

could not infect rice, whereas rice isolates were pathogenic on triticale, wheat and barley, and 

the Southern hybridization analysis demonstrated the isolates from triticale and barley to 

originate from the wheat pathotype (Urashima et al., 2004).  

1.2.3 Epidemiology 

M. grisea infects plants by conidia (asexual spores) (Zeigler, 1998). Normally, the dormant 

mycelium is for survival in dead plant debris during the winter (Harmon and Latin, 2005). 

The primary inoculum of M. grisea derives from the sporulation of overwintered mycelium in 

spring (Uddin et al., 2003). Wind is considered as the factor for dispersal of inoculum 



 Introduction  

7 

 

(Harmon and Latin, 2005). A series of further infections increases the inoculum triggered by 

favourable environmental conditions during the summer period (Uddin et al., 2003a).   

Temperature and humidity is essential for M. grisea infection. Higher temperatures accelerate 

biological processes in both the pathogen and the host plant. Pathogens are by far more 

aggressive and more capable to infect susceptible plants with increasing temperature 

(Cardoso et al., 2008). A humid environment is required for spore germination and infection. 

A sufficient wetness time and suitable temperature allow colonization of the host to be 

initiated. As Rotem (2012) mentioned, frequent rainfall, high humidity, and heavy dew that 

coincide with sensitive periods of the crop favour infections. The optimal temperature of 

M. grisea is in the range of 20-28°C, and the highly humid conditions, especially several days 

of continuous rain after sunny and hot days contribute to the blast spreading (Uddin et al., 

2003a). The weather is generally hot and wet in Bolivia, Paraguay, Uruguay, as well as in the 

northern part of Argentina and southern Brazil, where wheat blast is well distributed. In these 

places, average temperatures stay around 27°C in summer (November to March), with an 

average rainfall of 5-6 inches (13-15cm) per month 

(http://www.climateandweather.com/weather-in-south-america). These weather conditions 

undoubtly influence the epidemiology of wheat blast. It has been observed that the years with 

high blast severity coincided with years with high wetness, especially in the year with El 

Nino, which causes hot and wet weather along the coasts of South America (Kohli et al., 

2011). Cardoso et al. (2008) reported increased wheat blast severity associated with wetness 

periods. A 40% wheat blast severity can be reached at temperatures up to 25°C and wetness 

duration of 40 h. 

M. grisea can attack all above ground parts of the wheat plant, but the typical symptom of 

wheat blast is the head infection, partially infected ears that turn bleached or to straw colour 

(Urashima and Kato, 1994; Picinini and Fernandez, 1990). The uptake of nutrients is blocked 

so that the bleached ear portions do not produce grain and this can be easily distinguished 

from healthy green ears (Fig. 1A) (Mehta and Baier, 1998; Urashima et al., 2009). Under 

certain environmental conditions, lesions occur on leaves, with the colour varying from straw 

http://www.climateandweather.com/weather-in-south-america
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yellow to grey, and variable in shape and size (Fig. 1B) (Urashima et al., 2004).  

Fig.1. A. Typical symptoms of wheat blast infection on the wheat ear (von Tiedemann, 2009); 

B. infected leaves by wheat blast showed various grey or pale lesions. 

1.2.4 Disease control  

Disease control can be achieved by integration of different approaches such as crop rotation, 

adjustment of sowing time, and use of resistant cultivars and effective fungicides (Pirgozliev 

et al., 2003). Among these methods, the use of plant resistance is the most economic and 

promising measure. However, this may be difficult if the virulence of a pathogen varies, such 

as M. grisea. Thus finding a broad genetic resistance is a challenge (Kohli et al., 2011). Some 

of the cultivars that have been shown to display stable resistance include the Brazilian 

varieties BR18, IPR 85 and CD 113 (Urashima et al., 2004). Similarly, the Bolivian cultivars 

Paragua CIAT and Parapeti CIAT also showed higher levels of resistance (Kohli et al., 2011). 

However, commercially available wheat cultivars are still lacking. On moderately resistant 

cultivars, fungicides containing triazoles and strobilurins were effective at the heading stage 

(Wiedma, 2005). However, the low efficacy of fungicides is a constraint for their use. Due to 

the lack of resistant cultivars and low efficacy of fungicide use, wheat blast has become a 

major disease in wheat production in South America (Urashima and Kato, 1994; Goulart and 

A B 
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Paiva, 2000, Urashima et al., 2004). Considering that wheat blast is a relatively new disease, 

the pathogenesis and wheat resistance reaction needs further study. This could provide useful 

information for managing the disease. 

1.3 Fusarium head blight (Fusarium graminearum) 

1.3.1 Occurrence and significance 

Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schw.) Petch) is an 

ascomycetous fungus that causes Fusarium Head Blight (FHB), a common and destructive 

disease to small cereal grain crops worldwide (Parry et al., 1995; Bai and Shaner, 2004). 

Many important crops such as wheat, maize (Zea mays) and barley (Hordeum vulgare L.) can 

be infected by this pathogen and serious economic losses have been reported in many wheat 

growing regions, including North America, Europe and Asia (McMullen et al., 1997; Bai et 

al., 2000). 

Infected ears often fail to produce grain or form shrivelled small kernels, contaminated with 

mycotoxins which are harmful to animal and human health (Dexter et al., 2003; Bushnell et 

al., 2003). Thus, FHB has become a persistent threat to cereal production (Bushnell et al., 

2003; Stack, 2003).  

1.3.2 Epidemiology 

F. graminearum infects plants by ascospores (sexual spores) or macroconidia (asexual 

spores). Spores are released under favourable conditions from the overwintered infected plant 

debris in spring time (Parry et al., 1995; Trail et al., 2002). Wind and rain drive spore 

dispersal and short distance movement around 0.5 m from the upwind edge of the inoculum 

area (Gilbert and Fernando, 2004). Climate is a critical factor for disease epidemics. 

F. graminearum has a wide temperature range from 13-22°C for ascospore dispersal, with an 

optimum at 16°C. FHB symptoms on the head appear at 20-30°C, with an optimum at 25°C 

(Brennan et al., 2003). FHB occurrence is clearly associated with wet years (Clear and Patrick, 

2000). Wheat ears are susceptible to F. graminearum at the flowering stage (Parry et al., 1995; 

Bai et al., 1996). 
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The initial symptom of FHB is similar to wheat blast, as the infected ears show brown water-

soaked lesions on the glumes or rachis. Later, a part or the whole ear is bleached or becomes 

dark brown (Parry et al., 1995; Bai and Shaner, 2004). Under high humidity and warm 

conditions, FHB severity and intensity is higher, and pink or white mycelia will cover the 

attacked ears (Fernando et al., 2000). FHB is not limited to the ears. Stem bases, grains, 

seedlings and roots can also be an appropriate tissue for colonization (Clement and Parry, 

1998). 

1.3.3 Disease control 

Various disease managing approaches are employed to control FHB. The application of 

genetic resistance provides an economic and effective management option. Genetic resistance 

provides a reliable and promising strategy to control FHB, and some progress has been made 

in identifying resistant cultivars in the past decades (Bai et al., 2000; Ban and Suenaga, 2000; 

Lu et al., 2001; Mesterhazy et al., 2003). Resistant cultivars such as Chinese landraces 

Wangshuibai and Sumai 3 have a high level of FHB resistance, and have been used as a 

parent in many breeding programs (Bai and Shaner, 2004). Five different types of resistance 

of wheat to FHB have been identified, where type I is the resistance to initial infection, type II 

is the resistance to fungal spreading (Schroeder and Christensen, 1963), and the other types 

are resistance to kernel infection, DON accumulation, and tolerance (Mesterhazy, 1995).  

Foliar fungicide application provides little protection at anthesis (Mesterhazy et al., 2003). 

Triazole-based fungicides such as prothioconazole, metconazole and prothioconazole plus 

tebuconazole show a superior efficacy compared to tebuconazole alone (Paul et al., 2008). 

Applications of fungicides containing triazoles (such as tebuconazole and prothioconazole) 

during flowering stage (GS 61) can effectively reduce the disease severity and DON 

accumulation (Mesterhazy, 2003; Paul et al., 2008; Haidukowski et al., 2012). However, the 

timing of application, lack of highly effective fungicides still limits chemical control of FHB 

(Bai and Shaner, 2004; Haidukowski et al., 2012). Moreover, soil tillage and cultivar 

resistance, crop rotation and removing the residues are also practices to reduce FHB (Bai and 

Shaner, 2004). 
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1.4 Defense responses in plants to pathogens  

1.4.1 ROS generation and functions 

Reactive oxygen species (ROS) are rapid and transient products, defining ‘oxidative burst’. 

ROS generation is a remarkable feature during the plant defense activation, and represents 

one of the earliest responses in plant defense against pathogen invasion (Lamb and Dixon, 

1997; Santos et al., 2001; Langebartels et al., 2002). ROS play an important role in the plant 

defense system and are related to various functions which take effect during pathogen 

development (Morel and Dangl, 1997; Mur et al., 2008; Müller et al., 2009). The well-known 

functions of ROS in the establishment of plant defense include signal transduction, cell wall 

strengthening, programmed cell death (PCD), hypersensitive response (HR) or activation of 

relevant defense genes (Neill et al., 2002; Collins et al., 2003; Robatzek et al., 2006; 

Asselbergh et al., 2007; Miller et al., 2009). 

The family of ROS consists of four members: the superoxide radical anion (O2
-
), hydrogen 

peroxide (H2O2), the hydroperoxyl radical (HO2) and the hydroxyl radical (OH). The 

hydroperoxyl radical and hydroxyl radical have an extremely short half-life and high toxicity 

to the cell (Grant and Loake, 2000; Hückelhoven and Koge, 2003). The superoxide radical 

anion and hydrogen peroxide have a half-life of 1–4 μs and 1 ms (Dat et al., 2000; 

Bhattacharjee, 2012), respectively, and are detectable by various ways from biochemical and 

histological facets (Thordal-Christensen, 1997; Overmyer et al., 2000; Montillet et al., 2005). 

It is assumed that O2
-
 is the primary product in the initial phase of pathogen infection, which 

is dominant in the transient phase. By contrast, H2O2 is relatively stable, can cross 

membranes and is easier to detect (Van Camp, 1998; Pellinen et al., 2002; Simon-Plas et al., 

2002).  

The general idea is that an NADPH oxidase located in the plasma membrane is the main 

source of extracellular oxidative burst during plant pathogen interaction (Torres and Dangl, 

2005; Kobayashi et al., 2006). In addition, intracellular ROS accumulation is altered by 

chloroplasts and peroxisomes. Many reports have indicated that ROS generated from 

chloroplasts and peroxisomes are essential for HR (Karpinski et al., 2003; Vidal et al., 2007; 
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Zurbriggen et al., 2009). Mitochondria may also be a source of intracellular ROS, and 

suppression of ROS scavenging systems may further increase ROS accumulation in plant 

response to stress (Tiwari et al., 2002; Mittler et al., 2004). 

Usually, the accumulation of ROS is associated with plant defense response to fungal, 

bacterial and viral pathogen invasion or insect attack (Draper, 1997; Glazener et al., 1996; 

Govrin and Levine, 2000; Musser et al., 2006). ROS induction is typically biphasic (Levine et 

al., 1994; Liu et al., 2007). The first phase of oxidative burst in plants occurs right after 

recognition of microbe associated molecular patterns (MAMPs). Some of the MAMPs 

recognized by various host surface receptors and capable of activating basal immunity are 

conserved cell structures like flagellin, lipopolysaccharides, glucan or chitosan (Galletti et al., 

2008; Torres et al., 2010). This first phase is a non-specific transient phase and occurs in both 

compatible and incompatible interactions. In the subsequent phase, a more intense ROS 

accumulation occurs several hours after pathogen attack, mainly in incompatible interactions, 

leading to HR, cell death or secondary metabolite production (Glazener et al., 1996; Ren et 

al., 2002; Rentel et al., 2004; Grant et al., 2000). In effector triggered immunity (ETI), ROS 

are stronger induced when pathogen effectors are recognized by resistant (R) genes. The 

relationship between ROS, HR cell death and plant resistance has been shown in some 

studies. For instance, Nbrboh-silencing in Nicotiana benthamiana decreases resistance and 

hydrogen peroxide accumulation in response to Phytophthora infestans (Yoshioka et al., 

2003). ROS also contributes to cell wall strengthening or papillae formation (Bradley, 1992; 

Hückelhoven, 2007) and act as signaling molecules in mediating related gene expression to 

activate defense enzymes. In addition, ROS may also interact with other signaling 

components like kinases, calcium or generate lipid derivatives (Kovtun 2000; Piedra et al., 

1998). ROS production has also been reported in a number of successful plant pathogen 

interactions. For instance, the necrotrophic pathogen Botrytis cinerea was found to induce an 

oxidative burst and hypersensitive cell death in Arabidopsis, and pathogenicity was directly 

dependent on superoxide and hydrogen peroxide generation and accumulation (Govrin and 

Levine, 2000).  
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During plant defense activation, numerous signaling factors can act on the ROS generation 

and accumulation. A network of biological reactions contributes to the generation, diversity, 

and biochemical and molecular roles of ROS (Kunkel and Brooks, 2002; Jones et al., 2006). 

Until today, much of the research work into ROS related signaling or concerning enzyme 

production has been conducted with the early infection stages in the rice-M. oryzae 

interaction (Jarosch et al., 2003; Parker et al., 2009; Huang et al., 2011). In addition, most of 

the current knowledge on disease resistance is based on the model plant Arabidopsis thaliana. 

Thus, only limited information is available from wheat. Consequently, investigations on ROS 

in wheat against M. grisea and F. graminearum are required. 

1.4.2 Defense-related gene expression  

Upon pathogen attack, compatible or incompatible plant responses are induced, and 

activation of the immune system is associated with an induction of various defense genes 

(Dangl and Jones, 2001; Veronese et al., 2003). Multifaceted functions and molecules are 

mediating and regulating gene expression during plant defense responses. These include the 

generation or accumulation of reactive oxygen species, nitric oxide, salicylic acid, jasmonic 

acid or ethylene, which regulate the defense response through similar or different signaling 

pathways (Xu et al., 1994; Schaffrath et al., 1997; Anand et al., 2004). Some pathways lead to 

expression of pathogenesis-related (PR) proteins, which widely exist in the plant and 

constitute a major component in plant defense response. PR proteins include several 

functional classes, such as cell wall related ß-1, 3-glucanase (PR2), chitinases (PR3, PR4), 

membrane related thaumatin-like proteins (PR5) and protein inhibitors (PR 6) (Dangl et al., 

2001). A northern blotting analysis showed that PR2, PR3 and PR4, PR5 genes were 

expressed in wheat ears from 6 to12 h with a highest expression in 36-48 h after inoculation 

with F. graminearum (Pritsch et al., 2000). Peroxidases (POX) are oxido-reductive enzymes 

that play a role in certain procedures like oxidation of phenols, suberization, and lignification 

of host plant cells during plant-pathogen defense response (Chittoor et al., 1999; Hiraga et al., 

2001). Expression of the respective Pox genes in distinct tissues of wheat was assessed by 

RNA analysis, suggesting that three Pox genes were predominantly expressed in wheat roots.  

Furthermore, the Pox2 gene was selectively expressed in the infected wheat leaves by the 
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powdery mildew fungus (Baga et al., 1995). Jasmonic acid or ethylene signaling is required 

for increased expression of defensin genes such as PDF1.2 (Thomma et al., 1998; 

Glazebrook, 2005). Jasmonic acid inhibited Arabidopsis seedling growth and induced the 

expression of the Arabidopsis vegetative storage protein, defensin (PDF1.2) and plant 

defense-related proteins, thionins (Manners et al., 1998; Bohlmann et al., 1998).  

Lignin is mainly present in the secondary thickened cell walls of plants and plays an 

important role in development, growth, and resistance to biotic and abiotic stress. It is a 

complex biopolymer derived from oxidative polymerization of monolignols (Lacombe et al., 

1997; Piquemal et al., 1998). During mechanical stress or pathogen attack, lignin synthesis 

can be induced in the plant as response to those biotic and abiotic stresses (Vance et al., 

1980). In the initial stage of the lignin synthesis pathway, it is considered that cinnamoyl-CoA 

reductase (CCR) is a key enzyme regulating the carbon flux towards lignins, meaning that the 

down-regulation of CCR could affect the lignin content (Lacombe et al., 1997). It was 

reported that significant down-regulation of tobacco CCR activity was shown through the 

ectopic expression of antisense genes, and several morphological alterations of leaves and 

vascular bundles were induced by the metabolic changes accompanying the reduction of CCR 

activity (Piquemal et al., 1998). 

Most of uridine diphosphate-glycosyltransferase (UGT) genes are considered to code for 

enzymes transferring glucose to small molecules (Bowles D, 2006). Meanwhile, UGT genes 

with a potential function in deoxynivalenol (DON) detoxification have been identified in 

wheat and barley to be up-regulated in response to Fusarium spp. (Hill-Ambroz et al., 2006; 

Desmond et al., 2008; Steiner B, 2009). A glucosyltransferase gene from a DON resistant 

phenotype of Arabidopsis thaliana, encoding for an enzyme to transfer DON into a nontoxic 

component had been cloned through the respective cDNA in a toxin-sensitive yeast strain 

(Poppenberger et al. 2003). Numerous reports are about diverse candidate UGT genes being 

differentially induced by Fusarium spp., or differential UGT gene expression in hosts 

(Gardiner et al., 2010; Schweiger et al., 2010). 

In addition, cytochrome P450 proteins are one of the largest superfamilies of enzyme proteins 
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and named for their carbon-monoxide bound form and the 450 nm absorption band. The 

cytochrome P450 genes (CYP) are found in a large variety in plants (Werck-Reichhart and 

Feyereisen, 2000; Barlier et al., 2000). In the plant defense system, different chemical 

signaling pathways seem to induce P450 diversity. Derivatives from P450 proteins can be 

involved in plant defense or directly against fungal activity in the infection stage (Bak and 

Feyereisen, 2001; Noordermeer et al., 2001). Furthermore, P450 catalyze activation of 

molecular oxygen that leads to oxidative attack on a plethora of substrates (Werck-Reichhart 

and Feyereisen, 2000). In addition to P450 gene expression induction by fungal invasion, this 

can also result from interaction with the jasmonic acid pathway (Kandel et al., 2007; Walter 

et al., 2008). 

Numerous investigations have been carried out on wheat against F. graminearum spp. 

infection about transcriptomic, genomic or proteomic facets for better understanding the 

molecular mechanisms behind the incompatible and compatible interactions (Bernardo et al., 

2007; Cho et al., 2012; Jia et al., 2009). The rice-M. oryzae interaction is a typical model to 

study the plant-pathogen multiple mechanisms, particularly since the sequencing of the entire 

genome of M. oryzae has been accomplished (Dean et al., 2005). However, few reports on 

genetic analysis are available related to the interaction of wheat with the wheat blast fungus, 

M. grisea. This is not satisfactory in view of a better understanding of the molecular 

mechanisms of the wheat-M. grisea interaction. Hence, a transcriptomic study is required 

with M. grisea on wheat, which may be contrasting the events in the F. graminearum-wheat 

interaction, which thus may be useful to comprehend the differential gene regulation in the 

two interactions. 

1.5 Objectives of the study 

Wheat blast and FHB are highly important and serious diseases on wheat. They can infect 

wheat or other crops together and lead to high yield losses. Since fundamental studies on 

pathogenesis and the plant-pathogen interaction of both pathogens on wheat ears are lacking, 

the present study was initiated in order to figure out the differential development of M. grisea 

and F. graminearum on ears of wheat cultivars differing in resistance to the two pathogens. 
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Therefore, a reliable inoculation and evaluation system has been established under controlled 

conditions and fungal development on the ears was followed macro- and microscopically. 

Moreover, ROS responses and gene expression were analyzed related to the differential 

interactions. The main specific objectives were the following: 

 To evaluate the response of different wheat cultivars to wheat blast and FHB.  

 To study the temporal and histological patterns of disease development on ears by 

macroscopic and microscopic methods.   

 To analyze the role of ROS and plant defense genes in wheat-M. grisea and wheat-

F. graminearum interactions. 
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2. Materials and Methods 

Chemicals 

Acetic acid Applichem, Darmstadt 

Agar Agar  Merk, Darmstadt 

Agarose  Applichem, Darmstadt 

Albi Vegetable juice  Albi, Bühlenhausen 

Ammonium acetate  Applichem, Darmstadt 

Benzimidazole  Merk, Hohenbrunn 

Calcium carbonate (CaCO3) Roth, Karlsruhe 

Casein  Roth, Karlsruhe 

Chloroform  Applichem, Darmstadt 

Diethylpyrocarbonate (DEPC) Roth, Karlsruhe 

dNTPs-Mix (10 mM)  Fermentas, St. Leon-Rot 

Dream Taq-buffer (10 X)  Fermentas, St. Leon-Rot 

EDTA  Roth, Karlsruhe 

Ethanol (100%)  Sigma, Taufkirchen 

Ethidium bromide  Applichem, Darmstadt 

Glucose  Applichem, Darmstadt 

Glycerine  Roth, Karlsruhe 

Hakaphos Compo, Münster 

Hydrogen chloride (HCl) Applichem, Darmstadt 

Hydrogen peroxide (30%) Roth, Karlsruhe 

hexadecyltrimethylammonium bromide (CTAB) Applichem, Darmstadt 

Isoamyalcohol Applichem, Darmstadt 

Isopropyl alcohol Applichem, Darmstadt 

Magnesium sulphate (MgSO4·7H2O ) Applichem, Darmstadt 

Methanol Applichem, Darmstadt 

Monopotassium phosphate (KH2PO4) Applichem, Darmstadt 

Na2HPO4·12 H2O Roth, Karlsruhe 

NaH2PO4·2 H2O Roth, Karlsruhe 

PCR-Puffer  Fermentas, St. Leon-Rot 

Potassium chloride (KCl) Applichem, Darmstadt 

Potassium nitrate (KNO3) Applichem, Darmstadt 

Proteinase K Fermentas, St. Leon-Rot 

RNAse  Applichem, Darmstadt 

Saccharose  Roth, Karlsruhe 

Sodium azide (NaN3) Scharlau, Barcleona 

Sodium chloride  Applichem, Darmstadt 

Sodium hypochlorite (NaClO) Roth, Karlsruhe 

Streptomycin sulphate  Duchefa, Biochemi 

Taq DNA polymerase (5U/μl)  Fermentas, St. Leon-Rot 

TE buffer  Applichem, Darmstadt 

Tris pH 8.0 Fermentas, St.Leon-Rot 

Tween 20  Scarlau Chemie S.A. 

β-mercaptoethanol Applichem, Darmstadt 
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100bp Ladder Plus  Fermentas, St. Leon-Rot 

Sodium dodecyl sulfate (SDS) Applichem, Darmstadt 

Medium and buffers  

All medium in study were autoclaved at 121°C, 103.4 kPa pressure for 20 min, after were 

supplemented with 200 mg L
-1

 streptomycin sulphate to prevent bacteria contamination. 

Complete Media Agar (CM) 

 

 

 

 

 

 

 

V8-Agar (V8A) 

  

 

 

 

 

 

Synthetic nutrient-poor agar (SNA) 

 

 

 

 

 

 

 

 

 

 

 

 

2% straw extract agar (SEA) 

 

 

Yeast extract  3 g 

Casaminoacid 

 

3 g 

Sucrose  5 g 

Agar  

 

15 g 

Distilled water  1000 mL 

V8 juice  100 mL 

CaCO3  

 

2 g 

Agar  

 

15 g 

Distilled water  900  mL 

KH2PO4 1 g 

KNO3 

 

1 g 

MgSO4·7H2O  0.5 g 

KCl 0.5 g 

Glucose  0.2 g 

Saccharose  0.2 g 

Agar  

 

15 g 

Distilled water  1000 mL 

chopped dry straw 2 g 

Agar  15 g 

Distilled water 1000 mL 
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Straw liquid medium (autoclaved twice at an interval of 24 hours and after cooling) 

 

 

 

Potato dextrose agar (PDA) 

 

 

 

 

 

 

CTAB extraction buffer  

 

 

 

 

 

 

 

 

TE-buffer  

 

 

 

0.2 M Sodium phosphate buffer 

0.2 M NaH2PO4·2 H2O: 3.12 g in 100 mL 

0.2 M Na2HPO4·12 H2O: 7.17 g in 100 mL 

pH 7.0 

 

 

 

 

pH 7.8 

 

 

 

 

Chopped dry straw 12 g 

Distilled water 500 mL 

Potato extract 4 g 

Dextrose  20 g 

Agar  15 g 

Distilled water  1000 mL 

CTAB 1 %  

 

NaCl 0.7 M  

 

Tris pH 8.0 50 mM  

 

EDTA 10 mM  

 

Distilled water up to 100 mL 

Tris pH 8.0 10 mM  

EDTA 1 mM 

0.2 M NaH2PO4·2 H2O 19.5 mL 

0.2 M Na2HPO4·12 H2O 30.5 mL 

Distilled water  100 mL 

0.2 M  NaH2PO4·2 H2O 4.25 mL 

0.2 M  Na2HPO4·12 H2O 45.75 mL 

Distilled water  100 mL 
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2.1 Plant material 

A set of twenty-seven wheat genotypes was provided by the International Maize and Wheat 

Improvement Center (CIMMYT, Texcoco, Mexico). It was composed of various commercial 

varieties from South America. All the wheat seeds were sown in a small size plastic pot (9 cm x 

9 cm) filled with a soil mixture of sand, peat and compost (1:1:2). Each pot contained two seeds 

and was cultured in the greenhouse at 23 ± 2°C with a 14 h photoperiod per day. Regular 

nutrition (Hakaphos, 3 g/L) was applied to the seedlings since the four-leaf stage (GS 13-15, 

Zadoks et al., 1974). Each pot was thinned to two main tillers. Uniform plants were selected 

when mature ears were in anthesis stage (growth stage, GS 61-69). 

Twenty-seven wheat cultivars obtained from South America were used in this study. These were 

IAN 10-DON Arte, ITAPAU 50-Amistad, ITAPAU 45-DON PANI, ITAPAU 55-DON H. 

BERTONI, BR 23, BR 35, BRS 177, BRS 179, CANINDE 1´´S´´, ITAPAU 70, CANINDE 2, 

CANINDE 3, ITAPAU 60, ITAPAU 65-DON VALERIO, BR 8, BR 14/ CEP 847, 

THORNBIRD, Chirya 3, GONDO/ CBRD, CROC 1/ AE.SQARROSSA (224) OPATA, PF 

87512/ CBRD, BR 23 EMB 27 // CEP, 21 / BOMB, BR 18, Milan and Sumai 3.  

2.2 Fungal material 

M. grisea isolates IPP 0683, IPP 0685 and IPP 0693 were used (isolates IPP 0683 and 0685 

from St. Cruz of Bolivia (2008), isolate IPP 0693 from Brazil, all isolated in 2008). M. grisea 

was cultured on 5% V8A medium supplied with streptomycin (200 ppm), the plates being 

incubated in a growth chamber at 25°C under 10/14 hour light/dark alternation. For long term 

storage, pure cultures were grown on 5% V8A plates covered with sterilized filter paper discs 

(Baumwoll-Linter, 6mm, Roth, Karlsruhe, Germany). Those plates were cultivated for 7 to 10 

days until the filter papers were fully covered with M. grisea mycelia. The filter papers then 

were dried under 4 °C for two days and stored at -20°C.  

F. graminearum isolates 141, 142 and 143 were derived from infected winter wheat ears 

obtained from a field in Göttingen (2008) and grown on synthetic nutrient-poor agar (SNA) 

plates containing 200 mg L
-1 

streptomycin. Plates were placed at room temperature (RT) and the 
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fungus was stored on 2% straw extract agar (SEA) at -4°C.  

A GFP labelled F. graminearum strain with stable fluorescence was employed in the 

microscopic investigations. The GFP-tagged F. graminearum strain was kindly provided by 

Professor Dr. Wilhelm Schäfer (Biocenter Klein-Flottbek, Molecular Phytopathology and 

Genetics, University of Hamburg). For this strain, similar cultivation methods were used as 

described above. 

2.3 Inoculum preparation of pathogens 

2.3.1 M. grisea  

Conidial suspension was prepared by scratching aerial mycelia from V8A plates, and harvesting 

in distilled water with a sterile spatula and filtering through sterilized cheesecloth. Conidia 

density was determined by haemocytometer and adjusted to 1 x 10
5 

spores mL
-1

. Since the 

virulence of isolates was unclear, a mixed spore suspension was used for cultivars resistance 

screening including three isolates: IPP 0683, IPP 0685 and IPP 0693. Isolate M. grisea IPP 0685 

was used in the microscopic and plant defense related studies. 

2.3.2 F. graminearum 

F. graminearum inoculum was prepared according to the following steps: First, five to seven 

1cm
2
 fungal plugs were punched out from a 3-5 day old PDA culture and transferred into a 

straw liquid medium. This liquid medium was subsequently incubated for 2 weeks on a rotary 

shaker at 25°C (100 RPM). Afterwards, the conidia suspension was filtered through sterilized 

cheesecloth and the concentration was adjusted to 1 x 10
5
 spores mL

-1
. Mixed spore suspension 

of F. graminearum consisting of three isolates 141, 142 and 143 was used in cultivar screening, 

while isolate F. graminearum 143 was used in microscopic and defense related studies. 

2.4 Inoculation procedures 

2.4.1 Whole ear inoculation 

Whole ear inoculation was performed in a climate chamber with favorable conditions (23°C, 

80% humidity and 12/12 hour light/dark alternation) for both pathogens. Inoculation was 
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performed at flowering stage (GS 60-69) by spraying spore suspension on the ear using an air 

compressor. On the average, 2 mL of the individual spore suspensions were sprayed per ear. To 

maintain 100% relative humidity, the inoculated ears were covered with plastic bags and kept in 

the dark for 24 h. The covering bags were removed afterwards and the plants were cultivated in 

the climate chamber with 12 h light per day. Control ears were sprayed with sterilized distilled 

water.  

2.4.2 Leaf inoculation 

Leaf inoculation was done at the 3 leaf-stage (GS13) in a similar fashion as the whole ear 

inoculation. However, the inoculated was conducted without packing of leaves in bags. 

2.4.3 Point inoculation on ears 

Point inoculation was done in climate chamber with the same conditions as ear inoculation. 

Two adjacent and oppositely located spikelets at the midpoint of ears were selected. About ten 

µL of spore suspension were injected in each spikelet with a sterile disposable syringe. The 

cultivation steps were same as with the ear inoculation.  

2.5 Disease assessment 

2.5.1 Wheat blast  

For wheat blast assessment, each cultivar consisted of fourteen replicates to be tested. Two 

independent experiments were conducted. M. grisea disease assessment was performed at 7 dpi. 

Blast severity on ears was evaluated by the visual scoring system using a 5 class disease index 

modified from Murakami et al., 2000 (Table 1; Figure 2). Disease evaluation on leaves was 

performed at 9 dpi following the methods described in Murakami et al. (2000).  
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Table 1. Assessment key for visual disease scoring of wheat blast caused by M. grisea 

(modified from Murakami et al., 2000) 

 

 

  

 

 

 

Fig. 2. Phenotypes of blast disease severity on wheat ears. The number 0-5 indicate disease 

index.  

2.5.2 Fusarium Head Blight 

Twenty-four replicates of each cultivar were tested in the Head Blight test and the experiment 

was repeated twice. The disease severity level was determined by counting the number of 

infected spikelets per ear (Engle et al., 2003). Disease assessment was done at 7, 14, 21 dpi. The 

area under the disease progress curve (AUDPC) was calculated according to the following 

formula (Madden & Campbell, 1990): 

Score Symptom development 

0 Healthy plant with no symptoms 

1 Less than 5% of ears show symptom 

2 5 - 35% of ears  show symptom 

3 35 - 65% of ears  show symptom 

4 65 - 80% of ears  show symptom 

5 More than 80% of ears  show symptom 

2 1 3 4 0 5 
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AUDPC = ∑ (𝑦𝑖 +
𝑦𝑖+1

2
)

𝑛

𝑖=1

∗ (𝑡𝑖+1 − t) 

Where yi is the disease severity value (percentage) for the observation number i, ti is the time 

(days) of i observation and n is the total number of observations. 

In the point inoculation assays, severity of both diseases was evaluated by AUDPC 

continuously at 3, 4, 5, 7, 10, 15, and 21 days after inoculation (dpi). 

2.6 Detection of pathogen growth in plant tissue  

2.6.1 Fluorescence microscopy observation 

Twelve inoculated plants of culivars Milan and Sumai 3 with M. grisea and F. graminearum 

were used. Disease symptom progress on infected ears was recored at 3, 4, 5, 7, 10, 15, 21 dpi. 

Fluorescence microscopy was applied to confirm the level of pathogenesis on ears. The whole 

inoculated ear was checked by fluorescence stereomicroscopy (Leica MZ16 FA, Bensheim, 

Germany) under bright field and with GFP Plus excitation filter from 460 to 500nm, and the 

barrier filter was a 510nm longpass (LP) filter.  

2.6.2 Fungal colonization on infected ear sections 

Six individual M. grisea and F. graminearum infected ears of culivars Milan and Sumai 3 were 

collected at 21 dpi. After removing all spikelets, the rachis was cut into 11-13 segments 

depending on the genotype. The size of each segment was delimited by two adjacent 

longitudinal spikelets. The upward/downward parts were marked as 1, 2, 3, 4, 5, 6 in sequence, 

and the original inoculated point as 0. 

All segments were disinfected in 10% NaOCl for 3-5 min, washed twice in sterilized H2O and 

placed on PDA plates. After 3 to 5 days, the small colonies which occurred around the segments 

were checked by light microscopy, and putative M. grisea and F. graminearum colonies were 

transferred to 5% V8A and SNA plates. Microscopic confirmation of these colonies was carried 

out at 3 to 7 days after incubation.  



 Materials and Methods  

25 

 

The disease index (DI) represents the fungal development in the rachis and its calculation was 

based on the isolations from various sections. The formula is shown below, where i is the 

number of sections, yi is the fungal isolates obtained from corresponding sections and n is the 

total number of observations. 

DI = ∑(𝑦𝑖 ∗ 𝑖)

𝑛

𝑖=0

 

2.7 Histological investigation of fungal expansion on ears 

2.7.1 Time course determination on spikelet and rachilla  

To assess pathogen growth in the outer tissue of the ear, the spikelet was used for histological 

observation. Spikelet can be defined as the ultimate floret bunch in the grass family. It is 

composed of glume, lemma, palea, stamen and pistil, further stamen and pistil contains anther, 

filament and stigma, and ovary separately (Figure 3). The fungal development inside the plant 

was investigated in the rachilla, the part connecting spikelet and rachis. The rachilla plays a role 

at the later infection stage (Figure 3).  

For measurement of fungal growth on cultivars Sumai 3 and Milan inoculated with M. grisea 

and F. graminearum, six time points within 72 hpi with 12 hour intervals were adopted: 12, 24, 

36, 48, 60, 72 hpi. In the interest of exploring the pathogen development in the spikelets, 

anthers, filaments, stigmae and paleae, these plant parts were separately investigated under the 

microscope. Besides these six time points, additional observations were conducted at 5, 7, 10, 

14 dpi for rachilla examination.  

Both studies included five biological repetitions for each time point, and each repetition involved 

8-10 spikelets or 5-7 rachilla locations, eventually at each time point 40-50 dissected spikelets 

and 80-100 transverse or longitudinal sections from the rachilla were examined in a single 

interaction. This evaluation was conducted at least in three independent experiments. 
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The histological examination of spikelets and rachillae was conducted with a Leica TCS SP5 

Confocal Laser Scanning Microscope (CLSM; Leica, Mannheim, Germany) or a normal 

fluorescence light microscopy (Leica DFC 420; Mannheim, Germany).  

Fig. 3. Bright field views of ear and spikelet from cvs. Sumai 3 and Milan. A, non-inoculated ear 

from Sumai 3 with a complete spikelet, rachilla is presented below after removing the spikelet. B, 

non-inoculated dissected spikelet from Milan, showing different details from the inner part of the 

spikelet. fi = filament, an = anther, ra = rachilla, st = stigma, pa = palea, sp = spikelet.  

2.7.2 Observation of fungal spread in spikelets by Confocal Laser Scanning Microscope 

(CLSM) and fluorescence microscopy 

Microscopic detection of M. grisea was achieved by WGA-tetramethylrhodamine staining 

(Invitrogen, Karlsruhe, Germany). Observed samples were detached from spikelets of inoculated 

ears at the time points indicated above. Lemma and glume parts were excised and the anther, 

filament, stigma, palea were collected successively. All separated specimen were immersed in 10 

µg mL
-1

 WGA-tetramethylrhodamine staining solution for 20 min with vacuum infiltration, then 

rinsed twice in sterilized water to get rid of background staining before microscopic observation. 

Different samples were placed on glass slides, sealed with a cover slip and immediately examined 

by CLSM.  

For F. graminearum infection analysis, the GFP labelled strain was used. Accordingly, 

specimen from infected spikelets were placed directly on glass slides in drops of water with 

covering slips and evaluated.   

A B 
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Microscopic evaluation of spikelets was done by CLSM. During the CLSM procedure, 

wavelength settings for WGA-tetramethylrhodamine observation were 514 nm for excitation 

and 560-580 nm for emission. Digital images were obtained by two-channel-analysis including 

the background and required excitation channels. Rhodamine stained hyphae red and grey 

colour was given for the background channel. Digital images of GFP-labelled strains were 

acquired by scanning with 488 nm excitation and 520-536 nm emission filters, additionally with 

the background channel. Overlay images were generated by digital stacking of optical sections. 

In addition, common fluorescence light microscopy was applied during F. graminearum-GFP 

and M. grisea staining. F. graminearum-GFP under filter I3 (excitation 450-490 nm, 

suppression 515 nm) showed a green colour, rhodamine stained M. grisea hyphae red under the 

DsRed filter (excitation 515-575 nm, suppression 560-680 nm; Figure 4).  

Fig. 4. Fluorescence images of F. graminearum-GFP and M. grisea. A, green fluorescence of 

the GFP-tagged F. graminearum strain (x200). B, red mycelia of M. grisea stained by WGA-

tetramethylrhodamine (x100). 

2.7.3 Observation of fungal spread in rachilla by CLSM 

Microscopic investigations of the fungal development in the rachilla were conducted with Alexa 

Fluor 488 and propidium iodide staining (Invitrogen, Karlsruhe, Germany). Specifically, Alexa 

Fluor 488 stained hyphae green while propidium iodide gave a red colour of hyphae against 

plant tissue. Sample preparation started by removing all the spikelets and manually cutting the 

rachilla into thin longitudinal and transverse sections. These sections were dipped into staining 

A B 
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solution containing Alexa Fluor 488 (1 mg mL
-1

) and propidium iodide (100 g mL
-1

) with 

vacuum infiltration for 20 min. The samples were rinsed afterwards in sterilized water at least 

twice to remove excess staining. Finally, the sections were placed on glass slides with water 

and sealed with cover glass before microscopical observation. 

CLSM analyses were performed for rachilla investigation. The digital images of stained 

specimen were acquired by two-channel-analysis with subsequent drafting of an overlay. 

Settings for Alexa Fluor 488 were 488 nm for excitation and 515-523 nm for emission and for 

propidium iodide 540 nm for excitation and 560-620 nm for emission. Stacks of optical sections 

were processed to projection.  

Moreover, a normal fluorescence light microscope was employed for the observation of the 

initial infection in rachillae. In this procedure, infected rachillae were stained with Alexa Fluor 

and propidium iodide and checked under filter I3 (excitation filter 450-490 nm, suppression 

filter 515 nm). The hyphae of F. graminearum and M. grisea showed green colour, while plant 

tissue was between red and orange. Images were created at 100x or 200x magnification. 

2.8 Biochemical examination of ears 

2.8.1 Experimental design  

The palea part of spikelets was collected for biochemical measurement and histological 

observation of ROS on infected ears. In the grass family, the palea is the inner layer enclosing 

the floret and is much thinner and more transparent than the outer layers, the lemma and glume 

(Figure 5). Normally, in 3-7 days after inoculation, distinct brownish or water-soaked lesions 

were detectable on the palea after M. grisea inoculation. 

The ROS detection experiment consisted of four interactions: Sumai 3-M. grisea, Milan-F. 

graminearum, Sumai 3-F. graminearum, Milan-M. grisea, with six time points for sampling (12, 

24, 36, 48, 60, 72 hpi). Each interaction at each time point was studied on three individual 

biological replicates, each replicate included three technical repetitions. Likewise this experiment 

was carried out in two independent repetitions. 
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Fig. 5. Bright field views of spikelets from cv. Milan. A, a non-inoculated spikelet in ripening 

stage. B, a diseased spikelet at 10 dpi after M. grisea inoculation with typical clear brown 

soaking lesions. Pa = palea, le = lemma, gl = glume. 

2.8.2 Quantification of ROS  

Superoxide radical  

Seven palea samples derived from three ears were collected from each independent inoculation 

and sampling time point, the samples were incubated in 2 mL of a  solution containing 100 μM 

EDTA, 20 μM β-nicotinamide adenine nucleotide reduced (β-NADPH, Sigma, St. Louis, USA), 

and 20 mM sodium phosphate buffer (pH 7.8). 

The mixture was prepared in septum-stoppered flasks. The reaction was initiated after the 

addition of 100 μL of 25.2 mM epinephrine (Sigma, St. Louis, USA) in 0.1 N HCl using a 

syringe. Samples were incubated for 5 min at 28°C under shaking. Then, the palea tissues were 

carefully removed using plain sterile forceps and after 7 min, the absorbance in the reaction 

mixture was measured at 480 nm for 5 min in a cuvette on a plate reader photometer 

(Analytikjena, Jena, Germany). The controls consisted of mixtures without addition of palea 

tissue (Misra and Fridovich, 1971).  

The O2
-
 production was determined by the rate of adrenochrome accumulation. Formula C = 

A/Kb was used to calculate O2
-
 concentration (A is absorbance value; b = 1 cm, the cuvette 

thickness; K = 4.02 × 10
3
 M

-1 
cm

-1 
(Green et al., 1956) is the adrenochrome extinction 
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http://www.jbc.org/search?author1=I.+Fridovich&sortspec=date&submit=Submit
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coefficient at 480 nm; C is the required concentration).  

Hydrogen peroxide  

The method of H2O2 detection was modified following the protocol by von Tiedemann (1997).  

Paleae (7 pieces) from three ears were collected from independent inoculations at continuous 

time intervals as before, and submerged in 500 μL reagent mixture containing 0.05% guaiacol 

(C7H8O2, Sigma, St. Louis, USA) and horseradish peroxidase (HRP, 350 μL L
−1

; 2,500 U mL
−1

, 

Sigma, St. Louis, USA) in 25 mM sodium phosphate buffer (pH 7.0) and incubated for 2 h at 

20°C in the dark.  

A volume of 250 μL was transferred into 96-well microtitre plates and the absorbance was 

immediately measured at 470 nm in a plate reader photometer (Bio-Tek, BadFriedrichschall, 

Germany). Additionally, a standard curve was calibrated by commercial H2O2 with HRP.  

2.8.3 Detection of ROS in plant tissue 

Nitroblue tetrazolium (NBT) staining  

NBT (Merck, Darmstadt, Germany) can form a dark-blue water-insoluble precipitate upon 

reduction by superoxide radicals. The method of NBT staining was based on the procedure 

described by Adam et al. (1989).  

Paleae samples were collected and infiltrated in a solution by vacuum containing 300 µM NBT, 

10 mM NaN3 and 0.1 mM EDTA. After 3.5 h of incubation, a clearance solution with ethanol–

chloroform (4:1) was used for destaining, and then the samples were placed at room temperature 

for 2 days in darkness and conserved in 96% ethanol. The samples were then cleaned in sterilized 

water twice and examined by light microscopy (Leica, Bensheim, Germany). 

3, 3'-diaminobenzidine (DAB) staining 

DAB (Sigma, St. Louis, USA) turns into a reddish-brown colour upon reaction with H2O2. The 

DAB staining method was modified according to the protocol from Thordal-Christensen et al. 

(1997).  

http://www.sciencedirect.com/science/article/pii/S0269749101001749#BIB53
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Infected paleae were cleared in a mixture of methanol: acetic acid (3:1) at 72°C for 15-20 min, 

transparent plant tissues were immersed into 1 mg mL
-1 

DAB solution (pH 3.8) and incubated 

under darkness overnight. Then the solution was removed and the tissues were stored in 96% 

ethanol. The samples were cleaned in sterilized water twice before microscopic examination.  

2.9 Gene expression studies  

2.9.1 Experimental design 

Different plant tissues from Milan and Sumai 3 infected with M. grisea and F. graminearum 

were collected at four time points. The parts of spikelets and rachillae were collected at 24 and 

48 hpi. At 3 and 5 dpi, there were only rachis samples harvested.. As checks, spikelets, rachillae 

and rachis were taken from non-inoculated control plants at 0 hpi. 

The experiment was designed with three independent biological replicates for each interaction 

and time point, and each replicate included three individual ears.  

2.9.2 Determination of target genes 

Information of selected genes and primers 

Based on literature reviews and previous studies, eighteen genes were selected for initial 

examination (Table 2). These included housekeeping genes, defense related and pathogenesis-

related (PR) genes, peroxidase and signaling-related genes, and lignification and detoxification 

related genes. Primers of nine genes were taken from literature sources. For the remaining 6 

genes, primers were designed using a primer design tool-Primer 3 Plus. 
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 Table 2. Related-defense genes for gene analysis in polymerase chain reaction (PCR) 

DNA extraction from plant material and quantification  

The DNA extraction method was following the modified CTAB method (Thomson et al., 2007). 

Approximately 100 mg of fresh leaf tissue were harvested and frozen in 2 mL tubes above a 

pool of liquid nitrogen. Subsequently, the frozen tissue was crushed in a chilled mortar and 

pestle in 800 µL of DNA extraction buffer (100 mM Tris-HCl, 50 mM EDTA, 500 mM NaCl, 

1.25% (w/v) SDS), supplied with 2 µL (20 mg/ml) proteinase K and 4 µL 1% β-

mercaptoethanol and mixed until evenly suspended. Then the samples were incubated at 65°C 

for 20 min and 70 μL of CTAB/NaCl solution was added. Samples were incubated at 65°C for 

further 15 min. Subsequently, a chloroform extraction was performed with chloroform: 

isoamylalcohol (24:1) solution, centrifuged for 10 min at 12,000x g in a microcentrifuge. From 

Accession 

number 

Gene Putative function Forward ( 5’-3’)and reverse ( 3’-5’) 

primer sequence 

Primer 

resource 

AB181991 Actin Housekeeping For: GCTGTTCCAGCCATCTCATGT   

Rev: ATCAGCAATTCCAGGAAAC 

Li et al., 2010 

X56601 Ubiquitin Housekeeping For: CTGGAGGTGGAGTCATCTGA    

Rev: GGCCATCCTCAAGCTGCTTA 

Gottwald et al.,  

2012 

AF112963 Chi 2 Class VII acidic chitinase For: GGAAAATCAACAGTGGCGA 

Rev: GTCGATCAAGAATCTAGCAA 

Li et al., 2010 

X58394.1 PR 5 thaumatin-like protein For: TGCTCCTTCAATGGCGGTAG 

Rev: GTTGGGGTGTTGGTAGGCTT 

Present study 

AF112965.1 PR 2 β-1, 3 glucanase, acidic  For: CAGAGATAGGCGACGAGGA 

Rev: CTTTATGGCCGGGAGGATGG 

Present study 

AM180656.1 Pgip 1 polygalacturonase 

inhibiting protein 

For: TTCGGCAATCAGAGCCACTT 

Rev: AGGTGGTTGTTGGAGAGCA 

Present study 

D13795.1 Trig 7 Ribosome inhibiting 

protein 

For: GGGAAGATCGGCAATGAGA 

Rev: TATGAAACAGCTCCAGCGCC 

Present study 

X85228 Pox 2 Peroxidase For: AACGACACCACCGACAACA 

Rev: GTCCATCACGAGTTCACCTT 

Li et al., 2010 

BQ161883 CCR cinnamoyl-CoA reductase For: GCTCCTGGCTGTAGGATCAC 

Rev: CGAGTAAGCAGCCGTACAA 

Present study 

FG985273 UGT UDP-Glycosyl 

Transferase 

For: CAACCCACCATTGCAAAGTA 

Rev: TTTTGCATCCACTTCACAGC 

Winter et al., 

2013 

AY641449 CYP709C1 Cytochrome P450 For: GCATCAAAGTGACCGAAGG 

Rev: CCCACTGGAGAAAGACAAT 

Li et al., 2010 

AB055077 TaMDR1 MDR-like ABC 

transporter 

For: TTTCGCTACCCTGCAAAGAC 

Rev: GCCGATCTTCCCTCTTATCC 

Gottwald et al.,  

2012 
FJ236328 TaUGT3 UDP-glucosyltransferase 

protein 

For: TTCGAGGAGCGTGTCAAAG 

Rev: ACCTGCACAGATGCCCTCTA 

Gottwald et al.,  

2012 
BQ281752 UDP-

glucosyltransferase 

HvUGT13248 

UDP-Glycosyl 

Transferase 

For: TCTTGTGGGTATTCCGCATT 

Rev: CCTTTTGCATCCACTTCACA 

Gottwald et al.,  

2012 

GQ449372.1 PRP I PDF1.2 homology For: TCGCAGAGCCACAACTTCAA 

Rev: TCTTGCAGAAGCACTTGCG 

Present study 
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the upper aqueous layer, 600 L were removed to a new tube and 1,000 L absolute ethanol 

was added for precipitation. The DNA was pelleted by centrifugation, followed by washing in 

70% ethanol twice. Finally, the DNA was resuspended in 100 µL of TE buffer. The DNA 

concentration was checked on 1.5% agarose gel by electrophoresis, and the concentration was 

adjusted to 5 ng µL
-1

 by using sterilized water or TE buffer. 

Gradient PCR and products sequencing 

All genes were amplified by gradient PCR to figure out optimal PCR conditions. Identities of 

partial gene sequences were confirmed by sequencing (Eurofins, Ebersberg, Germany) of PCR 

products. PCR reaction sets were purchased from a commercial company (Bioline, Luckenwalde, 

Germany). PCR reaction systems consisted of 2 μL NH4-reaction buffer (16 mM (NH4)2SO4, 67 

mM Tris-HCl, 0.01% (v/v) Tween-20, pH 8.8 at 25°C), 0.3 μL 50 mM MgCl2, 1.6 μL 2.5 mM of 

dNTPs, 2 μL 10 pM of each primer, 0.25 μL (5 U μL
−1

) BIOTaq DNA polymerase, 2 μL of 

template DNA and added ddH2O up to 20 μL.  

PCR amplification was executed with an initial denaturation step for 5 min at 94°C, followed by 

36 reaction cycles including a 20s denaturation step at 94°C, an annealing step for 30s from 55-

70°C and 40s at 72°C. The final elongation was performed for 5 min at 72°C.  

PCR products were examined with 1% agarose electrophoresis and optimal Tm was determined 

by the best performance of specific bands.  

Based on the sequencing results, nine genes were selected for further analysis, namely Actin, 

Chi2, PR5, PR2, Pox2, CCR, UGT, CYP709C1, PRPI (Table 2). Three genes encoding for PR 

proteins (Chi2, PR5, PR2), one peroxidase related gene (Pox2), one homologous gene of PDF1.2 

(PRP I), one lignification concerning gene (CCR), one UDP-Glycosyl transferase (UGT) and one 

gene form the cytochrome P450 family-CYP709C1. Actin served as the reference house-keeping 

gene. In the Tm detection, it showed that Tm was in a range of 60-62°C for the selected genes, 

afterwards 62°C was adopted by testing with quantitative real-time PCR (qPCR).  
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2.9.3 Expression of target genes by quantitative reverse transcription PCR (qRT-PCR)  

RNA extraction and quantification 

TRIzol reagent (Invitrogen, Karlsruhe, Germany) was used for RNA extraction with a few 

modifications following the protocol SOP N° TAL013, Transcriptome Analysis Labor, 

Department of Developmental Biochemistry, University of Göttingen. Hundred mg of different 

tissues were ground to powder in liquid nitrogen with mortar and pestle by directly adding 1 

mL of TRIzol reagent, incubated for 5 min at RT and centrifuged at 12,000 x g for 10 min at 

4°C to remove the insoluble material. Afterwards, 0.2 mL of chloroform was added. The 

samples were shaken by hand for 15 s and incubated for 5 min at RT. The samples were then 

centrifuged at 12,000 x g for 15 min at 4°C. The aqueous phase (upper phase) was transferred 

to a new tube and 0.5 ml isopropyl alcohol was added to precipitate RNA. The samples were 

then incubated for 1h at RT and centrifuged at 12,000 x g for 30 min at 4°C. The supernatant 

was removed and the RNA pellet was washed twice with 75% ethanol. After washing, the RNA 

pellet was dried at RT for 3-5 min and finally dissolved in 80 μL DEPC water and stored at –

80°C until cDNA synthesis. The quality and integrity of RNA samples were tested on a 2% 

agarose gel electrophoresis. The quantity of RNA was determined with an Epoch Microplate 

Spectrophotometer (Bio-Tek, Bad Friedrichschall, Germany). 

cDNA synthesis  

A first-strand cDNA synthesis kit (Qiagen, Hilden, Germany) was applied for cDNA synthesis 

in this experiment. Following the manufacturer’s instruction, 20 μL of cDNA solutions were 

synthesized from 1μg total RNA. Eventually, 10-fold dilutions were used in the RT-qPCR 

reactions, all the cDNA samples were kept at –20°C. 

Quantitative reverse transcription PCR (qRT-PCR) 

SYBR quantitative RT-PCR was performed in an optical 384-well reaction plate using a CFX 96 

Sequence Detection System. Reaction was performed in a 10 μL reaction mixture that consisted 

of 5 μL of 2 X SYBR Green PCR Master Mix solutions (Bioline, Luckenwalde, Germany), 400 
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nM of both forward and reverse primers and 12.5 ng cDNA. Thermal cycling was started at 95°C 

for 15 min, followed by 35 cycles of 95°C for 20 s, 62 °C for 30 s and 72°C for 20 s. The final 

elongation was performed for 5 min at 72°C. The melting curve was obtained by heating the 

reaction temperature to 95°C for 1 min, cooling to 55°C for the next minute, then slowly 

increasing the temperature from 65°C to 95°C in a rate of 0.5°C s
-1

, accompanied with 

continuous measurement of SYBR green. 

The calibration curve was constructed to determine the primer efficiency. Standard curves with a 

correlation ≥ 0.98 and efficiency between 90% and 110% were considered as appropriate for 

calibration, and the efficiency was used for the calculation of relative gene expression (Pfaffl, 

2001). For each treatment, three technical replicates of PCR reactions were performed. RT-qPCR 

results were analyzed using Bio-Rad CFX 96 Sequence Detection software. 

The following formula compares the target gene with the reference gene (Actin) from inoculated 

samples to a non-inoculated control (Pfaffl, 2001).  

𝐹𝑜𝑙𝑑 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  
(𝐸𝑡𝑎𝑟𝑔𝑒𝑡)

∆𝐶𝑇𝑡𝑎𝑟𝑔𝑒𝑡(𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑠𝑎𝑚𝑝𝑙𝑒)

(𝐸𝑟𝑒𝑓)
∆𝐶𝑇𝑟𝑒𝑓(𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑠𝑎𝑚𝑝𝑙𝑒)

 

𝐸: 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 10(−1/𝑠𝑙𝑜𝑝𝑒) , 𝑟𝑒𝑓: 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒, 𝑡𝑎𝑟𝑔𝑒𝑡: 𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒 

2.10  Statistical analysis 

All statistical analyses were conducted using the STATISTICA 9 (StatSoft, USA) software. The 

Analysis of variance (ANOVA) to determine the statistical significant differences were 

considered significant at p ≤ 0.05 (significance level at 95%).  
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3. Results 

3.1 Disease severity assessment and cultivar responses 

3.1.1 Wheat blast 

At 7-10 dpi, clear symptoms can be identified on ears of most inoculated cultivars with M. grisea. 

Partially bleached ears were predominant in many genotypes. During the infection process, initial 

dark-brownish or pale lesions occurred on some spikelets. Following the initial lesions, these 

spikelets turned yellow or into a straw-like colour, while the adjacent spikelets became also 

infected. Ultimately, the main symptoms, bleached ears were present and limited grey lesions 

occasionally occurred on leaves (Figure 1 & 13).  

According to the blast severity level on ears at 7 dpi, four groups of cultivars can be classified in 

a range from 1.3 to 4.2 (Figure 6). Group 1: wheat genotypes with elevated resistance within a 

range of disease severity (DS) from 0-2; group 2: moderately resistant genotypes with a DS of 

2.0-3.0; group 3: moderately susceptible genotypes with a severity range of 3.0-4.0; group 4: 

susceptible genotypes in the range of 4.0-5.0. Eventually there was no genotype completely 

resistant to M. grisea under the condition of artificial inoculation in a controlled environment. 
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Fig. 6. Disease severity levels of wheat blast on 27 wheat genotypes after 7 days. Among the 

tested genotypes, Milan displayed the highest resistance and Sumai 3 showed moderate 

susceptibility. Each bar represents the mean±SD of the disease severity of each genotype. 

Different letters indicates statistical differences within cultivars according to Tukey test (p ≤ 

0.05). 

Cultivar Milan presented a striking level of resistance in response to M. grisea with a DS level 

of about 1.4. Together with cultivars CANINDE 1´´S´´ and BR 8 belonged to Group 1, 

displayed a DS lower than 2.0. Conversely, four genotypes: Chirya 3, BR 23, GONDO/CBRD 

and THORNBIRD had greater susceptibilities than 4.2, were categorized in Group 4. These two 

groups had significant difference. In Figure 6, Group 2 including the genotypes from 

CANINDE 3 to BR 35 showed a DS lower than 3.0, the group 4 contained the genotypes in 
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Group 3 from ITAPAU 65-DON VALERIO to Sumai 3, which showed DS lower than 4.0. 

There was no significant difference between group 3 and 4. 

Resistant cultivars confirmation 

Following the cultivar screening, cultivars Milan and Sumai 3 were selected for further analysis 

as they represented opposing levels of resistance to M. grisea. To verify the resistant varieties in 

response to M. grisea, point inoculation was conducted on the ears of Milan and Sumai 3, the 

disease scoring system was applied at 7, 10, 15, 21 dpi (Figure 7).  

Fig. 7. AUDPC was calculated by %DS from 7 dpi to 21 dpi of wheat blast on cvs. Milan and 

Sumai 3 after point inoculation. Each bar represents a mean of AUDPC±SD at each time point for 

each interaction. AUDPC followed by different letters significantly differ at P ≤ 0.05 according to 

Fisher’s least significant difference (LSD) test. 

Point inoculation tests confirmed the high level of resistance in cultivar Milan to M. grisea and 

the moderate susceptibility in Sumai 3 (Figure 7), which mirrored the results of the previous 

whole ear inoculation test. AUDPC data obtained from both cultivars were low until 7 dpi, 

whereas the AUDPC of Sumai 3 progressively developed after 7 dpi. At 21 dpi, a clear increase 

in DS was noticed in Sumai 3 which was significantly different from Milan. At 21 dpi, AUDPC 

from 7 dpi to 21 dpiof Sumai 3 was almost up to 1.90, while Milan only had approximately 
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0.65. Cultivar Milan certainly presented an effective resistance while Sumai 3 presented clear 

susceptibility. 

Correlation analysis on various symptoms caused by M. grisea  

With the exception of the dominant symptom of bleached ear, other symptoms caused by 

M. grisea such as shrunken kernels and lesions on leaves were the associated symptoms. A 

correlation analysis was carried out in order to illustrate the relationship between ear bleaching 

and sterility, and infection on the leaf based on the screening results of 27 cultivars in response 

to M. grisea ear infection (Figure 8 and 9).  

Severity of ear bleaching by wheat blast was evaluated together with ear sterility on 27 

cultivars. It was assumed that both symptoms are in a positive correlation since bleached ears 

induce shriveled kernels or even sterile spikelets. This was supported by the statistical analysis 

with a correlation coefficient of r = 0.5156, p = 0.00002 (Figure 8). This indicates that 

M. grisea may induce both bleached and sterile ears and that both symptoms are correlated.   

Fig. 8. Correlation between ear sterility and ear bleaching caused by M. grisea at 7 dpi on 27 

wheat genotypes following a whole ear inoculation (r = 0.5156; p = 0.00002). Each dot represents 

one cultivar. r, correlation coefficient. 
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Data of wheat blast infection on leaves were collected at 9 dpi on 27 cultivars. In the comparison 

of leaf infection and ear bleaching, no significant correlation was found (r = 0.0433, p =0.2979, 

Figure 9). This result implies that there is a no relationship between genotypic resistance levels in 

leaves and ears to infection with M. grisea.  

Fig. 9. Comparison of leaf infection and ear bleaching induced by M. grisea on 27 wheat 

genotypes (r = 0.0433; p = 0.2979), indicating no correlation between genotypic resistance 

levels in ears and leaves to infection with M. grisea. Each dot represents one cultivar. 

3.1.2 Fusarium Head Blight 

Symptoms of FHB emerged on spikelets at 3-5 dpi and varied between genotypes. At 7 dpi, most 

genotypes showed partially discoloured ears or several burnt-brown spikelets. Up to 21 dpi, most 

genotypes presented a high level of bleached ears, in some cases the ears were covered with 

white or pink mycelia.  

The disease progress of F. graminearum on 27 genotypes was followed as AUDPC (Figure 10). 

Based on the disease severity results from 27 different genotypes, four groups were formed 

corresponding to different ranges of percentage disease severity. Group 1: 0%-25%, involved 

wheat genotypes which exhibited elevated resistance against F. graminearum; group 2: scaled for 

moderately resistant genotypes at 25%-50%; group 3: included several moderately susceptible 
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genotypes with 50%-75%; group 4: in a range of 75%-100%, included the susceptible genotypes.  

Cultivars PF 87512/CBRD and Sumai 3 showed distinct resistance and belonged to Group 1 

(Figure 10). However cultivars Milan and BR 18 displayed obvious susceptibility which was 

classified in Group 4. The genotypes from GONDO/CBRD to PBW 343 showed relatively higher 

resistance than the genotypes from ITAPAU 65-DON VALERIO to IAN 10-DON Arte, and were 

assigned to Groups 2 and 3, respectively.  

Fig. 10. AUDPC was calculated on DS from 3 dpi to 21 dpi of head blight on 27 wheat 

genotypes in response to F. graminearum. Milan displaying strong susceptibility and Sumai 3 
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showing elevated resistance were selected for further studies. Each bar represents the mean±SD 

of each genotype. Different letters indicates statistical differences within cultivars according to 

Tukey test (p ≤ 0.05). 

Resistant cultivars confirmation 

According to the screening results from 27 wheat genotypes infected by F. graminearum, 

cultivars Sumai 3 and Milan exhibited divergent levels of resistance and were selected for the 

point inoculation analysis (Figure 11).  

Clear disease symptoms on ears such as dark brown lesions and bleached spikelets were seen on 

both cultivars. Until 7 dpi, FHB severity was similar on both cultivars. At 7 dpi, almost the whole 

rachis of cultivar Milan was bleached indicating a high susceptibility in response to 

F. graminearum. Disease severity in Milan did not significantly change from 7 dpi to 10 dpi, but 

significantly differed from Sumai 3 at 15 dpi and 21 dpi (Figure 11).  

Fig. 11. AUDPC was calculated on %DS from 4 dpi to 21 dpi of FHB on cvs. Milan and Sumai 3 

following point inoculation on the ears. Each bar represents a mean of AUDPC±SD of each time 

point for each interaction. AUDPC followed by different letters significantly differ at P ≤ 0.05 by 

(LSD) test. 
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Correlation analysis on ear infection by M. grisea and F. graminearum 

A correlation analysis of F. graminearum ear infection and M. grisea ear bleaching on 27 

genotypes revealed that the cultivar responses to both diseases were independent. Consequently, 

a negative correlation was found with a correlation coefficient of r = -0.0368, p = 0.3379 

(Figure 12).  

Fig. 12. Correlation between responses of 27 wheat genotypes to F. graminearum ear infection 

(AUDPC) and M. grisea ear bleaching (r = 0.0368; p = 0.3379). The analysis showed no 

significant correlation between the responses to the two diseases. Each data point represents one 

cultivar.  

3.2 Fungal growth on ears 

3.2.1 Macroscopic investigation with bright field and fluorescence microscopy  

Bright field inspection  

Bright field inspection yielded a macroscopic view of the various levels of resistance displayed 

by the two genotypes against M. grisea and F. graminearum from 3 to 21 dpi (Figure 13 and 14). 

Dissimilar patterns of disease symptoms were obtained on the ears by point inoculation. 

However, the development of M. grisea in the ears was relatively slower than F. graminearum in 
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both cultivars. Bleached ears induced by M. grisea in Sumai 3 typically occurred at 15 dpi, while 

initial FHB symptoms on Milan became visible after 3 days.  

Fig. 13. Macroscopic views of infected ears from wheat cvs. Milan and Sumai 3 in response to 

M. grisea infection at 10, 15 and 21 dpi. White arrows indicate the inoculation sites after point 

inoculation. A-C, ears from Milan. A, 10 dpi, with a partially infected spikelet. B, 15 dpi, with the 

inoculated spikelets turning bleached. C, 21 dpi, where more spikelets become bleached. D-F, 

views of Sumai 3. D, ears 10 dpi, the inoculated spikelets are bleached. E, 15 dpi, nearly half of 

the ear has turned bleached. F, 21 dpi, the ear is partially bleached and shrunken.  

Generally, M. grisea progressed slowly on the ears. Around 5 dpi, specific symptoms emerged on 

the spikelets of Milan. Initial visual symptoms were dark-brown necrotic dots or lesions on 

glumes and lemma. Between 5 and 15 dpi, the symptoms progressed weakly. The inoculated 

spikelets were partially bleached and a small part of the rachis turned brown (Figure 13 A, B). 

Between 15 and 21 dpi, one or two of the inoculated spikelets became bleached and as well as a 

small part of the rachis (Figure 13 C).  

Different disease steps were taken in the susceptible interaction of Sumai 3 towards M. grisea. 

There were no obvious visual symptoms on the ears before 7 dpi. At 7 dpi, visual symptoms 

appeared on inoculated spikelets with partial yellowing, and these symptoms increased slowly 

until 10 dpi (Figure 13 D). At 15 dpi, bleaching was typical in the upper ear, the part at the top of 

the inoculated spikelets (Figure 13 E). Eventually, a faded, straw-yellow colour on partial ears 

was evident at 21 dpi (Figure 13 F). 

The earliest visual symptoms occurred from the susceptible Milan-F. graminearum interaction 

A B C D E F 
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at 3 dpi: mycelia emerged from the inoculated spikelets, which subsequently became pale, and 

part of the neighbouring rachis became pale or yellowed. In this susceptible reaction, mycelia 

were observed to have grown quite fast. A few of the upwards spikelets turned yellow at 5 dpi 

(Figure 14 A). Then, together with the upward part, the main part of the downward rachis and 

spikelets were dark-brownish or bleached at 7 dpi (Figure 14 B); the discolouration of the 

whole downward part of the ear was complete at 10 dpi, the entire ear had turned white or 

yellow by 15 dpi (Figure 14 C). 

Conversely, symptoms on the resistant cultivar Sumai 3 were not as remarkable as those seen on 

Milan. It was observed that FHB symptoms were occasionally delayed in the inoculated sites in a 

few plants. The symptoms were only distinguishable at the initial stages and did not become 

progressive. Normally the inoculated spikelets showed early symptoms within 3 dpi manifesting 

a yellow or brownish colour (Figure 14 D). At 5-7 dpi the two inoculated spikelets and partially 

adjacent upward spikelets were discoloured and dry (Figure 14 E), the rachis between them was 

turned a dark brown or black colour. However, in some plants, disease developments had stopped 

at this stage. In other serious developments, following the progression of the disease, part of the 

rachis was bleaching (Figure 14 F). The downwards rachis which neighboured the inoculated 

spikelets showed a dark brown or black colour from 10 to 14 dpi; eventually most parts of the 

downward rachis had become yellow or brown by 21 dpi.  
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Fig. 14. Macroscopic views of infected ears from wheat cvs. Milan and Sumai 3 in response to 

F. graminearum infection at 3, 7 and 15 dpi. White arrows point to the infected spikelets. A-C, 

ears from Milan. A, 3 dpi, the inoculated spikelets become pale and some mycelia are observed. 

B, 7 dpi, nearly 60% of the inoculated ear is bleached. C, 15 dpi, the entire ear is bleached. D-F, 

views of Sumai 3. D, 3 dpi, the inoculated spikelets show a brown colour. E, 15 dpi, the 

inoculated spikelets show infection. F, 21 dpi, the distal part of the ear is bleached.   

Fluorescence microscopy 

Since there is a lack of chlorophyll in dead plant tissue, the dry and dead spikelets or the rachis 

displayed a green colour under the fluorescence microscope, while healthy tissues were red. 

Fluorescence microscopy was used to evaluate and classify the resistance and susceptibility 

responses of both Milan and Sumai 3 against M. grisea and F. graminearum (Figure 15 A- L).  

The progressing colonization of M. grisea on Sumai 3 was illustrated in detail from 11 to 21 dpi 

(Figure 15). Inoculated spikelets were starting to lose vitality at 11 dpi (Figure 15 A, B). 

Subsequently, parts of the upper rachis were green at 18 dpi, implying that M. grisea has already 

occluded some parts of the rachis, leading in the upper parts to suffer from a lack of nutrition or 

water (Figure 15 C, D). Up to 21 dpi, the upper rachis and spikelets remained fully green 

indicating that the upper part of the ear was dead (Figure 15 I, J). In the case of an interaction 

between Milan and M. grisea, the inoculated spikelet was the sole evidence of infection at 18 dpi 

(taking on the green colour) (Figure 15 G, H), and remained that way until 21 dpi. 

F. graminearum conquered the ears of Milan within 16 dpi and the diseased rachis displayed a 

clear green colour (Figure 15 E, F). However, in the resistant interaction Sumai 3-
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F. graminearum, the rachis around the inoculated sites did not appear green until 21 dpi (Figure 

15 K, L), demonstrating that part of the rachis is still alive and confirming that Sumai 3 displayed 

a stronger resistance to F. graminearum. 

Conversely, Milan being more susceptible to F. graminearum demonstrated a greater resistance to 

M. grisea. Thus, Milan and Sumai 3 displayed opposing resistance responses to M. grisea and 

F. graminearum, which is consistent with the previous inoculation results. 
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Fig. 15. Macroscopic views of infected ears from Sumai 3 and Milan in response to M. grisea and 

F. graminearum under bright field or fluorescence stereomicroscopy. A, C, E, G, I, K were from 

bright field. B, D, F, H, J, L were taken by fluorescence microscope. White arrows indicate the 

inoculation point. A-D, half excised inoculated ears from Sumai 3-M. grisea. A-B, ears at 11 dpi, 

in B the rachis is shown to be red, implying that there is no infection of the rachis until 11 dpi. A 

weak green is shown in the inoculated spikelet, and a more pronounced green in spikelet anthers. 

C-D, at 18 dpi, the green spikelet and rachis in D represents dead plant tissue. E-F, Milan-

F. graminearum at 16 dpi, the whole ear was infected and is shown as green, especially the rachis 

between the inoculated spikelets in F. G-H, Milan-M. grisea at 18 dpi; the single green spikelet is 

indicating that M. grisea was limited this tisssue. I-J, at 21 dpi, Sumai 3-M. grisea, in J nearly the 
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whole ear is green displaying dead tissue, only a small part of the lower tissue remained healthy. 

K-L, Sumai 3-F. graminearum at 21 dpi. In K it is clear that the rachis is infected but it still 

shows some little green, suggesting that the rachis was alive and Sumai 3 was more resistant to 

F. graminearum. 

3.2.2 Fungal colonization on the infected ears 

After point inoculation, infected ears at 21 dpi were taken and cut into sections depending on 

the cultivars. The whole rachis of cultivar Milan was divided into 11 segments, whereas cultivar 

Sumai 3 yielded up to 13 segments. The results of isolations from infected ears and the disease 

severity index showed that colonization of F. graminearum was different from M. grisea 

colonization in both cultivars, as F. graminearum displayed a more aggressive response. These 

results were strongly supported by observations from disease symptoms on ears. 

At 21 dpi, expansion of M. grisea was limited around the inoculated points to contiguous 

sections of the ear on both cultivars (Figure 16). M. grisea developed separately in Milan and 

Sumai 3, specifically in the lower part of the rachis. In the resistant cultivar Milan, M. grisea 

was found at the inoculation position and the next segment, no colonization was obtained 

beyond segment 2 (both on the upper and lower part of the rachis). This indicated that the 

resistant cultivar Milan restricted the development of M. grisea to the inoculated site on the 

rachis. In the susceptible cultivar Sumai 3, the development of M. grisea was observed to be 

different in the two parts of the rachis. Pathogen expansion stopped at segment 2 (upwards), but 

it remained up to segment 4 in the lower rachis. 
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 Fig. 16. Colonization of M. grisea in the infected rachis of cvs. Milan and Sumai 3 at 21 dpi. 

The X-axis represents the sequence of segments along the rachis, 0 on the X-axis indicates the 

point of inoculation. The Y-axis represents the numbers of M. grisea. The positive area above 

the Y-axis indicates the pathogen from the upper part of the rachis, and the negative area 

represents the pathogen from the lower rachis. 

Fungal colonization was dependent on the expansion of the disease and the rachis segment 

location. Segments near the inoculation site could be infected sooner, while the most distant 

segment proved to be most difficult to be infected. Therefore, a severity index was used to sum 

up the differential disease expansions on the rachis. The results indicated a strong impact on 

M. grisea development due to the resistance of the cultivars (Figure 17). Sumai 3 achieved a 

higher disease index than Milan in the upper and lower parts of the rachis, with values of 0.7 

and 2.5, respectively. Milan only achieved values of 0.2 and 0.3 for the upper and lower parts, 

respectively. There was a significant difference of disease index between the upper and lower 

rachis from Milan, which indicates that M. grisea possesses a downward developing tendency 

in the ear of susceptible genotypes. 
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 Fig. 17. Disease index of M. grisea spread in the rachis of cvs. Milan and Sumai 3 at 21 dpi. 

Each bar represents a mean of DS index±SD of each time point for each interaction. Index levels 

followed by different letters significantly differ at P ≤ 0.05 by (LSD) test.  

F. graminearum colonized the rachis of the two cultivars in both upward and downward 

directions (Figure 18). In the susceptible cultivar Milan, almost the whole rachis was occupied 

at 21 dpi. For the resistant cultivar Sumai 3, more pathogen was found in the lower segments. In 

the detail of fungal development, the progression of F. graminearum in the upper part of the 

rachis was different in Sumai 3 and Milan. Differences started after segment 3 (upwards), when 

less colonization was found in Sumai 3. The results imply that F. graminearum expands more 

rapidly downwards in a susceptible cultivar. In comparison, development of F. graminearum in 

the lower part of the rachis was similar in both cultivars, while it differed in the upper part. 
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Fig. 18. Spread of F. graminearum in the rachis from cvs. Milan and Sumai 3 at 21 dpi.  

Fig. 19. Disease index of F. graminearum spreading on the rachis of cv. Milan and Sumai 3 at 

21 dpi. Each bar represents a mean of DS index±SD of each time point for each interaction. 

Index levels followed by different letters significantly differ at P ≤ 0.05 by (LSD) test.   

A general concept was that F. graminearum could be influenced by downward growth rather 
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than the resistance of the cultivars (Figure 19). The genotype resistance was displayed in the 

upper rachis where the index were significant different, 9.3 and 4.2 for Milan and Sumai 3, 

respectively. However, fungal downward growths impacted on both cultivars, the inde in lower 

part of the rachis were significant different with the upper rachis, 14.2 and 13.3 from the lower 

part, Milan and Sumai 3, respectively. 

The analysis of fungal spread from the different interactions suggested that F. graminearum and 

M. grisea both have distinct colonization patterns (Table 3). In particular, the resistance of 

cultivars played a role in M. grisea interactions, causing a significant difference of colonization 

between Milan and Sumai 3, suggesting the resistance of the cultivar has a more pronounced 

influence on M. grisea than on F. graminearum, and the colonization of F. graminearum and 

M. grisea are independent.  

Table 3. Comparison of pathogen colonization from M. grisea / F. graminearum-Milan / Sumai 

3 interactions. The colonization were significantly different in Milan / Sumai 3-M. grisea 

interactions, but not in Milan / Sumai 3-F. graminearum interactions (LSD analysis; lower case 

letters assigned to means indicate significant differences at P ≤ 0.05). 

 

 

 

 

Interaction Mean of colonization 

Milan- M. grisea 1.50
 b
 

Sumai 3- M. grisea 3.33
 c
 

Milan- F. graminearum 9.83 
a
 

Sumai 3- F. graminearum 8.67
 a
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3.3 Fungal spread on ears followed by microscopic observation 

3.3.1 Fungal spread in spikelets 

Infection process of M. grisea  

Before the experiment was decided to employ WGA-tetramethylrhodamine staining, the GFP and 

DsRed transformed strains of M. grisea were successfully created. Unfortunately, these labelled 

strains were not suitable for this examination since the fluorescence was weak or unstably 

expressed in the progeny of the mutants. In order to acquire a clear overview of how M. grisea 

spreads in the spikelet, conventional dyes (instead of transformed strains) were applied in the 

M. grisea observations. 

The difference between M. grisea and F. graminearum was noticed in the initial stage. At 12 hpi, 

germinated conidia and growing hyphae of M. grisea could not only be seen in or on the anther, 

but also in the stigma, filament and palea of both cultivars (Figure 20 A-D), while in these early 

stages F. graminearum tended to stay in the anther.  

However, comparing the distinct interactions, the behavior of M. grisea in the spikelet of Milan 

and Sumai 3 was hardly different. Hyphae developed slightly faster in Sumai 3 in comparison to 

Milan, but this was mostly observed in the later stages of infection. However, the spreading mode 

of M. grisea in the spikelet was not affected by the type of interaction.  
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Fig. 20. Confocal microscopy images of M. grisea on the spikelet of cvs. Milan and Sumai 3 at 

12 hpi stained with WGA-tetramethylrhodamine. A-B, the spikelet of Milan. A, a germinated 

conidium was attaching to the anther, the appressorium was visible on the tip. B, the palea was 

covered with conidia and hyphae. C-D, the spikelet of Sumai 3. C, a germinated conidium was 

staying on the palea. D, growing hyphae adhered to the stigma. sp = conidiospores, ap = 

appressorium, an = anther, hy = hypha, pa = palea, st = stigma. 

From 24-72 hpi, the spreading of M. grisea in the inner parts of the spikelet was not as fast as of 

F. graminearum. At 24 hpi, the expansion of M. grisea was similar in both Sumai 3 and Milan on 

various plant tissues (Figure 21 A-B). At 36 hpi, the filament was filled with vigorously growing 

hyphae in Milan (Figure 21 C). At 48 hpi, cellular invasion was observed in parenchyma cells of 

palea in Sumai 3 (Figure 21 D). More hyphae covered the anthers in Sumai 3 from 60 to 72 hpi 

(Figure 21 E-G). Although the expansion of hyphae on the palea was weak, hyphae often 

appeared at the edge of the palea where the chlorenchyma and stomata are, which may have 

implications for the infection (Figure 21 H).  
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Fig. 21. Confocal microscopy overlay images of M. grisea infection in the spikelet of wheat cvs. 

Milan and Sumai 3 from 24-72 hpi. A, hyphae spread on the palea in Milan at 24 hpi. B-C, 

hyphae were expanding inside the spikelets. B, growing hyphae gathered between the branches in 

the stigma of Sumai 3 at 24 hpi. C, developing hyphae curled the filament of Milan at 36 hpi. D, 

at 48 hpi, ample hyphal colonized of the parenchyma cells of the palea in Sumai 3. E-F, M. grisea 

expanded in the spikelet of Sumai 3 at 60 hpi. E, a few hyphae grew on the anther. F, hyphae 

twined around the filament, the black shadow in the corner indicates pollens. G, the aggressive 

hyphae partially were occupying the filament of Sumai 3 at 72 hpi. H, hyphae were growing on 

the palea of Milan at 72 hpi. Hy = hypha, sp = conidiospores, an = anther, pa = palea, pap = palea 

parenchyma, st = stigma, fi = filament. 

Infection process by F. graminearum 

In this study, the GFP-labelled F. graminearum strain exhibited steady and bright green 

fluorescence at the mature stage rather than the primary period. Young hyphae showed a blurry 

green colour in the beginning which was difficult to recognize, this mainly occurred within 12 h. 

At 12 hpi, F. graminearum conidia predominantly germinated inside or around the anther not on 

other plant tissues (Figure 22 A, B). In the developing anthers, certain compounds were 

stimulated under the laser resulting in a bright green colour. The advancing hyphae were easily 

distinguished by their clear green colour. Thus the typical penetration pattern of the pathogen 

could be determined at particular time points.  

Expansion of F. graminearum in the spikelets of cultivars Milan and Sumai 3 exhibited a few 

dissimilarities. First, at 12 hpi, much more germinated spores were observed in the susceptible 

cultivar Milan than in Sumai 3. Second, hyphal colonization of the spikelets of Milan was 

somewhat faster than in Sumai 3. In particular, the aerial mycelia were seen to grow more rapidly 

in Milan at 72 hpi. It is concluded that the expansion of F. graminearum in the spikelet was 

effectively influenced by the type of resistant/susceptible interaction.  
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Fig. 22. Confocal microscopy images of the F. graminearum-GFP strain on Milan at 12 hpi. A, a 

germinated spore with elongated hyphae on the filament. B, mycelia growing on the anther. The 

central area shows hyphae, the rest of the bright green section is a developing anther. Hy = hypha, 

sp = conidiospores, an = anther. 

At 24 hpi, masses of hyphae were discovered growing extensively in the whole spikelet of both 

cultivars, especially in cultivar Milan. Since the filament is next tissue to the anther and 

connected with the stigma, germinated hyphae twined along the filament directly and 

continuously colonizing the stigma after 24 hpi. Then, the hyphae successfully advanced to the 

palea part (Figure 23 A, C). At 36 hpi, numerous growing mycelia completely occupied the 

anthers and the filament (Figure 23 B, D and E). Then the hyphae were starting cellular 

penetration, it vigorously invaded parenchyma cells, especially on the palea (Figure 23 F). From 

48-72 hpi, masses of mycelium further spread in the inner space of the spikelet in both cultivars 

(Figure 23 G-H): the palea, lemma and glume were gradually colonized by pathogen. Whereafter 

the entire spikelet was colonized by F. graminearum.  
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Fig. 23. Confocal microscopy overlay images of F. graminearum-GFP strain infection of the 

spikelets on wheat cvs. Milan and Sumai 3 from 24-72 hpi. A, massive hyphae grew around the 

stigma and filament from Milan at 24 hpi, left corner presenting the detailed invasion on a 

stigma branch. B, at 36 hpi, the surface of the palea of Milan was covered by numerous hyphae. 

C, a view of fungal infection on the anther from Sumai 3 at 24 hpi, the hyphae were curling 

around the anther. D-F, further fungal developments were shown inside Sumai 3 or Milan at 36 

hpi. D, vigorous hyphae grew through the anther of Sumai 3. E, in Milan, a filament was filled 

with hyphae. F, in the palea of Sumai 3, parenchyma cells was penetrated by F. graminearum. 

G, 60 hpi, plenty of hyphae gathered on the edge of the palea in Milan, which was nearby the 

stomata. H, hyphae developed on the palea of cultivar Sumai 3 at 72 hpi. 

3.3.2 Fungal spread in the rachilla  

Advancement of M. grisea  

Another aim of CLSM detection was to reveal the differential colonization patterns existing in the 

rachilla during M. grisea and F. graminearum infections. Compared to the results from 

continuous microscopical monitoring, the resistant and susceptible type of responses affected 

pathogen progression in the rachilla of cultivar Milan not Sumai 3. 

Both pathogens grew towards the vascular bundles in the initial infection stages. Upon the M. 

grisea inoculation, susceptible cultivar Sumai 3 displayed the earliest fungal infection at 12 hpi, 

M. grisea was first detected in the vessels (Figure 24 A), and in the vascular bundles after 24 hpi 

(Figure 24 B). In resistant Milan, M. grisea was observed in vascular bundles only around 36 hpi 

(Figure 24 C and D).  
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Fig. 24. Fluorescence images of M. grisea colonization of the vascular bundles of rachillae 

from the wheat cvs. Milan and Sumai 3 (200x). Bright green dots indicated the pathogen due to 

the Alexa Flour staining. The yellow and red tissue was the rachilla because of the propidium 

iodide staining. A, longitudinal section of rachilla showed M. grisea was entering the vascular 

bundles of Sumai 3 at 12 hpi. B, at 24 hpi, the vascular bundles of Sumai 3 contained fungal 

propagules. C, initial infection of M. grisea in the vascular bundles of Milan at 36 hpi, the left 

vessel was not infected. D, cross section of initial infection in the vascular bundles of Sumai 3 

at 36 hpi. V = vascular bundles, ve = vessels. 

In the CLSM investigation, due to the image overlay function, the hyphae colour obtained from 

the lower emission laser channel was partly interfered with the stronger emission laser channel. 

Therefore, the colour of the hyphae switched between green and yellow in the combined images. 

At 72 hpi, the initial period of low fungal development increased to an apparent hyphal growth. 

In general, M. grisea is not as aggressive as F. graminearum. The common feature of both 

pathogens is that vascular bundles are the main focus point of rachilla colonization. 
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Fig. 25. Confocal overlaid images of the constant development of M. grisea in the rachillae of 

wheat cvs. Milan and Sumai 3 from 36 to 60 hpi. Plant tissue was shown in red due to the 

propidium iodide staining, while the pathogen was stained green with Alexa Flour. A-C, 

M. grisea grew in Milan. A, adaxial cross section of the rachilla at 36 hpi, the pathogen was 

mainly gathering in the vascular bundles. B, abaxial cross section at 48 hpi, the pathogen was 

presented in vascular bundles and the parenchyma tissues close to the epidermal tissue. C, adaxial 

cross section at 60 hpi, showing fungal colonization of the peripheral parenchyma region. D-F, 

fungal developments in Sumai 3. D, sidelong section at 36 hpi with partially infected parenchyma 

and vascular bundles. E, infected part of cortex, the subepidermal and parenchyma tissue was 

colonized at 48 hpi. F, cross section of the rachilla at 60 hpi, distinct colonization of vascular 

bundles and parenchyma tissue. V = vascular bundles, p = parenchyma, ep = epidermal, co = 

cortex. 

Before 72 hpi, there was clear evidence of M. grisea presented in the hypodermis, parenchyma 

tissue, sclerenchyma, phloem and vascular bundles. In Milan from 36 to 60 hpi, M. grisea 

gradually emerged in the vascular bundle and parenchyma area that was near to the epidermal 
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tissue (Figure 25 A-C). However, the development of M. grisea in Sumai 3 advanced more 

rapidly, leading to the partial vascular bundle and parenchyma areas being colonized after 36 hpi 

(Figure 25 D). Subsequently, the major hypodermis and most vascular bundles were found to be 

attacked by M. grisea in Sumai 3 (Figure 25 E-F).  

This distinct spread of M. grisea was exhibited by the further infection process in the rachilla 

(Figure 26 A-H). At 72 hpi, the parenchyma cells in Sumai 3 collapsed. Around 7 dpi, major parts 

of the rachilla including the vascular bundles and parenchyma were colonized by M. grisea 

(Figure 26 C). Conversely, the parenchyma cells in Milan infected by a few hyphae at 72 hpi, the 

cells were intact and fungal infection was mainly presented in the subepidermal tissue. The entire 

colonization of the rachilla from Milan by M. grisea was accomplished mostly beyond 14 dpi 

(Figure 26 F), particularly the xylem which was occluded (Figure 26 G). In addition some 

amorphous substance was observed intra- and intercellularly in rachilla from Milan at 14 dpi 

(Figure 26 E, H).  
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Fig. 26. Confocal overlay images of progressive colonization of M. grisea in the rachillae of 

wheat cvs. Milan and Sumai 3 from 3 to 14 dpi. A, Sumai 3 at 72 hpi, a cellular image of 

collapsing cells penetrated by hyphae of M. grisea. B, rachilla abaxial cross section of Milan at 

72 hpi, the pathogen emerged in the vascular bundles and the parenchyma tissues which was 

along the epidermal layer. The lower right corner showed the intracellular traverse of the hyphae. 

C, the entirely colonized cross section indicated that M. grisea finished the occupation of the 

rachilla of Sumai 3 at 7 dpi. D, 10 dpi image of a partially infected rachilla of Milan, hyphae 

evidently advanced in subepidermal and hypodermal tissues. E-F, severely colonized rachilla of 

Milan by M. grisea at 14 dpi, image E showed the detail of the hyphal intrecellular invasion, and 

the cross section in F provided a comprehensive view of the ultimate occupation of M. grisea in 

the rachilla. G, M. grisea occluded xylem in the rachilla of Milan at 14 dpi. H, cell structure was 

coiled by M. grisea at 14 dpi. Xy = xylem, hy = hyphae 

Colonization process of F. graminearum  

In the initial stages of infection, F. graminearum invasion in vascular tissue of the rachilla was 

observed in both cultivars. F. graminearum occurred in vascular bundles of the susceptible 

cultivar Milan after 24 hpi (Figure 27 A-B). In the resistant cultivar Sumai 3, the infection in 

vascular bundles occurred at around 12 and 24 hpi (Figure 27 C and D).  
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Fig. 27. Fluorescence images of F. graminearum colonization of vascular bundles of wheat cvs. 

Milan and Sumai 3 (200x). A, F. graminearum in the vascular bundles of a longitudinal section 

in Milan at 24 hpi. B, an initial invasion in vascular bundles of the cross section from Milan at 

24 hpi. C, longitudinal section, infection of the vascular bundles  of Sumai 3 at 12 hpi. D, initial 

infection of vascular bundles from a cross section of Sumai 3 at 24 hpi. V = vascular bundle. 

At 72 hpi, similar to M. grisea, F. graminearum started vigorous hyphal growth. From 36 to 60 

hpi, substantial evidence of F. graminearum growth was found in the subepidermal, parenchyma 

tissue and vascular bundles in cross or longitudinal sections of the rachilla (Figure 28 A-F). The 

pathogen evidently filled in vascular bundles of both cultivars, especially at 60 hpi (Figure 28 C, 

F). 
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Fig. 28. Confocal overlay images of the progression of F. graminearum in the rachilla of wheat 

cvs. Milan and Sumai 3 at initial stages of infection (36-60 hpi). A-C, pathogen development in 

Milan. A, abaxial cross section of the rachilla at 36 hpi, F. graminearum invaded the parenchyma 

tissue. B, longitudinal section at 48 hpi, vascular bundles were filled with F. graminearum. C, 

adaxial cross section at 60 hpi, showing the infected vascular bundles. D-E, pathogen was 

growing in Sumai 3. D, abaxial cross section at 36 hpi, pathogen was presented in the 

subepidermal and vascular bundles. E, infection visible in the hypodermal tissue of a partial cross 

section at 48 hpi. F, sidelong section of the rachilla at 60 hpi with infected vascular bundles. V = 

vascular bundles, p = parenchyma, co = cortex. 

At 72 hpi, the distinct interactions influenced the F. graminearum colonization in the rachilla. In 

the susceptible interaction, F. graminearum was able to enlarge its biomass and conquer the host 

tissue. In Milan, the central region of the rachilla was completely occupied, and a massive 

collapse of tissue structures was observed at 72 hpi (Figure 29 A). On the contrary, F. 

graminearum did not cover the the entire rachilla in Sumai 3 and exhibited a relatively weak 

filling of vascular bundles with hyphae (Figure 29 B). Around 5 dpi, successful colonization of 

the entire rachilla was finished in Milan (Figure 29 C), when clear and elongated hyphae spread 
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all around the rachilla, and the cellular collapse started in the whole tissue. This process of 

destruction continued until 7 dpi (Figure 47 B). Besides, F. graminearum tended to infect the 

epidermal layer (Figure 29 E). 

However, in the resistant cultivar Sumai 3, F. graminearum developed slower than in Milan. 

From 72 hpi to 10 dpi, the collapse was focused around the parenchyma cells which neighboured 

the epidermal tissue (Figure 29 D, F). The eventual colonization of the entire rachilla happened 

within about 14 days, but the rachilla remained intact, with the exception of some single vascular 

bundles which were occupied (Figure 29 G, H).  
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Fig. 29. Confocal images of the evolving colonization of F. graminearum in the rachilla of wheat 

cvs. Milan and Sumai 3 from 3 to 14 dpi. A, abaxial cross section of the rachilla in Milan at 72 

hpi, the middle area was colonized and the collapsed cells were shown. B, Sumai 3 at 72 hpi, F. 

graminearum occured at the edge of the cross section on the parenchyma tissue which near the 

epidermal and vascular bundles. C, massive hyphal colonization of rachilla, cross section of 

Milan at 5 dpi. D, Sumai 3 at 5 dpi, a few hyphae were visible in the parenchyma cells in 

developing areas and the hypodermis. E, fully colonized and collapsed tissues on cross section in 

Milan implied entire colonization of the rachilla by F. graminearum at 7 dpi. F, Sumai 3 at 7 dpi 

showing aggressive pathogen invasion. G and H, F. graminearum infection in Sumai 3 at 10 and 

14 dpi respectively; in G severe infection was initiated from the adaxial epidermis, and in H 

hyphae were obviously extensively distributed, especially in the vascular bundles. 

3.4 Biochemical analyses of diseased ears  

3.4.1 ROS production in infected tissue 

Superoxide  

Rapid and strong O2
- 

accumulations were detected in all compatible and incompatible 

interactions along with the controls at 12 hpi (Figure 30 and 31), especially in the highly 

susceptible interaction Milan-F. graminearum. However, the resistant interaction Milan-

M. grisea resulted in a relatively lower O2
- 
formation. O2

- 
accumulation from F. graminearum 

and M. grisea infections on Milan displayed similar characteristics at 12 hpi and were different 

to the Milan control. At 24 and 48 hpi, O2
- 
accumulation in both interactions became dissimilar 

and decreased. At 60 hpi, O2
- 
accumulation in Milan-F. graminearum was notably higher than in 

Milan-M. grisea (Figure 30). 
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For both F. graminearum and M. grisea interactions on Sumai 3, there was an initial increase of 

O2
- 
accumulation at 12hpi (Figure 31). At 24 hpi, these accumulations in the two interactions 

dropped, especially in the resistant interaction Sumai 3-F. graminearum. However, the control 

of Sumai 3 markedly increased at 36 hpi, in comparison to both interactions which had a 

relatively weaker increase. At 48 hpi, Sumai 3-M. grisea and the control gave a similar 

undulating pattern of O2
- 

accumulation. At 60 hpi, a subdued increase of O2
- 

accumulation 

occurred in Sumai 3-F. graminearum.  

Fig. 30. O2
-
 accumulation in the palea of cv. Milan at different time points after inoculation with 

F. graminearum and M. grisea. Each value indicates the mean±SD of disease severity for each 

interaction. O2
-
 accumulation levels followed by the same letter are not significant different 

according to LSD test (P ≤ 0.05). At 12 hpi, O2
-
 accumulation of Milan-M. grisea and Milan-

F. graminearum significantly differed from the control, and at 60 hpi, Milan-M. grisea were 

significantly differentsfrom Milan-F. graminearum.  
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Fig. 31. O2
-
 accumulation in the palea of cv. Sumai 3 at different time points after inoculation 

with F. graminearum and M. grisea. Each value indicates the mean±SD of disease severity for 

each interaction. O2
-
 accumulation levels followed by the same letter are not significant 

different according to LSD test (P ≤ 0.05). At 36 hpi, O2
-
 accumulation of Sumai 3-M. grisea 

and Sumai 3-F. graminearum was significantly different from the control.  

Hydrogen peroxide production inquiry 

Within 72 hpi in different interactions and the controls, H2O2 levels were relatively stable 

(Figure 32 and 33). At 36 hpi, a transient faint rise of H2O2 accumulation was found in the 

incompatible interaction Milan-M. grisea (Figure 32). Subsequently, a strong increment at 48 

hpi was recorded. At 48 hpi, H2O2 accumulation in Milan-F. graminearum was significantly 

different to Milan-M. grisea.  
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Fig. 32. H2O2 accumulations in the palea of cv. Milan at different time points after inoculation 

with F. graminearum and M. grisea. Each value indicates the mean±SD of disease severity for 

each interaction. H2O2 accumulation levels followed by the same letter are not significant 

different according to LSD test (P ≤ 0.05). At 48 hpi, H2O2 accumulation of Milan-M. grisea 

and Milan-F. graminearum significantly differed.  

An increase of H2O2 accumulation happened in the Sumai 3 control and the compatible 

interaction Sumai 3-M. grisea at 48 hpi (Figure 33), while H2O2 accumulation kept quiet in the 

compatible interaction Sumai 3-F. graminearum, which went up slightly at 72 hpi. 
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Fig. 33. H2O2 accumulations in the palea of cv. Sumai 3 at different time points after 

inoculation with F. graminearum and M. grisea. Each value indicates the mean±SD of disease 

severity for each interaction. H2O2 accumulation levels followed by the same letter are not 

significant different according to LSD test (P ≤ 0.05). At 48 hpi, H2O2 accumulation of Sumai 

3-M. grisea and Sumai 3-F. graminearum differed significantly.  
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Fig. 34. Trend lines show time course of H2O2 and O2
- 
accumulation relative to the control in 

the palea tissue of wheat cv. Milan after inoculation with M. grisea and F. graminearum. 

In the resistant interaction Milan-M. grisea, O2
-
 accumulation decreased from the initial stage 

until 36 hpi, while H2O2 accumulation increased after 24 hpi (Figure 34). The increase may be 

caused by conversion of O2
- 
to H2O2. However, this would not explain the increase of H2O2 

accumulation in Milan-M. F. graminearum at 60 hpi, since both ROS had an increase then. 

In the susceptible interaction Sumai 3-M. grisea (Figure 35), both H2O2 and O2
-
 accumulations 

were low. A small drop in O2
-
 occurred at 36 hpi while H2O2 experienced a small increment, 

which could be related to the conversion between the two ROS. However, this explanation is 

applicable in the incompatible interaction of Sumai 3-F. graminearum, because H2O2 

accumulation underwent a sharp fall at 48 hpi, while the O2
- 
production was positive (Figure 

35).  

Fig. 35. Trend lines show time course of H2O2 and O2
- 
accumulation relative to the control in 

the palea tissue of wheat cv. Sumai 3 after inoculation with M. grisea and F. graminearum. 
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3.4.2 Histochemical localization of ROS  

Superoxide generation detected by NBT staining 

Typical blue discolorations on the palea were observed in 3.5 h after infiltration with a NBT 

staining solution, suggesting O2
- 
were accumulated in the palea tissue during initial stages of 

plant defense. By histological analysis, assorted blue lesions were formed along the 

pathogenesis. These blue lesions were formed in varieties of shape and size, and mostly 

occurred in the compatible interactions.  

At 12 hpi, various small blue dots spread along with cells on the palea in the compatible 

interaction Milan-F. graminearum, these blue marks connected together occasionally (Figure 36 

B). At 24 hpi, some blue lesions appeared as a central circle with a surrounding scattered area 

of lesions corresponding with the pathogenesis development and O2
- 
accumulation. The lesions 

were also dispersed along the cells which were adjacent to the location of the hyphae.  

In another relatively compatible interaction, Sumai 3-M. grisea, at 24 hpi, O2
- 
accumulation was 

demonstrated albeit not as clearly. The expression of O2
- 
accumulation was shown in limited 

size and with blurry edges, mostly like pale blue lesions (Figure 36 E, F). Some unclear blue 

marks also occurred in two incompatible interactions: Sumai 3-F. graminearum and Milan-

M. grisea. Strong evidence of NBT was difficult to find besides a few very weak dots or stained 

cells in these two interactions (Figure 36 G, H). Interestingly, in the subsequent infection 

period, the blue staining was not seen in the same place where the cell death took place, but 

rather in nearby cells instead. From Figure 34 I-L, O2
- 

accumulation (with clear scale and 

levels) spreads in the cells which neighbor the dead cells. In Figure 34-L, stronge NBT reaction 

was observed in the mesophyll cells close to the infection site.  
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Fig. 36. Microscopic views of superoxide accumulations on the palea of the two wheat cvs. 

Milan and Sumai 3 inoculated with M. grisea and F. graminearum, after staining with NBT. A, 

non-inoculated palea of Milan stained with NBT (x100). B-D, O2
- 

traces on the palea from 

Milan-F. graminearum interaction. B, at 12 hpi, O2
- 
was presented in the shape of irregular dots 

(x100). C, at 24 hpi, a clear blue mark emerged at the penetration site, where the hyphae 

penetrated parenchyma cells (x200). D, stronger NBT reaction at 24 hpi, highlighted by the 

white arrow (x200). E-F, O2
- 
accumulation in the interaction Sumai 3-M. grisea within 24 hpi, 

with a faint or unclear bordered blue mark along the plant cells (x200). G, small blue dots 

indicating the presence of O2
-
 at 24 hpi in Sumai 3-F. graminearum (x200). H, obscure blue 

figures in Milan-M. grisea interaction at 24 hpi indicating low O2
- 
accumulation (x200). I-L, O2

- 

accumulation on the palea from later stages of the interaction Milan-F. graminearum (x200). I, 

48 hpi and J-L 72 hpi, on the infected palea, obviously the blue staining did not show dead cells 
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(the yellow or brown area), and stronger NBT reaction was observed in L (white arrows). 

In situ detection of hydrogen peroxide by DAB staining  

After DAB staining, H2O2 accumulations became visible by a strong dark-brown discoloration 

in the tissue. DAB staining suggested that establishment of incompatible plant reactions is 

associated with the production of H2O2. Results revealed that H2O2 accumulations displayed a 

different pattern during the activation of plant defense systems, it had one or two clar brownish 

sites on the infected palea. Since 24 hpi, the H2O2 accumulations were shown in two 

incompatible interactions: Milan-M. grisea and Sumai 3-F. graminearum, and the elevated 

H2O2 accumulation appeared in 48 hpi in both interactions (Figure 37 C-F).  

Fig. 37. Microscopic views of hydrogen peroxide accumulations (DAB staining) on the paleae 

of wheat cvs. Milan and Sumai 3 at different time points post inoculation with M. grisea and 

F. graminearum (x200). A, non-inoculated palea of Sumai 3 as control. B, H2O2 accumulation 

in Milan-M. grisea at 24 hpi. C-D, H2O2 traces in Milan-M. grisea at 48 hpi. E-F, H2O2 

accumulation in the interaction Sumai 3-F. graminearum at 48 hpi. 
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3.5 Differential gene expression in infected ears 

3.5.1 Pathogenesis-related (PR) genes 

Gene Chi2, encoding Class VII acidic chitinase, was silent in all interactions at 24 hpi. Similar 

inductions were displayed in two M. grisea and two F. graminearum interactions at 48 hpi. The 

highest induction (250 fold) occurred in the susceptible interaction Milan-F. graminearum at 3 

dpi, while the second highest induction was in the resistant response Milan-M. grisea at 5 dpi 

(179 fold). Generally, the Chi2 expression of both M. grisea interactions increased over time, 

especially in the resistant interaction at 5 dpi. However, Chi2 levels in the two F. graminearum 

interactions were stable, except for the resistant response with Sumai 3 at 3 dpi. The activation 

of Chi2 tended to be in the rachis at the latter time (Figure 38).  

Fig. 38. Expression of Chi2 in wheat cvs. Milan and Sumai 3 inoculated with M. grisea and 

F. graminearum from 24 hpi to 5 dpi relative to the non-inoculated control. Spikelets and 

rachillae were analysed at 24 and 48 hpi; the rachis was used at 3 and 5 dpi. Each bar represents 

the mean of three biological replicates in each interaction ± SD.  

PR2 demonstrated a lower but universal expression in various plant tissues of the different 

interactions. A differential accumulation was found in the initial stages in the spikelet and the 
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rachilla, particularly in Milan-M. grisea and Milan-F. graminearum. At 24 hpi, a higher (12-

fold) induction was detected in the resistant interaction Milan-M. grisea than in the others. At 

48 hpi, PR2 was slightly higher induced (17-fold) in the susceptible response of Milan to 

F. graminearum. Corresponding to different pathogens, the induction of PR2 showed a rise in 

the susceptible interaction firstly, then a small increase in the resistant response but on a lower 

level (less than 10-fold).  

From 24 to 48 hpi, in the Milan-M. grisea interactions it showed increases in inductions in the 

spikelet and the rachilla, but the Sumai 3-M. grisea interaction revealed increases in induction 

in the rachis from 3 to 5 dpi (Figure 39). 

Fig. 39. Expression of PR2 in wheat cvs. Milan and Sumai 3 inoculated with M. grisea and 

F. graminearum from 24 hpi to 5 dpi relative to the non-inoculated control.  
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Another PR related gene, PR5, which refers to a thaumatin-like protein, showed a noticeable 

result in the rachis at 3 and 5 dpi. Both M. grisea interactions achieved a high, up to 265-fold 

induction in the resistant and susceptible interaction at 3 dpi and 5 dpi. Besides, Milan-

F. graminearum showed a particular 156-fold rise at 3 dpi (Figure 40). 

Fig. 40. Expression of PR5 in wheat cvs. Milan and Sumai 3 inoculated with M. grisea and 

F. graminearum from 24 hpi to 5 dpi relative to the non-inoculated control. 

3.5.2 Peroxidase, lignification and signaling concerned genes 

Pox2 was observed to have abundant expression in the cultivar Milan when infected with both 

pathogens. At 24 hpi, Pox2 experienced a direct increment in the compatible interaction Milan-

F. graminearum and the incompatible interaction Milan-M. grisea, with up to 1086- and 729-

fold changes, respectively. At 48 hpi, the extreme increase continued in Pox2 was observed in 

the cultivar Milan when infected by F. graminearum, with 2600-fold changes, while the lowest 

Pox2 expression (186-fold) occurred in Milan-M. grisea. Subsequently, expression of Pox2 in 

Milan-F. graminearum kept dropping while showing an increase in Milan-M. grisea, both 

ending at similar levels at 5 dpi. Conversely, the induction of Pox2 in two interactions on Sumai 

3 were confined to 70-fold changes through all time courses, while for Sumai 3-M. grisea, the 

susceptible response at 5 dpi reached a 100-fold induction (Figure 41). 
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Fig. 41. Expression of Pox2 in wheat cvs. Milan and Sumai 3 inoculated with M. grisea and 

F. graminearum from 24 hpi to 5 dpi relative to the non-inoculated control. 

Fig. 42. Expression of CCR in wheat cvs. Milan and Sumai 3 inoculated with M. grisea and 

F. graminearum from 24 hpi to 5 dpi relative to the non-inoculated control.  
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In the compatible interaction Milan-F. graminearum, CCR expression reached its highest levels 

of around 142-fold changes at 48 and 3 dpi. However, there were different tissues at the two 

time points which may suggest that the CCR gene was activated systemically. The time point-3 

dpi seems to be a critical stage for the plant to react to F. graminearum since infections induced 

CCR expression in both cultivars to a similar extent. The resistance of interaction regulated the 

gene expression at 5 dpi, thus the incompatible interaction Milan-M. grisea and Sumai 3-

F. graminearum showed weaker inductions than compatible interactions (Figure 42). 

Fig. 43. Expression of PRPI in wheat cvs. Milan and Sumai 3 inoculated with M. grisea and 

F. graminearum from 24 hpi to 5 dpi relative to the non-inoculated control.  

All interactions had quite low induction levels of PRPI. Only the interactions Milan-M. grisea 

and Milan-F. graminearum demonstrated some elevated expression in the rachilla and spikelet 

tissue in the initial infection stage. In all other interactions PRPI remained quiet, particular in 

the rachis at later stages (Figure 43). 

3.5.3 Genes related to mycotoxin detoxification  
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accumulation in both F. graminearum interactions. At 3 dpi, the resistant interaction of Sumai 

3-F. graminearum was associated with a higher transcription level, which achieved 31-fold 

changes, but was dropped to 7-fold changes at 5 dpi. Moreover, a constant induction of around 

15 was demonstrated at the two later time points in the compatible interaction Milan-

F. graminearum (Figure 44). 

Fig. 44. Expression of CYP709C1 in wheat cvs. Milan and Sumai 3 inoculated with M. grisea 

and F. graminearum from 24 hpi to 5 dpi relative to the non-inoculated control.  
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Fig. 45. Expression of detoxification related gene UGT in cvs. Milan and Sumai 3 inoculated by 

M. grisea and F. graminearum from 24 hpi-5 dpi, relative to non-inoculated control.  

UGT was expressed clearly in the two F. graminearum interactions and a distinct pattern was 

seen associated with resistance during pathogenesis. Differential accumulation of UGT 

transcripts started at 48 hpi, inductions in the incompatible response Sumai 3-F. graminearum 

and compatible Milan-F. graminearum were 160 and 35 fold, respectively. An enhancement 

was detected in both F. graminearum interactions at 3 dpi; the incompatible response gained a 

particular spurt with almost 280 fold changes whereas the induction in the compatible response 

reached 176-fold changes. At 5 dpi, a reduction in expression levels was observed in both 

interactions. Surprisingly, the relatively susceptible interaction Sumai 3-M. grisea reached a 

dramatically high rise at 5 dpi, similar to the resistant interaction Sumai 3-F. graminearum at 3 

dpi, which reached up to 280-fold changes. Besides that, there was no clear gene induction 

discovered during the whole time course of pathogenesis in the resistant Milan-M. grisea 

interaction (Figure 45). 
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4. Discussion 

4.1 Differential resistance of cultivars to wheat blast and FHB 

Resistance genetically mechanisms in plants against pathogens can be divided into monogenic 

resistance and polygenic resistance. Monogenic resistance is the R gene resistance, can be 

recognized by the HR response in plant-pathogen interaction. It is the result of gene for gene 

systems in which an avirulence (avr) gene in the pathogen corresponds to an R gene in the host 

plant (Agrios, 2005). On cultivar Milan during the attack of M. grisea, the clear HR response was 

observed around 48 hpi, which indicates this resistance belongs to the monogenic resistance. 

Furthermore, the monogenic resistance of host can inhibit the initial establishment of pathogens 

and the evelopment of epidemics (Agrios, 2005). It was noticeable that blast symptoms 

developed slowly on the ear of Milan, and the microscopic investigation of the infected rachilla 

also indicated a slow type of M. grisea colonization. These features indicate that Milan inhibits 

the initial establishment of M. grisea and restrict the spreading of M. grisea, suggesting the 

defense system of Milan is activated since M. grisea initial infection, and strengthened to restrict 

fungal expansion, also proved it is the monogenic resistance. 

Cultivar Milan is not completely immune to M. grisea, but obviously exhibits a high resistance. It 

is considered as an ideal candidate against wheat blast, and other reports have confirmed its high 

resistance under artificial conditions (Kohli et al., 2011). In the present study, the cultivar Milan 

is from a CIMMYT line, it is a spring genotype with a short height and late heading time. The 

surface of Milan is covered with a waxy and water-proof substance such as cutin leading it to 

being called ‘blue wheat’, because it looks a little blue under light due to these surface 

protections. Effective protection by the cuticle and a later heading time might be for the benefit of 

the plant aiding it to escape from a pathogen. This might suggest that this stringently structured 

cuticle can hinder the landing of spores or conidia, while the postponed anthesis could help the 

plant to avoid massive spore or conidia invasion.  

Moreover, Milan or its cross lines also provides a broader resistance to more pathogens. 

Milan/Shanghai #7 was described as having a single dominant R gene resistance to spot blotch 
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caused by Cochliobolus sativus in some areas of South Asia (Neupane et al., 2007). Further 

research was carried out on three leaf spot diseases on wheat: Tan spot (caused by Pyrenophora 

tritici-repentis (Died.) Drechs.), Stagonospora nodorum blotch (SNB) [(teleomorph: 

Phaeosphaeria nodorum (E.Müller) Hedjarroude)] and Septoria tritici blotch (STB) [(teleomorph: 

Mycosphaerella graminicola (Fückl) J. Schröt. in Cohn)]. After testing of 164 lines, four wheat 

cultivars showed strong resistance to the three diseases, and Milan was the common parent of 

three of the four varieties (Ali et al., 2008). Although no clear information regarding to the 

existence of R genes in Milan is so far available and based on a comprehensive understanding of 

the physical traits from Milan and active response, we conclude that Milan provides monogenic 

resistance toward M. grisea. It is speculated that the R gene expression take the responsibility of 

the high resistance. 

Another form of resistance was revealed when we examined the seed infected by wheat blast 

alongside with healthy seeds from Milan. The weight of the infected seed was reduced by 56.1%, 

while two other susceptible cultivars, Sumai 3 and Gondo/CBRD, lost 87.4% and 89.2% in seed 

weight (Table A 1), respectively. Recently, cultivars such as Sausal CIAT, CD 116 and Caninde 1, 

which descend from Milan, have been planted in some countries in South America (Kohli et al., 

2011). The final results from field trials on the resistance of Milan are still awaited. Additionally, 

different geographical sources of the fungal isolates should be considered for Milan as it is 

necessary to obtain more information about the durability and robustness of this resistance.  

Although cultivar Milan exhibited a striking resistance to M. grisea, it demonstrated a strong 

susceptibility to F. graminearum. Generally, this may result by the R gene from cultivar Milan 

loses the target in F. graminearum that cause the compatible interaction. Although a diverse and 

clear ROS accumulation was displayed in the Milan-F. graminearum interaction, even some 

defense related genes activated, suggesting the defense system in Milan is activated but failed to 

be established during the F. graminearum infection. Moreover, spores from F. graminearum 

easily germinate in the anther of Milan. Presumably, some substances in the anther can provide 

nutrition or stimulation for germination. Strange et al. (1974) reported two major components in 

anthers and wheat germ that could stimulate Fusarium growth in vitro. Another report stated the 
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choline content in susceptible spikes was twice as high as in a resistant cultivar during anthesis 

(Li and Wu, 1994), which may be an explanation why more spores germinated in the anther of 

Milan in our study. In addition, the rapid symptoms on the ear and a fast and intense progress of 

F. graminearum in rachilla infection in Milan, indicating that Milan has little resistance to the 

spreading of this pathogen. In general, Milan lacks effective resistance to F. graminearum, both 

passively and actively. 

Sumai 3 is considered as one of the most resistant cultivars to FHB. It has been used worldwide 

as a major resistance source against FHB for a long time (Bai and Shaner, 1994; Frohberg et al., 

2004). Sumai 3 is a Chinese spring cultivar, well-known by its type II resistance to 

F. graminearum. The definition of type II resistance is to ‘restrict the spreading of the pathogen in 

the head’ (Schroeder and Christensen, 1963). In several decades, numerous studies have 

extensively investigated this resistance and the molecular basis behind it. It is revealed that Sumai 

3 resistance is polygenic resistance controlled by two or three major dominant genes and several 

minor genes, with additive effects of resistance to F. graminearum (Ban and Suenaga 2000), 

resulting the type II resistance (Buerstmayr et al., 2002). In the genome of Sumai 3, several 

quantitative trait loci (QTLs) related to FHB resistance have been identified and analyzed 

(Buerstmayr et al., 2009; Li et al., 2010). In total, 52 QTLs were reported from different resource 

and were mapped on the wheat chromosome. Of the QTLs, Fusarium head blight 1 (Fhb1) from 

Sumai 3 was considered to be the most effective, stable QTL that is located on the chromosome 

arm 3BS (Buerstmayr et al., 2002; Somers et al., 2003), Fhb1 could explain the 60% phenotypic 

variation in resistance and it contribute to reducing susceptibitily of FHB resistance in the first 60 

h (Buerstmayr et al., 2009; Zhuang et al., 2013). Zhuang et al. (2013) also reported another gene, 

WFhb1_c1, was functionally associated with and physically located within Fhb1 may function 

together on the resistance.  

The bleached ears from Sumai 3-M. grisea interaction were appered after 15 dpi, and microscopic 

checking of the diseased rachillae revealed that Sumai 3 cannot restrict the fungal spreading. This 

indicates the polygenic resistance from Sumai 3 was not effective under the M. grisea infection. 

This major and minor genes controlled resistance slows down the spread of the disease and the 
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development of epidemics (Agrios, 2005). In the present study, Sumai 3 is moderate resistant to 

M. grisea in the artificial inoculation test, the defense system of Sumai 3 was not reacting when 

the pathogen started invasion, which may be caused by the absence of effective resistance or 

fungal effectors resulting in a postponed or suppressed defense related signaling or enzyme 

activation. Some studies considered that this susceptibility can be induced by multiple 

interactions between QTLs, linkage drag and related genes cross mediated on Fhb1 (Pumphrey et 

al., 2007; Cuthbert et al., 2007; Zhuang et al., 2013). Furthermore, this susceptibility may be 

associated with physical features like the long and thin ear, the tight space between spikelets, the 

plant height or the thickness of the epidermis (Zhuang et al., 2013). These physical traits might 

increase the possibility of spreading and invasion of M. grisea. It was found a M. grisea spore 

infecting the palea of Sumai 3 at 48 hpi, something which was rarely found in Milan towards to 

M. grisea.  

However, Sumai 3 possess some unbeneficial physical traits like low yield, high stem (110 cm), 

susceptible to other disease such as powerdey mildew, leaf rust (Wilde et al., 2007) and wheat 

blast. This poses a big challenge, especially since Sumai 3 became the major source of FHB 

resistance.  

Resistant cultivars to wheat blast and FHB is an important question for the farmer, since both 

wheat blast and FHB are destructive to wheat production, and it was found to occur together in 

some areas in mountain region (Cerrado) in South America due to the suitable temperature zone 

(20-25°C). The yield would not be guaranteed if Milan was chosen, likewise for Sumai 3. 

Therefore Milan and Sumai 3 have to be combined with other resistance sources to reduce these 

diseases and economic losses. The cross line from cultivar Milan/Sumai 3 and other resistant 

genotype or related species could contribute to further study. Furthermore, cultivar BR 18 was 

mentioned in previous studies as a moderately resistant cultivar against M. grisea in the field. It is 

widely cultured in South America (Prestes et al., 2007). However, according to our screening 

results, it was one of the most susceptible cultivars to F. graminearum. An effective resistant 

cultivar to both diseases still needs more research and development time along with the 

integration of a disease controlling scheme. This would be essential for the management of wheat 
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blast and FHB.  

4.2 Differential development of both pathogens on wheat ears 

Examing the pathogenic development is necessary to understand the disease progression on the 

ear and to establish a disease control scheme. In this study, wheat blast and FHB symptoms on 

ears are considered independently. For M. grisea, the partially bleached ear is the typical and 

critical symptom (Urashima et al., 2004), whereas leaf infection caused by M. grisea is only 

occasionally observed under high humidity and temperature conditions. Correlation analysis 

revealed that sensitivity of wheat lines to leaf infection is independent from head bleaching.  

F. graminearum may infect the plant head, stem or root under favorable conditions 

(Strausbaugh et al., 1986; Guenther et al., 2005). The diverse infection sites increase the 

likelihood of survival of the pathogen during winter and allow for the preparation of the 

inoculum for the next season (Guenther et al., 2005). F. graminearum infection initiated at the 

stem failed to infect the head (Clement et al., 1998), thus the symptoms of the head are 

independent with the other symptoms. 

Both types of fungal colonization were influenced by the resistance in the different wheat 

cultivars. M. grisea demonstrated rapid development in the susceptible cultivar Sumai 3, and 

exhibited a tendency of downward growth on the ear upon point inoculation. However, typical 

symptoms of blast failed to develop on the resistant cultivar Milan until 21 dpi. Progression of 

F. graminearum into the upper rachis was confined in the resistant cultivar Sumai 3. However, 

F. graminearum did not show differential distribution in the lower rachis of resistant and 

susceptible varieties, suggesting that F. graminearum possesses a highly downwards oriented 

growth property.  

Microscopic investigation on detached spikelets and rachillae showed differences in the 

progress of both ear diseases. The spikelet is an important exterior tissue of the ear and 

determines the grain production. More importantly, the spikelet is considered as the entry point 

for pathogens. Several previous reports have shown that the flowering stage favours the 

pathogen invasion, spores of F. graminearum deposit on or in the floral tissue for germination 
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and then initiate infection during the anthesis period (Sutton, 1982; Bai and Shaner, 1996).  

The conidia of M. grisea have been reported to only remain active for a short time and hence 

have to attach themselves to the host surface for a quick infection. Once the landing and 

adhesion to the surface of the plant has succeeded, germination and germ tube elongation will 

follow quickly (Talbot, 1995; Thines et al., 2000). By following the germiantion, a specialized 

structure named the appressorium is produced (Figure A 2), and a penetration peg then is 

developed and pushed into the plant tissue for invasion by physical pressure (Thines et al., 

2000). Since conidial germination relies on the energy source of the spore (Howard et al., 1991; 

de Jong et al., 1997), germinating hyphae of M. grisea can consequently be discovered in 

suspension or at different locations on the host instead of the specific infection sites. This 

perspective was proved in the present investigation, the germinated spores of M. grisea were 

observed on the anther, palea, and stigma at early stages of 12 hpi in both cultivars, implying 

the extensive germination increases the infection chance of M. grisea, and leads to the scattered 

spreading of M. grisea in the spikelet. Furthermore, resistance of varieties had no clear impact 

on conidia germination.  

Conversely, F. graminearum invades the plant directly through the stomata or via wounds 

(Pritsch et al., 2000; Trail et al., 2002; Bushnell et al., 2003). Germinated spores develop 

hyphae to colonize the exterior surfaces of the spikelet such as florets and glumes, or directly 

penetrate the epidermal tissue through stomata (Ribichich et al., 2000). The first infection step 

on the ear is the anther. In this study, germinated spores were only found on the anther at 12 

hpi, this might be due to the choline or other contents in the anther. Also the anther is the first 

mature tissue which is exposed and comes into contact with F. graminearum inoculum (Strange 

et al., 1978; Ribichich et al., 2000). Additionally, the susceptible variety Milan improved the 

opportunity for germination and advanced the development of F. graminearum in the spikelet. 

Some researchers pointed to the expansion strategy of F. graminearum inside the floret: hyphae 

colonized the filament and the stigma, penetrated the ovary and colonized the floret bracts 

including the glume, palea and lemma (Esau et al., 1965; Pritsch et al., 2000; Gilbert et al., 

2004). Presently, this strategy was verified since the colonization of the filament and stigma 
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was observed after 24 hpi in both cultivars, following the mycelia were found to be thriving 

around the glume and lemma after 48 hpi. Resistance of cultivar played a role once again after 

48 hpi when F. graminearum was seen to occupy the whole spikelet. The susceptible cultivar 

Milan was infected far more rapidly than the resistant one Sumai 3. Nevertheless, due to the fast 

growth of F. graminearum, hyphae were distributed all over the spikelet in both cultivars after 

72 hpi. 

The rachilla connects the rachis and spikelet. It is a key point for the systemic pathogen progress 

in planta. The vascular bundles inside the rachilla are linked to the ones in the rachis and stem, 

which forms a path for the fungal expansion in planta. Pathogens may reach the rachilla through 

the spikelet or penetrate through the epidermal tissue. Initially, M. grisea was detected in the 

vascular bundles of the susceptible cultivar Sumai 3 from 12 hpi to 24 hpi, whereas in resistant 

Milan, M. grisea was found in vascular bundle only at 36 hpi. M. grisea clearly spreads fast both 

intra- and inter-cellularly in the susceptible cultivar Sumai 3. The rachis of Sumai 3 between the 

inoculated sites became bleached around 10 dpi, which is associated with the fact that the rachilla 

of Sumai 3 was colonized after 7 dpi, suggesting M. grisea can grow in and occlude the vascular 

bundles in rachis. Additionally, it can be deduced that M. grisea colonizes the rachilla first, then 

occludes the xylem in the rachis to block the transport of water or nutrients, thus the typical 

partial bleached ear was shown. On the other hand, up until 14 dpi, under the microscopy 

checking, the whole rachilla of resistant cultivar Milan was filled with M. grisea, particularly in 

the xylem. However, at 14 dpi, the rachis in Milan between the inoculated sites was not bleached. 

In detail, it was found that M. grisea expansion was restricted by some amorphous substances or 

thickened cells in the resistant cultivar Milan. This may suggest that the resistance in Milan 

inhibits the fungal development and spreading in rachis, which indicate M. grisea is hard to grow 

or occlude the vascular bundles in rachis of Milan.  

F. graminearum showed a similar invasion as M. grisea in cultivar Sumai 3, the pathogen was 

presented in vessels and vascular bundles around 12 and 24 hpi, respectively. This may due to 

some physical traits of cultivar Sumai 3, indicating it is easier infected by both pathogens. Until 

14 dpi, in the resistant cultivar Sumai 3, the collapsed tissues were limited but some vascular 
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bundles have been destroyed. F. graminearum tends to destroy the vascular bundles to spread 

vertically-along the ear (Strausbaugh et al., 1986; Guenther et al., 2005). Moreover, only a short 

region of the rachis was bleached in Sumai 3 after 15 dpi, although F. graminearum exhibits a 

downward spreading tendency, which may suggest that the spreading of F. graminearum was 

restricted by Sumai 3 in rachis. Besides, F. graminearum was observed the infection in the 

epidermal surface of rachis (Figure A 3). On the contrary, towards the susceptible cultivar 

Milan, F. graminearum was presented in the vascular bundles after 24 hpi. The susceptible 

cultivar slightly improved F. graminearum expansion in the rachilla at the initial stages. 

Reviewing the inoculation results, two thirds of ears from Milan were bleached at 5 dpi, which 

corresponded to the fact that the examined rachilla were completely colonized around 5 dpi. 

Overall, F. graminearum was growing faster than M. grisea in both cultivars, but developments 

of both pathogens were restricted in the resistant varieties in the macro- and microscopic 

examinations. During the disease progression inside a spikelet, resistant or susceptible traits had a 

weak effect on the development of M. grisea, but they worked successfully with the 

F. graminearum invasion, especially within 12 hpi. The anther is clearly an essential and critical 

factor for F. graminearum. Whereas, M. grisea is not limited to the anther and thus free to expand 

on diverse tissues within the spikelet. F. graminearum followed a certain strategy of expansion in 

the spikelet. In the rachilla, M. grisea was influenced by the different resistance properties of 

cultivars. Both pathogens aim at colonizing the vascular bundles.  

Furthermore, for disease development on ears, there were horizontal and vertical pathways 

available for fungal spreading. Fungal spread can be inside the plant tissue through vascular 

bundles to colonize the rachis and reach other spikelets vertically. Alternatively, after one spikelet 

was infected, the hyphae colonized the whole spikelet, grew over the palea, lemma and glume, 

and expanded to an adjacent spikelet horizontally (Ribichich et al. 2000). In this study, M. grisea 

and F. graminearum were observed spreading through vertical pathways, since both pathogens 

colonizations were found in different sites near the inoculation point. Especially, F. graminearum 

spread more distance than M. grisea. Another point is F. graminearum spread in a clear horizontal 

pathway in cultivar Milan, and the mycelium was obvious on the spikelets. Generally, 
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F. graminearum displayed a clearer pattern in spreading compared with M. grisea.  

4.3 Defense responses in wheat ears to M. grisea and F. graminearum  

4.3.1 ROS in ears 

Although plenty of studies about the role of ROS in plant-pathogen interactions have been 

reported (Torres et al., 2006; Schützendübel et al., 2002; Chamnongpol et al., 1998), few studies 

on ROS accumulation in wheat ear have been conducted. Here we are going to discuss the 

differential role of ROS in the ears upon infection with M. grisea and F. graminearum, with 

special emphasis on the resistance of interactions. 

O2
- 
, the main product of ROS, is extensively produced during pathogenesis. In our study, at 12 

hpi, O2
- 

accumulation was simultaneously activated in all compatible and incompatible 

interactions with different induction levels. A similar situation is reported by Trujillo et al. 

(2004). They found that ROS accumulated in both compatible and incompatible interactions of 

barley infected with powdery mildew (Blumeria graminis). Another example where O2
- 

is 

produced was in alfalfa nodules responding to Sinorhizobium meliloti infection (Santos et al., 

2001). In present study, there were significant increases of O2
- 
accumulation in cultivar Milan 

against the two pathogens when compared to a non-inoculated plant at 12 hpi. These increases 

can be considered as a recognization between plant and pathogen invasion and is a signal that 

plant will react to the infection, suggesting the initiation of defense. Moreover, the differential 

O2
- 
accumulations may be caused by the distinct surface structure of plant, epidermal physical 

features or plant pattern recognition receptors (PRR) (Molloy, 2010).   

O2
- 
accumulation in all interactions decreased after 12 hpi until 36 hpi compared to the control 

plant. This was particularly noticeable in the moderately susceptible interaction Sumai 3-M. 

grisea and resistant one Sumai 3-F. graminearum at 36 hpi: both had significant decreases 

compared with Sumai 3 control. It seems that the drop of O2
- 
accumulation in all interactions was 

regulated by the pathogens as they tried to reduce the ROS level to avoid or eliminate the 

possibility of defense reactions. Certain enzymes and related gene expression networks from the 

pathogen can be involved in this reduction. A global gene expression analysis was conducted in 
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the research of wheat coleoptiles against a F. graminearum invasion. During the infection, 

extracellular O2
- 

scavenging enzyme related genes in F. graminearum underwent a significant 

increase between 0 and 16 hpi, after which the expression level of these genes was stable until 64 

hpi. Accordingly, the extracellular ROS producing enzyme related genes were expressed at a 

lower rate prior to 40 hpi (Zhang et al., 2012).  

O2
- 

accumulations in Milan/Sumai 3-F. graminearum interactions were observed to increase 

again at 48 hpi which may due to the plant defense system struggling with pathogen infection. 

Followed it also underwent a prominent increase in the susceptible interaction Milan-

F. graminearum at 60 hpi. It is speculated that the rising O2
- 
accumulations may be resulted by 

the enzyme work from plant, more ROS was evoked to try to contend against the pathogen, but 

the plant defense in Milan was failed to establish since the O2
- 
accumulation sharply dropped at 

72 hpi, which may caused by the enzyme work from pathogen. Meanwhile, a rise of O2
- 

accumulation was detected in the resistant interaction Sumai 3-F. graminearum, suggesting that 

the O2
- 
accumulation was modified by plant to enhance the resistance. O2

- 
accumulation in the 

resistant interaction Milan-M. grisea was exhibited positive and similar situations from 48-60 

hpi, then a drop occurred in 72 hpi which may result from the successful plant defense 

establishment. However, O2
- 
accumulation increased in the susceptible interaction of Sumai 3-

M. grisea from 48-60 hpi, indicating that the plant was continuously trying to promote plant 

resistance. Generally, in comparison with M. grisea, it is assumed that F. graminearum has a 

potential to induce more intense reactions in the host plant during infection. 

In the histochemical investigation, NaN3 is used to avoid unspecific NBT reduction. This 

prevents the production of superoxide radicals by peroxidase and the mitochondrial respiration 

chain (Hückelhoven and Kogel, 1998). By the NBT staining, blue lesions were found in various 

shapes and sizes in the compatible interactions, especially in Milan-F. graminearum, normally 

indicating that the pathogen has successfully penetrated (Hückelhoven and Kogel, 1998). NBT 

staining was visible throughout the cells which neighbored the dead cells in the susceptible 

interaction Milan-F. graminearum. This may indicate that O2
- 
accumulation is involved in cell 

death and has a restrictive role in the spreading of lesions (Jabs et al., 1996; Epple et al., 2003). 
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O2
- 
is considered to be a cell death-inducing signal in some plant-pathogen interactions which 

are related to the production of jasmonic acid (JA). JA is a signal compound which may induce 

O2
- 
under stress and pathogen development (Overmyer, 2003; Turner et al., 2002). Thus, the 

increased O2
- 
accumulation which was occured in the susceptible interaction Sumai 3-M. grisea 

may be due, in part, to serious cell death during pathogenesis in the later stages of infection.  

H2O2 accumulation was weakly expressed in the first oxidative burst stage. In the present study, 

at 12 hpi, H2O2 accumulation was similar in all the interactions as in the controls. However, 

H2O2 high accumulation always accompanies the second phase of oxidative burst which 

corresponds to the R gene function in the plant, recognizing an avirulence factor of pathogens 

(Torres, 2010). This process induces strong ROS accumulation and normally displays the HR 

response associated with cell death during infection (Jones and Dangl, 2006). In the present 

study, the H2O2 concentration underwent a significant rise at 48 hpi in the incompatible 

interaction Milan-M. grisea. This may indicate that 48 hpi is critical for M. grisea to be 

recognized by the R gene from Milan. Furthermore, during the blast symptom evaluation on 

Milan inoculated with M. grisea, intense necrotic lesions were found on ears at 48 hpi implying 

that HR reactions were activated, accompanied by H2O2 accumulation. However, there was no 

clear increase happening in another incompatible interaction: Sumai 3-F. graminearum. It 

should consider that Sumai 3 is based on a polygenic resistance to F. graminearum. Under this 

resistance mechanism regulation, type II resistance is obvious but no HR response. As we 

mentioned before, the Fhb1, function on the resistance of Sumai 3 to F. graminearum, it is 

estimated seven genes were functionally asscioated with each other and responsible for the 

resistance (Li and Yen 2008; Zhuang et al., 2013), whereas the resistance of Milan may be 

contributed by the major resistant gene. Additionally, at 48 hpi, a sharp drop was recorded in 

another incompatible interaction: Sumai 3-F. graminearum. This represented the lowest values 

in all interactions during the whole procedure. It may demonstrate how a compromise between 

the plant and pathogen, also partly due to the polygenic resistance from Sumai 3. Baptista et al. 

(2007) reported that H2O2 accumulation had three peaks within 15 hpi for the ectomycorrhizal 

fungus Pisolithus tinctorius interacting with the roots of Castanea sativa (chestnut tree). This 

may be due to the inhibition by ROS-scavenging enzymes from fungus.  
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Clear histological evidences from DAB staining were shown in the Milan-M. grisea interaction 

at 48 hpi, with a very strong brown colour. This coincided with the burst of H2O2 accumulation 

in Milan-M. grisea. However, some weaker DAB stainings were found in the resistant 

interaction Sumai 3-F. graminearum at 48 hpi, but no corresponding accumulation was shown 

in the H2O2 concentration investigation. Nevertheless, this histochemical phenomenon may 

suggest that a recognition response or enzyme activities happened in the two incompatible 

interactions. In 2002, Torres reported the accumulation of a significant oxidative burst which 

was positively related to the HR reaction in the dSpm insertions for highly expressed AtrbohD 

and AtrbohF genes during the resistance interaction of tomato against the avirulent bacteria 

DC3000 (avrRpm1). Furthermore, an increase of H2O2 accumulation was detected in barley 

with mlo resistance compared with the wild type Mlo (Hückelhoven, 1999, 2000). 

In DAB and NBT study, the cell wall apposition (CWA) was not clear, and only the drak brown 

or blue stainings were found. However, CWAs are produced by crosslinks of phenolics and are 

regarded as a physical barrier to pathogen infection. Normally, H2O2 can be located in the 

CWAs and is regarded as the substance employed for lignification-like processes (McLusky et 

al., 1999; Hückelhoven and Kogel, 2003). CWAs can be found in both compatible and 

incompatible interactions (Hückelhoven, 2007). In the present study, strong staining caused by 

the presence of O2
- 
was only exhibited in the compatible interaction Milan-F. graminearum, if it 

is considered to be the CWAs, probably indicating that part of the O2
-
 may have been converted 

to H2O2 and be involved in cell wall strengthening. In the DAB staining, strong staining 

occurred in Milan-M. grisea, which may thought as the CWAs due to H2O2 accumulation. 

Both O2
-
 and H2O2 accumulation appeared different in resistant and susceptible interactions. The 

clear rising and drop was found in Milan-M. grisea/F. graminearum interactions. These changes 

may be correlated with pathogen infection, plant defense activation, cell death or imbalance of 

the ROS regulation system (Hückelhoven and Kogel, 2003; Huang et al., 2011a). From the 

symptom observations of the four interactions, it appears that rapid colonization of 

F. graminearum finished in a short time on Milan, which might be a reason for the relatively high 

induction of both H2O2 and O2
- 

in the early infection stage. Hückelhoven (2000a) reported a 
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strong O2
-
 accumulation and very faint H2O2 accumulation were detected around the pathogen 

invasion site and adjacent cell walls. Wang et al. (2010) observed that both H2O2 and O2
- 
emerged 

in the tissue or cells which were in contact with cells killed during the HR response by plant 

mesophyll cells around the infection site.  

Although ROS is considered as a significant marker for plant of pathogenesis with important 

signaling and regulation functions, pathogens have developed a counter defense mechanism to 

antagonize ROS accumulation. For instance, a conserved effector HopAI1 from Pseudomonas 

syringae inhibited the activation of two mitogen-activated protein kinases (MAPKs) from 

Arabidopsis by dephosphorylation. This consequently suppressed a flagellin-derived peptide 

flg22 gene expression along with H2O2 production and cell wall reinforcement in the 

compatible interaction to promote pathogenesis (Zhang et al., 2007). A pattern for re-

programming the metabolism was discovered in rice infected with Brachypodium distachyon in 

the early stages. The pathogen triggered the suppression or delay of H2O2 synthesis in different 

hosts, therefore impacting the plant defense system and colonizing the plant tissue successfully 

(Parker et al., 2009). 

Normally O2
- 
has been considered as one of the sources of H2O2 production. The related enzyme 

superoxide dismutase (SOD) refers to the dismutation function of the O2
- 

radical to H2O2 

(Giannopolitis and Ries, 1977; Bowler et al., 1992), and the catalase (CAT) and peroxidase 

(POX) are mainly responsible for the removal of H2O2 production (Arora et al., 2002; Hiraga et 

al., 2001; Mittler, 2002). In the present results, in the resistant interaction Milan-M. grisea, 

some conversion between O2
-
 to H2O2 was displayed between 24 and 48 hpi, which implies that 

H2O2 accumulation might be generated partly from O2
-
, which could be explained by O2

- 

scavenging enzymes like, for example, SOD may join the conversion
 
(Hückelhoven and Kogel, 

2003). But after 48 hpi, H2O2 was decreased while O2
-
 stayed stable. This reduction of H2O2 and 

stable O2
-
 accumulation after 48 hpi may be caused by POX, which may consume and detoxify 

H2O2 with various substrates, while also producing ROS such as O2
-
 (Gechev et al., 2006). 

While in this study the gene expression data demonstrated that the POX related gene turned to 

high expression levels in Milan-M. grisea after 48 hpi, it has been proved that POX is 



 Discussion  

99 

 

negatively associated with H2O2 accumulation. A recent detection of biochemical changes in the 

leaves of the wheat-Pyricularia oryzae interaction revealed that POX accumulation at 48 hpi 

increased until 96 hpi in both resistant and susceptible interactions (Debona et al., 2012). 

However, in the susceptible interaction Sumai 3-M. grisea, both ROS accumulations were low 

until 72 hpi, perhaps because no strong defense reaction was activated in the interaction. There 

was a small drop in O2
-
 at 36 hpi while H2O2 experienced a small increment. This conversion 

may relate to the O2
- 
scavenging enzyme.  

In the incompatible interaction Sumai 3-F. graminearum, the enzymatic mechanism of the plant 

defense system may contribute to the drop in H2O2 accumulation. According to the gene 

expression data, POX related genes were only slightly induced in Sumai 3-F. graminearum at 

48 hpi, so probably another remover eliminated the H2O2 at 48 hpi to relieve the toxic stress. 

Meanwhile, the rise of O2
- 
accumulation may be due to the imbalance of ROS. Additionally, 

ROS accumulation went up in Sumai 3-F. graminearum after 60 hpi, while it decreased in 

Milan-F. graminearum after 60 hpi, a phenomenon which may be caused by regulation from 

different resistance mechanisms. 

The current work shows the diverse performance of O2
- 

and H2O2 in the incompatible and 

compatible interactions of wheat ears infected with M. grisea and F. graminearum. However, 

while H2O2 had a more evident pattern and would be a clear indication of resistance in plant-

pathogen interactions, which is regulated by the recognition between pathogen and R gene. O2
-
 

tends to serve as more of a signal of plant reaction, defense activation, JA pathway or resistance 

recognition (Overmyer, 2003; Gechev et al., 2006). Different rates of O2
-
 production in the 

continuous time courses are co-regulated by the enzyme works from plant and pathogen, 

resulting from the competition between plant and pathogen. But the idea behind the different 

ROS accumulation is the different resistance mechanisms, the polygenic and mongenic 

resistance can lead to different defense reactions and chemical pathways that induce the 

different accumulations of ROS. Based on the resistance mechnisms, the gene expression and 

regulation is the only part to determine all the reactions and defense. Therefore, ROS is a 

comprehensive signal action and the gene expression analysis will be critical to understand the 
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plant resistance mechnisms during the colonization by pathogens. 

4.3.2 Differential gene expression in infected ears  

A number of gene studies were performed on ears to discover the different reaction patterns of 

the tissues with pathogens. But limited reports were shown about the wheat ears and M. grisea 

and F. graminearum. However, we have presented a new report on the reaction from various 

structures of the wheat ear against F. graminearum and M. grisea, to better recognize the plant 

defense underlying the different resistance, the gene expression analysis is applied. And 

according to fungal expansion during the pathogenesis under the microscopy work, two major 

parts were used in the gene study. The first part is the exterior spikelet tissue and the connected 

rachilla in 24 and 48 hpi; the second is the rachis in 3 and 5 dpi. 

Pritsch (2001) examined the transcript accumulation of four PR genes in colonized and non-

colonized areas of wheat ears, and the results demonstrated that the PR genes are systemic 

expressed and were not specifically induced in resistance or susceptible interactions. The PR-

proteins which are encoded by the PR genes represent a critical and necessary group and were 

expressed in the compatible and incompatible procedure to play important roles in plant 

defense. Normally they function together with the plant immune system and defense activation 

system (Antoniw et al., 1980; Dixon et al., 1994). However, most of the PR related proteins 

have been identified to exist in non-infected plants in certain tissues or developmental stages. 

Based on the immunological reactivity and bio-information of the proteins, 14 different groups 

of PR-proteins have been established (Van Loon and Van Strien, 1999), and many of the PR-

proteins exhibit antimicrobial or antifungal activity (Dixon et al., 1994; Sels et al., 2002).  

Chitinases are antifungal proteins which belong to the PR3 group and work to catalyze the β-1, 

4-glycoside bond in chitin, a substrate that mainly exists in fungal cell walls, insect 

exoskeletons and the shells of crustaceans (Wally et al., 1992; Flach et al., 1992). The PR2 

group (β-1, 3-glucanases) preferentially hydrolyzes the β-1, 3-glucan linker in the cell wall of 

many pathogenic fungi (Liu et al., 2009). Both chitinases and β-1, 3-glucanases are combined to 

enhance antifungal activity and show an ability to inhibit fungal growth (Mauch et al., 1988; 

Kirubakaran et al., 2007). When a fungal cell wall contains β-1, 3-glucans or chitin (Bartnicki-
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Garcia, 1968) and comes across these hydrolytic enzymes, cell wall fragments which contain 

oligosaccharides could be released and can activate defense responses in a variety of plants 

(Mauch et al., 1989; Ham et al., 1997). Moreover, chitin and β-1, 3- glucan synthase could be 

hindered during the cell wall assembling process, causing additional cell wall dissolution 

(Muthukrishnan et al., 2001). 

In the present study, the genes Chi2 and PR2 represent diverse accumulation levels in the 

incompatible and compatible interactions with M. grisea and F. graminearum, and both seem to 

be served as a pathogenesis related gene. However, gene Chi2 was predominant in the rachis of 

cultivar Milan infected by M. grisea and F. graminearum. It is known that F. graminearum 

transferred from one or two spikelets to more on the ear in Milan at 3 dpi, at which point Chi2 

accumulation was noted to increase. In the Milan-M. grisea response, the initial expansion stage 

of M. grisea in the rachis was at 5 dpi when Chi2 had higher expression. This may imply that 

Chi2 expression was associated with fungal expansion inside the rachis, and the accumulation 

level of Chi2 was enhanced in cultivar Milan to confine the development of F. graminearum 

and M. grisea. However, in Sumai 3-F. graminearum interaction, the expression of Chi2 was 

found to be stable but relatively low at 3 dpi, potentially because the gene was less activated in 

Sumai 3. It also may explain why there was a much lower expression of Chi2 in the Sumai 3-

M. grisea interaction although at 5 dpi there was still a severe infection point for M. grisea 

colonization.  

PR2 was differentially low expressed in various tissues in both compatible and incompatible 

interactions. However, PR2 accumulation levels in the resistant response of Milan-M. grisea 

was influenced in the beginning whereas in the susceptible response of Sumai 3- M. grisea 

levels were influenced in the later stages. The first period 24 hpi was essential for PR2 

accumulation in both Milan interactions, while PR2 accumulations were slightly lifting in 

Sumai 3 interactions at the later stages, which may indicate that the PR2 gene regulation was 

activated during the pathogens initial invasion of Milan, and the further fungal development in 

Sumai 3. With these responses, it seems that the PR2 gene may not be essential to build certain 

defenses in host plant.  
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PR5 encodes for thaumatin-like proteins (TLPs) which are polypeptides and occur universally 

in plants (van Loon et al., 2006). The PR5 family includes the closely related proteins permatin, 

osmotin and zeamatin (Vigers et al., 1992; Skadsen et al., 2000). Many PR5 proteins have been 

identified as antifungal compounds. A PR5 protein from rice overexpressed in transgenic 

tobacco plants exhibited an enhanced resistance to Alternaria alternata (Velazhahan and 

Muthukrishnan, 2003). And the RT-qPCR analysis revealed that TaPR5 transcription level was 

significantly increased and up-regulated in the incompatible interaction (Wang et al., 2010). 

In the present work, high transcript accumulations of PR5 were induced in the resistant 

response of Milan-M. grisea and susceptible Sumai 3-M. grisea interaction at 3 and 5 dpi, 

respectively. In another susceptible interaction Milan-F. graminearum, a relatively high 

transcript accumulation was exhibited at 3 dpi as well, but the gene PR5 was mainly expressed 

in the M. grisea interactions in the rachis at later stages. It is difficult to judge whether PR5 is 

an indicator of more resistance or not, but these expressions may suggest that PR5 is involved 

in plant defense of cultivar Milan against pathogen invasion rather than Sumai 3. Furthermore, 

the enhanced induction of Chi2, PR2 and PR5 in Milan (but not in Sumai 3) to F. graminearum 

may be led by defense mechanism in Milan, which tried to activate the three PR genes to 

associate with the resistance to combat the pathogen.  

Pathogens, elicitors, stresses and some phytohormones can induce POX related genes during 

the activation of the plant defense system (Van Loon et al., 1999; Muthukrishnan et al., 2001). 

POX has multiple functions which are hard to define. Generally, POX are a group of plant-

specific oxido-reductases and can be involved in lignification, suberization, cross-linking of cell 

wall structural proteins, auxin catabolism, and defense against pathogen infection (Hiraga et al., 

2001; Whetten et al., 1998; Lagrimini et al., 1997). In rice, two Pox genes were reported and 

were predominantly expressed in the resistant interaction against Xanthomonas oryzae (Chittoor 

et al., 1997). Li et al. (2010) detected that one of the POX related genes, Pox2, was induced in 

both compatible and incompatible interactions of wheat against F. graminearum infection 

without any significant difference. Additionally, some studies suggested that several Pox genes 

are induced via different signal transduction pathways from known defense-related genes 
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(Hiraga et al., 2001). 

A previous report demonstrated that the wheat anionic peroxidases can bind to chitins, and the 

ionically binding peroxidases appeared in the cell walls of infected wheat calli. This indicated 

that these peroxidases might be involved in the reinforcement of cell walls (Maksimov et al., 

2004). In this study, the Pox2 gene was high expressed in the two Milan-pathogen interactions 

from 24 hpi to 5 dpi. It is speculated that the Pox2 gene regulated the lignin or cell wall 

reinforcement process in cultivar Milan to manage the initial defense response. It also indicates 

that the enzyme and signal transductions related to lignin and cell wall reinforcement are the 

early and mian defense responses in Milan. Moreover, the gene Pox2 regulates the ROS 

accumulations in plant since it encodes the POX that may contribute to detoxify H2O2 with 

various substrates, which can also produce ROS such as O2
- 
(Gechev et al., 2006). With regards 

to the previous result of H2O2 accumulation, it is assumed that the high accumulation of H2O2 is 

due to the strong suppression of Pox2 expression, and the Pox2 gene may function as a 

regulator of H2O2 levels in the oxidative burst. In pepper leaves infected by Xanthomonas 

campestris, three peroxidase-like genes showed correlation with H2O2 accumulation. POX 

activity declined at 24 and 30 hpi, while the accumulation level of H2O2 reached its peak, and 

two peroxidase-like genes were induced 1 h after exogenous treatment with H2O2, while other 

peroxidase-like gene transcripts accumulated 12 h after H2O2 treatment (Do et al., 2003).  

In the present study, remarkably strong transcript accumulations of the Pox2 gene were 

obtained in the compatible interaction Milan-F. graminearum that exhibited extensive and 

extremely high induction levels, especially at 48 hpi in the spikelet and rachilla, reaching up to 

2600 fold changes. This was coupled with the rising O2
- 

accumulation at 48 hpi, where the 

lowest H2O2 levels were recorded in the same interaction. Additionally, the expression of Pox2 

also coincided with decreased H2O2 level at 24 hpi in the spikelet and the rachilla in Milan- 

F. graminearum interaction. However at 3 dpi, the accumulation of H2O2 was not concordant 

with Pox2 expression may due to the rachis was used in gene analysis but the palea was used in 

the ROS detection. Relatively high transcript induction of Pox2 also occurred in the 

incompatible response Milan-M. grisea from 24 hpi to 5 dpi. The expression peaks emerged at 
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24 hpi and 5 dpi with 730 and 795 fold changes, respectively. The minimum suppression was 

shown at 48 hpi and 3 dpi. The unstable expression of Pox2 in Milan-M. grisea was also 

considered to be connected with the ROS accumulation.  

Inversely, the Pox2 transcript accumulation in Sumai 3 interactions was far below that seen in 

Milan interactions. This may suggest that the lignin or cell wall reinforcing process is not 

critical defense reaction for Sumai 3 to the pathogen, it may be consequenced by the resistance 

of Sumai 3 which are controlled by several genes. And the ROS reactions in Sumai 3 

interactions were not activated as in Milan interaction, indicating the related signal transduction 

was not the main contribution to the defense of Sumai 3.   

The accumulation of CCR gene was evaluated in a similar manner as the Pox2 in Milan-

F. graminearum and Milan-M. grisea interactions from 24 hpi to 5 dpi. CCR was activated in a 

lower expression level in the Milan-M. grisea interaction. The close accumulations of the two 

genes demonstrate that CCR gene corresponded to Pox2 gene take responsible for lignification 

in Milan defense response. Moreover, transcript accumulation of CCR was elevated in 

interactions Sumai 3-F. graminearum and Sumai 3-M. grisea at a later period, whereas the 

higher induction of the incompatible interaction Sumai 3-F. graminearum compared with the 

CCR expression in the compatible interaction Sumai 3-M. grisea. This may suggest that 

lignification related pathway was activated in Sumai 3 against pathogen at later stages, being 

more relevant in plants infected by F. graminearum than M. grisea.  

Expression of defense gene PRPI was quite weak. The highest induction recorded was only 4 

fold at the beginning time course of the susceptible interaction Milan-F. graminearum. Just 2.6-

fold changes were induced in the resistant interaction Milan-M. grisea. This may suggest the 

defensin concerning gene was not activated in wheat ear during the pathogenesis. Moreover, the 

PRPI gene was found to be only activated directly in the spikelet and rachilla of cultivar Milan, 

at 24 and 48 hpi. As Kovalchuk et al. (2010) mentioned, PRPI is predominately expressed in 

soft plant tissues such as the leaf, lemma, palea and anther. The defensin gene PRPI is 

considered to be regulated by the jasmonate pathway (Manners et al., 1998; Kovalchuk et al., 

2010). 
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UGT and CYP genes have been described in numerous studies of various crops in response to 

Fusarium infection. UGTs are encoded by a very large gene family in plants and expression 

levels of most UGT candidates vary under the resistance response to Fusarium spp. (Schweiger 

et al., 2010). UGT genes have been identified to carry out a potential function in DON 

detoxification in wheat with an up-regulation in response to Fusarium spp. (Desmond et al., 

2008; Steiner et al., 2009). In recent investigations on the relationship between gene transcript 

expression and DON accumulation performed on wheat against Fusarium culmorum, the results 

elucidated that UGT and CYP genes were positively correlated to DON accumulation in the 

stem basis (Winter et al., 2013). Li et al. (2010) demonstrated that a plant cytochrome P450 

gene, CYP709C1, was expressed in resistance reactions in both the seedling and the ear reacting 

to F. graminearum, which was triggered by DON in a resistance-dependent manner. However, 

when testing the expression levels of four UGT genes from barley in Arabidopsis that displayed 

a high accumulation of DON, a HvUGT13248 gene conferring DON resistance in barley was 

confirmed by heterologous expression in yeast (Schweiger et al., 2010). This implied that not 

all UGT genes are definitely associated with DON detoxification.  

In the present study, certain expected expressions of the UGT and CYP709C1 genes were 

exhibited in the wheat ear response to F. graminearum in both compatible and incompatible 

interactions. In the plant host, UGT gene transcript accumulation resembled the CYP709C1 

gene against F. graminearum in the rachis at 3 dpi. Consequently, UGT and CYP709C1 gene 

transcript accumulation rapidly arrived at a peak at 3 dpi in both F. graminearum interactions. 

At 3 dpi, the expression of UGT in the resistant response with Sumai 3-F. graminearum and the 

susceptible interaction with Milan-F. graminearum was 280-and 176-fold, respectively. 

CYP709C1 reached 32-and 16-fold changes. Cultivar resistance to F. graminearum influenced 

the induction of both genes and led to a stronger expression in resistant interactions Sumai 3-

F. graminearum. This result illustrates that UGT and CYP gene transcript expressions were 

reacted to the resistance of wheat cultivars to F. graminearum. While information about DON 

accumulation could not be determined in the present study, it is well known that it plays a role 

in the expression of both genes during pathogenesis (Gardiner et al., 2010; Schweiger et al., 

2010). However, a surprising burst of UGT transcript expression occurred in the compatible 
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interaction Sumai 3-M. grisea at 5 dpi, which reached 280-fold induction and more or less 

equalled the highest level in Sumai 3-F. graminearum at 5 dpi. This phenomenon may either be 

due to the stress caused by M. grisea invasion or is due to some unknown compounds were 

produced by pathogen in the later pathogenesis stages, requiring further analysis to reveal this 

question. 
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Summary 

The hemi-biotrophic fungus Magnaporthe grisea has recently developed into a potential threat 

to wheat production in South America. Continuously warm and humid weather after ear 

emergence favours the disease. However, knowledge about the control of this disease is 

relatively insufficient as compared to rice blast. Wheat blast can attack all above-ground parts 

of the wheat plant, but the typical symptom is head infection, which is commonly found 

together with Fusarium Head Blight. Fusarium Head Blight (FHB) induced by Fusarium 

graminearum produces similar symptoms as wheat blast, and is another threat to wheat 

production. Both diseases can cause partially or entirely bleached ears, which may result in high 

yield losses. This study therefore aimed to determine the differential resistance of wheat 

cultivars and to understand the infection process of wheat blast and FHB. The findings of this 

study have unraveled the differences between the susceptible and resistant plant-pathogen 

interactions between the diverse wheat genotypes and the two pathogens. 

Initially, the inoculation system for M. grisea and F. graminearum was optimized in a 

controlled environment. A set of twenty-seven wheat cultivars was used to establish a suitable 

inoculation protocol,,and a disease scoring and evaluation system. Cultivar Milan exhibited the 

highest resistance to M. grisea but showed a susceptible reaction towards F. graminearum, 

whereas cultivar Sumai 3 displayed opposite responses to both pathogens. These results were 

confirmed with point inoculations on the ears. Distinct patterns of spreading and colonizing ears 

were found for the two pathogens. M. grisea generally grew at a slower speed than 

F. graminearum on the host. Upon point inoculation in the center of the ear, downward growth 

along the ear axis was shown for both pathogens, especailly in the susceptible interactions. 

However, upward spreading on the ears was dependent on the type of interaction.  

Further, the differential spreading of M. grisea and F. graminearum was determined on the ear 

and within a spikelet. Staining methods and GFP-labelled strains were employed with confocal 

laser scanning microscopy (CLSM). Infection on spikelets was followed in a time course in three 

days with 12 h sampling intervals. M. grisea spores germinated extensively in the spikelet within 
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12 hpi, and initial fungal development was not influenced by the cultivar, whereas 

F. graminearum colonized only the anthers, most probably prior to 12 hpi. After 12 hpi, the 

development of F. graminearum in the susceptible cultivar Milan was both faster and highly 

invasive when compared to the resistant Sumai 3. Moreover, the spikelet colonization was more 

pronounced at 72 hpi than at initial time points. On the other hand, we observed a reduced growth 

rate of M. grisea on the spikelet after 12 hpi, when compared to F. graminearum. The growth rate 

of M. grisea was consistently similar in Milan and Sumai 3 until 72 hpi. Cultivar resistance had 

an impact on fungal growth and expansion on the rachilla. At 7 dpi, an extensive colonization of 

the rachilla of Sumai 3 by M. grisea was observed, whereas the pathogen growth in Milan was 

slow at first but grew extensively at 14 dpi. This indicates that Milan restricted the growth of M. 

grisea at the initial stages earlier than Sumai 3. However, the extensive colonization of rachilla, 

not of the rachis, in Milan by M. grisea is intriguing and may suggest that resistance restricts the 

pathogen development in a small scale. A similar explanation may apply for F. graminearum 

colonization of Sumai 3. Both pathogens seem to grow more rapidly after entering the vascular 

system and spread systemically downwards in the rachis, but more profusely for F. graminearum 

compared to M. grisea. The successfulness of infection by M. grisea may depend in part upon the 

tissue in which the infection begins. Furthermore, F. graminearum may exhibit horizontal and 

vertical spreading during host colonization.  

The further aim of this work was to identify the contribution of plant defense responses, 

including ROS metabolism and gene expression levels of a set of 8 selected genes. Firstly, we 

determined superoxide radical accumulation using in situ NBT staining, while hydrogen 

peroxide was detected in situ using DAB staining and by spectrophotometric analysis for the 

four interactions. ROS accumulation was distinct in these interactions. At 12 hpi, O2
-
 

accumulation in Milan-M. grisea and Milan-F. graminearum significantly differed from the 

control. At 60 hpi, O2
- 

accumulation was significantly higher in Milan-F. graminearum 

compared to Milan-M. grisea. This might suggest that the two pathogens elicit a general plant 

response at the early time point but the amount of superoxide production is plant-pathogen 

specific. In contrast, O2
- 
accumulation in Sumai 3-M. grisea and Sumai 3-F. graminearum was 

similar but significantly different from the control, at 36 hpi, indicating that ROS accumulation 



 Summary  

109 

 

is both pathogen and cultivar specific. A clear burst of hydrogen peroxide in the resistant 

interaction Milan-M. grisea coincided with an HR reaction on the ears. However, no such 

accumulation was found in Sumai 3-F. graminearum, which would support the involvement of 

different defense mechanisms of the two cultivars. The transcript analysis also demonstrated a 

differential induction of defense related genes in the plant under pathogen attack. Three 

pathogenesis-related genes (PR2, Chi2, PR5) did not show any clear response patterns, either in 

the resistant or susceptible interaction. Two genes encoding for enzymes involved in lignin 

biosynthesis, peroxidase (Pox2) and CCR, were highly induced in Milan interaction with both 

pathogens, indicating the lignin reaction and signal transduction being a significant defense 

response in Milan. Moreover, an extremly high expression of Pox2 was detected in the Milan-

F. graminearum susceptible interaction. The Pox2 gene may function as a regulator of H2O2 

levels upon oxidative burst. Two mycotoxin detoxification related genes, UGT and CYP709C1, 

were more expressed in the resistant Sumai 3-F. graminearum interaction than Milan-

F. graminearum, indicating that both genes may play a critical role in wheat resistance 

response. In the Sumai 3-M. grisea susceptible interaction, a higher expression of UGT 

occurred at later times (5 dpi), suggesting that either the stress caused by M. grisea invasion or 

some unknown secondary metabolites or an artefact were responsible.  

Based on these studies, it is assumed that resistance in Milan to M. grisea is monogenic whereas 

Sumai 3 exhibits polygenic resistance to F. graminearum. Although the R gene in Milan has not 

been clarified it is assumed that lignification and signal transduction, especially related to 

pathways towards ROS production are important for establishment of defense in Milan, in 

particular at 48 hpi. However, these reactions do not seem to be critical for resistance in Sumai 3 

which is controlled by several genes. Resistance in Sumai 3 is useful for restricting or slowing 

down the pathogen development, which is exhibited as type II resistance. Further studies should 

aim at verifying and identifying the major R gene in Milan, and further unveil the role of ROS 

related enzymes and defense hormones, lignin biosynthesis and fungal metabolites in order to 

understand the genetic regulation of the different types of resistance in wheat, which is important 

knowledge to create  the new resistant wheat genotypes.  
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Appendix  

Table A 1. The weight of the infected seeds of Milan, Sumai 3 and Gondo/CBRD infected by 

M. grisea.  

Cultivars Control seeds Infected seeds 

Milan 0.19 0.10 

Milan 0.25 0.11 

Milan 0.23 0.11 

Milan 0.25 0.09 

Milan 0.20 0.09 

Milan 0.20 0.08 

Sumai 3 0.23 0.04 

Sumai 3 0.22 0.02 

Sumai 3 0.24 0.03 

Sumai 3 0.22 0.03 

Sumai 3 0.19 0.03 

Sumai 3 0.25 0.02 

Gondo-CBRD 0.25 0.03 

Gondo-CBRD 0.25 0.03 

Gondo-CBRD 0.26 0.03 

Gondo-CBRD 0.24 0.02 

Gondo-CBRD 0.21 0.03 

Gondo-CBRD 0.27 0.02 
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Table A 2. The decimal codes for the growth stages of cereals (Zadoks et al., 1974) 

GS General description GS General description 

 Germination  Inflorescence (ear/panicle) 

emergence 

00  Dry seed  50  --  

01  Start of imbibition (water 

absorption)  

51  First spikelet of inflorescence just 

visible  

02  --  52  --  

03  Imbibition complete  53  1/4 of inflorescence emerged  

04  --  54  --  

05  Radicle (root) emerged from 

caryopsis (seed)  

55  1/2 of inflorescence emerged  

06  --  56  --  

07  Coleoptile  57  3/4 of inflorescence emerged  

08  --  58  --  

09  Leaf just at coleoptile tip  59  Emergence of inflorescence  

 Seedling growth  Anthesis (flowering) 

10  First leaf through coleoptile  60  --  

11  First leaf unfolded  61  Beginning of anthesis  

12  2 leaves unfolded  62  --  

13  3 leaves unfolded  63  --  

14  4 leaves unfolded  64  --  

15  5 leaves unfolded  65  Anthesis half-way  

16  6 leaves unfolded  66  --  

17  7 leaves unfolded  67  --  

18  8 leaves unfolded  68  --  

19  9 or more leaves unfolded  69  Anthesis complete  

 Tillering  Milk development 

20  Main shoot only  70  --  

21  Main shoot and 1 tiller  71  Caryopsis (kernel) water ripe  

22  Main shoot and 2 tillers  72  --  

23  Main shoot and 3 tillers  73  Early milk  

24  Main shoot and 4 tillers  74  --  

25  Main shoot and 5 tillers  75  Medium milk  

26  Main shoot and 6 tillers  76  --  

27  Main shoot and 7 tillers  77  Late milk  

28  Main shoot and 8 tillers  78  --  

29  Main shoot and 9 or more tillers  79  --  

 Stem elongation   Dough development  

30  Pseudostem (leaf sheath) erection  80  --  

31  First node detectable  81  --  

32  2nd node detectable  82  --  

33  3rd node detectable  83  Early dough  

34  4th node detectable  84  --  
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35  5th node detectable  85  Soft dough  

36  6th node detectable  86    

37  Flag leaf just visible  87  Hard dough  

38  --  88  --  

39  Flag leaf ligule just visible  89  --  

 Booting   Ripening  

40  --  90  --  

41  Flag leaf sheath extending  91  Caryopsis hard (difficult to divide)  

    

42  --  92  Caryopsis hard (not dented by 

thumbnail)  

43  Boots just visibly swollen  93  Caryopsis loosening in daytime  

44  --  94  Over-ripe, straw dead and 

collapsing  

45  Boots swollen  95  Seed dormant  

46  --  96  Viable seed giving 50% germination  

47  Flag leaf sheath opening  97  Seed not dormant  

48  --  98  Secondary dormancy induced  

49  First awns visible  99  Secondary dormancy lost  
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Fig. A 1. Photos of the different cultures of M. grisea and F. graminearum at 5 days. A, 

M. grisea culture on V8 agar plate. B, F. graminearum on V8 agar plate. C, M. grisea culture on 

PDA plate. B, F. graminearum on PDA plate.  

A 

D C 

B 
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Fig. A 2. Microscopic views of the penetration behaviors from M. grisea and F. graminearum. 

A, a spore of M. grisea infects the palea of Sumai 3 at 48 hpi (200X). The spore was in the 

center, the light blue circle beneath indicates the appressorium and the penetration site. B, 

confocal microscopy overlay images of F. graminearum-GFP strain infection of palea, Sumai 3 

at 48 hpi, the hyphae prepared to invade the stomata. Ap = appressorium, sp = conidiaspore, hy 

= hyphae, st = stomata, pa = palea. 

A 

ap 

sp 

hy 

pa 

hy 

st 

B 
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Fig. A 3. Confocal microscopy images of F. graminearum-GFP infecting the epidermal tissue of 

Sumai 3 at 7 dpi, longitudinal section, infected hyphae were going both intra- and inter-

cellularly. Hy = hyphae, xy = xylem, ep = epidermal. 

ep 

hy 

http://dict.cn/longitudinal%20section
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