Permuting actions, moment maps and the generalized
Seiberg—Witten equations

Dissertation
zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades
Doctor rerum naturalium
der Georg-August-Universitat Gottingen

im Promotionsstudiengang Mathematical Sciences
der Georg-August University School of Science (GAUSS)
vorgelegt von

Martin Callies

aus Hamburg
Gottingen, 2015



Betreuungsausschuss:

Prof. Dr. Victor Pidstrygach, Mathematisches Institut

Prof. Dr. Thomas Schick, Mathematisches Institut

Mitglieder der Priiffungskommission:

Referent: Prof. Dr. Victor Pidstrygach, Mathematisches Institut

Korreferent: Prof. Dr. Thomas Schick, Mathematisches Institut

Weitere Mitglieder der Priiffungskommission:

Prof. Laura Covi, PhD, Institut fir theoretische Physik

Prof. Dr. Thorsten Hohage, Institut fiir Numerische und Angewandte Mathematik

Prof. Dr. Ingo Witt, Mathematisches Institut

Prof. Chenchang Zhu, PhD, Mathematisches Institut

Tag der miindlichen Priifung: 09.02.2016



Abstract

In this thesis, we study properties and the geometry related to the generalization of
the Seiberg—Witten equations introduced by Taubes and Pidstrygach. A crucial
ingrediant to these equations is a hyperkédhler manifold M with a permuting Sp(1)-
action. We study the differential forms induced on M and construct cocycles of degree
2 and 4 in the Cartan model for equivariant cohomology and the corresponding
(generalizations of) moment maps in hyperkéhler and multi-symplectic geometry. We
generalize this and provide a natural and explicit construction of such a homotopy
moment map for each cocycle in the Cartan model (of arbitrary degree). Coming
back to the generalized Seiberg—Witten equations, we study properties of the
generalized Dirac operator and provide new Lichnerowicz—Weitzenbock formulas in
dimension 3. Finally, we give a list of examples of the generalized Seiberg—Witten
equations, which have been studied in the literature.
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Chapter 1

Introduction

Starting with the work of Donaldson ([Don83]), gauge theory proved to be a very useful
tool in the study of the (smooth) geometry of 4-manifolds. The anti-selfduality equations
also allowed him to define the Donaldson polynomials, which provide invariants of smooth
4-manifolds. In particular, he used these to prove the existence of exotic smooth structures
in dimension 4 ([Don87]). The Seiberg-Witten equations ([SW94]) later made it possible
to reprove many results obtained using Donaldson theory. Since an abelian structure
group is used, these proofs are often easier than the original ones using Donaldson theory.
A similar set of differential equations, the PU(2)-monopole equations, were used by
Pidstrygach and Tyurin ([PT95]) to find a link between the Donaldson polynomials and
the Seiberg—Witten invariants.

More recently, less well known examples like the Vafa—Witten equations ([VW94]) and
the complex anti-selfduality equations gained interest, as they are closely related to gauge
theory in higher dimensions. On the other hand, the Pin(2)-monopole equations were
used by Manolescu ([Man16]) to disprove the triangulation conjecture.

All of these differential equations are examples of the generalized Seiberg—Witten equations,
which were introduced by Taubes ([Tau99]) in dimension 3 and Pidstrygach ([Pid04])
in dimension 4 and also studied in [Hay06], [Sch10], [Call0]. An important ingredient
to these is a hyperkéhler manifold M with a permuting Sp(1) = SU(2)-action. After
studying these actions in the first chapters, we will describe these generalized Seiberg—
Witten equations in chapter 5 and explain how specific choices of the hyperkédhler manifold
M and the permuting action lead to various well-studied differential equations.

In the chapter 2, we study the properties of hyperkahler manifolds M with an isometric
action of a Lie group. Besides the tri-hamiltonian action of a Lie group G, we focus on
the case of a permuting action of the group Sp(1) = SU(2) ([Swa91], [BGM93]). One
approach to understanding these actions is to study the differential forms obtained from
the symplectic forms by applying (graded) derivations of 2*(M) which are induced by
the group action. More precisely, those forms obtained by inserting the fundamental
vector field for the action and taking Lie derivatives with respect to these and exterior
derivatives, i.e. the G*-submodule of 2*(M) generated by the symplectic forms. In the
case of a tri-hamiltonian action, this submodule is essentially determined by the moment
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2 Chapter 1. Introduction

map. In the case of a permuting action, it contains all the differential forms (with values
in G-representations) that appear in [BGM93].

For a symplectic manifold (M, w) with hamiltonian G-action and moment map g, Atiyah
and Bott observed that w — p is a degree 2 cocycle in the Cartan model Cg(M) for
equivariant cohomology. Similarly, a tri-hamiltonian acion on a hyperkahler manifold
gives a cocylce for each of the three symplectic forms. In the case of a permuting Sp(1)-
action, we show how some of the differential forms in the Sp(1)*-module give rise to a
similar cocylce in Cgp1)(M).

Another canonical differential form on a hyperkédhler manifold M is the 4-form {2 =
wi; A wi + we A wy + w3 A ws, which also admits extensions to degree 4-cocycles in the
Cartan model for equivariant cohomology.

In chapter 3, we interpret {2 as a multi-symplectic form (more precisely, a 3-plectic form)
and show how the cocycles in the Cartan model for equivariant cohomology give rise
to homotopy moment maps. These have been introduced and studied in [FRZ13] and
provide a natural generalization of moment maps in symplectic geometry. We generalize
this and show how cocycles of arbitrary degree give rise to homotopy moment maps.

In chapter 4, we return to the permuting actions on hyperkéahler manifolds and explain how
such an action can be used to construct a generalized Dirac operator (following [Tau99]
and [Pid04]). In contrast to the previous literature, we allow the metric connection to
have non-vanishing torsion. An example of a generalized Dirac operator of this sort is
studied in [Sall3]. Chapter 5 is then concerned with the generalized Seiberg—Witten
equations and various examples of these.

In chapter 6, we focus on the 3-dimensional case and prove Lichnerowicz—Weitzenbock
formulae for the generalized Dirac operator Z4. In constrast to the case of usual Dirac
operators, the generalized Dirac operator is a section in an infinite dimensional vector
bundle and therefore not linear. This leads to three different Lichnerowicz—Weitzenbock
formulae: one compares the non-linear Laplacian associated to the non-linear Dirac
operator to the non-linear connection Laplacian, the second one is a Lichnerowicz—
Weitzenbock formula for the linearization of the Dirac operator and the third one compare
the squares of the norms of Z,u and V4.



Chapter 2

Hyperkahler manifolds and
permuting actions

In this chapter we first recall the basic properties of a permuting action on a hyperkahler
manifold. We then study the differential forms induced by such an action and show
how these can be combined to give cocycles in degrees 2 and 4 in the Cartan model for
equivariant cohomology. We also provide various equivalent conditions for the permuting
action to induce a hyperkédhler potential. We also describe the subspaces of differential
forms generated by the symplectic forms and the action, both in the case when the action
induces a hyperkahler potential as well as in the case when it does not.

2.1 Hyperkiahler manifolds

2.1.1 Definition (K&hler manifold). An almost complex structure on a manifold M
is an endomorphism I € I'(M,End (T M)) satisfying I? = —idry. A Kdihler manifold
is a Riemannian manifold (M,g¢") with a parallel (with respect to the Levi-Civita
connection) orthogonal almost complex structure I € I'(M,End (T'M)) such that the
2-form w € 2*(M) is closed, where w(v,w) = g™ (v, I(w)) for all v,w € T,M. The
symplectic form w is called Kdhler form.

2.1.2 Definition (hyperkahler manifold). A hyperkdhler manifold is a Riemannian
manifold (M, g™) with three parallel (with respect to the Levi-Civita connection) orthog-
onal almost complex structures Iy, Iy, I3 € I'(M,End (T'M)) such that I1I513 = —idypy
and M is a Kéahler manifold with respect to each of the three complex structures.

2.1.3 Remark ([Hit87, Lem. 6.8]). For M to be hyperkahler, it is enough to require
the existence of two anti-commuting orthogonal almost complex structures I, I, €
I'(M,End (TM)) (define I3 := I;1,) such that the three 2-forms are closed: dw; = dwy =
dws = 0, where wy(v,w) := g™ (v, I,(w)) for all v,w € T,M and ¢ € {1,2,3}.

2.1.4 Remark (dimensions and holonomy groups). The existence of the three com-
plex structures on a hyperkahler manifold M implies that the dimension of M is a multiple
of 4.
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Let H be the skew field of quaternions. As a vector space we identify I = R*. The
holonomy group of a 4n-dimensional hyperkahler manifold M is contained in Sp(n) C
SO(4n), where Sp(n) is the group of (right) H-linear metric preserving automorphisms
of H". Conversely, every 4n-dimensional manifold with holonomy group contained in

Sp(n) C SO(4n) is a hyperkéhler manifold.

The group Sp(1) can be identified with the sphere S® in the quaternions. We have an
isomorphism H D S* — Sp(1), ¢ — Ly, Ly(h) := gh for h € H. From now on, we will use
this isomorphism to identify Sp(1) with the sphere in the quaternions and its Lie algebra
sp(1) with the space of imaginary quaternions Im(H) := {h € H|h = —h}. Throughout
this text, we will also denote (; :=1, (s := 7,(3 := k.

2.1.5 Remark. Note that Sp(1) is isomorphic to SU(2) as well as to Spin(3), the simply
connected double cover of SO(3).

2.1.6 Note (scalar multiplication). The tangent bundle of a hyperkéhler manifold
M is a bundle of (left) H-modules, i.e. we have a ring homomorphism called scalar
multiplication

T: H — I'(M, End (TM)),
h — Iy,

where Z), := hgidry +h1ly 4+ hols + hsls for h = hg 4+ hqi + hoj + hsk. In particular, for
all ¢ € Im(H) with ||¢]|* = 1 we have

I =T1p=-I;=—1 =—idy

This implies that Z maps the sphere S? C Im(IH) C H into the space of complex structures
on M. The scalar multiplication Z is injective (if dim(M) > 0) and we have a sphere of

3 3
complex structures { z¥1 Cely z¥1 G=1 } Unless mentioned explicitly, we shall therefore

assume dim (M) > 0.

Note that we can also interpret Z as a morphism from the trivial bundle with fibre H
over M into End (T'M).

We define a 2-form w € sp(1)Y @ 22(M) as follows:
(w, () :==w for all ¢ € sp(1) = Im(H),

where w¢ (v, w) = g™ (v,Z;w) for all x € M and v,w € T, M. If ¢ € Im(H) = sp(1) is of
norm one, ||¢||* =1, then Z; is an (almost) complex structure and w, the corresponding
symplectic form.

2.1.7 Example. Consider M = H with the standard metric g™ (v,v") = Re(v?’) and
complex structures given by

L(v) :==1iv L(v) := jou I3(v) := ko,
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for v,v" € T,H = H. The scalar multiplication is given by Z;/(v) = Lpv = h'v for all
k' € H,v € T,H = H. The three symplectic forms w, = g™ (-, I;(+)) for ¢ € {1,2,3} are

w1 = —dho VAN dhl — th N dhg,
Wo = dhl A dhg — dho A\ dhg,
Wy = —dho AN dhg - dhl N dhg,

where h = hg + ihy + jhs + khs. Note that iw; + jws + kws = 2dh A dh.

In the same way, one also obtains the standard hyperkéahler structure on H".

2.1.8 Example. On the other hand, we can use multiplication from the right to define
a hyperkéhler structure on M = H using the complex structures:

I(v) = —vi = vi L(v) = —vj = vj L(v) = —vk = vk,

for v € T,H = H. The scalar multiplication is then given by Zj/(v) = Rv = vh/ for
all h,h' € H,v € T,H. The corresponding three symplectic forms w, = g™ (-, I,(-)) for
¢ e{1,2,3} are

wy = dho A dhy — dhy N\ dhs
Wy = dhg A dhg + dhl A dhg
W3 = dhg N dh3 — dhl AN dhg

where h = ho + Zhl + jhg -+ k’hg Note that iwl + jtdg + kW3 = %dil A dh.
Also note that the induced orientation on H 2 R* is not the standard orientation of R*.

In the same way, one also obtains a hyperkéahler structure on H".

2.1.9 Remark. Note that the conjugation on H is a diffeomorphism
(H, L;, L;, L) — (H, R;, R;, Ry),

which intertwines the hyperkéhler structures. While in most cases (H, L;, L;, L) is more
convenient, it is in sometimes useful to consider (H, R;, R;, R;). For instance, when
dealing with quaternionic matrices, acting on H" as H-linear maps. These act by standard
matrix multiplication on (IH, R;, R;, R;), but due to the non-commutativity of H, the
action on (H", L;, L;, L) is slightly more complicated.

2.1.10 Remark. Since we are interested in group actions on hyperkahler manifolds of
a certain kind, which imply that the manifold is non-compact, we will mostly ignore
compact examples like the K 3-surface and 4n-dimensional tori.

Further examples can be constructed using the hyperkéihler reduction ([HKLR87, Thm.
3.2]), also cf. Example 2.1.22. Other constructions of hyperkéhler metric use twistor
methods ([HKLR87, Thm. 3.3] other examples include [Fei99], [Bie99])



6 Chapter 2. Hyperkahler manifolds and permuting actions

2.1.1 Group actions and moment maps

2.1.11 Definition ([CE48]). Given a Lie algebra g, the Chevalley—Eilenberg differential
is given by

5: N'(8") = N (g")
(590)(§1"">§k+1) = Z (_1)i+jc([£i7€j]7€17'"aéi?"')éj""?gn-ﬁ-l)‘

1<i<j<n+1

2.1.12 Remark. The complex (A*(g"), dy) computes the Lie algebra cohomology of g.
Furthermore, note that if g = Lie(G) for some connected Lie group G, then (A*(g"), dq)
is isomorphic to the complex (£2*(G)Y,d) of left-invariant differential forms on the Lie
group G.

2.1.13 Definition. Let G be a Lie group acting on a manifold M. The infinitesimal
action induces the following insertion operations:
* k *—
2 () = N'(a¥) @ 21 (),
L'ga(&, &) = byg "Ly @ € R(M) for a € 2F(M),&4,...,& € g.
k 1

Here v is the fundamental vector field, i.e. vf[, := % exp(—t&)x|i—o, where z € M, € € g.
Also, denote tg := 1.
There is also a corresponding Lie derivative
Lo: (M) = ' @ 0F(M),
a— Lo, (Lyo, &) = Evg;a for £ € g.

We will also use the notation L¢ := Evg. As usual, ¢y and £ are related by £, = dig+14d.
We use the same operations for differential forms with values in some G-module V.

2.1.14 Remark. Since v“: g — I'(M,TM) is G equivariant, then Lg and L4 map G-
invariant differential forms with values in V' into G-invariant differential forms with values
in g¥ ® V, where V is an arbitrary representation of G. Here, g" is understood as the
coadjoint representation of G.

2.1.15 Remark. Note that if G ~ M is a smooth action, p: G — Aut (V') a representa-
tion and o € 2P(M, V) a differential form with values in V, then the infinitesimal version
of a being G-invariant (i.e. Lia = p(g)a for all g € G) is Lea = p.(§)a for all £ € g.
Also note that if GG is connected, these two conditions are equivalent.

A special case of this, which will be crucial for the rest of this chapter, is the k-th power
of the coadjoint representation g = Lie(G)" of a Lie group G.

2.1.16 Lemma. Let G ~ M be a smooth G-action and o € ((g¥)®* @ Q2P(M))¥. Then

k
(Lo, & @ @&) =(0,) & @ @ &1 ® [£0,&] @ &1 @+ @ &) (2.1)
=
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In particular:
1. Fora € (g¥ ® Q"(M)): Lo = —b,0.
2. Fora € (8" @Y © (M) (Lo, £ @& @) = (a,[6,€]0E") + (0, @ [€,€")
Proof.

(Lo, & ® -+ ® &) = Lyg) (0,6 Q- ®&) = %(Lexp(—t&)))*<a7§1 ® - ® &) li=o
= — 30, A1) (61) © - -+ @ Adesep(—t60) (Er)) =0

k
(0> 6@ @106 @b @ - @)
=1

for all &,...& € g. O

2.1.17 Remark. In particular, if g = [g,g] (e.g. if g is semisimple), then a € (g¥ ®
Q%(M))% can be recovered from Lya. Moreover, using the Cartan formula £, = dig + 14d,
we see that any closed form o € (g¥ ® 2%(M))¢ is exact.

2.1.18 Definition (moment map). A smooth action of a Lie group G on a symplectic
manifold (M,w) is said to be a symplectic action if it fixes the symplectic form w (i.e.
Liw=w for all h € G). A smooth map p: M — g is said to be a moment map for the
symplectic G-action on M if

1. dp = —iqw (moment map condition),
2. p(gz) = Ady(p(x)) for all g € G,z € M (equivariance).
A hamiltonian action is a symplectic G-action which admits a moment map.

2.1.19 Definition (hyperkihler action). A smooth action of a Lie group G on a
hyperkéhler manifold (M, g™, I, Iy, I3) is said to be a hyperkdihler action, if

1. G acts isometrically, i.e. for all h € G : Ljg™ = gM|
2. @ fixes the symplectic forms, i.e. for all h € G : Ljw = w.

In particular, in this situation, the induced G-action on 7'M commutes with the complex
structures.

The definition of a moment map for a hyperkéhler action is analoguous to the definition
for symplectic actions, but now we have to take care of three symplectic structures.

2.1.20 Definition. Let (M, g™, I, I,, I3) be a hyperkéihler manifold with a hyperkihler
action of a Lie group G. Consider the form w € sp(1)¥V ® 2%(M). A smooth map
pw: M — g¥ @sp(1)Y is said to be a hyperkdahler moment map for the G-action on M if

1. dp = —iqw (moment map condition),
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2. p(gr) = AdJ(p(r)) for all g € G,x € M (equivariance).
A tri-hamiltonian action is a hyperkédhler G-action which admits a moment map.

2.1.21 Remark. If u: M — g¥ ® sp(1)¥ is a hyperkéhler moment map, then d{u, () =
—tqwc, and therefore (u,(): M — g is a moment map for w¢. In particular, let

M1 = <:U’77;>7 Ha = <:U’7j>7 H3 = </JJ7 k>

Then p: M — g¥ @ sp(1)Y is a hyperkdhler moment map if and only if uq, us, g are
moment maps for wy, ws, w3, respectively.

2.1.22 Example (hyperkihler reductions). Many known examples of hyperkahler
manifolds can be obtained from quaternionic vector spaces (or subspaces of such) by
hyperkéhler reduction ([HKLR87]): Given a tri-hamiltonian action G ~ M and § €
(gV)¢ @ sp(1)V a regular value of the moment map and if G acts freely on u~*(¢), then
p1(€)/G is again a hyperkihler manifold. In many cases, it is also useful to allow M to
be infinite-dimensional (often M is an infinite-dimensional quaternionic vector space).

Examples of this sort include

1. G C Sp(n) ~ H* = M. For example, from various groups G, the following
hyperkédhler manifolds are obtained as hyperkéhler quotients:

a) Calabi metric on T*CP™ ([Cal79], description as hyperkéhler quotient in [Fei99,
Example 1.7]), generalizing the Eguchi-Hanson metric on 7*CP! ([EHT78])
b) Nakajima quiver varieties ([Nak94])
i. moduli space of framed instantons (of charge k) on S* ([AHDM7S]),
ii. ALE spaces and moduli spaces of instantons on ALE spaces ([Nak94])
¢) toric hyperkahler manifolds ([BD00])
2. spaces of solutions of Nahm'’s equations (|[Nah82]), with various boundary conditions

a) cotangent bundles to complex semisimple Lie groups ([Kro88|)
b) moduli space of Bogomolny monopoles ([Hit83], [Don84|, [AH88]|[Prop 16.1])

c) ALE spaces (cf. [Kro89]), or more generally, intersections of complex coadjoint
orbits with certain slices (cf. [Bie97])

d) coadjoint orbits of semisimple Lie groups (cf. [Kro90a], [Kro90b], [Biq96],
[Kov96], overview in [Bie07][2.2])
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2.1.23 Example (linear actions G — Sp(n) ~ H"). Consider (H",R_;, R_;, R_})
as a hyperkahler manifold as in Example 2.1.8. The moment map for the action
Sp(n) C Endy (H") = M, (H) ~ H™ by matrix multiplication (A, z) — Ax is

o H" — sp(1)” @ sp(n)”,
1 =5tep(1)lgls 1. (p(r),{ ®€) = 3 Re(CaEx).

A proof for this is given in [Sch10, Lem. 3.4.1] and also follows from Corollary 2.2.46
below.

We can also study any action G — Sp(n) ~ H”. The moment maps is given by composing
p with the dual sp(n)” — g¥ of the induced Lie algebra morphism g — sp(n). We will be
mostly interested in the case of a subgroup G C Sp(n).

2.1.24 Remark. Whenever (H", L;, L;, Lj) is more convenient than (H", R_;,, R_;, R_}),
we can use the isomorphism (H",R_;,R_;,R_) — (H",L;,L;, L),z — T from Re-
mark 2.1.9. The Sp(n)-action on (H", L;, L;, Lj) then becomes

(A, 2) — AT = (2" A*)",
where A* denotes the (quaternionic) conjugated and transposed matrix.

2.1.25 Example (U(1) C U(n) C Sp(n)). Consider the isomorphism of quaternionic
vector spaces

C"®cH — H",
v ® h — vh.

For both C" ®¢ H and H", we use the complex structures R, , £ = 1,2, 3, to define the
hyperkéhler structure. The natural action U(n) ~ C" ®¢ H corresponds to the action
U(n) C Sp(n) ~ H" induced by M,(C) C M,(H) ~ H". Its moment map can be
computed as follows:

Let x = vy 4+ v9j with v, vy € C", ¢ € sp(1) and & € u(n). Then the moment map is

e(C(v1 +v27)"E(v1 + vag))
e(C(vi€ur — v3€ua)) — Re(Cjvaéur)
= — 5(C, tr(&(v1 @ v — w2 @ 3)))ap(r) + (7 tr(E01 © V5))spr)
=3(C itr(&i(vr @ v} — vy @ 13)))sp(1)
+ (¢, J Re(tr(§vr ® v3)) — k Im(tr(€vr ® v3)))sp(r)
= ﬁ((C» )sp(1)(€, 1 (V1 ® V] — Vg @ V) )u(n)
+ <C7j>5p(l)<€7 v ® Uy — Vg ® UDu(n)
+ (G, R)ap(ry (€, 81 @ V5 + 02 ® V) )u(m) )

(Hom)(v1 +125),(®E) =4 R
_1R
2



10 Chapter 2. Hyperkahler manifolds and permuting actions

where (A, B)ym) = —ntr(AB) for A, B € u(n). Alternatively, using sp(1)” ® u(n)¥ =
sp(1) ® u(n), we have

=— - (iQi(1 @V — 1@ V3) +j ® (11 @V — v ®V]) + k ® i(vy ® V) + 12 ® V7).

n

This is the form in which this moment map (or its restriction to Lie subalgebras of u(n))
often appears in the literature.

For m € 7Z, let us now consider the action U(1) — U(n) < Sp(n) ~ H", z — z™. For
¢ €sp(l) and i € iR = Lie(U(1)), we have

(o) (z), ¢ ®@1i) =3 Re(Cxrir) = —5((, v7iz) 1)

Alternatively, using sp(1)¥ @ u(1)¥ = sp(1) (using evaluation at i to identify u(1)¥ = R),
we have

poy(r) = —Frtis.
In terms of vy, vy € C", we have puyq) = pi + pej with

pn (01 + v27) = =B (|loa||* = [Joa]]?),
pe(vr + vej) = —mivivg.

For m = 1, the hyperkéhler quotient of H" by this S'-action at the level £ € sp(1) =
sp(1)V @ (iR)Y is T*CP™ ! with the Calabi metric ([Cal79], [Fei99]). The quotient has a
residual hamiltonian PU (n)-action.

Note that if we take the same action on H™ \ {0}, then the hyperkahler reduction at 0
gives the highest weight nilpotent coadjoint orbit of SL,(C) (cf. [BGM93, Example 4]).

2.1.26 Example (H" ~ H™). We also have H" acting by hyperkéhler isometries on H"
(Example 2.1.8) by translations: H" ~ H", (h,z) — h + x. The fundamental vector field
is v1"|, = —h. There is a hyperkdhler moment map

pt e HY = sp(1)” @ (H"),
(™" (z), h) = Im(h*z) € Tm(H) = sp(1)".

When restricting this action to R C H", the moment map is (¢ (z),v) = Im(v*z) =
v*Im(x), where v € R™.

This action for n = 1 can be combined with the action R — S' ~ H™ to an action
R ~ H™"! whose reduction at level 0 is the generalized Taub-NUT metric (cf. [BGM93,
Example 3])
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2.1.27 Remark. Note that we also have a hyperkéhler action of the semidirect product
H" x Sp(n) ~ H", ((h,A),z) — Ax + h for A € Sp(n), h,z € H". The fundamental

vector field for this action is UE},I:SS P (")\m = —¢x — h, and

pHSP) 1 (H™ % sp(n))Y @ sp(1)Y,
(570 (0), (1, €) & ) = 4 Re(¢(a*x — 2 Tm(h"2)

is a hyperkahler moment map.

2.1.2 Hyperkihler potential

2.1.28 Definition (Kéihler potential). Let (M, g, I) be a Kihler manifold with Kéh-
ler form w. For a 1-form a € 2'(M) define Ia € 2'(M) by Ia(v) := a(I(v)) for all
v e TM. A smooth function f: M — R is said to be a Kdhler potential if dIdf = 2w.

2.1.29 Remark. In terms of complex valued differential forms and Dolbeault operators,
this condition reads —i00f = w.

2.1.30 Definition (hyperkihler potential). A smooth map f: M — R on a hyper-
kihler manifold (M, g™, I}, I, I3) is said to be a hyperkihler potential if f is a Kihler
potential for each of the three complex structures:

dZ.df = 2w, for all ¢ € sp(1),]|¢]* = 1.

2.1.31 Example (hyperkidhler potential for H™). Consider the hyperkdhler mani-
fold M = H" (with either of the hyperkdhler structures from Example 2.1.7 or Exam-
ple 2.1.8). Then the function f: H® — R, f(h) = 3]|h||* is a hyperkéhler potential. This

is easy to check and will also follow from Example 2.2.50.

2.2 Hyperkahler manifolds with permuting actions

2.2.1 Definition. An isometric action of Sp(1) on a hyperkéhler manifold M is said to
be permuting if the induced action on the sphere of complex structures is the standard
action of Sp(1) — SO(3) ~ 52, i.e.

¢LcG, = Tz for all g € Sp(1),¢ € Im(H), ||¢||*> = 1.

Let Sping(3) := (Sp(1) x G)/ & 1, where +1 is the subgroup of order 2 generated by
(—1,¢), with central ¢ € G and €2 = 1. A Spinf(3)-action on M is said to be permuting
if the action Sp(1) — Spinf(3) ~ M is permuting and the action G — Spinf(3) ~ M
is hyperkéhler.
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2.2.2 Remark. Note that Spin(3) = Sp(1) and hence, Spin®(3) generalizes Spin(3),
Spin©(3) and SO(3) x G.

Since Spin(4) = Sp(1), x Sp(1)_,! denote Spinf(4) = Spin(sfgg)’XG(B) = (Spin(4) x

G)/+1. Therefore, a SpinS (4)-action on M is permuting if the Sp(1), -action is permuting
while the Sp(1)_ x G-action is hyperkéahler.

2.2.3 Remark. Since we assume permuting actions to be isometric, we can use any
of the following equivalent conditions for an isometric Sp(1)-action on a hyperkahler
manifold to be permuting:

1. The induced Sp(1)-action on End (7T'M) restricts to the standard action
Sp(1) = SO(3) ~ % C sp(1) < I'(M, End (TM)),
ie. ¢.I,q, = Lyq for all ¢ € Sp(1),¢ € Im(H).
2. The map w: S? — 2*(M), ¢ — w¢ is Sp(1)-equivariant.
3. we (sp(1)Y ® (M)W that is Liwe = we-1¢, for all ¢ € Sp(1),¢ € sp(1).
4 Lopmw = —dsp()-

Also note that for none of these conditions really requires the action to be isometric.
However, the conditions 1. and 2. are only equivalent if the Sp(1)-action is isometric.

2.2.4 Example (permuting actions on (H", R;, R;, Rg)). There are two permuting
Sp(1)-actions on H" (considered as a hyperkahler manifold as in Example 2.1.8):

1. Sp(1) ~H": (q,h) — hg
2. Sp(1) = SO(3) ~ H™: (q,h) — qhq

Note that in the second case, Sp(1) acts trivially on R™ C H" and is the standard SO(3)-
action on each (R?)" = Im(IH)". This action is permuting for either of the hyperkihler
structures from Example 2.1.7 and Example 2.1.8.

2.2.5 Remark. The two permuting actions in Example 2.2.4 are prototypical examples
of permuting actions on hyperkahler manifolds. Is is also possible to consider one of
these actions on some factors of H™ and the other one on the remaining factors. In many
examples, a permuting action arises as a residual action on a hyperkahler quotient.

2.2.6 Example (permuting actions on (H", L;, L;, L;)). There are also two per-
muting actions on H" (considered as a hyperkédhler manifold as in Example 2.1.7):

1. Sp(1) ~H": (q,h) — qh

2. Sp(1) = SO(3) ~ H™: (q,h) — qhq

1We use the notation Sp(1)+ to distinguish the two factors of Spin(4).
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The first one is closely related to the spinor representations in dimensions three and four:
It also commutes with any Lie subgroup G C Sp(n) acting by H-linear isometries on H".
In particular, this includes the following example: Let n =1, G = S! and € = —1. Define
an action Spin®(3) = (Sp(1) xG)/ £1 ~ M = H:

[(q,2)] - h == ghz for [(¢,2)] € (Sp(1) x S*)/ £ 1,h € H.

This is a permuting SpinS(3)-action, which is the spinor representation W of Spin¢(3) =
(Sp(1) x S')/ £ 1. If we interpret M = H as a hyperkédhler manifold with permuting
Spinc(4)-action (with trivial Sp(1)_-action), we obtain the Spin®(4)-representation W+.
This uses the following identifications:

1. Spin(3) 2 Sp(1) c HY Ha H = Cly,
2. Spin(4) = Sp(1)y x Sp(1)- CHe H — My(H) = Cl,4

3. Clg = Clg — 014, (h, h/) — (gj ;3,) € MQ(]H)

Here is a list of useful representations of Spin(3) and Spin(3):

] name \ vector space \ homomorphism ‘

R? | R* = Im(H) | Sp(1) — SO(3) q-v=quq for v € Im(H) = R?
S H Sp(1) — Aut (H) g-h=qghforveH=S
W H Spin©(3) — Aut (H) [(¢,2)]-h=qhzforveH

Here g € Sp(1), z € S* and [(q, 2)] € (Sp(1) x S')/ £1 = Spin“(3).

Here is a list of useful representations of Spin(4) and Spin©(4):

] name \ vector space \ homomorphism ‘

R* R*~H Spin(4) — SO(4) (¢r,q-)-h=q hq_ for he H=R!
St H Spin(4)—Aut (H)  (¢v,q-)-h=q.hfor he H

S~ H Spin(4) = Aut (H) (qy,q-)-h=q_hforhe H

R* R*'~H Spin¢(4) —S04)  [(¢+,q-,2)]-h=q. hq_ for he H=R?
W+ H Spin¢(4) — Aut (H) [(¢+,q—,2)]-h =qrhz for he W =H
W= H Spin©(4) — Aut (H)  [(¢+,9-,2)]-h=q_hzfor he W =H

2.2.1 Differential forms from permuting actions

We will now recall some results about differential forms on hyperkéhler manifolds with
permuting actions. Some of these appear in the work of Swann [Swa91], who studied the
case when a hyperkéhler potential exists, Boyer, Galicki, Mann [BGM93, §2], who studied
p in terms of dp and assumed H'(M,R) = 0 and Pidstrygach [Pid04, Section 2.2.1], who
observed that p can be constructed explicitly in the general case.

2.2.7 Proposition. [BGM93, Pid0}] Let Sp(1) ~ M be a permuting action on a hyper-
kdhler manifold M. Then
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1. w=d~, where v := Wsp(l)wﬁp( w € (NY(M) @ sp(1)V)5PM),

2. tapay =~y + o, where p = —tuyayy € (2(M)  sp(1)Y @ sp(1)") ),
3. pis symmetric, i.e. p € (2°(M) ® S%(sp(1)V))%PM),

4. dp — Ts2gp1)vLepyw = 0.

Furthermore, if G ~ M 1is a hyperkdihler action that commutes with the permuting Sp(1)-
action, then = 15y € C®°(M,g" @ sp(1)V)PWXC js q hyperkdihler moment map for this
action.

Here, S%(sp(1)V) is the second symmetric power of the coadjoint representation sp(1)Y,

Tepyv : 5p(1)Y @ sp(1)Y — 5p( )v denotes the dual of the map mg,)v: sp(1) — sp(1) ®
sp(l), 4 ;(]@]{7 k®j),J (k®z—z®k) k— (z®j—j®z) and Tg2ep1yv : sP(1)V ®
sp(1)Y — S?%(sp(1)Y) is the symmetrlzatmn m &> 5(m @ no+ 12 @m).
Proof.

1. Since dw =0 and [, ] o ﬂ;;(l)v = 2idgp(1), we have

1 1 1
dy = Gmapay disp)e = 5p(1)v Lapye = 5p(yv © [ ] 'w = w.
2. topnyw = Lap)@Y = Lop1)Y — dlap(1)y = —0sp(1)Y + dp-

3. Using that 1 3 Sp( v © [-,:] = Th2ep(1)v is the skew-symmetrization, we compute the
skew-symmetric part of tg1)7:

p_\

(LapyV)(&1 ® & — & ® &) = (Lﬁp 1Y) (T sp(1 o[, J&1®&E -&L®&))

(Wﬁp Vésp(l)’Y)([fl &))
=(Lap(1)Top(1)v Lap(1)7) (€1 @ &2)
(Lsp(l)ﬂsp v disp(1)7)(§1 ® &2)
=(Lap(1)Top(1)v Lap(1)7) (1 @ &E2)

— (Lap(1)Tap(1) Lap(1)d7) (§1 ® &2)

Observing that me1)v Lep)y = 27 and Tep1)vlep)dY = Tap(1)vlep(y)w = 277, We see
that the expression above vanishes.

4. To prove the last assertion, we only need to apply the symmetrization mg2gp(1)v to
the equation tepyw = —dsp(1)y + dp.

Note that if G acts hyperkdhler and the G-action commutes with the permuting Sp(1)-
action, the forms w and 7 are not only Sp(1)-invariant, but also G-invariant forms. Since
1 preserves the invariance, p = 1,7 € C°(M,g" ® sp(1)V)PW*E The moment map
condition follows immediately from Cartan’s formula and the G-invariance of :

dp = digy = Lgpp — tgdy = —tgw. O
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2.2.8 Notation. Consider the decomposition of

sp(1) @ sp(1) = S(sp(1)) @ A\ sp(1) 2 R A sp(1) @ S (sp(1))

of Sp(1)-representations into irreducibles. More precisely, we consider the four projections
PIR; PYA2; Prg2gp(1)s prsgsp(l) € End (5p<1) &® Bp(l))

3
pr: 5p(1) @ sp(1) = sp(1) @ sp(1),¢ ¢ = (¢, ¢z Y G @ G

/=1
praz: sp(1) @ sp(l) — sp(1) @ sp(1),( @ ¢ = (R =@ ().
Prgegp(r): 5P(1) @ sp(1) = sp(1) @sp(1), (@ ¢ = 3(C@ ¢+ ® ().
Prszep(): 5P(1) @ sp(1) — sp(1) @ sp(1), Prozep1y = Prozepa) — P -

These induce the decomposition
sp(1)Y @sp(1)Y = S%(sp(1 69/\ sp(1)Y) 2 R @ Sg(sp(l @/\ sp(1

Therefore, we can decompose p € S?(sp(1)¥) ® C=(M) into py := —3 tr(p) € C>(M) and
the traceless symmetric part ps € (S2sp(1)V@C®(M))PW | py(CR() = P(Prszqp1) (CRC)).
Here, tr: sp(1)¥ ® sp(1)¥ — R is the evaluation at i ® i +j ® j + k@ k and Sg(sp(1)Y) :
ker(tr: S%(sp(1)¥) — R).

In particular, if po = 0, then py is a hyperkahler potential (cf. §2 in [BGM93| or
Corollary 2.2.37 below).

2.2.9 Remark. Note that if G ~ M is a smooth hyperkahler action that commutes
with the Sp(1)-action, then all the differential forms that appear in the proposition are
G-invariant. In particular, this holds in the case of permuting Spin&(m)-actions: w,~y
and p are Spin&(m)-invariant.

2.2.10 Remark. The first assertion of the previous proposition implies that a hyperkahler
manifold M (dim(M) > 0) with permuting Sp(1)-action cannot be compact ([BGM93,
Prop 2.7]): For ¢ € sp(1), ||¢||* = 1, the form w, is a Kédhler form and exact. Therefore,
the volume form is also exact, and hence M cannot be compact.

2.2.11 Example (Explicit formulae for v, p, po and ps).
We give explicit formulae for v, pg and p, in terms of the Kéhler forms wy, ws, w3 and the

fundamental vector fields vzp(l), where (; :=1, (o := 7, (3:= k.

1. Unwrapping the definition of v, we have

(7,9) = 1 {tapyw, ] @k =k ® j) = i(bvfpm% — L spmW2),
2

¢3

<Lsp(1 wk®i—i®k)=;( CSP(l)Wl - vapu)wg)?
3 1

—
2
.
~
I
N N N

1
4
1

4

(tapyw, 1 ® j —J®1) = 7(¢ Csp(l)wg — vapmwl).
1 2



16

Chapter 2. Hyperkahler manifolds and permuting actions

2. Using p = —tgp)y = —%Lsp(l)vﬂsp(l)v Lep(1)W = %(1d @Tep(1)V ) Lsp(1)bep(1)W, We obtain
Sp(1 Sp(1
(pi @) = F(ws (™, oZP) — wy (v vcl "),
Sp(1 Sp(1
(0,5 ®5) = s, o) — wy (2 v@ ")),
Sp(1 Sp(1
(p, k@ k) = %(wl(v@p( ) UC3( )) — Wy (vglp( ) v<3 ))
<p77’®j>:<p7j®l> <)027'l®j> <p27j® >:_iw1(vg371}§1):iWQ(U(g,?U@)v
(p.J @ k)= (p,k®j) = (p2,] Q k) = (p2, k @ j) = —qwa(v¢,, ve,) = Fws(ve,. vg, ),
<p7k®l> < Z®k> <p27k® > <p277’®k> WS(UC27/U<3) %wl(UCQ7/U<1)'
In particular,
s s o .
(e oY) =2((pi @ i) — (p,j @ 5) — {p. k@ K)),
s s o .
wr(ve!™ v D) =2((p,j @ §) — (p,i @) — {p, k@ K)),
Sp(1 . o
ws(ve!™ oY) =2((p, k @ k) — (p,i @) — (p,j @ j)).
3. po = —3 tr(p) yields
S S s S S s
po = %(g(hv@p(l) p(l)) Jrg(fzvggp(l) p(l)) +g(lng1p(1) UC2p(1)>’
Sp(1 s s
_ _é(wl(vg( ) Ug;( )) T wy (Ugf( ) UCl( )) 1wy (Uﬁp( ) UCQ( )))’
and, finally
. s s s s S
(p2,i ®1i) = _lwl(U@p( ) UCsp( )) + 12w2(vcg)p( ) Uclp(l)) + %wg(vﬁp(l) UC2 (1))’
s S s s
(92, ® ) = Fer (0D, 0P D) = LV, 0PV + L (0, oY),
Sp(1 s Sp(1 Sp(1 1
(po, k@ k) = Wl(v@p( ) UCs( )) + 12“ (UCsp( ) UClp( )) 1w (UQP( ) UCQ( )>‘

2.2.12 Example (Sp(1) ~ (H", R;, R;, Ry)). Consider H" as a hyperkéhler manifold

as in Example 2.1.8

and the first permuting Sp(1)-action from Example 2.2.4. Then

(,1) = %(hédhl — hidhg — hbdhs + hgdhg),
(v,7) = %(hf)th - hgdho + hidh?) - hgdh1)>
(v, k) = %(hgdhg — hidho — hidhy + hbdhy),
and
(p(h),i®j) = (p(h),j @ k)= (p(h),k®1i) =0,
p(h),i®i) = (p(h),j @ j) = (p(h),k @ k) = —po(h) = —3]h|?

In particular, ps = 0.
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2.2.2 Modifying a permuting action

The aim of this section is to give explicit formulae for p in the case of the permuting
Sp(1)-action on H™ which factors through SO(3), cf. Example 2.2.4. Note that this
action is a diagonal action for a Sp(1) x Sp(1)-action, where the action of one factor is
permuting while the other factor preserves the hyperkéhler structure.

More generally, consider a hyperkahler manifold with a permuting action ¢ of Sp(1) and
a hyperkihler action ©"* of Sp(1) that commutes with the permuting one. Then we can
define a new diagonal Sp(1)-action ¢':

o (m) == g (Ph*(m)) = ¥ (py(m)) for g € Sp(1),m € M.

Note that this action is again permuting:

(D) Ze () = (00)+ (™ )T (@) (07)s = (o)L (9g)s = Locq

2.2.13 Example. In the case of the first permuting Sp(1)-action on H" from Exam-
ple 2.2.4, ¢,(h) = hq, the conjugation induces the hyperkéahler action gpgk(h) = hg = qh.
The modified permuting action is the second permuting action in Example 2.2.4: ¢/ (h) =
qhq.

Similarly, we could have modified the permuting action only on some of the factors of H".

The following Lemma shows how the forms 4" and p’ for the modified permuting action
can be computed from « and p for the original permuting action.

2.2.14 Lemma. Let M be a hyperkihler manifold with a Sp(1) x Sp(1)-action, such that
one Sp(1)-action is permuting, while the other is hyperkdhler. Let v, p, po, p2 be the forms
defined in Proposition 2.2.7 for the permuting Sp(1)-action ¢, and p* = Lep(1yrh?Y the
moment map for the hyperkihler action. Then the forms ', p', py, ph for the modified
permuting action are:

1o = = gy dp™,
2. p=p— ﬂstp(l)vuhk
3. phy = po+ % tr(u"*)

hk

4. Py = pa — Tg2ep(1yv b

Proof. Since the two actions commute, the fundamental vector field for the modified
action is given as follows:

’ hk
Sp(1) | = ng(1)|m + U?’p(l) |

In particular, tep1y = tep(1) + Lop(1ynk-

L 9" = 3 Tap(1) Lop(y & = 5Tap(1) Lop(1)@ + 5 Top(1)v Lap(1)h = 7 = 5Tap(y it
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2. Using the fact that ) p"* is Sp(1)-equivariant, we compute

/

Pl == tepayy = —tepry (v — %Wsp(l)Vdﬂhk)
= — (Lap(1) + Lep(r)nk )Y + %Lsn(l)’”sp(l)Vdﬂhk
=p — 1" + §Lap1y Tapyv "

=p — " = 5[, ey ™

=p — " + Tpagp(ay 1

=p — ws2spy "
3.&4. These follow immediately from 2. U

2.2.15 Example (Sp(1) ~ (H*, R_;, R_;, R_§)). Using Lemma 2.2.14, we compute
P for the second permuting action in Example 2.2.4. the modified action. In the situation,
the components of the moment map for Sp(1) C Sp(n) ~ H" are (from Example 2.1.23):

(M (@), i@ i) = 3(=llwoll* = llell* + llz2ll* + [lws]?),

x),J ®1) = (xg,x3) — (T1, Xa),
- <l’07$1> - <I2,$3>7
) = (x0,21) — (22, 73),

)
)
)
)
)
)
("*(2), k ® i) = — (20, 12) — (23, 71),
{ )
)
)
)
)

= (w0, T2) — (71, 73),

= - <.’L’1,I’2>,

= 3/l Tm(2)[|* — 3] Re(2)||*.

)
)
)
)
po(i ® 1) = Zllan|* — gllaall® — gllsl?,
)
)
)
)
)

= 2laal® = Szl = §llas]?,
= §||$3||2 - %||901||2 - §||5152||2,
=0 (i ®j) = (x1,22),
po(J @ k) = p'(j @ k) = (2, 3),
=p'(k®i) = (r3,21).
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Note that pf is not a hyperkéhler potential. However, a hyperkéhler potential exists:
L)[..]12

x— ||z]]*.
2

Similarly, one could modify the permuting action on some of the factors of H".

2.2.3 Permuting actions and the Cartan model

In this section, we explain how w, 7, p and p can used to construct cocycles in the Cartan
model for equivariant cohomology.

2.2.16 Remark. Recall that for a G-manifold M, the Cartan complex ([GS99, section
6.5]) is

Co(M) = (5°(a") @ 2°(M)) ",

dG =d— TS*(gV) © lg

(2.3)

where g« (gv) 0 tg is the composition of ¢y and the symmetrization wg«(gv): g¥ ® S*(g") —
S*+1(gV). Here, S*(g") is the symmetric algebra on g¥. Note that the grading on C}(M)
is given in such a way that g¥ is in degree 2. A detailed account of the grading will be
given in subsection 3.3.5.

If G is compact, then the cohomology of C(M) is the equivariant cohomology of M
(Cartan’s theorem, [Carb1]).

By an observation of Atiyah and Bott ([AB84]), u € (g¥ ® £2°(M)) is a moment map for
a symplectic G-action on (M,w) if and only if w — u € C4(M) is a cocycle in the Cartan
model, i.e.

0=da(w—p) = —tqw —dp.

Similarly, pu € (g¥ ® sp(1)Y @ 2°(M))¢ is a moment map for a hyperkihler G-action on
M if and only if w — p € sp(1)¥ ® CA(M) is a cocycle (cf. Remark 2.1.21).

In particular, if w = dv is exact, with v € (sp(1)¥ @ 2'(M))®, then p := 147 is a moment
map (since dgy = w — 1g7).

If Sp(1) ~ M is permuting, then w is an exact diffential form with natural primitive -,
and therefore, we obtain a moment map p = gy for any hyperkahler G-action, recovering
the last statement of Proposition 2.2.7.

On the other hand, we can interpret w € (sp(1)¥ ® 22(M))PM) Cp1y(M) and
7 € (sp(1)Y @ 21(M))5PM) € C¥ ;) (M). We can again consider the coboundary dg,Y-
By Proposition 2.2.7, we have

dsp1)y = W+ p-
Therefore, —p can be seen as an analogue of a moment map for a permuting action: both
define cocyles w — p € CA(M) ®@sp(1)¥ and w + p € Cép(l)(M).

Given a Sp(1) x G-action on M, with permuting Sp(1)-action and hyperkahler G-action,
we also have

dspyxgy =w+p—p€ Cg’p(l)xG(M>‘
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Apart from the sp(1)Y-valued 2-form w, which can be extented to cocycles in the Cartan
model, we also have a closed 4-form {2 on any hyperkahler manifold. Theorem 2.2.22
shows how this can be extended to give 4-cocycles in the Cartan model.

2.2.17 Definition. The fundamental 4-form {2 on a hyperkéhler manifold M with Kéhler
forms wy, wo, w3 is defined as

3
Q2 =trwAw) =Y w Aw, € 2YM).
=1

2.2.18 Remark. Since dw = 0, we also have df2 = 0. Furthermore, it is well-known that
(2 is non-degenerate, and hence (M, {2) is a multisymplectic (or, more precisely, 3-plectic)
manifold. Indeed, for v € T, M we have

Q(U, [1?), [Q'U, ]31))

|
Mw

we A we(v, [y, Iov, I3v)
¢

I
_.

2Z(wg (v, [1v)we(Iav, I3v) — we(v, Iav)we(I1v, I3v) + we(v, I3v)w (v, ]27)))

=1
(wl v, [1v)w (1o, I30) — wa (v, Iov)we(1v, I3v) + ws(v, [3v)ws (v, ]21)))

= 6]
Therefore, 1,2 # 0 for all v # 0.

2.2.19 Remark. Note that by studying the fundamental 4-form (2, we consider the
hyperkéhler M as a quaternionic Kéhler manifold (i.e. a manifold with holonomy in
Sp(1)Sp(n)). Even though the complex structures are not globally defined for quaternionic
Kahler manifold, (2 is still globally defined, parallel with respect to the Levi-Civita
connection (and therefore closed) and non-degenerate.

2.2.20 Remark. The fundamental 4-form {2 on a hyperkahler manifold with permuting
Sp(1)-action is Sp(1)-invariant, since tr: sp(1)¥ @ sp(1)¥ — R is a morphism of Sp(1)-
representations and w is Sp(1)-invariant.

Before constructing the explicit 4-cocycles extending {2, we prove the following technical
Lemma:

2.2.21 Lemma. Let Sp(1) ~ M be a permuting action on a hyperkdhler manifold. Then
the following equalities hold:

1. tepyTepyv (Y A ) = —2(idsp(1yv @Tepayv ) (p @ ),
2. Lop(1) tr23(p @ w) = T tro4(p @ (—dep)y + dp)),

8. ms2tep(1) (4msp(1)v (Y A7) + 2tr23(p ®@ w)) = dp?,
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Here, tr;;: (sp(1)V)®* — (sp(1)¥)®*=2) denotes the application of tr on the i-th and j-th
tensor factor and the identity in all the other tensor factors. Furthermore, 7: sp(1)¥ ®
sp(1)Y — sp(1)V®@sp(1)Y the dual of the map & ®& — & ®&; and, finally, p? 1= tras(p®@p).

Proof.
1. Use Tgp()v © (idep(1)v@sp(1)y —T) = 27gp(1)v to obtain
ap(1)Tap(1) (7 A7) =(idsp(1)v @Tap(a)¥ Jeap(1y (Y A7)
=(idgp(1)v @Tep(a)v) ((bap(l)’Y) ® v — (idsp(1yv OT) (Lap()y) @ ’Y)
=2(idsp(1) Oep(1)v ) ((Lsp(1)7) © 7)
= = 2(idsp(a)v Omap(ayv) (P © 7).

2. For &,& € sp(1), we have

Lep(1) tT2,3(p @ W) (&1 ® &2) =tr(p(&2 @ ) @ Ly, W)
=tr(p(§e @) @ (V([§1,]) + dp(§1 ®+)))
=(tr2,4(p ® (=dsp(1)Y + dp))) (&2 ® &1).

Therefore, top1) tras(p ® w) = 7 tra4(p @ (—dsp1yy + dp)).

3. Using 4mep1yv = — tr13(idsp(1)v @dep(1)), we obtain

Ts2sp(1) Lsp(1) (47Tsp(1>v (Y A7) + 2tras(p ® w))
= AT g20p(1)v Lap()) Tap() (7 A ) + 2Ts25p(1)v Lap() tr23(p ® W)
= — 87rgzsp(1)v (idsp(l)v ®7r5p(1)v)(p ® ’)/) + 27T525p(1)v tro 4 (p & (—(55p(1)’)/ + dp))

= 2 g2ap(1)v tT24(p ® Gap(1)7) — 27s20p(1) 124 (p @ (Sap1yy — dlp) )
= dp®. O

The following theorem constructs 2-step extensions of (2 in the Cartan model C (M)
for H € {G,Sp(1),Sp(1) x G}. These are 4-cocycles of the form 2 + P + PJ where
PH € (S0 @ 24 %(M))". The choices for H are: a trihamiltonian G-action on M, a
permuting Sp(1)-action on M, or, combining the two, a permuting Sp(1) x G-action on
M.

2.2.22 Theorem. Let M be a hyperkdihler manifold with fundamental 4-form (2 =
tr(w A w). There are the following 2-step extensions of (2 in the Cartan model for
equivariant cohomology:

1. If G ~ M s tri-hamiltonian with moment map p, PF = —2tr(p ® w) and P :=
tr(u®p), then = Q4+ PE+PF = Q-2tr(p@w)+tr(p@u) = tr((w—p)A(w—pu))
is closed in the Cartan model for G-equivariant cohomology.

If, additionally, w = dvy for some v € sp(1)" @ 21 (M), there is a 1-step extension
detr(y Aw) = 2 —tr(p @ w) — tr(y Adu). In this case, 2% =dg tr(y A (w—p)),
i.e. the two extension of {2 differ by the exact term —dgtr(y @ ).
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2. If Sp(1) ~ M s permuting, Py := 4Tgpyv (Y AY) +2tra3(p @ w) and Py == 0%, then
Q=02+ P+ Py = Q2+ 4dmgpayv (Y A7) + 2tr23(p Qw) + p* = dgp) tr(y A (w + p))
is closed in the Cartan model for Sp(1)-equivariant cohomology.

Note that dgpy tr(y Aw) = 24 dmgyyv (7 AY) + trig(y A dp) + tras(p @ w) is also a

1-step extension of 2. Furthermore, {2 = dgpay tr(y A w) + dsp) tria(y A p).

3. If Sp(1) x G ~ M, where Sp(1) acts permuting while G acts hyperkahler, then

e _ + P+ PE+ Py+ P —tros(p@ p) = 2+ ATgpy (YA Y) +2tr23(p ®
w) = 2tr(p @ w) + p? + tr(p @ p) — tras(p ® p) = dspyxa tri(y A (W — e+ p)) s
closed in the Cartan model for Sp(1) x G-equivariant cohomology. Here, we denotes
the symmetric extension of traz(p @ p) € (sp(1) @ g¥ @ Q°(M))SPWXE by the same

name.

Note that dgppyxatr(y Aw) = 2 + dmgpayv (v Ay) + tria(y A dp) + tras(p @ w) —
tr(p @ w) 4+ tr(y Adp) is also a 1-step extension of (2. Furthermore, [P

dsp1yxc tr(y Aw) + dspayxa triz(y A (p = 1))

2.2.23 Remark. Even though in the case of a permuting action, the form w is always
exact, we still wrote down the 2-step extensions of (2 that are constructed analogously to
the 2-step extension in the case of a tri-hamiltonian action. One reason for this is that the
homotopy moment maps constructed from these in Proposition 3.2.3 using Theorem 3.2.1
have a simpler form than those constructed from the 1-step extension.

Furthermore, these moment maps arising from two extensions of {2 which differ by a
coboundary can be thought of as “equivalent”, generalizing the notion of equivalence in
[FLGZ14].

2.2.24 Remark. An analogue of the first part of Theorem 2.2.22 holds for quaternionic
Kéhler manifolds: Let (M, £2) be a quaternionic Kahler manifold with scalar curvature
s # 0. Let G denote the rank 3 subbundle of almost complex structures. Denote by
w € I'(M,GY @ A\?>T*M) the section which maps G, > I — wy = g(-,I-) € A>T M. Since
this only uses the metric, w is parallel with respect to the Levi-Civita connection V.
Let now G ~ M be an action of a compact Lie group which preserves (2. Furthermore,
let u € (g¥ ® I'(M,GY))Y the corresponding moment map (Vu = —iyw, introduced by
Galicki and Lawson in [GL88]). Since w: G < A?T*M, we can use the metric on G to
obtain an element trg(pu ®@ w) € (g¥ ® 2%(M))C. This satisfies 2d trg(pu @ w) = —142 (cf.
[Sal89, Lem. 9.7]). Using this, % =0-2 trg(p @ w) + trg(p ® ) is again closed in the
Cartan model for G-equivariant cohomology.

Proof (of Theorem 2.2.22). o
1. The cocycle condition dgf2~ = 0 is equivalent to the following three equations:

dR =0,
dPf = 1,02,

G G
APy = mgegvig Py
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The first of these follows immediately from dw = 0. The second equation can be
easily varified using the moment map condition dp = —¢gw:

dPF = —2dtr(p @ w) = —2tr(du A w) = 2tr(1yw A w) = 1y tr(w Aw) = 1462,
For the third equation, we compute for &;,&; € g:

dtr(p @ p)(& @ &) = dir((u, &) @ (1, &)
= tr((dp, &1) ® (p, &2)) + tr({p, &) ® (dp, &)
= tr(p@du)(& @&+ L&)
= 2mg2gy tr(p @ dp) (&1 ® &)
= = 2mgzgv tr(p ® 1qw)(§1 @ &)
= Tsegvig P (61 © &)
If w = d, then dtr(y Aw) = 2, and therefore, dg tr(y Aw) is a 1-step extension of
(2. Furthermore,
2 —dgtr(y Aw) = —tr(p @ w) + tr(y A dp) + tr(p ® p)
= —dtr(p ® ) + Tazgvig tr(n ® )
= —dgtr(up®7)

2. As in the previous case, dgp(l)ﬁ = 0 is equivalent to the following three equations:
df2 =0,
APy = 145112,
APy = Tg245(1)" Lap(1) P1-
Again, the first of these follows immediately from dw = 0. The second equation is
easily checked:
dPy = 4dmgpyv (Y Ay) + 2d tras(p ® w)
= —21t123(0sp1)y A w) + 2tra3((dp) A w)
= 2tra3((—dep(1yy + dp) A w)
= 2t123((Lepyw) A W)
= Lgp(1) tr(w A w)
= Lep(1){2.
Here, we used dmgp(1)v (7 Ay) = —3 tras(dep)y Aw), which can easily be checked on
a basis of sp(1).
The third equation is the third claim in Lemma 2.2.21.

Finally, to see that this cocycle is actually dg,1)-exact, we compute:

dspy triz(y A (w + p))
= dtrip(y A (w +p)) = Ts=spa)vLapa) tri2(y A (w + p))
= trip(w A (w+ p)) — tr1a(y A dp) — Tsespn)v tras(tapny (Y A (W + p)))
= 2+ trp(w @ p) — tria(y A dp) + Tsapyv tras(p @ (W + p)) + tris(y A topyw)
= 2+ 2tro3(p @ w) — tria(y A dp) + Tg2ep1yv trag(p @ p) + triz(y A tepyw)-



24 Chapter 2. Hyperkahler manifolds and permuting actions

Since tep(1yw = —0sp1)y + dp and tryg o(idep(1)v @0ep(1)) = —4mep(1)v, We obtain

dgp(l) trlz(’}/ A (w + p)) = () + 2 tr23(p & w) + 7T525p(1)v trgg(p & p) — trlg(*y A 55;3(1)7)
= {2+ 2tro3(p ® W) + traz(p ® p) + A7y (Y A ).

3. Using the decomposition Lie(Sp(1) x G) = sp(1) @ g and S*(sp(1)Y @ g¥) =

SZsp(1)V @ S%gY @ sp(1)Y ® g, dsp(l)xgﬁsp(l)xc = 0 is equivalent to the following
equations:
492 = 0,
dPl = Lsp(l)Q,
dPF = 1,02,

dP2 = 7TS25p(1)VP17
dPY = mg2guiaPE,

Ts2(sp(1) ) (Lap() PL + 1gP1) = —d tra3(p @ p),

where, on the right hand side of the last equation, we used the symmetric extension
sp(1)V @ g¥ — S?(sp(1)Y @ g¥). All but the last equation follow from the previous
statements. We observe that

Lsp(l)PlG = — gy tr(p @ w) = 2tr1 3(p @ (depyy — dp)), and
tgP1 = AugTapyv (Y AY) 4 209 tras(p @ w) = =2 tr13(p @ Gap(1)y) — 2tr23(p @ dp).

Here we used that p is a moment map ¢y = p and also 2¢gmepyv(y A y) =
—tr13(pt ® dep(1)7y), which follows from a short computation. Therefore, we obtain

7TS2(5p(1)V®gV)(L5p(1)PlG + Lgpl)((gv 0) ® (07 5))
= — tr13(p ® dp) (£ ® () — traz(p @ dp) (¢ ® €)
= —dtras(p @ p)((®E).

This proves that the sp(1)¥ ® g¥ ® 2 (M )-component of dgp(l)X@§Sp(1)XG = 0 holds.

Finally, we compute

dsp(yxc tr(y A (w — p+ p))
=dsp1) (Y A (W + p)) = Ts=(ep()vag)dsp(r) (7 ® 1)
— T (sp(1)V ¥ )b TT(Y A (W — p + p))
=dgp) tr(y A (w + p)) — tr(p @ w) + tr(y A du) — T (sp1)veg) tr(p @ 1)
— T (ap(1)vagY) (1 ® (W — p+ p)) + tr(y A tqw)
=Q 4 Amgpyv (7 A Y) + 2tra3(p @ w) + p? — 2tr(p @ W) — traz(p @ p) + tr(p @ p).

g
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2.2.25 Remark. Note that if w is exact, then all the cocycles in Theorem 2.2.22 are
coboundaries and, hence, the corresponding cohomology classes vanish. However, the
construction of homotopy moment maps from these in Proposition 3.2.3 shows that they
still contain interesting information.

Furthermore, if w = dv is exact, then 2 = tr(w A w) = dtr(y A w) is exact and there is a
1-step extension of {2 obtained as the coboundary dg tr(y A w).

There are, however, situations where a 1-step extension of this type cannot exist, for
example if (2 (and hence w) is not exact.

Examples for hyperkahler manifolds with non-exact {2 are, for instance, closed hyperkéhler
manifolds (otherwise the volume form would be exact, and hence, by Stokes Theorem, the
volume of M would be zero). However, an action of a non-discrete Lie group on a closed
hyperkéhler manifold cannot be tri-hamiltonian, since s + iug would be holomorphic
with respect to 1, and hence constant.

Non-compact examples with non-exact {2 are (certain neighborhoods of the zero section
in) the cotangent bundle 7*N of a compact real-analytic Kahler manifold N ([Fei99,
Thm. 2.1]): Since one of the Kéhler forms, wy, restricts to the Kéhler form on the zero
section, wy cannot be exact (nor wy A w if dim(N) > 2). On the other hand, 7*N admits
a rotating S'-action (by scalar multiplication on the fibres). Therefore, wo, w3 as well as
wa A we + w3 A wg are exact. Hence, (2 = tr(w A w) cannot be exact.

The most basic example of this situation is the Calabi metric on 7*CP™ ([Cal79]). Since
it can be constructed as a hyperkihler quotient of H"*! by S (cf. [Fei99, Ex. 1.7], also
Example 2.1.25), it has a residual tri-hamiltonian PU(n + 1)-action.

2.2.4 Vector fields on hyperkihler manifolds with permuting
action

On a hyperkéhler manifold with a smooth G-action, we can extend (negative of) the
fundamental vector field v&: g — I'(M,TM) to a H-linear map g @ H — I'(M, TM):

g®H — I'(M, TM),

(2.4)
€® h— —Ihl)g.

Equivalently, we have a bundle homomorphism g ® H — T'M from the trivial bundle to
TM.

In particular, we are interested in the following two cases:
1. G ~ M hyperkahler,
2. Sp(1) ~ M permuting,

and in the case when these two can be combined into an action of Spinf(m) ~ M.
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2.2.26 Remark. Note the choice of the additional sign in the quaternionic linear exten-
sion of the fundamental vector fields. Even though this might not be the most natural
choice, it is the most convenient and compatible with the existing literature.

2.2.27 Definition (Vector fields from a permuting action).
If the hyperkihler manifold (M, g, I}, I5, I3) comes with a permuting Spin¢(3)-action,
then we have a linear map

spind(3) @ H = (sp(1) ® g) @ H — I'(M, TM),
(€.6) @ h = —(TwPY + Tpof).
We are mostly interested in the following restrictions of this map:
x:sp(1) @sp(1) — D(M,TM), ¢ @ ¢ = —Zew?"V
Y:ig®sp(l) = I'(M,TM),§® ¢ — —Tvf
X% (sp(1) @ g) @ sp(1) = I'(M, TM), (¢, €) © ¢ = x(¢,¢) + V().

As necessary, we will also understand x € sp(1)¥ @sp(1)¥ @ I'(M,TM), X¢ € spin€(3)" ©
sp(1)¥ @ D(M, TM) and Y € sp(1)¥ ® g¥ ® ['(M, TM).

2.2.28 Remark. Note that ¢ as well its components x and ) are Spin(3)-equivariant.

Components of

Using the decomposition sp(1)Y @ sp(1)Y = Sgsp(1)Y @ sp(1)Y @ R, we decompose x into
its components. We first consider the symmetric and skew-symmetric part of y, using the
isomorphism mgp1yv: A*(sp(1)Y) = sp(1)":

(syms €@ ') 2= (X Prgzgpy (C® (1)) = _%(Icvffp(l) +I</v§p(1)),
Xaw = Tepyv X € 8p(1)Y @ I'(M, TM),

and further decompose the symmetric part xsym € S%sp(1)Y ® I'(M,TM) into

3
Yo i= — ;Zm Ye n(M, TM),

(X2, ® ¢) = (X, Przopr <c®<'>> L@ + TowP"V) + Re(¢T) o

The following lemma relates the vector fields above to the differential forms on hyperkéhler
manifolds with permuting action in subsection 2.2.1

2.2.29 Lemma ([BGM93], [Pid04]). The following identities hold:

1. dp = tyg,,.9 and therefore grad(p) = Xsym- In particular, grad(ps) = x» and
grad(po) = Xo-
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2. Uy 9 = 27,

8= Siglya, 9, e (U, ®E) = %g((XAlt,Q,U?) is a hyperkdhler moment map for
any hyperkdhler G-action which commutes with the permuting Sp(1)-action.

The first two items appear in [BGM93], while the third was also observed in [Pid04] and
follows from w = dy. To familiarize ourselves with the notations, we quickly recall the
proof:

Proof. Recall that
P = —lyp)Y € (525]3(1)\/ ® QO(M»Spmg(g)v
Po ;:% tr(tep(1)y) € QO<M)SPM§(3),
pZ(C ® C/) ::p(prsgsp(l) (C ® C/)) for Ca C, € 5p(1)

1. Note that for all ¢, (" € sp(1) we have

(109, ¢ © ') = —g(Zev"™, ) = gD, To) = (pyw, C@ ).

The equality ty4,,.9 = dp is obtained as the symmetrization of 1, g = tgpyw =
dp — dep(1)7-

2. Since tgp(yw = g, we have v = %ﬂsp(l)wsp(l)w = %Wsp(l)vag = %LXA”g.
3. p=1gy= %LQLXA”g. [l

2.2.30 Note. Note that the Spin&(3)-invariance of py implies the Spin(3)-invariance of
X0, 1-€. Lginc(3Xo = 0. In particular, the Lie derivative £, commutes with the insertion
OPerator LyyinG (3)-

2.2.31 Remark. For a modified rotating action as in Lemma 2.2.14, we have

Xo = Xo + & grad(tr (")),

2.2.5 Rotating S'-actions from permuting actions

Instead of considering a permuting action of the group Sp(1), it is also interesting to study
an action of St which fixes one of the complex structures, while rotating the other two.
In [Hay08], Haydys constructs another hyperkéhler manifold with hyperkahler potential
from such an action. A basic tool in studying such actions is the following Lemma:

2.2.32 Lemma ([HKLRA&7, Sec. 3.E]). Consider an isometric S* action on a hyper-
kdhler manifold which preserves one of the complex structures (say I;) and rotates the
other two (i.e. L siw1 = 0,L siwy = 2ws3, L s1wz = —2wy. If S M — (GiR)Y is a
moment map for this action and the symplectic form wy, then <,u51,2') e C™(M, ]R)S1 s a
Kdhler potential for ws.
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Proof. The moment map condition is d(usl, i) = LSt Therefore,
A ) (B(v)) = —t 01 (B(0)) = —g(vf" L(B(0)) = —ws(vf )
Hence Ld(pS',i) = —L,510s3. The claim now follows from
d&d(,usl,i) = —davggwg = —£v§1w;3 = 2wy
Thus, (1" ,4) is a Kéhler potential for ws. O

2.2.33 Remark. (%, i) is a Kéhler potential for any Kéhler form in the circle S? N wy-
of Kéhler forms containing ws and ws. Indeed, we can choose wy to be any Kéahler form
on this circle (and w3 accordingly) and repreat the proof above.

2.2.34 Example. An example for an S'-action as in the Lemma 2.2.32 is the following:
Consider a hyperkahler manifold M with permuting Sp(1)-action and for { € sp(1),
|¢]]? = 1 the inclusion S* < Sp(1), a+1ib — a+(b. Then the restriction of the permuting
action to S! satisfies the conditions

Evsle = 0, ,C,Usl(,dg/ = 2&)@//, ‘Cv.sle” = —QCUC/,
where (¢, (’,¢") are an oriented orthonormal basis is sp(1) (e.g. ( =14, =j4,¢" =k).

The following lemma is also well-known (cf. [Sch10, Lem. 3.2.1]):

2.2.35 Lemma. Consider the S'-action induced by the permuting action of Sp(1) which
perserves the complex structure I.. Then wSe M = (t1R)Y is a moment map for this
S'-action, where (5" i) = —(p,( @ ¢) € C(M,R)"".

Proof.

d(p™ 1) = —d(p, ( ® () = ~tgmapcacnd = ~Uxcaq)d = L, Srn g

We only need to observe that v°' = vfp(l) since S' C Sp(1) ~ M. O

2.2.36 Remark. This moment map can be interpreted in terms of equivariant cocycles:
Given S' — Sp(1) mapping ¢ — ¢, we obtain an induced chain map

Cé’p(l)<M> — Cg'l (M)7

mapping w + p to ¥ ® (WC — u51>. Thus, the image in Cg, (M) is given by the product of

iV and the 2-cocycle w — p° " corresponding to the moment map o " for the S*-action.

Since we can do this for any circle S* < Sp(1), we obtain a family of moment maps for
these circle actions. In equivariant cohomology, these can be combined into the degree 4
cocycle w + p.
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Combining Lemma 2.2.35 and Lemma 2.2.32, we obtain the following corollary, which
essentially recovers [BGM93, Thm. 2.15] (reformulated in terms of the explicitly given pg
and py which were found in [Pid04]).

2.2.37 Corollary. We obtain a map p: S* — C°°(M,R) with the following properties:

1. p(¢) = —p(C ® ), i.e. —p is the restriction to S* of the quadratic form associated
to p.

2. p(¢) € C=(M, R)Sé is a moment map for St ~ (M, wc), where S} C Sp(1) is the
stabilizer of we and we use the evaluation at i as an isomorphism (iR)Y = R.

A . . . . . 2 L
3. p(C) is a Kdahler potential for any Kahler form in S* N we -
4. If p is constant (or equivalently ps = 0), its image py is a hyperkdihler potential.

Using the decomposition of p into its components py and p, (cf. Notation 2.2.8), observe
that p is the defect of the family of moment maps and Kéhler potentials —(p,{ ® ¢) from
being independent of (.

2.2.38 Example (S'-actions and potentials for (H*, R_;, R_;, R_})).

Consider H" as a hyperkéhler manifold as in Example 2.1.8. We will now consider the
action of S C Sp(1) ~ H which is induced by one of the two permuting actions in
Example 2.2.4 and stabilizes the first complex structure:

1. Consider the following S'-action on H": (z,h) — hZ, where ST C C C H. It follows
from Example 2.2.12 that the moment map for w; and Kéahler potential for ws, w3 is

(i) (h) = = (p.i @) = S|

Also, p» = 0, and hence, po(h) = ||h||? is a hyperkéhler potential.

2. Consider the following S!'-action on H": (z,h) — zhZ, where S' € C C H. It
follows from Example 2.2.15 that the moment map for w; and Kéahler potential for
Wa, W3 18

(1, ) (h) = —(p,i @) = §([[hal® + s ]?),
where h = hy + tho + jhy + khy. However, this is not a Kéhler potential for w;, and
therefore, no hyperkéhler potential, and ps Z 0.

A similar computation can be done for any complex structure Z,, not only I;.

2.2.6 Forms and vector fields

The following lemma shows how the fundamental vector fields are related to the differential
forms studied above:

2.2.39 Lemma. Let M be a hyperkdhler manifold with permuting Sp(1)-action. Then
Lep(1)g = —47 + Bi,w € (sp(1)Y @ (M)W

In particular,
diegp1yg = 3dLdpy — 4w.
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Proof. Using the explicit formula for v from Example 2.2.11, we obtain

3

onw i) Zbl 5p<1>w1 =1 fpu)g +¢ fp(l)w:a -t fp(l)wm
=1 3

w

3(txows 1) Zbl 5p<1>w2 = t,sp) g = L Sp()W3 + L sp1yWi,
—1 Yo Yo Yes

w

3(Lyow, k) ZLI Sp(l)wg =1 ?pu)g +¢ fp(l)wg —t ?p(l)wl
(=1 ¢ 2

Therefore,
Blyow = Lep(1)g + 4.

Applying d to the above formula and using dy = w and ¢, w = Zdp,, we obtain

digy1yg = 3diy,w — 4dy = 3dLdpy — 4w. O

2.2.40 Corollary. If M is a hyperkihler manifold with permuting Spin (3)-action, then

. S
1. bxolsp(1)9 = _4LX0% e g(vacp(l)) = _4<7(X0)7C>7
2. g(x0, V) = =51 — Slglsp(1)9
9 2 _ 1 Sp(1) AT 1 1 2 _
- Ixoll* = gwe(ve™ 7, x0) — 37(Zexo) for all ¢ € sp(1), [[C]]* =

b 0EPVNR = 4p, ¢ @ ¢) — 3(dp(x0), ¢ © ¢) for all ¢ € sp(1).

Proof. All of these claims follow from inserting a vector field into the 1-form from
Lemma 2.2.39:

L bxolsp(1)9 = _4LX07 + 3w(X07 XO) = _4[’X0P)/'
2. tglsp(1)g = —4p — By = =4 — 39(x0, V).

S
3. ol == tzotrowe = =290V, Texo) — 407, O (Zexo)-
S
=-— %%(vg”(”, Xo) — 5(7, ) (Zexo)

4. |lvg P2 = =4y, ) (v¢ sy 4 Z’)WC(XO,UC )) for all ¢ € sp(1). Finally, since
<7 ) (") = <p,<®c> and

_WQ(XO, ng( )) <Lx075’25p(1)v%p(1)w7 C & C> = ond<p, C & C> = <dp<X0)7 C & C>7

the claim follows. O
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2.2.41 Lemma (po and ||xol||?)- Let M be a hyperkihler manifold with permuting
Sp(1)-action. Then

3
Ixoll? = 33" 0PV + 2o
/=1

In particular, py < 3||xol/*.

Proof. Take a trace of the last equation in Corollary 2.2.40 to obtain

3
> vaH2 = —12py + 9dpo(x0) = —12po + 9L, o
=1

Since xo = grad(pg), we have ||xo||> = Ly,p0 and, hence, the claim follows. O

2.2.7 Manifolds with hyperkahler potential

Among the hyperkéihler manifolds with permuting Spin®(3)-action, there are those
hyperkahler manifolds with permuting action, which admit a hyperkéhler potential.

2.2.42 Example (Swann bundles). Let N be a compact quaternionic Kahler manifold
with positive scalar curvature. Swann constructed [Swa91] a fibre bundle M = U(N) — N,
with fibre H*/ 4+ 1. The total space U(N) is hyperkéhler and admits a permuting Sp(1)-
action with p, = 0 and hyperkéhler potential py = 3| - ||?, where || - || is the norm on the
fibres. Conversely, Swann proved that a hyperkdhler manifold with permuting action and
p2 = 01is locally homothetic to a Swann bundle ([Swa91, Thm. 5.9]). Examples for compact

quaternionic Kéhler manifolds with positive scalar curvature are Wolf spaces. These

are the compact homogeneous quaternionic Kahler manifolds, i.e. HP" = Mnfﬁ)igz)sp(l)’
Gry(C") = S(U(nSUW Gry(R™) = SO(#)(:)SO(@ and five quotients of the exotic simply

connected compact Lie groups G, F3, Eg, F7, Es. The corresponding hyperkédhler manifold
M = U(N) for a Wolf space N is the minimal nilpotent coadjoint orbit of the simple
complex Lie group (for details cf. [Swa91]).

Swann’s characterization of hyperkihler potentials

Swann proves that f € C°°(M, R) is a hyperkéhler potential if and only if V(df) = g¢:

2.2.43 Proposition ([Swa91, Prop 5.5, Prop 5.6]).
Let M be a hyperkdhler manifold with w € sp(1)Y @ 2*(M) and f € C°(M,R). Then

V(df) =g & dZdf = 2w

Furthermore, such a hyperkdahler potential f exists if and only if there is a local permuting
Sp(1)-action with x2 = 0.
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Equivalent characterizations of hyperkihler manifolds with permuting
action and potential p,

We will provide a number of equivalent conditions for p, = 0. That the sixth, seventh
and nineth condition are consequences of py = 0, was observed in [BGM93]. The twelveth
characterization first appeared in [Swa91]. We would also like to thank Henrik Schumacher
for pointing out the eleventh characterization ([Sch10, Lem. 3.2.5]).

2.2.44 Proposition (Hyperkidhler manifold with potential).
Let M be a hyperkahler manifold with permuting Sp(1)-action. Then the following
conditions are equivalent:

1. po=0
2. x2=10
3. Zw™ = |[¢|xo0 for all ¢ € sp(1)
4o LyoW = Lsp(1)9
5. 2y = 1w
6. Ly,w = 2w
7. Lyyy =27
8. Lyopo = 2po
9. po = 3llxoll®
10. |Ixoll? = § Ty o
11. Vxo = idry
12. V(dpo) = g

13. po s a hyperkdhler potential, i.e. dZdpy = 2w
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Proof. The following diagram shows which implications we prove (including the proofs in
Remark 2.2.45). Next to the arrows we provide a hint to what is used in the proof:

EX0W=tsp(1)9
2y=uy,

0“2.2.39 4.
s " ‘K TSP )¢
d 3.
EXOwZQw

X

2.2.30 2. x2=0
LxoV=27 7. xo—grad pa S2sp(1)Virred.
2.2.30 1 py=0
LxoP0=2r0 8. 2.2.35, 2.2.37

111>

13.

dZdpg=2w
[Swa91]

9.
12

po=3l1x0ll?
2.2.41 :
v(d =
10. . / (dpg)=9

3
2_1 2 Vxp=id
Ixol?=% 3 lixc, I 0
=1

We first prove that the conditions 1, 2,3 are equivalent:

1 & 2 The condition py = 0 implies y2 = 0 since xo = grad(pz). On the other hand, if
0 = x2 = grad(ps), then p, has to be locally constant. But p, € C*(M, Sgsp(1)) is
equivariant and the Sp(1)-representation S2sp(1)Y is irreducible. Now if for some
x € M: po(z) # 0, then there exists g € Sp(1) such that pa(z) # gpa(z). Since
Sp(1) is compact and connected, the exponential map is surjective and we can write
g = exp(t&) for some & € sp(1). Since z and gz are in the same component of M
(connected by the path exp(t&)z), we know that ps(gx) = po(z). However, this leads
to the contraction ps(x) # gpa(x) = pa(gx) = po(x). Hence, we can conclude that

P2 = 0.
1 = 13 We proved this in Lemma 2.2.35 and Corollary 2.2.37.

2 <3 For ¢ € sp(1), [[C]I* = 1, we have
(X2, ¢ @ C) = (x2,C® ) = x0 — Zev™.

Hence, x2 = 0 if and only if x = Igv?p(l) for all ¢ € sp(1), ||C]]* = 1.

3 =4 For ( €sp(1)

(1)

WC(va) = _g(ICX(bU) = g(,UCSP JU)J

and therefore ¢, ,w = tg1)9.
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4 =5

5=6
6=7

7T=8

8=9
9=10

10=3

5=13

11 =12

We know from Lemma 2.2.39 that tg,1)g = 3ty,w — 47, and therefore,

Lop(1)9 = Lo = glap()g + 37-
Thus, %Lsp(l)g = %7 and therefore, 2v = 14(1)9 = Ly w.
Ly,w = diyyw + Ly, dw = diy,w = 2dy = 2w.
We use Note 2.2.30 to compute

3Tsp(1)V Lo Lep(1)W

LY = 5Ly (Tapa)vlopyw) = 3

= 3 Map(1) bap(1) Lxo =
= 27.

5 ap(1) Lap(1) 20

From L,y = 27 and L, tsp1) = Lsp(1)Ly,, We obtain

Lyopo = 5Ly t1(tep1)y) = 5 t(ep(1)Lx07) = 5 t(Lep(1)7) = 2p0-

Using Ly,p0 = 2po, we obtain g(Xo, Xo) = dpo(x0) = LyoP0 = 2p0-

We use Lemma 2.2.41 to compute

3
p(1)  Sp(1
20(x0: Xo) = 4p0 = 30(x0. X0) — 5 -9t o).
=1

and therefore, g(xo, X0) = Ze lg(vQ p(1) vzp( )).

Let w = £ >}, v, and assume that [|w|* = 1 37_; |lv||%. Then
3 3
2 2 2
%ZHWH = Hw” éZHWH +% Z <Um7vn>a
/=1 /=1 1<m<n<3
and therefore, >33, [[ve]|? = Y1<men<s(Um, vn). We conclude that

3
OIZHWHQ_ Z (Vi Un) = % Z va_vnH2>
/=1

1<m<n<3 1<m<n<3

and hence, V1 = Uy = Vg = 0. We apply this to T Ievip(l)

assertion.

, W = Xp to prove the

dZdpy = diy,w = 2dy = 2w.

For all vector fields v,w € I'(M, TM) we have

Vv(dPO)(w) = VU(dPO(w)) - dp0<vv<w)) = VU(Q(XO; w)) - g(XOa Vv(w))
= 9(Vuxo, w) = g(v, w),

and therefore V(dpy) = g.
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12 = 11 For all vector fields v,w € I'(M,TM) we have

9(Vuxo, w) =d(g(xo, w))(v) = g(x0, Vow) = d(dpo(w))(v) — dpo(V,w)
=V, (dpo)(w) = g(v,w),

and therefore V(xo) = idrp.

12 < 13 Swann proves in [Swa91, Prop. 5.6] that f € C*°(M, R) is a hyperkéahler potential
if and only if V(df) = g. Therefore, V(dpy) = g.

13 = 6 We always have t,,w = Idpy. Therefore, if py is a hyperkahler potential, i.e.
dIldpy = 2w, we obtain

Lyw = ty,dw + diyyw = diy,w = dZdpy = 2w. O

2.2.45 Remark. We will now prove some more implications directly:

4=3 g(ICvfp(l),v) = —g(vfp(l),ICv) = —w¢(x0, Zev) = ||<]I?9(x0,v) for all v € TM and
¢ esp(l).

5 =4 Using tgp1)g = —47 + 3ty w from Lemma 2.2.39, we obtain tep1)g = —4y + 31, w =
=2y W + By W = Ly W.

7T=6 Ly,w=Lydy=dL,,v=2dy =2w.
6 < 13 Note that £, ,w = di,,w = dZdpy.

10 = 9 We know from Lemma 2.2.41 that g(xo, X0) = 5 Xi_ g(vq P(1) vzp( )) + 3po. Using

9(x0. x0) = 3 S8 g™ w2PW), we obtain g(xO,xO) 39(X0, Xo0) + 300 and hence

Po = 29(X07X0)

S
3= 10 g(x0,X0) = 1331 9(x0: x0) = 2 301 gLexo, Iexo) = 1 33, gD, o).

2.2.46 Corollary ([Call0, Prop. 3.2.6], [Sch10, Lem. 3.4.1]). If one of the condi-
tions in the previous proposition holds, then

1. dp(xo) = Lyoht = 2
2. = LgLXOCu or equivalently, u %Lsp(l)ng.

Proof.
L dp(xo) = Lyoht = Loty = gLy = 247 = 21

2. We use 2y = t,,w to obtain p = 13y = ngLXOw 0

2.2.47 Remark Another way to obtain u = %LQLXOW is to observe that y, = 0 implies
Yair = vPW and T, v = ||¢|[*x0. Combining this with y = $¢4¢y,,9, this gives

_ 1 1 1
K= 5lglx a9 = 3lglsp(1)d = SlglyoW-
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2.2.48 Remark. As we have seen in Example 2.2.15, even if p, # 0 a hyperkahler
potential can still exist.

Also note that if a vector field ¥ € I'(M, TM) satisfies VX = idras, then f:= L[|g]]* €
C>*(M, R) satisfies

and therefore, ¥ = grad(f). In particular, V grad(f) = idyas, which using the same proof
as in “11 = 127 of Proposition 2.2.44 implies V(df) = g. Therefore, by Swann’s criterion
(Proposition 2.2.43), f = L[|%||* is a hyperkéhler potential.

2.2.49 Remark (Uniqueness of hyperkihler potentials). Let M be a connected
hyperkéahler manifold of dimension 4n.

If f is a hyperkédhler potential and ¢ € R, then f + ¢ is also a hyperkahler potential.
However, the previous remark provides a natural normalization, i.e. 3| grad(f)||*>. This
was also observed in [Sch10, Rem. 3.2.6].

If M has two hyperkahler potentials f; and fo with df; # dfs, then V(grad(fi — f2)) = 0.
Hence, v := grad(f; — f2) is a parallel, nowhere vanishing vector field. Furthermore,
Lv, Iyv and I3v are also parallel and the holonomy group reduces to Sp(n — 1) C Sp(n)
and M is locally isometric to a product of a 4n — 4-dimensional hyperkahler manifold
and H. If M is simply-connected and complete, then it is globally a product of this form.

In particular, if M is irreducible, then the hyperkahler potential is unique up to a constant.

Conversely, if v € I'(M, TM) is a parallel vector field and f = 1| grad(f)||* is a (normal-
ized) hyperkahler potential, then 1| grad(f) +v||* = f + df(v) + ||v[|* is a hyperkéhler
potential since V(grad(f) + v) = idyys. Therefore, if f is a hyperkihler potential on M,
then every other hyperkéhler potential on M is of the form f + df (v) + ¢ for some parallel
vector field v and a constant c. If M admits a hyperkédhler potential, then the dimension
of the space of hyperkéhler potentials is the sum of the dimension of the space of parallel
vector fields and the number of connected components of M.

2.2.50 Example (hyperkihler potential on quaternionic vector spaces).
Consider M = H" from Example 2.2.6 with the action of Sp(1) on H" given by left
multiplication in each component. The fundamental vector field for this action is

(v")e = & exp(=tQ)alizo = —Co € H" = T,H" for all w € H",( € sp(1).
We obtain
T (M), = —CCo = v € H* = T,H" for all ¢ € sp(1), ||| = 1.

The vector field yo = Icv?p(l) is independent of ¢ € sp(1), ||¢||* = 1. This is the Euler
vector field xol, = © € H" = T,H". The hyperkahler potential is

po(z) = g™ (xolw: Xol=) = 2xol=II” = 3 =]*.
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It follows from Remark 2.2.49 that an arbitrary hyperkéahler potential is of the form

f(z) = %[|z||* + Re(z*v) + ¢ for some v € H" and ¢ € R. The corresponding permuting
Sp(1)-action from Proposition 2.2.43 is obtained from the above action and the translation

by v.

2.2.8 Spin®(3)"-module generated by w

In this section, we show how the forms v, p, po, p2 naturally appear from the permuting
Spin¢(3)-action on M. Recall the following definition ([GS99]):

2.2.51 Definition. Given a smooth action G ~ M, we have an action of the Z-graded
Lie superalgebra g := g[—1] & g & R[1] on 2*(M) by derivations:

g[—1] acts as the insertion operator ¢,
g acts as the Lie derivative L,

1 € R][1] acts as the exterior derivative d.

Here, g[—1] is the Lie algebra of G sitting in degree —1, g is in degree 0 and R[1] is in
degree 1. The Lie bracket on g is defined in such a way that the usual commutation
relations between Lie derivative, insertion operation and exterior derivative hold in g.

A G*-module is a Z-graded vector space A with a linear G-action and a G-equivariant
g-action such that the infinitesimal G-action on A coincides with the action of g C g.

A morphism of G*-modules is a degree-preserving linear map which commutes with the
G-action and the g-action.

Given a hyperkihler manifold M with a permuting Spin¢(3)-action, we can understand
(M) as a Spin&(3)"-module and study the Spin&(3)"-submodule generated by one of
the symplectic forms w;.

Since the Lie derivative L¢3 generates the 3-dimensional space of 2-forms spanned

spin
by wi,ws, w3, but leaves w € sp(1)Y ® 2%(M) invariant, we can equivalently iterate the

insertion operation:

2 2 ; y Sping (3)
> ltupnscs)' € D (A" sping(3)" @ sp(1)Y @ 200

(=0 (=0

Since everything generated by these insertion operations is Spin(3)-invariant, the Lie

derivatives do not produce any new elements of the Spinf(3)*-module. The same
holds for the exterior derivative d, since dw = 0, dL,;,¢
L opinG (3) — Lepind(3)d- Therefore, the image of i (/\é 5pin€G(3)v ®5p(1)v) in 2°(M) is
the Spin&(3)"-submodule of 2*(M) generated by w;. This also contains all the differ-
ential forms from Proposition 2.2.7. To see this, we use the following decomposition of

3) = Lopinc()d and digyc3) =
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Spin(3)-representations:

(1),
p(1)" @ S%sp(1)” ®g" @sp(1)"
p(1)" @& Sgsp(1)Y @ R g¥ @sp(1),
(N sp(1)Y @sp(1)’ ©g" @ \"g") @sp(1)”
= (sp(1)" @ sp(1)V @ g" @ N\ g¥) @ sp(1)"
~ (Reg") @ (sp(1)" @ S2sp(1)” @ R) & A\ 0" @ sp(1)"

S5
S

The representations and the corresponding components of Z%ZO(LSMEG(?)))QU are listed in
the following table:

’ representation \ component ‘
sp(1)Y @ Q2%(M) w
sp(1)” ® 21(M) V= 5 op(1) Lep(1)
S%sp(1)" @ 2'(M) dp = Ts2p(1)v Lep(1)
Sosp(1)Y & 2'(M) dpa = Ts2ep(1)v Lap(1)W
2Y(M) dpo = —3 tr(Lep(yw)
g’ ®@sp(1)Y @ 21(M) —dp = 1qw
g’ @sp(1)" @ 2°(M) 1= LY
sp(1)Y @sp(1)Y ® Q2°(M) P = —lop(1)Y
sp(1)” @ 2°(M) Tzap(1) P = 0
Step(1)” @ £2°(M) p2
2°(M) Po
g" ® S%sp(1)Y @ 2°(M) Lgdp = Lgp =0
8" ® SZsp(1)Y @ 2°(M) Lgdps = Lyps =0
g’ ® 2°(M) tgdpo = Lgpo =0
N’gY ®@sp(1)Y @ 2°(M) ng = Lodpt = —Og/t

Note that for sp(1)Y @ 21(M), g¥ @ sp(1)Y ® 2°(M), sp(1)” @ sp(1)¥ @ 2°(M) and
sp(1)Y @ 2°(M) we implicitly used the isomorphism mepqyv: A% sp(1)Y = sp(1)Y.

Furthermore, this explains why apart from w, the forms v, p = (po, p2) and p naturally
appear on a hyperkihler manifold with permuting Spin¢ (3)-action.

From this table, we also obtain an 18-dimensional, universal Sp(1)*-module AP¢™

AP = sp(1)[2] @ sp(1)[1] @ Sgsp(1)[1] @ R[1] @ Sgsp(1) @ R
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for permuting actions, with differential given by

dlspaye) = 0,

dlsp(nypy = idsp(ry : sP(1)[1] — sp(1)[2],
d|s2ep(1)p) = 0,

dlrpy =0,
d|5(2)5 1d5'25p . S 5p( ) - Sgsp(l)[lL
dlr = idgp1y: R — R[1],

the Lie derivatives

sp(l Vspyiz = [ ] sp(1) @ sp(1)[2] — sp(1)[2],
sy =[] 8 ( ) @sp(1)[1] — sp(1)[1]
Lep(1) |S25p(1)[1 ([, ] @ idapr) +(idspay ®, -]) 0 T12) = sp(1) ® Sgep(1)[1] — Sgsp(1)[1]
1|rp =0
Lepa |525p = ([, ] ® idspr) +(idspry ®[, -]) 0 T12) : sp(1) @ Sgsp(1) — Sisp(1)
Lspylr =0,

where 712: sp(1) ® sp(1) @ sp(1) — sp(1) @ sp(1) @sp(1) s (R X" = (@R ("

Finally, the insertion operations are
tap(vlsp(uyizl = ([ ], prszﬁp(l) tr): sp(1)[—1] @ sp(1)[2] — sp(1)[1] @ Sgsp(1)[1] & R[1],
top(n)lsp(1)1) = (= Przap(ry: —5 t1) 1 sp(1)[=1] @ sp(1)[1] — Sgsp(1) & R,

tap(n)|szspyny = ([ ]®1dsp(1>+(ldsp ®[,]) o m2): sp(1)[-1] ® Sgsp(1)[1] — Spsp(1)
Lsp(1 |R[1] =0

Lsp(1 ’S%p =0

Furthermore, we have a smaller, 8-dimensional version of this,

A =sp(D)[2] @ sp(1)[1] ® R[1] ® R,
which has the same operations as above, only the two Sgsp(1)-components are missing.
There is a natural projection AP¢™ — ABE™.

From these definitions, we immediately obtain:

2.2.52 Lemma. Given a hyperkihler manifold with permuting Sp(1)-action, we obtain a
natural morphism of Sp(1)*-modules

AP s 0%(M).

Its image is the Sp(1)*-module generated by wy (or equivalently wy,ws,ws). It factors
through AE™ if and only if p, = 0.
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2.2.53 Remark. Note that the morphism AP“"™ — 2*(M) is injective if po # 0. And if
p2 = 0, the morphism A{*™ — 2*(M) is injective. This follows from Lemma 2.2.41 and
Proposition 2.2.44 and the Sp(1)-equivariance of the morphisms.

2.2.54 Remark. Similarly, one can define a Spin&(3)"-module structure on
A = AT @ (g @sp(1))[1] & (g @ sp(1)),

and, given a hyperkihler manifold M with permuting Spin%(3)-action, obtain a degree-
preserving morphism of Spin%(3)*-modules A% 2*(M), whose image is the Spin(3)"-
module generated by w; (or, equivalently, wq,wq,ws).

2.2.55 Remark. Alternatively, the Sp(1)*-module AP“"™ can be described as quotients of

—_—~— —_~—

the universal enveloping algebra U(sp(1)): Consider the left ideal I C U(sp(1)) generated
by

2 2 1 1
d7 ECl’ £C2‘CC3’ t1lats, £C2+4’ Egg+4= e LC3‘CC2 e LC1£C3’ bgi b, —35l¢ LC2‘CC27 LG LC3+§LC2LC3‘CC3‘

It follows from Example 2.2.11 and the super version of the Poincaré—Birkhoff-Witt
theorem ([MM65, Thm. 5.15]) that

—_~—

A — U (sp())/1,
and a real basis is given by

W1, Lclwlu LCQWIa L<3CU1,
£C2W1; £43w17 LClﬁCzwlv LC2£C2W17 L<3£<2w1, LClﬁCswlv LC2£C3w1> LCS‘CCSwl?

LGy oW1 Ley LesWTs LiabeaWTs Ley Lea Ly Loy bes LWty Ley bes Les i -

Similarly, we have
AP = U (sp(1) /1,
where [’ is the left ideal generated by I and the additional generators

LeyUeay ey b 2Ly — b £¢yy 20 + 1 Loy
2LC2 + LCl‘CCs’ 2LCl + LC2£C37 LC2‘CC2 - LCs‘CC:s? 2LC2 Ly T Ley LCzﬁCz
and a real basis of AJ™"™ is given by
W1, b W1, LW, LW, £C2w1’ £C3w17 L besWi, LC2‘CCQW1

2.2.56 Remark. We will also study an analogue of Z%ZO(LSpmsc(g))éw, where w is replaced
by the fundamental 4-form (2 = tr(w A w), in chapter 3.



Chapter 3

Homotopy moment maps and
equivariant cohomology

In this chapter we study the notion of homotopy moment maps, which generalize moment
maps in symplectic geometry to the case of Lie group actions on manifolds preserving a
closed n + 1-form, called pre-n-plectic form. We are particularly interested in the case
of n = 3, i.e. manifolds with a closed 4-form. As an example, we construct homotopy
moment maps for tri-hamiltonian as well as permuting actions on hyperkahler manifolds
equipped with the fundamental 4-form (2. These are obtained from the cocylces of
degree 4 in equivariant cohomology constructed in Theorem 2.2.22. We generalize this
construction and show that cocycles of arbitrary degree in equivariant cohomology give
rise to homotopy moment maps. This generalizes the interpretation of moment maps in
terms of equivariant cohomology given by Atiyah-Bott ([AB84]).

Work on this section started after discussions with Christopher L. Rogers and Marco
Zambon, after Marco Zambon gave a talk on homotopy moment maps in the “Higher
Structures” seminar in Gottingen, shortly after the first version of their joint paper
[FRZ13] with Yaél Frégier appeared on the arXiv. The results of section 3.3 also appear
in the second version of the same paper [CFRZ15]. The author is grateful to Yaél Frégier,
Christopher L. Rogers and Marco Zambon for allowing him to join their project at such a
late stage, and in particular to Christopher L. Rogers for helpful discussions and hints.

Throughout, G will be a Lie group with Lie algebra g and M a G-manifold.

3.1 Homotopy moment maps

3.1.1 Definition. Let M be a manifold, 2 € 2" (M) closed and G ~ M a smooth
action which preserves 2. A homotopy moment map f = > p_; fr for (M, 2) consists of
fr € N¥(g¥) @ Q" F(M), k = 1,...n satisfying

n+1

Sof +df = =3 C(R)iEQ,
k=1

41
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k(k+1)

where ((k) := —(—1)" 2 , d; is the Chevalley-Eilenberg differential and d is the exterior
derivative.

A homotopy moment maps f is said to be G-equivariant if fi,... f, are G-invariant.

3.1.2 Remark. The origin of this definition is the following: Associated to (M, 2) is
a Lie-n-algebra of observables Ham, (M, {2), which generalizes the Poisson Lie algebra
of a symplectic manifold. A homotopy moment map f is the same as an L,,-morphism
g — Ham (M, £2), lifting the infinitesimal G-action by hamiltonian vector fields. This
generalizes the interpretation of a (co)moment map in symplectic geometry as a lift of
the infinitesimal G-action to the Poisson Lie algebra. More details on this point of view
can be found in [CFRZ15], in particular in Def./Prop. 5.1. For our purposes, it will be
sufficient to work with the above definition.

The Lie n-algebra L. (M, §2), of which Ham. (M, {2) is a sighly modified version, was
first constructed in [Rogl2].

3.1.3 Notation. We will also use f := 7, ((k)fe. In terms of f, the moment map
condition for f reads )

dof = F?, (3.1)
where F? := Yp0 (=1)FkQ and dy := 0, + (—1)*d is the differential on the total
complex C*(g, M) of the double complex

Chon(g, M) = \'(g") @ 2"(M). (32)

This complex computes the Lie algebra cohomology of g with values in the trivial g-
module 2*(M). A similar complex which computes the Lie algebra homology with values
in the g-module 2*(M) has been studied by Brylinski in [Bry90]. The interpretation
of homotopy moment maps in terms the complex C*(g, M) has also been studied in
[FLGZ14].

3.1.4 Remark. If we interpret F?: A\*(g") — 2*(M), then the image of F> and 2
linearly span the G*-submodule of 2*(M) generated by {2.

3.1.5 Remark. Note that if f =37}_; fx is a homotopy moment map for a pre-n-plectic
action of G on (M, 2) (i.e. 2 € 2" (M)%), then the restriction of — f, to kerd; C A" g¥
is a multi-moment map in the sense of Madsen and Swann ([MS12], [MS13]).

3.1.6 Example (n = 3). Since one of our main interests is the case of pre-3-plectic
manifolds (M, (2), i.e. (2 is a closed 4-form, we explicitly write out the moment map
conditions in this case: A homotopy moment map f consists of

. f1 c gv ® QQ(M),
o foeNg’ @ Q2N (M),

e frEN g @ Q2UM),
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satisfying the following conditions for all &, &5, &3,&4 € gt

(&) + 1,6 2= 0, (3.3)

dfs (&1, €2) + tug tug 2= Fi([&1, &), (3.4)

df3(&1,€2,83) — ¢y ¢ g g Q2 = fo([&1, 8], 63) — f2([€1, &3], &2) (3.5)
+ fo([&2. &), &),

g g g ug 2 = f3([€1, &), &, 60) — f3([€1: €8] €2, &) (3.6)

+ f3([€1, €4l €2, §3) + f3([62: &3, 615 €a)
— f3([€2,84), 61, 63) + f3([€3, E4], €1, &)

3.2 Homotopy moment maps from degree 4
cocycles in the Cartan model

In this section we construct explicit homotopy moment maps from degree 4 cocycles in
the Cartan model for equivariant cohomology and apply this to the cocycles constructed
in Theorem 2.2.22 for actions on hyperkéhler manifolds.

Even though the first part of the following Theorem 3.2.1 is a special case of the more
general Theorem 3.3.27 below, we still give an independet, direct proof, without using
the other models for equivariant cohomology. The second part of the theorem compares
the homotopy moment maps constructed from two degree 4 cocycles which differ by a
dg-exact form. The first part of this theorem seemed to be well-known to the experts, and
the author would like to thank C. Rogers and M. Zambon for sharing the formula for the
moment map in this case. The second part is an immediate consequence of the first part.

3.2.1 Theorem.
1. Every cocycle 2 = Q2 + P, + Py € C&(M) in the Cartan model with 2 € 2*(M)¢,
Py e (g¥ @ 22(M))Y and P, € (S*(g") ® 2°(M))C induces a (G-equivariant)

homotopy moment map f with

fl = _P17
f2 = Lgfl —|— dPQ = 7T/\2nggf1,
f3 = Lng + (idg\/ ®59)P2 7T/\3 vi fl + 7T/\3 (ld \ ®(5 )

2. Let a € (g¥ @ QYM))® and B € 23(M)Y. Then the homotopy moment map
constructed from the 2-step extension 2+ Py + Py + dg(a+ ) of 2 +dpS is

fi=hHh— b +da,
f2 = f2 — LBB — 7T/\2gvbgd0é7
fs=f3— Lg’ﬁ — g azgv LgQY,

where f is the homotopy moment map constructed from 2+ P, + Ps.
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3.2.2 Remark. The second part of Theorem 3.2.1 generalizes [FLGZ14, Prop. 7.11]. In
Corollary 3.3.31 below, we generalize this to arbitrary to cocycles of arbitrary degree.

Proof (of Theorem 3.2.1).
1. Before proving that the conditions (3.3-3.6) hold, we need to check that f, and
fs3 is actually skew-symmetic. For fy, this is obvious from fo = (yf1 +dP> =
tgfi — Tg2gvigfi = Tazgvigfi. From the definition of f3, we see immediately that

f3(&1,&2,&3) = — f3(&1, €3, &2). Furthermore,

f3(61,6,8) = =2 f1(61,8,&) + LaPa(&1, 6, &) — Pa(&r, &2, &)
= —1gf1(61,&2,E3) + Pa([61, &), &) + Palba, (61, &5]) — Pa(&n, [62, &)
= 15 f1(€2,61,88) — LgPa(&2,61,E3) + Pa(E2, 61, E5))
= —f3(£,&1,83).

Hence f3 € A* g @ £2°(M) as claimed.

The cocycle condition in the Cartan model is df?2 = 0, dfy = —dP, = —¢,f2 and
dPy = mg2gvigPr. The second of these is already (3.3). To check the second condition
(3.4), we compute

[i([€1,&]) =Lgf1(& ® &) = (1gd + dig) [1 (&1 ® &2)
= — 15ty 2(§1 ® &) + dig f1 (61 ® &2)

Since the left hand side and 14:4£2(§; ® &) are skew-symmetric in £, {3, we have
fi([61,&]) = —lg ngﬂ + dmpzgvig f1(€&1 ® &) = ngbvgg + dfy (&1 @ &2).

Using fo = t4f1 + dP, and Equation 3.4, we compute

—0gf2(€1, 82, €3) =L f2(81,62,83) — fo(&1, [€2,&3])
=Ly f2(61, 62, &3) — t.f1(61, (€2, &5]) — dPa (1, (€2, &5])
=Ly f2(&1,&2,83) + 10g.f1(&1, &2, &) — dP2 (&1, [€2, &)
:ng2(51,€2,53) - Lgdfz(fhfz,f:s) - 639(51752, §3) — AP (&1, [€2, &3))

=digf2(&1,&2,E3) — dPa(&, [€2, &) — 1302(61, 62, E3)
=dfs(&1, &, &) — 1592(61, &, E3).

This proves (3.5). We now turn our attention to the last condition (3.6). We first
observe that

0 f2(62, 63,60) = o= ([62, ], &) + ([0, €], &) — (16, &), &0))
=(ta 1+ dP2)([-, ] @ id) (= (€, &3, &0) + (2. 60,6) — (6,60, %))
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We use this to show —dyf3 — Lgf3 = 104 f:

(—0gfs — Lgf3)(&1s- -5 &)
= [3([&2, &3], &1, 64) — [3([§2, €, &1, 63) + f3([€3, €4l 61, 62)

= 21 (&1, (62,65, 6) — (&1, €2, &), &) + (€0, 165, ), &)
— LoPo( (&1, [60, &6, &) — (&1, [60, 6], &) + (&1, [65, 6], ©0))
+ Po((60, [[62, 8], &a]) — (€0, [0, &), &) + (€0, [[63, 6], &)
= 1500 fa(&1, -+, 64)
- ((id Q[ ® id)VLgdP2> (—(51752753, §a) + (61,62,64,83) — (51753754752»

— ((ld ®[, ] &® ld)vﬁgPQ) ((517527537 64) - (51752754753) + (51753754752))
- Lg(sgf2(€17 s 754)‘

To finally prove the last condition (3.6), we again use the equivariance of f3 and
condition (3.5) to compute:

_6gf3 = ﬁgfg + Lgégfg = £9f3 + Lg(—dfg + L§Q> = [,gfg — ﬁgfg — LéQ = —[,3.(2

2. We have 2+ P+ Py +dg(a+ ) = '+ P+ P} is a 2-step extension of (2 := 24-df
with P{ := P, — (g + da and Py := Py — mg2gvigae. In particular, we have

fi=—P = =P+, —da=fi+ 10— dao,

f2 — 7.(/\2 \/Lgfl — 7T/\2 \/Lgf]_ + 7T/\2 (Lg)zﬁ — ’/T/\ngLgda = f2 — L;ﬁ — 71_/\29\///9(106,

Before turning to f}, we observe that

Lymegrigaée, &:60) = 3 (Log g o) = Ligrg a(@))
= 1 (g, 006 + ngallen &) —ug _ alé) —ugallén &)

VL1 £2]

= Thaguigar(([€1, &), &) — <[51,531,52>),

and, therefore,

((1d v ®0g)Tazgviger + LgTTp2gv Loy )(§I,§Q,§3)

—mpsgriga (€2 &, €0) + (161 &), ) — (1616, €2))
= — 0gTp2 gV lg® a(&1,6,83).
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Using this, we finally compute

fs = 1gf5 + (idgv ®3g) P
= 1gfo — 153 — 1gTpzgvigdor + (idgv ®6) Py — (idgv ®6g)Tg2gv Lger
= f3— Lgﬁ — 1gLg0 + Lgdmp2gviga — (idgv ®0g)Tg2gv Lgar
= f3 — 133 + (idgv ®Fg)1gr + LT pzgvtger — (idgv @8y)T2gv g0
= f3— 133 + (idgw @Fg)TpzgyLgtr + LgTazgyigr

= f3— Lgﬁ — OgT a2V LgQY O

3.2.3 Proposition. Let M be a hyperkdhler manifold. Fach of the 2-step extensions of
2 =tr(w Aw) in Theorem 2.2.22 induces a homotopy moment map:

1. If G ~ M is tri-hamiltonian, then

16 =2t (p @ w),
[ = 27 pegv tr(p @ dp),
f5 = 37 psgv (v ®@6,) tr(p @ )

is a homotopy moment map.
If additionally, w = dy, there is another homotopy moment map

1= tr(p @ w),
57 = 2m gy tr(p © dpt) + by tr(y © ),
1 = 3T asgv (idgv ®3) tr(p @ 1),

which is constructed from the 1-step extension dgtr(y A w).
2. If Sp(1) ~ M is permuting, then

fi = —Amgpayv (Y A ) — 2tra3(p ®@ W),
fo = 2mpn2gpayv traa(p @ (dp — 206p(1)7));
fs = 2tx(p)* — dtx(p?)

is a homotopy moment map (constructed from 2). Furthermore,

fi = —Amgay (Y Ay) — tras(p @ w) — trig(y Adp),
f3 := Tazep1yv traa(p @ (2dp — 30sp(1)Y)) + Tazep(1)v tT14(Y ® Lapa)p),
f3 = 2tx(p)” — 4tr(p”)

is a homotopy moment map (constructed from dgyqytr(y Aw)).
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3. If Sp(1) x G ~ M, the Sp(1)-action is permuting and the G-action is hyperkdhler,
then f35PM*C s q homotopy moment map:

lsm)xc = —dmgpay (YA Y) — 2tra3(p @ w) + 2tr(p @ w),
Sp = f2+f2

+ Taz(ap(tya) (2 tras((dp — Gup1yy) @ 1) — BTep(ayy (1 @ 7) + 2 tr1a(dpp @ p))

Finally, Sp(l)XG is uniquely determined by its restrictions:
Sp(L)x |5p(1 = f3,
3"l = £,
égp(l)XG|sp(1)®2®g = traa((Lapyp + (idsp(1) @sp(1))p) @ ) — A(idsp1)eg @Tsp(1)v ) (p ® p)
— tro3(Lepy it @ p),
:fp |5p Dege2 = 8Mep()v (1 @ 1) — (idsp(1) ®y) tras(p @ p).

Here, we used the isomorphisms

N (sp(1)Y @ %) = A'sp(1)) @ A v@sp @gv,

N sp(1)' @) = N\ (sp(1)) & A\’ (sp(1 Vasp()V o N(e) e N (s")

3.2.4 Remark. In the case of the permuting Sp(1)-action on a hyperkdhler manifold,
we can use the decomposition S?(sp(1)¥) = R & SZ(sp(1)Y), and the corresponding
decomposition of p into py and py to write f3 in terms of pg and ps:

fs = f5 = 6p5 — 4tr(p3).

3.2.5 Remark. After this result was obtained, C. Shahbazi and M. Zambon pointed
out an alternative way of constructing a homotopy moment map for a tri-hamiltonian
action on a hyperkéhler manifold in [SZ15]. Their approach is to first construct homotopy
moment maps for wedge powers of n-plectic forms and afterwards take sums of homotopy
moment maps. Their construction yields a moment map which in general differs from the
homotopy moment map obtained in Theorem 3.3.27.

3.2.6 Remark. The third part of the Proposition 3.2.3 provides an explicit moment map
for a permuting Spin®(m)-action (Definition 2.2.1) on a hyperkéhler manifold M.

To show that the explicit formulae for the moment maps in the corollary hold, we first
prove the following two lemmas:

3.2.7 Lemma. Let G ~ M be a tri-hamiltonian action on a hyperkdahler manifold. Then

Tpsgy g T (1 @ w) = —Tpsgv (idgv @) tr(p & p1).
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Proof. The G-invariance of p implies
(0g @ idepyv )b = —Lgpt = —tgdpr = tglqw.
Using this, we compute

—tr(p @ ) (61 ® (€2, §3]) =tr(p ® 1gtw) (61 @ &2 @ &3)
=tglg tr(p @ w) (€2 ® &3 ® &1).

Skew-symmetrizing in &, &, &3 gives the claimed identity. U

3.2.8 Lemma. Let Sp(1) ~ M be a permuting action on a hyperkihler manifold. Then
the following equalities hold:

1. tepytepyw = —(idsp(1)v @dep(1))p + Lsp(1) 5
2. Tpsep(1)” bep(1)bop(1) tr23(p @ w) = (3 tr(p?) — 3 tr(p))volsyay.,

3. 7TA3sp(1)vLsp(1)ésp(1)7Tsp(1)v(7 Ny) = %(tT(PZ) - tf(P)Q)Wlsp(l%

4. Tasep(1yv (idsp(yv ®6)p? = =2 tr(p?)volsy(),

5. Lep(r) tr13(y A dp) = —tr4(p ® dp) — tria(y @ Lap1)p),

6. Tassp(1)v Lsp(1)Lsp(1) tT13(Y A dp) = ((2tr(p?) — %tr(p)2)vol5p(1).

Here, volg, 1) denotes the standard volume form on sp(l) = R3.

Proof.
L Lep(1yLep(1)w = Lap(1)(—0sp(1yy + dp) = —(idsp(1)v @ep(1))p + Lap(1) -

In particular, using the Sp(1)-invariance of p, we have

(Lopyp)(§1 ® E2 @ &3) = p([€1, 2] @ &3) + p(E2 @ [§1,85]),

and hence,

Lysr Ly Spm W1 = 20p(i®1) — p(j ®@J) — plk @ k)),
Lsint,sonws = 2(p(j @ J) = p(i @) = p(k @ k),
Lset senws = 2(p(k @ k) — p(i ® i) — p(j ® j)),
i j
)

)

S L, SpH W2 = Lysp Ly Spn W1 = 4p(i ® j
k),

1 ®
vapmbv:p(l)w?, = vapmbvfp(l)m = 4P(Z ®
@

bySP) ySpW3 = Ly Sp(1) L Sp() W = 4p(j
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2. Using the previous statement, we have

T Assp(1)V Lap(1)Lsp(1) tr2,3(p @ W) (i ® j @ k)

= Tpssp(1)v 12,5(0 ® Lep(1)tspyw) (1 ® J @ k)

1 . : : .
= gtl”z,5(P® Lp)lep(W) (IR Rk +JREk®i+Ek®1I® j)

+p(j ® i)bvlfpuwv_smnm +p(j ® j)vamev_stwz +p(j® k)bv§p<1)bvsp<1>w3
+ p(k (024 i)Lvsp(l)Lvsp(1>w1 + p(k & j)LUSp(l)LUSP(l)WQ + p(k‘ & k)LvSp(l)LUSp(l)w3)
i j (3 J 3 J

= L@ )i @)~ p(j ) — plk® B)) + 4p(i © ) + dpli @ Y
+4p(j ®0)° +2p(1 @ §)(p(j @ J) — pi @ 1) — p(k @ k)) +4p(j @ k)
+4p(k @19)* +4p(k @ J)* + 2p(k @ k) (p(k @ k) — p(i @) — p(j ® 7))

= S G @G 2 Y PG @ PG @ )+ 3 (G ® G

4

l+m {#m

=GB NG © ) + 5 (G B G
4m lm

4 2
=3 tr(p®) — 3 tr(p)?,

where, as before, we use the notation (; :=1,( := j,(3 := k.

3. For &,&,&3 € sp(1) we have

Lep(1)Lsp() Tsp(1)¥ (Y A7) (61 ® &2 ® &3)
= — 2uep(1) (Idsp()v @Tepa)v ) (p @ 7)(§1 @ &2 ® &3)
=—-2p(£,® ')%55111(1)7(71—5\;(1)\/(63))
=2p(& ® - )p(&1 ® ')(71-;;1(1)\/(53))
= Q(idsp(l)v RTgp(1)v & idsp(l)v)(p & P) (51 ®E&ER 62)

Skew-symmetrizing this and evaluating on ¢ ® j ® k gives

Tpssp(1)” Lsp(1) bap(1) Tap(1)Y (Y A V) (0 @ ] © k)

= — 1 ((idapryy @mgpayv @ idgp) ) (p® ) ((®j Ok +j Rk Qi+ kRiI®
—iQkQRj—jRIQk—kQj®i)

= é(p(j ®1i)p(i ® j) — p(i @ j)p(i ® i) + p(k @ j)p(j @ k) — p(k @ k)p(j ® j)
+p(i@k)p(k®@i) —p(i @i)plk @ k) — p(k @ k)p(i ®1i) + p(k @ i)p(i @ k)

—pli ®i)p(j @ j) + pli ® )p(j @) = p(j ® §)p(k @ k) + p(j ® k)p(k @ j))

=502 (PG @ Gn)? = p(Ce @ C)p(Gn @ Cm))

£m—=1
= +(tr(p?) — tr(p)?)
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4. We have
Tpssp(1)v (idsp(1)y @ep(1))p* (1 ® j @ k)
= £ (idspa)y @) P (IR Ok + iRk ®i+k®i®j)
—§p2(z’®z‘+j®j+k®k)
=— 3 tr(p?),
and hence, mpsgp(1)v (Idsp(1)v @dep(1))p* = —% tr(p?)volsp)

5. Lep() tris(y A dp) = tras(Lepn) (¥ A dp)) = — traa(p ® dp) — tria(y ® Lep1)p)-
6. For &1,&,&3 € sp(1), we have
sp(1)sp(1) tr13(7 A dp) (€1 @ & © &3)
( Lop(1) tT24(p @ dp) + Lap(r) tT14(7 ® Lep(a) )) (1 ®&® &)
(tr35 Lep(1) (P @ dp)) + tr25(Lep(1)y @ ﬁsn(l)ﬂ)) (£1®& ® &)
—tr(p(&® )L, sm)ﬂ(&a ® )+ tr(p(& @ ')ﬁvipmp(ﬁs ®-)
= 2(Th2ep(1)v ® idsp( l)V) tro5(p @ Lep)p)(§1 @ &2 @ &3).

In particular, we have mase)vLep(1)lsp(1) tT13(Y A dp) = 2T psgp1)v tras(p @ Lep(1yp)-
Using this, we can compute

T pdsp(1)v Lep(1) bep(1) TT13(7 A dp) (i ® j @ k)
= strs(P R Ly)p) (i @ j O k+j Rk Qi+k®i®j-kQRjRiI—jQIQk—IQk®j)
3

= 13 (p(i @ C)pll k] @ Go) + pli ® Co)plk, [, i)

b @ Cpllk,i] @ C) + oG © Gl I, G
+ ok ® (i, 51 © G) + plk @ C)p(, [i, Ge)
— p(k @ C)p([4,1] @ Co) — p(k @ Co)p(i, [4, Cl)
—p(i @ C)p([k, 7] @ C) — p(i @ )y, [k, ¢)
— oG ® C)pllis K] @ &) — p(5 @ Gk, [, Gi)))
= 33 (p(i ® )% + PG ® Q) + plk © C)?)
/=1
+2(=pli @ i)plk @ k) + pli @ k) — p(i @ D)p(j © ) + pli @ )°
+p(J ®@9)* = p(j © §)p(i © 1) — p(j © j)p(k @ k) + p(j @ k)?
+p(j ® k)* = p(k @ k)p o @)+ plk ®1i)? — p(k @ k)p(i @ 1))
=43 pG® ) +2 Z ( (Ce® Co)* = p(Gr ® Co)p(Co ® o))
z,e/=1 M
=2 Z p(C @ () — 2 Z P(Ce @ Co)p(Cer @ Cor)
L0 = L0 =

= 2tr(p2) — 2tr(p)*. O
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Proof (of Proposition 3.2.3). In each of the cases, we can apply either Theorem 3.2.1 or
the more general Theorem 3.3.27 below. They both produce the same homotopy moment
map. More precisely, given a cocycle of the form 2 + P, + P, € C4(M), then

fl - - P17
f2 - —WAznggpl,
f3 =T A3gV Lg P1 + Tpsgv (ld v ®0 )

is a homotopy moment map. We compute these explicitly in the case of the cocycles from
Theorem 3.2.1:

1. For the 2-step extension 2 — 2tr(u ® w) + tr(u @ p) € CAL(M), we have PF =
—2tr(p ®@w) and PF = tr(u @ p). Using Lemma 3.2.7, we obtain

fi=—-Pf =2tr(new),
f5 = —mpeguigPY = 2 paguig tr(1 @ W) = —27p2gv tr(p @ 1qw) = 2mr2gv tr(p @ dp),
fG = Tpagvtg P 4 Tpagy (idgw ®6g) Py’
— 2T psgv 3 tr(p @ w) + Tasgy (idgy @Fg) tr(p @ p)
= 3mpsgv (1dgv @dg) tr(p @ ).

For the 1-step extension 2 — tr(u ® w) — tr(y A du) € C&(M), we have Pj¢ =
—tr(p ®w) — tr(y A dp) and P,¢ = 0, and hence

¢ = —P% =tr(u@w) + tr(y Adp),
éG = —TA2gVv LgplG = Ta2gV g tr(u & OJ) + TA2gV Lg tI’(")/ A dﬂ)

= 2Mp2qv tr(p @ dp) — Tazgy tr(y @ Lop) = 2mp2gy tr(p ® dp) + 6 tr(y @ p),
e vL2PG = Tpsgvigfo = 2Mpsguig tr(p @ dpt) + 27 psgy Lgdg tr(y & p)
— By (idge 90,) (1 ).

2. The claimed formula for f, also follows from the first and second identity in
Lemma 2.2.21 and 47,1y = — trig(idep1)v @0ep1)):

Jo = — 4T p2gp(1)V Lap(a )Wsp(l)V(’Y A7) — 2T A2ap(1)¥ bap(1) tras(p @ w)
= 87 p2ep(1)v (idsp(1)y @Tap(1)v) (P © 7) + 2Mp2gp(1)v tr2.4(p @ (= sp(a)y + dp))
= 27T/\25p(1)v tr274(p & (dp — 255p(1)7))-

Furthermore, using the identities (2) — (4) from Lemma 3.2.8, we obtain

f3 =T nssp(1)v bap(1)ybap(1)f1 + Tpsep(1)v (idsp(r)v @sp(n))p”
—(—AC () — Lur(p)?) — 23 () — 20x(p)?) — 2 () Jwolegiry
=(2tr(p)® — 4tr(p?))volspqy
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For the 1-step extension dg,n)tr(y A w), we have P| = 4mgyv (v A 7y) + traz(p ®
w) + tria(y Adp) and Py = 0. Hence, using the last two identities from Lemma 3.2.8

fi=— Pl = —Amgpayv(y A7) — tras(p @ w) — tria(y A dp),
fy == Tprgp(uyetap(y Py
= Tp2ap(1)v (—Hop(1) Top(1) (Y A V) = Lap(1)Ta2ep(1)v tr23(p @ W) — tap(r) tr(y A dp))
= 87T/\25p 1)V (ldgp ®7T5p(1)v)(P ® ’7) + T a2ep(1)V tr24(p ® (dp - 5513(1)’7))
+ Tazep(1)v tr24(p @ dp) + Trzep)v tT14(Y ® Lap(1)p)
= Tp2ep(1)” tr24 (0 ® (2dp — 3dsp(1)Y)) + Tazep(1)v tr2a(Y @ Lep1)p),
3= Tpssp() Lap(1)top(1) f1
= (=5 (tx(p*) — tr(p)*)volspy + (5 tr(p)* — 5 tr(p*) Jvolsp)
+ (5 tr(p®) — 2tr(p?))volsyy
= (2tr(p)® — 4tx(p?) Jvolgp)

3. Since PSp(l)XG P, + PE, we obtain fSp( <G = fi + f&. The restrictions fo the
Sp(1)xG

skew-symmetric part of Lep(1)agf7 are
P(1)xG Sp(1
TA2(sp(1)VegY) (Lsp EBgfl ) ) |sp(1)®sp(1) = 71'/\Q(sp(l)\/)Lsp(l)fl n )7
Sp(1)x @
TA2(sp(1)V gY) (Lsp Daef1 P ) loss = Th2(ev)op(1) f1 s
and
P(1)xG
TA2(sp(1)V ®gY) (Lsp @gf1 > ) |5p ®g(§ ®¢)
Sp(1)xG
- 1<L5P 1)€Bgf p(1)x |5P 1)®E((C 0) ( ag) - (075) ® (C?O)))
Sp(1
= () I (C®E) — Lgf "ew )
S (1
= Tra(op(ayae) (e ST+ 07 )(C0) ® (0,€).

Here, we are using the convention that, for example, i1 1< lgesp(1y = 0. Since
/\2(5}3( ) g") = A%(sp(1)Y) @ sp(1)Y @ g¥ & A*(g"), these uniquely determine
Sp(1)xG Sp(1)x @ Sp(1
2p( )X = 7T/\2(5p(1)\/@g\/) (lzsp(l)@gf P )X ) f2+f2G+7T/\2(5p(1)V@gv)(Lsp(l)flc‘i‘l/gfl p( ))

Since

Lsp(l)flG = 2ugp(1) tT(w ® p1) = 2troz(tepyw @ pt) = 2tr23<(dp — Oep(1)Y) ® u)
and
g1 = — dgTepyv (Y A Y) — 2tg trin(w @ p)
= — 8mgp(yv (1 ® ) + 2 tr12(du @ p),

Sp(1)xG

the formula for f; follows.
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In the case of

Sp()xG fSp(l)XG Sp(1)xG

3 = Lep(1) <1dsp(1 Vg ®55P @B)P
Sp(1
= Lep(1)ag (2 P f2 + WAQ(sp(l)V@gv)(bspa)ﬁ +19f1))
) Sp(1
+ (Idsp1)@g @dsp(1)mg) (P2 ) 4 P2G — tras(p @ p),

we again have the decomposition

N(sp(1)Y @ ") = AYep(1)) @ A'(sp(1)Y) @ g¥ @ sp(1)” @ A*(g") @ A'(g")

Note that using the formula from Theorem 3.2.1, we do not need to skew-symmetrize.
In the formula above, we omitted the projections to sp(1)®g — sp(1) and sp(1)dg —

g.

The A3(sp(1)V) and A?(g") components of f:f PXC are clearly f3 and f$', respectively.
In the following, we compute the A%(sp(1)¥) ® g" and sp(1)¥ ® A*(g")-components
by restricting to sp(1) ® sp(1) ® g and sp(1) ® g ® g, respectively. Together, all
these uniquely determine f57M*€.

S 1)xG
pnx |sp 1)®2gg —lsp(1)TTA2(sp(1)Y @g¥ (Lsp f1 + t4f1),
Sp(1)xG
3p( “ap@e? =tep(1)f3 — (idep(1) ®y) traz(p @ p).

We compute the necessary insertion operations:

Lap() f3T = — 2Uep(1)Tazgv tr(dp & 1)

= = 2(idsp(1) @Tp2gv) tras (Lap(yt @ p),

= 87T5p( v (p ® p),
Lsp(l)ﬁ/@(sp(l)v@gv)Lsp(l)f1G|sp(1)®2®g = Lsp )Lsp(1) o

= Lep(1) tras((dp — dap(1yy) @ 1)

= tr34((Lopr)p — Lop(1)0sp(1)7) © p1)

= tray ((ﬁsp(l)/) + (idsp(1) ®5sp(1))P> ® M) ;
Lop(1)TA2(sp(1)v @) L. f1(C B ¢ ® &) = — Jlapytg fi(C ® €@ ()

= Ltapt) (87ap(r)v (1 ® ) — 2tr12(dp ® p)) ((® £ ® ()

= — 4(idap(1)zg OTap(1)¥ ) (P @ W) ®E R (')

— traz(Lapynt @ p)(( @ E @ ().

Therefore,

G )2 (€ ® ¢ @ €) = traa(Lapayp + (idsp(y @ep1y)p) @ 1) (€ © ¢’ ® €)
— 4(idsp(1)@g DTap) ) (P @ 1) (@ E® ()
— trog(Lepaytt ® p)(C R E @ (')

and

S G i
I3 opnymaer = BTy (1 @ 1) — (idsp(r) @3) tras(p © po)- =
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3.2.9 Remark. Note that the zeros of the homotopy moment map f& in the first part
of Proposition 3.2.3 coincide with the zeros of f¢, which also coincide with the zeros
of the hyperkéhler moment map p. Indeed, pu(z) = 0 implies f&], = 0 and hence also
1], = 0. Furthermore, tr(pu ® u)|, = 0 if and only if u(x) = 0. Conversely, if f&], =0,
then p(x) = 0, since wy, ws, ws are linearly independent, nowhere vanishing elements in

22(M).

3.2.10 Remark. Note that if we know w, we can easily recover u = % * (f& A *w) from

he

3.2.11 Remark. If G ~ (M, 2) is a tri-hamiltonian action of an abelian group, then
& = 0. Furthermore, if G = R or U(1), then f is the only non-vanishing component of
the homotopy moment map.

3.2.12 Remark. The analogue of the first part of Proposition 3.2.3 also holds for quater-
nionic Kéhler manifolds G ~ (M, 2) with quaternionic Kahler moment map u. As
explained in Remark 2.2.24, 2 — 2trg(p @ w) + trg(p ® p) € C&(M) is again closed in
the Cartan model for G-equivariant cohomology and we obtain a homotopy moment map
as in the hyperkahler case.

3.2.13 Remark. Note that in the case of a permuting action, the third component of
the homotopy moment map constructed from the 2-step extension is equal to the one
constructed from the 1-step extension, i.e. f3 = f;. The same holds in the case of the
tri-hamiltonian action, if the 1-step extension exists. As the second part of Theorem 3.2.1
shows, this is not a coincidence:

Given pre-3-plectic action G ~ (M, $2), i.e. 2 € 24(M)Y closed, a 2-step extension
Q2+ P+ Pyand a € (g¥ ® 2'(M))¢ which satisfies ya0 = mg2gviga € (S%(g¥) @ 2°(M))€,
then the third components of the homotopy moment maps constructed from 2 + P, + P
and 2+ P, + P, + dga agree.

3.2.1 Examples
Swann bundles

Let M be a hyperkéahler manifold with permuting Sp(1)-action and assume py = 0. Then
p = 3 tr(p)1, where 1(¢r, () = pm, p° = 5 tx(p)*1 and tr(p?) = & tr(p)*.

In this situation, the homotopy moment map from Proposition 3.2.3 is

fi=—Admgpay (v Ay) = S tr(p)w = —dmgayv (v A ) + 2pow,
fo = 3t0(p)dsp1)y = —4p0dep(1yY = —4P0T A2ep(1) Lap(1)s

2
f3= 3 tr(p)2v0l5p(1) = 600v0lgp(1).

The “reduction” f5*(r)/Sp(1) for r > 0 is a quaterionic Kéhler manifold ([Swa91]).
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Proof.
1. We have try3(p ® w) = 5 tr(p) tras(l ® w) = 3 tr(p)w. Hence the formula for f
follows.

2. For f5, we have
f2 =27 n2gp)v traa(p @ (—205p(1)7 + dp))
=37 n2sp(1)v tr2,4(tr(p) 1 @ (—206p(1)7 + 5d tx(p)1))
= %tr(p)ﬂ-/\%p(l)v tr24(1 ® dep1)y)
=3 tr(p) dsp(1)7-
Here, we used that mzeq)v tros(1 ® 1) = mTa2gpyv 1 = 0.

3. The formula for f; follows immediately from tr(p?) = 3 tr(p)?. O

Quaternionic vector spaces with SO(3)-action

Consider H" with the permuting action of SO(3) as in Example 2.2.15. Write = =
To+izi+jre+krs with z, € R". We have tr(p)|, = —3po(x) = —2|| Im(z)||*. Furthermore,

tr(p?)|e = 2[ Tm(2)|* = 2([|22|*[lzs]|* + 21|25 + [[21]]22]*)
+ 2(<.T1, il')2>2 -+ <LE’1,$3>2 + <l’2,l’3>2).

Hence,

fz = 2tr(p)* — 4tr(p?)

= 8(lleal*lasll” + llza|Pllwsl® + s ||zl = (21, 22)* = (w1,25)” = (w2, 23)°).

3.3 Homotopy moment maps and equivariant
cohomology

In this section, we study the relationship between equivariant cohomology and homotopy
moment maps. After interpreting F* in terms of the Bott—-Shulman-Stasheff complex,
we provide general constructions of homotopy moment maps from cocycles in the Bott—
Shulman-Stasheff model (Proposition 3.3.10) as well as from cocycles in the Cartan model
(Proposition 3.3.25, generalizing Theorem 3.2.1). The moment map for cocycles in the
Cartan model arises via a chain map from the Cartan model to the Bott—Shulman—Stasheff
model, which was outlined in [Mei05, App. C]. As we need to compute (a component) of
the image of this map, we give a detailed description of this chain map. This section grew
out of discussions with C. Rogers and M. Zambon and also appears in [CFRZ15].

3.3.1 Differential forms on simplicial manifolds

If X, is a simplicial manifold with face maps d; : X,, — X,,_1, ¢ = 0,...,n, then the
simplicial differential 0,,: 2*(X,,) — 2%(X,41) is
n+1

Op = > _(—1)'d;. (3.7)

=0
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Consider the following double complex of differential forms on a simplicial manifold and
its total complex

(X)) = QMX),
27(X.) = (Tot(2°"(X.)), d),
d:=0+(-1)d,

where d is the exterior derivative.

If X, is a simplicial manifold which is paracompact in each dimension, then the de
Rham theorem of Bott—Shulman—Stasheff ([BSS76]) implies that there exists a natural
isomorphism

where H (HX. ) is the singular cohomology with R coefficients of the fat geometric
realization of X,.

H(2' (X)) = H(|X.

3.3.1 Example. Let M be a manifold and M, the simplicial manifold M,, = M, whose
face and degeneracy maps are idy;. Since all 0,, are either zero or isomorphisms, the
inclusion

(2(M),d) = (2"(My), d) <= (2°(M.),d) (3.8)

is an quasi-isomorphism.

3.3.2 Example. Let M be a G-manifold, and let E,G x M denote the product E,G x M,,
i.e., the simplicial manifold

[n] — E,Gx M =G"™ x M
with the “usual” face and degeneracy maps, i.e.
di(goy -y GnsD) = (Gos -+ s Gio1, Git1s -« - Gn, P)-
If we equip F,G x M with the diagonal G action

G x E,G x M — M,

3.10
<h7g07“'7gn7p) = (gohilw"agnhi%hp)? ( )

then the projection m: E,G x M — M, is a morphism of simplicial G-manifolds.

The idea for the following proof was pointed out to the author by C. Rogers:

3.3.3 Proposition. The map 7 induces a quasi-isomorphism

™ 2 (M) = 2°(EG x M). (3.11)
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Proof. Denote the (thin) geometric realization of X, by | X,|. Since |- | preserves products,
and since both G and M are manifolds, it follows from [Seg74, Prop. Al] and the de
Rham theorem of Bott—Shulman—Stasheff ([BSS76]) that we have a commuting diagram

H(2 () = H([M]]) = H(|M]) = H (0]

<| ) [ Jier

H(2(EG x M)) — H(||E.G x M||) == H(|E.G x M|) —— H(|E.G| x |M]).
(3.12)

Since |E,G| is contractible, the Kiinneth formula implies that the right vertical arrow in
the diagram (3.12) is an isomorphism. Hence 7* is also an isomorphism. U

3.3.4 Example. (cf. [Mei05, App. C.2]) If M is a G-manifold, consider the simplicial
manifold G* x M, i.e.

[n] — G" x M,
with the face maps d;: G® x M — G"! x M given by
<927"'7gnap) ZZO?
(gl,...,gn,p>H (gly---;gigi+17---7gnap) 0<Z<n,
(gla"‘agn—lagnp) i =n.

Note that the map
G x M — G™ x M,
(905 -+ Gns D) = (90G1 s+ - Gn—1Gn > GnP)
induces an isomorphism of simplicial manifolds
E.GxqgM=G*x M,
where E, X M is the quotient of E,G x M by the diagonal G-action (3.10). The de Rham
theorem of Bott—Shulman—Stasheff ([BSS76]) implies that the cohomology of (Q*(G‘ X

M), d) is the equivariant cohomology of M. Therefore, the complex (Q*(G' x M), d) is
called Bott-Shulman—Stasheff model for equivariant cohomology.

3.3.2 Homotopy moment maps and the
Bott—Shulman—Stasheff complex

Consider the first row 2%*(G* x M) = £2*(G x M) of the Bott—Shulman-Stasheff complex
and the subcomplex

2 (G x M) C QY*(G* x M)
of forms invariant under the G-action G ~ G x M, (h, (g,p)) — (hg,p). This is the total
complex of the double complex of G-invariant forms

PG x M) = (G x M, \"T*G & \" T*M)¢ c Q"™ (G x M)C,
(G x M)S = Tot(2(G x M)“), (3.14)
d=d%+ (—1)k "
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with differentials d% and d™, the exterior derivatives in the G and M directions, respec-
tively.

Consider the natural isomorphism
v NV o T"M) > N@)e N 1M
k+L=m (316)
w(a)((1,. o 2k) @ (wy, . we)) = a(21,0), ., (25, 0), (0,w1), ..., (0,wy)).
3.3.5 Remark. The following diagram outlines the rest of this section and shows how

(parts of) these various complexes are related and how the condition for f to be a homotopy
moment map can be understood in terms of the Bott—Shulman—Stasheff complex:

o+l (M) d Qn+2(M)
\)\ W
QM) s Q———0
0

(G x M) —2—— "G x M)

Ul Ul
(G x M) —L G x M)E > 90
IR Lemm; 3.3.6 1R
Cm(g>M) —Q>Cn+1(gaM) 2 rof?
W W || Lemma 3.3.7
fl dgf mome;t map Ja 0

condition

The consequence of this will be Proposition 3.3.10, in which we show that certain elements
in the Bott—Shulman—Stasheff complex give rise to homotopy moment maps.

3.3.6 Lemma. Restriction to M = {e} x M <y G'x M induces an isomorphism of double
complexes

re (299G x M)9,dC dM) — (C*(g, M), by, d),
where G ~ G x M, (h,(g,p)) — (hg,p). In particular, we have an isomorphism of total
complezes:

r (29(G x M)©,d) — (C*(g, M), dy).

Proof. The restriction of sections of A" T*(G x M) to M = {e} x M — G x M induces
an isomorphism:

F(GxM,/\m(T*(GxM))) — I'(M,i* \"T"(G x M)) = (M, \" (8" © T"M)).

Composing with ¥ (3.16), we obtain the isomorphism r: 2™(G x M)¢ — C™(g, M).
Finally, rd™ = dr follows immediately from the definition of the differentials d* and d.0]

Now that we identified C*(g, M) as sitting inside 2'*(G® x M), we can reinterpret
the term on the right hand side of the moment map condition (3.1) in terms of the
Bott—Shulman—Stasheff complex.
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3.3.7 Lemma. Let 2 € 2" (M)C. Then
r(002) = F2.

Proof. The face map d;: G x M — M is the G-action. Therefore, it is G-equivariant and
hence d;§2 € "G x M)C. Since dy = Ty, we also have d52 = 75,02 € Q"H(G x M)¢,
and hence

0N = dy — di2 € Q"G x M)C.

The differential of d; at the point (e, p) is given by

d(dy)|(epy(m,w) =w — v, for z € T.G,w € T,M.

x )

Let 21,...,2,41 € g and wy, ..., wy41 € T,M. Then

T(dég - dTQ)@Ula s 7wn+1)

— ()’
r(dyf2 — di2)(xy, .., Tp, Wy oo Wy—pg1) = (—1)k+1<L§Q,ZE1, oW, W)

Thus 1982 = Y4 (—1)FHtbQ = F2.

O

3.3.8 Corollary. An element [ = Y0, fr € C™(g, M) with f, € C*" (g, M) is
homotopy moment map for the pre-n-plectic form (2 € QY M) if and only if f
iy C(k) fi satisfies dgf = r(012).

3.3.9 Remark. Note that the 2%" (G x M)%-component of 9f2 vanishes. This is the
reason why f only has n components f;, € A*(g¥) ® 2" %(M), k =1,...,n. For a general
solution 1 € 2"(G x M)% of dn = 02, this component does not vanish, but is an arbitrary
closed n-form on M.

a

3.3.3 Homotopy moment maps and Bott—Shulman—Stasheff
cocycles

If the group G is compact, we can average to obtain G-invariant forms. For 8 € 2" (M)

and 3 € Q2"(M), denote B¢ € 2" M)® and ¢ € O2"(G x M)Y the G-invariant

forms obtained by averaging with respect to the actions G ~ M and G ~ G x M,

(h,(g.p)) = (hg,p), respectively.

For a; € 2"(G x M), denote the component of r(a;) in C*"=k(g, M) by ri(ay), i.e.
r(a1) = > p_orr(ar). Using the projection

P 2"(G x M)Y 5 O™ (g, M) - @ CH g, M), (3.17)

k=1

Floy) = zi:m(al)- (3.18)

Corollary 3.3.8 gives us two simple ways of constructing homotopy moment maps from
cocycles in the Bott—Shulman—Stasheff complex:
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3.3.10 Proposition. Let M be a G-manifold and o = Y1) a; € 2"FH(G*x M) a cocycle
in the Bott-Shulman-Stasheff complex with a; € 2°"FHG* x M) = Q"G x M).

o If ag € QM) € QUG x M) and ay € 2"(G x M)Y € Q""(G* x M),
then f := ray defines a homotopy moment map f for the G-invariant pre-n-plectic
form ay.

e Let G be compact. Then f = r(al) defines a homotopy moment map f for the

G-invariant pre-n-plectic form of € Q2"H(M)C.

Proof. The cocyle condition da = 0 implies that
dOéo = 0,
8&0 = dOél.

Therefore, g is indeed a pre-n-plectic form. The first claim follows immediately from
Corollary 3.3.8 and the observation that dyr(a;) = dgr"(e;). For the second claim, we

check that
dgr(af) = T(daf) = r((dal)G> = r((@ao)G> = r(aozg),
and again observe that dgr(a?) = dg%(af). U

3.3.11 Remark. Note that we do not need a full cocycle in the Bott—Shulman—Stasheff
complex, but only a G-invariant 1-step extension of ag € 27"1(M)¢ in the Bott-Shulman—
Stasheff complex, i.e. a; € 2"(G x M)% satisfying day = 0 and dag = day (cf. Re-
mark 3.3.5).

This also recovers the homotopy moment map for exact pre-n-plectic forms constructed
in [FRZ13, Lem. 8.1]:

3.3.12 Corollary. If 2 = dB € 2"*Y(M)Y is an evact pre-n-plectic form with 3 €
Q" (M)Y, then
= C(k+ 1)k
k=1
is a homotopy moment map.
Proof. Take o := (2 and oy := 9. Then
dCYl = d@ﬁ = adﬁ = (9060.

Using Lemma 3.3.7, we obtain the homotopy moment map f from f = rda; = rdf. O

3.3.13 Corollary. Let a =df be a coboundary in the Bott-Shulman—Stasheff complex
with § = Y08 € 2"(G* x M), where 3; € 2" 7(G* x M), By € 2"(M)¢ and
By € 2" Y(G x M)C. Then f =7ay =70, — dB1) defines a homotopy moment map f
for the pre-n-plectic form ag = dpy, which is given by

n—1

= S0 — B — (1))

k=1 k=1
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In particular, given two cocycles in the Bott—Shulman—Stasheff complex with G-invariant
components in 2°"(G* x M) and 2%"(G* x M) and which diﬁe’r by a coboundary df3,
the associated homotopy moment maps differ by r0By — 6,781 — Sp=i (= 1)*dri(B1).

Proof. From a = df, we have ag = dfy and oy = 08y — dfp;. Since [y and [3; are
G-invariant, it follows that ag and a; are as well. Therefore, we can apply the second
part of Proposition 3.3.10. We obtain

f=foq =798y — Fdp
S (DR By — 32 re((d + (~1)FdM) )
k=1

i
I

I
[M]=

(—1)F b — :iwg (1) (B)

k=1
n n—1

= Z(—l)k“ﬁgﬁo — 0g7 (1) — Z(—l)kdrk(ﬂl). O
k=1 k=1

3.3.14 Remark. Note that adding a coboundary df to a cocycle o will change the pre-
n-plectic form g to ag + dfy. However, the construction of the tuple of the pre-n-plectic
form and the homotopy moment map from a cocylce is linear.

3.3.4 Simplicial differential forms

We recall the notion of simplicial differential forms introduced by Dupont [Dup76, Def.
2.1]:

Let X, be a simplicial manifold with face maps d;: X, — X,_; for ¢ = 0,...,q. Let
A? C R be the standard g-simplex and ¢;: A9"! — A? the inclusion of the i-th face.

A simplicial differential n-forms ¢ on X, consists of a sequence of forms
Ve QAT x X,), ¢q=0,1,...

satisfying
(Efi X ld)*QO(q) = (ld Xdi)*(p(qil)

forallgand alli=1,... q.

The set of all simplicial n-forms on X, is denoted 2 ,(X,). Equipped with the usual
exterior derivative d, simplicial differential forms form a differential graded algebra
(27 ,(X,), d), which is also the total complex of the following double complex:

spl
spl @ Qspl (319)

Jjt+k=n

Here, similar to (3.14), _Qgp];(X.) consists of simplicial differential n-forms ¢ = ((,0(’1))7 for
which each

oD e DA x X, N T° A7 N T7X,) ¢ @7 (A7 x X,).
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The exterior derivative d on 27,(X,) is
d=d*+ (-1)/d¥,
where d® and d* denote the exterior derivatives in the A? and X, -directions, respectively.

3.3.15 Remark. Intuitively, simplicial n-forms should be thought of as n-forms on the
fat geometric realization || X, || of X,.

Dupont proved that 2*(X,) and (2}

o1(Xe) are quasi-isomorphic.

3.3.16 Theorem ([Dup76, Thm. 2.3]). There are natural maps of doubles complexes

spl

(25(X),d%,a%) == (@**(X.),8,d),

“
which give natural chain homotopy equivalences between (Q;’D];(X.), dA) and (Q*’k(X.), 8).
In particular, the maps € and & induce quasi-isomorphisms between the total complezes
(2:0(X0), d) and (2%(X.),d).
The map .# in Dupont’s theorem is defined as the fibre integral

DHX) Do F(p) = /Aj P9 e OF(X,). (3.20)

spl

The map ¥ is defined as follows:

]' Zm:j Z%:()(—l)etizdtio VANIAN dtw VANIAN dtzj N M?B q Z j

3.21
0 q <17, (3.21)

FURES {

for B € 2%(X;), where I = (ig,...,i;) is a multi-index with 0 < iy < -+ < i; < g and
|I] := j. Furthermore, iy = d;,_, o...od; : X4 — X is the face map corresponding to
the complementary sequence 0 < 7; < --- < y—; < g of I.

3.3.5 Cartan complexes

If A is a G*-module in the sense of Definition 2.2.51 (also cf. [GS99, Def. 2.3.1]), with

differential d4 and insertion operation Lg‘, let
G
Ca(A) =(S(g") ® A
6(4) =(5(g") © 4) (3.29)
dg =6 +d*

denote the usual Cartan complex ([GS99, Sec. 6.5]) with § = —mg«gv); the composition
of —Lg‘ and the symmetrization projection mg«(gv): g¥ ® S*(g¥) — S**'(g"). This is also
the total complex of the double complex

Ci(4) = (5'(g") @ 47)".

The following Lemma provides a criterion for a chain map ¢: A — B to induce a quasi-
isomorphism Cg(A) — Cg(B). The author is grateful to C. Rogers for pointing out
[McCO01, Thm. 3.5].
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3.3.17 Lemma. Let G be a compact Lie group, A and B two G*-modules which are
bounded below as complezes and let ¢: A — B a quasi-isomorphism of G*-modules, i.e., a
morphism of G*-modules, which induces an isomorphism of G-modules on total cohomology.
Then the induced map of Cartan complexes

ids*(QV) R Cg(A) — Cg(B)
s a quasi-isomorphism.
Proof. For a G*-module A, define the decreasing filtration on Cg(A):

F,Col(4) = DD (A) (3.24)

2p J
If A is bounded below, then the associated spectral sequence clearly converges.

The induced map idg«4v) ®¢ respects the filtrations associated to A and B. Since ¢ is a
quasi-isomorphism and G is compact, idg(g+) ®¢ induces an isomorphism between the £

pages
Er(A) = (57(a") @ H7(4))" — (57(a") @ HO(B))" = E1(B)
of the associated spectral sequences (e.g. [GS99, Thm. 6.5.1]). Since A and B are

bounded below, the filtrations are bounded in each degree. Therefore, idgg«) @7* is a
quasi-isomorphism (e.g. [McCO01, Thm. 3.5]). O

3.3.18 Example. For M a G-manifold the Cartan complex of 2*(M) with the usual
G*-module structure is the usual Cartan complex for M:

Ce(M) = Ce (2 (M)). (3.25)

3.3.19 Example. For a simplicial G-manifold X,, the total complex of differential forms

2*(X,) = Tot(2**(X,)) with differential d = 9 + (—1)’d and the insertion operation

v ) = (=1)i4, is a G*-module. Note that

d )+ X0 d = dug + 14d
is still the usual Lie derivative. Its Cartan complex

CL(X.) = (C’G(Tot(Q*’*(X.)),dG),
dg = (=16 +d =0+ (—1)70 + (—1)’d.

(3.27)

The Cartan complex Cg(X,) is also the total complex of the tricomplex

Cis*(x) = (58" © 27(x))
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3.3.20 Example. For a simplicial G-manifold X,, consider the Cartan complex of

§2%,(X,) with its usual G*-module structure:
C =C, X)),
Gspl( ) G( spl( )) (329)
dg =6 +d.
Also note that this is the total complex of the tricomplex
k ; j k— ¢
ciih(x) =(50) & 2 (x) TI(s'0) @ 24t X))
(3.31)

Cé’,spl(X') = TOt(CEZ;Z(X'))?
dg :=6 +d* + (—1)7d~.

The G*-module structures on (M), 2*(E.G x M) and §2;,(E.G x M) are chosen in
such a way, that the quasi-isomorphisms ¢ (3.8), 7* (3.11) and Dupont’s map € (3.21)
are maps of G*-module. Therefore, Lemma 3.3.17 now implies

3.3.21 Proposition. If G is compact, then the map induced by € o7 o v: 2*(M) —

201(EsG x M) on the total Cartan compleres

7= ldggvy@(C om™o1): CG(M) — C& . (E.G X M)

s a quasi-isomorphism.

3.3.6 The Cartan map

Let m: P — B be a principal G-bundle. Cartan [Car51] constructed a chain map
Ct(P) — 2°(B) that is knows as the Cartan map:

Pick a connection A € 2'(P,g) on P — B. Denote its curvature by Fu = dA+3[A, A] €
2%(P,g)¢ . and let hory: 2*(P)¢ — 2*(P)$ . be the projection to horlzontal forms
defined by A. Then

hor

Car®: C%(P) — Q2*(P)$, = 2%(B),

hor —

4 ) 3.33
(S’ ® Q*(P))G > B hora((Fh, 8)) € (P, (3.33)

3.3.22 Remark. Recall that 7*: 2%(B) — 2*(P)§

then the inclusion

o 18 an isomorphism. If G is compact,

Q2 (B) =5 2*(P)S < CL(P)

hor

induces an isomorphism in cohomology H*(B) — H(P), with homotopy inverse Car®.

There is also a simplicial version of this construction: Let P, — B, be a simplicial
principal G-bundle with a simplicial connection A € _Qspl(P., g)¢. The connection A is

defined by a sequence of 1-forms AW € Q21(A? x P,, g)¢, where each A@ is a connection
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on the principal G-bundle A? x P, = A? x B,. Applying the degree-wise Cartan maps

Car’ ™. C&(A? x P)) — 2%(AY x B,) gives a chain map between the total complexes
(3.31) and (3.19)
Car: Cf i (Pa) — (2

spl

(B.). (3.34)

If G is compact, then Car? is a quasi-isomorphism.

3.3.23 Example. Let M be a G-manifold and P, := E,G X M — E,G xXg M the
simplicial principal G-bundle. For ¢+ = 0,...,q, let

WiIEqGXM:GqulXM—)G
denote the projections and let 6, € 2(G, g)¢ denote the left-invariant Maurer—Cartan

form on G. Following Dupont [Dup76|, we consider the distinguished simplical connection

0 =(019) € 251 (E.G x M,g)%,

spl

q (3.36)
09 =3 "t;m0, € 21(A? x E,G x M, g)°,
i=0
where t;, 1 =0, ..., q are barycentric coordinates on A?. The curvature of @ is

hor*

Fyy =d?09 4 qFaMyla) 1 11p(@) @] ¢ QMY (AIx E,Gx M)S @2°* (A% E,Gx M)
0 —— 2 q hor q

type 1,1 type 0,2

For example, for ¢ = 1, we have
(9(1) :tmTSQL + tﬂTT(gL,

Fyay = — dty N (mg0 — m101) — B [mi0, — 70, w0 — 710L],

(3.38)

3.3.24 Remark. Note that § = €(n30L), with 730, € Q2Y(EG x M,g)¢ = QYG x
M, g)¢ the pullback of the left-invariant Maurer—Cartan form.

3.3.7 Cartan complex and Bott—Shulman—Stasheff complex

By composing the chaim maps defined above, we obtain the chain map constructed in
[Mei05, App. C], which, if G is compact, is a quasi-isomorphism between the Cartan
complex and the Bott—Shulman—Stasheff complex:

3.3.25 Proposition. Let G be a Lie group and M a G-manifold. Then there is a natural
chain map from the Cartan model to the Bott-Shulman—Stasheff model

CL(M) % Ch (G x M) S5 07 (G x M) L5 27(G® x M),

spl

where

e j is the chain map from Proposition 3.3.21,
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o Car? is the simplicial Cartan map (3.34) for the simplical connection 6 (3.36) on
EGXM — EGxgM=ZG*x M,

o Z is the quasi-isomorphisms (3.20) defined by Dupont in Theorem 3.3.16.

If G is compact, then all of the above are quasi-isomorphisms and hence C5(M) —
2*(G* x M) is a quasi-isomorphism.

3.3.26 Remark. Note that if G is not compact, j, € and Car’ can fail to be quasi-
isomorphisms.

3.3.8 Homotopy moment maps from Cartan cocycles

We will now combine Proposition 3.3.25 and Proposition 3.3.10 to obtain an explicit
homotopy moment map for each cocycle in the Cartan complex, generalizing [FRZ13,
Thm. 6.3]:

3.3.27 Theorem. Given a degree n + 1 Cartan cocycle 2 + ZZ-L;ITHJ P € CEY(M),
with 2 € Q"M and P; € (S'(g¥) @ Q"2 M))Y, there is a natural homotopy
moment map f for the G-action on the pre-n-plectic manifold (M, §2). More precisely,
fork=1,...,n we have

k41

2 )
—1)"¢(k)i! (k—i)! —2i
fk = %ﬂ'/\k(gw(bs 2+IB('7['7’]7---7['7']))7
=1 i

. .. .. k(k+1)
where Tpkgvy is the skew-symmetrization projection and ((k) = —(—1)"=

In particular, the homotopy moment map f is G-equivariant, i.e., fr € (/\k(gv) &
a
k(M)

Proof. Given the chain map from Proposition 3.3.25 and the second part of Proposi-
tion 3.3.10, we immediately obtain a homotopy moment map from the cocycle §2 +

ntl
Z}:f JR- € CA(M) if the Lie group G is compact. However, we will compute the
(G x M) = Q2"(G x M) and 27T (G* x M) = 2" (M)-components of the image

n4i

of 2+ Z}:f 'p in 2"H(G* x M) and observe that these are G-invariant for G an
arbitrary (possibly non-compact) Lie group. This will then allow us to use the first part
of Proposition 3.3.10 to construct a homotopy moment map.

First note, that the images of 2 and P; under Co(M) — CL(FE.G x M) are

i 2 € NG x M)E = O E,G x M),
wiB € (S'(5) @ QNG x M) = O (BLG X M),
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n4l
respecively, where my;: G x M — M is the projection. Therefore, Q+ZL§ : P; is mapped

to
|25
24+ > P € CE(EG x M).

i=1

The elements

9(2) € CEUTHEWG x M) C [ 2°"(A7 x E,G x M)°,

q=0

. . 0 . ) G
)(P) € Clnr ™Y (E.G x M)  [] (S’(gv) ® O AY % B,G < M)) :
q=0
are given by the sequences 7(§2)\9 = 73,02 € Q" (AYx E,G x M)¢ and 3(P)? = 7%, P;,
respectively.

The next step is to compute the Cartan map of j(2) and j(F;), i.e. to compute

Car’"” (m3,82) and Care(q>(7r}k\/[13i) for all ¢. Recall that the Cartan map was defined
by inserting the curvature, taking a horizontal component and then pushing the resulting
G-invariant horizontal form down to the base. Since the bundle E,G x M — E,G xg M =
G x M is trivial with section s (cf. [Mei05, App. C.2])

s:GIx M — G x M = E,G x M,

(91,2 90:0) = (e,97 " (g1 99) " g1 gap),

(3.40)
we have

Car®” (13,02) = 5" hor g} 2, (3.42)
Care(q) (W}k\/[f)z) _ S*hOTg(q) <Fv€i(q)7 7T7\4Pz> — <S*F9i(q)7 s* hOrg(q) 7T;K\4f)1>

Keeping in mind that Proposition 3.3.10 only uses the components in 2% (G* x M)
and 2V (G* x M), we only need to compute the (0,n + 1) and (1,n)-components of

f(Care(ﬂV[Q)) and f(Care(ﬂV,Pi)).

From the definition of .#, we see that the 2°"T1(G* x M)-components are computed
by applying [0 Car’” to 74,82 and 7}, P;, respectively. Since 0©) = 730, Fyo = 0,
A% = {1} C R, s*horyo = s* and mp; 0 s = idy;, we have

0 Carg(o)(ﬂ}‘wﬁ) = s"horgo) (73 2) = s*my 82 = £2,
/AO Car’"” (73, P) = 0.

Therefore, the 2%"*1(G* x M)-component of f(Care(j(ﬂw(Q +3, R)))) is indeed the
n-plectic form (2, and, in particular, G-invariant.

We now turn to the 2%"(G* x M)-components. Since Car”"” (7%,92) € 2T Al x BG
M), we have

. Care(l)(ﬂ}‘wﬁ) = 0.
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Thus, the homotopy moment map is constructed from
o)« Sy * *
» Car” " (my P) = /A1<S Fyu), s" horya) my, B).

We will now compute this explicitly, and also show that it defines a G-invariant n-form
on G x M, so that we can apply the second part of Proposition 3.3.10.

Denote by I: G — G the map g — ¢! and let g € 2'(G, g) be the right-invariant
Maurer—Cartan form. The differential of the section s: G x M — G* x M from (3.40) is

ds| (g (@, w) = (0,dI(2), dLy(w) = v§,z)lgp) for & € T,G,w € T,M. (3.43)
From (3.38) and (3.43) we obtain

8*F9(1) = —dtl /\7T2~9R — togtlﬂ'G[eR QR],

| | i (3.45)
$*Fioy = (—1)' i dt; A gy (05 A 05, O8] ™) + (— 827508, 0R])

On E;G x M = G? x M, the horizontal projection for the connection 81 is given by

T(907g17p)(G2 X M) _>T(907917p)(G2 X M)v
~ ~ ~ ~ 2 -~ -~ 2
(To, T1,w") —(To, T1,w") — vf(gof\ghw,) = (T, T1,w') — Ugez(]\fo)thlé)L(ml)

G2xM

Here, v is the infinitesimal action for the diagonal action G ~ G* x M from (3.10).

In particular,
dmy (horg(l)(jo, Ty, w')) =w' — tovg’;@oﬂp — tlv(QGL(jl)|p. (3.46)

Combining (3.43) and (3.46), and using . (dI(z)) = —0r(Z) as well as to = 1 —¢; and
dL, 11}9 @) = UOGL(JE), we have

dﬂM(hore(l)ds(f,w)) = d7TM<hOI‘9(1) (0,dI(Z),dLy(w) — v%(i)bp))

= dLg(w) — UGGR(:TJ)|9P tlUQL(dz (%) |gp = dLy(w) — tOU&(iﬂyP
= dLg(w — tovg, ;p)

for all (Z,w) € T(yp)(G x M). Using the G-invariance of P, i.e. L}P; = Ady P;, we have

s* horga) Ty Bilig.p) ((il, W)y ooy (Tn_2is1, wn_2i+1))
= Pilp(dLg(wi — tovf, o lp), - ALg(wn 2i11 = tov§, 5 i) lp))
= L;Pi|p (wl - tov(i(jlﬂp, cooy Wn—2i41 — tovfi(fin—mﬂ)“’)
_ (Ad;)@' Pily (w1 = 1008, oy s - - - Wazier — vz lo)-

Denoting the map T,G & T,M > (Z,w) — w — tongL(i)|p € T,M, as well as any tensor
power of it by ¢,,, we have

s* horya my P = (Ad))¥'P; o ¢y, (3.47)
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Combining (3.42), (3.45), (3.47) and Ad,-10r = 0}, we have

Car”” (m3, ) = ((— 1)l aty A, (0, A [0, 00) ) + (— w5061, 01])', Prody, )-
Since ¢y, is invariant under the left action (g, (¢, h,p)) — (t, gh, p), this also proves that
Car®" (7, P) € 2"(A' x G x M)©,

where GG acts by the same action. Hence also

N Car®" (n%,P;) = /Al(—1) ity A, (0L AL, 07), Pogy, ) € 21 (G*x M)©.

(3.48)

However, recall that ¢, depends on ¢ty = 1—t;. Forz;, ...,z € gand wy, ..., w,—p € T,M
we have

<7rg(eLA[eL,eL]i-l) P, 0 ¢r)((21,0), .., (2, 0), (0,w1), .., (0, wn_))
_Z k 2Z+1<9L AN [HL, QL]l 1(xa'( 1) - '7xa(2i—1))7 Pi(vfa(%)v : 7U§a(k>7w o Wp— k)>

oceSh

k!tk—2z+l i
:7(k_02i+1)|<71'/\k( \/)Lk 2P ]S ) (e W)

i—1

Here, Sh = Sh(2i — 1,k — 2i + 1) denotes the set of (2i — 1,k — 2¢ + 1)-shuffles, i.e.
permutations o, which satisfy o(¢) < o(¢ + 1) for all £ # 2i — 1. Combining this with
(3.48), and since [y th "t dt; = W, we see that the image of 2 + E}:f : P; in
C**(g, M) is

125

i
- . o g 2
f — ,r/A1 CaIﬂ TrMP Z Z k 27,—|—1'7T/\k(g )(L]; 2+1Pi('7['7']7--.a['7'])> .

=1

~.

Tk
With fi, = C(k)fx, this completes the proof. O

3.3.28 Example. For a cocycle of the form 2 + P, € C&*Y(M), with P, € (gv ®
a
Q”*I(M)) , we recover the statement of [FRZ13, Thm. 6.3], i.e. the moment map is

fro=—Ck)mpngyte " PL=—C(k)s Py
Note that by [FRZ13, Prop. 6.2], ng_lpl is already skew-symmetric.

In particular, for n = 1, a degree 2 cocycle is of the form 2 — p € CZ(M), where
2 € 2*(M) is a pre-symplectic structure on M and p € (g¥ ® 2°(M)) is a moment
map. The homotopy moment map is the usual moment map

f=h=unp
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3.3.29 Example. If 2+ Z P € O (M) is a degree n + 1 cocycle in the Cartan

e
model with P; € (Sl( V) ® Q“ 2Z+1(M)) , then the first components of the homotopy
moment map are

Ji=-P,

fa = =Tn2gvytg P,

fs = mrantgPr — s o, [ ),

Ji=mpaentgPr = 2mnan taPa(, [ ), (3.50)

f5 = —'/T/\B(g\/)bgpl + 37T/\5(QV)L§P2(', [-, ]) — 37T/\5(QV)P3(-, [', '], [', ]),

e
3.3.30 Example. If M = pt, then C5L(M) = C&(pt) = (S*(gv)) , then the construction
produces

G

(Sz(QV))G . (/\Zifl(g\/)) :
Pl' — .];21'_1 = (—1)21%7(/\21'—1(9\/)(3(.7 [.7 .]7 ceey [-7 ]))7

which differs by an additional factor of —i! from the Cartan map defined in [Car51, Sec.
2] (also cf. [GHV76, Ch. VI Prop. 1V]).

The following corollary shows how the homotopy moment map changes when the cocyle
in the Cartan model is changed by a coboundary. This generalizes [CFRZ15, Lem. 7.5]
and [FLGZ14, Prop. 7.11].

n+1

3.3. 31 Corollary Given a cocycle §2 + ZL 2 J € CLT (M) and a coboundary dg@Q =

de Zz 0 Q, € C&T (M) in the Cartan complex ofM with Q € C&(M), then the homotopy
1%

moment map for the pre-n-plectic form 2 + dQq associated to 2 + Y, ¢ ~ P, + dgQ is
given by

~ N n—1

= [ +7(0Q0) — 6, /2 = Y (—1)*df2,

k=1
where, f is the homotopy moment map for the pre-n-plectic action on (M, §2) associated

ntl -
to 2+ ZZLOQ : P; and fQ = 7(B,), where B = X1_, By is the image of Q under the chain

map from Proposition 3.3.25.

3.3.32 Remark. If dQ, =0, f? is a homotopy moment map for the pre-(n — 1)-plectic
G-action on (M, Q). In this situation, f and f" both define homotopy moment maps for
the pre-n-plectic G-action on (M, 2).

If dQy # 0, the form Qq is not a pre-n-plectic form. However, f< is given by the same
formula (cf. Theorem 3.3.27).
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Proof (of Corollary 3.3.31). Let By € 2"(M)“ C QY""YG* x M) and B, € 2" G x
M)¢ c ' YG* x M) be the relevant components of the image of @ under the
chain map from Proposition 3.3.25. Since the preimage of 2"(G* x M) under d is
207G x M) @ 281G x M), only 3y and 3; will contribute to the homotopy moment
map. The component of d(By + 1) in 2V"(G* x M) is

9P — dp.

Therefore, . .
f=f+708 —dp).

The claim now follows from Corollary 3.3.13. U






Chapter 4

The generalized Dirac operator

In this chapter, we recall the definition of the generalized Dirac operator in dimensions
three and four associated to a hyperkédhler manifold with permuting action. This Dirac
operator was introduced by Taubes [Tau99] for three-dimensional manifolds and by
Pidstrygach [Pid04] for four-dimensional manifolds. As usual, the Dirac operator is a
composition of a covariant derivative and a Clifford multiplication. We study the Dirac
operator, its linearization and its behavior on manifolds with boundary.

4.1 Spin%(m)-structures and spinors

Recall that for a compact Lie group G and € € G central with €2 = 1,
SpinZ(m) := (Spin(m) x G)/ £ 1,

where +1 is the order 2 subgroup generated by (—1,¢).

In this chapter, we restrict ourselves to m € {3,4} and use the isomorphisms

SpinZ(3) = (Sp(1) x G)/ + 1,
Sping(4) = (Sp(1)4 x Sp(1)- x G)/ £ 1.

2

4.1.1 Remark. This generalizes Spin(m), Spin¢(m) and SO(m) x G.
4.1.2 Note. Then we have a short exact sequence
1 - ((1,¢)) = SpinC(m) 25 SO(m) x GJe — 1, (4.1)

where A\ : Spin&(m) — SO(m) x G /e is the quotient map, {(1,¢)) the (normal) subgroup
of Spin%(m) generated by [(1,¢)] = [(—1,1)] € Spin%(m) and G /e the quotient of G by
the subgroup generated by e.

Let now Q,, — Z be a Spin&(m)-structure on a oriented Riemannian manifold Z of
dimension dim(Z) = m, i.e. @, is a Ag-reduction 7: Q.,, = Psom) Xz Pa/e of principal
bundles, where Pso(,) — Z is the bundle of oriented orthonormal frames and Pg/. — Z
is a principal G//e-bundle.

73
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We will denote the components of m by 7so0: @ — Psom) and mg/e: Qm — Pgye.

Given a Spinf(m)-structure on Z and a hyperkihler manifold M with permuting
Sping (m),

4.1.3 Definition (spinor). A (generalized) spinor is a smooth SpinS(m)-equivariant
map u: @,, — M. We will denote the space of spinors by

Ny 7= C(Qy, M) SPE M)

4.1.4 Note. Note that a Spin(m)-structure, a Spin®(m)-structure and a principal G-
bundle are special cases of Spin®(m)-structures and using the representations from
Example 2.2.6 as hyperkédhler manifold with permuting action, we recover the usual
(positive) spinor bundles.

Using C*°(Qn, M)Spmfc(m) = I'(Z, Qm X sping(m) M), a spinor u € .4 can also be inter-
preted as a section of the associate fibre bundle with fibre M, which generalizes the usual
(positive) spinor bundles.

4.1.5 Remark (Connectors, cf. [KMS93]). Recall that a linear connection on a vec-
tor bundle 7: £ — M can also be described in terms of a connector, i.e. a smooth map
K:TE — E which satisfies K(4v + tw|;—g) = w for all v,w € T,E and which is a
morphism of vector bundles for both vector bundle structures on T'E:

TE X . F TE-X . F
T e
E—" M TM 2 M

The horizontal subspace is then the kernel of K: TE — E, where T'E is considered as a
vector bundle over . A connector also defines a covariant derivative on all pullbacks of E:
Given s € I'(N, f*E) = C*(N, E) for some smooth f: N — M, we have VXs = K o T's.

Furthermore, let ky;: TTM — TTM be the canonical flip, i.e. the unique smooth map

satisfying £ -Lc(t, s)|smolio = Kartdc(t, s)|i=o|s=o for all smooth c: R* — M.

The curvature of V¥ is given by
FMX,Y)s = (Ko (TK)okry — Ko (TK)T?s0TX oY
for any section s: M — TM, and vector fields X,Y € I'(M,TM). The torsion 1-form
TV € 22(M, TM) is then given by
TV (v,w) = (K 0 ks — K)Tw o w for all v,w € I'(M,TM).

For more details on connectors and proofs of the formulae for the curvature and torsion,
we refer the reader to [KMS93, Thm. 37.15],

4.1.6 Remark. Note that .47, is a (infinite-dimensional) smooth manifold. If Z is
compact, it admits a natural Riemannian L2-metric ¢* (induced by g*) and Levi-Civita
connection V', whose connector K" : TTA;, — T4, is given by composition with the
connector KM : TTM — TM of the Levi-Civita connection on M. Details are explained
in [Call0, App. A].
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4.2 Connections and covariant derivatives

The Lie algebra spin®(m) of Spinf(m) splits as a direct sum spin®(m) = so(m) @ g. Let
¢z be the Levi-Civita connection on Pso(m) — Z.

4.2.1 Definition. By .¢7,, we denote the affine space of connections on @), — Z with
so(m)-component given by the lift of a chosen connection ¢z on Pso(m), i.e.

Ly, = { Ae le(Qm) ‘ PYso(m) 0A = 7TZ'O(m)(‘OZ } ’

4.2.2 Remark. Most of the time, we use the Levi-Civita connection as ¢z, since this is
the natural choice of a connection on Pso(y,). However, it is also possible to use another
metric connection on Z which is not torsion-free. This will be the case in Example 4.6.3.

4.2.3 Notation. Note that we have a commuting diagram of Lie algebras, where all
maps are isomorphisms:

spin(m) @ g ——— spin® (m)

£

J J

so(m) & g—— s0(m) @ Lie(G/¢)

We will use this to identify spin®(m) = so(m) @ g. The maps DPlgo(m) - spin®(m) — so(m)
and pr: spin®(m) — g will denote the above isomorphims composed with either of the
projections to the two summands of so(m) @ g.

4.2.4 Remark. Note that in the case of G = S!, it is sometimes convenient to use
the isomorphism S'/ +1 = S [2] = 22 and the induced isomorphims of Lie algebras
Lie(S'/£1) = Lie(S*) = iR. In this case, the bottom map in the diagram is idso () X2 id;R.
This factor of 2 often appear in the literature on Seiberg—Witten theory.

4.2.1 Gauge group

We can now study the automorphism group of a Sping(m)-structure.

4.2.5 Definition. Let Q,, — Z be a Spinf(m)-structure on Z. The gauge group of the
Spin(m)-equivariant principal G-bundle Q,, = Pso@m) is denoted by 4, i.e.

Gy = C®(Qu, G)5PE ) = G(Q, — Psopm) 7™ € Aut (Qyn) -

We will refer to %, as the gauge group. It naturally acts on .4;, and <7,.

4.3 Covariant derivative

Let @ — Psoum) — Z be a reduction of the principal bundle of oriented orthonormal
frames, with structure group H. We are particularly interested in the case when H =
Spin€(m) and Q is a Spin%(m)-structure.
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4.3.1 Definition. For a connection 1-form A € &7 ((Q)) which lifts a connection ¢z on
Pso(m), we define a covariant derivative

Rm)\/ ® TM)H,

dl: C=(Q, M) = C=(Q, (
v) for w € R".

((dw)(p), w) = Tu(w)
Here w € T,Q is the horizontal lift of mso(p)(w) € Tr, ) Z-

We will also use the following variation of the concept of covariant derivative: Consider a
H-equivariant vector bundle £ — M with a fixed H-equivariant connection on E and
the corresponding connector K: TE — E. We define

B idpmyv QK
dE o C(Q, E)T 5 ¢(Q, (R™)Y @ TE)! Z0° 25, o (R™)Y @ E)

d v == (idgmy ®K) o div, v e C*(Q, E)".

Here d5: C(Q, E) — C*°(Q, (R™)" @ TE)! is the covariant derivative defined above
for the total space of the vector bundle £ — M.

4.3.2 Example. For a representation M =V of H the map d is the usual covariant
exterior derivative if we identify C°°(Q, (R™)V @ V)7 = 0Y(Q, V)&

hor*

4.3.3 Remark. Note that d¥ is a smooth section of the infinite-dimensional vector
bundle C=(Q, (R™)Y @ TM)? — C=(Q, M)¥, a + 7y 0 a (cf. [Call0, Lem. 3.4.4]).

Similarly, di,c is a morphism of infinite-dimensional vector bundles

E

C2(@Q. B ——5 C¥(Q. (R™)  B)”

J{TFJVI lﬂkl

C(Q, M) - C(Q, M)™,

where 7, denotes the composition with the projection to M. In particular, we can restrict
our attention to the fibres over u € C°°(Q, M)™: The following commutative diagram
defines a covariant derivative VA* on the vector bundle mu*E := w*E/H — Q/H = Z:

E
da x

C=(Q, B)y C=(Q, RY)" ® E),/

F F

rQu )" rQ,®Rm)Yeu k)"

F F

I'(Z, mu*E) I'(X, T*X @ mu*TM)

The following Lemma generalizes [Call0, Lem. 3.4.4] and states some essential properties
of the covariant derivative:
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4.3.4 Lemma (Properties of the covariant derivative). Let A € &/(Q) lifting a
connection @z on Psoum) and K the connector of a connection on TM — M with
vanishing torsion. Then the covariant derivative

dy : C*(Q, M)" = C=(Q, (R™)Y @ TM)"
is smooth and we have
1. TdY = (id(gmyv ®@kar) o d4M,
2. (idgpmy ®K) o TdY = dBM,
3. ng,ICE = (id(gmyv @((TK") 0 kp)) o d4E, where K is a connector on E,
4. ICETdi,CE = (id(gmyv ®(K" o (TK”) 0 kig)) o d4E, where K is a connector on E.
5. For a H-equivariant smooth map f: M — M' we have T'f o du = d¥'(f o).

6. If X € I'(M, TM) satisfies VX" { = idray, then AN (x ou) = dlifu.

Proof. Proofs for the first two claims for H = Spin®(m) can be found in [Call0, Lem.
3.4.4], but the exact same proofs works in the case of an arbitrary Lie group H. The third
and fourth claim are immediate consequences of the definition of df «# and the second

claim. The fifth item is obvious from the definition of d4!.

We now proof the sixth item: From YTy = vEY X = idpys and the fifth item, we obtain

(i (R ow)(p),w) = KTRTu(w) = Tu(w) = ((d u)(p), w)
for all w € R™, p € @ and where @ € T,,Q is the horizontal lift of 7s0(p)(w) € Tr,p»Z.0

4.3.5 Remark. Under the isomorphism C*(Q, (R™)" @ TM)? = QY (Q,TM)I | the

hor»
covariant exterior derivative dYu corresponds to pry, Tu.

4.4 Clifford multiplication and hyperkéhler
manifolds

In this section, we recall the definition of the Clifford multiplication used for the generalized

Dirac operator. Note that in contrast to other references on the topic (e.g. [Pid04], [Hay06],

[Sch10], [Call0]), we allow Sp(1)_ to act non-trivially (hyperkéahler) in the 4-dimensional

case. To generalize Clifford multiplication to the case of spinors with values in a hyperkéhler
manifold M, we need a Spin&(m)-equivariant bundle of Cl,,-modules.

In dimension 3, this is given by the scalar multiplication on T'M:

c3: R*@TM 2 Im(H) @ TM — TM,
h®uvw— Zyv
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defines a Sping(m)-equivariant Clz-module structure on TM (cf. [Call0, Lem. 3.5.1]).

In dimension 4, the situation is slightly more complicated. Let us first consider the
Sp(1)4 x Sp(1)_ x G-equivariant vector bundle E — M, which is isomorphic to TM as
a vector bundle and carries the following Sp(1); x Sp(1)- x G-action:

Sp(1), x Sp(1)- x G ~ E,
((q+7 q—, g)a U) = Iﬂ(qﬁ-)*(Q—)*g*U.

This is a well-defined action since the Sp(1),-action on M is permuting and, therefore,
(94 )+Zg = T7r-(q4 )« commutes with the complex structures on T'M.

Since T'M is a bundle of CI$ = Clz-modules,

T/M = C l4 ®C’l3 E
is a natural bundle of Cly-module constructed from T'M. Furthermore, this C'ly-module
structure is Spinf(4)-equivariant with the Spinf(4)-action induced by the Sp(1), x

Sp(1)_ x G-action on E and Spin(4) C Cly ~ Cly. Additionally, TM has a Z/2Z-
grading induced by Cly = C1Y & C1} with even and odd parts

TM' = Cl) @cp E = TM, TM' = Cll ©cp E,
where TM " is again T'M as a vector bundle and carries the following Spin¢(4)-action:

Spin®(4) = (Sp(1)+ x Sp(1)_ x G)/ 1~ TM',
([(Q-‘ra q-, g)]? U) = quzﬁ(Q+>*(Q—)*g*U.

In particular, we have a Clifford multiplication

c: RY@TM — TM,

which interchanges the even part 7'M and the odd part ™ ' of TM. Under the isomor-
phism End (TM ) = End (TM e TM ), the Clifford multiplication on T'M corresponds
to the map

0  —idru 0 cser)
ey — ( idp; 0 ) and ep ( esler) 0 for ¢ € {1,2,3}.

In particular, cs(eo) ca(er) = c3(er) € End (TM) = End (ﬁ/[o) for ¢ € {1,2,3}.

4.4.1 Remark. Also note that TM = [(S* & S~) ®¢ EJ, for some real structure r and

TM =[St ®¢El,, TM = [S™ ® E],. These isomorphisms have been used in [Pid04] and
[Hay06]. The Clifford multiplication is then induced by the usual Clifford multiplication
Cly: R*® S* — S7.



4.5. Dirac operator 79

4.4.2 Example. For the Spin'®(m)-representation from Example 2.2.6, we recover the
usual Clifford multiplication on the (positive) spinor module. In all considered cases, the
Clifford multiplication is given by

Ho H— H,
h® h' — hh'.

This can be interpreted as a homomorphism of Spin(m) or Spin®(m)-representations

RP®S—S and RE@W — W for m = 3,
R'® St — S~ and R'@WT = W™ for m = 4,

where in the three-dimensional case, we take the restriction of the above homomorphism
to Im(H) ® H.

4.4.3 Remark. Since the Clifford multiplication ¢,,: R™ ® TM — TM is given by
scalar multiplication, it is parallel with respect to the Levi-Civita connection on M,
i.e. VM(¢,,) = 0. This can be written as KT'(¢,,) = ¢ 0 (id(gm)v ®K), where K is the
connector of the Levi-Civita connection VM = V* (cf. [Call0, Lem. 3.5.4]).

4.5 Dirac operator

We define the Dirac operator as the composition of the covariant derivative and Clifford
multiplication.

4.5.1 Definition (Dirac operator).
The (three-dimensional) Dirac operator P4 for a connection A € 73 is defined to be the
composition

. M ) )
C™=(Qa, M)YSPnEE) S0y 0(Qy, (RY)Y @ TM)SPmE®) &5 0@y, TM )P,

Dau = cs(d ).

The (four-dimensional) Dirac operator 2 for a connection A € 7 is defined to be the
composition

. M . — .
C(Qa, M)FED L5 020(Q, (RY)Y 0 TM)PED 24 0o2(Qy, TAIY)SrnE ™),

D = cy(d ).

4.5.2 Note. The Dirac operators Z4 and 2} are sections of (infinite-dimensional) vector
bundles over C*°(Q,,, M )Spmg(m), which are given by composition with the projection
TM — M.

4.5.1 The linearized Dirac operator

We will now linearize the Dirac operator in three dimensions. Let Q,, — Z be a Spin&(m)-
structure on a compact oriented Riemannian manifold Z of dimension m € {3,4}.
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4.5.3 Definition. Using the connector K: TT'M — TM for the Levi-Civita connec-
tion on M, we define the linearized Dirac operator .@Z"’“ in dimension 3 (at u €
C®(Qs, M)SP"E3)) to be

T O Qe TM)™E ) — C(Qs, TM)TP™),
v KoT,Z4(v),

and the linearized Dirac operator 2" in dimension 4 (at u € C™(Qy, M)SPnE®) to
be

@Z‘n,u,—&-: COO(Q4, TM)sznfM) — COO(Q4, ml)gpinf(zl)’
v KoT, 74 (v).

Also, with an eye to Proposition 4.5.10, we define

QZn,u,—: Cm(@4’ﬂ/[1)5pin§(4) N COO(Q4,TM)5pi”§(4),
—1

v e o dyi (v).
We also denote

-@Zn#’* . COO(QS, TM)sznsc(3) — COO(Qg, TM)SpinE(S)

e iaad) by ) ‘IQO

@Zjn,u,-i-,* : COO(Q4, f]\wl)Spinf(él) N COO(Q4’ TM)Sping(él)’

by Pt I} ly Pt
DT w = DT w — eq(TY @ w).

Here 7% € Q2Y(Z) = C®(Qm, (R™)V)5Pn¢ (m) denotes the torsion 1-form for the connection
¢ on Pson) which A lifts, i.e. T%(n) = — tr(v,T%), where T¥ € 2%(Z,TZ) is the torsion
of .

4.5.4 Remark. Note that if Z is compact, then the linearized Dirac operator 24" is
the covariant derivative V¥ 2, at u € A5, where V¥ is the metric compatible covariant
derivative corresponding to the connector K in Remark 4.1.6.

1 1
4.5.5 Remark. Note that in the 4-dimensional case, K: TTM — TM is Spin¢(4)-
equivariant, since we are using the Levi-Civita connection, which is Spinf (4)-invariant,
since Spin€(4) acts isometrically.

4.5.6 Remark. Note that in the definition of 24"~ we are using the Clifford multipli-
cation (R*)V @ TM' — TM obtained by restricting the action of the Clifford algebra on
TM := Cly @y E=TM o TM .
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4.5.7 Remark. Note that from Remark 4.4.3, we immediately obtain

73" () = K 0 T.257 (v) = K o T(en) T(d4) (v) = e 0 (idms)e ©K) o T(d ) (v)

=y 0 A (V).

and therefore 24" = c5 0 d{} and 24" = ¢, 0 d}} are usual Dirac operators for the
connection V4 ’C on mu*T'M described in Remark 4.3.3.

In some cases, the generalized Dirac operator Z,4 is determined by its linearization.

4.5.8 Corollary. Let ¥ € I'(M,TM)SPné(m) pe g SpinC(m)-equivariant vector field
satisfying VM = idp,rar), where VM s the Levi-Civita connection on M. Then

T4 (R ou) = cs(di (R o w) = es(diu) = Da(w),

and

T3 (R ow) = e(diX (% o) = ex(diu) = 7 (u),

where u € C®°(Qn, ]\4)51"”E (M) with m = 3 or m = 4, respectively.

4.5.9 Remark. The special case ps = 0 and { = xo was also discussed in [Sch10, Cor.
4.6.2], [Call0, Lem. 3.6.9].

However, as we have seen in Remark 2.2.48, even if py # 0, a vector field x with VX = idryy,
or equivalently, a hyperkédhler potential, may still exist. Examples can be obtained by
modifying permuting actions with ps = 0.

The following Lemma reflects the fact that 2" is a usual Dirac operator acting

on sections in mu*TM := u*TM/Spin%(3) (or mu*TM). We also use mh to denote
the function on Z which is induced by a Spinf(3)-invariant function h on Q,,. The

3-dimensional case with ¢ the Levi-Civita connection was also discussed in [Call0, Lem.
3.6.8].

4.5.10 Proposition. Let Q,, — Psoum) — Z be a Spin&(m)-structure on a compact
oriented Riemannian manifold Z of dimension m € {3,4}, with boundary 0Z. Let
A € o, be a connection lifting a metric connection @ with covariant derivative V on
Z. Let TV (v) :== —tr(1,TV) denote the torsion 1-form obtained from the torsion tensor
TV € 2%(Z,TZ), where we think of TV € C=(Q, (R™)V)5Png(m)  Then

1. for allv,w € C(Qs, TM)5Ping(3) .
<9lznu v, >L2 _ <U glznu L2+/YdiVV(Uv,w)*1

= w2 e = [ gV (v, ea(fr @ w)) + 1

where divY denotes the divergence with respect to the SO(3)-connection on Pso(s)
which A lifts and U, ,, € I'(Y,TY) is defined by g¥ (Uy.w, Z) = —m(g™ (v, c3(fz@w)))
for Z € L(Y,TY) and f7: Q3 — R® the corresponding Spin€ (3)-equivariant map.
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In particular, if Y is closed and A projects to the Levi-Civita connection on'Y, or
more generally, if [y divY (Uy.) = 0 for all v,w € C(Qs, TM)SP"E®)  then .@lmu
satisfies:

(0, w) 1 = (0, P ),

2. For allv € C®(Qq, TM)SP¢®W o e COO(QLL’WI)SpingM) .
<@lmu+ w>L2 — <U @lznu >L2 +/ diVV(wa) x1
X

= @I ) = [ mg(vealfr @ w) + 1

where divY denotes the divergence with respect to the SO(4)-connection ¥V on
Psoy to which A projects and U,,, € I'(X,TX) is defined by XUy, Z) =
—m(gM (v, cs(fz @ w))) for Z € I'(X, TX) and fz: Qs — R* the corresponding
Spin (4)-equivariant map.

In particular, if X is closed and A projects to the Levi-Civita connection on X,
or more generally, if [y divY (Uy,w) = 0 for all v € C®(Qy, TM)P"EW) 4 ¢

C®(Q4, T’JTf)Sme@), then:
<glmu+ U)> . <U .@hnuf >L2-

4.5.11 Remark. Note that on the boundary 0Y, the outward pointing normal vector field
1 defines a reduction of the frame bundle Pyy = {f € Pso)lay | f(e1) = 0} C Psos)lay,
and a reduction Qgy C Q3|sy. Note that on Qgy, we have

g (v, cs3(fa @ w)) = g (v, e3(e1 @ w)) = g™ (Lyv, w)

Similarly, we have a reduction Qpx C Q4]ox and on Qpx:
9" (v, ca(fr@w)) = gM (v, ealeo @ w)) = g™ (v, w)

Proof (of Proposition 4.5.10). Except for allowing torsion connections on Pso(m), the
proof resembles the usual proof that the Dirac operator is formally self-adjoint. A similar
proof for a Dirac operator obtained from a connection with non-vanishing torsion can be
found in [HHO6, Thm. 4.5.3], where symplectic Dirac operators are studied.

Consider the covariant derivative V¥ on w*TM — s, which is the pullback of
the Levi-Civita connection on M. For Z € T(Qs; and v € C’OO(Qg,TM)ipmeG(?’) ~
I(Qs, w*TM)5Pin€ 3) we obtain

vy TMy = KTv(Z).

Since the Levi-Civita connection is compatible with the metric on M, the pullback V* M
is compatible with the pullback metric on «*T'M:

V(T w) + ¥ (0, VM) = d(g (v, w)) for all v,w € C%(Qs, TM)SF®).
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Note that if we insert a horizontal lift X € TQ (with respect to A) of X € TY, the right
hand side is

d(g" (v,w))(X) = da(g" (v,w))(X) = dm(g" (v, w))(X),

where m(gM(v,w)) € C®(Y,R) is induced by ¢M(v,w): Q3 — R, and its exterior
derivative on Y is dm (g™ (v, w)) € 21(Y,R).

Fix a point p € Qs, y := my(p) and let X, := wso(p)(e) € T,Y for ¢ € {1,2,3}.
Extend X, € T,Y to vector fields X, € I'(Y,TY'). Since TY is the associated bundle
TY = Q3 Xspinc(3) R3, these correspond to Spin¢(3)-equivariant maps f;: Q3 — R®. In
particular, X, = mso(p)(e¢) implies that f,(p) = e,. With these choices, we obtain

" (2" (v)(p), w(p))

3
=Y g (cs(ee © VEM0) (p), w(p))
/=1

==Y " (VE™Mu(p), cs(er @ w)(p))

/=1
> g (V™M u(p), es( filp) ® w(p))) (4.3)
=~ X d(g" (el ® w))) (Xely) + 20" ). VM (el © w) )
== L d(g" (el ® w)))(Xel,) + + 20" (), c3(V4,(fo) @ w)(p))

+ g (v(p), 24" (w) (p))-

The first two summand on the right hand side of Equation 4.3 can be interpreted as a
divergence:

3

= > d(g™ (v, e5(fe @ w))(Xe) + ; 9" (v(p), es(Vx, (fo) @ w)(p))

- Zdﬂ-' U » C3 ff ® w)))(Xf) - ;gy(Uv,wa VXZXK))
- Z d U”U YW Xf))(Xf> - ;QY(U’U,UM vXeXZ))

= Z gY(vXer,wv XZ))
0=1
= div¥ (Uya).
We obtain

g5 (0)(p),w(p)) = g™ (v(p), Z2™" (W) (p)) + divY (Upu)(y).
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In particular, integrating over the compact manifold Y, we obtain
(DL, w2 = (v, D™ w) e +/ divY (U, ) * 1.
Y

Recall that for any vector field V € I'(Y, TY), the divergence div¥ (V) := tr(VV) and
the divergence with respect to the Levi-Civita connection V¢ are related by !

divV (V) = divV (V) + TV (V).

Finally, we compute using Stokes’ theorem:

[ AT W)+ 1= [ v () 61+ [ TV (W)
Y Y Y

- MUUw n 1 v v, w
[ 9" (U @) %14 [ T (V)

:—/ngM(v,Cg,(fﬁ@w))—/YW!QM(U,C:S(TV@UJ))

The proof also immediately carries over to the case of m = 4. O

4.5.2 Dirac operators on manifolds with boundary

Consider an oriented Riemannian 4-manifold X with boundary Y = X with Spin (4)-
structure Q4 — X. Let i: Y = 90X — X the inclusion and # € I'(0X,i*TX) be the
outward pointing normal vector field of unit length. We use the induced orientation on
0X, i.e. an orthonormal frame {vy,vs,v3} in T,,0X is positively oriented if {1, vy, vo, v3} is
a positively oriented orthonormal frame in 7, X. Note that Psoes) == {(y, f) € " Pso) |
f(eo) = 1], } is the bundle of oriented orthonormal frames on 0X.

Define Q3 := {(y,p) € ©*Qu | ms0(1)(p)(€0) = 1y} <5 i*Q4. This is a principal Spin&(3)-
bundle over 90X, where the action is induced by the inclusion Spin&(3) < Spin&(4). This
is a Spin%(3)-structure on OX, the induced Spin (3)-structure on the boundary.

Given a spinor u: Q4 — M, its restriction upx = ulg,: @3 — M is a spinor on 0X.

Given a connection A € 7 lifting a metric connection ¢ with covariant derivative VX,

determines a connection A%% = Tepin(3)@g) A € 2%. Note, that the Clifford-multiplication
1

ca(eg): TM — TM is an isomorphism, which we will use to identify u},7TM and

u} Xm 1. Pushed down to sections of bundles over 0.X, this is the Clifford multiplication
with the normal vector field .

Recall that the second fundamental form

Nel(9X, T*aX@’T*aX)gF(Q37T*Q3®T*Q3)Spm5G(3)gC'OO(Q?,,ﬁp(l)v®5p(l)v)spm§(3)

hor

!This follows from g((V., — Vflc)vg, v3) = %(g(Tv(vg, v1),v2) + g(TV (v3,v2),v1) +g(TV (v1,v2),v3))
for any metric-compatible connection V, which can be derived using the Koszul formula for the Levi-Civita
connection, the metric compatibility of V and TV (v1,v2) := V,v9 — Va,v1 — [v1,v2].
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is defined by N(v,w) := g(i, VXw) and VI%w := pryyy VEw. For v € TOX, we can

extend N (v, )n: TOX — 1R, to a skew-symmetric endomorphism TX|sx — TX|sx.
inG

Lifting this to Qs, we obtain ag € 2'(Qs, 50(4)),2" ®

hor

Ql(Qg,spin(él))gg:"? ®) where v, : spin(4) — s0(4) is the isomorphism induced by the

double cover Spin(4) — SO(4). Then 7*A = A%% 4+ o on X. More explicitly, we
have qgos)(v) = 35, N(v, ég)(ez/ ® ey — e ® ep), where v € T,Q)3, where we interpret

N e I'(Qs3, T*Qs ®T*Q3)Spm and €|, = Tso(3)(p)(e¢) is any horizontal lift. Therefore,

. Now, define o := v o) €

hor

a(v) = 3 Xy N(v, é)eceq.

In the following, we will relate (Z}u)|g, and Z4ox(ugx), generalizing the results in
[KMO7, Sec. 4.3-4.5]:

4.5.12 Lemma.
In the situation described above, we have

1. ( )|Q3_dA8Xu8X+€0 ®dAU(€0)—|—OZ'UaX,

2. (Z5u)lgs = caleo) (Zaox (uax) + di u(Eo) = & (xo + Xo ) upx
— — X —
+ (N0, (X2 + X3 o) + 50 +T), Ocare + Xai) o))
where a-ugx = vSp upx + VP, with g the sp(1).-components of o, H = tr(N)
is the mean cumatur’e Ny = prsgsp(l)v N is the traceless symmetric part of the second

fundamental form N, and xq, X2, Xay are the vector fields defined in the same way as
X0, X2, XA, but using the Sp(1)_-action instead of the Sp(1), -action.

Proof. The first part immediately follows from 7*A = A%X + o. Applying the Clifford
multiplication ¢4, we obtain

(Z5u)|g, = ca(dlox (uax) + €9 @ dy u(eg) + a - upx)
= cyleo)cs(diox (upx)) + caleo)dy uleo) + cala - upx)

= c4(e0)(Paox (ugx ) + diu(ey) + cs(a - ugpx)).

Since we allow metric connections with torsion, the second fundamental form is no longer
symmetric, but

N(Ua UJ) - N(U}, U) = g(ﬁ7 vi(w - VQ)U(U) = g<ﬁv V’L}Xw - viv - [U7 w]) = g(ﬁ\v TVX(Ua w))

Therefore, the skew-symmetric part is ma2gp1yv IV = %g(ﬁ, V" (v, w)).

Note that
Sp(1) 4 ’ Sp(1) & p(1)
P
€3 (Upfpsp(l) a|u3x) - I; Ikvprsp(l)tr O‘(ek)|“<9X - Zl N ek’ € Ikv@ +|"3X
= - %X0|uax + %<N07 X2|uax> + %(g(nv *T )a XAlt|u3X>-
Similarly,

_ _ = X _
es (057D o) == Zx5 o + 5 (N0 X7 o) + SO ATV) Xaluor). O
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4.5.13 Example. For M = H as in Example 2.1.7, and V¥ the Levi-Civita connection,

we have 2 =0, xo = —str(x) = id: H— H, Igvgp(l) = —idy and hence
a(upx) = cs(o - uax) = 5(N, Xluoy) = —Fuox,

Where H = tr(N) is the mean curvature of 0.X.

4.6 Examples

4.6.1 Example (twisted Dirac operator). If Y is an oriented 3-dimensional Rieman-
nian Spin-manifold, G = Z/27 x O(k) with e = (=1,1) and M = S@RF, P - Y a
principal O(k)-bundle with connection a and A = a + 7539y € @4, then we recover
the twisted Dirac operator for the bundle S ® £, where § = P x o, R*:

P4 T(S28) Y NTYeSwe) 22% rsee).

A similar construction can be done for m = 4, where we recover

95 1S 06) Y NIX 0 8t w¢) 22 rswe).

If G=8"xU(k) withe =(—1,-1,1) and M = W®C*, P — Y a principal U(k)-bundle
with connection a and A = a + Ts03)PY € a3, then we recover the Spin®-Dirac operator
twisted with the hermitian bundle E = P x () C*:

D4 TOWRFE) > TWRE).
Similarly, in dimension 4, we recover the twisted Dirac operator
D5 TOW"QE) - T'(W ®E).

4.6.2 Example (SO(m)-action). Let G be the trivial group and hence, Spin&(m) =
SO(m). Consider the standard SO(3)-action on H = R & Im(H), which we intepret as
a hyperkéhler manifold (H, L;, L;, Ly). Then there is a unique Sping(m)-structure on
a three or four dimensional oriented Riemannian manifold, which is just given by the
principal SO(m)-frame bundle ) = Pson) and the only element in %7 is the Levi-Civita
connection. Recall that the Dirac operator for A* R™ = Cl,, with the left action of the
Clifford algebra on itself is —(d+d*) (cf. [LM89, Ch. II Thm. 5.12] and use our convention
for Clifford multiplication).

1. Form =3, wehave H= {0} ¢ H=Cly C Cl3 =H & H.

OOO<Q, ]H)Sping(B) ~ COO(Q’ Olg—)Spm?(Z&)

Using the isomorphism A°R®A'R® = Cly, (f, a) — 1;*f—l— 1;*04, we can interpret

the generalized Dirac operator as (f,a) — (—d*«, —df — *da).
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2. For m =4, we have H=CI{" = A\°R* & A% R and
0 (Q, )% = 07 (X),
A direct computation shows that the generalized Dirac operator is

—(d+d")

a0y (X)) = 2°4(X).

Using the isomorphisms 2°(X) @ 23 (X) = 2¢(X), (C,B) = C + *C + B and
QN X) = 2°4(X), a — a — xa, we can identify the generalized Dirac operator
with the map

(X)) @ 23 (X) = 21(X),
(C,B) + dC + d*B.

3. For m = 4, we also have H = C’li’+ =~ A'R?, and the corresponding Dirac operator

QYX) = 29(X) =2 X)) @ 22(X),
a— (d'a, (da)-).

The difference between two choices in dimension 4 is the rotating action: Once, the
rotating action factors through Spin(4) — Sp(1)4+ — SO(3) ~ A"R* @ A2 R*, while in
the other case, we have the full SO(4)-action on A' R*. These two choices will reappear
when we discuss examples of the generalized Seiberg—Witten equations (which uses these
Dirac operators). These will lead to the Vafa-Witten equations and the (stable) complex
anti-selfduality equations, respectively.

Similarly, we can take a non-trivial group G and take M = H® g with the same permuting
SO(m)-action and the adjoint action of G on its Lie algebra g. The Dirac operators for a
connection A in a principal G-bundle are the same as above, with d and d* replaced by
da and d7, respectively, and all forms taking values in the associated vector bundle for
the adjoint action.

4.6.3 Example (Fueter operator). Since we allow the fixed connection on Y to have
torsion, we can use the flat connection induced by a trivialization (a frame) TY =Y x R3.
Note that such a frame always exists for a compact oriented 3-manifold. In the case of
a divergence free frame (as considered in [Sall3], for related theories also cf. [HNS09a],
[HNS09b)), the Dirac operator is symmetric ([Sall3]) and is also refered to as the Fueter
operator. More general Fueter operator (in dimensions 3 and 4, with non-trivial principal
bundles) have been studied more recently in [Wall5]. We now give a more detailed
description of how the Fueter operator on a 3-manifold with a frame can be understood
as a generalized Dirac operator:

Let Y be a compact, orientable 3-manifold. Recall that Y is parallelizable, i.e. we can
fix a trivialization TY = R? of the tangent bundle TY — Y, given by three nowhere
vanishing sections vy, v, v3, which span 7)Y at each y € Y. We also denote this frame by
v = (U17U27 U3)'
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Given a frame v on Y, we can define a Riemannian metric g* on Y by ¢*(ve, vx) = o
The frame v is orthonormal in this metric and volj := a; A as A as € 23(Y) is a volume
form on Y and hence fixes an orientation, where oy := g% (vy, —).

The oriented orthonormal frame bundle Pso3y — Y for this metric is the trivial bundle
Y x SOB3) = Y. Let Q :=Y x Spin%(3) — Y be the trivial Spinf(3)-bundle. This
defines a Spin¢(3)-structure on Y.

First, note that the space of spinors is A3 = C*(Y, M). Furthermore, we have two
connections from the previous constructions: Instead of using the Levi-Civita connection
for the metric ¢°, we chose the flat connection (with torsion) V/% = (v=1)*V®* pulled
back from R® to TY via the frame v. Note that by construction V/%¢” = 0. However,
its torsion does not vanish in general:

TV (v, 1) = (™ (r)) (ve)) — v(d(v™ (ve)) (k) — [ve, vi] = —[ve, vi)
and therefore the torsion 1-form is TV (v;) = 3, g% (ve, [vk, ve]).

The corresponding generalized Dirac operator is

Dau = 23: c3(ve @ du(vy)) = — 23: Lidu(ve) € C(Y,TM),

/=1 /=1

for a spinor u € C*(Y, M). Up to a sign, this is the Fueter-operator studied in [HNS09a],
[HNS09b], [Sall3].

In [Sall3], this operator is considered in the situation where another volume form voly
is fixed and v is a divergence-free positive frame with respect to this volume form, i.e.
L,, voly = 0 and voly (vy, v, v3) > 0. With h := voly (v1,v2,v3) € C®°(Y,Rsy), we have
voly = hvolj. = vol{ is the volume form associated to the metric g := h%g”.

Note that in particular, we have div¥" " (v¢) = L,,vol = 0, where VL9 is the Levi-Civita
connection for the metric g = hi g¥. Furthermore,

LC,g

ve(h) = Ly, (h) = Ly, (vol: (v1,v9,v3)) = divY " (ve)h + D g°([ve, Vi), vi) e

k

If Y is closed, we can varify that the linearized Dirac operator is formally self-adjoint:

Indeed, using

div'™ (U)wvoly = Ly (hvol¥) = hLyvoly 4+ U(h)voly = hdiv'y (U)vold 4+ U(h)vold-
= (div* (U) + U(In(h)))voly
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for any vector fields U € I'(Y,TY'), we can compute for U = >, fovp with f, := ¢"(U, v,):

div""(U) = div¥" () + TV”‘”(U) — divV ) — Un(h) + T (U)
—_ diVVLC’,g<U) h) + Z ZTVﬂat ’Ué

~

— divV" (U Zh " fove(h) +Zfe9 Uk, [Vg, Vk))
= dinch ng le ch Ug ngg Vg, Ug,Uk +ngg Uk, Ug,?)k])
= divV ().

In particular, [y divV" (Upw)*1 = [y divvﬂat(Uv,w) «1 = 0 and the formal self-adjointness
follows from Proposition 4.5.10.

4.6.4 Remark. Note that instead of using a trivial principal G-bundle, we could have
used a non-trivial principal G-bundle as well.






Chapter 5

The Seiberg—Witten equations

In this chapter, we expain the Seiberg—Witten equations associated to a hyperkéhler
manifold M with permuting Spin&(m)-action for m € {3,4} and give an overview over
various examples of these equations that have been studied in the literature.

For this purpose, we fix a compact Lie group G, an central element € € Z (M) satisfying
g2 =1, a Spin%(3)-structure Q3 — Psoy Xy Pgje on a 3-dimensional compact oriented
Riemannian manifold Y and a S pmf(él)—structure Q4 — Pso) X x Pa/e on a 4-dimensional
compact oriented Riemannian manifold X. To write the Seiberg—Witten equations, we
also fix an Ad-invariant scalar product (-, -), on the Lie algebra g. We use this to identify
g = ¢V, Finally, let u: M — g¥ ® sp(1)V be the Spinf(m)-equivariant hyperkihler
moment map for the G-action (constructed explicitly in [Pid04, Sec. 2.2.1], also see
Proposition 2.2.7). Another survey on these equations can be found in [Hay15a].

5.1 Seiberg—Witten equations

We have now collected all the necessary ingrediants to write the generalized Seiberg-Witten
equations in dimensions three and four.

5.1.1 Definition. For (u, A) € €3 = A5 X o3, consider the generalized Seiberg—Witten
equations in three dimensions, which were first studied in [Tau99:

QA(U) =0
*Fa + @3(U) =0

where a is the g-component of A € %, the Hodge star operator *: A?(R*)Y — (R3)Y
. . N2 Spin& (3) 1 Spin& (3)
induces *: 2%(Q3, g) — 2Y(Qs,9) and the moment map defines ®3(u) €

hor hor
21(Q3, g)iﬁ'ﬁ”g(g) =~ 0°(Qs, g ® (R?)Y)5n€6) as the composition

Qs 5 M5 g esp(l)Y 2 g (R

91
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5.1.2 Definition. For (u, A) € €, = A, x &, consider the generalized Seiberg—Witten
equations in four dimensions, which were first studied in [Pid04]:

@A(U) =0
Ff +®4(u) =0

a

where a is the g-component of A € o, F € 23 (Qq, g)fﬁing@ is the selfdual part of

the curvature F, of a, and &,(u) € Qi(Qz;,g)Spi”eGM) >~ 0%(Qq, 8 ® (A2 R*)Y)5Ping(4) g
defined as the composition

U ~ 2
Qi M =g’ @sp(l)' =g A\ (R
In both cases, we obtain a moduli space M, i.e. the quotient of the space of solutions by
the action of the gauge group %,,.
5.1.3 Note. Note that the left hand side of the generalized Seiberg-Witten equations is

a section in an (infinite-dimensional) vector bundle over the configuration space. Details
on this point of view can be found in [Call0, Ch. 4].

5.2 Examples

Here is a list of examples of the generalized Seiberg-Witten equations. By default, we use
the Levi-Civita connection as the fixed connection on the base manifold.

Anti-selfduality equation

G Lie group, € =1,

e Spin€(m) = SO(m) x G, Spin€(m)-structure: principal G-bundle P — Z,

o M= {x},

N = {#}, G = A (P — Z),

3D equations: F, =0, M = M, (P),

4D equations: F;" = 0 (anti-selfduality equation), M = Ms(P).

By allowing the hyperkdhler manifold to be just one point M = {x}, the equations
reduce to F,” = 0 in four dimensions and the F, = 0 in the three-dimensional case. The
solutions are the anti-selfdual connection in four dimensions and flat connections in three
dimensions. The moduli space of the anti-selfduality equations was used by Donaldson
to study smooth 4-dimensional topology (starting with [Don83]), which turned out to
be very fruitful and lead to the Donaldson polynomials, which are invariants of smooth
structures on 4-manifolds and later to Floer homology [Flo88] (also cf. [Don02]).
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Seiberg—Witten equations

e G=Se=-1,

o Spin%(m) = Spin(m), Spin&(m)-structure: Spin¢(m)-structure,

e M = H as Spin®(3)-representation W or Spin¢(4)-representation W,

o« M=TY W), N =T XW"), o, = (Psey = Z),

« 3D equations: 3D Seiberg—Witten equations,

e 4D equations: 4D Seiberg—Witten equations.
Seiberg-Witten equations first appeared in [SW94|. Consider M = H as in Example 2.2.6,
G = S' and € = —1. In this case, a Spin®|(m)-structure is the same as a Spin®(m)-

structure and the Dirac operator is the usual Spin¢(m) Dirac operator.

Note that in the literature, the most common form of the Seiberg—Witten equations is
to apply Clifford multiplication to the second equation and, thus, get an equation for
skew-hermitian endomorphisms of the spinor bundle (cf. [KMO07]). The second equation
then reads c3(F,) = (u ® u*)y in dimension three and ¢, (F,") = (u ® u*)y in dimension
four.

The Seiberg—Witten equations turned out to be a very useful tool in 4-dimensional smooth
topology and many results that had been proved using the anti-selfdualty equation and
Donaldson theory, were reproved in a simpler way using the Seiberg—Witten equations.
Floer homology groups have been defined in this case in [KMO07].

Harmonic spinors

« G=7)27,¢c = —1,

o Spin€(m) = Spin(m), Spin€ (m)-structure: Spin(m)-structure,

o M =H as Spin(3)-representation S or Spin(4)-representation ST,

o« M =TS, M=TX,8"), o, ={x},

e 3D equations: Z4u =0,

e 4D equations: Z}u = 0.
Choosing G' = Z./27. and the usual Spin(m)-representation H, solutions of the generalized
Seiberg-Witten equations are harmonic spinors. For X = R* = H, we recover the

equation studied by Fueter [Fue34]. For this reason, the generalized Dirac operator is
sometimes called Fueter operator.
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Fueter operator from a frame

. G:Z/QZ,€:—1,

e 3-manifold Y with frame v: R® = TY, and the flat connection (with torsion)
vilat — (y=1)*VR* pulled back from R® to TY via the frame v,

trivial Spin(3)-structure induced by the frame,

M hyperkéhler manifold,

Ny =C®(Y, M),

e 3D equations: Z u = 0.

As we have seen in Example 4.6.3, this recovers the Fueter operator studied in [Sall3],
[HNS09a], [HNS09b] and the corresponding Hyperkéhler Floer theory. Allowing non-
trivial bundles and different connections leads to the Fueter operators in dimensions 3
and 4 studied in [Wall5].

Vafa-Witten equations
e (G compact Lie group, € =1,
o Spinf(m) = SO(m) x G, Spin%(m)-structure: principal G-bundle P — Z,

« M =H®gas SO(3) x G-representation, (A’ © A')®@g or SO(4) x G-representation,
(N eAL) @3,

o M=02Y,9p) © 2'(Y,gp), M= (X, 9p) © 23(X,9p), T = (P — Z),
e 3D equations: 3D Vafa-Witten equations,

« 4D equations: 4D Vafa-Witten equations ([VW94]).

Consider a compact Lie group G with an Ad-invariant scalar product (-,-), on its Lie
algebra g. Let M := H® g with the action of Spin{(m) = SO(m) x G given by the action
SO(m) ~ H and the adjoint action of G on its Lie algebra g. Then M has a natural
hyperkahler structure induced by the hyperkéhler structure on H given in Example 2.1.7.
A Spin§ (m)-structure @ on a manifold Z (m = dim(Z) € {3,4}) has a corresponding
principal G-bundle P — Z, whose isomorphism class determines the Spin{ (m)-structure
uniquely. Using the Levi-Civita connection ¢ on Pso(n), we obtain &7 = &7 (P — 7).

The moment map for the G-action on H ® g is well-known from the ADHM-construction
(which, however, has a different Sp(1)-action). Its components are

i (T) = —[To, Th] = [T3, T3],
pe(T) = —[To, To] — [13, T1],
p3(T) = —[To, T3] — [T, T3],
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where T' = Ty + i17 + jT5 + kT3. The full moment map is given by u(7T) = —[To, T ] —
[T, T.] € sp(1) ® g, where T, = Ty + jT5 + kT3 and [-,-] the following bracket on
g ®@Im(H): [h® X,) @ X'] = i[hN @ [X,X] € In(H) ® g for X, X’ € g and
h,h' € Im(H).

1. (m = 4) Let X = Z be a Riemannian 4-manifold. Using the isomorphisms
O (Q, AT (RY)Y)5nE @ = (X, gp) @ 23X, gp) and TN = N(RY)" @ g we
obtain C®(Q, TM*)SPint () = odd(X gp) = 2'(X, gp) from Example 4.6.2. Using
these identifications, the Dirac operator %4 on a generalized spinor (C,B) €
QO(X,QP) D Q_%_(X,gp) is daC' + dZB S Ql(X,gp), where A € ﬂ(P — X) = o
Thus the first equation is doC' + d B = 0.

The (4-dimensional) generalized Seiberg-Witten equations thus give the Vafa-Witten
equations [VW94] for A € &7/ (P — X), B € 22(X,gp) and C € 2°(X, gp) :

dsC +d'\B =0
FX_[OaB]_[[BvB]]:O

2. (m = 3) Let Y = Z be a Riemannian 3-manifold. From Example 4.6.2 we know
that C°°(Q,H)5"<®3) =~ Q0(Y, gp) @ 2Y(Y, gp) and the generalized Dirac operator
is given by

Da: 2°(Y,gp) ® 2'(Y,9p) — 2°(Y,gp) @ 2'(Y, gp),
(C, B) — (—dZB, —dAC — *dAB)

The (3-dimensional) generalized Seiberg—Witten equations thus give the following
equations for A € & (P —Y), Be€ 2(Y,gp) and C € 2°(Y, gp) :

&'\B =
dAC +xdyB =0
«Fy—[C,B] - [B,B] =0

Complex anti-selfduality equations for G¢

« G compact Lie group, € = 1,

e Spinf(4) = SO(4) x G, Spin%(4)-structure: principal G-bundle P — Z,
e M =H®gas SO(4) x G-representation \' ®g,

e M= DX, gp), Sy = (P 2),

« 4D equations: (stable) complex anti-selfduality equations.
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Let B =a+ib € &/ (P°), witha € & (P — Z) and b € 2'(X, gp), where P¢:= P xg G¢
with G° the complexified Lie group. Then the generalized Seiberg—Witten equations can
be written as

&b =0
Fi=0.

The three-dimensional analogue of these equations agrees with the three-dimensional
Vafa—Witten equations.

These equations for G¢ = SLy(C) have recently been studied by Taubes in [Taul3b],
[Taul3a|, [Tauld|, who proved a generalization of Uhlenbeck’s compactness theorem in
this case. The interpretation of these equations as generalized Seiberg—Witten equations
is also discussed in [Hay15a].

Pin~(2)-monopole equations

« G=Pin (2)=S'UjS' C Sp(1), e = —1,

Sping(m) = Spinf™ @ (m),

£

e M =H as sz'n}_)iln_@)(m)—representation, where Pin~(2) C Sp(1) acts hyperkéahler,

3D equations: Pin~(2)-monopole equations,

« 4D equations: Pin~(2)-monopole equations.

Nakamura ([Nak13]) uses the generalized Seiberg—Witten equations for G = Pin~(2) =
S1UjSt € Sp(1) and M = H with the Pin~(2)-action (g, h) — hg~! to study intersection
forms with local coefficients on 4-manifolds. The Pin~(2)-monopole equations are also
used by Manolescu ([Man16]) to disprove the Triangulation Conjecture in dimensions
> 5.

Linear actions G — Sp(n) ~ H"

Similar to G = S! for the Seiberg—Witten equations, G = U(n) for the U(n)-monopole
equations, G = Pin(2) for the Pin(2)-monopole equations, we can also take other
subgroups G — Sp(n) ~ H", with the moment map from Example 2.1.23.

Hyperkahler quotients

Another possibility is to consider a hyperkéhler quotient of a manifold M with permuting
action by a Lie group H, and, if this admits a permuting action, study the generalized
Seiberg-Witten equations with values in this quotient M. Using [Hay12, Thm. 4.6], which
was independently discovered by Pidstrygach, solutions to the generalized Seiberg—Witten
equations with values in the hyperkahler quotient correspond to solutions of a similar set
of equations for a connection and a spinor with values in M.
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Examples for Mj include the moduli space of of framed SU (n)-instantons of charge k& on
R* obtained using the ADHM construction or infinite-dimensional examples including
the moduli space of framed G-instantons on R* obtained as a hyperkéhler reduction of
the space of connection, as well as some moduli spaces of solutions to Nahm’s equations
(including the moduli space of Bogomolny monopoles).

Spin(7)-instantons and instanton-valued spinors

In [Hay12], Haydys proves that the generalized Seiberg—Witten equations in dimension 4
with values in a suitable space of connections 27° on a principal bundle P — R* (with
framing at infinity) are (up to a order zero term) the Spin(7)-instanton equations on
the total space of a spinor-bundle over the 4-manifold. These are also closely related to
harmonic spinors with values in the moduli space of framed instantons.

Relatives of the U(n)-monopole equations

« G=U(n),

e« £ — X ark(FE)=n hermitian vector bundle with corresponding principal U(n)-
bundle P — X,

o Spin”{" (m) = (Spin(m) x U(n))/ +1,
o M = S™ ®¢ C", where C" is the tautological representation of U(n),
« equations: U(n)-monopole equations.

Note that U(n)/(Z/nZ) = S* x PU(n) and hence in particular, for n = 2, u(2) =
iR @ s0(3). Therefore, the second equation splits into an equation involving the curvature
of the determinant line bundle and an equation involving the PU(2) = SO(3)-connection.

5.2.1 Remark. There are several (elliptic) systems of equations closely related to these:

1. It is possible to study the full generalized Seiberg—Witten equations for G' = U(2),
even though the second equation splits. For example, these are discussed in [Zen12].

2. Pidstrygach and Tyurin [PT95] studied the case of a PU(2)-bundle ¢ with fixed
lift to a U(2)-bundle E. Their equations are closely related to the U(2)-monopole
equations. These are: the first (Dirac equation), the projection of the second
equation to su(2) and the condition that the curvature of the determinant bundle is
a fixed 2-form w € 2*(X,iR): F,,, = w (w in certain cohomology class, w is related
to a perturbation).

3. In contrast, Teleman [Tel00] (also in previous collaborations with Ch. Okonek)
fixes the connection on the determinant line bundle and writes the projection of
the generalized Seiberg—Witten equations for G = U(2) to su(2), where he only
considers connections which induce the fixed connection on the determinant line

bundle.
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4. Fechan and Leness ([FL98|, [FLO1]) also fix a unitary connection on the square
root of the determinant line bundle of W*. These are generalized Seiberg—Witten
equations for G = SU(2).

These appear in the context of the SO(3)-monopole program ([PT95]). The idea for the
proof of the equivalence of the Donaldson polynomial and the Seiberg-Witten invariants
is the look at the fixed points of the S'-action on the moduli space of PU(2)-monopoles.
These are the PU(2)-instantons and U(1)-monopoles (for a rank 1 subbundle of ST ® E).
Quotienting the moduli space of PU(2)-monopoles, one obtains a cobordism between a
projective bundle over the moduli spaces of PU(2)-instantons and projective bundles over
the moduli spaces of U(1)-monopoles.



Chapter 6

Lichnerowicz—Weitzenbock formulae

In this chapter we present 3-dimensional versions of the 4-dimensional Lichnerowicz—
Weitzenbock formulae in [Sch10] and [Pid04]. Note that our conventions differ in some
minor details from the conventions in [Sch10](the symplectic forms and the moment
map differ by a sign) and also from those used in [Pid04](in particular we use the other
Clifford module structure on 7'M, cf. [Call0][Note 3.5.2, Section 2.3.2]). A Lichnerowicz—
Weitzenbock formula for 3-dimensional generalized Dirac operator first appeared in
[Tau99).

Before proving the Lichnerowicz—Weitzenbock formulae, we first study the different Dirac
Laplacians appearing in the Lichnerowicz—Weitzenbock formulae, and how they are related
to each other (Proposition 6.1.3).

6.1 The covariant derivative, it’s adjoint and the
Laplacian

Let M be an oriented Riemannian manifold. Recall that for a vector field v € I'(M,TM)
and sections s,s" € I'(M,E) of a Riemannian vector bundle £ — M with metric
compatible connection V, we have the following standard computation:

(Vs,0®s) = (V,s s'> = —(5,V,8') +d({3,5))(v)
=— (5, V,s) +div" << sy) = (s,5') div¥" (v)
= — (5, V) — (s,divV" (0)s") + (s, TV (0)s") + div¥"" ({s, s')v)
— (s, tr( (W@ )+ (s, TV (v)s) + div"" ({5, 5)v).

If s, ' are compactly supported, integration yields
(Vs,0® 812 = —(s5,t0(V(v @ ) gz + (5, TV (0)8') 12 +/
Therefore, one usually denotes
Via = —tr(VIM9Fq) 4 <’TVM, )

99
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for any a € 2Y(M, E), where tr: T*M @ T*M — R is induced by the metric. If M is
closed, then V*: 2'(M, F) — I'(M, E) is the formal L*-adjoint of V.

The previous discussion and Remark 4.3.3 justify the following generalization: Let M be
a Riemannian manifold and ¥ — M a H-equivariant vector bundle with H-equivariant
connector K. Let Q — Z be principal H-bundle which is a reduction of the bundle of
oriented orthonormal frames Pso(n) — Z. Furthermore, let ¢ be a connection on Pso(m)
with torsion 7% and torsion 1-form 7%(v) := —tr(¢,7%), interpreted as an equivariant

map T7¢ € C*(Q, (R™)V)”. Denote A = C>=(Q, M),
6.1.1 Definition. Let u € A4, v € C®(Q, (R™)" ® E), A € o lifing a connection ¢.
We define
dAIC C>(Q, (R™Y @ EY! — C~(Q, E)",
a— dica = (o, T?) — tr(dg,c) ),

and, in the case £ = TM, and K the connector of the Levi-Civita connection, the
Laplacian is

AQ{,C; C>®(Q, M)" — C>(Q, TM)"
wes AP ANy = (dyu, T#) — te(d e ™ (@Y w)),

where tr: (R™)Y @ (R™)Y = (R™)Y ® R™ — R is induced by the standard metric on R™.

6.1.2 Remark. Note that
dax: C*(Q,(R™)Y @ E) = C*(Q, E)Y,
and, if E =TM
Al C(Q, M) — C=(Q, TM)"
is a section of the infinite-dimensional vector bundle 7y, : C*(Q, TM)? — C>*(Q, M)H,
ie. Afjue C(Q,TM)].

The following statement shows that this generalization is reasonably behaved, in particular,
how the linearization of the Laplacian is related to the Laplacian of the linearized covariant
derivative.

6.1.3 Proposition. A" =V (A} ) = KoT(AY): C®(Q,TM)" —C=(Q,TM)"
is given by _

AN = dY NN — (e, B,
where u = my 0 v and tr" (u L, FN) = 32, F* (v, Tu(é,))Tu(é) for an orthonormal basis
{€} of horizontal vector fields on Q.

Proof. Since dg%*v = (v, T%)— tr<dRm®TM ) and TdA;c e = (drmyve@m)y @((TK)o
krar)) o dETM | we obtain
T(di") fo = (far T?) — tx(Td5 & £.)
= (far T%) — tr((id(gmy v @(TK) 0 kiar)) o dy ST g )
= <fa’7'80> (T’C) o Kyag O tr(d(]Rm)v(g)TTMfa)
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for all f, € C=(Q, (R™)Y @ TTM)H and therefore
K o (TdY\E) fo = K{fa T?) — K 0 (TK) 0 rpag 0 tr(dy =M 1),
Using this and T'(d}) = (idgm) ®@kar) o di™, we have

ApK"(0) =K oTAyxv=Ko T(d?;ﬁvé*dA )(v) = K o T(dyc™) o T(d)(v)
= ((id@m)yw ®(K 0 kar)) o d4™ v, T¥)
— K o (TK) 0 kyar o tr(dF™ "™ ((id (gmyv @kiar) 0 d5M0))
= (d3M0, T#) — K o (TK) 0 fpar o T(rar) o tr(dyt ) ST M (a5 ),

Furthermore, we know that

d(RS QT M * dTM

= (d A,ICU>T¢> ( ®TMd v)

= (d%E0, T#) — tr((ld (Rmyv ®K) od]Rm T gy ©K) 0 d5Mo))
= (30, T#) — tr((idgemy ®(K 0 T(K))) 0 dA“""“@TTM(dZMv))

= (M0, T?) = K o (TK) o tr(df) =™ (d5M o))

for all v € C°°(Q, TM)H.

Note that given three tangent vectors vy, vy, v3 € T, M, we can extend them to (locally)
commuting vector field Vi, V5, V3 € I'(M,TM) with Vi|, = v1, Valp = va, V3|z = vs.
Then consider c(s,t,u) 1= ®V38,>®Y1 (z), where V3, &2 &V are the flows of Vi, V5, Vs,
respectively. Then

TrpT*Va(TVa (Vi) :TKM%TVQ),G/Q‘@ Hlu=o = Trnr gy 5 V3l 0 Vi (g l1=0lu=0

d dd d d d

=Trmg, 5 3:C (S,t,u)|s:0|t:0|u—o T M 35 75 C (Sat7u)|s:0|t:0|u:0

= i (s, 0)imolioluco = g 2 (Velyyi ) ol

= i ( 2|¢¥3(¢¥1<x>))|510|“:0 B %TVQ(%'@?(I))'FO
= T*Va(TV3(Val2)).

Using the formula for the curvature from [KMS93, Thm. 37.15], we have for vector fields
Vi, Vo, Vs € I'(M, TM):

FR (Vo Vilo)Valo = (K o (TK) 0 ipar — K 0 (TK))T?Va 0 TV3(Vil,)

= (Ko (TK) o krar — K o (TK))TrpT?Va(TVa(Vile))

= (Ko (TK) o kyp 0 Thpr — K o (TK)T*Vs(TVa(Vil,)).

The same argument as in the second part of [KMS93, Thm. 37.15], namely computing in

a local trivialization of the bundle, shows that this identity can be extended to sections of
the pullback bundle:

@)

(K o (TK) o kipar — K 0 (TK)) o T(kar) o T*0(TéEr(é4),)) = F* (v, Tu(e)) Tu(éy).
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Therefore

(K o (TK) 0 kipar o T(kar) — K o (TK)) o te(dy" T (@M 0)) (p)
= (K o (TK) 0 kiras — K o (TK)) o T(kar) o tr(d R ETTM (gTM 1)) (p)
= (Ko (TK) o kry — K o (TK)) o T(kar) o T?v(Te:(&],))

= F* (v, Tu(ér))Tu(é)(p)

= 1" (u* 1, ) (p).

Ko
Ko

Finally, combining these formulae, we obtain

AN () = (d5M0, T#) — K o (TK) 0 kpag 0 T(kr) o te(d§ ) ST (d5My))

— d(AH?,?vQ?TM’*dE%U
— (K o (TK) o rpag 0 T(kinr) — K o (TK)) o tr(d§™ ) ™ (d5Mv))
= d%?v@TM’*dﬁ%v — tr"" (0¥ 1, FX). O

6.1.4 Remark. If Z is an interval, Q — Z is the trivial bundle and H acts trivially on
M, then A% «u = 0 if and only if u is a geodesic. Furthermore, A%;lcmv = 0 if and only if
v: Z — TM is a Jacobi vector field along u: Z — M. If Z = S' = R/Z, then the same

holds and additionally, u is a periodic geodesic.

More generally, if H acts trivially on M and A lifts the Levi-Civita connection, then
AN u = 0 if and only if u: Z — M is harmonic. Harmonic maps have been studied
intensively in the literature, see for instance [EL95], [Xin96] for introductions to the
subject. The following Corollary is of cause well-known in this situation.

Therefore, the general case above is a equivariant generalization of harmonic maps, and a
solution of A};-u = 0 can equivalently be understood as harmonic sections in a (nonlinear)
fibre bundle.

We are of cause mostly iterested in the case m € {3,4}, H = Spinf(m), M a hyperkéhler
manifold with permuting Spin%(m)-action. In this case, the Lichnerowicz—Weitzenbéck
formula (Theorem 6.2.1, Theorem 6.7.1) compares the Laplacian A}, to the Dirac
Laplacian.

6.1.5 Corollary. Assume Z closed and consider the energy E(u) := 3 [, ||d}ul/>. Then
AB(@) = [ (Aficuv).
VoA
and hence grad(E)(u) = AY cu, and the Hessian of E is

Hess(E)(v,w) :/<d£%’*d£]\,€v,w> —/(trh"r(u*LvF’C),w>
A, :

Z

This generalizes well-known results in the non-equivariant case (cf. [Xin96, Section 1.4.3],
[EL95, Section 3.8]).
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Proof. Using the L?-metric on C*(Q, M)# and its Levi-Civita connection V (as in
Remark 4.1.6), we can compute

dE(U) = VU(E) = 1vv<g<d%u7d%u)) = g(vv(d%>7d%u))

)
= g(d% v, diu) = g(v, &} du) = g(v, A cu)

and

Vo(grad(E)) = V,(AY)) = dﬁ%’*dﬁf\év + Y F (v, Tu(é))Tu(éy).
¢

6.2 Lichnerowicz—Weitzenbock formulae and
curvature identities

Consider a hyperkihler manifold M with a permuting action of Spinf(3) and let
IC: TTM — TM be the connector of the Levi-Civita connection.

Fix a Spin¢(3)-structure Q3 — Y over a oriented Riemannian 3-manifold Y. Let
A € 473 be a connection 1-form on @ which lifts a metric connection ¢ € &7 (Pso(s)), i.e.
PropmA = v Té 0%, where v: sp(1) — s0(3) is the isomorphism of Lie algebras induced
by the 2-fold covering Sp(1) = Spin(3) — SO(3). We denote the g-component of A by a.
Finally, let 0y denote the canonical 1-form 6y € 21(Q,R3)SPine ().

Using this notation, we have the following:

6.2.1 Theorem (Lichnerowicz—Weitzenbock formulae).
Let u € C®(Qs, M)5Pn<®) g spinor, v € C®(Qs, TM)SP"®) satisfying mp o v = u and
A€ /. Then

1. Lichnerowicz—Weitzenbick formula for generalized Dirac operator:

D Dau = Al cu+ = xolu + 2(Xo|u, Rico) + (V]u, Fo)
—{diu, T?) + c3((+T%, d} ) — 3(T% © D).

2. Lichnerowicz—Weitzenbéck formula for linearized Dirac operator:

@Zn,m*ggn,uv = dﬁ%*dﬁ%v + STYVLC (XO)’u + %<V1’)C (XZ)’ua RiC0>
+ <V0K(y)|ua *Fa>> - C3(*L;QLOTU*FK’U)
— (dBN0, T#?) + cs((dBNv, #T%)) — es(T% ® Z4""v).

3. Norms and L?-Lichnerowicz— Weitzenbick formula:

|Zaul)® = || &2 ul|* — 2(D3(u), *F,) + 2L pg o u + (p2 0 u, Ricy)
+ 2% d{0y AN (W) hor) — 2% (T% A (W'Y)hor)
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and, if u € C®(Q, M)*"®) has compact support
|Zaullts = ¥ ullts = 2@s(w), s Fo)e + [ Fpoou+ [ {paou, Rico)

42 /a {0y A (' )hor) = 2 /Y (T A (4 ) por).

Here i2,,: 22(Q, End (TM))37<®) = coo(Q, A2(R?)Y @ End (TM))$P"€6) and

hor

denotes the 3-dimensional Hodge star operator x: A*(R3)Y — (R3).

The proof, which will be given below, is similar to the one in the 4-dimensional case (cf.
[Sch10, Thm. 4.7.1, Thm. 4.7.2] and [Pid04, Thm. 5.4]). A Lichnerowicz—Weitzenbock
formula for a generalized Dirac operator in dimension 3 first appeared in [Tau99]. Note
that we allow the metric connection ¢ on Psoz) to have torsion.

We start by reminding the reader of the curvature formulae ([Sch10, Lem. 2.4.1 and Lem.
2.4.2]").

6.2.2 Lemma (curvature formulae). Let P — Y a principal H-bundle, Vi,V, €
(P, TP), ve C®(P,TM)" with u :=myove C®P,M)H"

AK oA, :
[VVIK, VV;C]U — Vf“/ﬁ,ﬂv = Fic(dguo Vi, dauo Vo)v — K(vﬁA(VM)m,
A, A,
Vi Vibu — VNV u — Vi u = 08 (Vi u, Viu) = vil v lu-
Here, Viju := Tu(pr ., (V)) and Vv = K(Tv(pr ., (V))).

We will now return to our principal Spin(3)-bundle Q — Y with connection A € @,
and let M a hyperkihler manifold with permuting Spinf(3)-action and connector K
corresponding to the Levi-Civita connection. In particular, the torsion ©% vanishes.

Note that () u(p),V) = Tu(rso(p)(V)) = Viau(p), where V € R™, ms0: Q — Psom)

is the projection and V,, := ms0(p)(v) € T,Q is the horizontal lift of 750(p)(v) € Tr(y Y-
Similarly, Vi* v = (@40, V).

Let now R? be the curvature of the metric connection ¢ on TY — Y. Slightly abus-
ing notation, we will use R? for the 2-form in £22(Q,s0(3))%7"¢®) as well as for the
corresponding equivariant map in C*°(Q, A2(R3)Y @ s0(3))7"€®) implicitly using the
isomorphism /2 : (22(62,50(3))555,”5(3) — C™(Q, A2(R?)Y ® 50(3))%7"¢®) . We proceed
similarly with F)4 and Fj,.

The following lemma shows how v~! % R® € C(Q, (R?)Y ® sp(1))57"¢®) can be decom-
posed into scalar curvature and traceless Ricci curvature.

6.2.3 Lemma.

3
prr vt x RY = —ST% Y G®G and DT 526p(1) vl s RY = %Rico
=1

INote that [Sch10] uses a different sign convention for the fundamental vector fields.
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In particular,
(v~ R¥) = ¥ xo + 3{x2, Rico),
where we use the isomorphism sp(1) = R3, (; +— ey.
Even though it is clear from representation theory which components appear, the co-

efficients are crucial and we therefore do the computation explicitly in terms of the
components of the curvature tensor.

Proof. We first compute prg v~ '+ R?: Let R¥ = Zk<g R7eiNe; @ By, where Ey, 4 € s0(3)

maps e — ey, €, — —ep, and the third basis vector to zero. Then

% RY = (R1212€3 ® (3 — Ri51363 ® (o + Rippses @ G
— Ri310e2 ® (3 + Ri313e2 ® (2 — Riz93e2 @ (1
+ Ri3101 ® (3 — Riz13e1 ® (o + Rizpze1 @ (1).

Applying pry yields

3
prpv '« R? = = +(Rfy15 + Ris13 + Rizos) (Z G ® CZ) =—F32. 6o
=1 =1

In particular,
3
<X7prIRV_1 * RW> = _STY<X7 % ZCE ® C€> =1

Note that v~! * R? is symmetric, and hence v~! x R? = pry v~ * R¥ + P 524p(1) vl x R?.
In particular, DT 524p(1) v 1% RY = vl x R? — prg v~ % R¥. Therefore,

Prazspn) v * 7

(( Ry — 1R(f313 - lR§323)C3 ® (3 + (%Rfsw - %Rfmz - %R§323)C2 ® Ca

+ (3R%323 — 3R — 3RG13)0 © G — R0 ® G — RizinCe ® G+ Ry © G
+ Ri5150 @ G — Ri5130 @ G — Rizp30 ® (1)

On the other hand, the Ricci curvature is

3 3
Ric= Y Ri¢®¢

ig=110=1
=R{51C1 ® G+ Ri331¢G @ G+ R0 @ o+ Ry @ o+ R5113( ® (34 RE3(3 ® (3
+ RY{330C ® G+ R331C0 @ G+ R3¢ @ 3+ R501 G @ G+ RE1130 © G+ RE10( ® (o,

and therefore, the traceless part of the Ricci cuvature is

3
Ricy = Ric — Z e ®

= (3Rfom + 3 RY331 — 3R%5332)C1 ® (1 + (3R + 5 R0 — 3RY331) 0 ® G
( Riss + lR§332 - %Rfml)@ ® (3 4+ Ri33001 @ G + Ri331C ® (1 + R0301 @ G
+ R0 (3 ® Cl + R3113C ® (3 + R5112G © G

= 2prge Lx R?.

5p(1
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Combining all these, we finally obtain

vt R?Y = (,prrv ! * R?) + (X, Prseep() v x R?) = 2x0 + L(x, Rico)
X0 + 3{x2, Rico). O

6.3 Lichnerowicz—Weitzenbock formula

We will now use the curvature identities above to prove the Lichnerowicz—Weitzenbock
formula

@lznu*@Au = A%KU + STYX0|U + %<X2|ua RicO) + <y|U7 *Fa>
(A, T%) + (4T, d ) — es(T* @ )

Proof (Theorem 6.2.1, part 1). First note that v~ maps the matrix E;; € s0(3) to %eiej €
spin(3) C Cls. Here E;; € s0(3) sends e; — €, e; — —e; and the third basis vector the
standard basis (ey, €9, e3) of R? is send to zero. We obtain Fy = DPlapin(z) Fa + pry Fa =
virt,R? + F,. Moreover

—1__* Y=z =\ _ ,.,—lpy __ —1 py _ 1 ®
v meoR7 (€, E) = v RE, = ZV RijkéEij — 3 ZRijkzeieja

i<j 1<j
where R = 32, Rfyer, A ep with R, € C™(Pso,50(3)), Rfy = Xic; R0 Bij.

Fix a point p € @3, y = 7my(p) and let X, = 7wgo(p)(er) € T,Y for £ € {1,2,3}.
Extend X, € T,)Y to a local oriented orthonormal frame field given by the vector fields
X, € I'(Y,TY). Since TY is the associated bundle TY = Q3 X Spmg:(g)lR?’, these correspond
to Spin%(3)-equivariant maps f;: Q3 — R3. In particular, X, = m50(p)(e;) implies that
fe(p) = e;. More generally, for a vector field X € I'(Y,TY), denote the corresponding
equivariant map by fx € C*°(Qs, R3)S7"¢(3) With this notation at hand we can compute

glzn u.@AU(p) —

]
]

3 (ek)v)Agzc (03(ﬁ)v}42ﬂ) (p)

e
I
—
Y
I
—

I
NS
NE

cs(ex)es(e) V7 VA u+ cs(ex)cs(foa X[)V}L‘*QU) (p)

e
I
—
~
I
—

|
NES
Moo

(o
<c ex)es(e0) Vg Vg, u— cslen)es(en) Vi ) (p)

k=1¢=1 Vi, X
- tr(dA,IC ®TM(dA u))(p)
AK oA AL A A
i%g(ek)c;;(eg) <VXk Viu— Vg Vi u— VVA o Xku) (p)

= AYeu(p) — (VAu, TV = 3 ealen)ealer) (030155 + Vit x1) (0),

1<k<(<3
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where we used (V{, Xy, X;n)(p) = —(Xy, V&, Xon) (p) and the second curvature identity
in Lemma 6.2.2. The third summand can be reinterpreted as follows:

3
Spin& (m S m (m)
- Z CB(Gk)CS<E€)UFi(Xk Xg)|u ZIZ *Z{ZA (X¢) ZIWV L« R¥(X,) ZIKU*GFa(Xe)
1<k<t<3 =1
= <X\u R“"!p> OA *Folu(p))-
= mx lutp) T 5 (2lu@e)» Ricolp) + (Vlu)s *Faluwm)

where we used Lemma 6.2.3. Finally, the contribution of the torsion is

— Y aslen)eslen) Vit xulp) = es(Virou)(p). O

1<k<0<3

6.4 Lichnerowicz—Weitzenbock formula for the
linearized Dirac operator
We will now prove the Lichnerowicz—Weitzenbock formula for the linearized Dirac operator:
D D0 = di AN + V5 (x0)u + 5V (x2)lus Rico) + (V5 (V) us #Fu))
— cy(x4}, u* Ficv) — (dﬂ%v, T + @((dﬁ%v, *T9)) — e3(T? ® _@Z"’"v).

Proof (Theorem 6.2.1, part 2). We use the same notation as in the proof of the first part
of Theorem 6.2.1. From the first curvature identity in Lemma 6.2.2 we obtain

3
2D o (p) =30 ealen) ~’k 3(fe)V§;’CU)(p)
k=1 (=1
3 3
=> > <03 ex)cs(er) VAKVAK'U — cs(er)es(e) VAR v> (p)
k=1¢=1 %, X
R3QTM
= tr(dA (dA,CU))<p)
AKGAK  — GAKgAK, oA
i%ié(ek)c;;(eg) (VXk Vi v =V Vit VV;*(szVﬁéka> (p)

= A3 AN (p) — (A0, T#) ()
+Z cs(ex)cs(er) (FIC (V‘;{ku, V?ZZU)U_K(UgA(Xk,XZ) o) — V?;”C(Xk,XZ)U) ().

1<k<¢<3

We first compute

c(er)e(eq) Fic (Tu(Xy), Tu(Xe))v(p)

Bl
A
~

NE

[g(*F;C)(TU Xg 23: *U FIC K)U<p)
’ =1

=— cg(*Limu*FKU( )).

Il
—
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szns (3)|v ) = (V]C Spmg (3) )|

For the other curvature term we use Kv; u(p)

Spin& (3) Spin& Spin&
- Z C(ek)c(ef) Fi(xk X0) U () — ZIZ,CU*}I«:A Xg) ”(p) ZIKV”(I’ ( *IZ;A (Xe) )|u(p)

k<t
== Z vv(p (vaf;;nx(j)) |U(P)

<< * R?[,) + (), *Fa‘p»‘u(p)
= )(< Z XO + 3 <X27 Ri00|p> + (O, *Fa>)|u(p)
= ( DGR (X0) ) + (V5 (x2) lue) Ricoly)

+ (Vi) Dutw; *Fa!u(p)>-

Finally, the contribution of the torsion is

— > cs(er)cs(er) Tf(xk gV (P) = cs(Vaisv) (p). O
k<t

6.5 L2-Lichnerowicz—Weitzenbock formula

We will now prove the final Lichnerowicz—Weitzenbdck formula, which compares the norms
of the Dirac operator and the covariant derivative:

| Zau|® =[|d} ul|* — 2(Ps(u), *F,) + po o u + (p2 o u, Ricy)
+ 2% d{0y A (W) hor) — 2% (TP N (W'Y)hor)-

The 4-dimensional version of this formula can be found in [Pid04]. Our approach is similar
to the proof in [Pid04], however avoids using the frame bundle of the hyperkéahler manifold
M.

Proof (Theorem 6.2.1, part 3). First consider the H-valued form hM = g™ + iw; + jw, +
kws € HQ I'(M,T*M @ T*M). Let z,2’ € R* = Im(H) and v,v’ € T, M and note that
hM is H-linear in the following sense:

PM(Zv,0") = oh™ (v, w) and WM (v, Tpv") = WM (v, w)Z'.
The induced metric on R? @ TM is
(x ®@v,7' @V gsgry = Re(2*x)g™ (v,v") = Re(2*z) Re(hM (v,0')).
Furthermore,

g (cs(x @), es(2’ @ v)) =Re(hM (Tgv, Tpv')) = Re(zh™ (v,v")2") = Re(a'zh™ (v, "))
=Re(z'z) Re(h™ (v,v")) + Re(Im(2'Z) Im(h™ (v, 0")))

= (r®v,7' @V )rsgry — (Im(2'7),w(v,v)).
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Therefore,

3

gM(-@Au7 '@Au) = <d%u7 d%u>lR3®TM - k; <Im<CEC_k)7 w(Tu(ék)a Tu(éf)»

= <d]X[Ua d%u>R3®TM -2 Z<Ck’<€7 u*w(ék, ée))
k<t

= <d,]X[U’7 dAMu>R3®TM — 2% <‘9Y A (U*W)hor>7

where 6y is the canonical 1-form 6y € 2'(Qs,R3)S7"®) and (u*w)pe, denotes the

composition of the horizontal projection for A and u*w. Since w = dvy and (u*w)per =

(du*Y)nor = daA(W* ) por + u*v(v?ﬁing(3)) (cf. [Pid04, Lem. 5.3]), we have

inG
2(0y A (W@)hor) = — 2d(By A (WY )hor) + 2(daby A (W Y)nor) + 2(8y A wy (vl @),
Since u: Q — M is Spin(3)-equivariant and ty,,a(3Y = pt — p, we obtain

w0 D) = (Uo7 Fa) = (' (1 — p), Fa),

and hence

Oy A (W'wW)hor)
= = d{y A (W )nor) + (TF N (WY )nor) + (O A" u(Fa)) = (Oy Au'p(Eyp))
= —d{Oy A (WY )hor) + (TP N (WY hor) + (pou, xF,) * 1 — (pou, v % R?) %1
= — d(fy N (WY)hor) + (T% A (WY )hor) + (P3(u), #Fa) = Fpo 0 u = 5(p2 0 u, Rico)) 1.

+
+

In particular,

|Zaul® = [[di ull® + 2 % d(Oy A (WY )nor) — 2% (T? A (WY ) hor)
— 2(P3(u), *F,) + *¥Fpo o u + (p2 o u, Ricy).

If ueC®Q,M )Sm"g(?’) has compact support, we can integrate over Y and obtain

| Zaulfs = ¥ ulls = 20@s(u), <Fahsz + [ Fooou+ [ (paou, Rico)

+ 2/6Y<9Y A (W) hor) — 2/Y<T“" A (W) hor) - O

6.6 Seiberg—Witten functional

It follows immediately from the Lichnerowicz—Weitzenbock formula that, on a compact
oriented Riemannian 3-manifold Y, the solutions of the Seiberg—Witten equations are the
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zeros of the functional

Lsw (u, A) := || * Fy + @3(u) |72 + | Zaul|72
= [[Falle + 2(xFu, P3(u)) 12 + |3 (w) |72 + [|d3 w7
+ %(8% po © w)r2 + (Ricy, py o u)r2 — 2(P3(u), *F,) 12

= 2TV A @ hordiz +2 [ (O A (W )nor)
= IFull3e + 1 @s(u) 172 + ldY ullfe + 3(sv, po o w) 2 + (Rico, pa 0 )2
=27 A @ harhir +2 [ (B A W nor):

In particular, if xo = 0, sy > 0, TV = 0 and Y = 0, then Lgy > 0 and a solution
satisfies F, = 0, dqu = 0, and either pyou =0 or sy = 0.

6.7 Lichnerowicz—Weitzenbock formulae in
dimension 4

The 4-dimensional version of Theorem 6.2.1, reads

6.7.1 Theorem ([Sch10, Thm. 4.7.1, Thm. 4.7.2], [Pid04, Thm. 5.4)).
Let Q; — X be a Spin€(4)-structure on an oriented Riemannian 4-manifold X, u €

C*(Q4, M)Spmg@) a spinor, v € C*(Qy4, TM)SPm?M) satisfying Ty ov = u and A € 4,
lifting w. Let ny = (eg N eg)4 € /\%r R* Then

1. Lichnerowicz—Weitzenbock formula for the generalized Dirac operator:

Fim et giu = Aeu — (¥, T2 + 5 x0la + Sl RES) + Ve 3RE + F)
+ (T, diu) — ca(T? @ Dau).

2. Lichnerowicz—Weitzenbock formula for linearized Dirac operator:
DTG = di A + SV (o) 3V ()l BEG)
3
(Vo Ol 3BE + F) + 23 Ie((w Fic hor, me)v

=1
— (50, T?) + ca((d55E0, T#H)) — eo(T © Z4""0)

3. Norms and L?-Lichnerowicz—Weitzenbick formula:

|Z5ull® = [[dX ull® + % po 0 u+ (RXG, p2 0 u) — (R g, PN~ ou) — 2(Dy(u), FF)
— #d((WY)hor A (Ox A Ox)4) + (WY )hor A (T9 NbOx — Ox NT?)4)
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In particular, if u € C®(Qq, M )spmg’(4) has compact support, we can integrate over
X and obtain

123 ullze = lldx ullze — 2(Pa(w), F.) 1o
+/ p00u+/ RXO7p2Ou /XR;_(_MU _Ou>

_/ u* 7 hor (QX /\QX +/X (U*7 hor (TSO /\9){ — ‘9X /\T‘p) >

Here, RLY is the positive Weyl curvature and R~ € C(Qq, NL(R*)Y @ A2 R#)Sping (4)
is component of the Riemannian curvature tensor R € C®(Q4, A*(R*)Y @ A? R4)spm§(4)
of ¢. Note that R%~ can be identified with the traceless part of the Ricci curvature.

6.7.2 Remark. The proofs for these formulae in the case when ¢ is the Levi-Civita
connection and Sp(1)_ acts trivially, can be found in [Sch10, Thm. 4.7.1, Thm. 4.7.2],
[Pid04, Thm. 5.4]. The proof in the case of non-vanishing torsion is similar to 3-dimensional
case. In the case of a non-trivial Sp(1)_-action, the fundamental vector field for the
Sp(1)_-action appears in addition to the fundamental vector field for the Sp(1)-action
and leads to the additional terms containing Ry .

6.7.3 Remark. If M admits a Spin®(4)-invariant vector field ¥ which satisfies VX =
idrys, then a L2-Weitzenbdck formula also follows from the first part of Proposition 4.5.10),
Theorem 6.7.1 and Lemma 4.5.12:

|Z5ulle = (o 25" Diu)s = | mg(Rusealfs © F5w)

= (Rus At = (@50, T) + 50l + S0l BED) + Dl 3B + F)
+ (R ea((T7 d ) = ea(T9 © T = | gl calfs ® Zw)

= lldullfa = (fus (20, T2) + X0l + S0k B + Dl 3B + F) e
(R ea(T9 d8f)) = ea(T9 © Ziu)) s — [ g cal e ® Ziu)
— | 9 Y u(F))

= lldullfa = (fus (40, T%) + X0l + S0l BED) + Dl 3B + F)
+ (R ea(T7, A1) = a(T% © ZEw)) 12+ | 79(Rupscs Zaoxtion))
- /(“)X ng()%uaxv %(XO + Xa)’uax)

+ [ Mg 3N, Oz + X2 luae) + H9(E AT, (e + X))

where we use the same notation as in Lemma 4.5.12. If we restrict ourselves to the case
where p, = 0 and ¥ = xo, the chosen connection on Pso4) is the Levi-Civita connection,
and Sp(1)_ acts trivially on M, then this reads

125 ull7 = [|di ull7> + (Xolu, ZEXo0|u) 12 — 2(Pa(u), F) )12

+/ m U 79 U _/ m U >£ U
ox !9(X0| ox 1 ZA9X ax)) ox '9(X0| X 2X0| @X)
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In particular, we have the topological energy and the analytic energy defined as follows

£ (u, A) i= =3 IFu A Fgle = [ (ol Zaox(ox)) + 5 | Oxolunses HXohuas )
£ (u, A) = HIFulfe + 14l + (Xolus 5 X0lu)e2 + 12w 32,

Since in this situation
EM(u, A) = E"P(u, A) + [|Z5ullz + || F) + Palu) |72,

solutions of the generalized Seiberg—Witten equations have a well-defined energy. This
geralizes the case of the Seiberg-Witten equations (cf. [KMO07, Section 4]).

Note that in this situation, there is also a Chern—Simons-Dirac functional ([Call0]), which
is closely related to the topological energy.

However, also other situations (for example nontrivial torsion), it can be interesting to
study the corresponding energies. Examples are the Fueter operator constructed from a
divergence-free frame ([Sall3]) and the Vafa-Witten equations (where py # 0).

In the general case, it is however unknown ho the boundary terms are related to the Dirac
operator on the boundary.



Chapter 7

Conclusion

We have seen how the differential forms which naturally appear on a hyperkahler manifold
with permuting Spin&(m)-action can be interpreted in terms of the Cartan model for
equivariant cohomology. The cocycles constructed from these then give rise to homotopy
moment maps. More generally, we provided a natural construction of a homotopy moment
map for each cocycle in the Cartan model for equivariant cohomology, generalizing the
construction of Atiyah and Bott ([AB84]).

One of the applications of moment maps in symplectic geometry is the symplectic
reduction. While it is still unknown what a general multisymplectic reduction is, there
are examples for which one can perform such a reduction ([CFRZ15]). Also in the
cases of tri-hamiltonian action on hyperkahler manifolds and hamiltonian actions on
quaternionic Kahler manifolds, a “reduction” can easily be constructed, which recovers the
notion of hyperkahler /quaternionic Kéahler quotients. However, in all these examples, the
components of the moment maps are either determined by f;, or many of the components
vanish. Examples are tri-hamiltonian actions for G = S*, where only f; is non-zero and,
on the other hand, permuting action on Swann bundles, or more generally the reductions
constructed by Madsen and Swann [MS12], [MS13], where only the highest component
fn is used to construct the quotient. It is therefore unknown how a reduction should be
constructed in the general case.

Hyperkiihler manifolds with permuting Spinf(m)-action are also a crucial ingredient
for the generalized Seiberg-Witten equations, where such a manifold takes the role of
the spinor representation in Seiberg—Witten theory. Starting with the anti-selfduality
equations and Donaldson theory, later Seiberg—Witten theory, the generalized Seiberg—
Witten equations for various target manifolds had a great impact on low-dimensional
geometry and topology. More recently, other examples turned out to be closely related
to gauge theories in dimensions 5, 6, 7 and 8 ([Hay12], [Hay15b], [DS11]). A uniform
treatment of all these cases would be desirable, as well as, ultimately, a Floer theory for
generalized Seiberg—Witten theory. While the Lichnerowicz—Weitzenbock formulae in
dimension three provide another step in this direction, this goal is currently beyond reach,
as the properties of the moduli spaces (in particular compactness or compactifications) are
not yet understood well enough. However, the progress made in the case of complex anti-
selfduality equations ([Taul3b], [Taul3al, [Tauld]) as well in the case of Seiberg—Witten
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equations with n spinors ([HW15]) and also in the case of Fueter sections ([Wall5)),
might ultimately lead to a better understanding of the moduli spaces for generalized
Seiberg-Witten equations constructed from a larger class of hyperkéhler manifolds. The
bubbling phenomenon in codimension 2, which can be seen in these cases, is analytically
involved and not yet completely understood. However, there is hope that this leads to a
suitable compactification of the moduli spaces.
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