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Abstract
Protein adsorption is ubiquitous in many biotechnological applications and has become a
central research field in soft matter. Understanding the driving forces behind protein ad-
sorption would allow a better control of the adsorption process and the development of
biosystems with unprecedented functionality. In this thesis, protein adsorption onto soft
polymeric biomaterials and their physical interactions is studied theoretically by using two
different and newly developed approaches: 1) continuum binding models based on Langmuir
and Boltzmann models in direct comparison to experiments and 2) Langevin dynamics com-
puter simulations to characterize pair interactions on microscopic scales.
In the first part, a novel multi-component cooperative binding model is developed to de-
scribe the equilibrium adsorption of proteins onto microgels. The well-defined microgel
system consists of a solid polystyrene core and a thermosensitive shell of cross-linked poly
N-isopropylacrylamide with acrylic acid as a copolymer to introduce charge. Proteins of
interest are lysozyme from chicken egg white, cytochrome c from bovine heart, papain from
papaya latex, and ribonuclease A from bovine pancreas. In contrast to the Langmuir model,
the application of this approach to experimental adsorption isotherms enables a more quan-
titative interpretation of the binding affinity in terms of separate physical interactions. It
was thus possible to correctly identify the true driving force behind the protein adsorption
which was found to be mainly of electrostatic origin. A key achievement by the cooperative
binding model is the prediction of competitive protein adsorption and desorption onto the
microgel that is based on thermodynamic parameters related to single-type protein adsorp-
tion without any variable parameters. Comparisons between experimental data of binary
protein mixtures and theoretical calculations have shown excellent agreements.
The second part is focused on protein interactions with polyelectrolyte materials to elucidate
adsorption processes on a microscopic level. For this purpose, charged patchy particles are
constructed and used as protein models while a simple bead-spring model is employed for
the polyelectrolyte and polyelectrolyte brush. A central aspect was the determination of the
associated free energy, the potential of mean force (PMF), on the complex formation between
the two constituents with comparisons to theoretical model developments. In particular the
influence of important physical parameters, such as the degree of patchiness, the salinity,
and the chain length on the complexation, were systematically investigated. The simulation
results evidenced a complex interplay of electrostatic forces and ion release mechanisms to
be responsible for the strong attractive interactions observed in the PMFs.
Results from this thesis have provided precious insights into the interactions in protein
adsorption processes. This findings may serve as a basis not only for further experiments
but also for testing approximative theories.

Key words: protein adsorption, microgels, cooperativity effects, competitive adsorption,
Langevin dynamics, like-charged complexation, patchy particles, polyelectrolyte brush





Zusammenfassung
Proteinadsorption ist in vielen biotechnologischen Anwendungen ubiquitär und ein zen-
trales Forschungsfeld in der Physik der weichen Materie. Das Verstehen der treibenden
Kräfte hinter der Proteinadsorption würde zu einer besseren Kontrolle des Adsorptions-
prozesses führen und die Entwicklung von Biosystemen mit beispielloser Funktionalität er-
möglichen. In der vorliegenden Arbeit wird die Proteinadsorption an weichen polymer-
artigen Biomaterialien sowie deren physikalische Wechselwirkungen unter Verwendung von
zwei unterschiedlichen neu entwickelten Ansätzen theoretisch untersucht: 1) Kontinuums-
Bindungsmodelle, basierend auf Langmuir- und Boltzmann-Modellen mit direktem Vergleich
zu Experimenten und 2) Langevin-Dynamik Simulationen um Paar-Wechselwirkungen auf
mikroskopischen Skalen zu charakterisieren.
Im ersten Teil wird ein neues mehrkomponentiges kooperatives Bindungsmodell entwickelt,
um die Gleichgewichts-Adsorption von Proteinen auf Mikrogelen zu beschreiben. Die Mikro-
gel-Systeme bestehen aus einem festen Polystyrolkern und einer thermosensitiven Schale
aus vernetztem Poly-N-Isopropylacrylamid mit Acrylsäure als Copolymer um Ladungen
einzuführen. Die untersuchten Proteine waren Lysozym aus Hühnereiweiß, Cytochrom c
aus Rinderherz, Papain aus Papaya-Milchsaft und Ribonuklease A aus Rinderpankreas.
Im Gegensatz zum Langmuir-Modell ermöglicht die Anwendung dieses Ansatzes an ex-
perimentelle Adsorptionsisothermen eine quantitative Interpretation der Bindungsaffinität
in Bezug auf separate physikalische Wechselwirkungen. Es war somit möglich, die wahre
treibende Kraft der Proteinadsorption zu identifizieren, die hauptsächlich elektrostatischen
Ursprungs ist. Eine Errungenschaft des kooperativen Bindungsmodells ist die Vorhersage der
kompetitiven Proteinadsorption und -desorption auf das Mikrogel, die auf thermodynami-
schen Parametern der Adsorption von Proteinen einzelner Sorten basiert. Vergleiche zwi-
schen Experimenten mit binären Proteinmischungen und theoretischen Berechnungen zeigten
sehr gute Übereinstimmungen.
Der zweite Teil fokussiert auf Protein-Wechselwirkungen mit Polyelektrolyten, um Adsorp-
tionsprozesse auf mikroskopischer Ebene zu erklären. Dafür wurden geladene fleckige Par-
tikel konstruiert und als Proteinmodelle verwendet, während ein einfaches Kugel-Feder-
Modell für das Polyelektrolyt und Polyelektrolytbürste benutzt wurde. Ein zentraler As-
pekt war die Bestimmung der freien Energie, das Potential der mittleren Kraft (PMF), für
die Komplexbildung der beiden Bestandteile mit Vergleichen zur Modellentwicklungen. Ins-
besondere wurde der Einfluss von wichtigen physikalischen Parametern, wie zum Beispiel der
Fleckigkeit, dem Salzgehalt und der Kettenlänge auf die Komplexierung systematisch un-
tersucht. Die Simulationsergebnisse legen ein komplexes Wechselspiel von elektrostatischen
Kräften und Ionenfreisetzungsmechanismen dar, die für die starken attraktiven Wechsel-
wirkungen in den PMFs verantwortlich sind.
Die Ergebnisse dieser Arbeit haben wertvolle Einblicke in die Protein-Wechselwirkungen mit
polymerartigen Materialien gewährt. Diese Erkenntnisse können als Grundlage für zukünf-
tige Experimente und auch zur Prüfung von approximativen Theorien dienen.

Schlagwörter: Proteinadsorption, Mikrogele, kooperative Effekte, kompetitive Adsorption,
Langevin Dynamik, gleich geladenen Komplexe, fleckige Partikel, Polyelektrolytbürste
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1 Introduction

Proteins are essential constituents of living cells and jointly responsible for the genesis of
life [1, 2]. Their unique three-dimensional structures exhibit special properties and serve
versatile functions in virtually all physiological or biological processes [3]. Elucidating the
nature of protein interactions – particularly with nanoparticles – is crucial for designing new
biomaterials for applications in bioengineering, pharmaceutics, and food processing [4, 5].
Specifically, nanoparticles with polymeric coatings (depicted in Figure 1.1) have been the
object of intense investigations [6]. These kinds of nanomaterials are suited outstandingly
for protein immobilization or may serve as protective coatings to prevent protein adsorption
with regard to non-fouling surfaces [7–9]. In respect of the former, one promising biomedical
example is protein encapsulation into polymeric materials as drug delivery systems for a
controlled release of therapeutic proteins in the human body [10–12]. Particularly multi-
responsive microgels with a core-shell morphology are of great interest because of their
biocompatibility, resemblance to biological tissue, and tunable viscoelastic properties [13–
20]. The characterization of such systems have shown that protein adsorption onto the
microgel is an equilibrium process and, besides, proteins largely retain their native structure
[21, 22]. Recent studies have also indicated that adsorption of proteins onto nanoparticles
in general is mostly driven by global, nonspecific electrostatic interactions and more local,
probably hydrophobic interactions [13, 22–31]. The balance between these two is highly
system-specific and can be manipulated by chemical functionalization or copolymerization.
For instance, charged core-shell microgels can be used to favor or disfavor the adsorption
of charged proteins. Their osmotic swelling and storage volume can be tuned by different
external stimuli such as pH, temperature change, salt concentration and charge density [14,
15, 30, 32] essentially via the Donnan equilibrium [33]. However, during protein adsorption
swelling and Donnan equilibria are typically changing in an interconnected fashion [24, 29–
31]. These highly cooperative effects render the interpretation of binding isotherms, and thus
the separation and quantification of global electrostatic and local hydrophobic contributions
to binding – a difficult task. Binding affinities in these systems also depend on protein load,

Figure 1.1: Representation of surfaces with polymeric coatings: (a) planar polyelectrolyte brush, (b) spherical
polyelectrolyte brush, and (c) core-shell microgel particle.
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which presents an additional complication when modeling adsorption isotherms.

The rich chemistry in synthesis enables the covalently anchoring of polyelectrolytes (PE)
at one end to a substrate surface of any geometry forming a PE brush as represented in
Figure 1.1 (a) and (b) [34]. A seminal study of Wittemann et al. [35] investigated the
adsorption of bovine serum albumin (BSA) onto a spherical PE brush at different pH and
ionic strengths. Their experiments allow the unequivocal conclusion of significant protein
uptake into the PE brush at a pH above the isoelectric point (pI) of BSA although both
objects are like-charged. While the protein adsorption sharply rises at pH close to the pI,
it disappears at high ionic strengths. The researchers concluded from this fact that the
ionic strength is the decisive factor for protein adsorption whereas the pH is of secondary
importance and determines only the adsorption strength. The desire to understand the
mechanisms for attraction or repulsion of proteins by PE brushes presents a complex problem
and is still under debate [36]. Only two popular statements for this phenomenon can be found
in the literature [35, 37–40]. One explanation from Wittemann et al. [35, 38] refers to the
effect of counterion release. From this view, the vast majority of monovalent counterions
are initially confined within the PE brush. Since negatively charged proteins may posses
positively charged patches on their surface, they will serve as multivalent counterions of the
PE chains. Thus, once the protein enters into the PE brush, counterions from the PE chains
and those of the positive patch will be released. This entropic process drives the protein
adsorption and leads to a favorable electrostatic interaction between the positive patch and
PE chains. The counterion release effect has been confirmed by Leermakers et al., who have
used a two-gradient self-consistent field theory [40]. Another possible explanation proposed
by Biesheuvel et al. is the charge regulation of amphotheric proteins [37, 39]. In their
reasoning, the local pH inside the PE brush differs from the bulk solution. This may happen
at conditions with low ionic strengths where the pH is even lower than the pI of the protein.
In response to the pH change, a charge reversal of the protein occurs and promotes the
adsorption between oppositely charged objects. Their model calculations have only achieved
qualitative agreement with experimental data at pH close to the pI and low ionic strengths.
Another study by de Vos et al. has considered both effects together in a self-consistent field
theory, instead of investigating them separately [36]. The authors have found that both
effects can indeed justify protein uptake by a like-charged PE brush while in their view the
charge regulation is the predominant effect. This thesis also aims to study the mechanisms
of protein uptake by a PE brush.

Usually, when dealing with real biological fluids, e.g. blood plasma, a large number of
heterogeneous proteins rather than single-type proteins are present. Cooperative and/or
competitive adsorption onto nanoparticles take place in this kind of biological milieu and
influence the adsorption process immensely. For instance, nanoparticles injected into the
bloodstream will be immediately covered with proteins and lead to a formation of a protein
corona as shown in Figure 1.2 [41]. This protein corona will then determine the interaction
between the nanoparticles and the host environment [42]. In the late 1960s, Vroman and

2



Figure 1.2: A schematic illustration of the protein corona formation around a spherical nanoparticle.

Adams investigated the adsorption of blood plasma proteins at liquid and solid interfaces
[43]. They observed a rapid adsorption of fibrinogen proteins at the initial stage while
later these first adsorbers were sequentially exchanged by other plasma proteins. This so-
called Vroman effect [44] relates competitive adsorption and desorption of proteins to their
individual concentration, diffusion coefficient, and adsorption affinity. It is generally stated
that proteins with high concentration and mobility will adsorb faster but will be replaced by
less motile proteins with higher binding affinities to the nanomaterial [45]. The Vroman effect
is not restricted only to plasma proteins and can be considered as a general trend for other
protein mixtures [46, 47]. Beside many other experiments on competitive protein adsorption
[21, 48–51], there is no generalizable multi-component model describing the equilibrium
thermodynamics of competitive protein adsorption onto soft polymeric layers. This lack is
still challenging and a topic of this thesis.

Understanding the formation of protein-PE complexes is a necessary prerequisite to under-
stand interactions between proteins and nanoparticles with polymer coatings. Numerous
experiments [52–59], comprehensive reviews [60, 61], different theoretical approaches [62–69]
and computer simulation studies [68, 70–83] have been carried out to uncover the interac-
tions between proteins and PEs. For instance, Hattori et al. [54] and Seyrek et al. [55] have
measured the binding affinity of few PEs to different proteins such as β-lactoglobulin, BSA,
insulin, and lysozyme at various pH and ionic strengths. The researchers have found some
complexes at a pH where both objects are negatively charged and concluded therefrom the
existence of oppositely charged patches on the protein’s surface. This observation has been
known as protein adsorption on the wrong side of the pI. De Vries also assumed this bind-
ing interpretation and studied the complexation of a PE with whey proteins at their pI by
means of Monte Carlo (MC) simulations [79]. His results have revealed a stronger PE bind-
ing to α-lactalbumin than to β-lactoglobulin. He also justified these findings by a statistical
analysis of the surface charges in which he found a single and large positively charged patch
on α-lactalbumin and multiple, but smaller charged, patches on β-lactoglobulin. Hence,
patchiness or rather surface charge anisotropies have irrefutable effects on protein-PE com-
plexation. This thesis will also deal with the complex formation between a protein and a
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single PE.
Many of the computational and theoretical investigations referenced above have focused
on the interaction between a PE and an oppositely charged particle or a planar surface.
However, simulations and analytical models of like-charged protein-PE association events
are rarely reported in the literature. Very few key publications in this field are from, for
instance, Messina and co-workers [76]. They have studied the conformation of a colloid with a
long PE (both negatively charged) at different Coulomb couplings in a salt-free environment
by means of Langevin dynamics. At strong Coulomb couplings, the PE chain, once adsorbed,
is confined on the colloidal surface while at weak Coulomb couplings the PE is still adsorbed,
but only partly and looped. More recently, Luque-Caballero et al. [83] have employed MC
simulations to study PE adsorption onto a like-charged planar surface in the presence of
trivalent counterions. The authors have demonstrated a preferential adsorption of the PE
onto the planar surface by calculating the free energy between the objects. Their free energy
analysis covered the effects of surface charge density, PE charge, ionic strength, and cation
size. In contrast, much less is known about the role of charged patchy globular particles
whereas their surface is both, repulsive and attractive [84]. This gap is a demanding subject
and will be systematically investigated in this thesis.
A better understanding of interactions between proteins and polymer coated nanoparticles
would significantly help to elucidate the adsorption process and the potential to develop
biospecific nanomaterials. The principal research aim of this thesis is to study and predict
protein adsorption onto polymeric materials. Beside ambitious experiments and theoreti-
cal modeling, computer simulations are complementary approaches to investigate complex
processes in soft matter systems in detail. Especially the natural presence of surface charge
anisotropies, counterions, electrolytes and thus the many-body interactions complicates the
analytical modeling to a large extent. One possible way to gain insight into the complex-
ation of proteins with polymeric materials can be realized by computing the potential of
mean force (PMF) between them. Basically, the PMF can be regarded as the free energy
landscape, e.g. of two interacting objects that move towards a separate state to a bound
state. Computer simulation techniques such as steered molecular dynamics (SMD) [85] or
umbrella sampling (US) [86] are usually employed in this particular research field to compute
free energy profiles. For instance, SMD simulations have become an integral part to describe
the physical mechanisms in experiments of binding/unbinding of proteins, conformational
transition of DNA fragments and other biomolecular processes [85, 87]. Thus, computer
simulations facilitate interpretations and may assist to reveal driving forces behind protein
adsorption. Nevertheless, the study of adsorption processes is a challenging task and still
far from being completed.
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2 Objective of this thesis

The purpose of this thesis is to study and rationalize interactions between proteins and soft
polymeric layers with the main focus on electrostatic interactions. The particular goals are:
1) modeling of experimental adsorption isotherms to provide an enhanced insight into the
driving forces of protein adsorption onto core-shell microgels and 2) systematic computa-
tional investigations of the influence of different physical and physiological parameters on
the interactions between proteins and polymeric materials for a better understanding of the
adsorption process. With this in mind, the present thesis is organized as follows:

Chapter 3 introduces the basic physical principles and experimental methods on which this
thesis is based.

In Chapter 4, the subjects of Papers I and II are reflected. A new theoretical approach
is developed for modeling protein adsorption onto core-shell microgels and soft polymeric
layers in general. This binding approach includes cooperative effects and is easily expandable
to a multi-component solution of proteins. It also enables a more detailed investigation of
the driving forces of protein adsorption. While first the microgel deswelling by salt and pro-
teins is explained, an in-depth analysis and discussion of single-type protein adsorption onto
the microgel is presented afterwards. The cooperative binding approach and the standard
Langmuir binding model are tested in particular by fitting experimental binding isotherms.
Consequences to the interpretation of Langmuir binding models are discussed. A major
aspect of this chapter is the competitive adsorption of a binary protein mixture onto the
core-shell microgel. Protein adsorption and desorption are predicted from thermodynamic
parameters obtained previously from fitting.

Chapter 5 is based on Papers III, IV, and Preprint I, which presents a series of Langevin
dynamics simulations of different protein association events. The simulations are carried out
in an explicit monovalent ionic solution and implicit solvent. Here, a set of charged patchy
particle models are designed and used as protein models. Simple coarse-grained models
are also developed for a single polyelectrolyte and a polyelectrolyte brush. The aim of this
chapter is to investigate the effective interaction between like-charged proteins, formation
of like-charged protein-polyelectrolyte complexes, and the uptake of oppositely and like-
charged proteins by a polyelectrolyte brush. A particular focus is set on determining the
potential of mean force between these objects depending on the salt concentration, patch
number and size, different dipole moments, and polyelectrolyte chain lengths. The potentials
of mean force in conjunction with an analysis of the patch orientations, ion condensation
and release effects will then give valuable insights into the association events. They may
reveal and uncover the driving forces behind the adsorption process. Some of these results
are compared with currently available analytical theories.

Finally, Chapter 6 summarizes this thesis and remarks on possible outlook.
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3 Basic principles

This chapter describes theoretical fundamentals and experimental methods related to protein
adsorption processes relevant for this thesis. After a recap of some electrostatic aspects and
molecular interactions, a brief introduction to Langevin dynamics and to the Langmuir bind-
ing model is given. The experimental techniques employed by co-workers for investigating
protein adsorption are summarized in the remainder.

3.1 Electrostatics

3.1.1 Poisson-Boltzmann theory

The Poisson-Boltzmann (PB) theory describes electrostatic effects of molecules in solvents
with dissolved ions on a mean-field level. For instance, ionic profiles or electrostatic contri-
butions to free energies of association events can be determined from the solution of the PB
equation [88]. Its derivation is outlined briefly based on a density functional theory following
reference [89].

Consider a system of a molecule with a fixed charge distribution ρf (r) and N mobile ions
(counterions and coions) with densities n±(r) in a solution of volume V and temperature T .
If only Coulombic interactions between all particles are assumed the Hamiltonian H of the
entire system is then given by [89]

H(p, r) =
N∑
i=1

p2
i

2mi

+
e2

2

N∑
i=1

N∑
j=1
i �=j

ZiZj

4πε0εr |ri − rj| +
N∑
i=1

Zie

∫
V

ρf (r)

4πε0εr |ri − r| d
3r. (3.1)

Here, pi and mi are the momentum and mass of the ith ion, e the elementary charge,
ε0 the dielectric constant, εr the relative permittivity of the solvent, and Zi the charge
valency of ion i. Indeed, such a system exhibit a high degree of physical complexity due
to interparticle correlations. To be more precise, the calculation of the partition function
Z = Tr

{
e−βH(p,r)

}
of this particular system is very complicated due to the combinatorial

interactions in the Hamiltonian. The thermal energy of the system at the temperature T is
denoted by β−1 = kBT with kB being the Boltzmann constant. One route to overcome this
difficulty while retaining a quantitative description is the use of mean field approaches.

A mean-field approximation (MFA) neglects particle correlations by replacing the N -particle
probability distribution PN(r1, ..., rN) by an approximate distribution that is a product of
N identical single-particle probability distributions [89]

PN(r1, ..., rN)
MFA−→ P(r1)P(r2) · · · P(rN), (3.2)

with P(r) being the single-particle probability distribution, which is associated with the
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particle density n(r) via

P(r) =
n(r)∫

V
n(r)d3r

=
n(r)

N
. (3.3)

The canonical partition function can then be factorized into an ideal (purely entropic) and
an excess contribution [90]. Consequently, the Helmholtz free energy βF = − ln[Z] of the
system reads

FPB = Fid + Fex, (3.4)

where the subscript PB denotes the Poisson-Boltzmann approximation for the Helmholtz
free energy. The Bogoliubov inequality provides an upper bound for the exact Helmholtz
free energy, namely F ≤ FPB [91]. With the requirements given above, Fid and Fex can be
calculated leading to the PB free energy density functional

FPB[n±(r)] =
∫
V

{
1

β

∑
i=f,+,−

ni(r)
{
ln[ni(r)Λ

3]− 1
}
+

{
ρf (r) +

e

2

∑
i=+,−

Zini(r)
}
φ(r)

}
d3r,

(3.5)
where Λ is the thermal de Broglie wavelength and φ(r) is the total electrostatic potential at
r and related to Poisson’s equation [90].

The ion density profiles n±(r) can be obtained by minimizing FPB[n±(r)] with respect to
n±(r) by considering that the ion number N± =

∫
V
n±(r)d3r is fixed by varying n±(r). This

constraint is achieved by adding the Lagrange multiplier μ±
∫
V
n±(r)d3r (chemical potential)

to the PB functional [92]. Applying the variational method, the corresponding functional
derivative takes the form

δFPB[n±(r)]
δn±(r)

= Z±eφ(r) + kBT ln[n±(r)Λ3]− μ±
!
= 0, (3.6)

and yields to the equilibrium density profiles

n±(r) = n0
±e

−Z±eβφ(r). (3.7)

The constant n0
± = Λ−3eβμ± is the particle density at φ(r) = 0. Thus, the ion density profile

at a given position r are proportional to a Boltzmann factor that describes an exponential
weighting between the electrostatic potential energy Z±eφ(r) and the thermal energy kBT .
Combining the Boltzmann distribution of the ions with Poisson’s equation leads to the well-
known PB equation [89]

∇2φ(r) = − 4π

ε0εr

{ ∑
i=+,−

Zien
0
i e

−Zieβφ(r) + ρf (r)

}
. (3.8)

The PB equation (3.8) represents a partial differential equation of the second order. It can
be solved analytically only for a few cases where usually the fixed charge distribution of the
molecule ρf (r) is incorporated into Dirichlet or Neumann boundary conditions such that
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(a) (b) (c)

Figure 3.1: A sketch of the PB cell model. The biomolecular solution (a) is subdivided into cells (b) which
contain a molecule, counterions and salt ions. Since the individual cells are electrically neutral, correlations
between the molecules are repealed. The complex system then reduces to an one-body problem (c).

ρf ≡ 0 [89] in the domain of interest.

Cell model and electric double layer

If symmetries are present in the molecular solution then the so-called cell model within the
PB theory can be applied to facilitate the analytical calculus [89]. In this model each molecule
is centered in a cell together with its mobile counterions to ensure electroneutrality and
possibly salt ions as depicted in Figure 3.1 [89]. The cell shape reflects the molecules geometry
and, therefore, simplifies the analytical treatment of the PB equation with respect to this
specific geometry and appropriate boundary conditions as well. The physical prerequisites
demand that the electric field vanishes on the cell boundary (Gauss’ law) and is fixed on
the molecular surface. Consequently the cells do not interact with each other and lead thus
to a decoupling of the correlations between the molecules. When doing so, the molecular
solution is then approximated by an effective one-body model [89].
The charged molecular surface gives rise to an attraction of counterions and a repulsion
of coions leading to a region of two different phases that is referred to as the electrical
double layer [93]. In the simplest theoretical treatment, counterions adsorb directly on
the molecular surface and compensate it [94]. The ensuing layer is called the Helmholtz
layer whose thickness is determined by the finite size of the counterion [94]. However,
the thermal motion of the ions cause a drifting from the molecule’s surface leading to a
diffuse layer as proposed by Gouy and Chapman [94]. The distribution of the charged
ions in the diffuse layer obey Boltzmann statistics which is why the electrostatic potential
decreases exponentially from the molecular surface [94]. Although the Gouy-Chapman model
constitutes an improvement of the Helmholtz model, however, the physical applicability is
limited because of its assumptions. It describes the ions as point charges that freely approach
the molecular surface which is not possible in reality. Later, Stern combines the Helmholtz
layer with the Gouy-Chapman diffuse layer and hence accounts for ionic sizes [93]. The
arising layer close to the molecular surface is called the Stern layer [93]. Furthermore, only
Coulombic interactions in the diffuse layer and a constant dielectric permittivity throughout
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the double layer are assumed [93].

Limitations of the PB theory

The approximations made in this theory have only a certain range of validity and, conse-
quently, it breaks down at some point. First, it is not possible to elaborate ion-ion corre-
lations or other ion specific effects by the PB theory because only an averaged potential is
assumed to account for all ionic interactions. Second, the finite size of the ions and other
atomic properties are neglected. Third, the ions are modeled as point charges and are only
distinguished by their valence. Fourth, the polarizability of the aqueous solution is not
considered and it is treated as a dielectric constant with a relative permeability (primitive
model). Given these limitations of the PB theory, it describes ionic effects to molecules
in solutions with monovalent electrolytes surprisingly adequate [89]. However, it deviates
considerably for asymmetric or multivalent electrolytes [89]. In the latter case, the dispar-
ity to the predictions from the PB theory is due to the strong Coulomb coupling between
molecules and multivalent counterions and the fact that correlations between discrete multi-
valent charges become relevant [95, 96]. In systems with monovalent ions the Coulomb
coupling is weak [96] and errors introduced by the approximations leads to opposite effects
and cancel each other out [93]. This is why mean-field theories are applicable. For instance,
if the finite size of the ion is considered the ion concentration on the molecule’s surface will
be lower and consequently the surface potential will increase. However, solvent molecules in
the electric field of molecules are less free in their orientation than in the bulk and, therefore,
the relative permeability is smaller in the vicinity of the molecular surface giving rise to a
lower surface potential. These two examples show that mutual effects may balance each
other under certain conditions.
In this work, solutions are considered that contain only monovalent electrolytes and concen-
trations allowing to compare with the PB theory.

3.1.2 Debye-Hückel potential

The radial electrostatic potential φ(r) surrounding a charged molecule in an implicit solvent
with Boltzmann-distributed monovalent salt c±(r) reads [97]

∇2φ(r) =
8πecs
ε0εr

sinh[eβφ(r)], (3.9)

at salt bulk concentration cs. By using the approximation eβφ(r) � 1 and rescaling the
electrostatic potential Φ(r) ≡ eβφ(r) the PB equation can be linearized to yield the linearized
PB (LPB) equation

∇2Φ(r) = κ2Φ(r), (3.10)

where κ =
√
8πλBcs is the inverse Debye screening and λB = e2

4πε0εrkBT
is the Bjerrum

length. The LPB is essentially equivalent to Debye-Hückel (DH) theory [97]. For simple
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homogeneously charged spheres the solution is [98]

ΦDH(r) = ZλB · eκR

1 + κR
· e−κr

r
, (3.11)

with Z and R being the sphere net charge valence and radius, respectively. The corresponding
ion density profiles are c±(r) = cs {1∓ ΦDH(r)}.

3.1.3 Donnan equilibrium

Suppose that a charged microgel particle with a permeable boundary is placed in an aqueous
solution with a concentration cs of monovalent salt ions (Z± = ±1). In such a situation,
the boundary acts as a selective barrier and hinders counterions from diffusing away while
coions remain in the bulk. The resulting unequal distribution of ions causes an electrostatic
potential difference between the inside and the outside of the charged microgel and estab-
lishes a Donnan equilibrium. The so-called Donnan potential can then be derived by the
electroneutrality constraint on the microgel via

cse
−ΦD(y) − cse

ΦD(y) + ZMcM = 0, (3.12)

and, therefore, leading to [33]

ΦD(y) = ln
[
y +

√
y2 + 1

]
with y =

ZMcM
cs

. (3.13)

ΦD(y) is the dimensionless Donnan potential scaled by the factor eβ while y denotes the
charge ratio between the microgel and the charge densities in the bulk. ZM and cM are the
charge valency and concentration of the microgel. The diffusion of the ions also induces an
osmotic pressure in equilibrium. For ideal solutions (ideal gas limit), the osmotic pressure
of the ions pion can be determined by the difference of ionic concentrations from the inside
and the outside of the microgel by [33]

βpion(y) = cse
−ΦD(y) + cse

ΦD(y) − 2cs

= 2cs
{
cosh[ΦD(y)]− 1

}
.

(3.14)

3.1.4 Counterion condensation

The concept of counterion condensation goes back to the mean-field ’Onsager-Manning-
Oosawa’ theories [99–102] that predict counterion condensation on highly charged rod-like
molecules, i.e., a fraction of the neutralizing counterions are tightly bound within a critical
radial distance from the polyelectrolyte backbone while the remaining, screening ones are
diluted away in the bulk. Whether at all and to what extent counterion condensation for
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monovalent systems takes place is then described by the so-called Manning parameter

Γ =
λB

b
, (3.15)

where b is the averaged distance between charged monomers. According to Onsager-Manning-
Oosawa theory, counterion condensation occurs if Γ > 1, i.e., the Manning parameter exceeds
unity. The theory predicts in the limit of vanishing salt that a fraction of fcon = 1 − 1

Γ
of

counterions is condensed on the polyelectrolyte in a highly dense state. For a fully charged
polyelectrolyte with Nmon monomers, that implies that on average fcon ·Nmon charges on the
polyelectrolyte are neutralized by bound counterions.

Record and Lohman utilized this fact to explain salt concentration dependencies of the
binding affinities wb(cs) of charged ligand – nucleic acid associations and predicted, under
some assumptions, that [103]

βwb(cs) ∝ Ñ ln[cs], (3.16)

where Ñ reflects the number of strongly bound (and high density) ions released from the
polyelectrolyte chains upon complexation. Note that in their formulation the number Ñ

includes both, condensed counterions fcon · Nmon as well as the number of screening ions
within the dense DH double layer around the polyelectrolyte. The physics behind Eq. (3.16)
is simply understood by the fact that Ñ ions are released into bulk with a much lower salt
concentrations upon complexation, leading to substantial gain in translational entropy of
the ions. Note that a clear distinction between condensed ions and densely bound screening
ions is not always strictly possible at finite salt concentrations [104] and flexible chains. The
approach of Record and Lohman describes semi-quantitatively the complexation of pairs of
short, highly charged polyelectrolyte chains, where ions are indeed confined in a well-defined
fashion [103].

Henzler et al. introduced a similar counterion condensation/release concept to rationalize the
interaction between charged globular proteins and like-charged polyelectrolyte brushes [105].
They considered that N− counterions on a highly charged positive patch on the protein and
N+ counterions on the negative polyelectrolyte are strongly localized for large separation
distances between the molecules. Upon association, a certain number ΔN− and ΔN+ of
ions will be released. The change of the free energy for this process has then be argued to
be [105]

βwb(cs) ∼ βwpatch + βwPE

= ΔN− ln

[
cs

cpatch

]
+ΔN+ ln

[
cs
cPE

]
,

(3.17)

where cpatch is the concentration of ions accumulated on the positive protein patch and cPE is
the concentration of condensed ions in the vicinity of the polyelectrolyte. Here, a ’∼’-symbol
in Eq. (3.17) is intentionally used to express that this contribution is only anticipated to
describe the leading order electrostatic contribution, not at all the total binding free energy
of association. Recall that this contribution is of purely entropic origin.
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3.2 Interactions between molecules

All physical and biological phenomena appearing in biomolecular solutions originate from the
interaction between pairs of atoms or molecules. Because different classical and quantum
mechanical effects contribute to attractive and repulsive interactions, a determination of
an exact interaction potential for real systems is virtually impossible. However, from a
simulation and experimental point of view, semi-empirical potentials with few adjustable
physical parameters that imitate the interaction are useful to make qualitative statements
about the system’s behavior. In the following sections, the interaction potentials employed
in this thesis are briefly described.

3.2.1 Mie potential

The reader will find in the literature various types of pair potentials which are proposed to
describe interactions between noncovalently bound atoms or molecules. The widely consid-
ered intermolecular potentials are, for example, the Buckingham [106] or the Mie [107, 108]
potential that only differ in the functional form of the repulsive term from each other while
the attraction is described by a van der Waals (vdW) force [109]. The Mie potential uses an
inverse power term for the repulsion whereas the Buckingham potential incorporates an ex-
ponential type because of the exponential dependence of electron wave functions in quantum
mechanics [110]. It is actually justifiable to represent the repulsive term by an exponential
function, however, the Buckingham potential turns over at short separations. The exponen-
tial becomes a constant while the attractive term converges toward minus infinity. This can
lead to unphysical bindings in simulations if molecules are too close. Moreover, when con-
sidering mixtures or different atoms there are no mixing rules available for the Buckingham
potential and contemporaneous the computational cost is higher as compared to the Mie
potential. It is therefore reasonable to restrict to the Mie potential (MP) which has the
general form

UMP(r) =
n

n− k

(n
k

) k
n−k · ε∗ ·

[(
σ∗

r

)n

−
(
σ∗

r

)k
]
, (3.18)

where the exponents n > k distinguish between the repulsion and the attraction. ε∗ is the
depth of the potential well and σ∗ is referred to as the van der Waals radius while r is the
separation between two nonbonding atoms or molecules. An advantage of the Mie potential
is the free choice of exponents to easily specify the hardness and softness of the interaction.
For instance, a special case of the Mie potential with exponents n = 12 and k = 6 yields the
well-known Lennard-Jones potential that gives realistic intermolecular potential [111].

3.2.2 Derjaguin-Landau-Verwey-Overbeek potential

The traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction between a pair of
charged spherical particles assumes additivity of non-electrostatic and electrostatic contri-
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butions and, therefore, is given by

UDLVO(r) = UMP(r) + Uel(r). (3.19)

In the DLVO theory, the van der Waals interactions are usually expressed by the Hamaker
theory. Though, in this thesis the previously introduced Mie potential UMP is used to account
for the attractive van der Waals and repulsive Pauli contributions. The electrostatic energy
βUel between two spherical molecules having charges Qi = Zie and radius R in monovalent
ionic solution of screening length κ−1 and at separation r is essentially given by the solution
of the LPB equation [112–114] and reads

Uel(r) = Z1Z2λB

(
exp[κR]

1 + κR

)2
exp[−κr]

r
, (3.20)

where Z1 and Z2 usually play the role of effective charges [97]. The particle charge is often
renormalized with respect to its intrinsic values due to various shortcomings of the DLVO
theory, such as the neglect of nonlinear correlation effects and ion-specific local interaction
effects on the particle surface’s Stern layer. Strictly speaking, Eq. (3.20) only holds in this
form in the regime κR � 1, i.e., for large and smooth particles at high salt concentrations.
Therefore, the theory is used typically only for fitting the long-ranged part of the electrostatic
interaction with renormalized charges [97].

3.2.3 Orientation-averaged pair potential of mean force

To extend the standard DLVO approach for charged spherical particles towards charge
heterogeneity, an orientation-averaged potential of mean force proposed by Phillies [115]
and Bratko et al. [116] is employed. It describes the screened electrostatic interactions be-
tween two molecules up to the dipolar contribution in the DH approximation. The relevant
equations for a homogeneous dielectric medium are [115, 116]

UQiμj
(r, θj) = −Qiμj cos[θj]

4πε0εrr2
S1(r) (3.21)

for the monopole-dipole interaction, and

Uμiμj
(r, θi, θj, ϕ) = −μiμj{2S2(r) cos[θi] cos[θj]− S3(r) sin[θi] sin[θj] cos[ϕ]}

4πε0εrr3
(3.22)

for the dipole-dipole interaction. The corresponding electrostatic screening functions are

S1(r) =
3e−κ(r−2R){1 + κr}

{1 + κR} {3 + 3κR + (κR)2} , (3.23)

S2(r) =
9e−κ(r−2R){2 + 2κr + (κr)2}

{3 + 3κR + (κR)2}2 , (3.24)
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and

S3(r) =
9e−κ(r−2R){1 + κr}
{3 + 3κR + (κR)2}2 , (3.25)

respectively. The orientation-averaged pair potential of mean force (OAPP) is then given by

UOAPP(r) = UMP(r) + Uel(r)− kBT ln

[∫
e−βU(r,θi,θj ,ϕ)dΩ∫

dΩ

]
(3.26)

with the total energy function

U(r, θi, θj, ϕ) = UQiμj
(r, θj) + UQjμi

(r, θi) + Uμiμj
(r, θi, θj, ϕ), (3.27)

and the configurational integrals

∫
dΩ =

∫ π

θi=0

∫ π

θj=0

∫ 2π

ϕ=0

sin[θi] sin[θj]dθidθjdϕ, (3.28)

where θi denotes the angle between the dipole orientation of the molecule i and r the sepa-
ration between the molecules. Equation (3.26) is numerically integrated to obtain the angle-
averaged potential of mean force.

3.3 Langevin dynamics

Immersing a molecule in a solvent, one is challenged with a many-body system that exhibits
many degrees of freedom and interactions with solvent molecules. The permanent collisions
with the solvent molecules cause a random walk of the molecule (also termed as Brownian
motion) and give rise to an irregular trajectory [117]. Langevin dynamics is a way to model
this motion and starts from Newton’s second law of motion

m
dv

dt
= F, (3.29)

where F is the acting force on the molecule from the solvent and v its velocity. For simplicity,
the one-dimensional case of the dynamics is treated since the three-dimensional case is the
same. Langevin ascribed the impacts from the solvent to stochastic processes and introduced
friction and noise as extra forces [118]. The force F thus has two contributions: a frictional
force Fvis = −mξv proportional to the velocity v while ξ is the friction constant and a
random force F̊ (t) independent of the molecules motion [118]. If the motion of the molecule
is influenced by an external force Fext = −∇U , the Langevin equation reads

m
dv

dt
= −mξv + Fext + F̊ (t). (3.30)

The random force has to satisfy certain stochastic conditions [117]:
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i. the time average vanishes
〈F̊ (t)〉 = 0, (3.31)

ii. and no correlations over time

〈F̊i(t) · F̊j(t
′)〉 = 2mξkBTδ(t− t′)δij. (3.32)

Treatment of long-ranged forces

Because simulations of soft matter systems are usually realized with periodic boundary
conditions in order to reproduce an infinite system, special care has to be taken when dealing
with long-ranged interactions [119]. For instance, the natural presence of charges in such
systems gives rise to electrostatic interactions through the Coulomb potential which decays
with 1

r
and thus is long-ranged [119].

As an illustrative example, consider a cubic simulation box with side lengths L that contains
N particles with charges qi located at ri. The periodicity of the system is ensured by
replicating the unit cell box in all spatial directions. It is further assumed that the system
is electrically neutral as defined by [119]

N∑
i=1

qi = 0. (3.33)

Since charges interact via the Coulomb potential, the electrostatic energy of the system is
given by [119]

UCoul =
1

2

N∑
i=1

qiΦ(ri), (3.34)

with

Φ(ri) =
N∑
j �=i

′∑
n

qj
|rij + nL| , (3.35)

being the electrostatic potential of particle i at ri while the prime denotes summation over
all periodic images n. The sum in Eq. (3.35) converges very slowly and is also conditionally
convergent [119]. A method to handle this problem is realized by the Ewald summation [119].
The basic idea of the Ewald summation is to split a single divergent sum into two converging
sums which in this case leads to a separation of the charge density into a direct sum in the
real space and a reciprocal sum in the Fourier space as shown in Figure 3.2. The discrete
charges in the real space are screened by an opposite charge cloud that has a Gaussian
shape [119]. Thereby, the interactions become short-ranged and thus can be computed in
the real space. To balance this induced Gaussian charge cloud, a second Gaussian charge
cloud with the same sign and magnitude as the original distribution for each point charge is
added. Since this distribution is periodic, it is represented by a rapidly converging Fourier
series [119].
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Figure 3.2: A schematic representation of the Ewald summation. The charge density is separated into a
direct sum (real space) and reciprocal space (Fourier space).

For a detailed derivation of the Fourier part the reader is referred here to reference [119].

3.4 Langmuir binding model

The Langmuir binding model describes phenomenologically the adsorption isotherm of mol-
ecules to adsorbents dependent on the molecule’s concentration at a certain temperature [120].
A statistical thermodynamics derivation is demonstrated below to emphasize the physical
significance of the configurational volume for an adsorbed molecule.
The Langmuir model distinguishes between molecules in an ideal gas phase to be mobile and
adsorbed molecules on localized sites and referred to as the adsorbed phase hereinafter. The
basic assumptions made for the adsorbed phase are [121]:

i. Adsorbing molecules adsorb in an immobile state.

ii. There are no interactions between adsorbate molecules on adjacent binding sites.

iii. Each binding site is energetically equivalent and can accommodate only a single molecule.

The canonical partition function for the adsorbed phase (ads) where the adsorbent possesses
NS binding sites on which NP molecules adsorb with an adsorption energy of −NPEads is
given by [120, 122, 123]

Zads = ζNP · e−β(−NP Eads) · NS!

NP !{NS −NP}! . (3.36)

ζ specifies the partition sum of a single molecule in the bound state while the last term
describes the degeneracy and represents the combinatorial ways to arrange NP indistin-
guishable molecules on NS binding sites [120]. Accordingly, the Helmholtz free energy for
the adsorbed phase is

βFads = − ln

[
ζNP · eβNP Eads · NS!

NP !{NS −NP}!
]
, (3.37)
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and by applying Stirling’s formula for large factorials [120], that is,

ln[n!] ≈ n ln[x]− n

gives

βFads = −
{
NP ln

[ ν0
Λ3

]
+ βNPEads +NS ln[NS]−NP ln[NP ]− {NS −NP} ln[NS −NP ]

}
,

(3.38)
where ζ is substituted by ν0

Λ3 with ν0 being the standard volume which describes the effec-
tive configurational volume in a single binding site. The effective constant ν0 includes also
restrictions on vibrational and orientational degrees of freedom in addition to translational
constraints. The Helmholtz free energy of the remaining molecules in the ideal gas phase
(gas) is given by [90]

βFgas = {NT −NP}
{
ln

[
NT −NP

V
Λ3

]
− 1

}
, (3.39)

with NT being the total number of the molecules in the volume V . In thermodynamic
equilibrium, the chemical potentials of the ideal gas phase and the adsorbed phase are
equal [123]

μads = μgas. (3.40)

The chemical potentials for the different phases are obtained from Eqs. (3.38) and (3.39)
by differentiating the Helmholtz free energy with respect to the adsorbed molecules NP .
Equalization yields

− βEads − ln

[
Θ

{1−Θ} ν0
Λ3

]
= − ln[Λ3 · cb], (3.41)

where Θ = NP

NS
denotes the fraction of bound molecules and cb = NT−NP

V
the unbound

molecule concentration. If the pressure is constant, the adsorption energy Eads corresponds
to the Gibbs free energy ΔG0 of adsorption. Upon rearrangement

K = e−βΔG0ν0 =
Θ

{1−Θ}cb , (3.42)

is obtained with K being the equilibrium constant or sometimes referred to as the binding
constant or affinity. Thus, the Gibbs binding free energy

βΔG0 = − ln

[
K

ν0

]
, (3.43)

depends on the exact nature of the standard volume ν0 in the bound state and is typically not
known, an often overlooked fact in literature [124]. While for quantitative estimates precise
knowledge of its value is necessary, a standard volume ν0 = 1 L/mol is used in this thesis,
which is reasonable for molecular binding where spatial fluctuations are on a nanometer
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length scale.

3.5 Experimental methods

One subject of this thesis deals with the theoretical modeling of experimental data from
protein adsorption experiments. For that reason, this section gives an overview of relevant
experimental methods used by the experimenters to study protein adsorption.

3.5.1 Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) provides a reliable method to characterize the bind-
ing interaction between molecules in biological and physicochemical systems. Thermody-
namically related parameters of the binding process such as the heat of binding ΔHITC,
stoichiometry NP , binding constant K, Gibbs free energy ΔG0, and entropy changes ΔS

can be determined directly in a single experiment.

An ITC apparatus consists of two identical and highly thermally conductive cells which
are embedded in an adiabatic chamber [125]. One of the cells is used as a reference cell
containing only the buffering agent while the other serves as the sample cell in which the
absorbent is placed in the same buffer. Initially, the cells are heated with a constant power
wherein sensitive thermocouple circuits detect the temperature differences in the cells and,
if necessary, regulates the heating of the sample cell by a feedback mechanism, depending
on the temperature in the reference cell. During the titration, precise concentrations of
binding substances are injected through a syringe into the sample cell. Depending on whether
the associated reaction is exothermic or endothermic heat exchange takes place with the
surroundings in the sample cell. Thereby, the time-dependent power supply of the heating
mechanism of the sample cell is measured which is needed to maintain the same temperature
as in the reference cell. The obtained experimental raw data show a series of spikes wherein
each spike represents an injection process reflecting the induced temperature change and the
re-setting of the temperature of the sample cell by the feedback coupler. The time integral
of the spikes gives the heat Q that is released or absorbed during the titration.

Since binding events are accompanied by a heat exchange, the total heat is given by [125, 126]

Q(N) = ΔHITCcaVtotNP , (3.44)

where ca is the concentration of the absorbent in the solution and Vtot the total titration
volume. Introducing the molar ratio x =

ctotb

ca
with ctotb being the total concentration of the

binding substance yields
Q(x) = ΔHITCcaVtotNP (x). (3.45)

It is convenient to fit the incremental heat Q′(x) = ∂Q(x)
∂x

normalized to the molar concen-
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tration of the binding substance

Q′(x)
ctotVtot

=
ΔHITCN

′
P (x)

x
. (3.46)

Experimental binding isotherms are usually often described with the Langmuir binding
model, that is, Eq. (3.42). The concentration of the binding substance cb in the Langmuir
binding model can be expressed by the total concentration of the binding substance in the
sample minus the bound concentration of the binding substance, by cb = ctotb −NPΘca. If it
is assumed that ΔHITC, NP , and K are concentration independent, solving Eq. (3.42) for Θ
gives the total heat

Q(x) =
ΔHITCcaVtotNP

2

{
χ−

√
χ2 − 4x

N

}
with χ = 1 +

x

NP

+
1

KNP ca
. (3.47)

The fitting of Q′(x)
ctotVtot

to the experimental data then yields the unknown constants ΔHITC, NP ,
and K. Typically a sigmoidal-like curve is obtained for Q′(x), where ΔHITC describes the
plateau for the first injections (small x), NP the inflection point, and K the sharpness of the
transition at x � NP . For large binding constants K and small x, almost all of the molecules
immediately get adsorbed and for large x, typically NP (x) saturates and Q′(x) ∝ N ′

P (x) = 0.
Thus, fitting to Langmuir isotherms is most sensitive to intermediate values of the molar
ratio x, in the pre-saturation regime, near the inflection point of Q′(x).

3.5.2 Dynamic light scattering

A suitable method for particle size determination in (diluted) solutions is offered by dynamic
light scattering (DLS) [127]. Light scattering experiments have the great advantage that
they are carried out in or in some cases close to thermodynamic equilibrium [128]. Onsager’s
regression hypothesis [129]

“... the average regression of fluctuations will obey the same laws as the corresponding
macroscopic irreversible processes”

allows to calculate, for instance, transport coefficients from equilibrium fluctuations.
In a conventional DLS instrument, a sample cuvette containing the suspended particles and
the solvent molecules is illuminated by a laser light through a lens to focus directly the
light beam to the cuvette center. The particles that cross the laser beam scatter the light
in all spatial directions. The scattered light is then collimated through another lens and
recorded by a photon detector which is positioned at a known angle α with respect to the
laser beam. The thermally induced collisions between the particles and the solvent molecules
cause Brownian motion. This movement leads to a Doppler shift of the scattered light and,
therefore, to fluctuations of the scattered intensity over time. Thus, the scattered light
may interfere constructively or destructively. The rate of the intensity fluctuations provide
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knowledge about how fast the particles move in the solution and thus about their size. The
intensity fluctuations of small particles are fast and slow for large particles.

Experimentally, a correlator device compares the detected intensity I of the scattering light
at time t to intensities at different short time delays τ . In this manner, the normalized
second order autocorrelation function of the scattered intensity can be determined by [130]

g(2)(τ) =
〈I(t)I(t+ τ)〉

〈I(t)〉2 , (3.48)

where the angle braces denotes averaging over t. The Siegert relation [127] connects the
second order autocorrelation function with the first order autocorrelation function by

g(2)(τ) = 1 + Υ
[
g(1)(τ)

]2
. (3.49)

Here, 0 < Υ < 1 is a constant and depends on the experimental setup. For monodisperse
solutions and non-interacting particles, that is, for infinite dilute solutions, the first order
autocorrelation function decay exponentially [131]

g(1)(τ) = e−
q2w〈Δr(τ)2〉

6 , (3.50)

where 〈Δr(τ)2〉 is the mean square displacement of the particles at τ and qw the magnitude
of the scattering wave vector as defined as

qw =
4πm1

λw

sin
[α
2

]
, (3.51)

with λw being the wavelength of laser source, and m1 is the refractive index of the sample.
Particles that follow Brownian motion 〈Δr(τ)2〉 = 6Dτ [132] where D denotes the diffusion
coefficient of the particle in the solution. Thus, the second order autocorrelation function
reduces to

g(2)(τ) = 1 + Υ
[
e−q2wDτ

]2
. (3.52)

Using the Stokes-Einstein equation [132]

D =
kBT

6πηvisR
, (3.53)

the radius R of the particle can then be obtained from the diffusion coefficient if the viscosity
ηvis of the solution is known. Note, radii measured by DLS represents a hydrodynamic radius
referring to a spherical and non-interacting particle.

3.5.3 Fluorescence spectroscopy

The determination of molecule concentrations in adsorbents is often carried out on the basis
of fluorescence spectroscopy, especially in multi-component systems [21]. The fluorescence
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process arises when a substance adsorbs photons and stimulates electrons to a higher energy
state. The excited energy state is unstable why electrons return to their ground state after
a transient time. As a result, energy is emitted in form of photons but at slightly longer
wavelengths than the excitation light. Because of this minimal difference the fluorescent
light is outshined by the light source and can be isolated by filters in the beam path. An
essential quality characteristic of fluorescence is the quantum yield, which describes the ratio
of emitted and adsorbed photons. Any substance that can fluoresce is referred to as fluo-
rophore or fluorescent dye and is designed to respond to specific stimulus. A fluorophore
can be a part of a big molecule or a discrete small molecule which have distinct excita-
tion and emission spectra. According to the Beer-Lambert law, the fluorescence intensity
is linearly proportional to the fluorophore concentration in the dilute regime while at high
concentrations a non-linear behavior is present [133]. The latter effect is caused by the fact
that upon increasing molecule concentration the probability increases simultaneously that
excited molecules interact with each other or with solvent molecules and lose energy or even
stops the fluorescence process [134]. This phenomenon is known as fluorescence quenching.
For instance, the method of fluorescence quenching can also employed to investigate the ex-
change of fluorescein isothiocyanate (FITC) labeled molecules by absorbents in the presence
of other unlabeled molecules (competitive adsorption) [21].
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4 Theoretical description and prediction of pro-
tein adsorption onto charged core-shell micro-
gels

The subject of this chapter is to introduce a novel binding model for protein-microgel asso-
ciations. Thereby, experimental binding isotherms and volume transitions are analyzed in
detail and compared to theoretical calculations. The competitive binding of a binary pro-
tein mixture onto microgels is predicted by the model and compared to recent experimental
results.

4.1 Protein interactions with charged core-shell micro-

gels

In this section, we present a simple and predictive theoretical approach to elucidate single
and competitive protein adsorption onto oppositely charged core-shell microgels (CSM).
Contrary to the Langmuir binding model, electrostatic cooperativity and osmotic ion effects
are taken into account. The model can also be readily extended to a multi-component system
of proteins. We further demonstrate that an extended version of the Langmuir binding model
can be derived formally from a more general model based on certain assumptions.

4.1.1 General model considerations

The molecular modeling of proteins and CSM particles in aqueous solutions can be described
on different levels of theoretical complexity. For our purposes, a minimal model for the CSM,
protein, and the solvent is presented which covers their essential physical properties.

The charged core-shell microgel model

The core-shell microgel1 is considered to be a perfect sphere with radius RM including a solid
core with radius Rcr as depicted in Figure 4.1. Hence, the resulting net volume of the CSM
is given by VM = 4π

3
{R3

M −R3
cr}. The total number of charged monomers within the CSM is

determined to NM � 4.9 · 105 by potentiometric measurements. The network monomers are
assumed to be homogeneously distributed inside the CSM as found by small-angle scattering
[135]. The mean CSM charge density is expressed by ZMcM = ZMNM

VM
with ZM and cM being

the monomer charge valency and charged monomer concentration. Due to the fact that the
experimental pH value of the solution is � 7.2 and, therefore, much larger than the pKa

value of � 4.6 of polyacrylic acid, we deal with weakly charged CSMs with a charge fraction

1A detailed description of the synthetic procedure can be found in Section 4.2 or in reference [22].
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Figure 4.1: An illustrative sketch for one CSM particle in a solution containing proteins and salt ions with
bulk concentrations cP and cs, respectively. The microgel is modeled as a sphere with radius RM including
a hard core with radius Rcr. The mean charge density of the CSM is cM = NM

VM
, where NM denotes the

number of charged monomers and VM is the CSM’s net volume. The proteins have radius RP and valency
ZP while the salt ions are monovalent. NP denotes the number of bound proteins inside the CSM.

of approximately 1
10

. We can therefore assume with reasonable certainty that ZM = −1 in
the following. The salt ions are monovalent with bulk concentrations c+ = c− = cs, where
the indices + and − refer to the cations and anions, respectively. The Bjerrum length λB of
the system is 7.1 Å, while the electrostatic Debye-Hückel screening length in the bulk region
is on a nanometer scale for salt concentrations considered in the experiments. Moreover,
we estimate a mean separation of about 2.2 nm between two charged monomers on the
same polymer chain within the CSM, which is considerably larger than λB. Thus, charge
regulation effects by counterion (Manning) condensation, release or inhomogeneity effects
can be neglected [99, 136–138]. We further estimate the charged monomer concentration of
the CSM to be cM � 40 mM to 100 mM, depending on the swelling state.

The protein and solvent model

The proteins are modeled as hard spheres with an effective diameter σP = 2RP having
a monopolar moment of charge valency ZP . Higher-order multipole contributions or ef-
fects arising from charged patches are neglected. No dispersion or other attractive non-
electrostatic interactions between the proteins are considered. The proteins in the bulk
region have a concentration of cP , while the proteins inside the CSM are assumed to be
homogeneously distributed [22]. Protein aggregation within the CSM is unlikely as at full
load the system is still below the solubility threshold of a bulk system at comparable pH and
electrolyte concentration [139]. The number of bound proteins inside the CSM is denoted
by NP giving rise to an internal protein packing fraction of η =

NP πσ3
P

6VM
. Finally, the aqueous

buffer and the CSM are modeled as a continuum background with dielectric, elastic, and
osmotic properties as detailed in the following sections.
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4.1.2 Electrostatics between proteins and CSM particles

The existence of electric charges in soft materials inevitably leads to long-range electrostatic
interactions and ultimately affects the stability (or instability) of the systems. It is therefore
crucial to take electrostatic effects into account for modeling protein adsorption on CSM
particles. Thus, we make use of the Poisson-Boltzmann cell model to determine electrostatics
of protein-CSM associations. While numerical solutions have often been employed [137, 140–
147], for weak perturbations the linearized form can be treated analytically [37, 148].

The CSM with the volume VM is partitioned into NP spherical cells of radius Rc with volume
Vc that satisfies

Rc =
3

√
3Vc

4π
= 3

√
3VM

4πNP

∝ 1
3
√
NP

. (4.1)

Each cell contains a protein and is in contact with a salt reservoir of concentration cs. Since
the CSM is a cross-linked network of polymers, a fixed number of charged network monomers
Nm = NM

NP
is also present in each cell. Thus, a mean charged monomer concentration of

cM = Nm

Vc
= NM

VM
is found in one cell. The requirement of electroneutrality for each cell leads

to
cse

−ΦD(y) − cse
ΦD(y) +

ZMNM + ZPNP

VM

= 0, (4.2)

where we neglected the infinitesimally small protein concentration outside of the microgel.
For high protein load, Rc becomes comparable to RP and the cell volume needs to be
corrected by the protein volume in principle. However, for our systems at highest protein
load

(
RP

Rc

)3

� 0.1, the correction is negligible for small and intermediate protein loads. As
we will see in Section 4.3.1, the CSM volume VM itself depends on the salt concentration
cs or on the protein load, that is, the molar ratio x which is why y depends on x. For the
sake of clarity, we define ΦD ≡ ΦD(y(x)) hereinafter to consider this effect. The solution of
Eq. (4.2) is the modified Donnan potential ΦD and reads

ΦD = ln
[
y +

√
y2 + 1

]
with y =

ZMNM + ZPNP

2VMcs
. (4.3)

The modified Donnan potential describes the difference in the mean electrostatic potential
with respect to the bulk reference state where we set φ = 0. As the protein concentration
in the bulk is typically vanishingly small, electroneutrality dictates c+ = c− = cs to a very
good approximation.

Focusing on proteins inside the CSM we assume that the cross-linked network of the CSM is
flexible and fluid-like and the Nm charged monomers behave like mobile counterions to the
protein. The PB equation in spherical coordinates is then

1

r

∂2

∂r2

(
rΦ(r)

)
= −4πλB

{
ZMcme

−ZmΦ1(r) − cse
Φ1(r)+ΦD + cse

−Φ1(r)−ΦD
}
. (4.4)

Here, the total electrostatic potential Φ(r) = Φ1(r) + ΦD consists of the constant mean
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Donnan potential ΦD and a perturbation Φ1(r) induced by the protein. If the network
monomers are assumed to be just a fixed, homogeneous background, they would not couple
to the field and cme

−ZMΦ1(r) would need to be replaced by the fixed concentration cM . The
constant cm is defined by conservation of the number of monomer charges in the cell via

Nm = cm

∫
Vc

e−ZMΦ1(r) d3r. (4.5)

Moreover, it holds that the average potential equals the Donnan potential

ΦD =
1

Vc

∫
Vc

Φ(r) d3r. (4.6)

When the electrostatic potential Φ(r) is on the order of unity, we can linearize the exponen-
tials in Eq. (4.4) with respect to Φ1(r) to obtain a simplified analytical expression for the
linearized PB (LPB) equation

1

r

∂2

∂r2

(
rΦ(r)

)
= 4πλB

ZPNP

VM

+ κ2
in

{
Φ(r)− ΦD

}
. (4.7)

Here, we have identified the internal (CSM) charge density

− ZPNP

VM

= ZMcM + cse
−ΦD − cse

ΦD (4.8)

from conditions (4.5) and (4.6) and κin =
√
4πλBcin, the internal inverse screening length

with cin = cse
−ΦD + cse

ΦD + cM being the internal concentration. The LPB equation can be
solved with the boundary conditions

∂Φ′(r)
∂r

∣∣∣∣
r=RP

=
ZPλB

R2
P

, (4.9)

∂Φ′(r)
∂r

∣∣∣∣
r=Rc

= 0. (4.10)

The first boundary condition (4.9) states that the electric field on the protein surface is
determined by its charge and size, while the second boundary condition (4.10) ensures a
vanishing electric field at the outer boundary of the cell. The general solution for the total
electrostatic potential Φ(r) takes the form (see also references [37, 148])

Φ(r) = ΦD + Φ1(r) (4.11)

= ΦD − ZPNP

VMcin
+ C1

e−κinr

r
+ C2

eκinr

r
,
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Figure 4.2: A schematic sketch of the total electrostatic potential Φ(r) in the PB cell model. The proteins
(gray spheres) with a monopolar moment ZP and radius RP are placed in the cell center of radius Rc. The
potential on the protein surface is given by Φ(RP ) while Φ(Rc) is the potential at the cell boundary. ΦD is
the mean Donnan potential.

in which for the constants C1 and C2

C1 =
ZPλBe

κinRP

1 + κinRP

{
1− e−2κin(Rc−RP ){κinRP − 1}

{κinRP + 1}
{κinRc − 1}
{κinRc + 1}

}−1

, (4.12)

C2 =
ZPλB

1 + κinRP

{
eκin(2Rc−RP ){κinRc − 1}

{κinRc + 1} − eκinRP
{κinRP − 1}
{κinRP + 1}

}−1

, (4.13)

are obtained. In the limit of large cell sizes (Rc → ∞ or NP → 0) it follows that C2 → 0

and C1 → ZPλBeκRP

1+κRP
. Hence, the LPB solution simplifies to

Φ(r) = ΦD − ZPNP

VMcin
+

ZPλB

1 + κinRP

e−κin(r−RP )

r
. (4.14)

A sketch of the total electrostatic potential Φ(r) within the cell model is presented in
Figure 4.2. Clearly, for a small protein load the potential at the cell boundary is Φ(Rc) �
ΦD − ZPNP

VM cin
and on the protein surface is Φ(RP ) � ΦD − ZPNP

VM cin
+ ZPλB

RP {1+κRP } , while ΦD is the
mean Donnan potential. For moderately high salt concentrations cs � cM , it follows that
ΦD � 1, and the internal salt concentration can be well represented by cin � 2cM , as the
coion concentration (∝ e−|ΦD|) in the CSM becomes negligibly small. Analogously, for the
dilute protein solution in the bulk region we find Eq. (3.11) to be valid.

4.1.3 Free energy of electrostatic transferring

The Gibbs free energy (or chemical potential) of transferring a protein with radius RP and
valency ZP from bulk with salt concentration cs and zero potential to a charged region within
the CSM with a mean Donnan potential ΦD and a monomer charge concentration cM can
be determined by the difference of work of charging the protein against the surface potential
Φ(RP )

βΔGel =

∫ ZP

0

{
Φ(RP )− ΦDH(RP )

}
dZP . (4.15)
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In the limiting case of low salt concentration and protein load, we obtain the leading order
contributions

βΔGel = ZPΦD − Z2
PNP

2cMVM

− Z2
PλB

2RP

{
κMRP

1 + κMRP

− κRP

1 + κRP

}
. (4.16)

We did not explicitly integrate over ZP in the second term in Eq. (4.14) since it is a constant
background contribution and, therefore, not immediately involved in the charging process
of the particle. It is noteworthy that we obtain the same functional form for ΔGel if the
monomer charges are not assumed to be mobile, albeit with a

√
2 smaller internal inverse

screening length
√
4πλBcM and a factor of 2 in front of the second term.

By a one-to-one comparison of the leading order expression in Eq. (4.16) to the result from
employing the full expression of Eq. (4.7), we find that the error in ΔGel is less than one
kBT over the whole range of molar ratios and salt concentrations considered in this thesis or
rather in the experiments. By detailed inspection of the behavior of (4.11) we observe that the
reason of the accuracy is a fortuitous cancellation of errors of higher order terms at large NP .
This fact may shed some doubt on the general applicability of the simplified Eq. (4.16) but
note that our parameters (protein valency, salt concentrations, monomer charge densities,
etc.) are typical and accessible for a wide variety of experimental systems. However, in
general the PB approach is expected to break down for very high protein valencies and small
proteins, when |Φ1| � 1, and strong Coulomb correlations play a role [132].

The free energy in Eq. (4.16) considers only ionic contributions to solvation of a fixed lattice
of proteins, that is, it neglects the electrostatic contributions from the interaction between
the proteins, the energy penalty of overlapping double layers. However, in the fluid-like CSM
protein matrix it is reasonable to assume that proteins can wiggle or move around and are not
rigidly fixed to lattice positions. Due to such fluctuations the average surface potential will
actually be higher than given in Eq. (4.14). In order to estimate the interaction contribution
we look at the expansion of the excess chemical potential in terms of virial coefficients, i.e.,
in first order

βμ =
2B2

Vc

with B2 = −1

2

∫ {
e−βW (r) − 1

}
d3r. (4.17)

W (r) is the potential that describes protein-protein interaction and consists of a hard-sphere
component (hs) and a DH potential

W (r) = Whs +
Z2

PλB

1 + κRP

e−κ(r−RP )

r
. (4.18)

By using the condition (4.6) and linearizing the exponent in the defining equation for B2

yields in

βμ = βμHS +
Z2

PNP

2cMVM

, (4.19)
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where the chemical potential is separated into a hard-sphere and an electrostatic part. Thus,
in leading order the electrostatic protein-protein interaction contribution exactly cancels the
second term in Eq. (4.16) and the final result for the electrostatic transfer free energy is
obtained

βΔGel = ZPΦD − Z2
PλB

2RP

{
κMRP

1 + κMRP

− κRP

1 + κRP

}
. (4.20)

The first term in Eq. (4.20) is purely entropic and describes the electrostatic transfer energy
of a protein with charge ZP from a bulk solution at zero potential to a region at potential ΦD.
It is attractive if the CSM and protein have opposite net charges and otherwise repulsive.
The second term in Eq. (4.20) expresses the difference in the Born solvation free energies
in a medium of concentrations cs and cM [90]. If cM > cs it has an attractive (otherwise
repulsive) contribution to ΔGel. The inhomogeneities that are introduced by the cell model
assumption as depicted in Figure 4.2 cancel out in the linearized theory if protein fluctuations
are allowed and the simple form of (4.20) holds then.

4.1.4 Osmotic and elastic deswelling

The interplay of osmotic and elastic forces defines the equilibrium size of the CSM. In more
detail, the osmotic pressure causes the CSM to swell, while the elastic pressure counterbal-
ance this expansion due to the configurational entropy of polymer chains. A thermodynamic
equilibrium is achieved when the total pressure vanishes [33, 137, 149–152]

p = posm + pelas = 0. (4.21)

The osmotic term comprises contributions from the ions and the solvent. The latter is usually
expressed by a de Gennes-like scaling law of type ∝ V −a

M . The exponent a characterizes the
thermodynamic quality of mixing polymer and solvent. For good solvent conditions and
neutral polymers a typically scales with 9

4
[150, 153]. However, when considering charged

polymers corrections have to be taken into account [151]. In the experiments, the exponent
of 9

4
is likely to remain valid since pNiPAm is a weakly charged polymer [150, 152, 154].

The ionic osmotic pressure is dominated by the ideal gas pressure of ions within the CSM
as given by Eq. (3.14). This is counterbalanced by the elastic pressure pelas. The elastic
pressure is connected with the shear modulus GM and scales with ∝ V −b

M where b = 1
3
. This

is also confirmed by various experiments [150, 152, 154–157]. Using the scaling concepts
above, we find for the total pressure

p = C3V
a
M + C4V

b
M + pion (4.22)

= C3V
a
M

[
1−

(
VM

V0

)a−b
]
+ pion,

where C3 and C4 are volume-independent constants. V0 is the equilibrium volume of the
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CSM when the ionic pressure vanishes (pion = 0), e.g. at high salt concentrations. The bulk
modulus KM of the CSM in this state is defined by

βKM(V0) = −VM
∂βp

∂VM

∣∣∣∣
T,V0

=
23

12

C3

V a
0

. (4.23)

Equation (4.22) can be fitted to different salt concentrations (without proteins) to determine
C3 and V0 and thereby the bulk modulus KM(V0).

The estimation of the osmotic contribution in the presence of proteins is more complex. For
instance, the net charge of the CSM will be reduced by the adsorbed proteins and simul-
taneously inhomogeneities will be induced due to the micro-configurations of the proteins.
Although these phenomena can not be exactly described by Eq. (3.14), they can be approxi-
mated and incorporated in Eq. (4.22) in a naive form. In the cell model, the ionic pressure is
determined by the ionic concentration at the cell boundary because the electrostatic pressure
vanishes on the surface [37, 39, 140, 142, 148, 158]. Therefore, it holds

pPion � cse
Φ(Rc) + cse

−Φ(Rc) − 2cs. (4.24)

Linearizing of pPion with respect to Φ1(r) results in 2csΦ1(Rc) sinh[ΦD] and pion in Eq. (4.22)
can be replaced by pPion

pPion � pion + 2csΦ1(Rc) sinh[ΦD], (4.25)

which recovers pPion � pion in the limit for vanishing protein concentration. Note that this
expression does not consider fluctuations of the protein positions, which is likely to be an
important effect to consider in future studies. Estimation of other protein-induced contri-
butions to the pressure from local effects on the elasticity, such as cross-linking by local
binding [159], conformational restraints of the polymer network, or possible contributions
from the protein osmotic pressure is challenging due to the lack of precise knowledge of the
nature of the bound state and is out of scope of this thesis.

4.1.5 Cooperative binding model

The modeling of protein uptake into CSM has been done often by using the standard
Langmuir isotherm [120, 122], in particular when evaluating protein adsorption as measured
by ITC [22, 23, 25–27, 160]. In the standard Langmuir approach, protein association with
single, independent binding sites is assumed. Electrostatic cooperativity effects and volume
changes of the CSM during protein adsorption are neglected. Additionally, the term binding
of proteins onto soft polymeric layers and microgels is not as clearly defined. The system
may remain in a fluid-like state where proteins are still mobile on average, albeit slower than
in bulk [17, 161]. Consequently, the stoichiometry and binding affinities to binding sites in
the CSM obtained from Langmuir fitting are not so easy to interpret.

As a matter of fact, cooperativity effects arise due to the change of the net charge of the
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CSM when proteins are adsorbed and thereby affects the overall electrostatics of the system.
Such an effect has been appreciated in the Guoy-Chapman-Stern theory for the binding of
charged ligands to charged surfaces [162–164]. As a consequence, the binding affinity K in
the Langmuir binding model can not be regarded as a real constant. It is therefore more
appropriate to express the binding affinity by a protein-specific intrinsic adsorption energy
ΔG0 and an electrostatic energy contribution dependent on the molar ratio x and thus on
the protein load. In our cooperative binding (CB) model, the proteins adsorbed by the
CSM are not condensed to fixed lattice positions. They are able to move freely under the
constraint that their translational freedom is confined by packing. Therefore, we account
for excluded volume interactions [30, 37, 39, 158] between proteins inside the CSM as well.
Thus, saturation of the CSM takes place due to packing.

It is convenient to formulate the corresponding equations for multi-component mixtures,
since the one-component case (i = 1) is a limiting case. We begin to write the Boltzmann-
like equation for our model

NP,i

VM

= ζP,i cP,i e
−β(ΔG0,i+ΔGel,i+μi) with i ∈ {1, ...,M}. (4.26)

M is the set of considered proteins in the mixture. Equation (4.26) represents a system of M
nonlinear equations with M unknowns. ζP,i is the partition function of the protein i in the
bound state which may have orientational or vibrational constraints of the protein’s degrees
of freedom within the CSM, e.g. by partial sliding on the pNiPAm polymer chains [165]. cP,i
is the concentration of the ith protein in bulk. At this point we have to have a closer look
at the total binding energy ΔGtot = ΔG0,i +ΔGel,i + μi additionally:

• Intrinsic free energy ΔG0

The intrinsic binding free energy ΔG0,i for individual proteins contains salt-independent and
specific local interactions such as hydrophobic effects or hydration forces. However, in the
sense of weak intrinsic interactions so that proteins inside the CSM remain mobile. The
intrinsic binding energy is determined by fitting experimental adsorption isotherms and thus
represents a protein/CSM-specific number, which can be tabulated for further approaches
or applications.

• Electrostatic energy ΔGel

We assume that the electrostatic energy ΔGel,i is well described by Eq. (4.20). Therefore,
Eq. (4.20) is expanded to multi-components by

βΔGel,i = ZP,iΦD − Z2
P,iλB

2RP,i

{
κMRP,i

1 + κMRP,i

− κRP,i

1 + κRP,i

}
(4.27)
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with the expanded Donnan potential

ΦD = ln[y +
√

y2 + 1] with y =
ZMNM +

∑
i∈M ZP,iNP,i

2VMcs
. (4.28)

• Excess chemical potential of hard-sphere packing μ

μi describes the configurational chemical potential and for one-component systems it is given
by the Carnahan-Starling potential [132]

βμi =
8η − 9η2 + 3η3

{1− η}3 . (4.29)

The generalization to multi-component2 systems is not analytically easy to achieve [166].
However, in the low density limit as considered here, that is, for small protein packing, μi

can be expressed in terms of the second virial coefficient Bij
2

βμi = 2
∑
j∈M

Bij
2 Nj

VM

. (4.30)

This expression can comprise mixtures with an arbitrary number of components. Since the
salinity within the CSM network is quite high, the proteins are modeled as additive hard
spheres, disregarding their electrostatic repulsion. Hence, the corresponding second virial
coefficient for two interacting proteins i and j is given by

Bij
2 =

2π

3

{
σi + σj

2

}3

. (4.31)

B2 can be measured directly in solution by scattering experiments or it can be calculated
from structural data [167]. The excluded volume of the CSM network monomers are also
considered in our model. We have estimated approximately 3.7 · 106 pNiPAm monomers
in one CSM particle and determined an excluded volume of Vex � 1.1 · 106 nm3, while one
pNiPAm monomer has an excluded volume of roughly 0.3 nm3. Thus, the pNiPAm volume
fraction is between 5% for a unloaded CSM and 12% for the fully loaded CSM at 7 mM salt.

Recall that the free energy contributions βΔGel,i and βμi depend on the CSM volume VM

and thus on x wherefore βGtot is a function of the molar ratio x.

Equivalence between the CB model and an extended version of the Langmuir
binding model

Here, we demonstrate that an extended version of the Langmuir binding model can also be
derived from our CB model. Considering a one-component system with low protein packing

2It should be noted that an analytical expression for the special case of a binary mixture is well-known, see
reference [166].
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fractions η � 1, the chemical potential μi in Eq. (4.29) may be linearized with respect to η

and yields
NP

VM

� ζP cpe
−β(ΔG0+ΔGel)

{
1− 2B2NP

VM

}
, (4.32)

where we have identified the second virial coefficient of hard spheres B2 =
2πσ3

P

3
. Roughly

speaking, B2 physically describes the volume excluded to the centers of the other proteins
taken by one protein. By rearranging Eq. (4.32), we get

ζP e
−β(ΔG0+ΔGel) =

NP

VM

{{
1− 2B2NP

VM

}
cP

}−1

. (4.33)

By substituting NS = VM

2B2
and Θ = NP

NS
we obtain an expression for an extended version of

the Langmuir binding model of the form (3.42)

2B2ζP e
−β(ΔG0+ΔGel) =

Θ

{1−Θ} cP . (4.34)

Thus, the CB model gives a more general description of the standard Langmuir model if
2B2 = ν0 and ζP = 1. That means, that in the low density limit a bound protein has a
configurational freedom (volume) of 2B2. However, as discussed above, in the Langmuir-type
bound state, the configurations are restricted to an effective configurational volume ν0 with
respect to 2B2, such that the partition function ζ = ν0

2B2
. Using this definition, we obtain an

extended Langmuir binding model (see Section 3.4). Thus, in the approximation of small
protein packing η � 1, the CB model and an extension of the Langmuir binding model
are formally equivalent and are allowed to be compared. The number of fixed binding sites
NS can then be interpreted as the maximum number of binding sites available for proteins
simply due to packing in the available volume VM .

4.1.6 Numerical evaluation including volume change

In the Langmuir approach the incremental heat Q′(x) in Eq. (3.46) is fitted to the experi-
mental data by scanning through the fit parameters ΔHITC, K, and NP until the least
square deviation (LSD) to the experimental data is minimized. In the CB model, Eq. (4.26)
is solved numerically with respect to NP by means of a Newton-Raphson3 method and Q′(x)

is fitted to the ITC data by minimizing the LSD. Here, the fitting parameters are ΔHITC

and ΔG0 since all other parameters or inputs are either known from the experiments or in
case of the protein radius RP and net charge ZP known from literature (see also Table 4.3
in Section 4.3.2 for more details).

One challenge arises because the CSM volume is a function of the molar ratio x. A predictive
theory for VM is out of scope of this thesis. Therefore, we satisfy ourselves by employing
experimental DLS data for RM(cs) and RM(x) for one-component protein solutions. We fit

3A more detailed description of the method is given in Appendix A
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VM(x) = 4π
3
{RM(x)3 −R3

cr} by the empirical function

RM(x) =
Rmax −Rmin

2

{
1− tanh

[
x− x0

Δ

]}
+Rmin, (4.35)

with Rmax and Rmin being the maximum and minimum CSM radius at x = 0 and x → ∞,
respectively. The fit parameter x0 is the location of the inflection point, and Δ the distribu-
tion width. In multi-component systems the CSM volume depends on the numbers of bound
proteins of the different proteins since adsorption is competitive in this case. This complex
change in the CSM volume can also be measured using DLS. However, due to absence of
such experimental data we interpolate the volume change based upon one-component DLS
data by

VM(NPi
, NPj

) =
VM(NPi

) ·NPi
+ VM(NPj

) ·NPj

NPi
+NPj

. (4.36)

The indices i and j on NP point to two different proteins in the solution. From our numerical
routine, we can assign calculated values of NP (x) and RM(x) to each x so that VM(NP1 , NP2)

is well-defined without further parameters.

4.2 Experimental materials

Proteins

Four cationic proteins were selected for experiments in order to investigate single and com-
petitive protein adsorption onto an oppositely charged core-shell microgel. The proteins
lysozyme from chicken egg white, cytochrome c from bovine heart, papain from papaya latex,
and ribonuclease A (RNAse A) from bovine pancreas were purchased from Sigma-Aldrich
and dialyzed against the buffer used for the experimental conditions.

Preparation of the charged core-shell microgel

The same batch of the CSM dispersion was used as in the experiments of Welsch et al. [22]. In
brief, the polystyrene core was synthesized by emulsion polymerization in the first step. After
purification of the core particles, the microgel shell, containing 5 mol-% N,N-methylenebis-
acrylamide (BIS) cross-linkers and 10 mol-% acrylic acid with respect to the amount of pNi-
PAm, was polymerized on the polystyrene core by seed polymerization. After purification,
the particles were transferred into buffer solution by ultrafiltration against 10 mM MOPS
buffer at pH 7.2. In this preparation state, the microgel is swollen and strongly hydrated
with more than 90% volume fraction of water. DLS experiments (Malvern Instruments) were
applied to determine the hydrodynamic radius of the polystyrene core to Rcr � 62 nm and
the radius of the total CSM to RM � 129− 180 nm depending on solution conditions [22].
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ITC measurements

As in the studies of Welsch et al., single protein adsorption isotherms were obtained by
ITC [22]. The experiments were performed using a VP-ITC instrument (Microcal) with a
fixed cell volume of 1.4 mL, which was filled with the microgel dispersion at cM � 8.42 ·
10−7 mM. A buffer-matched protein solution of roughly 280 μL was titrated stepwise into
the sample cell and the incremental heat change Q′(x) after each injection was measured.
Afterwards the same protein solution was titrated into the pure buffer system to account for
the dilution heat. The following three buffer systems were used:

i. 10 mM MOPS, 2 mM NaN3 (7 mM ionic strength),

ii. as i. with additional 10 mM NaCl (17 mM ionic strength),

iii. as i. with additional 25 mM NaCl (32 mM ionic strength).

The experiments were performed at 298 K and the pH-value was held constant at pH � 7.2.

Fluorescence spectroscopy experiments

Competitive protein adsorption was studied using fluorescence spectroscopy. Fluorescein
isothiocyanate (FITC) was purchased from Fluka and used for labeling lysozyme. FITC
displays sensitivity to pH changes and possesses a high extinction coefficient and a quantum
yield (∼0.92) [168]. The fluorescence spectra were recorded with a Fluoro-Max-3 spectrome-
ter (JY-Horiba) at a slit width of 1.5 nm and an optical path length of 1 cm. For competitive
adsorption experiments an optical quartz cell was filled with 1.64 μM lysozymeFITC solution
and 2.4 · 10−5 μM of buffer-matched microgel suspension was added afterwards. This cor-
responds to a load of the microgel by lysozymeFITC of roughly 60%. Quenching effects of
FITC lead to a decreased fluorescence when lysozymeFITC penetrates the microgel network.
The fluorophore fluorescence peak was monitored at 518 nm. Increasing amounts of the
competing protein were injected step by step to the microgel solution loaded previously with
lysozymeFITC. After each injection step the system was equilibrated for five minutes under
stirring at 298 K previous to the measurement of the fluorescence intensity. The quenching
effect was used to quantify the concentration of non-adsorbed protein using a calibration
line (intensity vs. protein concentration). The amount of adsorbed proteins is the difference
between the total protein concentration and the concentration of non-adsorbed proteins in
equilibrium which contribute to the remaining intensity.

It has to be noted that all DLS, ITC, and fluorescence spectroscopy experiments on protein
adsorption described above, whether single or competitive, were performed by Dr. Nicole
Welsch, Michael Oberle, and Qidi Ran in the Institute for Functional Materials at Helmholtz-
Zentrum Berlin. Their experimental data sets will be described by the theoretical models
named previously.
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Figure 4.3: Hydrodynamic radii of the CSM particles at T = 298 K. The experimental data (filled diamonds)
are obtained from DLS measurements. (a) CSM radius RM (cs) as a function of the salt concentration cs in
the bulk (without proteins). The blue solid line is a theoretical fit according to Eq. (4.22). (b) CSM radius
RM (x) versus the molar ratio x = ctotP /cM of lysozyme at 7 mM ionic strength. The blue dashed line depicts
a simple empirical fit according to Eq. (4.35) used as input for the fitting of ITC binding isotherms. The
blue solid line is a theoretical prediction from Eqs. (4.22) and (4.25) based on electrostatic considerations
only.

4.3 Experimental and theoretical results of one-component

binding

The aim of this section is the comparison of results from protein adsorption experiments to
our theoretical model as introduced in the previous section. In the first part, we focus on the
swelling state of the CSM. Here, we describe theoretically the hydrodynamic radius change
of the CSM depending on the bulk salt concentration and on protein load. Afterwards, an
in-depth investigation of experimental bindings isotherms by the Langmuir and CB model
is performed. This analysis enables a more accurate separation between specific and electro-
static interactions of proteins with CSM particles. Finally, we perform an interpretation of
the applied Langmuir and CB models.

4.3.1 CSM deswelling by salt and proteins

As confirmed by previous experimental observations [14, 24, 30], DLS measurements depict
a deswelling of the CSM upon the systematic addition of salt up to a concentration of
cs = 1 M. The experimental data together with the result of Eq. (4.22) (solid line) are shown
in Figure 4.3 (a). The CSM radius decreases monotonically and saturates at cs = 1 M to
RM � 139 nm. The best fit of our mechanical balance approach yields a very good agreement
in almost the whole range of cs. From the fit we obtain R0 � 138.5 nm in the limit of cs → ∞
and thus a bulk modulus of KM(V0) = 204 kPa. Assuming Poisson’s ratio to be 1

3
valid for

neutral polyacrylamide or pNiPAm microgels [169, 170], then Young’s modulus E � KM .
The determined value for KM is thus fully consistent with recently measured Young moduli
investigated for varying BIS cross linker density at similar temperatures [171]. In the latter
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Figure 4.4: Experimental binding isotherms (symbols) measured by ITC for lysozyme at different salt con-
centrations at T = 298 K. The solid lines are results from fitting to (a) the Langmuir binding model and (b)
the CB model. See Table 4.1 and 4.2 for the obtained fitting parameters.

E was measured between 80 kPa and 500 kPa for BIS contents of 2% and 10%, respectively,
compared to 5% in this thesis. This good agreement confirm our considerations leading to
Eq. (4.22).

The DLS measurement of the CSM radii depending on the molar ratio x of lysozyme at 7 mM
salt concentration is shown in Figure 4.3 (b). Analogously to the salt-only case, deswelling
of the CSM is now observed with increasing protein load. In the saturation regime, that
is at x � 1.1 · 105, the CSM radius is notably smaller than R0 pointing to binding-related
network tightening. By fitting the DLS data to the the empirical fit Eq. (4.35), we find
Rmax � 172 nm, Rmin � 129 nm, Δ � 24000; x0 can be identified with the number of
binding sites NP . Thus, the CSM volume in a fully loaded state is V0

Vmin
� 1.3 times smaller

than in the neutral reference state. If we assume that the charged proteins under full load
lead to complete charge neutralization and, therefore, pion � 0, then the bulk modulus KM

induced by protein binding scales ∝
(

V0

Vmin

)9/4

and is approximately 1.7 times larger than
without proteins. Hence, the CSM is roughly two times stiffer due to protein adsorption.
This has to be considered as a lower bound as it is likely that ionic contributions to the
osmotic pressure still play a role, and may be protein osmotic effects due to excluded volume
interactions need to be considered.

However, in order to check to which amount purely electrostatic effects by proteins induce
CSM deswelling, we plot the description by Eqs. (4.22) and (4.25) also in Figure 4.3 (b) using
the experimental ITC binding isotherm NP (x) as input. This description is now a prediction
without any adjustable variables. While the overall shrinking of the CSM is reasonably cap-
tured, the model yields a too fast decrease for small x. This may point to shortcomings of the
mean-field cell model (see Section 4.1.2) since ion and protein fluctuations are not included.
For large x, the experimental saturation of Rmin � 129 nm is not reached, indicating that
non-electrostatic effects to the CSM elasticity play a role. Similar unsatisfying performances
of simple Donnan models have been observed also in a recent work [30]. However, from our
comparison it is quite reasonable to judge that the dominant effect to CSM deswelling by
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Table 4.1: Thermodynamic parameters determined from fitting the ITC data to the standard Langmuir
model at T = 298 K. A lower LSD value corresponds to a better fit quality.

cs ΔHITC N
K ΔG0 LSD[mM] [kJ/mol] [L/mol] [kBT]

7 60.7 60100 2.62 · 106 -14.8 123
17 66.1 52800 6.25 · 105 -13.4 82
32 83.8 37600 1.85 · 105 -12.2 62

protein uptake originates from osmotic pressure caused by the ions.

4.3.2 Characterizing experimental binding isotherms

The protein lysozyme was object of many different protein adsorption studies since it is stable
and very well characterized [172, 173]. For this reason, lysozyme appears to be a suitable
choice, which was also selected by the experimenters to investigate in detail the adsorbing
process on the CSM. In the following paragraphs, we first compare the experimental binding
isotherms of lysozyme at different salt concentrations to the Langmuir and CB model, while
the adsorption behavior of the other proteins to the CSM are discussed afterwards.

Langmuir model

The evaluation of the ITC data by the standard Langmuir binding model at 7 mM, 17 mM,
and 32 mM ionic strength is presented in Figure 4.4 (a). As mentioned before, the Langmuir
binding model is very sensitive in the pre-saturation region. The resulting fitting parameters
are summarized in Table 4.1. From looking at the fits by eye and judging from the overall
least square deviation (LSD) to the ITC data (cf. Table 4.1), all fits look comparably well.
Here, we observe that the number of Langmuir binding sites NS decreases with increasing
ionic strength. The reason is a priori unclear as the Langmuir model assumes a fixed number
of binding sites independent of ionic strength. We further notice that the heat of adsorption
ΔHITC slightly increases with ionic strength. More importantly, K or rather ΔG0 stays
fairly independent of cs.

Cooperative binding model

The fitting of the same ITC data set by the CB model including the volume change of
the CSM is presented in Figure 4.4 (b). The corresponding fitting parameters are listed
in Table 4.2. Note again that the initial CSM volume at x = 0 decreases for increasing
ionic strengths (see Figure 4.3 (a)). For the data set measured at 17 mM and 32 mM ionic
strength no DLS data were available. Thus, VM is obtained by using the known Rmax from
Figure 4.3 (a) and x0 = NP , while Rmin = 129 nm is used from the 7 mM fit. The only
free variable Δ is employed as an additional fit parameter obtained by least square fitting
to ITC data. We find that Δ appears to be correlated with the change of the sharpness of
the binding isotherms NP with cs.
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Table 4.2: Results of fitting the same ITC data set to the CB model with RP = 1.9 nm and ZP = +7 e at
T = 298 K. The change of the CSM volume was considered in the fit according to Eq. (4.35).

cs ΔHITC ΔG0 LSD[mM] [kJ/mol] [kBT]
7 59.1 -6.3 46
17 62.1 -6.7 38
32 70.1 -6.5 153

Like for the Langmuir binding model, the binding isotherms are described excellent with
the CB model according the LSD to the experimental data. The resulting values for the
heat ΔHITC are also consistent with the Langmuir fits except for the 32 mM data set. This
is not surprising, as this value is determined by the plateau in Q′(x) for small x, far away
from the saturation regime. For that reason, ΔHITC = 70.1 kJ

mol for the 32 mM date set
is more reasonable instead of 83.8 kJ

mol obtained from the Langmuir binding model. The
fitting parameter NP is now directly calculated in the CB model, depending on the packing
fraction η and thus on RP , the effective hard core radius of the protein. The agreement is
remarkable and justifies the assumptions leading to the CB model, i.e., the packing picture
of globular proteins. A very small salt dependency of ΔG0 remains, indicating a slightly
inaccurate subtraction of the nonspecific effects in this model. However, the salt concen-
tration dependency is low and on average we find ΔG0 � −6.5 kBT. This value might be
attributed to hydrophobic interactions or possibly other local binding effects. We also note
that the effective net charge of chicken egg white lysozyme as used in this experiments may
be slightly larger on average due to protonation effects within the CSM [22]. However, using
ZP = +7.5 e or +8 e for lysozyme in our analysis we end up with a similar ΔG0 � −6.5 kBT.
The reason is that while the prefactor in the electrostatic contribution (4.20) rises, the Don-
nan potential (4.3) decreases quicker with load. These effects roughly cancel each other for
our particular system.

A conspicuous point is the difference in the magnitude of the intrinsic adsorption energy
ΔG0 in both models. At 7 mM ionic strength, we obtain from the Langmuir binding model
roughly ΔG0 � −15 kBT and from the CB model ΔG0 � −6.3 kBT. The volume change
has a considerable effect on the electrostatic contribution which grows by several kBT (see
Section 4.3.3). This trend can be understood by the fact that the monomer charge density
cM = NM

VM
increases with CSM shrinking due to protein adsorption and the contributions in

ΔGel as given by Eq. (4.20) rise. Considering volume changes in charged systems is important
for quantitative fitting, especially in those systems where deswelling is significant. In contrast
to the standard Langmuir binding model, the nonspecific electrostatic contributions have
been consistently separated and the remaining ΔG0 becomes salt concentration independent.

Furthermore, we would like to comment on the magnitude of ΔG0 � −6.5 kBT for the
intrinsic interaction of lysozyme with the pNiPAm network. If methane-methane interactions
are taken as reference with attractions on the order of 2-3 kBT, then 6.5 kBT correspond to 2-
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Figure 4.5: (a) Binding isotherms of papain, cytochrome c, and RNAse A onto the CSM at 7 mM ionic
strength and T = 298 K. (b) Change of the hydrodynamic radius of the CSM during protein uptake as
obtained by DLS measurements. The DLS data are fitted by Eq. (4.35) and used as input in the CB model
to fit the binding isotherms.

3 hydrophobic protein-pNiPAm contacts on average which seems reasonable. Increasing the
temperature leads to an increase in ΔG0, which is conform with the signature of hydrophobic
interactions [174]. A recent study on a similar system showed hardly uptake of lysozyme
by an uncharged pNiPAm microgel [30]. Reasons for this discrepancy may be the different
batches of CSM which may differ, e.g. in larger pore sizes within the CSM. Alternatively,
we overestimate the effects of hydrophobicity and other local effects, such as salt bridges.

Other proteins

In the previous paragraph we have successfully separated the salt-independent intrinsic free
energy. This advantage enables us to study the adsorption for other proteins at one single
salt concentration.

The single adsorption of papain, cytochrome c, and RNAse A to the CSM at 7 mM ionic
strength by ITC demonstrates also a strong binding. The resulting binding isotherms are
presented in Figure 4.5 (a), while the corresponding thermodynamic parameters are summa-
rized in Table 4.3. The uptake of all proteins by the CSM is endothermic since ΔHITC > 0.
A particular point is the order of the binding enthalpies. Those are associated apparently
with the net charges Zi, because the magnitude of ΔG0 is almost same for all proteins. Pa-
pain possesses the largest net charge and consequently the largest enthalpy change, followed
by cytochrome c and RNAse A. Hence, protein adsorption onto oppositely charged CSM
particles is due to electrostatics and essentially determined by the net charge of the proteins.
The ionizable groups on the protein surface play certainly a significant role in the binding
process. This is the most likely reason why the swelling state of the CSM is different for
all investigated proteins as shown in Figure 4.5 (b). For example, the adsorption of papain
lead to a deswelling of roughly 65% of the core-shell particles, while for cytochrome c and
RNAse A the effect is less pronounced. This indicates that shrinkage is due to specific bind-
ing effects between CSM network monomers and adsorbed proteins. The protein radii RP
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potential μlys

used in this model show a very good agreement with hydrodynamic radii known from litera-
ture [175–178]. The same is true for the protein charge ZP . The values were calculated from
experimentally determined protein crystal structures provided by the Protein Data Bank
(PDB) [179] or in case of RNAse A from literature [180]. Table 4.3 summarizes all model
parameters. The experimenters observed aggregation in adsorption experiment with papain
at molar ratios x > 80000 (data not shown). Further experiments with papain were carried
out not exceeding x ≈ 80000.

4.3.3 The total binding energy

Figure 4.6 (a) presents the total binding affinity ΔGtot = ΔG0+ΔGel+μ of all investigated
proteins in the one-component case as obtained from the fitting of the ITC data at 7 mM
ionic strength. Evidently, ΔGtot is not a constant as presumed in the Langmuir binding
model, but depends strongly on the protein load and thus on the molar ratio x. At low
molar ratios, the binding affinity of lysozyme is the largest with ΔGtot � −21 kBT followed
by papain with roughly ΔGtot � −18 kBT. Lysozyme has the highest intrinsic adsorption
free energy and a relatively high net charge as shown in Table 4.3. Papain possesses the
highest net charge of all proteins and thus a higher electrostatic attraction to the oppositely
charged CSM. However, the non-electrostatic binding, expressed by ΔG0, is lower compared
to lysozyme and therefore binds as the second most. The two other proteins, cytochrome
c and RNAse A bind less strongly to the CSM, which is reflected by their properties, also
summarized in Table 4.3. From a thermodynamic point of view, the total binding energies
ΔGtot of all proteins have to converge to the same value in equilibrium. In fact, it is not the
case as the protein density inside the CSM obviously depends on the CSM volume VM . VM

itself depends on the molar ratio x in a protein-specific way.

For practical reasons, we show in Figure 4.6 (b) the different contributions to the binding
affinity for lysozyme at 7 mM ionic strength. The intrinsic adsorption free energy ΔG0 is
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Table 4.3: Summary of the thermodynamic parameters determined from the binding isotherms of the ad-
sorption of individual proteins onto the CSM at 7 mM ionic strength and T = 298 K.

ΔHITC ΔG0 RP ZP

Protein [kJ/mol] [kBT] [nm] [e]
Lysozyme 59 -6.5a 1.9 (1.9)b +7 (+7)c
Papain 73 -4.5 2.2 (2.0)b +8 (+7)c
Cytochrome c 25 -4.7 1.7 (1.8)b +6 (+7)c
RNAse A 16 -4.1 1.8 (1.9)d +4 (+4)d
a: averaged over 7 mM, 17 mM, and 32 mM ionic strength, b: values for the hydrodynamic radii from literature, c: calculated
protein charges from crystallographic structure (lysozyme: 193L, papain: 1PPN, cytochrome c: 2B4Z, RNAse A: 1AFU), d:
from reference [180]

a constant contribution, while the electrostatic energy ΔGel and the configurational chemi-
cal potential μ contributions depend explicitly on x. μ accounts for the entropic penalty
of hard-sphere packing and is negligible small at low molar ratios. However, μ increases
to unfavorable 3 kBT in the saturation regime. We found ΔG0 � −6.5 kBT for lysozyme
which constitutes roughly 1

3
or 1

2
of the total binding affinity in the small and high load

regimes, respectively. The electrostatic binding energy as expressed by Eq. (4.20) consists of
the electrostatic transfer energy and the Born solvation energy. The first term depends on
the protein charge and the Donnan potential. At the beginning of the titration experiment,
the magnitude of the Donnan potential is considerable and about 1.77 kBT

e (� 44 mV). The
potential quickly decreases with protein load due to charge neutralization. The Donnan
potential is also expected to be highly correlated with the surface potentials of the micro-
gel which governs colloidal stability in solution [30]. We find that the Born contribution
constitutes a favorable 2-3 kBT to the electrostatic energy and cannot be neglected. Thus,
the electrostatic contribution for very small protein loads (x � 0) is big and may assume
values up to −15 kBT. This energy decomposition reveals that electrostatic forces contribute
mainly to the binding event.

4.3.4 Interpretation of Langmuir and cooperative binding model

results

In Section 4.3.2 we argued that the CB model is formally equivalent to the Langmuir ap-
proach in the low packing regime (η � 1), if the number of binding sites, NP , is equal to the
number of free spots, VM

2B2
. Indeed, if we consider a mean CSM radius of RM = 150 nm and for

instance a protein diameter σP = 3.8 nm for lysozyme, we end up with NP = VM

2B2
� 59000.

This is completely consistent with numbers obtained from fitting to the Langmuir binding
model, cf. Table 4.1. This agreement implies that the strict Langmuir assumption of a fixed
set of binding sites can still be considered as an interpretable quantity, even if the nature
of the bound state is not well-defined. From that point of view, the decrease in NP in the
Langmuir models with increasing ionic strengths can be understood: for increasing cs, the
CSM volume VM decreases and packing penalties becoming more important for a smaller
number NP of bound protein. Hence, in the standard Langmuir fitting of the ITC data sets
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for adsorption onto soft materials [22, 23, 25–27, 160], it is not likely that a condensation-
like binding of proteins takes place. Thus, the stoichiometry of binding may be interpreted
taking packing effects into account.

As we demonstrated in Figure 4.6 (b), the electrostatic and configurational energies and
therefore the total binding affinity ΔGtot are functions of the molar ratio x. Consequently, the
question arises how the constant K from the standard Langmuir fitting can be interpreted [22,
23, 25–27, 160]. As argued in Section 3.5.1 fitting is most sensitive within the pre-saturation
region x � NP . Indeed, the data in Figure 4.6 (a) shows that ΔGtot(x � NP ) equals
the values of the standard Langmuir fitting, see Table 4.1. Thus, we can conclude that a
binding constant obtained from a standard Langmuir fit is a reasonable number, which can
be interpreted as binding affinities in the pre-saturation regime, i.e., in the intermediate to
high protein load regime, where also volume changes are not so large anymore. However, for
small protein loads (x � NP ) our separation into electrostatic and hydrophobic contributions
shows that binding affinities can be much larger than in the pre-saturation regime. This may
have implications for the modeling and interpretation of protein binding kinetics [22, 24, 51,
181].

4.4 Competitive protein adsorption of binary mixtures:

comparison between experiment and theory

In the previous section we have elaborated thermodynamical parameters of single protein
binding onto CSM using our CB model. As a matter of course, these parameters can be
reinstated into the CB model to predict competitive adsorption between two or more proteins
onto the CSM. This type of prediction is new for multi-component mixtures of proteins
because no further parameters as listed in Table 4.3 are involved.

The results of competitive protein adsorption experiments by means of fluorescence spec-
troscopy at 7 mM salt concentration are shown in Figure 4.7. First, around 60% FITC
labeled lysozyme (lysozymeFITC) proteins are adsorbed to the CSM. The binding fraction
Θ is calculated by assuming a maximum number of binding sites of NS = 65000 from ex-
perimental consideration. When a second protein bounds onto the CSM, a certain number
of lysozymeFITC will be released and thus recorded by the change of the fluorescence inten-
sity. We investigated the competitive adsorption of unlabeled lysozyme to a CSM loaded
with lysozymeFITC as shown in Figure 4.7 (a). In this case, all thermodynamic parameters
are the same and no CSM volume change is assumed. Moreover, this particular case can
also be exploited to demonstrate the reversibility of protein adsorption onto the CSM and
more importantly to proof the validity of our CB model. The lysozymeFITC-lysozyme ex-
change exhibits the predicted intersection point at nearly half the initial binding fraction at
Θ ≈ 0.38. At the intersection point, the ratio between lysozymeFITC and unlabeled lysozyme
is 1:1. This confirms that protein adsorption to the CSM is a equilibrium process without
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Figure 4.7: Competitive protein adsorption measured by fluorescence spectroscopy at cs = 7 mM and
T = 298 K. (a) lysozymeFITC vs. lysozyme, (b) lysozymeFITC vs. cytochrome c, (c) lysozymeFITC vs.
papain, and (d) lysozymeFITC vs. RNAse A. Θ is the binding fraction calculated from the change in
fluorescence intensity. Solid and dotted lines predict the competitive adsorption based on the CB model.

a doubt. For the other proteins we incorporate the CSM volume change by an interpo-
lation of VM as defined in Eq. (4.36). Except for papain, all predictions by theory agree
quantitatively with experimental binding and desorption values of the competing proteins.
Thus, RNAse A displaying the lowest binding constant and net charge, replaces the bound
lysozymeFITC (Figure 4.7 (d)) to a lower extent than cytochrome c (Figure 4.7 (b)). Using
ΔG0 = −4.5 kBT for papain, the prediction of the CB model is not satisfying. However,
adapting ΔG0 = −6 kBT, agreement with the experimental data set can be achieved. This
discrepancy is not entirely understood. The reason may be probably a strong mutual attrac-
tion of the bound proteins within the CSM, which is not yet included in the CB model.

4.5 Concluding remarks

In this chapter, we have introduced a multi-component cooperative binding model to char-
acterize physical interactions of protein adsorption onto CSM particles in thermodynamical
equilibrium. In particular, single and competitive adsorption of lysozyme, papain, cyto-
chrome c, and RNAse A by the CSM was experimentally studied and compared with model
calculations. The model separates electrostatic cooperativity and yields a salt-independent
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(intrinsic) interaction energy ΔG0 of proteins with CSM particles. Packing constraints be-
tween the proteins inside the CSM as well as the deswelling behavior of the CSM vol-
ume were also taken into account. Hence, a more quantitative interpretation of binding
value [22, 23, 25–27, 30, 31, 160] in terms of separate physical interactions is possible. We
have shown particularly that fitting based on standard Langmuir binding models yields in-
terpretable binding affinities and stoichiometry. Once the intrinsic adsorption free energies
are obtained from ITC experiments with one-component protein solutions, the competitive
adsorption of an arbitrary mixture can be predicted. Here, we have successfully predicted
the competitive adsorption and desorption of binary protein mixtures onto the CSM.

45



46



5 Simulation of protein adsorption onto soft poly-
meric biomaterials

This chapter presents a comprehensive study of protein adsorption to a single polyelectrolyte
and planar polyelectrolyte brush by means of Langevin dynamics computer simulations. By
constructing well-defined models for patchy proteins and coarse-grained models for the PE
materials, the adsorption process as well as the effective pair interactions between like-
charged proteins, associations of like-charged protein-PE complexes, and the uptake of an
oppositely and like-charged protein by a PE brush are investigated depending on various
physical parameters. Simple analytical models are also developed and compared to the
simulation results.

5.1 Models and methods

In this section, we introduce the models used for the biomaterials and describe the method
and details of the simulations. How we calculate the potential of mean force between two
binding partners, specify ion condensation on the surface of the biomaterials, and define a
patch vector is explained afterwards.

5.1.1 Charged patchy protein models

Our aim is to introduce spherical particle models for nanometer-sized globular proteins that
do not unfold and change their structure with well-defined patchiness and multipolarity,
including the effects of charge discreteness. For this, we start the construction of our charged
patchy protein models (CPPMs) with subdivisions of the triangular faces of an icosahedron.
This way we obtain points (represented as colored beads in Table 5.1) and project them
onto a sphere with radius RP = 2 nm. This is a size typical for small globular proteins such
as lysozyme or lactoglobulin [182]. With that, the rough but essentially spherical surface is
composed of 642 beads plus one auxiliary bead we place in the centroid and can be bonded
to surface beads for an additional stabilization of the structure. The bond length bP of
neighboring beads on the surface is between 0.28 nm and 0.31 nm, while the spring constant
KP connecting neighboring beads is fixed to 4100 kJ

mol nm2 .
To build a charge patch, one bead on the surface is randomly chosen and subsequently the
closest neighbor beads are selected until the required patch area AP = 3 nm2 is achieved.
This size of the area is on the same order as the size of naturally occurring larger clusters
of charged amino acids of the same sign, based on the inspection of crystal structures of
small globular proteins such as lactoglobulin [183]. Afterwards, s positive charges are placed
on the patch. We construct protein models with one (m = 1) or two (m = 2) patches.
In protein models with two patches the patches are antipodally directed, that is, on the
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Table 5.1: A Summary of our charged patchy protein models (CPPMs) denoted by Pm
s . The index m stands

for the number of patches, while s denotes the number of positive charges on each patch. In the images
of the CPPMs in the top row, the pink beads depict the negatively charged atoms, while turquoise beads
depict the positively ones. Yellow and white atoms depict the same neutral atoms and are only distinguished
here to better illustrate the patch region which roughly has an area of 3 nm2. All CPPMs have a radius
of RP = 2 nm and a net charge of QP = −8 e. The patchy proteins carry individual dipole moments
as also summarized in the Table. The corresponding quadrupole (tensorial) moments are provided in the
Appendix B.

Label P 0
0 P 1

8 P 1
12 P 1

16 P 2
8 P 2

12

Radius RP [nm] 2 2 2 2 2 2
Patch area AP [nm2] 0 3 3 3 3 (x2) 3 (x2)
Total charge QP [e] -8 -8 -8 -8 -8 -8
Dipole moment μP [D] 158.67 896.03 1328.71 1632.67 206.41 151.12

exact opposite sides. In order to assign a net charge QP to the patchy proteins, we fixed
the number of negatively and positively charged beads to be Nn = 37 and Np = 29 in
all protein models. Thus, the resulting net charge of the patchy proteins is QP = −8 e
for all CPPMs, comparable to absolute protein net charges of proteins of similar size at
physiological conditions. The Nn negative charges are homogeneously distributed on the
surface around the positive patch. The remaining Np−m · s positive charges are distributed
in such a way that charged beads (positive or negative) are not immediately adjacent. Our
globular protein models are denoted by Pm

s where m specifies the number of patches and s

the number of positively charged beads per patch.
See Table 5.1 for illustrative snapshots and a summary of the CPPM features, in particular,
the dipole moments. In our models we consider m = 1, 2 and s = 8, 12, 16 resulting in mean
patch charge densities (per area) of around 1 to 2 e/nm2 corresponding to a local assembly
of a few amino acids separated from each other by a few Ångströms [61, 183]. The dipole
moments are in the range of 159 Debye to 1633 Debye, cf. Table 5.1, also comparable to
proteins of this size. Lactoglobulin, for instance, has 730 Debye [184]. The quadrupole
moments of the patchy proteins are given in the Appendix B.

5.1.2 Polyelectrolyte and polyelectrolyte brush models

A simple bead-spring model for the PE chain and PE brush that is suitable for our purposes
is described in the following.

Polyelectrolyte

A single flexible PE is modeled in a coarse-grained fashion as a sequence of Nmon freely
jointed beads. Each bead represents a monomer with a radius σLJ and an electric charge of
one negative elementary charge e. Thus, the fraction of ionized monomers is fmon = 1. The
PE monomers are connected by a harmonic bond potential with an equilibrium bond length
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Figure 5.1: Coarse-grained models of single polyelectrolytes and a polyelectrolyte brush. Typical configu-
rations of PE chain lengths with (a) PE25, (b) PE50, and (c) a PE brush B50 with 50 monomers per PE
chain.

bmon = 0.4 nm and a force constant Kmon = 4100 kJ
mol nm2 . The flexibility of the PE chain is

ensured via a harmonic angle potential in which the angle between a triplet of monomers is
γ = 120◦ and the force constant is Kγ = 418 kJ

mol rad2 . In our studies, we consider relatively
short PE chains with monomers of Nmon = 25 and Nmon = 50 as used in related experimental
studies [185–187].

Polyelectrolyte brush

The PE brush model is composed of 16 flexible PE chains each with 50 monomers and fixed
at one end on a neutral and planar surface in equidistant spacings. With a surface area
of 100 nm2, the grafting density corresponds to τB = 0.16 molecules

nm2 . See also Figure 5.1 for
example snapshots of single PE chains and PE brush.

5.1.3 Simulation method and details

In our simulations, the dynamics of each bead is governed by Langevin’s equation of motion
(see Section 3.3). The potential energy of the system U is given by

U = Ubond + Uang + ULJ + UCoul + Ures, (5.1)

where Ubond and Uang are harmonic intramolecular bonded and angular interactions between
neighboring beads in a molecule. Note that we have not specified angle potentials for the
patchy protein models. Interatomic Lennard-Jones interactions ULJ between all non-bonded
beads and Coulombic interactions UCoul between all charged beads govern the pair potential.
Additionally, we have applied a harmonic restraint potential Ures to fix a molecule or atoms
to a reference position.
The simulations are performed using the GROMACS 4.5.4 software package [188]. A leap-
frog algorithm with a time step of 2 fs is used to integrate the equations of motion. The
Langevin thermostat with ξi = 0.5 ps−1 keeps the temperature at T = 298 K. Center of mass
translation of the system is removed every 10 steps. The cut-off radius is set to 1.2 nm to
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calculate the real-space interactions, while Particle-Mesh-Ewald (PME) is implemented to
account for long-range electrostatics [189]. The solvent is modeled as a continuous medium
with a static dielectric constant εr = 78.44 whereas the ions are explicitly considered. All
particles (either a bead or an ion) have mass mi = 1 amu, diameter σLJ = 0.3 nm, energy
well εLJ = 0.1 kBT and integer charges qi = 0, +1 or -1 e. The mass was chosen artificially
low to enhance orientational fluctuations and sampling. Clearly, equilibrium properties, as
investigated in this thesis, are not affected by any reasonable mass choices as long as the
simulations are ergodic.

Setting up a simulation box

Since we consider different types of systems, it is appropriate to select suitable simulation
boxes for the respective systems to prevent artifacts and to realize an isolated system.

1. Protein-protein and protein-PE simulations
For the simulations of single and pairs of patchy proteins as well as protein-PE complexes,
a cubic box with side lengths of L = 30 nm is employed and periodically replicated in
all spatial directions to generate a quasi-infinite system. The PME method is computed
in the reciprocal space with a FFT grid of 0.47 nm spacing and a cubic interpolation of
fourth-order. When building the simulation box, the protein with the lower dipole moment
in case of protein-protein simulations and the protein in case of protein-PE simulations are
position-restrained in the box center but still free to rotate. The respective second molecule
is initially positioned at a distance of r ≈ 11 nm relative to their individual mass centers.
Note also that in single protein simulations the protein is also position-restrained in the
center of the box.

2. Protein uptake by a PE brush simulations
The rectangular simulation box with Lx = Ly = 10 nm, and Lz = 30 nm is periodic only
in the x, y-directions, while at z = 0 nm and z = 30 nm walls are placed. The walls, each
having a density of 0.5 nm3

nm2 are represented by a 9-3 Lennard-Jones potential. The reciprocal
summation of the PME method is still computed on a 3D FFT grid but with spacings of
0.32 nm in x, y-directions and 0.23 nm in z-direction using a fourth-order interpolation.
Because of the periodicity, a correction term to the Ewald summation in the z-direction is
added to produce a pseudo-2D summation [190, 191]. While one end of the PE chains is
position-restrained in the immediate vicinity of the wall at z = 0 nm by a harmonic potential,
the globular protein is initially placed at z ≈ 26 nm.

After the simulation box is set up, the corresponding number of counterions is added to ensure
electroneutrality of the system. Additionally, monovalent salt of different concentrations cs

is added to the system. Because all ions are randomly placed, the system is relaxed for
100 ps to remove local contacts and afterwards equilibrated for 30 ns.
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5.1.4 Calculating the potential of mean force

For calculating the potential of mean force (PMF) between two binding partners we use
steered Langevin dynamics (SLD) [85] as realized by the pull code in the GROMACS soft-
ware. Here, the center of mass of one molecule (either a protein or a PE) is restrained in
space by an external time-dependent force. This force is applied as a constraint, e.g. by
a harmonic potential, and moved with a constant pulling velocity vp to steer the molecule
in the prescribed direction [85]. After several test runs, the pulling rate vp = 0.1 nm

ns was
chosen which is small enough to warrant equilibrium sampling and a harmonic force constant
Kp = 2500 kJ

mol nm2 . The pulling rate also determines the simulation time that is required to
bring the binding partners from a separated state to a contact state. The simulation of the
PMF takes 70 ns (3.5 · 107 steps) between two globular proteins, 105 ns (5.25 · 107 steps) for
the formation of a protein-PE complex, and 240 ns (1.2 ·108 steps) for the protein uptake by
a PE brush. The standard deviation was calculated by standard block averages to specify
the statistical error.

After a successful simulation run, the friction force Fvis = −mξvp was subtracted from the
constraint force and averaged within a specific interval of discrete spacing Δr to obtain the
mean force. According to our simulation setup, the mean force was integrated backwards
to get the PMF. Because the object is constraint in space, the PMF has to be corrected for
entropic effects [192–194] by

w(r) = wI(r)− (c− 1)kBT ln[r], (5.2)

where wI(r) is the integrated mean force and c the dimension of the constraint.

Additionally, standard umbrella sampling (US) simulations as implemented in GROMACS
were carried out for certain protein-protein combinations to countercheck the results of the
SLD method. We emphasize that in all our simulations the globular proteins were able
to rotate freely and thus all our results are orientation-averaged with the appropriate and
correct Boltzmann-weight.

5.1.5 Ion counting and patch orientation

In order to count ions in the immediate vicinity of a molecular surface of arbitrary shape,
a finite volume element over the surface is constructed. The volume element is made up
from the superposition of spheres with a fixed radius rs centered at each molecular bead
Bi as depicted in Figure 5.2 (a). Since the surface can be contorted, care is taken to the
overlapping volumes to avoid double counting of ions. As an example, consider following
situations (see Figure 5.2 (a)):

• The ion I1 is within the radius rs of B1 and B2 but closer to B2. Therefore, I1 is
condensed on B2 and is only counted once.
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a b

Figure 5.2: (a) A descriptive illustration of ion counting Ii in a finite volume element. For the construction
of the finite volume, spheres with radius rs are centered at each surface bead Bi. (b) A geometrical sketch of
the patch orientation. The angular orientation θi is defined by the patch vector pi and the distance vector
r connecting the two centers of mass of both molecules.

• The center of ion I3 is outside of the radius rs. Thus, I3 is not counted.

According to our definition, ions found in the volume element are condensed on the molecular
surface and Nc denotes the number of condensed ions. If it is not mentioned otherwise, rs is
fixed to 0.4 nm in this thesis.

The introduction of a patch vector provides a method to analyze the angular orientation
of the patch between the mass centers of the molecules of interest in dependence of their
center-to-center separation r, as represented in Figure 5.2 (b). The patch vector p points
from the protein center to the patch center and provides also a very good approximation of
the dipole direction of the P 1

s models. In our analysis we computed the distance-resolved
cosine of the angle θi(r) by

cos[θi(r)] =

〈
pi · r

|pi| · |r|
〉

r

, (5.3)

where we average 〈·〉r at a fixed distance r. The distance-dependent angular correlation of the
patch vectors is calculated via the second Legendre polynomial P2(cos[θ]) with P2(x) =

3x2−1
2

.
In protein models with two patches only one patch is used to calculate the orientation since
the patches are antipodally directed.

5.2 Simulations of charged patchy proteins

This section presents simulations with single and pair of patchy proteins in monovalent
electrolyte solutions. The main focus is put on the comparison of simulation results with
predictions obtained from theoretical models.

5.2.1 Ionic and potential distribution around a single protein

The normalized radial density distribution functions g±(r) = c±(r)
cs

obtained from simulations
with a single globular protein in an electrolyte solution of 20 mM and 100 mM ionic strength
are shown in Figure 5.3. As expected, counterions are overall concentrated around the
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Figure 5.3: Normalized radial density distribution functions g(r) of counterions and coions around a single
globular protein as denoted in the legend. The simulations were conducted in an ionic solution of (a) 20 mM
and (b) 100 mM. The black solid lines are predictions from the Debye-Hückel theory for a uniformly charged
sphere of the same net charge Q = −8 e.

oppositely charged spheres, while the coions show a more peculiar behavior. The latter are
depleted only for larger distances (r � 3 nm) while, apart from the patchless P 0

0 , they are
concentrated close to the protein. Even for P 0

0 a small peak of the coions at contact at
around r ≈ 2.3 nm is visible, owing to the discreteness and mixed charge distribution on the
protein surface, where a few coions are attracted to single positive beads. This demonstrates
clearly the presence of a local Stern layer of bound ions due to surface discreteness with
probable implications for the exact value of the surface potential.

In the case of one patch and increasing surface charge density (i.e., increasing s in P 1
s ) both,

the counterion and coion concentration close to the surface are enhanced. The reason is
the growing attraction of coions to the positive patches which in turn are neutralized by
accompanying counterions. However, increasing the number of patches from 1 to 2 inter-
estingly leaves the contact peaks roughly unchanged, even decreases it notably in the case
of coions at 20 mM ionic strength, pointing to some correlation effects between the two
patches. As expected, the addition of salt screens electrostatic interaction and the density
profiles in the 100 mM case are more short-ranged and have overall smaller contact peaks,
cf. Figure 5.3 (b). Additionally to the simulation results, in Figure 5.3 predictions from the
DH Eq. (3.11) for the ion profiles around a uniformly charged sphere of the same net charge
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Figure 5.4: Angle-dependent distribution functions g(r, ϑ) of (a) counterions and (b) coions around a single
globular protein Pm

s in an ionic solution of 20 mM. For the one-patched P 1
16 and two-patched P 2

12 a clear
modulation of counterion and coion density distribution is visible due to the accumulation of the respective
ions at the patches.

as the globular proteins are presented (solid black lines). Due to the spherical DH solution,
it is clear that the enrichment and contact peaks of the coion profiles can not be described.
For the simplest protein P 0

0 , which resembles closest a uniformly charged sphere, apart from
discreteness effects at the protein surface, the agreement is satisfying at 100 mM but fails at
20 mM. Deviations from this linear theory in the latter case must be obviously attributed
to the presence of high surface potentials, as will be shown further below.

Figure 5.4 (a) and (b) shows the angle-dependent distribution functions g(r, ϑ) for counter-
ions and coions, respectively, for the case of 20 mM salt concentration. Since P 0

0 is essentially
homogeneously charged there is no particular accumulation of ions to a certain angular
surface region. The situation changes when patches are present. For instance, P 1

16 has
a highly positive patch leading to a large accumulation of coions and to a depletion of
counterions at the patch in a range of ϑ : 0◦− π

4
. Because the patches in P 2

12 are antipodally
directed, accumulation and depletion of coions and counterions are found on both patches
(ϑ : 0◦−40◦ and 150◦−π). The range of accumulation of the ions (red regions in r-direction)
in Figure 5.4 (a) and (b) is well described by the DH screening length κ−1 ≈ 2.1 nm for
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20 mM ionic strength.

0

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

2 3 4 5 6 7

Φ
(r

)

r [nm]

P0
0

P1
8

P1
12

P1
16

P2
8

P2
12

0

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

2 3 4 5 6 7

Φ
(r

)

r [nm]

DH theory

0

-1.0

-0.8

-0.6

-0.4

-0.2

2 3 4 5 6 7

Φ
(r

)

r [nm]

(a) (b)

P0
0

P1
8

P1
12

P1
16

P2
8

P2
12

0

-1.0

-0.8

-0.6

-0.4

-0.2

2 3 4 5 6 7

Φ
(r

)

r [nm]

(a) (b)

DH theory

Figure 5.5: Dimensionless radial electrostatic potentials surrounding a single globular protein in a solution
of (a) 20 mM and (b) 100 mM ionic strength. The colored solid lines represent the electrostatic potentials
calculated from simulations via Poisson’s equation, while the black dashed line is a prediction from the
classical DH theory.

In Figure 5.5 (a) and (b) the dimensionless radial electrostatic potential Φ(r) around a single
globular protein is presented along with the DH prediction from Eq. (3.11) for uniformly
charged spheres with charge Q = −8 e and radius RP = 2 nm for 20 mM and 100 mM
salt concentration, respectively. The prediction from the pure DH theory is very good, even
without rescaling the charges since we operate in a regime of intermediate κRP � 1 and
small structural charges [97]. An interesting effect observable in Figures 5.5 (a) and (b)
is that with changing patchiness the electrostatic potentials hardly change. This can be
understood by looking at the cumulative (running coordination) number of counterions and
coions close to the protein surface as illustrated in Figure 5.6. Increasing patchiness enhances
the number of coions which in turn is accompanied by an increasing number of counterions.
The small difference of 2-3 ions between the cumulative numbers of the counterions and
coions ΔN = N+ −N− for increasing patchiness, shown in Figure 5.7, indicates that in the
vicinity of the protein surface (r ≈ 2.3 nm) there are only small changes in the radial net
space charge. Since the potential results from the (double) integration of the latter, the mean
surface potential prevails almost independent from the degree of patchiness. This finding is
not so obvious for the small salt concentration (20 mM) where we expected some nonlinear
effects in ion screening.
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symbols with error bars are simulation results.

5.2.2 Effective interaction between two proteins

In Figure 5.8 (a) the PMF between two neutral spheres is presented fitted by the Mie
potential (solid black line) with r = r−2R0 and the parameters n = 5, k = 3, ε∗ = 3.25 kBT,
σ∗ = 0.15 nm, and R0 = 2.05 nm. The radius R0 and the protein radius RP have slightly
different values due to the roughness and the fluctuations of the sphere surface. It can be
recognized that at large distances (r � 5 nm) no forces between the neutral spheres prevail.
Once the spheres come closer, the van der Waals attraction rises and leads to the global
minimum ε∗ at r ≈ 4.3 nm and upon further approach the PMF is expectedly repulsive.
The PMFs for the charged but patchless [P 0

0 − P 0
0 ] pair at ionic strengths of 20 mM and

100 mM are shown in Figure 5.8 (b) and (c), respectively. Both are mostly repulsive, as
anticipated, due to the long-ranged monopole repulsion, while at 100 mM ionic strength
the repulsion is shorter-ranged due to higher screening by the salt. At small separations
(r � 4.6 nm) both PMFs become attractive due to the van der Waals interactions. In
addition, the DLVO potential, that is, Eq. (3.19), and the OAPP Eq. (3.26) are also shown
in the figures. As expected from our successful DH description of the electrostatic potential
around a single P 0

0 , we find that the PMFs at 20 mM and 100 mM salt concentrations are
in very good agreement with the analytical models using RP = 2.0 nm, the dipole value
in Table 5.1 (for OAPP only), and a not renormalized charge QP = −8 e. Note that the
small difference of DLVO and OAPP PMFs in Figure 5.8 (b) arises from the small but
non-vanishing dipole moment of the P 0

0 particle.
Results for monopole-dipole [P 0

0 − P 1
s ] pairs with s = 8, 12, 16 are presented in Figure 5.9

and 5.10 for cs = 20 mM and cs = 100 mM, respectively. Note that in addition to the
SLD sampling of the PMF, standard umbrella sampling (US) was performed for [P 0

0 − P 1
16]

at 20 mM salt concentration. Within the statistical errors the SLD and US methods agree
indicating that the SLD technique is valid. In panel (a) of the figures the calculated PMFs
are shown, while the number of ions on the patch and the patch orientation along the
center-to-center separation are displayed in panel (b) and (c). As we see in panel (a), the
introduction of the patch leads to a considerable short-ranged attraction when compared to
the P 0

0 models. Hence, at small separations the standard DLVO potential fails to describe the
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Figure 5.9: Simulation results for [P 0
0 − P 1

s ] pairs with s = 8, 12, 16 at cs = 20 mM. (a) PMF along the
separation r. The black lines represent the DLVO potential (solid) and the OAPP (dashed). The statistical
uncertainty of the PMF is depicted by vertical error bars. US denotes a verifying independent umbrella
sampling calculation. (b) accumulated ions on the patch, and (c) displays the second Legendre Polynomial
of the patch orientation.
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Figure 5.10: The same as in Figure 5.9 but for cs = 100 mM.
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orientation-averaged interaction. However, by comparing to the OAPP the agreement within
the simulation errors is very good for the globular proteins with lower dipoles P 1

8 and P 1
12 even

for the relatively low salt concentration of 20 mM. For larger dipoles, P 1
16, the agreement is not

satisfactory anymore. Possibly agreement can be enforced by renormalization of monopole
charge and dipole moment values as input to the OAPP but we have not attempted such a
fitting exercise. Regarding the effect of salt on the PMF we observe that increasing the ionic
strength from 20 mM to 100 mM leads to a weaker electrostatic repulsion and higher short-
ranged attraction between the globular proteins. Also as expected for a linear electrostatic
theory a better performance of the OAPP model is observed for the higher salt concentration.

Inspecting the accumulated ions in Figure 5.9 (b) and 5.10 (b) on the patch surface it turns
out that at short separations ions are only weakly displaced from the patch surface. This
effect becomes stronger with increasing patch charge s and at most one ion is released from
the patch upon protein binding. In Figure 5.9 (c) and 5.10 (c) the angular orientation
P2(cos[θ]) of the patch along the center-to-center distance r is represented. At large r there
is no favorite alignment of the patch but this changes when the center-to-center distance
becomes closer. Around r ≈ 6 nm the globular proteins begin to align themselves with the
positive patch naturally pointing towards the negative protein. Since the orientation of the
protein is related to the charge-dipole interactions, the orientation of the patches becomes
most pronounced in the attractive regime of the PMF. Moreover, higher salt concentration
leads to a weaker alignment.

Figure 5.11 and 5.12 present simulation results of dipole-dipole [P 1
s − P 1

s ] pairs with s =

8, 12, 16 for 20 mM and 100 mM ionic strengths, respectively. With growing patch size
s, the dipole moment of the globular protein increases (see Table 5.1) which results in a
substantial attraction already at intermediate distances and a strong attraction on the order
of 10 kBT at contact. The corresponding PMFs are presented in Figure 5.11 (a) and 5.12 (a).
For the lower salt concentration, while DLVO as expected clearly fails, the OAPP model also
does not describe the simulated PMFs at 20 mM salt concentration. At cs = 100 mM the
agreement with OAPP, within the statistical uncertainty, is good again at least for the
smallest dipole protein. We further find that in the bound state the proteins have released
1-2 ions from the patch when compared to the unbound state. The orientational order shown
in 5.11 (c) and 5.12 (c) indicates parallel alignment of the patches along the distance vector,
as expected for dipolar arrangements, though less than for the monopole-dipole case. A
representative snapshot is shown in Figure 5.15 (a).

Results for proteins with antipodally aligned patches are presented in Figure 5.13 and 5.14 for
salt concentrations of 20 mM and 100 mM, respectively. The short-range attraction is consid-
erable but its range is smaller than in the dipole-dipole case due to the high quadrupole and
relatively small dipole moments of these globular proteins. Hence, for the smaller quadrupole
in [P 2

8 − P 2
8 ] up to a spatial approach larger than 5-6 nm the interaction is dominated by

the monopole contribution again as captured by the DLVO potential. The same is not valid
anymore for the [P 2

12 − P 2
12] PMF at 20 mM ionic strength where the quadrupole interac-
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Figure 5.11: Simulation results of two identical proteins [P 1
s − P 1

s ] with s = 8, 12, 16 and cs = 20 mM. (a),
(b), and (c) are the same as in Figure 5.9.
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Figure 5.12: The same as in Figure 5.11 but for cs = 100 mM.
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Figure 5.13: Simulation results for [P 2
s −P 2

s ] with s = 8, 12, cs = 20 mM and antipodally orientated patches
(m = 2). (a), (b), and (c) are the same as in Figure 5.9.
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Figure 5.14: The same as in Figure 5.13 but for cs = 100 mM.
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(a) (b)

Figure 5.15: Visualization of typical simulation snapshots at contact: (a) [P 1
16 − P 1

16] and (b) [P 2
8 − P 2

8 ].
Both snapshots are made in an ionic solution of 20 mM. The green colored beads are positively charged ions
while the red colored beads are negative ions.

tion is much stronger. The OAPP as employed in this work is not applicable anymore due
to the lack of consideration of the quadrupole interactions. At 100 mM ionic strength as
shown in Figure 5.14 all the weak long-ranged contributions are entirely screened and the
short-ranged effects remain strong and essentially unscreened. Figure 5.13 (b) indicates a
release of accumulated patch ions comparable to those found in the systems above. The
patch orientation in Figure 5.13 (c) implies a less pronounced patch orientation in distance
direction. A representative snapshot is shown in Figure 5.15 (b). The reason for the weaker
orientational order as probed by our order parameters is very likely the occurrence of patch
orientations perpendicular to the distance vector to satisfy local attraction to the positive
patch of the second protein.

5.3 Like-charged protein-polyelectrolyte complexation

In this section, we report on the complex formation between a single PE and like-charged
protein depending on different physical parameters. We also provide a simple counterion
release/Debye-Hückel model to satisfactorily explain the salt-dependent binding affinity of
the formation.

A simple model to combine ionic release and screening effects

An important quantity is the binding affinity of the PE to the patchy protein which in prin-
ciple is an easily accessible number in experiments through the measurement of equilibrium
binding constants [60, 61]. Since we resolve the total PMF along the distance coordinate,
the binding affinity can be naturally defined as the difference in free energy of the stable
complex versus the separated reference state. Hence, the binding free energy can be written
as

wmin(cs) = w(rmin, cs), (5.4)

where rmin is the location of the global minimum of the PMF characterizing the stable
complex. This binding affinity is in general a sum of van der Waals, PE chain entropy, and
multipolar electrostatic contributions (including ionic entropy effects). However, the first two
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Figure 5.16: Simple electrostatic model for describing the salt concentration dependence of the binding free
energy of a protein-PE complex. The PE chain on the right-hand-side is modeled as a charged sphere with
effective charge QPE and effective radius RPE . The simplified globular protein (left-hand-side) has a radius
RP and a negative charge QP located in its center, while a point charge with valence Zs (green spot),
representing the positive patch, is located on the surface along the connecting axis.

parts are at least one order of magnitude smaller than the electrostatic one for our systems
and will therefore be neglected in our discussion. For the interpretation of the resulting
salt concentration dependence of the electrostatic part, we compare our simulations to the
classical counterion release mechanism and complement it eventually to include screening
effects by mapping our system onto a highly simplified model of an interacting charge-dipole
system in the DH limit.

An obvious weakness of the counterion release approach is that it only captures the trans-
lational entropy contributions of the ions tightly condensed in the first layer of the PE and
protein (see Section 3.1.4). While this is justified for the PE, the picture is not so clear
for ions condensing on the charge patch of a weakly curved spherical surface [97, 195, 196].
For the latter, condensation and charge renormalization depends on the sphere size, charge
density, and salt concentration. For our protein model parameters, close to physiological
ones for globular proteins, we operate in a regime of intermediate κR � 1 and small struc-
tural charges of the globule and have not found any charge renormalization effects (see
Section 5.2.1). Hence, it is not unlikely that the counterion concept can only account for
binding effects near the PE, while ions around the patches have to be treated within a
conventional ionic-screening framework.

To account for this, we propose a combined counterion release/DH-screening (CR/DH) ap-
proach, where we consider the explicit condensation effect only on the PE and treat the rest
of the system in a simplified DH picture to treat the effects of screening. The strategy is
to map the simulated protein-PE system onto an interacting charge-multipole system and
treat it on an analytic Debye-Hückel level. An illustrating sketch is shown in Figure 5.16. In
our discussion later we will revolve around the one-patched, dipolar P 1

12 type of protein. In
our simplified model, therefore the patchy protein has a radius RP = 2.0 nm and a negative
charge QP = ZP e = −20 e located in its center, while a point charge with valence Zs = +12,
representing the positive patch, is located on the surface along the connecting axis. The PE
chain is modeled as a charged sphere with effective charge QPE = ZPEe and effective radius
RPE. For such a simplified model, where an extended dipole within a globule (protein)
interacts with a monopolar blob (PE), the electrostatic association free energy at contact of
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Figure 5.17: (a) Simulated PMF between a fully neutral spherical globule (no beads charged) and a neutral
PE25. The black solid line represents a fit by the Mie potential according to Eq. (3.18). (b) PMF profile of
a charged [P 0

0 − PE25] complex in an ionic solution of 20 mM.

the two spheres (rmin = RP +RPE) can be written down on a Debye-Hückel level as

βwmin(cs) =
ZPZPEλB

(RP +RPE)[1 + κ(cs)RP ][1 + κ(cs)RPE]
+

ZsZPEλB

RPE[1 + κ(cs)RPE]
+ Ñ ln

[
cs
cPE

]
,

(5.5)
where the first term accounts for screened monopole charge repulsion and the second term
effectively describes the screened electrostatic patch-PE attraction, and κ(cs) =

√
8πλBcs is

the usual inverse DH screening length. The last term is the contribution from the released
ions form the PE chain according to the Record-Lohman approach in Eq. (3.16). The
effective charge of the PE chain will be taken from the simulations in which the number of
condensed counterions is explicitly calculated. The remaining free parameter RPE will be
fitted to the results from the simulations of the ’real’ protein-PE complex and is expected to
be on the order of the radius of gyration of the chain of nanometer size. Note again that the
contribution of the configurational rearrangements of the PE on the extended patch surface
are not considered in this model, but believed to be small (on the order of a kBT) with
respect to the calculated binding affinities in the tens of kBT.

5.3.1 Reference simulations

We start our discussion of the PMFs with two reference cases specified by i) a charge-free
system which consist only of a neutral sphere and a short neutral PE25 as shown in Figure
5.17 (a) and ii) a homogeneously charged protein such as P 0

0 and a uniformly charged PE25

in an explicit ionic solution as depicted in Figure 5.17 (b), respectively. Note again that
the PMF is plotted versus the distance between the centers of mass of both molecules. The
PMF of the neutral complex exhibits a weak but long-ranged attraction but is otherwise
repulsive for short distances. The solid black line represents the Mie potential. It was used
to fit the PMF with n = 5, k = 3, σ∗ = 3.15 nm, and ε∗ = 0.33 kBT and shows good
conformity. The attraction must be attributed to van der Waals interactions (modeled by
the Lennard-Jones interaction between all beads), while the repulsion is due to the entropic
penalty from restricting available chain configurations to the PE. As expected, the simulated
PMF of the charged [P 0

0 − PE25] complexation at cs = 20 mM in Figure 5.17 (b) is purely
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Figure 5.18: Simulation results of [P 1
s − PE25] complexes with s = 8, 12, 16 in an electrolyte concentration

of cs = 20 mM. (a) PMF as a function of the distance r of the centers of mass of the patchy protein and
PE. (b) Number of condensed ions Nc(r) as a function of r. PCI denotes the number of positively charged
ions condensed on the PE, while NCI is the number of negatively charged ions condensed on the protein
patch. (c) Patch orientation with respect to the mass centers of the protein and PE displayed via the second
Legendre Polynomial.

Table 5.2: Snapshots of different patchy protein-PE complexes at cs = 20 mM and different center of mass
distances r. The green colored beads are positively charged ions, while the red colored beads are negative
ions.

Center of mass distance r in nm
Complex ∼1.5 ∼2.5 ∼5-6 ∼10

P 1
8 − PE25

P 1
12 − PE25

P 1
16 − PE25

P 2
8 − PE25

P 2
12 − PE25
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repulsive due to simple charge repulsion.

5.3.2 Influence of protein patchiness and salinity on complexation

We will now investigate the effect of changing the charge distribution on the surface of the
globular protein as well as the ionic strength on the effective interaction in more detail.

Results for one-patched proteins

The results of protein-PE simulations with one patch, P 1
s , and growing patch charge s =

8, 12, 16 at 20 mM salt concentration are shown in Figure 5.18, respectively. The PMFs
are now strongly attractive in the tens of kBT for a wide distance-range except for a small
repulsive barrier at around r ≈ 6 nm. For rising patch charge s (and thus increasing dipole)
of the patchy protein the attraction is more pronounced and the barrier vanishes. The insets
in Table 5.2 show typical configurations of the protein-PE complex in the stable bound state
at r ≈ 2.5 nm. Here, we can see that almost the entire PE chain is adsorbed on the patch
in the bound state. Configurations for other distances are also displayed in Table 5.2. For
r ≈ 10 nm the PE is desorbed and exhibits relatively stiff, rod-like configurations. For a
closer distance of about r ≈ 6 nm the PE is able to reach out and touch the attractive
patch; this is reflected in the onset of attraction in the PMFs in Figure 5.18 (a). The
distance r ≈ 1.5 nm in Table 5.2 corresponds to the closest distance approachable in our
SLD simulations and is, according to the PMF, energetically strongly penalized. Here, the
PE embraces the globular protein to fulfill the external force constraint in the SLD that the
PE center of mass is close to that of the globular protein.

The number of negatively charged ions (NCI) as well as positively charged ions (PCI) con-
densed on the protein patch and on the PE for the [P 1

s − PE25] simulations are shown in
Figure 5.18 (b). At large separations the number of condensed ions is fairly constant, while
the absolute value increases with growing patch charge s. When the PE begins to adsorb on
the patch, r � 6 nm, counterions and coions on both molecules are simultaneously released,
their number increasing the closer the associating partners come to each other. Hence,
protein-PE complexation is accompanied by a significant release of condensed ions mostly
stemming from the PE. A detailed analysis on numbers will follow in the next paragraph.
In Figure 5.18 (c) the patch orientations along the separation r with respect to the distance
vector are presented. For large distances (r > 7 nm) no correlation effect is observable,
however, when the PE begins to attach to the patch with its first monomer, a favorite orien-
tation of the patch towards the PE immediately locks in. This orientation persists until the
PE is completely attached to the patch. For very small distances r � 2 nm the orientation
correlation weakens due to the (forced) embracing of the PE around the globular protein.
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Figure 5.19: Simulation of [P 1
12 − PE25] at different salt concentrations ranging from 10 mM to 200 mM.

(a), (b), and (c) are the same as in Figure 5.18.

Effects of added salt

The influence of the ionic strength on the PMF and the ion release is investigated based
on the [P 1

12 − PE25] complex. The results for salt concentrations between 10 mM and
200 mM are presented in Figure 5.19. First of all, it is evident that the attraction of the
PMFs as depicted in Figure 5.19 (a) decreases with increasing salt concentration cs since
the electrostatic interaction between the patch and the PE monomers is more screened. A
further effect of the screening is that the beginning of the attraction (adsorption of the PE
head monomer to the patch) is shifted to shorter separations with increasing cs due to a
lesser stiffness of the PE chain. The corresponding number of condensed ions Nc is shown
in Figure 5.19 (b), respectively. It is clear that increasing the ionic strength leads to more
condensed ions on both molecules which can be unambiguously verified from the trajectories.
The average number of released ions is between 4.4 for the lowest salt concentration and up
to 7.8 for the highest salt concentration. The position of the Nc-minimum roughly coincides
with the PMF minimum, i.e., there is a clear correlation between ion release and attraction
for all salt concentrations. The patch orientation behavior, cf. Figure 5.19 (c), does not
exhibit any marked salt concentration behavior, apart from a shorter correlation range for
increasing cs due to the shorter attraction range discussed above.
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Figure 5.20: The binding affinity represented by the minimum value of the PMF, wmin, of the [P 1
12 − PE25]

complex as a function of the salt concentration cs (violet symbols) in a lin-log plot. The linear blue solid
line is a fit according to the fit function βwmin(cs) = ã+ Ñ ln[cs] with ã = −44.3 and Ñ = 4.9. The green
solid line is a fit to the combined CR/DH model around Eq. (5.5), see text for explanation.

Salt concentration of the binding affinity

To analyze the correlation between the free energy of binding wmin (the ’binding affinity’) and
salt concentration in more detail, we plot in Figure 5.20 the variation of the PMF minimum
with the logarithm of the salt concentration ln[cs]. As motivated by our discussion on ion
release effects around Eq. (3.16) in Section 3.1.4, we have fitted the data with a function of
the form βwmin(cs) = ã + Ñ ln[cs]. The result is also shown in Figure 5.20 and represents
actually a very satisfactory fit to the data with ã = −44.3 and Ñ = 4.9, implying that every
time an average of 4.9 ions are released upon complexation, independent of salt.

We go further into the details of the counterion release analysis by actually counting ions
and evaluating the free energy changes corresponding to ions released from patch and PE
as defined in Eq. (3.17), respectively. The results are summarized in Table 5.3. First we
would like to direct the attention to the value of Napart

+ , the number of condensed ions on
the PE chain in the isolated state. With a Manning parameter of Γ = 1.78 we expect
Nmon(1−Γ−1) = 10.9 counterions to be condensed right at the chain. As we see in Table 5.3,
we indeed find numbers between 9.7 at the lowest salt concentration up to 13.6 at the
highest cs, coinciding with the prediction but also exhibiting a noticeable salt dependence.
The number of released ions from the chain upon complexation, ΔN+ only slightly depends
on salt, increasing from roughly 3.5 to 4.7. This also agrees well with a prediction that
Zs · Nmon = 5.1, with the binding patch valence Zs = 12, should be released from the PE
upon binding. Hence, the ion-PE system behaves as expected and shows a very robust ion
condensation and release effect.

In contrast to the ionic behavior at the PE, the number of accumulated and released ions
on the protein patch, ΔN−, increases from about 1 to 3.2 in the considered concentration
range, i.e., a much stronger salt dependence of the number of released ions is found at the
patch. The individual free energy contributions wpatch and wPE, evaluated by Eq. (3.17),
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Table 5.3: A summary of the values of the PMF minimum wmin with respect to the salt concentration cs
and the number of condensed ions when the patchy protein and PE are apart (Napart

i ) and in the complexed
state (Nmin

i ) taken from the data for [P 1
12 −PE25] in Figure 5.19 and 5.18. The difference of condensed ions

is then ΔNi = Napart
i −Nmin

i . The concentration cpatch is the local density of negative ions on the protein
patch. For cPE in Eq. (3.17) we used a constant 3.5 M as measured in our simulation.

cs wmin Patch PE
[mM] [kBT] Napart

− Nmin
− ΔN− cpatch [M]βwpatch Napart

+ Nmin
+ ΔN+ βwPE

10 -32.3 0.96 0.00 0.96 1.36 -4.7 9.69 6.24 3.45 -20.2
20 -30.3 1.41 0.00 1.41 1.99 -6.5 10.39 6.62 3.77 -19.4
50 -25.3 2.09 0.02 2.07 2.96 -8.5 11.35 7.22 4.13 -17.5
100 -21.9 2.65 0.05 2.60 3.75 -9.4 12.42 7.93 4.49 -16.0
200 -17.6 3.31 0.15 3.16 4.68 -10.0 13.59 8.92 4.67 -13.4

are also shown in Table 5.3. Attractive contributions from the patch are actually growing
(from about −5 to −10 kBT) for increasing cs due to the significant increase of accumulated
ions on the patch. In contrast, the contribution from the PE is decreasing (from about −20

to −13 kBT) because the number of condensed ions stays relatively constant. Interestingly,
the sum of both contributions only shows little salt dependence and is about −25 ± 1 kBT,
while the simulated free energy is about 14 kBT from ca. 32 kBT at 10 mM to ca. 18 kBT at
200 mM. Clearly, the approach Eq. (3.17) cannot satisfactorily describe the values and trends
of the binding affinity with salt concentration. We believe that this must be assigned to a
missing counterion condensation mechanism on the protein patch, where only conventional
charge screening effects apparently play a role. We note that we have experimented with
the cut-off radii that define the condensed layer around the patch in a reasonable range but
have not found any qualitative improvement of the prediction.
The charge screening effect should be captured in our combined CR/DH model, Eq. (5.5), as
previously introduced. A best fit is also presented in Figure 5.20. Since we find on average
about 8 ions still condensed on the complexed PE, the PE charge QPE was fixed by an
effective valence of −25 − (−8) = −17. The number of condensed ions Ñ on the PE was
fixed to 4.9 as found in the Record-Lohman fit. The only remaining fit parameter is the
effective size of the adsorbed chain, RPE. For the best fit we find RPE = 1.17 nm. This
value is indeed close to the patch size and to the mean radius of gyration of about 1.3 nm
in the bound state (cf. Figure 5.21). As we can see in Figure 5.20 the fit describes the
simulated data very well with essentially only one fit parameter of reasonable value. It is
interesting to see that the DH part of the theory induces some curvature to the fitted curve
in addition to the linear logarithmic behavior in this lin-log plot. Actually such a curvature
can also be noticed made by the simulation data points. Hence, we have strong indications
that the combined CR/DH model captures the right physics in the system, in particular the
fact that the condensed ions on the PE only play the decisive role in the counterion release
framework.
In a recent experimental and computational study of Yu et al. [Paper V], it was found that
counterion release occur even in more complex protein models and essentially contribute to
the binding affinity. This also justifies the use of our patchy protein models.
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Figure 5.21: The mean radius of gyration RPE of the 25meric PE chain resolved versus the center of mass
distance to the P 1

12 protein at a salt concentration of 50 mM. The PE bulk value of the size RPE ≈ 1.6 nm,
increases at intermediate distances (r ≈ 5 nm), where the chain stretches out, to a value of RPE ≈ 2.1 nm
and collapses to RPE ≈ 1.3 nm in the bound state (r ≈ 2.4 nm).

Results for two-patched proteins

Figure 5.22 shows results of protein-PE complexes with two (m = 2) antipodally aligned
patches in an ionic solution of 20 mM. Despite an additional patch, the simulated PMFs
between [P 2

s −PE25] in Figure 5.22 (a) are less attractive compared to [P 1
s −PE25] systems

with s = 8, 12 (see Figure 5.18). Furthermore, a distinct shift of the global minimum to a
larger separation is present. A possible explanation could be that in patchy protein models
with m = 2 the negative charges are denser distributed on the surface leading to a raised
repulsive electrostatic interaction and a reduced attraction between PE monomers and the
patchy protein. In counting the condensed ions Nc on the both molecules again, ion release
is found as depicted in Figure 5.22 (b) where ions are mainly released from the PE. As in the
one-patch systems, the attraction is accompanied by a strong orientation of the interacting
attractive patch to the PE, see Figure 5.22 (c). The orientation is reversed at very small
distances r � 1.8 nm; but note that those are improbable to observe in equilibrium anyway
due to the high free energy penalty. Hence, for the short PE25 chain that cannot reach to
the second patch of the protein, the results are qualitatively similar than for the analogous
one-patch system, albeit with considerably less attraction.

5.3.3 Influence of polyelectrolyte chain length on complexation

We will now see that a longer PE chain can interact with both patches simultaneously and
lead to qualitatively very different PMFs.
The simulated PMFs of complexation of the two-patched proteins with the longer PE chain,
[P 2

12 − PE50], simulated at different salt concentrations ranging from 20 mM to 200 mM
are presented in Figure 5.23 (a). In stark contrast to the shorter chain, we now observe
a two-step PE adsorption to the patchy protein with a second but metastable attraction
minimum at r ≈ 4.5 nm for the smallest salt concentration, decreasing to r ≈ 3.5 nm for
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Figure 5.22: Simulation results of [P 2
s − PE25] complexes with s = 8, 12 at cs = 20 mM. (a), (b), and (c)

are the same as in Figure 5.18.

the largest salt concentration. As we see from the graphical snapshots in Table 5.4, the
metastable minimum at r ≈ 4.5 nm corresponds to binding configurations where the PE
is attached solely to one of the two patches. The global minimum is now shifted towards
much smaller distances r ≈ 1.5 nm when compared to the one-patched systems and shorter
chains. The corresponding binding configurations are also summarized in Table 5.4. By
fully embracing the globular protein, extended parts of both the head and the tail of the
chain can now simultaneously interact with both of the patches, while the center of mass
of the chain is very close to that of the globular protein. The global and local minima are
separated by a free energy barrier at r ≈ 2.5− 3 nm. The barrier must be attributed to the
electrostatic repulsion between one of the loose ends of the PE (while the other is attached
to one patch) and the negative (un-patched) parts of the globular protein when the PE
attempts to closely embrace the globular protein before being able to attach to the second
patch. Regarding the number of released ions we find that the two-state PMF behavior is
also reflected by a two-step release of ions as shown in Figure 5.23 (b). The orientation of
the corresponding patch vector versus distance is given in Figure 5.23 (c), respectively. We
again observe the strong patch alignment induced by PE binding for larger separations as
in the previous cases. In addition, due to the large conformational change of the complex at
short separations, when crossing from the metastable PMF minimum to the global one, the
orientation drastically changes from parallel alignment of patch-PE to antiparallel alignment
with the PE fully embracing the globular protein.
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Figure 5.23: Simulation results of [P 2
12−PE50] complexes at salt various concentrations cs. (a), (b), and (c)

are the same as in Figure 5.18.

Table 5.4: Snapshots of [P 2
12−PE50] complexes at various salt concentrations cs and different center of mass

distances r. The green colored beads are positively charged ions, while the red colored beads are negative
ions.

Center of mass distance r in nm
cs [mM] ∼1.5 ∼4.5 ∼7-9 ∼10

20

50

100

200
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5.4 Protein uptake by a polyelectrolyte brush

Before the focus is put on the simulation results, we note that all systems under consideration
have a slab geometry wherefore all calculated quantities are resolved only in the z-direction,
that is, perpendicular to the grafting surface. An illustrative representation of the simulation
box and the procedure of the protein uptake by a PE brush is depicted in Figure 5.24.
Furthermore, we aim to compare the simulated PMFs with the outcomes of a simple approach
which is presented in the following.

Simplified model for the interaction between a protein and PE brush

A suitable approach for modeling and characterizing the interaction between a globular
protein when approaching and in entering a PE brush layer may be given by van der Waals
and electrostatic forces through the ansatz

UEV/LOE(z) = Uev(z) + Umc(z) + Udc(z). (5.6)

The first term Uev(z) on the right-hand-side represents a polynomial fit of fifth order which
accounts for contributions arising from steric and van der Waals interactions. In particular,
Uev(z) is obtained by fitting the PMF of a completely neutral globular protein interacting
with a neutral PE brush. The leading order electrostatic interaction terms are defined by

Umc(z) = ZP · Φ(z), (5.7)

Udc(z) = −μP · |E(z)|, (5.8)

and characterize the monopole and dipole contribution, respectively. Φ(z) and E(z) are the
electric potential and field across the simulation box in z-direction and are determined from
the density profiles through Poisson’s equation. μP is the dipole moment of the protein. In
the further course, this excluded volume/leading order electrostatics approach is referred to
as the EV/LOE model.

Analogously to Section 3.1.4, the gain in translational entropy of released ions during the
uptake of a protein by a PE brush is expressed by

βwion(z) = {ΔN− −N−(z)} ln
[

cs
cpatch

]
+

{
1− Γ−1

}
N+(z) ln

[
cs
cB

]
. (5.9)

Here, ΔN− denotes the number of negatively charged ions released from the positive patch.
N−(z) is the distance-resolved number of negatively charged ions accumulated on the positive
patch and cpatch is the same as defined in Section 5.3.2. N+(z) is the number of positively
charged ions condensed on the negative PE monomers along the z-direction. Thus, the
term {1− Γ−1}N+(z) specifies the number of released positively charged ions from the PE
chains/monomers when the globular protein enters into the PE brush layer. cB is the concen-
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Figure 5.24: Simulation of protein uptake by a planar PE brush confined in slab geometry. At the beginning
(a) the protein is situated in the bulk region which is moved with a constant pulling rate vp towards the
brush surface (b), and then further into the brush layer (c).

tration of condensed ions in the immediate vicinity of the PE chains and will be determined
in the next section. In contrast to Eq. (5.5), Eq. (5.9) explicitly accounts for the number of
released ions from the protein patch. We also expect that Eq. (5.6) together with Eq. (5.9)
describe the total binding affinity, that is, the minimum value of the PMF.
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Figure 5.25: Density profiles, electric field and potential of an isolated polyelectrolyte brush at (a) cs = 20 mM
and (b) cs = 100 mM.

5.4.1 Reference simulations

We first present an analysis of the density profiles and electrostatic properties of an isolated
PE brush at a low and high salt concentration, while the PMFs for two fundamental reference
cases are discussed afterwards.

Isolated polyelectrolyte brush

Obviously, the PE monomer density profiles nB(z) at ionic strengths of 20 mM and 100 mM
in Figure 5.25 (a) and (b) show a monotonically decreasing function of the distance from
the grafting surface which quickly converge to zero in the bulk region. Comparing the PE
monomer density profiles together, it is striking that for the low salt concentration, the
brush height is a bit smaller, while the brush thickness is slightly wider. The counterion
profiles n+(z) closely follow the brush density profiles in the brush layer indicating that
virtually all counterions are confined within the brush and thus lead to an electrostatic
neutralization of the PE brush. This result is in accordance with theoretical predictions, e.g.
from reference [197]. However, at cs = 100 mM the n+(z) profile is marginally higher than
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Figure 5.26: The radial concentration profiles of positive ions around single PE monomers at different salt
concentrations.

the nB(z) profile inside the brush layer. Although this points to an overcharged brush, this
is balanced by a small number of coions n−(z) within the brush layer. Both the counterion
and coion profiles converge to their respective concentration values in the bulk region. From
the density profiles it is possible to calculate the electric field E(z) and potential Φ(z) of the
system via Poisson’s equation by means of integration. Hence, the thickness of the brush
layer may be approximately estimated from the minimum position of the electric field. We
find that the brush thickness is about 11 nm at 20 mM and roughly 10 nm at 100 mM where
the electric field takes values of −0.6 kBT

e nm and −0.4 kBT
e nm , respectively. The electrostatic

potential is strongly negative through the brush layer and saturates to zero in the bulk
region. Near the grafting surface, it reaches −3.1 kBT

e at the low ionic strength and −2 kBT
e

at the higher ionic strength.
Figure 5.26 presents the radial concentration of the positive ions around single PE monomers
for ionic strengths ranging from 20 mM to 200 mM. If we define an ion condensation layer
with a thickness of 0.4 nm and average over all salt concentrations between r = 0.2 nm and
0.4 nm results in a concentration of cB = (1.76± 0.05) M. Indeed, this value corresponds to
the concentration of positive ions condensed on the PE chains and according to Eq. (5.9), it
will be used later to determine the gain in translational entropy of released ions when the
protein enters into the brush layer.

Reference systems

Figure 5.27 specifies two reference cases by i) a system consisting only of a neutral globule
and a PE brush and ii) a patchless protein interacting with a like-charged PE brush at two
different salt concentrations. From the PMF of the neutral system it can be recognized that
the pulling of the globule into the PE brush leads to a rising van der Waals attraction up
to −1 kBT at z ≈ 10 nm, while the repulsion found in the brush layer stems from excluded
volume interactions between all beads in this region. The solid black line in Figure 5.27 (a)
represents a polynomial fit of fifth order to the simulated PMF which accounts for Uev(z)

in the EV/LOE model. The simulated PMF of the [P 0
0 − B50] system at cs = 20 mM

76



-2

 0

 2

 4

 6

w
(z

) 
[k

B
T

]

Neutral globe and brush

Simulation
Empirical fit

 0

 10

 20

 30

 40
w

(z
) 

[k
B

T
]

Simulation
EV/LOE model

 0

 10

 20

 30

2 6 10 14 18 22 26

w
(z

) 
[k

B
T

]

z [nm]

(a)

(b)

(c)

Simulation
EV/LOE model

Figure 5.27: Results from reference simulations. (a) PMF between a fully neutral globule and a PE brush.
The solid black line represents a polynomial fit of fifth order. (b) and (c) simulated PMF profiles for [P 0

0 −B50]
at 20 mM and 100mM salt concentrations, respectively.

and cs = 100 mM salt concentrations in Figure 5.27 (b) and (c) reveals a purely repulsive
interaction between the two constituents. Indeed, the favorable electrostatic interactions of
the PE monomers with the positive discrete charges on the protein surface are too weak in
order to mediate attractions in the PMFs which is why a remarkable repulsion arises in the
brush layer. The effect of the salt is also obvious and weakens the repulsion almost by 10 kBT
when increasing the ionic strength from 20 mM to 100 mM. The EV/LOE model which is
represented by the solid blue line in the respective figures shows qualitatively the same trend
as the PMFs. However, it underestimates the simulated PMFs because contributions from
the ions and effects due to charge heterogeneity on the protein surface are not yet captured
by the EV/LOE model which we believe is of significant importance.

5.4.2 Uptake of like-charged patchy proteins

We now turn to the simulations of a PE brush interacting with a like-charged patchy protein.
Our particular interest is to investigate how patchiness and ionic strength affects the PMF
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Figure 5.28: (a) Simulated PMFs w(z) for [P 1
s −B50] with s = 8, 12, 16 at cs = 20 mM. The insets show the

difference between the simulated PMF and EV/LOE model (orange solid line) and the gain in translational
entropy of the released ions (brown solid line). (b) Number of counted ions Nc(z) on the patch (denoted by
"NCI on patch" in the legend and by N−(z) in Eq. (5.9)) as well as the contacts of PE monomers with the
patch (denoted by "Monomers on patch" in the legend while the number of released positively charged ions
is given by

{
1− Γ−1

}
N+(z) as defined in Eq. (5.9)) as a function of z.

when steering the protein from the bulk solution into the brush layer. We also devote
special attention to the counterions on the patch surface as well as to the contacts of the PE
monomers with the positive patch.

Interaction between a PE brush and one-patched proteins

In Figure 5.28 (a) and 5.29 (a) we present PMFs for the uptake of a patchy protein by a
like-charged PE brush at ionic strengths of 20 mM and 100 mM, respectively. By increasing
the patch size from s = 8 to s = 16 the attraction in the PMFs at z ≈ 12 nm rises
from initially −10 kBT to −45 kBT for cs = 20 mM and from −8 kBT to −40 kBT for
cs = 100 mM. The decrease of the attraction at the higher salt concentration is attributable
to a stronger electrostatic screening of the interaction between the two binding partners.
Another conspicuous feature is the shape of the PMF curve. While for s = 8 the PMF
becomes repulsive when the protein penetrates deeply into the brush layer, it slowly rises
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Figure 5.29: (a) Simulated PMFs w(z) for [P 1
s −B50] with s = 8, 12, 16 at cs = 100 mM. The insets show the

difference between the simulated PMF and EV/LOE model (orange solid line) and the gain in translational
entropy of the released ions (brown solid line). (b) Number of counted ions Nc(z) on the patch (denoted by
"NCI on patch" in the legend and by N−(z) in Eq. (5.9)) as well as the contacts of PE monomers with the
patch (denoted by "Monomers on patch" in the legend while the number of released positively charged ions
is given by

{
1− Γ−1

}
N+(z) as defined in Eq. (5.9)) as a function of z.

but is still attractive for the higher patch sizes. This is true for both salt concentrations
and also indicates that the degree of charge heterogeneity on surfaces decisively determines
whether attraction or repulsion occurs. As is stated in Eq. (5.8), the dipole of the protein
couples to the electric field which is strongest in the PMF minimum (not shown) where the
patch aligns nearly perpendicular to the grating surface as depicted for example in Figure
5.24 (b). The orange solid line in the insets of Figures 5.28 (a) and 5.29 (a) shows the
difference between the simulated PMF and EV/LOE model and clearly reveals a strong
attractive phenomenon. To rationalize the origin of this attraction we have determined the
gain in translational entropy of the released ions via Eq. (5.9) which is represented by the
brown solid line in the same inset. It is found that both curves agree well but only as long as
the patchy protein does not completely enter into the PE brush. Deep in the brush, however,
the complexity of the system is not easy to explain which is most likely caused by nonlinear
ion release effects and asymmetric interactions. Note that the released ions are determined
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Figure 5.30: Salt concentration dependent PMF profiles w(z) for the [P 1
12 −B50] system.

from the localization of the coions (NCI) and PE monomers on the positive patch which are
presented in Figure 5.28 (b) and 5.29 (b) and discussed now. When the patchy protein stays
in the bulk, the number of negatively charged ions on the patch remains constant which
but increases with increasing patch size s or ionic strength cs. Once the protein reaches
the PE brush surface a release of coions occurs, while simultaneously first PE monomers
interact with the positive patch and lead to a quick rise of the number of PE monomers.
Upon further pulling, the coions are completely released and the number of PE monomers
saturates to a constant value in the brush layer. This depends only on the patchiness and
may lead up to roughly 10 PE monomers on the patch.

Influence of the salt concentration

For further investigating the effect of the ionic strength on the PMF, we first consider in
Figure 5.30 the [P 1

12 − B50] system at cs = 10 mM, 50 mM, and 200 mM. As expected,
the interaction between the patchy protein and PE brush is weakened with increasing salt
concentration. In the proximity of the grafting surface the PMFs are even repulsive which
originates from excluded volume interactions because of the high local PE monomer con-
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the [P 1

12 − B50] system. The blue solid line is a fit according to the function βwmin(cs) = ã+ Ñ ln[cs] with
ã = −36.8 and Ñ = 3.6.

centration. By comparing the simulated PMFs to the EV/LOE model, we see a distinct
difference which becomes smaller with increasing salt concentration. As previously men-
tioned, in the EV/LOE model the monopole Umc(z) and dipole Udc(z) contribution are
obtained from the density profiles and therefore salt concentration dependent. This explains
why the position and depth of the EV/LOE-minimum are different for the considered salt
concentrations. The brush thickness can be roughly specified from the position of the PMF
minimum where it is about 12.5 nm at cs = 10 mM and 10 nm at cs = 200 mM. Hence, the
PE chains are stiffer when decreasing the salinity of the system.
Next, we discuss the salt concentration dependence of the binding affinity βwmin represented
by the minimum values of the PMFs from the [P 1

12 − B50] systems. The data together with
a logarithmic fit of the form βwmin(cs) = ã+ Ñ ln[cs] are depicted in Figure 5.31. As can be
seen, the data points are somewhat scattered and do not perfectly lie on a straight line as it
was, for example, for the protein-PE complexes in Section 5.3.2. This is probably due to the
more complex arrangement of the PE chains near the brush surface where the interaction
between single PE chains and the positively charged patch is asymmetric and irregular.
However, from the best fit we get for ã = −36.8 and for Ñ = 3.6 which indicates ion release
in the order of 3 to 4 when the globular protein adheres to the brush surface. Despite this
number is small, our analysis unambiguously demonstrate the existence of the ion release
mechanism leading to a substantial gain in translational entropy and, moreover, there are
electrostatic forces responsible for the uptake of globular proteins into a like-charged PE
brush. Remember that this matter is controversially discussed in the literature [35, 37, 38,
40, 198].

Interaction between a PE brush and two-patched proteins

The manner in which a globular protein with antipodally aligned patches (m = 2) interacts
with a PE brush is presented in Figure 5.32. While for s = 8 the simulated PMFs within
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Figure 5.32: Interaction between a protein with antipodally aligned patches (m = 2) and a PE brush at
ionic strengths of (a) 20 mM and (b) 100 mM.

the brush layer are overall repulsive for 20 mM and 100 mM salt concentrations, they are
strongly attractive for s = 12 at both ionic strengths. The weakly pronounced global minima
in the PMFs of s = 8 obviously indicate favorable electrostatic interactions of the PE chains
with one of the two patches on the protein surface at the brush surface. Interestingly, at
cs = 20 mM there is a small plateau in the PE brush which is due to the penetration of
the protein into the brush layer where the PE chains also interact with the second positive
patch. However, at cs = 100 mM this plateau is no longer discernible. A putative reason
why there is no distinctive minimum in the brush layer might be the fact that the degree of
the patchiness is less pronounced to compete electrostatically with the bare charges of the
globular protein and PE monomers. In contrast, for s = 12 we recognize a metastable state
reflected by the first local minimum in the PMF at cs = 20 mM which corresponds to the
first contact of PE monomers with one patch while, due to further approaching, a global
minimum arises. Moreover, increasing the salinity to cs = 100 mM the metastable state
seems to vanish why only a distinct global minimum is recognizable. Not surprisingly, the
EV/LOE model overestimates the PMFs since the values of the dipole moments for the two-
patched proteins are the lowest (μP < 250 D) which is why the dipole term Udc(z) does not
contribute strongly to attractive interactions and is outweighed by excluded volume Uev(z)

and monopole Umc contributions. While for s = 8 the difference is roughly 10 kBT and 7 kBT
for cs = 20 mM and cs = 100 mM, respectively, it fails completely for s = 12.
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Figure 5.33: PMF profiles for a charge-inversed P 0
0 (+8 e) and B50 at (a) 20 mM and (b) 100 mM.
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Figure 5.34: PMF profiles for a charge-inversed P 1
12 (+8 e) and B50 for different salt concentrations.

5.4.3 Uptake of charge-inversed proteins

Another important aspect to study is the inclusion of an oppositely charged protein (with
and without patch) into the PE brush. Here, we provide results of interactions between a
charge-inversed protein and a PE brush at various salt concentrations. With charge inversion,
the inversion of all charges on the protein surface is meant. The proteins carry now a net
charge of +8 e. The simulated PMFs of a charge-inversed P 0

0 interacting with a B50 at two
ionic strengths, 20 mM and 100 mM, are presented in Figure 5.33 (a) and (b), respectively.
In line with expectations, the interactions are attractive for both salt concentrations, while
screening effects weaken the attraction up to 6 kBT at cs = 100 mM. Also at the higher
salt concentration the PMF is slightly repulsive in the vicinity of the grafting surface. Even
though a comparison with the EV/LOE model indicates the correct trend, however, the
difference between both is significant in the brush layer. More precisely, simulation and
theory deviate by up to 10 kBT from each other. We assume that a substantial contribution
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to this difference arises not only from ionic correlations but also from charge heterogeneity
effects on the protein surface. A more interesting case is the interaction between a charge-
inversed P 1

12 and B50 as shown in Figure 5.34 for different salt concentrations. Here, all
PMFs are strongly attractive despite a negatively charged patch with Zs = −12. It is
obvious that the attraction in the PMFs originates from electrostatic interactions between
the PE monomers and the positive discrete charges on the surface of the protein (Np > Nn)

since the interaction with the negatively charged patch yields only repulsive contributions in
the brush layer. Also ionic effects should be envisaged here. When the simulated PMFs are
compared to the EV/LOE model we find a discrepancy at ionic strengths of 100 mM and
200 mM which is about 5 kBT and 8 kBT, while at 20 mM and 50 mM salt concentrations
the agreement is very good. We believe that this correspondence is a fortunate coincidence
of higher-order error cancellation.

5.5 Concluding remarks

In this chapter, we have introduced models for charged patchy proteins, PE, and PE brush to
explore protein interactions with polymeric biomaterials. By means of implicit-solvent and
explicit-ion Langevin dynamics computer simulations, the PMF of the adsorption process
was computed depending on the degree of patchiness, ionic strength and PE chain length.
The PMFs between pairs of like-charged proteins have revealed attractive interactions at
short separations accompanied by only moderate ion release from the patches but substantial
orientational alignments. Here, the simulated PMFs were compared to results from analytical
models, which have shown a satisfactory agreement within their validity ranges. For like-
charged protein-PE complexes and protein-PE brush associations we can safely conclude
that in general the counterion release picture is indeed valid and clearly dominates the
interactions in our considered systems. As a consequence, the large binding affinities are
mostly governed by the gain in the translational entropy of released ions. Thus, the general
conclusion of this chapter is that the adsorption process can be almost completely understood
by an electrostatic approach and counterion release concept.
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6 Summary and Outlook

In the present thesis the physical interactions of protein adsorption onto soft polymeric layers
have been theoretically investigated by means of a cooperative binding model and Langevin
dynamics computer simulations. The results have given valuable insights into the adsorption
process and revealed the major driving force for the protein adsorption in our considered
systems.

In order to characterize the driving force in the process of equilibrium protein adsorption
onto charged core-shell microgels we have introduced a multi-component cooperative binding
model. It separates out electrostatic cooperativity, accounts for protein interactions within
the microgel and incorporates deswelling effects of the microgel particles. The model pos-
sesses full generality and describes the coupled effects of protein charge, radius and bulk
concentration as well as the ionic strength and the intrinsic binding affinity of the protein to
the core-shell microgel. Applying this approach to experimental measured binding isotherms
provides a more descriptive interpretation of the driving force in terms of separate physical
interactions. Thus, we have shown that the adsorption isotherms of lysozyme, cytochrome
c, papain and ribonuclease A to the charged core-shell microgel are mostly driven by elec-
trostatic forces. Furthermore, we have also found that the microgel deswelling is mainly of
electrostatic origin. Hence, the microgel becomes at least two times stiffer at high protein
load pointing either to more specific effects (e.g. cross-links) or electrostatic correlations not
accounted for in the mean-field PB cell model approach. The change and control of material
properties upon protein load are essential for functionality [199] and suggest challenging in-
vestigations in the future. According to this, effects arising from protein aggregation, local
pKa-shifts, or nonlinear electrostatics should be considered in future theoretical studies when
modeling protein adsorption onto soft polymeric layers.

The cooperative binding model can also be applied to predict mixtures with an arbitrary
number of proteins adsorbing and/or desorbing onto the charged microgel. Once the relevant
parameters (protein radius, charge and binding affinity) are determined from single-type
protein adsorption, no further variable parameters are needed to predict the competitive
protein adsorption. Thus, we successfully predicted the competitive adsorption for the binary
protein mixtures lysozyme-cytochrome c, lysozyme-papain, and lysozyme-ribonuclease A
onto the charged core-shell microgel. Within the context of a dynamical density functional
theory, this binding model can also be used to access the spatial density variations of the
proteins and their time-dependence [6], thus providing access to the kinetics of the adsorption
process. Accordingly, experimental studies with theoretical comparison along these lines
should be envisaged in the future.

For studying adsorption processes and interactions of proteins with polyelectrolyte materials
we introduced well-defined models for globular proteins, PE and a PE brush. We used
Langevin dynamics computer simulations with an implicit solvent model but explicit ions in
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the GROMACS [188] simulation package.

For single globular proteins, we determined ion and electrostatic potential distributions. In
particular, angle-resolved radial distribution functions uncovered a strongly heterogeneous
accumulation of coions and depletion of counterions on the patch surface of the different
globular proteins, while the angle-averaged potential has remained mostly unaltered for the
different patchiness and salt concentration regimes considered here. Moreover, we com-
puted the PMFs between various pairs of like-charged globular proteins. It was found that
at short separations the PMFs between all globular proteins have attractive interactions
accompanied by only moderate ion release from the patches but substantial orientational
alignments. We managed to explain the long-ranged (monopole) part of the PMFs by a
DLVO-type interaction, while for small dipole moments, no quadrupoles, and high salt con-
centrations an orientation-averaged pair potential (OAPP) based on DH theory extended
to dipolar interactions [116] could also describe the PMFs satisfactorily. Hence, for known
protein structures, OAPP may be a viable approach to quantify experimental pair interac-
tions and virial coefficients [200–203]. However, low salt concentrations and large multipolar
interactions remain a challenge for tractable theoretical descriptions.

Another computational study focused on the structures and interactions of a relatively short
and highly charged PE chain complexing with like-charged patchy proteins as well as the
uptake of oppositely and like-charged globular proteins by a PE brush. In both systems
we observed strong electrostatic attractions in the PMFs that depend on the salinity, patch
charge, and the degree of patchiness. In particular, for protein-PE complexes a novel two-
state binding behavior for PEs with length comparable to the protein radius in case of two-
patched proteins, where the PE ends are attached to the patches but the rest of the chain
is repelled so that it resembles a ’tea-pot handle’ like structure. Our systematic analysis
further demonstrated a clear correlation between the binding affinity and the number of
released ions, identifying them as a major driving factor for the strong association.

We can conclude that in general the counterion release picture is indeed valid and clearly
dominates the interactions in our multipolar PE-patchy protein and protein-PE brush sys-
tems. As a consequence, the large binding affinities are mostly governed by the translational
entropy of released ions. A quantitative analysis of the partial contributions of accumulated
ions released from the protein patch and PE, however, appeared less simple due to ill-defined
definitions of what are condensed and screening ions. Given the analysis of the individual
free energy contributions from patch and PE/PE chains and the marked salt-dependence
of the patch contribution, it was actually a bit surprising that the behavior of the ’Record-
Lohman fit’ is as linear as it appears. For the protein-PE complexes we could reconcile
this apparent discrepancy by a combined counterion release/Debye-Hückel (CR/DH) model
where we considered only the release effects at the PE, while the rest of the system was
treated with a simplified charge-dipole DH model. The CR/DH described the binding affin-
ity quantitatively, using only a single physically reasonable fit parameter, confirming that
our model has captured the essential physics. For the protein-PE brush systems we also ap-
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plied a model where we considered steric, van der Waals, electrostatic monopole and dipole
contributions as well as the released ions from the PE monomers and from the protein patch.
This approach satisfactorily described the total binding affinity in the case where the protein
adheres on the brush surface, while nonlinear effects deep inside the brush layer complicate
the analytical modeling greatly.
With the introduction of our globular proteins, new opportunities for the investigation and
quantification of the role of charge patchiness in a wide variety for systems open up. For
instance, possible uses of our globular proteins could be the investigation of electrostatic
many-body effects, self-assembly of a few globular proteins, or protein interactions with
heterogeneously charged surfaces or membranes. Moreover, the work of this thesis should
be useful for the interpretation of experimental structures and binding affinities found for
protein or nanoparticle complexation with a like-charged PE chain or the adsorption of
proteins on PE coatings.
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A The Newton-Raphson method

Nonlinear algebraic equations as defined in Eq. (4.26) cannot be solved generally in a closed
form, but only numerically and through iteration. This means that from a first approximate
solution a second approximate solution is calculated, which is more accurate than the first,
which is used again as a base for the next even more accurate approximate solution. This
iteration will be continued until the solution reaches the desired accuracy εtol. The most
important method for solving systems of nonlinear equations in R

N is the Newton-Raphson
method [204].

In the following the Newton-Raphson method for solving Eq. (4.26) is described in detail.
The reader should note that the mathematical variables in this appendix are defined in-
dependently to the previous chapters and used only in the context of the mathematical
formulation.

For the sake of simplicity, two definitions are introduced:

F ≡ NP

VM

− ζP cP e−β(ΔG0+ΔGel+μ) and x ≡ NP . (A.1)

A set of M nonlinear equations with M variables can be represented in the form

F (x) = 0, (A.2)

with suitable starting values x0 and the unknown solution x∗. The derivation of the multi-
dimensional Newton-Raphson method is then carried out via a multi-dimensional Taylor
series expansions where F is developed at x0 which yields [204]

0 = F
(
x0 +Δx

)
= F

(
x0

)
+ F′ (x0

)
Δx +O

(|x|2) . (A.3)

Here, F′ (x) denotes the Jacobian matrix of F with

F′ (x)ij =
∂Fi

∂xj

, (A.4)

and Δx = x∗ − x0. Neglecting higher order terms than one and introducing a so-called
damping constant λ̃k leads to the iteration rule

xk+1 = Ψ
(
xk

)
= xk − λ̃k

F (x0)

F′ (x0)
(A.5)

with
maxΨ′ (x) = max

F (x)F′′ (x)
(F′ (x))2

= Ω, (A.6)
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for

Figure A.1: A schematic diagram of the Newton-Rahpson algorithm. QNERR denotes the Quasi-Newton
method.

which then results in a linear convergence

|xk+1 − x∗| ≤ Ω|xk − x∗|. (A.7)

The finding of starting values, which are in the region of convergence is referred to as trust
region method and forms the basis for the code nleq_err [204]. This code is implemented
in this thesis and adapted for our particular problem (see Chapter 4). Figure A.1 shows the
schematic structure of the algorithm with the following used abbreviations:

μ̃k :=
||Δxk+1|| · ||Δxk||

||Δxk −Δxk|| · ||Δxk||
· λ̃k−1 (A.8)

μ̃′
k :=

1
2
||Δxk|| · λ̃2

k

||Δxk+1 − {1− λ̃k}Δxk||
(A.9)

Ωk :=
||Δxk+1||
||Δxk|| . (A.10)
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B Quadrupole moments of charged patchy pro-
teins

The quadrupole moment tensor Q of the introduced charged patchy protein models has been
calculated according to [205]

Qij =
∑
l

ql
{
3rilrjl − |rl|2δij

}
, (B.1)

where Qij are the components of Q, while the indices i and j denote the Cartesian coordinates
x, y, and z. The sum runs over all discrete charges ql on the protein’s surface at positions rl
whereas δij is the Kronecker delta. The quadrupole moments of all charged patchy proteins
are provided in the following table.

Label Qij in [e nm2]

P 0
0

⎛
⎝ 2.45 −0.19 −0.82
−0.19 −4.50 3.76
−0.82 3.76 2.05

⎞
⎠

P 1
8

⎛
⎝−11.20 51.27 7.47

51.27 39.88 8.58
7.47 8.58 −28.68

⎞
⎠

P 1
12

⎛
⎝−12.33 61.99 2.74

61.99 59.91 3.42
2.74 3.42 −47.58

⎞
⎠

P 1
16

⎛
⎝−9.56 83.37 1.16

83.37 74.13 −0.88
1.16 −0.88 −64.57

⎞
⎠

P 2
8

⎛
⎝−19.07 74.83 8.38

74.83 66.71 −15.09
8.38 −15.09 −47.64

⎞
⎠

P 2
12

⎛
⎝−22.31 121.87 −0.74

121.87 104.50 −13.99
−0.74 −13.99 −82.19

⎞
⎠
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C List of abbreviations

BSA: bovine serum albumin
Coul: Coulomb
CPPM: charged patchy protein models
CR: counterion release
CSM: core-shell microgel
DH: Debye-Hückel
DLS: dynamic light scattering
DLVO: Derjaguin-Landau-Verwey-Overbeek
el: electrostatic
EV: excluded volume
FFT: fast Fourier transforms
FITC: fluorescein isothiocyanate
ITC: isothermal titration calorimetry
LOE: leading order electrostatics
LPB: linearized Poisson-Boltzmann
MC: Monte Carlo
MFA: mean-field approximation
MP: Mie potential
OAPP: Orientation-averaged pair potential of mean force
PB: Poisson-Boltzmann
PE: polyelectrolyte
pI: isoelectric point
PME: Particle-Mesh-Ewald
PMF: potential of mean force
pNiPAm: Poly(N-isopropylacrylamide)
SLD: steered Langevin dynamics
SMD: steered molecular dynamics
US: umbrella sampling
vdW: van der Waals

P : probability distribution
Z: partition function
F : Helmholtz free energy
H: Hamiltonian
F : force
Fext: external force
Fvis: frictional force
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F̊ (t): random force
p: momentum of the particle
r: position in space
Λ: thermal de Broglie wavelength
N : number of particles
V : volume
T : temperature
m: particle mass
e: elementary charge
ε0: dielectric constant
εr: relative permittivity
Zi: ion charge valency
kB: Boltzmann constant
R: radius
v: velocity
t: time
ξ: friction constant
qi: particle charge
n: exponent for repulsion
k: exponent for attraction
ε∗: potential well
σ∗: van der Waals radius
I: intensity
τ : time delay
g(1): first order autocorrelation function
g(2): second order autocorrelation function
qw: magnitude of the scattering wave vector
m1: refractive index
λw: wavelength of laser source
α: scattering angle
D: diffusion coefficient
ηvis: viscosity of the solution
cs: salt concentration
c: coion and/or counterion concentration
B2: second virial coefficient
p: pressure
posm: osmotic pressure
pelas: elastic pressure
pion: osmotic pressure of ions
ρf : fix charge distribution
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n(r): number density
φ(r): total electrostatic potential
Φ: rescaled electrostatic potential
Φ1: electrostatic perturbation
ΦD: Donnan potential
κ: inverse Debye screening length
λB: Bjerrum length
Rcr: microgel core radius
RM : microgel radius
VM : microgel volume
NM : number of charged network monomers
ZM : microgel charge valency
cM : microgel concentration
Nm: number of charged monomers within the cell
cm: charged monomers concentration within the cell
Rc: cell radius
Vc: cell volume
x: molar ratio
ca: concentration of the absorbent
ν0: standard volume
ζ: partition sum
Q: heat
Q′: incremental heat
Eads: adsorption energy
ΔHITC: heat of binding
ΔS: entropy changes
K: binding affinity
ΔG0: intrinsic free energy
ΔGel: free energy of electrostatic transferring
βμ: chemical potential
Θ: fraction of bound molecules
NS: number of binding sites
NP : number of bound/adsorbed proteins
NT : total number of molecules
Nn: number of negative charges on protein surface
Np: number of positive charges on protein surface
AP : patch area
RP : protein radius
σP : effective protein diameter
ZP : protein charge valency
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μP : protein dipole moment
cP : protein concentration
cpatch: concentration of accumulated ions on the positive protein patch
η: protein packing fraction
bP : bond length of neighboring beads
KP : spring constant connecting neighboring beads
RPE: polyelectrolyte radius of gyration
ZPE: polyelectrolyte charge valency bmon: bond length between two monomers
Kmon: force constant between two monomers
γ: angle between a triplet of monomers
Kγ: force constant between a triplet of monomers
Γ: Manning parameter
b: distance between charged monomers
fcon: fraction of condensed counterions
Nmon: number of monomers
Ñ : number of released ions
cPE: concentration of condensed ions around the polyelectrolyte
τB: grafting density
L: side length of the simulation box
vp: pulling rate
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