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Abstract
"On the Reliability of Large-Eddy Simulation for Dispersed Two-Phase Flows"
Desislava Dimitrova
This work deals with the numerical description of dilute polydispersed and turbulent two-
phase flows. The method used to describe the two-phase flow is based on the EULERIAN-
LAGRANGIAN approach. The carrier phase turbulent flow behavior is modeled utilizing Large
Eddy Simulation (LES).
Most of the recent DNS investigations attempting to provide insight into particle-fluid interac-
tion mechanisms are performed on simple, mostly homogeneous turbulent flows with very low
REYNOLDS numbers. In contrast to this, LES is an opportunity to extend this studies to flows
with significantly higher REYNOLDS numbers and to more complex geometries. Moreover, it
is less restrictive to flows containing particles, larger than the KOLMOGOROV length scale.
The main objective of this work is to assess the state of the art capabilities of the two-phase LES
and to identify weak points. Recommendations for additional model development for increasing
the predictive ability are derived. The reliability of transfer of findings from one configuration
to others is assessed. The conclusions are based on a systematic variation of relevant flow pa-
rameters, such as the REYNOLDS number and the STOKES number, so that a wide range of
applications is covered. Therefore, several particle–laden flow configurations (two plane chan-
nel flows, a free jet and an evaporating spray at low temperature) are investigated.
Special attention is paid to the prediction of the particle preferential accumulation, because of
its importance for simulations of mixing and combustion in turbulent flows. By performing a
systematic variation of the particle STOKES number (here defined as the ratio of the particle
time scale to the KOLMOGOROV time scale of the fluid) and the flow REYNOLDS number, it
is observed that the maximum preferential accumulation occurs at a constant STOKES number
and that this number does not depend on the REYNOLDS number. The magnitude of the accu-
mulation, however, depends on the REYNOLDS number of the flow. The effect of an additional
sub-grid stress dispersion model on the particle accumulation is found to be less pronounced
for particles with characteristic time scales in the order of the KOLMOGOROV scale.
An additional issue of the standard EULERIAN-LAGRANGIAN method in LES context arises
due to unphysical particle number densities, when preferential accumulation occurs. In this
context, the usage of a model, accounting for natural dispersion due to particle collisions, is
inevitable.
The influence of the dispersed phase on the fluid turbulence is considered in a wall bounded and
a free shear flow. The improper modeling of the particle-wall interaction mechanisms can lead
to different solutions for the particle velocity field and therefore to different levels of turbulence
modification in the near wall region. It should be noted that these solutions are not necessar-
ily unphysical, as some experimental investigations confirm. In contrast to this, the turbulence
modification in a free shear flow is predicted very well, moreover, the prediction is found to be
reliable for different mass loadings of the dispersed phase.
Within the scope of this work, a time efficient non-iterative Fractional Step procedure is applied
for the pressure-velocity coupling of the carrier fluid governing equations. The coupling of the
method with two-way coupled particle tracking simulations is validated successfully on config-
urations of isothermal flows and such with low density variation using experimental and DNS
data.

iii



Zusammenfassung

"On the Reliability of Large-Eddy Simulation for Dispersed Two-Phase Flows"
Desislava Dimitrova Die vorliegende Arbeit befaßt sich mit dünnen polydispersen turbulen-
ten Mehrphasenströmungen. Das Verfahren, das zur Beschreibung der Zweiphasenströmung
verwendet wird, basiert auf der EULER-LAGRANGE Methode. Die Turbulenz in der kontinuier-
lichen Phase wird mittels Grobstruktursimulation (Large Eddy Simulation, LES) modelliert.
Die meisten Untersuchungen mittels Direkten Numerischen Simulation neueren Datums, die
einen Einblick in die Wechselwirkungsmechanismen zwischen Partikeln und umgebendem Fluid
gewähren, beschreiben einfache Strömungen, sehr oft mit homogener Turbulenz und sehr niedri-
gen REYNOLDS Zahlen. Im Gegensatz dazu eröffnet LES die Möglichkeit diese Studien auf
Strömungen mit wesentlich höheren REYNOLDS Zahlen und komplexeren Geometrien durch"-
zu"-führen. Des Weiteren ist das Verfahren weniger restriktiv gegenüber Partikeln, die größer
als die KOLMOGOROV Längenskalen sind.
Die wesentliche Zielsetzung dieser Arbeit ist es, den Stand des Wissens bezüglich Zweiphasen-
LES einer kritischen Prüfung zu unterziehen und hierbei Schwachpunkte zu identifizieren. Es
werden Vorschläge für die weitere Modellentwicklung gemacht, um die Eignung der Meth-
ode zur Vorhersage von mehrphasigen Strömungsphänomenen zu steigern. Die Zuverlässigkeit
der Übertragung von Erkenntnissen von einer Konfiguration auf andere wird abgeschätzt. Die
Schlussfolgerungen sind auf einer systematischen Parameterstudie der relevanten Strömungsken-
ngrößen, wie der REYNOLDS Zahl oder der STOKES Zahl, begründet, und sichern somit einen
großen Anwendungsbereich. Hierzu werden einige partikelbeladene Strömungskonfigurationen
untersucht. Diese sind: zwei ebene Kanalströmungen, ein Freistrahl und ein Freistrahl mit ver-
dampfenden Tröpfchen bei einer vergleichsweise niedrigen Temperatur.
Besondere Beachtung findet die Vorhersage der bevorzugten Akkumulation der Partikel in einer
turbulenten Umgebung. Diese ist von besonderer Wichtigkeit bei Simulationen von Mischungs-
und Verbrennungsvorgängen in turbulenten Strömungen. Mittels einer systematischen Para-
meterstudie der Partikel STOKES Zahl (hier definiert als das Verhältnis zwischen einer charak-
teristischen Partikelzeitskala und der KOLMOGOROV Zeitskala) und der REYNOLDS Zahl der
Strömung, wird aufgezeigt, dass die maximale bevorzugte Akkumulation immer bei einer kon-
stanten STOKES Zahl auftritt und dass diese STOKES Zahl nicht von der REYNOLDS abhängt.
Die Intensität der Akkumulation wiederum ist eine Funktion von der REYNOLDS Zahl. Der
Einfluss eines stochastischen sub-grid stress Dispersionsmodells auf die Partikelakkumulation
ist bewertet und als unwesentlich für Partikel eingestuft, deren charakteristische Zeitskalen in
derselben Größenordnung wie die KOLMOGOROV Zeitskala liegen.
Eine zusätzliche Schwierigkeit für die Zweiphasen-LES ergibt sich aus der Tatsache, dass die
Standard EULER-LAGRANGE Methode unphysikalisch hohe Partikelanzahldichten in den Bere-
ichen bevorzugter Konzentration zuläßt, da hier die Partikel–Partikel Kollision nicht berück-
sichtigt wird. Die Verwendung eines Modells das diese beschreibt, scheint unumgänglich.
Der Einfluss der dispersen Phase auf die Fluidturbulenz wird in einer geschlossenen und in
einer freien Scherströmung betrachtet. Die ungenaue Modellierung der Partikel–Wand Inter-
aktion in wandgeschlossenen Strömungen kann zu unterschiedlichen Lösungen für das Par-
tikelgeschwindigkeitsfeld führen, und daher auch zu unterschiedlichen Intensitäten der Tur-
bulenzmodifikation. Es sollte berücksichtigt werden, dass diese unterschiedlichen Lösungen
keineswegs unphysikalisch sein müssen, wie auch experimentelle Untersuchungen zeigen. Im

iv



Gegensatz dazu wird die Turbulenzmodifikation in der freien Scherströmung sehr genau vorherge-
sagt. Darüber hinaus wird gezeigt, dass diese Vorhersage auch für unterschiedliche Massenbe-
ladungen der dispersen Phase zuverlässig ist.
Im Rahmen dieser Arbeit wird ein effizientes nicht iteratives Fractional Step Verfahren für die
Druckgeschwindigkeitskopplung der kontinuierlichen Phase verwendet. Die Kopplung dieser
Methode mit der Zwei–Wege gekoppelten EULER-LAGRANGE Methode ist erfolgreich für
Konfigurationen isothermer Strömungen und solche mit kleiner Dichteänderung validiert, wobei
sowohl experimentelle als auch DNS Daten als Referenz verwenden werden.
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Nomenclature
Bold letters denote a vector. For vector and matrices the unit is component related.
Einstein’s convention of summation is used upon the indexes i, j, and k.
* denotes equation depenent units.

Uppercase Latin letters Unit

Ẋ species molar flux mol/m2/s
FFF force N
IpIpIp particle inertial moment N
MMM torque N
A area m2

A coefficient (Jacobi) matrix kg/s
C species concentration −
CA added mass coefficient −
CB Basset force coefficient −
CD drag coefficient −
Cf convective flux ∗
CR rotational coeffitient −
CS SMAGORINSKY constant −
CLR rotational shear lift coefficient −
CLS shear lift coefficient −
Df diffusive flux ∗
Dp turbulent particle dispersion coefficient m2/s
Dα mass diffusivity m2/s
Dth thermal diffusivity m2/s
E energy kg m2/s2

Ekin,p particle kinetic energy m2/s2

G filter function m−3

Irel relative turbulence intensity −
Jij generic scalar diffusive flux kg/m2/s
L characteristic length m
Mv vapor mass flux kg/m2 s
Mw molar mass kg/kmol
N upper limit of the sum operator or sample number −
R universal gas constant J/kg K
Rp particle LAGRANGIAN velocity correlation −
Rs specific gas constant J/kg/K
Rij velocity correlation function m2/s2

S source term ∗

xi



Contents

Sij strain rate tensor 1/s
T temperature K
Tij stress tensor N/m2

U characteristic velocity m/s
V volume m3

X species mole fraction −
Y species mass fraction −
Lowercase Latin letters Unit

ṁ mass flow kg/s
eeei Unit vector, i = 1, 2, 3 −
ggg gravitational acceleration m/s2

rrr vector in Cartesian space m
xxx, y, z vector in Cartesian space m
bbb source term vector ∗
a speed of sound m/s
cp specific heat capacity J/kg/K
dp particle diameter m
e coefficient of restitution −
f body force N/m3

g gravity m/s2

h channel half height m
h enthalpy kgm2/s2

hlat specific latent heat J/kg
hreact specific heat of chemical reaction J/kg
jsgsi sub-grid scalar flux vector ∗
kmass mass transfer coefficient m/s
kth convective heat transfer coefficient W/m2K
l0 integral length scale m
lmean mean free path m
m mass kg
ni, nnn normal surface vector in Cartesian coordinates −
np particle number concentration −
p pressure Pa
psat saturation pressure Pa
qp volumetric particle heat source J/s
t time s
t0 integral time scale s
tR residence time s
teta KOLMOGOROV time scale s
u, v, w velocity components in Cartesian coordinates m/s
uη KOLMOGOROV velocity m/s
uτ friction velocity m/s
uτ wall friction velocity m/s
x, y, z spatial (Cartesian) coordinates m

Uppercase Greek letters Unit

xii



Contents

∆ filter width m
Γ mixing (diffusion) factor m2/s
Ω relative rotation −
Lowercase Greek letters Unit

α under-relaxation factor −
αp particle volume fraction −
ε turbulent kinetic energy dissipation rate m2/s3

η KOLMOGOROV length scale m
κ adiabatic exponent −
κw wavenumber m−1

λ thermal conductivity W/m/K
µ dynamic viscosity kg/m/s
νt kinematic turbulent viscosity m2/s
ν kinematic viscosity m2 s
φp particle mass loading −
ψψψ solution variable vector ∗
ωωωp angular velocity vector m/s
ψ arbitrary scalar −
ρij correlation coefficient −
ρ density kg/m3

τ time s
τijsgs sub-grid-scale tensor m2/s2

τ characteristic time scale s
τw mean shear stress at wall N/m2

τw mean wall shear stress N/m2

τpL particle LAGRANGIAN integral time scale s
ζ, ξ random number −
Indexes

1 wall next cell
α, β index for arbitrary species
η KOLMOGOROV scales
∞ free stream value
A added mass
B Basset
c cell at channel centerline
CL centerline
D drag
e eddy
f carrier/fluid phase
f face (of the computational cell)
h enthalpy
i, j, k, l,m natural numbers
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Contents

LR rotational lift
LS shear lift
m mass
n node
nb neighbor
op operating (related to pressure)
P pressure
p particle phase
rel relative
s surface
t turbulent
th thermal
u momentum
v vapor

Superscripts

′ statistical fluctuation
′′ statistical fluctuation
+ normalization using wall friction velocity and wall shear stress

Operators and Symbols

δij Kroneker delta
〈·〉 statistical mean value
() REYNOLDS average
∂ partial differential operator
DDD divergence operator
GGG gradient operator
III identity operator
(̂) filter
(̃) FAVRE average
G gravitation

Dimensionless Numbers

Kn KNUDSEN number
Le LEWIS number
Ma MACH number
Pr PRANDTL number
Re REYNOLDS number
Rep particle REYNOLDS number
Reτ REYNOLDS number based on the wall friction velocity and the channel half height
Sc SCHMIDT number
Sh SHERWOOD number
St STOKES number

Abbreviations
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CDS Central Difference Scheme
CV control volume
DNS Direct Numerical Simulation
DNS direct numerical simulation
FS Fractional Step Method
FSM Fractional Step method
FVM Finite Volume Method
ILU Incomlete LU decomposition
LES Large Eddy Simulation
LES large-eddy simulation
nip, NiP nimber (real particles) in parcel
PDA Phase-Doppler Anemometry
PDE partial differential equation
Pdf probability density function
RANS Reynolds Averaged Navier Stokes
RANS Reynolds Averaged Navier-Stokes equations
RMS root mean square
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
tke turbulent kinetic energy
URANS unsteady RANS
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1 Introduction

When looking at the current status of power generation in industrial economies all over the
globe, the necessity for an increased sustainability becomes evident. This is independent on the
individual energy source or mechanism for power generation. It is obvious that, even if there are
contradictory estimates of the available remaining resources for fossile fuels, these are finite.
Neither oil and gas, nor coal are available for an unlimited period, considering the increasing
energy demand and hence accelerating digging rates. Nuclear power generation depends on
finite uranium deposits as well as on a speculation about the final storage for nuclear waste in
form of burnt down nuclear fuel rods. A realistic timeline to be considered for this measures in
the order of several hundred thousand years. So far, no single civilization on Earth lasted for
such a period.
In addition to that, there is an enormous demand for mobility, not only in industrial economies.
This demand is literaly exploading with the emerging of newly industrializing countries like
China, India or Brazil, who have togather roughly 30 % of the world population and where the
car is not adopted yet as an individual means of transport.
A strategy that aims to satisfy the growing demand for energy in a sustainable manner needs
to be split into a short-term and a longer term policy. In the longer term the problem of finite
resources for fossile fuel combustion and the nuclear waste storage need to be resolved, either by
employing alternative energy sources or providing a reasonable resolution to the issues. In the
meantime, research resources should be devoted to the exploration of possibilities to make the
current technologies more effective. The potential of improving combustion technology, given
the progress made in the recent years, seems to be strong. Not least, the computational fluid
dynamics (CFD) methods adopted by the industry in the recent years had helped in achieving
this. This is the case as well as in turbine manufacturing, as it is in the automobile industry. By
reduction of the aerodynamic drag, that a car experiences, considerable savings are achievable.
The optimization of the external shape of an automobile is of course secondary to the primary
design draft. The evolution under the engine hood, in the area of internal combustion engines,
has also made significant steps forward in terms of fuel efficiency. Ten years ago, direct fuel
injection and the common rail injection system, were not widespread. Optimization of the
evaporating spray flow inside the engine cylinders offers a strong potential for optimization.
This is also the case for the combustion chambers of aircraft engines, as well as for stationary
gas turbines, used for electric power generation. Simulation, provided it delivers reliable results
in a reasonable turnaround time, can provide a significant cost reduction and acceleration of
such developments. CFD methods, based on the NAVIER-STOKES equations have proven to
be very successful in these areas and have become considerable chalengers to experimental
investigations in wind tunnels and test stands, despite the fact that imperfect turbulence models,
involving not always comprehensive simplifications, were used. The Large Eddy Simulation
method seems to meet the requirement to provide an accurate solution in a reasonable timeframe
and still not to be too extensive on the modeling side, so that the model errors are kept of lesser
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1 Introduction

significance. The application of Large Eddy Simulation to turbulent single phase flows and
even to combusting flows has been explored in the recent past. The modeling of multiphase
flow using LES is an area yet to be explored for applicability, reliability of predictions and for
physical models required.

1.1 State of the Art
The LES technique for single phase flow simulations has made significant progress in feasibility
and reliability in the last two decades. The rapid development of computational resources made
this possible. The use of the method for simulation of simple flows and for validation (AGARD
[1]) has now shifted toward realistic complex configurations of practical relevance (Axerio and
Iaccarino [7], EACC [25]). The flexibility of the method, due to its reduced modeling effort,
uncovers the potential for the usage of LES on a variety of flow configurations. The method
has been successfully extended for the simulation of reacting flows, as reported by Pitsch [72]
and Janicka and Sadiki [42] and other recent reviews. Although LES cannot yet maintain the
status of an established, predictive tool for real industrial applications, the focus of development
has been shifted for the recent years toward quality assessment of the method (Celik et al. [14],
Freitag et al. [33]).
Attempts have been made to apply LES or DNS for the simulation of two-phase flows for the
last decades as well. The majority of simulations, performed in the early 90ies, were restricted
to the usage of the EULERIAN-LAGRANGIAN approach and therefore applicable for dilute dis-
persed flows only (Squires and Eaton [100], Wang and Squires [112]). For the last ten years the
development of LES for prediction of two-phase flows has pursued two main directions. Vance
et al. [107], Kuerten and Vreman [45], Vreman et al. [110] and Fede and Simonin [28] con-
ducted research work on fundamental understanding of phenomena in dilute two-phase flows
and on the ability of LES to provide reliable results for these. The authors highlight deficits of
the standard method with focus on the turbulent dispersion of small particles. This topic has
a vital relevance, since the method can be applied to simulate a wide variety of combustion
systems with liquid or solid fuels. Mixing processes are still an issue, even in single phase LES
based simulations. The additional uncertainties introduced by the consideration of the reactive
material as a separate (dispersed) phase can further violate the reliability of the simulation.
A second direction for the development of two-phase LES is outlined by Riber et al. [80], Apte
et al. [3] and Boileau et al. [10]. The configurations they presented exhibit complex flow pat-
terns, involving heat and mass transfer, and include swirling or recirculating flows as well as
spray combustion. Considering the results reported, it is evident that such simulations lead to
reasonable results in terms of statistical properties of the velocity fields for both phases and for
the local particle diameter distribution. It should be noted, however, that the experimental data
available, beyond velocity fields, is very rare.
The recent research work has shown that the EULERIAN-LAGRANGIAN approach, in the con-
text of two-phase LES, can be applied successfully to simulate complex flow configurations.
In addition, two-phase LES can be used as a validation tool, since often experimental inves-
tigations are rendered impractical by technical and financial chalanges due to the complexity
of the application. Boileau et al. [10] and Riber et al. [80] demonstrate an example for such a
validation work. The EULERIAN-LAGRANGIAN method is applied as a reference case for the
validation of an EULERIAN-EULERIAN technique in the context of LES.
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Despite the ability of LES to deliver impressive qualitative results in the field of two-phase
flows, there is still a lack of information concerning local and unsteady phenomena and in-
teracting mechanisms between the phases, [28]. Due to the limited experimental data, many
investigations are restricted to reference data from DNS, which are performed for flows at very
low REYNOLDS number, [53, 55]. In contrast to the methods, developed for quality assess-
ment of LES on single phase flows, the development on controlling mechanisms for quality
estimation in the multiphase context is still at the very beginning.

1.2 Objectives
Applying the LAGRANGIAN method for simulation of dispersed two-phase flows brings several
advantages: it handles in a natural way dispersed flows simply by solving equations of motion
for a mass–point. Based on this method the particle motion as well as mass and energy ex-
change with the environment are resolved in time for each particle or droplet. This implies that
configurations dealing with broad distributions of the particle (droplet) diameter such as sprays
can be easily modeled. Furthermore, since every particle path is computed separately and there-
fore an additional information about the state of other particles is not of essential necessity, the
LAGRANGIAN method allows for a fast computation of a large number of particles. In the con-
text of dilute dispersed flows this method in combination with turbulence resolving models for
the carrier phase such as DNS and LES represents a powerful tool for detailed investigation of
multiphase flow phenomena and especially of mechanisms of phase interaction, [53].
Since the most DNS-related work that attempts to provide insight into particle-fluid interac-
tion mechanisms is performed on simple, mostly homogeneous, turbulent flows with very low
REYNOLDS numbers, the LES provides an opportunity to extend such studies to flows with
relevance for technical applications, i.e. high REYNOLDS numbers and complex geometries.
Despite the enormous potential of the LAGRANGIAN method, the combination with LES opens
diverse questions about the reliability of the simulations. Kuerten and Vreman [45] show for
channel flow how disregarding the effect of unresolved turbulent structures on the particle mo-
tion leads to inaccurate flow prediction for heavy particles. In contrast to this Armenio et al.
[5] and Pozorski and Apte [74] conclude based on their simulations of homogeneous turbulence
that the unresolved structures show negligible effect on the particle motion for large particle–to–
fluid density ratios. Since the different scientists apply different characteristic scales to describe
a particular flow behavior, the comparison of configuration features and results becomes ex-
tremly difficult and sometimes even impossible. This is only one example that point out the
difficulties for a third author who tries to analyse and compare available data from the litera-
ture.
This leads to the first main objective of the present work that utilizes the EULERIAN-LAGRAN-
GIAN approach to describe dilute dispersed two-phase flows in the context of LES: the results
of the numerical simulations of varios (concerning REYNOLDS number and geometry) config-
urations performed here will be compared as far as possible using the same normalization and
postprocessing techniques. Hence cross comparison and conclusions concerning simulation re-
sults will be possible upon a range of physical flow parameters such as STOKES and REYNOLDS

number.
Second leading objective of this work is to assess the current capabilities of two-phase LES
and to identify weak points. Recommendations for additional model development to increase
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1 Introduction

the predictive ability will be derived. The reliability of transferring findings from one config-
uration to another will be assessed. The conclusions are based on a systematic variation of
relevant flow parameters, such as the REYNOLDS number and the STOKES number, so that a
wide range of applications is covered. Several particle-laden flow configurations (two different
plane channel flows, a free jet and an evaporating spray at low temperature) are investigated.
The configurations are compared to available reference data from experiments and Direct Nu-
merical Simulations with particle tracking.
One major part of this work is devoted on the prediction of turbulence–driven particle pref-
erential accumulation, because of its importance in simulations of mixing and combustion in
turbulent flows. The phenomenon of particle accumulation is investigated for different flow
REYNOLDS numbers in a plane channel configuration. The findings are compared to previous
investigations on particle accumulation in low REYNOLDS number flows. In addition, the influ-
ence of a stochastic dispersion model on particle accumulation and the velocity statistics of the
dispersed phase are considered and analyzed. The investigations are span over range of particle
classes with different STOKES numbers.
The modification of fluid turbulence due to the presence of particles is investigated in a wall
bounded and in a free shear flow. The improper modeling of the particle-wall interaction mech-
anisms has a major role in the prediction of the flow velocity and the turbulence characteristics
in the near wall region.
The last configuration investigated is an evaporating spray at low temperature conditions. Here,
the ability of the two-phase LES to maintain reliability in complex flow situations is assessed.

1.3 Outline
The following chapter introduces the fundamental understandings about the two main topics in
the scope of this work: turbulence in general and two-phase turbulent flows. Relevant physical
aspects are summarized and discussed using their mathematical formulations. Based on them,
different modeling concepts for turbulent single and two-phase flows are presented, with special
attention on the particular models adopted for the simulations here.
The numerical treatment for the mathematical models applied is outlined in Chapter 3. Since
efficiency in terms of time and computer resources are still critical parameters for advanced nu-
merical simulations, some acceleration techniques are discussed in conjunction with the mod-
eling concepts applied.
In Chapter 4 there is a summary of all simulated configurations. Beyond details regarding the
reference configurations, the chapter contains a full list of all accomplished simulations with
corresponding specifications. Part of the simulations are used to validate the program tool cho-
sen to perform the computations. The results of this validation are presented in Chapter 5.
In order to evaluate the quality of the particular simulation technique, the discussion is divided
into two main threads, based on the phase interaction mechanism. The first part of Chapter 6
is dedicated to the particle dispersion phenomenon. The second part of Chapter 6 addresses
the influence of the secondary phase on the fluid turbulence. The findings are compared to the
theoretical formulations.
Finally, conclusions and ideas on future development close this work in Chapter 7.
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2 Theoretical Background

This chapter is a brief summary of fundamental physical aspects, with focus on turbulence in
single and in multiphase flows. For every flow type, alternative, commonly used modeling
concepts are examined, with an emphasis on the particular methods considered in this work.
Special attention is paid to the interaction mechanisms between the different media within a
multiphase flow.

2.1 Turbulent Flows

This chapter aims to present basic dimensionless numbers that are used to quantify flows in
practical engineering and in theory. The fundamental governing equations describing the be-
havior of fluids and based on the continuum assumption are presented. Finally, a separate
section is devoted to turbulence because of the fundamental relevance of turbulent flows for
technical applications.

2.1.1 Flow Classification

To describe the majority of technical flows it is sufficient to perceive the fluid as a continuum,
whose mass and momentum are conserved, instead of viewing it as a set of discrete molecules.
This definition is part of the classification based on the KNUDSEN number (2.1), which is equal
to the ratio of the mean free path of molecules λ to a characteristic length of the system L.

Kn =
lmean
L

(2.1)

The mean free path denotes the average distance that a molecule covers between two subsequent
collisions. Kn ≥ 2 denotes the limit for free molecules flow. In these conditions, it is necessary
to trace the state of every single molecule. The limit Kn ≤ 0.01 denotes a continuum flow. The
global flow properties can be computed as an ensemble average over all molecules.
Another important physical property, used for fluid classification, is the viscosity. In fluids
referred to as NEWTONIAN, the viscosity represents the constant proportionality factor between
an arbitrary shear rate and the resulting shear stress. All gases and a large number of liquids
can be approximated as NEWTONIAN fluids. In contrast to this, in non-NEWTONIAN fluids the
shear stress resulting from a variable shear rate cannot be simply parameterized by the latter
together with a proportionality constant. One possible classification of non-NEWTONIAN fluids
is given by the categories BINGHAM plastic, pseudoplastic and dilatant fluids.
The MACH number Ma, Equation (2.2), provides a relation between the speed of sound a
and a characteristic velocity of the system. a is a function of the fluid state, defined in terms
of temperature T , universal gas constant R and the adiabatic exponent κ. According to their
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MACH number, flows can be roughly split into incompressible, (Ma < 0.3), and compressible
flows, (Ma > 0.3).

Ma =
U

a
=

U√
κRT

(2.2)

Above the value of 0.3 the amount of compressible effects is differently pronounced and so it
is necessary to discern between sub-sonic (Ma < 0.8), trans-sonic (0.8 < Ma < 1.2) and
super-sonic (Ma > 1.2) flows. In incompressible flows, the density of the fluid can be assumed
to be independent of pressure change at constant temperature.
Within the scope of this work the fluid is assumed to be continuum, NEWTONIAN and incom-
pressible.

One of the most commonly used dimensionless parameters is the REYNOLDS number Re,
which represents the ratio of inertial to viscous forces, expressed by a characteristic flow veloc-
ity U and a length L and the kinematic viscosity ν of the fluid in Equation (2.3).

Re =
UL

ν
(2.3)

Re makes real life size test rigs obsolete due to the fact that real and scaled facilities based on
the same REYNOLDS number behave similarly. The REYNOLDS number depicts the laminar-
turbulent transition. For example, in pipe flow it is known that belowReD = UD/ν < 2000 the
flow is laminar, above ReD > 5000 it is fully turbulent if D is the pipe diameter, U the inflow
velocity and ν the fluid viscosity. The transition happens in the region 2000 < ReD < 5000.
Often the critical REYNOLDS is said to be ReD,crit ≈ 2300, although the exact transition point
depends on many factors difficult to control, like the wall roughnes is one.
For all the significant discrepancies between laminar and turbulent flow behavior, the physical
and mathematical theories developed for laminar flows hold also for turbulent flows.

2.1.2 Physical Aspects
2.1.2.1 Governing Equations

Based on the classical continuum theory (see Truesdell and Toupin [104], Drew and Passman
[24]), the conservation of mass and momentum is assumed. The mass and momentum transfer
could be written in the form of partial differential equations for an arbitrary volume, as shown
in Equation (2.4) and Equation (2.5).

∂ρ

∂t
+
∂ (ρui)

∂xi
= Sm (2.4)

∂ (ρui)

∂t
+

∂

∂xj
(ρujui) =

∂

∂xj
Tji + fi + Su (2.5)

The first term on the left hand side of Equation (2.4) and Equation (2.5) denotes the time deriva-
tive, and the second term, the convective transport in the physical space. The indexes i, j, k
represent the components of the vector xxx in Cartesian coordinates. On the right hand side, the
terms Sm and Su represent mass and momentum source term respectively. fi denotes a body
force, such as the gravity force. The stress tensor TTT of a NEWTONIAN fluid can be split into
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2.1 Turbulent Flows

pressure and viscous terms using known fluid properties, as written in Equation (2.6), where µ
is the molecular viscosity, p is the pressure and δij is the Kroneker symbol. The formulation of
the momentum conservation equation for NEWTONIAN fluids and gases togather with the mass
conservation equation are known as the NAVIER-STOKES equations.

Tij = µ

(
∂uj
∂xi

+
∂ui
∂xj
− 2

3

∂uk
∂xk

δij

)
− p (2.6)

At given temperature and pressure, the system of equations (2.4) and (2.5) together with appro-
priate boundary conditions, describes the velocity and pressure gradient fields of an arbitrary
NEWTONIAN flow. The source terms in both equations need an explicit formulation as well.
Flows with heat transfer allow for density and viscosity variation, which is not always triv-
ial. For many applications with heat transfer, where the pressure fluctuation remains small
compared to the absolute pressure, the latter can be approximated by a constant value, often
referred to as operating pressure pop. The ideal gas law can be rewritten as in Equation (2.7),
where Rs is the specific gas constant. Consequently, the density can be parameterized by the
temperature.

pop = ρRsT ≈ const (2.7)

The consideration of heat transfer requires an appropriate description of the energy transfer
process within the system. For the sake of simplicity, the transport of an arbitrary scalar ψ is
considered first. It is possible to formulate a conservation equation similar to this for momentum
or mass. Equation (2.8) outlines the general form of a scalar transport in the physical space.
The left hand side expresses the change of ψ in time and the convective transport in space by a
given velocity u. The right hand side depicts the diffusive flux Jij and additional source term
Sψ closes the balance.

∂(ρψ)

∂t
+

∂

∂xi
(ρuiψ) =

∂

∂xi
Jij + Sψ (2.8)

As mentioned above, in the case of energy transfer, the system of equations can be closed by
an expression for the balance of the enthalpy h or the temperature T . In the template scalar
Equation (2.8) ψ shall be replaced by the enthalpy h. Finally a formulation for the energy flux
at the place of Jij and a definition of the energy source term for Sψ is needed. The energy
flux consists basically of heat conduction and enthalpy diffusion due to species transport. The
assumption that the enthalpy diffusion due to species transport follows FICK’s law leads to the
formulation for the enthalpy equation, as written in (2.9):

∂ (ρh)

∂t
+

∂

∂xi
(ρuih) =

∂

∂xi

(
λ

cp

∂h

∂xi

)
− ∂

∂xi

(
Nα∑
α=1

hα

(
λ

ρcpDα

− 1

)
ρDα

∂Yα
∂xi

)
+ Sh (2.9)

The specific heat capacity cp of an arbitrary mixture can be computed by mass weighted sum-
mation of the specific heat capacities of all components Nα, as written in Equation (2.10). Yα
denotes the mass fraction of the mixture component α.

cp =
Nα∑
α=1

cp,αYα (2.10)
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The relation between the thermal and the mass diffusivity provided by the LEWIS number
((2.11)) can be used to simplify Equation (2.9) further.

Leα =
λ

ρcpDα

=
Dth

Dα

(2.11)

Assuming Leα = 1 leads to equal mass diffusion coefficients Dα. This approximation applies
well to mixtures, where one component prevails over the remaining components in terms of
mass fraction [69]. Moreover, for Leα = 1 the second term on the right hand side of Equation
(2.9), denoting the species transport induced enthalpy diffusion, vanishes.
The source term Sh in Equation (2.9) consists of radiation heat together with the heat transfer
between the different media. The radiation heat can be neglected for low temperature conditions
and in a gaseous environment. The heat transfer between the media with different aggregate
state is discussed in Section 2.2.3.3.
Considering the upper outlined assumptions for Leα = 1, the relation between thermal and
mass diffusivity applies to Dα = Dth = λ/cp/ρ. Finally, the enthalpy Equation (2.9) can be
simplified to (2.12).

∂ (ρh)

∂t
+

∂

∂xi
(ρuih) =

∂

∂xi

(
ρDth

∂h

∂xi

)
+ Sh (2.12)

The PRANDTL number is the relation between the fluid viscosity and the thermal diffusivity.
It is used to quantifies the proportion of the molecular stress transport to the amount of heat
conduction. Pr for air and many other gases at ambient conditions has values around 0.7− 0.8.

Pr = ν/Dth (2.13)

The generic Equation (2.8) can be used to express species mass conservation in the system.
Considering mixture of α species leads to α − 1 individual conservation equations for all but
one components. The overall mass conservation is enforced by the global continuity equation.
Applied to species transport, the diffusive flux from Equation (2.8) arises basically from the
diffusion due to mass concentration gradients (FICK’s law) and the diffusion due to tempera-
ture gradients (SORET effect). Formulation of the source term consists in general of a chemical
source, which depicts the rate of component generation or consumption due to chemical reac-
tions, and an additive volumetric source, which accounts, for example, for the transfer from or
toward another medium. The latter addresses a medium with a different aggregate state. Since
the modeling and simulation of reactive flows are beyond the scope of this work, formulation of
the chemical source term will not be discussed further. The equation for the mass conservation
of the species α can be defined in terms of its mass fraction Yα as follows in Equation (2.14).

∂(ρYα)

∂t
+

∂

∂xi
(ρuiYα) =

∂

∂xi

(
ρDαβ

∂Yα
∂xi

+
Dα,th

T

∂T

∂xi

)
+ SYα (2.14)

Dαβ and Dα,th in Equation (2.14) are the binary diffusion coefficient of the species α in β and
the thermal diffusion coefficient. The greek indexes denote the items of the species mixture.
The mass diffusion in turbulent flows is known to prevail over the thermal diffusion, so the
latter is often neglected. Furthermore, it is convenient to consider the relation existing between
the mass diffusivity and the fluid viscosity, given by the SCHMIDT number (2.15).

Sc = ν/Dαβ (2.15)
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2.1 Turbulent Flows

For the SCHMIDT number of air in ambient conditions it is known to be 0.7.

2.1.2.2 Turbulence

Since the majority of technically relevant flows are turbulent, the development of mathematical
approaches for fluid mechanics simulations is focused on them and the reliability of their pre-
diction. A brief expose of major properties of turbulent flows follows. Several general terms
related to turbulence and used for analysis throughout this work are defined.
The general picture of turbulent flow presumes an irregular fluid motion with random variation
in time and space, i.e. turbulence is always unsteady, three-dimensional and stochastic. Due to
its stochastic nature, turbulence characterization relies on statistical description of the various
flow quantities, such as velocity components, pressure, temperature and so forth. It is com-
mon practice to split an arbitrary quantity ψ into a statistical mean value and an instantaneous
deviation from the mean, also called the fluctuating part, (2.16).

ψ = 〈ψ〉+ ψ′ (2.16)

The mean quantity, denoted by the angle brackets, presumes time or ensemble averaging1. The
splitting procedure is known as REYNOLDS decomposition and is used for the definition of the
turbulent quantities below.
Before proceeding, it is worthwhile to recall the definition of two special cases of turbulent
flows because of their importance to the following discussion.
Homogeneous turbulence: Statistical quantities, which are invariant to coordinate system
translation, are homogeneously distributed. Concerning turbulent quantities, the restriction is
made only for the fluctuating part of the velocity field, i.e. mean velocity gradients are not
excluded by this definition.
Isotropic turbulence: Statistical quantities, which are invariant of any rotation or translation
of the coordinate system, are isotropic.
Richardson [81] describes turbulence as an assemblage of coherent structures (eddies) with
different size and velocity, and that larger eddies transfer energy toward smaller eddies. This
process is known as energy cascade. The smallest eddies dissipate energy due to viscous fric-
tion. Kolmogorov [44] proposes his theory based on the energy cascade concept. According
to this theory, in every turbulent flow with sufficiently high REYNOLDS number and a charac-
teristic length scale l0 of the large eddies, the statistical motion of eddies with characteristic
size l � l0 is isotropic, i.e. the hypothesis postulates that smaller eddies are independent of
flow geometry and boundary conditions in contrast to the largest eddies l0. This statement is
also experimentally proven for boundary layer turbulence. Experiments show that the rate of
energy dissipation ε scales with u2

0/t0, if u0 and t0 are characteristic velocity and time scales of
the largest eddies, respectively. Additionally, for very small scales (eddies) the viscous friction
within the eddy becomes significant and dominates the energy balance. For this, the 1st Kol-
mogorov’s similarity hypothesis holds: For a high REYNOLDS number flow, the statistics of the
small scale turbulent motions l � l0 have a universal form, determined by ν and ε. Using this,
the so called KOLMOGOROV length, velocity and time scales can be formulated ((2.17)).

η = (ν3/ε)1/4 uη = (εν)1/4 tη = (ν/ε)1/2 (2.17)
1The reader will find a summary of averaging techniques in Section 2.1.3.
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uη is the circumferential velocity occurring. The term length scale could be related to the radius
of certain coherent structure. The eddy time scale could be interpreted as the time for one eddy
turn.
The last perception comes from the fact that the energy transfer T from larger to successively
smaller and smaller eddies should be of the order of T ≈ u2

0/t0 = u3
0/l0. It is obvious from the

upper formulation that the energy transfer and the rate of dissipation are of the same order. This
means that for a particular range of scales l with l0 � l � η, the statistical motion of these
eddies is universal and uniquely determined by the rate of dissipation and is independent of ν.
The latter statement provides the second Kolmogorov’s similarity hypothesis. It determines the
region, also called the inertial sub-range, within the energy cascade where the eddy size is not
relevant for the energy transfer. This region is enclosed by the largest turbulent structures on
one side and by the smallest structures, for which viscous dissipation becomes relevant, on the
other side.

Eddy length scales, as well as eddy time scales, can be estimated from the auto-correlation
(two-point velocity correlation) R(xxx, t) in the physical space and time, as written in generalized
form in Equation (2.18). Equation (2.19) represents the normalized form of the auto-correlation.

Rij(xxx, t) =
〈
u′i(xxx, t)u

′
j(xxx+ rrr, t+ τ)

〉
(2.18)

ρij(xxx, t) =
Rij(xxx, t)√

〈u′2
i (xxx, t)〉

√
〈u′2

i (xxx+ rrr, t+ τ)〉
(2.19)

Time and space correlations are often built separately, i.e. Rij(xxx) orRij(t) respectively. Finally,
the integration of the correlation coefficient ρij over xxx and t, see (2.20), leads to the integral
length scale tensor lij and the integral time scale tensor tij , which address the energy containing
scales in the flow. For reasons of simplicity, homogeneous isotropic turbulence is considered,
where the location x is arbitrary. Furthermore, it can be shown (Pope [73], p.192,196), that for
isotropic flows the two-point correlation Rij(rrr, t) is completely determined by the longitudinal
correlation function ρ11(rrr, t), with rrr = eee1r

2.

lij =

∫ ∞
r=0

ρij(rrr, t)dr tij =

∫ ∞
τ=0

ρij(rrr, τ)dτ (2.20)

For homogeneous isotropic turbulence, Equation (2.21) denotes the averaged integral length
and time scales.

l0 =
1

3
lii t0 =

1

3
tii (2.21)

At this point, there is still a lack of information on the distribution of energy over the com-
plete range of length scales. The representation of the velocity auto-correlation by FOURIER

series provides more insight. The FOURIER transformation of the spatial auto-correlation, to-
gether with some restrictions on directional dependencies, results in the energy density spectrum
E(κw) over the wavenumber space. The wavenumber could be interpreted as an inverse length
and expressed as κw = 2π/l. Large eddies therefore correspond to low wavenumbers and vice
versa. Using logarithmic scales, a sketch of a theoretical energy spectrum is presented in Figure
2.1. The information contained in the Kolmogorov’s hypothesis is demonstrated using the

2eee1 is the unit vector.
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2.1 Turbulent Flows

Figure 2.1: Theoretical energy spectrum in wavenumber space.

spectrum. As viewed, the energy containing eddies, addressed by l0 are not the largest within
the flow pattern. Within the inertial sub-range, the spectrum exhibits power-law behavior with
an exponent of −5/3. This part of the spectrum is also known as the KOLMOGOROV spectrum.
A similar representation is possible for the temporal auto-correlation. The resulting spectrum is
in the frequency space. The frequency f then has the meaning of an angular velocity f = 2π/t.
In other words, it represents the turnover time of an eddy of size l. It is measured in inverse
time units.

2.1.3 Modeling Approaches for Turbulent Flows

As previously mentioned, the equations of mass (2.4) and momentum (2.5) conservation fully
describe an arbitrary flow field. In the case of laminar flows, the system of equations together
with meaningful boundary conditions has a unique solution. The difficulty in predicting turbu-
lent flows arises from the stochastic nature of the turbulence. In this case, there is an infinite
set of velocity and pressure fields, fulfilling Equations (2.4) and (2.5). Prediction of relevant
engineering quantities is rendered extremely difficult. There are several ways to capture the in-
stantaneous behavior. Without asserting completeness of all available modeling approaches, the
following section consists of commonly used methods for mathematical modeling of turbulent
flows.

2.1.3.1 Averaging Techniques

In conjunction with the different mathematical methods and the statistical evaluation of flow
properties, it is useful to present several averaging methods first.
Considering a group of samples N related to certain property realizations ψi, the value 〈ψ〉
estimated from Equation (2.22) is the ensemble average over all realizations.

〈ψ〉N =
1

N

N∑
i=1

ψi (2.22)

For N samples of ψ(t), where the quantity is sampled for a time period t = T , the integration
over the sampling period leads to the time, or REYNOLDS average of ψ. The average is usually
denoted with (·).

ψ = 〈ψ〉T =
1

T

∫ T

t=0

ψ(t)dt (2.23)
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Considering distribution of the property ψ(xxx) in an arbitrary volume V , where xxx denotes the
position vector, the volume average is defined as (2.24)

〈ψ〉V =
1

V

∫
V

ψ(xxx)dV (2.24)

2.1.3.2 Direct Numerical Simulation (DNS)

Direct Numerical Simulation (DNS) applies the solution of the full Navier-Stokes equations
in the physical space. Since all turbulent motions of the eddies over the complete range of
turbulent eddy scales are resolved in space and time, the necessity of modeling vanishes. On
the other hand, the requirements for the fidelity of the numerical methods and computational
resources are rising. In addition, from the definition of the KOLMOGOROV scales in (2.17) and
the relation between the rate of energy dissipation ε and the large turbulent scales l0, the ratio
between dissipation and integral length scales can be expressed in terms of the REYNOLDS

number .
l0
η
≈ Re3/4 (2.25)

It is obvious that the resolution of a three-dimensional domain scales withRe9/4. The enormous
computational effort limits the application of DNS to such low REYNOLDS number flows that
the method is irrelevant from a practical point of view.
For the majority of DNS codes, the solution is based on Fourier-series expansion, which makes
the application to complex geometries impossible. In addition, flows with chemical reaction,
thus including phenomena such as species mixing, involve mixing scales typically much smaller
than the KOLMOGOROV scales. Consequently, either the spatial resolution has to be increased
or the use of complementary physical models is inevitable.
It is clear from Section 2.1.2.2 that turbulence is stochastic but correlated in time and space.
Because of this, the definition of inlet boundary conditions implies an explicit knowledge of
the velocity correlations of the flow. From various measurements in homogeneous and special
cases of non-homogeneous turbulence, there is a certain database built on this point. This is not
the case for complex flow geometries. Consequently, the application and reliability of DNS is
limited to a few well-known configurations.
The main advantage of using DNS is the detailed representation of unsteady three-dimensional
motion of the turbulent structures. The method allows for more details than experimental in-
vestigations and helps to visualize the connection between local unsteady phenomena and their
effect on statistical flow properties. Hence, it remains an excellent tool for development and
validation of turbulent models.

2.1.3.3 Simulation Based on Statistical Averaging

Again, due to its stochastic nature, turbulence can be captured by statistical description, using
statistical moments of the flow quantities. The representation via moments can extend over sev-
eral orders (i.e. mean, variance or auto-correlation, triple correlations) and a large number of
turbulent models have been developed over the past years. Since turbulence modeling based on
statistical averaging remains beyond the main scope of this work, only a brief description of its
main features is given here. The books of Wilcox [114] and Pope [73] provide a comprehensive
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overview and analysis. All models of this class make use of splitting the instantaneous quantity
(velocity, pressure, scalar) into a mean and a fluctuating part, also referred to as REYNOLDS

decomposition (Equation (2.16)). The class of models is therefore referred to as Reynolds Av-
eraged Navier-Stokes or RANS models. Taking the mean of the continuity Equation (2.4) for
isothermal turbulent flow leads to Equation (2.26)

∂ui
∂xi

= 0 (2.26)

The incompressible NAVIER-STOKES equations have the following exact expression for the
mean flow velocity (2.27).

∂ui
∂t

+
∂

∂xj

(
ūjūi − u′ju′i

)
= −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν

(
∂ui
∂xj

+
∂uj
∂xi

)]
+ fi + Sui (2.27)

The third term on the left hand side of Equation (2.27), u′iu′j , is referred to as the REYNOLDS

stress. The value of this term is a priori unknown. The basic system for a general flow problem
with four governing equations contains more than four unknown quantities: there is a closure
problem. Consequently, the turbulence modeling focuses on determining the REYNOLDS stress.
An important assumption applied in the model derivation is that every unclosed term, containing
moments of the quantity φ of order 〈φ〉n can be expressed by known moments up to (n − 1)th

order. The variety of models can be classified in terms of order of moments used to determine
the REYNOLDS stress.
The majority of commonly used first order models take advantage of BOUSSINESQ’s eddy vis-
cosity concept proposed in 1877, assuming that the REYNOLDS stress term is similar to the vis-
cous stress term and is proportional to the mean velocity gradient and the proportionality factor
is called turbulent or eddy viscosity, νt. Second order turbulent closure models consider the
evolution of the REYNOLDS stresses by solving transport equations for the tensor components.
The equations contain further unclosed terms of higher order that need to be approximated.
Another crucial assumption of RANS models is that the turbulent flow features can be captured
by a single characteristic turbulent length, lt, and time, tt, scale. The latter are derived from
the turbulent kinetic energy k and its rate of dissipation ε, as written in Equation (2.28). The
most widely used RANS models, the two-equation models like k − ε or k − ω, on top of that
presuppose local isotropy of the turbulent fluctuations, which could be guaranteed for flows at
sufficiently high REYNOLDS numbers.

lt =
k3/2

ε
tt =

k

ε
where k =

1

2
u′iu
′
i (2.28)

The advantage of the RANS models is the relatively low computational cost. Since local instan-
taneous turbulent motions are not resolved, the models are able to predict only global turbulent
quantities. In complex flow configurations with significant anisotropy of the flow or low REY-
NOLDS number regions, additional modeling effort is required.

2.1.3.4 Large Eddy Simulation (LES)

To some extent, the LES approach presented in this section represents a compromise between
DNS and RANS models. Within the scope of this work, LES is applied for the fluid modeling
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2 Theoretical Background

and therefore will be presented in more detail.
The major idea is that, in the best case scenario, all energy containing eddies exhibiting anisotropy
properties shall be resolved, i.e. the evolution of their motions in time and space is explicitly
computed. The small isotropic scales are approached via a turbulence model. Since the major
information on complex flow patterns and unsteady effects is explicitly resolved, often a rela-
tively simple, first order closure model is applied for the unresolved scales. The proposed idea
allows for the use of coarser computational grids and larger time steps, hence, the computational
cost compared to DNS is significantly reduced.
The splitting of the large from the small turbulent eddies is performed by applying a low-pass
filter to the flow field. The filtering operation is defined as the convolution of a particular filter
function G(xxx,yyy,∆∆∆(xxx)) with the velocity, as shown in Equation (2.29). ∆∆∆(xxx) is the filter width,
xxx and yyy are real vectors and V denotes the integration in the three dimensional real space R3.

ũi =

∫
V

G(xxx,yyy,∆∆∆(xxx))ui(yyy)dyyy (2.29)

Using the filtered velocity ũi in (2.30) the residual (sub-grid) part is expressed, here denoted
with (·)′′.

u′′i (xxx, t) = ui(xxx, t)− ũi(xxx, t) (2.30)

The filter length can be defined as the average box length of the numerical grid ∆ = (∆x∆y∆z)1/3,
as proposed by Schuman [90]. This form of the filter function is very specific for CFD applica-
tion based on the Finite Volume Method3. The implicit consideration of the spatial discretization
in the filter function definition is referred to as an implicit filtering and Equation (2.29) can then
be written as follows:

ũi =
1

∆3

∫ z+ 1
2
4z

z− 1
2
4z

∫ y+ 1
2
4y

y− 1
2
4y

∫ x+ 1
2
4x

x− 1
2
4x

ui(x
∗, y∗, z∗, t)dx∗dy∗dz∗ (2.31)

Equation (2.31) can be interpreted as the spatial average of ui over the finite volume (see also
the corresponding generalized expression in (2.24)).
The filtering operation on the mass (2.4) and the momentum (2.5) conservation equations for
single phase, incompressible flows leads to the filtered set of conservation equations below,
(2.32) and (2.33). It is taken into account that the applied box filter and the derivative operator
commute. Furthermore, it is assumed that the error due to the approximation ν̃∂xiui ≈ ν̃∂xiũi
is negligible.

∂ũi
∂xi

= 0 (2.32)

∂ũi
∂t

+
∂

∂xj
(ũjũi) = −1

ρ

∂p

∂xi
+

∂

∂xj

[
ν̃

(
∂ũi
∂xj

+
∂ũj
∂xi

)
− τ sgsij

]
+ f̃i (2.33)

However, if flows with variable density are considered, it is common practice to introduce a
density weighted filter operation, also known as FAVRE filtering (2.34).

ψ̃ =
ρψ

ρ
(2.34)

3The Finite Volume Method is described in Section 3.1
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2.1 Turbulent Flows

It utilizes the property that ρψ′ = 0 and consequently, the density-velocity correlations vanish
in the filtered equations. The governing equations take the form of (2.35) and (2.36), if FAVRE-
based filtering is applied.

∂ρ

∂t
+
∂ρũi
∂xi

= 0 (2.35)

∂ρũi
∂t

+
∂

∂xj
(ρũjũi) = − ∂p

∂xi
+

∂

∂xj
ρ

[
ν̃

(
∂ũi
∂xj

+
∂ũj
∂xi
− 2

3
δji
∂ũk
∂xk

)
− τ sgsij

]
+ ρf̃i (2.36)

In both formulations of the momentum equation, (2.33) and (2.36), the unresolved or sub-
grid-scale stress tensor τ sgsij needs to be modeled. The sub-grid tensor arises from the filtering
procedure of the convective term in the NAVIER-STOKES equations, (2.5). It can be further
expressed by Equation (2.37).

τ sgsij = ũiuj − ũiũj (2.37)

Different authors postulate different requirements for the resolution of an LES. Pope [73] sug-
gested that a reliable LES should resolve at least 80 % of the kinetic energy. Consequently
and in contrast to the REYNOLDS stress tensor, the sub-grid stress term draws a significantly
smaller amount of energy compared to the total kinetic energy in the flow. Secondly, according
to the Kolmogorov’s hypothesis, the scales represented by this term are nearly isotropic and
homogeneous. The latter permits a significant simplification for the modeling of the sub-grid
stress. The first model concepts proposed for the sub-grid stress rely on previous methods used
for the development of RANS models. In the following, two of the commonly applied sub-grid
stress models are presented. The latter are applied for the current simulations as well.

THE SMAGORINSKY MODEL [93] for τ sgsij is based on the BOUSSINESQ-approximation, Hinze
[38]. That means that the sub-grid stress behaves in the same way as molecular gradient diffu-
sion. In the context of LES, the relation is expressed by an eddy viscosity νt and the gradient
of the filtered velocity field, as shown in Equation (2.38). Since τ sgsij can be further split into
an isotropic and a deviatoric part, the isotropic part, 1/3δijτkk, can be superimposed with the
pressure gradient term in the NAVIER-STOKES equations and is not modeled. For convenience,
the notation τ sgsij is retained but only further addresses the deviatoric part of the sub-grid stress
tensor.

τ sgsij = 2νt

(
S̃ij −

1

3
δijS̃kk

)
where S̃ij =

1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(2.38)

The eddy viscosity νt can be approximated via the PRANDTL mixing length hypothesis [75]
in terms of a characteristic length scale and a velocity. The closest choice of an appropriate
length scale is the filter width. Consequently, the eddy viscosity reads as Equation (2.39) with

|S̃ij| =

√
2S̃ijS̃ij . The model constant varies in the literature in a wide range from 0.05 up to

0.5.
νt = (CS∆)2|S̃ij| (2.39)

Due to the fixed value of the model constant, the eddy viscosity never vanishes. In flow regions
with low turbulence or even at laminar conditions (which is the case in wall boundary layers)
the model introduces an artificial diffusion.
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THE DYNAMIC SMAGORINSKY MODEL is an alternative solution to the issue introduced due
to the fixed model constant. Germano et al. [35] and Lilly [51] designed a procedure, that
allows for dynamically estimating the SMAGORINSKY constantCS from the local instantaneous
filtered velocity. The theory takes advantage of Kolmogorov’s similarity hypothesis for the
inertial range of the energy spectrum. The approximation for the sub-grid stress is the same
as for the Smagorinsky model. The general idea involves a second, explicit filtering operation
(called test filter) of the already filtered equations with a test filter length ∆̂ = 2∆. The second
filtering operation on the convective term leads to a new sub-grid stress , here denoted as Tij:

̂̃uiũj = ̂̃ui ̂̃uj +
(̂̃uiũj − ̂̃ui ̂̃uj) = ̂̃ui ̂̃uj + Tij (2.40)

Moreover, the relation between the filtered grid sub-grid stress τ̂ sgsij and the sub-grid stress from
the test filter Tij , given by the GERMANO identity [35], can be estimated directly from the
resolved scales (2.41):

Lij = Tij − τ̂ sgsij = ̂̃ui ̂̃uj − ̂̃uiũj (2.41)

As already mentioned, both grid and test sub-grid stress tensors, are approximated by Equation
(2.38) and (2.39). The essential feature of the theory is, that the model constant CS in the eddy
viscosity equation (2.39) is independent from the filtering operation, hence, is the same for both
sub-grid stress tensors. After substitution of the approximated sub-grid stress tensors in the
Equation (2.41), the latter can be solved for the constant. The expression for the model constant
obtained from a least square procedure [51] reads:

C2
S =

Mij (Lij − 1/3Lkkδij)

MmlMml

where Mij = −2

(
∆̂2|̂̃Sij|̂̃Sij −∆2|S̃ij|S̃ij

)
(2.42)

The dynamically obtained constant varies in time and space over a wide range. Such variations
occasionally lead to numerical instabilities. The common practice, supported by numerous
investigations in that field, is to limit the values for C2

S . The lower limit is set to zero, since
Equation (2.42) could also give negative results, which lead to unphysical, negative viscosity.
The upper limit varies in the literature, but mostly it is around a value of 0.3.
Analogous to this, the filtering operation is performed for the scalar Equation (2.8). The filtering
leads to an unknown scalar flux term jsgsψ .

∂(ρψ̃)

∂t
+

∂

∂xi

(
ρũiψ̃

)
=

∂

∂xi
J̃ij + jsgsψ + S̃ψ (2.43)

The unresolved scalar flux is commonly approximated in a similar way to τ sgsij according to
Equation (2.38). That means that the eddy viscosity approach is applied together with the
gradient flux assumption. The turbulent SCHMIDT number Sct is introduced, which is a relation
between the turbulent viscosity νt and the turbulent diffusion coefficient Dt. Following this, the
sub-grid scalar flux can be computed from (2.44).

jsgsψ = − νt
Sct

∂ψ

∂xi
(2.44)
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2.2 Multiphase turbulent flows

2.2 Multiphase turbulent flows

At the beginning it is helpful to build a convention about the meaning of the term phase within
the scope of this work. A phase is a continuous medium, where even the smallest portion,
considered here, is much bigger compared to its building units - molecules or atoms. A phase
is characterized by physical properties, such as density, viscosity, specific heat capacity, etc..
Phase interaction occurs due to transfer of momentum, energy and mass through the phase sur-
face. The phase could have a solid, liquid or gaseous aggregate state.
Based on the upper definition one can define the term of two- or multiphase medium as an en-
semble of two or more phases. Since in the current context at least one of the phases is a fluid,
gaseous or liquid, it is further intuitive to identify the medium as a multiphase flow.

2.2.1 Flow Classification

The enormous combination variety of different media with different operation regimes makes
the postulation of an universal theory for multiphase flow impossible. Common theories are
valid for a certain type of flows only. Therefore the need of an appropriate multiphase flow
classification is inevitable. One intuitive way to classify such flows is upon the aggregate sate
of their components as shown in table 2.1. Based on this classification, it is difficult to find out

Table 2.1: Classification of two-phase flows by aggregate state and their technical applications.

Phase Combination Technical Application

Gas - solid fluidized beds, pneumatic conveying, cyclone separation

Liquid - solid hydraulic conveying, particle dispersion in stirred vessels

Gas - droplet spray cooling, spray combustion

Liquid - droplet mixing of immiscible liquids, liquid-liquid extraction

Liquid - gas bubble columns, air-blast atomizer

consistent behavior similarity between flows belonging to the same class. So, for example, the
flow in a bubble column is mainly driven by the density ratio of the components, and the flow
in an air-blast atomizer is a result of the equilibrium between shear force and surface tension
force at liquid surface within the nozzle. More successful classification in that sense seems to
be the one, based on flow regime characteristics:

• separated flows: stratified, slug or film flows;

• dispersed flows: one or more phases are presented in form of discrete droplets, bubbles
or particles and one continuous phase acts as a carrier for the rest;

• transient flows: transition between regimes, i.g. from liquid to vapor or liquid film atom-
ization.
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2 Theoretical Background

Figure 2.2: Classification of two-phase flows by regime: a) transient, b) separated and c) dispersed flow, [96].

Figure 2.2 gives an overview of possible realizations for two-phase flows based on the flow
regime classification. Referring to Figure 2.2 it is obvious, that the volume occupied by both
phases could be extremely different depending on the flow regime. This leads to the next im-
portant property in the context of multiphase flow - the phase volume fraction α for an arbitrary
unit volume V . The formulation in terms of particle volume fraction is given in Equation (2.45).
Similar information delivers also the particle number concentration, np, defined in Equation
(2.46), if the size distribution is known.

αp =

∑Np
i=1 Vp,i
V

(2.45)

np =

∑Np
i=1 1

V
(2.46)

In both equations, (2.45) and (2.46), Np is the number of particles present, Vp,i is the volume
of the particle i and V is the flow volume considered. In the context of dispersed flows the
continuous phase is often denoted as carrier or primary phase. Respectively the dispersed
phase is termed as secondary phase.
Depending on the volume fraction of the secondary phase in a two-phase flow, the flow behavior
is controlled by different physical phenomena. Referring to the dispersed phase volume fraction
flows can be split in the following categories as proposed in Crowe et al. [16]:

• Dilute dispersed flows, if αp ≤ 5.10−4,

– Primary effect is the particle transport with the aim of the fluid, if αp ≤ 5.10−7,

– Active phase interaction from and toward the carrier fluid dominate,

• Dense dispersed flows,

– Momentum exchange between phases together with particle collisions determine the
flow behavior.

Within the first range the amount of the momentum transfer toward the carrier fluid is negligible
and does not affect its statistical properties. With increasing volume fraction, the effect of the
secondary phase cannot be further omitted. In addition to the fluid influence on the particle
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2.2 Multiphase turbulent flows

motion, particles determine the fluid motion. Finally in dense two-phase flows the particle-
particle interactions contribute significantly to the flow behavior, moreover, the particle-particle
correlation of motion increases.
The threshold values of the volume fraction denoted above give only an approximate estimate
for the range of the classes. Experimental investigations presented by Kulick et al. [48] in a
channel flow and later by Fessler et al. [30] in a backward facing step show clearly that, in
addition to the volume fraction of the dispersed phase, the particle density has a significant
effect on the feedback amount from the dispersed toward the carrier phase. The authors assert,
that even for the particle volume fraction above 10−5 the influence of the particles on the carrier
flow is negligible for certain densities of the particles. On the other hand, within the high volume
fraction range, collision dominated behavior loses relevance with increasing particle diameter,
because of the decreasing free path between potential colliding particles.
Within the scope of this work the investigations are restricted to dilute dispersed two-phase
flows with bidirectional momentum exchange together with mass and thermal energy transfer.

2.2.2 Two-Phase Flow Dimensionless Parameters
The current section is devoted to several dimensionless quantities, vital for the characterization
of two-phase flows.
One of the parameters - the volume fraction αp - has been introduced in the previous section be-
cause of its relevance to the classification of dispersed two-phase flows. As already mentioned,
this parameter gives only a rough estimate of the expected flow behavior and acting forces.
Another parameter is the STOKES number, St, defined in Equation (2.47).

St =
τp
τf
, (2.47)

τp is the particle response time and τf is a characteristic fluid time scale. The STOKES number
St quantifies the response of the particle in terms of acceleration to a certain fluid velocity
change within a characteristic time. Snyder et al. [94] defines the particle response time for
STOKESIAN flow as a function of particle diameter and density together with flow density and
kinematic viscosity, Equation (2.48).

τp =
1

36νf
d2
p

(
1 +

2ρp
ρf

)
(2.48)

τp represents the time, which a particle with zero velocity, released into a viscous fluid with
velocity uuuf , needs to accelerate up to 63.2% of the flow velocity. In gas-solid or gas-liquid
flows the ratio 2ρp

ρf
is very high, and Equation (2.47) is reduced to its more popular form given

in Equation (2.49).

τp =
ρpd

2
p

18µf
(2.49)

According to the definition, for St → 0 particles behave as tracer in the fluid. They follow
the flow motion nearly without any delay. St → ∞, in the case of heavy or big inertial parti-
cles, indicates that particle motion remains independent from the fluid motion. There is a broad
range between both limits, for which particles partially respond to certain fluid time scales. It
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has been observed that around St ≈ 1 particles build cluster structures and lose their homo-
geneous distribution. This effect is known as preferential concentration and has been broadly
investigated ( [31], [53], [70], [45]). This very specific behavior will be discussed in detail later
in a separate section.
In the context of two-phase flows a further relevant parameter is the so called particle REY-
NOLDS number,

Rep =
dpuuurel
νf

, (2.50)

which describes the flow around a particle. Equation (2.50) gives the expression for the particle
REYNOLDS number for spherical particles. The characteristic length scale is the particle di-
ameter and the characteristic velocity is the relative velocity between particle and surrounding
fluid, uuurel.
In many engineering applications the particle mass loading φp is used to parameterize the flow
conditions. It is a global parameter and is defined as the ratio of the total particle mass flow rate
to the total mass flow rate of the carrier fluid, see Equation (2.51).

φp =
ṁp

ṁf

(2.51)

Mass transport due to evaporation between the phases is partially controlled by gradients in the
concentration of the evaporating species, i.e. it depends on the convective transport within the
fluid. The SHERWOOD number (Equation (2.52)), is the ratio of the convective mass transfer,
approximated with a characteristic flow scale L and a mass flux coefficient kmass, to the mass
diffusion coefficient Dαβ .

Sh =
kmassL

Dαβ

(2.52)

2.2.3 Physical Aspects for Dilute Dispersed Flows

In general the transport equations discussed in Section 2.1.2.1 apply to the dispersed phase in
the same way as to the carrier phase. The transport phenomena due to convection and diffusion
within a single droplet obey the same physical laws as these related to the carrier phase. Only in
the case of solid particles the convection term in the momentum eqiation, 2.5, and in the scalar
transport equation 2.8 becomes obsolete.
As mentioned above, in dilute two-phase flows the volume fraction of the dispersed phase is
very low and furthermore it implies that the droplets or particles are much smaller compared
to the dimension of the technical apparatus. In other words, the integral length scales of the
carrier phase, which are mainly determined by the technical geometry, and the length scale of
the particlese, such as particle diameter, differe by several orders of magnutude. Therefore the
overall transport of mass, momentum and energy within the dispersed phase is in general much
faster compared to this within the carrier fluid.
Concerning the phase interaction the exchange of momentum, energy and mass can be ex-
pressed simplified as shown in Figure 2.3. A discrete particle experiences the external forces
from the carrier fluid and the exchange of mass and energy is described by fluxes trough the
particle surface. A more extended discussion on the phase interaction and its interpretation in
terms of physical models is presented in the following part of this section.
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Figure 2.3: Sketch of mass, momentum and energy transfer between a single particle and the surrouding fluid.

2.2.3.1 Equations of Motion for a Single Particle

In general the motion of a single particle within the LAGRANGIAN framework can be described
by ordinary differential equations accounting for particle position (2.53) and velocity change
in time. These are driven by the particle linear ((2.54)) and angular ((2.55)) accelerations. As
obvious from Equation (2.53), the particle position xxxp can be obtained from integration of the
particle velocity uuup in time. The particle velocity on its side, linear, uuup, and angular, ωωωp, is a
function of the acting forces FFF i and the torqueMMM i respectively.

dxpxpxp
dt

= upupup (2.53)

mp
dupupup
dt

=
∑
FiFiFi (2.54)

Ip
dωpωpωp
dt

=
∑
MiMiMi (2.55)

2.2.3.2 Forces Acting on Particles

The knowledge of all forces acting on an individual particle is required to integrate Equation
(2.54). These appear on the right hand side of the equation. Depending on the flow boundary
and operating conditions various forces can act on a particle. From the overall variety only few
forces are of significant magnitude and need to be considered for the integration of the particle
equation motion.

Drag Force

The force acting on a particle in a uniform pressure field without acceleration of the relative
velocity between particle and fluid is known as the steady state drag force, Equation (2.56).

FD =
1

2
ρfCDAp(uuuf − uuup) (2.56)

Of vital importance here, are the relative velocity between particle and surrounding fluid (uuuf −
uuup) together with the cross section of the particle Ap, normal to the relative velocity vector. The
relative velocity, together with the no–slip condition for the fluid velocity at the particle surface,
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impose the development of a boundary layer around the particle. Since this remains unresolved
by the upper definition for the drag force, the proportionality coefficient CD, often referred
to as drag coefficient, accounts for effects arising from it, based on empirical correlations. A
summary of experimental works on measuring the drag on a sphere is in Schlichting and Gersten
[89]. Crowe et al. [16] confirm the significance of the boundary layer state (turbulent or laminar)
for the drag force as shown in Figure 2.4. Within the regionRep < 0.5, known as Stokes region,

Figure 2.4: Drag coefficient on a sphere as a function of the particle REYNOLDS number.

no flow separation is observed and the drag coefficient corresponds to the relation proposed by
Stokes [101], (2.57).

CD =
24

Rep
(2.57)

For 0.5 < Rep < 103 with increasing REYNOLDS number the inertial force influence increases.
This results in flow separation around the sphere. Above Rep ≈ 103 the drag coefficient has
approximately a constant value of a 0.44 and the flow regime is known as NEWTON-regime.
Finally above the critical Rep > 2.5 105 the coefficient decreases significantly. The effect
corresponds to the transition from laminar to turbulent boundary layer around the particle. For
typical engineering applications the particle REYNOLDS number seldom exceeds this critical
value. Additional effects, such as a turbulent carrier fluid, particle surface roughness, etc., have
the effect of shifting the above discussed regions toward lower particle REYNOLDS numbers.
Nevertheless, such dependencies are not necessarily linear and in addition not all the effects are
investigated in detail.
Based on the experimental results several empirical correlations have been developed to account
for changes in the flow characteristics around the particle. One of the most popular empirical
approximations for CD has been proposed by Schiller and Naumann [88]. This mainly extends
the STOKES correlation up to Rep < 1000, Equation (2.58).

CD =
24

Rep
(1 + 0.15Re0.687

p ) (2.58)

For the range 103 < Rep < 3 ·105 the drag coefficient is approximated as a constant CD = 0.44.
A more exact approximation of the CD-curve progression is the polynomial function of Morsi
and Alexander [62] according to Equation (2.59). The three constants a, b, c have been adjusted
for eight subregions of the particle REYNOLDS number up to Rep < 5 · 104.

CD = a+
b

Rep
+

c

Re2
p

(2.59)

22



2.2 Multiphase turbulent flows

For the coefficients a, b and c the following relations hold:

a1,a2,a3 =



0,18,0 0 < Re < 0.1

3.690,22.73,0.0903 0.1 < Re < 1

1.222,29.1667,− 3.8889 1 < Re < 10

0.6167,46.50,− 116.67 10 < Re < 100

0.3644,98.33,− 2778 100 < Re < 1000

0.357,148.62,− 47500 1000 < Re < 5000

0.46,− 490.546,578700 5000 < Re < 10000

0.5191,− 1662.5,5416700 Re > 10000

(2.60)

Lift Force

Particle as well as fluid rotation induces a force transverse to the particle velocity vector, called
lift force. In addition, a particle crossing regions with a high fluid velocity gradient, experiences
lift in direction toward the positive gradient. The bigger the particle, the higher the shear lift
force FLS acting on it.

FLS =
ρf
2

πd2
p

4
CLSdp ((uuuf − uuup)×ωωωf ) (2.61)

The three-dimensional rotation of the fluid in Equation (2.61) is obtained using Equation (2.62).

ωωωf =∇∇∇× uuuf (2.62)

The analytical derivation for the shear lift force FLS , proposed by Saffman [85], is limited to
a low shear REYNOLDS number4. Therefore, similar to the drag force formulation from Equa-
tion (2.61), the shear lift coefficient CLS , proposed by Mei [60], accounts for higher particle
shear REYNOLDS numbers. The shear lift coefficient is a function of both particle and shear
REYNOLDS number.

CLS
CLS, Saff

=
(
1− 0.3314 β1/2

)
exp

(
−Rep

10

)
+ 0.3314 β1/2, Rep ≤ 40 (2.63)

= 0.0524 (βRep)
1/2 (2.64)

In above equation for the factor β the relation holds β = 0.5ReS
Rep

.

On the other hand particle rotation induces deformation of the flow field due to shifting of the
stagnation points on the particle. The resulting rotational lift force is called MAGNUS force
and acts transverse to the particle velocity vector. The primary expression of the force, de-
rived by Rubinow and Keller [82], has been later modified by Crowe et al. [16], Equation
(2.65), to account for higher particle Rep and particle rotation ReR

5 REYNOLDS numbers,

4Shear REYNOLDS number: ReS = ρfd
2
p|ωωωf |/µf .

5ReR = ρfd
2
p|ΩΩΩ|/µf

23



2 Theoretical Background

CLR = f(Rep, ReR).

FLR =
ρf
2

πd2
p

4
CLR|uuuf − uuup|

ΩΩΩ× (uuuf − uuup)
|ΩΩΩ|

(2.65)

with
ΩΩΩ = 0.5∇∇∇× uuuf −ωωωp (2.66)

being the local relative rotation of the fluid. It is obvious that for ΩΩΩ = 0 the rotational lift
becomes zero. The following correlation is often used to approximate CLR for Rep < 140:

CLR = 0.45 +

(
ReR
Rep

− 0.45

)
exp

(
−0.05684 Re0.4

R Re0.3
p

)
(2.67)

Basset Force

To obtain the so-called Basset force one needs to integrate in time from the beginning of the
particle motion. The force accounts for variations of the particle acceleration in time, i.e. the
Basset force accounts for the particle memory along its path.

FB = 9

√
ρfµf
π

mp

ρpdp
CB

{∫ t

0

d
dt

(uuuf − uuup)
(t− τ)1/2

dτ +
(uuuf − uuup)0

t1/2

}
(2.68)

The second term in Equation (2.68) denotes the initial acceleration. The coefficient CB is esti-
mated from the experiment of Odar and Hamilton [64]. It corrects the force for higher particle
REYNOLDS numbers.
Although the Basset force is often neglected because of its time consuming integration (Som-
merfeld [95]), Hjelmfeld and Mockros [39] showed for a particle in a forced oscillating flow
field that the Basset force can have a significant effect on the particle motion.

Body Forces

The only relevant body force within the current scope is the gravity force, which becomes
important with increasing difference between the dispersed and the carrier phase densities.

FG = mpggg (2.69)

For very small particles, with a diameter in order of dp < 1µm, temperature gradients or such
in the turbulence intensity become also relevant. These additional body forces are known as the
thermophoretic and the turbophoretic force respectively.

Pressure Gradient Force

The local pressure gradient in the flow induce a force collinear to it. The net pressure force
acting on a particle is given by

FP =

∫
Vp

−∇∇∇pdV (2.70)
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2.2 Multiphase turbulent flows

An expression for pressure gradient could be easily derived from the NAVIER-STOKES equa-
tion in terms of velocity convection and viscous diffusion. This procedure is omitted here since
the relevance of the force remains limited for the case that fluid density is comparable to the
particle density or higher.

Added Mass Force

Similar to the pressure gradient force, the added mass force becomes significant for density
ratios of ρf/ρp ≈ 1 or higher. This is the case in bubbly flows for example. The added mass
force represents the momentum consumed for acceleration of the surrounding fluid caused be
the no-slip condition at the particle surface, Equation (2.71).

FA =
1

2
CAmp

ρf
ρp

d(uuuf − uuup)
dt

(2.71)

The coefficient CA is an empirical quantity ([64]) and accounts for flow regime around the par-
ticle that is beyond the STOKES -flow. For practical applications often a value of CA = 0.5 is
assumed.

Torque

A rotating particle experiences a torque due to friction with the surrounding fluid. The equation
was developed by Rubinow and Keller [82] for a rotating particle in stagnant flow for low
particle rotational REYNOLDS numbers of ReR < 32. Later experimental and numerical works
([87], [19]) allow for accurate estimation of the torque up to ReR < 1000.

MMM =
ρf
2

(
dp
2

)5

CR|ΩΩΩ|ΩΩΩ (2.72)

The rotational coefficient for small ReR is approximated as CR = 64π/ReR. The fluid rotation
Ω is estimated as given in Equation (2.66).

Importance of the different forces

From the formulation of the forces presented above it is obvious that depending on the particle to
fluid density ratio or the particle diameter, some forces can be up to several orders of magnitude
higher than others. Hjelmfelt and Mockros [39] and Elghobashi and Truesdell [26] performed
an analysis to quantify these forces. According these authors drag, buoyancy and Basset force
have the strongest contribution to the particle motion in case of ρp/ρf � 1. Furthermore, the
Basset force for is at least one order of magnitude lower than the drag force. For this reason it
is a common practice to consider solely drag and buoyancy effects for the analysis of solid and
liquid particle–gas flows .

2.2.3.3 Energy transfer

The governing transport equations for the energy can be imposed from different perspectives
of the droplet-gas system. Considering droplets or bubbles, the momentum, mass and energy
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transfer within the particle can be expressed by the governing equations already discussed in in
Section 2.1.2.1. Often the thermodynamical reality within very small particles is either approx-
imated by empirical correlations or an uniform distribution of the particle internal properties is
assumed. This results in several simplifications from mathematical point of view. A spherically
symmetric droplet heating and vaporization consider only radial convection. A generalized
form of the energy transfer between particle and the environment is given by the ordinary dif-
ferential equation for the particle temperature Tp (Equation (2.73)). It is further assumed the
temperature within the particle is homogeneously distributed.

mpcp
dTp
dt

= kthAp(T∞ − Tp) + qp +
dmp

dt
hlat +

dmp

dt
hreact (2.73)

cp here denotes the specific heat capacity of the particle, kth is the heat transfer coefficient be-
tween particle and continuous phase, T∞ is the local bulk temperature of the continuous phase,
qp a volumetric particle heat source due to radiation, hlat the latent heat of a possible phase
change in the particle (i.e. boiling) and hreact is the heat of reaction, if such occurs. Accord-
ing to the right hand side of (2.73), the particle temperature is changed due to convective and
conductive transport, i.e. due to existing temperature difference between particle Tp and its en-
vironment T∞. Energy transfer within a droplet due to viscous friction with the fluid is usually
neglected.

2.2.3.4 Mass Transfer

The main amount of mass transfer between a particle and the environment occurs due to evap-
oration (if liquid particles are considered) or due to chemical reaction (in case of solid reacting
particles). The latter are beyond the scope of this work and are not further discussed here. A
general form of the mass transfer is given by the ordinary differential equation (2.74) for the
mass rate evolution.

dmp

dt
= −Mv,iAp (2.74)

The evaporation rate is changed by the vapor mass flux Mv,i through the particle surface Ap.
The vapor mass flux is a function of the concentration difference of the vaporized species i at the
particle surface Ci,p and its concentration in the environment Ci,∞. The concentration of vapor
at the droplet surface is evaluated assuming that the partial pressure of vapor at the interface is
equal to the saturated vapor pressure psat, at the particle droplet temperature, Tp:

Ci,s =
psat(Tp)

RTp
(2.75)

where R is the universal gas constant. The concentration vapor in the bulk gas is known from
solution of the transport equation for species i:

Ci,∞ = Xi
p

RT∞
(2.76)

where Xi is the local bulk mole fraction of species i, p is the local absolute pressure, and T∞ is
the local bulk temperature in the gas. The mass transfer coefficient kmass is calculated from the
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SHERWOOD number correlation

ShAB =
kmassdp
Di,m

= 2.0 + 0.6Re
1/2
d Sc1/3 (2.77)

where Di,m is the diffusion coefficient for the vapor in the bulk and dp is the droplet diameter.
The SHERWOOD number, as given in Equation (2.77), can be also approximated by the droplet
REYNOLDS and the SCHMIDT number, as common for engineering applications ([77, 78]),
where the SCHMIDT number gives the proportion of viscous to mass diffusion, Sc = ν/D. The
molar flux of the vapor Ẋi can now be expressed as:

Ẋi = kmass (Ci,s − Ci,∞) . (2.78)

2.2.3.5 Effect of Turbulence on the Dispersed Phase Motion

The particle motion in a turbulent flow field has been investigated since the early 60ies. There
are numerous experimental investigations on this topic (Torobin and Gauvin [103], Clamen
and Gauvin [15], Zarin and Nicholls [117], Rudoff and Bachalo [83]). According to them,
turbulence can significantly affect the particle motion. Nevertheless, often due to the significant
discrepancy between the quantitative experimental data, up to date in many cases the turbulence
effect is neglected when performing numerical integration of the equation of particle motion.
To quantify the influence of the turbulence many authors postulate and pursue the correlation
between a characteristic turbulent quantity and the drag coefficient, assuming that the drag force
is the most relevant force for the particle motion. The relative turbulence intensity, as defined
in Equation (2.79), is such a turbulent quantity.

Irel =

√
ū

′2
f

|uuuf − uuup|
(2.79)

The numerator in Equation (2.79) represents the velocity fluctuation of the carrier fluid. The
denominator is the relative velocity between the particle and the carrier phase. The general
tendency from the experiments is as follows:

• Increase of the relative turbulence intensity causes an increase of the drag coefficient
(Uhlherr et al. [105] and Zarin et al. [117]).

• The higher the relative turbulence intensity, the lower the critical particle REYNOLDS

number (Torobin and Gauvin [103] and Clamen and Gauvin [15]) which indicates the
transition from a laminar to a turbulent boundary layer around the particle.

The integral turbulent length scale Lf is another suitable turbulent quantity for this purpose.
Crowe et al.[16] provide a brief revue of the relevant experimental works. The results outline
only a general tendency again. At a curtain relative turbulence intensity an increase of the drag
coefficient seems to correlate with an increasing ratio of the length scales Lf/dp.
Nevertheless, due to the broad scale spectrum in turbulent flows, the phase interaction at differ-
ent length or time scales addresses different physical phenomena. Such are the flow of particles
much smaller than the KOLMOGOROV length scale, η, or the evolution of the particle bound-
ary layer for particles bigger than η. The interaction mechanisms are still not fully understood

27



2 Theoretical Background

and for this reason the numerical simulation of such flows is increasingly applied for the last
two decades. The rapid acceleration of computing resources in the 90ies additionally supported
the application of expensive techniques, such as Direct Numerical or Large Eddy Simulation,
to resolve the stochastic structures, typical for a turbulent flow. Thanks to that, in the context
of two-phase flow , it was possible to visualize unsteady interaction mechanisms between the
discrete phase and turbulent structures.
Squires and Eaton [100], Armenio et al. [5], Fede and Simonin [28] apply DNS of a periodic box
of homogeneous isotropic turbulence together with a Lagrangian particle tracking technique to
gain insight into the mechanisms controlling the particle dispersion in a turbulent flow field.
According to their investigations, the turbulent dispersion is mainly driven by the interaction of
the particles with energy-containing eddies.
Deutsch and Simonin [20] quantify the particle dispersion in homogeneous turbulence with the
particle kinetic energy and the particle LAGRANGIAN integral time scale, Equation (2.80).

Dp =
2

3
Ekin,pτpL (2.80)

The particle LAGRANGIAN integral time scale is defined as

τpL =

∫ ∞
0

Rpτdτ, (2.81)

where Rp(τ) is the particle LAGRANGIAN velocity correlation function:

Rp(τ) =

〈
u′p,i(τ0,xxx)u′p,i(τ0 + τ,xxx+ uuupτ)

〉
p

2Ekin,p
(2.82)

Nevertheless, with increasing STOKES number turbulent particle dispersion decreases.

An additional phenomenon observed in dilute two-phase flows is the preferential accumulation,
which mainly denotes a deviation from the random distribution of particles in the flow. Prefer-
ential accumulation can be detected in form of settling of particles in regions with low vorticity
or increased particle concentration in near wall regions. In contrast to the turbulent dispersion
of particles, where in general the energy-containing eddies are responsible for the distribution,
the accumulation does not seem to correlate with a specific flow scale.

• In homogeneous turbulence field Fessler et al. [31] detected the highest order of non-
randomness for particles with τp similar to the KOLMOGOROV time scale. Fede [28] again
confirmed this findings using Direct Numerical Simulation of homogeneous turbulence
field and colliding heavy particles.

• Marchioli and Soldati [53] report of near-wall particle accumulation due to interaction
with the streaky structures in the near-wall region. In addition the non-homogeneous
velocity fluctuations, typical for near-wall turbulence, force the particle accumulation
toward the wall.

• Squires and Eaton [100] identified regions with high strain rate, typical for the regions
between macroscopic turbulence structures, where particles retain longer. Longmire and
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2.2 Multiphase turbulent flows

Eaton [52] was also able to visualize particle preferential accumulation in a field of a
periodically enforced round jet, where particles concentrate in the periphery of the macro-
structures, generated by the forcing of the flow field.

Considering the bunch of numerical and experimental investigations of the last decades ded-
icated on the phenomenon turbulence driven particle accumulation no unique classification
could be found. One main reason for this is that the phenomenon ist still not fully understood.
An additional barrier for such a classification is the missing unique definition of particle fea-
tures by the different authors. The choice of the relevant flow time scale included in the STOKES

number definition for example depends on the authors preferences. This makes the comparison
between results of the variety of works very difficult.

2.2.4 Modeling Approaches for Dilute Dispersed Flows

2.2.4.1 Major Concepts

The major difference between the diverse modeling approaches is upon the representation of the
secondary phase. One way to describe the discrete phase is to apply equations 2.4 to 2.14 which
assumes continuum properties for the phase. Since the transport of the matter is considered in
a global coordinate system, the method is well known as EULERIAN. The common practice of
using this method is to represent the global behavior of the dispersed phase within the domain
of interest. In other words, the properties of the dispersed phase result from an ensemble aver-
aging over a large number of particles in a certain volume and not from the primary material
properties of the matter within a single particle (droplet). This extended view on a continuum
matter requires a new definition of material properties such as viscosity and density as well as
the approximation of the shear stress term in the momentum equation, 2.5. The specification
of material properties becomes more complex if the dispersed phase is represented by solid
particles. The unclosed shear stress term in the momentum equation requires new constitutive
expressions for the material behavior. Numerous relations are derived from the Kinetic Theory
for Granular Materials as given by Ding and Gidaspow [23] and Boyle and Massoudi [11] and
which is build upon very sophisticated theoretical basis. Nevertheless certain assumptions are
inevitable in order to close further unknown terms. The latter makes the validation of such
closures as shown by Dimitrova and Sadiki [21] very difficult. In addition the usability of the
EULERIAN method is limited for dilute dispersed flows. The limitation arises from the under-
lieing theory for the derivation of pseudo material properties. It assumes that sufficient number
of discrete particles cross the domain of interest.
An alternative method for representation of the dispersed phase is the so called LAGRANGIAN

method. It handles in a natural way dispersed flows, since the equations 2.53 to 2.55, 2.73 and
2.74, presented in the previous sections, can be applied straight forward. All particles are repre-
sented by equivalent mass–points. The information concerning particle dimensions and surface
properties, such as surface tension, must be explicitly considered. This additional effort is usu-
ally covered by empirical correlations. Using this method the particle motion as well as mass
and energy exchange with the carrier phase are resolved in time for each particle or droplet.
Every particle path is computed separately and therefore an additional information about the
state of other particles is not of essential necessity. This makes the method non-conservative.
Effects such as particle–particle collisions or the prevention of unphysical particle accumualtion
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requires an explicit modelling (Yamamoto et al. [115], Dimitrova and Sadiki [22]).
Nevertheless the LAGRANGIAN method allows for fast computation of a large number of parti-
cles with different diameters. In the context of dilute dispersed two-phase flow this method in
combination with turbulence resolving methods for the carrier phase such as DNS and LES, as
described in Section 2.1.3, represents a powerful tool for detailed investigation of multiphase
flow phenomena and especially of phase interaction as Marchioli and Soldati [53] showed for
particle segregation in a turbulent boundary layer.
Despite the enormous potential of the LAGRANGIAN method, the combination with LES opens
diverse questions about the reliability of the simulations. The works of Kuerten and Vre-
man [45] and Kuerten [46] show that the coupling between carrier and dispersed phase simply
through the filtered properties of the carrier phase omits a certain amount of the real inter-phase
momentum transfer and eventually leads to inaccurate flow prediction. In addition series of
numerical investigations, see Vance et al. [107], Vreman [109], Caraman et al. [13], reveal the
importance of inter-particle collisions even for dilute dispersed flows when using LES to model
the carrier phase.
The present work adopts the LAGRANGIAN method to model the dispersed phase in combi-
nation with large-eddy simulation for the simulation of dilute dispersed two-phase flows. The
equations for the dispersed phase are used in the form as defined in Section 2.2.3.1. The mo-
mentum applied on a single particle results commonly from drag, gravitational and pressure
gradient force. Hence Equation (2.54) takes the form:

mp
dupupup
dt

=
1

2
ρfCDAp(uuuf − uuup) +mpggg −∇∇∇pVp (2.83)

The fluid velocity in Equation (2.83) denotes the filtered fluid velocity from the LES. In order
to investigate the effect of the unresolved turbulent scales on the particle motion a simple dis-
persion model is applied. The model is described in the following Section 2.2.4.3. For the test
cases, which include sub-grid scale turbulent particle dispersion the fluid velocity uuuf denotes
the sum of the filtered fluid velocity and a fluctuating component.
Inter-particle collisions and particle rotation are not explicitly considered in the simulations.
The energy transfer from the dispersed phase is computed using Equation (2.73) whithout con-
sideration of reaction heat and radiation terms. The change of the particle temperature over a
specified time ∆t reads as follows:

Tp(t+ ∆t) = T∞ + [TP (t)− T∞]e−(Aph∆t)/(mpcp) (2.84)

The mass transfer, as defined in Equation (2.74), is now integrated again over a time ∆t as
follows:

mp (t+ ∆t) = mp (t)− ẊiApMw,i∆t (2.85)

where Mw,i is the molecular weight of the species i ([2]). Within the particle (droplet) a homo-
geneous distribution of the temperature and species field is assumed. For the modeled configura-
tions the temperature difference between carrier and dispersed phase is very narrow. Therefore
it is expected that the error of mass and energy transfer due to the simplified models remains
very limited.
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2.2 Multiphase turbulent flows

2.2.4.2 Two-Way Coupling

The consideration of influence of the dispersed phase on the carrier fluid is refered as to two-
way coupling. According to the classification proposed in Crowe et al. [16] two-way coupling
models are required in flows with particle volume fraction αp > 5.10−7, i.e. even in very
dilute two-phase flow the dispersed phase can affect the behaviour of the carrier fluid. In the
mathematical model this influence is expressed due to source terms in the transport equations
for the continuum phase.
The momentum balance for the continuum phase includes the effect due to drag. The source
term Sm in the momentum equation 2.5 reads as:

Sm = −1

2
ρfCDAp(uuuf − uuup) (2.86)

In case of droplet evaporation or particles with volatile components the amount of mass that
the particle loses appiars as a source term on the right hand side of the continuity and species
transport eqations for the continuum phase. I.e. according to the notation in Equation (2.14) the
source term SYα for the species α is:

SYα = −ẊαApMw,α = −ṁp,0

mp,0

∆mp (2.87)

In other words, Finally the source term in the energy equation 2.12 for non-reacting flows de-
notes the energy consumed for the evaporation of ∆mp and the energy diffusion due to temper-
ature gradients between the surrounding fluid and the particle. The index 0 denotes the initial
particle state of the time period for which the source term is considered.

Sh = −ṁp,0

mp,0

∆mphlat − kthAp(T∞ − Tp) (2.88)

2.2.4.3 Turbulent Dispersion

The model adopted in the present work has its origin in the concepts described Section 2.2.3.5.
It is based on the eddy crossing / eddy life time concept. The fundamental idea is that during
the computation of the drag force, a random component is added to the fluid velocity seen by
the particle.

ufl = ũ+ u′ (2.89)

Using this modified velocity the particle equation of motion is integrated. In the so called
Discrete Random Walk model, this fluctuating components are assumed to be piecewise constant
in time. The value is kept constant over an interval of time given by the characteristic lifetime
of an eddy, modeled by a turbulence model. The prediction of the particle dispersion makes use
of the concept of the integral time scale tL, which describes the time spent in turbulent motion
along the particle path, ds:

tL =

∫ ∞
0

u′p(t)u
′
p(t+ s)

ū′2p
ds (2.90)

The integral time is proportional to the particle dispersion rate. It can be shown that the particle
diffusivity is given by ¯u′iu

′
jtL. For small "tracer" particles that move with the fluid (zero drift
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velocity), the integral time becomes the fluid LAGRANGIAN integral time, t0L. This time scale
can be approximated as t0L = CL

l
ε
. The model constant CL is not known a priori and needs to

be determined. Usually this is done by assuming that for very small particles that should be the
diffusivity predicted by an eddy viscosity turbulence model νt/σ. One can obtain

tL ≈ 0.15
k

ε
(2.91)

Depending on the turbulence model the time scale rule can be adjusted accordingly.
In the context of the Discrete Random Walk model, the influence of a modelled eddy on the
particle is estimated. Each eddy is characterized by the GAUSSIAN distributed random velocity
fluctuations u′, v′, v′ and a timescale τe. The values of the fluctuations, that prevail during the
lifetime of the turbulent eddy are sampled assuming that they obey a GAUSSIAN probability
distribution, so that

u′ = ζ
(
ū′2
)1/2 (2.92)

where ζ is a normally distributed random number, and the righ-hand side of the equation is the
local RMS value of the velocity fluctuatinos. Since the kinetic energy is modelled or can be
computed from the turbulence model (e.g. the sub-grid stress model) it can be computed as:

(
ū′2
)1/2

=
(
v̄′2
)1/2

=
(
v̄′2
)1/2

=

(
2
k

ε

)1/2

(2.93)

Here local isotropy of the components is assumed. This is not necessary when a full stress
RANS model is used, but convinient in the context of LES. The characteristic eddy lifetime
is defined either as a constant τe = 2tL or as a random variation about tL by adopting τe =
−tL ln(ξ), where ξ is a uniform random number between 0 and 1. The option of using random
τe usually yields a more realistic description of the dispersion.
The particle eddy crossing time is defined as:

tcross = −τp ln
(

1− le
τ |u− up|

)
(2.94)

where le is the eddy length scale. The particle is assumed to interact with the fluid phase eddy
over the smaller of the two time values: the eddy lifetime or the eddy crossing time. When this
time is reached, a new value of the instantaneous velocity is a obtained, by applying a new value
for ζ .
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3 Numerical Methods

This chapter describes the numerical representation of the mathematical-physical governing
equations, presented in Section 2, and their solution. The basic strategies are presented for
solution of multiphase problems with emphasis on the methods used in the present work.

3.1 Numerical Methods for Continuous Flows

There are several numerical techniques established for the numerical solution of continuum
problems. Finite Difference Method (FDM), Finite Volume Method (FVM) and Finite Element
Method (FEM) are the three most famous techniques within this scope. All three are based on
the discretization of the physical problem (domain) into a finite number of units. The govern-
ing equations are redefined and solved for these units. However, they are differently assessed
applied to fluid simulations. The FDM represents an efficient method, which is furthermore
relative simple to program. In general its application is limited due to the necessity of using
structured orthogonal numerical meshes. The conservation of the flow quantities in the sense,
as discussed in the previous chapter, is not guaranteed. The FEM is not restricted to regular
orthogonal meshes and can be applied for discretization of very complex geometries. The basic
idea is to compute the displacement of each numerical point due to balancing the acting forces.
For this high order polynomials are applied, the so called form-functions. The method is not
conservative and the discretized form of the governing equations leads to a broad band matri-
ces, which need a preconditioning step. Although the method offers a high order discretization,
it plays only a minor role for flow problems. The commonly applied method for various flow
problems is the FVM. The method is adopted by scientific and commercial codes. The present
simulations are preformed in the framework of FVM and the method with its main issues and
abilities are presented in the following section. The formulation is based on the computation of
integral quantities over an arbitrary volume, allows for non-monotonic evolution of the solution
variables and maintains the conservation flow properties.

3.1.1 Discretization of the Governing Equations

The FVM is based on the integral form of the conservation equations. For an arbitrary scalar ψ,
the conservation equation can be written in integral form for an arbitrary volume V as shown in
Equation (3.1).∫

V

∂(ρψ)

∂t
dV︸ ︷︷ ︸

accumulation

+

∫
V

∂

∂xi
(ρuiψ)dV︸ ︷︷ ︸

convection

=

∫
V

∂

∂xi

(
Γψ

∂ψ

∂xi

)
dV︸ ︷︷ ︸

diffusion

+

∫
V

SψdV︸ ︷︷ ︸
source

(3.1)
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Figure 3.1: Notation for an arbitrary cell.

The GAUSS (divergence) theorem, Equation (3.2), is applied on Equation (3.1).∫
V

∂ψ

∂xi
dV =

∫
A

ψni dA (3.2)

In the convective and the diffusion term A represents the cell boundary. In the context of the
numerical method the control volume is an arbitrary polyhedron and its boundary surface is
achieved by the summation over all cell (faces). According to this, the surface integral can be
split in a sum of integrals of the faces,f . It is assumed that ψ is uniformly distributed over the
face and ψf is the value of the variable at the face f , estimated for the face centroid. The new
form of the conservation equation reads:

∂(ρψ)

∂t
∆V +

∑
f

ρfui,fψni dAf =
∑
f

Γψ
∂ψ

∂xi
ni dAf + Sψ∆V (3.3)

The value of the unsteady term and the source term is assumed to be constant over the cell
and the volume integrals can be rewritten as shown in Equation (3.3). The time derivative dis-
cretization will be discussed in Paragraph Temporal Discretization. ni is the normal vector of
Af in Cartesian coordinates. For the further procedure is postulated that all flow variables are
stored in the cell center. This storage structure is referred to as collocated. The cells, if not
explicitly defined to be part of a structured mesh, are numerated 0, 1, 2, . . .. Since all variables
are stored in the cell center, the value of the variable at the cell face needs to be approximated.
For the notation the symbols are used, as denoted in Figure 3.1. The directed distance between
two cell centers is denoted by sss, the face normal and tangential vectors are denoted by nnn and ttt,
respectively. In addition, the vectors from the cell centroid to the face centroid are rrr0 and rrr1 for
the cell 0 and 1, respectively. For the further estimation of the convective and diffusive fluxes,
assuming that the mass flux ρfui,f are known, the values of ψ and ∂ψ

∂xi
at the face centroid needs

to be estimated.

Spatial Discretization

Several discretization schemes are described in the following, referring to their relevance for
the present work. The simplest assumption for the face centroid value of ψf is the usage of an
upwind scheme, i.e. the face value adopts the cell center value of the "upwind" cell (ψf = ψ0,
assuming the upwind cell is c0). The latter is defined from the velocity vector, normal to the
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face.
For better approximation of the variable face value, it is recommended to apply a higher order
schem, using Taylor series expansion for ψ0. For second order upwind scheme this expansion
has the form as shown in Equation (3.4).

ψf = ψ +∇ψ rrr (3.4)

The ψ and∇ψ are the cell value and the cell gradient in the upwind cell, rrr is the vector between
the cell and face centroids. For this scheme is required the estimation of the cell gradient, which
is presented in the next Paragraph "Gradient Estimation". It is possible to obtain higher orders
upwind-type schemes if more terms of the Taylor series are retained. Truncating the series
after the third term and considering the second derivative leads to the so called QUICK scheme.
Further informations concerning upwind schemes can be found in Barth and Jespersen [8].
Another formulation of a second order discretization scheme gives the Central Differencing
Scheme, (CDS). For this the face value of ψf can be interpolated from both neighboring cells.
It the notation from Figure 3.1 is used, the expression for ψf reads as (3.5).

ψf =
ψ0 + ψ1

2
+
∇ψ0rrr0 +∇ψ1rrr1

2
(3.5)

On non-orthogonal meshes the consideration of the neighboring cell gradients leads to an im-
proved approximation of the face value compared to the simple distance weighting of the cell
values. Its potential to generate oscillations is a limitation of this scheme. Such oscilations
which lead to unphysical flow solutions. In the context of LES, the scheme is often applied
because of its low magnitude of numerical diffusion. Since the turbulence model supply a very
low turbulent viscosity, the solution can become unstable. Therefore, the alternative bounded
CDS, based on the normalized variable diagram approach [50], will prevent instabilities due to
discretization. The general idea is a combination of pure CDS and a blending between CDS and
second order upwind scheme based on the convection boundedness criterion.

Gradient Estimation

The gradient∇ψ at the cell centroid can be estimated by using the again the divergence theorem
for the cell volume c0.

(∇ψ)0 =
1

∆V

∑
f

ψfnnn A (3.6)

The summation is over all faces of the cell. The estimation of the face value, ψf , can be accom-
plished in several ways. Simple and fast solution is provided by using an arithmetic average of
the neighbor cell center values, (3.7), also referred to as cell based gradient evaluation.

ψf =
ψ0 + ψ1

2
(3.7)

The so called node based evaluation offers an alternative method to estimate ψf as the arithmetic
average of Nf node values ψn, (3.8). Nf is the number of the face nodes. The node value ψn
is computed from the weighted average of the surrounding cells values. The node values are
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obtained in ANSYS FLUENT by the solving of a constrained minimization problem, which is
second order accurate on arbitrary unstructured meshes ([40]).

ψf =
1

Nf

∑
n

ψn (3.8)

This method provides a more accurate estimation of the cell gradient but is expensive in terms
of time.

Diffusive Flux

To integrate the diffusion term, it is necessary to compute the diffusion flux Df at each face of
the control volume.

Df = Γf∇ψ ·AAA (3.9)

Γf is here the diffusion coefficient interpolated to the face. The basic idea adopted for non-
orthogonal meshes is to split the diffusion flux in to a part which is normal to the face area
vector AAA and a part which is tangential to the face. Since an implicit treatment based on cell
gradients of ψ is not possible because of the dependence of ∇ψ on all neighbor cells, it is tried
to adopt an implicit treatment for the face normal part of the flux. The tangential component is
added explicitly. The explicit part is written as difference between the total cell derivative and
the normal component.

Df = Γf
ψ1 − ψ0

ds

AAA ·AAA
AAA · sss

+ Γf

(
∇ψf ·AAA−∇ψf · sss

AAA ·AAA
AAA · sss

)
(3.10)

The value of the gradient at the face ∇ψf needs to be interpolated to the face based on the
neighbor cell gradients. Further details if the overall procedure can be found in Mathur and
Murthy [59].

Temporal Discretization

The time derivative can be approximated using, for example, first or second order time dis-
cretization as shown in Equation (3.11) and (3.12), respectively.

∂ψ

∂t
≈ (ρψ)n+1 − (ρψ)n

∆t
=

1

∆V

(∑
f

Cf +
∑
f

Df + Sψ∆V

)
(3.11)

∂ψ

∂t
≈ 3(ρψ)n+1 − 4(ρψ)n − (ρψ)n−1

∆t
=

1

∆V

(∑
f

Cf +
∑
f

Df + Sψ∆V

)
(3.12)

The terms on the right hand side of the upper equations denote the spatial discretized convec-
tive, Cf , and diffusive, Df , fluxes together with the volumetric source term Sψ. An implicit
time integration is achieved if the terms of the right hand side involve the value from the current
time step ψn+1. In the explicit formulation the values available from the previous time step ψn

are used for the estimation of the convective-diffusive fluxes. The implicit time integration al-
lows in general larger time steps. The storage required for this type of time integration is higher
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since the values of ψ for at least two time steps are need to be stored for the computation of the
variable in the current time level.

Linearized System of Equations

Since all face values and the face gradients in the discretized equation of ψ0 are expressed in
terms of the cell values of ψ, the terms can be reorganized in the form as given in Equation
(3.13).

a0ψ0 =
∑
nb

anbψnb + b (3.13)

The indexes 0 and nb denote the cell c0 and its neighbors. The total number of neighboring cells
depends on the mesh topology. a0 and anb are the corresponding coefficients and b is the source
term. The set of linearized equations of all controll volumes leads to the system of equations,
Equation (3.14), which is solved using a linear equation solver. The matrix A contains all
coefficients, ψψψ is the solution variable vector, containing all cell values of the solution variable
ψ. bbb is the source term vector.

Aψψψ = bbb (3.14)

3.1.2 Pressure-Velocity Coupling

The momentum (2.5) equation is discretized by using the same interpolation methods as dis-
cussed above. ψ is replaced by a velocity component in the equation of the generic scalar (3.1).
From the discretized momentum equation several issues arise: the velocity is needed to compute
the mass fluxes (ρfui,f ), as well; the pressure gradient is unknown and finally the continuity and
the momentum equations are coupled. A special treatment is required for this system of equa-
tions. In the following two concepts to resolve this issues are presented.

Evaluation of the Pressure Gradient

In order to complete the discretization of the momentum equation, the pressure gradient needs to
be approximated first. If the GAUSS theorem is applied again, following, the pressure gradient
is transformed to: ∫

V

∇p dV =

∫
A

p ni dA ≈
∑
f

pfniAf (3.15)

Here, again, the assumption is made that the face centroid value pf is the mean face value. Since
the pressure is stored at the cell center as the other solution variables, its face value needs to
be interpolated. Possible interpolation schemes are: the linear interpolation between the cell
centroids of the face adjacent cells; second order schemes similar to these applied for the con-
vective terms. Alternative, the pf can be interpolated using a weighted average of the neighbor
cell center pressure values. As weighting factors the coefficient a0 and a1 from the discretized
momentum equations of the neighbor cells c0 and c1 are used (Rhie and Chow [79]). However,
the interpolation method works well only for smooth pressure fields and small body forces.
The stability and reliability of the simulation can be further improved if a "staggered" repre-
sentation for the pressure is used. The method is presented by Patankar [68] for structured
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staggered grids. The method can be modified for an unstructured grid.

Discretization of the Continuity and Momentum Equations

The momentum equation in discretized form reads (3.16):

a0ui =
∑
nb

anbunb −
∑
f

pf ni Af + b (3.16)

For the continuity equation the same transformations, as outlined above, are performed. The
mass conservation equation, written in integral form according to FVM, yields the form after
applying the divergence theorem: ∑

f

Jf Af = 0 (3.17)

where Jf = ρf uf . The face velocities, in general, are not estimated by standard interpolating
scheme used for the convection terms, since it will lead to checker-boarding of the velocity
and pressure fields. Instead, the interpolation method, proposed by Rhie and Chow [79], is
applied. According to this, the mass flux at the face f is computed as the average of the cell
center velocities from the adjacent cells, weighted by the central coefficients of the momentum
equation, (3.18).

Jf = ρf
a0u0,n + a1u1,n

a0 + a1

+ df ((p0 + (∇p0)r0)− (p1 + (∇p1)r1)) (3.18)

un is the face normal velocity, df is a function of the cell coefficients from the momentum equa-
tion. The density ρf at the face can be estimated from an arithmetic average of the neighboring
cell center values.

SIMPLE Algorithm

The SIMPLE algorithm goes through several steps of subsequend pressure and velocity correc-
tions until the requirement for convergence of both equations is fulfilled. The general steps of
the algorithm are as follows:

• The momentum equation is solved using a guess pressure p∗

• The new flux J∗f is computed, according to Eq. (3.18): J∗f = Ĵ∗f + df (p
∗
0 − p∗1)

• J∗f is corrected by J ′f in a way to satisfy the requirements for mass conservation:

Jf = J∗f + J ′f (3.19)

• the correction flux is defined as J ′f = df (p
′
0 − p′1)

• The pressure correction equation is obtained from the continuity equation after substi-
tuting (3.19) in the continuity equation (3.18). p′ denotes the cell value of the corrected
pressure.
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app
′ =
∑
f

afp
′
f +

∑
f

J∗fAf (3.20)

• The iterative solver estimates the value of cell correction pressure p′ and updates the
actual pressure after the initial guess. In general the pressure correction needs an under-
relaxation: p = p∗ + αp′

• In the final step the fluxes Jf from Equation (3.19) are computed.

Fractional Step Algorithm for Unsteady Simulations

In the Fractional Step method an approximate factorization is used to decouple the continuity
and momentum equations [6], [43]. If a second order implicit scheme is applied for the temporal
discretization (Equation (3.21)) the momentum equation for the new time step (n+ 1) reads:

∂

∂t
(ρuuu) =

ρ

2∆t
(3uuun+1 − 4uuun + uuun−1) (3.21)[

3ρV

2∆t
III +AAA∗

]
uuun+1 +GGGpn+1 =

ρV

2∆t
(4uuun − uuun−1) +SSSu (3.22)

III is the identity operator,AAA∗ contains the spatial operators for the convective and diffusive terms,
GGG is the gradient operator and SSSu is the momentum source. Equation (3.22) can be rewritten in
the form:

AAAuuun+1 +GGGpppn+1 = rrr (3.23)
DDDuuun+1 = 0 (3.24)

where AAA describes the term in the brackets on the left hand side, and rrr denotes the term on the
right hand side of Equation (3.22). Equation (3.24) is the continuity equation for incompressible
flows with constant material properties. DDD is the divergence operator. If the pressure change
between two time levels is δpn+1 = pn+1 − pn the latter, applied on Equation (3.23) and (3.24),
leads to the following result, written in block matrix form:AAA GGG

DDD 0

uuun+1

δpn+1

 =

rrrn −GGGpn
0

 (3.25)

The matrix equation is approximated by as written in Equation (3.26), where ∆t∗ = 2∆t/(3ρV ).AAA (∆t∗AAA)GGG

DDD 0

 ≡
AAA 0

DDD −∆t∗DDDGGG

III ∆t∗GGG

0 III

 (3.26)

The error, introduced by this approximation, is second order and is of the same order as the
truncation error of the temporal discretization, applied above. The right hand side of Equation
(3.26) is the factored matrix, and the solution steps can be expressed as follows, Equation (3.27):

AAAũuu = −GGGpn + rrrn (3.27)
∆t∗DDDGGGδpn+1 = DDDũuu (3.28)

uuun+1 = ũuu−∆t∗GGGpn+1 (3.29)
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• solve the intermediate velocity field ũuu (3.27)

• solve the pressure correction equation (3.28)

• update the pressure field from pn+1 = pn + δpn+1

• correct the velocity with the new from the new pressure field (3.29)

Since the method does not need outer iterations per time step, it is very efficient in time. It
represents a good alternative to the methods using explicit time discretization, moreover, with
this method the time step is limited only by the flow problem and its desired temporal resolution
and not by the CFL criterion.

3.1.3 Boundary conditions
Before proceeding to the solution of the linearized system of equations, it is necessary to specify
the boundary conditions for the considered domain. Depending on the physical geometry, the
used models for description of the fluid motion and probably additional conditions, such as heat
conduction on walls, or state of the flow due to compressibility effects leads to a large variation
of boundary conditions. Within the present context, however, their number can be reduced to
four.

Periodic Condition

The periodic type of boundary condition denotes that the flow velocity repeats in space as:

uuu(rrr) = uuu(rrr + nLLL) (3.30)

where n = 0, 1, . . . and LLL is the periodic distance. For the pressure holds that the pressure
drop ∆p(rrr) is constant in the periodic direction.

Inflow Boundary

In the context of LES the inflow boundary condition can be defined by a mass flow or a velocity
profile in conjunction with turbulent quantities. The mass flow condition does not accounts for
an alternating profile at the inlet. This is an issue in LES context, since the computational do-
main in general does not include the longer supplying sections. The length for the development
of a certain state of the turbulent flow is much longer, compared to the modeled domains. This
essential flow properties need to be recovered for the simulation.
This represents a DIRICHLET boundary condition. The mean velocity field is defined, in addi-
tion turbulent characteristics, such as turbulent intensity, fluctuating velocity etc., can improve
the quality of the generated turbulence. The main issue is on the generation of turbulent fluc-
tuations, since the reconstruction of an real turbulent field, without a priori knowledge of the
turbulent properties, is not trivial. Different options are presented below.

• The generation of so called white noise perturbation of the velocities is mostly insuffi-
cient, since they do not obey the energy spectrum as usually exhibited by turbulent flows.
These perturbations are dissipated within a relative short distance after their initiation.
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• Generation of LAGRANGIAN vortices: The method is based on the LAGRANGIAN form
of the two-dimensional equation of the vorticity. The particles, used to discretized the
vorticity equation, transport the artificial eddies. This eddies are convected randomly
away from the inlet plane. The intensity of the vortex is related to a mean turbulent
quantities, such as the turbulent kinetic energy. The extension in streamwise direction is
defined by using the turbulent mixing length hypothesis

Outflow Boundary

A standard NEUMANN formulation is used for the fluid velocity at the exit boundary. All
solution quantities except the static pressure are extrapolated on the boundary face from the
boundary adjacent cell. Considering that all simulated configurations deals with subsonic flow
regime, the outlet static pressure is known a priori.

Wall Boundary

At walls allpy a DIRICHLET condition for the fluid velocity. Concerning the energy equation
an adiabatic wall is modelled such as ∇T Annn = 0 (NEUMANN condition). Otherwise, a heat
flux shall be specified.

3.1.4 Solving the Linear System

The equations for an arbitrary scalar, discretized in the manner as shown from the beginning
of this section, (3.1), build a set of algebraic equations with a sparse coefficient matrix. The
linearized system can be solved using standard solvers, such as ILU or GAUSS-SEIDEL.
The combination of one of the solver with an Multigrid method accelerates the solution of the
matrix and prevents instabilities at the beginning of the iterations, if the initial variable field
deviates significant from the final solution.
Depending on the way, how the interpolation between the levels of the multigrid solver is per-
formed, there are in general two types of such methods. The first is based on geometrical
coarsening and refinement of the various grids. It is, however, restricted to structured mesh type
definition. The second type of mutigrid methods accomplishes the prolongation (coarsening)
and restriction (refining) operations based on an appropriate interpolation between the matrix
coefficients. This method is often applied on unstructured grids and is known as Algebraic
Multigrid. More information concerning the multigrid method, together with further references
can be found in Ferziger and Peric [29].

3.2 Numerical Methods for Discrete Phase

For the simulation of dispersed flows two main groups of methods have gained popularity. The
one is based on a continuity assumption and resembles the Multi Fluid approach, also known as
Eulerian multiphase. Such methods treat the dispersed phase as a continuum. Possibly special
models for the stress tensor are adopted. Examples for this are models based on kinetic theories,
like the Granular theory approach. Such models describe the inter-particle collision based on
kinetic assumptions in a very efficient manner. Their limitation arises from the fact, that the

41



3 Numerical Methods

equations can be closed only for a constant particle diameter, which renders the simulation of
polydispersed systems problematic. In the recent past, progress was made to overcome this
limitation. The developments in the area of population balance methods utilizing (D)QMOM
are only mentioned here.
The second main group of methods is based on the LAGRANGIAN frame and hence on the
tracking of individual particles. Most often the point particle assumption is adopted, i.e. mass
points are tracked and the individual particle extents are ignored. This simplification delivers
consistent results for most of the cases of interest here. Nevertheless, when special attention
is paid to the particle distribution very close to the boundary and the actual particle size is
comparable with a resolved boundary layer thicknes, it can become problematic. The deficit
of LAGRANGIAN based multiphase models, is that the consideration of inter–particle collisions
is difficult and expensive. In the context of DNS and LES most typically hard-sphere collision
models are applied for dilute flows. In the situation of very dense particulate flows, operated
in the frictional regime, also soft-sphere DEM (Discrete Element Method) is increasingly used.
The main difference between soft and hard sphere collision detection is that in the soft sphere
method every collision is resolved utilizing a certain number of integration steps and a repulsive
force is computed based on the mutual distance of each possible collisional pair of particles.
In the hard sphere approach intersecting points of trajectories are detected. This renders the
method more efficient for the computation of dilute two-phase flows.
The focus of this work is set on the LAGRANGIAN description of the dispersed phase. The
methods for solving the governing equations in the LAGRANGIAN frame are outlined below.

3.2.1 Integration of the Particle Equations of Motion

The trajectory equations for the particles are solved by stepwise integragion over discrete time
steps. Integration of Equation (2.54) yelds the velocity of the particle at each point along the
trajectory as given by:

dx

dt
= up (3.31)

The equations (2.54) and Equation (3.31) are a set of coupled ordinary differential equatins and
can be casted into the following form:

dup
dt

=
1

τp
(u− up) + a (3.32)

where a includes all other forces, except drag force. This set can be solved for constant u, a and
τp by analytical integration. For the particcle velocity at the new location un+1

p the following
holds:

un+1
p = un + e

−∆t
τp − aτp

(
e
−∆t
τp − 1

)
(3.33)

The new location xn+1
p can be computed from a similar relationship.

xn+1
p = xn + ∆t (un + aτp) + τp

(
1− e−

∆t
τp

) (
unp − un − aτp

)
(3.34)

In these equations unp and un represent particle and fluid velocities at the old location. This
formulation is known as the analytic integration scheme. Numerical integration schemes can
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also be applied to the given set of equations. When applying the EULER implicit scheme, the
equation for the new velocity reads:

un+1
p =

unp + ∆t
(
a+ un

τp

)
1 + ∆t

τp

(3.35)

The trapezoidal integration rule yelds:

un+1
p − unp

∆t
=

1

τp

(
u∗ − u∗p

)
+ an (3.36)

u∗p = 0.5
(
unp + un+1

p

)
(3.37)

u∗ = 0.5
(
un + un+1

)
(3.38)

un+1 = un + ∆tunp · ∇un (3.39)

The particle velocity at the new location is computed by

un+1
p =

unp

(
1− 0.5∆t

τp

)
+ ∆t

τp

(
un + 0.5∆tunp · ∇un

)
+ ∆ta

1 + 0.5∆t
τp

(3.40)

For the implicit and trapezoidal schemes, the new particle location is always computed by a
trapezoidal rule.

xn+1
p = xnp + 0.5∆t

(
unp + un+1

p

)
(3.41)

Typically the Autmated Tracking Scheme Selection is used to carry out simulations involving
particle tracking throughout the present work. When this is used, the appropriate scheme will
be selected based on an error estimation in order to ensure maximum stability and high accuracy
when possible. The approach is considered to deal well with most of the changes in the forces
acting on the particle ([2]).
For the computation of the drag force, the fluid velocity at the particle position needs to be
estimated. Since in the context of the Finite Volume Method, this is available at the control vol-
ume centroids, a second order accurate extrapolation scheme is adopted here. If rrr is the vector
from the centroid to the particle position, and ucell is the control volume velocity and∇ucell the
velocity gradient vector computed for the control volume, the scheme reads as follows:

uf = ucell +∇ucell · rrr (3.42)

When two-way coupled simulations are applied, a source term acounting for the influence of the
dispersed phase on the continuous phase needs to be considered. Here, the computation of the
momentum source term is shown, without the loss of generality. For other equations (like for
energy transfer), the computation is done in the same way. When a particle enters a new control
volume, its state at entrance is saved. When the particle leaves the cell, the new, changed state
is compared to the entry state. The difference, here for the momentum is set as a source term to
the momentum equation of the continuous phase.

Smom = mp,1uuup,1 −mp,0uuup,0 −
nsteps∑
i=0

bbbi (3.43)
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The last term in the equation is the integral over all substeps in the control volume of the body
force vector for the particle equation of motion. This has to be subtracted from the source term,
since body forces do not originate from the fluid (e.g. the gravity force is due to the mass of the
Earth and the particle).

3.2.2 Boundary Conditions
Inlet Boundary

Using the LAGRANGIAN method implies that every parcel injected in the computational domain
features its own set of initial position, velocity, temperature, diameter and material properties.
This allows for a large flexibity when dealing with dispersed flows with broad or multimodal
diameter distribution.
A special account is paid in this work on the generation of instantaneous inlet velocity condi-
tions for the dispersed phase. If available from experiment different correlations and property
data for the dispersed phase are taken into account. The particle velocity is randomized around
the mean value, where the stochastic variation satisfies the standard deviation of the velocity,
Equation (3.44). The random numbers are computed for every particle injection.

uuup = 〈uuup〉+ ξuuu′ (3.44)

where ξ ∈ {−1 : 1} is a normally distributed random number.
In case that no experimental data for the particle velocity are available, it is assumed that parti-
cles start with the instantaneous fluid velosity at the position of particle injection.

Outlet Boundary

The particle tracking algorithm aborts the integration when a parcel crosses the outlet bound-
ary. The mass of the parcel is excluded from the total particle mass in the computational domain.

Wall Boundary

For all configurations presented here the interaction of a particle with a wall boundary is ex-
pressed as a particle-wall collision. The particle is rejected from the wall when the computed
path of the mass point crosses the wall. The angle of reflection is computed as a function of the
velocity vector before the collision and the coefficient of restitution, e, where e = 1 denotes a
fully elastic collision, (Equation (3.45)).

un0 = −un1e (3.45)
ut0 = ut1e (3.46)

The indexes n and t denote the particle velocity in wall-normal direction and tangential to wall
respectively. The second pair of indexes denote the velocity before, state 0, and after, state 1,
the collision with the wall.
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This chapter gives an overview of the configurations to be discussed in Chapters 5, Code Valida-
tion, and 6, Results and Discussion. The necessity arises from the arrangement of the following
chapters, which discuss mainly phenomenological aspects under different boundary conditions
resulting from the different flow configurations.
Together with the exposition of the investigated configurations this chapter contains the numer-
ical setup applied to the simulations.

4.1 Low Reynolds Number Particle Laden Channel
Flow

The flow in this configuration is rendered between two parallel plane walls. The extension
of the wall boundaries is supposed to be infinite. Therefore, flow inhomogeneities develop
only in the wall-normal direction. The carrier fluid is contaminated with small heavy particles.
The REYNOLDS number, based on the wall friction velocity and the channel half height, is
Reτ = 150. The intention of this simulation is to investigate the main properties of the dispersed
phase, such as particle velocities, particle dispersion and the propensity to accumulate in the
near-wall region, depending on particle diameter. Beyond this, the LES results are compared
with reference DNS from Picciotto et al. [70].

4.1.1 DNS Setup

In Picciotto et al. [70], Direct Numerical Simulation (DNS) is applied to the carrier phase and
the motion of the particles is computed from the NEWTON equation of motion. It should be
noted that the DNS is part of a benchmark test of a particle-laden turbulent channel flow, as
reported in Marchioli et al. [56].
The fluid is assumed to be incompressible and NEWTONIAN. A sketch of the computational
domain, with channel half height h as a scaling parameter, is presented in Figure 4.1.
The properties of the flow and relevant configuration variables are summarized in Table 4.1. The
friction velocity is defined as uτ =

√
τw/ρf , where τw and ρf are the mean shear stresses at

the wall and of the fluid density, respectively. The existing near-wall turbulent structures seem
to partially match the characteristic time scales of the chosen particle size and are therefore
responsible for the preferential particle concentration in this region.

Reτ is the REYNOLDS number based on the wall friction velocity uτ and the channel half
height. Rebulk is based on the mean bulk velocity. The behavior of four classes of particles is
investigated. The particle properties, also in respect of the specific flow conditions are listed in
Table 4.2. Further, the diverse particle classes are addressed by their STOKES number. The St
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Figure 4.1: Sketch of the channel flow domain for the DNS.

Table 4.1: General configuration and flow properties.

Channel half height, h 0.02 m

Friction velocity, uτ 0.11775 m/s

Reτ 150 −

Rebulk 2110 −

Fluid density, ρf 1.3 kg/m3

Fluid viscosity, νf 1.57 10−5 m2/s

Particle density, ρp 770ρf kg/m3

and d+ are defined as:

St = τp
u2
τ

νf
(4.1)

d+ = d
uτ
νf

(4.2)

where τp is the STOKESIAN particle response time, as defined in Equation (2.48).
The NAVIER-STOKES equations are solved using a pseudo-spectral method. Details of the
numerical procedure can be found in Lam and Banerjee [49]. The domain for the DNS is dis-
cretized with 128× 128× 128 nodes in all three directions. In stream- and spanwise directions
periodic boundary conditions are imposed on the fluid velocity field, together with a pressure
gradient in streamwise direction to retain the flow. A no-slip boundary condition is applied at
the walls.
The concentration of the particles is assumed to be low enough to consider one-way coupling

conditions, according to the definition in Section 2.2.1. Particle-particle interactions are also
neglected. The motion of the ensemble of 105 rigid spherical particles is resolved with a set
of ordinary differential equations (Equation (2.53) and Equation (2.54)). Since ρp/ρf ≥ 1, the
only significant forces are drag force and buoyancy (Elghobashi et al. [26]). Gravity is also
neglected in this simulation. The drag force includes a standard correction for particle REY-
NOLDS numbers lower than 1000, as shown in Equation (4.3).
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Table 4.2: Particle properties.

St = τ+
p τp (s) d+

p dp (µm) Stη Stl

1 1.13 · 10−3 0.15 20.4 0.08 0.012

5 5.66 · 10−3 0.34 45.6 0.4 0.06

25 2.83 · 10−2 0.77 102.0 1.9 0.3

125 1.42 · 10−1 1.71 228.0 9.6 1.5

duuup
dt

=
uuuf − uuup
τp

(
1 + 0.15Re0.687

p

)
(4.3)

Similar to the fluid boundary conditions, a periodic type of boundary is applied to the particle
velocity and position when a particle leaves the domain in a stream- or spanwise direction. Fol-
lowing the standard LAGRANGIAN approximation, particles of finite size are replaced by mass
points. The boundary condition for the particle approaching a wall is defined as follows: When
the distance between particle position and the wall becomes smaller than the physical radius of
the particle, the particle rebound elastically from the wall.
The particle-laden flow is computed for approximately 400 · tR, where tR is the mean flow
residence time, defined by the domain length in streamwise direction and the mean centerline
velocity. During the last 20000 flow time steps, which corresponds to approximately 17 · tR,
particle velocity and position data are collected every 50 time steps to build up the database for
the particle properties. Finally, from the extracted particle data, one-point statistics for velocity
and particle number density are used to analyze the preferential particle accumulation.

4.1.2 LES Setup

Domain and physical properties

The computational domain for the large-eddy simulation is reduced to a quarter of the original
domain of the DNS by to considering the half length and width of the primary domain. At the
relatively low REYNOLDS number the correlation coefficient does not drop to zero. Neverthe-
less, the domain extension is sufficient to reproduce the fluid and particle one-point statistics, as
the comparison with the DNS confirms. The domain axes are as follows: x- in streamwise , y-
in wall-normal and z-axis in spanwise direction. The spatial resolution in stream- and spanwise
directions is equidistant and in the wall-normal direction, the mesh is stretched using a Poisson
function, with growth factor of 1.05. Table 4.3 contains the mesh size normalized by wall vari-
ables. ∆y+

c denotes the grid size in the centerline plane of the channel, and ∆y+
1 - the size of

the wall next cell. In addition to the two-phase flow simulation, for the purpose of validating,
the simulation of the single phase flow is carried out on three different numerical meshes.
The two-phase LES is performed on the medium grid. The current two-phase flow simulation
setup computes 15 times more particles than those for the reference DNS. The number of the
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Table 4.3: Mesh resolution for the large-eddy simulation .

Grid label Grid points ∆x+ ∆y+
1 ∆y+

c ∆z+ Grid points be-
low y+ = 10

Time step, s

coarse 58× 60× 58 16.2 0.6 11.7 8.0 9 5e− 3

medium 72× 74× 72 13.0 0.5 10.7 6.5 15 1e− 3

fine 88× 90× 88 11.0 0.6 7.7 5.4 15 5e− 4

particles does not change the two-phase flow behavior since inter-particle collisions are ne-
glected and only one-way coupling is considered. Therefore, the simulated time and thus the
time for sampling particle properties is shorter. The full details concerning the differences of
the DNS vs. the LES are summarized in Table 4.4. As defined in Chapter 4.1.1, tR denotes the
flow residence time.

Table 4.4: Summary DNS vs. LES setup.

Case Physical domain Numerical
method

STOKES

number, St
Particles
number

Simulated
time

Sampled
time

DNS 4πh× 2h× 2πh pseudo-
spectral

1, 5, 25, 125 105 400 · tR 17 · tR

LES 2πh× 2h× πh finite-
volume

1, 5, 25 15 · 105 400 · tR 4 · tR

Boundary and initial conditions

Periodic boundary conditions are applied in streamwise and spanwise directions for both the
continuous and the dispersed phases. Particles are reflected elastically when the particle center
reaches the wall. Pressure gradient in x-direction is applied to retain the flow. The initial field
of the air flow is taken from a steady state k−ε simulation. The averaged velocity field has been
superimposed with random fluctuations to accelerate the development of the turbulent field in
the large-eddy simulation. The two-phase flow simulation starts from the fully developed turbu-
lent single phase flow. The particles are initially homogeneously distributed within the domain.
Initial particle velocity is the fluid velocity interpolated at the particle position. Since only one-
way coupling is considered for the LES, similar to the reference DNS, the number of particles
does not have an influence on the particle distribution and accumulation, whereas larger number
of particles accelerate the convergence of the statistical particle properties, such as mean and
rms1 velocity or particle number density. Hence, significantly larger number of particles com-
pared with the reference DNS setup are simulated (Table 4.4).

1root mean square
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4.2 High Reynolds Number, Particle-Laden Channel Flow

The numerical procedure

The solution of the NAVIER-STOKES equations for the continuous phase is based on the Finite
Volume Method. A second order spacial discretization scheme, CDS, is applied for the con-
vective terms in the momentum Equation (2.5) and the PRESTO! scheme for the face pressure
interpolation in the pressure-correction equation together with a node based procedure for the
gradient approximation. For details of the numerical procedure see, Section 3.1. The time in-
tegration is performed by a second order implicit scheme. The pressure-velocity coupling is
realized via a Fractional Step method. The latter is discussed in detail in Section 3.1.2. The
sub-grid stress tensor, within the scope of the large-eddy simulation , is modeled using the
Smagorinsky model with dynamic estimation of the model constant.
Particle tracking is initialized after the single phase flow has reached a statistically steady state.
Particle motion is controlled by the drag force, assuming that the Rep < 1000. A second order
interpolation scheme is used to determine the fluid velocity at particle position. The integra-
tion in time of the particle equation of motion is evaluated applying an adaptive scheme, which
switches between a 1st order EULER implicit and 2nd order trapezoidal scheme. Details of the
numerical methods for particle tracing can be found in Section 3.2.

4.2 High Reynolds Number, Particle-Laden Channel
Flow

The experimental setup for this case has been developed and used for numerous measurements
of particle-laden turbulent channel flows using various parameters, such as particle diameter,
particle mass loading and channel wall roughness. The REYNOLDS number based on the wall
friction velocity and the channel half height, is Reτ = 644. The experimental investigations in
a vertical channel gas-solids flow by Kulick et al. [48] and Fessler et al. [31] are used as a refer-
ence case. The experiment focuses on particle dispersion by examination of different STOKES

numbers and on turbulence modification due to STOKES number variation combined with mass
loading variation.
As a potential simulation task some important features of the configuration require special at-
tention:

• ReUCL = 13800 significantly higher than the configuration in Section 4.1

• Moderate particle mass loading, which affects the carrier phase properties:

– Importance of two-way coupling,

– Particle size vs. volume of the numerical cell in the near-wall region,

• Effect of the gravitational force,

• Further specific properties of the experiment:

– Wall roughness,

– Stage of development of the statistically steady two-phase flow up to the test section,
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– Particle diameter distribution instead of single diameter class,

– Experimental errors.

4.2.1 Experimental Setup and Measurement Technique

Experimental facility

A vertical square duct is used to deliver the particle-laden gas flow. The vertical part of the
wind tunnel includes a 5.2m development section. The particle feeder and the flow condition-
ing section are placed above the vertical part of the channel. The specially designed belt feeding
system delivers for homogeneous particle distribution in the transverse direction. The particle-
laden flow goes through a channel contraction before entering the development section, with
dimensions of the cross section of 0.04 × 0.457m, which results in an aspect ratio of 1 : 11.4.
The acrylic test section has a length of 0.635m.

Physical properties

The flow is operated with air at ambient temperature and at a REYNOLDS number of 13800,
based on the channel half height (0.02m) and the centerline velocity. Further important gas
phase parameters are summarized in Table 4.5. The KOLMOGOROV length scale and the turbu-

Table 4.5: Gas flow parameters.

Channel half hight, h 0.02 m

Centerline velocity, UCL 10.5 m/s

REYNOLDS number, ReUCL 13800 −

Shear wall velocity, uτ 0.49 m/s

Shear REYNOLDS number, Reτ 644 −

Viscouse length scale 31 µm

Dissipation, ε, centerline 2.8 m2/s3

Kolmogorov length scale, η, centerline 190 µm

Kolmogorov time scale, (ν/ε)1/2, centerline 2.3 ms

lence dissipation are estimated from a k − ε simulation, [31].
The dispersed phase is represented by solid particles of different material and size. Thus, the
variation of the particle’s STOKES number is controlled by two parameters - particle density and
diameter. One of the main purposes of the experimental investigation is to examine the turbu-
lence modification in the fluid arising from the presence of the particles. Therefore, the particle
mass fraction, as a key parameter for turbulence modulation, is also varied within a given set
of particle parameters. Table 4.6 presents the setup variations for the two-phase flow . The
corrected particle relaxation time is calculated by integrating the particle equation of motion for
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a particle in a uniform unbound flow, assuming Rep < 100.

Experimental technique

A single-component Laser Doppler Anemometry (LDA) is applied to measure the streamwise
and spanwise velocity components of the continuous and dispersed phase. The optical path for
measuring of the streamwise velocity component was oriented in a spanwise direction (along
the long side of the channel cross section) in case there was low particle mass loading, which
ensures a very good spatial resolution near the wall. With increasing particle mass loading, the
signal-to-noise ratio decreases and the optical axes are aligned with the direction of short side
of the channel cross section (in this work, this is referenced as wall-normal ), which results in
poorer spatial resolution near the wall.
Particle velocity is measured without using a tracer in the air flow. Gas-phase velocity in
particle-laden flow is measured by amplitude discrimination, since the amplitudes of the laser
Doppler bursts of the scattered light from large and small particles are very different. Titanium
dioxide powder with mean diameter of 1µm was used as a flow tracer.
Data rates for the air flow velocity range from 3000Hz for the single phase and lowest particle
mass loading down to 100Hz for the highest mass loading of 80 %. Particle velocity data rates
increase with the mass loading and are between 20 and 40Hz. For the spectral analysis of the
gas flow, the data rate is increased to 6000Hz by setting the seed flow rate to its maximum.
The minimum spatial resolution is defined by the cylindrical measurement volume, wich has a
diameter of 78µm and a length of 562µm.
According to the authors of [47, 31], considering directional bias, gradient broadening, ve-
locity bias, ensemble statistical errors and alignment uncertainties, the combined experimental
uncertainty is estimated as 2 % in the mean and 5 % in the standard deviation of the velocity. In-
terphase cross-talk error is 1 % in the mean velocity and 3 % in its standard deviation. The error
in the particle velocity is caused by the varying particle diameter. For the glass particles (Table
4.6), it results in a standard deviation in the velocity of approximately 0.03m/s and 0.2m/s
for the copper particles.
Particle concentration and possible preferential accumulation are analyzed using quantitative
estimation of the particle distribution in the channel central plane from photographs. For this
reason, particles are illuminated by a laser sheet with a thickness of 1mm, parallel to the plane
defined by the span- and streamwise axes, and placed at channel half height. The photographs
represent an area of 30 × 40mm. Depending on the mass loading and particle diameter, the
number of particles per photograph is in the order of 3000. 10−15 photographs are used for the
concentration estimation. A detailed description of the experimental technique and estimation
procedure is in [31].

4.2.2 Numerical Setup

Domain and physical properties

The high aspect ratio of the real channel cross section allows approximation of the real flow
such as the assumption of a two-dimensional flow between two endless flat planes, where its
behavior in spanwise and streamwise direction is supposed to be periodic. This assumption
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4.2 High Reynolds Number, Particle-Laden Channel Flow

allows for an artificial but significant reduction of the volume reproduced in the numerical sim-
ulation. The domain extensions are 2πh × 2h × πh, where h = 0.02m represents the channel
half-height. The domain axes are as follows: x- in streamwise , y- in wall-normal and z-axis in
spanwise direction. Two discretizations in the wall-normal direction aim to investigate the ef-
fect of the resolution of the wall boundary layer on the particle properties. The first grid allows
for a standard resolution (in LES context) of the boundary layer, where the wall next point is
below y+ = 1. The second grid has an equidistant cell distribution in wall-normal direction, so
that the wall next point is at y+ = 15 and additional modeling of the wall generated turbulence
is required. Details for the two numerical grids are summarized in Table 4.7. ∆y+

c denotes the
grid size in y-direction of the centerline plane in the channel, and ∆y+

1 - the size of the wall
next cell.

Table 4.7: Numerical grid parameters

Case Grid points ∆x+ ∆y+
1 ∆y+

c ∆z+ Grid point be-
low y+ = 10

Time step,
s

Wall-
resolved

129× 100× 129 31 0.6 33 15 9 5.e− 5

Wall func-
tion

129× 83× 129 31 15 15 15 - 5.e− 5

The physical properties for air and particles are kept as defined for the experiment, except for
the assumption that each particle class is mono-dispersed. The particle size is set to the mean
diameter of the particular particle set.

Boundary and initial conditions

Periodic boundary conditions are applied in streamwise and spanwise directions for both the
continuous and dispersed phases. For the periodic boundaries on the fluid side, the chosen
domain extensions are supposed to be large enough that the two-point velocity correlation be-
comes zero within the domain. The pressure gradient in streamwise direction retains the flow
parallel to the gravity vector. Gravity also acts on the dispersed phase, together with the drag
force induced by the carrier fluid. The influence of the dispersed phase on the fluid properties,
i.e. two-way coupling, is considered by utilizing a source term in the momentum Equation (2.5).
No additional treatment is applied to model the influence on the subgrid-scale tensor. A no-slip
condition is applied at the wall for the air flow. Particles reflect elastically when the particle
center reaches the wall. The effect of inelastic collision is investigated in the case of copper
particles by setting the restitution coefficient in wall-normal direction to 0.5. It is important to
note that, the value of the restitution coefficient chosen here is a very rough estimation because
of missing data for the colliding material pair, glass - copper. For comparison, the estimated
restitution coefficient for the pair copper-copper is approximately 0.22 and for the pair glass-
glass it is about 0.94.
The initial field of the air flow is taken from a steady-state k − ε simulation. The averaged
velocity field has been superimposed with random fluctuations to accelerate the development
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of the turbulent field in the large-eddy simulation. The two-phase flow simulation starts from
the fully developed turbulent single phase flow. The particles are injected with a homogeneous
distribution into the domain, with velocity equal to the fluid velocity at the particle position.
This is computed using a second order interpolation based on the CFD grid centroids velocity
data.

The numerical procedure

In general, the numerical procedure followed is the same as that outlined in Section 4.1.2. The
effect of the pressure-velocity coupling on the simulation quality is investigated by comparing
of the Fractional Step method with the standard SIMPLE coupling procedure. To retain as much
similarity with the experiment as possible, the gravitational force is considered for both the air
flow and the dispersed phase.

Configurations

The choice of the simulated setups allows the investigation of the potential of large-eddy sim-
ulation coupled with LAGRANGIAN particle tracking in two key aspects: particle preferential
concentration and particle influence on fluid turbulence characteristics. Modification of turbu-
lence due to the presence of particles is referred to as turbulence modification. The results from
the simulations are split into two groups, as shown in Table 4.8, based on their fundamental
interaction phenomenon. One group focusses on the preferential concentration of particles as
induced by the turbulent flow. The second targets the turbulence modification by the particulate
flow. The results of the two groups are discussed in separate sections in Chapter 6.

Table 4.8: Topic map of the simulated cases.

Topic Relevant Configuration

Particle preferential concentration d28φ03, d50φ02, d70φ02, d90φ02

Turbulence modification d50φ02, d50φ20, d70φ02, d50φ20, d150φ20

Detailed information about the simulation conditions for the single and two-phase flows are
listed in Table 4.9. tR denotes the residence time, here defined as the ratio of channel length to
centerline mean streamwise velocity, 2πh/Ucl. As well as the configurations performed in the
experiment due to variation in particle diameter, material or mass loading, a number numerical
variations are also performed. These are listed in Table 4.9 as well. The first variation considers
the number of real particles per numerical particle (also denoted as a parcel):

• Every numerical particle represents only a small fraction of a real particle, (< 10% de-
pending on material and mass loading). The following injection procedure is applied:
Particles are released from a plane normal to the main flow direction, with 129 × 100
homogeneously distributed injection positions. The particles are injected at equidistant
time intervals, so that the final particle distribution throughout the domain is nearly ho-
mogeneous. The duration of the injection is governed by the desired number of numerical
particles. In this case, the limit is set to 516000 numerical particles.
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4.3 Particle-Laden Jet

Table 4.9: Simulation parameters.

Case label Simulated
time

Sampled time Parcel num-
ber ∗103

Number in
Parcels

single phase 160 tR 80 tR − −

d28φ03 160 tR 80 tR 1362.8 1

d50φ02 160 tR 80 tR 516 0.0008

d70φ02 160 tR 80 tR 516 0.008

d70φ20 160 tR 80 tR 516 0.08

d70φ20− nip1 160 tR 80 tR 47.06 1

d70φ20− e0.5 160 tR 80 tR 47.06 1

d90φ02 100 tR 50 tR 516 0.005

d150φ02 100 tR 50 tR 250 0.02

d70φ20− simple 132 tR 80 tR 47.06 1

• One numerical particle represents exactly one real particle. To achieve this, particles are
released from the same cross-sectional plane as above but in accordance with the mass
flow and the additional restriction that, every parcel contains the mass of one real particle.
The duration of the injection is limited by the averaged volume fraction, estimated by the
particle and mass loading case. Particle positions are randomized for every injection
event using a normal distribution to achieve a nearly homogeneous particle distribution
throughout the domain.

The effect of the number of numerical particles on flow characteristics has been investigated for
the configuration of copper particles at 20 % mass loading.
The second numerical variation considers the choice for pressure-velocity coupling algorithm.
The case d70φ20 has been computed using the Fractional Step method and the standard SIM-
PLE method, referred to as d70φ20 − simple, and compared for fluid and particle properties.
The choice of the configuration is based on the expectation that higher particle mass loading can
affect the stability and convergence of a simulation in a negative manner when considering the
two-way coupling. It needs to be proven that the Fractional Step method, which includes vari-
ous numerical simplifications and thus is computationally much more efficient, is nevertheless
capable of dealing with the higher mass loadings.

4.3 Particle-Laden Jet
Particle and fluid behavior are investigated for an unconfined air jet flow with and without
particles. This configuration is an application of interest for several reasons:

• The phase interaction is not a function of the geometrical rig, (no wall effects),
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• Variation in the characteristic time and length scales within the flow, i.e. the local STOKES

number changes,

• The carrier fluid demonstrates a strong response to the dispersed phase and changes its
behavior significantly compared to the single phase case.

For this reason, fluid and particle velocity as well as the particle concentration distribution func-
tion are the focus. Spatial and temporal autocorrelation functions of the fluid velocity and their
spectral representation give an insight into the mechanisms of phase-interaction.
Another important feature of this configuration is its similarity to a broad range of industrial
applications. A number of examples from industrial praxis include a two-phase jet flow, related
to a spray. Such are the fuel injection in combustion chambers, spray painting or chemical
units. Since the dispersed phase in the present case of interest is represented by solid particles,
the phase-interaction here is limited to momentum exchange. The study of the isolated phe-
nomenon should facilitate better understanding.
The following sections give an overview of the experimental rig built and investigated by
Hardalupas et al. [37], as well as a summary of all numerical simulations performed that re-
late to this configuration.

4.3.1 Experimental Setup and Measurement Technique

Experimental facility

The experimental rig is oriented vertically, referred to here as the z-axis, and the main flow
direction is parallel to the gravity vector. A pressure regulator keeps a constant air flow rate for
the jet, independent of fluctuations in the supplied pressure. Rotameters control the flow rate of
the glass beads and the tracer particles. Streams of particles and air flow are mixed upstream in
a vertical duct, which, transformed via smooth contraction, ends in a development section. The
latter is a stainless steel pipe with diameter D = 0.015 m and length of L = 100D. The flow
exits into ambient air. A flow collection hopper is placed 50 pipe diameters further downstream.
Measurements are performed between axial positions of x/D = 0.1 and 28.

Physical properties

Table 4.10 and summerize the physical properties of the carrier fluid and 4.11 those for the
dispersed phase.

Table 4.10: Gas flow parameters at x/D = 0.

Jet diameter , D 0.015 m

Centerline velocity, U0 14.7 m/s

Bulk REYNOLDS number, Rebulk 13000 −

Integral time scale, t0 1.15 ms
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Table 4.11: Particle parameters.

Mean diameter, dp µm 40 80

Diameter range µm 37− 44 60− 95

Density, ρp kg/m3 2420 2420

Mass loading, φ % 13 23, 86

Averaged volume frac-
tion at x/D = 0, αp

− 6.37 10−5 1.12 10−4,
4.3 10−4

STOKES τp ms 11.9 47.6

Stl0 − 10.3 41.4

corrected τp ms 11.1 45.7

Stl0,corr − 9.65 39.7

Two particle residence times are denoted in Table 4.11. τp assumes Stoksian flow and its cor-
rected value of is estimated using the empirical correlation as given by Schiller and Naumann
[88] for particle Rep < 1000. The correlation is provided in Equation (2.58). The STOKES

number in Table 4.11 is based on the fluid integral time scale. The characteristic time scales
of the particles are significantly higher than the integral time scale of the flow at the jet inlet.
Therefore, the particles will not respond to the fluid motion. According to Hardalupas et al.
[37] the centerline integral time of the flow increases quadratically, i.e. at thirty diameters
downstream, the l0 approximates 1.35ms. The change in the local STOKES number along the
centerline is less than 15% of the initial value at x/D = 0, (Table 4.11).

Experimental technique

The one-point Phase-Doppler-Anemometry (PDA) experimental technique is used to measure
spray and carrier fluid. The Phase-Doppler anemometer is mounted on a three-dimensional
traversing system, and is used to measure the axial and radial velocity components in space.
The position of the receiving module is 30◦ off-axis from the main scattering direction. The
receiving module is mounted on the same traversing system as the transmitting rig. The cylin-
drical measuring volume seen by the receiving optic has a length of 1.13 mm (imaged length
200 µm) and a radius of 52 µm. Involving three photomultipliers guarantees that the phase
difference and the estimation of the particle diameter is unambiguous. Various refractory pow-
ders, such as kaolin and titanium dioxide, are used as a seeding material. The nominal size of
the powders before agglomeration is ≈ 1 µm. The seeding particles are assigned to a phase
window of 40◦.
The estimation of the axial mean and rms velocity relies on approximately 3000 total samples.
The largest portion of the random error due to the size of the data sample set is appraised to 1 %
for the mean and 3 % for the rms velocity for particles and gas flow. The measurement of the
particle mass flux includes about 3 % random uncertainties. A discussion of the error sources
and the error magnitude is in Hardalupas et al. [37].
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4.3.2 Numerical Setup

Domain and physical properties

According to the sketch of the computational domain in Figure 4.2, the main flow direction is
the x-axis. Using the jet diameter D at the jet inlet, x/D = 0, as a parameter, the main compu-
tational domain represents a cylinder with a radius of 10D and length of 30D. A fragment of
the development section with length of 5D is included in the simulation. From totally 1.320
million cells, 1.1445 million are in the main computational domain. The inlet pipe section is
discretized with approximately 0.175 million cells. Within the inlet pipe section, ten prism lay-
ers are used to resolve the wall boundary layer. The wall next cells are placed at y+ = 6.6 (the
distance is normalized using wall units). The complete domain is discretized with hexahedra.
90 % of all hexahedra have an aspect ratio less than 10. The grid is stretched in x-direction by
a factor of 1.01. The grid generation is based on the cooper algorithm, which is available in
the meshing tool GAMBIT. The main advantage of the technique is that only one surface needs
to be meshed manual. The computational volume is discretized automatically by sweeping the
prepared surface mesh. Geometrical functions control the minimum and maximum cell volume,
together with the growth rate of the cells.
The physical properties for air and particles for the simulation are kept as defined for the exper-
iment, except for the assumption that all particle classes are mono-dispersed and have a mean
diameter of 40 µm and 80 µm respectively. Details can be found in Tables 4.10 and 4.11.

Boundary and initial conditions

Figure 4.2 presents a sketch of the computational domain together with the boundary conditions
prescribed. A DIRICHLET boundary condition for the air velocity is applied at the pipe inlet,

Figure 4.2: Boundary conditions: continuous phase.

where the velocity components normal to the main flow direction are set to zero. In order to
induce a turbulent flow within the short pipe section, velocity fluctuations are generated using
a LAGRANGIAN Vortex Method. For details of the method see [58] and Chapter 3.1.3). The
fluctuation generation is based on the information for the turbulent flow state provided by pro-
files for the turbulent kinetic energy and dissipation or the turbulent intensity. Profiles for the
velocity and turbulent quantities are taken from a preliminary steady–state k − ε simulation of
a pipe flow with the same REYNOLDS number as for jet at x/D = 0. The profiles of the axial
mean velocity and turbulent kinetic energy used at the inlet for the LES and the velocity data
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from the experiment of the single phase flow measured at x/D = 0.1 are compared in figure
4.3.

Figure 4.3: Radial profiles of axial velocity and turbulent kinetic energy from the k − ε simulation, used for inlet
condition for the LES, vs. experimental data at x/D = 0.1.

The second region with Dirichlet boundary type for the velocity has the function of a coflow.
In the main flow direction (z-axis), the flow velocity is set to 0.2 m/s to prevent a numerically
induced backflow and hence to increase the numerical stability. No additional flow perturba-
tions are set to generate turbulence. For both the outlet boundaries in axial and radial directions,
a pressure condition accounts for the zero gauge pressure and zero gradient condition for the
velocity field.
The dispersed phase is injected continuously at the pipe inlet at x/D = −5D. Particles enter the
domain homogeneously distributed. Their starting positions for every time step are randomly
staggered at the inlet plane. Particles are injected with the condition number in parcel (NiP) be-
ing unity, i.e. one numerical parcel represents one real particle. The restriction was made after
preliminary calculations with 40 µm particles at NiP < 1. These have shown that the num-
ber of the parcel increases above 10 million even before the statistically steady state has been
reached. The opposite option NiP > 1 was found to generate a too low number of particles,
which will increase the computational time required to collect a sufficient number of samples
for statistical evaluation. The particle velocity is set equal to the fluid velocity interpolated to
the starting particle position. The particle axial velocity component is corrected by a factor less
than unity in such a way that the ratio of the particle to fluid axial velocity is very close to thas
obtained from the experiment at x/D = 0.1. The factor was set to a constant value within
the particle injection plane. The computed particle velocity at the first measurement position
matches the experimental profile well. For this reason, no further adjustment for the particle
inlet velocity profile was found to be necessary. The factors for the different configurations are
listed in the last column of Table 4.13.
Within the inlet section, particles rebound elastically from the wall. Particles corssing an outlet
boundary are marked as escaped and finally excluded from the tracking procedure.
For the single phase flow simulation, the solution of a steady–state k − ε calculation is applied
as initial flow state. All two-phase simulations start from the statistically steady solution of the
single phase LES.

The numerical procedure
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In general the numerical procedure is the same as that outlined in Section 4.1.2. For quality
assessment of the LES also simulations applying the SIMPLE algorithm are compared with the
primary results to verify the validity of the Fractional Step method and its simplifications for
this case.
The action of gravity is included for both phases. Two-way coupling is accomplished via source
term in the gas momentum equation.

Configurations

The first set of calculations concerns the validation of the single phase flow simulation. The
investigations span in three directions: domain resolution, dependence on the pressure-velocity
coupling and dependence on the inlet boundary conditions. Details are summarized in Table
4.12.

Table 4.12: Simulation parameters: Single phase flow simulations.

Grid Case Total time Sampled
time

min. / max.
CV, m3

max. cell
aspect ratio

1.320 Mil. CV FS1)-Uconst 18 tR 8 tR 4.e − 11 /
2.45e− 7

20

FS-Uprofile 112) tR 8 tR see above see above

SIMPLE-Uconst 82) tR 6 tR see above see above

1.762 Mil. CV FS-Uprofile 63) tR 4 tR 1.5e − 10 /
1.1e− 7

6

1) FS – Fractional Step algorithm

2) initial field from FS-Uconst run

3) initial field from FS-Uprofile run

Two-phase flow simulations are primarily used to study particle dispersion along the jet in
terms of the local STOKES number. They are also used to investigate the influence of particles
on fluid motion. The coarser grid according to Table 4.12 is used for all two-phase flow simula-
tions. With the corresponding case FS-Uconst, simulations concerning the coarse particle class
are performed also utilizing the two concurring types of pressure velocity coupling: SIMPLE
and Fractional Step. The focus here is on investigating the stability and quality of the LES,
when a significant amount of inter-phase momentum exchange occurs. Table 4.13 lists detailed
information related to the two-phase flow simulations The sampling procedure for statistical
estimation of the two-phase simulations begins after the particle concentration, integrated over
the entire domain, reaches its quasi-stationary value. Depending on particle diameter and mass
loading, the initial time range is different for the different configurations, as evident in Figure
4.4. The time axis is normalized with the flow residence time tR, which is defined as the ratio of
the domain length L = 30D to the mean jet centerline velocity UCL at x/D = 0. As expected,
the mass concentration of the larger particles converges toward an asymptotic value faster than
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4.4 Evaporating Spray in a Confined Circular Chamber

the concentration of the lighter particles. These respond faster to the fluid motion. The re-
sulting increase in the particle lateral dispersion leads to longer particle residence times within
the computational domain. Finally, the statistically steady state of the particle concentration is
reached when the injected and the domain-leaving particle number reaches its equilibrium state.
Variation of the mass loading in case d80φ23 and case d80φ86 affects only the magnitude of
the total concentration, not time passing until this value is reached.

Table 4.13: Simulation parameters: Two-phase flow simulations.

Case Pressure
- Velocity
Coupling

Total time Sampled
time

Particle num-
ber ∗103

uax,p,bulk
uax,f,bulk

single phase FS 18 tR 8 tR − −

SIMPLE 10 tR 8 tR − −

d40φ13 FS 18 tR 10 tR 550 1

d80φ23 FS 16 tR 10 tR 62 1

SIMPLE 10 tR 8 tR 62 1

d80φ86 FS 16 tR 10 tR 248 0.75

SIMPLE 6 tR 4 tR 248 0.75

Figure 4.4: Particle mass concentration within the computational domain as a function of time.

4.4 Evaporating Spray in a Confined Circular Chamber

Additional aspect of interest are high fidelity simulations of combustion systems with liquid
fuels. Being successful in these implies an accurate prediction of droplet dispersion and evap-
oration. In order to investigate this particular phenomenon, the next configuration is chosen,
as experimentally investigated by Sommerfeld and Qiu [99]. The experiment exhibits some
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similarity with technical applications, where liquid fuel evaporation is one of the leading mass
and energy transfer mechanisms. Nevertheless, it has to be emphasized that a low-temperature
spray problem is investigated in the present configuration. Hence, the vaporization rate is not
the limiting factor for species mixing as is usual in common spray combustion.
Within the scope of the present work, the configuration contains three major aspects of interest:
First, the diameter distribution of the spray covers a range of three orders of magnitude, starting
from two micrometers. The mesh requirement for a high fidelity LES leads to a locally very
fine grid resolution, especially for higher Reynolds numbers of the flow. Using the Lagrangian
approach for the dispersed phase in the case of a two-phase simulation, the numerical grid issue
often conflicts with the assumption that the discrete particles are small compared to the volume
of the computational cells. Secondly, near the spray injection plane the particle volume fraction
is significantly higher compared to all previously discussed configurations in this work. Finally,
the process of evaporation is an additional issue that needs to be modeled.
The particular charm of the setup is the detailed database of the inlet spray and air conditions.
It contains besides one point statistics for velocity, mass flux and temperature, probability den-
sity functions (PDF) of droplet diameters and diameter - droplet velocity correlations at several
radial positions close to the nozzle exit. Further, there is an extensive database of the gas and
liquid velocity fields from measurements at several axial and radial positions.

4.4.1 Experimental Setup and Measurement Technique

Experimental facility

A sketch of the core experimental setup with the test section, as developed and investigated by
Sommerfeld and Qiu [99], is presented in Figure 4.5, left view. The facility contains a variable
speed blower, an electrical heater and a pressure vessel for the supply of the liquid before the test
section. A cooling trap after the test section recovers the test liquid. In the vertical cylindrical
chamber, gravity acts in the main flow direction, here the z-axis. Preheated air enters from an
annulus gap (with an outer diameter of 64 mm and a gap height of 12 mm) into the test section
with an inner diameter of 200 mm. Due to the sudden expansion at the end of the inlet tube, the
air flow is forced to recirculate. A pressure atomizer for the spray is mounted into a hollow cone
in the center of the inlet tube. The nozzle exit position is 5mm above the cone edge, i.e. before
the beginning of the test section, which allows for liquid break-up within the hollow cone. The
first axial position of measurement is at 3mm downstream from the expansion edge.
Radial profiles of velocity, liquid mass flux and droplet diameter are available for a total of
seven axial positions flow downstream. In addition the change of the test chamber wall temper-
ature in axial direction is recorded.

Physical properties

The physical properties for the hot air entering the test section at temperature of 373K and the
isopropyl alcohol spray, injected at temperature of 300K are summarized in Table 4.14. Ther-
modynamic properties of liquid and vapor isopropyl alcohol, published in Sommerfeld and Qiu
[98], and additional data from [106] are presented in 4.14 as well. The binary diffusion coeffi-
cient for isopropyl alcohol in air is obtained from the correlation 4.4 fitted to the experiments
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Figure 4.5: Sketch of the experimental rig (left) and the corresponding computational domain marked by the
dashed line (right).

presented in Vargaftik [108]:
D = 4.75 ∗ 10−10 ∗ T 1.75

av , (4.4)

where Tav is the averaged temperature of the vapor film around the droplet and could be ob-
tained from the 1/3− averaging law 4.5. As shown in Figure 4.6 the diffusion coefficient, esti-
mated from Equation (4.4), changes within the considered temperature range of approximately
100 K very slowly. In addition, the maximum difference between the spray and the hot air
temperature for the present setup is less than 70K. Following, the binary diffusion coefficient
is assumed to be constant. The value chosen for the simulations is given in Table 4.14.

Tav =
1

3
Tdroplet +

2

3
Tair (4.5)

The influence of various parameters on droplet evaporation and dispersion are investigated
within the experimental framework. The parameter set includes variation of the air and the
liquid mass flow rate as well as the air and the liquid inlet temperature and the nozzle diameter.
For the purpose of the current topic, only one of the four presented experimental two-phase con-
figurations was chosen for simulation. The choice of a particular configuration is determined
by the requirement that parameters from the single and two-phase setup remain as close as pos-
sible. The reason for this limitation is a missing database for the air flow under two-phase flow
conditions.
The full set of two-phase flow conditions can be found in the work of Sommerfeld and Qiu [99].
The setup used as a reference case for this simulation is outlined in Table 4.15.
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Figure 4.6: Fit of the binary diffusion coefficient D for isopropyl vapor in air according to the experimental data
of Vargaftik [108].

Experimental technique

The one-point Phase-Doppler-Anemometry (PDA) experimental technique is used to measure
both, the spray and carrier fluid. The phase-Doppler anemometer was mounted on a three-
dimensional traversing system. The position of the receiving module, consisting of two detec-
tors, at 30◦ off-axis from the main scattering direction allows for high scattering intensities even
for very small droplets. The measuring volume has a radius of 200 µm and length of 12.6 mm
(imaged length 194 µm). Further parameters concerning dimensions and characteristics of the
PDA system are discussed in [99]. The estimation procedure for the particle mass flux was de-
veloped by Qiu and Sommerfeld [76] to permit accurate flux and concentration measurements
in conjunction with the one-point PDA technique. Sommerfeld and Qiu [97] reported from val-
idation measurements an error concerning the mass flow of up to ±10 %.
The gas velocity measurements by PDA are performed using glass beads as the seeding mate-
rial, where only the Doppler signal from beads smaller then 3 µm is sampled. The gas velocity
measurement is omitted for the spray operated case. The air-inlet area is scanned with a ther-
mocouple to get a profile of the mean temperature for the air flow. The outer wall temperature
along the test section is measured via fixed thermocouples.

4.4.2 Numerical Setup

Domain and physical properties

A sketch of the computational domain in terms of the inner anular tube diameter can be seen on
the right hand side of Figure 4.5. The length of the test section was set to 15.5D. The domain
length is sufficient to minimize the influence of the outlet boundary condition on the relevant
quantities used for comparison with the experiment, which was shown by computing numerical
setups with different extents. The last measured axial position is at z/D = 10. Data from
the single phase calculation are used for the assessment. For details see Section xxx ERGEB-
NISSE. The computational domain is discretized with 1.646 million cells, where approx. 0.5
million cells are within the core chamber region of radius 0.032 m and length of 0.15 m, or
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Table 4.14: Physical parameters.

Air

Molar mass , M 28.84 kg/kmol

Density at 373 K, ρ 0.9329 kg/m3

Critical temperature, Tcrit 132.5 K

Critical pressure, Pcrit 37.7 bar

Heat capacity at 373 K, cp 1.012 kJ/kg/K

Isopropyl alcohol

Molar mass , M 60.09 kg/kmol

Density (liquid) at 300 K, ρliq 780 kg/m3

Critical temperature, Tcrit 508.3 K

Critical pressure, Pcrit 48.2 bar

Heat capacity (liquid), cp 2.67 kJ/kg/K

Latent heat at 300 K 687 kJ/kg

Boiling temperature, Tboil 355.25 K

Binary diffusion coeff. at 350 K 1.36e− 5 m2/s

in non-dimensional form, D/2 and z/D = 3.75. Minimum and maximum characteristic cell
lengths2 are respectively 2.08e− 4 m and 3.5e− 3 m.

The incompressible ideal gas law approximation is used to compute the densities of the air and
isopropyl vapor. If pop is the operating pressure defined, this reads:

ρf =
pop
R
Mw

T
(4.6)

The other quantities in Equation (4.6) are the universal gas constant R, molecular weight of air
Mw and the local temperature T . For more details see [2]. This approximation is widely used
since it introduces a dependency of the density on the local temperature, but decouples it from
the local pressure and hence, from the local velocity. It allows the usage on an inexpensive in-
compressible pressure-velocity coupling algorithms and is accurate if the flow does not involve
strong compressibility effects, such as shocks.
The specific heat capacity of the air is set to a constant value at 373 K as given in VDI-
Wärmeatlas [106]. The air viscosity, as well as the viscosity of the isopropyl vapor, are approx-
imated with linear functions within the temperature range of 298 − 373K. The data originate
again from [106]. The specific heat capacity and the thermal conductivity of the liquid isopropyl

2The characteristic cell length is defined as V 1/3
cell , where Vcell is the volume of the computational cell.
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Table 4.15: Flow conditions.

Volume flow rate Mass flow rate Initial temperature

m3/s kg/s K

Single phase 0.032 0.029 373

Two-phase flow:

Air 0.031 0.0283 373

Isopropyl alcohol 5.8 10−7 0.00044 307

Figure 4.7: Saturation pressure for Isopropyl alcohol as a function of the droplet temperature.

are set to the measured constant values at 300K in accordance with [106]. The time averaged
maximum droplet temperature as achieved from the LES do not exceed 305K, which relieves
the restriction assuming constant droplet properties. The saturation pressure psat varies within
a relatively narrow temperature range by several order of magnitude as shown in Figure 4.7.
psat is approximated using the exponential function 4.7 as proposed by Daubert and Danner

[18]. The coefficients can be found in Table 4.16.

psat = eA+B/T+ClnT+DTE (4.7)

The resulting saturation pressure is in bar units. The function and the coefficients hold for the

A B C D E

81.42207 −8177.1 −10.031 3.9988e− 6 2

Table 4.16: Coefficients of Eq. 4.7 for Isopropyl alcohol according to [18].

range between the material melting and the critical point.

Boundary and initial conditions
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Figure 4.8: Sketch of the droplet inlet section.

For this configuration, both the continuous and dispersed phases, have different inlet positions
and properties. The inlet for the air flow is defined at z = −2.5D, as shown in Figure 4.5. At
the inlet plane, the axial velocity component is set to a constant value. The length of the annular
tube is enough to ensure that the profile of the mean axial velocity at the first measurement
position of z/D = 0.075 reproduces the experimental profile. In addition, the LAGRANGIAN

Vortex Method [58] is applied to generate spatially correlated velocity fluctuations, which are
superimposed with the axial velocity at the inlet. The turbulent velocity fluctuation generation
is based on 4 % turbulent intensity and the hydraulic diameter of the annular tube at the inlet
plane. The air is assumed to enter the domain at a constant temperature of 373 K and the
isopropyl-vapor mass fraction is set to 0.
Since the spray nozzle is not included in the simulation and the inlet spray properties are adopted
from the measurements at the first axial position at z/D = 0.075, the spray outlet from the cone
is replaced in the simulation by a wall. As already mentioned, the inlet for the dispersed phase is
artificially defined at z/D = 0.075. The droplet velocity is defined using the detailed database
from the experiment in terms of diameter-velocity correlations. Furthermore, the droplet di-
ameter distributions, measured at ten radial positions for the same plane, are used for initial
distributions of the two-phase flow simulation. A sketch of the particle inlet is depicted in Fig-
ure 4.8. The droplet temperature at the inlet is set to a constant value of 307 K.
At the wall boundaries, a no slip boundary condition is applied for the air momentum equation,
and zero gradient condition, i.e. adiabatic wall, concerning the temperature field. Droplets that
reach the walls are marked as escaped and deleted from the simulation. Due to the high air tem-
perature and the relatively small droplet diameters it is expected that a droplet-wall collision
will be a rare event. Therefore, the application of a more sophisticated boundary condition that
accounts for effects such as droplet splashing, would be redundant.
At the outlet boundary, a pressure outlet condition accounts for zero gauge pressure and zero
gradient condition for air velocity and temperature. Particles which cross the outlet boundary
are marked as escaped and excluded from the tracing algorithm.

The numerical procedure

In addition to the general numerical setup, as described in Section 4.1.2, the simulation includes
the solution of transport equations for energy (Equation (2.9)), and for the isopropyl-vapor mass
fraction, see Equation (2.8). The convective terms of both equations are discretized with the sec-
ond order upwind scheme.
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The numerical model assumes uniform temperature distribution within a droplet. The model
applied in the LAGRANGIAN frame resolves only mass and energy transfer at the particle sur-
face. From Equation (2.78) it is obvious that the mass transfer continues until the droplet’s
volatile mass fraction is completely consumed. In this case the volatile fraction is 100% and
assumes calculation of vapor transfer until the droplet diameter becomes zero. In numerical
calculations the common practice is to set an cut-off diameter of d � 10−6 m to approximate
a zero diameter. However, experimental measurements are restricted to a cut-off diameter of
d ≈ 3 10−6 m. The cut-off diameter of the smallest tracked droplets is set to 10−8 m. In
order to compare the influence of the cut-off diameter on droplet characteristics, such as diam-
eter, mean or Sauter mean, and velocity, the particle data are exported every 25th timestep and
analyzed via an external postprocessing tool developed for this purpose. The paricle data set
contains coordinates of the particle’s position, velocity components, temperature and diameter.
Further details of the evaporation process are in Sections 2.2.3.3 and 2.2.3.4.

Table 4.17: Simulation parameters.

Case Total time Sampled time Particle num-
ber ∗106

Time step, s

single phase 18 tR 10 tR − 5e− 6

two-phase 8 tR 3 tR 3.74 5e− 6

Configurations

One single phase and one two-phase flow large-eddy simulation are performed for the current
configuration. Parameters concerning the simulations are summarized in Table 4.17. The res-
idence time tR is defined as the ratio of the chamber length of 0.62 m and the mean averaged
maximal air velocity at the chamber inlet of 18 m/s. The carrier phase velocity from the

Figure 4.9: Particle mass concentration as a function of the time.

calculation of the single and the two-phase flow LES showed very similar profiles despite the
significantly shorter sampling period for the two-phase flow LES. For this reason, the sampling
period of 3 tR for the two-phase LES is found to be sufficient to achieve converged statistical
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properties for the carrier fluid. The results are discussed in detail in Section 6.3.
In Figure 4.9 the total droplet mass concentration is plotted as a function of the physical time.
The latter is normalized with the flow residence time, as defined above. The droplet concen-
tration reaches a statistically steady state after approximately 2.5 tR. For the last three flow
residence times, tR, statistics are collected for the dispersed phase as well. The time for the
statistical sampling is found to be sufficient.
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5 Code Validation
This chapter to constitutes the basic prediction ability of the CFD code for single and two-phase
flows when employing LES. Computation results from the simulation of a particle-laden plane
channel flow are presented for validation purposes. In addition, some aspects of two-phase flow
LES are discussed in the context of a particle-laden free jet flow. The LES results are compared
with reference DNS and experimental data, and are related to the configurations presented in
Section 4.1, 4.2 and 4.3.
Several aspects of the simulation need assessment. These lead to the following topic sub-
division considered below:

• Assessment of the single phase flow LES

– Validation of the basic solver

– Effect of the pressure-velocity coupling algorithm

– Unsteady inflow boundary condition

• Assessment of the two-phase flow LES

– Validation of the particle tracking in conjunction with LES

– Effect of the pressure-velocity coupling algorithm in two-way coupling

– Numerical versus real number of particles in the LES context

Before proceeding, some of the characteristic features of the CFD tool used in this work will be
listed.
FLUENT is a general purpose CFD simulation environment, commercially distributed by AN-
SYS Inc., Southpointe. The underlying flow simulation algorithm is based on the Finite Volume
Method, formulated for arbitrary unstructured non-orthogonal grids. The core solver is effi-
ciently parallelized based on the domain decomposition concept utilizing a variety of commu-
nication libraries, like MPI R©or PVM R©. Next to advanced dynamic mesh capabilities, heav-
ily used for the simulation of internal combustion engines, involving mesh motion, dynamic
remeshing and others, modules for the simulation of turbulence, multiphase flows, compressible
flows, reacting flows, radiating heat transfer, solidification and melting and others are included.
The FLUENT solver includes two fundamentally different flow solution algorithms for solving
the mass and momentum conservation equations. The difference is in the choice of an indepen-
dent variable for the mass continuity equation, density on the one hand, pressure on the other
hand. Both allow for the assembly of a coupled matrix consisting of the linearized mass and
momentum equations. In the case of the density based solver, since its main design target is the
simulation of high speed compressible external aerodynamic flows, the energy equation is also
included in this matrix, delivering the highest possible degree of implicit equation coupling. In
the pressure based solver, in addition to that, segregated approaches like SIMPLE, SIMPLEC,
PISO or fractional step methods are implemented allowing for faster time marching in transient
simulations.
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Figure 5.1: Channel Flow, Reτ = 150. Profiles in wall-normal direction of the streamwise mean velocity and the
streamwise velocity fluctuations. Comparison between the LES and the DNS of Picciotto et al. [70].

5.1 Assessment of the single phase flow LES

5.1.1 Validation of the basic numerical setup

The majority of the simulations presented in this work, share the same basic numerical setup.
A second order implicit time-advancement scheme is applied to the NAVIER-STOKES equa-
tions using the finite-volume discretization. The solution of the system of equations, derived
in Section 3.1, relies on a segregated pressure based solver. For the type of pressure-velocity
coupling, it was found that the Fractional Step Method (FSM) for transient problems preserves
the required second order accuracy of the time advancement scheme. Secondly, the method
abstains by definition from the global iterations between the continuity and the momentum
equation within a single time step. Consequently, the solution can accelerate up to several times
compared to commonly used iterative time advancement methods, such as SIMPLE, SIMPLEC
or PISO. Due to the equation decoupling the method is more sensitive to rapid change of the
solution variables and to density variation.
To investigate the reliability of the FSM for LES, results of a standard test case, a plane chan-
nel flow, are provided below. A second order central differential scheme is used for the spatial
discretization.
The computational results from the LES are compared to the DNS database for the low REY-
NOLDS number channel flow. The flow has a frictional REYNOLDS number Reτ = 150, based
on the friction velocity uτ and the channel half height. A comprehensive compilation of the
numerical setup for both the present Large-Eddy and the reference Direct Numerical Simula-
tions, as proposed by Picciotto et al. [70], is in Section 4.1. The subgrid stress tensor τsgs is
approximated by the Smagorinsky model [93] together with the dynamic procedure proposed
by Lilly [51] for the estimation of the model constant.
Figure 5.1 shows a plot of the mean and fluctuating velocity components of the channel flow.
The x-axis is the normalized distance from the wall y+ = y uτ/ν. The mean and rms velocity
components are normalized with the friction velocity. The coarse grid has 20 % less grid cells
in every direction compared to the medium grid. The fine grid on its side has 20 % more grid
cells per spatial direction than the medim grid. Further details of the discretisation are listed in
Table 4.3.
From the one-point statistics in Figure 5.1, it becomes obvious that the discretization error de-
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Figure 5.2: Channel Flow, Reτ = 644. Profiles in wall-normal direction of the mean and fluctuating velocities.
Comparison between the LES and the experiment of Kulick et al. [48].

creases significantly with an increasing number of grid points. This behavior can be related to
the fact that the near wall region for y+ < 10 is resolved with more than 10 points in the case of
the two finer grids. The conclusion is in accordance with the common resolution requirements
for boundary layers in wall bounded flows quoted in [86, 34].
Results from the wall resolved LES on a high REYNOLDS number channel flow (Section 4.2)
are presented as well. The simulation addresses a flow with Reτ = 644 based on the friction
velocity and the channel half height. This corresponds to a bulk REYNOLDS number of 13800
based on the mean centerline velocity. Figure 5.2 presents the simulation results together with
the data from the reference experiment by Kulick et al. [48]. The comparison confirms the very
good quality of the simulation presented here. Considering the total estimated error from the
experiment given by Kulick et al. [48] (3 % for the mean velocity and 5 % for the velocity
fluctuations) the simulation qualifies as reliable.

5.1.2 Influence of the pressure-velocity coupling

The FSM currently available has been extensively validated on numerous standard transient
laminar flows (Kim and Makarov [43]). These authors present a comparison to a DNS of a chan-
nel flow with Reτ = 180 as proposed by Moser et al. [63], in conjunction with the LES method
and turbulent flows. To inquire about the effect of the pressure-velocity coupling on high REY-
NOLDS numbers flows, the results from computations employing the non-iterative Fractional
Step [43] and the standard iterative SIMPLE method have been conducted. In terms of velocity
statistics, the results from a single phase flow LES on the free jet flow withRebulk = 13000 (pre-
sented in Section 4.3), are compared to the experimental measurements proposed by Hardalupas
et al. [37]. The LES data discussed below addresses the jet flow configurations FS-Uconst and
SIMPLE-Uconst performed on the coarser grid with ≈ 1.3 million computational cells. Their
setup is outlined in Table 4.12.
In Figure 5.3 radial profiles of the axial mean jet velocity at three axial positions are presented.
Hardalupas et al. [37] provide an error estimation of 1 % for the mean velocity and 3 % for
the rms part of the velocity. The total error of both the LES simulations remains very similar,
despite the fact that the error magnitude for this particular configuration is larger than the chan-
nel flows discussed above. With the aid of a subsequent LES with a finer grid resolution and
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Figure 5.3: Free jet flow, Rebulk = 13000. Radial profiles of the axial mean and rms velocity. Comparison
between FS-Uconst, SIMPLE-Uconst and experimental data proposed by Hardalupas et al. [37].

with the FSM, an improvement in the ovelall velocity field prediction is made. For turbulent
flows with moderate REYNOLDS numbers, the Fractional Step Method provides reliable results
for a reasonable computational effort in terms of time units. Beyond that, comparison of the
computational time taken by both simulations reveals a speedup of ≈ 7 when using the FSM.
The calculations are performed on a 64 bit AMD architecture using domain decomposition par-
allelization on 32 CPU’s.

5.1.3 The unsteady inflow boundary condition

The LAGRANGIAN Vortex method used in the this work to generate unsteady velocity fluctu-
ations at the inlet boundary has been comprehensively validated and presented in the work of
Mathey and Cokljat [58]. Details of the mathematical and physical background are outlined in
Section 3.1.3. The following test is applied to validate the inlet conditions for the full-scale test
case of a particle-laden jet flow, and is discussed later in this work.
Turbulent flow in a pipe with Rebulk = 13000 is simulated as a prior step to the simulation of a
free jet flow. Computation of the latter includes modeling a segment of the flow supplying pipe
to represent the inlet flow behavior more accurately.
Two sets of inflow conditions are investigated for this purpose. The first approximation for the
inlet is a block (top-hat) profile for the mean axial velocity, with a magnitude of 18 m/s and a
turbulent intensity of 4 %. The intensity magnitude setting choice was based on the measured
axial velocity fluctuation on the main axis of the pipe. Isotropic turbulence is also assumed.
The second setup considers profiles corresponding to a fully developed pipe flow for the mean
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Figure 5.4: Pipe flow, Rebulk = 13000. Sketch of the computational domain, superimposed with the domain of
the full scale test (dashed line). Axial position of the LES and the corresponding experimental profiles.

Figure 5.5: Pipe flow, Rebulk = 13000. Radial profiles of the axial mean velocity and the corresponding fluctua-
tions. LES profiles at x/D = 4.75. Results from the setup with top-hat velocity profile and turbulent
intensity at the inlet and from the setup with profiles corresponding to a fully developed pipe flow for
Uax, k and ε. Experimental data from [37] at x/D = 0.1.

axial velocity, the turbulent kinetic energy and the dissipation rate for the latter. The profiles are
computed from a preliminary steady state k − ε simulation on periodic pipe flow at the same
bulk REYNOLDS number.
The computational domain has a length of 5D, where D = 0.015 m is the pipe diameter. 2 · 104

hexahedron control volumes are used for the domain discretization. The near wall region is
resolved with six prism layers. However, the intention is not to perform a wall-resolved LES.
Moreover, the discretization of the pipe is similar to those used for other configurations in the
literature, where part of the supplying rig is included in the computational domain ([66]). Both
setups of inlet velocity conditions are used, in conjunction with the Vortex Method, for which
200 vortices are initialized. A no-slip condition is applied at the wall and a pressure outlet at
the outflow boundary. The velocity profiles from the simulations correspond to axial position
z = 4.75D. The mean axial velocity and the corresponding fluctuations are compared to experi-
mental results obtained at the first axial position of the jet flow. The sketch of the computational
domain in Figure 5.4 shows the positions of the profiles from the LES and the reference exper-
iment. Within the coordinate system used, the position of the experimental data corresponds to
z = 5.1D. The velocity plots can be seen in Figure 5.5. The velocity components are normal-
ized with the maximal velocity at the centerline.

As expected, the second setup matches the experimental profiles more accurately due to the
application of realistic profiles at the inlet. Nevertheless, an important observation of the first
setup (with a top-hat profile at the inlet) is that turbulence develops even within a short distance.
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Obviously, the length of the pipe is not sufficient to achieve a fully developed turbulent flow un-
til its end. This is important for configurations where explicit profiles for diverse flow quantities
are not available and the boundary conditions need to be approximated from global quantities,
such as mass flow rate or pressure. In addition, better domain resolution has a positive effect on
the development of the profiles, as shown in the studies of Mathey and Cokljat [58] and Olbricht
[66].

5.2 Assessment of the two-phase flow LES

5.2.1 Validation of particle tracking used with LES
The low REYNOLDS number channel flow configuration, as presented in Section 4.1, is used to
validate the particle tracking technique. Three different particle sizes were investigated in the
reference work of Picciotto et al. [70], employing Direct Numerical Simulation together with
LAGRANGIAN particle tracking, under consideration of one-way coupling.
The validation in this thesis is related to the basic setup of the Large-Eddy Simulations in con-
junction with the LAGRANGIAN particle tracking: The continuous phase motion is resolved
due to Large-Eddy simulation employing a second order implicit time advancement scheme to-
gether with the non-iterative Fractional Step method. Second order, central differencing scheme
is applied for spatial discretization. The integration of the particle equation of motion utilizes
an automated tracking scheme selection, which combines the low order implicit Euler with the
high order trapezoidal schemes. The error from the integration of the particle equation is as-
sessed for every time step and the optimal scheme is used. A description of the accuracy control
procedure can be found in Section 3.2.1.
Furthermore, one-way coupling is assumed for the current configuration. All additional param-
eters related to these simulations are summarized in Section 4.1.2.
The streamwise mean and rms velocities of the dispersed phase are presented in Figure 5.6.
The particle velocity profiles are plotted in a wall-normal direction. The quantities of both axes
are normalized using the fluid friction velocity, the channel half height and the fluid kinematic
viscosity. The particle classes are denoted in terms of their STOKES number, as defined through
the STOKES particle response time τp and the KOLMOGOROV time scale. There is a very good
approximation of the mean particle velocity. In contrast to this, the fluctuating streamwise com-
ponent is slightly overestimated by the LES.
Another observed behavior, also typical for this configuration, is the preferential accumulation
of particles in wall-bounded flows within the near wall region. The results from the LES match
this behavior very well for all three particle classes. An extensive investigation of this behavior
is one of the main topics of this research and the prediction ability of LES will be discussed in
Section 6.1.

5.2.2 Influence of the pressure-velocity coupling on LES using
two-way coupling

From the numerical point of view, two-way coupling is more difficult to handle in simulations.
The source term that considers momentum, mass or heat transfer from the dispersed toward
the continuum phase has an inevitable impact on the convergence behavior of the system of
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Figure 5.6: Channel Flow, Reτ = 150. Profiles in wall-normal direction of the mean and rms particle velocity.
DNS data from [70].

partial differential equations. For this purpose, the fluid statistical properties are captured by
employing again both the non-iterative Fractional Step Method and the standard iterative SIM-
PLE method. The comparison is performed based on simulations of a particle-laden jet flow
with 86 % particle mass loading. The setup for the two-phase LES is related to the configura-
tions d80φ86-FS and d80φ86-SIMPLE, as denoted in Table 4.13 of Section 4.3.2.
The results from the computations using the alternative pressure-velocity couplings are shown
in Figure 5.7 in terms of the axial fluid velocity. Radial and axial profiles of the fluid velocity
develop in very similar ways. The momentum source term that arises from the combination of
high particle mass loading and fairly heavy particles is accomplished well by the FS method.
This is demonstrated by a comparison with the experiment of Hardalupas et al. [37]. The flow
computed with the SIMPLE method seems to develop unphysical behavior in the surrounding
domain. For the SIMPLE-based LES computation is performed with 20 iterations per time step.
The residuals at the end of the time step are in the order of 10−5 for the continuity and 10−8 for
the momentum equations.
The plots corresponding to the axial fluctuating velocity confirm the impression gained from
the mean velocity results. Despite the fact that the overall magnitude of the velocity fluctu-
ation within the jet is the same for both simulations, the significant discrepancy between the
SIMPLE-based LES and the experiment lead to the observation, that 20 iterations per time step
are not sufficient. On the other hand, the results from the FSM-based LES agree very well with
the experimental findings.
The promising results achieved with the FSM for different flow conditions are convincing
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Figure 5.7: Free jet flow, Rebulk = 13000. Radial profiles of the fluid axial mean velocity at 80 % particle mass
loading. Comparison between a non-iterative FSM-based LES, an iterative SIMPLE-based LES and
experimental data from [37].

enough to use the method for the main simulations in the present in this thesis.

5.2.3 Numerical versus real number of particles in the context of
LES

The representation of the coupling term, considering the influence of the dispersed phase on
the carrier fluid, reveals additional numerical issues. Since the LAGRANGIAN approach deals
with mass points the resulting source term toward the continuum phase is also point-wise. Each
numerical particle represents a number of real particles. This number can be less than, equal to
or greater than one. The latter provides an artificial phase interaction, which leads in some cases
to unphysical representation of the two-phase flow behavior. To gain more reliable simulation
results it is important that the source term per time step and computational cell is derived from
a sufficient number of particles. In the context of LES, where the computational cells are much
smaller than the integral length scale, the issue is in satisfying the upper condition. One possible
solution is to involve more numerical than real particles. These represent only a small fraction
of a real particle to retain the real particle mass flow rate.
The substitution of the real number of particles by an artificially higher number is followed by
two intuitive questions. First, what is the effect on the particles’ properties, such as velocity,
concentration or dispersion? Second, what is the effect of spatial splitting of the source term
on the carrier fluid, i.e. does the splitting compensate for the far field effect of the source term,
as observed in real flows (according to Burton and Eaton [12])? Since the second question is
related to the reliability of the two-phase LES and is one of the main topics investigated here,
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Figure 5.8: Channel Flow, Reτ = 644. Profiles in wall-normal direction of the streamwise mean and rms particle
velocity of the 70 µm particles at 20 % mass loading. Real particles number in parcel is NiP = 0.09
for case d70φ20 and NiP = 1 for case d70φ20− nip1. Experimental data from [48].

a more comprehensive discussion is presented in Section 6.2. This section simply ensures that
the particle’s behavior, in terms of velocity and concentration statistics, is not damaged by the
particle splitting. This is demonstrated with the aid of results from two-way coupled two-phase
LES of the channel flow configuration at ReCL = 13800, as described in Section 4.2.
The results presented here in Figure 5.8 correspond to the configurations d70φ20 and d70φ20−
nip1, as denoted in Table 4.9. The different number of particles tracked in this case does not
affect the mean and the rms of the streamwise particle velocity. The same behavior is also valid
for the concentration of the dispersed phase, except for the near wall region at y+ < 1.
Consequently, the number of parcels does not affect the statistical quantities of the particle
properties in the dispersed phase. At this stage, it can be concluded that the only limiting
parameter for using more numerical particles than real ones is available memory resources.

78



6 Results and Discussion

This section is divided into three main parts. The first two parts are devoted to bidirectional
momentum transfer in two-phase flows in the context of isothermal and incompressible turbu-
lent two-phase flows. In other words, the particle motion affected by turbulence (6.1) and the
turbulence modification due to the presence of particles (6.2) are investigated. The results from
Large-Eddy simulations on the first three configurations, as outlined in Chapter 4 (Reference
Configurations), are studied and discussed. The last part of this section provides an analysis of
the prediction capability of the two-phase LES when applied to a more complex application,
such as an evaporating spray (6.3).
The four basic configurations involved in the following discussion are referred to as low REY-
NOLDS number channel flow, presented in Section 4.1, high REYNOLDS number channel flow
(Section 4.2), jet flow (Section 4.3) and evaporating spray flow (Section 4.4).

6.1 Influence of Turbulence on Particle Motion

Particle distribution due to turbulent structures in the carrier fluid has several physical phenom-
ena. Turbulence augments particle dispersion. Another effect is the preferential accumulation
of particles in low vorticity or low turbulence regions, which depends on the ratio of the char-
acteristic scales of the fluid and the dispersed phase. Another well-known phenomenon is the
accumulation of particles in the near wall region.
To quantify the prediction of these physical phenomena using the LES method, the discussion
is based largely on the channel flow configurations (low REYNOLDS number and high REY-
NOLDS number channel flow). Since two of the particle classes used in both configurations
have similar time constants, it is useful to compare the overlapping findings on particle behav-
ior in flows having different REYNOLDS numbers. In addition, the study of the particle motion
in the jet flow shows phase interaction mechanisms free from wall influence. In the following,
several perspectives on the available results are presented.

• The particle velocity field is investigated and compared with reference data.

• Instantaneous particle data are applied to demonstrate typical concentration patterns for
particles with different time constants. With the aid of particle number distributions, the
amount of preferential accumulation is quantified.

• Particle accumulation in the near wall region is analyzed for concentration profiles in the
wall-normal direction.
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6.1.1 Particle Velocity Statistics

Particle dispersion due to turbulence implies an effect on the particle velocity field. According
to the earlier experimental works discussed in Section 2.2.3.5, the turbulent particle dispersion
in dilute two-phase flows, quantified by the change of the drag coefficient CD, seems to cor-
relate with the relative turbulent intensity Irel, Equation (2.79), and with the ratio of the fluid
integral length scale to the particle diameter. Both relations amount to the same conclusion -
the smaller the particle, the more perceptible the effect of turbulent dispersion on it. Using Irel
to parameterize the phenomenon, this conclusion is also true for particles with a small time
scale τp, which also directly includes the particle density. It can be further expected that lighter
particles will disperse more intensive than heavy particles.
Before proceeding with the discussion, the procedure for calculating the statistical quantities of
the particles is described below. For every sampling step, the ensemble average for the desired
quantity is estimated per cell volume from all particles, crossing the particular volume within
the defined sampling step. The length of the sampling step is defined by the fluid time step.
Thus, the averaging procedure accounts for particles crossing more than one fluid cell, i.e. if a
particle for the time of one fluid time step crosses two fluid cells, all particle properties are ac-
cumulated for both fluid cells and weighted by the corresponding residence time of the particle
per fluid cell. The averages are accumulated for the duration of the sampling period and a time
averaging is applied to obtain the statistical moments of the particle properties. Depending on
the configuration, a final averaging is applied in a periodic or axis-symmetric direction.
Comparing particle properties to results from a DNS (low REYNOLDS number channel flow)
is beneficial in several ways. First, the forces acting on the dispersed phase are well known.
In the DNS, only the drag force is considered. Secondly, the interaction between the phases is
governed by one-way coupling. The simulations discussed are performed on the medium grid
(Table 4.3). Particle velocity data (mean and fluctuations) from the DNS [70], together with
those from the LES are plotted in Figure 6.1. The three particle classes with different STOKES

numbers, based on the KOLMOGOROV flow scale Stη = 0.08, 0.4, 1.9, are compared. The
velocity profiles are in a wall-normal direction and the coordinate is normalized in the con-
ventional way using wall units. The same normalization technique is followed for the velocity
mean and fluctuation components. Quantities corresponding to the dispersed phase are denoted
by the index p. The streamwise, wall-normal and spanwise velocities are denoted by u, v and
w, respectively. It is evident from the plots that the particle mean velocity is not affected by the
STOKES number. Considering the fluctuating velocity components, the main observation is that
LES tends slightly to overestimate the streamwise components compared to DNS. In contrast,
the underestimation of the spanwise and wall-normal components is almost negligible. It is
important to note here, that the fluid velocity computed on the same grid (Figure 5.1) has very
similar behavior in its fluctuating velocity components in both the LES and DNS. Considering
the very low STOKES number, the intuitive conclusion is that the fluid significantly controls the
particle’s motion appears intuitively. Confirmation of this can be found in the LES results pre-
sented by Kuerten and Vreman [45]. The authors consider a very similar setup of a channel flow
at Reτ = 180 and particles with St+ = 5.4. They report a deviation of the particle fluctuating
velocity in wall-normal direction of up to 25 % compared to the DNS. The fluid velocity in the
same simulation deviates in a very similar way from the DNS velocity field as the dispersed
phase does.
The most significant difference between the LES here and the one in Kuerten and Vreman [45]
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Figure 6.1: Channel flow Reτ = 150: Stream-wise particle mean velocity (left column) and particle fluctuat-
ing velocity components (right column) for STOKES number Stη = 0.08, 0.4, 1.9 in wall-normal
direction. DNS data from [70].

is the domain resolution. The estimated integral length scale for the setup here is l+ = 65 along
the center line. The resolution used here is in a streamwise and spanwise direction ∆x+ = 13
and ∆z+ = 6.5 respectively. The corresponding resolution for the channel flow LES in [45] is
∆x+ = 71, ∆z+ = 17, where the integral length scale is expected to be only marginally larger.
Therefore, the resolution of the large scales is essential for accurate prediction of the particle
velocity, when the particle time constant is comparable to the KOLMOGOROV time scale. Ac-
cording to the classification proposed by Young and Leeming [116], which presents the relation
between Stη and the particle deposition velocity in turbulent flows, the investigated particles
belong to the inertia-moderated regime.
A closer examination of the streamwise particle fluctuations u′p shows that the particles always
lead the air flow. This is also true in the case of the smallest particles (Stη = 0.08) and is
supported by the DNS data in Picciotto et al. [70] and Marchioli et al. [56]. With increasing
particle time constant, the discrepancy becomes larger.
In the following, the particle behavior from the high REYNOLDS number channel flow sim-
ulation is presented and discussed. Particular properties of this flow will be emphasized to
highlight several parameters which are of general interest here. The integral scale for the high
REYNOLDS number channel flow is l+ = 793 along the centerline of the channel. The corre-
sponding maximum resolution in the streamwise direction is ∆x+ = 31 and ∆z+ = 15 in the
spanwise direction. The separation of the time scales was estimated as t0/τη = 23, which is
approximately a factor of four higher than in the low REYNOLDS number flow. The complete
characteristics of the flow and the computational grid are summarized in Table 4.5 and 4.7.
This study includes results from computation of the flow with 2 % mass loading. The particle
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Figure 6.2: Channel flow Reτ = 644: Air (left) and particle (right) streamwise mean velocities for the flows with
2 % mass loading. The different particle classes in the flow are 28 µm Lycopodium (Stη = 0.74),
50 µm glass (Stη = 8) and 70 µm copper (Stη = 41). y+ is the wall-normal coordinate. Experimental
data are taken from Kulick et al. [48].

types considered are 28µm Lycopodium, 50 µm glass particles and 70 µm copper particles.
The smallest particle class has a STOKES number based on the KOLMOGOROV time scale of
0.74, which is comparable with two of the particle time constants from the low REYNOLDS

number configuration. The other particles from the current configuration (the glass and copper
particles) exhibit significantly larger time scales, Stη = 8 and Stη = 41, respectively. The vol-
ume fraction for the glass particles averages 10−5 and for the copper particles 3 · 10−6, hence,
the feedback from the particles to the fluid can be neglected and the focus remains on one-way
coupling mechanisms. To assess this effect for a mass loading of 2 %, simulations with and
without two-way coupling are performed and show negligible deviations. Nevertheless, the re-
sults presented below are from Large-Eddy Simulations considering two-way coupling. Further
information concerning the dispersed phase properties can be found in Table 4.6.
Figure 6.2 presents the mean velocity in streamwise direction of both phases. The quantities are

again normalized using wall units. Quantities corresponding to the dispersed phase are denoted
by the index p. The streamwise, wall-normal and spanwise velocities are denoted by u, v and
w, respectively. The plot demonstrates that the mean velocity field of the particle-laden fluid
is not significantly affected by the particles, which is also due to the fairly low mass loading.
On the other hand, the mean velocity profiles of the dispersed phase show extremely different
behavior. Since velocity measurements for the Lycopodium particles are not available, they are
compared to the velocity field of the single phase flow. Two aspects of the particle behavior
require comment. First, within the inner channel region according to the experiment, the differ-
ent particle types denote very similar behavior, which is not supported by the simulation. The
velocity of the copper and glass particles is overestimated. The second and more significant
discrepancy is within the near wall region for y+ < 30. The characteristic plateau observed for
the two heavier particle classes and the subsequent velocity increase very close to the wall is
totally mismatched by the simulations.
A theory concerning this particular behavior, especially in the case of the copper particles, is
given by the authors in [48]. They ascribe the near-wall velocity increase to particles coming
from the middle of the channel with much higher velocity. Fast particles from the inner part
of the channel hit the wall and, due to elastic rebound, most of their streamwise momentum
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is retained. A more practical insight into the processes in this region is provided by the work
of Benson and Eaton [9]. The authors report a significant influence of the wall roughness on
the particle velocity characteristics. The experimental rig used in [9] is the same as in Kulick
et al. [48], which is used here for validation of the LES. Benson and Eaton [9] attest that the
wall roughness of the test section in [48] is comparable to the rig investigated by them with an
artificial roughness.
It is also interesting to consider the development of the velocity fluctuations. They are presented
for both phases in Figure 6.3. The plots in the left column present the fluctuations of the gas
phase and the right side, the particle velocity fluctuations. Here again the simulation results
from the LES using Lycopodium particles are plotted against the measurements for the single
phase flow.
It is apparent that the air fluctuations from the simulations are in reasonable unison with the
experiments. In contrast, the particle fluctuations estimated from the LES deviate significantly
from the experimental data. For all classes, the LES profiles of the particle streamwise fluctu-
ations reproduce the experimental data closely for distances from the wall of y+ > 100. For
y+ > 100, the Lycopodium particles lead the air flow. A direct comparison with an experi-
ment for these particles is not possible. However, when taking into account the similar particle
characteristics investigated in the context of the low REYNOLDS number flow, several parallels
can be drawn. First, it is necessary to assume that Lycopodium does not exhibit the same com-
plex near wall behavior as the heavier particles. The very similar result obtained by Wang and
Squires [112], who carried out an LES using the same configuration, supports this assumption.
According to the findings from the low REYNOLDS number simulation, the LES confirms the
tendency of the DNS of Picciotto et al. [70], i.e. even the smallest particles denote higher fluc-
tuations in streamwise than the air flow. Furthermore, the amount of the particle fluctuations
prevalence is proportional to their characteristic time. Therefore, it can be assumed that the
results for this class are reliable. Nevertheless, the question of a proportionality factor between
the flow REYNOLDS number and the particle fluctuations at given STOKES number remains
unanswered.
Considering the fluctuations of the glass particles (Figure 6.3), it appears that the streamwise
component is well captured. The wall-normal component lags the experimental value across
the complete channel height. The tendency augments for the copper particles. The low wall-
normal velocity fluctuations can be interpreted as the reason for the higher particle mean ve-
locity, which leads to the proposition, that the particles have a negligible interaction with the
walls. According to the simulation, the maximum of the streamwise velocity fluctuations of the
copper particles occurs much closer to the wall than the position observed in the experiment
(y+ ≈ 20). Kulick et al. [48] report a bimodal particle velocity distribution at y+ ≈ 12, and for
this, the fluctuations cannot be interpreted as the squared variance of a GAUSSIAN distribution.
The bimodal velocity distribution was not confirmed by the recent simulations. Moreover, the
particle velocity distribution was also studied in the region around the maximum predicted by
the LES.
Benson and Eaton [9] investigated the influence of the wall roughness on the near wall particle
velocity distribution for glass particles. In smooth wall conditions the bimodal particle veloc-
ity distribution vanishes. In addition, the mean particle velocity profile develops much more
similarly to that of the carrier fluid. Nevertheless, the experiment in [9] does not explicitly in-
vestigate the effect of particle rotation (common for real particles) on the statistical properties
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Figure 6.3: Channel flow Reτ = 644: Air (left) and particle (right) velocity fluctuations for the flows with 2 %
mass loading. The different particle classes in the flow are 28 µm Lycopodium (Stη = 0.74), 50 µm
glass (Stη = 8) and 70 µm copper (Stη = 41). y+ is the wall-normal coordinate. Experimental data
are taken from Kulick et al. [48].
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Figure 6.4: Channel flow Reτ = 644: Particle mean velocity and velocity fluctuations for the flow with 28 µm
Lycopodium particles (Stη = 0.74) at 2 % mass loading. Comparison with the experimental data from
Kulick et al. [48] corresponds to single phase flow measurements.

combined with rough wall boundary conditions. In smooth wall conditions, the particle rotation
does not affect the particle velocity.
Within this simulation setup, a smooth wall with elastic particle-wall collisions is assumed. The
coefficient of wall restitution is equal to one. Particle rotation is omitted.
According to the investigations of Young and Leeming [116], it is expected that the Lycopodium
particles are very sensitive to the structures unresolved by the LES, since they belong to the
diffusion-impaction regime. Consequently, particle–eddy interaction is essential for correct par-
ticle dispersion. The potential error was already discussed in the context of the low REYNOLDS

number channel flow, where it is referred to the work of Kuerten and Vreman [45] and Kuerten
[46]. A simple stochastic tracking model is applied to investigate the effect of the unresolved
structures on the particle velocity statistics. For these, the sub-grid kinetic energy is estimated
from the resolved strain rate tensor. Further, isotropy for the unresolved scales is assumed. The
fluctuating velocity u′sgs is estimated from the sub-grid stress kinetic energy ksgs following the
isotropy assumption. u′sgs is multiplied by a stochastic number (assuming GAUSSIAN distribu-
tion) and is finally superimposed with the resolved flow velocity ũi,@p at the particle position.
Since the flow behavior, in terms of mean and fluctuating quantities, is predicted very well, it
can be assumed that the estimated kinetic energy is reasonably well approximated.
A comparison of the results from the simulation with and without the sub-grid stress stochastic
dispersion model is shown in Figure 6.4. The influence on the particle velocity seems to be neg-
ligible. This leads to the conclusion that either all significant scales are resolved, or the effect of
the additional dispersion model impacts other particle properties, as confirmed by a closer study
of the particle preferential concentration. This is discussed in detail in the next Section 6.1.2. To
draw conclusions on the potential influence of a sub-grid stress model for particle dispersion on
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particle velocity statistics, it should be noted that additional simulations with 50 µm and 70 µm
particles involving a sub-grid stress model did not produce different velocity characteristics to
the simulations without the model. Furthermore, the present results do not affirm the thesis
proposed by [45] as aforementioned in the context of the low REYNOLDS number channel flow
but certainly are in unison with the findings of Armenio et al. [5]. It should be emphasized,
that the present simulation and this performed by Armenio et al. [5] apply comparable spatial
resolution of the domain, which is higher than the resolution used by [45].
In general, the simulations involving the Lycopodium and the glass particles provide reliable
results in terms of mean and fluctuating velocities. The impact of high particle inertia (which
the case with 70 µm represents) and particle–wall collision effects becomes limiting factors
for using the simulation as a predictive tool. In flows containing heavy particles, where the
particle–wall interaction plays a major role in the formation of the flow pattern, the devel-
opment of reliable models accounting for the fluid–particle–wall interaction system becomes
inevitable.
The last configuration considered in this section is a particle-laden jet flow (Section 4.3). It
provides the opportunity to study the particle behavior in a turbulent shear flow without the
additional influence of walls. In the following, the particle and the fluid velocities are investi-
gated based on configurations d40φ13 and d80φ23, as in Table 4.13. Here again, the dispersed
phase consists of glass beads with a mean diameter of 40 and 80 µm, respectively. The carrier
fluid is air. The significant difference between this setup and both previously presented channel
flows is the high STOKES number Stl, here defined using the integral time scale of the flow.
In configuration d40φ13, the value estimated at the jet inlet is Stl = 9.65. The corresponding
number for configuration d80φ23 is Stl = 40. Since the time scale increases quadratically with
the axial distance ([37]), the STOKES number for the small particles at the last measurement
position approaches a value of Stl = 8. For comparison, the STOKES numbers based on the
integral time scale in the high REYNOLDS number channel flow configuration are Stl = 0.57
(glass particles) and Stl = 3 (copper particles).
Verification of the results obtained from the LES is based on comparison with the experimental
data from Hardalupas et al. [37]. In all plots the position coordinates (axial (x), radial (r)) are
normalized by the jet inlet diameter D. Quantities corresponding to the dispersed phase are
denoted by the index p. The axial and the radial velocities are denoted by u and v, respectively.
Figure 6.5 shows the centerline mean velocity decay and the axial velocity fluctuations in the
same direction for both phases. The axial velocity fluctuations of both phases are normalized
by the fluid mean velocity along the jet axis U from the two-phase flow. Since the fluid veloc-
ity of the particle-laden jet in the case d40φ13 is not measured, it is plotted against the single
phase flow experimental data. Comparison with data from the single phase LES confirms the
assumption that the fluid in the particle-laden flow is not visibly affected by the momentum
transfer from the dispersed phase. In contrast to the fluid velocity, the particle velocity decay
along the jet axis is considerably overestimated from position x/D ≈ 10 by the simulation.
It is important to note, that the data provided do not concern the self–similar region of the jet
(Hardalupas et al. [37]). The axial velocity fluctuations of the fluid are relatively well predicted
by the LES. Considering the particle velocity fluctuations downstream from position x/D ≈ 5,
it can be stated that their magnitude approximates the experimentally obtained value. Within
the jet core region, however, the values are extremely underestimated, which can be explained
by the influence of the particle inflow conditions together with a relatively short inlet pipe sec-
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Figure 6.5: Free jet flow Rebulk = 13000: Fluid (left) and particle (right) mean axial velocities and the corre-
sponding fluctuations along the jet axis. LES configuration - d40φ13, STOKES number Stl = 9.65.
Experimental data from Hardalupas et al. [37]. U0,CL is the centerline velocity of the fluid at the jet
inlet.

tion. The particles are injected with a velocity equal to the instantaneous fluid velocity at the
particle position. Nevertheless, it is possible that the development of the jet shear layer further
downstream biases the particle motion significantly. An additional aspect presents the potential
influence of particle–wall interactions. Before proceeding with the analysis of this effect, it
is useful to have an additional view of the simulation results in terms of their radial velocity
profiles. These are shown in Figure 6.6 in terms of the axial mean velocity of the particles and
the axial in radial components of the particle velocity fluctuations. The profiles correspond to
configuration d40φ13 and present data at four axial positions up to x/D = 28.From the particle
mean velocity comparison in Figure 6.6 it is obvious that the spreading rate of the dispersed
phase is overestimated, which explains why the particle velocity decreases more strongly along
the jet axis than it does in the experiment. The axial fluctuations of the particle velocity are
well predicted in general. At x/D = 0.1, however, the axial particle fluctuations are extremely
underestimated by the simulation. The measurements are made very close to the jet exit posi-
tion and so the velocity profile is assumed to be very similar to the profile within the supplying
pipe. Thus, it is appropriate to investigate the particle velocity within the inlet pipe section.
At this point, it is useful to translate the issue to a configuration that has a focus on pipe flow.
Such an example can be found in the work of Caraman et al. [13]. Moreover, the magnitude
of the particle fluctuations obtained from the reference experiment of Hardalupas et al. [37] is
very similar to the values obtained in the experiment on particle-laden pipe flow of Caraman
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Figure 6.6: Free jet flow Rebulk = 13000: Particle mean axial velocities and fluctuations in axial and radial
directions. LES configuration - d40φ13 with STOKES number Stl = 9.65. Experimental data are
from Hardalupas et al. [37].

et al. [13]. The particle mass loading and particle diameter in [13] are comparable to that of
Hardalupas et al. [37]. From the information provided in Caraman et al. [13] it is clear that the
particle fluctuations are higher than those of the gas phase, also in the region far away from the
wall.
There are two aspects, that need to be investigated in context of this LES:

• The artificial injection conditions for the dispersed phase together with the relatively short
length of the inlet pipe section.

• The models employed to capture the particle behavior do not include all relevant phenom-
ena.

For the first aspect, it seems that assuming equal inlet velocities for both phases introduces an
error. Nevertheless, it is doubtful whether a longer inlet pipe section will lead to the desirable
results. Vreman [109] reports a large discrepancy between his simulation results (DNS of a
particle-laden pipe flow) and the experiment of Caraman et al. [13]. The DNS is applied to a
periodic pipe, therefore, the results of the simulation correspond to a fully developed flow. The
particle axial fluctuations obtained from Vreman [109] lead the gas fluctuations, however, they
do not reproduce the experimental profile as demonstrated by Caraman et al. [13]. There, the
dispersed phase fluctuations are much higher than those predicted by the DNS. Furthermore,
the particle velocity fluctuations have a fairly uniform distribution over the pipe cross section
according to the experiment, which is not observed in the simulation results provided by Vre-
man [109].
The issue of additional phenomena seems to be more relevant here. According to the previ-
ous findings in this section related to the high REYNOLDS number channel flow, it is evident
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that real particle–wall interaction can not be approximated by simplified rebound models, as
commonly applied in many studies. The influence of particle–particle collision also becomes
significant at higher mass loadings, as in Vance et al. [107] and Yamamoto et al. [115]. Nev-
ertheless, the additional models for particle–particle collision and particle–wall collision, used
on different particle types and mass loadings, lead to inconsistent conclusions. The general
tendency observed when considering particle–particle collisions is the flattening of the particle
mean velocity profiles and up to some degree those for the particle velocity fluctuations ([107],
[115]). Additional models considering the wall roughness and the modified particle–wall colli-
sion have only limited success in moderate particle mass loadings, as reported by Vreman [109].
It is obvious that until now the best solution for realistic inlet conditions that can guarantee high
probability of success is to apply available experimental data as the inlet conditions, especially
if relatively short inlet sections are modeled as they are here. Unfortunately, such information
about the conditions inside the supplying rig are seldom found in experimental work on free jet
flows.
The deficiency in the inlet axial fluctuations of the particles (Figure 6.6) leads to another inter-
esting effect. The radial velocity fluctuations of the particles show a systematic overestimation.
This seems to have settled further downstream from axial position x/D ≈ 10. The reason for
this particular behavior is therefore sought in the region close to the jet inlet. With the aid of

(a) (b) (c)

Figure 6.7: Free jet flow Rebulk = 13000: Radial profiles of the particle and the gas mean axial velocity and
the corresponding axial and radial fluctuations at different axial positions. LES configuration d40φ13,
STOKES number Stl = 9.65.
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Figure 6.8: Free jet flow Rebulk = 13000: Fluid (left column) and particle (right column) mean axial velocities
and the corresponding fluctuations along the main jet axis. LES configuration - d80φ23, STOKES
number Stl = 9.65. Experimental data from Hardalupas et al. [37].

the next plot in Figure 6.7, the competing behavior of particles and gas can be examined. The
evolution of the mean axial velocity and the velocity fluctuations in axial and radial direction
can be pursued for the region between the jet inlet and an axial position up to 10D. Accord-
ing to the mean and fluctuating axial velocity profiles in Figure 6.7(a) and 6.7(b), both phases
possess quite similar behavior. There is a slight tendency for the particles to lead the air flow,
as evident from the mean velocity profiles. The axial fluctuations of the particles are lower in
this region. Downstream evolution of the radial fluctuations of both phases, however, is very
different. The dispersed phase fluctuations v′p lag those of the gas phase significantly and the
profiles remain relatively flat compared to the corresponding gas profiles. Further downstream,
the profiles become more similar in their radial extension. It seems that up to x/D = 10, the
influence of the carrier fluid fluctuations on the dispersed phase is significant, despite the fact
that the particle STOKES number is quite high (Stl = 9.65). In conclusion, it is possible that the
increased turbulent particle dispersion in the region x/D < 10 is the reason for the increased
spreading rate of the particle jet further downstream, as observed in the previous plots (Figure
6.6).
Using very similar inlet condition, an LES is performed on the case with 80 µm beads (Stl =
40). The configuration corresponds to case d80φ23 in Table 4.13. In Figure 6.8, the axial mean
and fluctuating velocities of carrier and dispersed phase are presented along the jet axis, x. In
contrast to the small particles (case d40φ13), the centerline decay of the mean axial velocity
for both phases is predicted very well in this configuration. The particle velocity fluctuations
are significantly underestimated for x/D < 10. However, their value approximates the ex-
perimental data further downstream quite well. The radial profiles of the particle mean and
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Figure 6.9: Free jet flow Rebulk = 13000: Particle mean axial velocities and the corresponding velocity fluc-
tuations. LES on configuration d80φ23 with STOKES number Stl = 40. Experimental data from
Hardalupas et al. [37].

fluctuating axial velocity, Up and u′p, corresponding to case d80φ23, are presented in Figure
6.9. They confirm that the particle jet spreading rate is retained well up to z/D = 20 and is
slightly overestimated afterwards. The gas phase velocity field is in very good agreement with
the experiments. The behavior of the gas phase is the main topic of Section 6.2 and will be
discussed in more detail there.
To conclude the discussion on the particle velocity prediction using LES on a free jet flow, a
few aspects need to be highlighted. First, the inlet particle conditions are a critical issue in this
configuration. The issue of obtaining a more realistic velocity field for the dispersed phase can-
not be resolved by considering a longer pipe section, which other authors have found (Vreman
[109], Vance et al. [107]), including the discussion of the channel flow configurations above.
Considering the relatively high STOKES number of the 40 µm particles used for the simula-
tion, the significant influence of the carrier fluid on the particle dispersion appears surprising
at first. However, the STOKES number considered here is based on turbulent scales along the
centerline of the jet. Since the "interface" between the out-coming jet flow and the environment
is exposed to strong shear, the rate of turbulence generation in the peripheric region increases
rapidly above that in the core flow. The turbulent structures generated on the interface have a
much higher intensity than the internal jet structures, and are therefore the relevant structures in
the fluid–particle interaction.
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6.1.2 Particle Dispersion and Preferential Accumulation

In advanced level computations of particle heat transfer, evaporation and combustion the ac-
curacy of the local particle distribution prediction is vitally important. In the following, the
behavior of particle concentration in a turbulent flow is investigated in terms of averaged and
instantaneous quantities. In addition, instantaneous concentration plots from flow regions with
nearly homogeneous and isotropic turbulence are compared to findings from previous DNS and
experimental studies.

6.1.2.1 Local Particle Accumulation

The influence of the STOKES and fluid REYNOLDS number
Typical particle behavior in a turbulent flow is demonstrated in Figure 6.10. The plots represent
particle positions in an xz−plane along the centerline in a channel flow (the midplane). The
different views correspond to particle classes with different STOKES numbers Stη. It should
be emphasized that the results presented correspond to simulations on channel flows with two
different REYNOLDS number: the low REYNOLDS number flow case with Rebulk = 2110 and
the high REYNOLDS number flow case with Rebulk = 13800. The range of Stη considered here
varies from 0.04 up to 19. It is further evident that particle classes with Stη ≈ 1 demonstrate
the highest propensity to accumulate. In addition, the particle class with Stη = 0.74, which
is tracked in the high REYNOLDS number flow, fits into the given order well, i.e. according
to their visual degree of accumulation. This qualitative observation is in agreement with the
investigations of Wang and Maxey [111]. They showed that the maximum preferential accumu-
lation is observed for particles with Stη ≈ 1 and that the degree of accumulation scales with the
KOLMOGOROV time scale τη. Nevertheless, their findings are based on LAGRANGIAN particle
tracking in homogeneous isotropic turbulence (DNS), which is unambiguously related to the
fact that the turbulent structures with the highest intensity are in the order of the smallest scales
(Ruetsch and Maxey [84]). Since this particular observations on the results from the present
work are restricted to the channel midplane (i.e. far away from the wall), comparison with find-
ings of Wang and Maxey [111] and similar works is suitable.
To investigate the effect of the flow REYNOLDS number on the behavior of particles with similar
STOKES numbers, results from both channel flow configurations are considered and analyzed
in parallel. An overview of these, together with the corresponding particle classes in terms of
STOKES numbers, is provided in Table 6.1. The data from the high REYNOLDS number chan-
nel flow simulation address the configurations with particle mass loading of 2 %, except for the
case with Lycopodium particles, where the loading is 3 %. The effect of the dispersed phase on
the fluid turbulence is assumed to be negligible.
More quantitative information, compared to the instantaneous plots in Figure 6.10, permitts
the investigation of probability density functions (PDF) for the particle number density. For
this purpose, a procedure for the PDF evaluation, similar to that used in Fessler et al. [31], is
used. The reliability of the simulations in predicting of preferential accumulation is assessed
in terms of information extracted from the PDFs of both the LES and experimental data from
Fessler et al. [31]. To retain similarity with the experiment, a 1 mm thick sheet in the midplane
of the channel is considered. The plane is discretized with regular mesh of equidistant square
cells (boxes). This mesh is independent from the numerical grid used for the simulations. All
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Figure 6.10: Channel flow Reτ = 150 and Reτ = 644: Instantaneous particle positions at y+ = 150 (channel
midplane). Particles with Stη = 0.08, 0.4, 1.9 belong to the low REYNOLDS number channel flow
simulation. Particles with Stη = 0.74, 8, 19 belong to the high REYNOLDS number channel flow
simulation.
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Table 6.1: Configurations used for investigation of local preferential accumulation of particles.

Reference configuration Case Stη

Channel flow, Reτ = 150 St11) 0.08

St5 0.4

St25 1.9

Channel flow, Reτ = 644 d28φ03 0.74

d50φ02 8

d90φ02 19

1) STOKES number as defined in Table 4.4.

Figure 6.11: PDF of the particle number density for case d28φ03 (channel midplane) estimated for different grids.

particles with spatial coordinates within a particular box are assigned to it and the associated
number density is computed. The final PDF is computed from the number densities. The PDF
has a different form depending on the grid size. In Figure 6.11, an example of PDFs for the
case d28φ03 obtained on grids with cell length of 9 mm and 2 mm is shown. The evaluation of
the degree of preferential accumulation is based a the comparison of the calculated PDF with
a PDF obtained for the same number of particles, assuming purely random distribution. For
randomly distributed particles, the probability P (n) of finding n particles in a particular box is
a POISSON distributed quantity. According to this, the random distribution is given by Equation
(6.1).

P (n) =
e−µµn

n!
(6.1)

µ denotes here the mean number of particles per box. The normalized differenceDdev is used to
quantify the deviation of the simulated distribution from the POISSON distribution. It is defined
as the standard deviation σ of the computed distribution and that of a POISSON distribution,
σpoisson, having the same mean value µ.

Ddev =
σ − σpoisson

µ
(6.2)
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Figure 6.12: Ddev , as defined in Equation (6.2) as a function of the grid size for different particle STOKES num-
bers. Particle classes corresponding to Table 6.1.

Ddev is normalized by the mean particle number per box. Positive values for Ddev correspond
to situations with preferential accumulation, since a large σ value indicates that there are boxes
with a very high number of particles and such a with very low number. In a uniform particle
distribution, the standard deviation is zero and Ddev becomes negative. Ddev = 0 describe
randomly distributed particles.
As already mentioned, depending on the grid size applied for the PDF evaluation, its form can
vary greatly because the typical length scale of accumulation varies. Therefore, the PDF with
maximum deviation from the POISSON distribution, according to (6.2), represents the degree
of particle accumulation most accurately, since it matches the scale present best. The limited a
priori information about the optimal grid size implies an iterative process for its estimation.
In the present context, the PDFs of the particle number density are computed for a grid size
ranging between 0.5 mm and 10 mm. The estimated degree of non-randomness in terms of
Ddev is shown in Figure 6.12 as a function of the grid size used for the PDF computation.
The grid size is normalized with the channel half height, h. The deviation from the POISSON

distribution exhibits a local extremum (maximum) for all particle classes. This appears for
particles with Stη ≤ 1 for a similar grid resolution of approximately (≈ 0.1). For particles with
higher STOKES number, though, this maximum seems to be shifted toward larger box sizes.
This can be interpreted as further information related to the scales at which the accumulation
occurs. According to conclusions made by Wang and Maxey [111], particles with τp/τη ≈ 1
experience the highest degree of accumulation. Particles with τp/τη ≈ 2 have almost 40 %
lower values of Ddev. Squires and Eaton [100] confirm maximum accumulation at τp/τη ≈ 1
as well by performing DNS of isotropic turbulence with heavy particles. In contrast to this,
the highest degree of non-randomness, according to the LES here, is detected for particles with
τp/τη = Stη = 1.9. The investigations of Fessler et al. [31] on the particle dispersion in
a channel flow turbulence have shown that the preferential accumulation is most pronounced
for particles with Stη = 2.2. However, this behavior was claimed to be caused by the wider
range of scales in the experiment (t0/τη ≈ 22). In contrast to this, the simulation of Squires
and Eaton [100] considers flow with (t0/τη ≈ 10). Another possible explanation, given by
Fessler et al. [31], was that the PDFs obtained from DNS are based on the computational grid
and their dependency on the grid size is not further evaluated. The two-phase LES considered
here is consistent with the experiment. The second, and to the authors best knowledge, it is a
new observation that the findings of Fessler et al. [31] in a high REYNOLDS number flow are
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(a) (b)

Figure 6.13: Maximum deviation, Ddev , from the POISSON distribution (Equation (6.2)) as a function of the
particle STOKES number.

herewith reported for very low REYNOLDS number flow. The estimated scale separation for
this flow, estimated at t0/τη ≈ 6, is lower than that used in the flow simulation of Squires and
Eaton [100].
The dependency of the maximum value estimated for Ddev on the particle STOKES number
is presented in Figure 6.13(a). All particle classes are considered in the plot. The maximum
value for Ddev is the same as estimated in Figure 6.12, i.e. independent from the grid size for
witch it was detected. There is a significant decrease of Ddev for the particle class Stη = 0.74.
An alternative plot of the same data is presented in Figure 6.13(b), which seems to resolve the
contradictory behavior of Ddev. Separate lines explicitly highlight the data corresponding to the
different channel flows. The tendency of particle accumulation is confirmed in both channel
flows. Nevertheless, the magnitude of the deviation from the random state shows significant
discrepancies, depending on the flow REYNOLDS number. In addition, the magnitude of Ddev

is given, as detected for the particles with Stη = 0.74 and Stη = 2.2 in the experiment of
Fessler et al. [31]. The second class denotes maximum degree of accumulation. This particle
class is not included in the present simulation set.
It was not possible to obtain a reliable estimation of the local accumulation in the channel
from the available database for the dispersed phase in the low REYNOLDS number channel flow
(Marchioli and Soldati [54]), since the number of particles used by the authors is too low for
that purpose. Marchioli and Soldati [54] computed 105 particles, which was sufficient to obtain
reliable statistical information in the context of their objectives. The two-phase LES performed
here has 15 · 105 particles.
In conclusion, predicting local accumulation of particles according to the results follows the
findings from previous works. However, particularly anomalous behavior of Ddev (commented
in the context of Figure 6.13(a)) leads to the assumption that the influence of the flow REY-
NOLDS number leads to varying accumulation behavior.

Influence of the Sub-grid Turbulent Dispersion
As discussed in Section 6.1.1 (Figure 6.4), the consideration of a model for turbulent parti-
cle dispersion that accounts for the effect of sub-grid velocity fluctuations does not affect the
particle velocity statistics, according to the simulations here. Nevertheless, it has been shown
(Pozorski and Apte [74], Fede and Simonin [28],Kuerten [46]) that unresolved scales contribute
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(a) (b)

(c)

Figure 6.14: Ddev , as defined in Equation (6.2), for Stη = 0.74, 8, 19 (case d28φ03, d50φ02 and d90φ02 from
Table 4.6). Comparison with experimental data from Fessler et al. [31].

to the evolution of the local and the mean particle concentration. In the following, this aspect is
investigated in the context of the high REYNOLDS number channel flow with low particle mass
loading of 2 %. Figure 6.14 presentsDdev, (Equation (6.2)), as estimated for the midplane of the
channel as a function of the grid size, used to compute the particle number density. Deviation
from the POISSON distribution is evaluated from particle data corresponding to simulations with
and without an additional model (Section 2.2.4.3) for the sub-grid stress turbulent dispersion. In
Figure 6.14(a), Ddev, estimated for both simulations together with the experimental data from
Fessler et al. [31], is shown as a function of the grid size. The particle class addressed here
has Stη = 0.74 (configuration 28φ03). In general, two issues stand out from this figure. Both
simulations predict the evolution of Ddev through the different grid sizes estimated from the
experiment. Secondly, the increased particle dispersion due to the additional model introduces
a large correction in the stochastic particle motion with a tendency to an artificial randomiza-
tion of the particle positions. This is confirmed by the fact that the experimental data predict a
systematically higher preferential accumulation.
Contrariwise, a rough estimate of the relative error between the experiment and the standard
simulation, without dispersion model, computed as (Dles

dev − D
exp
dev )/Dexp

dev leads to an averaged
value of 15 %. Considering the main mechanism for particle accumulation, it is clear that small
particles will accumulate if they are heavy enough to be exposed to the centrifugal force due to
the eddy rotation, but in the same time, have a response time shorter than the time for crossing
the eddy, or the time for the eddy dissipation. Since particle accumulation evidently occurs, it is
clear that the large eddy simulation properly resolves the turbulent structures relevant for the ac-
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cumulation. From the perspective of the standard LAGRANGIAN particle tracking method, the
particle accumulation in a certain volume is not restricted to the particle packing limit. With-
out an additional control mechanism from the particle tracking point of view accounting for
"permitted" and "not permitted" particle positions, depending on the allowed particle volume
fraction in the computational cell, the interaction of the particles with the fluid is the only mech-
anism for their redistribution from regions with high particle concentration. Nevertheless, this
mechanism plays an effective role only for particles with sufficiently small residence time and
diameter. Otherwise, the particle collision probability in these regions is much higher compared
to the collision probability of homogeneously distributed particles at the same mass loading. It
turns out that particle–particle collision is the more natural mechanism for particle redistribu-
tion. This fact is especially important when transferring conclusions from here to the large-eddy
simulation of liquid sprays. The collision there will lead eventually to the coalescence (depend-
ing on the relative droplet velocity and the surface tension coefficients) rather than to further
randomization of the droplet position. It is therefore curcial to differentiate between turbulent
and collision dispersion observed in solid particle flows.
Despite the alternative of applying a particle collision model, a possible correction of the fi-
nal particle PDF is to perform a posterior particle redistribution (different conditions can be
specified) or clip the number to the packing limit for the purpose of data evaluation only. The
problem with such an assumption is, however, that it is limited to the instantaneous snapshots of
the particle positions. These are taken every 200 simulation time steps. Therefore, the natural
dispersion due to collisions can not be captured. Such a method is expected to introduce only a
small overall correction and is not applied on the data sets discussed here.
The identical solution from both simulations for the case Stη = 19 shows the limited area of
influence of the dispersion model. The intermediate particle class exhibits the largest deviation
between the simulations with and without the model. Furthermore, if the sub-grid stress fluc-
tuations are considered, the discrepancy between experimental and simulation result becomes
negligible. However, the comparison with the experimental data from Fessler et al. [31] should
be considered with caution, since these correspond to a measurement of flow with mass loading
of 40 %. According to the experiment of Kulick et al. [48], the particles do not influence the
fluid statistics even at higher mass loading, which means that the particles are exposed to the
same interaction with the fluid as those in the low mass loading case. Of course, a higher mass
loading certainly leads to an increased particle–particle collision probability, which leads to ef-
fective dispersion.
Observations of the dispersion model and its effect on both low-STOKES-number particle classes,
suggest that the model will certainly lead to the desired results if direct comparison with an ex-
perimental data is possible, however, the appropriate model constant should be estimated for
every application and particle type. The model constant for all simulations reported here is set
to C = 0.15.
Other authors have shown (Oefelein [65]), that this type of models based on eddy–life and
particle–eddy interaction time can be successfully extended for LES applications. Segura [91]
used several values for the constant in the model proposed by Oefelein [65] in order to facilitate
the optimal for each particular configuration.
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(a) (b)

Figure 6.15: Channel flow Reτ = 150, (a), and Reτ = 644, (b): Mean particle concentration profiles in
wall-normal direction for particles with the STOKES numbers Stη = 0.08, 0.4, 1.9 (a) and
Stη = 0.74, 8, 19, 41 (b). DNS data in (a) are taken from Picciotto et al. [70].

6.1.2.2 Mean Particle Concentration Profiles

A typical phenomenon in two-phase wall–bounded flows is the accumulation of particles in the
near wall region. In the present context, both channel flow configurations exhibit this behav-
ior for most of the particle classes. It is possible to compare the DNS results for the particle
concentration in wall-normal direction (Picciotto et al. [70]) with those obtained from the LES.
The comparison is presented in Figure 6.15(a). In a similar way, the mean concentration profiles
of the high REYNOLDS number channel flow are shown (Figure 6.15(b)). Since concentration
data from the experiments of Fessler et al. [31] and Kulick et al. [48] are not available, only
results obtained from the two-phase LES are discussed. The wall-normal coordinate is normal-
ized with wall units. The particle number density is normalized by the value corresponding to
a homogeneous particle distribution in the same direction. Both configurations demonstrate,
that the particle concentration in the wall region is strongly affected by the particle STOKES

number, Stη. The main discrepancy between the DNS [70] and the LES is localized in the
region below y+ = 1, (Figure 6.15(a)). One significant difference between both simulations is
the position for which the particle-wall collision is computed, despite the numerical technique
and implementation. In Picciotto et al. [70], the particle reflection at the wall is applied at a dis-
tance of dp/2 from the wall. In contrast to this particle-wall collision in the present simulations
occurs when the particle center encounters the wall. Therefore it is reasonable to suggest that
the particle concentration estimated by the LES overestimates the one from the DNS, especially
for the larger particles with Stη = 1.9. Otherwise, from a practical engineering point of view,
the wall region considered is less important, since the viscous sublayer is not resolved for most
practical applications. Moreover, the prediction of the mean particle concentration in the near
wall region seems to be an issue also for the DNS technique, as reported in Marchioli et al. [56].
Data obtained by independent working groups using DNS, expose significant discrepancies in
the prediction of the particle concentration. Marchioli et al. [56] conclude that the combinations
of numerical schemes employed by the various codes provide different errors. It is further not
clear, which data should be used as a reference.
Form the concentration profiles corresponding to the high REYNOLDS number case, it is ev-
ident that particle preferential accumulation near the wall can be observed up to Stη = 19.
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(a) (b)

Figure 6.16: Maximum particle concentration in the near wall region as a function of Stη and Stl in a turbulent
channel flow. Results from the two-phase flow LES on the high REYNOLDS number and the low
REYNOLDS number channel flow.

Concerning the influence of the sub-grid stress dispersion model (the hollow symbols in Figure
6.15(b)), it can be concluded that the particles with Stη = 19 are not affected by the addi-
tional fluid velocity fluctuations, which is an expected result according to the work of Young
and Leeming [116]. Otherwise, the intermediate particle class (Stη = 8) seems to be sensitive
to the sub-grid fluctuations. Nevertheless, it has a negligible effect on the maximum near wall
concentration. The influence of the model remains mainly beyond the region of y+ < 10. The
sub-grid stress velocity fluctuations are computed dynamically, in a similar way to the sub-grid
stress tensor τ sgsij . The fluid sub-grid stress velocity fluctuations are naturally dumped if the
dynamic SMAGORINSKY model is used.
The relation between particle STOKES number and the maximum concentration is further an-
alyzed in Figure 6.16. Two fluid scales are used to define the STOKES number - the KOL-
MOGOROV and the integral scale of the flow, which leads to Stη and Stl, respectively. The par-
ticle concentration is normalized by the corresponding initial uniform concentration value. The
available data for the mean particle concentration are extracted from the case with Lycopodium
particles. It is evident that the near wall concentration denotes a maximum. The representation
of the concentration as a function of the STOKES number based on the integral scale is useful
(Figure 6.16(b)). According to this figure, the maximum occurs for 0.5 < Stl < 1. From this
information, it is possible to draw parallels to the work of Marchioli and Soldati [53] and Tang
et al. [102]. Both groups consider the large streaky structures near the wall as responsible for
the particles to reside in these regions.

6.2 Particle Influence on Turbulence

This chapter provide an analysis of the potential of large-eddy simulation to predict the particle
influence on the carrier fluid and on the turbulence characteristics of the fluid, in particular. For
this purpose, the results from two-phase LES on the channel flow with 2 and 20 % particle mass
loading and a free jet flow with 23 and 86 % loading are presented and discussed.
One focus of the study is the isolated turbulence modification due to particles, where the mean
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fluid velocity remains unchanged. This is considered in the context of the high REYNOLDS

number channel flow. The second focus is the modulation of the fluid turbulence due to overall
change of the fluid momentum due to particles. This is the simpler task for modeling techniques,
since the change in fluid mean velocity leads naturally to modification of the turbulence and the
direct interaction between turbulent structures and dispersed phase is of less importance. The
particle–laden jet provides an opportunity to investigate this issue.

6.2.1 Turbulence Modification at a Constant Mean Flow
A summary of the different cases, used for the comparison, is given in Table 6.2. A more
detailed outline of all simulation parameters, together with the boundary and initial conditions,
can be found in Tables 4.7 and 4.9 in Section 4.3.2. To obtain reliable results for the carrier

Table 6.2: Channel flow Reτ = 644: Configurations related to turbulence modification.

Case Material Mass loading, %

d70φ02 copper 2

d70φ20 copper 20

d70φ20− e0.5 copper 20

d150φ20 glass 20

phase from LES employing two-way coupling, it is essential to consider all relevant mechanisms
responsible for particular flow patterns of the dispersed phase. In the context of the higher mass
loading three issues become more important and are considered as follows:

• As discussed in Section 6.1.1, the particle–wall interaction has an important role for the
formation of the particle velocity profiles. The fact that the normal coefficient of restitu-
tion, measured for a colliding pair copper–copper is estimated at e = 0.2 is related to this.
The material of the test section, however, is acrylic glass. There is lack of information
concerning copper collision with a partner of different material, though, it is clear that the
particle–wall collisions are not elastic and this must be considered.

• The role of a rough wall on the instantaneous particle velocity and on the velocity statistics
is addressed in the work of Benson and Eaton [9]. It is a critical issue in a particle-laden
channel flows and is discussed based on the results from the d150φ20 case.

• Increasing particle mass loading leads to more inter–particle collisions. These are not ex-
plicitly considered in this work, however, their potential influence on the particle motion
is discussed at the end of this section.

A numerical experiment is performed to investigate the effect of partially elastic particle–wall
collisions on the particle velocity field. The restitution coefficient for particles encountering the
wall is set to 0.5. The results from this simulation are compared with those from the simulation
assuming ideal elastic particle–wall collisions and with the experimental data from Kulick et al.
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[48]. The effect of the inelastic collisions on the particle mean and fluctuating velocity profiles
is presented in Figure 6.17. The velocity components and the wall-normal channel coordinate
in all plots are normalized using wall units.

Figure 6.17: Channel flow Reτ = 644: Dispersed phase mean and fluctuating velocities from simulations with
70 µm copper particles and different mass loadings, φ. Effect of the reduced coefficient of restitution
for wall collisions (e = 1 and e = 0.5) on the particle velocity. Comparison with experimental data
from Kulick et al. [48].

The mean particle velocity in the boundary layer region is reduced due to the modified co-
efficient of restitution. A difference in the axial velocity fluctuations is present throughout the
complete cross section of the channel. Very close to the wall, at y+ < 30, the influence is mostly
pronounced. The particle spanwise and wall-normal velocity fluctuations are not affected by the
new condition. It is apparent that the particle–wall interaction is not the major driver for the de-
velopment of these velocity fluctuation components. According to the experiment, the mean
velocity has a very flat profile, which is exactly opposite to the tendency predicted by the LES
with reduced coefficient of restitution. In contrast to this, the streamwise velocity fluctuations
are driven into the correct direction for e = 0.5, however, the experimental profile is not exactly
reproduced. A simulation of the alternative case d150φ20 on the same channel flow config-
uration is performed to inquire the influence of the particle material on the particle velocity
statistics. For this particle class, consisting of glass beads, ideal elastic particle–wall collisions
are assumed. This assumption is sufficient in the case of glass beads at low mass loading as
shown in Figure 6.3. The particle mass loading and the particle STOKES number for this sim-
ulation are retained. Wall-normal profiles of the particle mean and fluctuating velocities are
presented together with experimental data from Paris [67] and Benson and Eaton [9] in Figure
6.18. The case simulated here corresponds to the setup from Paris [67]. It is evident that the
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Figure 6.18: Channel flow Reτ = 644: Dispersed phase mean and fluctuating velocities from simulations with
150 µm glass beads and mass loading φ = 20 %. Effect of the wall roughness on the particle velocity.
Comparison with experimental data from Paris [67] and Benson and Eaton [9].

particle velocity profiles do not match the experimental data from Paris [67]. However, the ef-
fect on inelastic particle - wall collisions is assumed to be negligible in this simulation because
of the coefficient of restitution of glass being close to 1. In addition the plots in Figure 6.18
show data from the experiment of Benson and Eaton [9]. The authors investigated the same
particle experimental setup using identical glass beads with 150µm diameter but lesser mass
loading of 15 %. The main focus was set on the effect of the wall rougness on the particle
velocity properties. The results presented here correspond to the "smooth" wall case from the
experiment. It is further important to note that the wall structure of the original development
section in the experimental rig, applied in the work of Paris [67], is comparable to the artificial
roughness of the wall from the later experiments of Benson and Eaton [9]. The particle velocity
components from the present LES are in very good agreement with the particle data from Ben-
son and Eaton [9]. It is possible that for this mass loading the particle volume fraction for the
large beads is relatively low and that inter–particle collisions are rare events. It is further evi-
dent that for such conditions the particle–wall interaction has a major role for the development
of the particle velocity field. The modeling of inter particle collisions constitutes an additional
complexity. This phenomenon is not explicitly investigated within the scope of this work, nev-
ertheless, some related findings concerning its relevance in this particular context are reported
here. Fevrier et al. [32] and Vance et al. [107] investigated the development of the particle ve-
locity statistics influenced by inter particle collisions using DNS. The authors showed clearly
that particle collisions introduce additional dispersion and lead to increased decoupling of the
particle from the fluid velocity. This process leads to the flattening of the particle velocity pro-
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files and is accompanied by increased fluctuations in the transverse directions (channel flow).
Yamamoto et al. [115] presented simulation results from the same channel flow with copper
particles, as those presented here. The authors included inter–particle collisions. The relatively
uniform profile of the particle mean velocity is well captured in their simulation. The velocity
magnitude, however, is significantly overestimated. Additional modeling of the particle–wall
interaction is not provided.
The last observation, together with the analysis of the present simulations, lead to the conclu-
sion that an a priori selection of the physical models needed for a particular configuration cannot
guarantee reliable results.
Despite the significant deviation of the particle velocity profiles from the experimental data,
the question remains unanswered, whether the particle mass loading has an effect on the fluid
turbulence. According to the experimental data for case d70φ20, the flow at this mass loading
exhibits significant turbulence attenuation. The simulations, though, predict much a lower mag-
nitude of attenuation. Results of the fluid mean and fluctuating velocities related to the present
simulations are shown in Figure 6.19. Together with results from the simulations on the d70φ20
and d70φ20 − e0.5 case, data from the LES on the channel with 2 % mass loading are plotted.
The experimental measurements are from Kulick et al. [48]. The normalization of the velocity
and the spatial coordinate is the same as in Figure 6.17.

Figure 6.19: Channel flow Reτ = 644: Gas phase mean and fluctuating velocities from simulations with 70 µm
copper particles and different mass loading φ. Comparison with experimental data from Kulick et al.
[48].

All simulations satisfy the condition that the gas mean velocity remains unchanged due to the
presence of the dispersed phase. Looking at the axial velocity fluctuations, it is obvious that the
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simulations with 20 % loading lead to a decrease of the fluid fluctuations. The magnitude of the
predicted attenuation at the position of the maximum fluctuations is approximately 50 % less
compared to the experimental value. Nevertheless, the position of the maximum at y+ ≈ 12
is well captured. The influence on the secondary phase becomes negligible toward the channel
centerline, which contradicts the experiment. According to this, the decrease of the fluctuations
is almost constant across the channel. The influence on the wall-normal component is also
evident but very small. The discrepncy between the simulations and the experiment is much
higher for this component. Moreover, the evolution of the profile in the wall-normal direction
is not predicted well by the LES. The influence on the spanwise velocity fluctuations seems
to be more intensive than this on the wall-normal components, but it is unclear how good the
approximation of the real flow is, since no measuments are available. It is evident from the
simulation results from the d70φ20− e0.5 case that the influence of the modified particle-wall
interaction on the fluid fluctuations remains quite limited.
The effect of 150 µm glass beads on the gas phase, as provided by experiment and simulation
for the case d150φ20, is presented in Figure 6.20 together with experimental and numerical
results from the single phase flow.

Figure 6.20: Channel flow Reτ = 644: Gas phase mean and fluctuating velocities from simulations with 150 µm
glass beads and mass loading φ = 20 %. Comparison with experimental data from Paris [67].

The mean velocity is unchanged by the presence of the particles in unison with previous con-
figurations. The axial velocity fluctuations for the single phase and the particle–laden flow in
the experiment denote a larger difference for the wall-normal component in the boundary layer
region y+ < 100, ([67]). The same component from the simulation is not affected by the parti-
cles so close to the wall. The influence of the dispersed phase on the turbulence becomes visible
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beyond the boundary layer. The simulation indicates a slight decrease in the axial fluctuations
when particles are injected into the flow. The general tendency from the simulation away from
the boundary layer is observed in the experiment as well. It is important to remark that Paris [67]
applied Particle Image Velocimetry (PIV) for the measurements of this case. The experimen-
tal data from Kulick et al. [48], reported above, are obtained using Laser Doppler Anemometry
(LDA). Comparison of results from both techniques shows that the velocity characteristics from
Paris [67] tend to be higher than the LDA-data, especially in the boundary layer region. The
error of the fluctuating velocity is estimated as 8 %. The additional turbulence augmentation
estimated for the wall-normal fluctuating component of the particle–laden flow is attested as a
possible artefact of the measuring technique in the near wall reagion. This reasonable suspicion,
however, was not proven by additional experiments. The turbulence attenuation outside of the
boundary layer is confirmed from both, experiment and simulation.
Concerning the relatively low amount of turbulence attenuation predicted by the simulations
in the d70φ20 and d150φ20 cases, it is important to note, that one main feature of the parti-
cle velocity field, the mean axial velocity, is not captured well by the simulations. The high
relative velocity between both phases contributes significantly for the flow modification. [48]
also suggest that the relatively low mean particle velocity is responsible for the significant flow
turbulence attenuation underestimation.

6.2.2 Turbulence Modification due to Mean Flow Variation

In this section the prediction of turbulence modification due to overall flow velocity change is
studied on the particle–laden free jet flow (Section 4.3) by using two-phase LES. The dispersed
phase consists of 80 µm glass beads with a STOKES number, based on the integral time scale
at the jet inlet, of Stl = 41.5. A main feature of this flow configuration is that the high particle
inertia initiates an increase of the carrier fluid mean and fluctuating axial velocity. The flow
shows a strong dependency on the particle mass loading. The study here is based on the results
from the cases d80φ23 and d80φ86, Table 4.13. Detailed information to the numerical setup is
available in Section 4.3.2.
The dispersed phase is initialized at the inlet adopting the instantaneous fluid velocity at the
particle position. For case d80φ86, in addition, a correction of the particle initial velocity is
made by scaling its magnitude by a factor of 0.75, which is the average of the mean relative ve-
locity between both phases. Though, this rough approximation suits the particle mean velocity
profile reasonably well to the experimental measurements. In Figure 6.21 mean and fluctuating
velocities of both phases along the jet axis are shown. The axial coordinate is normalized by
the jet inlet diameter, the mean fluid and particle velocities are normalized by the jet centerline
velocity. The fluctuating velocity is normalized by the mean velocity at the corresponding po-
sition. The results for the particle phase in Figure 6.21 suggest the conclusion that both mean
and fluctuating particle velocity are well captured by the simulation. Only very close to the
jet origin the fluctuating particle velocity exhibits significant deviation from the experimental
results. This behavior can be explained by the influence of the inlet boundary conditions. The
position of the numerical modell is at −5D (according the normalized abscissa). The distance
is not sufficient to allow for a fully developed particle flow pattern if the initial guess for the
particle velocity at the inlet is very rough as it is for the present case. An extensive discussion
on the issue can be found in Section 6.1.1 for the d80φ23 case. Nevertheless the artifitial flow
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(a) (b)

(c) (d)

Figure 6.21: Free jet flow Rebulk = 13000. Axial mean and fluctuating velocity of the gas (left) and particle
(right) phase along the jet axis. 80 µm particles at 23 % and 86 % mass loading. Comparison with
experimental data from Hardalupas et al. [37].

at the jet origin does not affect the particle velocity further downstream because of the strong
interaction between gas flow turbulence and particle motion. A common feature of both setups
is the nearly similar order of magnitude of particle mean and fluctuating velocity.
The simulation results for the gas phase on the other hand do not allow for a clear interpretation.
The flow with the high particle mass loading, d80φ86, is reasonbly reproduced by the LES in
terms of mean velocity. The simulation results of the low mass loading flow, d80φ23, predict
significantly stronger velocity decay along the jet axis than the measured value. Since the only
difference in the simulation setup is the injected particle mass, the obvious explanation for the
different results is namely the mass loading. It is essential for both setups that the particle vol-
ume fraction is above the value of 1e − 4. I.e., accordingly the classification in [16] in both
cases a strong influence of the dispersed phase on the gas flow is expected. Similar behaviour
of the gas phase is observed in the experiments too. Therefore, it remains an open question,
what is the reason for the weak fluid–particle interaction in the d80φ23-case LES?
Considering the gas fluctuating velocity in Figure 6.21 the simulation results confirm the exper-
imental findings that the higher the particle mass flow rate the lower the fluid velocity fluctua-
tions. Nevertheless, this is an expected result: the particle phase, having higher concentration,
accelerates due to drag more effectively the gas phase, which means that the gas mean velocity
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increases. Consequently for continuity reasons a decrease of the fluid turbulence occurs. The
quantitative prediction of the gas velocity fluctuations remains rather challenging for the LES.
Both simulations denote significant overprediction of the fluctuations for x/D < 10. For the rel-
atively high particle concentration occurs between fluid and particles very intensive momentum
transfer, which is resolved by the simulation as well. The main difference between experiment
and simulation emerges from the state of the two-phase flow at the jet origin: As noted above
due to the relatively short development section in the numerical model the two-phase flow is
still developing. In the experiment on the contrary the measurements are performed on a jet
starting from a fully developed two-phase flow in a pipe, Section 4.3.1. The high sensitivity of
LES even for single phase round jet flow is widely discussed in the literature, [113].
The anlysis of the present simulations leads to the conclusion that initial conditions in a numer-
ical model for the dispersed phase play a major role for the overall reliability of a two-phase
flow prediction. The numerical simulation of the preliminary section as a setup of two-phase
flow in a periodic pipe represents a possible remedy. The result will provide an instantaneous
inlet conditions for the two-phase flow.
Figure 6.22 presents radial profiles of the particle mean velocity and the particle axial velocity
fluctuations. The spreading rate of the simulated particle jets differs significantly between the

(a) (b)

Figure 6.22: Free jet flow Rebulk = 13000. Radial profiles of axial mean (left) and fluctuating (right) velocity of
the dispersed phase at four axial positions (jet inlet at x/D = 0). 80 µm particles at 23 % and 86 %
mass loading. Comparison with experimental data from Hardalupas et al. [37].

cases d80φ23 and d80φ86. The simulated particle mean axial velocity corresponding to the low
mass loading flow, decelerates faster downstream than the one in the experiment. Considering
the high STOKES number (Stl = 41) of the dispersed phase, the impact of the carrier fluid on
the particle velocity fluctuation is expected to be weak.
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In contrast to the low mass loading case, the particle mean velocity from the 86 % mass loading
simulation matches the experimental data well. Based on the computed data for the axial ve-
locity fluctuations of the particles in the case d80φ23, it is evident that a discrepancy between
simulation and experiment exists for the axial position x/D = 28. In contrast to this, the parti-
cle fluctuations for the case d80φ86 are captured very well. This observation can be explained
with the positive (in terms of prediction reliability) influence of the high mass loading on the
evolution of the particle velocity field.
Nevertheless, the question about the less accurate prediction of the particle velocity for the
lower mass loading remains unanswered. There are different conceivable resolutions: errors in
the statistical evaluation, insufficient number of samples or neglected relevant physical forces.
According to Elghobashi and Truesdell [26] the most important forces acting on heavy, small
particles are the drag and the gravitational force, since they prevail with several orders of mag-
nitude over all other forces. Taking into account that the discrepancy between experiment and
simulation occurs for x/D > 25, as well as the small particle diameter and their high density, it
can be assumed that the lift force due to high gradients of the mean particle velocity is negligi-
ble. The samples for the dispersed phase have been found to be sufficient, as it is evident from
the statistical properties. The statistical evaluation of discrete phase properties is performed in
the same generic way as for the carrier phase. However, it is necessary to assess this assump-
tion. This configuration is meshed using a so called cooper meshing algorithm. The basic idea
of this method is to generate hexahedron meshes by sweeping a surface mesh along a predefined
direction. For the present case this is the axial direction. To reduce the number of cells it is a
common practice to coarsen the grid in less relevant regions. The coarsening for the jet domain
is applied in radial and axial directions. Consequently, the hexaherdon cells in the core region
(around the jet axis) further downstream are elongated. The face area with a normal vector
orthogonal to the axial coordinate is much larger than the area with a normal vector coaxial to
the jet axis. Consequently, the probability for a particle to cross the cell in radial direction is
much higher than this for axial direction crossing. Therefore, the axial velocity computed from
this events is lower.
Within the scope of this investigations, the hypothesis is not proven by additional simulations
and it should be considered as a topic for further investigations. The issue will be more pro-
nounced for complex geometries, where the numerical grid quality can not be guaranteed for
the whole domain.
The evaluation of the fluid properties is shown in Figure 6.23. The radial profiles of the gas
phase velocity are plotted for the single phase and both particle–laden configurations. The com-
parison with the experiment, except for the single phase flow, is restricted to two axial positions
at x/D = 0.1 and x/D = 28, since no further experimental data are provided. The velocity
profiles of the flow, with and without, particles is well captured by the simulations. From the
numerical results it is apparent that the acceleration of the mean gas velocity in both simula-
tions precedes this of the velocity fluctuations and is detected first at x/D = 10. An increase
of the axial fluid fluctuations is captured at x/D = 20. One mechanism for the turbulence
augmentation is hence the higher mean velocity gradient in the fluid induced by the particles.
The anticipated effect of the particles on the gas phase can be approximated from the ratio of
particle diameter to flow integral length scale, which is estimated as dp/lf ≈ 0.1 at the jet inlet.
The TAYLOR hypothesis is applied for the estimation of the fluid length scale. According to
the classification proposed by Crowe [17], the ratio indicates that the particles possibly do not

109



6 Results and Discussion

(a) (b)

Figure 6.23: Free jet flow Rebulk = 13000. Radial profiles of axial mean (left) and fluctuating (right) velocity
of the gas phase at four axial positions (jet inlet at x/D = 0). The gas flow is laden with 80 µm
particles at 23 % and 86 % mass loading. Comparison with experimental data from Hardalupas et al.
[37].

contribute for any turbulence modification. The fluid length scale varies along the jet axis and
the local conditions seen by the particles could change. An effective contribution, however,
is possible only in the form of turbulence attenuation, since the wake effect induced by large
particles must be explicitly modeled.
Considering the possible error sources discussed above, it can be concluded that for jet-type
flows realistic inlet conditions for the dispersed phase are essential for the reliability of the sim-
ulation close to the jet inlet. Furthermore, explicit consideration of a part of the flow supply
section does not guarantee realistic turbulence properties and dispersed phase statistics. Nev-
ertheless, the effect of the turbulence augmentation is well captured, since it occurs further
downstream, where the fluid and particle velocities are already uncorrelated to the inlet condi-
tions. The effect of the grid quality on the evaluation of the dispersed phase statistical properties
needs to be investigated closely. In general, higher particle mass loadings reduce the effect of
the non-conformal mesh due to the higher rate of sampling events.

6.3 Evaporating Spray in a Confined Circular Chamber

The configuration of an evaporating non-reacting spray from Sommerfeld and Qiu [99] exhibits
several features, which make it favorable for investigation using LES. The system is operated at
standard conditions and no special treatment is required for the boundary conditions. There is a
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detailed database on the dispersed phase properties, containing diameter distributions, velocity-
diameter correlations and droplet mass flux. The data is collected at a position, which allows
for using the dilute spray approximation. Additional breakup and coalescence are assumed to
be of lesser importance. The operating temperature is quite low and equilibrium evaporation
models are sufficient to capture the process of mass transfer from the droplets to the surrounding
ambience.

6.3.1 Previous Large-Eddy Simulations

Moin and Apte [61] and James et al. [41] reported of LES on the configuration from Sommer-
feld and Qiu [99] as a part from other spray related investigations. Apte et al. [4] proposed
recently a high fidelity two-phase LES on this configuration. The dispersed phase is computed
in LAGRANGIAN frame. The simulation is performed using an unstructured code. In this work,
special attention is set on the adjustment of the gas phase inlet conditions as well as on the mesh
quality in the region around the droplet injection as well as on the near wall resolution. The de-
tailed data provided by the experimental database are applied for the spray inlet injection, which
makes the explicit simulation of the nozzle and the primary droplet breakup processes obsolete.
The number of the tracked particles in statistically steady state approximates 1 · 106. The com-
putational domain is extended to prevent negative influence of the outlet boundary condition.
On the modeling side, the droplet evaporation is approximated using an "uniform-state" equi-
librium model ([27], [92]). The effects of the unresolved turbulent scales on the filtered mass
fraction and temperature are considered using a correlation of the filtered mixture fraction and
its variance based on the presumed PDF approach. The mixture fraction variance is obtained by
applying a dynamic procedure, as suggested by Pierce and Moin [71]. The model assumes that
the evaporation time scale is smaller than the mixing time scale. The simulation results match
the experimental results very well in terms of mean and fluctuating velocities of both phases. In
addition, mean and RMS values of the droplet diameter are presented together with the liquid
mass flow rate.
Hahn et al. [36] applies an EULERIAN-LAGRANGIAN approach in the context of LES to simu-
late the same configuration. The authors employ a structured, multi-block and body fitted grid
code, involving a search free particle tracing algorithm for their simulations. Boundary and ini-
tial conditions are similar to those imposed by Apte et al. [4]. Droplet evaporation is captured,
again, by an uniform state equilibrium model. Here, the effect of the sub-grid stress mixing
processes on the evolution of the vapor mass fraction and the temperature is omitted. The qual-
ity of the results reported by Hahn et al. [36] is reasonable, while the number of the droplets
tracked is only approximately 1/5 of this computed in Apte et al. [4].
For both simulations, [36] and [4], there is no information, concerning the number of samples
collected for the dispersed phase during the calculations.

6.3.2 Present Results

A brief summary of the setup used for the LES simulations here is presented to highlight simi-
larities and differences to the numerical setups adopted by Hahn et al. [36] and Apte et al. [4].
The present simulations are carried out employing an unstructured grid CFD method utilizing
an efficient particle search algorithm. The equations for the gas phase are solved applying an
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efficient non-iterative Fractional Step time marching algorithm for the pressure-velocity cou-
pling. The method is successfully validated for single phase flows with constant flow properties
(Kim and Makarov [43]). The inlet boundary conditions for the dispersed phase are applied as
reported by Sommerfeld and Qiu [99]. The total number of particles, tracked in the steady state
flow, is approximately 3.7 · 106. The significant difference to the above reported simulations is
assumed to result from the minimum droplet diameter considered in the simulation. The filtered
fluid velocity is considered in the drag term of the droplet equation of motion. All details of the
numerical setup can be found in Section 4.4.

6.3.2.1 Statistical Properties of the Gas Phase

Results from the single and two-phase simulations of the gas phase are presented together in
the following section. The experimental data corresponds to single phase flow measurements,
since due to a limitation of the availabe measurement technique, it was impossible to discern
between tracer particles and small droplets under evaporating spray conditions. In Figure 6.24
radial plots of the axial mean and fluctuating velocities and the mean radial velocity of the gas at
seven axial positions are presented. The comparison between unladen and laden flow shows that

Figure 6.24: Evaporating spray in circular chamber. Gas phase mean and fluctuating axial velocities and mean
radial velocity from simulations of single and two-phase flows. Comparison with experimental data
from Sommerfeld and Qiu [99].

the influence of the particles on the fluid velocity remains negligible for all velocity components
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investigated. The fluctuating velocities in axial and radial directions demonstrate a more evident
discrepancy between computational and experimental data in the first measurement plane at
3 mm. The underestimation of the axial fluctuations by the simulation close behind the annular
inlet of the hot air is a consequence of the air inlet boundary condition. This does not have a
long-distance influence on the component as evident in the next measurement plane at 25 mm.
The high radial fluctuations in the first plane (3 mm) are assumed to be a effect of the wall
boundary condition defined behind the spray injection. At this position in the experimental rig,
the cavity where the hollow cone injector for the spray supply is mounted, ends. It is evident
from the mean axial component up to position x = 25 mm that the core flow (r < 10 mm)
denotes a recirculation zone. The wall at position x = 0 mm forces the flow in radial direction
and induces a higher radial velocity.

6.3.2.2 Statistical Properties of the Dispersed Phase

The injection position for the dispersed phase is set to the axial position of 3 mm, according to
the experiment. The inlet is represented by ten annular arranged surfaces with the correspond-
ing droplet diameter and velocity distribution. In Figure 4.8 a sketch of the inlet part for the
droplets is shown. Due to droplet vaporization and the finite radial dispersion, the number of
droplet samples is reduced in radial and axial direction with increasing distance from the injec-
tion. The minimum number of samples used for data evaluation is 2000.
Simulation results for the droplet mean and fluctuating axial velocities are shown in Figure
6.25. The data is averaged for all available droplets at the particular position (control volume).
The mean axial velocities of the droplets are very well captured by the simulation. The sim-

Figure 6.25: Evaporating spray in circular chamber. Liquid phase mean and fluctuating axial velocities compared
with experimental data from Sommerfeld and Qiu [99].
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ulated profiles, corresponding to the droplet axial velocity fluctuations, at the first and second
axial positions overestimate the experiments slightly. Since the average number of samples at
these axial positions is always above 10000, statistical errors due to insufficient sampling are
assumed to be negligible. It is worthwhile to mention that all droplets detected in the domain
are included into the statistical evaluation. A significant amount of them have a diameter below
3 µm, which is the lower cut-off droplet diameter detectable by the measurement technique.
The small droplets behave like the fluid tracer. Their velocity is highly correlated with the fluid
velocity fluctuations, which are higher than those measured for the dispersed phase. Since the
estimation of the droplet velocity statistics over all droplets does not consider the droplet diam-
eter, it leads to an overestimation of the droplet axial velocity fluctuations. This effect is further
amplified due to the recirculation zone in this region. The effect vanishes downstream from the
third measurement plane, which is downstream of the recirculation zone.
The effect of the smaller droplets is quite evident from the plots for the droplet mean diam-

Figure 6.26: Evaporating spray in circular chamber. Liquid phase mean, rms and SAUTER mean diameter com-
pared with experimental data from Sommerfeld and Qiu [99].

eter, shown in Figure 6.26. The figure includes also data for the droplet rms diameter and the
SAUTER mean diameter, d32. The plots confirm the very good prediction of the particle diame-
ter statistics.
Another aspect concerning the reliability of the simulation is the chosen evaporation model.

As primarily assumed, an equilibrium model will resolve adequately the evaporation process
for the given operating conditions. In order to investigate this in Figure 6.27 are presented fluid
and droplet temperature plots extracted from the simulation results. An additional difficulty
for such assessment arises from the incomplete data for characterization of the thermodynamic
state of the phases. The experimental investigations for the dispersed phase are restricted to
velocity and diameter properties. Nevertheless, the investigation of the simulation results will
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Figure 6.27: Evaporating spray in circular chamber. Radial profiles of the mean temperature of the gas and the
liquid phase from the simulation at different axial positions.

give up to certain amount an insight into the evaporation process.
The reader shall consider that the scaling of the ordinate, the temperature axis, of both plots
in Figure 6.27 is different. In general the gas temperature leads the droplet temperature for
all shown axial positions. The significant temperature drop up to axial position x = 100 mm
within the regions with high droplet concentration is an natural result of the energy transport
toward the colder droplets. More interesting is the accurate tendency prediction of the droplet
temperature, i.e. during the evaporation droplets become colder. To remind the reader, the inlet
temperature for the liquid phase is 307 K. Very intensive cooling experience the droplets in
the region close to the nozzle. Since the gas phase gets colder due to the droplet heating, the
thermodynamic state of the droplets changes and following in order to achieve an equilibrium
state their temperature decreases. Further downstream the large amount of small droplets is
already evaporated and the droplet concentration is therefore significantly reduced. The energy
transport from the hot gas to the droplet much lower. The c̈oolingöf the liquid phase is not
observed.
Looking at the last simulated configuration, it can be concluded that the applied non-iterative
Fractional Step method allows for reliable prediction of flows involving two-way coupling for
momentum and mass transfer, when moderate variations of the fluid properties are taken into
account. Its application to combustion systems needs, however, further validation work. As dis-
cussed in previous sections (6.1.1, 6.1.2), the LES provides a reliable prediction of the velocity
field for the dispersed phase. The statement can be extended for the prediction of evaporation
processes with relatively low rates of mass transfer as well. However, for configurations with
high evaporation rates, Masoudi and Sirignano [57] have shown that the interaction between
the sub-grid scales and the droplets can lead to modification of the SHERWOOD and NUSSELT

numbers. More sophisticated models are required.
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A systematic analysis of dilute dispersed two-phase flows using LES is presented in this work.
The focus of this study is on the reliability of the simulations, which are performed in the con-
text of EULERIAN-LAGRANGIAN approach. Conclusions, based on results from simulations
are compared with findings from DNS and experimental investigations of other authors. Since
many of the reference findings are mostly derived from a specific setup (numerical or experi-
mental), it is investigated whether they are valid when applied to different flow configurations.
Special attention is paid to the identification of weak spots in the EULERIAN-LAGRANGIAN

method. The lack of physical models, critical numerical issues and possible invalid interpreta-
tions of the results are discussed.
The study builds on results from four configurations. Two plane, particle–laden channel flows
with different shear REYNOLDS numbers (Reτ = 150 and Reτ = 644) and hence with a dif-
ferent ratio of integral to KOLMOGOROV time scales, tl/τη = 6 and tl/τη = 22, are computed.
Eight particle types, classified on their STOKES number in the range of Stη = {0.08 .. 19}, are
used for the analysis. In addition, a particle–laden jet flow and an evaporating spray in a coaxial
chamber are applied within this scope. A tool for in-situ and posteriori data analysis is devel-
oped to obtain the statistical properties of the dispersed phase. The coupling of the non-iterative
Fractional Step Method in the context of unstructured and non-orthogonal meshes, using a sec-
ond order implicit temporal integration scheme, to LAGRANGIAN particle tracking, including
bidirectional interaction between dispersed and continuous phase, is developed and validated
within this work.
One major issue of the work is the reliable prediction of particle preferential accumulation and
turbulent dispersion. This focus arises from its essential influence on the prediction of ongoing
mixing and chemical reaction processes, such as in spray combustion devices. A second empha-
sis is the flow turbulence modification due to small heavy particles. Two alternative generation
mechanisms are investigated: first, the direct influence on turbulent statistics and second, turbu-
lence modification induced by overall momentum change in the fluid due to particles.
The results for local particle accumulation and dispersion can be summarized as follows:

• Using LES to describe the carrier fluid motion explicitly implies that phenomena such as
local particle accumulation around large turbulent scales become partially resolved. The
level of particle preferential accumulation is investigated in the context of two channel
flow configurations. The difference in the standard deviations of the computed number
density PDFs and a POISSON distribution presents a parameter for characterization of
the preferential accumulation. For the high REYNOLDS number flow the LES is able
to reproduce a maximum accumulation for particles with Stη ≈ 2 which is observed in
the experiments from Fessler et al. [31]. Moreover, it was possible within the scope of
this work to show that this behavior applies for low REYNOLDS number flow as well.
The STOKES number exhibiting maximal accumulation contradicts previous findings on
particle accumulation in the DNS context ([100], [111]). The authors, however, did not
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consider different length scales at which preferential accumulation might possibly occur.
In the present work it is evident that the scale of maximum accumulation increases pro-
portional to the Stη. An additional dependency of the magnitude of accumulation on the
flow REYNOLDS number is demonstrated by comparing both channel flows. A lower tur-
bulence intensity induces higher levels of particle preferential accumulation.

• A stochastic model accounting for sub-grid stress induced particle dispersion is inves-
tigated in the context of the high REYNOLDS number channel flow. It is based on the
eddy–life / eddy–crossing time hypothesis. The model leads to a significant decrease in
particle accumulation. The main issue detected here is that the model constant seems to
be case dependent, since the amount of the unresolved kinetic energy is not apriori fixed
in the context of LES, as in the case of turbulent models based on statistical averaging.
However, the applied stochastic model does not affect the velocity field statistics (mean
and rms) of the dispersed phase.
Following the resulting local particle number density field due to accumulation, it is fur-
ther apparent that the need for a collisional model in LES context is explicit, even for
very low particle mass loading. Considering particle collision will further increase the
dispersion of solid particles in a natural way. For liquid particles (dloplets) additional
physical phenomena such as coalescence must be included in the collision model as well.

The generation of turbulence modification due to small heavy particles is investigated from two
perspectives.

• The direct influence of the dispersed phase on the turbulent properties on the high REY-
NOLDS number channel flow is studied. According to the simulation results, the effect
on the turbulence attenuation is apparent only in the region with maximum fluid velocity
fluctuations (5 < y+ < 50). The relatively low magnitude of turbulence modification,
compared to the experiments from Kulick et al. [48] and Paris [67], is found to be a conse-
quence of the deficit in the prediction of the particle velocities. This deviation is attributed
to the lack of an appropriate particle–wall interaction model. To better understand the
variety of mechanisms additional detailed experimental investigations on particle–fluid
velocity correlations and on the velocity distribution function would be of great support.

• The simulation results from the particle–laden jet flow case with 23 % and 86 % particle
mass loading lead to the conclusion that the fluid mean and fluctuating velocities are rea-
sonbly well predicted, however, the results corresponding to the high mass loading case
are closer to the experimental observation. This tendency is assumed to be a consequence
of the inlet boundary conditions adopted for the dispersed phase. This issue appears to be
essential for the prediction of the velocity field at moderate mass loading. Nevertheless,
the effect of the inlet conditions is not a specific LES issue.

The simulation of a circular chamber with evaporating isopropyl alcohol spray is dedicated to
the validation of the chosen numerical method. The latter represents in the scope of multiphase
flow LES an effective alternative to standard SIMPLE-like methods regarding highly time con-
suming computations. This is a combination of a non-iterative time advancement method for
the continuous phase accounting for two-way coupling with the discrete phase. The challenge
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7 Conclusion

of the certain configurations arises from the variable continuous phase density. The numerical
method is developed primary for flows with constant fluid properties (density and viscosity).
The detailed inlet conditions for the dispersed phase, provided by the experiments of Sommer-
feld and Qiu [99], are used for this setup. The numerical results have very good agreement
with the experimental data for air and droplet mean and fluctuating velocities, as well as droplet
diameter statistics. The vital importance of appropriate inlet conditions for the dispersed phase
becomes evident. It is expected for this configuration that the droplets exhibit preferential accu-
mulation, however, it is not possible to perform a comparison with experimental data, because
this is not provided.

Analysis of the particle velocity statistics leads to the conclusion, common for all cases, that
a realistic particle–wall interaction model will improve the prediction of velocity statistics of
heavy particles utilizing LES.

It is also important to consider the effect of unstructured and non-conformal meshes on the
statistical evaluation of the dispersed phase properties, such as velocity or concentration. Unlike
the experimental measurement volume, the computational cells, for which the particle statistics
are collected, vary. The negative effect of non-conformal mesh on the statistics is expected to
increase for tetrahedron meshes.
From the summary of the simulations it is apparent that the EULERIAN-LAGRANGIAN approach
exhibits several deficiencies in the context of LES. These need to be overcome to extract reliable
informations from future simulations. The inclusion of an inter-particle collision model is a
desirable alternative to tuning an advanced stochastic dispersion model to a specific experiment
in order to match the stochastic PDF. For simulations where the particle–wall interaction is
important, the effect of rough wall on the particle motion is essential and needs modeling. In
addition, numerical grids with good cell quality are essential for reliable statistical properties
for the dispersed phase.
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