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Motivation 

The present PhD thesis titled “Experimental Determination of Stray Load 
Losses in Cage Induction Machines” is based on two research projects and deals 
with the measurement of the stray load losses and the efficiency of the squirrel-
cage induction machines. 

 
From cost and competition reasons, the stator round wire winding is used in 

the grid-operated low-voltage squirrel-cage rotor asynchronous generators for 
1.5 MW wind turbines. By overheating of the winding the high-utilized 
generator is endangered. The objective of the research project was to analyse the 
cause for high losses and overheating of the winding, to localise the sources and 
to develop measures to solve the problem. 

 
The focus of the second research project was the measurement of the stray 

load losses in the grid-operated low-voltage standard TEFC induction machines. 
The well-known standardized methods like the input-output test (residual loss 
method), the calorimetric and the reverse rotation test acc. to the standards IEEE 
112 or IEC 61972 needs expensive measurement equipments of high accuracy 
and a coupled load, take considerable time to perform the test and consume 
therefore more energy. With increasing efficiency, due to technical 
improvements, competition and environmental problems, a revision of these 
methods and of assigned fixed values for the stray load losses was necessary. 
Aim of this project was to find simple and economical alternative tests, 
applicable in manufacturer test field with reliable results also for high efficiency 
motors up to 95%…96%, with small amount of the stray load losses, where the 
input-output test is too inaccurate for the assessment of the stray load losses. 
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Abstract 

With different purposeful measurements like for the stray load losses and the 
flux densities, on two low-voltage squirrel-cage rotor asynchronous generators 
for 1.5 MW wind turbines with different types of the stator winding (litz and 
round wire), the sources of the losses and the causes for the winding overheating 
are localized and defined. Different measures to reduce the stray load losses due 
the skin effect in the stator of the round wire winding generator are successfully 
tested and implemented in the manufacturing process. Thanks to these proven 
techniques the round wire winding is competitive to other expensive winding 
types. Analytical models for the estimation of the stator stray load losses due to 
the skin effect for profile, litz and round wire winding are compared to the 
measurements. 

 
A survey on the cheap and simple methods to measure the stray load losses in 

squirrel-cage induction motors, apart from the standardized methods, results in 
three equivalent “no-load” methods, where no coupling and no dynamometer or 
torque-meter are needed. The strengths and weaknesses of the measurement 
methods were investigated and compared with the standardized input-output test 
(residual loss method) and the reverse rotation test (RRT) on 27 standard TEFC 
grid-operated cage induction motors (2-, 4- and 6-pole) with the current design 
of six European manufacturers with the rated power of 0.37 kW, 0.55 kW, 
1.1 kW, 5.5 kW, 11 kW and 315 kW. It was concluded, that it is a benefit to add 
the eh-star method into the next edition of the future IEC 60034-2*), as it is 
cheap, yielding comparable results with the input-output test, and is fitting better 
the purpose than RRT, which is already included in the standards. The 
theoretical background and the measurement procedure for the eh-star method 
are described in detail. Some analytical calculations were done, showing that 
theoretical prediction of the stray load losses correlates with the design and the 
measurement results. 

 
 *):   The eh-star method was proposed on Dec. 2005 in IEC 60034-2 Ed. 4/1367/2nd draft [IEC 

60034-2 draft]. May 2007 it was accepted and published on Sept. 2007 in IEC 60034-2-1, 
Edition 1.0 [IEC 60034-2-1]. 
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Aufgabenstellung 

Die vorliegende Arbeit “Experimentelle Bestimmung der Zusatzverluste in 
Käfigläufer-Induktionsmaschinen” basiert auf zwei Forschungsprojekten und 
befasst sich mit der Messung der Zusatzverluste und des Wirkungsgrades der 
Asynchronmaschinen mit Käfigläufer. 

 
Aus Kosten- und Wettbewerbsgründen werden die Niederspannungs-

Käfigläufer-Asynchrongeneratoren für 1.5 MW Windturbinen mit Runddraht-
Träufelwicklungen im Stator ausgeführt. Durch Überhitzung ist die Wicklung 
der hoch ausgenutzten Maschinen gefährdet. Das Ziel des Forschungsprojekts 
war, die potentiellen Verlustquellen zu lokalisieren und zu analysieren sowie 
entsprechende Abhilfe-Maßnahmen zu entwickeln. 
 

Im Rahmen des zweiten Forschungsprojekts stand die Messung der 
Zusatzverluste in netzgespeisten Niederspannungs-Normmotoren im Vorder-
grund. Die bekannten standardisierten Messmethoden in z.B. IEEE 112 oder 
IEC 61972, wie Input-output Test, kalorimetrische Messverfahren und der 
Reverse Rotation Test, sind aufwendig, und fordern teures Messequipment von 
hoher Genauigkeit sowie eine gekuppelte Lastmaschine. Sie benötigen mehr Zeit 
für die Durchführung der notwendigen Tests und verbrauchen deshalb mehr 
Energie. Aufgrund des technischen Fortschritts, aus Wettbewerbsgründen und 
wegen der zunehmenden Umweltprobleme werden effizientere Motorenreihen 
entwickelt. Damit war eine Revision dieser Messmethoden und des darin 
angenommenen festen Zuschlags für die Zusatzverluste notwendig. Ziel war es, 
ein einfaches, kostengünstiges alternatives Messverfahren zu finden, das leicht 
im Prüffeld des Herstellers anwendbar ist und zuverlässige Ergebnisse liefert, 
u.a. auch für Motoren mit einem Wirkungsgrad größer als 95 %. Input-output 
Tests (z.B. IEC 61972, IEEE-112-B) haben wegen der dafür zu hohen nötigen 
Genauigkeit der Messgeräte für die Aufnahme- und Abgabeleistung hier eine 
Grenze. 
 



Kurzfassung  v 

Kurzfassung 

Durch gezielte Messungen, wie die der Zusatzverluste und der magnetischen 
Flussdichte an zwei 1.5 MW Niederspannungskäfigläufer-Windgeneratoren mit 
unterschiedlichen Stator-Wicklungsausführungen (Runddraht-Träufelwicklung 
und Litzenwicklung) konnten die Ursache, die Größe und der Ort der 
Zusatzverluste bestimmt werden. Verschiedene Abhilfe-Maßnahmen zur 
Reduzierung der Wicklungszusatzverluste infolge Stromverdrängung wurden 
erfolgreich getestet und in den Fertigungsprozess integriert. Dank dieser 
erprobten Techniken ist die Runddrahtwicklung konkurrenzfähig zu anderen 
teureren Wicklungsausführungen. Zur Abschätzung der Wicklungszusatz-
verluste infolge Stromverdrängung wurde für jede Wicklungsausführung 
(Formspulenwicklung, Litzenwicklung, polumschaltbare und nicht polumschalt-
bare Runddrahtwicklungen) ein Modell erstellt und mit der Messung verglichen. 
 

Die Recherche über einfache und kostengünstige alternative Messverfahren 
zu den bereits genormten Messmethoden für die Bestimmung der Zusatz-
verluste in Käfigläufer-Asynchronmaschinen ergab die Auswahl von drei 
„Leerlauf-Ersatzmethoden“, in denen der Prüfling nicht mit einer Last gekuppelt 
werden muss und keiner kalibrierten Drehmomentenmesseinrichtung bedarf. Die 
Stärken und Schwächen dieser Messmethoden wurden untersucht. Die 
Messergebnisse an 27 Normmotoren von 6 europäischen Herstellern mit 
entsprechend unterschiedlichem Motor-Design mit Bemessungsleistungen von 
0.37 kW, 0.55 kW, 1.1 kW, 5.5 kW, 11 kW und 315 kW zeigten, dass die eh-
Stern Methode gute Übereinstimmung mit den Ergebnissen des Input-output 
Tests liefert. Der bereits genormte Reverse Rotation Test liefert in der Regel zu 
hohe Zusatzverluste. Da die eh-Stern Methode messtechnisch einfach und 
kostengünstig ist, und dazu vergleichbare Ergebnisse mit dem Input-output Test 
liefert, wurde sie in der Norm IEC 60034-2-1 aufgenommen. Der theoretische 
Hintergrund und das Messverfahren für die eh-Stern Methode sind in dieser 
Arbeit ausführlich beschrieben. Zur Abschätzung der Zusatzverluste wurden 
einige analytische Berechnungen durchgeführt, in denen der Einfluss des Motor-
Designs gezeigt wurde, und die zum Teil gute Übereinstimmungen mit der 
Messung ergaben. 
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1 INTRODUCTION 
 

The workhorse in the drive system, namely the induction motor as squirrel-
cage or wound rotor, is the most widely used electric motor type. Their 
application area is extensive as constant speed (grid fed) e.g. in pumps and wind 
generators, variable speed (inverter fed) e.g. in paper industry or high speed e.g. 
in tooling machinery, with some kW up to several MW. 

A number of different types of electric motors exist. The vast majority of the 
motors used in industry are the standardized squirrel-cage induction motors due 
to their low cost, low-maintenance, high reliability and fairly high efficiency.  

 
The losses including the stray load losses (additional losses) influence 

substantially the heating of the winding, worsen the torque characteristic at 
running up and reduce the efficiency of the induction machines. To improve the 
performance of the machines the place and the size of the losses including the 
stray load losses must be determined in order to reduce them. Owing to the 
competitiveness and the environmental problems, it has become more important 
to determine the losses and the efficiency of the motors. 

 
But how to evaluate these motors of different manufacturers concerning their 

improved efficiency ? Of course several methods had been standardized for long 
in national and international standards e. g. IEC 60034-2 [IEC 60034-2], but 
with increased efficiency in the range of 95% and more some of these 
procedures were too inaccurate e.g. residual loss method (input-output test) acc. 
to IEEE 112-method B [IEEE 112] and others too expensive e.g. calorimetric 
method and needs a coupled load, take considerable time to perform the tests 
and consume therefore more energy. These standards use different ways to 
incorporate the stray load losses. 
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1.1 Challenge 

Motor manufacturers are in a situation that any changing of the standards for 
efficiency determination methods requires retesting of currently and ongoing 
sold motor types, as generally a full occurrence-synchronisation between 
development of motors and standards is of “near zero” probability. The product 
lifetime of motors can be assumed of being significantly longer than ten years. 
The challenge for the responsibility of standardization experts is to find an 
alternative efficiency determination method with less expense, suitable in 
manufacturer test bays, but comparable results. 

A close collaboration of the IEC standardization working groups, the national 
working groups and the industrial manufacturers organization (CEMEP: 
European Committee of Manufacturers of Electrical Machines and Power 
Electronics) brought up several parallel activities on efficiency motors. One of 
them was the collaboration with Universities in UK and Germany to find out,  

- if additional measurement procedures for electric motor efficiency are 
available, 

- if refinement of existing methods is necessary in mathematical, physical 

and technical way, 

to show up strength and weakness of different methods and their practical 
existing limitations and to work out attainable accuracy in reality. This scientific 
work – in collaboration with CEMEP and the IEC Working group – was done 
between 2003…2005 and brought up several encouraging results, which have 
not been only discussed thoroughly within the standardization organizations and 
the industrial partners, but have been published also in the scientific community 
[Aoul 2005, Gera 2005, Zwan 2006].  

Basically, one can resume, that some already known techniques have been 
“re-found”, mainly the eh-star method [Jord 1967], which allowed much simpler 
way to measure stray load losses. This method – when being first presented to 
the public in the late Sixties – was not distributed broadly, as the calculation 
amount “post-processing”, was rather time consuming, whereas the 
measurement procedure itself was simple. Nowadays with modern computers 
this calculation is done in the fraction of a heart-beat and can contribute to 
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efficiency evaluation even at values higher than 96 % without loading the 
machine with a coupled dynamometer, thus saving costs. An EXCEL sheet, 
which available overall, for the calculation and a guide-line [Guid 2005] for 
performing this test were provided. These results were welcome to the 
standardization working group and were presented and discussed on several 
meetings. As an answer to the challenge for the responsibility of standardization 
experts to find an alternative efficiency determination method with fewer 
amounts but comparable results, the eh-star method acc. to the proposed 
standard IEC 60034-2 Ed. 4 [IEC 60034-2 draft] can be such an optimal 
technical, feasible and economical alternative test. It needs usually an additional 
adjustable resistor for asymmetric feeding, which is cheaper than a calibrated 
load and torque measurement.  

Obviously certain manufacturers are already well equipped with 
instrumentation e.g. acc. to IEEE-112 method-B standard and are not “open” for 
something “new”. Due to experience with the new method within several 
companies, who took effort to evaluate the eh-star method in their test bay, the 
test time was calculated to be just 25 % to 30 % compared to the method 
according to IEC 61972, which leads at the end to a saving potential of ca. 10 
Million Euros for the community. This result is a success to sensible 
standardization politics of the dedicated experts [Zwan 2006]. Nevertheless the 
already well-known and proven other test standards are still included and allow 
the manufacturer and customer to choose the negotiated method. 

 
 

1.2 High efficiency is one of the tasks of the hour 

Environmental problems – greenhouse gas emission, climate change, 
warming up of the earth – are topics we hear nearly every day discussed 
somewhere on TV, in newspapers or in the public. Growing earth population is 
of course one main driver as each individuum needs energy in on or other form. 
It is certain, everybody is concerned. How does everybody handle the “precious” 
energy in production and consumption ? How can society and each segment of it 
contribute to cope with these problems ? The standards e.g. by offering different 
reliable measurement methods and the standardization e.g. of industrial 
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equipment, namely the ubiquitous electric motors, can support our struggle for 
save future life. 

 
Energy efficiency and the environment are inextricably linked i.e. in the 

ECCP (European Climate Change Program). In the actual and future electric 
energy market energy saving policies grows more and more important, having a 
big impact on industrial equipment and their standardization.  

In the European Union, the rotating electrical machines needed in the 
industrial field applications transmit typically 60 %…70 % of the total absorbed 
electrical energy to mechanical energy. In the commercial sector, this percentage 
is up to 35 % [Bogl 2004]. So improvement of the motor efficiency is one of the 
tasks of the hour. In the last years, research and development into improving 
motor design construction and manufacturing techniques have resulted in 
improvements in efficiency, in costs reduction, reduction of environmental 
pollution and increasing of renewable energy sources, especially wind power as 
presented in Figure  1.1. Within only 20 years the energy yield increased by a 
factor of 100 (see Table  1.1) [BWE 2008]. 
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Figure  1.1: Development of the rated power and annual energy yield of the wind generators 
[BWE 2008] 
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The wind energy has grown strongly due to the development of the wind 
energy technology and increased number of installed wind turbines. Table  1.1 
gives the development of the wind turbine size concerning the rated power, the 
rotor diameter and hub height between 1980 and 2008 [BWE 2008]. Larger 
turbines will be erected in the near future.  
 

Year 1980 1985 1990 1995 2000 2005 2008 

Rated power  /kW 30 80 250 600 1500 3000 6000 

Rotor diameter /m 15 20 30 46 70 90 126 

Hub height /m 30 40 50 78 100 105 135 

Annual energy yield /MWh 35 95 400 1250 3500 6900 
approxim. 
20000 *) 

Table  1.1: Development of the wind turbine size [BWE 2008]  
*): Estimated value in [BWE 2008]. The combination of 6000 kW rated power and 
20000 MWh energy yield is too optimistic, even for off-shore; this would mean 3333 
full load hours per year. 

 
To improve the efficiency, a “Voluntary Agreement” between the EC 

(European Commission) and CEMEP (European Committee of Manufacturers of 
Electrical Machines and Power Electronics) was made in the field of low voltage 
induction motors, where minimum nominal efficiencies were defined in classes 
EFF1 for high efficiency, EFF2 for improved efficiency and EFF3 for standard 
efficiency [Bert 2005, Auin 2001], as shown in Figure  1.4. The EFF-classes are 
meanwhile replaced by the efficiency classes IE1 – IE3 according to the new 
IEC 60034-30: 2008 [IEC 60034-30] presented in Figure  1.2. Due to their 
reduced losses, high efficiency motors IE3 and IE2 run at lower temperatures 
than equivalent standard motors IE1, which results in longer insulation and 
lubricant life and less downtime. 

Note: The Voluntary Agreement was officially withdrawn when IEC 60034-
30 came into effect. 

 
Figure  1.3 shows how the weight of a 4 kW motor has been reduced over the 

last 60 years [Walt 1995] due to improved design and materials (magnetic steels, 
insulation, bearings…). 
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Figure  1.3: Ratio of weight to output power 
(kg/kW) for a 4 kW induction 
motor 1935-1995 [Walt 1995] 

 
 

1.3 Benefits of high efficiency motors to environment 

Motors with improved efficiency EFF2 are 5 % and with premium efficiency 
EFF1 are 30 % more expensive compared with the standard efficiency EFF3. As 
the motor customers tend to make purchasing decisions based on lowest first 
cost rather than life cycle cost, the market for EFF1-motors was below 7 % in 
2004 [Zwan 2004]. The experiences in Europe and in other countries (USA, 
Canada, and Australia) have shown that only by political support (financial 
incentives or law) an essential market moving in this meaning can be reached 
[VDE 2008]. The percentage of EFF3-motors decreased from 68 % in 1998 
down to 8 % in 2004, which exceeds the target of the Voluntary Agreement of 
CEMEP. A total sum of about 4 to 5 TWh of electrical energy was already saved 
in 2004 in comparison to 1997 [Sand 2005, Zwan 2004]. 

 
Figure  1.4 shows the motor efficiency classes for 4-pole induction motors 

again the rated power and the estimated energy saving potential with EFF1-
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motors instead of EFF3-motors as percent of the electrical input power. The 
greatest energy saving potential by installed motors in the industrial sector is 
concentrated in power range of 1.1 to 37 kW due to the typical operating times 
per year [VDE 2008]. 
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Figure  1.4: Motor efficiency classes and estimated energy saving potential with EFF1-motors 
instead of EFF3-motors as percent of the electrical input power [VDE 2008] 

 
The pay-back periods in investments in energy efficient motor systems for 

new installations are in most cases relatively short, ranging at the actually given 
cost level for wages, materials and energy from 3 months to 3 years, depending 
on the motor type (EFF1 or EFF2) and on the real motor duty cycle, which 
determines energy costs. This pay-back period falls rather short, when compared 
with a typical motor life time of 20…30 years (and longer).  

The implementation of modern efficient drive systems can save Europe over 
200 TWh of electricity and 100 million tons of CO2 emission annually, € 10 
billion reduction per year in operating costs for industry, € 6 billion annual 
savings for Europe in reduced environmental costs, 45 GW reduction in the need 
for new power plant capacity over the next 20 years and 6 % reduction in 
Europe’s energy imports [Keul 2005]. The high efficiency motors can contribute 
to the above noted energy savings by about 12 %, the use of variable speed by 
about 23 % and the improvements on the application side by 65 %. 
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But even concentrating here only on the efficiency of the motors itself, 
proves once again, that standards are important instruments to achieve technical, 
political and managerial objectives. The economical influence of the standards 
on technical development of induction motors has an ecological impact on our 
environment, which should not be under-estimated. 

 
To get a feeling, how high efficient motors will contribute to save energy and 

greenhouse gas, let us look at the bare numbers of a simple calculation example: 
Electrical power consumption in Germany 2001 was 18 % of total energy 
consumption, resulting in 492 TWh ( kWh000000000492 = ). The industrial 
electrical energy consumption made up for 42.5 % (209 TWh). Conversion into 
mechanical energy came to 69 % of that (144 TWh), consumed by electric 
motors. With an average efficiency increase of 4 % of electromechanical energy 
conversion by premium efficiency motors, which we assume realized by only 
50 % of installed drive power, one gets an energy saving of TWh1445.004.0 ⋅⋅  
= 2.9 TWh per year (8760 hours), which amounts to power delivery of a power 
plant with 2.9 TWh / 8760 h = 330 MW. Most power plants in Germany are 
thermal power plants. New plants have an optimum efficiency of 50 %, e.g. if a 
combined cycle plant is used. In this case the saving of thermal input power is 
660 MW. In reality, many of German thermal power plants are still of older type 
with a lower efficiency, or they are operated not in the optimum point due to 
grid demands, so an overall average efficiency of only about 35 % is more close 
to the reality. Therefore the savings would even lead to a reduction of 943 MW 
thermal input power. 

 
 

1.4 Structure of the thesis 

The presented contribution “Experimental Determination of Stray Load 
Losses in Cage Induction Machines” is based on two research projects and 
focuses on the measurement methods to determine the stray load losses and the 
efficiency of grid-operated low-voltage squirrel-cage induction machines.  

 
The PhD report consists of a summary and five chapters. Each chapter closes 
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with a short summary. The conclusions and the outlook of the thesis are 
summarized in the last Chapter 6. The thesis is structured as follows.  

Chapter 2 gives an overview on the important efficiency measurement 
methods and explains how to determine the stray load losses in induction 
machines using different methods. Based on examples, obtainable accuracy, 
practically existing limitations, advantages and disadvantages of six different 
measurement methods are shown.  

The focus of the third chapter is the eh-star method as an equivalent 
measurement method to determine the stray load losses. The theoretical 
background, the test procedure and the post-processing with different evaluation 
methods are described in detail. 

Chapter 4 summarizes the test results from different measurement methods of 
different standard TEFC (totally enclosed, fan cooled) cage induction motors 
with rated power of 0.37 kW, 0.55 kW, 1.1 kW, 5.5 kW, 11 kW 315 kW, and of 
two 1500 kW wind generators. 

The objective of chapter 5 is the analytical calculation of the stray load losses 
in the stator winding due to the skin effect. After a short summary on eddy 
currents, a comparison of the calculation models to the measurements for 
1500 kW grid-operated cage induction generators with profile, litz and round 
wire windings is presented. Some measures to suppress stray load losses in the 
stator winding due to circulating currents are given. The chapter closes with an 
overview on main stray load loss components in 11 kW cage induction motors 
and comparison between measurement and analytical calculation. 

 
The measurements on small motors were performed in the power lab of the 

Department of Electrical Energy Conversion, Darmstadt University of 
Technology, whereas the measurements on the 315 kW motor and the 1500 kW 
wind generators were performed in the manufacturer test field.  

 
 
Note regarding the referred standards:  
 
When referring to the standards, publications valid up to begin of 2006 were 

considered, since the experimental work was done up to end of 2005. Between 



1  Introduction  10 

2006 and 2010 some standards were withdrawn and replaced by superseding 
publications. In chapter 7 Bibliography, Notes indicate where new standards 
came into effect in the meantime.  
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2 IMPORTANT MEASUREMENT METHODS 

FOR EFFICIENCY DETERMINATION 
 

The present chapter provides an overview on the important efficiency 
measurement methods for induction machines. The main purpose is to determine 
the stray load losses (additional losses) by using different methods and 
procedures, and to compare the obtained results. The stray load losses are the 
remaining losses when subtracting from the total losses of an induction machine 
the sum of the friction and windage, the stator I2R losses, the rotor I2R losses and 
the iron losses. On the basis of examples six different measurement methods for 
the determination of the stray load losses of grid-operated induction machines 
will be compared. The advantages and disadvantages of these measurement 
methods will be discussed.  

 
The six experimental measurement procedures are:  

- the residual loss method acc. to IEC 61972 [IEC 61972] and IEEE 112-
method B [IEEE 112]  

- the reverse rotation test (RRT) acc. to the same standards,  

- the eh-star method acc. to Jordan and Richter [Jord 1967, IEC 60034-2 draft], 

- the equivalent no-load method acc. to Bourne [Bour 1989] and  

- the equivalent no-load method acc. to Rawcliffe and Menon [Rawc 1952]. 
 
Note:  
When referring to the residual loss method acc. to IEC 61972 [IEC 61972] 

and IEEE 112-method B [IEEE 112], the term for the test in view is “Input-
output test with segregation of the losses and indirect measurement of the stray 
load losses”, or residual loss method, as defined in 5.6 of IEC 60034-31 (“The 
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residual loss method in IEC 60034-2-1 is a defined calculation procedure for 
segregating the various types of losses from the raw data and smoothing the 
additional (stray-) load loss by linear regression analysis”). 

 
 

2.1 Motor efficiency 

The efficiency η of an induction machine e.g. in motor operation is the ratio 

of the output power Pm,out (the mechanical power on the motor shaft) to the input 
power Pe,in (electrical power). It qualifies the degree for energetic conversion of 
electrical power Pe,in into mechanical power Pm,out. The output power Pm,out is 
equal to the input power Pe,in minus the total losses Pd. Therefore, if two of the 
three variables (output power, input power, or total losses) are known, the 

efficiency η can be determined by one of the following equations: 

 
ine,

outm,
direct powerinput 

poweroutput 
P

P
==η , ( 2.1)

 
ine,

dine,
indirect powerinput 

losses  total-power input 

P
PP −

==η , ( 2.2)

 
doutm,

outm,
indirect losses  totalpower output 

poweroutput 

PP
P

+
=

+
=η . ( 2.3)

According to ( 2.1) the efficiency η is determined directly by measurement of 

the input Pe,in and output Pm,out powers, and acc. to ( 2.2) and ( 2.3) the efficiency 

η is determined indirectly by the determination of the total losses Pd. The 

efficiency η of an induction motor depends, besides the motor design, the 

determination method, the instrumentation and measurement accuracies, on 
many parameters like the load condition (full or partial load), the winding 
temperature and the quality of the power supply including the frequency and 
other parameters [Auin 1999]. 
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2.1.1 Efficiency determination methods 

The efficiency determination methods vary greatly in terms of their 
complexity, overall performance and the suitability for the plant conditions. 
Experimentally it is not a simple task if it is to be performed with precision. The 
efficiency data provided by the manufacturers are measured or calculated 
according to different national and international standards. These standards use 
different ways and assumptions to incorporate the stray load losses, thus the 
efficiency values obtained from different testing standards can differ by several 
percent. This leads to problems in competition and to a perhaps confusing 
situation for manufacturers and customers. 

 
With regard to the methods of evaluating the efficiency and particularly the 

stray load losses in induction motors, for the existing standards the following 
bodies are leading:  

- the Institution of Electrical and Electronic Engineers (IEEE 112),  

- the International Electrotechnical Commission (IEC 60034-2) and  

- the Japanese Electrotechnical Commission (JEC 37).  

Other national standards e.g. the Canadian CSA (C 390) are partly 
harmonised to one of these standards [Bogl 2004]. These standards provide 
several methods and procedures for efficiency measurements in accordance with 
the type and the machine rating, with the desired accuracy, etc. It is difficult to 
establish specific rules for efficiency determination. If there is no agreement 
between manufacturer and customer, the choice of measurement method will 
depend on the information required, the accuracy desired, the type and rating of 
the machine and the available test equipment, e.g. the supply, the load machine, 
the torque meter etc. 

 
Some methods of the efficiency measurement and losses determination are 

presented in Figure  2.1 and can be grouped as follows: 

- Input-output test e.g. acc. IEEE 112-method A 
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- Input-output test with segregation of the losses and indirect measurement of 
the stray load losses e.g. acc. IEEE 112-method B (residual loss method) 

- Calorimetric method 

- Electric power measurement under load with segregation of losses and direct 
measurement of the stray load losses e.g. acc. IEEE 112-method E 

- Electric power measurement under load with segregation of losses and 
assumed value of the stray load losses e.g. acc. IEEE 112-method E1 
 
As highlighted in Figure  2.1 the measurement of the stray load losses is the 

main purpose of this thesis. 
 

Efficiency measurement 

Direct Indirect

Torque
measurement

Calibrated
machine

Dual-supply, 
back-to-back

(identical Machines)

Total losses Summation of losses

Stray load losses
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0.5%

Measurement 

Direct Indirect

RRT

Eh-star

f(Pout)

Calorimetric

Single -supply, 
back-to-back

(identical Machines)
IEEE112B

IEC61972f(Pin)

Input-Output

Input-Output  

Figure  2.1: Efficiency determination methods  

 
The main difference of the mentioned methods, beside measurement 

equipment and setup, is the determination of the stray load losses. The way to 
determine the stray load losses is the main focus of the next section. Some 
standards suggest various empirical factors. JEC 37 neglects completely the 
stray load losses. IEC 60034-2 [IEC 60034-2] assumes a fixed value of 0.5 % of 
the rated input power for the stray load losses. The National Electrical 



2  Important measurement methods for efficiency determination 15 

Manufacturers Association NEMA MG1 [NEMA] recommends 1.2 % for 
induction motors rated less than 1850 kW, and 0.9 % for ratings 1850 kW and 
above. As an improvement, IEEE 112-method E1/F1 [IEEE 112] provides a 
variable portion of output power for the stray load losses, dependent on the 
machine ratings. This is listed in Table  2.1. Similarly, the new revision of the 
standard IEC 61972 [IEC 61972] provides a curve which is also a function of the 
motor ratings, as plotted in Figure  2.2. 
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Figure  2.2: Assumed allowance for stray load losses in 
IEC 61972  and JEC 37 

Table  2.1: Assigned values of stray 
load losses in IEEE 112 

 
 

2.1.2 Uncertainty of directly measured efficiency 

Because of unavoidable measurement errors, the direct efficiency ηdir 

determination by measuring input power Pe,in and output power Pm,out according 
to ( 2.1) is generally not accurate enough for motors of higher efficiency. 
Depending of the measurement accuracy of input Pe,in and output Pm,out, the 

uncertainty of the directly measured efficiency dirηΔ  will vary with the real 

efficiency of the motor as 
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This impact is given for an error of 0.2 % in Table  2.2 and presented for other 
assumed errors in Figure  2.3. It is assumed that the input Pe,in and output Pm,out 
powers are measured with the same accuracy.  
 

Real efficiency ηreal /% 70 75 80 85 90 95 96 98 100 

Mini measured ηdir /%  69.72 74.70 79.68 84.66 89.64 94.62 95.62 97.61 99.60

Maxi measured ηdir /%  70.28 75.30 80.32 85.34 90.36 95.38 96.38 98.39 100.4

|Uncertainty| /% 0.28 0.30 0.32 0.34 0.36 0.38 0.38 0.39 0.40 

Table  2.2: Impact of 0.2 % error on the directly determined efficiency  

 
For an assumed error of 0.2 % the measured efficiency can vary between 

84.66 % and 85.34 % for a small motor with 85 % efficiency and between 
95.62 % and 96.3 % for a large motor with 96 % efficiency. For a realistic error 
value of 0.5 % the uncertainty of the directly determined efficiency is higher 
with 0.85 % for the small motor and 0.96 % for the large one as shown in Figure 
 2.3. 
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Figure  2.3: Impact of measurement error on the directly determined efficiency 
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2.1.3 Uncertainty of indirectly measured efficiency 

The uncertainty of the indirectly measured efficiency indirηΔ  varies also with 

the accuracy of the measured total losses Pd and with the real efficiency of the 
motor as 

 
ine,

ine,

ine,

d

d

d

ine,

d
indir P

P
P
P

P
P

P
P Δ

⋅+Δ⋅=Δη . ( 2.5)

With ( 2.6), the uncertainty of the indirectly measured efficiency indirηΔ  in 

( 2.5) can be expressed as shown in ( 2.7) 

 
indir

ine,

d 1 η−=
P
P

, ( 2.6)

 
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 Δ
+Δ⋅−=Δ

ine,

ine,

d

d
indirindir )1(

P
P

P
Pηη . ( 2.7)

Assuming that the measurement accuracy for the total losses Pd is the same as 
for the input power Pe,in, e.g. 0.2 %, the uncertainty of the indirectly determined 

efficiency indirηΔ , which decreases with higher efficiency, is smaller compared 

with the directly measured efficiency dirηΔ , which increases with higher 

efficiency, as shown in Figure  2.4 (see also [Auin 2001]). So the indirect 
efficiency determination seems to be useful for motors of higher efficiency, 
depending on the measurement accuracy of the total power losses Pd.  
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Figure  2.4: Impact of measurement error on the directly and indirectly determined efficiency 

 

2.1.4 Uncertainty of measured total losses 

The total losses Pd are given by the difference between the input Pe,in and 
output Pm,out acc. to ( 2.8). So the uncertainty in the determination of the total 
losses Pd depends on the measurement accuracy of these powers and on the real 
value of the efficiency as given in ( 2.11).  

 outm,ine,doutm,ine,d     PPPPPP Δ+Δ=Δ→−= , ( 2.8)
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With ( 2.10) the uncertainty dd / PPΔ  can be expressed as shown in ( 2.11) 
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Figure  2.5 shows the impact of the measurement error on the determined total 



2  Important measurement methods for efficiency determination 19 

losses Pd by the input-output test for different accuracy assumptions. It is 
assumed that the input Pe,in and output Pm,out powers are measured to the same 
accuracy. 
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Figure  2.5: Impact of measurement error on the total loss determination with input-output test 

 
As shown, there are problems for accurate determination of the total losses Pd 

by the input-output test (as difference of nearly equal quantities) in case of high 
efficiency. For example the maximum uncertainty in determination of the total 
losses is 24.5 % for an efficiency of 96 % due to an error of 0.5 %.  

 
 

2.2 Measurement of stray load losses in induction machines 

The stray load losses Pad represent only a small fraction of the total power 
losses Pd, so they are difficult to predict analytically and difficult to measure 
accurately. A survey of the stray load losses Pad in squirrel-cage induction 
motors was published by Schwarz [Schw 1964] and later by Jimoh et al [Jimo 
1985]. The papers provided a comprehensive list of references to published 
works on the measurement of the losses, and discussed the origins of both the 
stray no-load and load losses. Various methods have been suggested for 
measuring the stray load losses of an induction machine in the literature, e.g. 
[Rawc 1952, Jimo 1985, Bird 1967, Mand 1979, Bour 1989], and in the 
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standards [IEEE 112, IEC 60034-2]. The suggested methods differ, apart from 
the physical model, in the complexity, the accuracy, the field suitability, the cost 
and regarding the load condition (full load, partial load and no-load).  

 
A literature survey on cheap and simple methods to measure the stray load 

losses, apart from the standardized methods, reveals three “no-load” methods: 
the eh-star method of Jordan and Richter [Jord 1967], the equivalent no-load 
method of Bourne [Bour 1989] and the no-load method of Rawcliffe and Menon 
[Rawc 1952], which are investigated and compared with the standardized input-
output test and the reverse rotation test acc. to IEC 61972 and IEEE 112. 

 
The most used methods to measure the stray load losses can be subdivided in: 
a) Direct measurement of the stray load losses: 
- Reverse rotation test e.g. acc. IEEE 112-method E and IEC 61972. 

- Eh-star method of Jordan and Richter [Jord 1967] acc. to [IEC 60034-2 
draft]. 

b) Indirect measurement of the stray load losses: 

- Input-output test with loss segregation (residual loss method) acc. to IEEE 
112-method B and IEC 61972. 

- Calorimetric method with segregation of the losses. The calorimeter test 
gives the total losses Pd of the machine, the stray load losses Pad are 
determined by splitting the total losses Pd up into its various components. 
The stray load losses Pad are defined as the difference between the 

calorimeter total losses Pd and the sum of the conventional losses PΣ 

(stator I2R loss, rotor I2R loss, iron loss, and friction and windage losses).  

 
The measurement of the stray load losses Pad by the well-known input-output 

test in the residual loss method acc. to IEC 61972 and IEEE 112-method B, with 
the calorimetric and with the reverse rotation test acc. to the standards IEEE 112 
or IEC 61972 needs calibrated measurement equipment of high accuracy and a 
coupled load, takes considerable time to perform the test and consumes therefore 
more energy. The eh-method acc. to the new proposed standard IEC 60034-2 
Ed. 4, 2nd CDV [IEC 60034-2 draft] can be such an optimal technical, feasible 
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and economical alternative test. It is performed by asymmetric feeding of a 
three-phase induction machine without coupling the machine and without 
needing any dynamometer. 

 

2.2.1 Accuracy of indirectly measured stray load losses 

The stray load losses Pad are defined, by indirect measurement, as the 

difference between the total losses Pd and the sum of the conventional losses PΣ 

( 2.12). Each uncertainty in these terms will lead to a significant error in the 
determination of the stray load losses Pad. This error, given in ( 2.15), increases 
strongly with decreasing value of the stray load losses Pad, e.g. in high efficiency 
motors (see Figure  2.9)  

     ΣΣΣ Δ+Δ+Δ=Δ→−−=−= PPPPPPPPPP outm,ine,adoutm,ine,dad     , ( 2.12)
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Using ( 2.14) the uncertainty can be expressed as given in ( 2.15) 

 adine,ine, PPPP −⋅−=Σ η  → 1
)1(

 
ad

ine,

ad

−
−

=Σ

P
P

P
P η

 ( 2.14)

 







−

−
⋅Δ+⋅









 Δ
⋅+

Δ
=Δ

Σ

Σ 1
)1(

 
ad

ine,

ad

ine,

outm,

outm,

ine,

ine,

ad

ad

P
P

P
P

P
P

P
P

P
P

P
P η

η . ( 2.15)

The first summand in ( 2.15) (see also ( 2.17)) represents the error of the total 
losses Pd and the second summand represents the error of the sum of the 

conventional losses PΣ. The error of the total power losses Pd influences the 

results of the determined stray load losses Pad more than the error of the sum 

losses PΣ as shown in Figure  2.6 for an assumed value of the stray load losses 
Pad of 0.5 % of the input power Pe,in and for the same accuracy of 
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%2.0/// outm,outm,ine,ine, =Δ=Δ=Δ ΣΣ PPPPPP . 
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Figure  2.6: Impact of measurement error in the total and the sum losses on the stray load loss 
for an assumed value of the stray load losses of 0.5 % of the input power 

 
As shown in Figure  2.6 the error of the total losses Pd influences the results of 

the determined stray load losses Pad more than the error of the sum of the 

conventional losses PΣ. In order to obtain an accurate result of the measured 

stray load losses Pad, by indirect methods, we have to look for the methods 
where the total power losses Pd are measured more accurately e.g. by the 
calorimetric method. The impact of the measurement error in the total power 
losses Pd on the stray load losses Pad is derived in ( 2.17) and presented, for 
different accuracy assumptions, as function of the ratio of the stray load losses 
Pad to the total losses Pd in Figure  2.7 and Table  2.3. 
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 







−⋅Δ+⋅Δ=⋅Δ+⋅Δ=Δ

Σ

ΣΣ

Σ

Σ 1 
ad

d

ad

d

d

d

adad

d

d

d

ad

ad

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

. ( 2.17)

 



2  Important measurement methods for efficiency determination 23 

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

(Stray loss/ Total loss) /%

Er
ro

r i
n 

P
ad

 /%

1% error
0.5% error
0.2% error

 

 Maximum error in % 

Pad/Pd

Accuracy 
5 % 25 % 40 % 

0.2 % 7.8 1.4 0.8 
0.5 % 19.5 3.5 2.0 
1.0 % 39.0 7.0 4.0  

Figure  2.7: Maximum error of indirectly determined 
stray load losses as function of the 
accuracy in total losses  

Table  2.3: Maximum error of stray load 
losses as function of the 
accuracy in total losses 

 
The maximum error depends on the portion of the stray load losses Pad 

related to the total losses Pd (see also Figure  2.8). For an assumed realistic 
portion of 25 % (= Pad/Pd) and a measurement accuracy of 1 % 

(= ΣΣΔ=Δ PPPP // dd ), the maximum error of 7 % is much lower than with the 

input-output test, where the input Pe,in and output Pm,out powers and the losses PΣ 

are measured to the same accuracy. 
 
With ( 2.18) the uncertainty in ( 2.15) can be expressed as function of the 

efficiency and the portion of the stray load losses Pad related to the total losses 
Pd as given in ( 2.19) and presented in Figure  2.8  
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Figure  2.8: Maximum error of indirectly determined stray load losses as function of the 
efficiency at 0.2 %-accuracy  

 
As shown the maximum error depends on the efficiency and on the portion of 

the stray load losses Pad related to the total losses Pd. For an assumed realistic 

portion of 25 % (= Pad/Pd) and a measurement accuracy of 0.2 % (= ine,ine, / PPΔ  

= ΣΣΔ=Δ PPPP // outm,outm, ), the error in determination of the stray load losses 

Pad at an efficient motor with 96 % efficiency is significantly ca. 40 % and ca. 
6 % at an efficiency of 75 %. 

 
Figure  2.9 and Table  2.4 show the impact of the measurement error on the 

determined stray load losses Pad by the input-output test for different accuracy 

assumptions. It is assumed that the input Pe,in and output Pm,out and the losses PΣ 

are measured to the same accuracy (e.g. =Δ ine,ine, / PP =Δ outm,outm, / PP  

%2.0/ =Δ ΣΣ PP ). For a high efficiency motor, where the stray load losses Pad 

are assumed to be 0.5 % of the input power Pe,in, the error in determination of the 
stray load losses Pad is with ca. 40 % high already under premise of the highest 
measurement accuracy of 0.1 %. For smaller motors with the stray load losses 
Pad of about 3 % of the input power Pe,in, the error is 13 % with the usual 
accuracy of 0.2 %. 
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 Maximum error in % 

Pad/Pe,in 

Accuracy 
3 % 1.5 % 0.5 % 

0.1 % 6.6 13 40 
0.2 % 13 26 80 
0.5 % 33 66 199 
1.0 % 66 132 399  

Figure  2.9: Maximum error of indirectly determined 
stray load losses as function of the 
accuracy 

Table  2.4: Maximum error of indirectly 
determined stray load 
losses 

 
In equation ( 2.12) the output power Pm,out can be expressed with the 

efficiency η. The stray load losses Pad acc. to ( 2.12) are then 

  ine,ine,outm,ine,dad ΣΣΣ −⋅−=−−=−= PPPPPPPPP η . ( 2.20)

The maximum error in the stray load losses is 

 ΣΔ+Δ⋅+Δ⋅+Δ=Δ PPPPP ine,ine,ine,ad ηη . ( 2.21)

With ( 2.14) the uncertainty in the stray load losses can be written as function 

of variation of the efficiency ηΔ , due to an error in the measurement or to an 

improvement of the efficiency e.g. due to the design changes, as: 
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Figure  2.10 and Table  2.5 show the maximum error of the indirectly 
determined stray load losses as function of the efficiency-variation at 0.2 %-
accuracy. For the calculation, it is assumed that the input Pe,in power and the 

losses PΣ are measured to the same accuracy of 0.2 %. For an efficiency 

variation ηΔ  = 0 %, the equation ( 2.22) is similar to ( 2.15) for the same 
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accuracy outm,outm,ine,ine, // PPPP Δ=Δ  and the maximum error in the 

determined stray load losses is 80 % for an assumed stray load losses value of 

0.5 % of the input power Pe,in. An increasing of ηΔ  = 0.5 % step leads to 180 % 

error. The error increases with higher efficiency, especially when the stray load 
losses Pad are very small.  
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0.3 %-Step 23 46 140 
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Figure  2.10: Maximum error of indirectly 
determined stray load losses as function 
of the efficiency-variation at 0.2 %-
accuracy 

Table  2.5: Maximum error of stray load 
losses as function of the 
efficiency-variation 

 
Because of the unavoidable measurement errors, the indirect determination of 

the stray load losses Pad by measuring the input Pe,in and output Pm,out powers is 
generally not accurate enough with small values of the stray load losses Pad e.g. 
for high efficiencies. Therefore the direct measurement methods of the stray load 
losses Pad could be useful at high efficiencies.  

 

2.2.2 Some stray load loss measurement methods in the literature  

Apart from the well-known methods to measure the stray load losses Pad in 
squirrel-cage induction motors like the input-output test (residual loss method), 
the calorimetric method and the reverse rotation test, there are in the literature 
and the standards other methods [Schw 1964, Jimo 1985, IEEE 112] e.g.: 
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- Dual supply back-to-back test (duplicate machines) [IEC 60034-2-1] 

- Differential dynamometer [IEEE 112] 

- Mechanical/electrical differential (two identical machines) [Bird 1964, 
IEEE 112] 

- Back-to-back [IEEE 112], 

which are complicated, expensive or inaccurate though standardised. There 
are also other methods, which were investigated by one or other authors like: 

a) DC/AC short circuit method of Richter [Rich 1936] 

b) Thermocouples-calorimetric method of Keve [Keve 1973] 

c) Input-output at reduced voltage method of Mandi [Mand 1962] 

d) Eh-star method of Jordan and Richter [Jord 1967]  

e) Equivalent no-load method of Rawcliffe and Menon [Rawc 1952] 

f) and the equivalent no-load method of Bourne [Bour 1989]. 

The selected methods a) ... c) will be shortly introduced here, and the 
methods d) ... f) will be investigated and compared to some standards.  

 

2.2.2.1 DC/AC short circuit method of Richter 

It consists of three separate tests [Rich 1936]: 
1) Removed rotor test for the determination of the fundamental frequency stray 

load losses in the stator Pad,s like the standardised reverse rotation test acc. to 
[IEEE 112]. 

2) DC field test, where two stator phases are fed by an equivalent direct 
current while the rotor is driven by an auxiliary motor at synchronous speed. The 
equivalent direct current corresponds to the peak value of the corresponding 
alternating load current. The mechanical power required to drive the rotor, 
which is measured e.g. by dynamometer, covers the friction and windage losses, 
the fundamental frequency rotor losses and the high frequency stray load losses 
in the rotor Pad,r.  
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3) AC short circuit test similar to the standardised locked rotor test. The 
measured input power minus the winding losses in the stator is assumed to be 
equal to the fundamental frequency rotor losses in the DC field test. 
The friction and windage losses are taken from the no-load test. The stray load 
losses Pad are the sum of the fundamental Pad,s and the high frequency Pad,r stray 
load losses.  

For an equivalent method the real physical load situation of the machine is 
missing (e.g. saturation). The rotor flux is higher compared with the 
standardized RRT. Like with the RRT the iron losses in the stator core PFe are 
neglected due to the strongly reduced voltage, and the synchronous speed is 
slightly higher than the rated speed, giving slightly higher stray load losses Pad. 
Coupling of the machine with the driver and use of the calibrated dynamometer 
are necessary. The measurement of the mechanical power by dynamometer 
suffers from uncertainty. The biggest error can occur by the determination of the 
temperature in the rotor cage. 

The Richter’s test was investigated by more than one author e.g. Mandi 
[Mand 1962] and compared with the RRT (DC/RRT = 1.44). 
 

2.2.2.2 Thermocouples-calorimetric method of Keve 

The test [Keve 1973] is based on the relationship between the heating, due to 
the losses, and the temperature rise of the housing (enclosure). Since the power 
losses of the test machine are dissipated in form of heat, the energy transferred 
through the housing is a measure of the power losses produced inside the 
housing. It uses, for totally enclosed surface cooled machines, 4 thermocouples 
distributed at the housing circumference: 2 thermocouples on the none drive end 
and 2 thermocouples on the drive end. For the determination of the stray load 

losses Pad the average value of the housing temperature rise ΔϑG,av from the 4 

thermocouples is taken. The “total heat” Pd comprises the stator and the rotor 
resistive losses, the iron losses and the inner friction losses (no external fan 
losses). The inner friction losses can be measured at no-load without the fan.  

It requires three separate tests: 

1) No-load test without the fan to get the inner friction losses. 
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2) Normal no-load test at three voltages 80 %, 100 % and 120 % of the rated 
voltage. Each test points should be run until thermally stable condition is 

reached. The measured curve ΔϑG,av = f(Pd) is plotted. In this curve the measured 

value of the inner friction losses, ΔϑG,av = 0 K, is defined to be negative. To 

smoothe the three no-load run-values a regression line Pd,0_regr through the inner 
friction losses is developed. The regression line Pd,0_regr is extrapolated to the 
highest value. 

3) Test under load at rated voltage at three load currents 80 %, 100 % and 
120 % of the rated current. Each test point should be run until thermally stable 
condition is reached. The measured three values are plotted in the same curve 

ΔϑG,av = f(Pd). To smoothe the three load-run values a regression line Pd,load_regr 

through the measured points at no-load for rated voltage is developed. The 
regression line Pd,load_regr is extrapolated to the highest value. 

As the stray load losses increase the housing temperature rise the slope of the 
regression line Pd,load_regr is bigger than that of line the regression Pd,0_regr. Thus 
the differences between both lines are the stray load losses Pad.  

A curve of the resulting stray load losses Pad against the current squared Is
2 is 

developed. With the linear regression line Pad(Is
2) the value of the stray load 

losses Pad,N at the rated current Is,N is derived.  
Physically it is an exact method. The measurement of the mechanical power 

is not needed, but a load machine and the test with removed fan are necessary. 
The result depends mainly on the accuracy of the temperature measurement i.e. 
the measurement should be done, like in the calorimetric method, in a 
“calorimetric”-chamber. The measurements take considerable time, as the 
thermal stability is necessary for each no-load and load point. To improve the 
accuracy of the regression lines the set of runs shall be increased from (3 no-
load, 3 load) to (6 no-load, 6 load). This extends the test time. Apart from the 
site the thermal stability at overload depends on the insulation and on the 
thermal reserve of the motor.  

Keve has compared its results for two motors (low-voltage 4 kW, high-
voltage 460 kW) only with the eh-star method. It is interesting to compare it 
with the input-output test for the small one. However the ratio of additional 
losses for eh-star/thermocouples-calorimetric = 1.2 … 1.4, as the eh-star test was 
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done only for one load point at high voltage where the ratio of positive to 
negative sequence current = 0.5 … 3.4 was too high.  
 

2.2.2.3 Mandi -Input-output test at reduced voltage 

The test [Mand 1962] is similar to the standardised input-output test but at 
reduced voltage of 25 % rated voltage at rated current, the slip should be in the 
range of 10 %. The measurement at 25 % rated voltage needs a smaller 
dynamometer of ca. 12.5 % rated power, and yields a bigger percentage “stray 
load loss/input power”, so the error is by factor 4 smaller than at rated voltage. 
Thus the accuracy of the input-output test is improved. The stable operation at 
reduced voltage and bigger slip of ca. 10 % is obtained by the controlled 
dynamometer machine. Due to the reduced speed at reduced voltage the friction 
losses are corrected by an exponent of 3.11 ! Also the iron losses must be 
corrected and taken as load-dependent. To correct the high frequency stray load 
losses in the rotor Pad,r to the rated speed, the fundamental frequency stray load 
losses in the stator Pad,s are taken from the removed rotor test. 

The accuracy of the input-output test is improved. Due to the small load 
machine, this may be useful for large machines. For an equivalent method the 
real physical load situation of the machine is missing (e.g. saturation), due to the 
reduced flux of only 25 % rated flux. The test speed is lower than the rated 
speed, giving slightly different stray load losses Pad. Coupling of the machine 
with a load and the use of calibrated dynamometer are necessary. The removed 
rotor test is also needed. 

Mandi has compared its results for a 125 kW motor with the DC/AC short 
circuit method of Richter, where good coincidence was observed, and with RRT, 
where the RRT values were too small. 

 

2.2.3 Residual loss method acc. to IEC 61972 

The IEC 61972 standard [IEC 61972] defines the stray load losses Pad acc. to 
( 2.12) as the difference between the total measured losses Pd and the sum of the 
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conventional losses PΣ consisting of the no-load (iron PFe and friction Pfw) and 

I2R load losses, so the residual stray load losses Pad of the machine (stator and 
rotor together) are determined indirectly as 

 
,)(                  fwrCu,iFesCu,outm,ine,

outm,ine,dad

PPUPPPP
PPPPPP

−−−−−=
−−=−= ΣΣ

 ( 2.23)

where Ui is the reduced inner phase voltage across the equivalent iron resistance 
RFe which takes the resistive voltage drop in the primary winding into account 
(Figure  2.11) 
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To simplify the calculation the reactive voltage drop in the stator stray 

reactance Xsσ is neglected, as its determination needs extra measurement and 

calculation. 
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Figure  2.11: T-equivalent circuit of the induction machine with consideration of the load 
dependent iron losses 

 
The stray load losses Pad are obtained from a linear regression analysis for six 

different load points to reduce the effect of random measurement errors. These 
smoothed stray load losses data Pad,c are used to calculate the final value of the 
stray load and total losses and the efficiency for a given load point. 

This standard is recommended for polyphase squirrel-cage induction motors 
with rated power in the range 1 kW…150 kW. It requires four tests: 
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1) No-load test: For the determination of the iron PFe, friction and windage Pfw 
losses and the no-load current, the motor - supplied with the rated voltage and 
the rated frequency - runs without mechanical load until both the temperature 
and the input power have stabilized. Between two consecutive measurements 
spaced out of 30 min, the input power shall not increase over 3 %. Then a 
variable voltage test is performed. 

2) Rated load temperature test: For the determination of the rated data, the 
machine is coupled to a dynamometer load (Figure  2.12) and operated at rated 
load (rated output power), until a thermally stable condition is reached. The 
tested motor temperature shall not change by more than 1 °C, measured each 30 
min. 

3) Test under load: For the determination of the stray load losses and the 
efficiency, the machine is loaded by a dynamometer by six decreasing load 
torque values, beginning with 150 % down to 25 % of rated torque. The 
temperature of the stator winding shall be within 5 °C of the hottest temperature 
reading, recorded during the rated load temperature test prior to the start of this 
test. 

4) Dynamometer correction: Correction for the windage and bearing loss 
torque of the used dynamometer and the coupling. It consists of two 
measurements: 

   a) Dynamometer coupled: The motor runs at the rated voltage and the rated 
frequency, coupled to the dynamometer with the dynamometer armature circuit 
open (Figure  2.12). 

   b) Motor uncoupled: The motor runs at rated voltage and rated frequency, 
uncoupled from the dynamometer. 

The difference of both tests is then used to correct the dynamometer scale. 
 
A test bench where the tested induction motor (IM) is coupled to a 

dynamometer load is presented in Figure  2.12. The power flow during the input-
output test in motor operation is given in Figure  2.14. 
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Figure  2.12: Test bench: coupled IM with dynamometer for the input-output test and the RRT 

 

2.2.4 Residual loss method acc. to IEEE 112-Method B  

The residual loss method acc. to IEEE 112-method B [IEEE 112] allows – like 
the IEC 61972 – an indirect access to the stray load losses Pad from the measured 
input Pe,in and output Pm,out powers acc. to ( 2.23). It is recommended for three-
phase cage induction motors with rated power in the range 1 kW…190 kW and 
is similar to the standard IEC 61972. The two standards are different in the 
procedure to obtain the stray load losses Pad. The main differences are the 
determination of the winding temperature and the consideration of the iron 
losses PFe (see Figure  2.13). 
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Figure  2.13: T-equivalent circuit of induction machine with consideration of the iron losses 
acc. to IEEE 112-method B 
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Figure  2.14: Power flow in motor operation acc. to IEEE 112-method B 

 
Acc. to IEEE 112-method B the instruments shall be calibrated, within 12 

months, indicating limits of the error no greater than ± 0.2 % of full scale. If the 
dynamometer output measurements are used, the coupling and bearing friction 
losses must be compensated for. Properly sized dynamometers should be used, 
such that the coupling, friction, and windage losses of the dynamometer 
measured at the rated speed of the machine being tested should not be greater 
than 15 % of the rated output of the machine being tested; and the dynamometer 
should be sensitive to a change of the torque of 0.25 % of the rated torque. The 
dynamometer correction test is not generally necessary when the load on the test 
machine is measured using a torque transducer in line with the shaft of the 
machine because the low coupling losses do not significantly affect the 
efficiency [IEEE 112]. 

 

2.2.5 Comparison of IEEE 112-Method B and IEC 61972   

A comparison of the input-output test acc. to the standards IEEE 112-method 
B and IEC 61972 is given in Table  2.6. 
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 Residual loss method (Input-output test) 

 IEEE 112-method B IEC 61972 

Temperature of the stator 
winding 

Thermocouples Interpolated resistance 

Iron losses 
Load independent, taken at 

rated voltage 
Load dependent, taken from 

PFe(Ui) curve 

Friction losses from Lower voltage range 50% or less of rated voltage 

Correlation coeff. R > 0.9 > 0.95 

Temp. variation for begin of 
the test under load 

Within 10 °C Within 5 °C 

Instrument transformers 
accuracy 

± 0.3 % ± 0.2 % 

Speed accuracy ± 1 rpm 0.1 % 

Copper coefficient 234.5 235 

Table  2.6: Comparison of the residual loss method acc. to IEEE 112-method B and IEC 61972  

 
The main differences between both standards are the winding temperature 

determination (see Figure  2.15) and the consideration of the load dependent iron 
losses PFe (see Figure  2.16). The standard IEC 61972 uses for the temperature 
the interpolation between the measured resistances and considers the iron losses 
PFe to be dependent on the load. The iron losses PFe of the desired load point are 
taken from the curve PFe(Ui) at reduced inner voltage Ui which takes the 
resistive voltage drop in the primary winding into account. This effect is 
stronger for small motors with relatively bigger stator resistance. In fact the iron 
losses PFe depend also on the lamination temperature [Bogl 2004, Auin 1999]. 
Therefore the no-load test, to measure the iron and the friction and windage 
losses, should be done after the rated load temperature test (heat run test) as the 
machine is warm and the bearing losses are stabilized. The IEEE 112-method B 
considers the iron losses PFe at no load and the rated voltage to be independent 
of the load. The same iron losses value PFe is used for all load points.  
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Figure  2.15: Linear interpolation of the 
winding temperature acc. to IEC 
61972 and the thermocouples 
temperat. acc. to IEEE 112-B for 
1.1 kW 2-pole motor “A80-2” 

Figure  2.16: Consideration of the iron losses 
PFe acc. to IEC 61972 and acc. to 
IEEE 112-B for 1.1 kW 2-pole 
motor “A80-2” 

 
Table  2.7 shows the difference between both standardised methods, 

considering as example a small motor of 1.1 kW 2-pole “A80-2”, where the 
influence of the stator resistance on the internal voltage Ui is big. The measured 
Pad and the smoothed (corrected) stray load losses Pad,c as function of square of 
the torque in Figure  2.17 and Figure  2.18 show, that negative stray load losses 
are determined with IEEE 112-method B (Figure  2.17). Here the wrong 
assumption of the load-independent iron losses causes the wrong results. 
 

1.1 kW 2-pole motor: “A80-2” IEEE 112-method B IEC 61972 

Winding temperature rise /K 92.4 81.4 

Electrical input /W 1433 1433 

Iron losses /W 96 64 

Stray load losses/Pin  /% -0.08 1.17 

Efficiency Pout/Pin  /% 75.85 76.56 

Correlation coefficient R 0.139 0.986 

Table  2.7: Loss segregation acc. to IEEE 112-method B and IEC 61972 in comparison 
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Figure  2.17: Measured stray load losses acc. 
to IEEE 112-method B for 1.1 kW 
2-pole motor “A80-2” 

Figure  2.18: Measured stray load losses acc. 
to IEC 61972 for 1.1 kW 2-pole 
motor “A80-2” 

(Subscript c for corrected: Linear regression line without offset) 

 
The IEEE 112-method B is less accurate concerning the iron losses PFe, 

especially for small motors with their rather big stator resistance Rs. Concerning 
the temperature the IEC 61972 method is less accurate due to use of the 
interpolated values, but no thermocouples are needed in the stator winding, 
which simplifies the test procedure. 

 

2.2.6 Reverse rotation test 

The so called Morgan test is an “equivalent method” to measure the stray load 
losses acc. to IEEE 112 [IEEE 112], which is also quoted in [IEC 61972] and 
[IEC 60034-2 draft], consists of two separate measurements, after the no-load 
current is determined from the no-load test: 

1) Removed rotor test: The stator stray load losses Pad,s occurring at 
fundamental frequency are determined. 

2) Reverse rotation test: The stator and the rotor stray load losses Pad,r, 
occurring at high frequencies (e.g. slot frequency), are determined by the reverse 
rotation test at slip s = 2.  
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In the determination of the stray load losses Pad the iron losses PFe in the 
stator and in the rotor (by 2 times stator frequency !) are completely neglected 
due to the strongly reduced voltage. 

A linear regression analysis of the log of the powers (rotor mechanical and 
stator electrical power) vs. the log of the currents is used to smoothe the test 
values. If the measured data are accurate, each curve will conform to a square-
law relationship between the powers and the currents. Thus, the correlation 
factor from the regression and the exponent for each curve both serve as 
indicators of the measurement accuracy. 

The stray load losses Pad are the sum of the fundamental Pad,s and the high 
frequency Pad,r stray load losses at given stator current  

 rad,sad,ad PPP += . ( 2.25)

 

2.2.6.1 Removed rotor test 

The stator stray load losses occurring at the fundamental frequency are 
determined at rated current. Reduced voltage of ca. 10 % - 30 % of rated voltage 
is applied to the stator-winding terminals to get the rated current, due to the low 
main flux of about 10 % of the rated main flux, as the rotor is removed. During 
this test, the bearing brackets and other structural parts, in which eddy current 
might be induced, shall be in place. 

The stray load losses Pad,s are derived from the power flow acc. to Figure 
 2.19. The electrical input Pe,in minus the stator winding losses PCu,s at the test 
temperature is equal to the fundamental frequency stray load losses Pad,s. The 
iron losses in the stator core PFe are neglected due to the reduced voltage 
(PFe ~ B², B ~ U). The fundamental frequency stray load losses Pad,s are given in 
( 2.26) and presented in Figure  2.22: 

 sCu,ine,FesCu,ine,sad, PPPPPP −≅−−= . ( 2.26)
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Figure  2.19: Power flow in the removed rotor test acc. to IEEE 112  

 
 

2.2.6.2 Reverse rotation test 

The stray load losses occurring at high frequencies Pad,r are determined by the 
reverse rotation test (RRT) at slip s = 2. With the machine completely 
assembled, due to the low main flux at slip s = 2, a reduced balanced polyphase 
voltage (ca. 10% - 30% of rated voltage) at rated frequency is applied at the 
stator winding terminals to get rated current. The rotor is driven by e.g. a dc-
motor at synchronous speed in the direction opposite to the stator field rotation, 
as shown in Figure  2.20. The electrical input Pe,in to the stator winding is 
measured. The mechanical power required to drive the rotor is also measured 
with a sensitive dynamometer both with and without the current in the stator 
winding as Pmech and Pfw, respectively.  

 

 

 

Figure  2.20: Simplified test setup of the reverse 
rotation test (IM: induction motor) 

Figure  2.21: Power flow in the reverse 
rotation test 
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Using the RRT-power flow, shown in Figure  2.21, the higher frequencies 
stray load losses Pad,r are determined. Also here the iron losses in the stator and 
the rotor core PFe are neglected due to the reduced voltage (PFe ~ B², B ~ U). The 
stray load losses Pad,r are given in ( 2.27) and shown in Figure  2.22. 

 )()( sad,sCu,ine,fwmechrad, PPPPPP −−−−= . ( 2.27)
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Figure  2.22: Measured stray load losses acc. to the reverse rotation test of a 1.1 kW 2-pole 
motor “C80-2” 

 
 

2.2.7 Eh-star-circuit Method 

The eh-star-circuit method [Jord 1967, IEC 60034-2 draft], which is 
described in detail in the next chapter, is performed by asymmetric feeding of a 
three-phase induction machine (squirrel cage or wound rotor) without coupling 
of the machine and without needing any dynamometer (Figure  2.23). The 
asymmetrical operation is obtained by operating the stator winding in star 
connection, where two machine phases U and W are connected in parallel 
through an auxiliary ohmic resistance Reh of a value similar to the motor short 
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circuit impedance Zsc (Figure  2.23). This resistance shall be adjusted, so that the 
positive sequence current Is,1 stays below 30% of negative sequence current Is,2, 

and the speed stays in the range of typically rated speed. The star-point must not 
be connected to earth to avoid zero-sequence currents. For the test bench one 
needs an auxiliary resistance Reh and a switch S for switching from three-phase 
starting of the tested machines to single phase operation (Figure  2.23). As the 
negative sequence dominates, the machine may be assumed to be mainly 
operating under inverse field conditions, similar to the reverse rotation test 
(RRT). Thus the negative sequence losses corresponding to the slip s2 = (2 –

 s) ≈ 2 should be nearly the same as at the same current under the reverse 

rotation test conditions, but without needing any dynamometer. A second 
advantage of the eh-star-circuit in comparison to the RRT is the fact that the 
positive sequence current system of ca. 25 % … 30 % of the negative sequence 
current excites a main flux of about the same order, which resembles more the 
full flux operation at the rated slip than the RRT does. Another advantage of the 
eh-star-circuit in comparison to the RRT is that the removed rotor test is not 
necessary. The stray load losses are evaluated directly from the load flow 
calculation for the T-equivalent circuit (Figure  2.11) with consideration of the 
iron losses PFe, which must be known from a prior no-load test. Hence the stray 
load losses Pad,asym of the asymmetrically fed machine - as the sum of additional 
losses of the positive Pad,1 and negative Pad,2 sequence system - are given by the 
power balance ( 2.28), where Pδ,1 and Pδ,2 are the air gap power of the positive 
and negative sequence system and s is the slip. The output power is zero, 
because the motor is not coupled to a mechanical load. Only the friction and 
windage losses Pfw and the stray load losses Pad,asym are loading the machine 
(Figure  2.24).  

 fwδ,2δ,1ad,2ad,1asymad, )()1( PPPsPPP −−⋅−=+= . ( 2.28)

 
The eh-star measurement circuit is presented in Figure  2.23, whereas in the 

Figure  2.24 the power flow of the decomposed positive and negative sequence 
systems is illustrated. 
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Figure  2.24: Power flow of the positive and the negative sequence systems in eh-star test 

 
Figure  2.25 shows an example of the measured values Pad and the smoothed 

data Pad,c of the stray load losses without the offset for an 11 kW, 4-pole motor 
“A160-4”. As the offset is omitted, the slope of the regression-line 132.8 W is 
the stray load losses at the rated load. 
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Figure  2.25: Measured stray load losses acc. to eh-star test of a 11 kW 4-pole motor “A160-4” 
(Subscript c for corrected: Linear regression line without offset) 

 
 

2.2.8 Equivalent no-load method of Bourne 

This test [Bour 1989] is simple to perform and is similar to the standardised 
no-load test [IEEE 112, IEC 61972], but with more test points at high no-load 
current. Like the eh-star test it does not need any coupling of the machine, but 
does not consider the stray load losses due to the rotor field harmonics, as the 
rotor fundamental current is not flowing at no-load. To measure the loss 
component in delta-connected winding due to circulating current of 3-times the 
stator frequency fs , caused by the saturation harmonic, the measurement was 
done in delta-connection for all motors. For one 11 kW, 4-pole motor the 
measurement was done in delta- and in star-connection to compare the results. 
The difference of the stray load losses was negligible. 

Before beginning the no-load test, the no-load losses have to be stabilised at 
rated frequency and rated voltage. The test comprises a minimum number of 15 
values of the voltage, including 150 % of the rated current down to 20 % of the 
rated voltage. The test shall be carried out as quickly as possible to avoid strong 
temperature change in the stator winding, with the readings taken in descending 
order of the voltage. The power flow at the no-load test is shown in Figure  2.26. 
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Figure  2.26: Power flow of the uncoupled induction motor at the no-load test acc. to Bourne 

 
Subtracting the no-load winding losses PCu,s (at test temperature) from the no-

load electrical input power Pe,in, acc. to Figure  2.26, gives the sum of the 
friction, windage, iron losses and stray no-load losses PFe+fw+ad as 

 sCu,ine,adfwFe PPP −=++ . ( 2.29)

 
A curve of the remaining losses PFe+fw+ad against the voltage squared U2 is 

plotted as shown in Figure  2.27.  
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Figure  2.27: No-load losses segregation acc. 
to equivalent no-load method of 
Bourne for 1.1 kW 2-pole motor 
“C80-2” 

    Figure  2.28: Stray load losses acc. to 
equivalent no-load method of 
Bourne for 1.1 kW 2-pole motor 
“C80-2” 
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A straight line (regression line) P(Fe+fw)_regr for the values of the voltage below 
about 80 % of the rated voltage is developed, so that the correlation coefficient R 
of the regression line is above 0.98. The regression line P(Fe+fw)_regr is 
extrapolated to the highest measured voltage value. As illustrated in the Figure 
 2.27 the difference between the measured losses curve PFe+fw+ad above the rated 
voltage and the losses from the regression line P(Fe+fw)_regr are the stray load 
losses Pad,0  

 fw)_regr(FeadfwFead,0 +++ −= PPP . ( 2.30)

 
The stray load losses value Pad,I_0 at the no-load current Is,0 determined at the 

rated voltage is considered as offset, which is omitted as given in ( 2.31). As 
presented in Figure  2.28 a curve of the resulting stray load losses Pad against the 
current squared Is

2 is developed 

 I_0ad,ad,0ad PPP −= . ( 2.31)

 
With the linear regression line Pad(Is

2) the value of the stray load losses Pad,N 
at the rated current Is,N is derived (dashed line in Figure  2.28). 

 
For a better representation, the stray load losses Pad are plotted in dependence 

of the square of the test current vs. the square of the rated test current (It / It,N)2 in 
Figure  2.29. The test current It is determined from the stator current Is and the 
no-load current Is,0 at the rated voltage. The Figure  2.27 - Figure  2.29 show the 
procedure to determine the stray load losses from the equivalent no-load 
measurement method for a 2-pole squirrel cage test motor of 1.1 kW “C80-2”. 
For this example the determined stray load losses at rated load are 23 W. 
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Figure  2.29: Measured stray load losses vs. square of test current acc. to equivalent no-load 
method of Bourne for 1.1 kW 2-pole motor “C80-2” 

 
 

2.2.9 Equivalent no-load method of Rawcliffe and Menon 

Rawcliffe and Menon have developed “A simple new test for harmonic-
frequency losses in a.c. machines” [Rawc 1952]. The Rawcliffe’s test is a no-
load test, which is similar to the standardised no-load test, where the machine is 
uncoupled. The values (s·U2) determined from the product of the slip s and the 
square of the voltage U2 must be plotted against the voltages U and extrapolated 
to zero voltage as shown in Figure  2.30 and Figure  2.31. The value (s·U2) 
representing the power transferred to the rotor “air gap power” covers the 
friction Pfw and the harmonic Phf,measur losses. The usual no-load power/voltage 
curve PFe+fw(U) is used to put a scale on the s·U2(U) curve. The value (s·U2) at 
zero voltage is equivalent to the friction losses Pfw as derived from the 
power/voltage curve PFe+fw(U). The measured harmonic-frequency losses 
Phf,measur e.g. at the rated voltage are the difference between the value (s·U2) at 
the rated voltage and the constant value (s·U2) at zero voltage (Figure  2.31): 
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The resulting harmonic-frequency losses Phf should be corrected to the 
calculated secondary hysteresis (torque) losses at fundamental frequency 
PFe,hy,r,calcul as 

 calculr,hy,Fe,measurhf,hf  PPP += .  ( 2.33)

This additional calculation of the secondary hysteresis losses PFe,hy,r,calcul is a 
blemish on this test, as any inaccuracy in these calculations will be reflected in 
the final result. Of course the design data of the machine must be available for 
the calculation ! The resistive losses and the slip must be measured accurately. 
The extrapolation of the (s·U2)/voltage curve to zero voltage to determine the 
friction losses and so the scale-factor is also problematic (Figure  2.30) and each 
inaccuracy will influence the result as the results are most accurate when the 
windage and the harmonic losses are roughly of the same order [Rawc 1952, 
Taeg 1987]. For 5 slip-ring induction motors (ca. 3 -15 kW) Rawcliffe and 
Menon have compared the results of the new test with the “Linke auxiliary drive 
test” [Link 1907] and with the “Hoseason double fed and standstill tests” [Hose 
1923], which are applicable only to a slip-ring induction motors, and found good 
agreement. For 8 squirrel-cage motors, the agreement with the calculation was 
less good, due to certain simplifying assumptions in the calculation. Taegen and 
Walczak [Taeg 1987] have compared the measured stray load losses of an 
11 kW squirrel-cage motor at no-load (auxiliary driven laminated rotor without 
windings and slots) and under full-load with the Rawcliffe’s test. For semi-
closed stator slots with unskewed rotor slots, the Rawcliffe’s test results deviate 
by 19 % ... 44 % at no-load and by -32 % ... -57 % at full-load. For open stator 
slots with skewed rotor slots, the Rawcliffe’s test results deviate by -18 % ... 
34 % at no-load and by -49 % ... -55 % at full-load. 

 
To check the reliability of the Rawcliffe’s test some measured motors acc. to 
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the standardized no-load test are evaluated acc. to the Rawcliffe’s method 
without calculation of the secondary hysteresis losses PFe,hy,r,calcul. The results 
were not encouraging; for some motors the evaluation was not possible as the 
slip of the machine is zero or the values are erratic as shown in Figure  2.32 and 
Figure  2.33. The finding is close to the investigation of Taegen and Walczak 
[Taeg 1987]. So this method should not be recommended for stray load losses 
assessment.  
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Figure  2.30: Determination of the scaling 
factor acc. to the equivalent no-
load method of Rawcliffe for 
1.1 kW 2-pole motor “C80-2” 

  Figure  2.31: Stray load losses acc. to the 
equivalent no-load method of 
Rawcliffe for 1.1 kW 2-pole motor 
“C80-2” 

 
In the example of the Figure  2.30 the zero-crossing of the curve is 21.17 V2. 

With the determined friction and windage losses Pfw of 14.58 W acc. to IEC 
61972 the scale factor is  
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The measured harmonic-frequency losses Phf,measur e.g. at rated voltage are 
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For comparison the measured value of the stray load losses Pad at rated load acc. 
to IEC 61972 is 50 W. 

For the examples in Figure  2.32 and Figure  2.33 negative values of the stray 
load losses Pad are obtained as the slip s is close to zero. 
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Figure  2.32: Stray load losses acc. to the 
equivalent no-load method of 
Rawcliffe for 11 kW 2-pole motor 
“D160-2” 

  Figure  2.33: Stray load losses acc. to the 
equivalent no-load method of 
Rawcliffe for 11 kW 4-pole motor 
“E160-4” 

 
 

2.3 Advantages and disadvantages of compared test methods 

The advantages (+) and disadvantages (-) of the investigated test methods are 
summarized in this section.  
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2.3.1 Direct methods for the total losses determination 

The advantages (+) and disadvantages (-) of the input-output tests (residual 
loss method) acc. to IEC 61972 and IEEE 112-method B are 

+ Real physical behaviour due to the direct losses assessment from the input-
output test. 

+ IEC 61972 considers the load-dependent iron losses. 

- IEEE 112-method B considers the iron losses to be independent of the load, 
so wrong results for small motors (with big stator resistance) are obtained. 

- IEC 61972 and IEEE 112-method B consider the friction and windage 
losses to be independent of the changing speed during the load test, this 
leads to a small error in the stray load losses especially for motors with 
higher slip. 

- Coupling of the machine with the load and the use of calibrated 
dynamometer are necessary. 

- Since losses are the difference of nearly equal input/ output power 
quantities, the upper limit of efficiency to be evaluated with sufficient 
accuracy should be 95%...96% . 

- Procedure takes considerable time. 

 

2.3.2 Indirect methods for the total losses determination 

The advantages (+) and disadvantages (-) of the indirect methods for the total 
losses determination using equivalent methods for the stray load losses will be 
listed for each test in following. 

 

1) Reverse rotation test 

+ Physically correct determination of the fundamental stray load losses in the 
stator at the removed rotor test (except the neglect of – small – iron losses). 
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- The consideration of the load-independent friction and windage losses 
affects the efficiency determination (e.g. IEEE 112-method E and IEC 
61972) but not the stray load losses. 

- Coupling of the machine with the load and the use of calibrated 
dynamometer are necessary. 

- No real physical load situation of the machine. 

- At the slip s = 2 the magnetisation current is small, so too low main flux 
and no main flux iron saturation. The zig-zag stray flux dominates. 

- Different harmonic slip sν of - in single layer winding dominating - 5th and 

7th air gap field harmonic at the slip s = 2 and rated slip sN ≈ 0 causes 

different stray load losses. 

- RRT yields generally too high stray load losses. 

- Two test procedures are necessary. 

 

2) Eh-star test 

+ No coupling of the machine with the load and no dynamometer are needed. 

+ Simple and short test. 

+ No difference of nearly equal power quantities to be measured, so no 
efficiency limit. 

± Main flux too small, but is bigger than at RRT due to the positive sequence 
system. 

- No real physical load situation of the machine. 

- Complicated theory behind. 

- Auxiliary power resistor Reh and may be a switch for the symmetric start-up 
are necessary, the latter especially with smaller motors (with bigger motors 
the switch and resistor might be omitted).  

- Loss component due to 3-times stator frequency fs circulating current in 
delta-connected winding, caused by the saturation harmonic, is not included 
(but is usually small at not too high saturation). 
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3) Equivalent no-load method  

+ No coupling of the machine with the load and no dynamometer are 
necessary. 

+ Very simple method. 

+ Fundamental stator current effects (e.g. current displacement) are 
considered. 

- No real physical load situation of the machine. 

- Rotor fundamental current is missing, so the stray load losses due to the 
rotor field harmonics are missing. 

- Machine is highly saturated, so the main flux dependent stray load losses 
are bigger than at rated condition. 

- Voltage must be higher than the rated voltage to reach the rated current at 
the no-load. 

- Resistive losses must be measured accurately. 

- High frequency losses mainly localized in the rotor, so the rotor 
fundamental current may be of minor influence. 

 
A comparison of the useful methods to determine the stray load losses is 

presented in Table  2.8. The evaluation of the measurement is not included in this 
comparison, because usually computers are applied for this purpose.  
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Tests 
Input-output test 

(Residual loss method)
Reverse rotation test Eh-star test 

Standard 
IEC 61972 and IEEE 

112-method B 
IEC 61972 

and IEEE 112 
IEC 60034-2 Ed.4, 

2nd CDV 

Measurement of 
electrical values 

High accuracy High accuracy High accuracy 

Measurement of 
Torque 

High accuracy High accuracy NA 

Cost of torque device Expensive Expensive NA 

Cost of adjustable 
resistor + Switch 

NA NA Low to Medium 

Measurement of speed High accuracy High accuracy Medium accuracy 

Load machine + 
equipment 

Highly expensive Highly expensive NA 

Mechanical 
adjustment 

Additional time Additional time NA 

Calibration of torque 
device 

Additional time Additional time NA 

Demounting & 
mounting of rotor 

NA Additional time NA 

Measurement time Long Medium Short 

Energy consumption Highly High Low 

Environmental impact Highly High Low 

Resulting cost Highly High Low 

Industrial application Complicated Complicated Simple 

Reliability related to 
Input-output test 

-- Bad Good 

Sensitivity on 
measurement errors 

High High Medium 

Table  2.8: Comparison of the investigated methods (NA: not applicable or not needed) 

 
 

2.4  Conclusion 

The methods for determining the efficiency of induction machines are based 
on different theoretical models and different assumptions. Therefore, it is not 
reasonable to make a comparison between the values of the efficiency obtained 
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by different methods. As the direct determination of the efficiency 
(measurement of the input and output power) suffers from the measurement 
uncertainty, it is – naturally – limited for motors of high efficiency. The indirect 
method is less sensitive to measurement errors and seems to be, depending on 
the measurement accuracy of the total power losses Pd, useful also for higher 
efficiency machines. 

In the efforts to improve the efficiency of the induction machine also the 
stray load losses should be taken into account. Because of the unavoidable 
measurement errors, the indirect determination of the stray load losses Pad by 
measuring the input Pe,in and output Pm,out power is generally not accurate 
enough for small value of the stray load losses Pad e.g. at high efficiencies. 
Therefore the direct measurement methods of the stray load losses Pad could be 
useful at high efficiencies. The strengths and weaknesses of different 
determination methods and their practical existing limitations is discussed. A 
simple and fast test, like the eh-star method, is required for the stray load losses 
Pad measurement e.g. during the process of the optimisation of the motor design. 
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3 EH-STAR METHOD 
 

In this chapter the theoretical background, the test procedure and the post-
processing of measured data of the eh-star method, as an equivalent 
measurement method to determine the stray load losses, will be described in 
detail. Different evaluation methods will be investigated by theoretical and 
measurement examples. The impact of different parameters on the eh-star 
method will be shown. 
 

The eh-star method, introduced by Jordan and Richter [Jord 1967], utilizes 
an asymmetric feeding of a three-phase induction machine (squirrel-cage or 
wound rotor) without coupling of the machine and without needing any 
dynamometer. The asymmetrical operation is obtained by operating the stator 
winding in star connection from a single phase voltage source. Two machine 
phases U and W are connected in parallel through an auxiliary ohmic resistance 
Reh of a value similar to the motor short circuit impedance. This resistance shall 
be adjusted, so that the positive sequence current I1 stays below 30 % of the 
negative sequence current I2, and the speed stays in the range of typically rated 
speed. The star-point must not be connected to earth to avoid zero-sequence 
currents. A switch S for switching from three-phase starting of the tested 
machines to single phase operation (Figure 3.2) is needed. So the abbreviation 
,,eh” explains the operation: Einphasig (single phase), Hilfswiderstand (auxiliary 
resistance). 
 

The determination of the stray load losses must be done from the measured 
losses by decomposition into the positive and the negative sequence losses. The 
negative sequence losses at slip 22 ≅− s  correspond to the stray load losses, 
similar to the standardized reverse rotation test. For this evaluation, the phase 
angles of the measured currents and voltages must be known. In addition to the 



3  Eh-star method  56 

results of the eh-star measurement, one needs the measurement of the stator 
resistance and the temperature and the measurement results of the no-load test 
(iron losses and friction and windage losses). 

 
The conditions of the eh-star test can be summarized as: 

- The feeding of the induction machine by an asymmetrical 3-phase current 
system, via single phase with the auxiliary resistance Reh. 

- The rotor speed should be near the rated speed, so that the slip of the inverse 

field is nearly s ≈ 2. So the inverse field rotates with the slip s2 = (2 – s) ≈ 2 

like in the reverse rotation test (RRT) according to the standard IEEE 112, 
but without need of coupling the machine with the dynamometer. 

- The rotor current of the inverse system at slip s ≈ 2 simulates the load 

condition as at the RRT. So only the stray load losses due to the negative 
sequence system I2 are considered for the final result. 

- The positive sequence component I1 shall be small to keep the motor rotating, 

so that the conditions of the RRT are simulated. 
 

3.1 Theoretical background 

Like in the reverse rotation test, the broad saddle due to additional 
asynchronous parasitic torque in the motor torque-speed characteristic is used 
for determining the additional losses Pad. These additional torques Mad, which 
are always braking and which are recognized in the slip region s > 1 as a strong 
increase of the torque (Figure 3.1), have always been brought into connection 

with the additional losses [Rogo 1925, Drey 1928, Neuh 1964]. 
First it will be described theoretically, how the harmonic fields and thus 

consequent additional losses are acting in the induction machines, where the 
stator winding is connected in eh-star circuit by an auxiliary resistance (Figure 
3.2). We assume, as a simplification, that the magnetic circuit is not too much 
saturated. Thus it may be permissible to superimpose the harmonic fields of 
different frequencies and wave lengths to get their effects. 
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Figure 3.1: Calculated torque-speed characteristic of an 11 kW 4-pole cage induction motor 

“D160-4”. Ms is the shaft torque and Mδ1 is the fundamental torque. The 

calculation is done with KLASYS [KLASYS]. 
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Figure 3.2: Eh-star circuit with the auxiliary resistance Reh  

I1 : positive sequence current, I2 : negative sequence current, U1 : positive 

sequence voltage, U2 : negative sequence voltage, a is the phase shifter by 

120°: 3/2je π=a . 
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For the symmetrically fed induction machines the relation between the 
additional losses Pad and the torque M at a slip s has been already derived in 

[Jord 1965, Neuh 1964]:  
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with p the number of pole pairs, ω  the angular frequency, Pδ the air gap power, 

ν  the ordinal number of stator harmonic field and μ  the ordinal number of rotor 

harmonic field caused by the νth stator harmonic field. Torque M comprises the 

shaft torque Ms plus the friction and windage torque Mfw. The term (
s

Pp
−

⋅
1

ad

ω
) 

denotes the braking torque due to the additional losses, the component Mδν is the 

torque of the stator field harmonics and the torque 
pδμM comprises the 

components of the rotor field harmonics. These rotor field harmonics are excited 
by the rotor fundamental current, which is caused by the stator fundamental 
field.  
The additional losses are in that case 
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∞
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P
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νr,Cu,  the losses due to stator field harmonics in the rotor cage and in 

the rotor iron, whereas  
∞

=

∞
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P

ν ννμ
νμsf,Cu,  are the higher frequency losses in the 

stator winding and the stator iron due to the rotor field harmonics of frequencies 

νμs,f , which differ from the stator grid frequency fs  
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. (3.3)

The asymmetrically fed three-phase induction machine is considered, 
according to the rules of symmetrical components, as superposition of two 
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equivalent symmetric induction machines, of which one is fed by the positive 

sequence system and the other by the negative sequence system [Kova 1962]. 
The internal torque components of both machines (which are acting in opposite 
directions) will be added as (M1 – M2). The positive sequence machine (subscript 
1) is fed by the positive sequence three-phase symmetric voltage system U1 
(phase sequence U-V-W). Hence the negative sequence machine, which is fed 
by the negative sequence three-phase symmetric voltage system U2 (phase 
sequence U-W-V) is driven by the positive sequence machine against its own 
rotating air gap field. Thus the positive sequence machine operates at slip s1 = s, 
whereas the negative sequence machine operates at slip s2 = 2 - s. The speed of 
the machine is given by the torque of the positive M1 and the negative M2 
sequence system and the friction and windage torque Mfw. At machine no-load 
the shaft torque Ms, which is given by the positive M1 and negative M2 sequence 
internal (air gap) torque and the friction and windage torque Mfw, is zero:  

 fw21fw21s 0 MMMMMMM =−=−−= . (3.4)

For the positive sequence machine – operating at U1 – we get the internal 
torque M1 acc. to (3.1) at the slip s1 = s:  
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With (3.1) and  
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(3.6)

we get the internal torque M2, for the negative sequence machine, operating at 
the slip s2 = 2 – s  
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With (3.4), (3.5) and (3.7) we get for the friction and windage torque Mfw 
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where the component ME the error term in the harmonic torque is 
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The total additional losses of the asymmetrically feed machine Pad,asym are 
therefore the sum of the additional losses Pad,1 of the positive and Pad,2 of the 
negative sequence system  

 Efwδν,2δν,1ad,2ad,1asymad, )()1( PPPPsPPP
p

+−−⋅−=+= 
∞

=ν
, (3.10)

Where, with the mechanical speed )1()/( sp −⋅ω , the friction and windage 

losses Pfw are 

 fwfw )1( Ms
p

P ⋅−⋅= ω
, (3.11)

and the error term of the higher harmonic field power PE is 

 EE )1( Ms
p

P ⋅−⋅= ω
. (3.12)

The losses PE contain components which are the sums in (3.9). At slip 

s ≤ 0.15 the expression (1 – s) is near unity, the harmonic torque components 
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,1pδμδν,1, MM  at slip s and ,2pδμδν,2 , MM  at slip (2 – s) are small, and the values 

of pμν /1 ,/1  decrease with increasing ordinal numbers very fast and with 

alternating sign, so the infinite sums are small compared to the rest terms in 

(3.10) [Jord 1965]. Therefore the losses PE are neglected. This is especially 

valid, when the 5th and 7th harmonic ( 7,5 =−= νν ) are small in case of pitched 

coils e.g. with two-layer windings, which suppress these two harmonics. This 
precondition is also of advantage in the reverse rotation test, to get the similar 

additional losses at the slip s = 2 as at the rated speed [Morg 1939, Chal 1963, 

IEEE 112]. Regarding the magnitude of the neglected value of the losses PE one 

has to look into detail from case to case. Hence the equation (3.10) gives a 
simple expression for determination of the additional losses of the 
asymmetrically fed induction machines. The corresponding calculated torque-
speed characteristic is shown in Figure 3.3.  
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Figure 3.3: Calculated electromagnetic internal torque of positive Me1, negative Me2, resulting 
Me and braking torque due the stray load losses Mad in eh-star operation at reduced 
voltage for an 11 kW 4-pole motor. 

 

For the calculation, Figure 3.3, it was assumed that the harmonic torque 
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components are negligible, 0δν =⋅
∞

≠
Mp

pν ν
 and 0

pδμ =⋅
∞

=
Mp

pp pμ μ
, due to the 

alternating sign of the ordinal numbers ν and μ and the rapid decrease of the 

values pμν /1 ,/1  with increasing ordinal numbers. 

For the determination of the additional losses Pad,asym of the asymmetrically 
fed machine acc. to the equation (3.10) the friction and windage losses Pfw and 
the difference of the air gap power of the positive Pδ,1 and negative Pδ,2 sequence 
system are needed. 

The air gap power (internal power) of the positive Pδ,1 and negative Pδ,2 
sequence system are calculated from the corresponding positive and negative 
components as 

 }Re{3 i,1i,1δ,1
∗⋅⋅= IUP  

 }Re{3 i,2i,2δ,2
∗⋅⋅= IUP  

(3.13)

(3.14)

where Ui is the inner phase voltage at the equivalent iron resistance RFe and Ii is 
the inner phase current “behind” the iron resistance RFe (Figure 3.4). 
 

FeR
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iU sRr′

iIsI

 

Figure 3.4: T-equivalent circuit of induction machine with consideration of the iron losses 

 
Considering that the internal power contains not only the fundamental air gap 

power but also the small part of the harmonic air gap power supplied from the 

grid, this internal power equals exactly the expression 
∞

= p
P

ν
δν  of equation (3.1). 

Therefore the difference of (3.13) and (3.14) delivers already the desired value 
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
∞

=
−

p
PP

ν
)( δν,2δν,1  for determination of the additional losses Pad,asym of the 

asymmetrically fed machine: 

 ( ) fwi,2i,2i,1i,1asymad, }Re{3}Re{3)1( PIUIUsP −⋅⋅−⋅⋅⋅−= ∗∗ . (3.15)

 
To calculate the air gap power Pδ,1 of the positive and Pδ,2 of the negative 

sequence system and hence the additional losses Pad, the determination of the 
real and imaginary parts of the complex phasors of the three-phase voltages and 
currents from measured r.m.s. values is necessary. The detailed calculation is 
shown in the following section. 
 

3.2 Determination of current phasors by different methods 

The determination of the real and the imaginary parts of the complex phasors 
of the three-phase voltages and currents from the measured r.m.s. values is 
necessary to evaluate the stray load losses in eh-star method by post-processing 
of the measured data. Depending on the nature of the auxiliary impedance - 
purely resistive or complex - different methods A, A1, B and C are presented, 
which yield identical results for ideal ohmic resistance Reh.  
 

The decomposition of the current phasors into the real part (subscript: r) and 
the imaginary part (subscript: i) from the measured phase currents depends on 
the measured input power and on the decomposed voltages. So the real and 
imaginary part of the three phase currents can be calculated by different 
methods: 

1. Method A is acc. to the new edition of the standard IEC 60034-2 [IEC 
60034-2 draft]. It is based on the measured motor input power Pe,in and the 
power losses Peh within the resistance Reh for carrying out the loss 
separation (see Figure 3.5). This method is useful in case of resistive 
Zeh = Reh and slightly resistive-inductive or resistive-capacitive impedance 

ehj
eheh e 

ϕ⋅= ZZ  with a phase angle °≤≤°− 1010 ehϕ . 
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2. Method A1, where the voltage and the current in the resistance Reh are 

assumed to be in phase °= 0ehϕ  (or °=180ehϕ , when choosing opposite 

voltage and current reference arrows). So the measurement of the input 
power Pe,in is not necessary, but a purely ohmic auxiliary resistance Reh 
should be used. 

The value of the resistance }Re{ eheh ZR =  has to be determined as average 

value of the measured resistance at the beginning, Reh,begin, and at the end, Reh,end, 
of the measurement to take the increase of the resistance Reh due to thermal 
influence of the current flow into account. The auxiliary resistance Reh should 
therefore be chosen with sufficient thermal rating, so that it is not much 
influenced thermally by the current flow during the test. 
 

3. Method B may be applied with ohmic-inductive or the ohmic-capacitive 
impedance Zeh. The two line-to-line motor input power values Pe,in_UV and 
Pe,in_WV measured independently in Aron-circuit are needed (see Figure 
3.5). For the evaluation of the stray load losses no information about the 
nature of the impedance Zeh (inductor, capacitor or resistor) is necessary. 
The impedance value Zeh does not influences numerically the calculation 
result. 

4. Method C is very similar to method B, but instead of the two line-to-line 
motor input power values Pe,in_UV and Pe,in_WV measured independently in 
Aron-circuit only the measured total motor input power Pe,in (= Pe,in_UV + 
Pe,in_WV) is needed. 

 
From the calculated real and imaginary parts of the voltages and currents the 

positive and negative sequence air gap power Pδ,1 and Pδ,2 are calculated to 
evaluate the stray load losses Pad. From that the check input power Pcont can be 
recalculated in order to check it with the measured input power Pe,in. The 
calculated - control - input power Pcont is a good indicator for the accuracy of the 
calculation model for the loss balance, including Zeh, and of the measurement. 
The calculated check power Pcont should not deviate from the measured input 
power Pe,in by more than 1 %. Otherwise it indicates that the calculation model is 
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not representing the reality, e.g. that the determined phase angles of the voltages 
and the currents are not correct or the used auxiliary impedance Zeh is highly 
resistive-inductive or highly resistive-capacitive. 
 

 

IM

W

A

A

W

A

V

V

V

Reh

L1 L2 L3
IU

1

2

S

IV

IW

PUV

PWV

UUV

UVW

UWU

U

V

W

 

Figure 3.5: Eh-star measurement circuit with uncoupled induction machine (IM) 

 
 

3.2.1 Decomposition of voltages into real and imaginary parts 

The decomposition of the voltage phasors into the real part (subscript: r) and 
the imaginary part (subscript: i) from the measured r.m.s. voltages is 
independent of the measured input power (see (3.22)…(3.25)). The input 
variables are the measured line-to-line voltages (Figure 3.5) UUV, UVW, UWU. 
The unknowns are the real parts UUV,r, UVW,r, UWU,r and the imaginary parts 
UUV,i, UVW,i, UWU,i. We choose the line-to-line voltage UUV to be real (3.21). The 
unknowns are determined by solving the system of the equations (3.16)…(3.21). 

 2
iUV,

2
rUV,

2
UV UUU +=  (3.16)

 2
iVW,

2
rVW,

2
VW UUU +=  (3.17)



3  Eh-star method  66 

 2
iWU,

2
rWU,

2
WU UUU +=  (3.18)

 0rWU,rVW,rUV, =++ UUU  (3.19)

 0iWU,iVW,iUV, =++ UUU  (3.20)

 )0(  ; iUV,UVrUV, == UUU . (3.21)

From the set of the six equations (3.16)…(3.21) we determine the unknowns 
with the solutions (3.22)…(3.25). The U-W-V voltage system (anti-clockwise) is 
chosen, therefore the voltage UWU,i in (3.23) is positive. 

 
UV

2
UV

2
WU

2
VW

rWU, 2 U
UUUU

⋅
−−=  (3.22)

 2
rWU,

2
WU

2
rWU,

2
WUiWU, UUUUU −=−±=  (3.23)

 rWU,rUV,rVW, UUU −−=  (3.24)

 iWU,iVW, UU −= . (3.25)

Note: 
The U-V-W voltage system leads to other algorithms in the post-processing 

for the stray load losses. 
 

3.2.2 Decomposition of currents into real and imaginary parts 

The decomposition of the phase currents into the real and the imaginary parts 
depends on the measured input power and on the decomposed voltages. So the 
real and imaginary part of the three phase currents IU,r, IV,r, IW,r, IU,i, IV,i, IW,i as 
six unknowns can be calculated by the different methods A, A1, B and C. For 
the six unknown currents only five equations (3.26)…(3.30) are given, so a 6th 
equation - depending on the used method - is necessary to solve the system of 
the equations. 
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For the star-connection, where the star point is not connected, the following 
equations for the currents are given: 

 2
iU,

2
rU,

2
U III +=  (3.26)

 2
iV,

2
rV,

2
V III +=  (3.27)

 2
iW,

2
rW,

2
W III +=  (3.28)

 0rW,rV,rU, =++ III  (3.29)

 0iW,iV,iU, =++ III . (3.30)

Note: 
The solutions of the currents are chosen so that the current VGrid II −=  lags 

behind the voltage GridUV UU =  (Figure 3.6) and the currents I1 of the positive 

and I2 of the negative sequence system lag behind the voltages U1 of the positive 
and U2 of the negative sequence system (resistive-inductive behaviour). 

 

U
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UUV 
V

W

I IGrid V= -  

 

Figure 3.6: Simplified eh-star circuit 

 
The active power PGrid is calculated from the circuit in Figure 3.6 as the sum 
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of the motor input power Pe,in and the power loss Peh within the auxiliary 
resistance Reh:  

 }Re{ *
GridUVine,ehGrid IUPPP ⋅=+= . (3.31)

With the current VGrid II −=  and the voltage rUV,UV UU = , )0( iUV, =U  the 

current IV,r is derived as: 

 rV,rUV,
*
VUVine,ehGrid   }Re{ IUIUPPP ⋅−=⋅−=+=  (3.32)

 rUV,ine,ehrV, /)( UPPI +−= . (3.33)

 
Note: 

There is more than one way (algorithm) to solve the set of the current 
equations (3.26)…(3.30) depending on which current is firstly derived see e.g. 
(3.36) and (3.57). So one solution only is presented in the following. 
 

3.2.2.1 Method A 

Method A uses the measured motor input power Pe,in and the power loss Peh 
within the auxiliary resistance Reh. From the set of six equations (3.26)…(3.34) 
the six current components are derived:  
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( )

iV,

rV,rU,
2
V

2
U

2
W

iU, 2

2

I
IIIII

I
⋅

⋅⋅−−−
=  (3.37)

 rV,rU,rW, III −−=  (3.38)

 iV,iU,iW, III −−= . (3.39)

 

3.2.2.2 Method A1 

As the auxiliary impedance Zeh is assumed to be purely ohmic, we choose the 
complex voltage phasor at the resistance Reh acc. to the chosen arrow reference 
system as:  

 WehWU IRU ⋅=− . (3.40)

The solution of the six unknown current components is determined by 
(3.26)…(3.30), (3.40) as:  

 ehrWU,rW, / RUI −=  (3.41)

 ehiWU,iW, / RUI −=  (3.42)
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 rW,rV,rU, III −−=  (3.45)
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 iW,iV,iU, III −−= . (3.46)

 

3.2.2.3 Method B 

Method B uses the independently measured two line-to-line motor input 
power values Pe,in_UV and Pe,in_WV without any information about the value and 
the losses of the impedance Zeh. The power is measured in Aron-circuit with 
phase V as common phase (Figure 3.5): 

 rU,rUV,iU,iUV,rU,rUV,in_Ue, IUIUIUP V ⋅=⋅+⋅=  (3.47)

 iW,iVW,rW,rVW,in_WVe, IUIUP ⋅−⋅−= . (3.48)

 
From (3.47) the current IU,r is derived:  

 rUV,in_UVe,rU, /UPI = . (3.49)

From (3.48), (3.28) and (3.17) the current IW,r is derived: 

    
2
VW

2
W

2
iVW,
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2
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rW, U
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U
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U
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I
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⋅
+

⋅−
=  (3.50)

 iVW,rW,rVW,in_WVe,iW, /)( UIUPI ⋅−−=  (3.51)

 ( ) )2/(2)( iW,rU,rW,
2
U

2
W

2
ViU, IIIIIII ⋅⋅⋅−−−= . (3.52)

 
In method B one equation more than unknown parameters exists. To fulfil 

(3.29) and (3.30) the ,,the sum of currents is zero” condition. The currents IV,r 
and IV,i are determined as: 

 rW,rU,rV, III −−=  (3.53)
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 iW,iU,iV, III −−= . (3.54)

The conditions (3.26) and (3.27) are not used here, so the calculated results of 
the phase currents IU and IV may differ slightly from the measured values IU and 
IV. 
 

3.2.2.4 Method C 

For method C the measured total motor input power Pe,in is used, without any 
information about the value and losses of the impedance Zeh . The measured total 
motor input power Pe,in is given as: 

 
iW,iVW,rW,rVW,iU,iUV,rU,rUV,

in_WVe,in_UVe,ine,

       IUIUIUIU
PPP

⋅−⋅−⋅+⋅=

+=
 (3.55)

With (3.21) and (3.28) we write (3.55) as: 
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rW,rVW,rU,UVine, =−⋅−⋅+⋅− IIUIUIUP . (3.56)

In equation (3.56) the currents IU,r and IW,r are unknown. From the set of 
equations (3.26)…(3.30) the current IU,r is determined: 
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With (3.57) and the abbreviation )( 2
U

2
W

2
V IIIb −−=  the equation (3.56) is 

rewritten as:  
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In equation (3.58) only the current IW,r is unknown and it may be solved e.g. 
by Matlab or Maple...  

The current IW,i is then calculated as: 

 2
rW,

2
WiW, III −−= . (3.59)

Using (3.52), (3.53), (3.54) the currents IU,i, IV,r, IV,i are calculated. 
 
The equation (3.58) can be written as 4th order polynomial (3.60). The 

equation (3.60) can be solved e.g. by Matlab or Maple or by iteration with the 
Durand-Kerner method [see Appendix: Durand-Kerner] 

 00rW,1
2

rW,2
3

rW,3
4

rW,4 =+⋅+⋅+⋅+⋅ aIaIaIaIa . (3.60)

The coefficients a4 … a0 have then to be determined from the known 
parameters in the following (without derivation).  

 22
4 mnga ⋅−=   

 mnPUhga ⋅⋅⋅⋅+⋅⋅= ine,UV3 42  
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ine,
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(3.61)

With the following abbreviations: 
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 aUUUeg ⋅⋅⋅−+= rVW,UV
2
VW 2  

 aPUUPh ⋅⋅⋅−⋅⋅= ine,UVrVW,ine, 22  

 rVW,UV
2
UV 22 UUUam ⋅⋅−⋅⋅=  

 dan −= 2 . 

 
With the determined real and imaginary parts of the complex phasors of the 

three-phase voltages and currents from measured r.m.s. values, the air gap power 
Pδ,1 of the positive and Pδ,2 of the negative sequence system and therefore the 
additional losses Pad will be calculated. The detailed calculation is shown in the 
following section. 
 

3.3 Determination of stray load losses 

The determination of the stray load losses must be done from the measured 
losses by decomposition into the positive and negative sequence losses. The 
negative sequence losses at the slip 22 ≅− s  correspond to the stray load losses, 
similar to the standardised reverse rotation test. For this evaluation, the phase 
angles of the measured currents and voltages must be known. This can be done 
by the calculation with the previously presented methods. 

 
Figure 3.7 gives an overview on the post-processing algorithms for the eh-star 

method. In Figure 3.7 the indication “Ohmic Reh” corresponds to 

ehj
eheh e 

ϕ⋅= ZZ  with a phase angle °≤≤°− 1010 ehϕ  and the indication “purely 

ohmic Reh” corresponds to °= 0ehϕ  (see chapter  3.2). 
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 Measured input data: asymmetric Urms & Irms, Pe,in

Decomposition of asymmetric voltages into real and imaginary parts: U

Method A: Ohmic Reh

Method A1: Purely ohmic Reh

Decomposition of U & I into positive and negative sequence system

Stray load losses Pad

Decomposition of asymmetric currents into real and imaginary parts: I

Check input power Pcont

Check the accuracy of the calculation-
model and of the measurementPlot Pad

Method B
Impedance Zeh

Method C
Impedance Zeh

 

Figure 3.7: Overview on the post-processing in eh-star method 

 

To determine the additional losses Pad of the asymmetrically fed induction 
machine, the equivalent circuit of the induction machine (Figure 3.8) for the 
positive and negative sequence system is used. 
 

FeR

σrXj ′

1sRr′

σsjX

1,sU
hjX FeR

σrXj ′σsjX

2,sU
hjX 2sRr′

Rs Rs

1,iU

2,iI1,iI

2,iU

Figure 3.8: T-equivalent circuit of the induction machine with consideration of iron losses for 
the positive and negative sequence system 

 

The inner line-to-line voltages Ui across the equivalent iron resistance RFe are 
determined by the voltage drop at the stator resistance Rs from the complex line-
to-line voltages and currents:  
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 )( UVsUViUV IIRUU −⋅+=  (3.63)

 )( VWsVWiVW IIRUU −⋅+=  (3.64)

 )( WUsWUiWU IIRUU −⋅+= . (3.65)

 
The zero-sequence system of currents is zero, as the star-point is not connected 

to earth. The separation into the positive UiLL,1 and negative UiLL,2 sequence 
components of the inner line-to-line voltage is necessary due to the asymmetric 
voltage system: 

 )()3/1( iWU
2

iVWiUViLL,1 UaUaUU ⋅+⋅+⋅=  (3.66)

 )()3/1( iWUiVW
2

iUViLL,2 UaUaUU ⋅+⋅+⋅=  (3.67)

where a is the phase shifter by 120°: 3/2je π=a . 

Using the positive Ui,1 and negative Ui,2 sequence components of the inner 
phase voltage Ui 

 3/e iLL,1
6/jπ

i,1 UU ⋅= −  (3.68)

 3/e iLL,2
6/jπ

i,2 UU ⋅= , (3.69)

we determine the asymmetrical inner phase voltages: 

 i,2i,1iU UUU +=  (3.70)

 i,2i,1
2

iV UaUaU ⋅+⋅=  (3.71)

 i,2
2

i,1iW UaUaU ⋅+⋅=  (3.72)

and the inner phase currents “behind” the iron resistance RFe: 

 FeiUUiU / RUII −=  (3.73)
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 FeiVViV / RUII −=  (3.74)

 FeiWWiW / RUII −= . (3.75)

The positive Ii,1 and negative Ii,2 sequence components of the inner phase 
currents are: 

 3/)( iW
2

iViUi,1 IaIaII ⋅+⋅+=  (3.76)

 3/)( iWiV
2

iUi,2 IaIaII ⋅+⋅+= . (3.77)

 
With the equations (3.68), (3.69), (3.76) and (3.77) the air gap power of the 

positive and the negative sequence system Pδ,1 and Pδ,2 is given as:  

 Fe,1s,1Cu,in,1e,i,1i,1δ,1 }Re{3 PPPIUP −−=⋅⋅= ∗  (3.78)

 Fe,2s,2Cu,in,2e,i,2i,2δ,2 }Re{3 PPPIUP −−=⋅⋅= ∗ . (3.79)

The air gap power Pδ,1 of the positive and Pδ,2 of the negative sequence 
system are calculated from the corresponding positive and negative power 
components Pe,in,1 and Pe,in,2 by subtracting the stator copper losses PCu,s and the 
iron losses PFe. The iron losses PFe we get from the prior no-load test. 
 

Hence the stray load losses Pad,asym of the asymmetrically fed machine - as the 
sum of the additional losses of the positive Pad,1 and the negative Pad,2 sequence 
system - are given by the power balance (3.80). The output power is zero, 
because the motor is not coupled to a mechanical load. Only the friction and 
windage losses Pfw and the additional losses Pad,asym are loading or braking the 
machine.  

 fwδ,2δ,1ad,2ad,1asymad, )()1( PPPsPPP −−⋅−=+= . (3.80)

 
In the linear range of the torque-slip-characteristic between the no-load 

(s = 0) and typically twice rated slip (2·sN) the torque M is proportional to the 
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slip s and proportional to the rotor current (load current) '
rI  (Figure 3.9). For the 

asymmetrically fed machine (uncoupled machine) the rotor current '
rI  may be 

taken as equivalent of the torque M, which ranges between '
rN

'
r     0 II ≤≤  for 

N    0 MM ≤≤ . The negative sequence current component Ii,2 at slip 2≅s  

corresponds to the rotor current i,2
'
r II −≅ . So the negative sequence system 

represents the equivalent motor load of the uncoupled machine: MII ~'
ri,2 ≈ . 

Due to the dominating negative sequence current Ii,2 >>  Ii,1 - like in the RRT - 
(s2 = 2 - s ≈ 2) the stray load losses of the negative sequence system Pad,2 are 
taken as the equivalent stray load losses Pad.  
 

  

 

Figure 3.9: Torque-slip- and current-slip-
characteristics of induction machine  

Figure 3.10: Phasor diagram of induction 
machine  

 
Assuming that the stray load losses Pad depend on the square of stator current 

[Rogo 1925, Morg 1939, Chal 1963] we get, with the relationships 2
i,2ad,2 ~ IP  

and 2
i,1ad,1 ~ IP , the stray load losses: 

 )/( 2
i,2

2
i,1

2
i,2asymad,ad,2ad IIIPPP +⋅== . (3.81)

 

Linear range
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3.3.1 Plotting of the stray load losses 

With the assumption of a right angle between the magnetizing current Im and 

the rotor current '
rI  in the phasor diagram of the induction machine for motor 

operation (Figure 3.10) the rated test current ItN is determined from the rated 

current IN and the no-load current I0 as 

 2
0

2
NtN III −= . (3.82)

As the rated torque is proportional to the rated rotor current '
rNN ~ IM , we get 

 tN
2
0

2
N

'
rN IIII =−≅ . (3.83)

 

The stray load losses adad,2 PP =  are plotted versus the square of the ratio of 

the negative sequence current Ii,2 related to the rated test current ItN (Figure 
3.11), which corresponds to the square of the per unit torque (Ii,2/ItN)2 ~ (M/MN)2. 

The stray load losses data shall be smoothed by using the linear regression 
analysis for 6 different test points to reduce the effect of random errors in the 
test measurements. The offset of the straight line has to be neglected - like in 
IEEE 112 Method B -, as at zero torque, which corresponds with zero load 
current and hence zero negative sequence current, the stray load losses shall be 
zero. The stray load losses for rated load (Ii,2/ItN = 1) are the slope of the 
regression-line (Figure 3.11). 
 



3  Eh-star method  79 

y = 132.820x + 10.966
R2 = 0.999

0

100

200

300

0.0 0.5 1.0 1.5 2.0

(Negative sequence current / rated test current)2

St
ra

y 
lo

ad
 lo

ss
es

 /W

Pad

Pad, c

Linear (Pad)

 

Figure 3.11: Measured stray load losses of a 11 kW 4-pole motor “A160-4” 
(Subscript c for corrected: Linear regression line without offset) 

 
Figure 3.11 shows an example of the measured values Pad and the smoothed 

data Pad,c of the stray load losses without the offset for an 11 kW, 4-pole motor 
“A160-4”. As the offset is omitted, the value on slope of the regression-line 
132.8 W is the stray load loss at rated load. 
 

3.3.2 Determination of the check input power 

With the calculated positive and negative sequence air gap power Pδ,1 and 

Pδ,2, respectively, according to the power flow in the positive and the negative 

sequence system in Figure 3.12, the check input power Pcont can be determined 
in order to check it with the measured input power Pe,in.  

 
)(/)()(       

)(
2
W

2
V

2
UsFe

2
iW

2
iV

2
iUδ,2δ,1

sCu,Feδ,2δ,1cont

IIIRRUUUPP

PPPPP

++⋅+++++=

+++=
 (3.84)

The check input power Pcont as sum of the all loss components must be 
theoretically identical with the input power Pe,in, and should not deviate from the 
measured input power Pe,in for a good test evaluation results by more than 1 %. 



3  Eh-star method  80 

If not, it indicates, that the calculation model is not representing the reality, e.g. 
that the determined phase angles of the voltages and the currents are not correct 
or the used auxiliary impedance Zeh is highly resistive-inductive or highly 
resistive-capacitive, or there is an error in the measurement setup. 
 

Stator,1

Pδ,1

PFe,1

PCu,s,1
Pe,in,1

Stator,2

Pδ,2

Pe,in,2

Negative
sequence system

Positive
 sequence system

PFe,2

PCu,s,2

 

Figure 3.12: Power flow of the positive and the negative sequence system 

 
 

3.4 Test procedure 

The machine stator winding has to be connected in star. So the rated data of 
the machine are referred to the star connection. The star-point must not be 
connected to earth to avoid zero-sequence currents. The measurement setup of 
the eh-star test, where the induction motor is uncoupled, is shown in Figure 3.13. 
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Figure 3.13: Eh-star measurement circuit 

 

3.4.1 Requirements for the measurement 

For the measurement following requirements are needed: 

- A variable transformer (e.g. rotary transformer) capable to vary the supply 
voltage of the machine from typically 25 % to the rated phase voltage UNph 
and the supply current to 150 % rated phase current IN of the machine. Such 
voltage supply is typically used for the no-load test as described in IEC 
61972. 

- The voltage waveform of the open circuit voltage supply shall comply with 
the demands of the harmonic voltage factor (HVF), defined in IEC 60034-1 
[IEC 60034-1], clause 6.2.1.1 for the thermal test IEC 60034-1, cl. 7.3.1: 

HVF ≤ 0.015. 

- An auxiliary resistor Reh, capable of up to 150 % rated phase current IN of the 
machine. The resistance should be about the short circuit impedance Zsc of 
the motor, which is typically 20 % of the rated impedance, 

NphN,eh /2.0 IUR ⋅= , and shall be adjusted, so that the positive sequence 

current I1 stays below 30 % of the negative sequence current I2 and the speed 

stays in the range of the typical motor speed near the rated speed. The 
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resistance Reh should therefore be chosen with sufficient thermal rating, so 
that it is not much influenced thermally by the current flow during the test. 

- A power switch S for larger motors. Smaller motors should usually start-up 
with the resistor Reh already connected (switch S in position 2, see Figure 
3.13). In this case the switch is not needed. But it depends on the motor 
design, some motors could not start-up with the resistor Reh already 
connected ! 

- Measurement devices for the three line-to-line r.m.s. voltages UUV, UVW, UWU 
at the motor terminals U, V, W. 

- Measurement devices for the three phase r.m.s. currents IU, IV, IW. 

- Measurement devices to measure the electrical machine input power Pe,in 
with Aron- circuit at the machine terminals "behind" the auxiliary resistor 
Reh. 

- Measurement device to measure the resistances. 

- Measurement device to measure the speed. 
 

The accuracy of the measurement devices shall comply with the demands for 
the load test and efficiency determination of the induction machines as described 
in IEC 61972. 
 
Note: 

It is not recommended to determine the winding temperature from the reading 
of thermocouples, due to the unequal heating of the three phases, if their 
positions are unknown (see Figure 3.40). Only if the positions of the 
thermocouples are exactly known, then the use of the thermocouples could be 
possible.   

 
Note: 

As the asymmetrically fed induction machines generate a pulsating torque 
component of double supply frequency, which is only filtered out by the 
rotor’s inertia, bigger machines (e.g. above 500 Nm rated torque) might be 
put on rubber elements or a damping pad during the eh-star test to avoid 
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transmission of the vibrations from the machine into the surrounding adjacent 
test bed. But as the tested machine is operated at reduced supply voltage, the 
torque oscillation is small, so that usually damping pads may be not 
necessary even for bigger machines. 

 

3.4.2 Measurement procedure 

Before starting the eh-star test the uncoupled machine should have run 
already for certain time to get stable no-load losses. The no-load losses are 
considered stabilised when the no-load power input varies by 3 % or less, when 
measured at two successive 30 min intervals [IEC 61972].  
 
1. According to the circuit in Figure 3.13 the line-to-line resistance RVW at cold 

machine is measured to get the 20°C resistance value (RVW,20°C). 

2. The no-load losses should be stable at no-load in symmetric operation at 
rated voltage UN and rated frequency. The temperature of the winding should 
be stable and is about the typical temperature of the motor at no-load. At the 
end of the no-load test the line-to-line resistance RVW is measured. This 
resistance will be taken as the resistance RVW,begin before the beginning of the 
eh-star test; i.e. the next steps shall be carried out as quickly as possible. 

3. The motor is started in star connection at no load in symmetric operation 
(switch S in position 1, see Figure 3.13) at reduced voltage (e.g. at 25 % … 
40 % of the rated voltage UN) up to about synchronous speed. 

4. After start-up phase W is disconnected from the grid via the switch S (S in 
position 2, see Figure 3.13) and an auxiliary ohmic resistance Reh is put 
between the phases U and W. Hence the motor is fed from the phases U and 
V with reduced voltage at rated frequency and is rotating at about the rated 
speed (single phase operation with auxiliary resistance: eh-star). 

Note:  
If the supply voltage is too low, the torque of the machine is too small. The 
machine will break down from the synchronous to very low speed and may 
overheat. With the above recommended voltage UUV between the phases U 
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and V and the resistance value Reh the machine will operate at line frequency 
with the speed in the range of the typical motor speed near the rated speed. 

5. Due to the asymmetric feeding the three phase currents IU, IV, IW are 
different, with typical values between 130 % ... 70 % of average value 

3/)( WVUav IIII ++= , see example in Table 3.1. The current IV in phase V 

is the maximum and the current IW in phase W is the smaller one. During the 
test the supply voltage ULL = UUV shall vary for at least six test points. The 
test points shall be chosen to be approximately equally spaced between 
150 % and 75 % of the rated phase current IN measured in phase V (IV). When 
starting the test one should begin with the highest current (IV = 1.5·IN) and 
proceed in descending order to the lowest current (IV = 0.75·IN) to limit the 
variation of the temperature. 

6. For each test point the values of the three phase currents IU, IV, IW, the three 
line-to-line voltages UUV, UVW, UWU, the electrical motor input power Pe,in 
and the speed n are measured, preferably simultaneously to get high 
accuracy. 

7. At the end of the eh-star test the motor is switched off and the line-to-line 
resistance RVW,end is measured.  

 
Note: 

For evaluation of the stray load losses acc. to the method A or the method A1 
(see section 3.2) the value of the auxiliary resistance Reh is needed if an 

auxiliary impedance ehj
eheh e 

ϕ⋅= ZZ  is used. The value of the resistance 

}Re{ eheh ZR =  has to be determined as average value of the measured 

resistance Reh,begin at the beginning and Reh,end at the end of the measurement 
to take the increase of the resistance Reh due to thermal influence of the 
current flow during the test into account. 

 

3.4.3 Example 

The test object called “A160-4”is a four pole standard induction motor, frame 
size 160 mm, totally enclosed, fan cooled, 400 V Y, 50 Hz, 11 kW, 21.6 A. 
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From the rated data of the motor in star connection the value of the auxiliary 
resistance Reh will be determined. With the phase voltage 

V 9.2303/4003/NNph ===UU  and the phase current A 6.21NNph == II , 

the rated impedance ZN of the motor is determined as ZN = UNph/INph = 
230.9/21.6 = 10.7 Ohm. The value of the auxiliary resistance Reh should be about 
the value of the short circuit impedance Zsc of the motor: Reh = Zsc = 0.2·ZN = 2.1 
Ohm. 

The measured data for the 6 test points during the eh-star test are given in 
Table 3.1. Figure 3.19 shows the phasor diagram of the measured unbalanced 
voltages and currents, corresponding to the first load point in Table 3.1. The 
corresponding phasor diagram of the positive and negative sequence system is 
presented in Figure 3.20. 
 

 Test point 1 2 3 4 5 6 

Line to line voltage UUV /V 152.48 140.23 125.01 120.12 107.16 82.7 

Line to line voltage UVW /V 166.26 152.81 136.26 130.89 116.76 89.94 

Line to line voltage UWU /V 47.49 42.82 37.33 35.56 30.95 22.3 

Phase current IU /A 27.267 24.719 21.688 20.706 18.245 13.807

Phase current IV /A 32.549 29.452 25.787 24.609 21.661 16.397

Phase current IW /A 22.361 20.134 17.488 16.622 14.437 10.371

Input power Pe,in /W 2456.7 2050.5 1600 1469.4 1155.42 684.81

Speed n /rpm 1467.5 1466.7 1466.4 1466.3 1465.3 1461.3

Line to line resistance at begin RVW, begin /Ω 0.7375 

Line to line resistancat end RVW, end /Ω 0.771 

Table 3.1: Measured data at the eh-star test for an 11 kW 4-pole motor “A160-4” 

 
From the measured resistances RVW,begin at the beginning and RVW,end at the 

end of the test a linear interpolation between the first load point IV/IN = 1.5 and 
the fifth load point IV/IN = 1.0 is used to determine the stator winding 
temperature for the test points in between (see Table 3.3 and Figure 3.14), which 
is needed for the losses evaluation.  
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Figure 3.14: Linear interpolation of the winding temperature for an 11 kW 4-pole motor 
“A160-4” 

 
In addition, for the evaluation of the stray load losses, the 20°C-value of the 

stator resistance Rs,20, the iron losses PFeN and the no-load current I0 at rated 
voltage, the friction and windage losses PfwN at synchronous speed must be 
known from the no-load test according to IEC 61972 (see Table 3.2). To plot the 

stray load losses adP  the rated test current 2
0

2
NtN III −=  is determined acc. to 

(3.82) from the rated current IN and the no-load current I0. 
 

Phase resistance 
at 20°C 

Iron losses 
Friction and 

windage losses 
No-load current 

Rated test 
current 

Rs,20 /Ω PFeN /W PfwN /W I0 /A ItN /A 

0.3623 312 71 10.9 18.6 

Table 3.2: Measurement data from the no-load test for an 11 kW 4-pole motor “A160-4” 

 
In Table 3.3 the positive and the negative sequence impedances , the ratio of 

the negative sequence current I2 related to the rated test current ItN, the ratio of 
the positive sequence current I1 related to the negative sequence current I2, 
which is smaller than 30 %, and the stray load losses Pad are presented. The 
evaluation is done e.g. according to method A (see section 3.2). 
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Test point 1 2 3 4 5 6 
Winding temperature /°C 30 33 37 38 42 42 

I2/ItN 1.45 1.31 1.14 1.09 0.96 0.71 
I1/I2 0.217 0.219 0.223 0.225 0.232 0.259 

I1  /A 5.88 5.37 4.77 4.59 4.14 3.45 
I2  /A 27.04 24.44 21.36 20.36 17.85 13.29 
U1  /V 63.85 58.46 51.86 49.73 44.11 33.48 
U2  /V 36.35 33.71 30.41 29.32 26.48 21.04 

Z1  /Ω 10.86 10.89 10.88 10.84 10.65 9.72 

Z2  /Ω 1.34 1.38 1.42 1.44 1.48 1.58 
Pad  /W 292.8 236.2 184 167.5 133.7 79.6 

Pad,corrected  /W 278.9 227.9 174.1 158.1 121.6 67.3 

Table 3.3: Eh-star loss evaluation acc. to method A for an 11 kW 4-pole motor “A160-4” 

 
The impedances and the Voltage-Current-Curve of the positive and the 

negative sequence components are given in Figure 3.15 and Figure 3.16 for the 
measured example. The characteristics show that the negative sequence system 
is unsaturated, whereas the positive sequence system is slightly, but not 
significantly, saturated. A small negative sequence current I2 reflects a higher 
negative sequence impedance Z2. 
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Figure 3.15: Voltage-Current-Characteristics of the positive and negative sequence system for 
an 11 kW 4-pole motor “A160-4”  
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Figure 3.16: Impedances of the positive and negative sequence system as function of the 

supply voltage UUV for an 11 kW 4-pole motor “A160-4”  

 
The stray load losses Pad are plotted versus the square of the ratio of the 

negative sequence current I2 related to the rated test current ItN, which 
corresponds to the square of the per unit torque (I2/ItN)2 ~ (M/MN)2. The stray 
load losses data shall be smoothed (corrected) by using the linear regression 
analysis for the six test points to reduce the effect of random errors in the test 
measurement. The offset must be omitted, as at zero torque, which corresponds 
to the zero load current and hence zero negative sequence current, the stray load 
losses shall be zero. The stray load losses for rated load are taken from the slope 
(Pad = 132.8 W) of the regression-line (Figure 3.17). The evaluation is 
summarized in Figure 3.18. 
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Figure 3.17: Measured stray load losses of an 11 kW 4-pole motor “A160-4” 

(Subscript c for corrected: Linear regression line without offset) 
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Method A load point 1 2 3 4 5 6
rated line- line voltage UN [V] 400,0 400,0 400,0 400,0 400,0 400,0

rated line current IN [A] 21,62 21,62 21,62 21,62 21,62 21,62
no-load line current I0 [A] 10,92 10,92 10,92 10,92 10,92 10,92

frequency f [Hz] 50 50 50 50 50 50
number of poles 2p 4 4 4 4 4 4
line- line voltage UUV [V] 152,48 140,23 125,01 120,12 107,16 82,7
line- line voltage UVW [V] 166,26 152,81 136,26 130,89 116,76 89,94
line- line voltage UWU [V] 47,49 42,82 37,33 35,56 30,95 22,3
phase current IUph [A] 27,267 24,719 21,688 20,706 18,245 13,807
phase current IVph [A] 32,549 29,452 25,787 24,609 21,661 16,397
phase current IWph [A] 22,361 20,134 17,488 16,622 14,437 10,371
input power Pe,in [W] 2456,7 2050,5 1600 1469,4 1155,42 684,81

speed n [rpm] 1467,5 1466,7 1466,4 1466,3 1465,3 1461,3
phase resistance @ 20°C Rs, 20°C [Ω] 0,362301 0,362301 0,362301 0,362301 0,362301 0,36230067

line- line resistance @ 20°C RVW, 20°C [Ω] 0,710781
line- line resistance @ begin RVW, begin [Ω] 0,73749
line- line resistance @ end RVW, end [Ω] 0,770816

core losses PFeN [W] 312,41 312,41 312,41 312,41 312,41 312,41
friction & windage losses PfwN [W] 71,38 71,38 71,38 71,38 71,38 71,38

eh-resistance (operating) Reh [Ω] 2,1238 2,1268 2,1346 2,1393 2,1438 2,1502
winding temperature temp [°C] 29,58 32,98 37,01 38,30 41,54 41,54

positive sequence current I1 [A] 5,8784 5,3657 4,7681 4,5856 4,1404 3,4453
negative sequence current I2 [A] 27,0377 24,4424 21,3614 20,3620 17,8526 13,2873

ratio (positive/negative) I1 / I2 0,2174 0,2195 0,2232 0,2252 0,2319 0,2593
rated test current ItN [A] 18,6595 18,6595 18,6595 18,6595 18,6595 18,6595

stray load losses Padd [W] 292,8050 236,1909 184,0135 167,4715 133,6884 79,5636
check of real power Pcont [W] 2457,53 2051,23 1600,59 1469,95 1155,86 685,05

 (I2 /ItN)^2 2,0996 1,7159 1,3106 1,1908 0,9154 0,5071

stray load losses @ ItN Intercept B 10,9656 Slope A 132,8205 Correlat. Fact 0,99960
corrected stray load losses Padd, c [W] 278,872 227,904 174,070 158,163 121,581 67,350

Input

data

Output

data

y = 132,82047x + 10,96557
R² = 0,99920
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Figure 3.18: Eh-star evaluation sheet acc. to method A for an 11 kW 4-pole motor “A160-4” 
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Figure 3.19 shows the phasor diagram of the measured voltages and currents, 
corresponding to the first load point (I2/ItN = 1.45) in Table 3.1, for an 11 kW 4-
pole motor “A160-4”. The corresponding phasor diagram of the positive and 
negative sequence system is given in Figure 3.20, where a resistive-inductive 
behaviour is shown. 
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Figure 3.19: Phasor diagram of measured voltages and currents at (I2/ItN = 1.45) for an 11 kW 
4-pole motor “A160-4”   a) Line to line voltages   b) Phase currents  
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Figure 3.20: Phasor diagram of the positive and negative sequence system at (I2/ItN = 1.45) for 
an 11 kW 4-pole motor “A160-4” 

 
Figure 3.21 shows the waveform of the stator currents and the voltages 

during the eh-star test for an 11 kW 4-pole motor “A160-4”. In the shape of the 

a) b) 



3  Eh-star method  92 

waveform the effect of the slot harmonics is visible.  
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Figure 3.21: Measured waveform of the stator currents and voltages at eh-star test for an 11 
kW 4-pole motor “A160-4”. The variables are successively measured, thus no 
information about the phase angle   a) Waveform of the stator line to line voltages 
b) Waveform of the stator phase current    

 
 

3.5 Theoretical model 

With the theoretical model a fictive motor with known parameters and loss 
balance is simulated at eh-star measurement conditions. This model is needed 
e.g. to check the different post-processing methods A, A1, B and C with the 
mathematically exact results of the simulation and to check the influence of 
different types of the auxiliary impedances on the stray load loss result. 

The theoretical model of the asymmetrically fed induction machine is 
considered, according to the rules of the symmetrical components, as 
superposition of two equivalent symmetric induction machines, of which one is 
fed by a positive sequence system at slip s1 = s and the other by a negative 
sequence system at slip s2 = 2 - s. The impedances Z1(s1) of the positive and 
Z2(s2) of the negative sequence system for the theoretical model depend on slip 
s, which is determined by the load of the motor. The load is given by the friction 
and windage losses Pfw and the stray load losses Pad,r due to the rotor movement. 
The stator stray load losses due to skin-effect in the stator winding do not brake 
the rotor and may be considered in an equivalent circuit as “equivalent series 

a) b) 
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resistance” Rad,s in series with the stator phase resistance Rs.  
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Figure 3.22: T-equivalent circuit of the theoretical model for the positive and the negative 
sequence system 

 
The impedances Z1(s1) of the positive and Z2(s2) of the negative sequence 

system are calculated as: 

   
)()(

)(
)(

r1sr1Fe1r1s11r1Fe

r111r1Fes
sad,s11 RXXRsjXXsRR

XsjRRjXRRsZ
′+′⋅⋅+′⋅⋅−′

′⋅⋅⋅+′⋅++=
σ

σ
 (3.85)

   
)()(

)(
)(

r2sr2Fe2r2s22r2Fe

r222r2Fes
sad,s22 RXXRsjXXsRR

XsjRRjXRRsZ
′+′⋅⋅+′⋅⋅−′

′⋅⋅⋅+′⋅++=
σ

σ
 (3.86)

with the leakage coefficients σ1(s1) of the positive and σ2(s2) of the negative 

sequence systems 

 
r1s

2
h

11 1)(
XX

Xs
′

−=σ  (3.87)

 
r2s

2
h

22 1)(
XX

Xs
′

−=σ  (3.88)

and the reactances Xs of the stator and of the rotor )( 1r1 sX ′  at slip s1 and )( 2r2 sX ′  

at slip s2  

 hsσs XXX +=  (3.89)

 h1r1r1 )( XXsX +′=′ σ  (3.90)
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 h2r2r2 )( XXsX +′=′ σ . (3.91)

In addition to the impedance of the T-equivalent circuit in Figure 3.22 the 
auxiliary impedance Zeh in Figure 3.23 must be considered to determine the 

unknown currents and voltages. 
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Figure 3.23: Eh-star circuit 

 
The currents Is,1 of the positive and Is,2 of the negative sequence system and 

the phase currents IW and IV are calculated from the impedances Z1 of the 

positive and Z2 of the negative sequence system acc. to Figure 3.22, the “given” 

stator voltage UUV and the auxiliary impedance Zeh according to the Figure 3.23 

as: 

 
)(3
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3 21eh21

2ehUV
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)(3

)(

21eh21

eh21UV
V ZZZZZ

ZZZUI
++⋅⋅

++−= . (3.95)

The phase current IU is resulting as 

 WVU III −−= . (3.96)

With the calculated phase current IW, the three phase voltages UU, UV, UW  

 3/)( WehUVU IZUU ⋅+=  (3.97)

 3/)2( WehUVV IZUU ⋅+⋅−=  (3.98)

 3/)2( WehUVW IZUU ⋅⋅−=  (3.99)

and the phase voltages U1 of the positive and U2 of the negative sequence system  

 3/)(3/)( Weh
2

UVW
2

VU1 IZaUaUaUaUU ⋅⋅+⋅−=⋅+⋅+=  (3.100)

 3/)(3/)( WehUV
2

WV
2

U2 IZaUaUaUaUU ⋅⋅+⋅−=⋅+⋅+=  (3.101)

are derived. 
With the decomposed voltages U1 of the positive and U2 of the negative 

sequence system, the phase voltages UU, UV, UW and therefore the “given” 

voltage UUV can be recalculated to check the calculation model.  

 21U UUU +=  (3.102)

 21
2

V UaUaU ⋅+⋅=  (3.103)

 2
2

1W UaUaU ⋅+⋅= . (3.104)

From the equations (3.102) and (3.103) the “given” supply voltage UUV is 
calculated as: 

 21
2

VUUV )1()1( UaUaUUU ⋅−+⋅−=−=  (3.105)
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The terminal power data from a 2-wattmeter-measurement-method are given 
in the following:  

 
iW,iVW,rW,rVW,iU,iUV,rU,rUV,

in_WVe,in_UVe,ine,

       IUIUIUIU
PPP

⋅−⋅−⋅+⋅=

+=
 (3.106)

 
The input and output data for the theoretical model of a 315 kW 4-pole motor 

(TEFC) are give in Table 3.4. 
 

Input data    Model    Output data 

Rated line-to-line 
voltage 

uN / p.u. 1 
 

Line-to-line 
voltage 

UUV /V 
282.2 

Rated line current iN / p.u. 1 
 

Line-to-line 
voltage 

UVW /V 
331.3 

No-load line current i0 / p.u. 0.27 
 

Line-to-line 
voltage 

UWU /V 
88.9 

Number of poles 2p  4  Phase current IU /A 458.2 
Frequency f  /Hz 50  Phase current IV /A 521.2 
Rated iron losses PFeN / PN  0.008  Phase current IW /A 355.5 
Rated friction & 
windage losses 

PfwN / PN  0.004 
 

Motor input 
power 

Pe,in /kW 48.92 

Stator phase resistance rs, 20°C / p.u.  0.008  input power UV Pe,in_UV/kW 125 

Skin-effect_stator rad,s / p.u. 0  input power WV Pe,in_WV/kW -76.1 

Stator stray inductance xsσ / p.u. 0.077  Eh-resistance Reh /Ω 0.25 

Magnetizing inductance xh / p.u. 3.16  Eh-reactance Xeh /Ω 0 

Rotor resistance (s = 1) r'r, 20°C, s=1 /p.u. 0.022  Pos. seq. impedance Z1 /Ω 1.29 

Rotor resistance (s = 0) r'r, 20°C, s=0 /p.u. 0.006  Neg. seq. impedance Z2 /Ω 0.18 

Rotor stray inductance x'rσ  / p.u. 0.137  Pos. seq. current I1 /A 95 

Eh-impedance Zeh /Ω 0.25  Neg. seq. current I2 /A 440 

Eh-phase angle ϕeh /° 0  Pos. seq. voltage U1 /V 123 

Line-to-line voltage UUV /V 282.2  Neg. seq. voltage U2 /V 81 
Speed n /rpm 1490  Internal Torque Me /Nm 121 

Winding temperature ϑ  /°C 30  Stray load losses  Pad /kW 16.89 

Table 3.4: Input and output data for theoretical model of a 315 kW 4-pole motor “A317-4” 
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3.5.1 Loss balance of the positive and the negative sequence system 

The input power of the positive and negative sequence system are: 

 }Re{3 11in,1e,
∗⋅⋅= IUP  (3.107)

 }Re{3 22in,2e,
∗⋅⋅= IUP  (3.108)

where I* is the conjugate complex value of the current I. 
The stator copper losses of the positive and negative sequence system are: 

 
2

1ss,1Cu, 3 IRP ⋅⋅=  (3.109)

 
2

2ss,2Cu, 3 IRP ⋅⋅= . (3.110)

With the inner voltages of the positive and the negative sequence system the 
iron losses are respectively determined: 

 Fe

2

i,1Fe,1 /3 RUP ⋅=  (3.111)

 Fe

2

i,2Fe,2 /3 RUP ⋅= . (3.112)

The input powers of the positive and the negative sequence system minus the 
stator losses (the copper and the iron losses) of the positive and the negative 
sequence system respectively gives the air gap power of the positive and 
negative sequence system: 

 Fe,1s,1Cu,in,1e,δ,1 PPPP −−=  (3.113)

 Fe,2s,2Cu,in,2e,δ,2 PPPP −−= . (3.114)

The rotor copper losses of the positive and the negative sequence system are: 

 δ,11r,1Cu, PsP ⋅=  (3.115)
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 δ,22r,2Cu, PsP ⋅= . (3.116)

The remaining inner mechanical power of the positive and the negative 
sequence system results in: 

 δ,11i,1m, )1( PsP ⋅−=  (3.117)

 δ,22i,2m, )1( PsP ⋅−= . (3.118)

The resulting braking losses, the additional losses Pad,asym of the 
asymmetrically fed machine and the friction and windage losses Pfw, must equal 
the inner mechanical power: 

 fwi,2m,i,1m,asymad, PPPP −−= . (3.119)

The mechanical output power on the shaft is zero as the machine is uncoupled. 
 

An example of the loss balance is given for the measured load point at 
I2/ItN = 1 in Table 3.5 and presented in Figure 3.24.  

Table 3.5 shows that the winding losses of the negative sequence system are 
the dominating part of the absorbed power. With 69 % of the electrical input 
power the rotor winding losses of the negative sequence system PCu,r,2 dominate, 

as they are directly proportional to the respective slip ( 22 ≈s ), followed by the 

stator winding losses PCu,s,2 of the negative sequence system, due to the higher 
negative sequence current I2.  

In Figure 3.24 the quantitative power flow of the positive and the negative 
sequence system for the data in Table 3.5 is shown. The mechanical output 
power on the shaft Pmech is zero as the motor is uncoupled. 
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 Power in W Px/Pel,in /% 

Input power Pe,in 21124 100 

Input power of positive  Pe,in,1 10409.66 49.28 

and negative sequence system Pe,in,2 10714.34 50.72 

Copper losses in stator of positive  PCu,s,1 89.93 0.43 

and negative sequence system PCu,s,2 3352.32 15.87 

Iron losses of positive PFe,1 122.73 0.58 

and negative sequence system PFe,2 51.00 0.24 

Air gap power of positive  Pδ,1 10197.00 48.27 

and negative sequence system Pδ,2 7311.03 34.61 

Copper losses in rotor of positive  PCu,r,1 67.98 0.32 

and negative sequence system PCu,r,2 14573.31 68.99 

Inner mechanical power of positive  Pm,i,1 10129.02 47.95 

and negative sequence system Pm,i,2 -7262.29 -34.38 

Friction and windage losses Pfw 1286.67 6.09 

Asymmetrical additional losses Pad,asym 1580.06 7.48 

Table 3.5: Measured loss balance of the positive and negative sequence system and the ratio 
of the powers to the input power of a 315 kW 4-pole motor “A317-4” 
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Figure 3.24: Power flow of the positive and negative sequence system of a 315 kW 4-pole 
motor“A317-4” 
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The resulting inner mechanical power Pm,i,1 of the positive sequence system 
covers the additional losses Pad,asym of the asymmetrically fed machine, the 
friction and windage losses Pfw and supplies the negative sequence system with 
Pm,i,2. The losses as percentage of the electrical input power for the data in Table 
3.5 are shown in Figure 3.25. It can be seen that most of the total input power is 
absorbed as winding losses in the rotor and in the stator.  
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Figure 3.25: Measured loss balance of the positive and negative sequence system as 
percentage of the electrical input power of a 315 kW 4-pole motor “A317-4” 

 
 

3.5.2 Characteristics of the positive and negative sequence system  

Figure 3.26 shows the calculated characteristics of the current I and the 
electromagnetic internal torque Me of the positive and the negative sequence 
system at fixed supply voltage UUV = 282.2 V and at an auxiliary resistance Zeh = 
Reh = 0.25 Ohm for a 315 kW 4-pole induction motor according to the data in 
Table 3.4 by variation of the slip s. The calculation is done at reduced supply 
voltage UUV.  
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Figure 3.26: Characteristics of the calculated positive and negative sequence system of a 315 
kW 4-pole motor “A317-4”  a) Current   b) Electromagnetic internal torque 

 

 
In the range between rated speed and synchronous speed (Figure 3.26a) the 

negative sequence current I2 is bigger than the positive sequence current I1, so 
that the ratio I1/I2 < 0.3, outside this range the positive sequence current I1 
dominates. The electromagnetic internal torque of the positive sequence system 
Me1 is reduced by the braking negative sequence component Me2, this yields 
reduced resulting electromagnetic internal torque Me (Figure 3.26b). 
 

3.5.3 Influence of the auxiliary resistance on the positive and the 
negative sequence system at fixed slip 

Figure 3.27a gives the calculated voltage U1 of the positive and U2 of the 

negative sequence for a 315 kW 4-pole induction motor by variation of the 
auxiliary resistance Reh with the assumption that the slip s and the supply voltage 
UUV are constant. Figure 3.27b shows the calculated positive Me1 and negative 

Me2 sequence internal torque and the resulting torque Me. Of course in reality the 
slip s is not constant, as with varying current the electromagnetic torque varies 
too, which has to balance the load torque due to the friction, windage losses and 
the stray load losses. In Figure 3.27c the Voltage-Current-Curve of the positive 
and the negative sequences, due to varying the resistance Reh, are depicted.  

 

a) b) 
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Figure 3.27: Influence of the resistance Reh on the calculated positive and negative sequence 
system of a 315 kW 4-pole motor “A317-4”   a) Voltage   b) Electromagnetic 
internal torque  c)  Voltage-Current-Curve 

                   (Zsc: short circuit impedance) 

 
For a resistance value Reh = 0 the voltages U1 of the positive and U2 of the 

negative sequence system are equal. If the resistance Reh increases to large 

values, the positive sequence voltage U1 increases and the negative sequence 
voltage U2 decreases significantly (Figure 3.27a). A small eh-resistance value 
produces a high negative torque component Me2 and high torque pulsations. It is 
quite possible not to have enough net positive torque Me1 to overcome the 
friction and windage torque as the positive torque component Me1 is typically 
heavily reduced by the reduced supply test voltage UUV and by the effective 
reduction in positive sequence voltage U1 (Figure 3.27b). The impedances of the 
positive and the negative sequence systems are constant, as the slip s is assumed 
to be constant, as shown in the Voltage-Current-Curve by varying the resistance 
Reh (Figure 3.27c). 

a) b) 

c) 

Parameter: Reh 
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In Figure 3.28 the calculated positive I1, negative I2 sequence current and the 

ratio I1/I2 by variation of the auxiliary resistance Reh at fixed slip s and supply 
voltage UUV are presented. The value of the auxiliary resistance Reh adjusts the 

proportion of positive I1 to negative I2 sequence currents. High resistance values 

make the two current components closer to each other with the extreme being a 
phase open circuit (Reh → ∞), which would result in equal positive I1 and 

negative I2 sequence current components. The lower the value of this resistance, 

the higher is the difference in magnitude between the negative I2 and positive I1 

sequence current components (Figure 3.28). 
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Figure 3.28: Influence of the resistance Reh on the calculated positive and negative sequence 
system of a 315 kW 4-pole motor “A317-4”  a) Current   b) Ratio of currents 

                   (Zsc: short circuit impedance) 

 
Figure 3.29 shows the calculated ratio of the positive I1 and negative I2 

sequence currents for a small 11 kW and a big 1 MW 4-pole motor for variation 
of the auxiliary resistance Reh at constant slip s and supply voltage UUV. The 

ratio of the currents I1/I2 of the big motor is smaller than that of the small one. 
With increased value of the auxiliary resistance Reh the ratio I1/I2 tends to unity. 
 

a) b) 
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Figure 3.29: Influence of the resistance Reh on the calculated ratio of positive and negative 
sequence currents of an 11 kW and a 1000 kW 4-pole motors  

                   (Zsc: short circuit impedance) 

 

3.5.4 Influence of the auxiliary resistance on the positive and the 
negative sequence system at varying slip 

As mentioned earlier, the slip is not constant in reality, as with varying 
current the electromagnetic torque varies too, which has to balance the load 
torque due to the friction, windage losses and the stray load losses. The varying 
slip s was taken from the measurement on an 11 kW 4-pole motor and used for 
the calculation in Table 3.6 and in Figure 3.30a. 
 

Reh /Ohm 5.3 3.7 2.5 1.3 1.15 

Reh / Zsc 2.12 1.48 1.0 0.52 0.46 

Speed /rpm 1483.2 1468.7 1451.3 1422.2 1387.8 

I1 / I2 measured 0.19 0.21 0.248 0.29 0.40 

I1 / I2 calculated 0.158 0.207 0.251 0.32 0.40 

Table 3.6: Influence of the resistance Reh on the positive and negative sequence system of an 
11 kW 4-pole motor “E160-4”, comparison of the measurement and the 
calculation 

 
At small values of the auxiliary resistance Reh the small positive sequence 
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voltage U1 leads to a small torque ( 2
1ad,1 ~ IP ) and to big slip s due to the friction 

load, hence increasing the positive sequence current I1, so the ratio I1/I2 

increases. If the resistance Reh increases to large values, the positive sequence 

voltage U1 increases, so the slip s decreases to zero (Figure 3.30b). The negative 
sequence voltage U2 decreases significantly and so does the negative sequence 
current I2, hence the ratio I1/I2 increases again. At an infinite value of the 

resistance Reh the ratio I1/I2 = 1 (Figure 3.28b and Figure 3.29), so there exists a 

value Reh, where the ratio I1/I2 is minimum (Figure 3.30a). The impact of the 

resistance value on the slip s at eh-star measurement is given in Figure 3.30b. 
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Figure 3.30: Influence of the resistance Reh on the positive and negative sequence system of an 
11 kW 4-pole motor “A160-4”   a) comparison of measured and calculated ratio of 
currents   b) Ratio of slip at eh-measurement related to the rated slip 

                   (Zsc: short circuit impedance) 

 

3.5.5 Influence of the phase angle of the auxiliary impedance on the 
positive and the negative sequence system at fixed slip 

For the calculated data in Table 3.4 resistive auxiliary impedance 

25.0 eheh == RZ  Ohm, °= 0ehϕ  is assumed. Figure 3.31 shows the influence of 

the phase angle ϕeh of the auxiliary impedance ehj
eheh e 

ϕ⋅= ZZ  on the positive 

and the negative sequence system at constant slip s and supply voltage UUV for 

the example of a 315 kW 4-pole motor “A317-4” given in Table 3.4 if the really 

used impedance ehj
eheh e 

ϕ⋅= ZZ  is either resistive-inductive °> 0ehϕ  or 

a) b) 
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resistive-capacitive °< 0ehϕ . The deviation is related to the values at ϕeh = 0° 

and calculated for example for an assumed phase angle  ϕeh = 10° as: 

 °=°=°=°= −=Δ 0101101101 |/)||(| ϕϕϕϕ UUUU . (3.120)

In case of slightly resistive-capacitive or slightly resistive-inductive 

behaviour °≤≤°− 1010 ehϕ  the deviation of the positive sequence voltage U1 is 

smaller than 1.5 % whereas the negative sequence voltage U2 varies within 
4.5 %. The variation of the ratio of currents I1/I2 is smaller than 3 %. The 
influence of the high resistive-capacitive impedance on the positive and the 
negative sequence system at constant slip s and supply voltage UUV is much 

higher than the influence of the resistive-inductive behaviour, especially for the 
negative sequence system. 
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Figure 3.31: Influence of the phase angle ϕeh of the auxiliary impedance on the calculated 

positive and negative sequence system of a 315 kW 4-pole motor “A317-4”          
a) Deviation of voltages   b) Deviation of ratio of currents  

                   The deviation is related to the values at  ϕeh = 0°  

 

3.5.6 Influence of the temperature on the positive and the negative 
sequence system at fixed slip 

The influence of the winding temperature on the positive and the negative 
sequence system at constant slip s and supply voltage UUV for the example of a 

315 kW 4-pole is presented in Figure 3.32.  

a) b) 
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Figure 3.32: Influence of the temperature on the calculated positive and negative sequence 
system of a 315 kW 4-pole motor “A317-4”  a) Voltage   b) Electromagnetic 
internal torque  c) Current   d) Ratio of the currents 

 
The Figures show that the influence of the winding temperature on the 

voltages of the positive U1 and the negative U2 sequence system is very small. A 
20 K variation of the winding temperature corresponds to about 6 % deviation of 
the positive I1 and 1 % of the negative I2 sequence currents leading to about 7 % 
deviation of the positive Me1 and 2 % of the negative Me2 sequence 
electromagnetic internal torque. 
 

3.5.7 Impact of error in the determination of the winding temperature 
on the simulated stray load losses 

To show the impact of an error in the determination of the winding 
temperature on the calculated stray load losses, the resulting simulated r.m.s. 

a) b) 

c) d) 
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values of the asymmetric three phase voltages and currents as well as the 
terminal power data (output data in Table 3.4) are taken as ,,measured” values. 
The evaluation of the stray load losses Pad is done at different assumed 
temperatures. That means, if the temperature is measured with a certain error. 

Figure 3.33a shows the influence of overestimated winding temperature on 
the simulated stray load losses Pad for a cold machine. The deviation is related to 
the “true” value Pad,true = 16.89 kW at 30°C winding temperature. 

Figure 3.33b shows the influence of underestimated winding temperature on 
the simulated stray load losses Pad for a warm machine. The deviation is related 
to the “true” value Pad,true = 10.6 kW at 100°C winding temperature. 
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Figure 3.33: Impact of error in the determination of the winding temperature on the calculated 
stray load losses of a 315 kW 4-pole motor “A317-4”   a) Overestimated 

temperature ϑrefer = 30°C   b) Underestimated temperature  ϑrefer = 100°C 

 
An error of 20 K in the determination of the winding temperature corresponds 

for the cold machine to 2.5 % and for the warm machine to 3.8 % deviation of 
the stray load losses Pad from the “true” value Pad,true. If the winding temperature 
is underestimated by 20 K the deviations are the same.  
 

3.6 Comparison of methods A, A1, B and C with a theoretical 
example 

With a theoretical model of a small 11 kW 4-pole motor (TEFC), according 
to the T-equivalent circuit (Figure 3.22) and the data of Table 3.7, the different 

a) b) 
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evaluation methods A, A1, B and C will be compared in the following.  
The resulting simulated r.m.s. values of the asymmetric three phase voltages 

and currents as well as the terminal power data (output data in Table 3.7) are 
taken as ,,measured” values for the comparison of the evaluation methods A, A1, 
B and C. The decomposition of the current phasors into real and imaginary part, 
which is needed for the stray load losses evaluation in the eh-star method, is 
done by different evaluation methods.  

 

Input data    Model    Output data 

Rated line-to-line 
voltage 

UN / V 400.0 
 

Line-to-line 
voltage 

UUV /V 151.8 

Rated line current IN / A 21.62 
 

Line-to-line 
voltage 

UVW /V 168.0 

No-load line current I0 / A 10.92 
 

Line-to-line 
voltage 

UWU /V 40.25 

Number of poles 2p  4  Phase current IU /A 25.86 
Frequency f  /Hz 50  Phase current IV /A 30.08 
Rated iron losses PFeN /W 312.4  Phase current IW /A 19.07 
Rated friction & 
windage losses 

PfwN /W 71.38 
 

Motor input 
power 

Pe,in /W 2261 

Stator phase resistance Rs, 20°C / Ω  0.36  input power UV Pe,in_UV/W 3871 

Skin-effect_stator Rad,s / Ω 0  input power WV Pe,in_WV/W -1610 

Stator stray reactance Xsσ / Ω 0.85  Eh-resistance Reh /Ω 2.11 

Magnetizing reactance Xh / Ω 35.9  Eh-reactance Xeh /Ω 0 

Rotor resistance (s = 1) R'r, 20°C, s=1 /Ω 0.345  Pos. seq. impedance Z1 /Ω 10.02 

Rotor resistance (s = 0) R'r, 20°C, s=0 /Ω 0.215  Neg. seq. impedance Z2 /Ω 1.73 

Rotor stray reactance X'rσ  / Ω 0.92  Pos. seq. current I1 /A 6.25 

Eh-impedance Zeh /Ω 2.11  Neg. seq. current I2 /A 24.59 

Eh-phase angle ϕeh /° 0  Pos. seq. voltage U1 /V 61.55 

Line-to-line voltage UUV /V 151.8  Neg. seq. voltage U2 /V 40.13 
Speed n /rpm 1466.6  Internal Torque Me /Nm 3.77 

Winding temperature ϑ  /°C 30.5  Stray load losses  Pad /W 479.6 

Table 3.7: Input and output data for theoretical model of an 11 kW 4-pole motor (TEFC) 
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3.6.1 Influence of the phase angle of the auxiliary impedance on the 
stray load losses evaluation with methods A and A1 

The value of the auxiliary impedance ehj
eheh e 

ϕ⋅= ZZ  does not influence 

numerically the calculation result in methods B and C (see sections 3.2.2.3 and 

3.2.2.4), therefore only the influence of the phase angle ϕeh of the impedance Zeh 

on the eh-star evaluation with method A and A1 is presented. 
With both evaluation methods A and A1 a resistive auxiliary impedance 

eheh ZR =  is assumed. If the really used impedance ehj
eheh e 

ϕ⋅= ZZ  is either 

resistive-inductive °> 0ehϕ  or resistive-capacitive °< 0ehϕ , the evaluation 

methods A and A1 will give slightly wrong results. So we ask: How big is the 

influence of the phase angle ϕeh on the deviation of ,,evaluated” additional losses 

from the ,,true” additional losses Pad, given in Table 3.7 (output data) ? The 
calculated deviation of stray load losses Pad_A, Pad_A1 and of the check input 
power Pcont_A, Pcont_A1 with methods A and A1 from the ,,true” values of the stray 

load losses Pad and the input power Pe,in for an assumed phase angle ϕeh of the 

impedance Zeh is given for an 11 kW 4-pole motor in Table 3.8 and presented in 
Figure 3.34. 

 

Zeh = 2.1 Ω Resistor-capacitor Ohmic Resistor-inductor 

Phase angle ϕeh /° -15 -10 -5 -2 0 2 5 10 15 

(Pad_A1 - Pad)/Pad  /% 136 87 42 16.5 0.00 -16.1 -40 -77 -114 Method 
A1 (Pcont_A1 - Pe,in)/Pe,in  /% -43 -28 -14 -5.3 0.00 5.2 13 24 35 

(Pad_A - Pad)/Pad  /% -4.5 -1.8 -0.43 -0.07 0.00 -0.06 -0.4 -1.4 -3 Method 
A (Pcont_A - Pe,in)/Pe,in  /% 1.33 0.56 0.13 0.02 0.00 0.02 0.12 0.48 1.04 

Table 3.8: Influence of the phase angle ϕeh on the evaluated stray load losses with method A 

and method A1 for an 11 kW 4-pole motor 

 

For purely resistive behaviour °== 0  , eheheh ϕRZ  the evaluated stray load 

losses determined by the two methods A and A1 are identical with the ,,true” 
value Pad = 479.6 W (Table 3.7). In case of slightly resistive-capacitive or 

slightly resistive-inductive behaviour °≤≤°− 1010 ehϕ  the deviation of the stray 
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load losses Pad_A from the ,,true” value Pad is smaller than 2 %. Figure 3.34b 
shows that the check power Pcont is a good indicator for the model and the 
measurement accuracy in eh-star stray load losses determination. A 2 % 
deviation of the stray load losses Pad_A from the ,,true” value Pad corresponds to 
0.6 % deviation of the check power Pcont_A from the ,,true” value Pe,in. In 
comparison, the deviation of the stray load losses Pad_A1 evaluated with the 
method A1 is with 87 % much bigger and corresponds to about 28 % deviation 
of the check power Pcont_A1 from the ,,true” value Pe,in. Hence, a big deviation of 
the check power Pcont from the input power Pe,in indicates a big difference of the 
evaluated stray load losses Pad from the ,,true” value. 
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Figure 3.34: Calculated influence of the phase angle ϕeh on the evaluation methods A and A1 

for an 11 kW 4-pole motor  a) Deviation of stray load losses Pad   b) Deviation of 
check input power Pcont  

 

3.6.2 Impact of error in the determination of the auxiliary resistance on 
the eh-star evaluation with methods A and A1 

The value of the auxiliary impedance ehj
eheh e 

ϕ⋅= ZZ  does not influence 

numerically the calculation result with methods B and C (see sections 3.2.2.3 
and 3.2.2.4), therefore only the influence of the impedance Zeh on the eh-star 
evaluation with method A and A1 is presented. Even if the impedance Zeh is in 
reality purely resistive, Zeh = Reh, its absolute value Reh may be influenced by an 
unknown temperature rise or by a measurement error. We assume a deviation 

a) b) 
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ΔReh of the auxiliary resistance Reh from the true value Reh,true = 2.1 Ω 

 ehtrueeh,eh RRR Δ+= . (3.121)

This calculated influence of varying ΔReh on the evaluated stray load losses 
Pad_A, Pad_A1 with methods A and A1 at a fixed supply voltage UUV and a fixed 

slip s and its deviation from the ,,true” value of the Table 3.7 for ΔReh =0 is 

given in Figure 3.35. 
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Figure 3.35: Calculated impact of error in the determination of the auxiliary resistance on the 
evaluation methods A and A1 for a 11 kW 4-pole motor   a) Deviation of stray 
load losses Pad   b) Deviation of check input power Pcont  

 
The deviations of evaluated stray load losses with both methods A and A1 

from the true Pad vary linearly with the variation of the auxiliary resistance Reh. 
A 5 % deviation of the auxiliary resistance from the true value Reh,true results in a 
-5 % deviation of the evaluated stray load losses with method A and 11 % 
deviation with method A1 from the ,,true” value Pad. It corresponds to 2 % 
deviation of the check input power Pcont_A and -6 % deviation of Pcont_A1 from the 
true value Pe,in. Figure 3.35 shows that the evaluation method A1 is more 
sensitive to an error in the determination of the auxiliary resistance Reh than 
method A. 
 

a) b) 
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3.7 Comparison of methods A, A1, B and C for measured motors 

The stray load losses of totally enclosed, fan-cooled standard squirrel cage 
induction motors (TEFC) from different manufacturers (different design) with 
different frame size 315 mm, 160 mm, 132 mm, 80 mm and different pole count 
2, 4, 6 were measured by the eh-star method. The comparison of the evaluated 
stray load losses with the different methods A, A1, B and C is given for different 
motors in the following. As the evaluation methods A and A1 are similar and 
both use an auxiliary ohmic respectively purely ohmic resistance Reh, these 
methods will be compared first.  

 

3.7.1 Comparison of the evaluation methods A and A1 for a small and a 
big motor  

The deviation of the measured stray load losses Pad_A1 evaluated with the 
method A1 from the values Pad_A determined with the method A is presented in 
Table 3.9 for a small 11 kW 4-pole motor “A160-4” and in Table 3.10 for a big 
315 kW 4-pole motor “A317-4”. The deviation of the checked motor input 
power Pcont from the measured input power Pe,in is also given. 

 
In Table 3.9 and Table 3.10 the deviation of the measured stray load losses 

Pad_A1 evaluated with method A1 from the values Pad_A evaluated with method A 
is big (11 % - 35 %). The check value of the calculated motor input power 
Pcont_A1 varies for the method A1 between 2 % - 7 %, with method A only within 
0.04 %. This shows clearly that method A should be preferred for the evaluation 
of the eh-star measurement results. 
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Test points 1 2 3 4 5 6 

I2/It,N 1.45 1.31 1.14 1.09 0.96 0.71 

I1/I2 0.22 0.22 0.22 0.22 0.23 0.26 

Pad_A  /W 293 236 184 167 134 80 

(Pad_A1 - Pad_A)/Pad_A  /% -29 -32 -33 -34 -35 -35 

(Pcont_A1 - Pe,in)/Pe,in  /% 5.53 5.76 5.99 6.10 6.33 6.53 

(Pcont_A - Pe,in)/Pe,in  /% 0.03 0.04 0.04 0.04 0.04 0.04 

Table 3.9: Comparison of the evaluation methods A and A1 for the measured six test points of 
a small 11 kW 4-pole motor “A160-4” 

 

Test points 1 2 3 4 5 6 

I2/It,N 1.43 1.31 1.20 1.08 0.98 0.79 

I1/I2 0.16 0.16 0.16 0.16 0.16 0.17 

Pad_A  /W 3198 2656 2230 1790 1539 881 

(Pad_A1 - Pad_A)/Pad_A  /% -13 -11.3 -10.9 -11.0 -14.6 -18.7 

(Pcont_A1 - Pe,in)/Pe,in  /% 1.30 1.09 1.03 1.02 1.44 1.57 

(Pcont_A - Pe,in)/Pe,in  /% 0.001 0.001 0.001 0.001 0.001 0.001 

Table 3.10: Comparison of the evaluation methods A and A1 for the measured six test points 
of a big 315 kW 4-pole motor “A317-4”  

 
The comparison of the evaluated stray load losses with the two methods A 

and A1 is given for different TEFC motors in Table 3.11. The deviation of the 
evaluated stray load losses Pad_A1 with the method A1 from the values 
determined with the method A varies, for an auxiliary ohmic resistance Reh, 
between 10 % and 60 %. It corresponds to up to 10 % deviation of the check 
input power Pcont_A1 from the measured input power Pe,in. The stray load loss 
values evaluated with the method A are reliable, as the simulation studies have 
shown, whereas the method A1 is leading to wrong results and should not be 
used. 
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A317-4 A160-4 E160-4 A160-2 C160-2 A132-6 A132-4

Tested motors 315 kW,

4pole 
11 kW,

4pole 

11 kW, 

4pole 

11 kW,

2pole 

11 kW, 

2pole 

5.5 kW, 

6pole 

5.5 kW,

4pole 

Pad_A /W 1578 133 303 188 127 72 136 

(Pcont_A - Pe,in)/Pe,in  /% 0.001 0.04 0.06 0.2 0.12 0.04 0.05 

Pad_A1 /W 1419 97 212 140 54 30 73 

(Pcont_A1 - Pe,in)/Pe,in  /% 1.24 6.04 10.6 7.64 8.17 7.74 8.9 

(Pad_A1-Pad_A)/Pad_A  /% -10 -27 -30 -26 -57 -58 -46 

Table 3.11: Evaluation of stray load losses with methods A and A1 for different motors 

 

3.7.2 Influence of the unbalanced auxiliary impedance on the eh-star 
measurement 

To investigate the impact of the phase angle ϕeh of the auxiliary impedance 

Zeh on the eh-star measurement and on the evaluation of stray load losses with 
the two methods A and A1, two measurements with different unbalanced 
impedances were done: 

1) An inductor with an inductance Lind = 0.635 mH and a small resistive 
component Rind = 0.042 Ohm is used in series with the ohmic resistance 
Reh = 1.95 Ohm. So the influence of the resistive component of the 
inductance on the impedance Zeh is negligible. The phase angle of the 

resistive-inductive auxiliary impedance is ϕeh = 5.6°.  

2) A capacitor with the capacitance Ccap = 0.169 mF is used in parallel with 
the ohmic resistance Reh = 1.95 Ohm. The phase angle of the resistive-

capacitive auxiliary impedance is ϕeh  = -5.9°. 

Table 3.12 shows the impact of the unbalanced impedance on the eh-star 
measurement. The influence of the slightly resistive-inductive or slightly 
resistive-capacitive auxiliary impedance on the eh-star measurement is small. 
The deviations of the stray load losses evaluated with the method C, which is 
independent from the impedance type, are within 4 %. This small deviation of 
4 % is also obtained with method A, where the deviation evaluated with method 
A1 is very big 109 % respectively 100 %. This shows clearly that method A1 
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should not be used for the evaluation of the eh-star measurement results. 
 

Auxiliary 

impedance Zeh 
Ohmic 

resistor- 

inductor 

Deviation 

Inductor/Ohmic 

resistor- 

capacitor 

Deviation 

Capacitor/Ohmic 

Phase angle ϕeh 0.6° 5.6°  -5.9°  

I1 / I2 0.232 0.229 -1.38 % 0.233 0.43 % 

Pad_A  /W 133 128 -3.56 % 127 -4.31 % 

Pad_A1  /W 97 -9 -109 % 193 100 % 

Pad_C  /W 133 131 -1.11 % 128 -3.96 % 

Table 3.12: Impact of the unbalanced impedance Zeh on the eh-star measurement for an 11 kW 
4-pole motor “A160-4” 

 
The impact of the unbalanced impedance on the evaluation of the stray load 

losses with the methods A and A1, compared with the evaluation method C, is 
given in Table 3.13 and presented in Figure 3.36. The deviation of the evaluated 
stray load losses with the method A1 from the method A varies, for a small 

phase angle ϕeh, between 27 % and 107 %. The check value of the calculated 

motor input power Pcont_A1 varies for the method A1 between 6 % - 20 %, 
whereas the value Pcont_A evaluated with the method A varies only within 0.5 % 
from the measured input power Pe,in.  
 

Auxiliary impedance Zeh Ohmic resistor-inductor resistor-capacitor 

Phase angle ϕeh 0.6° 5.6° -5.9° 

I1 / I2 0.232 0.229 0.233 

Pad_A  /W 133 128 127 

Pad_A1  /W 97 -9 193 

(Pad_A1 - Pad_A)/Pad_A  /% -27 -107 52 

(Pad_C - Pad_A)/Pad_A  /% 0.2 2.7 0.6 

(Pcont_A - Pe,in)/Pe,in  /% 0.04 0.45 0.08 

(Pcont_A1 - Pe,in)/Pe,in  /% 6 20 -9 

Table 3.13: Measured influence of the unbalanced impedance Zeh on the evaluation of stray 
load losses with methods A and A1 for an 11 kW 4-pole motor “A160-4” 
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Figure 3.36: Measured impact of the unbalanced impedance Zeh on the evaluation of stray load 
losses with methods A and A1 compared with method C for an 11 kW 4-pole 
motor “A160-4”  

 
This example shows clearly, that the evaluation method A, if not method C, 

should be preferred for the evaluation of the eh-star measurement results. 
Method A1 should not be used ! 
 

3.7.3 Impact of the measurement error in electrical quantities on the 
evaluation methods A, A1, B and C 

To show the influence of the measurement error on the evaluation of stray 
load losses with the different methods A, A1, B and C, an instrument accuracy 
of 0.2 % for electrical quantities acc. to IEC 61972 is assumed. In Table 3.14 
and Table 3.15 each measured parameter is modified separately by +0.2 %. The 
results are presented for one load point of the eh-star measurement. 
 

+0.2 % error Input power Line-to-line voltages Phase currents 

A160-4 Method Pe,in UUV UVW UWU IU IV IW 

A -1.04 -0.69 1.09 0.34 1.50 2.83 -2.55 

A1 0.00 -10.0 9.43 0.19 -0.63 4.29 -2.69 

B 2.59 -4.22 1.04 0.31 -2.20 3.13 -2.75 

Deviation of 
stray load 
loss in % 

C -1.05 -0.60 1.03 0.34 1.52 2.83 -2.55 

Table 3.14: Influence of the +0.2 % measurement error on evaluated the stray load losses with 
methods A, A1, B and C for on load point of an 11 kW 4-pole motor “A160-4” 
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+0.2 % error Input power Line-to-line voltages Phase currents 

A160-4 Method Pe,in UUV UVW UWU IU IV IW 

A 0.03 0.05 0.02 0.03 0.04 0.03 0.03 

A1 5.32 6.76 4.47 5.57 5.87 5.53 5.40 

B -0.04 0.15 0.05 0.06 0.15 0.05 0.06 

Deviation of 
check input 
power in % 

C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 3.15: Influence of the +0.2 % measurement error on the evaluation methods A, A1, B 
and C for on load point of an 11 kW 4-pole motor “A160-4” 

 
Table 3.14, Table 3.15 and Figure 3.37 - Figure 3.39 show that in most cases 

the evaluation method A1 followed by method B are more sensitive to 
measurement error than methods A and C. This is also given through the 
deviation of the check input power. The impact of measurement error on the 
stray load losses evaluation with the methods A and C is the same. The influence 
of the phase currents IV and IW is higher than the influence of the remaining 
parameters. 
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Figure 3.37: Influence of the +0.2 % measurement error on the evaluation methods A, A1, B 
and C for one load point of an 11 kW 4-pole motor “A160-4”  (Deviation of the 
stray load losses Pad) 
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Figure 3.38: Influence of the +0.2 % measurement error on the evaluation methods A, A1, B 
and C for one load point of an 11 kW 4-pole motor “A160-4” (Deviation of the 
check input power Pcont) 
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Figure 3.39: Influence of the +1 % measurement error on the stray load losses evaluated with 
methods A, A1, B and C for an 11 kW 4-pole motor “A160-4”   (Deviation of the 
resulting stray load losses over the six test points) 

 
For the resulting stray load losses, over six test points, the impact of +1 % 

measurement error is given for different motors (1.1 kW 2-pole, 5.5 kW 6-pole, 
11 kW 4-pole and 315 kW 4-pole) in Table 3.16. As the method A1 is more 
sensitive to measurement error than other methods, only the methods A, B and C 
are presented. 

One can see in Table 3.16 that in most cases the evaluation method B is more 
sensitive to measurement errors than methods A and C. The impact of the 
measurement error on the stray load losses evaluation by methods A and C is the 
same, and can be seen from the average values over all the motor ratings, 
arranged from higher to lower, where the phase currents IW > IV > IU and the 
voltages UUV > UVW > UWU.  
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+1 % error  Motor/Method Pe,in UUV UVW UWU IU IV IW 

A -0.11 -14.21 6.56 5.73 2.10 11.03 -11.42 

B 6.49 -22.77 6.64 7.43 -3.12 6.48 -7.96 
B80-2 

1.1 kW 
C -0.11 -14.19 6.56 5.73 2.10 11.03 -11.42 

A -6.49 -7.24 8.66 1.86 8.33 15.46 -15.28 

B 13.21 -25.57 8.20 1.28 -13.01 19.96 -18.14 
A132-6 

5.5 kW 
C -6.55 -6.32 8.25 1.87 8.47 15.35 -15.25 

A -5.25 -4.02 5.14 1.77 6.68 14.12 -14.14 

B 11.61 -20.67 5.05 1.82 -10.22 14.38 -14.19 
A160-4 

11 kW 
C -5.30 -3.42 4.96 1.78 6.81 14.08 -14.16 

A -9.59 -6.39 9.30 3.60 22.49 31.70 -43.98 

B 41.06 -54.69 9.77 1.90 -29.70 38.06 -48.73 

Deviation  

of the  stray 

 load loss in 

% 

A317-4 

315 kW 
C -9.59 -5.60 9.84 3.62 22.59 31.69 -43.98 

Table 3.16: Influence of the +1 % measurement error on the stray load losses evaluated with 
methods A, B and C for different motor rating 

 
These examples show clearly that the evaluation methods A1 and B should 

not be used for the evaluation of the eh-star measurement results ! 
 

3.7.4 Comparison of the evaluation methods A, B and C for measured 
motors  

The comparison of the evaluation methods A, B and C for different measured 
TEFC induction motors is presented in Table 3.17. 
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A317-4 A160-2 A160-6 A160-4 E160-4 A132-6 A132-4 B80-2 
Tested motors 315 kW, 

4pole 

11 kW,

2pole 

11 kW,

6pole 

11 kW,

4pole 

11 kW,

4pole 

5.5 kW, 

6pole 

5.5 kW, 

4pole 

1.1 kW,

2pole 

I1 / I2 0.16 0.22 0.25 0.22 0.23 0.3 0.26 0.25 

Pad_A /W 1578 188 133 133 303 72 136 27 

ΔPcont_A/Pe,in /% 0.001 0.2 0.08 0.04 0.06 0.04 0.05 0.01 

Pad_B /W 1606 189 133 131 291 72 132 26 

ΔPcont_B/Pe,in /% 0.01 0.01 0.01 0.06 0.1 0.01 0.09 0.1 

Pad_C /W 1578 190 133 133 303 72 137 27 

ΔPcont_C/Pe,in /% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ΔPad_B/Pad_A /% 1.8 0.12 0.08 -1.6 -3.8 -0.5 -3.1 -1.3 

ΔPad_C/Pad_A /% 0.008 0.7 0.5 0.2 0.2 0.4 0.3 0.0 

Table 3.17: Evaluation of stray load losses with methods A, B and C for different motors 

 
The deviation of the evaluated stray load losses Pad_A with the simple method 

A from the values determined with the more accurate method C, for an auxiliary 
ohmic resistance Reh, is smaller than 1 %, whereas the deviation between 
methods A and B is up to 4 %. This shows clearly that methods C and A should 
be preferred for the evaluation of the eh-star measurement results. 
 

3.8 Influences of measurement parameters on eh-star results 

In this section the influence of the value of the auxiliary resistance Reh, the 
winding temperature on the measured stray load losses and the repeatability of 
the eh-star measurement will be shown. 

 

3.8.1 Influence of the auxiliary resistance on measured stray load losses 

As mentioned earlier, the value of the auxiliary resistance Reh shall be 
adjusted, so that the proportion of the positive I1 to the negative sequence current 
I2 stays below 30 %, to get some main flux, and the speed stays typically in the 
range of rated speed.  

The influence of the value of the auxiliary resistance Reh on the measured 
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stray load losses is presented for different motors in Table 3.18 to Table 3.22. 
The data are evaluated with the method A and are given for rated load current 
I2/It,N = 1. For some motors, especially the small 1.1 kW 2-pole motors and the 

11 kW 2-pole motor “A160-2”, the measurements were done with a higher value 
of the auxiliary resistance Reh than the short circuit impedances value Zsc (20 % 
of rated impedance) of the motors, as the motors break down from synchronous 
to very low speed and may overheat and the ratio I1/I2 increases over 0.3.  

The examples in Table 3.18 to Table 3.22 show that with increasing value of 
the auxiliary resistance Reh, the slip s, the ratio I1/I2 and the stray load losses Pad 

decrease. The exception is the small 1.1 kW 2-pole motor “B80-2”, where the 
stray load losses Pad increase (see Table 3.22).  
 

Measured motors 11 kW A160-4 E160-4 

Reh / Zsc 0.04 1.0 2.11 5.06 0.04 1.22 5.26 

I1 / I2 0.4 0.23 0.19 0.29 0.34 0.23 0.27 

Pad /W 126 130 122 108 316 302 186 

Deviation /% -3.4 0.00 -6.3 -17 4.7 0.00 -38 

Speed /rpm 1378 1464 1485 1496 1418 1468 1495 

Average winding temp. /°C 35 37 38 38 36 37 36 

Table 3.18: Influence of the auxiliary resistance on the measured stray load losses for 11 kW 
4-pole motors “A160-4” and “E160-4” 

 

Measured motors 11 kW A160-2 C160-2 

Reh / Zsc 2.0 2.4 3.0 3.0 3.0 3.0 1.0 2.0 2.9 

I1 / I2 0.28 0.26 0.22 0.23 0.22 0.23 0.27 0.2 0.18 

Pad /W 202 198 188 182 184 201 127 128 110 

Deviation /% 7 5 0.0 -3.3 -2.2 6.4 0.00 0.53 -14 

Speed /rpm 2928 2940 2963 2964 2960 2956 2925 2964 2980

Average winding temp. /°C 66 50 50 50 54 67 47 47 43 

Table 3.19: Influence of the auxiliary resistance on the measured stray load losses for 11 kW 
2-pole motors “A160-2” and “C160-2” 
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Measured motors 5.5 kW A132-6 B132-6 

Reh / Zsc 0.8 1.05 1.36 2.0 3.5 1.0 1.0 2.6 

I1 / I2 0.36 0.32 0.28 0.26 0.27 0.49 0.52 0.34 

Pad /W 75 73 72 66 43.6 178 180 173 

Deviation /% 3.3 0.00 -1.2 -9.6 -40 0.00 1.2 -2.9 

Speed /rpm 949 961 971 981 990 924 910 979 

Average winding temp. /°C 38 39 42 36 39 32 52 34 

Table 3.20: Influence of the auxiliary resistance on the measured stray load losses for 5.5 kW 
6-pole motors “A132-6” and “B132-6” 

 

Measured motors 5.5 kW C132-6 

Reh / Zsc 0.7 1.0 1.0 1.8 

I1 / I2 0.29 0.27 0.27 0.25 

Pad /W 60 58 57 43 

Deviation /% 4.13 0.00 -2.4 -26 

Speed /rpm 960 969 969 979 

Average winding temp. /°C 35 37 35 37 

Table 3.21: Influence of the auxiliary resistance on the measured stray load losses for 5.5 kW 
6-pole motor “C132-6” 

 

Measured motors 1.1 kW A80-2 B80-2 C80-2 D80-2 

Reh / Zsc 2.08 3.26 2.02 3.02 3.14 1.93 3.81 2.30 3.60 

I1 / I2 0.23 0.21 0.26 0.25 0.25 0.33 0.26 0.41 0.28 

Pad /W 9.9 7.9 24.7 26.8 27.5 36.9 34.4 56.4 49.8 

Deviation /% 0.00 -21 0.00 8.6 11 0.00 -7 0.00 -12 

Speed /rpm 2907 2954 2910 2950 2955 2833 2950 2714 2870

Average winding temp. /°C 43 42 40 37 39 44 45 36 37 

Table 3.22: Influence of the auxiliary resistance on the measured stray load losses for 1.1 kW 
2-pole motors  

 
The influence of the value of the auxiliary resistance Reh on the measured 

stray load losses at small variation of the auxiliary resistance Reh is not big, as 

long as the ratio I1/I2 is sufficiently small (< 0.3) and the speed stays in the range 

of the rated speed. 
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3.8.2 Impact of the winding temperature determination on the eh-star 
evaluation 

Due to the asymmetric operation during the eh-star test, the heating of the 
three phase resistances is unequal. The maximum current flows in the phase V 
during the asymmetric eh-star test, in the phase U flows the medium current and 
in the phase W flows the minimum current. This leads to different heating of the 
three phase windings. For more accurate evaluation of the stray load losses, one 
should measure all three phase resistances separately for each test point. As this 
is too much effort for an economic test procedure, the temperature is measured 
at the beginning and end of the test. The average value of the hottest phase V and 
the coldest phase W leads to an “average” temperature rise for calculating the 
stator winding resistive losses ! So the line-to-line resistance between terminals 
V and W is used. For the test points between the first load point IV/IN = 1.5 and 
the fifth load point IV/IN = 1.0 the linear interpolation of the temperature is used 
(see Figure 3.14 and Figure 3.40). 

 
Note: 

It is not recommended to determine the winding temperature from the reading 
of thermocouples, due to the unequal heating of the three phases, if their 
positions are unknown (see Figure 3.40). Only if the positions of the 
thermocouples are exactly known, then the use of thermocouples could be 
recommended.  
 
The determined winding temperature of each phase for the last measured load 

point (at the end of the test) is exact, due to the extrapolation of the measured 
resistances to the zero-switch-off time. On the basis of this load point 
(IV/IN = 0.75) a comparison of the impact of the winding temperature 
determination, from the measured resistance of all the three phases separately 
and of the line-to-line resistance VW (as average value), on the stray load losses 
is given for an 11 kW 4-pole motor “A160-4” in Table 3.23. 
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Winding temperature determined from measured 
Measured motor A160-4 

Line-to-line resistance Phase resistances 

VW U V W 
Winding temperature / °C 

46.7 45.8 50.0 43.4 

Stray load losses Pad_A /W 78.55 78.35 

Deviation 0.25 % 

Table 3.23: Impact of the winding temperature determination on the eh-star evaluation for an 
11 kW 4-pole motor “A160-4” at end of the test (I2/ItN = 0.7) 

 
The influence of the winding temperature determination from the measured 

resistance of all the three phases separately and of the line-to-line resistance VW 
(as average value) on the resulting stray load losses at rated load current (I2/ItN = 
1) is given for an 11 kW 4-pole motor “A160-4” in Table 3.24.  

The deviations presented in Table 3.23 and Table 3.24 are identical, so the 
measurement of the line-to-line resistance VW is completely sufficient. 
 

Winding temperature determined from measured 
Measured motor A160-4 

Line-to-line resistance Phase resistances 

VW U V W 
Average winding temperature / °C 

42.1 41.6 43.7 40.4 

Stray load losses Pad_A /W 134.95 135.09 

Deviation -0.106 % 

Table 3.24: Impact of the winding temperature determination on the eh-star evaluation for an 
11 kW 4-pole motor “A160-4” at rated load (I2/ItN = 1) 

 
The winding temperature determined from the measured line-to-line 

resistance VW and the reading (average value) of two thermocouples placed in 
the winding overhang (on the drive and non drive sides), where the exact 
positions are unknown, is shown for an 11 kW 4-pole motor “D160-4” in Figure 
3.40. The deviation of the stray load losses is about 13 %. 
 



3  Eh-star method  126 

20

25

30

35

40

45

50

55

0.50.60.70.80.91.01.11.21.31.41.51.6

Load point current: (I V / I N)

W
in

di
ng

 te
m

pe
ra

tu
re

 /°
C

Res is tance_VW_Interpolation

Therm ocouples_Winding-overhang

 

Figure 3.40: Influence of the winding temperature determination on the stray load losses for 
an 11 kW 4-pole motor “D160-4” 

 

3.8.3 Impact of the winding temperature on the stray load losses 

To show the influence of the winding temperature on the eh-star test, four 
measurements at different temperatures were done. The measurement time for 

each test is the same, so the temperature difference ϑdiff ( = ϑend - ϑbegin) is 

determined only by the current flow during the test.  
The influence of the winding temperature on the stray load losses 

measurement is given in Table 3.25 and presented in the Figure 3.41. The 
deviation of the stray load losses is related to the measurement “warm” as 
typical value of the no load test temperature. 

 

A160-4 ϑbegin /°C ϑend /°C ϑav /°C ϑdiff /°C Pad_A /W Offset /W ΔPad_A/warm 

Cold 27.7 40.2 34.0 12.5 129.85 17.13 -2.70 % 

Warm 37.9 48.3 43.1 10.4 133.45 9.41 0.00 % 

Warm1 46.8 54.4 50.6 7.6 135.16 4.23 1.28% 

Warm2 61.9 64.8 63.3 3.0 135.98 -0.59 1.90 % 

Table 3.25: Influence of the winding temperature on the stray load losses for an 11 kW 4-pole 
motor “A160-4”  

 

Table 3.25 shows that a 20 K variation of the average winding temperature 
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ϑav at warm motor corresponds to 2 % deviation of evaluated stray load losses, 

and a 30 K variation of ϑav at cold motor leads to about 5 % deviation of 

evaluated stray load losses. It had to be noted, that there is a dependence 

between the temperature difference ϑdiff and the offset (the offset is the intercept 

of the measured curve Pad = f((I2/It,N)²) with the ordinate). The smaller the 

temperature difference ϑdiff, the less the offset. 
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Figure 3.41: Influence of the winding temperature on the stray load losses for an 11 kW 4-
pole motor “A160-4” 

 
The impact of the winding temperature on the stray load losses measurement 

is given for the 11 kW 2-pole motors “A160-2”, “B160-2” and the 5.5 kW 6-
pole motors “B132-6”, “D132-6” in Table 3.26 and for a 55 kW 2-pole motor in 
Table 3.28 and presented in the Figure 3.42. 
 

Measured motors 11 kW A160-2 B160-2 

I1 / I2 0.22 0.23 0.22 0.23 0.21 0.21 

Pad /W 188 182 184 201 102 110 

Deviation /% 0.0 -3.3 -2.2 6.4 0.0 7.4 

Speed /rpm 2963 2964 2960 2956 2957 2947 

Average winding temp. /°C 50 50 54 67 37 52 

Begin-End winding temp. /°C 42-58 41-58 41-66 56-78 25-50 42-62 

Table 3.26: Influence of the winding temperature on the measured stray load losses for 11 kW 
2-pole motors “A160-2” and “B160-2”  
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Measured motors 5.5 kW B132-6 D132-6 

I1 / I2 0.49 0.52 0.26 0.26 

Pad /W 178 181 39 41 

Deviation /% 0.0 1.2 0.0 3.7 

Speed /rpm 924 910 973 973 

Average winding temp. /°C 32 52 34 49 

Begin-End winding temp. /°C 25-39 50-54 26-43 44-54 

Table 3.27: Influence of the winding temperature on the measured stray load losses for 5.5 kW 
6-pole motors “B132-6” and “D132-6” 

 

Measured motor 55 kW 2-pole motor, 60 Hz 

I1 / I2 0.26 0.25 0.24 0.25 

Pad /W 788 824 843 791 

Deviation /% -6.5 -2.2 0.00 -6.2 

Speed /rpm 3574 3577 3580 3575 

Average winding temperature /°C 37 25 44 56 

Begin-End winding temperature /°C 21-53 23-28 43-45 46-66 

Table 3.28: Influence of the winding temperature on the measured stray load losses for a 55 
kW 2-pole motor, 60 Hz  (Measurement done by P. Angers, LTE-Hydro-Québec, 
Institut de recherche Canada, 2007 [Ange 2007]) 
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Figure 3.42: Influence of the winding temperature on the stray load losses for a 55 kW 2-pole 
motor, 60 Hz  (Measurement done by P. Angers, LTE-Hydro-Québec, Institut de 
recherche Canada, 2007 [Ange 2007]) 
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3.8.4 Repeatability and the impact of the measurement circuit on the eh-
star test 

The input power was measured with different circuits to check the 
repeatability of the results and the impact of the measurement circuit on the eh-
star test: 

1) in Aron-circuit with phase V as common phase (Figure 3.13), 

2) in Aron-circuit with phase W as common phase and  

3) with the 3-wattmeter-method with a “virtual” star point adapter of the 
measurement device. 

The measurement results are depicted in the Table 3.29, Table 3.30 and Table 
3.31 for different motors at different auxiliary resistance Reh. The variation of the 

stray load losses ΔPad is related, for each value of the auxiliary resistance Reh, to 

the result of the measurement in Aron-circuit with the phase V as common phase 
(Aron_V).  

 

A160-4 

Reh / Zsc = 1.0 Reh / Zsc = 0.04 Reh / Zsc = 5.06 Tested motor 
Pad 

/W 

ΔPad 

/% 

ϑav 

/°C

Pad 

/W 

ΔPad 

/% 

ϑav 

/°C 

Pad 

/W 

ΔPad 

/% 

ϑav 

/°C

Aron_V 132.8 0.0 36 123.4 0.0 35 112.9 0.0 36 

Aron_W 129.9 -2.2 37 125.5 1.7 35 107.6 -4.7 38 

3wattmeter 130.4/129.7 -1.8 35 126.2 2.2 34 112.4 -0.4 37 

Table 3.29: Repeatability and the influence of the measurement circuit on the measured stray 
load losses for 11 kW 4-pole motor “A160-4” 
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E160-4 

Reh / Zsc = 1.22 Reh / Zsc = 0.04 Reh / Zsc = 5.26 Tested motor 
Pad 

/W 

ΔPad 

/% 

ϑav 

/°C 

Pad 

/W 

ΔPad 

/% 

ϑav 

/°C 

Pad 

/W 

ΔPad 

/% 

ϑav 

/°C 

Aron_V 302.6 0.0 36 305/303 0.0 36 180.6 0.0 37 

Aron_W 307 1.48 36 316.5 3.9 36    

3wattmeter 302 -0.2 37 316/304 3.8 36 185.9 2.6 36 

Table 3.30: Repeatability and the influence of the measurement circuit on the measured stray 
load losses for 11 kW 4-pole motor “E160-4” 

 

A132-6 

Reh / Zsc = 1.05 Reh / Zsc = 0.8 Reh / Zsc = 3.5 
Tested motor 

Pad 

/W 

ΔPad 

/% 

ϑav 

/°C 

Pad 

/W 

ΔPad 

/% 

ϑav 

/°C 

Pad 

/W 

ΔPad 

/% 

ϑav 

/°C 

Aron_V 72.1 0.0 39 74.1 0.0 40 47.5 0.0 40 

Aron_W 72.1 -0.05 39 76.3 3.0 40 45.8 -3.6 42 

3wattmeter 72.8 0.9 39 75.2 1.5 38    

Table 3.31: Repeatability and the influence of the measurement circuit on the measured stray 
load losses for 5.5 kW 6-pole motor “A132-6” 

 
The results of Table 3.29 to Table 3.31 show that the variation of the stray 

load losses ΔPad, especially at Reh / Zsc = 1, is small; and is within 5 % for other 

values of the auxiliary resistance Reh. So the repeatability of the measurements is 
good. 
 

3.9 Measured stray load losses for different motors 

The stray load losses measured with the eh-star method at rated load current 
(I2/It,N = 1) are presented for different motors in Table 3.32 to Table 3.35. For 
some motors the measurement was repeated several times, in the following one 
measurement is depicted. 
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Measured motors A317-4
90 kW 6-pole, 

50 Hz *) 

55 kW 2-pole,  

60 Hz *) 

37 kW 4-pole, 

60 Hz *) 

I1 / I2 0.16 Not specified 0.24 Not specified 

Stray load losses /W 1578 1466 843 377 

Speed /rpm 1490 Not specified 3580 Not specified 

Average winding temp. /°C 102 59 44 36 

Table 3.32: Measured stray load losses for 11 kW 4-pole motors at rated load (I2/ItN = 1) 
*): Measurement done by P. Angers, LTE-Hydro-Québec, Institut de recherche Canada, 2007 
[Ange 2007] 

 

11 kW 4-pole motors A160-4 B160-4 C160-4 D160-4 E160-4 

I1 / I2 0.23 0.24 0.24 0.22 0.23 

Stray load losses /W 133 104 121 128 302 

Speed /rpm 1463 1474 1465 1475 1468 

Average winding temp. /°C 43 36 41 37 37 

Table 3.33: Measured stray load losses for 11 kW 4-pole motors at rated load (I2/ItN = 1) 

 

11 kW 2- & 6-pole motors A160-2 B160-2 C160-2 D160-2 A160-6 

I1 / I2 0.22 0.21 0.27 0.2 0.25 

Stray load losses /W 188 102 127 501 127 

Speed /rpm 2963 2957 2925 2963 978 

Average winding temp. /°C 50 37 47 49 38 

Table 3.34: Measured stray load loss for 11 kW 2- and 6-pole motors at rated load (I2/ItN = 1) 

 

5.5 kW 4- & 6-pole motors A132-6 B132-6 C132-6 D132-6 A132-4 

I1 / I2 0.28 0.34 0.27 0.26 0.26 

Stray load losses /W 72 173 58 41 136 

Speed /rpm 971 979 969 973 1433 

Average winding temp. /°C 42 34 37 49 40 

Table 3.35: Measured stray load loss for 5.5 kW 4- and 6 pole motors at rated load (I2/ItN = 1) 

 
The measured stray load losses for the small motors, 1.1 kW - 0.37 kW, are 

presented in Table 3.36 to Table 3.38. The measured losses for the 0.55 kW 4-
pole and the 0.37 kW 6-pole motor are very small (only some Watt), so the 
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measurement uncertainty increased. The measurements were repeated several 
times with other averaging times, with different auxiliary resistance values and 
for some motors on another day to get a better correlation coefficient. With 
decreasing power ratings the minimum value of positive vs. negative sequence 
current, which should stay below 30 %, increases, being about 35 % at 0.55 kW 
motors and 45 % at 0.37 kW motors. This may lead to too low stray load losses. 
 

1.1 kW, 2-pole motors A80-2 B80-2 C80-2 D80-2 

I1 / I2 0.23 / 0.21 0.26 / 0.25 0.33 / 0.26 0.41 / 0.28 

Stray load losses /W 9.9 / 7.9 24.7 / 27 36.9 / 34 56.4 / 50 

Speed /rpm 2907 / 2954 2910 / 2955 2833 / 2950 2714 / 2870 

Average winding temp. /°C 43 / 42 40 / 39 44 / 45 36 / 37 

Table 3.36: Measured stray load losses for 1.1 kW 2-pole motors at rated load (I2/ItN = 1). 
Bold letters are results of the measurement at an auxiliary resistance, where the 
ratio I1/I2 is minimum. 

 

0.55 kW 4-pole motors A80-4 B80-4 C80-4 D80-4 

I1 / I2 0.49 / 0.36 0.35 0.37 / 0.33 0.34 
Stray load losses /W 3.5 / 2.9 8.3 2.2 / 1.5 14.8 / 16.5 

Speed /rpm 1331 / 1436 1442 1384 / 1430 1433 

Average winding temp. /°C 36  36 39 / 42 37 / 39 

Table 3.37: Measured stray load losses for 0.55 kW 4-pole motors at rated load (I2/ItN = 1). 
Bold letters are results of the measurement at an auxiliary resistance, where the 
ratio I1/I2 is minimum. 

 

0.37 kW 6-pole motors A80-6 B80-6 C80-6 D80-6 

I1 / I2 0.45 / 0.42 0.39 0.44 / 0.43 0.5 / 0.47 

Stray load losses /W 0.8 / 0.8 2.2 0.6 / 0.5 1 / 0.5 

Speed /rpm 904 / 944 961 932 / 949 898 / 941 

Average winding temp. /°C 38 43 39 39 

Table 3.38: Measured stray load losses for 0.37 kW 6-pole motors at rated load (I2/ItN = 1). 
Bold letters are results of the measurement at an auxiliary resistance, where the 
ratio I1/I2 is minimum. 
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3.10  Harmonic factors during the eh-star test  

The quality of the voltage supply influencing the performance of the motors 
shall comply with the demands of the harmonic voltage factor, defined in IEC 
60034-1. The measured harmonic voltage factor of the open circuit voltage of 
the feeding transformer is HVF = 0.8 % < 2 %, which complies with the 
standard IEC 60034-1.  

The measured harmonic voltage factor (HVF) and the harmonic current factor 
(HCF) acc. to IEC 60034-1, during the eh-star test, are presented in Table 3.39. 
They are generated mainly due to the induction of the rotor slot harmonics in the 
stator winding. The increase of the measured additional losses correlates well 
with an increase of the slot harmonic effects within the machine.  
 

Measured motors A160-4 C160-4 D160-4 E160-4 A132-4 

Pad / PN /% 1.2 1.1 1.16 2.7 2.5 

HVF < 0.02 0.01 0.008 0.011 0.015 0.016 

HCF  0.033 0.013 0.044 0.055 0.068 

Table 3.39: Measured harmonic factors HVF and HCF for different motors.  

 
For the 4-pole motors 11 kW “E160-4” and 5.5 kW “A132-4” in Table 3.39 

the harmonic current factor (HCF) during the eh-star test is higher due to the 
increased rotor slot harmonic amplitudes. 

A comparison of the waveform of the stator currents and the voltages during 
the eh-star test, at the phase current IV = 150 % of the rated current IN, for two 11 
kW 4-pole motors “A160-4” and “E160-4” is given in the Figure 3.43 and 
Figure 3.44. In the shape of the waveform the effect of the slot harmonics is 
visible.  
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Figure 3.43: Measured waveform of the stator currents and voltages at eh-star test for an 11 
kW 4-pole motor “A160-4”. The variables are successively measured, thus no 
information about the phase angle   a) Waveform of the stator line to line voltages 
b) Waveform of the stator phase current    
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Figure 3.44: Measured waveform of the stator currents and voltages at eh-star test for an 11 
kW 4-pole motor “E160-4”. The variables are successively measured, thus no 
information about the phase angle   a) Waveform of the stator line to line voltages 
b) Waveform of the stator phase current    

 
 

3.11  Conclusion 

The theoretical background and the test procedure of the eh-star method, as 
an equivalent measurement method to determine the stray load losses, are 
described in detail. With theoretical and measurement examples a comparison of 
different evaluation methods A, A1, B and C for the complex current and 

a) b) 

a) b) 
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voltage phasor determination from the measured r.m.s. current and voltage 
values is given for the eh-star test post-processing. A checking parameter, the 
calculated ,,check” input power Pcont, is a good indicator for the accuracy of the 
calculation-model for the loss balance and of the measurement. The ,,check” 
input power Pcont should be identical with the measured motor input power Pe,in 
within 1 %. 

Method A is useful for an auxiliary ohmic resistance Reh and is based, for 
determination of loss separation, on the measured motor input power Pe,in. The 
method A1 needs a purely ohmic resistance Reh, whereas the measurement of the 
input power Pe,in is not necessary. In case of using an impedance Zeh, its resistive 
component Reh has to be determined as average value of the measured 
resistances Reh,begin at the beginning and Reh,end at the end Reh,end of the 
measurement to equalize the temperature influence. In case of slightly resistive-
capacitive or slightly resistive-inductive impedance with a phase angle 

°≤≤°− 1010 ehϕ  the deviation of evaluated stray load losses with method A 

from the ,,true” value is smaller than 2 %. The investigations show that method 
A1 should not be used for the eh-star measurement evaluation. 

For the methods B and C instead of the resistance Reh an impedance Zeh 
(inductor, capacitor or resistor) may be used. The evaluation of stray load losses 
is independent from the impedance value Zeh. In method B, which is based on 
the measured two line-to-line motor input power values Pe,in_UV and Pe,in_WV, one 
equation more than unknown parameters exists. This leads either to small 
deviations in the calculated value of the currents from the measured ones, or the 
sum of all three calculated phase currents differs slightly from zero. The 
evaluation method C, where only the measured motor input power Pe,in is 
needed, is the more accurate one.  

The influence of different parameters (e.g. the unbalanced auxiliary 
impedance Zeh, the value of the impedance, the temperature…) on the stray load 
losses was shown. Different motor power ratings (315 kW – 0.37 kW) were 
investigated. For the small motor ratings below 0.55 kW, the eh-star method 
should not be used for the determination of the stray load losses. 
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4 COMPARISON OF DIFFERENT 

MEASUREMENT METHODS FOR 

EFFICIENCY DETERMINATION 
 

In this chapter the measurement results of different standard TEFC grid-
operated cage induction motors (2-, 4- and 6-pole) of current design from six 
European manufacturers with rated power 0.37 kW, 0.55 kW, 1.1 kW, 5.5 kW 
and 11 kW will be presented. The stray load losses are determined with the six 
experimental measurement procedures described in the previous chapter:  

1. residual loss method acc. to IEC 60034-2 Ed. 4.0 draft/ IEC 61972, 

2. residual loss method acc. to the standard IEEE 112 method B [IEEE 112], 

3. reverse rotation test acc. to the standard IEEE 112 and IEC 61972, 

4. eh-star method acc. to Jordan and Richter [Jord 1967, IEC 60034-2 draft],  

5. equivalent no-load method acc. to Bourne [Bour 1989] 

6. and the equivalent no-load method according to Rawcliffe and Menon 
[Rawc 1952]. 

In addition some measurements for one 315 kW four pole standard induction 
motor and two 1500 kW six pole wind generators are presented. 

 

4.1 Test objects 

The set of the tested grid-operated, low voltage squirrel-cage induction 
machines are: 

- Two 1500 kW six pole wind generators. The tests were done in the test field 
of the manufacturer. 
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- One 315 kW four pole standard induction motor. The tests were done in the 
test field of the manufacturer. 

- Five 11 kW four pole, four 11 kW two pole and one 11 kW six pole standard 
induction motors. 

- Four 5.5 kW six pole and one 5.5 kW four pole standard induction motors. 

- Four 1.1 kW two pole standard induction motors. 

- Four 0.55 kW four pole standard induction motors. 

- Four 0.37 kW six pole standard induction motors. 
 
The tests of the motors with ratings between 11 kW and 0.37 kW were done 

in the power lab of the department of Electrical Energy Conversion at 
Darmstadt University of Technology. 

 
To present the test results in anonymous way for the motors supplied by 

different manufacturers (A, B, C, D and E), a marking of the motor based on the 
frame size and pole number is given: 

11 kW, 4-pole, frame size 160 mm, manufacturer A ... E: e.g. A160-4. 
11 kW, 2-pole, frame size 160 mm, manufacturer A ... D: e.g. D160-2. 
11 kW, 6-pole, frame size 160 mm, manufacturer A: A160-6. 
5.5 kW, 6-pole, frame size 132 mm, manufacturer A ... D: e.g. C132-6. 
5.5 kW, 4-pole, frame size 132 mm, manufacturer A: A132-4. 
1.1 kW, 2-pole, frame size 80 mm, manufacturer A ... D: e.g. B80-2.  
0.55 kW, 4-pole, frame size 80 mm, manufacturer A ... D: e.g. C80-4. 
0.37 kW, 6-pole, frame size 80 mm, manufacturer A ... D: e.g. D80-6. 

The manufacturer marking (A, B, C, D and E) could be changed between one 
machine rating to another. 
 

The design data of the 11 kW, 4-pole die-cast motors are summarized in 
Table 4.1, where Qs, Qr are the slot numbers, sQs, sQr the slot openings of the 

stator and the rotor respectively, δ  is the air gap, lFe the iron stack length and Dsi 

the diameter of the stator bore.   
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 A160-4 B160-4 C160-4 D160-4 E160-4 

Qs / Qr 48 / 40 36 / 28 48 / 40 48 / 36 36 / 28 

Ratio: sQs/δ 6.2 6.6  5.6 7.0 8.6 

sQr /mm 0 0 1.5 0 0 

lFe / Dsi /mm 200 / 125 180 / 165 194 / 128 135 / 143.5 200 / 130 

Table 4.1: Design data of the measured 11 kW, 4-pole motors “X160-4” 

 

4.2 Performed measurements 

During this study the following tests were performed: 

a) No-load test to determine the no-load losses e.g. acc. to IEC 60034-2 Ed. 
4.0 draft [IEC 60034-2 draft].  

b) Rated load temperature test to determine the steady state temperature rise 
e.g. IEC 60034-1, -2 [IEC 60034-1, IEC 60034-2]. 

c) Indirect measurement of the stray load losses using the “residual loss 
method” acc. to IEC 60034-2 Ed. 4.0 draft [IEC 60034-2 draft]/ IEC 
61972 [IEC 61972] and acc. IEEE 112-method B [IEEE 112]. 

d) Direct measurement of the stray load losses using the “Reverse Rotation 
Test” (RRT) acc. to IEEE 112 and acc. to IEC 60034-2 Ed. 4.0 draft [IEC 
60034-2 draft]/ IEC 61972 [IEC 61972]. 

e) Direct measurement of the stray load losses using the “eh-star method” 
based on the publication of Jordan and Richter [Jord 1967] and acc. to the 
guideline [Guid 2005]. 

f) Direct measurement of the stray load losses using the “equivalent no-load 
method” acc. to Bourne [Bour 1989].  

g) Direct measurement of the stray load losses using the “equivalent no-load 
method” acc. to Rawcliffe and Menon [Rawc 1952].  

Table 4.2 shows the rated power, the pole-count, the number of tested motors 
and the tests performed. 
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Power /kW 0.37 0.55 1.1 5.5 5.5 11 11 11 

Pole count 6 4 2 6 4 6 4 2 

Number of motors 4 4 4 4 1 1 5 4 

Input-output test  

(residual loss method)  
√ √ √ √ √ √ √ √ 

RRT √ √ √ √ √ √ √ √ 

Eh-star √ √ √ √ √ √ √ √ 

Equivalent no-load of Bourne √ √ (√) (√) NM √ (√) (√) 

Equivalent no-load of Rawcliffe √ (√) (√) (√) √ √ (√) (√) 

Table 4.2: Tested motors and the performed tests  
(√): Some of the motors are measured; NM: not measured. 

 

4.2.1 No-load test  

The no-load measurement at variable voltage and 50 Hz grid-frequency was 
performed according to the standards IEC 60034-2 Ed. 4.0 draft/ IEC 61972 and 
IEEE 112.  

Following tables show the rated voltage and the rated current (name plate) for 
the tested machine, the measured winding resistance as the average value of the 
three phases for a cold machine at 20°C winding temperature, the terminal 
connection and the no-load losses segregation (iron, friction and windage losses) 
according to the standard IEC 61972. 
 

11 kW 4-pole motors A160-4 B160-4 C160-4 D160-4 E160-4 

Rated U /V / I /A, Y  400 / 21.4 690 / 12.1 690 / 12 690 / 12.4 400 / 22.5

Phase resistance @ 20°C /Ω 0.362 0.794 1.145 1.094 0.335 

Iron losses /W 327 222 298 341 243 

Friction losses /W 70 93 98 62 63 

Table 4.3: No-load loss segregation acc. to IEC 61972 for 11 kW, 4-pole motors 
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11 kW 2- & 6-pole motors A160-2 B160-2 C160-2 D160-2 A160-6 

Rated U /V / I /A, Y  690 / 11.5 400 / 21.7 690 / 12.5 400 / 21.2 690 / 13.6

Phase resistance @ 20°C /Ω 0.9117 0.3247 1.088 0.3614 1.1528 

Iron losses /W 320 367 380 196 399 

Friction losses /W 311 168 264 287 27 

Table 4.4: No-load loss segregation acc. to IEC 61972 for 11 kW, 2-pole and 6-pole motors 

 

5.5 kW 6- & 4-pole motors A132-6 B132-6 C132-6 D132-6 A132-4 

Rated U /V / I /A, Y  690 / 7 400 / 13.8 690 / 7.7 400 / 13.4 690 / 8.6 

Phase resistance @ 20°C /Ω 2.5454 0.6296 2.5058 0.6568 2.765 

Iron losses /W 311 321 274 208 182 

Friction losses /W 49 26 14 36 49 

Table 4.5: No-load loss segregation acc. to IEC 61972 for 5.5 kW, 6-pole and 4-pole motors 

 

1.1 kW 2-pole motors A80-2 B80-2 C80-2 D80-2 

Rated U /V / I /A, Δ  231 / 4.43 231 / 4.27 231 / 4.32 231 / 4.9 

Phase resistance @ 20°C /Ω 6.518 6.109 6.193 7.034 

Iron losses /W 98 87 101 136 

Friction losses /W 14 15 14 16 

Table 4.6: No-load loss segregation acc. to IEC 61972 for 1.1 kW, 2-pole motors 

 

0.55 kW 4-pole motors A80-4 B80-4 C80-4 D80-4 

Rated U /V / I /A, Δ  231 / 2.89 231 / 2.76 231 / 2.65 231 / 2.67 

Phase resistance @ 20°C /Ω 13.876 14.38 19.328 13.866 

Iron losses /W 75 57 65 49 

Friction losses /W 8 3 4 6 

Table 4.7: No-load loss segregation acc. to IEC 61972 for 0.55 kW, 4-pole motors 

 

0.37 kW 6-pole motors A80-6 B80-6 C80-6 D80-6 

Rated U /V / I /A, Δ  231 / 2.14 231 / 2.2 231 / 2.22 231 / 2.16 

Phase resistance @ 20°C /Ω 25.92 25.412 27.929 23.097 

Iron losses /W 50 47 46 43 

Friction losses /W 3 3 2 4 

Table 4.8: No-load loss segregation acc. to IEC 61972 for 0.37 kW, 6-pole motors 
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4.2.2 Rated load temperature test 

The rated load temperature test is performed to determine the steady state 
temperature rise according to the standards IEC 61972 and IEEE 112 where a 
rated load (rated output power) is applied with a dynamometer until thermally 
stable condition is reached (e.g. see Figure 4.1). 
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Figure 4.1: Thermally stable condition and the temperature distribution during the heat run at 
rated load for the water cooled 6-poles, 1.5 MW cage wind generator “A550-6L” 

 
Following tables show the results obtained where the steady state temperature 

rise was measured via the stator resistance, which is extrapolated to the switch 
off-time (zero second) acc. to IEC 60034-1. 

To improve the measurement accuracy and therefore to get better correlation 
coefficient R, the reading of the measured data should be recorded over an 
averaging time e.g. of about 10 s, depending on the rating of the motor (thermal 
time constant), for each load point, especially in the input-output test with the 
torque and the speed measurement. An averaging time of about 1 s was found to 

H2O intlet 

H2O outlet 

Ambient
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be too low in some cases, see Table 4.15. 
 

11 kW 4-pole motors A160-4 B160-4 C160-4 D160-4 E160-4 

Averaging time /s 1.1 1.1 1.1 1.1 10 

Speed /rpm 1456.1 1466.7 1453.1 1453.4 1435.7 

Corrected torque /Nm 72.1 71.6 72.3 72.3 73.37 

Winding temper. rise /K 65.8 49.3 76.8 78.2 82.8 

Table 4.9: Results of the rated load temperature test for 11 kW, 4-pole motors 

 

11 kW 2- & 6-pole motors A160-2 B160-2 C160-2 D160-2 A160-6 

Speed /rpm 2899.1 2939.4 2930.6 2877.6 967.5 

Corrected torque /Nm 36.4 35.9 35.9 36.8 107.9 

Winding temper. rise /K 93.2 76.4 80.4 79.4 68 

Table 4.10: Results of the rated load temperature test for 11 kW, 2-pole and 6-pole motors 

 

5.5 kW 6- & 4-pole motors A132-6 B132-6 C132-6 D132-6 A132-4 

Speed /rpm 962.4 958.5 950.9 964.3 1394.5 

Corrected torque /Nm 54.8 55 55.5 54.7 37.8 

Winding temper. rise /K 71.6 78.7 87.3 57.1 86.6 

Table 4.11: Results of the rated load temperature test for 5.5 kW, 6-pole and 4-pole motors 

 
 

1.1 kW 2-pole motors A80-2 B80-2 C80-2 D80-2 

Speed /rpm 2832.6 2845.3 2842.8 2711.2 

Corrected torque /Nm 3.72 3.71 3.70 3.90 

Winding temperature rise /K 81.7 73 81.1 86.3 

Table 4.12: Results of the rated load temperature test for 1.1 kW, 2-pole motors 

 

0.55 kW 4-pole motors A80-4 B80-4 C80-4 D80-4 

Speed /rpm 1408.1 1409.2 1387.8 1378.1 

Corrected torque /Nm 3.73 3.72 3.79 3.82 

Winding temperature rise /K 73.8 76 84.1 53.7 

Table 4.13: Results of the rated load temperature test for 0.55 kW, 4-pole motors 
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0.37 kW 6-pole motors A80-6 B80-6 C80-6 D80-6 

Speed /rpm 916.9 949.9 918.5 912.2 

Corrected torque /Nm 3.85 3.74 3.86 3.87 

Winding temperature rise /K 68.2 71.3 71.2 49.5 

Table 4.14: Results of the rated load temperature test for 0.37 kW, 6-pole motors 

 

4.2.3 Indirect measurement of the stray load losses using the “residual 
loss method” acc. to IEC 61972 

The Ohmic losses, the stray load losses, the directly measured efficiency 

(ηdir = Pout/Pe,in), the indirectly measured efficiency (ηindir,c = Pout,c/Pe,in) 

determined with the residual losses and the corrected output power obtained 
from the input-output method acc. to IEC 61972 are presented in the following 
tables. The correlation coefficient R for each test is indicated. Note that for each 
case a value higher than 0.95 has been obtained. The measured stray load losses 
compared to the input power (Stray load losses/Pe,in) are also given, which are 
for all cases bigger than those obtained from the assigned value 0.5 % stated in 

IEC 60034-2. The differences between the directly measured efficiency ηdir from 

the input and the output powers and the indirectly measured efficiency ηindir,c are 

also depicted, which are small than 1 %. A comparison to the assumption acc. to 
IEC 60034-2 is presented in Figure 4.2 for 11 kW motor “B160-4”. 
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Figure 4.2: Comparison of the efficiencies from the measurement acc. to IEC 61972 and the 
assumptions acc. to IEC 60034-2, for 11 kW, 4-pole motor “B160-4” 

 



4 Comparison of different measurement methods 144 

 

11 kW 4-pole motors A160-4 B160-4*) C160-4 D160-4 E160-4 

Winding temperature rise /K 65.9 49.0 76.7 78.2 82.8 

Electrical input power /W 12463 12150 12528 12631 12737 

Corrected mechanical output power 
/W 

10959 10991 10915 11020 11027 

Corrected stator copper losses @ 25°C 
/W 

647 433 709 704 654 

Corrected rotor cage losses @ 25°C 
/W 

346 275 370 389 524 

Stray load losses /W 139 148 170 150 241 

Stray load losses/Pe,in  /% 1.11 1.22 1.4 1.18 1.89 

ηindir,c = Pout,c/Pe,in  /% 87.93 90.46*) 87.12 87.25 86.57 

ηdir = Pout/Pe,in  /% 88.23 90.42 87.90 86.98 86.25 

ηdir - ηindir,c 0.30 -0.04 0.78 -0.27 -0.32 

Correlation coefficient R 0.988 0.978 0.96 0.968 0.996 

Table 4.15: Stray load losses and the efficiencies for 11 kW, 4-pole motors acc. to IEC 61972 
*): Eff1, the remaining motors are classified as Eff2. 

 

11 kW 2- & 6-pole motors A160-2 B160-2 C160-2 D160-2 A160-6 

Winding temperature rise /K 93.2 76.4 80.4 79.4 68 

Electrical input power /W 12832 12549 12665 13366 12743 

Corrected mechanical output power 
/W 

11004 11019 10981 11089 11009 

Corrected stator copper losses @ 25°C 
/W 

552 607 682 654 829 

Corrected rotor cage losses @ 25°C 
/W 

415 234 277 524 382 

Stray load losses /W 261 184 139 643 134 

Stray load losses/Pe,in  /% 2.03 1.47 1.1 4.81 1.05 

ηindir,c = Pout,c/Pe,in  /% 85.76 87.82 86.7 82.97 86.39 

ηdir = Pout/Pe,in  /% 85.50 87.72 86.78 82.11 86.36 

ηdir - ηindir,c -0.26 -0.1 0.08 -0.86 -0.03 

Correlation coefficient R 0.9992 0.9973 0.9955 0.9992 0.9971 

Table 4.16: Stray load losses and efficiencies for 11 kW, 2- and 6-pole motors acc. to 
IEC 61972 
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5.5 kW 6- & 4-pole motors A132-6 B132-6 C132-6 D132-6 A132-4 

Winding temperature rise /K 71.6 78.7 87.3 57.1 86.6 

Electrical input power /W 6609 6763 6759 6474 6754 

Corrected mechanical output power 
/W 

5515 5541 5529 5530 5470 

Corrected stator copper losses @ 25°C 
/W 

495 480 612 445 458 

Corrected rotor cage losses @ 25°C 
/W 

223 252 298 214 465 

Stray load losses /W 66 171 80 56 151 

Stray load losses/Pe,in  /% 1.00 2.53 1.19 0.86 2.75 

ηindir,c = Pout,c/Pe,in  /% 83.45 81.93 81.81 85.42 80.99 

ηdir = Pout/Pe,in  /% 83.32 81.35 81.02 85.25 81.19 

ηdir - ηindir,c -0.13 -0.58 -0.79 -0.17 0.2 

Correlation coefficient R 0.9857 0.9994 0.9995 0.9935 0.993 

Table 4.17: Stray load losses and efficiencies for 5.5 kW, 6- and 4-pole motors acc. to 
IEC 61972 

 

1.1 kW 2-pole motors A80-2 B80-2 C80-2 D80-2 

Winding temperature rise /K 81.4 73.2 80.4 86.2 

Electrical input power /W 1433 1431 1468 1626 

Corrected mechanical output power 
/W 

1097 1110 1098 1088 

Corrected stator copper losses @ 25°C 
/W 

171 146 155 227 

Corrected rotor cage losses @ 25°C 
/W 

70 64 67 136 

Stray load losses /W 16.8 29.7 50.5 96.9 

Stray load losses/Pe,in  /% 1.17 2.07 3.44 5.96 

ηindir,c = Pout,c/Pe,in  /% 76.56 77.53 74.80 66.88 

ηdir = Pout/Pe,in  /% 76.83 77.30 74.94 67.24 

ηdir - ηindir,c 0.27 -0.23 0.14 0.36 

Correlation coefficient R 0.986 0.996 0.998 0.996 

Table 4.18: Stray load losses and efficiencies for 1.1 kW, 2-pole motors acc. to IEC 61972 
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0.55 kW 4-pole motors A80-4 B80-4 C80-4 D80-4 

Winding temperature rise /K 73.6 75.8 84.2 52.7 

Electrical input power /W 800 793 833 780 

Corrected mechanical output power 
/W 

548 550 543 544 

Corrected stator copper losses @ 25°C 
/W 

151 143 183 121 

Corrected rotor cage losses @ 25°C 
/W 

38 37 46 51 

Stray load losses /W 11.2 17.7 17 22 

Stray load losses/Pe,in  /% 1.41 2.23 2 2.82 

ηindir,c = Pout,c/Pe,in  /% 68.47 69.33 65.19 69.70 

ηdir = Pout/Pe,in  /% 68.99 69.18 66.09 70.46 

ηdir - ηindir,c 0.52 -0.15 0.9 0.76 

Correlation coefficient R 0.997 0.996 0.991 0.994 

Table 4.19: Stray load losses and efficiencies for 0.55 kW, 4-pole motors acc. to IEC 61972 

 
 

0.37 kW 6-pole motors A80-6 B80-6 C80-6 D80-6 

Winding temperature rise /K 68.2 71.3 71 49.3 

Electrical input power /W 599 602 619 578 

Corrected mechanical output power 
/W 

372 373 369 371 

Corrected stator copper losses @ 25°C 
/W 

153 160 179 131 

Corrected rotor cage losses @ 25°C 
/W 

36 21 35 37 

Stray load losses /W 7.9 12.8 9.6 4.0 

Stray load losses/Pe,in  /% 1.31 2.13 1.55 0.69 

ηindir,c = Pout,c/Pe,in  /% 62.12 61.91 59.59 64.17 

ηdir = Pout/Pe,in  /% 62.18 61.62 59.89 64.08 

ηdir - ηindir,c 0.06 -0.29 0.3 -0.09 

Correlation coefficient R 0.994 0.995 0.998 0.996 

Table 4.20: Stray load losses and efficiencies for 0.37 kW, 6-pole motors acc. to IEC 61972 
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4.2.3.1 Comparison of the efficiency from the measurement and the 
assumptions 

The directly measured efficiency (ηdir = Pout/Pe,in) and the indirectly measured 

efficiency (ηindir,c = Pout,c/Pe,in) determined with the residual losses and the 

corrected output power obtained from the input-output method acc. to 
IEC 61972 for the 11 kW and the 5.5 kW motor are compared in the following 
Tables with the values determined from the assumptions: 

a) 0.5 % of the electrical input Pe,in acc. IEC 60034-2 [IEC 60034-2], 

b) the assumed value of the stray load losses given in (4.1) for ratings 
1 kW < Pout < 10000 kW acc. IEC 61972 -2 [IEC 61972] and 

 ( ) ine,out10ad )kW1/(log005.0025.0 PPP ⋅⋅−=  (4.1)

c) the assumed value of 1.8 % of the rated output power for ratings smaller 
than 90 kW acc. IEEE 112-method E1 [IEEE 112]. 

 
 

11 kW motors A160-4 E160-4 A160-6 C160-2 D160-2 

ηindir,c = Pout,c/Pe,in  /% 87.93 86.57 86.39 86.70 82.97 

ηdir = Pout/Pe,in  /% 88.23 86.25 86.36 86.78 82.11 

ηindir,IEC60034-2  /% 88.57 88.07 86.97 87.34 87.28 

ηindir,IEC61972-2  /% 87.11 86.57 85.49 85.87 85.80 

ηindir,IEEE112-E1  /% 87.49 87.00 85.91 86.28 86.29 

Table 4.21: Comparison of the efficiencies from the measurement acc. to IEC 61972 and the 
assumptions acc. to IEC 60034-2, acc. to IEC 61972-2 and acc. to IEEE 112-E1 
for 11 kW, 4-, 6- and 2-pole motors  

 
For the 11 kW and the 5.5 kW motor it can be seen, in Table 4.21 and Table 

4.22, respectively, that the efficiency values obtained from different testing 
standards can differ by several percent. Depending on the method applied the 
efficiency can vary from -1.5 % to 5 %. The measured efficiency varies only 
between -1 % and 0.3 %. 
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5.5 kW motors A132-6 B132-6 D132-6 A132-4 

ηindir,c = Pout,c/Pe,in  /% 83.45 81.93 85.42 80.99 

ηdir = Pout/Pe,in  /% 83.32 81.35 85.25 81.19 

ηindir,IEC60034-2  /% 84.03 84.02 85.83 82.88 

ηindir,IEC61972-2  /% 82.40 82.40 84.20 81.24 

ηindir,IEEE112-E1  /% 83.03 83.06 84.79 81.90 

Table 4.22: Comparison of the efficiencies from the measurement acc. to IEC 61972 and the 
assumptions acc. to IEC 60034-2, acc. to IEC 61972-2 and acc. to IEEE 112-E1 
for 5.5 kW 6- and 4-pole motors 

 
The efficiency variations of the cited methods related to the indirectly 

measured efficiency (ηindir,c = Pout,c/Pe,in) determined with the residual losses and 

the corrected output power obtained from the input-output method acc. to IEC 
61972 are presented in Figure 4.3 for 11 kW and 5.5 kW motors. 
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Figure 4.3: Efficiency variation related to the indirectly measured efficiency from the 
measurement acc. to IEC 61972 and the assumptions acc. to IEC 60034-2, acc. to 
IEC 61972-2 and acc. to IEEE 112-E1 for 5.5 kW and 11 kW motors 
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4.2.3.2 Influence of the friction and windage losses on the stray load 
losses calculation 

Under load the speed n and the friction and windage losses Pfw, due to the 
dominating fan in TEFC induction motors, vary between overload and partial 
load test as presented in Figure 4.4. To investigate the influence of the smaller 
friction and windage losses Pfw under load due to the reduced speed n on the 
determined stray load losses Pad, the evaluation is done in slightly different ways 
according to IEC 61972: 

a) Constant friction and windage losses Pfw at no-load and under load acc. to 
IEC 61972 and 

b) the friction and windage losses Pfw are considered to be load-dependent, 
varying with the speed n by an exponent of 2.5 (~ n2.5). 
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Figure 4.4: The consideration of the friction and windage losses as function of the speed 
variation during the load for an 11 kW, 4-pole motor “E160-4” 

 
The slip s and the speed n change during the load test and therefore also the 

friction and windage losses Pfw (see Figure 4.4), so for more accurate 
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determination of the stray load losses Pad this influence should be taken into 
account ! Also, with which exponent the friction and windage losses Pfw should 
be considered ? This needs further investigation, which is not task of this work. 
In our example in Figure 4.4 the exponent 2.5 (~ n2.5) fits well.  

 

A160-4 E160-4 A160-6 
11 kW 4- & 6-pole 

motors a) Friction 
constant 

b) Friction 
~ n2.5 

a) Friction 
constant 

b) Friction 
~ n2.5 

a) Friction 
constant 

b) Friction 
~ n2.5 

Friction losses /W 70.1 65.0 62.8 56.2 27.2 25.0 

Electrical input /W 12463 12463 12737 12737 12743 12743 

Corrected mechanical 
output /W 

10959 10961 11027 11030 11009 11010 

Stray load losses /W 139 142 241 245 134 135 

Variation relating to 
a) /% 

0.00 2.18 0.00 1.74 0.00 1.10 

ηindir,c = Pout,c/Pe,in /% 87.93 87.95 86.57 86.59 86.39 86.40 

Correlation coeff. R 0.988 0.989 0.996 0.996 0.997 0.997 

Table 4.23: Influence of the friction and windage losses on the stray load losses and efficiency 
determination for 11 kW, 4- and 6-pole motors acc. to IEC 61972 

 

A160-2 C160-2 D160-2 
11 kW 2-pole motors a) Friction 

constant 
b) Friction 

~ n2.5 
a) Friction 
constant 

b) Friction 
~ n2.5 

a) Friction 
constant 

b) Friction 
~ n2.5 

Friction losses /W 311 285 264 244 287 258 

Stray load losses /W 261 277 139 144 643 654 

Variation relating to 
a) /% 

0.00 5.57 0.00 3.87 0.00 1.54 

ηindir,c = Pout,c/Pe,in /% 85.76 85.84 86.7 86.81 82.97 83.17 

Correlation coeff. R 0.999 0.999 0.9955 0.9956 0.999 0.999 

Table 4.24: Influence of the friction and windage losses on the stray load losses and efficiency 
determination for 11 kW, 2-pole motors acc. to IEC 61972 

 
As shown in Table 4.23 and Table 4.24 and in the Figure 4.5 the influence of 

the friction and windage losses Pfw on the determination of the stray load losses 
Pad can be significant, especially at high speed motors. For the 2- pole motors 
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the variation is in the range between 2 % and 5 %. 
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Figure 4.5: The variation of the stray load losses determined with the load dependent friction 
and windage losses for 11 kW, 2-pole motors acc. to IEC 61972 

 
 

4.2.4 Indirect measurement of the stray load losses using the “residual 
loss method” acc. to IEEE 112-method B  

The Ohmic losses, the stray load losses Pad, the indirectly measured 

efficiency (ηindir,c = Pout,c/Pe,in) determined with the residual losses and the 

corrected output power obtained from the input-output method acc. to IEEE 112-
method B are presented in the following tables. For comparison the directly 

measured efficiency (ηdir = Pout/Pe,in) is also given. The correlation coefficient R 

for each test is indicated. Note that for each case a value higher than 0.90 has 
been obtained. The measured stray load losses compared to the input power 
(Stray load losses/Pe,in) are also given, which are for all cases bigger than those 
obtained from the assumed value of 0.5 % of the electrical input power as stated 
in IEC 60034-2. 
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11 kW 2- & 6-pole 
motors A160-2 B160-2 C160-2 D160-2 A160-6 

Winding temper. rise /K 93.2 76.4 80.4 79.4 68 

Electrical input power /W 12832 12549 12665 13366 12743 

Corrected mechanical 
output power /W 

11009 11039 11023 11089 11016 

Corrected stator copper 
losses @ 25°C /W 

552 607 682 654 829 

Corrected rotor cage losses 
@ 25°C /W 

400 220 267 512 373 

Stray load losses /W 239 148 96 628 98 

Stray load losses/Pe,in  /% 1.86 1.18 0.76 4.7 0.77 

ηindir,c = Pout,c/Pe,in  /% 85.8 87.97 87.04 82.96 86.45 

ηdir = Pout/Pe,in  /% 85.50 87.72 86.78 82.11 86.36 

Correlation coefficient R 0.998 0.9973 0.9812 0.9989 0.9875 

Table 4.25: Stray load losses and the efficiencies for 11 kW, 2- and 6-pole motors acc. to 
IEEE 112-B 

 

5.5 kW 6-pole motors A132-6 B132-6 C132-6 D132-6 

Winding temper. rise /K 71.6 78.7 87.3 57.1 

Electrical input power /W 6609 6763 6759 6474 

Corrected mechanical output 
power /W 

5489 5537 5519 5530 

Corrected stator copper losses 
@ 25°C /W 

495 480 612 445 

Corrected rotor cage losses @ 
25°C /W 

216 246 289 210 

Stray load losses /W 50 152 39 44 

Stray load losses/Pe,in  /% 0.75 2.25 0.58 0.68 

ηindir,c = Pout,c/Pe,in  /% 83.06 81.87 81.66 85.42 

ηdir = Pout/Pe,in  /% 83.32 81.35 81.02 85.25 

Correlation coefficient R 0.964 0.9993 0.9833 0.9745 

Table 4.26: Stray load losses and the efficiencies for 5.5 kW, 6-pole motors according to 
IEEE 112-B 
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1.1 kW 2-pole motors A80-2*) B80-2 C80-2 D80-2 

Winding temper. rise /K 92.4 81.9 92.6 101 

Electrical input power /W 1433 1431 1468 1626 

Corrected mechanical output 
power /W 

1087 1102 1096 1066 

Corrected stator copper losses 
@ 25°C /W 

170 146 155 227 

Corrected rotor cage losses @ 
25°C /W 

66 62 64 124 

Stray load losses /W -1.12 20.3 39.2 60.1 

Stray load losses/Pe,in  /% -0.08 1.42 2.67 3.7 

ηindir,c = Pout,c/Pe,in  /% 75.85 76.97 74.64 65.52 

ηdir = Pout/Pe,in  /% 76.83 77.30 74.94 67.24 

Correlation coefficient R with 
IEEE 112-B 

-0.139 0.983 0.991 0.957 

Correlation coefficient R with 
IEC 61972 

0.986 0.996 0.998 0.996 

Table 4.27: Stray load losses and efficiencies for 1.1 kW, 2-pole motors acc. to IEEE 112-B 

*): For the “motor A80-2” the measurement could not be evaluated according to IEEE 
112-method B [IEEE 112], because negative stray load losses are derived and bad 
correlation coefficient R < 0.9 compared to IEC 61972 [IEC 61972], as load-
independent iron losses are assumed. 

 
For one small motor 1.1 kW, 2-pole “A80-2”, two small motors 0.55 kW, 4-

pole “A80-4” and “C80-4” and three small motors 0.37 kW, 6-pole “A80-6”, 
“C80-6” and “D80-6” the test - results - could not be evaluated according to 
IEEE 112-method B. For each rating only one example is given to show the 
limit of this method. The p.u. value of the stator phase resistance increases with 
decreasing power rating. The resistive voltage drop reduces significantly the 
inner voltage Ui. Therefore under load the iron losses PFe decrease. The 
standards IEC 60034-2 Ed. 4.0 draft [60034-2 draft] and IEC 61972 [IEC 61972] 
consider this fact, so always positive stray load losses Pad are measured. The 
standard IEEE 112-B [IEEE 112] considers the iron losses PFe to be independent 
of the load, leading in some cases to negative stray load losses Pad and a bad 
correlation coefficient R < 0.9, especially for small power rating 0.37 kW. 
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0.55 kW 4-pole 0.37 kW 6-pole 
Measured motors 

B80-4 C80-4*) D80-4 B80-6 D80-6*) 

Winding temper. rise /K 87.4 96.8 58.9 77.5 53.6 

Electrical input power /W 793 833 780 602 578 

Corrected mechanical 
output power /W 

548 540 541 369 369 

Corrected stator copper 
losses @ 25°C /W 

143 183 121 160 131 

Corrected rotor cage losses 
@ 25°C /W 

35 43 49 20 35 

Stray load losses /W 10.5 2.3 14.9 6.0 -1.7 

Stray load losses/Pe,in  /% 1.32 0.28 1.92 0.99 -0.3 

ηindir,c = Pout,c/Pe,in  /% 69.03 64.77 69.3 61.23 63.73 

ηdir = Pout/Pe,in  /% 69.18 66.09 70.46 61.62 64.08 

Correlation coefficient R 
with IEEE 112-B 

0.974 0.39 0.986 0.978 -0.66 

Correlation coefficient R 
with IEC 61972 

0.996 0.991 0.994 0.995 0.996 

Table 4.28: Stray load losses and the efficiencies for 0.55 kW, 4-pole and for 0.37 kW, 6-pole 
motors acc. to IEEE 112-B 

*): The measurement could not be evaluated according to IEEE 112-method B (see the 
note under Table 4.27). 

 
 

4.2.4.1 Influence of the determination of the resistive losses on the 
stray load losses calculation 

To show the influence of the stator winding temperature ϑCu,s determination 

on the stray load losses Pad calculation, the test data of the measured points are 
used with an averaging time of 10 s to determine the stray load losses Pad for an 
11 kW, 4-pole motor “E160-4”. For fair comparison the evaluation is done acc. 
to IEEE 112-method B, where the iron losses PFe are taken as load independent. 

The stator winding temperature ϑCu,s is determined in slightly different ways: 
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a) Resistance test at each load point: The winding temperature ϑCu,s is 

determined via the measured resistance Rs at each load point (extrapolated 
to 0 seconds after switching off the motor). 

b) Thermocouples: The winding temperature ϑCu,s is determined as average 

reading of thermocouples installed on the overhang winding in DE- and 
NDE-side acc. to IEEE 112-method B.  

c) Thermocouples related: The winding temperature ϑCu,s is determined as 

average reading of thermocouples installed on the overhang winding in 
DE- and NDE-side. The resistance Rs for each load point is determined 

from the temperature ϑCu,s of the winding at that point in relation to the 

resistance Rs and the temperature ϑCu,s measured at rated load temperature 

test acc. to IEC 60034-2 Ed. 4.0 draft/ IEC 61972.  

d) Interpolation acc. to IEC 60034-2 Ed. 4.0 draft: The temperature ϑCu,s for 

100% load and higher loads is the value determined before 150% load. 

The temperature ϑCu,s for loads less than 100% is taken as varying linearly 

with the load, using the reading before the test for 100% load and after the 
lowest reading for 25% load (IEC 60034-2 Ed. 4.0 draft and IEC 61972). 

e) Average value: The winding temperature ϑCu,s is determined as the 

average value of the resistances Rs measured at the beginning and the end 
of the test (extrapolated to 0 seconds after switching off the motor). 

 

The traces of the winding temperature ϑCu,s for compared methods are 

presented as function of the load in Figure 4.6 for an 11 kW, 4-pole motor 
“E160-4” with an averaging time of 10 s and in Figure 4.7 for 1.1 kW, 2-pole 
motor “C80-2” with an averaging time of 2 s. As shown in the first example the 
traces, except for the curve of the average method, are near to each other in the 
range under 100 % load, whereas in the range over 100 % load the curve of the 
interpolation method is lower. Of course this finding could change from one 
sample machine to another depending on the positions and the number of the 
embedded thermocouples as given in Figure 4.7. 
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Figure 4.6: The winding temperatures as 
function of the load for 11 kW, 4-
pole motor “E160-4” 

Figure 4.7: The winding temperatures as 
function of the load for 1.1 kW, 
2-pole motor “C80-2” 

 
In Table 4.29 and in the Figure 4.8 for an 11 kW motor the sensitivity of the 

stray load losses Pad, is shown related to the evaluation with the resistance Rs 
measured at each load point, which is the accurate and therefore the more 
expensive method. For this example the stray load losses Pad vary between 0.5 % 
and 25 % and the efficiency varies between 0.1 % and 0.6 %. Of course this 
influence should be smaller for larger motors with higher thermal time constant, 
and should vary also with the position and the number of the thermocouples. The 
value of the stray load losses Pad evaluated with the hottest thermocouple as 
suggested in the standard IEEE 112 deviates by -3.3 % whereas the evaluation 
with the coldest one deviates by +2.2 % from the value obtained with the 
resistance Rs measured at each load point. It has to be noted that in the 
comparison in this example, due to the resistance measurement at each load 
point, the interpolation methods and the averaging methods are disadvantaged as 
for this method the test should be taken quickly (as recommended in the 
standards).  

For a small motor of 1.1 kW the variation of the stray load losses Pad and the 
efficiency determined with different temperature methods (related to the 
interpolation method) are depicted in the Figure 4.9. 
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a) b) c) d) e) 

E160-4 Resistance at 
each point 

Thermocoupl
average 

Thermocoupl 
related 

Interpolation 
Average   

value 

Mechan. output /W 11051 11058 11036 11022 10974 

Correct. rotor loss /W 520 514 525 523 544 

Stray losses /W 206 205 217 232 259 

Variation to a) 0.0 % -0.49 % 4.98 % 12.54 % 25.66 % 

Pad /Pe,in /% 1.62 1.61 1.7 1.82 2.03 

Efficiency  /% 86.76 86.82 86.64 86.53 86.16 

Offset /W 49 46 47 39 32 

Correlat. coeff. R 0.9961 0.9952 0.9956 0.9948 0.9964 

Table 4.29: Influence of the stator winding temperature on the stray load losses and the 
efficiency determination for an 11 kW, 4-pole motor “E160-4” acc. to IEEE 112-B 

 

0,0

0,2

0,4

0,6

0,8

1,0

1,2

100%

Va
ria

tio
n 

/%

Stray load losses Efficiency

 

Figure 4.8: The variation of the stray load losses and the efficiency determined with different 
temperature methods (related to the resistance method) for an 11 kW, 4-pole motor 
“E160-4” acc. to IEEE 112-B 
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Figure 4.9: The variation of the stray load losses and efficiency determined with different 
temperature methods (related to the interpolation method) for an 1.1 kW, 2-pole 
motor “C80-2” acc. to IEEE 112-B 

 
 

4.2.5 Direct measurement of the stray load losses using the reverse 
rotation test 

The stray load losses Pad directly measured with the reverse rotation test acc. 

to IEEE 112 [IEEE 112], where the winding temperature ϑCu,s is determined acc. 

to IEC 60034-2 Ed. 4.0 draft/ IEC 61972 (Interpolation method), are presented 
in the following tables. The smoothened data of the measured stray load losses 
in the stator Pad,s,c during the removed rotor test and in the rotor Pad,r,c during the 
reverse rotation test and the resulting stray load losses Pad,c are depicted. 
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11 kW 4-pole motors A160-4 B160-4 C160-4 D160-4 E160-4 

Removed rotor test /W 32 22.6 38  42 43  

Reverse rotation test /W 180  139 168  265 373  

Stray load losses /W 212 162 206  307 416  

Table 4.30: The measured stray load losses in the stator and in the rotor with the reverse 
rotation test for 11 kW, 4-pole motors  

 

11 kW 2- & 6-pole 
motors A160-2 B160-2 C160-2 D160-2 A160-6 

Removed rotor test /W 25 31 29  40  23  

Reverse rotation test /W 283 150 123  714  203  

Stray load losses /W 308 181 152  754  226  

Table 4.31: The measured stray load losses in the stator and in the rotor with the reverse 
rotation test for 11 kW, 2- and 6-pole motors  

 

5.5 kW 6- & 4-pole 
motors A132-6 B132-6 C132-6 D132-6 A132-4 

Removed rotor test /W 14 12  13  10  35  

Reverse rotation test /W 116 238  111  57  200  

Stray load losses /W 130 250  124  67  235  

Table 4.32: The measured stray load losses in the stator and in the rotor with the reverse 
rotation test for 5.5 kW, 6- and 4-pole motors  

 

1.1 kW 2-pole motors A80-2 B80-2 C80-2 D80-2 

Removed rotor test /W 1  2  3  3  

Reverse rotation test /W 14  25  47  78  

Stray load losses /W 15  27  50  81  

Table 4.33: The measured stray load losses in the stator and in the rotor with the reverse 
rotation test for 1.1 kW, 2-pole motors  
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0.55 kW 4-pole motors A80-4 B80-4 C80-4 D80-4 

Removed rotor test /W 0.5 0.8  0.8 1  

Reverse rotation test /W 4.5 7.2 5.2 16  

Stray load losses /W 5 8 6 17  

Table 4.34: The measured stray load losses in the stator and in the rotor with the reverse 
rotation test for 0.55 kW, 4-pole motors  

 

0.37 kW 6-pole motors A80-6 B80-6 C80-6 D80-6 

Removed rotor test /W 0.4 1 0.3 0.3 

Reverse rotation test /W 2.6 2 1.7 1.7 

Stray load losses /W 3 3 2 2 

Table 4.35: The measured stray load losses in the stator and in the rotor with the reverse 
rotation test for 0.37 kW, 6-pole motors  

 

4.2.5.1 Influence of the determination of the resistive losses on the 
stray load losses calculation 

The measured stray load losses in the stator during the removed rotor test and 
in the rotor during the reverse rotation test are determined in different way:  

a) Average value: The winding temperature is determined as the average 
value of the measured resistances at the beginning and the end of the test 
(extrapolated to 0 seconds after switching off the motor). 

b) Interpolation acc. to IEC 60034-2 Ed. 4.0 draft: The temperature for 100% 
load and higher loads is the value determined before applying 150% load. 
The temperature for loads less than 100% is taken as varying linearly with 
the load, using the reading before the test for 100% load and after the 
lowest reading for 25% load (IEC 60034-2 Ed. 4.0 draft and IEC 61972). 

c) Thermocouples related: The winding temperature is determined as 
average reading of thermocouples installed on the overhang winding in 
DE- and NDE-side. The resistance for each load point is determined from 
the temperature of the winding at that point in relation to the resistance 
and the temperatures measured at test begin.  
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The smoothened data for the stray load losses of different motors were 
compared in the Figure 4.10 for a 1.1 kW motor and in the Table 4.36 and Table 
4.37 for 11 kW motors to show the sensitivity of the calculation method itself on 
the results. 
 

a) Average/ b) Interpol. A160-4 B160-4 C160-4 D160-4 E160-4 

Removed rotor test /W 41 / 32 23.5 / 22.6 45 / 38 53 / 42 54 / 43 

Reverse rotation test /W 189 / 180 135 / 139 165 / 168 266 / 265 378 / 373 

Stray load losses /W 230 / 212 159 / 162 210 / 206 319 / 307 432 / 416 

Variation relating to b) 8.5 % -1.8 % 1.9 % 3.9 % 3.8 % 

Table 4.36: The influence of stator winding temperature determination on stray load losses in 
the stator and in the rotor with the reverse rotation test for 11 kW, 4-pole motors  

 
As shown in the Table 4.36 and Table 4.37 and in the Figure 4.10 the 

sensitivity of the stray load losses on the winding temperature determination 
varies for these examples between -2 % and 8 %.  
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Figure 4.10: The variation of the stray load losses measured in the reverse rotation test 
determined with different temperature methods (related to the thermocouples 
related method) for a 1.1 kW, 2-pole motor “C80-2”  
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11 kW, A160-2 a) Average b) Interpolation c) Thermocouples related 

Removed rotor test /W 24 25 12 

Reverse rotation test /W 276 283 294 

Stray load losses /W 300 308 306 

Variation relating to c) -1.9 % -0.6 % 0.0 % 

Table 4.37: The influence of stator winding temperature determination on stray load losses in 
the stator and in the rotor with the reverse rotation test for 11 kW, 2-pole motor 

 
 

4.2.6 Direct measurement of the stray load losses with eh-star method  

The directly measured stray load losses for uncoupled motor operated under 
unbalanced condition acc. to the eh-star method [Jord 1967, Guid 2005] and the 
standard IEC 60034-2 Ed. 4.0 draft [IEC 60034-2 draft] are depicted in Table 
3.35 - 3.38 of the previous chapter (chapter 3).  
 
 

4.2.7 Direct measurement of the stray load losses using the equivalent 
no-load method of Bourne 

The stray load losses measured directly with the equivalent no-load method 
acc. to Bourne [Bour 1989] using the no-load current I0 and the rated current IN 
are presented for some measured motors in the following Tables where the 
resistance is determined by measuring the stator winding temperature using two 
thermocouples installed on the winding overhang. The resistance for each 
voltage point is determined from the temperature of the winding at that point in 
relation to the resistance and temperature measured before the start of the test. 
To measure the loss component due to circulating current in delta-connected 
winding of 3-times stator frequency fs, caused by the saturation harmonic, the 
test was done in delta-connection for all motors. The influence of the resistive 
losses and the terminal connection on the results of the stray load losses is 
presented in the next sections. 
 



4 Comparison of different measurement methods 163 

11 kW 4-pole motors A160-4 D160-4 E160-4 

Rated / no-load current /A 37 / 19 22 / 10 37 / 13 

Stray losses at no-load current /W 48 18 -4 

Stray load losses /W 225 194 98 

Correlation coefficient R 0.9934 0.9967 0.994 

Table 4.38: The measured stray load losses with the equivalent no-load method of Bourne for 
11 kW, 4-pole motors  

 

11 kW 2- & 6-pole motors A160-2 C160-2 A160-6 

Rated / no-load current /A 21 / 7 21.7 / 11 23 / 13 

Stray losses at no-load current /W 45 50 8 

Stray load losses /W 885 352 115 

Correlation coefficient R 0.9993 0.9998 0.9993 

Table 4.39: The measured stray load losses with the equivalent no-load method of Bourne for 
11 kW, 2- and 6-pole motors 

 

5.5 kW 6- & 4-pole motors A132-6 B132-6 C132-6 

Rated / no-load current /A 12.2 / 7 24 / 15 13 / 9 

Stray losses at no-load current /W 51 74 66 

Stray load losses /W 336 189 196 

Correlation coefficient R 0.9998 0.9993 0.9995 

Table 4.40: The measured stray load losses with the equivalent no-load method of Bourne for 
5.5 kW, 6-pole motors  

 

1.1 kW 2-pole motors A80-2 B80-2 C80-2 D80-2 

Rated / no-load current /A 4.43 / 3.1  4.27 / 2.47  4.32 / 2.69  4.9 / 3.32  

Stray losses at no-load current /W 43 8 7 74 

Stray load losses /W 65 30 23 105 

Correlation coefficient R 0.9983 0.9938 0.9999 0.9996 

Table 4.41: The measured stray load losses with the equivalent no-load method of Bourne for 
1.1 kW, 2-pole motors  
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0.55 kW 4-pole motors A80-4 B80-4 C80-4 D80-4 

Rated / no-load current /A 2.89 / 2.59  2.76 / 2.23  2.65 / 2.32  2.67 / 1.92  

Stray losses at no-load current /W 29 6 3 8 

Stray load losses /W 12 7 2.5 9 

Correlation coefficient R 0.9983 0.9665 0.9959 0.9997 

Table 4.42: The measured stray load losses with the equivalent no-load method of Bourne for 
0.55 kW, 4-pole motors  

 

0.37 kW 6-pole motors A80-6 B80-6 C80-6 D80-6 

Rated / no-load current /A 2.14 / 1.95  2.2 / 1.93  2.22 / 2.07  2.16 / 2.03  

Stray losses at no-load current /W 13 5 7 3 

Stray load losses /W 7 5 3 1 

Correlation coefficient R 0.9988 0.9808 0.9985 0.9984 

Table 4.43: The measured stray load losses with the equivalent no-load method of Bourne for 
0.37 kW, 6-pole motors  

 
 

4.2.7.1 Influence of the determination of the resistive losses on the 
stray load losses calculation 

The measurement data are used to determine the stray load losses in two 
different ways to show the sensitivity of the resistive losses on the results:   

a) The resistive losses are determined with the thermocouples method 
described above and with  

b) Interpolation method acc. to IEC 60034-2 Ed. 4.0 draft: The temperature 
for 100 % rated voltage and higher is the value determined before the test. 
The temperature for voltages less than 100 % is taken as linear with the 
voltage, using the reading before the test for 100 % rated voltage and after 
the lowest reading for 20 % rated voltage. 

 
The variations (5 % to 240 %) depicted in the Table 4.44 to Table 4.46 are 

high, especially for the smallest motors and show that the resistive losses must 
be measured accurately. It has to be noted that the Interpolation method acc. to 
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IEC 60034-2 Ed. 4.0 draft is inaccurate for the equivalent no-load method of 
Bourne as more test point over 100 % rated voltage are needed than in the 
standardized no-load test.  
 

1.1 kW 2-pole motors A80-2 B80-2 C80-2 D80-2 

Stray load loss with thermocouples /W 65 30 23 105 

Stray load loss with Interpolation /W 69 31 26 110 

Variation rel. to thermocouples /% 6.1 4.9 14.8 4.8 

Table 4.44: Influence of the winding temperature determination on measured stray load losses 
with the equivalent no-load method of Bourne for 1.1 kW, 2-pole motors  

 

0.55 kW 4-pole motors A80-4 B80-4 C80-4 D80-4 

Stray load loss with thermocouples /W 12 7 2.5 9 

Stray load loss with Interpolation /W 14 8 8.4 13 

Variation rel. to thermocouples /% 23.2 14.9 240 40.8 

Table 4.45: Influence of the winding temperature determination on measured stray load losses 
with the equivalent no-load method of Bourne for 0.55 kW, 4-pole motors  

 

0.37 kW 6-pole motors A80-6 B80-6 C80-6 D80-6 

Stray load loss with thermocouples /W 7 5 3 1 

Stray load loss with Interpolation /W 9 7 8 3 

Variation rel. to thermocouples /% 30.1 51.8 164 190 

Table 4.46: Influence of the winding temperature determination on measured stray load losses 
with the equivalent no-load method of Bourne for 0.37 kW, 6-pole motors  

 
 

4.2.7.2 Comparison of the stray load losses in star and delta 
connection 

To show the influence of the terminal connection on the results of the directly 
measured stray load losses with the equivalent no-load method acc. to Bourne 
[Bour 1989], the test was done for one 11 kW, 4-pole motor in delta- and in star-
connection. The difference of the stray load losses was negligible as presented in 
Table 4.47 and in Figure 4.11. 
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11 kW 4-pole motor E160-4 

Terminal connection Delta Star 

Stray load losses /W 97.9 100.5 

Correlation coefficient R 0.994 0.995 

Variation relating to delta /% 0.0 % 2.6 % 

Table 4.47: Influence of the terminal connection on the measured stray load losses with the 
equivalent no-load method of Bourne for 11 kW, 4-pole motor “E160-4” 
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Figure 4.11: The measured stray load losses in delta- and in star-connection with the 
equivalent no-load method of Bourne for 11 kW, 4-pole motor “E160-4” 

 
 

4.2.8 Direct measurement of the stray load losses using the equivalent 
no-load method of Rawcliffe 

For some motors measured with standardized no-load test, the tests results are 
evaluated acc. to the Rawcliffe’s method [Rawc 1952] without calculation of the 
secondary hysteresis losses PFe.hy.r.calcul as the measured harmonic-frequency 
losses Phf.measure were higher than with e.g. IEC 61972, or the evaluation was not 
possible as the slip s of the machine is zero or the values are erratic (e.g. see 
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Table 4.54 - Table 4.59). For the method acc. to Rawcliffe and Menon, with stray 
load losses directly measured with equivalent no-load, the slip s and the friction 
and windage losses Pfw at rated voltage UN are presented for some tested motors 
in the following Tables.  
 

11 kW 4-pole motors A160-4 B160-4 C160-4 E160-4 

Friction loss /W 70 93 98 63 

Slip /% 0.007 0.087 0.013 0.000 

Stray load losses /W Not possible 2) 624 Not possible 2) -63 

Table 4.48: The measured stray load losses with the equivalent no-load method of Rawcliffe 
for 11 kW, 4-pole motors  

2): The measurement could not be evaluated as the slip is zero or the values are erratic. 

 

11 kW 2- & 6-pole motors A160-2 C160-2 D160-2 A160-6 

Friction loss /W 311 264 287 27 

Slip /% 0.11 0.11 0.02 0.03 

Stray load losses /W 319 537 -167 297 

Table 4.49: The measured stray load losses with the equivalent no-load method of Rawcliffe 
for 11 kW, 2-pole and 6-pole motors 

 

5.5 kW 6- & 4-pole motors A132-6 B132-6 D132-6 A132-4 

Friction loss /W 49 26 36 49 

Slip /% 0.107 0.076 0.00 0.093 

Stray load losses /W 223 230 -36 95 

Table 4.50: The measured stray load losses with the equivalent no-load method of Rawcliffe 
for 5.5 kW, 6-pole and 4-pole motors 

 

1.1 kW 2-pole motors A80-2 C80-2 D80-2 

Friction loss /W 14 14 16 

Slip /% 0.117 0.16 0.13 

Stray load losses /W 21 44 17 

Table 4.51: The measured stray load losses with the equivalent no-load method of Rawcliffe 
for 1.1 kW, 2-pole motors  
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0.55 kW 4-pole motors B80-4 C80-4 D80-4 

Friction loss /W 3 4 6 

Slip /% 0.12 0.187 0.207 

Stray load losses /W Not possible 2) 28 43 

Table 4.52: The measured stray load losses with the equivalent no-load method of Rawcliffe 
for 0.55 kW, 4-pole motors  

2): The measurement could not be evaluated as the slip is zero or the values are erratic. 

 

0.37 kW 6-pole motors A80-6 B80-6 C80-6 D80-6 

Friction loss /W 3 3 2 4 

Slip /% 0.20 0.056 0.101 0.120 

Stray load losses /W 13 Not possible 2) 8 7 

Table 4.53: The measured stray load losses with the equivalent no-load method of Rawcliffe 
for 0.37 kW, 6-pole motors  

2): The measurement could not be evaluated as the slip is zero or the values are erratic. 

 
 

4.3 Comparison of different measurement methods for stray load 
losses in cage induction machines 

The stray load loss measurements were performed by different methods with 
the same equipment for the same motor size in the power lab of the Department 
of Electrical Energy Conversion, Darmstadt University of Technology. The 
comparison of the measured stray load losses for the investigated methods 
related to the value obtained from the residual loss method acc. to IEC 61972 / 
IEC 60034-2 Ed. 4.0 draft is presented in the following Tables and is shown in 
Figure 4.12 for the 5.5 kW and 11 kW motors. The results from the equivalent 
no-load method of Rawcliffe are not presented as no good correlation was 
obtained. 
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Ratio of stray loss for 
11 kW, 4-pole motors 

A160-4 B160-4 C160-4 D160-4 E160-4 

IEEE 112-method B /IEC 
61972 

-1) -1) -1) -1) 0.9 

RRT /IEC 61972 1.53 1.09 1.21 2.03 1.72 

Eh-star /IEC 61972 0.96 0.7 0.71 0.85 1.2 

No-load of Bourne /IEC 
61972 

1.63 
Not 

measured 
Not 

measured 
1.29 0.4 

No-load of Rawcliffe 
/IEC 61972 

Not 
possible 2) 

4.22 
Not 

possible 2) 
Not 

evaluated 
-0.27 

Table 4.54: Measured stray load losses from different methods related to the results of the 
residual loss method acc. to IEC 61972 for four 11 kW, 4-pole motors, five 
different manufacturers 

1): The measurement could not be evaluated according to IEEE 112-method B because 
the thermocouples were not supplied in the winding of the machine. 
2): The measurement could not be evaluated as the slip is zero or the values are erratic. 

 

Ratio of stray loss for  
11 kW 2- & 6-pole motors 

A160-2 B160-2 C160-2 D160-2 A160-6 

IEEE 112-method B /IEC 
61972 

0.92 0.8 0.69 0.98 0.73 

RRT /IEC 61972 1.17 0.98 1.09 1.17 1.69 

Eh-star /IEC 61972 0.72 0.56 0.91 0.78 0.95 

No-load of Bourne /IEC 
61972 

3.38 
Not 

measured 
2.53 

Not 
measured 

0.86 

No-load of Rawcliffe /IEC 
61972 

1.22 
Not 

evaluated 
1.9 -0.26 2.22 

Table 4.55: Measured stray load losses from different methods related to the results of the 
residual loss method acc. to IEC 61972 for four 11 kW, 2- and 6-pole motors, four 
different manufacturers  

 



4 Comparison of different measurement methods 170 

Ratio of stray loss for  
5.5 kW 6- & 4-pole motors 

A132-6 B132-6 C132-6 D132-6 A132-4 

IEEE 112-method B /IEC 
61972 

0.74 0.89 0.5 0.78  

RRT /IEC 61972 1.96 1.46 1.53 1.22 1.54 

Eh-star /IEC 61972 0.99 1.01 0.72 0.72 0.89 

No-load of Bourne /IEC 
61972 

5.1 1.1 2.42 
Not 

measured 
Not 

measured 

No-load of Rawcliffe /IEC 
61972 

3.38 1.35 
Not 

evaluated 
-0.67 0.63 

Table 4.56: Measured stray load losses from different methods related to the results of the 
residual loss method acc. to IEC 61972 for four 5.5 kW, 6- and 4-pole motors, five 
different manufacturers  

 
Figure 4.12 summarize a comparison of the measured stray load losses, the 

assigned value of 0.5 % (Pad = 0.005·Pe,in) acc. to IEC 60034-2 [IEC 60034-2] 
and the assigned value depending on the rated power acc. to IEC 61972-2 
[IEC 61972] for the 11 kW and 5.5 kW motors. 
 

Ratio of stray load losses for  
1.1 kW 2-pole motors 

A80-2 B80-2 C80-2 D80-2 

IEEE 112-method B /IEC 61972 -*) 0.68 0.78 0.62 

RRT /IEC 61972 0.92 0.92 1.0 0.84 

Eh-star /IEC 61972 0.59 0.84 0.73 0.58 

No-load of Bourne /IEC 61972 3.89 1.02 0.45 1.08 

No-load of Rawcliffe /IEC 61972 1.26 
Not 

evaluated 
0.87 0.18 

Table 4.57: Measured stray load losses from different methods related to the results of the 
residual loss method acc. to IEC 61972 for four 1.1 kW, 2-pole motors, four 
different manufacturers  

*): The measurement could not be evaluated according to IEEE 112-method B (see the 
note under Table 4.27). 
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Ratio of stray load losses for  
0.55 kW, 4-pole motors 

A80-4 B80-4 C80-4 D80-4 

IEEE 112-method B /IEC 61972 -*) 0.59 -*) 0.68 

RRT /IEC 61972 0.44 0.46 0.38 0.78 

Eh-star /IEC 61972 0.31 0.47 0.13 0.68 

No-load of Bourne /IEC 61972 1.07 0.39 0.15 0.41 

No-load of Rawcliffe /IEC 61972 
Not 

evaluated 
Not 

possible 2) 
1.66 1.96 

Table 4.58: Measured stray load losses from different methods related to the results of the 
residual loss method acc. to IEC 61972 for four 0.55 kW, 4-pole motors, four 
different manufacturers  

2): The measurement could not be evaluated as the slip is zero or the values are erratic. 

 

Ratio of stray load losses for  
0.37 kW, 6-pole motors 

A80-6 B80-6 C80-6 D80-6 

IEEE 112-method B /IEC 61972 -*) 0.46 -*) -*) 

RRT /IEC 61972 0.35 0.26 0.17 0.39 

Eh-star /IEC 61972 0.12 0.17 0.06 0.25 

No-load of Bourne /IEC 61972 0.91 0.39 0.31 0.25 

No-load of Rawcliffe /IEC 61972 1.69 
Not 

possible 2) 
0.84 1.75 

Table 4.59: Measured stray load losses from different methods related to the results of the 
residual loss method acc. to IEC 61972 for four 0.37 kW, 6-pole motors, four 
different manufacturers  

 
Figure 4.12 gives a comparison of the measured stray load losses Pad acc. to 

the residual loss method, the RRT, the eh-star test, some results from the 
equivalent no-load method of Bourne, the assigned value of 0.5 % acc. to IEC 
60034-2 (Pad = 0.005·Pe,in) and the assigned value depending on the rated power 
acc. to IEC 61972-2 for the 11 kW and 5.5 kW motors. The results from the 
equivalent no-load method of Rawcliffe are not presented as no good correlation 
was found. The 15 motors are arranged in order of increasing stray load losses 
acc. to the residual loss method from number 1 to 15. The RRT method yields 
too high stray load losses, whereas the residual loss (input-output) method and 
the eh-star results correlate quite well. The results showed that the assigned 
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value of 0.5% acc. to IEC 60034-2 yields often too low stray load losses. The 
results of the equivalent no-load method of Bourne can be either too big or too 
low and only in few cases they are fitting quite well, so no good overall 
correlation is given. 
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Figure 4.12: Measured stray load losses as percentage of the input power, evaluated from 4 
different test methods, the assigned value of 0.5 % of the electrical input power 
acc. to IEC 60034-2 and the assigned value depending on the rated output power 
acc. to IEC 61972-2 for 15 different motors of 5.5 kW and 11 kW of six 
manufacturers 

 
In Figure 4.13 a comparison of the measured stray load losses for the 1.1 kW, 

0.55 kW and 0.37 kW motors is shown. Also the assigned value of 0.5% acc. to 
IEC 60034-2 can be seen, and the assigned values acc. to IEC 61972-2 are 
depicted. The results from the equivalent no-load method of Rawcliffe are not 
presented as no good correlation was found. The motors are arranged for each 
rating and in order of increasing stray load losses acc. to the residual loss 
method.  
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Figure 4.13: Measured stray load losses as percentage of the input power, evaluated from 4 
different test methods, the assigned value depending on the rated output power 
acc. to IEC 61972-2 for 12 different motors of 1.1 kW, 0.55 kW and 0.37 kW of 
four manufacturers 

 
 

4.4 Measurement of 315 kW cage induction machine 

The tests of the 315 kW four pole standard induction motor (TEFC) were 
done in the test field of the manufacturer. The test results at 50 Hz grid-
operation are presented in the following Tables. 
 

315 kW 4-pole motor “A317-4” 

Rated U /V / I /A, Δ Phase resistance @ 20°C /Ω Iron losses /kW Friction loss /kW 

400 / 540 0.0103 1.303 2.673 

Table 4.60: No load loss segregation acc. to IEC 61972 for 315 kW, 4-pole motor “A317-4” 
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315 kW 4-pole motor “A317-4” 

Winding temperature rise /K 86.7 

Speed /rpm 1486.5 

Torque / kNm 2.026 

Electrical input power /kW 327.55 

Corrected mechanical output power /kW 314.05 

Corrected stator copper losses @ 25°C /kW 4.35 

Corrected rotor cage losses @ 25°C /kW 2.893 

Stray load losses /kW 2.358 

Stray load losses/Pe,in /% 0.72 

Correlation coefficient R 0.977 

Indirect Efficiency Pout,c/Pe,in /% 95.88 

Indirect Efficiency acc. IEC 60034-2 /% 96.10 

Indirect Efficiency acc. IEC 61972-2 /% 95.35 

Direct Efficiency Pout/Pe,in /% 96.28 

Table 4.61: Stray load losses and efficiency acc. to IEC 61972 compared with the efficiencies 
acc. to IEC 60034-2 and IEC 61972-2 for 315 kW, 4-pole motor “A317-4” 

 
The stray load losses are determined in this example using the winding 

temperature of the rated load temperature test for the five load points as the 
temperature was not available for the load test. The torque was measured by a 
torque-meter of range 10 kNm. At 125 % rated load only 25 % of full scale is 

utilised. The difference between the directly measured efficiency ηdir from the 

input and the output powers (input-output test) and the indirectly measured 

efficiency ηindir,c (residual loss method) is 0.4 %. 
 

Ratio of the stray load loss for 315 kW 4-pole motor “A317-4” 

IEC 61972 / Eh-star 1.49 

IEC 60034-2 / Eh-star 1.03 

Table 4.62: Measured stray load losses with input-output acc. to IEC 61972 related to the 
results of the eh-star method compared with the assumed value of 0.5 % of the 
electrical input power acc. to IEC 60034-2 for 315 kW, 4-pole motor “A317-4”  
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4.5 Measurement of 1500 kW cage wind generators 

Two different grid-operated low voltage six poles, squirrel-cage rotor 
asynchronous generators for 1500 kW wind turbines with different types of the 
stator winding were tested: 

1) generator with Round wire winding “A550-6R” and  

2) generator with Litz wire (braid) winding “A550-6L”.  

 
Some data of the generators are given Table 4.63.  
 

1500 kW 6-pole generators, 600 V Δ, 60 Hz A550-6R A550-6L 

Winding type Round wire Litz wire 

Slot fill factor /% 37.4 79 

Slot number in stator / rotor 72 / 86 72 / 86 

Iron stack length /mm 980 900 

Stator bore diameter / Air gap /mm 540 / 1.75 540 / 1.75 

Rotor Cu-cross-section /mm²  169 190 

Wedge (stator slot) non magnetic magnetic 

Table 4.63: Data of the measured 1500 kW, 6-pole generators 

 
A calibrated dc-motor with known losses is used to drive the induction 

generators. For the round wire winding generator “A550-6R” with higher stray 
load losses (see Table 4.66) the heat run test (input-output) is done only at 
partial load of ca. 80 % of the rated output power due to the thermal limit of the 
winding insulation. For this generator the mechanical power is also measured by 
a 10 kNm-torque-meter. The experience showed that the measurements with the 
torque-meter were more accurate than with the calibrated dc-motor with known 
losses and is therefore used further. 

 
The tests on the water cooled wind generators were done in the test field of 

the manufacturer. The test results at 60 Hz grid-operation are presented in the 
following Tables. 
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1500 kW 6-pole 
generators 

Rated U /V / I /A, 
Δ 

Phase resistance 
@ 20°C /Ω 

Iron losses 
/kW 

Friction loss 
/kW 

A550-6R 600 / 1580 0.00295 8.84 2.49 

A550-6L 600 / 1580 0.00287 8.93 1.92 

Table 4.64: No load losses segregation acc. to IEEE 112 for 1500 kW, 6-pole generators 

 
 

4.5.1 Direct measurement of the stray load losses using the reverse 
rotation test 

The smoothened data of the measured stray load losses in the stator during 
the removed rotor test and in the rotor during the reverse rotation test acc. to 
IEEE 112, where the mechanical power is measured with a 2 kNm-torque-meter, 
are presented in Table 4.65. 
 

1500 kW 6-pole generators A550-6R A550-6L 

Removed rotor test /kW 11.5 1.4 

Removed rotor test /rated power /% 0.76 % 0.09 % 

Reverse rotation test /kW 18 11.1 

Reverse rotation test /rated power /% 1.2 % 0.74 % 

Stray load losses /kW 29.5 12.5 

Stray load losses /rated power /% 1.96 % 0.83 % 

Table 4.65: The measured stray load losses at rated current in the stator and in the rotor with 
the reverse rotation test acc. to IEEE 112 for 1500 kW, 6-pole generators 

 
The fundamental-frequency stray load losses Pad,s in the stator of the round 

wire winding generator “A550-6R” are excessively high, about 0.76 % of rated 
power, due to the skin effect, especially the circulating current (first order eddy 
current losses). With increasing the resistance due to the skin effect the 
inductance decreases and consequently the “filter” effect of the winding 
decreases also which leads to higher high-frequency stray load losses. Also the 
higher-frequency stray load losses Pad,r in the rotor are high in comparison with 
the litz wire winding generator “A550-6L”. 

 



4 Comparison of different measurement methods 177 

4.5.2 Indirect measurement of the stray load losses using the “residual 
loss method” acc. to IEEE 112-method B  

This test is only applied on the round wire winding generator “A550-6R”, 
where the mechanical power is also measured by a 10 kNm-torque-meter at 
partial load of ca. 80 % of the rated output power. The results of the input-output 
test acc. to IEEE 112-method B (residual losses) compared with the stray load 
losses and the efficiency acc. to IEEE 112-method E (stray load losses from the 
reverse rotation test) are presented in Table 4.66 and Figure 4.14. 

As depicted in Table 4.66 the stray load losses determined indirectly with the 
residual loss method acc. to IEEE 112-method B, which suffers from inaccuracy 
at high efficiency (see Table 4.70), deviate by 63 % from the stray load losses 
determined directly with the reverse rotation test acc. to IEEE 112-method E. 
The difference in the efficiency between both methods is above 0.5 % for this 
example. 
 

1500 kW 6-pole generator “A550-6R” at 80 % rated output power 

Method IEEE 112-B  IEEE 112-E  

Winding temper. rise over 50°C inlet water /K 80.5 80.5 

Speed /rpm 1212.9 1212.9 

Torque / kNm 10.02 10.075 

Electrical output /kW 1228.94 1228.94 

Corrected mechanical input /kW 1272.36 1279.65 

Stray load losses /kW 11.52 18.81 

Stray load losses/Rated output /% 0.77 1.25 

Correlation coefficient R 0.992 Not applicable 

Indirect Efficiency Pe,out/Pm,c,in /% 96.587 96.037 

Indirect Efficiency acc. IEC 60034-2 /% 97.082 97.082 

Indirect Efficiency acc. IEC 61972-2 /% 96.902 96.902 

Direct Efficiency Pe,out/Pm,in /% 96.590 Not applicable 

Table 4.66: Stray load losses and efficiency acc. to IEEE 112-method B and IEEE 112-
method E compared with the efficiencies acc. to IEC 60034-2 and IEC 61972-2 
for 1500 kW, 6-pole generator “A550-6R” at 80 % of the rated output power 
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Figure 4.14: The stator and the total stray load losses acc. to IEEE 112-method B and IEEE 
112-method E compared with the value acc. to IEC 60034-2 for 1500 kW, 6-pole 
generator “A550-6R” at 80 % of the rated output power 

 
Due to the heating problem the generator could not run continuously at full 

load, otherwise the insulation life time will be strongly reduced. To avoid 
destruction due to overheating the practical consequence of this effect is the 
derating! It has to be noted that, only by direct measurement of the stray load 
losses - separately in the stator and in the rotor - the source of the heating could 
be identified. With the residual loss method (input-output test) e.g. acc. to IEEE 
112-method B it would not be possible. 

To estimate the winding temperature rise ΔϑCu,s, the slip s and therefore the 

efficiency η  at rated load the equivalent heat losses Peq, which are heating the 

stator winding, should be determined. 
 
 

4.5.2.1 Equivalent heat losses in the stator winding 

The equivalent heat losses Peq, which are heating the stator winding, include 
all losses dissipated in the stator and the rotor with different weight as assumed 
in the expression 

 ( )rad,rCu,Fesad,sCu,eq 2.05.0 PPPPPP +⋅+⋅++= . (4.2)

 
Due to the cooling system with water-jacket in the housing and inner air-fan-

cooling of the rotor, only 20 % of the rotor losses (PCu,r + Pad,r) and 50 % of the 
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iron losses PFe are are taken into account heating the stator winding. The 
fundamental-frequency stray load losses Pad,s in the stator and the higher-
frequency stray load losses Pad,r in the rotor are taken from the reverse rotation 
test.  
 

1500 kW 6-pole generator  
“A550-6R” 

Load 
80 % 

(measured) 
100 % 

(calculated) 

Line current Is A 1300 1580 

Stator copper losses PCu,s W 7143 12191 

Stator stray load losses Pad,s W 7787 11500 

Iron losses PFe W 8842 8842 

Rotor copper losses PCu,r W 13466 23238 

Rotor stray load losses Pad,r W 12189 18003 

Equivalent heat losses Peq W 24481 36361 

Winding temper. rise over 50°C inlet 
water 

ΔϑCu,s K 80.5 137.3 

Heat transfer capability Peq/ΔϑCu,s W/K 304 265 

Table 4.67: Heat transfer capability for 1500 kW, 6-pole generator “A550-6R” 

 

As shown in the Table 4.67 the calculated winding temperature rise ΔϑCu,s of 

137 K at full-load exceeds the limit of the specified insulation class “F”. 
 
 

4.5.2.2 Determination of the efficiency at full-load  

With the determined values of the winding temperature rise ΔϑCu,s and the 

slip s from the equivalent heat losses Peq, the indirectly determined efficiency 

η  at rated load is calculated for the generator “A550-6R” acc. to IEEE 112-

method E and presented in the following table. A comparison of the efficiency 
determined acc. to IEEE 112-method E1, where the stray load losses are 
assumed to be 1.2 % of the rated output, is also given. The efficiencies 
determined acc. to IEEE 112-method E/E1 for both generators are compared in 
Table 4.69. 
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1500 kW 6-pole generator “A550-6R” 

IEEE 112-method E/E1 80 % (measured) 100 % (calculated) 

Winding temper. rise over 50°C inlet water /K 80.5 137.3 

Speed /rpm 1212.9 1218.2 

Torque / kNm 10.075 12.346 

Electrical output /kW 1228.94 1500 

Corrected mechanical input /kW 1279.65 1574.99 

Stray load losses /kW 18.81 28.34 

Stray load losses/Rated output /% 1.25 1.89 

Indirect Efficiency Pe,out/Pm,c,in /% 96.037 95.239 

Indirect Efficiency acc. IEEE 112-E1 /% 96.555 96.240 

Table 4.68: Determination of the efficiency at full-load acc. to IEEE 112-method E compared 
with the efficiency acc. to IEEE 112-method E1 for 1500 kW, 6-pole generator 
“A550-6R” 

 
As given in Table 4.69 the efficiency-difference determined acc. to IEEE 

112-method E between both generators is above 1 %. For the generator “A550-

6L” the values of the winding temperature rise ΔϑCu,s and the slip s are measured 

values. 
 

1500 kW 6-pole generators 

IEEE 112-method E/E1 A550-6R A550-6L 

Winding temper. rise over 50°C inlet water /K 137.3 83.8 

Speed /rpm 1218.2 1219.1 

Torque / kNm 12.346 12.239 

Electrical output /kW 1500 1504.9 

Corrected mechanical input /kW 1574.99 1562.66 

Stray load losses /kW 28.34 12.02 

Stray load losses/Rated output /% 1.89 0.80 

Indirect Efficiency Pe,out/Pm,c,in /% 95.239 96.304 

Indirect Efficiency acc. IEEE 112-E1 /% 96.240 95.938 

Table 4.69: Stray load losses and efficiency at full-load acc. to IEEE 112-method E compared 
with the efficiency acc. to IEEE 112-method E1 for 1500 kW, 6-pole generators 
“A550-6R” and “A550-6L” 
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4.5.3 Impact of the measurement error on the stray load losses  

To show the influence of the measurement error on the stray load losses 
measured directly with the RRT acc. IEEE 112 and indirectly with the residual 
loss method (input-output test) acc. IEEE 112-method B, an instrument accuracy 
class of 0.2 % acc. to IEEE 112 is assumed. In Table 4.70 and Figure 4.15 each 
measured parameter is modified separately by +0.2 %. The results are presented 
as the measured Pad and the corrected (smoothed) Pad,c stray load losses. 

 

1500 kW 6-pole generator “A550-6R” Deviation of stray load losses 

 Method Residual loss RRT 

Assumed measurement error  ΔPad /% ΔPad,c /% ΔPad /% ΔPad,c /% 

+0.2 % Pe,out -21.5 -16.4 -0.32 -0.33 

+0.2 % Pm,in 22.1 16.7 0.29 0.30 

+0.5 % Pm,in 55.2 41.9 0.73 0.74 

Table 4.70: Influence of the measurement error on directly and indirectly measured stray load 
losses for 1500 kW, 6-pole generator “A550-6R” 

 

RRT

RRTMethod B

Method B

-20

-10

0

10

20
Pm,in Pel,out

D
ev

ia
tio

n 
of

 P
ad

/ %

 

Figure 4.15: Influence of the +0.2 % measurement error on directly (RRT) and indirectly 
(method B) measured stray load losses for 1500 kW, 6-pole generator “A550-6R” 

 
Table 4.70 and Figure 4.15 shows that the stray load losses measured 

indirectly with the residual loss method acc. IEEE 112-method B are more 
sensitive to measurement error than the directly measured stray load losses from 
the RRT acc. IEEE 112. The impact of the measurement error on the RRT 
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results is the same for the measured and the smoothed values, whereas the 
influence on the measured values with method B is higher than on the corrected 
values. 
 

4.6 Conclusion 

The stray load losses were measured with the residual loss method acc. to 
IEEE 112-method B and acc. to IEC 61972/ IEC 60034-2 Ed. 4.0 draft, with the 
reverse rotation test acc. to the standard IEEE 112 and IEC 61972, with the eh-
star method acc. to Jordan and Richter [Jord 1967] and acc. to the new proposed 
standard IEC 60034-2 Ed. 4, 2nd CDV, with the equivalent no-load method acc. 
to Bourne [Bour 1989] and with the equivalent no-load method acc. to Rawcliffe 
and Menon [Rawc 1952]. The measured values were compared with different 
assumptions acc. to the standards. 

 

- The experimental evaluation of the 5.5 kW and 11 kW motors with pole 
count 2, 4 and 6 showed good coincidence between the residual loss 
methods (input-output methods) and the eh-star method, whereas the RRT 
method gives bigger stray load losses.  

- The power rating 1.1 kW proved to be still good measurable, whereas for 
the power ratings 550 W and 370 W the stray load losses are very small 
(only some Watt), so the measurement uncertainty increases. 

- With decreasing power rating the p.u. stator resistance per phase value 
increases. The resistive voltage drop significantly reduces the inner 
voltage. Therefore the iron losses decrease under load. This fact is 
considered in the standard IEC 60034-2 Ed. 4.0 draft so always positive 
stray load losses were measured, whereas the standard IEEE 112-B 
considers the iron losses to be load independent leading in some cases to 
negative stray load losses, especially at small power rating 370 W. 

- For the power rating less than 1.1 kW the RRT method yields – unlike in 
case of bigger motors – the same or less stray load losses than the residual 
loss methods (input-output methods) for the investigated motors. 

- For the small power rating the eh-star method yields lower stray load 
losses than the residual loss methods. With decreasing power ratings the 
minimum value of the positive vs. the negative sequence current, which 
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should stay below 30 %, increases – being about 35 % at 550 W and 45 % 
at 370 W. This may lead to too low stray load losses. 

- The results of the equivalent no-load method of Bourne can be either too 
big or too low and only in few cases are fitting quite well, so no good 
overall correlation was found.  

- The results of the equivalent no-load method of Rawcliffe, which were 
sometimes not possible to be evaluated, can be either too big or too low 
and only in few cases are fitting quite well, so no good correlation was 
found. 

- The measured stray load losses are for all cases bigger than those obtained 
from the assigned value of 0.5 % of the electrical input power stated in 
IEC 60034-2. 

To improve the measurement accuracy and therefore to get better correlation 
coefficient R, the reading of the measured data should be taken over an 
averaging time e.g. of about 10 s, depending on the rating of the motor (thermal 
time constant), for each load point especially in the input-output test with the 
torque measurement. 

In addition, the influence of the temperature, the resistive losses, the iron 
losses and the friction and windage losses on the determination of the stray load 
losses and the efficiency was shown.  

The stray load losses must be measured and cannot be replaced by any kind 
of fixed assumption. 

The efficiency values obtained from different testing standards can differ by 
several percent. For big machines with high efficiency the direct measurement of 
the “small” stray load losses could be useful. Another advantage of this method 
is the separate identification of the stray load losses in the stator and in the rotor, 
which is helpful for purposeful optimizing of the machine design. In 
comparison, the residual loss methods e.g. acc. to IEEE 112-method B and the 
calorimetric method determine the stray load losses as a sum. 

The stray load losses have a considerable impact on the performance of the 
machine. By a measured example it was shown that, due to the stray load losses, 
the generator could not run continuously at full load. To avoid insulation 
destruction the practical consequence of this effect, due to the overheating, is the 
derating ! 
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5 INVESTIGATION OF STRAY LOAD LOSS 

COMPONENTS 
 
 

Three main issues form the objective of this chapter: the basics of eddy 
current losses in conductors, analytical calculation of the stray load losses in the 
stator winding due to skin effect and a comparison of the measurement on a 
1500 kW low-voltage grid-operated cage induction generators with profile, litz 
and round wire winding. Some measures to suppress the stray load losses in the 
stator winding due to circulating currents will be given. In addition the cause for 
overheating of the highly utilised round wire winding will be shown. The 
chapter will be closed with an overview on main stray load loss components in 
11 kW cage induction motors and a comparison between measurement and 
analytical calculation. 

 
 

5.1 Losses in induction machines 

Generally the losses in induction machines can be subdivided into the 
conventional losses (Ohmic losses, iron losses, friction and windage losses) and 
the stray load losses, namely in the stator and in the rotor, at no-load and under 
load as summarised in Table 5.1. These losses can be reduced by using quality 
materials, as well as by optimising the design. 
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Losses At No-load  At Load  

Stator 

Copper losses in winding 

Iron losses in active iron stack, in 
housing and bearing brackets 

Stray no-load losses  

Copper losses in winding 

Iron losses in active iron stack, in 
housing and bearing brackets 

Stray load losses  

Rotor 
Friction and windage losses 

Stray no-load losses 

Ohmic (copper) losses in winding 

Iron losses in active iron stack, in shaft 
and metallic fan 

Stray load losses  

Table 5.1: Simplified distribution of the losses in induction machines 

 

5.1.1 Conventional losses 

The losses called conventional are  

1. Ohmic losses in the conductors expressed by I2R, they increase rapidly 
with the load current and can be decreased e.g. by increasing the cross 
section of the stator and the rotor conductors, and by using copper instead 
aluminium, 

2. Iron losses mainly in the steel laminations of the stator and the rotor due 
to hysteresis and eddy currents, varying with flux density and frequency. 
They can be reduced e.g. by using thinner laminations, sharp punching 
tools and improved magnetic materials,  

3. and the mechanical losses due to friction in the bearings and – in case of 
slip ring machines – brush friction losses, the ventilation and windage 
losses. They can be decreased e.g. by using low friction bearings, 
improved and optimized ventilation and fan design. 

 

5.1.2 Stray load losses 

The stray load losses are due to e.g. the stray flux, the step-like (non sinus) 
distribution of the air gap flux density due to the arrangement of the winding and 
the cage in the slots, inter-bar currents and mechanical imperfections in the air 
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gap, also the eccentricity fields induce voltages in the parallel paths of the stator 
windings and give rise to equalizing currents [Kett 1984]. They can be reduced 
by optimal design and careful manufacturing (see also e.g. [Ober 1969]). 

 
The main components of stray load losses in squirrel-cage induction motors 

can be subdivided as follows [Bind 1988, Bind 2006m]: 
 

a) Fundamental-frequency stray load losses in the stator which consist of 

- skin effect (first and second order) in the stator winding,  

- stray load losses in the end region due to axial flux components [Taeg 1987]  

- eddy current losses especially at high saturation in the stator housing and in 
metallic parts e.g. the bearing brackets.  

 
b) Higher-frequency stray load losses in the rotor and stator which include 

- skin effect in the rotor cage, harmonic rotor currents due to the third space 
harmonic caused by iron saturation 

- losses due to inter-bar currents in cages with skewed rotor slots [Kron 1969] 

- tooth pulsation losses in the rotor and the stator caused by the distortion of 
the air gap flux density distribution due to the slot openings 

- surface losses in the rotor and the stator 

- losses in the stator winding due to harmonic currents [Kron 1969] and 
circulating currents in delta connected stator windings due to the third space 
harmonic caused by iron saturation. 

- iron losses in the stator core due to the third space harmonic caused by the 
distortion of the field distribution due to iron saturation. 
 
 

5.2 Basics of eddy currents in conductors located in the slot 

The conductor e.g. a deep bar in the slot is exposed to AC pulsating slot stray 
flux density BQ, which is excited by the current in the conductor itself Ibar 
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[Bind 2006m]. The slot flux density BQ induces, according to Faraday´s law 

dtdu Qi / Φ−= , an additional voltage in the bar, which causes eddy current IFt 

(Ft: Foucault-current) to flow in the bar. Due to the negative sign in Faraday´s 
law the field of eddy current BQFt opposes the original slot flux density BQ 
(Lenz’s rule) and weakens it as presented in Figure 5.1 and Figure 5.3. The 
superposition of the bar current Ibar and eddy current IFt yields increased current 
density in the upper bar region and reduced current density J in the bottom of the 
bar (“current displacement or skin effect”, see Figure 5.3). Hence the bar current 
Ibar flows mainly in upper half of the bar, thereby using only part of the bar cross 
section, which leads to an increase of the effective bar resistance and reduces the 
inductance as shown in the principle equivalent circuit in Figure 5.2. 

 

 

Rbar

I bar

jX upper

Z upper

I bar+I Ft

Rbar

I bar-I Ft

jX bottom> jX upper

Z bottom> Z upper

Figure 5.1: Eddy current IFt in deep bar 
[Bind 2006m] 

Figure 5.2: Asymmetrical current distri-
bution due to eddy current 

 
With Ampere´s law we get for the stray flux density - simplified - a linear rise 

along the bar and constant value above the bar (see Figure 5.3) [Bind 2006m] 
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                        a)             b)               c) 

Figure 5.3: Current displacement in deep bar in comparison to DC current situation.                
a) Slot and bar cross section with slot stray flux lines,                                              
b) Bar current density distribution with/without skin effect,                                    
c) Slot flux density distribution with/without skin effect [Bind 2006m] 

 
 
The skin effect causes an increase of the effective conductor resistance 

compared to the DC resistance RDC  

  )()(
DC

AC
r ξψξϕ ⋅+== c

R
Rk , for special case of one conductor c = 0 (5.2)

 

For more details about the functions ϕ(ξ), ψ(ξ) and the reduced conductor 

height ξ  see section  5.3.3. 
 
The skin effect depends mainly on: 

- Frequency f 

- Conductor height hTL 

- Conductor conductivity κ taking the temperature into account 

- Conductor permeability µ. 
 
 

Fe 

 bQ 
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5.3 Calculation of the stray load losses in the stator winding  

One of the main origins of the stator component of the stray load losses in the 
analyzed, low voltage wind generators are the losses Pad,s,1.O due to first and 
Pad,s,2.O due to second order skin effect in the stator winding, mainly in the slots 
along the stack length lFe: 

a) First order eddy currents (1.O), or circulating currents, flow in loops 
composed of insulated, parallel partial conductors or wires which are 
connected at the ends of the conductors or the coil (see Figure 5.4). 

b) Second order eddy currents (2.O) are displacement currents within the 
conductors or the wires themselves (see Figure 5.4 and Figure 5.1). 

 

                     

I

Bq

 

Figure 5.4: Principle sketch of the first order and second order skin effect 

 
This uneven distribution of the current in the conductors and in the short-

circuited conductor-loops may be regarded as increasing the stator DC resistance 
Rs,dc  by the resistance coefficients kr1.O (first order skin effect) and kr2.O (second 
order skin effect). Analytical formulas – Field´s and Emde´s formulas 
[Vogt 1974] – exist only for rectangular profiled conductors, with distinguished 
placement of the conductors in the slot. Therefore, calculation of the eddy 
current losses for the round wire winding with arbitrarily – randomly, 
undefined – distributed conductors can be only approximated by an equivalent 
rectangular slot approximation for the real oval-shaped stator slot (Figure 5.18). 

 

BQ 

 

Partial conductors short circuited at ends of 
the coil → circulating current in the loop 
(eddy current 1.O) 

Partial conductor → eddy current 2.O 
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5.3.1 Calculation model 

The analytical model [Vogt 1974] is based on the following assumptions: 

1) The stray flux lines in the slot are perpendicular to the slot wall (see also 
[Lamm 1966]) 

2) The radial stray flux lines through the slot opening are neglected 

3) The conductors in the slot are parallel 

4) The permeability of the iron stack is assumed to be infinite. 

 
In the analytical model the following is considered: 

1) Eddy current losses in conductors located in the slot region 

2) Eddy current losses in the straight part of the winding overhang 

3) Eddy current losses in the curved part of the winding overhang 

4) First order skin effect 

5) Second order skin effect 

6) Dependence on temperature, which is assumed to be constant for all 
conductors. 

7) Pitching of coils 

8) Transposition of conductors, which is usual for two-layer windings with 
profile copper conductors. 

 

5.3.2 Definition of winding parameters 

Some winding parameters for the round wire winding in the equivalent 
rectangular slot, for the profiled winding and for the coil dimensions are 
presented in the Figure 5.5 with 

bTL : width of partial conductor  
hTL : height of partial conductor  



5  Investigation of stray load loss components 191 

nn : number of partial conductors side by side (horizontal) per slot 
nü : number of partial conductors one above the other per slot 
hw : height of the turn per coil 
bQ : slot width  
hQ : slot height  
wü : number of turns one above the other per slot 
ap : number of parallel partial conductors per turn 
W : coil width 
lm : length of the conductor (lm = lFe + lb1 + lb2) 
lFe : length of the iron stack 
lb1 : length of the conductor in the straight part of the winding overhang 
lb2 : length of the conductor in the curved part of the winding overhang. 
 

wü

Bundle with a  (e.g. 21) p wires 

hw

nü

bQ

dCu

nü/turn
hQ

hTL

bTL

Turn with a  (e.g. 4) p wires 

nn

Wedge 

lm lFe

lb1

lb2

W
wü

hw

nü

nü/turn

nn

 

Figure 5.5: The winding parameters for the profiled winding and the round wire winding in 
the equivalent slot and the coil dimensions 

 

5.3.3 Eddy current losses in conductors located in slot region 

The eddy current losses in the slot region along the stack length lFe are the 
important part of the eddy current losses in the stator winding. 
 

For the calculation of the eddy current losses and the resistance coefficient kr 

the functions ϕ(ξ), ψ(ξ) will be used where ξ  is the reduced conductor height. 

The functions ϕ(ξ), ψ(ξ) are plotted vs. ξ  in Figure 5.6. The function ϕ(ξ) 

considers the influence of the field induced from the conductor itself whereas the 
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proximity factor ψ(ξ) considers the influence of the field induced from other 

conductors in the slot. The dimensionless parameter ξ of a conductor is the ratio 

of its height hTL to the penetration depth dE which is determined by solution of 
the Maxwell´s equations.  
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   // QTLTLTLTLETL bbfhdh ⋅⋅⋅⋅⋅== κμπξ  (5.5)

The parameter ξ in (5.5) depends on the frequency f, the conductor height 

hTL, the conductor conductivity κ at test temperature, the conductor permeability 

µ (µCu = µAl = µ0) and the ratio of the conductor width bTL to the slot width bQ. 

For each case i.e. the first and second order skin effect the parameters ξ1.Ο and 

ξ2.Ο respectively will be calculated in the next section. 
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Figure 5.6: The functions ϕ(ξ), ψ(ξ) vs. ξ   
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The resistance coefficient kr can be given in general as (5.6) where the factor 
c is to be determined for each case dependent on the type of winding: single-
layer winding, transposed two-layer winding, pitching of the winding etc.  

  )()(r ξψξϕ ⋅+= ck . (5.6)

 

5.3.4 Eddy current losses in winding overhang 

Due to the small stray flux the eddy current losses in winding overhangs are 
negligible in comparison with the eddy current losses in the slot region 
especially for small motors and wind generators of some MW. To determine this 
component of the losses in end windings a 2D field calculation [Bind 1988] is 
used. The air is substituted by an “equivalent slot width” bQ,e. 
 

5.3.4.1 Eddy current losses in straight part of winding overhang 

According to [Bind 1988] the tangential field of the end winding, formed by a 
rectangular shaped bundle of conductors (height hc, width bc) which leaves the 
slot, carrying the total current per coil Ic , is  
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The “equivalent slot width” bQ,e1 of the straight part of the winding overhang 
along the axial length lb1 is then 
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In this “equivalent slot width” bQ,e1 a half coil height hc/2 according to Pohl 
[Rich 1967] may be introduced to calculate the resistance coefficient kr1.O of the 
first and kr2.O of the second order skin effect. 
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5.3.4.2 Eddy current losses in curved part of winding overhang 

Analogue to the “equivalent slot width” bQ,e1 for the straight part of the 
winding overhang an “equivalent slot width” bQ,e2 for the curved part of the 
winding overhang along the circumference length lb2 is derived using the half 
coil height hc/2  
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According to Pohl a half coil height hc2/2 may be introduced for calculating the 
resistance coefficient kr1.O of the first and kr2.O of the second order skin effect. 
 

5.3.5 Consideration of the pitching of the winding 

The pitching of the winding W/τp reduces the eddy current losses due to the 

smaller total amount of the slot ampere-turns amplitude. It affects only the part 

regarding the function ψ(ξ), which considers the influence of the field induced 

from other conductors in the slot, whereas  ϕ(ξ) considers the influence of the 

field induced from the conductor itself (see equation (5.6), (5.10) … (5.20)). 
A comparison of the influence of the pitching on the eddy current losses 

between Binder formula [Bind 2006c] and Vogt [Vogt 1974] is given. 
 

5.3.5.1 Influence of the pitching on the second order skin effect 

With the functions ϕ(ξ2.Ο) and ψ(ξ2.Ο) given in (5.3) and (5.4) the average 

value of the resistance coefficient kr2.O for the second order eddy current of 
pitched and usually transposed two-layer winding over the conductors per slot 
can be calculated as  
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nü : number of partial conductors one above the other per slot 
kBind : simplified pitching coefficient. 

 
The influence of the pitching on the eddy current losses PFt,2.O acc. to 

[Bind 2006c] will be compared with the consideration acc. to [Vogt 1974]. The 
pitching coefficient kBind acc. to [Bind 2006c] is 
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W : coil width 
τp : pole pitch. 
 

The resistance coefficient kr2.O for the second order eddy current of pitched 
and usual transposed two-layer winding can be calculated acc. to [Vogt 1974] as  
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nü : number of partial conductors one above the other per slot 
ϕ : phase angle between the currents in the upper and lower layer conductor. 
 

For the slots (q - sw) where the conductors carry the same currents in the 

upper and lower layer (ϕ = 0°) the equation (5.12) can be written as  
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q : number of the slots per pole and phase 
sw : number of the mixed slots (different phases in upper and lower layer). 
 

For the mixed slots (sw), where the conductors carry different currents in the 

upper and lower layer e.g. (ϕ = 60°) the equation (5.12) can be written as  



5  Investigation of stray load loss components 196 

   )()60cos(
824

85
)( 2.O

2
ü

2
ü

2.O
w

r2.O 







⋅







°⋅+−⋅+⋅= ξψξϕ nn

q
sk  (5.14)

With (5.13) and (5.14) the average value of the resistance coefficient kr2.O can be 
calculated as 
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In Table 5.2 the influence of the pitching on the eddy current losses PFt,2.O 
acc. to [Bind 2006c] is compared to the consideration acc. to [Vogt 1974]. 
 

Pitching acc. [Bind 2006c] Pitching acc. [Vogt 1974] 
Winding data W/τp = 10/12;  q = 4;  sw = 2;  nü = 20 
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Without pitching 
W/τp = 12/12 

3/)1( 2
ü −n  133.0 3/)1( 2

ü −n  133.0 

Table 5.2: Comparison of different pitching consideration and the influence of the pitching 

 
Table 5.2 shows that both considerations of the pitching are identical. In addition 

the pitching of the winding (W/τp = 10/12) reduces the eddy current losses PFt,2.O 

by 10 %, in this case compared to unpitched windings. 
 

5.3.5.2 Influence of the pitching on the first order skin effect 

As stated in [Vogt 1974, Müll 1956] the pitching of the winding does not 
influence the first order eddy current losses PFt,1.O in usual transposed two-layer 
windings with profile conductors.  

For the two-layer round wire winding, which is inserted in the slots usually 
without transposition, the influence of the pitching on the first order eddy 
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current losses PFt,1.O can be estimated, depending on the sequence of the 
conductors in the slot acc. to [Müll 1956]. 

The resistance coefficient kr1.O for the pitched winding with )( p qW −> τ  can 

be calculated as 

 MüMüMü1.OMüMü1.Or1.O )(     ;  )()()( dkckck =−⋅−+= ξψξϕ  (5.18)
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ppu : number of the positive passes in the upper layer 
wü : number of turns one above the other per slot 
q : number of the slots per pole and phase 
νMü : positive sequences of the partial conductor 
ρMü : negative sequences of the partial conductor (transposed or twisted) 
pslot : number of passes through the slot (pslot = wü : number of turns per slot for 

two-layer and pslot = 2·wü for single-layer winding). 
 

Independent of the pitching, the value of the term kMü in (5.20) is zero for the 
usual transposed two-layer winding as presented in the example of the Table 5.3. 
In this case the term dMü in (5.18) is in agreement with the well known equation 

16/)4( 2
ü −w  (see (5.25)). 

For the unpitched two-layer winding (sw = 0) without transposition the term 

dMü in (5.18) is in agreement with the well known equation 4/)1( 2
ü −w  (see 

(5.21)). 
In Table 5.3 the influence of the pitching on the first eddy current losses for 

the usual transposed, non transposed, pitched and unpitched two-layer winding 
is summarized. 
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Winding data W/τp = 10/12; q = 4; sw = 2; wü = 4 ( = pslot) 

Parameter Σ(νMü-1) ΣρMü ηMü cMü ppu kMü dMü 

Usually 
transposed two-
layer winding 

Pitched / 
Unpitched 
winding 

1 7 -1.5 0.75 0 0 0.75 

Pitched 
winding 

6 0 1.5 3.75 2 0.5 3.25 Not transposed 
two-layer 
winding Unpitched 

winding 
6 0 1.5 3.75 2 0 3.75 

Table 5.3: Influence of the pitching on the first eddy current losses  

 

For the example given in Table 5.3 the pitching of the winding W/τp = 10/12 

reduces the eddy current losses only by 15 % in the non transposed winding, 
whereas the transposition is more effective. 
 

As Müller’s method [Müll 1956] described in (5.18), depending on the 
sequence of the conductors in the slot, is complicated, the influence of the 
pitching on the first order eddy current losses PFt,1.O of the two-layer round wire 
winding can be estimated by the developed equation (5.22).  
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For the unpitched two-layer round wire winding (sw = 0) without transposition 
the equation (5.22) is in agreement with the well known equation (5.21). 

 
A comparison of the pitching consideration in (5.18) acc. to [Müll 1956] with 

the estimation in (5.22) and the influence of the pitching on the first order eddy 
current losses for the non transposed round wire winding are presented in Table 
5.4. As can be seen in Table 5.4 the results of both considerations are identical. 
Therefore the developed equation (5.22) is used in the calculation model. 
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Pitching acc. [Müll 1956] 

(5.18) 

Pitching acc. estimation 

(5.22) 
Winding data W/τp = 10/12; q = 4; sw = 2; wü = 4 ( = pslot) 

Pitching influence 
W/τp = 10/12 
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Table 5.4: Comparison of different pitching consideration and the influence of the pitching on 
the first eddy current losses for the non transposed round wire winding  

 

5.4 Model for profile conductor winding 

The pitched two-layer winding with profile copper conductors is inserted in 
the slots with the usual transposition of the partial conductors. That means the 
sequence of the partial conductors, which are short circuited SC at the beginning 
and the end of the turn, changes in the next slot (see Figure 5.7). Due to the 
usual transposition and suitable connection of the coils the first order eddy 
current losses Pad,s,1.O can be reduced as shown in Table 5.3. 
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Figure 5.7: Transposed two-layer profile winding with two parallel partial conductors  
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5.4.1 First order skin effect 

The first order eddy current losses Pad,s,1.O due to circulating currents are 
proportional to the height of the turn hw. 

The reduced conductor height ξ1.Ο for the first order eddy current is  

  / / mieQ,nTLwarm0w1.O llbnbfh ⋅⋅⋅⋅⋅⋅⋅= κμπξ  (5.23)

f : frequency  
κwarm : conductor conductivity at test temperature 
µ0 : magnetic permeability of empty space (µCu = µ0 = 4π.10-7 Vs/(Am)) 
bTL : width of partial conductor  
nn : number of partial conductors side by side (horizontal) per slot 
bQ,e : equivalent slot width (see Table 5.5) 
li : length of the conductor in the regions (see Table 5.5) 
lm : length of the conductor (lm = lFe + lb1 + lb2). 

 

For the calculation of ξ1.Ο for different parts of the winding, the equivalent 

slot width bQ,e and the length li should be substituted accordingly (see Table 5.5). 
 

 Slot region along 
the iron stack 

Straight part of the 
winding overhang 

Curved part of the 
winding overhang 

Red. Cond. height ξ1.Ο ξ1.Ο,Q ξ1.Ο,b1 ξ1.Ο,b2 

Resistance coeff. kr1.O kr1.O,Q kr1.O,b1 kr1.O,b2 

Eddy current loss /W PFt,1.O,Q PFt,1.O,b1 PFt,1.O,b2 
Equiv. slot width bQ,e /mm bQ bQ,e1 bQ,e2 

Length li /mm lFe lb1 lb2 

Turns per slot wü wü wü/2 wü/4 

Table 5.5: First order skin effect parameters for different sections of the winding 

 
The height of the turn per coil hw is 

 TLinsl,TLinsl,TL
n

P
w )( ddh

n
ah −+⋅=  (5.24)

ap : number of parallel partial conductors per turn 
nn : number of partial conductors side by side (horizontal) per slot 
hTL : partial conductor height (without insulation) 
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dinsl,TL : insulation thickness of the partial conductor (both sides). 
 
With the functions ϕ(ξ1.Ο) and ψ(ξ1.Ο) given in (5.3) and (5.4) the average value 
of the resistance coefficient kr1.O for the first order eddy current of transposed 
two-layer winding over the conductors per slot can be calculated as  
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1.Or1.O ξψξϕ ⋅−+= wk  (5.25)

wü : number of turns one above the other per slot (see Table 5.5). 
 

For the calculation of kr1.O for different sections of the winding, the number of 
turns wü one above the other per slot should be substituted accordingly (see 
Table 5.5). 

As investigated in the section before, the pitching of the winding does not 
influence the first order eddy current losses for usual transposed two-layer 
winding, see also [Vogt 1974, Müll 1956]. So the first order eddy current losses 
PFt,1.O in different sections of the winding (see Table 5.5) can be calculated as 

  3)1(  )1( 2
sdcs,r1.Odcs,Cu,r1.OFt,1.O IRkPkP ⋅⋅⋅−=⋅−=  (5.26)

PCu,s,dc : DC copper losses (without skin effect) 
Rs,dc :  DC resistance (without skin effect) 
Is :  Stator current. 
 

The stray load losses due to the circulating current Pad,s,1.O in the stator 
winding are 

  b2Ft,1.O,b1Ft,1.O,QFt,1.O,s,1.Oad, PPPP ++= . (5.27)

 

5.4.2 Second order skin effect 

The second order eddy current losses Pad,s,2.O in the partial conductors are 
proportional to the height of the partial conductor hTL. 

The reduced conductor height ξ2.Ο for the second order eddy current is  
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   / eQ,nTLwarm0TL2.O bnbfh ⋅⋅⋅⋅⋅⋅= κμπξ  (5.28)

f : frequency  
κwarm : conductor conductivity at test temperature 
µ0 : magnetic permeability of empty space (µCu = µ0 = 4π.10-7 Vs/(Am)) 
bTL : width of partial conductor  
nn : number of partial conductors side by side (horizontal) per slot 
bQ,e : equivalent slot width (see Table 5.6). 
 

For the calculation of ξ2.Ο for different parts of the winding, the equivalent 

slot width bQ,e should be substituted accordingly (see Table 5.6). 
 

 
Slot region along 

the iron stack 
Straight part of the 
winding overhang 

Curved part of the 
winding overhang 

Red. Cond. height ξ2.Ο ξ2.Ο,Q ξ2.Ο,b1 ξ2.Ο,b2 

Resistance coeff. kr2.O kr2.O,Q kr2.O,b1 kr2.O,b2 

Eddy current loss /W PFt,2.O,Q PFt,2.O,b1 PFt,2.O,b2 
Equiv. slot width bQ,e /mm bQ bQ,e1 bQ,e2 

Length li /mm lFe lb1 lb2 

Partial conductors one 
above the other per slot nü 

nü nü/2 nü/4 

Table 5.6: Second order skin effect parameters for different sections of the winding 

 
With the functions ϕ(ξ2.Ο) and ψ(ξ2.Ο) given in (5.3) and (5.4) the average 

value of the resistance coefficient kr2.O for the second order eddy current of 
pitched and usual transposed two-layer winding over the conductors per slot can 
be calculated as  
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nü : number of partial conductors one above the other per slot (see Table 5.6) 
sw : number of the mixed slots (different phases in upper and lower layer) 
q : number of slots per pole and phase. 

 
For the calculation of kr2.O for different sections of the winding the number of 

partial conductors one above the other per slot nü should be substituted 
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accordingly (see Table 5.6). 
 
The second eddy current losses PFt,2.O in different sections of the winding (see 

Table 5.6) can be calculated as 

   /)1( mir2.Odcs,Cu,Ft,2.O llkPP ⋅−⋅=  (5.30)

PCu,s,dc : DC copper losses (without skin effect) 
li :  length of the conductor in the regions (see Table 5.6) 
lm :  length of the conductor (lm = lFe + lb1 + lb2). 
 

The stray load losses due to the second order eddy current Pad,s,2.O in the stator 
winding are 

  b2Ft,2.O,b1Ft,2.O,QFt,2.O,s,2.Oad, PPPP ++= . (5.31)

The stray load losses Pad,s in the stator winding due to the skin effect are the 
sum of Pad,s,1.O and Pad,s,2.O , the first and the second order eddy current losses:  

  s,2.Oad,s,1.Oad,sad, PPP += . (5.32)

 

5.4.3 Example  

In the following an example for the calculation model is given for the pitched 
two-layer winding with profile copper conductors for the 1500 kW, 6-pole 
generator “A550-6P” at 60 Hz grid feeding. 

The needed data of the profiled conductor winding for the calculation model 
are given in Table 5.7, some calculated data in Table 5.8, the calculated first 
order eddy current losses Pad,s,1.O in Table 5.9, the calculated second order eddy 
current losses Pad,s,2.O in Table 5.10 and a comparison of both in Table 5.11. 
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Width of partial conductor bTL  /mm 5.6 

Height of partial conductor hTL  /mm 3.35 

Insulation thickness of the partial conductor dinsl,TL  /mm 0.35 

Number of parallel partial conductors per turn ap 4 

Number of partial conductors side by side per slot nn 2 

Number of turns one above the other per slot wü 10 

Conductor length lm  /mm 1449.2 

Length of the iron stack lFe  /mm 900 

Length of the straight part of the winding overhang lb1  /mm 40 

Length of the curved part of the winding overhang lb2  /mm 469.2 

Pitching of the winding W/τp 10/12 

Slot width bQ /mm 13 

Winding temperature ϑCu,s /°C 35.9 

Table 5.7: Data of the profiled conductor winding “A550-6P” 

 

Number of partial conductors one above the other per slot nü 20 

Coil height (under- and upper layer) hc  /mm 74 

Coil width bc  /mm 11.9 

Height of the turn per coil hw  /mm 7.05 

DC copper losses PCu,s,dc  /W 6570 

Table 5.8: Some calculated data for the profiled conductor winding “A550-6P” 

 

First order skin effect Winding overhang 

Parameter Equation 
Slot region 

Straight Curved 

Equivalent slot width bQ,e /mm (5.8), (5.9) 13 66.01 41.05 

Reduced cond. height ξ1.O (5.23) 0.581356 0.076918 0.236226 

ϕ(ξ1.O) (5.3) 1.010110 1.000003 1.000277 
Functions 

ψ(ξ1.O) (5.4) 0.037900 0.000012 0.001038 

Resistance coeff. kr1.O (5.25) 1.237512 1.000018 1.000423 

Eddy current losses PFt,1.O /W (5.26) 1560.44 0.12 2.78 

Ratio of losses PFt,1.O /PCu,s,dc  23.75 % 0.002 % 0.042 % 

Stray load losses Pad,s,1.O /W (5.27) 1563.34 

Table 5.9: Calculated first order eddy current losses at 60 Hz for the profiled conductor 
winding “A550-6P” 
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Second order skin effect Winding overhang 

Parameter Equation 
Slot region 

Straight Curved 

Equivalent slot width bQ,e /mm (5.8), (5.9) 13 66.01 41.05 

Reduced cond. height ξ2.O (5.28) 0.350542 0.155561 0.197273 

ϕ(ξ2.O) (5.3) 1.001341 1.000052 1.000135 
Functions 

ψ(ξ2.O) (5.4) 0.005030 0.000195 0.000505 

Resistance coeff. kr2.O (5.29) 1.60747 1.00588 1.00378 

Eddy current losses PFt,2.O /W (5.30) 2478.6 2.13 8.04 

Ratio of losses PFt,1.O /PCu,s,dc  37.73 % 0.03 % 0.12 % 

Stray load losses Pad,s,2.O /W (5.31) 2488.74 

Table 5.10: Calculated second order eddy current losses at 60 Hz for the profiled conductor 
winding “A550-6P” 

 
Table 5.9 and Table 5.10 show that the determined eddy current losses in the 
winding overhang are negligibly small < 1 % for this example. 
 

Pad,s,1.O /W Pad,s,2.O /W Pad,s /W Pad,s /PCu,s,dc 
Stray load losses 

1563.34 2488.74 4052.1 62 % 

Table 5.11: Comparison of calculated first and second order eddy current losses at 60 Hz for 
the profiled conductor winding “A550-6P” 

 
As can be seen for this example in Table 5.11, due to lower number of 

parallel partial conductors per turn ap the first order eddy current losses Pad,s,1.O 
are by 39 % of the stray load losses Pad,s smaller compared to the second order 
eddy current losses Pad,s,2.O amounting to 61 % of Pad,s in the stator winding. The 
losses Pad,s,2.O are high due to the relatively high partial conductor height hTL. 
 

5.4.4 Influence of winding parameters on calculated stray load losses 

The influence of the pitching on the second order skin effect is investigated in 
the previous section. The calculated impact of other parameters like conductor 
height hTL, number of parallel partial conductors ap, turn number per slot wü, 
winding temperature and supply frequency will be investigated in following. 
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5.4.4.1 Influence of the conductor height 

The influence of the conductor height hTL on the second order skin effect of a 
two-layer profile winding with two parallel partial conductors ap = nü = 2 and 
wü = 10 turns per slot at 60 Hz is shown in Figure 5.8 and Table 5.12.  
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Figure 5.8: Influence of the conductor height on the calculated first and second order skin 
effect of two-layer profile winding “A550-6P” with two parallel partial conductors 

 

Increasing of 

hTL / % 
0 17 33 50 58 67 83 100 

Deviation 

for 50 % 

hTL /mm 2.01 2.34 2.68 3.01 3.18 3.35 3.68 4.02 50 % 

hw /mm 4.37 5.04 5.71 6.38 6.715 7.05 7.72 8.39 46 % 

ξ2.Ο   0.210 0.245 0.280 0.315 0.333 0.351 0.386 0.421 50 % 

(kr2.O - 1) 0.049 0.091 0.155 0.249 0.309 0.379 0.554 0.784 405 % 

ξ1.Ο  0.360 0.416 0.471 0.526 0.554 0.581 0.637 0.692 46 % 

(kr1.O - 1) 0.035 0.062 0.103 0.160 0.196 0.238 0.341 0.475 353 % 

(kr - 1) 0.085 0.154 0.258 0.409 0.505 0.617 0.896 1.259 383 % 

Dev. of (kr-1)/% 0 82 205 383 497 629 959 1389  

Table 5.12: Influence of the conductor height on the calculated first and second order skin 
effect for the profiled conductor two-layer winding “A550-6P” 
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If the conductor height hTL is increased by 50 % the resistance coefficient 
(kr2.O - 1) will increase by 405 % , and due to increasing of the turn height hw by 
46 % the resistance coefficient (kr1.O - 1) increases by 353 % and therefore the 
(kr - 1) deviates by 353 %. 
 

The resistance coefficients (kr2.O - 1) and (kr1.O - 1) are plotted vs. the reduced 

conductor height ξ2.Ο and ξ1.Ο for different conductor height hTL in Figure 5.9.  
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Figure 5.9: The calculated first and second order skin effect as function of the reduced 
conductor height when the conductor height is changed for two-layer profile 
winding “A550-6P” 

 

5.4.4.2 Influence of the number of the parallel conductors 

The influence of the parallel partial conductors ap = nü (one above the other) 
on the first and on the second order skin effect of the two-layer profile winding 
with wü = 10 turns per slot at 60 Hz is presented in Figure 5.10 and Table 5.13 
for a conductor height hTL = 3.35 mm. 

 
As can be seen the number of parallel partial conductors ap affects the first 

order eddy current losses stronger than that of the second order. At constant 
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conductor height hTL = 3.35 mm the resistance coefficient (kr1.O - 1) will increase 
by 429 % whereas the resistance coefficient (kr2.O - 1) increases by 125 % and 
therefore the resulting (kr - 1) deviates by 242 % if the number of the parallel 
partial conductors ap (one above the other) is increased by 50 %. 
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Figure 5.10: Influence of the number of parallel partial conductors on the calculated first and 
second order skin effect of two-layer profile winding “A550-6P” 

 

Increasing of 

ap / % 
-50 0.00 50 100 200 300 400 

Deviation 

for 50 % 

ap 1 2 3 4 6 8 10 50 % 

hw /mm 3.35 7.05 10.75 14.45 21.85 29.25 36.65 52 % 

ξ2.Ο  0.351 0.351 0.351 0.351 0.351 0.351 0.351 0 % 

(kr2.O - 1) 0.095 0.379 0.851 1.512 3.400 6.043 9.440 125 % 

ξ1.Ο 0.276 0.581 0.886 1.192 1.802 2.412 3.022 52 % 

(kr1.O - 1) 0.012 0.238 1.260 3.898 15.48 30.27 41.55 429 % 

(kr - 1) 0.107 0.617 2.111 5.410 18.88 36.32 50.99 242 % 

Dev. of (kr-1)/% -83 0 242 777 2962 5788 8167  

Table 5.13: Influence of the number of parallel partial conductors on the calculated first and 
second order skin effect for the profiled conductor two-layer winding “A550-6P” 
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The resistance coefficients of the first and the second order skin effect (kr1.O -

 1) and (kr2.O - 1) are plotted vs. the reduced conductor height ξ1.Ο and ξ2.Ο for 

different parallel partial conductor numbers in Figure 5.11.  
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Figure 5.11: The calculated first and second order skin effect as function of the reduced 
conductor height when the number of the parallel partial conductors is changed for 
two-layer profile winding “A550-6P” 

 

5.4.4.3 Influence of the turn number 

In Figure 5.12 the influence of the number wü of the turns per slot (one above 
the other) on the first and second order skin effect (kr1.O - 1) and (kr2.O - 1) of the 
two-layer profile winding of machine “A550-6P” at 60 Hz for two parallel 
partial conductors ap = nü = 2 with a conductor height hTL = 3.35 mm is shown. 
As only two parallel partial conductors ap = nü = 2 per turn are used for this 
example, the increase of the first order skin effect (kr1.O - 1) is lower than that of 
the second order (kr2.O - 1). With higher turn number per slot wü the skin effect 
becomes higher. 

The impact of the variation of the turn number per slot wü on the first and on 
the second order skin effect and the deviations for 100 % increase of the turn 
number per slot wü are depicted in Table 5.14. 
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Figure 5.12: Influence of the number of turns per slot on the calculated first and second order 
skin effect of two-layer profile winding “A550-6P” 

 

Increasing of 

wü / % 
-50 0.00 50 100 150 200 300 400 

Deviation 

for 100 %

wü per slot 2 4 6 8 10 12 16 20 100 % 

hw /mm 7.05 7.05 7.05 7.05 7.05 7.05 7.05 7.05 0 % 

ξ2.Ο  0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0 % 

(kr2.O - 1) 0.015 0.061 0.137 0.243 0.379 0.545 0.968 1.512 299 % 

ξ1.Ο 0.581 0.581 0.581 0.581 0.581 0.581 0.581 0.581 0 % 

(kr1.O - 1) 0.010 0.039 0.086 0.153 0.238 0.342 0.608 0.949 298 % 

(kr - 1) 0.026 0.100 0.223 0.395 0.617 0.887 1.576 2.461 299 % 

Dev. of (kr-1)/% -74 0 124 296 519 790 1480 2368  

Table 5.14: Influence of the number of turns per slot on the calculated first and second order 
skin effect for the profiled conductor two-layer winding “A550-6P” 

 
As can be seen the number of turns per slot affects the second order eddy 

current losses stronger than that of the first order. If the number of the turns per 
slot is increased from 8 to 16 the resistance coefficient (kr2.O - 1) will increase by 
299 % whereas the resistance coefficient (kr1.O - 1) increases by 298 % and 
therefore the (kr - 1) deviates by 299 %. 
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5.4.4.4 Influence of the temperature 

In Figure 5.13 the influence of the temperature on the first and on the second 
order skin effect of the two-layer profile winding “A550-6P” at 60 Hz for two 
parallel partial conductors ap = nü = 2 with a conductor height hTL = 3.35 mm 
and wü = 10 turns per slot (one above the other) is shown. Also the values of the 
stray load losses and the copper losses related to the values at 20 °C winding 
temperature are presented. The calculated values for varying temperatures and 
the deviations are depicted in Table 5.15 and Table 5.16. 
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Figure 5.13: Influence of the temperature on the calculated first and second order skin effect 
of two-layer profile winding “A550-6P” 

 
The temperature influences the first and the second order eddy current losses 

in the same amount. If the temperature increases e.g. from 60 °C to 120 °C the 
resistance coefficients (kr2.O - 1), (kr1.O - 1) and (kr - 1) will be reduced by 31 % 
as shown in Table 5.15. 
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Temperature /°C 10 20 40 60 100 120 140 160 
Dev. 

for 100 %

ξ2.Ο  0.369 0.361 0.348 0.336 0.315 0.306 0.298 0.290 -9 % 

(kr2.O - 1) 0.463 0.428 0.368 0.319 0.248 0.221 0.198 0.178 -31 % 

ξ1.Ο 0.611 0.599 0.577 0.557 0.523 0.508 0.494 0.481 -9 % 

(kr1.O - 1) 0.291 0.268 0.231 0.201 0.156 0.139 0.124 0.112 -31 % 

(kr - 1) 0.754 0.696 0.599 0.520 0.404 0.359 0.322 0.290 -31 % 

Dev. of (kr-1)/% 8 0 -14 -25 -42 -48 -54 -58  

Table 5.15: Influence of the temperature on the calculated first and second order skin effect 
for the profiled conductor two-layer winding “A550-6P” 

 
With increasing winding temperature the stray load losses Pad,s decrease, the 

DC copper losses PCu,s increase and the resulting copper losses (Pad,s + PCu,s) 
increase as presented in Table 5.16. 
 

Temperature /°C 10 20 40 60 100 120 140 160 
Dev. 

for 100 %

Pad,s/ Pad,s20°C 1.04 1.00 0.93 0.86 0.76 0.72 0.68 0.65 -16.9 % 

PCu,s/ PCu,s20°C 0.96 1.00 1.08 1.16 1.31 1.39 1.47 1.55 20.3 % 

Psum/ Psum20°C 0.99 1.00 1.02 1.04 1.09 1.12 1.15 1.18 7.6 % 

Table 5.16: Influence of the temperature on the calculated skin effect and copper losses for the 
profiled conductor two-layer winding “A550-6P” 

 

5.4.4.5 Influence of the frequency 

The influence of the frequency on the first and on the second order skin effect 
of the two-layer profile winding “A550-6P” with two parallel partial conductors 
ap = nü = 2, a conductor height hTL = 3.35 mm and wü = 10 turns per slot is 
presented in Figure 5.14. The calculated values when the frequency changes and 
the deviations are given in Table 5.17. 
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Figure 5.14: Influence of the frequency on the calculated first and second order skin effect of 
two-layer profile winding “A550-6P” 

 

Frequency /°C 10 40 50 60 80 100 200 300 400 
Dev. 

for 100 %

ξ2.Ο  0.143 0.286 0.320 0.351 0.405 0.453 0.64 0.78 0.91 41 % 

(kr2.O - 1) 0.011 0.168 0.263 0.379 0.673 1.051 4.18 9.33 16.40 299 % 

ξ1.Ο 0.237 0.475 0.531 0.581 0.671 0.751 1.06 1.30 1.50 41 % 

(kr1.O - 1) 0.007 0.106 0.165 0.238 0.422 0.656 2.53 5.36 8.83 296 % 

(kr - 1) 0.017 0.274 0.429 0.617 1.095 1.707 6.71 14.70 25.23 298 % 

Dev. of (kr-1)/% -96 -36 0 44 155 298 1466 3329 5786  

Table 5.17: Influence of the frequency on the calculated first and second order skin effect for 
the profiled conductor two-layer winding “A550-6P” 

 
As can be seen in Table 5.17 the frequency influences the first and the second 

order eddy current losses nearly by the same amount. If the frequency increases 
e.g. from 50 Hz to 60 Hz the resistance coefficients (kr2.O - 1), (kr1.O - 1) and 
(kr - 1) will increase by 44 % and by 300 % at 100 Hz, respectively. 
 

5.4.5 Measured example 

The measured and the smoothed stray load losses in the stator Pad,s of the 
profiled conductor winding “A550-6P” at 60 Hz as function of the stator 
currents and in dependency of the frequency at constant rated current are 
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depicted in Figure 5.15 and compared to the calculation in the Table 5.18. As 
can be seen the calculation fits well with the measurement for this example, and 
the influence of the frequency on the stray load losses is also given for the 
calculation model. 
 

1500 kW 6-pole generator  A550-6P 

Stray load losses at removed rotor test Calculated Measured Deviation 

First order eddy current loss Pad,s,1.O  /kW 1.56 --  

Second order eddy current loss Pad,s,2.O  /kW 2.49 --  

Stator stray load losses Pad,s  /kW 4.05 4.24 - 4.4 % 

Resistance coefficient  Pad,s /PCu,s,dc 0.62 0.65 - 4.4 % 

Table 5.18: Comparison of calculated and measured stray load losses in the stator at 60 Hz for 
the profiled conductor winding “A550-6P” 
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Figure 5.15: The measured stray load losses in the stator at 60 Hz as function of the stator 
current and a comparison to the calculation at different frequency and rated 
current for the profiled conductor winding “A550-6P” 

 
 

5.5 Model for litz wire winding 

The pitched two-layer winding with litz (braid) wires is inserted in the slots 
with transposition of the partial conductors. The partial conductors composed of 
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twisted uninsulated thin wires are pressed and formed as profile copper 
conductors (see Figure 5.16). The twisting here should not influence the eddy 
current losses as the wires are uninsulated. Due to the usual transposition and 
suitable connection of the coils the first order eddy current losses could be 
reduced. 
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Figure 5.16: The twisted thin wires and the formed profile conductor of the litz wire winding 

 
For the calculation model the partial conductors, composed of twisted thin 

wires, are considered as solid profiled partial conductor with an equivalent 
conductivity. Due to the twisting of the thin wires the copper cross section is 
smaller than of the solid profiled copper. This can be considered by a “litz fill 
factor” kLF, which is determined according to (5.33). It represents the ratio of the 
calculated winding resistance Rs,cal for the solid conductor and the measured 
winding resistance Rs,meas. The value obtained for this example is kLF = 0.75, 
which correlates with the values between 0.75 and 0.85 acc. to Hillebrand 
[Hill 1914]. 
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 (5.33)

w : number of turns per phase 
lm : length of the conductor (lm = lFe + lb1 + lb2) 
κ: conductor conductivity at test temperature 
a : number of parallel winding branches  
ap : number of parallel partial conductors 
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ACu,solid : copper cross section of the solid profiled partial conductor. 
 

The resistance of the litz wire winding Rs can be estimated as 

   
4/

2

solidCu,p

m
s πκ ⋅⋅⋅⋅

⋅⋅=
Aaa

lwR . (5.34)

 

5.5.1 First order skin effect 

The first order eddy current losses Pad,s,1.O due the circulating currents 
between the parallel partial conductors are proportional to the height of the turn 
hw. All the equations in the preceding section for profiled conductor windings 

also hold for the litz wire winding if we change the conductivity to (κwarm·kLF). 

The reduced conductor height ξ1.Ο for the first order eddy current is  
 

  / / mieQ,nTLLFwarm0w1.O llbnbkfh ⋅⋅⋅⋅⋅⋅⋅⋅= κμπξ  (5.35)

f : frequency  
µ0 : magnetic permeability of empty space (µCu = µ0 = 4π.10-7 Vs/(Am)) 
κwarm : conductor conductivity at test temperature 
kLF : litz fill factor  
bTL : width of partial conductor  
nn : number of partial conductors side by side (horizontal) per slot 
bQ,e : equivalent slot width (see Table 5.5) 
li : length of the conductor in the regions (see Table 5.5) 
lm : length of the conductor (lm = lFe + lb1 + lb2). 
 

For the calculation of ξ1,Ο for different parts of the winding, the equivalent 

slot width bQ,e and the length li should be substituted accordingly (see Table 5.5). 
The equations (5.25), (5.26) and (5.27) to calculate the resistance coefficient 

kr1.O, the first order eddy current losses PFt,1.O and for the stray load losses Pad,s,1.O 
for the profiled conductor are valid for the litz wire winding, respectively . For 
the calculation of kr1.O for different sections of the winding, the number of turns 
wü one above the other per slot should be substituted accordingly (see Table 
5.5). 
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5.5.2 Second order skin effect 

The reduced conductor height ξ2.Ο for the second order eddy current losses 

Pad,s,2.O is proportional to the height of the partial conductor hTL. 
 

  / eQ,nTLLFwarm0TL2.O bnbkfh ⋅⋅⋅⋅⋅⋅⋅= κμπξ  (5.36)

For the calculation of ξ2.O and kr2.O for different sections of the winding, the 

equivalent slot width bQ,e and the number of partial conductors one above the 
other per slot nü should be substituted accordingly (see Table 5.6). 

The equations (5.29)…(5.31) to calculate the resistance coefficient kr2.O, the 
second order eddy current losses PFt,2.O and the stray load losses Pad,s,2.O for the 
profiled conductor are also valid for the litz wire winding. 
 

5.5.3 Measured example 

The measured and the smoothed stray load losses in the stator of the litz wire 
winding “A550-6L” at 60 Hz are depicted in Figure 5.17 and compared to the 
calculation in the Table 5.19. As can be seen the calculation fits well with the 
measurement for this example. It has to be noted that the winding of this 
generator is connected in a way to compensate the eddy current losses, therefore 
the losses are low.  
 

1500 kW 6-pole generator  A550-6L 

Stray load losses at removed rotor test Calculated Measured Deviation 

First order eddy current loss Pad,s,1.O  /kW 0.88 --  

Second order eddy current loss Pad,s,2.O  /kW 0.63 --  

Stator stray load losses Pad,s  /kW 1.505 1.419 6 % 

Resistance coefficient  Pad,s /PCu,s,dc 0.15 0.14 6 % 

Table 5.19: Comparison of calculated and measured stray load losses in the stator at 60 Hz for 
the litz wire winding “A550-6L” 
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Figure 5.17: The measured and the smoothed stray load losses in the stator at 60 Hz for the 
litz wire winding “A550-6L” 

 
 

5.6 Model for round wire winding 

The coil of the two-layer winding is composed of many insulated round wires 
(bundle) as shown in Figure 5.18. At the ends of the coil the bundles are 
conductively connected. The winding is inserted in the slots without 
transposition of the coil sides, like it is done for the profiled two-layer winding 
see Figure 5.7. So the slot stray flux in both coil sides is calculated without 
changing the direction of the slot stray flux penetration, which yields higher 
eddy current losses than with the change which is usual for the transposed two-
layer winding with profile copper conductors. 
Analytical formulas – Field´s and Emde´s formulas [Vogt 1974] – exist only for 
conductors arranged in a slot like profiled conductors in a rectangular shaped 
slot. Therefore the calculation of the eddy current losses for round wire winding 
with arbitrarily distributed wires can be only an approximation. The real oval-
shaped stator slot (Figure 5.18) is substituted by a rectangular slot of an 
equivalent slot width bQ,e and the randomly distributed conductors and turns are 
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substituted by an equivalent ideal or best case and bad case arrangement as 
shown in Figure 5.18. 

  2/)( bottopeQ, bbb +=  (5.37)

btop : slot width of the oval-shaped slot at the top edge (see Figure 5.18) 
bbot : slot width of the oval-shaped slot at the bottom edge. 
 

ModelLining
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hQ

Bundle with a  (e.g. 21) p wires 
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nü

bQ
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dCunü/turn
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nn

Wedge 
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kHF
.hw

bQ

nü/turn

nn

Best Bad  

Figure 5.18: The real geometry with randomly wire distribution and the equivalent slot for the 
calculation model best and bad case for the round wire winding 

 
Due to the low slot fill factor and the undefined arrangement of the turns in 

the slot an extension factor kHF is introduced to consider the height of the turn 
referred to the coil in the bad case as presented in Figure 5.18. So two extremely 
different conductor arrangements in the slot are assumed and other distributions 
are not considered.  

  )/( cinslwedgeQHF hhhhk −−=  (5.38)

hQ : slot height 
hwedge : wedge height  
Σhinsl : sum of the height of the insulation materials in the slot (e.g. lining, inter-

layer insulation, inter-turns insulation …) 
hc : coil height. 
 
The coil height hc of the lower and upper layer is calculated as 
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 inslCu,üinslCu,üü/turnnpinslCu,üc  / dndwnna dwh ⋅=⋅⋅=⋅⋅=  (5.39)

ap :  number of parallel wires in a bundle (partial conductors) per turn 
nn :  number of wires or partial conductors side by side (horizontal) per slot 
wü :  number of turns one above the other per slot (see Table 5.5) 
dCu,insl : diameter of the insulated wire (partial conductor height) 
nü/turn :  number of wires (partial conductors) one above the other per turn 
nü : number of partial conductors one above the other per slot (see Table 5.5). 
 
The ratio of the equivalent slot width bQ,e to the diameter of the insulated wire 
dCu,insl gives the assumed number of the wires side by side (horizontal) per slot nn 

 inslCu,insllin,eQ,n /)2( ddbn ⋅−=  (5.40)

dlin,insl : thickness of the slot lining (insulation at slot walls) 
 
The assumed number of wires one above the other per turn nü/turn is  

 npü/turn / nan =  (5.41)

and the assumed number of partial conductors one above the other per slot nü  

 üü/turnnüpü / wnnwan ⋅=⋅= . (5.42)

 

5.6.1 Winding for One speed 

The eddy current losses for one speed generators e.g. 6 poles 1500 kW 
“A550-6R” where only one winding exists in the slot will be handled in this 
section. The two speeds generator e.g. 4/6 poles 900/200 kW “A445-46R” where 
two windings exist in the slot follows in the next section. 
 

5.6.1.1 First order skin effect 

As the first order eddy currents are proportional to the height of the turn per 
coil hw, the extension factor kHF of the turn height referred to the coil height in 

the low filled slot is introduced to determine the reduced conductor height ξ1.Ο 
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for the first order eddy current  

  / / mieQ,nCuwarm0HFw1.O llbndfkh ⋅⋅⋅⋅⋅⋅⋅⋅= κμπξ  (5.43)

 TLinsl,TLinsl,Cuü/turnw )( dddnh −+⋅=
 (5.44)

f : frequency  
µ0 : magnetic permeability of empty space (µCu = µ0 = 4π.10-7 Vs/(Am)) 
κwarm : conductor conductivity at test temperature 
kHF : turn height extension factor kHF = 1 for best case and kHF > 1 for bad case 
dCu : diameter of the wire (without insulation) 
nn : number of wires side by side (horizontal) per slot 
bQ.e : equivalent slot width (see Table 5.5) 
li : length of the conductor in the regions (see Table 5.5) 
lm : length of the conductor (lm = lFe + lb1 + lb2) 
dinsl,TL : insulation thickness of the wire (both sides). 
 

For the calculation of ξ1.Ο for different parts of the winding, the equivalent 

slot width bQ,e and the length li should be substituted accordingly (see Table 5.5). 

With the functions ϕ(ξ1.Ο) and ψ(ξ1.Ο) given in (5.3) and (5.4) the average 

value of the resistance coefficient kr1.O over the whole conductors per slot for the 
first order eddy currents of pitched and non transposed two-layer winding can be 
calculated as 
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(5.45)

wü : number of turns one above the other per slot (see Table 5.5) 
sw : number of the mixed slots (different phases in upper and lower layer) 
q : number of the slots per pole and phase. 

 
The first order eddy current losses PFt,1.O and the stray load losses Pad,s,1.O are 

calculated by the equations (5.26) and (5.27), respectively. For the calculation of 
kr1.O for different sections of the winding the number of turns one above the 
other per slot wü should be substituted accordingly (see Table 5.5). 
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5.6.1.2 Second order skin effect 

The reduced conductor height ξ2.Ο for the second order eddy current losses 

Pad,s,2.O is proportional to the wire height dCu 

  / eQ,nCuwarm0Cu2.O bndfd ⋅⋅⋅⋅⋅⋅= κμπξ  (5.46)

For the calculation of ξ2.O and kr2.O for different sections of the winding, the 

equivalent slot width bQ,e and the number of partial conductors one above the 
other per slot nü should be substituted accordingly (see Table 5.6). 

With the functions ϕ(ξ2.Ο) and ψ(ξ2.Ο) given in (5.3) and (5.4) the average 

value of the resistance coefficient kr2.O for the second order eddy current of 
pitched and non transposed two-layer winding over the whole conductors per 
slot can be calculated as  
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nü : number of partial conductors one above the other per slot (see Table 5.6) 
sw : number of the mixed slots (different phases in upper and lower layer) 
q : number of the slots per pole and phase. 

 
The second eddy current losses PFt,2.O and the stray load losses Pad,s,2.O are 

calculated by the equations (5.30) and (5.31), respectively. 
 

5.6.1.3 Measured example 

The measured stray load losses in the stator compared with the smoothed 
values of the round wire winding “A550-6R” at 60 Hz are depicted in Figure 
5.19 and compared to the calculation in the Table 5.20. For this machine, with 
higher stray load losses in the stator winding, the calculation model also in the 
bad case deviates by 60 %. It seems that the wires of the turns are vertically 
arranged (worst case) due to the lower slot fill factor. This generator can be seen 
as worst case example for the stray load losses in round wire stator winding. The 
variation of the measured stray load losses at 50 Hz within two identical series 
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for 130 generators is presented in Figure 5.20. Also there are some samples with 
higher stray load losses in the stator winding. 
 

1500 kW 6-pole generator  A550-6R 

Stray load losses at removed rotor test Calculated best Calculated bad Measured 

First order eddy current loss Pad,s,1.O  /kW 1.60 4.17  -- 

Second order eddy current loss Pad,s,2.O  /kW 0.356 0.356 -- 

Stator stray load losses Pad,s  /kW 1.95 4.53 11.35 

Resistance coefficient  Pad,s /PCu,s,dc 0.18 0.42 1.05 

Deviation  / % - 83 - 60 -- 

Table 5.20: Comparison of calculated and measured stray load losses in the stator at 60 Hz for 
the round wire winding “A550-6R” 
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Figure 5.19: The measured and smoothed stray load losses in the stator, acc. to the standard 
IEEE112, at 60 Hz for the round wire winding “A550-6R” 

 
With this high amount of stray load losses, about 0.76 % of rated power, 

localised only in the stator winding and mainly due to the circulating current, 
this round wire winding was overheated and could be not run continuously at 
full load, otherwise the insulation life time will be strongly reduced. The 
practical consequence of this effect to avoid destruction due to overheating is the 
derating ! Further investigations confirm this finding. In addition, with 
increasing resistance due to the skin effect the inductance decreases and 
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consequently the “filter” effect of the winding decreases also which leads to 
higher high-frequency stray load losses. 

 
The comparison of the calculated and measured stray load losses in the stator 

for two different 6-pole round wire windings “A550-6R0x” and “A550-6R1x” is 
given in Table 5.21. For some machines the measured value of the stray load 
losses is between the best and bad case calculation and for others is out of this 
range due to randomly distribution of the wires in the slot (see Figure 5.20). For 
the generator “A550-6R03” with low losses it seems that the wires are 
“unintentionally” twisted, which reduces the eddy current losses. For the 
generator “A550-6R14” with high losses it seems that the wires of the turns are 
vertically arranged (worst case) due to the lower slot fill factor. It has to be noted 
that the measurements are done only at one load point and not acc. to the 
standards, i.e. the measurement inaccuracy increases ! 

 

1500 kW 6-pole generator  A550-6Rx 

Stray load losses at removed rotor test Calculated best Calculated bad Measured 

Resistance coef.  Pad,s /PCu,s,dc 
(Deviation / %) 

A550-6R01 0.14 (-51) 0.32 (11) 0.28 

Resistance coef.  Pad,s /PCu,s,dc 
(Deviation / %) 

A550-6R02 0.14 (-46) 0.32 (21) 0.26 

Resistance coef.  Pad,s /PCu,s,dc 
(Deviation / %) 

A550-6R03 0.14 (66) 0.32 (273) 0.08 

Resistance coef.  Pad,s /PCu,s,dc 
(Deviation / %) 

A550-6R14 0.11 (-68) 0.21 (-36) 0.33 

Resistance coef.  Pad,s /PCu,s,dc 
(Deviation / %) 

A550-6R15 0.11 (-32) 0.21 (36) 0.16 

Table 5.21: Comparison of calculated and measured stray load losses in the stator for the 
round wire winding “A550-6Rx” 

 

5.6.1.4 Impact of wire distribution on measured stray load losses 

The influence of the wire distribution in the slots on the measured stray load 
losses in the stator of the 4-pole winding at 50 Hz grid frequency, for the two 
speeds round wire winding “A550-46R” is presented for two series over 130 
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samples in Figure 5.20. It has to be noted that the measurements are done only at 
one load point and not acc. to the standards, i.e. the measurement inaccuracy 
increases ! 
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Figure 5.20: The measured stray load losses in the stator at 50 Hz for the two speed round 
wire winding “A550-46R”  

 
Due to the randomly distributed wires in the slot, the measured resistance 

coefficient for this generator varies between 0.3 and 1.0 with an average value of 
0.67. 

 

5.6.1.5 Impact of wire insertion on measured stray load losses 

The influence of mechanical and manual insertion of the wires in the slots on 
the measured stray load losses in the stator of the 4-pole winding at 50 Hz grid 
frequency for the two speeds round wire winding generator “A445-46R” is 
presented in Figure 5.21. With carefully manual “Hand” (H1, H2, H3) insertion 
of the wires in the slot the measured resistance coefficient is lower and varies 
between 0.4 and 0.6, whereas the measured values with mechanical (M1, M2, 
M3) insertion are about 1.0 and higher. So a reduction of about 50 % of stray 
load losses in the winding can be realized by careful hand insertion. Of course 
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the hand insertion is more expensive than the mechanical method, but if there 
are heating or efficiency problems it should be done. 
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Figure 5.21: Impact of wire insertion on measured stray load losses in the stator of the 4-pole 
winding at 50 Hz for the two speeds round wire winding “A445-46R” 

 

5.6.1.6 Impact of wire number on measured stray load losses 

The influence of the number of wires per turn on the measured stray load 
losses in the stator for the 4-pole winding of the two speeds round wire winding 
“A550-46R1” is presented in Table 5.23 and in Figure 5.22. The compared three 
generators are of identical design and manufacture, but with different wire 
numbers per turn. We assume that the insertion of the wires in the slots is also - 
nearly - identical.  
 

1500 kW 4/6-pole generator A550-46R1 Stray load losses at removed rotor test 

Increasing of wire number per turn / % 100 103 113 

Resistance coefficient  Pad,s /PCu,s,dc  0.74 0.92 1.23 

Deviation / % -- 25 66 

Table 5.22: Influence of the wire number per turn on measured stray load losses in the stator 
at rated current and 50 Hz for the two speeds round wire winding “A550-46R1” 
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With higher wire number per turn the stray load losses become high, 
especially with higher frequency. A 3 % increase of the wire number leads to 
25 % increase of the stray load losses at rated frequency 50 Hz, and 13 % more 
wires result in 66 % stray load losses, respectively, as shown in Table 5.23. 
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Figure 5.22: The influence of the number of wires per turn on the measured stray load losses 
in the stator at different frequency rated current and at 50 Hz different currents for 
the two speeds round wire winding “A550-46R1” 

 

1500 kW 4/6-pole generator A550-46R1 Stray load losses at removed rotor test 

Increasing of wire number per turn / % 100 103 113 

Resistance coefficient  Pad,s /PCu,s,dc  0.74 0.92 1.23 

Deviation / % -- 25 66 

Table 5.23: The influence of the number of wires per turn on the measured stray load losses in 
the stator at rated current and 50 Hz for the two speeds round wire winding 
“A550-46R1” 

 

5.6.2 Winding for Two speeds 

The two speeds generator e.g. 4/6 poles 900/200 kW “A445-46R”, contains 
different windings for each speed. The windings are inserted in the slot with 
different fill factors. The fill factors of the windings, kf1 and kf2, are utilised to 
determine the cross section A1 occupied by the high power winding “winding 1” 
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in the slot e.g. 4-poles 900 kW. This oval-shaped slot cross section is substituted 
by a rectangular slot of an equivalent slot width bQ,e and slot height hQ,1 (see 
Figure 5.23). For this “new” slot the same arrangements and the formulas given 
in the preceding section for on speed generator are applied. 
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Figure 5.23: The real geometry with randomly wire distribution and the equivalent slot for the 
calculation model for the two speeds round wire winding 

 
The cross section A2 occupied by the low power winding “winding 2” in the 

slot can be calculated on the one hand with the fill factors kf1 and kf2 as  

 Q
f2f1

f2
2 A

kk
kA ⋅
+

=  (5.48)

kf1 : fill factor of the high power winding “winding 1” 
kf2 : fill factor of the low power winding “winding 2” 
AQ : slot cross section. 
 
and on the other hand from the slot geometry (trapezoid, see Figure 5.23) as 

 2/)( 2top2bot22 hbbA ⋅+=  (5.49)

 )2(       );2( top2bottop2bot2botbot2 xbbxbb ⋅+=⋅+=  (5.50)

bbot : slot width of the oval-shaped slot at the bottom edge 
bbot2 : slot width at the bottom of the “winding 2”  
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btop2 : slot width at the top edge of the “winding 2”  
h2 : height of (trapezoid) the cross section of the “winding 2”. 
 
With the set of equations (5.51)…(5.53) the height h2 of the “winding 2” can be 
determined as given in (5.54).  

 

 )2/()2()( Qinsllin,wedgebottopbot2 hdhbbx ⋅⋅+⋅−=  (5.51)

 )2/()2()( Qinsllin,wedge2bottoptop2 hdhhbbx ⋅⋅++⋅−=  (5.52)

 )2/()()2/( Qbottopinsllin,wedgebot2 hbbdhxc ⋅−=⋅+=  (5.53)
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dlin,insl : thickness of the slot lining. 
 
Finally the slot height hQ,1 and the equivalent slot width bQ,e of the high 

power winding “winding 1” is 

 )3( insllin,wedge2QQ,1 dhhhh ⋅+−−=  (5.55)

 2/)2( top2bottopeQ, xbbb ⋅++=  (5.56)

For this “new” slot the same arrangements and the same formulas and 
calculation procedure given in the preceding section for on speed generator are 
applied. 
 

5.6.2.1 Measured example 

The comparison of calculated and measured stray load losses in the stator of 
the high power winding for some two speeds round wire winding generators is 
given in Table 5.24. For some machines the measured value of the stray load 
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losses is between the best and bad case calculation, and for others is out of this 
range due to randomly distributed wires in the slot (see Figure 5.20) and due to 
the sensitivity of the calculation model on the winding and the slot parameters, 
which sometimes are not known. For the generator “A550-46R02.2” with lower 
measured losses as in best case calculated in best case it seems that the wires are 
“unintentionally” twisted, which reduces the eddy current losses. It has to be 
noted that the measurements are done only at one load point and not acc. to the 
standards i.e. the measurement inaccuracy increases! 

 

 Power /kW  
Calculated 

best 
Calculated 

bad 
Measured 

A445-46R2 900/200 
Pad,s /PCu,s,dc  

(Deviation / %) 
0.46 (-5) 0.97 (99) 0.49 

A445-46R3 900/200 
Pad,s /PCu,s,dc  

(Deviation / %) 
0.46 (-52) 0.97 (0.4) 0.97 

A550-
46R02.1 

1500/400 
Pad,s /PCu,s,dc  

(Deviation / %) 
1.08 (8) 2.63 (161) 1.01 

A550-
46R02.2 

1500/400 
Pad,s /PCu,s,dc  

(Deviation / %) 
1.08 (41) 2.53 (232) 0.76 

A556-
68R67.1 

1500/900 
Pad,s /PCu,s,dc  

(Deviation / %) 
0.29 (-22) 0.46 (24) 0.37 

A556-
68R97.1 

1500/900 
Pad,s /PCu,s,dc  

(Deviation / %) 
0.18 (-25) 0.30 (29) 0.23 

Table 5.24: Comparison of calculated and measured stray load losses in the stator for the two 
speeds round wire winding at 50 Hz 

 

5.6.2.2 Influence of stator stray load losses on temperature rise 

Of course all loss components contribute to the heating and the temperature 
rise of the winding, and any reduction of these losses, e.g. the stray load losses 
in the winding due the skin effect, will lead to a reduction of the temperature 
level in the winding without improving the cooling effectiveness. The 
correlation between the stray load losses in the winding due skin effect, 
expressed by the resistance coefficient (kr - 1), and the winding temperature rise 
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during the heat run at full load is presented in Figure 5.24 for the 4-pole winding 
of the two speeds round wire winding generator “A445-46R”. It can be seen that 
at lower values of the resistance coefficient (kr - 1) the temperature rise is about 
10 K lower and the winding is cooler. 
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Figure 5.24: Measured temperature rise as function of measured stator stray load losses in the 
4-pole winding for the two speeds round wire winding “A445-46R” 

 
 

5.7 Eddy current losses in stator press plates 

The winding overhang stray flux causes eddy current losses in the winding 
overhang conductors, in the end sheets of the iron stack (press plates) and in the 
massive conductive end-shields. The magnetic flux densities were measured by 
Hall probes at different positions to estimate the losses in the massive 
conductive iron parts in the end region. 

 

5.7.1 Measurement of the magnetic flux density in end region 

The stray flux in the end region penetrates the stator iron stack end sheets 
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(press plate) as well as the massive conductive iron parts of the stator housing 
(frame) and the end shields. In dependence of the value of this flux and the 
material properties of the “conductive” parts the eddy current losses could be 
high, as known from large synchronous generators, where special measures 
should be taken to reduce them [Trax 2003, Klau 2005]. For the investigated 
highly utilised 1500 kW 6-pole wind generators the measured flux is small. 

 
The magnetic flux densities were measured at different positions in the end 

region and under different test conditions at 60 Hz grid-operation: 

- Removed rotor test 

- Load test 

- No-load test 

- Reverse rotation test 

- Locked rotor test. 
 

The positions of the Hall probes in the end region are presented in the Figure 
5.25 and described in Table 5.25. 

 

2

0

1

234

5 0

1

2

X

Z
Y

75 210

90

6

6

59

35

160

90
0

72
0

54
0

 

Figure 5.25: Position of the Hall probes in the end region (Z: axial; Y: tangential; X: radial) 
for 1500 kW, 6-pole generator “A550-6R”  [ELIN EBG-Motoren GmbH] 
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Hall probes nr. Symbol Description 

1 BZ1 axial flux density in the press finger at tooth tip 

6 BZ2 axial flux density in the press finger at tooth bottom 

2 BZ3 axial flux density in the edge of the press plate 

5 BZ4 axial flux density in winding overhang 

3 BX1 radial flux density in frame part over the winding overhang 

4 BX2 radial flux density in frame part near to the end shield (bearing)

0 BY1 tangential flux density in the press plate 

Table 5.25: The distribution of the Hall probes in the end region for 1500 kW, 6-pole 
generators with round wire “A550-6R” and litz wire “A550-6L”  

 
The measured magnetic flux densities as function of the stator current during 

the load test at rated voltage and 60 Hz grid-operation are presented for some 
positions (points) in the Figure 5.26 for the round wire 1500 kW, 6-pole 
generator “A550-6R”. 
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Figure 5.26: The measured axial flux density distribution in the end region, on the press finger 
at tooth tip BZ1, on the press finger at tooth bottom BZ2 and on the winding 
overhang BZ4 as function of the stator current during the load test for 1500 kW, 6-
pole generator “A550-6R”  

 
The comparison of the measured magnetic flux densities at different points 

under different test conditions at rated current 1580 A are given in Table 5.26 
and presented in Figure 5.27 and Figure 5.28. As can be seen the field 
distribution in the end region is complex. The field distribution in the end region 
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during the reverse rotation test and the locked rotor test are in the same range 
and lower than the values measured during the load test and the removed rotor 
test. The effect of the rotor current can be seen when the results of the reverse 
rotation test will be compared with the results of the removed rotor test, where 
the voltage is reduced. Of course the rotor current reduces the field excited by 
the stator current.  
 

Measured flux density / mT 1500 kW 6-pole generators, 

 “A550-6R”  BY1 BZ1 BZ2 BZ3 BZ4 BX1 BX2 

Removed rotor test 7.90 122.32 -1) 0.80 20.94 1.91 0.83 

Load test 2) 6.93 104.39 31.40 0.56 20.64 1.80 0.75 

Locked rotor test 6.98 50.87 30.34 0.56 19.56 2.17 0.69 

Reverse rotation test 7.21 49.01 30.28 0.61 21.10 2.18 0.81 

Table 5.26:  The measured flux density distribution in the end region, on the press plate BY1, 
on the press finger at tooth tip BZ1, on the press finger at tooth bottom BZ2, on the 
edge of the press plate BZ3, on the winding overhang BZ4, on the frame part over 
the winding overhang BX1 and on the frame part near to the end shield BX2 at rated 
current 1580 A during different tests for 1500 kW, 6-pole generator “A550-6R” 

1): Not measured. 2): Extrapolated from the curve in Figure 5.26, as the generator 
could not be loaded with 100 % load due to the heating problem. 
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Figure 5.27: The axial flux density distribution in the end plate, on the press finger at tooth tip 
BZ1, on the press finger at tooth bottom BZ2 and on the edge of the press plate BZ3 
at rated current during different tests for 1500 kW, 6-pole generator “A550-6R”  
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As shown in Figure 5.27 the measured axial flux density at the end plate 
varies strongly from the tooth tip BZ1 to the outer stator diameter BZ3, especially 
in the load test and the removed rotor test. Also the radial flux density at the 
stator housing (frame) diminishes with the distance from the iron stack to the 
end shield, as can be seen in Figure 5.28. 
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Figure 5.28: The radial flux density distribution in the end region, on the frame part over the 
winding overhang BX1 and on the frame part near to the end shield BX2 at rated 
current during different tests for 1500 kW, 6-pole generator “A550-6R”  

 
The measured magnetic flux densities at rated voltage 600 V and no-load 

current 315 A during the no-load test compared with the load test at different 
currents are given in Table 5.27 where the measured values are in the same 
range for the same current values.  

From the comparison of the measured magnetic flux densities at rated voltage 
600 V, no-load current 315 A and full load current 1580 A it can be seen that the 
measured iron losses at the standardized no-load test for the efficiency 
determination are smaller than the real iron losses at full load. That means that 
this part of the iron losses will be charged to the stray load losses by the indirect 
measurement of the stray load losses (input-output test with segregation of the 
losses) acc. to IEC 61972 [IEC 61972] and IEEE 112-method B [IEEE 112], 
whereas it is lost by allowance of the stray load losses acc. to e.g. IEC 61972-2 
and IEEE 112-method E1 for the efficiency determination! 
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Measured flux density / mT 1500 kW 6-pole generators. 
“A550-6R” BY1 BZ1 BZ2 BZ3 BZ4 

No-load test at 315 A 4.97 61.77 6.64 0.20 2.78 

Load test at 315 A 4.58 57.59 6.66 0.18 2.94 

Load test at 1580 A 6.93 104.39 31.40 0.56 20.64 

Table 5.27:   Comparison of the measured flux density distribution in the end region at no-
load current during the no-load and load tests, on the press plate BY1, on the press 
finger at tooth tip BZ1, on the press finger at tooth bottom BZ2, on the edge of the 
press plate BZ3 and on the winding overhang BZ4 for 1500 kW, 6-pole generator 
“A550-6R” 

 
Figure 5.29 and Table 5.28 give a comparison of the measured flux densities 

for the round wire “A550-6R” and litz wire “A550-6L” generator at rated 
current 1580 A during the removed rotor test and the load test.  
 

Measured flux density / mT 1500 kW 6-pole generators. 
at 1580 A BZ1 BZ2 BZ3 BX1 BX2 

Round wire 122.32 -1) 0.80 1.91  

(135mm) *) 

0.83  

(270mm) *) 
Removed rotor test 

Litz wire 121.14 -1) 0.80 9.02  

(122mm) *) 

0.52  

(282mm) *) 

Round wire 104.39 31.40 0.56 1.80 0.75 Load test 
Litz wire 104.14 22.37 0.61 7.82 0.64 

Table 5.28: The measured flux density distribution in the end region for 1500 kW, 6-pole 
generators with round wire “A550-6R” compared to litz wire “A550-6L” at rated 
current 1580 A during different tests, on the press finger at tooth tip BZ1, on the 
press finger at tooth bottom BZ2, on the edge of the press plate BZ3, on the frame 
part over the winding overhang BX1 and on the frame near to the end shield BX2 

1): Not measured. *): Position of the Hall probes measured from the iron stack end.  

 
As can be seen on the press finger at tooth tip BZ1 the measured flux densities are 
identical for the both machines, whereas on the press finger at tooth bottom BZ2 
of the round wire generator “A550-6R” the value is higher due to the smaller 
tooth width of 11.7 mm (rectangular shape) at this point compared with the litz 
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wire generator “A550-6L” with tooth width of 17.6 mm and triangular tooth 
shape. On the stator housing inside over the winding overhang BX1 and on the 
frame part near to the end shield BX2 the measured values for both generators are 
different due to the different localization of the hall probes and different 
configuration of the winding overhang.  
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Figure 5.29: Comparison of the measured flux density distribution in the end region for 
1500 kW, 6-pole generators with round wire “A550-6R” and litz wire “A550-6L” 
at load test by rated current 1580 A, on the press finger at tooth tip BZ1, on the 
press finger at tooth bottom BZ2, on the edge of the press plate BZ3, on the frame 
part over the winding overhang BX1 and on the frame near to the end shield BX2. 

 

5.7.2 Analytical calculation of the eddy current losses in press plates 

On the basis of a 2D-model for massive conductive half space, for thick plate 
[Bind 2000] and the measured axial flux density by Hall probes at load test the 
eddy current losses in the stator iron stack end sheets (press plate) are calculated.  

With the abbreviations u, v, a~  and b~  the analytical equation for the surface 
eddy current loss density in the press plates pplat (= Pplat/Aplat) is  
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κFe : conductivity of the iron sheet (= 8.106 S/m) 
τp : pole pitch of the field wave 
µ0 : magnetic permeability of empty space (µ0 = 4π.10-7 Vs/(Am)) 

eâ  : exciting current loading 
f : frequency (= 60 Hz) 
de : air gap between excitation and massive body (= 0.1 m) 
µFe : relative magnetic permeability of the iron sheet (= 500) 
Rm : magnetic Reynolds number. 
 

The exciting current loading eâ  is derived from the measured axial flux 

density Bz(de) as 
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To calculate the eddy current losses on the press plates the surface of the 
yoke is divided into 3 rings, and an exponential curve of the measured flux 
density between the positions on the press finger at tooth bottom BZ2 and on the 
edge of the press plate BZ3 is assumed. As shown in Table 5.29 the surface eddy 
current losses in the press plates are small for this machine rating. 
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Parameter τp Aring Bz eâ  Pring/Aring Pring Rm a~  b~  

Unit m m² mT A/m W/m² W -- -- -- 

Ring 1 0.393 0.0707 17.23 12212 680.61 96.22 29609 121.68 121.67 

Ring 2 0.424 0.0763 5.19 3357 66.04 10.08 34536 131.41 131.41 

Ring 3 0.456 0.0820 1.56 930.4 6.31 1.04 39842 141.14 141.14 

Surface eddy current losses in the press plates 107.3  

Table 5.29: Surface eddy current losses in the press plates at rated load for 1500 kW, 6-pole 
generator “A550-6R” 

 
 

5.8 Stator phase inductances at removed rotor test 

During the removed rotor test four kinds of flux are acting [Sche 1909]: 

- stray flux in the slot, 

- stray flux between the teeth edges (through the slot opening), 

- stray flux in the winding overhang and  

- the stator bore flux. 
 
Through this distribution the equivalent circuit of the induction machine with 

removed rotor is given in Figure 5.30. Beside the stator phase winding resistance 
Rs including the stray load losses due to the skin effect Rad,s, three different stator 
inductances are part of this equivalent circuit:  

- the slot inductance LsσQ (stray flux in the slot and between the teeth edges), 

- the stator winding overhang inductance Lsσb and  

- the stator main - bore inductance Lbore. 
 
With assembled rotor all cited stray fluxes – on the stator side – are acting, 

plus the flux of the harmonics of the air gap field. Instead of the stator bore flux 
the main flux is acting. The value of the stator stray reactance with assembled 
rotor is different from that without rotor [Jord 1970, Rich 1953]. Acc. to 
Schenkel the estimation of the stray flux in the slot and in the winding overhang 
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from the removed rotor test is accurate enough [Sche 1909]. 
In Figure 5.31 the principle hyperbolic curves of the flux lines for a 4-pole 

induction machine during the removed rotor test are presented [Jord 1970, 
Sche 1909]. 
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Figure 5.30: Equivalent circuit of the induction machine 
with removed rotor without consideration of 
the small iron losses 

Figure 5.31: Flux lines at ReRT 
for 4-pole motor 

 
During the removed rotor test (ReRT) the stator stray reactances of the slot 

XsσQ and of the winding overhang Xsσb are measured together with the - main -

bore reactance Xbore 

 2
sad,dcs,

2
ReRTborebsQsReRT )( RRZXXXX +−=++= σσ  (5.62)

 rdcs,sad,dcs,ssReRT )(        ;/ kRRRIUZ ⋅=+=  (5.63)

Rs,dc : stator phase DC-resistance  
Rad,s : stator phase AC-resistance considering the stray load losses in the stator 

winding due to the skin effect 
kr : resistance coefficient. 
 

The stator stray reactances in the slot XsσQ and in the winding overhang Xsσb 

can be estimated from the measured stator reactance XReRT and from the 
measured or calculated bore reactance Xbore as 

 bore
2

rdcs,
2
ReRTboreReRTbsQsReRTs )( XkRZXXXXX −⋅−=−=+= σσσ (5.64)
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5.8.1 Calculation of the stator bore reactance 

For the calculation of the stator bore reactance Xbore, an empirical formula is 

used in the following expression. The corrected length of the iron stack '
Fel  

should consider the stray flux at the machine axial ends, e.g. 10 % [Böde 1962, 
Bind 2006c] or acc. to (5.67) as suggested in Clause A40 of [IEC 60034-4]. The 

stator stray reactances of the slot XsσQ and of the winding overhang Xsσb are 

calculated in well-known manner [Bind 2006c, Vogt 1974]. 

 plfkwmX /)1(22 s
'
Fe

2
w

2
0bore σμ +⋅⋅⋅⋅⋅⋅⋅⋅=  (5.65)

 Fe
'
Fe 1.1 ll ⋅=  (5.66)

 2/.6/ kkpFe
'
Fe lnLl −+= τ  (5.67)

µ0 : magnetic permeability of empty space (µ0 = 4π.10-7 Vs/(Am)) 
m : number of phase (m = 3) 
w : number of turns per phase 
kw : winding factor 
f : supply frequency 
p : number of pole pairs  
σs : Blondel´s stray coefficient (estimated value for 1500 kW generator 0.07) 

'
Fel  : corrected length of the iron stack 

lFe : length of the iron stack (without radial ventilation ducts) 
LFe : total length of the iron stack (with radial ventilation ducts) 
τp : pole pitch  
nk : number of the radial ventilation ducts 
lk : length (thickness) of the radial ventilation ducts. 

 
A comparison of the analytically calculated stator stray reactances 

(XsσQ + Xsσb)cal with the estimated value (XsσQ + Xsσb) from ReRT at rated current 

is presented in Table 5.30 for the 1500 kW, 6-pole generator “A550-6R” and in 
Table 5.31 for the 5.5 kW, 4-pole motor “A132-4”.  

As can be seen in Table 5.30 the calculated stator stray reactances 

(XsσQ + Xsσb)cal deviate from the estimated value (XsσQ + Xsσb) from ReRT within 

6 %. It has to be noted that the stator stray reactances (XsσQ + Xsσb) are in the 
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range of the calculated bore reactance Xbore for this example of the “big” 6-pole 
generator “A550-6R”.  

 

1500 kW, 6-pole generator  Equation “A550-6R” 

Stator phase current /A  Is 912.5 

Stator phase voltage /V  Us 168.9 

Stator phase resistance warm /Ω  Rs,dc 0.00432 

Resistance coefficient  kr 2.07 

ReRT 

Measured stator reactance /Ω (5.63) XReRT 0.1849 

Number of turns per phase  w 18 

Winding factor  kw 0.925 

Length of the iron stack /m  lFe 0.98 

Corresponding 
stator stray 

reactances acc. 

(5.64) /Ω 

Blondel´s stray coefficient  σs 0.07 (XsσQ + Xsσb) 

Calculated bore reactance /Ω (5.65) Xbore, cal 0.0877 0.0972 

Calculated bore reactance with 
corrected iron length /Ω 

(5.66) Xbore, cal_10% 0.0964 0.0885 

Calculated bore reactance with 
corrected iron length_IEC /Ω 

(5.67) Xbore, cal_IEC 0.0919 0.093 

Calculated stator stray 
reactances /Ω 

Analytic (XsσQ + Xsσb)cal 0.0935  

Table 5.30: The calculated stator reactances during the removed rotor test at 60 Hz and rated 
current for 1500 kW, 6-pole generator “A550-6R” 

 

5.8.2 Measurement of the stator bore reactance 

The method - described in (5.64) - is not accurate enough as the bore 
reactance Xbore might be calculated with an assumption of additional flux at the 
machine axial ends, e.g. of 10 %. This calculation can lead to high stator stray 

reactances (XsσQ + Xsσb), especially for short machines and low-pole machines 

[Böde 1962, Bonf 1962, Rich 1953]. To increase the accuracy of the estimated 

stator stray reactances (XsσQ + Xsσb) in (5.64) the bore reactance Xbore should be 

measured with an extra bore-coil [Sche 1909, IEC 60034-4].  
The bore-coil is shown in Figure 5.32. The length of the bore-coil should be 

equal to the length of the iron stack lFe, and the width is equal to the pole pitch 
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τp. The bore-coil with wcoil turns is placed in the bore during the ReRT. At the 

terminals of the bore-coil the induced voltage Ucoil can be measured, which is 
proportional to the bore flux ΦReRT  

 1      ;2 coilw,ReRTcoilw,coilcoil =Φ⋅⋅⋅⋅⋅= kkwfU π  (5.68)

wcoil : number of turns of the bore-coil 
kw,coil : winding factor of the bore-coil (kw.coil = 1). 

 
With the stator data the bore reactance Xbore is given as 
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Is : stator phase current during the ReRT 
üU : voltage transformation ratio between the stator winding and the bore-coil. 
 

 

Figure 5.32: The bore-coil with 50 turns a 0.38 mm insulated wire diameter for the 
measurement of the bore reactance during the removed rotor test for 5.5 kW, 4-
pole motor “A132-4”. 

 
The bore flux ΦReRT – measured with the bore-coil – as function of the stator 

current Is and the stator voltage Us during the removed rotor test is depicted in 
Figure 5.33 for the 5.5 kW, 4-pole motor “A132-4”. The bore flux ΦReRT is 
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proportional to the stator current Is and to the stator voltage Us. 
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Figure 5.33: Measured bore flux as function of the stator current and stator voltage during the 
removed rotor test for 5.5 kW, 4-pole motor “A132-4” 

 
As can be seen in Table 5.31 the calculated bore reactance Xbore, cal_IEC acc. to 

(5.67) deviates from the value Xbore measured with the bore-coil acc. to (5.69) 

within 8 %; the stator stray reactances (XsσQ + Xsσb) determined with the 

calculated bore reactance Xbore deviate from the measured value within 4 %. For 
this example of the “short” 4-pole motor “A132-4” the analytically calculated 

stator stray reactances (XsσQ + Xsσb)cal are smaller than the measured value and 

deviate by 51 %. This finding correlates with the observation of Richter 

[Rich 1953, p. 432]. The ratio of the stray reactances (XsσQ + Xsσb) and the bore 

reactance Xbore is 1.8. In comparison the stator stray reactances (XsσQ + Xsσb) are 

in the range of the calculated bore reactance Xbore for the example of the “big” 6-
pole generator “A550-6R”. 
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5.5 kW 4-pole motor “A132-4” Equation   

Number of turns of the bore-coil; Winding factor  wcoil; kw,coil 50; 1 

Measured induced voltage in the bore-coil /V  Ucoil 4.05 

Measured bore flux /mVs (5.68) ΦReRT 0.3646 

Measured bore reactance /Ω (5.69) Xbore 3.012 

Stator phase current /A; phase voltage /V  Is; Us 6.5; 61.7

Stator phase resistance warm /Ω  Rs,dc 3.509 

Resistance coefficient  kr 1.094 

Measured stator reactance /Ω (5.63) XReRT 8.67 

Measured stator stray reactances /Ω (5.64) (XsσQ + Xsσb) 5.658 

Number of turns per phase; Winding factor  w; kw 252; 0.96

Length of the iron stack /m   lFe 0.1253 

Blondel´s stray coefficient  σs 0.04 

Calculated bore reactance /Ω (5.65) Xbore, cal 2.874 

Calc. bore reactance with corrected iron length /Ω (5.66) Xbore, cal_10% 3.161 

Calc. bore reactance with correct. iron length_IEC /Ω (5.67) Xbore, cal_IEC 3.249 

Calculated stator stray reactances /Ω Analytic (XsσQ + Xsσb)cal 2.765 

Table 5.31: Measured reactances with the bore-coil during the removed rotor test at 50 Hz and 
rated current compared to the calculated on for 5.5 kW, 4-pole motor “A132-4” 

 
Note: The manufacturer data for this motor were not available. Some dimensions 

were measured where possible. The number of turns per phase w was 
derived from the measured phase resistance Rs. This increases the 
uncertainties in the calculated parameters. 

 
 

5.9 Iron losses at removed rotor test 

The iron losses in the stator core PFe,ReRT during the removed rotor test 
(ReRT) are small and can be neglected due to the reduced voltage (PFe ~ B², 
B ~ U). But for a more accurate estimation of the resistance coefficient kr due to 
the skin effect the iron losses in the stator core PFe,ReRT can be derived from the 
ratio of the fluxes as 
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 ( )2
δ1ReRTNFe,ReRTFe, / ΦΦ⋅= PP  (5.70)

PFe,ReRT : iron losses in the stator core during the removed rotor test 
ΦReRT :     flux during the removed rotor test at reduced voltage 
PFe,N :     iron losses in the stator core at rated voltage 
Φδ1 :    rated air gap flux (fundamental) of the IM (with rotor) at rated voltage. 
 

The ratio of the flux during the removed rotor test ΦReRT at reduced voltage 
and the rated flux Φδ1 of the IM (with rotor) at rated voltage is given by 
[Jord 1970] 
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µ0 : magnetic permeability of empty space (µ0 = 4π.10-7 Vs/(Am)) 
kw  : winding factor 
As : stator current loading 
Bδ1 : air gap flux density (fundamental) of the IM (with rotor) at rated voltage. 
 
With the number of the phases m and the stator current Is the stator current 
loading As can be determined as 
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w : number of turns per phase 
τp : pole pitch. 
 
The air gap flux density (fundamental) Bδ1 of the IM (with rotor) at rated voltage 
Us,N (assuming the terminal voltage Us,N ≈ Uh) is  
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lFe : length of the iron stack 
f : supply frequency 
σs : Blondel´s stray coefficient which considers the voltage drop on the stator 

stray reactance (estimated value 0.07). 
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With the equations (5.72) and (5.73) the equation (5.71) can be rewritten as 
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The fundamental-frequency stray load losses Pad,s in the stator including the 

small amount of the iron losses during the removed rotor test, the stray load 
losses in the winding due to the skin effect considering the iron losses at reduced 
voltage and the ratio of the flux during the removed rotor test and the rated flux 
are compared in Table 5.32 for the round wire winding generator “A550-6R”, 
the litz wire winding generator “A550-6L” and the profiled conductor winding 
generator “A550-6P”. The amount of the iron losses during the removed rotor 
test is about 2 % of the iron losses at rated voltage. This leads – depending of the 
value of the stray load losses in the stator – to a deviation of 1 %...15 % of the 
determined stray load losses in the winding due to the skin effect. 
 

1500 kW 6-pole generators A550-6R A550-6L A550-6P 

Rated voltage / voltage at removed rotor test 600 V / 169 V 600 V / 182 V 600 V / 181 V

Measured iron loss at rated voltage /kW 8.842 8.927 9.06 (calcul.) 

Calcul. iron loss at removed rotor /kW 0.157 0.204 0.209 

Stator stray load loss (incl. iron loss) /kW 11.543 1.383 4.61 

Stator winding stray load losses /kW 11.386 1.179 4.4 

Deviation in stray load losses -1.36 % -14.7 % -4.5 % 

Ratio of the fluxes: ΦReRT / Φδ1  13 % 15 % 15 % 

Ratio of the iron losses: PFe,ReRT/PFe,N 1.78 % 2.28 % 2.31 % 

Table 5.32: The measured stray load losses at rated current in the stator with and without 
consideration of the iron losses for 1500 kW, 6-pole generators 

 

During the short circuit test or locked rotor test (SCT) the voltage (main flux) 
is also reduced, like during the removed rotor test (ReRT). Except for some 
differences like the reduced stray inductances due to increased saturation of the 
tooth tips through the zig-zag stray flux at higher slip s (SCT), we ask if the 
estimation of the iron losses during both tests is comparable.  

Richter [Rich 1936] estimates the iron losses in the stator core PFe,SC during 
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the SCT acc. to the equation (5.75). Is this estimation also valid for the iron 
losses PFe,ReRT in the stator core during the ReRT ? The  iron losses estimated by 
the equations (5.70) and (5.75) are compared in Table 5.33. It can be seen that 
the estimated iron losses during the removed rotor test acc. to Richter can differ 
by 1 % to 11 % for these examples. 

 ( ) ReRTFe,

!

NFe,
2

Ns,ReRTSCFe,     4// PPUUP ≈⋅=  (5.75)

UReRT : reduced voltage during the removed rotor test 
Us,N : rated voltage 
PFe,N : iron losses in the stator core at rated voltage. 
 

 

1500 kW 6-pole generators A550-6R A550-6L A550-6P 

Rated voltage / voltage at removed rotor test 600 V / 169 V 600 V / 182 V 600 V / 181 V

Measured iron losses at rated voltage /kW 8.842 8.927 9.06 (calcul.) 

Calcul. iron loss at ReRT acc. (5.70)  /kW 0.157 0.204 0.209 

Estimated iron losses at removed rotor from 
short circuit relation acc. (5.75)  /kW 

0.175 0.205 0.206 

Deviation in iron losses 11.4 % 0.6 % 1.6 % 

Table 5.33: Comparison of the estimated iron losses during the ReRT at 60 Hz for 1500 kW, 
6-pole generators 

 
 

5.10  Measures to reduce the eddy current losses in the winding 

Due to the AC current of stator frequency the AC slot leakage flux will 
induce eddy currents in the conductors, leading to additional losses in the 
conductors and uneven current density distribution. Therefore the height of the 
single conductor should be reduced beyond the critical value and /or segmented 
into many parallel insulated strands, which are twisted and arranged in a suitable 
way to reduce the eddy currents like the Roebel [Bind 2006g] bars. The twists 
may be made in various combinations as to the number and the place, e.g. only 
in the back, front or all end connections, after each or several turns... Besides the 
twist the height of the turn should be reduced, might it be through the insulation 
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material between the turns in the slot or through careful manual inserting instead 
of mechanical inserting. 

 

5.10.1 Modelling  

To reduce the first order eddy current losses due to the circulating currents, in 
loops composed of insulated partial conductor wires connected at the ends, a 
simplified model is given in Figure 5.34.  
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Figure 5.34: Simplified model showing the circulating currents between two sections for the 
round wire winding 

 
The simplified model can be described as: 

1) The real – random – distribution of the wires will be substituted by an 
equivalent arrangement. 

2) The coil consisting of many insulated round wires (bundle) will be 
divided vertically into two sections. Each section (section 1 and section 2) 
is composed of a number of wires. Horizontally the potential differences 
due to the radial stray flux are small and can be neglected. 

3) Each section should change successively its position in the slot so that 
each one comes to every position. Then all sections have the same 
impedance and carry the same current. 

4) In all the slots flows the same current (unpitched winding). 
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5) The transverse magnetic field in the slot will be divided into few levels or 
positions depending on the number of the turns per slot wü (Figure 5.35). 

 
To estimate the effectiveness of the measures to reduce the first order skin 

effect, the method described by Lammeraner [Lamm 1966] is choosen as it is 
simple. Also the works of Müller [Müll 1956] and Kučera [Kuče 1956] deal 
with this topic. 

 

Example 1 

As presented in Figure 5.35 the coil of the two-layer winding is composed of 
many insulated round wires (bundle). At the ends of the coil the bundle are 
conductively short circuited (SC). The winding is inserted in the slots without 
transposition of the coil sides, like it is done for the single layer winding. So the 
slot stray flux in both coil sides is calculated without changed direction of the 
slot stray flux penetration, which yields higher eddy current losses than with this 
change, which is usual for the transposed two-layer winding with profile copper 
conductors. The winding consists of wü = 4 turns per slot and passes through 4 
slots (q = 2). 
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Figure 5.35: The coil of the two-layer round wire winding with four turns per slot passing 
through four slots without transposition, without twists and the magnetic field 
level 
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As can be seen in the Figure 5.35 each section remains in the same position – 
magnetic field level – in the slots.  

 
The expanded view for the coil is presented in Figure 5.36. 
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Figure 5.36: Expanded view for the coil of the two-layer round wire winding with four turns 
per slot passing through four slots without transposition, without twists and the 
magnetic field level 

 
The resistance coefficient can be written as 

   )()( 1.O211.Or1.O ξψξϕ ⋅⋅+= cck  (5.76)

c1 : average value of the “potential” of section 1 
c2 : average value of the “potential” of section 2. 
 

The values c1 and c2 will be determined from the expanded view in Figure 
5.36. We are to follow the course of each section from one short-circuited end to 
the other short-circuited end, add the level values and take the average as: 
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For this example, the coil of the two-layer winding with four turns per slot 



5  Investigation of stray load loss components 252 

passing through four slots (1-11-2-12) without transposition and without twists, 
the product of c1 and c2 is 3.75. This result is identical with the value calculated 
acc. to the equation (5.45), where wü = 4. 
 

5.10.2 Twisting in winding overhang 

The practicable twisting, for the round wire winding, is done in the winding 
overhang between two equal coils (in the middle of the winding). Several twists 
might be possible but not practicable ! 

To reduce the circulating currents in the coil of example 1, a twist (11/2) will 
be made in the winding overhang between the slot 11 and the slot 2 as shown in 
Figure 5.37 and Figure 5.38. 

 

Twist

3
1
2

1
2

2
1

2
1

1
2

1
2

2
1

2
1

2

1

0

4

Level

Slot 1 Slot 2 Slot 11 Slot 12

End SC

Beginn SC

Twist in front end  

Figure 5.37: Twist in winding overhang in the middle of the two-layer round wire winding 
with four turns per slot passing through four slots without transposition 

 
As can be seen in the Figure 5.37 each section changes successively its 

position in the slot, so that each one comes to every position. 
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Figure 5.38: Expanded view for the twist in winding overhang in the middle of the two-layer 
winding with four turns per slot passing through four slots without transposition 

 
From the expanded view in Figure 5.38 the values c1 and c2 will be 

determined, like in former example, but with changing the sign after the twist as: 

 5.0 
2

1

8

)0213()1324(
122slot 111slot 

1 ==
−−−−++++

= →→c  (5.79)

 5.0 
2

1

8

)1324()0213(
122slot 111slot 

2 −=−=
−−−−++++

= →→c  (5.80)

 
With a twist in the winding overhang in the middle of the coil (11/2) the product 
of c1 and c2 for this example is -0.25. 
 

5.10.3 Transposition 

The coil of example 1 will be inserted in the slots with “transposition” of the 
coil sides, like in the usual two-layer winding with profile copper conductors. 
This can be realised with 6 twists after each half turn in the winding overhang 
but not in the middle of the coil (11-2); 3 twists between slot 1 and slot 11 in 
(1/11), (11/1), (1/11) and 3 twists between slot 2 and slot 12 in (2/12), (12/2), 
(2/12).  
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Figure 5.39: “Transposition” of the two-layer round wire winding with four turns per slot 
passing through four slots 

 
As can be seen in the Figure 5.39 the winding is compensated as each section 

changes successively its position in the slot, so that each section comes to every 
position.  

For this configuration the product of c1 and c2 is -0.25. This value is the same 
as obtained with only one twist as presented in the Figure 5.37.  
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If we made a twist in the middle of the winding (11/2) in addition to the 6 
twists after each half turn the compensation will be affected and the product of 
c1 and c2 will be 0.75. 

 
An example of transposition is given in Figure 5.40 for a profiled conductor 

winding with four turns per slot and four partial conductors per turn. 
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Figure 5.40: Transposition of the two-layer profiled conductor winding with four turns per slot 
passing through eight slots 

 
The winding is fully compensated as each partial conductor comes to every 

position in the slot. For this distribution the number of the slots should be 
divisible by the number of the partial conductors. It is expensive but the 
circulating current losses are effectively suppressed ! 

 
 

5.10.4 Twisting in the slot region 

The most effective measure to reduce the circulating current losses is the 
compensation along the slot (each coil side) like by the expensive Roebel bar.  

To achieve full compensation the twist should be done in the middle of the 
slots for each turn as presented in Figure 5.41 and Figure 5.42. With the twist in 
the middle of the slots it is difficult to insert the coils of the round wire winding 
in the slots, and so this measure is expensive and not practicable ! 
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Figure 5.41: Twist in the middle of the slot for the two-layer round wire winding with four 
turns per slot passing through two slots  
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Figure 5.42: Expanded view for the twist in the middle of the slot for the two-layer round wire 
winding with four turns per slot passing through two slots  

 
 

5.11 Tested measures reducing eddy current losses in the winding 

The simplest measure to reduce the eddy current losses in round wire 
windings is careful hand insertion (H1, H2, H3) of the winding in the slot 
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instead of mechanical insertion (M1, M2, M3). A reduction of about 50 % of the 
stator stray load losses in the winding can be achieved as shown in Figure 5.43 
for the two speeds round wire winding generator “A445-46R”. Sometime this is 
not enough, in case of heating or efficiency problems, and then the twisting in 
the winding overhang in the middle of the coil should be done. 
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Figure 5.43: Reduction of stray load losses with hand compared to mechanically insertion for 
the two speeds round wire winding “A445-46R” at 50 Hz 

 
As presented in Figure 5.44 for the two speeds round wire winding generator 

“A445-46R” with twist in the middle of the coil (T1, T2), a reduction of about 
46 % of the stator stray load losses can be realized compared to the hand 
inserted untwisted winding (R1, R2, R3).  

For on speed round wire winding generator “A550-6R5” with twist in the 
middle of the coil (T1, T2) a reduction of about 94 % is measured, compared to 
untwisted windings (R1, R2, R3). It has to be noted that the measurement 
accuracy in this case is low, due to the low losses as depicted in Figure 5.45. But 
the tendency shows the reduction. 
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Figure 5.44: Reduction of the stator stray load losses with twist in the middle of the coil 
compared to untwisted winding for the two speeds round wire winding “A445-
46R” at 50 Hz 

 
 

0,00

0,05

0,10

0,15

0,20

0,25

0,30

T1 T2 R1 R2 R3

Tw
is

te
d

Tw
is

te
d

U
nt

w
is

te
d

U
nt

w
is

te
d

U
nt

w
ist

ed

R
es

is
ta

nc
e 

co
ef

fic
ie

nt
 (

k r
-1

)

 

Figure 5.45: Reduction of the stator stray load losses with twist in the middle of the coil 
compared to untwisted winding for the round wire winding “A550-6R5” at 50 Hz 
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5.12 Calculation of the stray load losses in induction machine 

In this section the analytically calculated stray load losses in 11 kW TEFC 
cage induction machines at sinusoidal supply will be compared with the 
measurements acc. to IEC 61972 [IEC 61972]/ IEC 60034-2 Ed. 4.0 draft [IEC 
60034-2 draft] at different slip values s. The calculation tool for cage induction 
machines KLASYS [KLASYS], developed by Binder [Bind 1988], extended, 
improved and programmed in a Delphi Code by Hagen [Hage 2008], allows the 
calculation of different loss components like the losses in the stator winding due 
to the skin effect, due to harmonic rotor and inter-bar currents, due to tooth flux 
pulsations and eddy currents in the rotor surface, at any given slip s, load and 
saturation level [Hage 2008]. The calculation methods are based on a thorough 
survey on existing methods for the different stray load loss components, e. g. 

[Wepp 1964, Jord 1965, Sche 1969].  
The calculation is done for the 11 kW, 4-pole motors A160-4...E160-4. The 

following calculated stray load loss components on the stator side are very small 
for all investigated motors and therefore neglected in the comparison:  

- in the stator winding due to the skin effect, 

- in the delta-connected stator winding due to the circulating currents generated 
by the third field harmonic, 

- iron losses in the stator core due to the third field harmonic, caused by the 
deformation of the field distribution due to iron saturation, 

- eddy current losses in the conductive stator frame, in the press plate and in 
the end shield. 
 

5.12.1 Theoretical background of calculated loss components 

The calculation of the stray load losses in the stator winding, due to the skin 
effect, is done with more or less the some formulas described in the section 
above, but for the single layer winding. Based on the classical induction machine 
theory for the harmonic field effects, published mainly by Weppler, Schetelig, 
Taegen et al., the harmonic losses are estimated.  
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The stator slot harmonics due to the stator current Is of frequency fs induce the 

rotor cage. The harmonic rotor currents cause additional losses in the rotor cage 
and as inter-bar currents in the stack. This is an essential part of stray load 
losses. 

 )cos(),( s
p

s
,ss,s txBtxB ω

τ
πννν −⋅⋅= ;  ,...2 ,1 ,0 ,61 ±±=⋅+= ggν  (5.83)

τp is the pole pitch, ν  are the ordinal numbers of the stator harmonics. With the 

number of the stator slots Qs and the pole pair number p the dominating slot 
harmonics are 

 gpQ ⋅+= )/(1 sQν . (5.84)

 

The rotor slot harmonics due to the rotor current '
rI  of rotor frequency fr = s.fs 

induce the stator winding and cause additional losses in the stator. 
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μ are the ordinal numbers of the rotor slot harmonics and Qr the number of the 
rotor slots.  

The stator harmonic currents μsI  are induced by the rotor slot harmonics of 

frequency [ ]ssff +−⋅⋅= )1(ss μμ . At load with the slip s = sN the rotor current 

'
rI  causes stator harmonic currents. At no-load, s = 0, with symmetric feeding 

the fundamental rotor current '
rI  is zero, so no stator harmonic currents occur. 

In Table 5.34 the slot harmonic amplitudes Bs,νQs and Br,μ are calculated with the 

influence of the winding parameters, the slot numbers Qs, Qr and the slot 
openings sQ,s, sQ,r. The dominating first pair of the slot harmonics for the stator 
and the rotor is given. For closed rotor slots an equivalent slot opening sQ,r,eq is 
used acc. to theory [Bind 1988]. 
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 A160-4 B160-4 C160-4 D160-4 E160-4 

Qs/Qr 48/40 36/28 48/40 48/36 36/28 

sQ,s/δ, sQ,r,eq/δ 6.2 , 3.3 6.6 , 2.7 5.6 , 2.7 7.0 , 3.8 8.6 , 4.6 

Bδ1  /T 0.91 0.81 0.9 1.0 0.93 

νQs -23, +25 -17, +19 -23, +25 -23, +25 -17, +19 

Bs,νQs  /T 0.2 / 0.045 0.4 / 0.19 0.35 / 0.21 0.47 / 0.3 0.59 / 0.29 

μ -19, +21 -13, +15 -19, +21 -17, +19 -13, +15 

Br,μ  /T 0.18 / 0.018 0.19 / 0.06 0.18 / 0.018 0.2 / 0.002 0.32 / 0.04 

Table 5.34: Motor design data and their influence on the harmonics at 50 Hz for 11 kW, 4-pole 
motors 

 
The influence of the motor design on the harmonics and consequently on the 

stray load losses is well shown in the Table 5.34. The slot harmonic amplitudes 
increase with decreasing ratio of “slot number per pole” and with increasing 
ratio of “slot opening/air gap”. The skewing shall reduce the harmonic voltage 
induction, but increases the inter-bar currents. This causes additional losses in 
the rotor. In the motor “A160-4” with the lowest harmonic amplitudes and small 
skewing the stray load losses are small, whereas in the motor “E160-4” with 
small air gap and low slot number the slot harmonic amplitudes and the stray 
load losses are bigger. 

 

5.12.1.1 High frequency tooth pulsation losses in the stator 

The flux pulsations in the stator teeth due to rotor slotting [Sche 1969] causes 

high frequency tooth eddy currents and hysteresis losses Pp,s. Calculating the 
harmonic content of the air-gap zig-zag stray flux up to a certain maximum 

ordinal number μmax of the rotor field harmonics yields the time function of the 

flux pulsation in the stator teeth. The sum of the rotor harmonic field waves with 

ordinal numbers rr Qg ⋅+=νμ , ,...2 ,1r ±±=g  is considered. All waves with a 

certain value gr ≠ 0 contribute to a pulsation in the stator tooth with the 

frequency )1()/(1 rrs spQgf −⋅⋅+⋅ . Generally the eddy current losses increase 

with the square of the frequency, which is considered along with the (minor) 
field displacement in the laminations, which also depends on the effective 
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permeability. Anomalous (excess) eddy current losses are of minor importance 
in non-oriented steel sheets and are neglected. The increase of the hysteresis 
losses due to flux pulsations, resulting in minor sub-loops, is approximately 
calculated by means of the additional hysteresis factor [Leve 1978]. So the eddy 
current loss calculation depends strongly on the input of the specific iron losses 
P1.5 (in W/kg at 50 Hz, 1.5 T) of the used sheet material and its increase due to 
the manufacturing process (punching...), which was assumed to be 30 %. 

 

5.12.1.2 High frequency tooth pulsation losses in the rotor 

The stator field harmonic waves cause flux pulsations in the rotor teeth and 
finally high frequency tooth eddy current losses Pp,r. Depending on the rotor 
skewing the flux is damped by the cage harmonic currents [Jord 1965]. Also 
these losses depend on the specific iron losses P1.5 in the same way as the 
component in the stator Pp,s. As all motors investigated here have a skewed rotor 
cage, the rotor is divided into 10 parts in axial direction. In each axial section the 
cage flux between two bars is calculated with respect to the inter-bar currents. 
Expressions for the bar and inter-bar currents at the axial position y are taken 
from [Wepp 1966] to calculate the damping of the pulsating rotor tooth flux. The 
slot stray flux of the νth bar current harmonic, induced by the νth stator field 
harmonic, is added to the tooth flux. Due to the flux damping the “minor loop” 
hysteresis losses are negligible. 

 

5.12.1.3 High frequency surface losses in the rotor 

The machined rotor surface may have thin conductive areas, where the 
insulated rotor iron sheets are bridged by the tooling process. Here eddy currents 
may flow, being caused by the stator field waves, which enter and leave the rotor 

tooth within its tooth pitch τQ,r, without penetrating the tooth body [Rao 1969]. 

The generated high frequency surface eddy current losses Psur,r are sensitive to 
the machining process. Usually the bridging of the sheets is not very pronounced 
in modern manufacturing processes with sharp tool cutting edges, so these losses 
are calculated, taking an intact core lamination into account [Kesa 1967]. Two 
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components are considered: 

- the surface flux caused by the stator field harmonics and 

- the zig-zag flux entering and leaving the rotor tooth tip as well as the stator 
tooth tip (see Figure 5.51). 
 

5.12.1.4 Harmonic losses in the rotor 

The harmonic I2R losses Pc+q,r in the squirrel cage and in the rotor iron stack 
play a decisive role especially at load due to the inter-bar currents. Weppler 
[Wepp 1966] introduced a complex skewing factor to take the inter-bar currents 
into account, which assumes a constant average value for the rotor cage inter-bar 
resistance Rq due to the iron oxidation. As can be seen in Figure 5.46 the 

calculated results depend strongly on the chosen value Rq [Engl 2006] at given 

slip s, which was assumed as in [Wepp 1966] with 0.01 Ω·cm2 for all motors. 

Due to the manufacturing process at different manufacturers the value Rq should 
be different in reality. 

 

 

Figure 5.46: Calculated influence of inter-bar resistance on additional rotor cage losses for 11 
kW, 4-pole motor “C160-4”; Inter-bar resistance Rq and inter-bar currents. 
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numbers νQ, are considerably amplified by the ratio of the stator slot opening vs. 

air-gap sQ,s/δ. Even in case of semi-closed stator slots these amplitudes are 

increased by a factor 2 … 3. The amplitudes decrease with 1/νQ. In [Wepp 1969] 

a simplified method was presented to consider the stator and the rotor slot 
openings sQ,s and sQ,r, which was experimentally checked by testing the 
harmonic asynchronous starting torque. Even closed rotor slots saturate in the 
closing iron bridges at a rather low bar current, so an equivalent rotor slot 
opening is calculated iteratively. Both methods [Wepp 1966] and [Wepp 1969] 
are combined for the determination of the harmonic rotor bar and inter-bar 
currents, which – together with the rotor bar skin effect and the inter-bar 
resistance – yield the rotor losses. 

 

5.12.2 Calculated stray load losses at no load 

Already at no-load the stray load losses Pad,0 are acting mainly as eddy 
current and hysteresis losses in the iron and conductive parts, especially at high 
saturation of the main flux. The amount of the skin effect in the winding is 
negligible due the low no-load current. 

The calculated stray load losses at no-load Pad,0 versus the measured iron 
losses PFe at no-load and rated voltage is presented in Figure 5.47. 

The calculation results show for the motors “A160-4” and “C160-4”, with the 
same stator and rotor slot numbers and the smallest ratio Qs/Qr, higher no-load 
stray load losses. As mentioned previously, the calculations are done – for all 
motors – with the same magnetising B(H)- curve and the specific iron losses, 
which are different in reality. 
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Figure 5.47: Calculated additional no-load losses Pad,0 versus the measured iron losses PFe at 
no-load, rated voltage for 11 kW, 4-pole motors “X160-4” 

 

5.12.3 Calculated stray load losses at rated slip 

The calculated stray load losses Pad for rated output power PN are compared 
to the measured stray load losses at rated slip in Figure 5.48. As shown the 
calculation results for most motors are in the range of the measurements and for 
the motor “E160-4” agree quite well with the measurements. For the motors 
“A160-4” and “D160-4” the calculated stray load losses are overestimated. The 
calculations are done with the same B(H)- curve and based on several 
assumptions like the value of the inter-bar resistance Rq, the rotor surface 
impedance, the manufacturing (punching, tooling..) influence on pulsation losses 
etc.. 
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Figure 5.48: Comparison of calculated and measured stray load losses at rated slip related to 
the rated output power for 11 kW, 4-pole motors “X160-4” 

 
In Figure 5.49 the calculated stray load loss components Pp,s, Pp,r, Psur,r, Pc+q,r 

are shown at no-load and rated load for the 11 kW, 4-pole motor “B160-4” with 
closed rotor slot opening and for the motor “C160-4” with semi closed rotor slot 
opening, where the impact of the rotor slot opening – semi closed, open – on the 
calculated stray load loss components can be seen. The rotor high frequency iron 
losses Psur,r due to the stator field harmonics are damped by the high frequency 
rotor bar current harmonics at no-load as well as at load [Ober 2000], so they do 
not increase very much. The increase of the pulsation losses in the rotor Pp,r at 
closed rotor slots is higher than for semi closed rotor slots. The strongest 
increase with load is visible for the cage and inter-bar harmonic losses Pc+q,r, as 
the stator field harmonics increase by the ratio of the no load current to the rated 
current IN/I0. This ratio is on average 2.2 for 11 kW-motors and increases with 
increasing power. Hence the increase of this loss component is strongest for the 
big motors. 
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Figure 5.49: Comparison of calculated component of stray load losses at no load and at rated 
load for 11 kW, 4-pole motors “B160-4” with closed rotor slot opening and 
“C160-4” with semi closed rotor slot opening.  

  Pp,s, Pp,r: Stator and rotor high frequency pulsation losses, Psur,r: Rotor surface 
losses, Pc+q,r: Rotor cage and inter-bar harmonic losses. The stray load losses in 
the stator winding Pad,s are not considered. 

 
 

5.12.4 Calculated stray load losses at reverse rotation test 

The calculated stray load losses Pad versus the rated output power PN are 
compared to the measured stray load losses at slip s = 2 in Figure 5.50. As 
shown the calculation results for the motors “B160-4” and “D160-4” fit well 
with the measurements. For the remaining motors the stray load losses at slip 
s = 2 are underestimated. The calculations are based on several assumptions like 
the value of the inter-bar resistance, the rotor surface impedance, the 
manufacturing (punching, tooling..) influence on pulsation losses etc. With 
higher slip s the stray inductances are reduced due to increased saturation of the 
tooth tips (reduction of the relative magnetic permeability) through the zig-zag 
stray flux. At slip s = 1 the magnetic field is displaced from the rotor towards the 
air gap due to the skin effect. A “flux compensation” occurs where the rotor and 
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the stator current are almost opposite in phase, rs II ′−≈ . The main flux 

saturation is strongly reduced. These effects are higher at slip s = 2. Therefore 
the analytical calculation is complicated and can be only an estimation. 
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Figure 5.50: Comparison of calculated and measured stray load losses at reverse rotation test 
related to the rated output power for 11 kW, 4-pole motors “X160-4” 

 
 
In Figure 5.51 a comparison of calculated components of the stray load losses 

Pp,s, Pp,r, Psur,r, Pc+q,r for locked rotor test (s = 1) and for reverse rotation test 
(s = 2) for the 11 kW, 4-pole motor “B160-4” with closed rotor slots and for the 
motor “C160-4” with semi closed rotor slot openings is presented. Also the zig-
zag stray flux is shown schematically. Due to the slot-frequency at slip s = 2, the 
pulsation losses Pp,s in the stator and Pp,r  in the rotor are higher, whereas at slip 
s = 1 they are negligibly small. 

 



5  Investigation of stray load loss components 269 

0

20

40

60

80

100

120

140

160

180

Locked rotor B RRT B Locked rotor C RRT C

C
om

po
ne

nt
 o

f P
ad

/ W

Pp,s

Psur,r

Pp,r

Pc+q,r

 

Figure 5.51: Comparison of calculated component of stray load losses at locked rotor test and 
at reverse rotation test for 11 kW, 4-pole motors “B160-4” with closed rotor slot 
opening and “C160-4” with semi closed rotor slot opening; Zig-zag stray flux. 

  Pp,s, Pp,r: Stator and rotor high frequency pulsation losses, Psur,r: Rotor surface 
losses, Pc+q,r: Rotor cage and inter-bar harmonic losses. The stray load losses in 
the stator winding Pad,s are not considered. 

 
 

5.13 Conclusion 

The origin, the theoretical background, the measurement and the analytical 
estimation of the stator winding stray load losses due to the skin effect in grid-
operated cage induction generators were shown. Different influence parameters 
like the number of wires per bundle, the pitching, the insertion of the wires in 
the slots etc., were investigated. Also some practicable measures to reduce this 
kind of losses were presented and tested. The analytical calculation of this loss 
component agrees quite well with the measurement for the profiled and the litz 
wire winding, but not always for the round wire winding, due to the random wire 
distribution in the slots. For some examples this loss component can be so high, 
that the generator will be overheated at continuous full load operation. The 
removed rotor test is a useful indicator for this. 

From the comparison of the measured magnetic flux densities at rated 

Zig-zag flux 
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voltage, no-load current and full load current it can be seen that the measured 
iron losses from the standardized no-load test are smaller for the efficiency 
determination than the real iron losses at full load. 

In addition, an overview on main loss components in cage induction 
machines and their analytical calculation, based on the classical induction 
machine theory for harmonic field effects, was shown. With some assumptions 
for material parameters such as the inter-bar resistance, the rotor surface 
resistance, the specific iron losses, the determination of the stray load losses is 
possible in a fast and satisfying way. This is especially useful for the simulation 
and optimisation of grid-operated machines, where a quite satisfying 
coincidence with measured stray load losses according to IEC 61972/ IEC 
60034-2 Ed. 4.0 draft was found. 
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6 CONCLUSIONS AND OUTLOOK 
 
The main findings of the present work “Experimental Determination of Stray 

Load Losses in Cage Induction Machines” are summarized in this chapter. The 
thesis is based on two research projects and deals with the measurement methods 
to determine the stray load losses and the efficiency of grid-operated low-
voltage squirrel-cage induction machines. The strengths and weaknesses of 
different test methods were investigated and compared for water-cooled wind 
generators of 1.5 MW and 27 standard TEFC cage induction motors of different 
design in the power range 0.37 kW, 0.55 kW, 1.1 kW, 5.5 kW, 11 kW and 
315 kW. Some analytical calculations were presented. 

 
Methods to determine the losses and efficiency of electrical machines are 

either by direct or by indirect measurement. A direct measurement is the input-
output test by measuring the input power Pe,in and the output power Pm,out , 
yielding the total losses which include the stray load loss. Because of 
unavoidable measurement errors the direct determination of the efficiency is 
generally not accurate enough in case of machines of efficiencies above 95 %. 
For machines of higher efficiency indirect methods are preferred, especially the 
summation of separate losses. They imply the separate identification of the stray 
load losses, which is helpful for optimizing the machine design. 

The efficiency determined of an induction motor depends, apart from the 
motor design, on the test method, the instrumentation and measurement 
accuracies, and on many parameters such as the load condition (full or partial 
load), the temperature and the quality of the power supply. It depends also on the 
interpretation of the standards by the users.  

The methods for determining the efficiency of induction machines vary 
greatly in terms of their complexity, overall performance and their suitability for 
the test field conditions. These methods are based on different theoretical models 
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and different assumptions. Therefore it is difficult to compare the efficiency 
values obtained by different methods. 

As the direct determination of the efficiency (measurement of the input and 
output power e.g. acc. to IEEE 112-method A) suffers from the measurement 
uncertainty, it is – naturally – limited for motors of high efficiency. The indirect 
method (e.g. residual loss method acc. to IEEE 112-method B) is less sensitive 
to measurement errors and seems to be, depending on the measurement accuracy 
of the total power losses Pd, useful also for higher efficiency machines. 

 
The stray load losses have a considerable impact on the performance of the 

machine including the heating. By a tested example it was shown that, due to the 
stray load losses the generator could not run continuously at full load. To avoid 
insulation destruction, the practical consequence of this effect of overheating is 
the derating ! 

Prominent for determining the stray load loss is the residual loss method 
(consisting of a load test with torque measurement and a calculation procedure 
with smoothing the stray load loss by linear regression analysis), as standardized 
in IEC 60034-2-1 or IEEE 112-method B. 

Because of the unavoidable measurement errors, the indirect determination of 
the stray load losses Pad via measuring the input power Pe,in and the output power 
Pm,out (e.g. residual loss method acc. to IEEE 112-method B) is generally not 
accurate enough in case of only a small value of the stray load losses Pad, e.g. for 
machines of efficiencies above 95 %. Therefore the direct measurement method 
of the stray load losses Pad (e.g. eh-star method or RRT) can be useful in case of 
high efficiencies. Other advantages of this method are the separate identification 
of the stray load losses in the stator and in the rotor, which is helpful for 
optimizing of the machine design. In contrast, the residual loss method e.g. acc. 
to IEEE 112-method B and the calorimetric method determine the stray load 
losses as a sum. 

In addition the influence of different parameters such as the instrumentation 
accuracy, the temperature, the resistive losses, the iron losses and the friction 
and windage losses on the determination of the stray load losses and the 
efficiency was shown. 
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It has been shown that the iron losses measured in the standardized no-load 
test are smaller than the real iron losses at full load. That means that the 
remaining part of the iron losses will be charged to the stray load losses when 
using the indirect measurement of the stray load losses (input-output test with 
segregation of the losses) acc. to [IEC 61972] and IEEE 112-method B, whereas 
it is left out of consideration when using the allowance for the stray load losses 
acc. to e.g. IEC 61972-2 and IEEE 112-method E1 during the efficiency 
determination ! 

 
A survey on cheap and simple methods to measure the stray load losses in 

squirrel-cage induction motors, apart from the standardized methods, resulted in 
finding three equivalent “no-load” methods, where no coupling and no 
dynamometer or torque-meter are needed. The strengths and weaknesses of 
these measurement methods were investigated and compared with the 
standardized residual loss methods (input-output test) and the reverse rotation 
test (RRT); their practically existing limitations were discussed. The eh-star 
method has been found to be a simple and fast test, yielding results comparable 
with the input-output test, fitting the purpose better than the RRT. Such a simple 
and fast test is required for the measurement of the stray load losses Pad, e.g. 
during the process of motor design optimization. 

 
The theoretical background and the test procedure of the eh-star method, as 

an equivalent test method to determine the stray load losses, are described in 
detail. Different evaluation methods A, A1, B and C were compared by 
theoretical and measured examples, showing the usefulness of the evaluation 
methods C and A. The influence of different parameters (e.g. the unbalanced 
auxiliary impedance Zeh, the temperature, …) on the stray load losses was 
shown. 

Method A is proposed for the new standard IEC 60034-2 Ed. 4, 2nd CDV 
[IEC 60034-2 draft], as the calculation algorithms are simple for the standard-
users (May 2007 it was accepted and published on Sept. 2007 in IEC 60034-2-1, 
Edition 1.0 [IEC 60034-2-1]). 

 
The experimental determination of the stray load losses for 5.5 kW and 
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11 kW motors with pole count 2, 4 and 6 showed good coincidence between the 
residual loss methods and the eh-star method, whereas the RRT method gave 
bigger stray load losses.  

For power rating less than 1.1 kW the RRT method yields – unlike in case of 
bigger motors – the same or less stray load loss values than the residual loss 
methods for the investigated motors. The eh-star method yields also lower losses 
than the input-output methods. 

No good correlation was found between the results as well of the equivalent 
no-load method of Bourne as of the equivalent no-load method of Rawcliffe and 
the residual loss methods. 

 
Main issues of the present PhD work were also investigations on the origin, 

the theoretical background, the measurement and the analytical estimation of the 
fundamental frequency stray load losses in the stator winding due to the skin 
effect. Different influence parameters such as the number of wires per bundle, 
the pitching of the winding, the method to insert the wires in the slots etc. ... 
were investigated. Other topics during regarding the removed rotor test like the 
eddy current losses in the press plates, the iron losses and the reactance 
quantities were also discussed. 

For some round wire winding samples the fundamental frequency stray load 
losses in the stator winding can be so high that the generator cannot operate 
continuously at full load. The practical consequence to avoid endangering the 
generator is derating. Through the direct measurement of the stray load losses, 
separately in the stator and in the rotor, the source of the heating can be 
identified. By the input-output test e.g. acc. to IEEE 112-method B and the 
calorimetric method this would not be possible. Some practicable measures to 
reduce this part of the losses were presented and successfully tested. Thanks to 
these proven techniques the round wire winding is competitive to other more 
expensive winding types.  

It has been shown that the result of analytical calculation of this loss 
component agrees quite well with the measurement for profiled and litz wire 
winding but not always for round wire winding, due to the randomly distributed 
wires in the slots.  

With increasing winding resistance due to the skin effect the inductance 



6  Conclusions and outlook  275 

decreases, and consequently the “filter” effect of the winding decreases also, 
which leads to larger high-frequency stray load losses. 

In addition, an overview was shown on main loss components in cage 
induction machines and their analytical calculation, based on the classical 
induction machine theory for harmonic field effects. With some assumptions 
regarding material parameters such as the inter-bar resistance, the rotor surface 
resistance and the specific iron losses, the determination of the stray load losses 
was possible in a fast and satisfying way. This is especially useful for the 
simulation and optimization of grid-operated machines, where a quite satisfying 
coincidence of measurement and calculation was found. 

 
The measured stray load losses are for all cases larger than those obtained 

from the assigned value of 0.5 % of the electrical input power acc. to IEC 
60034-2. For a fair competition the stray load losses must be measured and 
cannot be replaced by any kind of fixed assumption. 

 

Outlook 
 
The fundamental frequency stray load losses in the stator winding of the 1.5 

MW round wire winding generators due to circulating currents can be high. 
They can be suppressed by some practicable measures. The press plate losses in 
the end region were found negligible for this power rating. 

The iron losses must be regarded as load dependent for the stray load losses 
and the efficiency determination.  

Motors of power rating 1.1 kW proved to be still good measurable in the lab, 
but need a careful testing. For power ratings less than 1.1 kW the stray load 
losses are very small (only some Watt), leading to increased measurement 
uncertainty. 

For small motor rating of less than 0.55 kW the eh-star method should not be 
used for the determination of the stray load losses, due to measurement 
uncertainty. 

The input-output test e.g. acc. to IEEE 112-method B determine the stray 
load losses as residual losses from the load characteristic. As the slip s and the 
speed n change during the load test together with the friction and windage losses 
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Pfw, this part of losses should be taken into account for more accurate 
determination of the stray load losses Pad, especially for machines of high speed 
and high slip !  

 
This contribution addresses many issues in terms of measurement, calculation 

and theory of the stray load losses and the efficiency of induction machines. 
Nevertheless, each research work can only cover a limited number of aspects 
related to its topic. The following items might indicate topics for further 
investigation: 

 
Improvement of analytical models by means of FEM for estimation of the 

eddy current losses, and comparison with measurements. 
 
Estimation of temperature distribution and temperature rise by means of 

thermal equivalent networks or by FEM, and comparison with the measurement. 
 
Methods to take the load/speed dependent friction and windage losses into 

account for standardised determination of the stray load losses and the 
efficiency, using empirical formulae, with exponents tabled as functions e.g. of 
frame size, speed, pole count, rotor volume and fan design (number of blades, 
one or two directions of rotation). 
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8 LIST OF SYMBOLS AND ABBREVIATIONS 
 
 

Symbols 

Symbol Unit Name 

eâ  A/m exciting current loading 

a - complex unity phasor: 1,, 33/423/2 === ⋅⋅ aeaea jj ππ  

a - number of parallel winding branches 

ACu,solid m2 copper cross section of the solid profiled partial conductor 

ap - number of parallel wires in bundle (partial conductors) per turn 

AQ m2 slot cross section 

As A/m stator current loading 

B T magnetic flux density 

bbot m slot width of the oval-shaped slot at the bottom edge 

BQ T magnetic flux density in slot (stray flux) 

bQ m slot width  

bQ,e m equivalent slot width  

bTL m width of partial conductor  

btop m slot width of the oval-shaped slot at the top edge 

dCu m diameter of the wire (without insulation) 

dCu,insl m diameter of the insulated wire 

de m air gap between excitation and massive body 

dE m penetration depth 

dinsl,TL m insulation thickness of the wire (both sides) 

dlin,insl m thickness of the slot lining 

Dsi m diameter of the stator bore 
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f Hz frequency 

g - integer number 

H A/m magnetic field strength 

hc m coil height 

hQ m slot height  

hTL m partial conductor height (without insulation) 

hw m height of the turn per coil 

hwedge m wedge height 

I A current (rms)  

I0 A no-load current at rated voltage 

I1 A positive sequence current 

I2 A negative sequence current 

Ib A bar current 

Ic A coil current 

IFt A Foucault current (eddy current) 

Ii A inner phase current “behind” the iron resistance RFe 

Ii,1 A inner phase current of positive sequence system 

Ii,2 A inner phase current of negative sequence system 

IN A rated current 

ItN A rated test current 

j - 1−=j  imaginary unit 

J A/m2 electric current density 

k - coefficient between positive and negative sequence system 

kBind - pitching coefficient considered acc. to A. Binder 

kf1 - filling factor of the high power winding “winding 1” 

kf2 - filling factor of the low power winding “winding 2” 

kHF - extension factor considering the turn height in the low filled 
slot 

kLF - litz filling factor 

kr - average increase of AC resistance 

kw - winding factor 

kw,coil - winding factor of the bore-coil (kw.coil = 1) 

l m axial length 
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lb1 m length of the conductor in the straight part of the winding 
overhang 

lb2 m length of the conductor in the curved part of the winding 
overhang 

lFe m length of the iron stack 

LFe m total length of the iron stack (with radial ventilation ducts) 

l'Fe m corrected length of the iron stack 

lk m length (thickness) of the radial ventilation ducts 

lm m length of the conductor (lm = lFe + lb1 + lb2) 

m - number of phases 

M, Mδ Nm internal (air gap) torque 

Mad Nm additional loss torque 

ME Nm error in harmonic torque for eh-star method evaluation 

Mfw Nm friction and windage torque 

Ms Nm shaft torque 

n 1/s rotational speed 

N - number of turns per phase 

Nc - number of turns per coil 

nk - number of the radial ventilation ducts 

nn - number of wires (partial conductors) side by side (horizontal) 
per slot 

nü - number of wires (partial conductors) one above the other per 
slot 

nü/turn - number of wires (partial conductors) one above the other per 
turn 

p - number of pole pairs 

P W power 

P1.5 W/kg specific iron losses at 1.5 T, 50 Hz  

Pad W additional losses (stray load losses) 

Pad,0 W additional losses at no-load 

Pad,1 W additional losses of positive sequence system 

Pad,2 W additional losses of negative sequence system 

Pad,asym W additional losses at asymmetric feeding 
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Pad,r W additional losses in the rotor 

Pad,s W additional losses in the stator 

Pad,s,1.O W first order skin effect additional losses in stator winding 
(circulating currents) 

Pad,s,2.O W second order skin effect additional losses in stator winding 
(within the conductor itself) 

Pc+q,r W harmonic losses in the squirrel cage and in the rotor iron stack 

Pcont W check input power (control) 

PCu,s,dc W DC copper losses (without skin effect) 

Pd W total losses (difference between input and output) 

PE  W error in harmonic power for eh-star method evaluation 

Pe,in W electrical input power 

PFe,s W stator iron losses 

PFt,1.O W first order eddy current losses in stator winding 

PFt,2.O W second order eddy current losses in stator winding 

Pfw W friction and windage losses 

Pm,out W output power (mechanical power on the motor shaft) 

Pp,r W high frequency pulsation losses in the rotor 

Pp,s W high frequency pulsation losses in the stator 

ppu - number of the positive passes in upper layer 

pslot - number of passes through the slot (pslot = wü number of turns 
per slot for two-layer and pslot = 2·wü for single-layer winding) 

Psur,r W high frequency surface losses in the rotor 

Pδ,1 W air gap power of positive sequence system 

Pδ,2 W air gap power of negative sequence system 

PΣ W sum of the conventional losses 

q - number of slots per pole and phase 

Q - number of slots 

R Ω resistance 

Reh Ω auxiliary resistance in eh-star-circuit 

RFe Ω iron (core) resistance 

Rm - magnetic Reynolds number 

Rq Ω rotor cage inter-bar resistance 
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Rs Ω stator phase DC-resistance 

Rs,ad Ω stator phase AC-resistance considering the stray load losses in 
the stator winding due to the skin effect 

Rs,dc Ω stator phase DC-resistance (without skin effect) 

s m distance 

s - slip 

s1 - slip of the positive sequence system 

s2 - slip of the negative sequence system 

sQ m slot opening 

sw - number of mixed slots (different phases in upper and lower 
layer) 

U V voltage (rms) 

üU - voltage transformation ratio between the stator winding and the 
bore-coil 

Ui V inner phase voltage at the equivalent iron resistance RFe 

Ui,1 V inner phase voltage of positive sequence system 

Ui,2 V inner phase voltage of negative sequence system 

ULL V line to line voltage 

Us V stator phase voltage 

Us,1 V positive sequence voltage 

Us,2 V negative sequence voltage 

W m coil width 

wcoil - number of turns of the bore-coil 

wü - number of turns one above the other per slot 

X Ω reactance 

x m circumference co-ordinate 

x - per unit inductance 

Xbore Ω stator bore reactance (removed rotor test) 

Xsσb Ω stator winding overhang stray reactance 

XsσQ Ω stator slot stray reactance 

Z Ω impedance 

Zeh Ω auxiliary impedance in eh-star-circuit 
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Zsc Ω stator short circuit impedance (at s = 1) 

 
 

Greek  

Symbol Unit Name 

η - efficiency 

Θ A ampere turns 

δ m air gap width 

ϑ °C temperature 

Δϑ K temperature rise 

κ S/m electric conductivity 

ν - ordinal number of stator harmonic field 

μ - ordinal number of rotor space harmonics, caused by the 

stator fundamental field ν = 1 

μν - ordinal number of rotor harmonic field, caused by the νth 
stator harmonic field 

μ Vs/(Am) magnetic permeability 

μ0  Vs/(Am)  magnetic permeability of empty space (4π.10-7 Vs/(Am)) 

ξ - „reduced“ conductor height 

σ - stray (leakage) coefficient 

σs - Blondel´s stray coefficient 

τQ m slot pitch (stator, rotor) 

τp m pole pitch 

νMü - number of positive sequences of the partial conductor 

ρMü - number of negative sequences of the partial conductor 
(transposed or twisted) 

Φ Wb magnetic flux  

ϕ rad phase angle 

ω 1/s angular frequency 

∞ - infinite 
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Subscripts 

Symbol Name 

0 no-load 

1 positive sequence 

1.O first order skin effect 

2 negative sequence 

2.O second order skin effect 

δ  air gap 

ad additional 

av average 

b winding overhang (bobinage) 

c coil, corrected (smoothed) data 

Cu copper 

d difference 

dir direct 

e electric, equivalent 

eq equivalent 

Fe iron 

Ft Foucault losses (eddy current losses) 

fw friction and windage 

h main, magnetizing (Hauptfeld) 

hy hysteresis 

i internal, inner, induced 

in input 

indir indirect 

L line 

LL line-to-line 

m mechanical, magnetic 

max maximum 

mech mechanical 

N rated (Nominal) 

out output 
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p fundamental, pulsation 

Q slot 

r rotor 

regr regression (line) 

ReRT removed rotor test 

s stator 

SC Short circuit test or locked rotor test  

t test 

TL partial conductor (Teilleiter), wire 

U, V, W three phases 

UV, VW, WU line-to-line 

 
 

Notation 

Symbol Name 

i lower-case letters: instantaneous value (e.g.: electric current) or per 
unit value 

I upper-case letters: r.m.s. or DC value (e.g.: electric current) 

X, x upper-case letter: value in physical units e.g. reactance in Ω, lower-

case letter: per unit value 

I underlined: complex values 

I* conjugated complex value of I 
Î  amplitude 

I ′  related to stator side winding  

Re{.} real part of ... 

Im{.} imaginary part of ... 

 
 

Abbreviations 

Symbol Name 

AC Alternating Current  
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acc. According 

CDV Committee Draft for Vote 

CEMEP European Committee of Manufacturers of Electrical Machines and 
Power Electronics 

CO2 Carbon dioxide 

CSA Canadian standard association  

DC Direct Current  

DE Drive end 

e.g. for example (latin: exempli gratia) 

ECCP European Climate Change Program 

Ed Edition 

eh single phase (Einphasig), auxiliary resistance (Hilfswiderstand ) 

FEM Finite Element Method  

i.e. this means 

I2R Ohmic losses  

IEC International Electrotechnical Commission 

IEEE Institution of Electrical and Electronic Engineers 

IM Induction machine 

JEC Japanese Electrotechnical Commission 

L Litz (braid) wire winding 

NA Not applicable 

NDE Non Drive end 

NEMA National Electrical Manufacturers Association 

NM Not measured 

P Profile conductor winding 

p.u. per unit 

R Round wire winding 

ReRT Removed rotor test 

RRT Reverse rotation test (s = 2) 

SCT Short circuit test or locked rotor test (s = 1) 

TEFC Totally enclosed fan cooled 

vs. versus 
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9 APPENDIX 
 
 

9.1 Appendix A: Durand-Kerner method 

Retrieved from "http://en.wikipedia.org/wiki/Durand-Kerner_method" 
 

In numerical analysis, the Durand-Kerner method (established 1960-66) or 
method of Weierstrass (established 1859-91) is a root-finding algorithm for 
solving polynomial equations. In other words, the method can be used to solve 
numerically the equation 

 0)( =xf  ( 9.1)

where f is a given polynomial, which can be taken to be normed so that the 
leading coefficient is 1. 

 
The explanation is for an equation of degree four. It is easily generalized to 

other degrees. 
Let the normed polynomial f be defined by 

 dxcxbxaxxf +⋅+⋅+⋅+= 234)(  ( 9.2)

for all x. 
The known numbers a, b, c, d are the coefficients. 

Let the (complex) numbers P, Q, R, S be the roots of this polynomial f. Then 

 )()()()()( SxRxQxPxxf −⋅−⋅−⋅−=  ( 9.3)

for all x. One can isolate the value P from this equation, 
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)()()(
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SxRxQx
xfxP

−⋅−⋅−
−= . ( 9.4)

The substitution 

 
)()()(

)(
:

SxRxQx
xfxx

−⋅−⋅−
−= . ( 9.5)

is a strongly stable fixed point iteration in that every initial point x ≠ Q, R, S 
delivers after one iteration the root P. 

 
If one replaces the zeros Q, R and S by approximations q, r, s ≠ P, then P is 

still a fixed point of the perturbed fixed point iteration since 

 PP
sPrPqP

PfP =−=
−⋅−⋅−

− 0
)()()(

)(
. ( 9.6)

Note that the denominator is still different from zero. This fixed point 
iteration is a contraction mapping, around P. 

 
The clue to the method now is to combine the fixed point iteration for P with 

similar iterations for Q, R, S into a simultaneous iteration for all roots. 
Initialize p, q, r, s: 

 0
0 )j9.04.0(: ⋅+=p ; 

 1
0 )j9.04.0(: ⋅+=q ; 

 2
0 )j9.04.0(: ⋅+=r ; 

 3
0 )j9.04.0(: ⋅+=s ; 

( 9.7)

There is nothing special about choosing )j9.04.0( ⋅+  except that it is neither 

a real number nor a root of unity. 
Make the substitutions for n = 1, 2, 3,··· 
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( 9.8)

 
Re-iterate until the numbers p, q, r, s stop essentially changing. Then they 

have the values P, Q, R, S in some order and in the chosen precision. So the 
problem is solved. 

Note that you must use complex number arithmetic, and that the roots are 
found simultaneously rather than one at a time. 

 
Example 

 05432)( 234 =+⋅+⋅−⋅−= xxxxxf  ( 9.9)

As can be seen in Table  9.1 the first 6 iterations move p, q, r, s seemingly 
chaotically, but then the roots are located to 1 decimal. After the iteration 
number 7 we have 6 correct decimals, and the subsequent iteration number 9 
confirms that the computed roots are fixed. This general behaviour is 
characteristic for the method. 
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 p q r s 
1.iter 0.567890-1.257574j 5.375121+1.7971371j -2.83117249-0.24757577j -1.111838-0.29198737j 

2.iter 0.947011-1.128573j 3.578850+1.02767661j -1.41127774+0.41594683j -1.11458243-0.31505032j 

3 1.363243-0.686370j 2.755792+0.58255052j -1.06228266+0.43985696j -1.05675176-0.33603752j 

4 1.704446-0.356538j 2.354657+0.34629936j -1.02051528+0.33580547j -1.03858821-0.32556722j 

5 1.947909-0.255583j 2.121741+0.25598039j -1.03469917+0.32517503j -1.03495096-0.3255729j 

6 2.054696-0.313857j 2.015231+0.31385679j -1.03496586+0.32574203j -1.03496107-0.32574223j 

7 2.034242-0.325300j 2.035681+0.32530047j -1.03496163+0.32574103j -1.03496163-0.32574104j 

8 2.034963-0.325741j 2.034961+0.32574054j -1.03496164+0.32574104j -1.03496164-0.32574104j 

9 2.034962-0.325741j 2.034962+0.32574104j -1.03496164+0.32574104j -1.03496164-0.32574104j 

10 2.034962-0.325741j 2.034962+0.32574104j -1.03496164+0.32574104j -1.03496164-0.32574104j 

11 2.034962-0.325741j 2.034962+0.32574104j -1.03496164+0.32574104j -1.03496164-0.32574104j 

12 2.034962-0.325741j 2.034962+0.32574104j -1.03496164+0.32574104j -1.03496164-0.32574104j 

13 2.034962-0.325741j 2.034962+0.32574104j -1.03496164+0.32574104j -1.03496164-0.32574104j 

…     

20 2.034962-0.325741j 2.034962+0.32574104j -1.03496164+0.32574104j -1.03496164-0.32574104j 

Table  9.1: The iterations and the roots of the example-polynomial 
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9.2 Appendix B: Measurement setup 

 
Quantity Instrument Accuracy 

Power NORMA Wide Band Power 
Analyzer Type D6100 

Voltage 0.07% at 50 Hz 
Current 0.07% at 50 Hz 

 Shunts Norma Trax Shunt 1 ... 100 A ± 0.03% 

Load cell HBM S2, 500 N 0.05% 

Load cell HBM S2, 50 N 0.05% 

Torque 

Signal amplifier HBM MVD2555 0.1% 

Speed Heidenhain encoder ERN 120 TTL, 1024 

Resistance Burster Resistomat Type 2316 0.03% (resolution 0.1µΩ) 

Resistance (cooling 
curve) 

Yokogawa Analyzing recorder 
AR1100 

0.2% 

Current Amperemeter 0.2% 

Voltage Voltmeter 0.1% 

Time function of 
currents and voltages 

FFT Analyzer Ono Sokki CF-5210 ± 0.05 dB at <20 kHz 
± 0.1 dB at 20 kHz ...100 kHz

Temperature Thermocouple Type J, Type K ± 2.5°C 

Flux density Hall sensor Siemens type KSY 44 ± 0.2% at B = 0 …0.5 T 
± 0.7% at B = 0 …1.0 T 

Table  9.2: Measurement instrument  

 

 

Figure  9.1: Test bench: coupled IM with dynamometer for frame size ≥132 mm 
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Figure  9.2: Test bench: Measurement instrument 

 
 

 

Figure  9.3: Test bench: coupled IM with dynamometer for frame size 80 mm 



9  Appendix C: Tested motors  303 

 
 
 
 

9.3 Appendix C: Tested motors 

 

11 kW 4-pole motors A160-4 B160-4 C160-4 D160-4 E160-4 

Power / kW 11 11 11 11 11 

Voltage / V; Connection Y 400 690 690 690 400 

Current / A 21.4 12.1 12 12.4 22.5 

Frequency / Hz 50 50 50 50 50 

Speed / rpm 1455 1465 1450 1460 1440 

Table  9.4: Rated data of tested 11 kW, 4-pole motors 

 

11 kW 2- & 6-pole motors A160-2 B160-2 C160-2 D160-2 A160-6 

Power / kW 11 11 11 11 11 

Voltage / V; Connection Y 690 400 690 400 690 

Current / A 11.5 21.7 12.5 21.2 13.6 

Frequency / Hz 50 50 50 50 50 

Speed / rpm 2900 2940 2930 2880 967 

Table  9.5: Rated data of tested 11 kW, 2-pole and 6-pole motors 

 

5.5 kW 6- & 4-pole motors A132-6 B132-6 C132-6 D132-6 A132-4 

Power / kW 5.5 5.5 5.5 5.5 5.5 

Voltage / V; Connection Y 690 400 690 400 690 

Current / A 7 13.8 7.7 13.4 8.6 

Frequency / Hz 50 50 50 50 50 

Speed / rpm 955 960 950 960 1390 

Table  9.6: Rated data of tested 5.5 kW, 6-pole and 4-pole motors 
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1.1 kW 2-pole motors A80-2 B80-2 C80-2 D80-2 

Power / kW 1.1 1.1 1.1 1.1 

Voltage / V; Connection Δ 231 231 231 231 

Current / A 4.43 4.27 4.32 4.9 

Frequency / Hz 50 50 50 50 

Speed / rpm 2835 2845 2845 2720 

Table  9.7: Rated data of tested 1.1 kW, 2-pole motors 

 

0.55 kW 4-pole motors A80-4 B80-4 C80-4 D80-4 

Power / kW 0.55 0.55 0.55 0.55 

Voltage / V; Connection Δ 231 231 231 231 

Current / A 2.89 2.76 2.65 2.67 

Frequency / Hz 50 50 50 50 

Speed / rpm 1400 1400 1390 1380 

Table  9.8: Rated data of tested 0.55 kW, 4-pole motors 

 

0.37 kW 6-pole motors A80-6 B80-6 C80-6 D80-6 

Power / kW 0.37 0.37 0.37 0.37 

Voltage / V; Connection Δ 231 231 231 231 

Current / A 2.14 2.2 2.22 2.16 

Frequency / Hz 50 50 50 50 

Speed / rpm 915 950 918 912 

Table  9.9: Rated data of tested 0.37 kW, 6-pole motors 

 

 A550-6 A317-4 

 1500 kW 6-pole generator 315 kW 4-pole motor 

Power / kW 1500 315 

Voltage / V; Connection Δ 600 400 

Current / A 1580 540 

Frequency / Hz 60 50 

Speed / rpm 1220 1488 

Table  9.10: Rated data of tested 1500 kW, 6-pole generator and 315 kW, 4-pole motor 
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9.4 Appendix D: Example for measurement results 

 
Stray load loss measurement results for 11 kW motor A160-4 acc. to IEC 60034-
2 Ed. 4.0 draft / IEC 61972 
 
 

y = 0,02662x - 8,33832
R² = 0,97569
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A160-4: input-output 
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Figure  9.4: Residual loss method (Input-output test) acc. to IEC 60034-2 Ed. 4.0 draft  
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A160-4 R LL, kalt  [Ω] 0,7246 400V Y ϑkalt [°C] 20

R LL, war  [Ω] 0,9228 ϑwi [°C] 89,75 ϑRaum [°C] 24

Input-outputR s, war 30s  [Ω] 0,9114 ϑwi, 30s [°C] 85,74
Heat run 1,5 1,25 1 0,75 0,5 0,25

ϑRaum [°C] 24 24 23,9 23,9 23,9 23,8 23,76

ϑwi [°C] 89,75 89,75 89,75 89,75 85,87 82,01 78,14

f s  [Hz] 50 50 50 50 50 50 50

n syn  [rpm] 1500 1500 1500 1500 1500 1500 1500
Δ n  [rpm] 43,9 71,2 57,8 44,9 32,6 21 10
n  [rpm] 1456,1 1428,8 1442,2 1455,1 1467,4 1479 1490

U LL  [V] 399,97 400,14 399,74 399,91 400,47 400,22 400,07

I L  [A] 21,622 31,024 26,103 21,585 17,55 14,093 11,567

P el,in  [W] 12436,2 19044,3 15680,3 12462,8 9363,8 6355,9 3405,90

P Fe_IEC  [W] 302,184 287,713 294,362 302,011 310,598 317,284 323,972

P Cu,s  [W] 647,40 1332,83 943,54 645,18 421,41 268,47 178,64

P δ  [W] 11486,62 17423,76 14442,40 11515,61 8631,79 5770,15 2903,29

P Cu,r  [W] 336,18 827,05 556,51 344,70 187,60 80,78 19,36

P R_IEC  [W] 70,15 70,15 70,15 70,15 70,15 70,15 70,15

P total  [W] 1355,90 2517,74 1864,56 1362,04 989,76 736,69 592,12

P m,Norma  [W] 11013,00 16215,00 13636,00 11011,00 8321,60 5595,10 2816,10
M  [Nm] 72,12 108,27 90,19 72,16 54,05 36,03 17,95
M dyn Corr  [Nm 0,010 0,010 0,010 0,010 0,010 0,010 0,010

M c  [Nm] 72,134 108,282 90,198 72,171 54,064 36,035 17,958

P m,out  [W] 10999,23 16201,48 13622,36 10997,24 8307,72 5581,11 2802,01

P d  [W] 1436,97 2842,82 2057,94 1465,56 1056,08 774,79 603,89

P add  [W] 81,07 325,08 193,38 103,52 66,32 38,11 11,77

P add,ind  [W] 62,18 196,04 114,27 62,10 30,84 13,50 4,87

M c ²  [Nm²] 5203,37 11724,91 8135,73 5208,64 2922,87 1298,52 322,48
Intercept B -8,34 Slope A 0,02662 Correlat. Fact 0,988 Point Deleted 0
P Cu,s c  [W] 649,39 1336,94 946,45 647,17 427,83 275,88 185,85

Δ n c  [rpm] 44,04 71,43 57,98 45,04 33,11 21,60 10,42

n c  [rpm] 1456,0 1428,6 1442,0 1455,0 1466,9 1478,4 1489,6

P δ c  [W] 11484,62 17419,65 14439,49 11513,62 8625,37 5762,74 2896,08

P Cu,r c  [W] 337,18 829,48 558,17 345,74 190,40 82,97 20,11

P add,c  [W] 138,50 312,08 216,55 138,64 77,80 34,56 8,58

P total,c  [W] 1497,41 2836,36 2085,68 1503,71 1076,77 780,85 608,66

P m,out,c  [W] 10938,79 16207,94 13594,62 10959,09 8287,03 5575,05 2797,24
η  [%] 87,96 85,11 86,70 87,93 88,50 87,71 82,13
η dir  [%] 88,43 85,07 86,87 88,23 88,71 87,79 82,22

η indir0.5  [%] 88,60 85,75 87,38 88,57 89,10 88,20 82,47

η indirIEC-2  [% 87,12 83,65 85,58 87,11 88,01 87,53 82,31

η indirIEEE-E1  [ 87,50 84,26 86,07 87,49 88,28 87,70 82,37
p.f. [%] 83,03 88,57 86,76 83,36 76,92 65,06 42,49  

Table  9.11: Residual loss method (Input-output test) acc. to IEC 60034-2 Ed. 4.0 draft 
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No-load losses segregation acc. to IEC 60034-2 Ed. 4 draft. 
 

y = 323,0x + 70,15
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A160-4: Friction losses acc. IEC 60034-2 draft

 

Figure  9.5: Friction losses acc. to IEC 60034-2 Ed. 4.0 draft  
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Figure  9.6: Iron losses acc. to IEC 60034-2 Ed. 4.0 draft  



9  Appendix D: Example for measurement results 308 

 

y = 0,03346x
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Figure  9.7: No-load, voltage-current  

 
 
 
No-load A160-4 400V Y R s,20°C  [Ω] 0,36230

U LL  [V] I L  [A] P el,in  [W] ϑwi, mit [°C] R s, war  [Ω] P Cu,s  [W] P Fe+R  [W] P Fe  [W] n  [rpm]

469,18 21,733 1152,6 49,65 0,4044 573,06 579,54 509,39 1500,5
440,89 16,141 818 49,65 0,4044 316,10 501,90 431,75 1500,2
399,72 10,923 541,3 49,65 0,4044 144,76 396,54 326,39 1500,1
359,28 8,234 404,32 48,44 0,4027 81,91 322,41 252,26 1500,1
320,55 6,682 323,79 47,29 0,4011 53,72 270,07 199,92 1499,4
280,11 5,538 261,77 46,08 0,3993 36,74 225,03 154,88 1499,5
240,41 4,608 210,54 44,89 0,3977 25,33 185,21 115,06 1499,6
201,37 3,804 168,7 43,72 0,3960 17,19 151,51 1499,9
160,42 3,042 133,64 42,50 0,3943 10,95 122,69 1499,9
120,10 2,334 106,37 41,29 0,3926 6,42 99,95 1498,7
101,32 2,035 95,9 40,73 0,3918 4,87 91,03 1497,6
80,54 1,723 85,81 40,11 0,3909 3,48 82,33 1496,3  

Table  9.12: No-load test acc. to IEC 60034-2 Ed. 4.0 draft 
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Figure  9.8: Reverse rotation test acc. to IEC 60034-2 Ed. 4.0 draft  
 

R s, kalt  [Ω] 0,3623 400V Y ϑkalt [°C] 20

A160-4 R s, war  [Ω] 0,4160 ϑwi [°C] 57,78 ϑRaum [°C] 25

RRT 1,5 1,25 I N  =21.62A I t,N  =18.66A 0,75 I 0  =10.92A 0,50 0,25 0

ϑRaum [°C] 23,5 23,5 23,5 23,6 23,6 24 24,5 25

ϑwi [°C] 57,70 57,79 57,82 57,86 57,86 57,86 57,86 57,86

ϑGeh [°C] 50,7 54,0 56,9 57,9 57,6 54,3 51,8 50,1
n  [rpm] 1500,3 1500,3 1500,1 1500,1 1499,7 1501,1 1500 1499,4 1500
U LL  [V] 75,20 65,24 61,01 54,41 45,06 34,72 30,87 18,29

I tL  [A] 28,011 23,326 21,449 18,684 14,915 10,921 9,475 4,712

P el,in  [W] 1750,17 1242,84 1055,83 797,89 504,23 264,63 196,85 49,713

M c  [Nm] 7,328 5,326 4,575 3,634 2,513 1,572 1,311 0,741 0,441

P m,in  [W] 1151,29 836,71 718,62 570,82 394,61 247,05 205,99 116,32 69,20

P m,in -P 0  [W 1082,09 767,51 649,42 501,62 325,40 177,85 136,79 47,12

P Cu,s  [W] 978,88 679,02 574,21 435,77 277,69 148,88 112,07 27,72

P ad,r  [W] 428,68 281,48 231,57 184,77 123,03 69,06 54,05 15,89

P ad,s  [W] 117,9 77,8 63,8 45,3 24,2 7,0 2,0 -9,2

P add  [W] 546,57 359,27 295,35 230,05 147,19 76,02 56,09 6,67

M c ²  [Nm²] 53,70 28,36 20,93 13,20 6,31 2,47 1,72 0,55

(I t /I t,N ) ² 2,25 1,56 1,32 1,00 0,64 0,34 0,26 0,06

P m,in -P 0  [W 1031,98 744,25 640,70 500,75 334,87 191,93 148,93 42,78

P el,in  [W] 1782,94 1233,22 1041,50 788,75 501,04 267,45 200,91 49,20

P el,ReRT,c  [W] 1137,55 783,42 660,32 498,44 314,94 166,88 124,94 30,10

ϑwi,ReRT [°C] 65,63 71,70 73,80 78,28 78,28 78,28 78,28 78,28

R s, ReRT  [Ω] 0,42713 0,43576 0,43874 0,44510 0,44510 0,44510 0,44510 0,44510

R s, RRT [Ω] 0,41586 0,41599 0,41604 0,41610 0,41610 0,41610 0,41610 0,41610

P add
'
 [W] 492,23 334,31 282,96 212,35 147,31 88,60 70,21 22,19

P ad,c [W] 477,28 330,98 279,85 212,35 135,32 72,55 54,61 13,51

P ad,s,c  [W] 72,5 50,3 42,5 32,3 20,6 11,0 8,3 2,1  

Table  9.13: Reverse rotation test acc. to IEC 60034-2 Ed. 4.0 draft 
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Evaluation of eh-star-test, guideline, Version 1.5 A160-4
Algorithm written by M. Aoulkadi/Darmstadt University of Technology 

Star connection! load point 1 2 3 4 5 6
rated line- line voltage UN,Y [V] 400,0 Motor type

rated phase current IN [A] 21,6 core losses PFeN [W] 312,4
no-load phase current I0 [A] 10,9 friction & windage losses PfwN [W] 71,4

number of poles 2p 4,0 Stator phase resistance @ 20°C Rs, 20°C [Ω] 0,4
frequency f [Hz] 50,0 50,0 50,0 50,0 50,0 50,0

line- line voltage UUV [V] 152,5 140,2 125,0 120,1 107,2 82,7
line- line voltage UVW [V] 166,3 152,8 136,3 130,9 116,8 89,9
line- line voltage UWU [V] 47,5 42,8 37,3 35,6 31,0 22,3
phase current IUph [A] 27,3 24,7 21,7 20,7 18,2 13,8
phase current IVph [A] 32,5 29,5 25,8 24,6 21,7 16,4
phase current IWph [A] 22,4 20,1 17,5 16,6 14,4 10,4
input power Pe,in [W] 2456,7 2050,5 1600,0 1469,4 1155,4 684,8

speed n [rpm] 1467,5 1466,7 1466,4 1466,3 1465,3 1461,3
Comments:

line- line resistance @ 20°C RVW, 20°C [Ω] 0,7 Measurement Aron_V, Evaluation method C
line- line resistance @ begin RVW, begin [Ω] 0,7
line- line resistance @ end RVW, end [Ω] 0,8

eh-impedance (=UWU/IWph) Zeh [Ω] 2,1238 2,1268 2,1346 2,1393 2,1438 2,1502
winding temperature temp [°C] 29,58 32,9830 37,01 38,30 41,54 41,54

positive sequence current I1 [A] 5,8784 5,3658 4,7681 4,5857 4,1404 3,4453
negative sequence current I2 [A] 27,0378 24,4424 21,3614 20,3620 17,8526 13,2873

ratio (positive/negative) I1 / I2 0,2174 0,2195 0,2232 0,2252 0,2319 0,2593
rated test current ItN [A] 18,6595 18,6595 18,6595 18,6595 18,6595 18,6595

stray load losses Padd [W] 293,3285 236,6515 184,3855 167,8209 133,9670 79,7112
check of real power Pcont [W] 2456,70 2050,50 1600,00 1469,40 1155,42 684,81

 (I2 /ItN)^2 2,0996 1,7159 1,3106 1,1908 0,9154 0,5071
Pcont /Pe,in 1 1 1 1 1 1

stray load losses @ ItN Intercept B 11,0199 Slope A 133,0536 Correlat. Fact 0,99961
corrected stray load losses Padd, c [W] 279,362 228,304 174,376 158,441 121,795 67,468

A160-4
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Figure  9.9: Eh-star method 
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